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DISSERTATION ABSTRACT

Richard Wagner Jr.

Doctor of Philosophy

Department of Physics

June 2019

Title: Position and Temperature Measurements of a Single Atom via Resonant
Fluorescence

The magneto-optical trap (MOT) has been an important tool in quantum optics

research for three decades. MOTs allow for hundreds of thousands to millions of atoms

to be cooled to micro-Kelvin temperatures for use in a wide variety of experiments.

For nearly as long, MOTs with just a single atom have been of some interest to the

research community. We have developed an algorithm, based on Bayesian statistics,

to carefully measure small numbers of atoms in a MOT.

Many techniques have been developed to measure the temperature of atoms

in a MOT, including some that can translate to single atoms. We propose a

new technique to measure the temperature of a single atom without releasing the

atom from the MOT. Temporal modulations in a spatially dependent magnetic field

encode information about the position of an atom through associated variation in its

fluorescence rate. Measuring this variation reveals the atom’s position distribution

and therefore its temperature. The technique is examined for a variety of MOT

parameters. Measurements with the technique are an order of magnitude larger than

predicted by theory and potential routes for future study are offered.
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CHAPTER I

INTRODUCTION

The magento-optical trap (MOT) has become one of the bedrocks for research

on the quantum behavior of atoms. The MOT can produce millions of atoms with

temperatures on the order of microkelvins. Such small temperatures are necessary

to limit atomic motion for studying their classical and quantum dynamics. The

magneto-optical trap uses multiple laser fields whose frequencies are often a few MHz

smaller (red-detuned) than an atomic resonance of the atomic species being trapped.

The light is lower in frequency so that atoms moving towards the laser source sees

a Doppler shift moving the light from that laser closer to resonance. This Doppler

shift makes the atom more likely to absorb photons from the laser (due the reduced

detuning), resulting in radiation pressure that pushes the atom in the propagation

direction of the light. With D + 1 lasers for a MOT in D-dimensions, this can result

in a cooling force as the lasers damp the motion of the atoms. This process creates

what is often referred to as optical molasses and was originally conceived in the 1970s

[1, 2] and experimental verified in the following decade [3].

Doppler cooling is only responsible for cooling atoms; it does not trap them.

In addition to the laser fields, a MOT requires a (quadrupole) magnetic field which

produces a spatially dependent Zeeman shift of atomic energy levels. The Zeeman

shifts provide in an additional preferential excitation of the atoms by the laser,

creating a restoring force that traps atoms near the location where the magnetic

field vanishes. Together with optical molasses, the quadrupole fields impart a force

on the atom which causes it behave as a damped harmonic oscillator. There are a

number of configurations for a magneto-optical trap, but this work focuses on the

trap shown in Figure 1.1. Here, three pairs of counter-propagating lasers push the
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FIGURE 1.1. The magneto-optical trap. a) Schematic drawing. b) Photograph of
our MOT setup around the experiment vacuum cell. For both images, blue arrows
show the six-counter propagating MOT beams (with their appropriate polarizations
in the schematic drawing). Orange loops are anti-Helmholtz coils that generate the
linear magnetic field near the origin. The MOT loads at the origin (red dot).

atom towards their intersection point and the magnetic field is generated by a pair of

anti-Helmholtz coils—coaxial coils with currents traveling in opposite directions. At

the midpoint between the two coils on their central axis, the magnetic field vanishes,

establishing the equilibrium position for the atom.

1.1 Single Atom MOTs

Not long after the first MOTs were developed [4], they were extended to allow

capture of small numbers of atoms, primarily by greatly increasing the strength of

the confining magnetic field. This produced traps on order of tens of atoms [5] and

quickly down to individual atoms [6]. Since then, single- or few-atom MOTs have

largely been used as efficient sources of single atoms for loading into other optical

systems [7]. These systems include cavity QED experiments [8, 9], which allow for

strong coupling between the atom and cavity optical field modes; optical dipole traps
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[10, 11], which generally have tighter confinement of atomic motion than MOTs and

are far-detuned from atomic excitation; and one-dimensional optical lattices [12, 13],

which allow for targeted experimental interaction with multiple atoms. There have

been a broad field of research looking at atomic counting and MOT characterization

with single (and low-numer) MOTs [14, 15]. Other uses of single atom MOTs have

included studies of cross-atomic-species cold-atom interactions [16, 17], rare-isotope

separation [18, 19], and detailed studies of the high-gradient MOT loading and loss

mechanisms [20, 21].

Besides these studies of loading and loss mechanisms, there is little experimental

research on the dynamics of a few atoms in a magneto-optical trap. Additionally,

these have investigated loss rates statistically as opposed to the dynamics which

causes atomic loss in the traps. For few-atom MOTs, these loses are due to collisions

between atoms in the MOT resulting in atoms exiting the trap [15]. Some atomic

collisions coincide with atomic energy transitions that provide enough kinetic energy

for the atoms to escape the MOT [22]. The only experiments that have looked at the

dynamics of a single atom in a magneto-optical trap examined correlations between

photons emitted by the atom [23, 24]. These works reveal temporal-correlations

that reflect both internal atomic dynamics (Rabi oscillations) and external dynamics

(position-dependent electric field intensity and polarization) over several orders of

magnitude.

The work discussed in this dissertation adds to this little-explored topic by

looking at position-dependent oscillations of the atom in a MOT magnetic field. The

fluorescence rate of an atom depends on the detuning from resonance of the exciting

laser field. Because of the linear magnetic field of the quadrupole, the Zeeman shifted

energy levels have detunings that vary spatially. Modulating this magnetic field

3



introduces oscillations in the detuning and thus the rate of fluorescence from the

atom. Measuring the fluorescence oscillations can produce a time-averaged position

distribution for the atom in the MOT. The position distribution of the atom is very

closely related to its potential energy, which can be used, via the equipartition theorem

[25–27], to measure the atomic temperature. Therefore, this work functions as an in-

situ temperature measurement of the atom in addition to examining the averaged

motion of the atom in the MOT.

1.2 MOT Temperature Measurements

There are already a few established methods for measuring atomic temperatures

in a MOT. Some of the methods, like the method proposed here, compare

measurements of the atom(s) in the MOT to models of the MOT in order to

extract potential energy information about the atom. Others methods more directly

measure the temperature through the atomic kinetic energy, but these methods are

lossy, requiring releasing the atom(s) from the MOT and reloading new atoms for

experiments.

One such lossy method is the release-recapture method which was used to

estimate the MOT temperature in the first successful MOT publication [4]. This

method turns off the trapping fields in order to allow the trapped atoms to expand

from the trap ballistically. Turning the trap on again, after a given amount of time,

recaptures just a fraction of the atoms. Comparing trap-off times with recapture

fraction gives an estimate of average atomic velocity, and hence temperature in the

MOT. In addition to measuring the temperature of traps with large numbers of atoms,

this technique has be used to measure the temperature of a single atom both in a

MOT and in a dipole trap [16, 28, 29].
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The time of flight technique releases atoms from a MOT and allows them to fall

under gravity through a near-resonant laser field [30]. As the atoms pass through the

field, the light they scatter is measured. Observing how this fluorescence changes as a

function of time from release (atoms moving directly downward initially pass through

the laser before atoms that were initially moving directly upward) gives an estimate of

the average velocity of the atoms, and hence their temperature. This technique can be

used for other systems including atoms in an optical lattice [31]. Other configurations

of the time of flight technique use an additional laser beam to push the atoms in some

direction where the probe beam has been located [30]. Pushing the atoms vertically

upward takes advantage of converting kinetic energy to gravitation potential energy in

order to measure a maximum height for the MOT atoms to reach, giving a measure of

their initial kinetic energy. Pushing the atoms horizontally lets gravity drag the atoms

downward, under the probe beam, to measure a travel distance for the atoms—and

therefore a maximum horizontal velocity distribution.

Modified time-of-flight techniques have been used to measure the temperature of

single atom [29], although due to the difficulty of imaging scatter from a single atom,

they are less commonly used than release-recapture methods. For the single-atom

measurement, instead of detecting the light of an atom as it passes through a nearby

beam, the position of the atom is detected on a CCD after a resonant imaging pulse.

Repeating the test provides information of the spatial distribution of the atom after

release, allowing velocity and temperature to be estimated for an atom initially inside

the MOT.

Another lossy method adiabatically reduces the optical potential in which an

atom resides [16, 28, 32]. Measuring the probability that the atom remains in

the trap at a given potential energy gives an estimate of its kinetic energy. This
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method is similar in concept to evaporative cooling techniques used, as an example,

in Bose-Einstein condensates [33]. While evaporative cooling is used to decrease

the temperature and increase the density of an atomic cloud, the adiabatic lowering

technique just probes the temperatures of a small number of atoms. For temperature

measurements, this technique is mostly used in dipole traps where the potential can

be easily reduced by lowering the intensity of the trapping laser [4, 16, 34].

One method that preserves the number of atoms in the MOT looks at the

frequency spectrum of photons emitted by the atoms. The motion of atoms in the trap

will broaden the wavelength of the emitted light via the Doppler effect. Measuring

this broadening allows for an estimate of the velocity of the atoms [35]. This is also

used in measuring the temperature of trapped ions [36]. Ion traps can also make

use of quantized motion to measure spectra and temperature [36]. Spectra from ions

(including single ions [37]) reveal sidebands of resonance peaks. The number and

relative intensities of the sidebands are related to the average vibrational mode of

the ion in the trap, and hence to temperature. This technique can also be used to

measure temperatures of neutral atoms in optical lattices [38].

Another number-preserving method takes advantage of the harmonic-oscillator

model of the MOT and the equipartition theorem. This method uses an external

force (created either an oscillating, external uniform magnetic field [26] or additional

laser beam [27]) to drive oscillations in the center of mass of the MOT. Measuring the

amplitude responses at different frequencies gives the natural frequency, and thus the

spring constant, of the restoring force in the MOT. With a measurement of the RMS

radius of the MOT via pictures of it, the average potential energy of the atoms is

revealed. As a temperature estimate, this method is similar to our proposed technique
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as it measures temperature via external oscillations, but this method is not applicable

to single-atom MOTs where there is not a well defined size of the atomic cloud.

1.3 Optical Trap Oscillations

In addition to measuring MOT spring constants with oscillations, oscillations

of laser fields have been used to measure properties of particles in other forms of

optical traps. For beads in an optical dipole trap (see Section 2.2.4), oscillating

the power of the laser which confines the atom can excite resonances in the bead

[39]. As with the MOT spring measurements above, Imaging the bead’s motion with

these oscillations reveals the trapping strength on the bead. Similar experiments have

probed the trapping potential for atoms in an optical lattice, in which the interference

of multiple laser fields creates a periodic lattice of positions where atoms are trapped

[40, 41]. Here, modulations of the lattice’s trapping beam power also modulates the

trapping potential for the atoms. Measuring the populations of atoms still present in

the lattice after being driven at various frequencies can reveal the vibrational states

of the lattice [40]. Additional, the modulations can be seen in changes in power

measured from beams diffracted by the atoms arranged in the lattice [41].

For these two purely optical traps, a magnetic field is not necessary, requiring

that modulations be driven by oscillations in laser power. Attempting to detect

oscillations in fluorescence from the trapped particles, then, would be difficult as the

signal would be swamped by oscillations in background fluorescence levels. Instead,

these experiments (save for the diffraction experiment in [41]) directly imaged the

particles in the trap with a camera to observe oscillations. This can be challenging

for a single atom, although our experiment does reveal similar oscillations for the

single atom when imaged with a CCD camera (see section 6.5). Without modulating
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the beam power, as in our experiment, we instead detect oscillations directly through

measurements of photon arrivals from an atom.

1.4 Dissertation Outline

The layout of this dissertation is as follows. Chapter II has a theoretical

description of the interaction between atoms, light and magnetic fields, building to a

description of the functioning of a MOT. Chapter III describes the experimental

apparatus, focusing on relevant changes made for the single-atom experiments

described in later Chapters. Chapter IV discusses our single-atom MOT and examines

a new technique for monitoring and controlling experiments based on a single atom.

Chapter V expands on the theory in Chapter II to look more closely at the behavior

of atoms with the complete electronic structure of the D2 transition for rubidium.

Chapter VI looks at position and temperature measurement experiments performed

on our single atoms. Finally, Chapter VII draws conclusions for our experiment and

briefly lays out the path forward for future investigation.
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CHAPTER II

ATOM OPTICS AND MAGNETO-OPTICAL TRAPS

In this Chapter, the interaction of atoms with light and magnetic fields is

sketched using a standard semiclassical picture in which the atom’s internally energy

is quantized but its external motion and external fields are treated classically.

Calculations are done in one-dimension with the atom is treated as having a single

ground state and a small number of excited states when appropriate. Details of the

calculation are given with an eye toward the three-dimensional picture in Chapter V

with a full D2 transition of 87Rb. After examining atomic interactions with electric

and magnetic fields individually, an atom inside a magneto-optical trap is discussed.

2.1 A Single Atom

Until the broader discussion of magneto-optical traps in Section 2.5, the atom

will be treated as a qubit with energy separation ~ω0. Under this assumption, the

atomic Hamiltonian should have the form

ĤA = ~ω0 |e〉〈e| (2.1)

with the quantum state of the atom in the form

|ψ〉 = ce|e〉+ cg|g〉 (2.2)

where |e〉 and |g〉 are the atomic excited and ground states, respectively. In this

definition, the ground state energy is defined to be zero. Rather than working with

the atomic wavefunction, later calculations are simplified by using the atomic density

9



operator [42]. defined by

ρ = |ψ〉〈ψ| =



|ce|2 cec

∗
g

cgc
∗
e |cg|2


 =



ρe,e ρe,g

ρg,e ρg,g


 . (2.3)

s In the Schrödinger picture, the density operator evolves under the equation

d

dt
ρ =

(
d

dt
|ψ〉
)
〈ψ|+ |ψ〉

(
d

dt
〈ψ|
)

= − i
~
Ĥ |ψ〉〈ψ|+ i

~
|ψ〉〈ψ| Ĥ

d

dt
ρ = − i

~

[
Ĥ, ρ

]
. (2.4)

Note that this equation is identical to the time evolution of an operator in the

Heisenberg picture. The use of density matrices must be implemented to look at mixed

states—quantum states which cannot be simple written as a linear superposition

of eigenstates of a Hamiltonian [43]. Such states appear, for example, in analysis

of entanglement [44], teleportation [45], and when looking at quantum trajectories

[46, 47]. The density operator also is beneficial as operator expectation values are

calculated simply by tracing the atomic states over the product of the operator applied

to the atomic density operator as

〈Â〉 = Tr
[
Âρ
]

=
∑

n

〈n|Âρ|n〉 (2.5)

where |n〉 form a complete basis to describe eigenstates of the system.

For analysis of an atom in the MOT, the use of the density operator is important

in modeling spontaneous emission of photons from the atom through the Lindblad

10



superoperator [48] defined as

L [σ̂] ρ = σ̂ρσ̂† − 1

2

(
σ̂†σ̂ρ+ ρσ̂†σ̂

)
(2.6)

where σ̂ = |g〉〈e| and σ̂† = |e〉〈g| are the atomic raising and lowering operators

respectively. For the two level atom, the superoperator simplifies to

L [σ̂] ρ = ρe,e|g〉〈g| −
1

2
(|e〉〈e|ρ+ ρ|e〉〈e|) . (2.7)

Including this operator, the evolution of an atom which undergoes spontaneous

emission follows

d

dt
ρ = − i

~

[
ĤA, ρ

]
+ ΓL [σ̂] ρ, (2.8)

where Γ is the decay rate of the atom.

2.2 Atoms and Light

A few simplifying assumptions are made to analyze the interaction of an atom

with light, following the methodology of [48]. The light, for now, is treated as a

linearly polarized electric field of a single mode. The atom is treated as small enough

that the spatial variation of the electric field can be ignored. Thus the light field has

the form

~E(t) = ε̂E0 cos(ωt+ φ), (2.9)

where ω is the frequency of the light, assumed to be close to the transition frequency

of the atom, ω0, and ε̂ is the polarization direction of the light. These assumptions

are sufficient for finding a form for the interaction Hamiltonian between an atom and

11



light, but removing some of these assumptions leads to interesting results, which are

discussed when appropriate.

2.2.1 Interaction Hamiltonian

The interaction between the atom and electric field is treated as a dipole

interaction with an atomic dipole operator

d̂ = 〈e|~d|g〉
(
σ̂† + σ̂

)
, (2.10)

where ~d = e~r is the dipole moment of the atom (~r is the position operator for the

atom’s electron). This definition of d̂ derives from treating the electron position

operator as that of a harmonic oscillator, where r̂ is proportional to the sum of the

oscillator raising and lowering operators [49], which here correspond to atomic raising

and lowering operators, σ̂† and σ̂. The expectation value of the dipole operator is

〈d̂〉 = 〈e|~d|g〉
(
〈σ̂†〉+ 〈σ̂〉

)
. (2.11)

With the atom treated as a dipole, we can find an interaction Hamiltonian by

comparison tot the energy of an electric dipole interacting with a field. This provides

an interaction Hamiltonian

ĤAF = − ~E · d̂. (2.12)

In the absence of the electric field, the excited state population evolves as e−iω0t and

〈σ̂〉 evolves in this same way. With this, the dipole operator can be written in the

form

d̂ = d̂+ − d̂+ (2.13)
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with d̂− ≡ 〈e|~d|g〉σ̂† ∼ eiω0t and d̂+ ≡ 〈e|~d|g〉σ̂ ∼ e−iω0t. Writing the electric field in

terms of complex exponentials gives

~E(t) = ε̂
E0

2

[
e+iωt+φ + e−iωt−φ

]
≡ ~E− + ~E+ (2.14)

and is used to write the interaction Hamiltonian as

HAF = −
(
d̂− · ~E− + d̂− · ~E+ + d̂+ · ~E− + d̂+ · ~E+

)
. (2.15)

In terms of the exponentials, these four terms are proportional to ei(ω0+ω)t, ei(ω0−ω)t,

e−i(ω0−ω)t and e−i(ω0+ω)t respectively. In the limit where the frequency of light is

very close to that of the atomic energy, the terms with the frequency differences

oscillate much more slowly than the terms with their sum (the first and last term).

The rotating wave approximation ignores these quickly oscillating terms, so that the

interaction Hamiltonian becomes

HAF = −d̂− · ~E+ − d̂+ · ~E−. (2.16)

Written in terms of atomic raising and lowering operators, the Hamiltonian is

HAF =
~
2

(
Ω∗σ̂e−iωt + Ωσ̂†e+iωt

)
, (2.17)

where

Ω =
〈g|ε̂ · ~d|e〉E0e

−iφ

~
(2.18)
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is named the Rabi frequency. The excited state population for any two level system at

rest and interacting with a non-resonant electric field will oscillate with this frequency

[42, 50, 51].

In an alternate view of the rotating wave approximation, the electric field

is quantized as a harmonic oscillator. Under this view, the (single frequency,

polarization and mode) electric field follows

~E ∝ ~f(~r)â+ ~f ∗(~r)â†, (2.19)

where ~f(~r) are the spatial mode functions of the field, and â† is the photon creation

operator for this mode (expanding to a general electric field requires summing over this

term for each frequency, mode, and polarization). With this picture, the interaction

Hamiltonian is

ĤAF ∝ âσ̂ + âσ̂† + â†σ̂ + â†σ̂†. (2.20)

The first term of this equation removes a photon from the field and lowers the atom

from excited to ground state. The last term adds a photon to the field and raises

the atom into the excited state. Both of these are non-energy conserving and can be

dropped1. These two terms are the same as the quickly rotating terms which were

dropped previously.

1These terms, while ignorable here, can be viewed as atomic interaction with the quantum vacuum
[52]. This interaction leads to phenomenon such as the Casimir-Polder affect [53] and the Lamb shift
[42, 54].
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2.2.2 Optical Bloch Equations

The evolution of the atomic wavefunction in the Schrödinger picture is

d

dt
|ψ〉 = − i

~
(HA +HAF) |ψ〉 (2.21)

which produces equations

ċg = − iΩeiωt

2
ce

ċe = −iω0ce + iΩ∗eiωt

2
cg.

(2.22)

These can be simplified in a rotating frame where ce is transformed to c̃ee
−iωt to

produce

ċg = − iΩ
2
ce

ċe = −i(ω0 − ω)ce + iΩ∗

2
cg

(2.23)

(note, here I’ve dropped the c̃e notation). Eventually moving to this frame is what

motivated writing the dipole operator in terms of complex exponentials in Equation

2.13. These same equations could have been derived from an atomic Hamiltonian of

the form

ĤA = −~∆ |e〉〈e| (2.24)

and interaction Hamiltonian

ĤAF =
~
2

(
Ω∗σ̂ + Ωσ̂†

)
, (2.25)

where ∆ = ω − ω0 is the detuning of the electric field from the atomic resonance

frequency. These are the forms of the atomic and interaction Hamiltonians that will

be used throughout this text.
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From these forms, the time evolution of the atomic density operator, calculated

from Equation 2.8, produces the optical bloch equations [42]

ρ̇e,e = −Γρe,e − i
2

(Ωρg,e − Ω∗ρe,g)

ρ̇e,g = −
(

Γ
2

+ i∆
)
ρe,g − iΩ

2
(ρg,g − ρe,e)

ρ̇g,e = −
(

Γ
2
− i∆

)
ρg,e + iΩ∗

2
(ρg,g − ρe,e)

ρ̇g,g = Γρe,e + i
2

(Ωρg,e − Ω∗ρe,g) .

(2.26)

In the steady state, these have analytic solutions

ρSSe,e = |Ω|2/Γ2

1+(2∆/Γ)2+2|Ω|2/Γ2

ρSSe,g = − iΩ
Γ

1+2i∆/Γ

1+(2∆/Γ)2+2|Ω|2/Γ2

ρSSg,e = iΩ∗

Γ
1−2i∆/Γ

1+(2∆/Γ)2+2|Ω|2/Γ2

ρSSg,g = 1+(2∆/Γ)2

1+(2∆/Γ)2+2|Ω|2/Γ2 .

(2.27)

Recall that ρe,e is the population of the excited state ρe,e = |ce|2 from Equation 2.2.

With this definition, the rate that an atom scatters photons is

R = Γρe,e. (2.28)
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2.2.3 Radiation Pressure

The force acting on an atom is the time evolution of the atom’s (classical)

momentum ~p. Following the Heisenberg picture, this is

~F =
i

~

[
Ĥ, ~p

]
= −~∇Ĥ. (2.29)

To look at the force of light on the atoms, we use the Hamiltonian 2.25. This gives

~F = −~
2

(
~∇Ω∗σ̂ + ~∇Ωσ̂†

)
. (2.30)

From the definition of the Rabi frequency in Equation 2.18, Ω ∝ E0e
iφ, where E0 is

the field magnitude and φ is its phase. Both of these can depend on space, but for

now consider the electric field to be a plane wave propagating in the +ẑ direction so

that the electric field strength has the form

E0(~r) = E0e
+ikz. (2.31)

Using this in Equation 2.30 gives a straightforward equation for the force

~F = −~
2

(
2dE0

~
~∇e−ikzσ̂ +

2dE0

~
~∇e+ikzσ̂†

)

= −~
2

(
−ikẑ2dE0e

−ikz

~
σ̂ + ikẑ

2dE0e
+ikz

~
σ̂†
)

~F = −ik~
2

(
−Ω∗σ̂ + Ωσ̂†

)
ẑ. (2.32)
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Taking the expectation value of the force gives

〈~F 〉 = −ik~
2

Tr
[(
−Ω∗σ̂ + Ωσ̂†

)
ρ
]
ẑ

= −ik~
2

(−Ω∗ρe,g + Ωρg,e) ẑ (2.33)

after using Equation 2.5. The evolution for the excited state population from the

optical bloch equations in 2.26 can be solved in steady state to get

ΓρSSe,e = − i
2

(
−Ω∗ρSSe,g + ΩρSSg,e

)
.

Comparing this to the expectation value for the force, the steady-state force on the

atoms is

〈~F 〉SS = ~kΓρSSe,e ẑ. (2.34)

This is an insightful equation as Γρe,e is just the scatter-rate of photons by the atom

as in Equation 2.28, and ~kẑ is the momentum carried by each photon. Thus the force

felt by atom is just the average rate it absorbs momentum from scattered photons.

The momentum change from emitting photons goes to zero in the limit of many

absorption-emission events as the emissions have random directions. This force due

to absorbed photon momentum is commonly referred to as radiation pressure.

In addition to being the basis for optical molasses (see Section 2.4.1 below),

radiation pressure has been used experimentally to launch atoms in atomic clocks

[55, 56], cool micromechanical resonators [57, 58], and even macroscopic objects such

as the first solar sail successfully flown by the Japan Aerospace Exploration Agency

[59, 60].
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2.2.4 Dipole Traps

Returning to Equation 2.30, if the assumption is made that the electric field

magnitude, rather than the phase, depends on space, the equation for force can be

written as

~F = −~
2

(
2de−iφ

~
~∇E0σ̂ +

2deiφ

~
~∇E0σ̂

†
)

= −~
2

(
2dE0e

−iφ

~
~∇E0

E0

σ̂ +
2dE0e

iφ

~
~∇E0

E0

σ̂†

)

= −~
2

(
Ω∗~∇ log[E0]σ̂ + Ω~∇ log[E0]σ̂†

)
. (2.35)

As done previously, the expectation value for the force is

〈~F 〉 = −~
2
~∇ log[E0] (Ω∗ρe,g + Ωρg,e) . (2.36)

This equation is real, as the sum of the complex terms produces just 2Re [Ωρg,e].

From the steady state Bloch equations, this is

(
Ω∗ρsse,g + Ωρssg,e

)
=

4∆ |Ω|2 /Γ2

1 + (2∆/Γ)2 + 2 |Ω|2 /Γ2
(2.37)

where, again, ∆ is the detuning of the electric field from the atomic energy, Ω is the

Rabi frequency and Γ is the atomic decay rate. Here, it is convenient to introduce a

saturation parameter defined as

s =
2 |Ω|2 /Γ2

1 + (2∆/Γ)2 (2.38)
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so that
(
Ω∗ρsse,g + Ωρssg,e

)
=

2∆s

1 + s
. (2.39)

Then, the force becomes

〈~F 〉 = − ~∆s

1 + s
~∇ log[E0]. (2.40)

The definition of s is proportional to the field intensity, which goes as E2
0 . As field

intensity is a more common parameter for experiments than field magnitude (the

(integrated) electric field intensity of a laser is proportional to beam power), writing

~∇ log[E0] in terms of the saturation parameter comes from

~∇s = 2s~∇ log[E0]. (2.41)

This produces a force equation just in terms of the saturation parameter

〈~F 〉 = − ~∆~∇s
2(1 + s)

= −~∆

2
~∇ log[1 + s]. (2.42)

For large detunings where there is little excitation of the atom by the field, s � 1.

This simplifies the force to

〈~F 〉 ≈ − ~∆~∇s
2(1 + s)

= −~∆

2
~∇s, (2.43)

so that the force on the atom is directed towards regions of high intensity (large s).

A common field where the beam intensity depends on position is a pair of tightly

focused gaussian beams. This field has electric field intensity [61]

I(~r) =
2P

πw2
0

[
1 + (z/z0)2] exp

[
−2 (x2 + y2)

w2
0

(
1 + (z/z0)2)

]
(2.44)
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where P is the total beam power, w0 is the beam waist, the beam radius at its focus,

and z0 is the Rayleigh range of the beam, which gives a measure of the length of the

focus size along the beam axis and is defined as the distance where the beam radius

grows from its minimum by a factor of
√

2. For this field, the force is given by

〈~F 〉 =
2~∆s

w2
0 [1 + (z/z0)2]

[
xx̂+ yŷ +

(
w2

0

z2
0

− 2(x2 + y2)

z2
0 [1 + (z/z0)2]

)
zẑ

]
. (2.45)

With the laser detuned below resonance, ∆ < 0, this is clearly a restoring force. This

specific arrangement of focused gaussian beams is often called a dipole trap.

2.3 Atoms and Magnetic Fields

The interaction of an atom with a magnetic field is a magnetic dipole interaction

based on the total angular momentum of the atom, including the orbital angular

momentum ~L, spin ~S and nuclear angular momentum ~I. The combination of these

give the hyperfine structure of the atom, quantized with

~F = ~L+ ~S + ~I. (2.46)

The D2 transition of 87Rb, on which our MOT is based, has transitions between the

52S1/2 ground state and the 52P3/2 excited states. Both of these states have S = 1/2.

The ground state has L = 1/2 and the excited state has L = 3/2. Together with

87Rb’s nuclear spin of I = 1/2, the excited state can have total angular momentum

F with values between 0 and 3, and the ground state can have values of either 0

or 1 [62]. This is shown in the level diagram of Figure 2.1. The frequency splitting

between the hyperfine levels is on the order of 102 MHz while energy shifts due to

the magnetic field (Zeeman shifts) of the MOT is on the order of MHz. With such

21



|E; F = 3i

|E; F = 2i

|E; F = 1i
|E; F = 0i

|G; F = 1i

|G; F = 2i

52P3/2

52S1/2

Tr
ap

pi
ng

R
ep

um
p

FIGURE 2.1. 87Rb D2 Transition Level Diagram. Labeled at the transitions address
for our MOT.

a small shift of the levels due to the magnetic field, the total angular momentum ~F

is a fair quantum number to use to study the interaction between the atom and the

magnetic field [62]. Here, we’ll treat the |G;F = 2〉 and |E;F = 3〉 levels as the only

two levels of our atom. A fuller picture of the hyperfine atom is discussed in Chapter

V.

The atom is treated as a magnetic dipole that is aligned with its angular

momentum

~µ = µBgF ~F , (2.47)

where µB is the Bohr magneton.

Much like the electric dipole interacting with the electric field of light, the

interaction between the magnetic dipole and magnetic field is then [63]

Ĥz = −~µ · ~B. (2.48)
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Working in one dimension, assuming that ~B lies along the z-axis, the interaction

simplifies to

Ĥz = −µBgF F̂zBz

when the z-axis is also the angular momentum quantization axis of the atom. F̂z

is the projection operator of the atomic angular momentum along the quantization

axis. Writing this explicitly gives

Ĥz = −µBBz

∑

s=e,g

∑

F

∑

mF

gFmF |s;F,mF 〉〈s;F,mF | (2.49)

where s is the excited or ground state of the atom. From this, it is clear that the

magnetic field is responsible for shifts of the energy levels of atoms, the Zeeman shifts

[64].

The quantities gF are Landé g-factors [62]. They result from perturbative

approximations made when the shift in atomic energy levels due to the magnetic

field is much smaller than the hyperfine splitting. In this case, the total atomic

angular momentum ~F , as defined in 2.46, serves as a good quantum number. In

87Rb, the hyperfine splitting is on the order of gigahertz for the ground states and

hundreds of MHz for the excited states. The Zeeman splitting (per Gauss) is on the

order of 1MHz/G. With magnetic fields in the MOT on the order of tens of Gauss,

this condition is met,which is good since all For 87Rb’s D2 transition, all excited states

have gFe = 2/3 and the ground states have gFg=2 = 1/2 and gFg = −1/2 [62].

When a 3D model of the atom is discussed in Chapter V, this assumption about

the magnetic interaction will remain true—the atom’s quantization axis will align

with the magnetic field direction at every location in space. This will require rotation

of the lab frame to align the z-axis of the lab frame with the magnetic field. This is
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the largest complication of the 3D model as the polarization directions for each of the

six MOT beams must be correctly written in a circular and linear polarization basis.

This rotation is discussed in Section 5.1.3.

2.3.1 Magnetic Trapping

A particle with a magnetic dipole momentum ~µ in a magnetic field will have a

potential energy U = −~µ · ~B. If this energy is spatially varying, the particle will

experience a magnetic force

~F = ~∇(~µ · ~B) (2.50)

As done above (and as will be assumed while discussing the MOT), when the dipole

moment is aligned with the field the interaction energy is U = µ
∣∣∣ ~B
∣∣∣. Under these

circumstances, the force is then

~F = −µ~∇
∣∣∣ ~B
∣∣∣ , (2.51)

so that the force is zero where the magnetic field strength vanishes. This force

must also apply to an atom with magnetic dipole moment [65, 66] and is critical

to evaporative cooling for Bose-Einstein condensates [67].

As done for radiation pressure, the force is examined quantum mechanically by

Equation 2.29 with the Hamiltonian 2.49. An atom in the steady state experiences a

force

〈~F 〉 = µB

(
∂Bz

∂z
ẑ

)∑

s=e,g

∑

F

∑

mF

gFmF

∣∣csss,mF
∣∣2 , (2.52)

where the energy level populations are written as their wavefunction coefficients

rather than density operator elements (strictly for simplification of subscripts). The
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relationship to the classical magnetic force of 2.51 is a bit unclear as it appears

uniform. However, the steady state populations have spatial dependence (see Figures

5.1 for a graph of the populations as a function of position), which allows for magnetic

trapping.

For a linear magnetic field ~B = −B′zzẑ, as will be discussed for the MOT, the

force is

~F = −µBB′z ẑ
∑

s=e,g

∑

F

∑

mF

gFmF

∣∣csss,mF
∣∣2 . (2.53)

For states where gF > 0, when z < 0 (so that B > 0), the energy levels with mF < 0

will be preferentially populated as their energies will be reduced by Zeeman shifting.

This results in the double sum producing a negative value, given an overall force in

the positive z-direction. When z > 0, the mF > 0 energy levels are preferentially

populated and produce a force in the negative z-direction. Thus, the overall force is

to locate the atom near z = 0, just as in the classical case. This results holds true

when gF < 0, with the preferential population switching positive and negative values

for mF .

It is important to note here that this magnetic trapping is distinct from the

magnetic confinement discussed in Section 2.5.1. The trapping here results from the

minimization of the magnetic dipole energy. The confinement trapping results from

spatially preferential photon absorption due energy level Zeeman splitting.

2.4 The Fg = 0→ Fe = 1 Atom

For the remainder of this Chapter, the focus will be on a Fg = 0→ Fe = 1 atom,

that is one having no ground state angular momentum and an excited state with a

total angular momentum of 1. With the angular momentum formalism in Equation
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|E; mF = �1 i |E; mF = 0 i |E; mF = +1 i

|G; mF = 0 i

|�i |0 i |+ i

|g i

�� �+

|�i |+ i

|g i

(a) (b) (c)

⌦�
⌦0

⌦+

FIGURE 2.2. Fg = 0 → Fe = 1 Atom Level Diagrams. (a) Full labeling for states
of the atom. (b) Simplified naming conventions used in the text. The electric fields
coupling excited and ground states are labeled with their Rabi frequencies as give in
Equation 2.56. (c) V-atom reduction when there is no electric field to excite the |0〉
state.

2.46, this could correspond to a spin-1/2 atom (S = 1/2), orbital angular momentum

L = 1/2 and no nuclear spin (I = 0). With no nuclear spin, the angular momentum

vector ~J = ~L + ~S is often used rather than ~F , but ~F used here for more directed

comparison to the full atomic energy levels discussed in Chapter V. The level diagram

for such an atom is shown in Figure 2.2a.

For this atom, the levels will be labeled as shown in Figure 2.2b. The atom has

density operator

ρ =




ρ−− ρ−0 ρ−+ ρ−g

ρ0− ρ00 ρ0+ ρ0g

ρ+− ρ+0 ρ++ ρ+g

ρg− ρg0 ρg+ ρgg



. (2.54)

Each excited states has its own raising operator defined, the three being defined

as

σ†− = |−〉〈g| ,

σ†0 = |0〉〈g| , and

σ†+ = |+〉〈g| .

(2.55)
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The excited and ground states are coupled via electric fields ~E+, ~E0 and ~E−,

named relative to the excited states they couple (note this names are opposite the

naming conventions in Equation 5.9). These fields are circularly polarized or linearly

polarized. Following the derivation of Equation 2.25, this leads to an atom-field

coupling Hamiltonian

ĤAF = −~
2

(
Ω∗−σ̂− + Ω−σ̂

†
−

)
− ~

2

(
Ω∗0σ̂0 + Ω0σ̂

†
0

)
− ~

2

(
Ω∗+σ̂+ + Ω+σ̂

†
+

)
. (2.56)

It is also assumed that the electric fields are all detuned from resonance ω0 by some

amount. Following the derivation in 2.24, the atomic Hamiltonian can be written as

ĤA = −~∆+ |+〉〈+| − ~∆0 |0〉〈0| − ~∆− |−〉〈−| . (2.57)

The magnetic field Hamiltonian is given directly from Equation 2.49 and for the

Fg = 0→ Fe = 1 atom is

Ĥz = µBgFBz (|+〉〈+| − |−〉〈−|) , (2.58)

as evident from the mF values shown in Figure 2.2a. Defining ∆B = µBgFBz/~, this

can be written as

Ĥz = ~∆B |+〉〈+| − ~∆B |−〉〈−| . (2.59)

Each of the excited states can spontaneously decay and it assumed this occurs at the

same rate, Γ, for each state. The evolution of the atomic density operator follows the

equation

d

dt
ρ = − i

~

[
ĤA + ĤAF + Ĥz, ρ

]
+ ΓL [σ̂−] ρ+ ΓL [σ̂0] ρ+ ΓL [σ̂+] ρ (2.60)
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based on the density operator evolution definition of 2.8. The form of the Lindblad

superoperator of Equation 2.7 reveals that spontaneous emission from one excited

state of the atom depends only on the populations of that excited state. With these

separate decay paths, the impact on the evolution of the state of the atom from each

state is independent as written above. The time evolution of each density operator

element ρi,j is listed in Appendix A.2.

Our magneto-optical trap consists of pairs of counter-propagating, circularly

polarized lasers, as shown in Figure 2.5. The counter-propagating beam have the

same circular polarization in their reference frame, but in the reference frame of an

atom (with the beams moving towards it from different directions) the two beams have

opposite polarizations, corresponing to only the ~E− and ~E+ electric fields. Matching

the model to our experiment sets ~E0 → 0. As discussed in Appendix A, doing this

effectively simplifies the atom to the V-atom, shown in Figure 2.2c. Without the

linear field component to excite the |0〉 state, the x‘x‘population of this state will

decay quickly to zero and can be ignored. The remainder of this Chapter will assume

this simplification of the atomic structure.

The equations of motion for the internal structure of the V-atom are given in

equations A.4. In these equations, for simplicity, the excited state energies Zeeman

energy shifts are left out. They can be returned to the solutions by allowing ∆± →

∆±±∆B. These solutions are not particularly enlightening other than it is nice that

there is a analytic solution and we can use the two-level atom steady-state solution

to check their validity. To do this, remove one electric field by letting Ω∓ → 0 and

∆∓ → 0, then the population in the |±〉 state is

ρss±,± =
|Ω̃±|2

1 + 4δ2
± + 2|Ω̃±|2

(2.61)
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where, as defined in Appendix A, Ω̃± = Ω±/Γ and δ± = ∆±/Γ. These agree with the

population of the excited state from the two-level atom optical Bloch equations 2.27,

as they should: as was the case for the |0〉 state, when there is no field coupling an

excited state to the ground state, that excited state can be ignored as its population

will decay to zero. Thus, with only one laser, the atom should behave as a two-level

atom excited by just one field and the solutions should agree exactly with the optical

bloch equations.

The quantity Ω̃ = Ω/Γ is often written in terms of the ratio of the electric field

intensity relative to a saturation intensity as

I

Isat

= 2
∣∣∣Ω̃
∣∣∣
2

=
2 |Ω|2

Γ2
. (2.62)

This is the saturation parameter, Equation 2.38, with ∆ = 0. For the electric field

with amplitude E0, the intensity of the field is I = ε0cE
2
0/2. Together with the

definition of Ω in Equation 2.18, the saturation intensity is

Isat =
ε0c~2Γ2

4
∣∣∣〈g|ε̂ · ~d|e〉

∣∣∣
2 . (2.63)

This is referred to as the saturation intensity, as when I � Isat (i.e. |Ω| >> Γ), the

two-level atom excited state population in Equation 2.27 saturations to 1/2. This

quantity clearly has different values for different electric field polarizations ε̂ (the

dominator will be changed). When the saturation intensity is referred to throughout

this text, it is in reference to circular polarized light exciting MOT trapping transition

which has a value 1.669mW/cm2 for the atomic species of rubidium used in our

experiments [62].
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2.4.1 Optical Molasses

The idea of radiation pressure can be extended further to look at the effects of

identical counter-propagating plane waves interacting with an atom. These two fields

are defined as

E+(~r) = E0e
−ikz and

E−(~r) = E0e
+ikz.

(2.64)

These are defined so the field propagating in the negative z-direction excites only

the σ+ transition and the field propagating in the positive z-direction excites only

the σ− transition, as shown in 2.3. For each of these beams, atoms moving against

their propagation direction should see the frequency of the light shifted to a higher

frequency due to the Doppler effect. An atom with velocity v then sees each beam

having velocity

ω+ = ω + kv

ω− = ω − kv,
(2.65)

where ω is the rest frequency of the light. The atom then sees light that is detuned

from the resonant frequency ω0 by

∆+ = ω+ − ω0 = (ω − ω0) + kv = ∆L + kv

∆− = ω− − ω0 = (ω − ω0)− kv = ∆L − kv,
(2.66)

where ∆L is the (red) detuning of the laser from the atomic resonance. Following the

atomic force derivation in Section 2.2.3, the force operator is

~F = −ik~
2

(
Ω∗+σ̂+ − Ω+σ̂+

†) ẑ − ik~
2

(
−Ω∗−σ̂− + Ω−σ̂−

†) ẑ, (2.67)
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which calculated in steady-state gives

F ss(v) = [−~kΓρ(v)+.+ + ~kΓρ(v)−,−] ẑ, (2.68)

where the density operator elements are written to note that they explicitly depend on

the velocity of the atom through the Doppler shifted detuning of the lasers. Allowing

Ω+ = Ω− = Γ/
√

2 and ∆L = −Γ, the force (in units of ~kΓ) is plotted as a function

of velocity (in units of |∆L| /k) in Figure 2.4a in red.

This result is easy to explain. An atom moving towards one of the fields, sees

a Doppler-shifted beam (at higher frequency) that is closer to resonance than the

beam it is travel along with. A smaller detuning (recall, ∆L < 0) allows the opposing

beam to more easily excite the atom. This is shown with the different length arrows

coupling the ground and excited states in the level diagram of Figure 2.3. The photons

absorbed from the in-tune beam apply a larger force than the opposing beam, giving

a net force pushing the away in the opposite direction of its motion. With counter-

propagating beams, each beam slows atoms moving towards it. This gives an overall

decrease in speed, and thus temperature of the atom. This arrangement of lasers is

known as optical molasses and are a well studied method to cool atoms [1–3].

For the D2 transition of 87Rb, the force scale is 3.2×10−20 N and the velocity scale

is 4.7 m/s in Figure 2.4a. A speed of 4.7 m/s corresponds to an atomic temperature

of 78mK [62]. Typically MOT temperatures are order of 10 µK, corresponding to

velocities of order 10 cm/s (This difference in expected and measured temperatures

is discussed in Section 2.5.3). The graph of Figure 2.4b rescales the axes to 10−22 N

and cm/s. Clearly from this graph, in the range of velocities for atoms in the MOT,

the force is very close to linear. Expanding Equation 2.68 to first order in v gives a
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FIGURE 2.3. Optical molasses beam arrangement. An atom moving towards a beam
see its frequency shifted closer to resonance.
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FIGURE 2.4. V-atom forces. (a) The red curve shows forces of a 1-dimensional
V-atom and the blue curve shows the force on the extended two-level atom. Graph
shown is for both atom in optical molasses as a function of velocity or atom in a MOT
as a function of position. Peaks occur where Doppler shift (molasses) or Zeeman shift
(MOT) match the laser detuning, ∆L. (b) Damping force for velocities in range of
atoms in a MOT. (c) Restoring force for positions on scale of atomic motion in a
MOT.
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damping force ~F (v) = ~F0ẑ − βvẑ where

F0 =
~kΓ

(
|Ω̃p|2 − |Ω̃m|2

)

1 + 4δ2
L + 2|Ω̃m|2 + 2|Ω̃p|2

(2.69)

and

β = 8~k2 |δL| ×
{

(|Ω̃m|2+|Ω̃p|2)(|Ω̃m|2−|Ω̃p|2)
2
+4(|Ω̃m|2+|Ω̃p|2)

2

[1+4δ2L+2|Ω̃m|2+2|Ω̃p|2]
[
16δ2L+(2+|Ω̃m|2+|Ω̃p|2)

2
]+

4(|Ω̃m|2+|Ω̃p|2)(1+4δ2L)+16|Ω̃m|2|Ω̃p|2

[1+4δ2L+2|Ω̃m|2+2|Ω̃p|2]
[
16δ2L+(2+|Ω̃m|2+|Ω̃p|2)

2
]
}
.

(2.70)

The sign of this constant force F0 depends just on the two field’s intensities

(recall, the Rabi frequencies are proportional to the field strength). So, this constant

force is just an overall force caused by one beam having more power, and thus pushing

harder, on the atom. For most cases, this is dropped by balancing the beams, as

plotted in Figure 2.4a. In this case, the damping force reduces to ~F = −βV-atomvẑ

with

βV-atom = −
16k2~ |δL|

∣∣∣Ω̃
∣∣∣
2

[
1 + 4

∣∣∣Ω̃
∣∣∣
2

+ 4δ2
L

] [
1 + 4δ2

L + 2
∣∣∣Ω̃
∣∣∣
2

+
∣∣∣Ω̃
∣∣∣
4
] . (2.71)

A common alternative derivation of this damping is done by using the two-level

atom result for ρsse,e in Equation 2.27 for both excited state populations in Equation

2.68. This is taking the two equations of 2.61 and treating them both as accruate,

while they are in only true in the presence of just one excitation field. With these,

and making sure to use the the appropriate detunings from Equation 2.66, as done

in [25, 48], the atomic damping force is

F =
[
−~kΓρSSe,e (∆L + kv) + ~kΓρSSe,e (∆L − kv)

]
ẑ.
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The results of this extended two-level atom is shown in Figure 2.4 as the blue curves.

This calculation does not rely on oppositely polarized fields. Two fields with linear

polarization will work for the extended two-level model.

The extended two-level method overestimates the force from one beam. It

assumes too large of an excited state population, as it ignores effects on the atomic

population due the opposite beam. With the V-atom, an individual excited state

population is reduced from its two-level atom population, as some of that population is

shifted into the other excited state. At large speeds, the agreement between methods

is better. In this case, the fast-moving atoms are much closer to resonance with one

of the beams, allowing it to dominate the atomic state. The V-atom then behaves

much like the two-level atom at large speeds. In the small speed range, the force

calculated by [25, p. 88] for the extended two-level atom is

~F (v) = −
16~k2 |δL|

∣∣∣Ω̃
∣∣∣
2

[
1 + 2

∣∣∣Ω̃
∣∣∣
2

+ 4δ2
L

]2vẑ. (2.72)

Compared to the V-atom in the Equation 2.71, the damping coefficient β for the

extended two-level atom is slightly larger.

While the damping of the motion should drive the atom to rest, this damping

force is balanced by the random emission of photons by the atom. Each photon

absorption, which damps the motion is followed by an emission, which gives the atom

a momentum bump of magnitude ~k in the opposite direction of the photon direction.

With a detuning ∆ = −Γ/2, to maximum β for both models in equations 2.71 and

2.72, analyzing the diffusion of the atomic velocity distribution [2, 25] results in a

minimum atomic energy of

Umin =
~Γ

4
. (2.73)
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With the 1D equipartion theorem, this results in what is called the Doppler

temperature, the lower limit on temperatures for atoms in an optical molasses.

TD =
~Γ

2kB
. (2.74)

2.5 Magneto-Optical Traps

As noted above, atoms in optical molasses are still free to diffuse [68] without

being confined to any one location. Confining the atom to make an actual trap can

be done with magnetic fields.

2.5.1 Magnetic Confinement

Placing an atom into a region with a spatially variying magnetic field will give

the excited states of the atoms a spatially varying Zeeman shift. In particular, adding

a linear magnetic field with gradient −B′z (here, assume B′z > 0) shifts the excited

state energies (for the V-atom) by

∆B =
µBgF
~

(−B′zz) , (2.75)

following the convention from Equation 2.59. The spatial energy shifts of the |±〉

states are shown in Figure 2.5. From this Figure, an atom located at z > 0 has its

|+〉 excited state energy shifted down in energy. This reduces the detuning of the laser

from resonance, ∆L (shown in Figure by the thin, red line), improving the atomic

interaction with σ+ light. With σ+ light traveling form the z > 0 direction, photons

absorbed from that field push the atom back toward z = 0. The same analysis holds

true for an atom located at z < 0 with the |−〉 level and the σ− field. This results

35



z = 0

�� �+

|g i

�L

|�i

|+ i

FIGURE 2.5. Magneto-Optical Trap Level Diagram. An atom displaced from z = 0
has one excited state energy Zeeman shifted closer to frequency of the red detuned
laser. Correctly matching the polarization of a laser to the direction of the magnetic
field applies a restoring force on the atom towards z = 0.

in the magnetic field imposing a restoring force from the lasers onto the atom. This

behavior is the position-space analog to damping in optical molasses.

This interaction is quantified following similar steps to those in Section 2.4.1.

The detuning of the atoms from resonance follow the equations

∆+ = ω+ − ω0 = ω − (ω0 −∆B) = ∆L + ∆B

∆− = ω− − ω0 = ω − (ω0 + ∆B) = ∆L −∆B,
(2.76)

where it is important to note that the energy differences here are the result in shifts

of the excited state frequencies, rather than shifts in the laser frequencies as was the

case for optical molasses. The force on an atom is then

F ss(z) = [−~kΓρ(z)+,+ + ~kΓρ(z)−,−] ẑ, (2.77)
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where the explicit dependence on position comes from the detuning energy shifts in

Equation 2.76. This equation has exactly the form of Equation 2.68 in position-space

rather than velocity space. The graph of this function will be the same as the red

curve in the graph of Figure 2.4a with the horizontal axis being position in units of

~∆L/µBgFB
′
z. This graph agrees with the restoring force interpretation presented

above. A change of sign for the magnetic field ( ~B(z) = +B′zzẑ) requires flipping the

polarization of the two beams to create a trap again.

Typical MOT parameters, for our single-atom MOT, have B′z ≈ 241 G/cm.

Following the gF derivation in [62] to use gF ≈ 1.33, the distance scale is 135µm.

Atoms in our MOT have typical displacements from the center of the MOT on the

order of 10 µm, again allowing examination of small position displacements (“small”

being defined so atomic Zeeman shifts are much smaller than the detuning of the

laser). A graph of this is shown Figure 2.4c. Again, this force is very close to linear

so that we can expand the equation to get a restoring force ~F = ~F0ẑ − κzẑ with the

same value for F0 as Equation 2.69 and

κ = 8kµBgFB
′
z |δL| ×

{
(|Ω̃m|2+|Ω̃p|2)(|Ω̃m|2−|Ω̃p|2)

2
+4(|Ω̃m|2+|Ω̃p|2)

2

[1+4δ2L+2|Ω̃m|2+2|Ω̃p|2]
[
16δ2L+(2+|Ω̃m|2+|Ω̃p|2)

2
]+

4(|Ω̃m|2+|Ω̃p|2)(1+4δ2L)+16|Ω̃m|2|Ω̃p|2

[1+4δ2L+2|Ω̃m|2+2|Ω̃p|2]
[
16δ2L+(2+|Ω̃m|2+|Ω̃p|2)

2
]
}
.

(2.78)

Returning briefly to the purely magnetic trapping of Section 2.3.1, the magnetic

trapping force of Equation 2.53 for the V-atom was

~F ss
Mag. Trap = −µBgFB′z [ρ(z)+,+ − ρ(z)−,−] ẑ. (2.79)

This force is identical in form to Equation 2.77 but with scaling µBgFB
′z. For the

typically MOT parameters above, the magnetic trapping force is of order 10−23. This
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is orders of magnitude smaller than the MOT force scaling ~kΓ, which is of order

10−20.

As seen with the |0〉 energy level, without electric fields to excited the atom,

those excited states will not be populated. Without these fields, then, the V-atom

will have no magnetic trapping as Fg = 0. For the full 87Rb atom, however, the ground

states do have angular momentum. Thus, there can still be magnetic trapping for

87Rb without near-resonant electric fields. In addition, the |Fg = 1,mg〉 states have

gF = −1/2, which results in atoms in this ground state being repelled from the

minimum of the magnetic field magnitude rather than trapped [63, 69].

For the magnetic confinement equation, in the case where Ω− 6= Ω+, the F0 term

is non-zero and shifts the “center” of the MOT – the position where the restoring

force is zero. A similar effect occurs with a background magnetic field ~B0 = B0ẑ to

give a total field of

~B(z) = −B′zzẑ +B0ẑ. (2.80)

This shifts the location where ~B = 0, again moving the center of the MOT and

modifying the force equation

~F = ~Fz,0 − κ
(
z +

B0

B′z

)
ẑ. (2.81)

From Equation 2.78, κ can be written as κ = κ̃B′z. Then the force equation becomes

~F = ~Fz,0 − κzẑ −B0κ̃ẑ. (2.82)
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Therefore, a non-zero background field of magnitude B0 = Fz,0/κ̃ can cancel the

offsetting force due to beam imbalance to return a purely linear restoring force ~F =

−κzẑ. This can also be used to cancel gravitational forces on the MOT.

Comparing the equation for restoring constant κ to Equation 2.70, the optical

molasses damping constant, we have

κ = β
µBgFB

′
z

~k
, (2.83)

which is the same as the equation for the extended two-level atom [25]. Therefore,

the extended two-level atom solution has the same overly strong assumptions for the

restoring force strength as it does for the damping force.

Taking the case with balanced electric fields, the restoring force becomes F =

−κV-atomz with

κV-atom =
16kµBgFB

′
z |δL|

∣∣∣Ω̃
∣∣∣
2

[
1 + 4

∣∣∣Ω̃
∣∣∣
2

+ 4δ2
L

] [
1 + 4δ2

L + 2
∣∣∣Ω̃
∣∣∣
2

+
∣∣∣Ω̃
∣∣∣
4
] . (2.84)

2.5.2 Finally, a MOT

Combing the effects of the atomic motion-based Doppler shift creating a damping

force and the magnetic field creating a spatially dependent restoring force, the force

on an atom in the MOT is that of a damped, harmonic oscillator

F = −βz − κv. (2.85)

Here, the F0 forces from MOT beam imbalance have been suppressed.
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With such a force, an atom in a MOT should behave as in a harmonic potential,

U = 1
2
κz2. As above, the damping of the atomic motion by the MOT lasers will not

force the atom to rest because of the random emission of photons. Thus the atom

should have an average energy due to motion that has the form 〈U〉 = 1
2
κ〈z2〉. With

the equipartion theorem [25], in one dimension the atomic position should follow

〈z2〉 =
kBT

κ
. (2.86)

With this relation, measurements of the size of a magneto-optical trap can give a

measure of the trap’s temperature as done in many of the temperature techniques

discussed in Chapter I. Early MOT experiments expected temperatures close to

the Doppler temperature, Equation 2.74, but experiments measured clearly lower

temperatures [30, 70].

2.5.3 Sub-Doppler Cooling

Atomic temperatures below the Doppler temperature are a result of polarization

changes seen by the atom moving in an optical molasses [64, 71]. In both cases, this

enhanced cooling only appears for atoms with multiple ground states, such as the one

shown in Figure 2.6, so we’re getting a bit ahead of ourselves for the discussion in

Chapter V. For optical molasses with counter-propagating linearly polarized electric

fields, alluded to in the discussion of the extended two-level atom in Section 2.4.1,

the sub-Doppler cooling mechanism is named the Sisyphus effect.

In this linear field arrangement, the polarizations for the two counter-propagating

fields created by MOT beams are are right angles. Their interference creates two

potentials, which underpin the force of Equation 2.29, that the atoms move through.
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FIGURE 2.6. Atom with Mutliple Ground States

One potential oscillates as sin(kx) where k is the wavenumber of the light and

corresponds to the σ+ polarized light. The other potential oscillates as sin(kx + π)

and corresponds to the σ− polarized light.

Atoms primarily interacting with the σ+ light, such as atoms oscillating between

the outer two levels on the right side of Figure 2.6, will follow that light’s potential

energy curve, increasing and decreasing speed as it moves. This is shown as the

leftmost atom (black dot) in Figure 2.7. However, on occasion, when the atom is

at the peak of the potential, with the smallest kinetic energy, the atom can absorb

a σ− photon (center atom in Figure 2.7). When it does so, it moves onto the σ−

curve, which is at its lowest point in the potential energy curve (show as the arrow

for the center atom). The kinetic energy of the atom here does not change (except

for a small change due to photon emission recoil), but it now is at a potential energy

minimum (rightmost atom in the Figure). Repeating this process lowers the overall

mechanical energy of the atom and results in temperatures lower than predicted by

Doppler cooling.

For optical molasses with circular polarizations, such as the MOT described

in 2.5, the sub-Doppler cooling mechanism arrises from an additional enhanced
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FIGURE 2.7. Sisyphus Cooling. Atoms (left) interacting with only σ+ light follow
the potential energy curve U+. If an atom (center) absorbs a σ− photon while at the
top of the U+ curve, it will drop to the U− curve (right), loosing mechanical energy
in the process.

scattering rate from a beam that an atom is moving towards. In this arrangement,

the light’s linear polarization direction rotates around the beams’ propagation axis.

In the reference frame of the atom seeing a fixed polarization direction, the changing

electric field direction appears as a magnetic field that Zeeman shifts the atom’s

energy levels. This shifting induces pumping between different ground states of the

atom leading to preferential excitation by the light field the atom is moving towards

[71, 72]. This preferential interaction slows the atoms more quickly than Doppler

theory predicts giving a lower atomic speed and temperature. As our MOT is based

on circular beams, this is the sub-Doppler cooling mechanism expected for our MOT.

This cooling, polarization gradient cooling, only occurs with atoms that have

multiple ground states. The V-atom has just one by construction, while the full

87Rb atom has many. The added cooling from polarization gradient cooling is clearly

demonstrated in the much larger slope, due to enhanced restoring constant κ, near

the origin of Figure 5.2 for the full atom (blue) as opposed to the V-atom (red).

Evoking the equipartition theorem to calculate the temperature still holds for the
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sub-Doppler cooling, although there is not an analytic solution for κ for the full 87Rb

atom in a MOT. In any case, measuring temperature via the equipartition theorem, as

was developed for Equation 2.86, the temperature is inversely proportional to κ. The

evidently larger value for κ for the 87Rb atom then reveals the cooler-than-Doppler

temperature.

These two sub-Doppler cooling mechanisms do not rely on the presence of the

magnetic field for the MOT. They originate entirely from the counter-propagating

electric fields and thus also appear for atoms in an optical molasses. The magnetic

field for the MOT is, again, strictly responsible for the position-dependent trapping

of the atoms near z = 0.
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CHAPTER III

EXPERIMENTAL SETUP

This chapter will discuss the experimental apparatus for the experiments

discussed in chapters IV and VI. The experiment design implements a dual-MOT

setup in which one MOT is singularly used to increase load rates into the second

MOT through radiation pressure. The second MOT is where our experiments are

performed. For moving from a many-atom MOT to a single-atom MOT, changes

were made primarily to the second MOT.

In this chapter, the vacuum chamber and laser system will be first discussed.

These systems were designed and built by prior students and are discussed in detail

in their theses [73–76]. The systems are discussed in brief, focusing on changes made

to the system in order to allow for single-atom trapping. Larger changes made to the

experimental apparatus are discussed after, looking at high-gradient magnetic field

systems and a single-photon detection apparatus.

3.1 Vacuum

Our vacuum chamber is segmented into two chambers, a “high pressure” chamber

and a “low pressure” chamber, as shown in Figure 3.1. The “high” and “low”

designations refer to their relative pressures as both sides fall into the ultra-high

vacuuum (UHV) regime. The high pressure chamber originally had a pressure of

∼ 10−8 torr and the low pressure chamber had a pressure of ∼ 10−10 torr [73]. The

high pressure chamber contains the first MOT and the low pressure chamber contains

the second MOT. An important feature of the low pressure chamber is an 8” long,
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30mm square rectangular cell made of fused silica. This glass cell is installed to stick

outward along the long axis of the optical table, giving broad optical access.

The two chambers are connected by a differential pumping tube. The diameter

of this narrow, tapered tube grows at an angle of about 3◦ from the high pressure

chamber to the low pressure chamber [75]. The narrowness of the tube reduces the

probability for atoms to transit its length between chambers. The taper allows the

atomic beam of atoms to expand as it is sent between the first MOT and the second

MOT (see Section 3.2 for a discussion of the two MOT design).

As a way to improve the chances to capture just a single atom, we decided to

reduce the already low background pressure. This was done by closing the valve

leading to the rubidium source for the past many years. The background vapor has

gradually adsorbed onto the inner chamber or filtered out through an ion pump

(Varian VacIon Plus Starcell 75), lowering the background pressure below levels

measurable by the pump (10−8 torr). The loading rate of MOTs with a small number

of atoms can be used to estimate the background pressure of atoms using the loading

rate of single atoms [6, 77]. Our permanent magnet MOT discussed in Section 3.3.1,

with lasers detuned by about −2Γ (Γ is the natural line width of Rubidium 87, about

5.75 MHz [62]), has a loading rate of 0.0058 atoms/sec. This suggests the main

vacuum chamber has a pressure on the order of 10−15 torr and background rubidium

density of 40 atoms/cm3.

After an unplanned rebaking of the vacuum system (see Section 3.1.2) the

background pressure was kept low by severely limiting the initial atomic rubidium

vapor. In the initial build for a large MOT, the system was flooded with rubidium

vapor by heating a 1 g rubidium source contained in the system [73]. After the

rebake, the rubidium source was reopened via valve and vapor was allowed to reenter
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FIGURE 3.1. Experimental Diagram of Vacuum Chamber. (a) Top-down view. (b)
Side view. The two chambers are joined by a differential pumping tube. The high
pressure chamber contains MOT 1. The low pressure chamber contains MOT 2 within
the fused-silica cell and is where experiments are done. The red dash-dot line shows
the beam path of the MOT 1 laser through the chamber. The solid-red lines show the
beam paths for the second MOT. Only vacuum chamber elements important for the
discussion in chapters IV and VI are shown. Missing from this diagram are pumps
and titanium getters, the rubidium source, and mirrors for a high powered fiber laser
[73].
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the vacuum. Without heating the source, only a small amount of rubidium enters the

system and allowed us to capture single atoms again.

3.1.1 Light Induced Atomic Desorption

Significantly lowering the background vapor of rubidium helps the chances to

capture just one atom, but it also limits the chances to capture any atoms. To briefly

improve loading rates, we implemented a light-induce atomic desorption (LIAD)

system.

Shining bright, off-resonant light into a vacuum chamber whose walls have been

coated with rubidium can desorb the rubidium from the walls to increase the vapor

pressure in the chamber [11, 78]. This has been observed for not just rubidium

but other atomic vapors [79–81] and even for molecules [82]. For many surfaces,

this desorption has been explained as the light breaking ionic bonding between alkali

atoms and silicon-oxygen chains in the surface [82]. This effect has also been observed

to occur for atoms adsorbed onto stainless steel, although the physical mechanism for

this is less well understood [81, 83].

A number of groups have used LIAD to increase atomic counts in MOTs [11, 81,

84, 85]. LIAD as a method to load traps has the benefit of allow for a low background

vapor pressure but still allow for quick loading of the trap by temporarily increasing

the vapor pressure. A low vapor pressure is important for single-atom MOTs to limit

loading rates from the background and to increase MOT lifetimes by limit background

atom collisions. A MOT loaded with LIAD demonstrates those effects [86, 87].

We built and implemented an LIAD system based on the work of [81] using three

1W blue power LEDs (Newark P/N 51R2234). These were arranged symmetrically

around a used copper vacuum gasket and the gasket was mounted outside of the first
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MOT access window as shown in Figure 3.2. The LEDs were powered with the circuit

shown in Figure 3.3. The double transistor design was implemented to use a high

current PNP transistor (Mouser P/N 511-BD238) we had on hand. The addition of

the NPN transistor functions as NOT gate to reverse TTL logic appropriately for the

PNP transistor. The parallel resistor design is for safe power dissipation while the

circuit is running.

For a many-atom MOT, our LIAD setup gives an atom number increase in the

second MOT of around 10%. This is significantly below what was seen in [81] as

that experiment loaded the MOT directly from the desorbed gas. Our tests did not

measure the atom number increase in a MOT loaded directly from the desorbed gas

(our first MOT), but from a MOT that was loaded by this (potentially) enlarged

MOT. Our experimental setup doesn’t allow for measurement of the atom number in

the first MOT. A LIAD setup is not used near the second MOT as the bright lights

of the LIAD could damage the single-photon counting avalanche photodiode used to

detect single atoms in the second MOT.

3.1.2 Table-Top Bakeout

An unplanned breaking of the vacuum system (do not push on the fused-silica

cell!) required a rebaking of the system to achieve UHV pressures. The baking process

vaporizes gasses which have deposited onto the vacuum chamber and allow them to

be removed from the vacuum via pump. Because the system should still be relatively

clean even after filling with air, a lower temperature bake was done compared to the

original construction [73]. When the system was originally built, a power failure also

broke vacuum near the end of the bake. An additional final bake, to only 150◦C, done
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FIGURE 3.2. Installed LIAD system. Three blue LEDs are attached to the reverse
of the copper coil seen in left image, which is also the dark, black ring in the right
image. The fiber in the foreground carries trapping and repump light for MOT 1.
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FIGURE 3.3. LED circuit for LIAD setup
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over night was sufficient to return to UHV pressures. For this rebake, a similar low

temperature bake was sufficient to return to UHV pressures.

Because the vacuum chamber was already in place on the optical table and

positions of experimental equipment were set relative to it, we decided to attempt

a bake of the chamber in place instead of moving it away from the table. This

was done following the “many heater” method described by Birnbaum [88]. After

removing sensitive experimental equipment around the vacuum system, heater tape

(P/N Omega SRT101-060 and similar) was wrapped around various vacuum chamber

parts and thermocouples were positioned around the chamber. Around the tip of most

of the thermocouples, a short sleeve of fiberglass (harvested from around broken heater

tapes) was placed to electrically insulate the exposed ends of the thermocouples from

being grounded to the vacuum chamber. The thermocouples were positioned so that

temperature gradients were easy to detect. For example, a series of thermocouples

were located at the window of the first MOT, one one each side of the differential

pumping tube, and one on each side of the (newly replaced) fused-silica cell. This

allows us to monitor the temperature gradient along the full length of the chamber,

making sure a relatively even temperature was kept along that axis.

After positioning the heater tapes and themocouples, the chamber was covered in

many layers of aluminum foil. Windows were covered by wrapping oil-free aluminum

foil (All Foils UHV aluminum foil) around the window flange and its bolts, creating

a heightened ring of foil around the rim of the window, as shown in Figure 3.4a.

More foil was then placed over the ring and ends were stretched to wrap around the

chamber holding the foil over the top of the window in place and leaving a gap of

air between the foil and the window. This was to prevent foil scratching the glass

and provide an insulating pocket of air to keep high temperatures. Around the fused-

50



silica cell, foil wrapped fire bricks were stacked to a few inches below the cell. A

single heater tape was laid over the top of the firebricks under the cell. Four very

long pieces of UHV aluminum foil were folded into long, stiff strips which were bent

into arches that stretched over the cell and tucked under the bricks on each side of

the cell. Similar long, folded pieces of UHV foil were wrapped between the arches,

building the framework of an oven around the cell (affectionately referred to as The

Barn). This is shown in Figure 3.4b. A layer of UHV foil was wrapped around the

sides of The Barn and folded onto the top and a layer of UHV foil was wrapped

over the top. The UHV foil covering windows and the rest of the vacuum chamber,

including ion pumps and pump hoses, were wrapped in many layers of kitchen quality

aluminum foil. The fully wrapped vacuum chamber is shown in Figure 3.4c.

The vacuum chamber was heated slowly with the heater tapes to temperatures

around 120◦C over a few days. The 2nd vacuum chamber temperature increase was

particularly slow due to its size and limited surface area where heating tape could be

wrapped, which slowed the process considerably as the entire system was attempted

to be kept close to the same temperature. The ion pumps were heated much higher

than the other portions of the chamber (to 180◦C and 170◦C for the larger and

smaller ion pump respectively). This was to clean off material that had built up

inside the ion pumps. The small ion pump had not worked for years as collected

material had shorted the high voltage difference across the pump. Particularly

warm or cool spots of the chamber were adjusted by removing and adding aluminum

foil, respectively. To help visualize the temperatures, the thermocouple values were

plotted spatially in three dimensions with their locations corresponding to the (ideal)

position of the thermocouples. A few additional temperatures were estimated based

on the temperature measurements of nearby thermocouples. Lines between these
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(a) (b)

(c) (d)

FIGURE 3.4. (Re)baking the vacuum chamber. (a) Protected window coverings. (b)
Oven constructed around the fused-silica cell. (c) Entire vacuum system wrapped
and baking. (d) Positional temperature monitoring graph.
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points were colored as relative temperature of the extreme points from an estimate

of the temperature at the center of the large MOT chamber. One such of these

graphs is shown in Figure 3.4d. The graph was particularly helpful in visualizing the

temperatures and potential strong gradients in the system. This graph, along with

graphs of the individual thermocouple temperatures over time, were used to adjust

the various heater tape voltages to bring the chamber up to temperature.

Prior to baking but after replacing the fused silica cell and pumping out the

system, the lowest pressure measured by the turbo pump (BOC Edwards P/N EXT

70H 24V) was 3.2× 10−8 torr. After baking, the pressure had reduced to 6.4× 10−9

torr. This is comparable to a final pressure of 8.3 × 10−9 torr achieved during the

initial baking of the system. This difference is primarily due to a small leak in the

home-made gasket for mounting the fused-silica cell that was present during the initial

bake. Tightening the flange for the cell closed the leak after ending the bake sealed

it, but limited the pressure during the bake. No such leak was present before or after

the rebake. Pressure readings with the ion pumps measured post-baking pressures of

< 4×10−10 torr and 3×10−9 torr on the low- and high-pressure sides of the chamber,

respectively.

3.2 Lasers

The laser system for our MOT has been largely unchanged from previous

experiments [76]. All of the lasers for the experiment are homemade external-cavity

diode lasers with outputs of around 100 mW near 780 nm, the transition wavelength

for 87Rb.

The main MOT trapping laser consists of a master laser injection locked to two

slave lasers, discussed in detail in [76]. The beam path for the MOT trapping laser
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is shown in Figure 3.5. The two slave lasers reproduce the frequency of the input

light and effectively increase the total MOT laser power. A portion of the light from

a slave laser is sent to a Fabry-Perot cavity. Monitoring the output of the cavity

verifies successful injection of the maser laser as only a single peak will appear in the

cavity signal. The remainder of the slave lasers’ outputs are coupled to optical fibers

for use in the MOTs. One slave laser is used to operate each of the two MOTs.

The repumping beam, needing much less power than the trapping laser, does not

seed slave lasers. This beam is split and directly coupled into two fibers, one for each

MOT. The beam path for the repump trapping laser is shown in Figure 3.6.

3.2.1 MOT 1 Laser

For the first MOT, light from the repump laser and light from one of the slave

lasers are combined via a beamsplitter before being coupled into a 5 µm core diameter

optical fiber (Oz Optics P/Ns PMJ3A3A-850-5/125-3-x-1, where x corresponds to

various fiber lengths). The fiber emits light freely into space (there is no collimation

lens) before reaching a 3-inch lens which collimates the now greatly expanded beam.

The fiber and lens are visible in pictures of the LIAD, Figure 3.2. The now collimated

light travels into the vacuum chamber through a large window on the right side of

the high pressure chamber as marked with the green dash-dot line shown in the

MOT chamber diagram (Figure 3.1). Inside the chamber, the beam reaches a set of

“pyramid mirrors” to form the MOT.

The pyramid mirrors are shown in Figure 3.7. These are a set of four Pyrex

pieces coated to reflect light at 780nm and are each aligned at 45◦ degree inclines. As

the collimated light reaches the pyramid mirrors, it is reflected perpendicular to the

original beam. As shown in Figure 3.7a, the reflected beams counter-propagate from
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(a) (b)

FIGURE 3.7. Pyramid MOT Mirrors. (a) Diagram of arrangement of pyramid MOT
mirrors with beam behavior shown. (b) Picture of built pyramid MOT mirrors.

opposing mirrors. The four sets of beams reflected from the pyramid mirrors, together

with large anti-Helmholtz coils mounted on the exterior of the vacuum chamber form

a 2-dimensional MOT at the center of the pyramid. They are trapped on the plane

that is perpendicular to the MOT 1 beam axis.

As shown in Figure 3.7, the mirror pieces are cut to leave a hole at their center

to allow atoms to escape from the 2-dimensional MOT [89, 90]. The hole aligns

with the small-diameter opening of the differential pumping tube. The portion of the

MOT light that travels directly along the center of the pyramid will travel through

hole and along the differential pumping tube. This is shown as the green dash-dot

line in Figure 3.1. Before entering the tube, this light intersect the 2-dimensional

MOT. The light applies radiation pressure (see Section 2.2.3) to the cooled atoms

and pushes them along its path, through the differential pumping tube and into

the high pressure chamber.The fused-silica cell is attached opposite the differential

pumping tube so that the light, and atoms, traveling through the tube will continue

on along the length of the cell.

The second MOT’s center is located about 5-3/8” from the end of the fused-

silica cell and is positioned a quarter inch below the beam path for the first MOT
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laser through the differential pumping tube. The atoms pushed by this light travel

approximately the full length of the cell while still inside the beam [74]. However,

some atoms sink out of this path and can fall into the range of the second MOT.

This drooping is caused by gravity and atomic motion perpendicular to the beam

axis (this motion is the same that necessitates the taper in the differential pumping

tube). Thus, we can load atoms into the second MOT from the first by capturing

atoms dropping out of the beam. We have seen that using the first MOT to load the

second MOT increases the loading rate of the permanent magnet MOT (see Section

3.3.1) by a factor of 4.

No changes were made to the first MOT laser in preparation for single-atom

experiments.

3.2.2 MOT 2 Laser

Unlike the MOT 1 laser, the trapping and repump beams for the second MOT

are coupled into separate fibers. These two fibers are the inputs of a fiber beam

splitter array (custom design from Canadian Instrumentation and Research) which

combines the two inputs and splits the light to 6 fibers, the 6 fibers for our MOT.

The fiber array was designed so that each output beam received equal power, but

is not perfect. The lowest power beam has around two-thirds of the power of the

highest power beam. The output beams, as used in the experiment, are matched so

counterpropagating beams have about equal power to limit effects of beam imbalances

(see Section 2.4.1). An imbalance ratio between counterpropagating beams is defined

as

w =
P+ − P−
P+ + P−

, (3.1)
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where P+ and P+ are the powers in the higher powered beam and the lower powered

beam respectively [91, 92]. This definition is convenient as P+ = 〈P 〉(1 + w) and

P− = 〈P 〉(1 − w) where 〈P 〉 is the average power of the counterpropagating beams.

With this definition, the MOT beam pairs have imbalance ratios of w = 0.0367,

w = 0.0034 and w = 0.115. The largest imbalance ratio was chosen for the two

beams traveling vertically up and down, along the axis of the MOT anti-Helmholtz

coils. This large beam imbalance has implications for the discussion in Chapter VI

and is resolved as in 3.2.4.

Originally, the six fibers are connected to a stack of components that contain a

fiber collimator (Thorlabs P/N F810FC-780) and a quarter-wave plate (Casix P/N

WPL1225-lambda/4-780nm-M) [73]. The collimators produce a 6.6 mm diameter

beam (the 1/e2 power diameter) and the wave plates convert the linearly polarized

input light to circular light. The waveplate is mounted on the face of a 0.594” diameter

aluminum tube. The tube (and thus waveplates) are rotated around the collimator

to give correct light polarization to create the MOT.

Four of the fibers launch light parallel to the surface of our optical table,

intersecting the fused silica cell at 45◦. Because the beams enter non-normal to

the cell, the beams experience a shift in propagation direction due to refraction. The

fiber launchers are positioned on the table to account for this, resulting in opposing

beams that counterpropagate as desired. These beam paths are the red lines shown

in Figure 3.1a.The final two beams are the vertical beams discussed above. These

beams intersect normal to the cell and do not experience refraction. These are the

red lines seen in Figure 3.1b.

Two changes were required for the second MOT lasers when moving to the single

atom experiments. Changing the anti-Helmholz coils to permanent magnets required
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repositioning the fiber launcher that was below the experimental cell. This launcher

was moved to propagate light parallel to the table and reflect to vertical off an extra

pyramid mirror. The reflection reversed the polarization of the light, so the wave

plate in the fiber launcher had to be adjusted to account for this.

The second change added 25 cm irises (Thorlabs P/N IN25) between the fiber

launcher and experimental cell. The irises are closed to typical diameters of 3 mm.

The irises allowed us to reduce the diameter of the MOT beams, which has three

benefits. One, the clipped beams reduce the total amount of light reaching the

experimental cell. This reduced background scattered light during an experiment

- an important feature as single-atom detection is done by photon counting (Section

3.4). Second, the smaller beams reduce the loading rate of the MOT. Although the

size of trapping region of the MOT is dominated by the magnetic-field gradient of

the anti-Helmholtz coils, the counterpropagating beams outside this region create an

optical molasses which slows atoms without trapping them [1–3]. These slowed atoms

can wander into the trapping region, which increases the loading rate of the MOT.

Lastly, clipping the beams with irises, as opposed to replacing the collimator with one

that produces a small diameter beam, allows easy adjustment of the beam size without

altering the beam intensity at the center of the MOT. Atoms in the MOT should be

trapped very close to the intersection of the centers of the six beams. Clipping the

tails of beams will not affect the intensity at center, keeping the parameters affecting

atomic fluorescence and motion the same, while allowing us to change the loading

rates and reduce the photon background.
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3.2.3 Trapping Beam Detuning Control

The beam paths for the trapping and repump lasers was shown in figures 3.5

and 3.6, but a detailed description of them was left for prior students’ dissertations,

particularly that of Tao Li [75]. However, due to the importance of laser detuning

to MOT performance, a detailed view of the frequency control elements for the two

MOT beams is below.

The frequency of the MOT trapping beam is controlled by the the beam diagram

shown in Figure 3.8. This diagram shows only pieces of the overall beam path (Figure

3.5) that are necessary for frequency control. Most notably absent is a split in the

beam path at point 3 to seed both slave lasers. The slave lasers only affect the

beam power before going to a final AOM and then the fiber couplers. The output

frequency of the laser is locked via a home designed lock-in amplifier [75] whose

input comes from a doppler-free spectral measurement of the hyperfine structure of

rubidium via saturation absorption [93]. In this method, two lasers counter propagate

through an atomic sample. Close to resonance, atoms moving in opposite directions

absorb photons from opposite beams. This is very similar to the enhanced absorption

from beams that lead to the optical molasses in Section 2.4.1, although here the

beam polarization is linear. Measuring the output from each beam would reveal an

absorption signal that is doppler broadened. because of atomic motion. However, if

one beam has a much higher power, atoms whose speed is nearly zero will interact

much more strongly with that beam. These atoms will be saturated (see Equation

2.63 and its discussion) by the stronger beam and will absorb little light from the

weaker beam. A photodiode signal from the weaker beam would not show absorb at

frequencies very close to the atomic resonances of the atom. Measuring this signal,

60



+fI

From 

Laser

Fiber         
Coupler

To 

3

4

�2fSA

To Saturated   

      Absorption 1

+2f
2

PBS

PBS
�/4

�/4

AO
M

AOM

AOM

FIGURE 3.8. MOT Frequency Controlling Beam Path. Numerically labeled points
along the beam path are reference points for the discussion in the text.

and subtracting away the doppler signal from an identical unsaturated beam, can

reveal a non-doppler broadened spectrum for the atomic sample.

One such spectrum is shown in Figure 3.9 and is measured (effectively) at the

beam path point 1 as shown in Figure 3.8. The spectrum shows 6 peaks, only three

of which correspond directly to hyperfine transitions of the D2 line of 87Rb. These

peaks are the peaks labeled A, D, and F in the spectrum and correspond to optical

transitions. Peak A corresponds to the transitions |Fg = 2〉 → |Fe = 3〉, which is

the MOT trapping transition. Peak D corresponds to the |Fg = 2〉 → |Fe = 2〉

transition. And peak F corresponds to the |Fg = 2〉 → |Fe = 1〉 transition. Using the

|Fg = 2〉 → |Fe = 3〉 transition as a reference frequency, the peaks are located at the

frequencies given in the spectrum (frequencies from Steck [62]). The other three peaks

are “crossover” peaks originating from moving atoms whose speeds causes resonant

light frequencies for one atomic transition to become doppler shifted into resonance

with a different transition. In this case, the frequency of these peaks are the average

of the two different resonant transitions, as shown in the spectrum [48].
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FIGURE 3.9. 87Rb D-2 line spectrum. This spectrum shows decays to the |Fg = 2〉
state. Frequencies listed are peak locations relative to the decay energy from the
|Fe = 3〉 state, peak A.

The laser is locked to peak B in Figure 3.9, giving the light at the point 1 in

Figure 3.8 a frequency of ∆ = −133.326 MHz, where the frequency is referenced to

the |Fg = 2〉 → |Fe = 3〉 transition. Prior to reaching this point, the beam double

passes through an acousto-optic modulator (AOM), the AOM at the bottom left of

Figure 3.9. Because the lasers are locked via lock-in detection, their measurement

requires an added modulation. Adding the modulation directly the output laser is

not feasible as a MOT needs very stable laser frequencies. Instead, this AOM has

its input frequency modulated between 143 MHz and 147 MHz at a rate of 200 kHz.

Taking the average of the two input frequencies as a single frequency of the AOM,

fSA, the laser has a frequency of ∆ = −133.326 MHz − 2fSA before entering this

AOM. The AOMs can be used to give either a positive or negative shift in frequency

depending on angle of entry of the laser beam. For the remainder of this discussion,

these positive or negative shifts are taken by adding or subtracting the frequencies
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input into an AOM. This frequency is the same frequency at position 2 in Figure 3.8

and must be the frequency of the light as it leaves the laser.

The portion of the light that is not used for frequency locking double passes

through an AOM with a single frequency. This AOM, unlike the other two in this

setup, has a tunable frequency using our home build experimental control system

ZOINKS [94]. If this AOM has a frequency f, after double passing through it, the

light has frequency ∆ = −133.326 MHz − 2fSA + 2f . This is the light frequency at

position 3. This is also the position where the light is split into two paths, and each

path is injection locked to a slave laser. This is not shown in the figure as it only

increases beam power. The two light paths, after being split, both follow the rest of

the path to point 4 shown in Figure 3.8, although they go to different AOMs with

the same set frequency.

After having the power increased by the slave laser and before entering the 6-way

fiber splitter array, the light (for both MOTs) passes through a final AOM whose use

is to control the overall beam intensity and shutter the beam when it is not wanted

in the experiment. This AOM has a frequency fI , giving a final laser frequency of

∆ = −133.326 MHz− 2fSA + 2f + fI , (3.2)

where again ∆ is the detuning of the light from the |Fg = 2〉 → |Fe = 3〉 transition,

as this was the reference frequency in Figure 3.9. This is the frequency at position 4

of Figure 3.8 and is the frequency of the light that creates our the MOT.

Taking typical values of fSA = 72.5 MHz and fI = 79.782 MHz, the detuning

follows

∆ = −198.544 MHz + 2f
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The AOMs used have a frequency range of 80 MHz to 100 MHz giving usable a MOT

laser detuning in the range of about -36 MHz to +2MHz. The MOT is typically ran

with detuning between −2Γ and −Γ.

The repump beam for the magneto-optical trap has a much simpler frequency

control setup. There is only one AOM involved in shifting the frequency, as seen in

Figure 3.6. The repump beam is locked to the same cross-over peak as the trapping

beam. This peak is detuned from resonance of the |Fg = 1〉 → |Fe = 2〉 transition

by −78.474 MHz. There are no frequency changes made between the repump laser

output and the repump saturation absorption setup, so that the laser output is

detuned this same amount. Before traveling to fiber couplers, the beam travels

through a single AOM that applies a shift of +fR to the beam. This provides a

repump beam detuning of

∆R = −78.474 MHz + fR (3.3)

where ∆R is the detuning from the |Fg = 1〉 → |Fe = 2〉 repumping transition.

3.2.4 Recircularizing and Balancing the MOT2 beams

The fiber array for the MOT2 lasers are (linear) polarization maintaining fibers.

As our design for the MOT requires circular polarization, previous experiments

mounted quarter-wave plates to the output fiber launcher for each of the six beams

for the 2nd MOT [73]. As noted Section 3.2.2, the power output of these beams

was not particularly well balanced. This imbalance shifts the loading location of the

MOT, which was not desirable for our position measurements of a single atom. To
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FIGURE 3.10. Fiber Polarization Mount. (a) Schematic drawing of entire mount.
One polarizer (P1) is mounted to be aligned with the polarization axis of the fiber.
The quarter-wave plate is glued in placed aligned with the fast axis of the 2nd polarizer
(P2). (b) Picture of built mount. The colors of each piece roughly correspond to the
colors in image (a). Black tape covers set screws which hold the polarizations in
place. They are to prevent accidental unmounting of the polarizers while adjusting
the mounts.

resolve this, the quarter-wave plate mount was modified to allow for control of the

power output of each beam as shown in Figure 3.10.

A new mount was made that holds a 1/2” sheet polarizer (Laser Components

P/N 11006083) mounted in a modified 1/2” to 1” optics adaptor (Thorlabs P/N

AD1T). This polarizer is labeled P1 in the Figure 3.10a. On top of this, the original

quarter-wave plate mount was installed after being modified to hold a second 1/2”

polarizer (labeled P2) inside of it (the quarter-wave plate is glued on the output

face of the mount, just as noted in Section 3.2.2). The 2nd polarizer is aligned so

that its fast axis aligns with the axis of the quarter-wave plate, allowing for any

light that travels through the polarizer to be circularized by the quarter-wave plate.

The first polarizer is aligned to the polarization axis of the fiber and acts as a filter

to limit polarization angle noise in the fiber. Rotating the 2nd mount, with the

2nd polarizer and quarter-wave plate, adjusts the power output through the mount

without changing the circularization of the beam. The entire two-polarizer-quarter-

wave-plate mount system is shown in Figure 3.10.
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The power output through a polarizer goes as the cosine2 of the angle between

the input light polarization and the polarizer axis (see Appendix B). While this is

parameter we hope to use to control individual MOT beam power, any fluctuations in

the polarization angle of the input light will cause fluctuations in the beam power. We

measured polarization angle fluctuations of around δn = 2◦ from the light through

the optical fibers for the 2nd MOT. For beams where we want very little (if any)

attenuation (the angle being close to 0), this noise is not a problem, but for fibers

were large attenuation was needed to balance the beam power, this can cause large

power fluctuations. As shown in Appendix B, aligning the first polarizer to the ideal

axis of the fiber, limits power fluctuations output through the three-optic system to

order δ2
n, compared to order δn when only a single polarizer is used.

3.3 Magnetic Fields

Extending the lab’s previous experiments [95, 96] to the single atom regime

required increasing the field gradient to trap single atoms. We accomplished this

in two ways, first with a matched pair of permanent magnetic rings to create a

quadrupole magnetic field. This did successfully allow us to trap single atoms, but

the permanent magnetic field was not ideal for experimenting, so we designed and

built a high-current, water cooled pair of electro-magnets.

3.3.1 Permanent Magnet Anti-Helmholtz Coils

The first attempt to greatly increase the anti-Helmholtz magnetic field gradient

used a pair of matched permanent ring magnets with their magnetic poles on the
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Property Value

Inner Radius, R1 0.5in
Outer Radius, R2 1in

Magnet Thickness, L 0.25in
Magnet Separation, s 2.25in

Maximum Magnetic Field, Bmax 1468G

TABLE 3.1. Permanent Ring Magnet Parameters

flat-faces of the magnets. (K&J Magnetics P/N RY0X04). The measurements of the

magnets are in Table 3.1

With the origin at the center of the (hole in the) magnet and the z-axis running

on the central axis of the magnet (coordinate system shown in Figure 3.11), the field

along the z-axis is given by

Bz(z) = Bz,max
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where Bz,max is the magnetic field z-component at the origin, R1 and R2 are the inner

and outer radii of the ring magnet, and L is the thickness of the magnet.

This can be derived one of two ways. First, by integrating the magnetic field of

a magnetic dipole oriented in the ẑ direction [97] over the volume of the permanent

magnet (Figure 3.11a). This integral, in cylindrical coordinates, is:

Bz(z) =
µ0m

2

∫ R2

R1

ρdρ

∫ L/2

−L/2
dz′

(
2(z − z′)2 − ρ2

[(z − z′)2 + ρ2]5/2

)
.
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FIGURE 3.11. Permanent Magnet Magnetic Field Calculation Methods. (a)
Calculation method that integrates a magnetic dipole field over the volume of the
magnet. (b) Calculation method that treats the permanent magnet as opposite-
direction sheets of current on the inner and outer walls of the magnet.

The second method is to assume the magnetic is made up of a sheet of current with

height L and radius R1, and a second sheet of current with height L and radius R2

with the same current magnitude but in the opposite direction of the inner-sheet

(Figure 3.11b). Both of these derivation methods require replacing the unknown

magnetization, m̂, or unknown current, I, the appropriate equation involving the

magnetic field at the origin, Bz,max.

The paired permanent magnets, separated by distance s, have a total field

Btot(z) = Bz (z + s/2)−Bz (z − s/2) (3.5)

The ±s/2 terms shift the magnets by half the separation, redefining the origin to be

at the mid-point between the magnets. This quadrupole field using the permanent

magnet measurements in Table 3.1 is plotted in Figure 3.12 along with measured

values for the magnetic field for our magnets. Near the center of the coils, the total
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FIGURE 3.12. Permanent Magnet Quadrupole Field

magnetic field is nearly linear2 with a (theoretical) gradient of B′z = 163 G/cm and a

measured gradient of B′z = 165 G/cm.

The permanent magnet MOT was mounted around the experimental cell cased

in laser-cut acrylic. A first designed shown in 3.13a used clear acrylic (McMaster-Car

P/N 8560K354) and did allow for our first trap of single atoms, but the design suffered

from noise issues. Reflections of the lasers off the experimental cell scattered off the

acrylic and to the avalanche-photodiode used to detect since atoms. The the design

also could flex, which changed the scatter and shifted background fluorescence levels.

A second design used black acrylic (McMaster-Carr P/N 8505K92). Stiffer supports

solved the flexing issue and built in Wood’s horns [98, 99] solved scatter issues. The

horns were made by bending and clamping closed metal tubing (McMaster-Carr P/N

2Btot(z) of Equation 3.5 is an odd function and the magnitude of the z3 component of the field
within 100µm of the center is an order of magnitude smaller than the linear component using the
magnet parameters in Table 3.1. These justify a linear assumption.
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FIGURE 3.13. Single Atom MOT Magnetic Field Designs. (a) First design with
permanent magnets. (b) Water-cooled electromagnets installed in the experiment.

5177K69 and P/N 8955K141). The inside of the tubes were painted black (Krylon

Black indoor/outdoor primer).

3.3.2 Electromagetic Anti-Helmholtz Coils

Electromagnetic anti-Helmholtz coils are preferred for our experiment as they can

be easily turned off to do away with external magnetic fields. They were designed to

closely match the fields of the permanent magnets. These installed MOT coils are

shown in 1.1b and in 3.13b.

The MOT coils were designed looking at two factors – the magnetic field gradient

at the center of the coils and the power dissipated in the coils. Both of these are

predominately set by the current in the coils and by their shape. For two single loops

of wire with radius r and resistivity ρ that are separated by a distance s, the magnetic

field gradient at the midpoint between them and the power dissipation by them are
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given by the equations

∂B

∂z

∣∣∣∣
z=0

= −3µ0I

2

r2s

[(s/2)2 + r2]5/2
(3.6)

P = 4πrρI2. (3.7)

The magnetic field equation can be found from Ampere’s Law and the power equation

comes from the power dissipated by two resistors in series (having the coils in series

is preferable for our experiment so that the current in each is the same). Clearly, the

magnetic field gradient scales linearly with current in the coils, while the power scales

as a square of the current. Reducing the size of the coils, through decreasing the

radius of the coils, increases the magnetic field gradient and it will reduce the power

dissipated, both things we wanted to occur. Numerically calculating field gradients

and power use with multiple loops of wire with different radii and separation between

coils was used to decide on general design for the coils.

Additionally, the thickness of the wires had be taking into account two ways.

First, the thickness controlled the radius of the next layer of wires outward from the

center of a single coil. Second, the loops were assumed to be closely packed together,

with each outward layer of coils nestled in the “gap” between two coils of this previous

layer. This negatively affects the design by increase the separation of the coils and by

reducing the number of vertical stacks of wire in each even numbered layer of wires. It

improves the design by reducing the radius of the wires for every subsequent outward

layer, reducing the overall size of the coil of wires, and it makes wrapping the coil of

wires easier as the wires will naturally fall into this gap when wrapped tightly.
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The final design examined various gauges of wire, the number of outward layers

of wire and the number of vertically stacks of wire. The calculations lead to a design

with 270 individual loops of 20 gauge wire, arranged with 20 outward layers arranged

with 14/13 vertical stacks of wire in odd/even outward layers. The inner-most radius

of the loops of wire was 0.5” and the separation of the two facing sides of the coils was

4cm. Relative to input current, this design should produce a magnetic field gradient

of B′z/I = 27.4 G/A·cm and each coil should have a resistance of 2.2 Ω. When

measured after being built, the designed coils created a gradient of B′z/I = 26.88

G/A·cm and their combined resistance is 4.75 Ω.

The coils are powered with a Kepco ATE75-15 power supply which can output

up to 15 A. The power supply is programmed using a PC-12 adaptor allowing for

external current control and in fast mode, which allows fast altering of the current

and voltage output [100]. Running the experiment in fast mode is desired for trapping

only single atoms (see Section 4.1) and for making our position measurements (see

Section 6.2). Setting a voltage between 0 V and 1 V across pins 15 and 30 of the

PC-12 will set the output of the power supply between 0 A and 15 A.

3.3.3 Water Cooling

Because of the high power dissipation of the electromagnets, their mounting

brackets were designed to allow water cooling to occur on the surfaces of the brackets

opposite the experimental chamber, as shown with blue rectangles in Figure 3.1b.

Each coil has a 1/8” tall and half-inch wide channel inside the coil. Each channel

runs 300◦ around the coil with a water intake and output on either end. Water

lines are connected to 3/8” Swagelok brass tube fittings (Portland Valve Fitting P/N

B-600-6). The water lines are made of rigid polyethylene tubing (McMaster-Carr
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P/N 50375K47) as visible in Figure 3.13b. The water lines are attached to a water

chiller (Neslab RTE-100) which can pump about 3 gallons/minute. The water chiller

has a 1.3 gallon tank and can cool up to 350 W when operated at 20◦C. The water

temperature is typically set around 15◦C. This temperature is chosen to improve

cooling of the coils, according to Equation C.10, and so that touching the below-room

temperature coils will be cool to the touch to verify they are being chilled correctly.

The water chiller does not seem to have standard pipe fittings, so we adapted 1/4”

compression tube fittings (brass sleeve fitting McMaster-Carr P/N 50385K72 and

brass nut McMaster-Carr P/N 50385K62) for a short stretch of 1/4” tubing. This

was expanded (Portland Valve Fitting P/N B-600-1-4) to match the larger 3/8” tubing

of the rest of the water line.

There are three additional elements in the water line between the chiller and

coils. First, just after leaving the chiller, there is a vibration damper that prevents

vibrations created by the chiller from reaching the experiment. The damper is made

of a long length of tubing that is coiled in 3 circles of about 1’ diameter. The coils

are inside of a plastic trashcan and the can was filled with cement. Second, there is

a flowmeter (McMaster-Carr P/N 4351K37) attached to the water lines that lets us

control the water flow between 0.3 gallon/minute and 3 gallons/minute. The water

line then travels to the MOT coils, in series, before turning through the vibration

damper. Lastly, the water runs through a low-flow switch (McMaster P/N 2371K4)

that allows us to monitor the flow of water through the tubing. The water then

returns to the chiller. The complete plumbing diagram for water cooling the MOT

coils is shown in Figure 3.14.

To verify the coils will not over heat in our experiment, we analyzed the heating

and cooling rates of the coils. This analysis is shown in C and reveals the temperature
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FIGURE 3.14. Plumbing Diagram for water cooling the MOT coils

of the coils as a function of time is

T (t) =

(
Tw +

β

γ

)
eγt − β

γ
, (C.10)

where Tw is the set-temperature of the water and parameters γ and β are complicated

combinations of parameters given in Equations C.8 and C.9. To keep γ < 0, there

is a maximum driving current (Equation C.11) that the coils can cool. For our coils,

temperature settings, and chiller, (see Table C.1) this current is Ilim = 61A, well

above our designed operating current. Because resistance is tied so closely to the coil

temperature, the resistance will also raise as the temperature does according to the

equation

R(t) = R′0
[
1 +Rm

(
1− e−|γ|t

)]
, (C.12)

where R′0 is an effective initial resistance, Rm is a maximum resistance. This form is

nice as it allows simple measurement of γ through monitoring the resistance of the

coils. At current of 9A we measure γ = −0.017 ± 0.11/s. Equation C.8 predicts a

value of γ = −0.23/s using experimental parameters in Table C.1.
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FIGURE 3.15. Water Cooled Coils Protection Circuit

The likely cause of this mismatch is over simplification in the calculation for the

rate flows into the water from the coils. This derivation assumed the length of the

cooling channel, L, is much larger than a characteristic channel diameter, DH (see

Appendix C.3). Our design has L = 19DH , which is only sort of longer. As discussed

in Appendix C.3, this means there is an inward temperature gradient from the surface

of the cooling channel walls, reducing the efficiency of convection into the water from

the walls of the channel. Even with this overestimate of the cooling, the coils remain

cool to the touch even after operating at high currents for an extended period.

3.3.4 Protection

Because of the high power output of the MOT coils and the potential for over

heating, we installed a temperature protection circuit as shown in Figure 3.15. This

circuits uses TTL logic to trigger a relay (Mouser P/N 528-107-1) that allows the

control voltage from the ZOINKS system to reach the coil power supply. The TTL

signals run through three BNC outputs. Two these BNC connections are attached
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to thermal cutoffs (Mouser P/N 667-EYP-2BN082) which can be attached to the top

and bottom coils. The cutoffs act as fuses, blowing out if they, and therefore the coils,

reach 82◦C. The third is attached to the low-flow switch which is attached in-line for

the MOT coils water chiller and gives an open circuit if the flow rate falls below 0.1

gallons/minute. These three guarantee the power supply will only run if the coils are

being cooled and if the coils are not overheating.

Care is taken as to not leave the coils running without being monitored. The

power supply and the water chiller are both turned off over night. We have had

mistakes, however. At least once, the temperature control of the chiller was turned

down well below room temperature and left on overnight. Water condensed on the

cooled coils, which spread onto the experimental cell, dripping from above and wicking

from below. The coils have also been left running at high currents for an extended

period, allowing them to overheat. This caused a residue to form on the experimental

cell. In both cases, removing the coils and carefully cleaning the experimental cell

with acetone solved the problems.

3.3.5 Measuring Magnetic Fields

The Kepco power supply has a very obvious noise source of around 27 kHz.

Eliminating this noise is done with an interchangeable capacitor to create a simple

low-pass filter. This is the capacitor shown in Figure 3.16. Typically, a high voltage 1

µ F capacitor is used (Mouser P/N 5984-100V1-F). Forcing oscillations of the current

necessitates careful monitoring of the current as the oscillation amplitudes will be

heavily limited by the filter.

The current sent to the MOT trapping coils is monitored in 3 ways. Before

going to the coils, the output current of the power supply is sent to the circuit shown
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FIGURE 3.16. MOT Coils Current Monitoring Circuit. Red and blue coloring for
the current labels the current path before reaching the MOT coils and after returning
from the MOT coils, respectively.

in Figure 3.16. Before reaching the coils, the current passes through a dual-throw

switch which allows for (or bypasses) a direct ammeter measurement. The current

then travels through a 0.01 Ω sense resistor (Mouser P/N 684-SR20-0.01), whose

voltage output can be monitored. After traveling through the coils, the return current

travels through a Hall sensor [101] (FW Bell CLN-50, Newark P/N 83F2355), before

returning to the power supply.

3.3.6 Helmholtz Coils

The MOT theory in Section 2.5 reveals that the center of the trap is located

where the magnetic field vanishes. Because of the Earth’s magnetic field, this does not

correspond to the mid-point between the anti-Helmholtz coils. This can be managed

by using three sets of Helmholtz coils, a pair of matching coils separated by some

distance with current running in the same direction, as sketched in Figure 3.17.
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FIGURE 3.17. Helmholtz Coil Layout. This sketch shows the dimensions given in
Equation 3.8 for the magnetic field at the center of the Helmholtz coils, marked by
the x.

While the magnetic field cancels at the center of Helmholtz coils, the magnetic field

along the axis of Helmholtz coils is (closer to) uniform. The Helmholtz coils can be

arranged on the faces of a box centered around the midpoint of the anti-Helmholtz

coils. Manipulating the current in each coil pair creates a (nearly) uniform magnetic

field pointing in any direction, which can be used to cancel the Earth’s magnetic field

or move the center of the MOT away from the midpoint of the anti-Helmholtz coils.

The prior experiments built rectangular Helmholtz coils around each MOT. The

coils for the second MOT are visible in 3.13b as the red and white wire structures

built around the chamber. These coils are formed with loops of 10-strand ribbon

cable connected so current runs through each strand in series. If one pair of matched

coils having N turns and dimensions Lx and Ly are separated by distance S (as shown

in Figure 3.17), the magnetic field (relative to the coil current, I) points along the at

the center of the coils is given by

Bcenter

I
=

4µ0N

π

LxLy√
S2 + L2

x + L2
y

2S2 + L2
x + L2

y

(S2 + L2
x)
(
S2 + L2

y

) (3.8)
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Helmholtz Coil Lx, in Ly, in S, in N B/I, G/A

First MOT, x-direction 13.4 13.4 8 6× 10 1.7
First MOT, y-direction 12 9 6.5 3× 10 1.7
First MOT, z-direction 12.4 10.8 6.2 3× 10 2.6

Second MOT, x-direction 10 4.5 6 6× 10 3.4
Second MOT, y-direction 5.5 7 10 10× 10 2.6
Second MOT, z-direction 6 10 4.5 4× 10 3.2

TABLE 3.2. Helmholtz Coil Field Gradients. Lengths and turn counts are from
Schoene [73]. The turn number is written as the number of loops of ribbon cable
with the number of wires in the cable. Field gradients calculated from 3.8. Note that
for the first MOT, the directions labels are different from those defined by Schoene,
who referenced directions relative to the axes for each set of anti-Helmoholtz coils.
Here, the directions are labeled universally, so that the first and second MOTs use
the same direction. These directions are as labeled in 3.1. Translations between the
two direction systems can be done by remapping the directions in figure 2.14 onto
the directions as labeled in figure 2.21 from Schoene.

calculated simply using Ampere’s Law. The measurements and ribbon-cable loops

numbers for the experiment are shown in Table 3.2 taken from Schoene [73]. These

are repeated here because there is a disagreement with the magnetic field values found

by Schoene for the second MOT.

The Helmholtz coils can be used to move the center of the MOT where where

the magnetic field vanishes following Equation 2.81. By changing the current in

the Helmholtz coils and imaging the location where the MOT loads, we are able to

calculate the field generated by the coils. Because of our experimental geometry,

we can only do this for the x- and z-direction (the y-direction is perpendicular to

the camera imaging plane). Doing so gives that the Helmholtz coils in the x- and

z-direction generate fields given by Bx/I = 2.73± 0.05 G/A and Bz/I = 2.91± 0.17

G/A. While still different from values calculated in Table 3.2, the results are closer

to the values in Table 3.2 than the values given in [73].
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3.4 Photon Collection

To detect single atoms, we built and implemented a single-photon counting

system. The key component is a single-photon resolving avalanche-photodiode

(APD). Light from atoms is collected by a series of lenses and fiber coupled to the

APD. The photons measured by the APD are transmitted as TTL pulses to a field-

programable gate array (FPGA) system which counts the arrived pulses. Photon

counts, and time tagged photon arrival, were sent to lab computers over ethernet.

Later experiments to image the position of the atom require a single photon

resolving CCD camera. After careful study by Jeremy Thorn [74], we purchased and

installed a Hamamatsu C9100-13 Electron-multiplied CCD camera. An off-the-shelf

Cannon lens is attached to the camera, although Matt Briel [102] designed a lens

system for the camera to optimize off-axis position precision for future single-atom

experiments.

The camera is installed along the axis of the APD’s lens imaging system, but

on the opposite side of the fused silica cell. In Figure 3.13b, the camera is visible at

the top of the image and the tube housing the APD lenses is visible at the bottom.

This camera and lens tube location allows careful positioning of the APD lenses.

The camera is first moved as to focus on the MOT. Laser light is coupled backward

through the lens system and shined it onto the camera, showing the focal spot of the

lens system in the camera’s imaging plane. The lenses can be moved with translation

stages until the imaged focal spot overlaps the loading position of the MOT as imaged

with the camera.
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FIGURE 3.18. Single Photon Collect Lens System

3.4.1 APD

The APD (PerkinElmer P/N SPCM-AQRH-12-FC) used has a dark-count rate3

of <500 photons/sec (measured rate of 321 photons/sec). The APD ordered has an

FC/PC fiber coupler attached.

Light from the atoms is collected by a system of lens shown in Figure 3.18. This

lens system was based on a similar system in use at the University of Texas at Austin

[103, 104] and originally designed by Wolfgang Alt [105, 106]. Our lens system lacked

the complex aberration compensation of the Alt design but did attempt to match

magnification ratios. Removing the aberration compensation just reduces the overall

efficiency of the photon collection system.

Our lens system consists of a two 50 mm diameter lenses with focal lengths of

75 mm (Edmund Optics, P/N NT69-507) and 150 mm (Edmund Optics, P/N NT69-

510). The 50 mm diameter is to increase the collection solid angle of the lens tube

(0.388 steradian) and the focal lengths are to mimic the 2:1 magnification of the Alt

3A phone call with PerkinElmer revealed that all of their APDs are identical in fabrication.
Dark count rates are measured after the APDs are built. The APDs are then classified and priced
accordingly. There is no design or fabrication difference between APDs of different dark count rates.
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design. The 150 µm pinhole (Thorlabs P/N P150s) is to limit background scatter.

The matched 25 mm lens with focal lengths of 25 mm (Edmund Optics P/N NT65-

524) create a 1:1 system to focus into the FC fiber coupler (Thorlabs P/N SM1FC)

at the end of the lens system. The system is built into 1” and 2” Thorlab lens tubes

(SM1 and SM2 product line). The 2” and 1” lens tube sections are joined with an

adaptor (Thorlabs P/N SM2A6). The fiber used is a custom 105 µm diameter patch

cable from Thorlabs (fiber P/N AFS105/125Y, double FC/APC couplers, 2 meters).

Because of the mismatch between lens tube diameter and lens diameter, each lens

has a few narrow, thin (0.020” thickness for the 50 mm lenses and 0.012” thickness for

the 25 mm lenses) brass sheets of around 1” in length between the lens and the tube.

These shims were roughly equally spaced around the lens to limit their movement

while securing the lens in place. I would not recommend using lenses and lens tubes

with slightly different diameters.

Just prior to the pinhole, a small photodiode and relay are placed with wires

leading outside the lens tube. The photodiode connects to the APD protection

circuit (Section 3.4.3) to collect background light. The relay is also connected to

the protection circuit and, when triggered, covers the pinhole in order to block light

to the APD.

The light collection efficiency of each step between an atom and APD is shown in

Table 3.3. Using the photon scatter rate for an atom (using Equations 2.28 and 2.27),

with typical MOT parameters of detuning ∆ ∼ −Γ, anti-Helmholtz coil current of

9A, and laser power of 1.1 mW , the photon count rate by the APD should be around

44,000 photons/sec. This falls far below measured values (a maximum of 6,5000

photons/sec). This mismatch between anticipated count rates and measured count

rates is consistent with other single atom experiments [20, 77, 106].
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Contribution Efficiency

Spatial Collection 0.3889/4π
Transmission through experimental cell (reflection) 0.9325
Transmission through lens tube (reflection) 0.9900
Fiber Coupling 0.22
Transmission through fiber (reflection) 0.9329
Transmission to APD chip (reflections) 0.9176
APD Quantum Efficiency 0.66

Total Efficiency, e 3.551× 10−3

TABLE 3.3. Photon Collection Lens System Collection Efficiency

3.4.2 FPGA

The FPGA used in the experiment is a Terasic Cyclone II chip built into an

Altera DE2 Development Board. The development board was chosen as it already

contains many inputs and outputs, has an ethernet port, and can be configured with

part of the FPGA operating as a NIOS II microprocessor [107]. The DE2 also has a

large user base, providing a large selection of programs and uses that have been freely

published online.

The DE2 board has two large banks of male header pins. We designed a small

female plug that interfaced a few BNC plugs to the board’s header. Each BNC input

contained a 3/2 voltage divider shown in Figure 3.19 as the DE2 boards use a 3.3

V TTL logic. Shorting the 20Ω resistor and replacing the 30 Ω resistor with a 50Ω

resistor will give standard 50 Ω terminated TTL inputs. The BNCs were used to

connect FPGA to the APD and to the ZOINKS experiment control system. The

board also contains a large selection of switches, which were configured to control

timing for photon counting. The FPGA system does not have direct start and stop

control. Instead, it has a run and reset trigger.
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FIGURE 3.19. BNC-Header Adaptor for DE2 FPGA

Photon counting is simple input-pulse counting, implemented with very similar

VHDL programing to the photon counting done by Mark Beck’s group [108, 109],

and data processing is done via the NIOS II microprocessor. This microprocessor is

not a separate chip, but a portion of the FPGA chip that is configured to function as

a microprocessor. The NIOS II, running code written in C, manages data from the

photon counter and manually writes UDP ethernet packets for an onboard DM9000A

ethernet chip. This chip routes the bare packets to our control computer.

We use two separate implementations of the FPGA board. The first simply

counts photons for a predetermined time (set by switches), binning the photon count

data. Timing is done with an onboard 50 MHz oscillator. After recording for the set

time, data are sent to the computer. This occurs for a predetermined number of bins

(set by switches). This schematic is shown in Figure 3.20. This implementation is

used for the bayesian atom counting algorithm discussed in Chapter IV.

The second implementation does not count photons, but records the arrival time

of photons (again, using the 50 MHz oscillator). This is done in VHDL and the arrival

times are sent to the microprocessor. The microprocessor numbers the photons and

stores the arrival times for successive photons. As the data is recored, ten of these

arrival times are bundled together and written as one UDP packet before being set to

the computer. The bundles are numbered to check for dropped packets and thus lost
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FIGURE 3.20. FPGA implementation for counting photons. Both the pulse counting
and the NIOS processor are programmed onto the FPGA chip. The other elements are
external connections on the DE2 board that interface with the FPGA. The “Number
Bin” and “Write UDP Packet” blocks are segments of code written in C and running
on the microprocessor.

photon data. Additionally, on the control-computer side of the experiment, a manual

delay must be built in at the end of an experiment to check that all of the photon

arrival data has arrived from the APD. With photon arrivals on the order of tens of

thousands per second, an additional 30 s (after an experimental time of around 100

s) is needed so that the APD’s backlog of photon arrival times can be bundled and

sent to the computer. The schematic for the APD implementation is shown in Figure

3.21. This implementation is used for the spectral experiments discussed in Chapter

VI.

The DE2 board does have a dedicated clock input, so a higher speed oscillator

could be used to record timing of photons [107]. Our APD has a maximum photon

count rate of 20 MHz making the need for higher resolution on the FPGA unnecessary

for our experiments. Additionally, rubidium has a decay rate of Γ = 38.1 MHz, so
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FIGURE 3.21. FPGA implementation for timing photons

when measuring light from a single atom, we should not see photon counts faster

that this [62]. While testing the FPGA for our counting algorithms, it was able to

function properly at rates up to 30 MHz using a function generator.

Because the ethernet packets are sent bare, there is no communication between

the FPGA and the control computers. This allows for the possibility for dropped

packets. Luckily at our lowish count rates (well under 100 kphotons/sec), we haven’t

noticed this occurring, but it is possible. Solving this could be done by designing

a TCP/IP stack for the FPGA to deal with communications between the computer

and FPGA. This would allow the computer to report back to the FPGA that it

received the packet successfully. It could allow additional signals to be sent to the

FPGA, such as timing settings (rather than using switches). Alternatively, there is

an implementation of µLinux that has been run on the NIOS II microprocessor. This

contains its own TCP/IP stack that would handle the communication for us. We were

unable to compile and execute this OS successfully. Instead, packets are numbered

when being sent over ethernet and checking for dropped packets is done by making

86



sure all successive packets are received. Dropping a packet, then, can only be detected

and not corrected. This occurs very rarely, but when it does the experimental run

with lost data is thrown away.

3.4.3 APD Protection

Photon arrival rates higher than around 30 MHz risk damaging the APD. To

prevent this a protection circuit was designed and built (not shown due to complexity).

The circuit has two input measurement systems which trigger two safety measures.

Once the protection mechanisms are triggered, the system can only be reset manually

via a momentary switch. This requires a user to notice the problem and fix it before

restarting an experiment.

Prior to the pinhole located in the APD’s lens system, there is a photodiode

and an electric relay as shown in Figures 3.18 and 3.22a. The photodiode measures

light detected in the tube and is connected to the protection circuit. If the

photodiode voltage output corresponds to measuring 30 Mphotons/second, it triggers

the protection mechanisms. Because the photodiode is offset from the beam path of

light focused to the APD, it can only detect broad, bright sources such as room lights.

The TTL output of the APD is also used as a protection mechanism. A copy of

this data is put through a double-resistor RC circuit, shown in 3.22b. The double-

resistor design allows voltage growth across the capacitor to have a much longer time

constant than the voltage decay. Thus, the circuit behaves as an integrator for the

TTL signal. Modeling the circuit, an input count rate of 18 Mcounts/sec gives an

output voltage of 0.39 V after 1 ms. The circuit measures the voltage across the

capacitor and triggers the protection mechanisms if the voltage is above 0.39 V. This

circuit does cause some issues at count rates lower than this as the voltage across the
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capacitor can eventually reach the cutoff voltage. For example, at 5 Mphotons/sec,

the cutoff voltage is reached after 4.2 ms, at 1 Mphotons/sec the cutoff is reached after

23.5 ms. At 100 kphotons/sec, however, the voltage across the capacitor saturates

to 0.22 V. Most of our experiments have photon count rates on just the order of 10

kphotons/sec, allowing the protection to only trigger if there is something a major

issue. This circuit element protects against direct coupling of light into the APD. This

could be triggered things such as by loading a large MOT of hundreds of thousands

of atoms or misaligned or scattered MOT beams that could couple into the APD.

The APD is gated to turn on/off with a TTL input. One of the protection

mechanism resets the TTL to turn off the APD. The ZOINKS system ideally

controls the gating of the APD, but its control is routed through the protection

circuit, allowing interruptions of the on signal. The protection circuit triggers this
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interruption if the the APD count rate is too high or if the photodiode measures too

much background light to safely use the APD. The second protection mechanism is

a shutter installed along with the photodiode in the APD lens system, as was shown

in Figure 3.22a. The shutter is a black-painted copper flag that moves in front of the

pinhole. This blocks light from reaching the fiber coupler to the APD. The flag is

attached to a T90 relay (Mouser P/N 655-T90N1D12-12) which triggers with a signal

from the protection circuit.
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CHAPTER IV

OUR SINGLE ATOM MOT

Single-atom MOTs typically rely on three mechanisms to greatly reduce the

atomic loading rate to the single atom-level, all three of which have been used in our

experiment.

1. Reducing the MOT beam diameter, typically on the scale of a few mm, reduces

the volume of the optical molasses region from which atoms are trapped in the

MOT [6, 110]. This was done simply with off-the-shelf irises in front of the

MOT beam fiber launchers (see Section 3.2.2).

2. Reducing the background gas pressure for the atomic species to be trapped

limits the number of atoms which can “wander” into the trapping region [6, 18,

77]. This is also beneficial to increase the lifetime of the trap as background

atoms colliding with those in the trap is the major atomic loss mechanism.

This was done originally by having the experiment’s rubidium source closed for

years while continuing to pump the vacuum and, after rebaking the MOT, only

leaving the rubidium source open for a short period after the rebake.

3. Increasing the magnetic field gradient reduces the radius of the trap (defined as

the distance were the zeeman shift of the energy levels equals the laser detuning)

[7, 11, 20]. This again limits the “volume” inside of which atoms can be trapped

inside the MOT. We used both permanent and water-cooled electromagnets to

create fields on order of 220 G/cm (see Section 3.3).

All these methods reduce MOT numbers strictly by reducing the probability of

trapping atoms rather than any direct manipulation of atoms in the trap. These
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methods can be used, however, to control the number of atoms in the MOT by

increasing and decreasing loading rates as needed [10, 111].

This chapter looks more closely our single atom MOT, focusing on the detection

methods to verify there is only a single atom. After detecting a single atom during

an experimental run, we can trigger our system to reducing loading rates for atoms

in the MOT and perform an experiment. To detect the single atom, we developed an

algorithm based on bayesian statistics, discussed in the final section.

4.1 Detecting A Single Atom MOT

In large MOTs, the number of atoms is estimate from either the intensity of light

emitted from the atoms [5] or by the reduction of light due to absorption of a light

source that travels through the atoms [95, 96, 112]. With a small number of atoms, on

the order of 10, it is possible to precisely measure the number based on the fluorescence

from the atoms [7, 9, 20]. Each atom will emit photons at (nearly) the same rate,

so fluorescence from the atoms should appear in discrete jumps corresponding to

the number of atoms in the MOT. With a larger number of atoms, this technique

is limited by factors such as the spatial extent of a larger MOT, motion of atoms

within the MOT, and the large number photon counting limitations. With a very

large number of atoms reabsorption of emitted photons by other atoms in the MOT

[113, 114] is also an appreciable effect that prevents photon counting utility as a direct

way to measure atom number.
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FIGURE 4.1. Sample Photon Collection Data. (a) Long data run recorded with
permanent magnets. (b) Data run with anti-Helmholtz coils with 4 A current. (c)
Data run with anti-Helmholtz coils with 9 A current. Graphs (b) and (c) share
horizontal axes. Red line is recorded data, black line is linear estimate of fluorescence
at a given atom number. Atom number dashed lines estimated from tracking jumps
in data.
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4.1.1 Detection : Fluorescence Jumps

For our small atom MOT, a few fluorescence records are shown in Figure 4.1. In

each of these, and in general for the experiments discussed in this dissertation, the

MOT lasers are shifted to frequencies above the atomic resonance to prevent loading

atoms into the MOT for a few seconds. This gives a measure of the background

fluorescence rate for an individual experimental run. This has two direct benefits.

First, it gives a background level for the bayesian algorithm discussed in the next

section. Second, it allows for estimation of the MOT beam power for an individual

data run without measuring the power directly. While beam power is not measured

directly, a set of data runs with known MOT beam powers can be done without

loading atoms into the MOT to correlate background scatter rates measured from

the APD to MOT beam powers. This is useful for modeling the behavior and

temperature of atoms in the MOT (see Chapters VI). After the few seconds for

background estimation, the laser detuning is reset to its desired value to allow atoms

to load in the MOT. Sharp changes from the background are signals of atoms entering

and leaving the MOT. These jumps are on the order of a few thousand photons/sec,

generally counted for 100ms, which are the red curves in the three sample graphs.

The jump size is impacted by MOT laser intensity and detuning as evident by the

atomic fluorescence rate in Equations 2.27 and 2.28, but a much more significant

impact on the jump size is alignment of the APD lens system with the MOT location

location.

Comparisons between the three graphs in Figure 4.1 show the direct influence

of the first MOT. For the graph in Figure 4.1a, the first MOT is left on during the

entire data run and this one data run has an atom loading rate of 0.034 atoms/s.

For Figure 4.1b and Figure 4.1c, the first MOT is turned off once a single atom has
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detected (using the bayesian algorithm triggering discussed in Section 4.2.7). In (b),

there is a much weaker magnetic field in the second MOT (once one-atom has been

detected in the MOT), but the loading rate is greatly reduced, just 1 atom in about

seconds). In (c), the magnetic field of the second mot very closely matches that of

the permanent magnet MOT in (a), but no additional atoms load into the MOT as

they had in (a). This is directly the result of turning off the first MOT.

The discrete jumps in fluorescence are made more clear in histograms of the count

rates, as commonly done in single atom experiments [6, 24, 115, 116]. The histograms

for the graphs in Figure 4.1 are shown in Figure 4.2. In these graphs, the measured

background rate has been subtracted from each data point before the histogram was

created. The discrete separation between atom number counts is obvious here.

The broader width of the 1-atom peak in Figure 4.2b is tied to the weaker

confinement of the atom. Because the MOT κ coefficient is proportional to the

magnetic field gradient (Equation 2.78), the smaller current allows for a weaker

trapping potential. This allows the atom to explore a larger region of space, altering

the coupling between the atom and the APD’s detector area. This is more obvious

in the 2-atom peak where the motion of both particles greatly increases the width of

the (tiny and hard to see) peak.

4.1.2 Atom Counting by Fluorescence Jumps

In the graphs of Figure 4.1, the the atomic number fluorescence levels (dashed

lines) are calculated from the data after the experimental run completes. For these

values, a running average and standard deviation for fluorescence rate is made until

a subsequent data point differs from the running average by a threshold defined by

a multiple of the standard deviation (typically 5 − 10σ). This suggests a change

94



a)

b)

c)

Photon countrate, photons/sec

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000  25000  30000

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000  25000  30000  35000

 0

 20

 40

 60

 80

 100

 120

 140

 0  5000  10000  15000  20000  25000  30000  35000

FIGURE 4.2. Histograms of sample photon collection data. Graphs correspond to
data runs in Figure 4.1. Horizontal axis of each graph shifted by average zero atom
fluorescence rate for that data run. All graphs share horizontal axes and fluorescence
bin size of 150 photons/sec.
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in atomic number at which point a new running average and standard deviation

are made. These average values are the black horizontal lines plotted in the graphs

and give an average fluorescence rate for the given number of atoms at that time.

The average rates plotted as dashed lines in each graph are the average of correctly

numbered black line averages. The number of atoms in the MOT is approximated by

tracking the positive and negative jumps in fluorescence.

This atom counting method does have faults which are not present in the bayesian

algorithm outlined in the next section. Drifts in fluorescence rate, especially with

multiple atoms in the MOT, can also be interpreted as a spurious fluctuation in the

atom number. Loading events with multiple atoms tends to result in very incorrect

atom number approximations. For example, initially loading two atoms during a

single fluorescence record only registers as a single atom. Subsequent individual

atom losses from the trap result in an atom count of -1. Additionally, the counting

algorithm does include the possibility for double-atom loss events, discussed briefly

in Chapter I. This can cause similar misestimates of the atom number as a single-loss

event could register as a double atom loss if the threshold for atoms loading and

leaving the MOT is not carefully set. Even with these issues, the method gives a

fair approximation of the atom number, especially for data runs with large jumps in

fluorescence. This method is typically used to “seed” fluorescence rate estimates for

subsequent data runs using the bayesian algorithm described below.

Evident in both Figures 4.1b and c, the initial count rates reported by the APD

occasionally do not match the background levels. These levels, instead, more closely

match the ending fluorescence levels from the prior data run. This is a result of the

programming of the FPGA (see Section 3.4.2). Because the counting is done directly

by the FPGA and controlling the number of binned data runs is done by software
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running on the NIOS processor, there is a mismatch in when to count data. When the

final data point of one run is fully counted, the FPGA immediately begins counting

the next data point until the NIOS software tells it to stop. This results in occasional

too-high count rates for the first data point of the next data run. This was a larger

problem initially as the high count rate overlapped with multiple data points. Adding

the “reset” signal to the FPGA (as shown in Figure 3.20), reduced this to just a single

packet. This could be fixed by implementing the TCP/IP stack for the FPGA, but

for the data recorded in this thesis, the very first data point is simply ignored when

calculating the background fluorescence rate.

The atom number estimating method above produces standard deviations for

the fluorescence level for each number of atoms. The variance of the fluorescence for

each atom number in the graphs of Figure 4.1 is shown in Figure 4.3 where each data

point corresponds to a different number of atoms. It is clear that the variance of

these peaks grows faster than the average. The background is nearly poissonian (the

initial point of each graph lies nearly on top of the black poissonian line). This is

as expected since individual photon arrivals are un-related. For entirely single-atom

sources, sub-poissonian photon statistics could be expected [117, 118], however the

large background scatter swamps sub-Poisson statistics. On the other hand, super-

Poisson statistics can be expected for single atoms [119, 120] when the driving laser

detuning is larger than an atom’s decay rate. Our experiments use detunings close to

the half-width-half-max, which would allowing for Poisson fluorescence distributions

to return, as noted by others [121]. In general, atomic motion tips the scales to

expected Poisson statistics with a time-dependent average as the atomic motion will

alter the coupling between the atom and the APD through the lens system. This

effect should be more pronounced when there are multiple atoms which can move
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FIGURE 4.3. Variances of sample photon collection data. Graphs refer to those in
Figure 4.1. Also plotted is a black line corresponding to a Poisson distribution.

around, which is what is observed as the graph of Figure 4.3b deviates from the black

Poissonian line.

4.1.3 Detection : Atomic Pictures

Further evidence of small numbers of atoms is revealed when imaging the MOT

with our CCD camera. Four data runs with varying numbers of atoms are shown

in Figure 4.4. In each data run, a picture was taken at time t=90 s. As clear from

the recorded APD data in graph (a), these four data runs had 0, 1, 2 and 3 atoms

in the MOT at the time the picture was taken. These (background subtracted and

cropped) images are shown as a series in (b), with outline colors corresponding to the

graph colors in (a) and ordered in terms of increasing atom number. These pictures

are gray-scale normalized such that the highest intensity pixel is white and the lowest

intensity pixel is black. In the first image in series (b), the white dots correspond

to random background fluctuations. The remained of these images show a clear

bright spot where the MOT loads. Because each of these pictures are normalized
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FIGURE 4.4. Atom counting with CCD camera. (a) Recorded fluorescence signal
over 4 data runs. A picture of the MOT was taken at 90s for each data run. (b)
Individually normalized MOT pictures. (c) Picture intensities normalized on same
scale. (d) Raw picture pixel count data. Image and graph outline colors in b-d
correspond to graphs with same color in a.
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individually, it is hard to see much relation between then. In the series of pictures

in (c). the four MOT pictures are normalized on the same scale. Clearly, increasing

brightness occurs with higher number of atoms in the MOT. To further this, the

background-subtracted, but un-normalized, pixel data is plotted in the graphs of (d).

There is a clear increase in pixel intensity that corresponds to a larger number of

atoms in the MOT. The large increase in pixel intensity is sufficient that it can be

used, rather than fluorescence rates, by the bayesian algorithm discussed below.

4.2 Bayesian Algorithm

Many other single atom MOT experiments count atoms in the MOT by

comparing the fluorescence level from the MOT to the known discrete steps in

fluorescence contributed from each atom, very similar to the method described in

Section 4.1.2. In many cases of these cases, including ours, the discrete steps

are smaller than expected signaling unknown efficiency loses in their experiment

[6, 20, 77, 106]. We have expanded on this approach implemented an atom counting

algorithm based on bayesian estimation.

4.2.1 Atom-Number Probability Distribution

The probability for there to be n atoms in the MOT at time ti is defined as

P i(n). Of interest is how this probability will evolve as fluorescence measurements

are made. Probability evolution follows Bayes’ rule [122],

p(x|y) =
p(x)p(y|x)∫

x
p(x)p(y|x)dx

, (4.1)
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where p(x) is the initial probability distribution for a parameter x, p(x|y) is the

probability distribution after measuring a value y for the parameter, and p(y|x) tells

the likelihood to have measured y when the parameter was actually valued as x. The

experiment records a fluorescence measurement at time i from a prior fluorescence

distribution and updates that distribution at time ti+1. Comparing to the general

form of Bayes’ rule we can define P i(n) ≡ p(x) as the initial atom-number probability

distribution of fluorescence before a measurement, P (yi|n) ≡ p(y|x) as the likelihood

to have gotten measurement y with n-atoms in the MOT, and P (yi|n) ≡ p(y|x) as the

updated atom-number probability distribution after fluorescence measurement result

y. The integral over possible measurement values x becomes a sum over the number

of atoms in the MOT. In this way, we have

P i+1(n|y) =
P i(n)P (yi|n)∑
n P

i(n)P (yi|n)
,

or writing the evolution of P i(n) in terms of a differential change between times i and

i+ 1, P i+1(n) = P i(n) + dP (n), we have

dP (n) =

[
P (yi|n)∑

n P
i(n)P (yi|n)

− 1

]
P i(n). (4.2)

With distributions P i(n) as being what is evolved in time, the most important term

here is the likelihood function P (yi|n), which gives the likelihood that the photon

measurement at time i came from a state with n atoms in the MOT.
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4.2.2 Fluorescence Distribution

At a single time i, define the probability distribution for the fluorescence, x, from

a MOT with n atoms as

Fln(x, r) =
1√

2πσ2
n

exp

[−[x− (nr +B)]2

2σ2
n

]
, (4.3)

where r is the single atom fluorescence rate and B is the background fluorescence

rate. Because photon arrivals are independent, the probability should be Poisson-

distributed. The Poisson-distribution of the light arrival from an atom is further

justified in Section 6.1 where the arrival rates of the atoms are important. However,

looking at count rates, the noise isn’t quite Poissonian as the atom is free to move

slightly. This movement changes r. As seen in Figure 4.3, experimental measurements

of σn for both n = 0 (i.e. for the background fluorescence) and n > 0 have variances

a bit larger than the mean, justifying treating the count rates as Gaussian rather

than strictly Poissonian. In practice, following the suggestion of Section 4.3, σn is

treated as nearly Poissonian in the form σ2
n = 〈nr + B〉 (1 + ζ0 + nζn), where ζ0 is a

small non-Poissonian contribution to the background and ζn is a increase in variance

due to atomic motion. Typically used values for the non-Poissonian contributions are

ζ0 = 0.08 and ζn = 0.2.

Motion of the atom changes coupling of atomic fluorescence into the APD, noise

in laser power, magnetic fields, and polarization all change the photon emission rate.

Thus, r is not constant, but is assumed to also have a gaussian probability distribution

P (r)

Fl1-at(r) =
1√

2πσ2
R

exp

[−(r −R)2

2σ2
R

]
, (4.4)

where R is the average emission rate.
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Combining these two probabilities gives the probability distribution for n atoms

if we measure a photon rate of x with an average background rate, B, and average

single-atom photon rate, R,

Fln(x) =

∫ −∞

−∞
Fln(x, r)Fl1-at(r)dr

=
1√

2π (n2σ2
r + σ2

n)
exp

[−[x− (nR +B)]2

2 (n2σ2
r + σ2

n)

]
. (4.5)

A few plots of the fluorescence probability from n atoms in the MOT are plotted

in Figure 4.5 with a single FPGA measured data run. Each peak along the y-axis is

the distribution, Fln(x), for atom numbers n = 0 to n = 5. The plotted probabilities

are the final distributions calculated from the last measurement of the data run. The

values for R, B, σR, and σn that make these distributions are calculated following

the method in Section 4.2.6 from the data shown in the figure.

4.2.3 Noisy Measurements

The measurements take are noisy fluorescence measurements from the

experiment. This noise is not fluctuations in the background signal or in the

fluorescence rate from the atom, those are built into the fluorescence distributions

Fln(x). Instead, this noise is from measurement errors—dark counts from the APD

and possible counting mistakes at the FPGA. Making a measurement, y, produces a

sampled value x from the distribution P i
n(x) plus some noise, written as ζ (note that

a noiseless measurement would then sample x values directly from Fln(x)). So the

measurement outcome has a value

y = x+ ζ. (4.6)
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FIGURE 4.5. Sample data for bayesian fluorescence number estimation. Vertical
axis is in units of photons/100 ms and horizontal axis is in units of recorded FPGA
packets. Note the increasing distribution width for larger values of n. This comes
from the factor of n2 in the variance of Equation 4.5. This overlapping fluorescence
distributions for n and n + 1 atoms shows the limitations of photon counting to
estimate atom number at a large number of atoms.
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To treat this noise, it is assumed that values for the noise follows a Gaussian

distribution

p(ζ) =
1√

2πσ2
ζ

exp

[
−ζ2

2σ2
ζ

]
, (4.7)

so that the probability to have had a noise value of ζ = y − x is

p(ζ = y − x) =
1√

2πσ2
ζ

exp

[
−(y − x)2

2σ2
ζ

]
. (4.8)

The probability for the noise to take this value is the same as the probability to have

measured y when the sampled fluorescence value is x.

For the Bayesian evolution, the likelihood to measure y with n atoms in the MOT

is needed. This is the the probability for the noisy measurement to have sampled a

value x and averaged over the probability for the fluorescence to have value x with n

atoms in the MOT as below.

P (yi|n) =

∫
p(ζ = yi − x)Fln(x)dx

=
1√

2π
(
n2σ2

R + σ2
n + σ2

ζ

) exp

[
− [yi − (nR +B)]2

2
(
n2σ2

R + σ2
n + σ2

ζ

)
]

(4.9)

This is the desired likelihood function for the bayesian estimation of the number

of atoms in the MOT. It tells the probability that when a fluorescence rate yi is

measured, there are n atoms in the MOT, given that there is

1. an average photon emission rate per atom of R and with standard deviation of

σR,

2. average fluorescence background B,
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3. background (plus atomic motion) fluorescence rates with standard deviation σn,

which are slightly super-Poissonian, and

4. systematic noise with variance σζ .

4.2.4 Keeping P (n) > 0

From Bayes’ rule, if P i
n(x) = 0, for any time ti, then for all later times, the

probability to have n atoms in the MOT will always be zero. This can be resolved

numerically one of two ways. First, manually setting Pi(n) = ε for some fixed small

value ε at each time step if Pi(n) < ε. Second, using a loading-rate method. This

method includes, in the probability evolution, atomic loading and loss terms for the

MOT. With the loading rate method, the probability to have n atoms in the MOT

evolves as

dP i(n)

dt
= −nΓP i(n) + (n+ 1)ΓP i(n+ 1)− LP i(n) + LP i(n− 1), (4.10)

where Γ is the rate that an atom is lost from MOT, and L is the loading rate of atoms

into the MOT. The first term represents any one of the n atoms leaving the MOT.

The 2nd term represents any one of the atom leaving a MOT that used to have n+ 1

atoms. The 3rd term represents at atom loading into the MOT from the background

gas (to create a MOT with n+1 atoms). The 4th term represents an additional atom

loading from a MOT with n − 1 atoms. This loading-rate equation is identical to

loading-rate model analysis done for small numbers of atoms in a MOT [20].

Using this method numerically requires a maximum number of atoms, Nmax to

be set. Doing this adds a cut-off term Θ(Nmax−n) to the 3rd term so that an addition
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atom “cannot” load if n = Nmax. This definition also allows

n=Nmax∑

n=0

dP (n)

dt
= 0,

so that the loading-rate method appropriately conserves probability.

Tests with both methods give the same predictions for N(t) under a variety of

other parameters. In practice, we use the loading-rate method with typical parameters

L = 0.006, Γ = 0.003, and Nmax = 8. These values are measured atomic loading and

loss rates from the experiment.

4.2.5 Number Estimation

Combining the Bayesian evolution with the loading-rate differential gives an

overall evolution for the atom-number probability

dP i+1(n) =
[
−nΓP i(n) + (n+ 1)ΓP i(n+ 1)− LP i(n) + LP i(n− 1)

]
dt+


P (yi|n)∑

n

P (yi|n)
− 1


P

i(n). (4.11)

Again, this equation conserves probability when summed over n. It also solves the

issues of any P (n) → 0 as the probability for there to be n atoms in the MOT

will be increased slightly by the loading rate portion (first term) of the differential.

This probability evolution could be interpreted as a deterministic “Hamiltonian” like

evolution at all times, punctuated with the noisy measurements at times ti, similar

to the stochastic evolution of a system in quantum measurement theory [123–125].
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This algorithm is simple to implement in real time while we record fluorescence

from the MOT and estimate the number of atoms in it. To determine the number

of atoms in, we typically assume the n with the largest probability is the correct

number of atoms in the MOT. This generally works well as often the average single-

atom fluorescence rate is much larger than the width of its fluorescence distribution,

R� σR.

In some cases, such as poor alignment of the APD lens system with the MOT

center or cases where atomic position distributions are large, just taking the largest

probability as the number of atoms in the MOT causes problems. The main error seen

is constant fluctuations in the estimate of the number of atoms in the MOT as two

values for Pi(n) are close to 0.5 (typically for n = 0 and n = 1). In such cases, assume

that states with n > 1 remain essentially unpopulated and initially P i(0) = 0.51, so

that there are believed to be no atoms in the MOT. Updating the probabilities after

measurement could give P i+1(1) = 0.51 so there is now believed to be one atom in the

MOT. Another update gives P i+2(0) = 0.51, so the state again returns to there being

zero atoms in the MOT. This can repeat often if measurements of the fluorescence

tend to stay in the “middle” between the peaks of the likelihood functions for zero

atoms or one atom. This most often happens when the initial assumption about the

single-atom fluorescence rate, R, is larger than the actual rate in the experiment.

Other than using a more realistic single-atom fluorescence rate, this can be

solved via more complicated assumptions about when the number of atoms in the

MOT changes. One method is to require the largest probability at ti+1 to be

above some threshold value (larger than 0.5) before determining the atom number

changed from time ti. A second method could require the largest probability

be above the 2nd largest probability by some determined factor, limiting jumps
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between two states with probabilities close to 0.5. A third method would require

that the maximum probability remain the maximum over a number of fluorescence

measurements, avoiding the possibility of fast fluctuations in number. A final method

is to reduce the possibility of such oscillations by updating the background and single-

atom fluorescence rate as data were being recorded, described in detail below.

4.2.6 Background and single-atom fluorescence estimation

Mean values for single-atom fluorescence rates are often 5 or 6 times larger than

the standard deviation of the background signal (this fact is occasionally used after

data is recorded to locate times when a given number of atoms are in the MOT,

as noted in the atom counting method in Section 4.1.2). Because of this, in many

cases P i(n) is very close to unity. For example, for the data shown in Figure 4.1c,

at times when n=0 gives the largest probability, the mean value of P (0) is 0.9986±

2.2× 10−4, and at times when n=1 is the largest probability, the mean value of P (1)

is 0.9979 ± 1.4 × 10−2. With good alignment of the imaging system with the MOT

center, these are not uncommon values. With P (n) ≈ 1 for some n, we can leave n

fixed in Equation 4.5 and use the fluorescence measurements to update values for R

or B rather than update predictions for n.

Taking n = 0, Equation 4.5 gives

Fl0(x) =
1√

2πσ2
0

exp

[
− (x−B)2

2σ2
n

]
.

Because the noise in a measurement is assumed to be Gaussian, updated values for the

background mean value and variance after a measurement can be written analytically
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[122]. Following this, a measurement of yi allows updating of B and σ2
0 as

Bi+1 =
Biσ

2
ζ + yiσ

2
0,i

σ2
0,i + σ2

ζ

σ2
0,i+1 =

σ2
0,iσ

2
ζ

σ2
0,i + σ2

ζ

,

(4.12)

where, again, σζ is systematic noise in the measurement. These updates are easy to

make and include in subsequent measurements and probability calculations.

When there is an estimate of n > 0 atoms in the MOT, instead of updating the

background and its variance, the atomic fluorescence rate and its variance is updated

using the n-atom fluorescence probability Equation 4.5. The background level and its

variance complicate the calculation for updating R and σR. This calculation is done

in Appendix D and the conclusions are

Ri+1 =
Riσ

2
ζ + (yi −B)nσ2

R,i

n2σ2
R,i + σ2

ζ

σ2
R,i+1 =

σ2
Ri
σ2
ζ

n2σ2
R,i + σ2

ζ

.

(D.3)

These two updating methods are effectively just a Bayesian filter [122] for the

background (when n = 0) and for the fluorescence rate (when n > 0).

4.2.7 Bayesian Algorithm

The full Bayesian algorithm is sketched schematically in Figure 4.6. At each

time step, ti, a fluorescence rate, yi, is measured. From this, calculate the likelihood

functions for each atom number according to Equation 4.9. These are then used to

update the atom-number probability distribution with Equation 4.2. The number of
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FIGURE 4.6. Bayesian algorithm flow chart. Initial background fluorescence
measurement and algorithm ending elements are not shown.
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atoms in the MOT is updated according to any of the methods discussed in Section

4.2.5.

If the algorithm is set to trigger an experiment based on atom number, this

number is checked against the triggering atom number, Ntrig. If the number of atoms

meets or surpasses that value, whatever experiment is to be done is triggered. It is

also possible to trigger an experiment manually after a given time. The experiment is

a predetermined order of commands and runs “in the background” while the Bayesian

algorithm continues.

Based on the predicted number of atoms in the MOT and the measured

fluorescence, the background fluorescence parameters (with Equations 4.12) or the

atomic fluorescence parameters (with Equations D.3) are updated. Because the

atomic number estimate is made before updating rates, Equations D.3 should be

modified to use the number of atoms assumed to be in the trap when the data was

recorded. Thus the values N should become Ni+1 in the equations. This completes

the number probability update due to the measurement.

During the time before the next measurement, the probability is evolved

according to the deterministic evolution of Equation 4.10. The time variable dt is

the time between measurements. Alternatively, the probabilities could be checked as

to not fall below the pre-determined minimum ε as described in Section 4.2.4. This

prepares the probabilities for updating on the next measurement.

Starting and stopping of the algorithm are done based on the information from

the FPGA. The algorithm does not start on the first data from the FPGA. Instead,

all experiments are designed with a few second “dead time” where the MOT trapping

laser detuning is shifted above resonance. This guarantees no atoms load in the MOT.

The data recorded by the FPGA is only background fluorescence. The algorithm
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knows when the dead time ends and once it receives photon data whose time stamp

matches the end of the dead time, it can calculate initial background fluorescence

and then begins the Bayesian evolution. The algorithm is ended once the FPGA

transmits its final count rate. The final FPGA time-data packet is followed by a

series of packets that just read ’‘STOP” rather than photon data for this reason.
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CHAPTER V

ATOMIC FORCES IN A MOT

In this chapter the MOT theory in Chapter II is expanded to more closely model

the behavior of a real 87Rb atom. The atom is expanded from the two-level or V-atom

to the full D2 level structure, in Figure 2.1. The magnetic and optical fields, along

with the atom’s position and velocity, are expanded to three dimensions, requiring

6 optical fields. The discussion in Section 5.1 briefly discusses modifications to the

Hamiltonians in Chapter II to change to the full atom in 3D. Section 5.3 looks at

these changes in the dynamics of the atom, but internally as the evolution of its

density matrix and externally as the MOT trapping force on the atom. After laying

the groundwork for the simulation, a discovered atomic loss mechanism is discussed

along with a resolution to agree with established MOT theory.

5.1 3D and 87Rb Hamiltonians

5.1.1 Atomic Hamiltonian

The free atomic Hamiltonian closely matches that of Equation 2.57 with a few

small changes. The detuning is defined relative to the ground state energy rather

than the excited state energies. This is done as a separate electric field is needed

to excite atoms from each of the two ground states. The |Fg = 2〉 ground state is

defined with (detuned) energy ∆M and the |Fg = 1〉 ground state is defined with

energy ∆R. Here, the M subscript is in reference to the “MOT laser”—the laser field

for the MOT trapping transition (see Section 3.2 and Figure 2.1). The R subscript
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Energy Level With Repump Without Repump

|Fe = 3〉 0.35 5.6×10−7

|Fe = 2〉 2.9×10−4 4.6×10−10

|Fe = 1〉 3.6×10−5 5.8×10−11

|Fe = 0〉 2.7×10−8 2.6×10−14

|Fg = 2〉 0.65 1.0×10−6

|Fg = 1〉 8.3×10−4 1

TABLE 5.1. Repumping field and populations of 87Rb D2 energy levels. Values are
steady-state populations (summed over magnetic sublevels) for energy levels. Repump
field powers, relative to trapping field power, are 10−1 and 10−10. Values calculated
with ∆M = −Γ, ∆R = 0.5 MHz, trapping beam intensity 10Isat, and without Zeeman
shifts of the magnetic sublevels. These values were calculated as described in Section
5.3.1.

is in reference to the “repumping laser”. With these, the free atomic Hamiltonian is

HA = ~
3∑

Fe=0

Fe∑

me=−Fe

∆Fe |Fe;me〉〈Fe;me|+

~
2∑

mF=−2

(∆M + ∆Fe=3) |Fg = 2;mF 〉〈Fg = 2;mF |+

~
1∑

mF=−1

(∆R + ∆Fe=2) |Fg = 1;mF 〉〈Fg = 2;mF | ,

(5.1)

where the terms ∆Fe give the (relative) energy differences between the various excited

states. The two ground states also have different energies, but because their energy

is defined relative to the excited state energy (through the detunings), the energy

difference between the two grounds must match the energy shift of the excited state

to which they are coupled. These energy differences are associated with the angular

momenta of the atom and are defined in [48, Eq. 7.134].

For hyperfine splitting, transitions which do not change the total angular

momentum are allowed, which makes excitations |Fg = 2〉 → |Fe = 2〉 possible. The

likelihood of this excitation is small as it is detuned from the MOT trapping field
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by 267 MHz (peak D in Figure 3.9). Even with such a large detuning, excitations

that do occur can then decay to the |G;F = 1〉 ground state. Excitations out of

this ground state are detuned by 6.8 GHz from the MOT trapping transition [62],

effectively making this a dark (inescapable) state—atoms that fall into this state will

remain there. The repumping field is thus required to excite atoms out of this state

back into the MOT transition by coupling |Fg = 1〉 back to the |Fe = 2〉 (as shown

in Figure 2.1). These atoms could then return to the |Fg = 2〉 state and the MOT

transition. This result is shown numerically in Table 5.1. The values listed are the

steady-state level populations (summed over magnetic mF sublevels). Populations on

the left are with a repump field (10% of the power of the trapping field) and values

on the right are without the repump field. The decay of atoms into the inescapable

|Fg = 1〉 state without a repumping field is clear.

5.1.2 Atom-Magnetic Field Hamiltonian

In one dimension, the magnetic field for the MOT was assumed to be linear with

gradient −B′z, which agrees with the magnetic field strength for permanent magnets

in Figure 3.12 and for anti-Helmholtz electromagnets in Equation 3.6 near the center

of the MOT. In a full 3D theory, the magnetic field at any point in space for anti-

Helmholtz coils, with their axis defined as a z-axis, will be

~B(x, y, z) = µ0I
2πR

∫ 2π

0

dθ

[
( z+s/2R ) cos θx̂+( z+s/2R ) sin θŷ+(1− x

R
cos θ− y

R
sin θ)ẑ(

1+( xR)
2
+( yR)

2
+( z+s/2R )

2
−2 x

R
cos θ−2 y

R
sin θ

)3/2
−( z−s/2R ) cos θx̂+( z−s/2R ) sin θŷ+(1− x

R
cos θ− y

R
sin θ)ẑ(

1+( xR)
2
+( yR)

2
+( z−s/2R )

2
−2 x

R
cos θ−2 y

R
sin θ

)3/2
]
,

(5.2)

where R is the radius of the coils, s is the separation between coils and the origin is

along the axis exactly inbetween the two coils. As long as the atom stays close to the
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origin, the magnetic field is nearly linear along the axis of the coils with a (negative)

gradient of

B′z ≡ −
∂Bz

∂z

∣∣∣∣
~r=0

=
3µ0IsR

3

[R2 + (s/2)2]5/2
. (5.3)

In order for the divergence of the magnetic field to vanish, the x- and y-direction

contributions to the divergence must cancel the contribution from the z-direction.

Additionally, the x- and y-direction magnitudes must be equal as the magnetic field

should be symmetric around the z-axis. These, together with the linear assumption

of the z-direction magnetic field, require that the magnetic field have the form

~B (~r) = B′z

(x
2
x̂+

y

2
ŷ − zẑ

)
. (5.4)

This can be checked simply with the full form of the field in Equation 5.2. Looking

at the field along the x-axis is

~B(x, y = 0, z = 0) =
µ0I

2πR

∫ 2π

0

dθ
s
R

cos θx̂+ s
R

sin θŷ
(

1 +
(
x
R

)2
+
(
s/2
R

)2

− 2 x
R

cos θ

)3/2
(5.5)

The y-component clearly integrates to zero so that the field is just along the x-

direction with magnitude

Bx(x) =
µ0Is

πx




(R2 + x2 + (s/2)2)E
[

−4xR
(x−R)2+(s/2)2

]

√
(x−R)2 + (s/2)2 ((x+R)2 + (s/2)2)

−
K
[

−4xR
(x−R)2+(s/2)2

]

√
(x−R)2 + (s/2)2


 ,

(5.6)
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where K[k] and E[k] are complete elliptical integrals. Near x = 0, the field is nearly

linear with a slope of

B′x = lim
x→0

dBx

dx
=

3µ0IsR
3

2 [R2 + (s/2)2]5/2
, (5.7)

which is half the z-direction gradient with the opposite sign. Thus the form of

equation 5.4 is valid near the origin.

Do note, in our simulations, the z-direction gradient value, B′z that is used is

the measured value from the constructed water-cooled anti-Helmholtz coils. As noted

in Section 3.3.1, this values was also numerically calculated, but must summed over

many coil pairs with different radii Ri and separations si to account for many layered

loops of wire in our coils.

In writing the form of the atom-magnetic field coupling Hamiltonian, Equation

2.49, it was assumed that the atomic dipole moment ~µ stayed aligned with the

magnetic field. This allowed the Hamiltonian to be written just as the Zeeman shifts

of the energy levels. This assumption is kept here, giving the Hamiltonian

Ĥz = µB
B′z
2

√
x2 + y2 + 4z2

[∑
Fe

∑
me
gFeme |Fe;me〉〈Fe;me|+

gFg
∑

Fg

∑
mg
mg |Fg;mg〉〈Fg;mg|

]
,

(5.8)

where the gF values are as described in Section 2.3. When considering the motion of

the atom, this assumption requires that the direction of the atomic dipole changes

along with the magnetic field. This can be particularly burdensome when passing

through the origin as the magnetic field direction changes abruptly (from +ẑ to −ẑ

when traveling along the z-axis, for example). Allowing for the atom to do so also

assumes that the motional times scale of the atom is much slower than the time
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scale for the atomic dipole moment to precess and align with the magnetic field, the

adiabatic limit [63].

5.1.3 Atom-Electric Field Hamiltonian

With the full level structure of rubidium, there are many transitions between the

various magnetic sublevels. Rather than writing individual transitions independently,

and with thoughts towards the polarization of the experimental light fields, they can

be grouped by linear and circular transitions that change mF by ±1 or 0. In this way,

the lowering operators are written as in

Σ̂q =
∑

Fg ,Fg ,me

s (Fe, Fg,me) |Jg,me + q〉〈Je,me| , (5.9)

with coefficients ([48, Eq . 7.407])

s(Fe, Fg,me) = (−1)Fe+Jg+1+I
√

(2Fe + 1)(2Jg + 1)×

〈Fg,me + q|Fe,me; 1, q〉





Je Jg 1

Fg Fe I




,

(5.10)

where each term in the sum lowers the atom from the |Je,me〉 state to the |Jg,mg =

me+q〉 state. Do note that under this definition, transitions with q = +1 increase the

mF sub-levels of the atom, which correspond to σ− transitions as used in Chapter II.

With these lowering operators, the atom-field interaction Hamiltonian can be defined

in the same form as Equation 2.56, with appropriate care due to the σ±,0 and Σq=∓1,0
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Propagation direction Polarization Polarization Vector

+z σ−
[

1, −i, 0
]
/
√

2

−z σ+

[
−1, −i, 0

]
/
√

2

+x σ+

[
0, i, 1

]
/
√

2

−x σ−
[

0, −i, 1
]
/
√

2

+y σ+

[
−i, 0, 1

]
/
√

2

−y σ−
[
i, 0, 1

]
/
√

2

TABLE 5.2. MOT Beam Circular Polarizations. These are defined so atoms along an
axis are pushed towards the origin as shown in Figure 1.1. Note the change flipping
of polarizations between the x- and y-directions compared to the z-direction, which
arrises from the change in the sign of the magnetic field gradient in the x- and y-
directions. The polarization vectors are in cartesian coordinates. Labels of σ± are in
reference to the polarization seen by the atom. In the frame propagating with each
beam, the polarizations for opposing beams is identical (see Section 2.4).

relationship. This Hamiltonian is

ĤAF =
~
2

∑

q

[
Ω∗qΣ̂q + ΩqΣ̂

†
q

]
. (5.11)

The optical field for the MOT is made of six lasers as described in Chapter I. A single

beam has the form of Equation 2.14 with the ~E+ component (in the rotating atom

frame) as

~E+ (~r) =
E0ε̂

2
e−iφei

~k·~r, (5.12)

where ~k is the beam’s propagation direction, ε̂ is the beam polarization, and φ is the

beam phase. In the MOT, the beam polarizations are circular and their direction

is closely linked the magnetic field along an axis, as discussed in Section 2.5.1. The

required polarizations are given in Table 5.2 in terms of their circular polarizations.

These polarizations are defined so that atoms located along the beam axis feels a net

force pushing them toward the origin.
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The net electric field ~ET is the sum of the individual fields

~E+
T (~r) =

∑

i

~E+
i (~r) , (5.13)

where the sum is over each MOT beam present in the trap. To sum the fields, the

polarizations need to be written in a common (lab-based) Cartesian basis, which are

the polarization vectors listed in the right column of Table 5.2. This gives the field in

the cartesian basis, which then needs to changed to the linear and circular basis as to

write the field Hamiltonian as in Equation 5.11. In this basis, the Rabi frequencies

are

~Ωz =




Ωq=−1

Ωq=0

Ωq=+1




=
〈Jg = 1/2|d|J3 = 3/2〉

~




− 1√
2

i√
2

0

0 0 1

1√
2

i√
2

0



~ET , (5.14)

where 〈Jg = 1/2|d|J3 = 3/2〉 is the D2 dipole transition matrix element for 87Rb [62].

This basis has the angular momentum quantization axis in the z-direction. To

change to a basis where the quantization axis is along the magnetic field direction, the

angular momentum vector must be rotated. From Rose [126], rotating an operator

that changes total angular momentum by 1 to a basis with a different quantization
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axis is done with a rotation operator4 whose matrix elements are

D
(1)
m′,m(αβγ) = e−imγe−im

′α
∑

x

[
(−1)x

√
(1 +m)!(1−m)!(1 +m′)!(1−m′)!

(1−m′ − x)!(1 +m− x)!(x+m′ −m)!x!
×

(
cos

β

2

)2+m−m′−2x(
− sin

β

2

)m′−m+2x
]
, (5.15)

where the angles α, β, and γ correspond to the standard Euler angles. Because only

the direction of the z-axis is important to the rotation (the orientation of the x- and

y- axis does not matter), we have γ = 0. With possible values m = −1, 0, 1, the

(correctly indexed) rotation matrix is the 3× 3 matrix :

R(α, β) =




1
2
eiα (1 + cos β) − 1√

2
sin β 1

2
e−iα (1− cos β)

1√
2
eiα sin β cos β − 1√

2
e−iα sin β

1
2
eiα (1− cos β) 1√

2
sin β 1

2
e−iα (1 + cos β)




. (5.16)

This rotation matrix is identical to an operation that converts the circular basis

polarizations to the Cartesian basis, rotates the Cartesian vectors with classical

rotations around the z-axis by (polar) angle α and then around the y-axis by

(azimuthal) angle β, then converts back to the circular basis.

For each position in the MOT, the magnetic field has spherical coordinate angles

φB and θB (corresponding to azimuthal and polar angles respectively). With the

4This operator, based on historic derivation by Wigner, has indices ordered different from common
matrix defintions. So the matrix elements are for the rotation operator, R, given by R|1,m〉 =∑

m′

D
(1)
m′,m|1,m′〉.

122



atom aligned to the magnetic field, it “sees” an electric field with polarization vector

~ΩB = R (φB, θB) ~Ωz (5.17)

The circular and linear components of this vector are the Rabi frequencies Ωq used

for the atom-field coupling Hamiltonian 5.11.

5.2 Matching Simulation to Experiments

Because of a lingering mismatch between experimental measurements and

numeric results, the simulated MOT has had a large number of additional features

included to better approximate the experiment. Some of these are discussed in brief

here.

5.2.1 MOT Beam Power

The most obvious issue present in the MOT beams is imbalance in beam power,

as noted in Section 3.2.2. This is corrected easily by providing each MOT beam its

own field strength E0 in Equation 5.12. In the simulation, a global laser beam power

P (in milliwatts) is defined and each beam has a power ratio factor ri relative to this

power. With these, the field strength for each MOT beam is

Ei
0 =

√
2 (Pri)

πw2
× 20

ε0c
, (5.18)

where the first term is the central intensity for a Gaussian beam and the second term

relates beam intensity to field strength [48]. In this equation, w is the MOT beam
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waist (measured in cm) and the second term has an extra factor of 10 to convert from

lab-measurement-units for beam intensity in mW/cm2 to MKS units.

In our experiment, the MOT beams have a gaussian beam (intensity) profile

rather than being pure plane waves as written above. The beam waist (measured

as the 1/e2 power radius) is 0.33 mm. For a single atom that remains within tens

of microns of the MOT beams, the field intensity seen by the atom should be fairly

uniform and close to the peak intensity. However, there is a small change in intensity

which can be taken into account. For an atom located at ~r and a MOT beam

propagating in the direction ~k and originating from position ~b0, the (square of the)

distance from the axis of the beam and the atomic position is

d2 =
∣∣∣λ~b0 − ~r

∣∣∣
2

−
[(
λ~b0 − ~r

)
· ~k
]2

, (5.19)

where λ is the laser wavelength. This has been calculated by looking at two points

along the MOT beam separated by one wavelength and basic point-line distance

formulae. With this, the atom seems a field strength of

Ei
0 → Ei

0e
−d2/w2

. (5.20)

Note that this is the correct formula as the beam waist is the 1/e2 radius (rather than

its variance) and the field strength is proportional to the square root of the intensity.

MOT beam power measurements were done outside of vacuum (obviously), but

the experimental cell was not anti-reflection coated. As such, the horizontal and

vertical MOT beams inside the cell will have different powers. As seen in the vacuum

system in Figure 3.1, the vertical beams enter the cell at nearly normal incidence,

so that the beam is almost entirely polarized in the x-y plane, which is S-polarized
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to the surface. However, if this beam is not exactly vertical, light polarized along

the z-direction is P-polarized. For the horizontal beams (which enter the cell at

nearly 45◦), the light polarization component in the x-y plane is P-polarized and

light polarizaed along the z-direction is S-polarized. For the appropriate wavelength

and material, the field strength for each (Cartesian) polarization direction is reduced

by a factor of either
√

1− 2RS or
√

1−RP , where RS and RP are the S-polarization

and P-polarization reflection coefficients, respectively. The factor of 2 accounts for

reflections on the outer and inner surface of the experiment cell walls. In the case

where RS 6= RP , this will shift the beams out of purely circular polarization inside

the cell.

5.2.2 MOT Beam Direction

For an ideal MOT, the laser pairs are exactly counter-propagating and are normal

to beams in other directions. This is, of course, not the case in physical MOTs.

Instead, it is common while building a MOT to adjust the beam directions very

slightly until the MOT “looks” good—that is to say it appears approximately round

when imaged and there is a high atom number in the MOT. As discussed in great

detail in Section 5.4 below, this adjusts the interference pattern of the lasers to

minimize pathways for atoms to escape from the MOT. This is done numerically

by rotating each beam’s propagation vector slightly with a classical rotation matrix.

This rotation must also be applied to a MOT beam’s Cartesian polarization vector,

although done with an angular momentum rotation matrix as above. Based on our

experiment’s MOT beam alignment system, the misalignment of our MOT beams is

no more than about half a degree, putting an upper limit on the angular displacement

of a beam in the simulation.
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Similarly, it is possible that an entire MOT beam is displaced from its ideal

launching position. For example, a horizontal MOT beam could be a little too low,

but angling its beam upward with a slight tilt would still have the beam strike the

center of the MOT. This could still load a MOT without much difficulty. In the

simulation then, each beam has a three dimensional positional offset vector to deal

with this. It is important to note that this only comes into account when using a

beam’s gaussian profile, where the offset is the vector~b0 discussed above. If the beams

are plane waves there is no intensity dependence on the transverse dimension. Only

a beam’s propagation direction matters, not their displacement from ideal launching

position.

5.2.3 MOT Beam Polarization

As discussed in Section 3.2.4, the experimental MOT beam polarizations are

elliptical rather than circular. How much the beams are elliptical can be found by

measuring the power (of the elliptical beam) through a polarizer. With perfectly

circular light, the power through the polarizer will be constant for all angles through

the polarizer. For elliptical light, the power will maximize at some angle and minimize

at 90◦ from that angle.

For Cartesian axes a and b, normal to the beam propagation direction, the

difference between the two powers in each polarization can be quantified as

γa = cos−1

(√
Pa

Pa + Pb

)
, (5.21)

where the angle is defined relative to the a-axis and the values Pa and Pb are the

(measured) powers of the polarization in the two directions. Note that if the beam
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is polarized completely along the a-direction, Pb = 0 and thus γ = 0. Similarly when

the beam is linearly along the b-direction if Pa = 0 and γ = π . If the beams are

balanced then γ = π/2. Incorporating this into the polarization vectors in Table 5.2,

the 1/
√

2 is replaced by cos γa for the polarization component the a-direction and

sin γa for the polarization the b-direction. Each of the six beams will have its own

value for γa and the direction a can be defined as either of the two directions normal

the propagation direction.

5.2.4 Magnetic Fields

It is also possible to have a more complex formula for the magnetic field. Rather

than the linearized form of Equation 5.4, a full form of the field at all positions from

anti-Helmholtz coils could be used. Additionally, a background magnetic field ~Bback

could be present either from the Earth, the Helmholtz coils discussed in Section 3.3.6,

miscellaneous equipment in the lab, or the lab next door. In this case, the magnetic

field is

~B (~r) = B′z

(x
2
x̂+

y

2
ŷ − zẑ

)
+ ~B0, (5.22)

where, as above, B′z is the field gradient along the axis of the MOT magnetic field

coils (or permanent magnets). Dealing with this magnetic field is straight forward as

its magnitude is easily calculated for use in the atom-magnetic field Hamiltonian and

the angles to use for the polarization rotation matrix in Equation 5.16 are calculated

from this field.

The experiment sits on an optical table, whose top is a large conducting slab. As

such, currents in the anti-Helmholtz coils will produce mirror images in the conductor.

While this effect is small, it could play a larger role when magnetic field is modulated.
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Including these effects just calls for including another term in the total magnetic field

for another pair of anti-Helmholtz coils (with current in the opposite direction) whose

placement is below the surface of the table a distance equal to the height of the real

anti-Helmholtz coils above the table.

5.3 3D and 87Rb Calculations

5.3.1 Atomic Equation of Motion

Spontaneous emission is handled identically to the |Fg = 0〉 → |Fe = 0〉 case

with the appropriate forms of Σq as the lowering operators. That is, the differential

equation governing the evolution of the atomic density matrix is

d

dt
ρ = − i

~

[
ĤA + ĤAF + Ĥz, ρ

]
+ΓL

[
Σ̂q=−1

]
ρ+ΓL

[
Σ̂q=0

]
ρ+ΓL

[
Σ̂q=+1

]
ρ (5.23)

where the Hamiltonians are defined in Equations 5.1, 5.8, and 5.11, and the Lindblad

superoperator was defined in Equation 2.6.

With the 24 magnetic sublevels of the D2 transition for 87Rb, the density matrix

is 24× 24, probably not analytically solvable in 3D, but it can be done numerically.

We implement this by reforming the density matrix into a 24 × 1 vector ρv and the

Hamiltonian and Lindblad superoperators into an appropriate 24 × 24 matrix M.

With these, the equation of motion simply becomes

d

dt
ρ =Mρv. (5.24)

Steady state solutions for this equation are found via LU decomponsition to invert

the matrix M [127]. This is implemented through the LAPACK library [128].
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The populations for the MOT trapping transition excited states are plotted in

Figure 5.1a as a function of position from the origin in a 1D MOT. The preference

for populating the outer most Zeeman sublevel is a result of these levels having only

a single ground state to which they can decay. The growth (or much smaller decay)

of the states with me > 0 states result from these states having their energy levels

red shifted (recall B(z > 0) < 0 as shown in Figure 2.5). The rapid growth (or decay

for me < 0) of populations in the outer most magnetic sublevels result from their

having the largest Zeeman shifts, which most quickly moves these levels into (or out

of) resonance with the electric fields. Additionally, as seen in other mutli-level atoms

with ground state Zeeman shifts, at small magnetic detunings a two-photon process

couples neighboring ground states [64].

As a test for success of the numeric simulation, the atom can be returned to the

|Fg = 0〉 → |Fe = 1〉 model and the steady state populations were identical to the

analytic results in Appendix A. For comparison between these two atomic models,

the (MOT trapping) excited energy level steady state populations in a 1D MOT for

the V-atom and the full rubidium atom are plotted in Figure 5.1b. For the rubidium

atoms, the populations are summed over Zeeman sublevels for clarity in the graph.

5.3.2 Force Formalism

The force on the atom is calculated exactly as in Equation 2.29. The effect on

the magnetic field Hamiltonian is exactly

~∇Ĥz =
Ĥz

x2 + y2 + 4z2
[xx̂+ yŷ + 4zẑ] . (5.25)
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FIGURE 5.1. Excited state populations for 87Rb and V-atom. Calculation done
for a 1D MOT along the +z-axis. (a) Populations for 87Rb excited states. (b)
Populations for both 87Rb and V-atom model. The populations for 87Rb are summed
over magnetic sub-levels for clarity.

Noting that along the z-axis, the strength of Hz is twice as large as along the x- or

y-axis, the force that results from this should also be twice as strong along the z-axis.

This is expected as the magnetic field gradient is twice as large along the z-axis. If

the system is treated as having no background magnetic field, this equation for the

gradient of the atom-magnetic field Hamiltonian does not change.

The effect on the atom-field Hamiltonian follows the derivation of the optical

molasses force. The gradient of Hamiltonian becomes just a gradient of the electric

field propagation term e−i
~k·~r, adding a factor −i~k to each term in the sum of the

total electric field in Equation 5.13. Because the electric field is already a vector,

the gradient here is a tensor which is most clear when written in terms of individual

directions. For the (pre-rotated) Rabi frequency vector of Equation 5.14, the gradient
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in the ` direction is

∂
∂`
~Ωz =

〈Jg = 1/2|d|J3 = 3/2〉
~




− 1√
2

i√
2

0

0 0 1

1√
2

i√
2

0




(
−ik ~E+` + ik ~E−`

)
. (5.26)

This vector must then be rotated to the atomic dipole reference frame. In this view,

the polarization rotation matrix is assumed to not change with position to first order.

However, because the magnetic field changes with position, its direction will also

change with position. This would change the rotation matrix as well, but this effect

is ignored to first order, when the change in field orientation is small with respect to

the change in the field polarization.

5.3.3 Steady State Force

To find the force in the s-direction for the atom located at position ~r, calculate

the steady state of the atomic density matrix, ρss(~r), as above. The gradient of the

Hamiltonian in the `-direction is then calculated and is given by

∂

∂`
Ĥ =

∂

∂`
Ĥz +R (φB, θB)

∂

∂`
~Ω`. (5.27)

Calculating the expectation value of the force is done by tracing this operator over

the steady state density matrix:

〈F`〉 = Tr

[(
∂

∂`
Ĥ

)
ρss
]
. (5.28)
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The form of Equation 5.27 does include both the purely magnetic trapping of Section

2.3.1 and the MOT magnetic confinement of Section 2.5.1. The magnetic trapping

derived from the gradient of the magnetic Hamiltonian and the magnetic confinement

derived from the gradient of the atom-field Hamiltonian. Both derive their the spatial

dependence from the spacial dependence of ρss.

For comparison, a one-dimensional force in steady state for the full 87Rb atom

and the V-atom is plotted in Figure 5.2 both with a trapping field gradient of 242G/cm

(a current of 9A in our magnetic field coils). A few features are clear. First, near the

center of the trap, the force on the full 87Rb atom is larger. A linear fit of the force

full rubidium force data near z = 0 gives a force of ~FRb(z) = − [3.68× 10−16N/m] zẑ,

an order of magnitude larger than the V-atom force ~FV-at(z) = − [4.3× 10−17N/m] zẑ

with the balanced restoring constant from Equation 2.84.

This enhancement to the trapping force is a result of having multiple ground state

magnetic sublevels for the full atom [48]. For ground state sublevels where the energy

is redshifted due to the magnetic field, a two-photon absorption process can couple

neighboring ground state levels with slightly different detunings from resonance [64].

The effect is to enhance coupling to the MOT beam that the atom is closer to, leading

to a larger force from this beam5. This effect “turns off” at larger Zeeman shifts when

the ground state magnetic sublevels shift further apart in energy. This gives rise to a

second feature, the change in slope of the force for the full 87Rb atom around 20 µm

for these parameters. In general, the width of the two-photon feature is

δz =
AsΓ2~

4µBgFgB
′
z |∆|

(5.29)

5For slowly moving atoms, a similar effect occurs in momentum-space (with Doppler shifts playing
a similar role to the detuning) and is the polarization gradient cooling discussed in Section 2.5.3
[72].
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where s is the saturation parameter defined in Equation 2.38 and A is a numerical

factor that depends on the structure of the atom [64].

The final feature is a larger trapping region for the complete 87Rb atom. This

results from the smaller Zeeman shifts of the inner magnetic sublevels. Once magnetic

field grows to a large enough magnitude, the |me = ±3〉 energy levels are blue shifted

out of resonance with the MOT lasers. However, the |me < 3〉 energy levels are still

red-detuned of the electric field, letting them continue to interact with the beams.

This extends the region where trapping can occur.

5.3.4 Velocity

The atomic velocity is not taken into account in our calculation, meaning that

there is no doppler shifting of the MOT beams. This could be done, and requires

restructuring the atomic hamiltonian of Equation 5.1, as each MOT beam will have a

different detuning due to the atomic motion. recalculation as the detunings in must

written separately for each beam. Without including velocity in the calculation, there

are also no sub-doppler effects that may arise. The sub-Doppler effects on the atom

can be taken into account simply by limiting the maximum energy (temperature) of

the atom when calculating the probability distribution from the potential energy of

the atom.

5.4 Escape Channels

Even the results graphed in Figure 5.1 is relatively simple as it represents a just

a 1D system. Expanding to three dimensions as laid out above and can lead to an
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FIGURE 5.3. 3D MOT forces for an assortment of beam phases. Calculation done
for a 3D MOT along the +z-axis. Figure (a) shows the forces and figure (b) shows the
resulting potential energy from these forces. The potential is found by numerically
integrating the force along the positive z-axis.

unanticipated result. Figure 5.3 shows (a) the force and (b) the potential energy along

the positive z-axis for a random selection of phases for the six 3-D MOT beams.

From the figure, it is clear that different arrangements of the MOT beam phases

can greatly change the force on an atom. Mostly clearly, unlike in the 1D case, the

force oscillates. This is a result of interference of the MOT beams creating an optical

lattice inside the MOT (see the brief discussion in Section 1.3). Additionally, from

the potential energy graphs, there are some phase arrangements where the force on

an atom pushes it from the center of the trap. These are cases where the potential

energies decrease as the atom travels outward from the center of the trap (the green
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and red graphs). While not shown, in some of these cases the potential energy does

eventually “turn around” becoming positive again. In such cases, this effectively just

moves the “center” of the MOT away from the location where the magnetic field

vanishes. This is similar to the beam imbalance or background magnetic field as

discussed in Chapter II, both which also displace the center of the MOT.

In other cases, the potential does not “turn around” but instead continues to

decrease. In these cases, atoms which found themselves along these paths could

potentially escape from the trap. While shown below for just along the positive z-

axis, these paths can arise in many directions and typically form narrow channels

along which the force is not restorative. These channels are narrow, on the order of

the light wavelength, and they grow wider further from the MOT center. Such non-

restorative forces in MOTs [92, 129] have been observed before. In optical lattices,

similar non-cooling forces can appear in momentum space [130]

The origin of these channels can be seen by more carefully consider the electric

fields in the MOT. First, consider only the two z-beams. These beams have (positive-

rotating) fields, as defined in Equation 5.12,

~E
(+)
z− = E0

2
√

2




−1

−i

0



e−iφz−e+ikz and ~E

(+)
z+ = E0

2
√

2




1

−i

0



e−iφz+e−ikz. (5.30)
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Note that the field sub-scripts refer to the direction the beams come from, no the

direction the beams propagate in. The total field is then

~E
(+)
T =

E0

2
√

2




−e−iφz−e+ikz + e−iφz+e−ikz

−ie−iφz−e+ikz − ie−iφz+e−ikz

0



,

and, with Equation 5.14, the Rabi frequency is

~Ωz =
〈d〉E0

2~




e−iφz−e+ikz

0

e−iφz+e−ikz



.

Taking a position on the negative z-axis where ~B||ẑ (for simplicity), the rotation

matrix of Equation 5.16 is the identity, R (φBθB) = 1, so that ~Ω = ~Ωz. The Rabi

frequency vector has magnitude

∣∣∣~Ω
∣∣∣ =
〈d〉E0

2~




1

0

1



, (5.31)

as is expected. The electric field (made by the two beams) is equal parts σ− and σ+

light. This is the normal assumption made when working with a 1-D MOT. When

looking at forces, we need the negative gradient of each component of Ω:

−~∇~Ω =
〈d〉E0

2~




−ik
(
e−iφz−e+ikz

)

0

+ik
(
e−iφz+e−ikz

)



ẑ.
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Since Ωq=−1 is associated with σ+ polarization, this equation suggests σ+ light is

responsible for forces in the negative-z direction. This is exactly is what was expected

as defined in Table 5.2. Similarly, σ− light (associated with Ωq=+1) is responsible for

forces in the positive-z direction. Optical molasses, discussed in Section 2.4.1, takes

advantage of these different force directions by increasing coupling to the beam that

is counter-propagating to atomic motion in order to cool the atom. MOTs take

advantage of this by using Zeeman shifts to increase coupling to the beam which will

push the atom towards the center of the trap. The gradient equation above is exactly

the situation plotted in Figure 5.2.

The phase dependence can be seen by adding just a single additional MOT beam.

Say a beam propagating in the −x direction (from the +x direction). This beam has

field

~E
(+)
x+ =

E0

2
√

2




0

i

−1



e−iφx+e−ikx.

With the two z-beams in Equation 5.30, the total field is

~E
(+)
T =

E0

2
√

2




−e−iφz−e+ikz + e−iφz+e−ikz

−ie−iφz−e+ikz − ie−iφz+e−ikz + ie−iφx+e
−ikx

−e−iφx+e−ikx



.
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The Rabi frequency vector (with the magnetic field along z still) is

~Ω =
〈d〉E0

2~




e−iφz−e+ikz − 1
2
e−iφx+e−ikx

− 1√
2
e−iφx+e+ikx

e−iφz+e−ikz − 1
2
e−iφx+e−ikx



.

Looking at this vector in terms of forces, we have gradient

− ~∇~Ω =
〈d〉E0

4~




+ik
(
e−iφx+e−ikx

)

−i
√

2k
(
e−iφx+e−ikx

)

+ik
(
e−iφx+e−ikx

)



x̂+
〈d〉E0

2~




−ik
(
e−iφz−e+ikz

)

0

+ik
(
e−iφz+e−ikz

)



ẑ (5.32)

The terms associated with forces in the z-direction do not change, which is good.

The z-forces should still be controlled by the two z-beams. For the x-direction, forces

arise from all three polarizations. This is to be expected as the field in the x-direction

beam has has a component of each polarization (in the circular basis). Note that the

circular polarization components result in forces in the positive x-direction—opposite

the propagation direction of the beam.

From the gradient, it appears thethat force in the z-direction should be the

same as when there is no off-axis MOT beams. However, because ~Ω is different,

the steady-state atomic density matrix will be different. Thus the average force, as

calculated from Equation 5.28, will be different. From Equations 2.27, A.1 and A.2,

the excited state populations are generally proportional to the square of the exciting

Rabi frequency component (just |Ω|2 for the two-level atom and |Ω−|2and |Ω+|2 for

the two excited states in the V-atom). Assuming this generally holds for the more
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complex multi-level atom,6 we can look at the square of the Rabi vector:

∣∣∣~Ω
∣∣∣
2

=
〈d〉2E2

0

4~2




5
4

+ cos [kz − kx− (φz− + φx+)]

1/2

5
4

+ cos [kz + kx+ (φz+ + φx+)]



. (5.33)

The linear component has a fixed value, but the two circular polarizations depend on

position as well as the phase relationships between the various beams. This leads to

a complicated force in the x- and z-direction as a function of position. Of specific

interest, are locations where the oscillating terms have larger negative values. In

these cases, the σ+ or σ− components can be less than their associated values in

the two-beam case above, Equation 5.31. This would tend to decrease the excited

state populations, and with the same form for the z-component of −~∇Ω, and would

reduce the overall force in the z-direction. Under some phase arrangements, this could

change the sign of the force, resulting in a force that pushes the atom away from the

center of the MOT, as seen in Figure 5.3.

As an illustrative example, the specific case for φz− = φz+ = φx+ = 0 is shown

in Figure 5.4. In this figure, the graphs for both the 1D two-vertical beam MOT and

the 3-beam field arrangement just discussed is shown. Graphs (a) and (b), showing

the (normalized) polarization components and the Rabi frequency magnitudes, agree

with the calculations in Equation 5.33, where in all four sets of graphs the σ− and

σ+ components are equal. In graph (d), which shows the components of the force on

the atom, the total force in the x-direction is always negative as is expected because

the beam is propagating in this direction.

6Looking at Equation 5.11, the average force is a sum over 〈Σ̂q〉ss, weighted by the gradient of

the appropriate component of ~Ω. For the analytically solved atoms, 〈Σ̂q〉ss = ρssqq.
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From graph (c), which shows the expectation values of the atomic lowering

operators, the Σq=0 lowering operator always has a larger expectation value than

either the Σq=−1 and Σq=−1 lowering operators. Compared to the forces in graph

(d), 〈Σq=0〉 is minimized at positions where Fx = 0. These are also locations where

the light is split evenly between circular and linear polarizations, as shown in graphs

(a). This balance and cancel the two directions for the x-direction force as noted in

Equation 5.32.

Because the two vertical beams essentially form a one-dimensional MOT, the

force is (nearly) linear as expected and results in a quadratic potential. However,

the addition of the third beam produces strong oscillations in z-direction force.The

z-direction force does go to zero where 〈Σq=−1〉 = 〈Σq=+1〉 (graph (c)), suggesting

the atom experiences forces from the counter-propagating σ+ and σ− beams equally.

While not clear from the z-direction force itself, the potential curve (calculated just

from integrating the force) does show MOT trapping as from the 1D case, overlaid

with deeper potential energy wells associated with the spatial polarization oscillations

as shown in graphs (a). Detangling these two potentials is necessary for estimating

the MOT temperature.

Adding additional beams further complicates the equation for Ω. The complex

position relationship is not of specific interest as calculations for the temperature will

integrate over position. However, the phase relationship between the six beams as

evident above will greatly change the Rabi frequencies, the steady state populations

and the force on the atom. This does includes situations where the overall force

is away from the center of the MOT as shown in Figure 5.3. In these cases, the

polarization arrangement creates a state where one of the 〈Σ〉q values moves the

atom away from the center of the MOT. For example, for the beam arrangement
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1/2
<latexit sha1_base64="rlpHHpLQSei57ggxUOFYcoYvWAg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU02KoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB++i1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVc+teveXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwBYC40q</latexit><latexit sha1_base64="rlpHHpLQSei57ggxUOFYcoYvWAg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU02KoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB++i1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVc+teveXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwBYC40q</latexit><latexit sha1_base64="rlpHHpLQSei57ggxUOFYcoYvWAg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU02KoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB++i1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVc+teveXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwBYC40q</latexit><latexit sha1_base64="rlpHHpLQSei57ggxUOFYcoYvWAg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU02KoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB++i1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVc+teveXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwBYC40q</latexit>

1<latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit>

1/4
<latexit sha1_base64="5RyjckCAwENsAg4ekVpTGgChnlQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU02koMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04F3U+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuq55b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBbE40s</latexit><latexit sha1_base64="5RyjckCAwENsAg4ekVpTGgChnlQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU02koMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04F3U+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuq55b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBbE40s</latexit><latexit sha1_base64="5RyjckCAwENsAg4ekVpTGgChnlQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU02koMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04F3U+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuq55b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBbE40s</latexit><latexit sha1_base64="5RyjckCAwENsAg4ekVpTGgChnlQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU02koMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04F3U+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuq55b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBbE40s</latexit>

0
<latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit>

�+
<latexit sha1_base64="kfDYc4SQRtnSVVYbqLlw7AmJrUM=">AAAB73icdVBNS8NAEJ3Ur1q/qh69LBZBEEJSWm1vRS8eK9gPaEPZbDft0t0k7m6EUvonvHhQxKt/x5v/xk0bQUUfDDzem2Fmnh9zprTjfFi5ldW19Y38ZmFre2d3r7h/0FZRIgltkYhHsutjRTkLaUszzWk3lhQLn9OOP7lK/c49lYpF4a2extQTeBSygBGsjdTtKzYSeHA2KJYcu16r1is15NjOAikpn9erLnIzpQQZmoPie38YkUTQUBOOleq5Tqy9GZaaEU7nhX6iaIzJBI9oz9AQC6q82eLeOToxyhAFkTQVarRQv0/MsFBqKnzTKbAeq99eKv7l9RId1LwZC+NE05AsFwUJRzpC6fNoyCQlmk8NwUQycysiYywx0Saiggnh61P0P2mXbdex3ZtKqXGZxZGHIziGU3DhAhpwDU1oAQEOD/AEz9ad9Wi9WK/L1pyVzRzCD1hvnxzzkAM=</latexit><latexit sha1_base64="kfDYc4SQRtnSVVYbqLlw7AmJrUM=">AAAB73icdVBNS8NAEJ3Ur1q/qh69LBZBEEJSWm1vRS8eK9gPaEPZbDft0t0k7m6EUvonvHhQxKt/x5v/xk0bQUUfDDzem2Fmnh9zprTjfFi5ldW19Y38ZmFre2d3r7h/0FZRIgltkYhHsutjRTkLaUszzWk3lhQLn9OOP7lK/c49lYpF4a2extQTeBSygBGsjdTtKzYSeHA2KJYcu16r1is15NjOAikpn9erLnIzpQQZmoPie38YkUTQUBOOleq5Tqy9GZaaEU7nhX6iaIzJBI9oz9AQC6q82eLeOToxyhAFkTQVarRQv0/MsFBqKnzTKbAeq99eKv7l9RId1LwZC+NE05AsFwUJRzpC6fNoyCQlmk8NwUQycysiYywx0Saiggnh61P0P2mXbdex3ZtKqXGZxZGHIziGU3DhAhpwDU1oAQEOD/AEz9ad9Wi9WK/L1pyVzRzCD1hvnxzzkAM=</latexit><latexit sha1_base64="kfDYc4SQRtnSVVYbqLlw7AmJrUM=">AAAB73icdVBNS8NAEJ3Ur1q/qh69LBZBEEJSWm1vRS8eK9gPaEPZbDft0t0k7m6EUvonvHhQxKt/x5v/xk0bQUUfDDzem2Fmnh9zprTjfFi5ldW19Y38ZmFre2d3r7h/0FZRIgltkYhHsutjRTkLaUszzWk3lhQLn9OOP7lK/c49lYpF4a2extQTeBSygBGsjdTtKzYSeHA2KJYcu16r1is15NjOAikpn9erLnIzpQQZmoPie38YkUTQUBOOleq5Tqy9GZaaEU7nhX6iaIzJBI9oz9AQC6q82eLeOToxyhAFkTQVarRQv0/MsFBqKnzTKbAeq99eKv7l9RId1LwZC+NE05AsFwUJRzpC6fNoyCQlmk8NwUQycysiYywx0Saiggnh61P0P2mXbdex3ZtKqXGZxZGHIziGU3DhAhpwDU1oAQEOD/AEz9ad9Wi9WK/L1pyVzRzCD1hvnxzzkAM=</latexit><latexit sha1_base64="kfDYc4SQRtnSVVYbqLlw7AmJrUM=">AAAB73icdVBNS8NAEJ3Ur1q/qh69LBZBEEJSWm1vRS8eK9gPaEPZbDft0t0k7m6EUvonvHhQxKt/x5v/xk0bQUUfDDzem2Fmnh9zprTjfFi5ldW19Y38ZmFre2d3r7h/0FZRIgltkYhHsutjRTkLaUszzWk3lhQLn9OOP7lK/c49lYpF4a2extQTeBSygBGsjdTtKzYSeHA2KJYcu16r1is15NjOAikpn9erLnIzpQQZmoPie38YkUTQUBOOleq5Tqy9GZaaEU7nhX6iaIzJBI9oz9AQC6q82eLeOToxyhAFkTQVarRQv0/MsFBqKnzTKbAeq99eKv7l9RId1LwZC+NE05AsFwUJRzpC6fNoyCQlmk8NwUQycysiYywx0Saiggnh61P0P2mXbdex3ZtKqXGZxZGHIziGU3DhAhpwDU1oAQEOD/AEz9ad9Wi9WK/L1pyVzRzCD1hvnxzzkAM=</latexit>
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Two vertical beams Two vertical beams & negative-X beam

FIGURE 5.4. 3D MOT phase dependence. The left graphs show results for the
MOT with just two vertical beams. The right graphs show the results for the MOT
with an additional beam in the negative x-direction. In all graphs, the horizontal
axis is positions along the positive-z axis. Calculations done with Ω = Γ/

√
2 and

|B′z| = 1 G/cm. Graphs (a) and (b) show the normalized polarization components
and Rabi frequency amplitude, respectively for the three circular polarizations as
defined in equations 2.55. Figure (c) shows the three lowering operators’ (Equation
5.9) expectation values in steady state. Figure (d) shows the force in the x-, y- and
z-direction. Note that the two graphs have different scalings. Figure (e) shows the
potential energy along the positive-z axis.
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leading to Equation 5.32 if the beam phases (and possibly the MOT Zeeman shifts)

are such that when z > 0 we have 〈Σ̂−〉ss > 〈Σ̂+〉ss, then the resulting force along

the z-direction would push the atom towards in the positive-z direction—away from

the center of the MOT. These phase arrangements are the ones which lead to the

anti-trapping forces in Figure 5.3.

5.5 Recovering Potential

In addition to anti-trapping, the force curves shown in Figure 5.3 have an

additional problem. The forces, in general, are non-conservative. Integrating the

force along another path (besides along the z-axis as calculated in Figure 5.3b) result

in different values for the potential energy. In such a circumstance, it is impossible

to define a potential energy of the form

~F = −~∇U. (5.34)

Rectifying this can be done one of three ways. First, the Helmholtz theorem states

any vector field, ~v (~r), can be written as

~v (~r) = ~v|| (~r) + ~v⊥ (~r) , (5.35)

where ~∇ × ~v|| = 0 and ~∇ · ~v⊥ (~r) = 0. This first irrotational (curl-less) term is

conservative, so that applying the Helmholtz theorem to the force we can define a

potential as

U = −
∫

~F || (~r) · d~r. (5.36)
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The α component of irrotational force can be computed directly frosm the full force

[48] as

F ||α (~r) =

∫
d3r′

[
1

(2π)3

∫
d3k

kαkβ
k2

ei
~k·(~r−~r′)

]
Fβ(~r′).

In a more numerically accessible form, this is

F ||α (~r) = F−1

[
kα
k2
B
]
, (5.37)

where

B = ~k · F̃
(
~k
)
,

and where

F̃
(
~k
)

= F [Fx (~r)] x̂+ F [Fy (~r)] ŷ + F [Fz (~r)] ẑ

is the Fourier transform of the force field.

These two transforms, to find the fourier transforme of the force and the inverse

transform to get the irrotational component, are three-dimensional. This requires

numeric solutions for the force over a large grid that encompasses the region in which

the atom exists. The region should be at least large enough such that the probability

for an atom to be outside of the grid is small. Similarly, the position-space spacing of

the grid should be smaller than the wavelength of the lasers to allow for oscillations in

the results. For a fair sized MOT (approximate 50 µm in diameter) and square grid

spacing λ/10, this is about 263 million grid points, each which has 3 components to the

force. While the calculation for the irrotational force is not challenging, calculating

the atomic density matrix in steady state at each point is numerically intensive (but

definitely possible).
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The second approach, much simpler numerically, is to calculate the force in a

smaller region, or even in one dimension, for many phases of the six MOT beams.

The forces are averaged together before calculating the potential energy. As our

experimental lasers are not phase controlled, drift in phase, and potentially even

change beam direction, an atom will see a variety of phase relationships between the

beams. Averaging data over many data runs should approximate the numeric phase

averaging.

The third approach, which we have not investigated numerically but mimics

the experimental process to make “good” MOTs discussed above, is to adjust beam

direction and phases until the escape channels vanish in the simulated results.
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CHAPTER VI

POSITION AND TEMPERATURE MEASUREMENTS

Soon after loading a single atom MOT with our water-cooled electromagnetic

anti-Helmholtz coils, pure curiosity lead us to check on the power spectrum of

photons collected from our single atom. A very clear peak at around 21 kHz was

visible and, soon after, an oscillation of the same frequency was seen in the anti-

Helmholtz coil current. While it isn’t revolutionary that an oscillation in one property

(magnetic field strength) results in oscillations in properties that depend on it (atomic

fluorescence rates through the Zeeman-shifted detuning), because the magnetic field

strength varies with position, the strength of the field oscillation also has a positional

dependence. This should encode some atomic position information about into the

fluorescence oscillation strength, allowing us to learn about motion of the atom in the

MOT, as well as it is temperature, from the light that it emits.

The theory and data analysis technique are laid out at the beginning of the

chapter. Following that, measurements of the atomic fluorescence oscillation in a

variety of experimental contexts are shown and discussed. To close the chapter, two

interesting additional effects are examined.

6.1 Theory

Following Equation 2.28, the rate that a multilevel atom scatters photons is

R = Γ
∑

i

ρei,ei , (6.1)

where the sum is over all of the possible excited states of the atom. These excited

state populations depend strongly on the detuning of the electric field from atomic
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resonance. This is directly evident in the steady state equations for the two-level atom

2.27 or the V-atom excited states A.1 and A.2, which all depend on the detuning from

resonance. For demonstration, the two-level population and the single-excitation

field excited-state population for the V-atom (Equation 2.61), can be written in a

generalized form as

ρe,e =

∣∣∣Ω̃
∣∣∣
2

1 + 4δ2 + 2
∣∣∣Ω̃
∣∣∣
2 (6.2)

where δi and Ω̃i are the detuning from resonance and Rabi frequency for light coupled

to the excited state, both scaled by the spontaneous decay rate Γ. Obviously, a smaller

detuning from resonance results in a higher population. As was done in Chapter II,

the detuning can be written in terms of the laser detuning plus a Zeeman shift (see

Equations 2.76) as

δi = δL,i +miδB,

where mi is the magnetic quantum number for the excited state, and again the

detunings are scaled by Γ, e.g. δ ≡ ∆/Γ. When the Zeeman detuning δB is much

smaller than the laser detuning δL,i, which is true for an atoms in a MOT as discussed

in Section 2.5, the population can be expanded in terms of small Zeeman detuning.

In one dimension, with Equation 2.75 defining the Zeeman shift’s frequency, thus

becomes

ρei,ei =

∣∣∣Ω̃i

∣∣∣
2

1 + 4δ2
L,i + 2

∣∣∣Ω̃i

∣∣∣
2 +

8µBgFmi |δL,i|
∣∣∣Ω̃i

∣∣∣
2

Γ~
(

1 + 4δ2
L,i + 2

∣∣∣Ω̃i

∣∣∣
2
)2B

′
zz. (6.3)

Interestingly, this form shows a clear breakdown of treating the atom in a MOT

as either a two level atom or as the extended two-level atom described in Equation

2.4.1. For the two level atom’s single excited state, m = 0 and there is no Zeeman
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shift, and hence no position/magnetic field dependence in the fluorescence. For the

extended two level atom, m± = ±1 and when summing over both states to get a

total scatter rate, the position and magnetic field dependence vanishes due to the

linear dependence on mi. Of course, an expansion to order δ2
B would return the

position dependence as terms of m2
i would appear. Checking for linear or quadratic

dependence of the fluorescence rate on the position/magnetic field would inform us

as to if the extended-two level atom is a fair model for out experiment (hint: it is

not, see below Section 6.3.1).

6.1.1 Fluorescence Oscillations

In any case, the magnetic field dependence of the excited state population is clear

from Equation 6.3. As noted above, in a MOT, this dependence is weak and unlikely

to be detectable in our MOT without much improved efficiency in photon collection.

However, introducing oscillations, as done by accident above, should clearly reveal

the dependence on the magnetic field. In one dimension again, an oscillation in the

magnetic field of the MOT can be written as

~B(z, t) = −B′z(1 + ε cos(2πft))z (6.4)

where ε is typically a small value, ε . 0.15. To examine this analytically, we will

turn to the V-atom model in Section 2.4 which had steady state populations7 given

by Equations A.1, A.2 , and A.3. With the magnetic field as defined above, the

7While it is true that the magnetic field is changing in time, steady state populations can still
be used as the timescale for the internal evolution of the atom to the steady state is very different
than the magnetic field oscillation period. The internal atomic dynamics timescale on the order of
1/Γ = 27 ns [48] while the timescale for the field oscillations is on the order of 100 µs or longer
(frequencies for driving oscillations in the experiment are typically on the order of 100 Hz to 1 kHz).
With the much longer time scale for the magnetic field, the atom basically sees a constant field
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magnetic field detuning frequency (scaled by atomic decay rate) is

δB(t) =
µB
~Γ

B′zz [1 + ε cos(2πft)] (6.5)

(see the derivation of Equation 2.59). Here, we have imposed |m±| = 1 and positive

or negative shifts in frequency for the different excited state levels are written as

δ±(t) = δL ± δB(t). With this, the fluorescence is (by expansion around small ε)

F ≈ 〈Fl〉+ dF cos(2πft), (6.6)

with

〈Fl〉 = Γ
(
ρss+,+

∣∣
ε=0

+ ρss−,−
∣∣
ε=0

)
and (6.7)

dF =

(
∂ρss+,+
∂δB

∣∣∣∣
ε=0

+
∂ρss−,−
∂δB

∣∣∣∣
ε=0

)
µBB

′
zzε

~
. (6.8)

Thus, the fluorescence oscillates with the same frequency and (unwritten) phase as the

magnetic field, around an average value that matches the non-oscillating field value,

and with an amplitude that is proportional to both position/magnetic field and the

driving frequency. While the values for m± have been suppressed here, it is clear

from the form of δB that the linearity of dF with respect to ε requires linearity with

respect to m±. Then, when experimentally measuring values for dF , linear scaling

with respect to ε will rule out the extended two-level atom model as noted above.

while evolving to steady state and we can assume the atom is always in its steady state value for
the magnetic field at time t.
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It is not particularly enlightening, but the derivatives of the excited state

populations for the V-atom are given by

∂ρss−,−
∂δB

=
1

N

[
ρ′−− − ρss−−

∂N

∂δB

]

∂ρss+,+
∂δB

=
1

N

[
ρ′++ − ρss++

∂N

∂δB

]
,

(6.9)

with

ρ′−− =
s(1− w)

2

{
16s (2δB,0 + δL) + 64δB,0

[
1 + 4δ2

B,0

]
+ 32δL [1 + 4δB,0 (3δB,0 + δL)]

}

ρ′++ =
s(1 + w)

2

{
16s (2δB,0 − δL) + 64δB,0

[
1 + 4δ2

B,0

]
− 32δL [1 + 4δB,0 (3δB,0 − δL)]

}

∂N

∂δB
= 8δB,0

(
2 + s+ 8δ2

B,0

) [
4 + 5s+ 16δ2

B,0

]
− 24swδL

[
2 + s+ 24δ2

B,0

]
+

128δ2
LδB,0

[
s− 16δ2

B,0

]
− 64δ3

L [sw − 8δLδB,0]

where δB,0 is the scaled magnetic field detuning (Equation 6.5) with ε = 0. In these

equations, the two Rabi frequencies have been written in terms of beam imbalance

ratio w (as defined in Equation 3.1), saturation parameter s as defined in Equation

2.38, and here s is calculated with the average power of the two beams). In these

forms, the (decay rate scaled) Rabi frequencies are

∣∣∣Ω̃±
∣∣∣
2

=
s

2
(1± w) , (6.10)

which simplify the form of the steady state equations greatly.

There is another piece to note briefly here. The magnetic field underlies the

mechanism that traps atoms in the MOT through a harmonic restoring force described

in detail in Section 2.5.1. The restoring force strength κ, as shown in Equation 2.84,

is proportional to the magnetic field gradient. Modulating the field gradient through

150



the current in the anti-Helmholtz coils then also modulates the value for κ. In doing

so, it is possible to excite an additional resonance in the atomic motion, called a

parametric resonance [131]. With a well damped atom, (i.e. large damping constant

β), a small oscillation parameter ε, and driving the oscillations far from resonance (or

rather far from twice the resonant frequency, see Appendix F), the influence of the

field oscillations on the atomic motion is negligible and our theoretical framework is

still valid. These resonances are discussed in much more detail in Section 6.5.

6.1.2 Position Averaging

The form of the equation for the fluorescence oscillation amplitude dF shows

a dependence on position that is difficult to get at experimentally. Instead, it may

be beneficial to look at spatially averaged values for this amplitude based on the

temperature and potential energy seen by the atom. Following the damped harmonic

oscillator formalism of Section 2.5.2, this potential will be

U(z) =
1

2
κz2, (6.11)

where κ is the restoring force, given for the V-atom by Equation 2.84.

From this equation, it is clear that modulating the trapping strength will oscillate

the potential energy of the atom. In doing so, it is possible to heat the atom and thus

expand grow the position distribution for the atom [39]. At high frequencies (relative

to a characteristic frequency fc = κ/2πβ, where β is the damping coefficient for that

atomic motion), the oscillations are too fast for the atom to respond and it experiences

the average non-modulated trap. At low frequencies, the particle’s position variance

grows by a factor of (1− ε2)
−1/2

above its non-modulated value. The characteristic
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frequency, with the form of the trapping strength of Equation 2.83 is

fc =
µBgFB

′
z

2π~k
,

where the only experimentally controlled value is the MOT magnetic field gradient B′z.

For our large field MOTs this frequency is on the order of tens of kHz. Experiments

are typically modulated at frequencies of hundreds of Hz to a few kHz, putting the

experiment deep into the low frequency range. Here, the modulation is slow enough

to impact the motion of the atom and increase its positional variance. However, with

small oscillation amplitudes, the growth is only on the order of a few percent of the

non-oscillatory variance, which should not affect our calculations seriously.

In this “small” frequency limit, and defining an effective temperature value T ′

as just the variance of the position distribution as via the equipartition theorem, the

average value for the fluorescence oscillation amplitude for the atom is

〈dF 〉 =

√
κ

2πkBT

∫
dF (z) exp

[
− κz2

2kBT ′

]
dz. (6.12)

Compared to the “true” temperature of the atom, the effective temperature is

T ′ = T/
√

1 + ε2, just a few percent higher than the “true” temperature. This small

difference will be ignored in the remainder of the calculations in this chapter. The

form of dF (z) in Equation 6.8 appears to be an odd function with respect to z (so

that the average is just zero), but the derivatives of the excited state populations are

also spatially dependent through the oscillation-free Zeeman detuning, δB,0.

152



Looking ahead to extracting this oscillation from experimental data, the RMS

oscillation amplitude is

dFRMS =

[√
κ

2πkBT ′

∫
dF 2(z) exp

[
− κz2

2kBT

]
dz]

]1/2

, (6.13)

or, more generally,

dFRMS =

(
A

∫
dF 2(z) exp

[
−U(z)

kBT ′

]
dz

)1/2

, (6.14)

where A is some constant to normalize the position distribution. With the form of

dF (z) for the V-atom, both dFRMS and 〈dF 〉 should be proportional to B′zε, the

amplitude of the field oscillation.

Again, looking ahead to the measurement, rewriting the fluorescence of the atom

as

F = 〈Fl〉 [1 +m cos(2πft)] , (6.15)

then the dimensionless amplitude for the fluorescence oscillation can be calculated as

either

〈m〉 =
〈dF 〉
〈Fl〉 =

A

〈Fl〉

∫
dF (z) exp

[
−U(z)

kBT ′

]
dz or (6.16)

mRMS =
dFRMS

〈Fl〉 =
A1/2

〈Fl〉

[∫
dF 2(z) exp

[
−U(z)

kBT ′

]
dz]

]1/2

. (6.17)

The dimensionless form for the fluorescence amplitude has at least two benefits.

First, it is easily comparable to the similar dimensionless amplitude for the driving

oscillations in the anti-Helmholtz coils, ε. Second, when comparing to experimental

results, photon collection efficiency factors vanish. Rather than fitting data to

153



an exact number of photons per second for the oscillation amplitude, which is

complicated by the unknown factor limiting collection efficiency (see Section 3.4.1),

the fit is relative to the average count rate, which has the same unknown efficiency

factor. The two collection factors multiply both photon rates (average and oscillation

amplitude) and thus cancel in the final calculation.

6.1.3 Numeric Calculations

The RMS form of the dimensionless fluorescence amplitude, m, is written in

a generic form so that any potential energy can be used, including for a three

dimensional system with z → ~r and dz → dV . In the case of the one-dimensional

V-atom, there is analytic form for the potential and for dF (z) as described above,

although it is (likely) there is no analytic form for the integral.

For the full rubidium atom calculation found discuss in Chapter V, there is no

analytic form for the potential, but it is possible to numerically find a solution for a

given temperature. The potential energy is found as done in Section 5.5—integrating

the irrotational component of force (in one dimension, the entire force is irrotational)

and the force is found as described in Section 5.3.3.

For dF (z) (or dF (~r) if in three dimensions), there is also no closed form solution

as there is for the the V-atom; rather, this can be done by assuming the fluorescence

oscillates at a constant frequency and finding the amplitude from the difference in its

extreme values, i.e. taking half the difference in the average fluorescence from when

the magnetic field has its largest value (B(z) = (1 + ε)B′zz) and its smallest value

(B(z) = (1− ε)B′zz) :

dFRb(z) =
Fl+ε(z)− Fl−ε(z)

2
. (6.18)
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This is exactly equivalent to taking a numeric derivative of the fluorescence rate with

respect to ε. In deriving Equation 6.6, the general form for the small ε expansion is

F (z) ≈ F (z)|ε=0 + ε
dF (z)

dε

∣∣∣∣
ε=0

.

Ignoring the cosine term (remember that the atom is assumed to be in steady state

at all times, so the cosine is effectively a constant and only its extremes are of interest

for finding the amplitude), comparing to Equation 6.6 dF must be

dF = ε
dF (z)

dε

∣∣∣∣
ε=0

= ε

(
Fl+ε(z)− Fl−ε(z)

2ε

)
,

where the derivative is written numerically to first order in ε. This simplifies to

exactly the form of dFRb in Equation 6.18.

The average fluorescence rate is found numerically exactly as in Equation 6.1—

summing the steady state excited state populations and weighting by the atomic

decay rate Γ.

These three numeric calculations for the potential (Ui), fluorescence rate (〈F 〉i)

and fluorescence oscillation amplitude (dFi) can be done for all one dimensional

positions zi or for a multidimensional grid. Then, the two averages for the fluorescence
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oscillation amplitude of Equations 6.16 and 6.17 are calculated as

〈m〉(T ) =

1

A

∑

i

exp [−Ui/kBT ] dFi∆z

1

A

∑

i

exp [−Ui/kBT ] 〈Fl〉i∆z
(6.19)

mRMS(T ) =

√
1

A

∑

i

exp [−Ui/kBT ] dF 2
i ∆z

1

A

∑

i

exp [−Ui/kBT ] 〈Fl〉i∆z
(6.20)

where ∆z is the spacing of points in the numeric calculation and A is a factor to

normalize the potential, A =
∑

i exp [−Ui/kBT ] ∆z. These equations are written

fully, without simplification, because while it seems trivial to simplify factors of A

and ∆z, it is not always so clear while coding (lol!). In multiple dimensions, a similar

form can be used most easily where the label i refers to points in a multi-dimensional

grid, ∆z factors are dropped, and A is recalculated appropriately (also without the

spacing factor ∆z).

Experimental measurements of either average, mRMS or 〈m〉, can then be used

to fit a temperature for an atom to these expressions, with an appropriate model to

calculate Ui, dF
2
i , and 〈Fl〉i.

6.2 Analysis of Photon Arrivals

Extracting oscillation information can be done particularly well by looking at

the spectrum of photon arrivals. The spectrum can be numerically calculated directly

from the record of photon arrivals by an autocorrelation measurement of the photon

arrivals as per the Wiener-Khinchin theorem [42]. It is numerically simpler to bin

photon arrival data (creating a list of photon counts per timer) and calculate a power
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spectrum directly with a fourier transform as is

S(f) =

∣∣∣f̃(f)
∣∣∣
2

Tmax
, (6.21)

where f̃(f) is the Fourifer transform of the binned photon time data [48]. This is

implemented, for this dissertation, via Octave to do the Fourier transforming. The

Octave implementation returns both positive and negative frequency components of

the spectrum, but in a non-intuitive order common in numeric Fourier transform

algorithms. The code snippet below takes in photon count times in the array data

and produces an appropriate power spectrum with the array indices ordered from most

negative frequency to largest frequency for natural graphing of the power spectrum.

Spec=fftshift(fft(ifftshift(data))) * dt;

PowSpec=real(spec.*conj(Spec))./tMax;

In this code snippet, dt is the for one photon bin and tMax is the maximum time

for the data. This clearly indicates two times must be defined. The first is a time

to bin photon counts, ∆t (dt in the code snippet). This sets a time step and gives a

maximum frequency that will calculated in the spectrum as fmax = 1/2∆t. Selecting

a shorter bin time allows for higher frequencies to be revealed in the spectrum,

but produces larger data sets to analyze impacting calculation time. Second is the

maximum time to collect data, Tmax (tMax in the code snippet). This gives a frequency

spacing for the spectrum as ∆f = 1/2Tmax. Selecting a longer maximum time gives a

higher resolution spectrum, but limits the number of spectra that can be calculated

and averaged together to reduce noise.

In Figure 6.1a, one data run with 100 ms binned photon data (the binning time

used to trigger the bayesian algorithm while collecting data) is shown. In Figure
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6.1b, spectra for a few different maximum times are shown. In Figure 6.1c, spectra

with a few different maximum frequencies (and thus different bin times) are shown

for this same data. Figure 6.1d, the photon oscillation amplitudes for the spectra in

(b) and (c) are shown, calculated using the method described below (Equation 6.28).

In graphs (b-d) here, the spectra and oscillation amplitudes were calculated from the

photon arrival time collected from the data run in (a).

In practice, the bin time is chosen to give maximum frequencies of 25 kHz to

sample multiple harmonics (see Section 6.6) of the typical few kHz driving frequencies.

With useable data collection times of around 90 s per experiment, maximum times

for a spectra are typically around a 5 or 6 seconds to allow for many spectra to be

averaged for a single photon’s experimental lifetime.

6.2.1 Oscillation Calculation

From the spectra, information about the average fluorescence, amplitude of the

oscillation and phase can be extracted. The measured fluorescence is assumed to be

Poissonian distributed8. Defining the background average photon rate to be B and

the atomic fluorescence rate to oscillate with frequency fα

α(t) = α0 [1 +mα cos(2πfαt)] , (6.22)

so that the Poissonian sampled fluorescence signal is Flm(t) = B +α(t). As noted in

Appendix E, the average rate of photon collections, 〈Flm〉 = B+α0, (Equation E.2),

8As revealed in Figure 4.3, the fluorescence measured from the experiment is super-poissonian.
The calculation in Appendix E there assumes a gaussian distribution a variance larger than the
mean. The calculation there shows that even with the variance many times larger, there is little
change in the power spectrum.
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FIGURE 6.1. Sampled oscillation spectrum. (a) Fluorescence rate as a function of
time. An atom appears in the MOT around 10seconds. (b) Averaged single atom
spectra for a variety of maximum times. (c) Averaged single atom spectra for a
variety of one photon bin times (or maximum spectrum frequencies). In both b and
c, only ±2 Hz is shown around the driving frequency, 3001 Hz. (d) Average values
for unit-less oscillation amplitude mα calculated from the spectra in (b) and (c). For
this data run, the anti-Helmholtz current modulation amplitude was 0.058.
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can be found from the tails of the power spectrum as

S(f →∞) = 〈Flm〉. (6.23)

This appears clearly in the spectra shown in Figure 6.1(b) and (c), which all have

similar backgrounds to the peak near 3001 Hz. When this is done numerically, an

average of a power spectrum’s tail is used rather than just the spectrum value for

fmax. The average rate can also be gotten directly from the photon arrival data

without needing to take a spectrum. With ni photons in each time bin, the average

rate is

〈Flm〉 =
1

Tmax

∑

i

ni. (6.24)

This, of course, is the total background rather than just the single atom fluorescence

rate. To get the single atom fluorescence rate, the background fluorescence rate just

needs to be known. As was noted in the single-atom detection method Section 4.1, our

experimental runs always begin with a few seconds with blue detuned laser frequencies

so that no atoms can load into the MOT. Thus, we have a built in measurement of the

no-atom fluorescence, B. Then the single atom fluorescence rate is α0 = 〈Flm〉 − B.

This rate can be measured entirely without a spectrum and is necessary for the

Bayesian algorithm in Chapter IV.

For the oscillation amplitude, as calculated in E and in [132], there should be a

peak in the power spectrum, calculated over a maximum time Tmax, whose amplitude

is

S (fα) = 〈Flm〉+
α2

0Tmax
4

m2
α + η

α2
0m

2
α

4〈Fl〉 , (E.12)

where η is defined in Equation E.3, a parameter that describes how much larger the

standard deviation of the fluorescence is compared to the average fluorescence (i.e.
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how close to Poissonian the signal is). The dependence of the peak height on Tmax

is revealed in the spectra in Figure 6.1b, with a few qualifications. First, the spacing

of the spectral points changes with Tmax. With wider spacing, the peak gets spread

out which over emphasizes the peak height visually. Second, with Tmax being integer

seconds, there are spectral points that align exactly with integer frequencies, as such

as the peak at Tmax = 5s in the figure. This peak appears higher than the peak

at Tmax = 6.5 s because the peak is shifted over a bit and widened to align with

the spectral points. This lowers the peak heights when the maximum time is not an

integer. The lowering is compensated for by the integration method described below

for calculating the peak height (see Equation 6.26) and does not have an impact the

calculation of the oscillation amplitude as shown in Figure 6.1d.

Assuming a perfectly Poissonian distribution or (η = 0), as noted in Appendix

E, when there is a large background fluorescence (〈Flm〉 � η), the amplitude of the

oscillation is then

mα =
2

〈Flm〉 −B

√
S (fα)− 〈Flm〉

Tmax
. (6.25)

In this form, all values are directly measurable. The peak height, or as we’ll see

the area under the peak height, is S(fα). The background fluorescence rate, B,

is measured from the data run before any atoms were loaded into the trap. The

measured, experimental fluorescence rate, 〈Flm〉, can either come from the tails of

the spectrum (as noted in Appendix E) or just from the raw photon arrival data

(Equation 6.24).

The power spectral height of Equation E.12 assumed that we had f = fα,

the externally driven magnetic field frequency. This is an implicit delta function

in the general spectrum, however the experimental data are certainly not a delta

function, see Figures 6.1b and c. Instead, due to the numeric calculation, the delta
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function is spread over many frequencies. To get the original peak height back, we

can numerically integrate over the peak. This produces

S(fα) =

∫
S(f)δ(f − fα)df ≈

k=N∑

k=−N

S(fα + k∆f)∆f, (6.26)

where the value N is a defined window size to integrate over, typically done so that

the window around the peak is ±1 Hz, i.e. N = 1/∆f . In this numeric language

then, directly from the power spectrum it is possible to calculate the square of the

fluorescence modulation amplitude as

dF 2
m = α2

0m
2
α =

4

Tmaxdt2

k=N∑

k=−N

[S(fα + k∆f)− S(f =∞)] . (6.27)

Note that a factor of ∆f has been lost here in order to return the integrated area of

Equation 6.26 to a delta-function peak height. There is an additional factor of 1/dt2

present in this equation. The spectrum is calculated from data are in raw photon

count numbers, so that the amplitude measured is in terms of just photon number2.

The factor is to return the amplitude to units of photons/s. This is done to compare

directly to the atomic fluorescence rate defined in Equations 6.1, which is given in

terms of the atomic decay rate Γ. Additionally, rescaling amplitudes to photons/s

gives a systematic unit for comparison between analysis with different values of dt

(the blue data in Figure 6.1d). Because the value for dF 2
m can be pulled directly out

of the experimental data, this implies that the RMS form of the analytic fluorescence

amplitude (mRMS of Equation 6.20) should be used to for calculating the temperature

of the atom. For this comparison, the measured dimensionaless oscillation amplitude

is then

mα =

√
dF 2

m

α0

=

√
dF 2

m

〈Flm〉 −B
(6.28)
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where again α0 is the average fluorescence rate from the atom (which can/must be

found separately as noted above).

The phase for the fluorescence oscillation comes directly from the spectra as well.

Take, for example, the cosine function with frequency f0 and phase φ. The Fourier

transform is

f̃(f) =
1

2

[
e−iφδ(f + f0) + e+iφδ(f − f0)

]
(6.29)

Taking the tangent of the real and imaginary parts of this wave gives

tan

(
Im[f̃ ]

Re[f̃ ]

)
=

sinφ [−δ(f + f0) + δ(f − f0)]

cosφ [δ(f + f0) + δ(f − f0)]
= tanφ (6.30)

when evaluated at f = f0. Then, if the complex Fourier transform of an oscillating

time signal is written as

f̃(f) =
∣∣∣f̃(f)

∣∣∣ eiφ, (6.31)

the phase φ corresponds to the phase of the underlying oscillation and can be found

just by taking the inverse tangent of the real and imaginary parts of the transformed

function. Doing this numerically with the binned photon data returns the appropriate

phase, offset by factors of π that are related to the total time and spacing between

bins.

As noted above, choosing shorter segments of time to create power spectra

from limits the resolution of the spectra, but it allows for more averaging of data

for a clearer signal. This averaging is particularly important in light of Equations

6.25 and 6.27 as the background fluorescence is subtracted. For individual data

runs, particularly those with small MOT coil current amplitudes, ε, small peaks in

a spectrum or a noisy background and produce negative values for dF 2 and thus

imaginary amplitudes for the fluorescence oscillation, mα. This is resolved by taking
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just the real part of the calculated dF 2 and averaging it over many spectra before

calculating the fluorescence amplitude. The averages are calculated as below.

1. Photon arrival times are recorded with the FGPA system described in Section

3.4.2.

2. Using the bayesian algorithm to predict times when a single atom was in the

MOT (see Section 4.2), photons collected during these times are counted in bins

of time length ∆t, as above. The size of the bin is determined by the maximum

desired frequency of the spectrum.

3. For a defined maximum collection time, Tmax, the appropriate number of bins

(Nbin = Tmax/∆t) are spliced out of the data.

4. The spliced data are used to calculate a spectrum. Total background

fluorescence 〈Flm〉 (Equations 6.24 or 6.23), the square of the fluorescence

oscillation amplitude dF 2
m (Equation 6.27) and oscillation phase φ (Equation

6.30) are calculated from the spectrum, or photon counts, for a number of

harmonics of the known driving frequency of the MOT coils.

5. Splicing and calculations are done with consecutive numbers of bins until

remaining number of bins is smaller than Nbin.

6. Average spectra, fluorescence background and square of the fluorescence

oscillation amplitudes together. Note that averaging the square of the

fluorescence oscillation amplitude and taking a square root calculates exactly

the RMS of the fluorescence oscillation amplitude.

Together with a measurement of the non-atom background, B, from each

data run, the three measured averaged values for dF 2
m, 〈Flm〉 and B calculate the

164



dimensionless oscillation amplitude of Equation 6.28. When these three measured

value have error σdF , σFl, and σB, respectively, the error in the calculated oscillation

amplitude σm is

σ2
m =

σ2
dF

4
(
〈Flm〉 −B

)2

dF 2
m

+
dF 2

m (σ2
Fl + σ2

B)
(
〈Flm〉 −B

)4 . (6.32)

This can be done for individual data runs and thus specific atoms, as was done for the

data in Figure 6.1. With a particular MOT model, these data can be fit to Equation

6.17 or Equation 6.20 to find a temperature of the atom while it is still in the MOT,

as is done in other atomic temperature measurements [133]. The individual atom,

then, can be used for other experiments.

It is also possible to average the spectra and amplitudes for many data runs

together with specific MOT system parameters. This does produce an approximate

atomic temperature for an atom in the MOT with those system parameters, rather

than an in-situ measure of the temperature of a specific atom. However, as is done

with the other temperature measurements discussed in Chapter I, it is assumed that

atomic temperatures are primarily a function of the MOT system parameters.

6.3 Measurements

Fluorescence measurements were previewed briefly in Figure 6.1, which showed

the fluorescence peak in a spectrum measured from a single atom. Some complete

spectra are shown in Figure 6.2 for a variety of driving frequencies, but all with

a driving anti-Helmholtz current modulation amplitude of ε = 0.025. Some

clear features can be noted about these spectra that are universal to single-atom

fluorescence spectra measured in our experiments. The tail of the low-frequency peak
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FIGURE 6.2. Assorted measured spectra. Single-atom fluorescence spectra with a
variety of driving frequencies. All spectra done with a driving current amplitude of
ε = 0.025.

scales as 1/f 2, which is not surprising. There is a wide peak in the spectra around

27 Hz. This peak originates from an unknown magnetic field oscillation that appears

ubiquitous in the building around the lab. It can be seen even on simple loops of

wire connected to a spectrum analyzer. The frequency is not fixed, but drifts slightly

causing the widened peak in the spectrum. There are peaks at 60 Hz because of

course there are. As calculated in Appendix E, the spectral tails equal the average

measured fluorescence rate. Finally, although the current modulation amplitude is

the same for all the peaks in Figure 6.2, the peak heights, and thus the fluorescence

oscillation magnitudes, change with frequency. This fact is analyzed in more detail

in Section 6.3.2 below.

To check the developed temperature measurement technique, comparisons to

known methods should be done. Figure 6.3 shows temperature measurements for a

single atom in our high gradient MOT with the release-recapture method described in

Section 1.4 [4, 16]. In the figure, two sets of data and three simulations with different

atomic temperatures is shown. The red data are done with the magnetic field turned
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off with the MOT lasers, while the blue data leaves the magnetic field on during the

test. At short times (below about 6 ms) the recapture rate is quite similar in both

cases. This is due to slow ramp down of the anti-Helmholtz coil current while turning

off the field.9 The field persists during this time and magnetically traps the atom (see

Section 2.3.1). At long times, the two cases diverge as the field is no long trapping

atoms. With the influence of the magnetic field taken into account, the long-time

tail for the recapture rate should be used to estimate the temperature. Thus, the

atom is likely around 160 µK, surprisingly above the Doppler temperature. From the

data and simulation, it is expected that the atom has temperatures around 160 µK,

which should be the “target” for verifying our temperature measure technique. The

measurements and simulations in Figure 6.3 may be discussed in more detail in the

dissertation of Erickson [134], but serve as a fine comparison for this work.

6.3.1 The Linearity of Fluorescence Amplitude

The most pressing measurement is verifying the scaling of the fluorescence

oscillation amplitude to the driving current modulation amplitude. As noted in

Section 6.1, linear scaling of the fluorescence amplitude would rule out the extended

two-level model to describe the atom in the MOT, as this model would predict

fluorescence modulation only at higher orders of the current modulation amplitude.

The measured fluorescence amplitude as a function of current oscillation

magnitude for two different driving frequencies are shown in Figure 6.4. Red data

9This ramp-down is not caused by the RC circuit created by the anti-Helmholtz coil and the
filtering capacitor discussed in Section 3.3.5. These have an RC time constant of τ=4.6 µs, much
faster than the ramp-down time. This is also much slower than the ramp-down time due to internal
capacitors in the current supply, which have capacitance 1.5 µF as programed for our power supply
[100]. This time delay, instead, may be a result of self-inductance in our MOT coils or eddy currents
in the various conducting elements around the experiment.
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are recorded at a frequency of 1154 Hz and the blue data are recorded at a frequency

of 3001 Hz. It is important to note that the blue data have been (vertically) scaled

by a factor of 4 so that it is behavior is clear on the graph. In Figure 6.4a, the lines

are power law fits. The low frequency data scales as mα ∝ ε0.82±0.05 and the high

frequency data scales as mα ∝ ε0.81±0.03. While not quite linear, the scaling is still

far from ε2. Thus we can rule out the extended two-level atom as a model for our

experiment. Linear fits to the data are shown in Figure 6.4. Here, the lower frequency

data have a slope of 5.2± 0.55 and the higher frequency data have an unscaled slope

of 1.0± 0.03.

The large difference in slope (and larger fluorescence amplitude in general) for

the two measurements in Figure 6.4 corresponds to the different frequencies of the two

data sets. This is analyzed in Section 6.3.2 in more detail, but we’ll note here that

the higher frequency measurement is a better model to calculate temperature. The

lower frequency data can excite mechanical resonances in the atom causing additional

motion in the atom, as noted in Section 6.1.1. The higher frequency oscillations avoid

these resonances and should reveal the behavior of the atom without influence of the

magnetic field oscillations.

Figure 6.5 shows simulated results for the slope of the fluorescence amplitude

compared to the magnetic field modulation amplitude for a variety of models. Here,

the slope is plotted as a function of atomic temperature following Equation 6.20. In

Figure 6.5a, the three lines are all calculations for a 1D MOT for the V-atom, full

87Rb atom, and a Jg = 1 → Je = 2 atom (referred to as J1→2 through the rest of

this work). The J1→2 atom was used in some of our simulations for comparison to an

analytic derivation of the spring constant for this atom in the MOT [92]. The MOT
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FIGURE 6.5. Simulated 1D modulation slopes. Values are slopes of fluorescence
amplitudes to driving current modulation amplitudes (i.e., the slopes of the linear fits
in Figure 6.4). The two graphs have the same vertical scale.

spring constant in our simulation does match this analytic form and thus this atom

model has been used to examine some results of our simulation.

With the larger total angular momentum of the excited state for the J1→2 atom

larger than the V-atom’s, the outermost excited state energy level for the J1→2 has

a larger Zeeman splitting than that of the V-atom. This would imply the J1→2 atom

should have a larger amplitude in the fluorescence modulation, as it is driven by

oscillations in the Zeeman shift of the atoms energy levels. However, in calculating

the fluorescence amplitude for the V-atom, the simulation added an additional factor

of 3 to its excited state Zeeman splitting by changing gF to 3gF . This was to better

mimic the behavior of the outmost energy levels of the full 87Rb atom and leads the

larger fluorescence amplitude for the V-atom compared to the J1→2 atom in Figure

6.5a.

All three of these 1D simulations clearly show slopes that are significantly less

than the slope of order 1 from the data in Figure 6.4. Thus in Figure 6.5b, simulations

are of the 3D MOT with the full 87Rb atom as described in Chapter V. For all of
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these, as noted in Section 5.5, the calculation is averaged over many phases of the

MOT beams. This direct averaging is the red curve in figure (b). While its results are

larger than the 1D results, and particularly true for low (reasonable experimental)

temperatures, they are still much less than the measured slopes .

Recalling the effective temperature discussed in Section 6.1.2 and with prior

knowledge of additional atomic motion as seen in Section 6.5, we can add an additional

“forced” modulation of the atom to our calculation. This is done by assuming that the

atom’s entire position distribution oscillates around the peak position with amplitude,

A. This amplitude is small enough to not change the coupling of light from the atom

into the APD detection system (unlike the oscillations observed in Section 6.4). With

this “forced” oscillation model, it is assumed that the modulation frequency of the

magnetic field is much faster than this oscillation frequency of the atom in the trap.

This is generally true for most of our measurements and certainly for the data in

Figure 6.4, where the relevant position oscillations are on the order of 100 Hz (see

section 6.3.2). With this slow position oscillation, the atom would then see the full

modulation of the magnetic field at each position, so that the average fluorescence

amplitude (and thus its slope) would just be its value at each position averaged over

one period of the atom’s motion. For a fluorescence amplitude that depends on

position, mα(a), then the average rate is

〈mα〉 =

∫ A

−A
mα(a)P (a)da (6.33)

where P (a) is the probability to be at position a for an object oscillating with

amplitude A:

P (a) =
1

π

√
1

A2 − a2
. (6.34)
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The results of these slow atomic oscillations are shown as the green data of Figure

6.5b.

While the calculations above for the “3D” MOT are only looking at the forces

(and thus the potential energy) along one axis, the larger 3D environment can

be modeled more directly with an effective 3D distribution. A majority of our

calculations, and indeed all of those seen above in this section, have been done along

one MOT beam axis. This gives a position distribution along one axis rather than

a true 3D distribution. If we assume that the atom’s position distribution is small

in the other directions (a fair assumption with a strong confining force due to the

high-gradient fields), we can map an effective 3D solution onto our 1D calculation.

With a well confined atom (and exactly true for a 1D MOT), the field strength largely

dictates the probability to be at each position along an axis. With the 3D mapping,

we re-weight the 1D position probabilities by the number of points in the 3D with

the same magnetic field magnitude. As points in the 3D move away from the axis,

the field magnitude grows and thus the higher magnetic-field tails of the distribution

are move heavily weighted. This effectively turns the 1D position distribution into

a (local) magnetic field magnitude distribution for the atom. Renormalizing this

distribution with its heavier tails should result in a higher fluorescence oscillation

as the field oscillation is also higher in the tails. While this seems artificial, it does

mimic the behavior of the 3D atom. The atom explores regions off-axis that have

a stronger magnetic field and stronger oscillation in the field than points on the

axis. This numeric mapping method takes these into account without calculating the

(potentially non-conservative) force off-axis. The blue data in Figure 6.5b shows this

effective 3D distribution with a off-axis grid size of 15 µm.
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It is still evident that simulations are not matching the measured experimental

results. Thus, calculations for approximate MOT temperatures will be dropped from

the remaining calculations and functional behavior will be the focus.

6.3.2 Frequency Dependence of Fluorescence Amplitude

As revealed in Figures 6.2 and 6.4, the amplitude of fluorescence oscillations

changes with frequency. In Figure 6.6, the amplitude as a function of driving

frequency is plotted. Here all the driving currents have modulation amplitude10

ε = 0.025. In this graph, also shown are fits to the low frequency response (f < 500)

and the high frequency response (f > 700). The low frequency signal scales as a

power law f 0.55±0.02. The high frequency tails scale with a power law as f−1.51±0.11

(or with exponential decay that has decay constant (8.30± 0.36)× 10−4 Hz−1).

These two power law scalings closely match the scaling of a Lorentzian

distribution weighted by f 1/2. For a particle with a small modulation to its trapping

frequency ω0, its position variance should have a Lorentzian shape as a function of

the driving frequency [39, 135]. Since the fluorescence amplitude depends closely

on this position variance (see Section 6.1.2), it is expected that the fluorescence

amplitude follows this same shape at high frequencies. As discussed above, for a

fast modulation of the fluorescence rate, at all positions the atom sees the whole

range of fluorescence rate values so that its fluorescence rate can just be averaged

10As a practical note, the modulation in anti-Helmholtz coil current was introduced by adding a
signal from a function generator to the control signal that went to the coil power supply. Due to
both the MOT coil low-pass filtering capacitor and the power supply’s own frequency response, a
number of amplitudes for the function generator signal have to be tested and the current response in
the coils measured with a Hall probe for each frequency. The amplitude of the coil current, A, was
calculated by comparisons to the measured current variance σ2, which are related by A2 = 2σ2 for a
sinusoidal oscillation (Table 6.2 gives the relationship between amplitude and variance for different
waveforms). The amplitudes for the function generator signal were adjusted until the measured
current amplitude reached the desired value.
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FIGURE 6.6. Fluorescence amplitude spectrum. Along with the data (blue) low-
frequency and high-frequency fits to the data are shown.

over positions—producing the same frequency distribution for the fluorescence. At

lower frequencies, the spectrum is weighted by f 1/2. Therefore, the spectrum can

then be written as

S(f) =
a
√
f/πΓ

(f − 2fz)2 + Γ2/4
, (6.35)

where Γ is the (Lorentzian) FWHM, a is a scaling factor, and 2fz is the (Lorentzian)

peak frequency, which is twice the frequency of the (undamped) atomic motion in the

MOT [39, 136]. The atomic motion has frequency 2πfz = ω0,MOT =
√
κ/m where κ

is the MOT spring constant.

There is an additional trapping constant associated with magnetic trapping in

the MOT. As discussed in Section 2.5.1, the magnetic trapping force is of the form

~Fmag = −κmagzẑ, (6.36)

with

κmag =
µBgfB

′
z

~kΓ
κMOT . (6.37)
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With this, the magnetic trapping frequency is

ω0,mag =

√
µBgFB′z

~k
ω0,MOT . (6.38)

The data shown in the spectrum of Figure 6.6 were recorded with MOT laster

detuning ∆L = −4.8 MHz, magnetic field gradient B′z = 215 G/cm, and laser Rabi

frequency |Ω| = 0.575Γ, where Γ is the atomic decay rate. With the (laser power

balanced) V-atom solutions for κ and β in Equations 2.84 and 2.71, the MOT has

a trapping frequency of f0,V-at, MOT = 1056 Hz and the magnetic trap has frequency

f0,V-at, Mag = 77 Hz. It is also good to look at the frequency for the full 87Rb atom

calculation, as the spring constant for the full atom had a much stronger trapping

force. Using the scaling between the full atom and the V-atom confinement forces

from fitting the simulated data in Figure 5.2, the MOT has a trapping frequency of

f0,87Rb-MOT = 3094 Hz and the magnetic-trapping frequency is F0,87Rb-Mag = 228 Hz.

All of these values, of course, are for the vertical axis of the MOT. In the horizontal

direction, the magnetic field and thus the trapping strength, is reduced by half. These,

then, give an additional frequencies scaled by
√

2 compared to the z-axis frequencies.

In principle, then, the spectrum of Figure 6.6 could be made of four Lorentzian

peaks, all scaled by
√
f . However, due to the high MOT frequencies, it is more likely

that the magnetic trapping results in the peaks shown in Figure 6.6. This gives a

spectrum of the form

S(f) = a
√
f

[
Γz/2π

(f − 2fz)2 + Γ2
z/4

+
Γxy/2π

(f − 2
√

2fz)2 + Γ2
xy/4

]
. (6.39)

The two spectrum formulae of Equations 6.35 and 6.39 are plotted along with the

fluorescence data in Figure 6.7. The green curve in the figure is a fit to the the single
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FIGURE 6.7. Lorentzian fluorescence amplitude spectrum. The green curve is a fit
to the single Lorentzian spectrum of Equation 6.35 and the red curve is a fit to the
double Lorentzian spectrum of Equation 6.39. The black curve is a fit to the double
Lorentzian spectrum without the group of 5 “low” values on the interior of the curve,
hence its “Bad” labeling.

Lorentzian spectrum of Equation 6.35 with fit values a = 42 ± 0.3, Γ = 1442 ± 11,

and fz = 100 ± 3 Hz. The red curve is a fit to the double Lorentzian spectrum of

Equation 6.39 with fit values a = 20 ± 0.1, Γz = 2608 ± 68, Γxy = 834 ± 14, and

fz = 94 ± 1 Hz. The black curve, which should be treated as suspect, is a fit of

the double Lorentzian spectrum without the 5 “low” data points in the interior of

the spectrum. Without these, the fit parameters are a = 21 ± 0.2, Γz = 1153 ± 88,

Γxy = 1500 ± 105, and fz = 143 ± 5 Hz. While this is not an appropriate way to

analyze data, it does show that the spectrum equation is pretty spot-on to (most of)

the data. All of these frequencies are the appropriate order for the magnetic trapping

frequency.
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FIGURE 6.8. Fluorescence amplitude scaling with field gradient. (a) Calculated
fluorescence amplitudes. (b) Low-frequency (red data) fluorescence spectra. (c) High
frequency (blue data) fluorescence spectra. In both spectra (b) and (c), graphs are
labeled as their desired anti-Helmholtz currents while horizontal positions in (a) are
in terms of measured field gradients.

6.3.3 MOT Size: Trapping Strength

The “size” of the MOT can be scaled by changing the trapping strength, κ for

the MOT. This is done easily by changing the anti-Helmholtz coil gradient. This is

done for two data runs in Figure 6.8. In Figure 6.8a, two very different relationships

are seen. The blue data shows clear independence of the fluorescence amplitude at

different DC field gradients. This could be expected as the current amplitude ε is

constant for all field gradients. With the weaker trapping of the field, the atom may

explore further distances from the center of the trap, but the (relative to DC) size of

the oscillation is the same everywhere.

The red data in Figure 6.8a show a linear relationship between the gradient and

the fluorescence. This could be expected as at every position the total oscillation of

the magnetic field magnitude (in Gauss) is larger for the higher field gradient. So
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even while the atom explores shorter distances from the center of the trap with the

higher gradient, the change in magnetic field strength is larger in these regions.

These two different scalings is also reflected directly in the spectra of Figures 6.8b

and 6.8c. In Figure 6.8b, the peak heights clearly grow with increasing DC current,

while in 6.8c, they are relatively constant. So which is correct? Apparently the linear

results. In Figure 6.9, a simulation for the 1D 87Rb atom shows the fluorescence

amplitude as a function of the DC anti-Helmholtz current at a variety of temperatures

in µK. Clearly the results are linear. The two experiments shown in Figure 6.8

have similar MOT parameters—their only clear difference is the frequency of the

oscillations. It is unclear why the two give very different results.
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6.3.4 MOT Size: Detuning

It is also possible to scale the size of the MOT through the detuning of the lasers.

As can be seen from the “traditional” view of the atomic Zeeman shifts in the MOT

of Figure 2.5, there is some distance from the center of the MOT where the Zeeman

shifts cause the lasers become blue detuned. From Equation 2.75, this happens at a

z-direction “radius”

zrad =
~∆L

µBgFmFB′z
(6.40)

and twice this distance from the MOT center for the x- and y- directions (due to the

halved magnetic field gradient in these directions). This blue detuning as a function

of position is also responsible for the “turn off” of the enhanced trapping of the atoms

with multiple ground states discussed in Section 5.3.3. For our high magnetic field

gradient MOT, B′z = 215 G/cm (an anti-Helmholtz current of 8 A to match the data

in Figure 6.10) and lasers detuned by ∆L = −Γ and the outer most excite state for

the 87Rb atom (mF = ±3), this radius is 48 µm, which is significantly larger than an

atom’s position distribution at MOT temperatures, as seen both in simulations and

images of the atom (see the single-atom fluorescence profile in Figure 6.15a, which

has standard deviation of around 15 µm).

This is examined in two ways in Figure 6.10. The red data shows the fluorescence

oscillation strength as a function of laser detuning with a fixed magnetic field gradient

of 215 G/cm. The blue data show the fluorescence amplitude as a function of

detuning with a constant MOT radius as defined in Equation 6.40. Figure 6.10a shows

measured experimental data and Figure 6.10b shows simulated results. A few things

are noticeable. First, the vertical scale is very different between the two, but that

is understandable based on the discussion in Section 6.3.1. Second, while the shape
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FIGURE 6.10. Fluorescence amplitude as a function of laser detuning. (a) Measured
Data and (b) 1D simulated data for 87Rb with a temperature of 190 µK. Red data
in both graphs changes detuning with keeping the anti-Helmholtz current fixed. The
blue data in both graphs changes the anti-Helmholtz current along with the detuning
to keep the MOT “radius” in the z-direction constant as in Equation 6.40.

of the fixed radius graphs roughly agree, the fixed current graphs are quite different.

Third, the strong dependence of the amplitude on the detuning near ∆L = −Γ could

play an important role in noisy signals. Our experiments are done with detunings right

around −Γ. As seen in Equation 3.2, the detuning of the laser light is controlled by

the frequency of 3 AOMs. Poor calibration between the experimental control system

and the AOM’s output frequency could cause systematic errors in the detuning.

6.3.5 Position Changes: Background Fields

Another clear check on the positional dependence of the fluorescence oscillations

can be done by shifting the center of the MOT (defined as where ~B = 0) using

a background magnetic field. In being shifted away from the center of the anti-

Helmholtz coils, the atom should see higher total magnetic field modulations. This

agrees with the measured and simulated results of Section 6.3.3 which showed the

higher field gradient gave larger fluorescence amplitudes. Here, rather than higher
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gradients producing larger total fields for the atom to see, shifting the center of the

MOT with a uniform background field puts the atom at locations with a higher field

gradient.

Doing this test requires a change to the Bayesian algorithm as described in

Section 4.2.7. Rather than triggering the experiment based on measuring a single

atom, the experiment must be triggered manually after some set time. Because there

is a background field, increasing the magnetic field gradient (to limit loading in the

MOT) causes the “center” of the MOT to shift, as discussed in Section 2.5.1. Thus,

to collect light from the single atom, the APD must be focused on the location where

the atom will appear after the gradient is increased, rather than the location where

the atom started (when there were low magnetic field gradients). Without the APD

focused on the center of the MOT, an average loading time must be “guessed” to

ramp up the magnetic fields and hope that a single atom has arrived in the trap.

Normally, a time of 10-20 s works well for just a single atom to load into the MOT.

This matches will with the loading rate of 0.006 atoms/100ms used in the Bayesian

algorithm (see Section 4.2.4).

In Figure 6.11a, the slope of the fluorescence oscillation amplitude (compared

to the current amplitude) is plotted as a function of the DC background magnetic

field. This field was applied along the lab x-axis (parallel to the face of the imaging

camera). Here, the slope of the fluorescence amplitude was chosen to limit noise that

may arise in individual dI settings. The shape of the graph is not too surprising. It

is symmetric, which is to expected as the anti-Helmholtz magnetic field magnitude

is symmetric. It is a little surprising that the graph is not centered on B = 0, but

this can be easily explained as a result of an additional background field and/or an
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FIGURE 6.11. Fluorescence amplitude with background magnetic fields (a) Measured
Data. (b) Scaled and shifted simulations for different models for the MOT.

imbalance in the MOT beams. While considerable effort is put into canceling these

(see Section 3.2.4 in particular), the cancelation must not have been complete.

In Figure 6.11b, three MOT models have been used to attempt to match the

measured data, with varying success. Each model, however, still requires a large

overall scaling factor as well as a manual shift of data center to match the experimental

data. The scalings and shifts are given in the figure key. The 3D theory matches

the experimental results as closely as possible. It does use all six MOT beams and

calculates the force along an axis that is in between the beams, rather than along the

axis of a beam. As discussed in Section 5.2.1, the beams enter the experimental cell

at 45◦ while the camera images the MOT along the length of the cell. Thus when

moving the atoms horizontally, they do not move down the axis of a beam. All six

MOT beams are used in the 3D calculations, with MOT beam phases averaged over.

The 3D calculations do include an addition atom position oscillation of 5 µm, but does

not include the off-axis 3D probability estimation. Because the this estimator maps

3D position onto the magnetic field magnitude, the large background field quickly

swamps the change in field magnitude for atoms that are off-axis. In fact, this tends
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to narrow the atomic distribution rather than broaden it, which was the goal of

implementing the 3D mapping.

From the theory graphs in Figure 6.11b, there is still a numeric factor of 35

between the measured experimental data and the best theory we have developed.

The increasingly complex simulations discussed in Section 6.3.1 have reduced this

scaling factor from around 350 between the data in Figure 6.4 and the 1-D V-atom

simulation in Figure 6.5 (at 190 µK) to “just” 35 here, but this gap persists.

There is also a large background field offset that does not match well with

the experiment. In the experimental data, the “minimum” of the slope graph is

around -0.2 G, but is still close to zero for the simulated data. In Figure 6.11b, the

simulation results are is shifted manually by 0.2G to 0.38G to have them overlap with

the measured data. These additional shifts could be explained by imbalance in the

experimental MOT beam powers. Despite careful balancing of their beam powers with

the new fiber launcher systems discussed in Section 3.2.4, a lasting power imbalance of

5% is reasonable (although still quite large). This imbalance is simulated as the pink

curve in Figure 6.11b, but only shifts the MOT center by around 0.1G. An imbalance

of 10-20% could result in the observed shift in the data, but this imbalance is much

larger than in the experiment.

A lingering background magnetic field would also be a surprise source for the

central shift, as the “default” currents for the Earth canceling Helmholtz coils are set

by keeping the atom in one place when ramping the MOT coil magnetic field. This

ensures any Earth or lab based background field is canceled, prior to adding a known

background field for the experiment. While this technique to cancel background fields

could also impose a background field that cancels the MOT beam power imbalances
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(see Equation 2.82), such a large imposed field of the order 0.2G as seen in the data

would require the same 10-20% imbalance as discussed previously.

6.4 Multiple Atom Fluorescence Amplitudes

Another reasonable experiment would be to look at the modulation from more

than one atom. In this case, there are n atoms that are emitting fluorescence at the

modulated rate. These should all have the same phase as the current modulation,

but would have different amplitudes based on the position of the different atoms in

the MOT. For n atoms in the MOT, the spectrum calculation of Appendix E would

change in Equations E.1 where the measured average fluorescence rate and its variance

would become

fl(t) = 〈Fl〉 [1 + [(
∑

i εi) cos(2πfαt)]

σ2 = σ2
B + nσ2

α,
(6.41)

where 〈Fl〉 is the average fluorescence rate, εi is the oscillation amplitude for MOT

atom i, σ2
B is the background fluorescence variance and σ2

α is the fluorescence variance

for one atom. As shown in Figure 4.3, the deviation from a Poisson distribution is

small for multiple atoms in the tightly confined MOT. So with a large fluorescence

rate, it is still valid to assume the fluorescence is Poisson distributed just as discussed

for a single atom in the appendix and Section 6.2.1. Then the only difference between

the single-atom calculation the multiple atom calculation is an effective fluorescence

amplitude

ε′ (~r, t) =
∑

i

εi (~r, t) , (6.42)

where their specific time and position dependence is shown here. With a single

atom, the time dependence is managed by averaging over data runs and the spatial

dependence is what provided for the position and temperature measurements. With
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FIGURE 6.12. Spectra of multiple atoms in a MOT. Magnetic field driven at 1499
Hz with modulation amplitude ε = 0.025.

multiple atoms, these averages are challenging as the atoms move independently and

possibly interact (although the interaction cross-section for a few atoms in the MOT

is small [15]). Even if the averaging was straightforward, it would be impossible to

distinguish between photons from each atom so their overall oscillation amplitude

would still appear as just one amplitude. With this, the amplitude from multiple

atoms does not appear as a useful tool for measuring temperatures. Despite its lack

of utility, spectral peaks from multiple numbers of atoms are graphed in Figure 6.12.

6.5 Parametric Resonances

As we’ve seen in Chapter II, atoms in MOTs and objects confined by dipole forces

behave as damped, harmonic oscillators. In such systems, modulating the strength

of the restoring force can bring about new resonances as noted in Section 6.1. These

resonances can caused forces oscillations called parametric oscillations and have been

studied some in optical systems for atoms in large MOTs [136–138] and for beads in

a dipole trap [39].
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Under parametric oscillation, the equation of motion for the location of an atom

in the MOT (in 1D) is given by

mz̈ = −βż − κ [1 + ε cos(ωt)] z, (6.43)

where ε is the “strength” of the oscillation and ω is a parametric driving frequency,

not necessarily the same as the natural frequency of the oscillator, ω0 =
√
κ/m. As

calculated in Appendix F, additional excitation modes of the oscillator can be induced

if the oscillator strength is above a threshold strength given by

ε2TH =
4β2

m2ω2
0

=
4β2

mκ
, (F.8)

and the parametric frequency occurs in the region

2ω0 −
ω0

2

√
ε2 − ε2TH < ω < 2ω0 +

ω0

2

√
ε2 − ε2TH. (F.7)

Comparing the equation for εTH to the known MOT relationship between κ and β in

Equation 2.83, it simplifies to

ε2TH, MOT =
4β~k

mgFµBB′z
. (6.44)

Additionally, we could look for parametric excitation in the magnetic trapping force.

As discussed above the magnetic trapping force has a trapping strength related to the

MOT strength according to Equation 6.37. With this the magnetic trapping could
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Natural Frequency, ω0/2π Threshold Strength

MOT (V-atom) 897 Hz 0.051
Magnetic Trapping (V-atom) 70 Hz 0.65
MOT (87Rb) 2624 Hz 0.017
Magnetic Trapping (87Rb) 205 Hz 0.22

TABLE 6.1. High-gradient MOT parametric resonance conditions. Experimental
parameters have typical MOT values as noted in the text.

also experience parametric excitation with threshold strength

ε2TH, mag =
4β~2k2Γ

mg2
Fµ

2
B (B′z)

2 . (6.45)

For both MOT magnetic confinement and magnetic trapping, the natural frequency

and threshold strengths are given in Table 6.1 using typical (high-gradient) MOT

values δ̃L = −1, |Ω| = 0.5Γ and B′z = 242 G/cm. This table also shows approximate

values for the full 87Rb atom, using the the scaling between the full atom and V-atom

MOT confinement force from fitting the simulated data in Figure 5.2.

While the solution to Equation 6.43 predicts exponential growth of the atomic

position, including higher order terms of the position and velocity (z3 and v3) in the

expansion for the force Equations 2.77 and 2.68, allows for stable oscillations

z(t) = R cos(ωt+ φ), (6.46)

where the amplitude is given by

R2 =
16

3A (4 + ε2TH)
2


4

(
2ω

ω0

− 2

)
− ε2TH +

√
ε2 (4 + ε2TH)− 4ε2TH

(
2ω

ω0

− 1

)2



(6.47)

and Aκ/m is the coefficient for the force term proportional to −z3 [138].

187



These oscillations are clear when looking at pictures of the atom, such as those

in Figure 6.13a. These pictures are the average of a number of data runs with one

atom and were taken with an exposure time of 150 ms. The magnetic fields had

a parametric frequency of 1154 Hz, so that the pictures reveal the atom’s position

distribution over 173 oscillation periods. The pictures clearly show the double-peaks

as would be expected for the position distribution of an oscillating particle. Even

without averaging over many pictures the double-peak shape appears, as shown in

Figure 6.16a. The graphs in Figure 6.13b were found by summing pixel intensity

across the rows of the pictures in (a). The slight tilt, around 4◦ was ignored for the

integration. These figures clearly show the double-peaks as would be expected for the

position distribution of an oscillating particle. The oscillation amplitudes measured

in Figure 6.13c compare the distance between peaks.

As discussed in Section 2.5.1, the center of a MOT tracks the location where the

magnetic field vanishes. If there is a background magnetic field, B0, in 1D, the field

is given by Equation 2.80. If the magnetic field gradient oscillates, the location where

the magnetic field vanishes also oscillates according to

z0(t) =
−B0

B′z [1 + ε cos(ωt)]
≈ −B0

B′z
+
B0

B′z
ε cos(ωt) (6.48)

by solving Equation 2.81 in the equal laser field strength regime. If the oscillations

present in Figure 6.13a were due to the movement of the center of the MOT, a linear

fit of the graph in Figure 6.13b would correspond to the ratio B0/B
′
z. This fit gives a

value of B0/B
′
z = 551±53 µm. This data was recorded with a magnetic field gradient

of 219 G/cm, which would require a background field of B0 = 12± 1 G. This is much

larger than the actual background field. Such large oscillations are best explained,

then, by a parametric resonance.
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FIGURE 6.13. Images of Single Atom Parametric Resonance. (a) CCD exposures
of one atom in a parametric MOT with increase modulator strength. (b) Pixel
intensity of images integrated across a row (normalized to a position distribution).
(c) Oscillation amplitudes of an atom oscillating in a parametric MOT. The curve is
a power law fit to the data: Ap = 796ε1.21.
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For a particle oscillating with amplitude A, the probability to be at a position a

is given by Equation 6.34). We can assume our camera sees a gaussian distribution

for light detected from a single atom located at position a. The variance of this

distribution, σ2, is largely to displacement of the atom from the camera’s focal plane,

but there is also a contribution due to atom motion during an exposure. If the

exposure time is much longer than the period of oscillation for the atom, the light

distribution seen by the atom is given by

L(z) =
1

π
√

2πσ2

∫ A

−A
exp

[−(z − a)2

2σ2

]
da√

A2 − a2
(6.49)

or in dimensionless variables relative to σ, we have

L(z′) =
1

π
√

2πσ2

∫ 1

−1

exp

[−(z′ − A′a′)2

2

]
da′√

1− a′2
. (6.50)

This does not have an analytic form, but is plotted in Figure 6.14. If the oscillation

amplitude is small relative to the standard deviation, the resulting distribution looks

like a single peak. At larger amplitudes, distinct peaks at the edges of the oscillation

can be resolved. These are both observable in Figure 6.13b.

Making one additional change, we can fit Equation 6.49 using the data from

6.13b. This change adds an offset to the integrable value a:

L(z) =
1

π
√

2πσ2

∫ A

−A
exp

[−(z − (a− a0))2

2σ2

]
da√

A2 − (a− a0)2
. (6.51)

We can fit this equation for for values of σ, A, and a0 using the distributions in Figure

6.13b. The data to fit is pixel data, which is the integrated fluorescence over region of

size 15 µm. To fit this appropriately, the fitting algorithm integrates a high-resolution
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FIGURE 6.14. Light Distribution for Parametric Oscillating Atom. Numeric
solutions for Equation 6.50 with listed values for the scaled oscillation amplitudes
A′ = A/σ. Inset shows plots of Equation 6.53, the normalized light amplitude at the
center of the MOT. Both graphs have unit variance.

position spacing, then sums over a 15 µ region to generate information for effective

pixels before comparing to the data. A few plots of the fitted (higher-resolution)

distributions for some atom images are reproduced in Figure 6.15 along with graphs

of the resulting fitted values for the data in Figure 6.13.

The fit for the detected light distribution standard deviation σ (Figure 6.15d)

is consistently between 15 µm and 30 µm, which corresponds to a width of 1 and 2

pixels. This is consistent with single-atom photographs being a few pixels in size.

In Figure 6.15e, the oscillating atom’s position amplitude grows as the

modulation amplitude increases, which is expected. The values are also close to

the values measured amplitudes in Figure 6.13c, but a little larger. This is expected

from the graphs in Figure 6.14, where the oscillation amplitudes A′ (which were

measured in Figure 6.15e) are larger than the peak of the light distribution (which
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were measured in 6.14c). This is due to the hard cutoff of the oscillation probability

distribution above a = ±A in Equation 6.34.

The center offsets in Figure 6.15f are all much smaller than a pixel, which is

expected from the images. The large noise in the fit data for small oscillations

are a result of the widening oscillation amplitude closely mimicking an increase of

the detected light distribution variance. The shared impact on the resulting light

distribution makes fitting the two values difficult.

At the center of the oscillation, Equation 6.50 does have an analytic solution

given by

L(z′ = 0) =
I0

(
A′2

4

)

√
2πσ2

exp

[−A′2
4

]
(6.52)

where I0 is the 0-th order modified Bessel function of the first kind [139]. We can

normalize this to the condition of no oscillation (A = 0) to give a useful equation

L̃(z′ = 0) = I0

(
A′2

4

)
exp

[−A′2
4

]
, (6.53)

which just represents the center intensity (relative to no oscillations) for the atom.

This equation is plotted as a function the oscillation amplitude in the inset of Figure

6.14. This is an expected shape as the atom spends less of its time close to the center

of the MOT when there is a large oscillation amplitude. We can verify this one of two

ways. First, by examining the light intensity in the center pixel for each atom image

in Figure 6.13a. Here, equation 6.51 is integrated over the size of one pixel. This is

shown in Figure 6.16a.

The second way is by looking at the average fluorescence for a single atom from

the APD data. This fluorescence is shown in Figure 6.16b. This graph shows the

drop of intensity directly. At around t = 31 s, there is a spike in fluorescence as the
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FIGURE 6.15. Fitted Light Distributions for Parametric Oscillating Atoms. All
graphs are results fits for Equation 6.51 (a-c) Plots of fitted pixel data for modulation
amplitudes ε =0.0062, 0.055, 0.12 respectively. Vertical lines show the ”boundaries”
of pixels. Black lines are fits, red lines are data. (d) Fitted values for light distribution
standard deviation for data in Figure 6.13. (e) Fitted values for position amplitude
for data in Figure 6.13. Line is a power law fit : A = 196ε0.546. (f) Fitted values for
center offset for data in Figure 6.13. Graphs (d-f) share a common horizontal scale.
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atom enters the MOT. This triggers the bayesian algorithm to reduce the trapping

region and introduce the magnetic field oscillation. Immediately, the atom beings

oscillating and the fluorescence drops as the atom spends less time in the focus of

the APD lens system. This graph is representative of each data run that produced

the single atom images in Figure 6.13a. Here, the intensity is plotted as a function

of A/σ, the position oscillation amplitude relative to the light distribution standard

deviation. Also shown is a plot of Equation 6.54 using average values from the prior

fits (σ = 16.9 µm and a0 = −0.22 µm) for comparison.

Equation 6.53 looks at just the value at z′ = 0, which we cannot measure.

Instead, the values in Figure 6.16c are from a region of space equal to the focus

size of the APD lens system. To calculate this accurate, we integrate Equation 6.51

over some small region, again normalizing to the case of no oscillations. This gives

equation

F̃ l =

√
2/π3

(
Erf
[
s+a0√

2σ

]
+ Erf

[
s−a0√

2σ

])
∫ s

−s
dz

∫ A

−A
da

exp
[
−(z−(a−a0))2

2σ2

]

√
A2 − (a− a0)2

, (6.54)

where the integration region represents the width of the APD lens system focus.

The error functions appear from the normalization, an integral from −s → s over a

gaussian of variance σ and centered at a− a0.

This APD measured signal is plotted in Figure 6.16c, with the integration region

defined as the radius of the APD lens system focal spot size. Represents a fit of the

Equation 6.54. The longer tail in the APD data compared to the pixel intensity arises

from the larger focal size compared to pixel size.
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FIGURE 6.16. Light intensity loss due to parametric oscillations. (a) Normalized
intensity of center pixel for parametrically oscillating atom. (b) Graph of APD
measured intensity for one data run with magnetic field modulation amplitude
ε = 0.149. A single picture of this atom is also shown. (c) Normalized intensity of
APD signal for a parametrically oscillating atom. Lines are calculation of Equation
6.54 with average fit values for A, σ, and a0.
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3-Dimensional Parametric Resonances

As discussed in Section 5.1.2, the magnetic field created by the anti-Helmholtz

coils have the form

~B (~r) = B′z

(x
2
x̂+

y

2
ŷ − zẑ

)
, (5.4)

where B′z is the magnitude of the linear gradient along the MOT axis. Recalling

Equation 2.78, the restoring spring-constant, κ along some axis in a MOT is

proportional to the magnetic field gradient along that axis. From these two, we

must have that the restoring spring-constant along the x- and y-directions in the

MOT is half that of along the z-direction. Writing the equation of motion for an

atom in a MOT, we then have

m~̈r = −β~̇r − κzẑ − κ

2
xx̂− κ

2
yŷ (6.55)

where κ is defined as in Equation 2.78 for the V-atom or from the potential recovery

method in Section 5.5. In prior parametric resonance experiments for atoms in a

MOT, the z-direction MOT trapping beams were modulated to cause parametric

oscillations for just piece of this equation [136–138]. However, modulating the MOT

magnetic field also imposes parametric conditions on the x- and y-directions:

m~̈r = −β~̇r − κ [1 + ε cos(ωt)] zẑ − κ

2
[1 + ε cos(ωt)]xx̂− κ

2
[1 + ε cos(ωt)] yŷ (6.56)

The parametric oscillations along the z-direction were discussed and observed above.

However, because of the differing strength of the restoring spring-constant along the x-

and y-directions, there will be additional resonances that can appear which can cause

large oscillations perpendicular to the anti-Helmholtz coil axis. Because these occurs
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in a plane that is normal to the camera’s imaging plane, these will be challenging to

image.

The parametric oscillations in x- and y-direction can be analyzed using the same

method as outlined for the 1D parametric resonance in Appendix F with a simple

change to Equations F.3 to make them

ω →
√

2ω0 + ζ

ν → 1√
2
ω0 + 1

2
ζ,

(6.57)

where ω0 is the oscillation frequency along the z-direction (i.e., ω0 =
√
κ/m). The

resulting parametric resonance region is given by

√
2ω0 −

ω0√
2

√
ε2 − ε2⊥H < ω <

√
2ω0 +

ω0√
2

√
ε2 − ε2⊥H, (6.58)

where the threshold strength to excite x- and y-direction oscillations is

ε2⊥H =
2β2

ω2
0m

2
. (6.59)

This formalism reveals that the additional excitations in the x-y plane should appear

at a different frequency from the excitation along the z-direction and at a smaller

threshold strength. It is instructive look at these in terms of x- and y- frequencies:

2ωxy − ωxy
√
ε2 − ε2⊥H < ω < 2ωxy + ωxy

√
ε2 − ε2⊥H (6.60)

and

ε2⊥H =
β2

ω2
x,ym

2
. (6.61)
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From this form, the parametric resonance region is still centered on twice the natural

frequency in the x-y plane—which would be expected. Comparing to the threshold

strength along the z-axis, εTH of Equation F.8, in the x-y plane the threshold strength

is half as large. This is easily explained by noting that the weaker restoring force in

the x-y plane requires a smaller perturbing strength (ε) to overcome. Additionally,

the width of the parametric resonance region in the x-y plane is twice that of the z-

axis as revealed in Equation F.7. This is also easily explained by the weaker restoring

force allowing parametric excitation over a wider range of frequencies. This last piece

could help explain the broad peak of the spectrum in Figure 6.6.

6.6 Non-Sinusoidal Waveforms

The oscillation measurements described above focus on sinusoidal modulations.

The same analysis should hold for any periodic modulation of the MOT magnetic

field. Focusing on three common waveforms, all with fundamental frequency f1 and

amplitude A, the Fourier series for

– square waves contain only odd harmonics with amplitudes A/n,

– triangle waves contain only odd harmonics with amplitudes A/n2, and

– sawtooth waves contain all harmonics with amplitudes A/n,

where n denotes the index of the harmonic [140]. If the current in the anti-Helmholtz

coils is modulated with different waveforms, evidence of it should be present in

fluorescence spectra of a single atom.

Figure 6.17 shows the power spectra form an atom for a sine wave and the three

waveforms above. In each of these, the driving frequency was 401 Hz and the anti-

Helmholtz current modulation amplitude was 0.04. Some things stand out clearly in
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FIGURE 6.17. Power spectra for different waveforms. Inset graphs show the
amplitudes of peaks at each harmonic, relative to the first. Solid lines show the
expected Fourier series amplitude and dashed line show the expected amplitude scaled
by a factor of the harmonic number, n−3/2.
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these. First, the spectra do generally show the correct harmonics for each waveform.

Second, the fundamentals in some fo the graphs show sidebands who differ from the

peak by around ±27 Hz. This results from mixing with the unknown 27 Hz magnetic

field oscillation. Lastly, the triangle wave shows almost no harmonics above the first,

although willful examination of the spectra may show a peak at the third harmonic

frequency. The lack of higher harmonic peaks for the triangle wave is directly related

its much faster amplitude decay, n−2.

The inset graph for each waveform in Figure 6.17 shows the amplitude for the

first 8 harmonics calculated from the power spectra for the fluorescence (red data)

and the first 6 harmonics from a power spectrum of the anti-Helmholtz current (blue

data). The current signal is measured with an oscilloscope and the CLN-50 Hall

sensor (see Section 3.3.5), so the maximum harmonic measurable for the current is

limited by the time resolution of the oscilloscope. For clarity, these have been scaled

to the amplitude of the fundamental. The solid black line shows the appropriate

scaling of the Fourier series amplitudes as a function of the harmonic number n and

the dashed black line shows the appropriate scaling with an additional factor of n−3/2.

The amplitudes for the current modulation are close to their “correct” scaling.

For the square wave, the amplitudes of the odd harmonics scale as n−0.92±0.06. For

the triangle wave, the amplitudes of the odd harmonics scale as n−1.81±0.12. For the

sawtooth wave, the amplitudes of the harmonics scale as n−0.84±0.09.

On the other hand, the fluorescence modulation amplitudes scale closer to the

values when an additional factor for n−3/2 is included. This factor arrises from the

non-uniform frequency response of the fluorescence as shown in the power spectrum

of Figure 6.6, as its high frequency tail went as f−3/2. For the square wave, the
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Waveform Function (one period) Variance

Sinusoid y(t) = A sin
(

2πt
T

)
σ2 = A2/2

Square y(t) = −AΘ(−t) + Aθ(t) σ2 = A2

Sawtooth y(t) = 2A
T
t σ2 = A2/3

Triangle y(t) = 4A
T

[(
t+ T

4

)
Θ(−t)−

(
t− T

4

)
Θ(t)

]
σ2 = A2/3

TABLE 6.2. Variance compared to amplitude for common waveforms. Each waveform
has a period T and amplitude A.

odd harmonics scale as n−2.27±0.19. For the triangle wave, the odd harmonics scale as

n2.89±0.29. For the sawtooth wave, the harmonics scale as n−2.27±0.13.

The calculations for the current amplitudes from their (unshown) spectra do

not derive from Equation 6.28, which applies only for the oscillating average of a

Poissonian sampled fluorescence. The current is measured directly as noted above

and should follow the function

I(t) = I0 [1 + ε sin(2πfαt+ φ)] . (6.62)

This gives rise to Equation 6.4, as the magnetic field gradient is directly proportional

to the current. The power spectrum of this current is

PI(f) = I2
0δ(f) +

I2
0 ε

2

4
δ(f − fα) +

I2
0 ε

2

4
δ(f + fα). (6.63)
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When calculating the spectrum numerically, the amplitudes of the two delta functions

are found with with the same area-under the curve calculation as in Equation 6.26.

Doing this for the peak corresponding to each harmonic n gives the current harmonic

amplitudes εn for the inset graphs in Figure 6.17.

The overall oscillation amplitude for these different waveforms can also be

calculated directly from the current measurement via its the variance, as was done for

the sinusoidal waves in Section 6.3.2. For the four waveforms of interest, the variance,

σ2, as a function of the amplitude A is given in Table 6.2. Each of these waveforms,

y(t), have an average value of zero when averaged over a period, so calculating the

variance is given by

σ2 =

∫ T/2

−T/2
y2(t)dt. (6.64)

This method, of course, cannot extract the amplitudes of the Fourier series for

the waves, but it can easily find the overall wave amplitude, particularly useful for

calibrating amplitudes at different modulation frequencies.
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CHAPTER VII

CONCLUSIONS

As discussed in Section 6.3.5, there remains a disagreement between experimental

measurements and theoretical predictions for the amplitude of fluorescence

modulations. At temperatures similar to the measured atomic temperature of

160 µK using the release-recapture method, our MOT model predicts fluorescence

amplitudes around 35 times smaller than our measured results. As noted in Section

6.1.3, selecting an appropriate model for the atom in the MOT is important for

our measurement. The measurement results were sensitive enough to rule out the

extended two-level atom model that is common in the literature [25]. Our best model,

a full D2 level structure for 87Rb in a 3D MOT with both added small oscillations

and off-axis atomic probabilities, still fell short of the measured predictions but is a

noticeable improvement over simpler models of both the atom and its environment.

The disagreement could, of course, be from either the data analysis rather than

the model. The analysis has been throughly checked against simulated fluorescence

signals with a known modulation amplitude, mα, and has been shown to correctly

extract its value via Equations 6.27 and 6.28. This fluorescence simulation randomly

sampled photon arrivals from an oscillating average fluorescence rate, producing

data that closely mimics the experimental data without any reference to a source

of photons. It did not simulate the behavior of the atom and tie that to fluorescence

measurements. This check was purely to verify the analysis of Section 6.2 was

appropriate. With confidence that our analysis measures fluorescence amplitudes

appropriately, the disagreement must lie in the theoretical model.

The continued improvement of the theoretical model to approach the measured

result (see, for example, Figure 6.5) gives a hint that there is potentially a missing
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complication of the MOT that has yet to be included in the simulation. Based on the

magnetic field offset between measured amplitudes and theoretical ones seen in Figure

6.11, one potential route is to more closely model the magnetic field of the coils. At

the most basic level this would require using the full magnetic field of Equation 5.2.

We have exclusively used the linear description in Equation 5.4 which should be very

accurate near the center of the MOT coils. Shifting the MOT further from the center,

with either a background field or imbalanced MOT lasers, could move the atom to a

location where this description breaks down. However, the full field equation and the

linearized field differ in magnitude by less than 1.5% out to 500 µm from the center

of the trap in the z-direction and and around half that for displacements in the x-y

plane. This should comfortably cover the range of positions the atom would explore

even with large background fields.

Along a similar and potentially more valuable addition would take into account

known defects in the MOT coils. In the process of building the water cooled MOT

coils, one coil became tilted a few degrees so that the two are not perfectly coaxial.

This is largely responsible for the 4◦ tilt of the atom’s oscillations seen in Figure

6.13. While the effect does not prevent the MOT from loading, it could be partially

responsible for added noise in fluorescence from a single atom seen in Figure 4.3. The

blue data in this figure was recorded with the (second generation) permanent magnets

while the others are done with the electromagnets (without added modulation). The

permanent magnet MOT shows very close to Poissonian growth of the variance with

atom number while the two data sets for the electromagnets show added noise in

the fluorescence variance. This appears as a general feature of our single atom

electromagnet MOT—the variance in the fluorescence signal from a single atom is

larger than for its permanent magnet equivalent. This could arise from a more
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complex magnetic field arrangement from the electromagnet coils due to their tilt.

We have investigated solving this tilt by manually rotating the coil to compensate

for the tilt (although this still causes the coils to have parallel axes rather than be

coaxial), but it did not have a noticeable impact on the fluorescence amplitudes.

Additionally, preliminary theoretical investigations of the coil defect has done just by

rotating the magnetic field of one coil slightly, which these showed very little impact

on the theoretical results. This test was done just along one MOT axis and with

an otherwise idealized MOT. How these defects interplay with other magnetic fields,

induced currents, or non-ideal MOT beams could explain some, but likely not all, of

the gap between experiments and the MOT model.

As mentioned briefly in Section 5.2.4, the presence of conducting materials

around our experiment could create image currents that impact the magnetic field

seen by the atom. With an oscillating magnetic field as in our experiments, causes

additional issues as the changing magnetic field will induce currents in the surrounding

material. The eddy currents would then add a time-dependent background field to

the atom, shifting the center the MOT, as shown in Equation 2.81. Of particular

note, the Helmholtz coils around experiment which help cancel the Earth’s magnetic

field will have oscillating currents induced in them. Because the induced currents

act to oppose the change in field, their impact would be to lessen the modulation in

the magnetic field and thus reduce the fluorescence oscillation. While the induced

currents are small, they have been measured directly by monitoring the voltage across

the coils during experimental runs. While these currents should be equal and opposite

for opposing Helmholtz coils, the induced current measured in one of the Helmholtz

coils was significantly lower than the current in the coil opposite it. This coil is the

closest to the vacuum system and has the vacuum flange that mounts the experiment
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cell in its interior. Because there is this second conducing path for an induced current

(around the flange), the oscillating magnetic flux through the coils is reduced and thus

its induced current is smaller. The magnetic field this makes, then, does not cancel

the field from its opposite coil and leaves some residual induced field. This field will

be much smaller than the field from the MOT trapping coils, but does have a spatial

dependence and would impact the magnetic oscillations seen by the atom as it moves

around the trap. While this effect from the Helmholtz coils will likely be insignificant,

the measurable influence of eddy currents in the flange hints that they do influence

the system and may cause added motion to the atom.

Most experimental measurements have been done in the regime of fast magnetic

field modulation—where its frequency is must larger than the motional frequency of

atoms in the MOT.11 In this regime it was possible to ignore the motion of the atom

in the trap as discussed in Section 6.1.2 and even outside this regime the impact

on the position distribution of the atom is small [39]. As discussed Section 6.3.2

there are multiple relevant frequency scales (around hundreds of hertz for magnetic

trapping and kilohertz for the MOT) which complicate this high frequency regime.

The importance of the magnetic trapping to the shape of the amplitude-frequency

spectrum in Figure 6.7 as well as the parametric resonances seen in Section 6.5 further

suggest that motion of the atom in the trap may play a more significant role that the

present theoretical model assumes.

Extra motion of the atom has only been analyzed in our experiment through the

“forced” oscillations of the atom’s position (see Section 6.3.1). More careful analysis

of the motion of the atom could be done in a few ways. The numeric methods of

11The key exceptions to this being the frequency response measurements in Section 6.3.2 and the
non-sinusoidal waveform measurements in Section 6.6, where a lower frequency was needed so that
multiple higher harmonics would be visible in the spectra.
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Chapter V could be altered to include velocity of the atom. To do so, the detuning of

each laser must be modified with a doppler shift so that the detuning for the i laser

field become

∆L,i → ∆L,i + ~ki · ~v, (7.1)

where ~ki is the propagation direction of the field. This change would have to be

implemented for each beam and for both the trapping and repumping laser fields. In

this way, the wavefunction would be for both position and momentum and more

thorough analysis of motional dependence could be done. Similarly, the theory

could be reformed into a Wigner function formalism which reflects both position and

momentum distributions. This has been for many atomic models (in one dimension)

to examine sub-doppler cooling for atoms with many energy levels in a MOT [64, 72].

Doing so could reveal an overlooked physical mechanism for the measured, larger

than anticipated, fluorescence amplitude, much as Sisyphus and polarization gradient

cooling were unpredicted prior to the first MOT temperature measurements [71].
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APPENDIX A

HOW A FG = 0→ FE = 1 ATOM BECOMES A V-ATOM

The derivation for the equations of motion for the Fg = 0 → Fe = 1 atom

is sketched in Section 2.5. The equation of motion for the evolution of the atom’s

density matrix is given in Equation 2.60. The individual element equations are in

Section A.2.

If there is no electric field which couples the ground state to an excited state,

then the Rabi frequency for that state is zero. For the atom discussed in Section 2.5,

there is no field coupling |0〉 to |g〉, which gives Ω0 = 0.

These equations will be analyzed in the steady state. Taking a peak forward

with that in mind, Equation A.5c drives ρ0,0 → 0 when Ω0 = 0. With this, combining

Equations A.5f, A.5a, and A.5g produce ρg,0 = ρ−,0 = ρ+,0 = 0 and combining

Equations A.5b, A.5d, and A.5e produce ρg,0 = ρ−,0 = ρ+,0 = 0. Thus, in the steady

state all density matrix elements associated with the |E;m = 0〉 state go to zero in

the steady state.

This effectively decouples this state from the rest of the atom, making the atom

behave as a V-atom: an atom with a ground state and two excited states. A level

diagram for such an atom is shown in Figure 2.2c. The internal dynamics of this

atom then evolve under the equations in Section A.1, where we’ve also let ∆0 → 0 for

the nonexistent field’s detuning. In the steady state, the V-atom equations produce

excited state populations

ρss−,− = |Ω−|2
N

[
(|Ω−|2 + |Ω+|2)

2
+ 4 (|Ω−|2 + |Ω+|2) + 16|Ω+|2 (δ− − δ+)2 +

8 (|Ω−|2δ+ − |Ω+|2δ−) (δ− − δ+) + 4
(
1 + 4δ2

+

) (
1 + (δ− − δ+)2)] (A.1)
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and

ρss+,+ = |Ω+|2
N

[
(|Ω−|2 + |Ω+|2)

2
+ 4 (|Ω−|2 + |Ω+|2) + 16|Ω−|2 (δ− − δ+)2 +

8 (|Ω−|2δ+ − |Ω+|2δ−) (δ− − δ+) + 4
(
1 + 4δ2

−
) (

1 + (δ− − δ+)2)] ,
(A.2)

where Ω̃± = Ω± /Γ, δ± = ∆±/Γ, and the normalization factor is

N = 2 (|Ω−|2 + |Ω+|2)
3

+ (|Ω−|2 + |Ω+|2)
2 [

9 + 4 (δ− + δ+)2]

+4 (|Ω−|2 + |Ω+|2)
[
1 + (δ− − δ+)2]+

4|Ω+|2
[
2− 4δ− (2δ+ − δ−)

(
δ2
− − δ2

+

)
+ 3

(
δ2
− + δ2

+

)
+ 2δ2

+

]
+

4|Ω−|2
[
2 + 4δ+ (2δ− − δ+)

(
δ2
− − δ2

+

)
+ 3

(
δ2
− + δ2

+

)
+ 2δ2

−
]

+

−20 [|Ω+|2δ− + |Ω−|2δ+]
2

+ 20|Ω+|2|Ω−|2 [δ− − δ+]2 +

8 [|Ω−|2δ− + |Ω+|2δ+] [|Ω−|2δ+ + |Ω+|2δ−] +

16
[
1 + (δ− − δ+)2] [|Ω+|2δ2

− + |Ω−|2δ2
+

]
+

4
[
1 + 4δ2

−
] [

1 + 4δ2
+

] [
1 + (δ− − δ+)2]

(A.3)

The ground state population is given by ρssg,g = 1− ρss+,+ − ρss−,−.
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A.1 V-atom Equation of Motion

ρ̇−,− = −Γρ−,− − i
2

(
Ω−ρg,− − Ω∗−ρ−,g

)

ρ̇−,+ = − [Γ + i (∆− −∆+ − 2∆B)] ρ−,+ − i
2

(
Ω−ρg,+ − Ω∗+ρ−,g

)

ρ̇−,g = −
[

Γ
2

+ i (∆− −∆B)
]
ρ−,g + i

2
Ω+ρ−,+ + iΩ−

2
(ρ−,− − ρg,g)

ρ̇+,− = − [Γ− i (∆− −∆+ − 2∆B)] ρ+,− + i
2

(
Ω∗−ρ+,g − Ω+ρg,−

)

ρ̇+,+ = −Γρ+,+ − i
2

(
Ω+ρg,+ − Ω∗+ρ+,g

)

ρ̇+,g = −
[

Γ
2

+ i (∆+ + ∆B)
]
ρ+,g + i

2
Ω−ρ+,− + iΩ+

2
(ρ+,+ − ρg,g)

ρ̇g,+ = −
[

Γ
2
− i (∆+ + ∆B)

]
ρg,+ − i

2
Ω∗−ρ−,+ −

iΩ∗+
2

(ρ+,+ − ρg,g)

ρ̇g,− = −
[

Γ
2
− i (∆− −∆B)

]
ρg,− − i

2
Ω∗+ρ+,− − iΩ∗−

2
(ρ−,− − ρg,g)

ρ̇g,g = Γ (ρ−,− + ρ+,+) + i
2

(
Ω−ρg,− − Ω∗−ρ−,g

)
+ i

2

(
Ω+ρg,+ − Ω∗+ρ+,g

)

(A.4)
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A.2 Jg = 0→ Je = 1 Equation of Motion

ρ̇−,− =− Γρ−,− −
i

2

(
Ω−ρg,− − Ω∗−ρ−,g

)

ρ̇−,0 =− [Γ + i (∆− −∆B −∆0)] ρ−,0 −
i

2
Ω−ρg,0 +

i

2
Ω∗0ρ−,g (A.5a)

ρ̇−,+ =− [Γ + i (∆− −∆+ − 2∆B)] ρ−,+ −
i

2

(
Ω−ρg,+ − Ω∗+ρ−,g

)

ρ̇−,g =−
[

Γ

2
+ i (∆− −∆B)

]
ρ−,g +

i

2
Ω+ρ−,+ +

i

2
Ω0ρ−,0 +

iΩ−
2

(ρ−,− − ρg,g)

ρ̇0,− =− [Γ + i (∆0 −∆− + ∆B)] ρ0,− +
i

2
Ω∗−ρ0,g −

i

2
Ω0ρg,− (A.5b)

ρ̇0,0 =− Γρ0,0 −
i

2
(Ω0ρg,0 − Ω∗0ρ0,g) (A.5c)

ρ̇0,+ =− [Γ + i (∆0 −∆+ −∆B)] ρ0,+ +
i

2
Ω∗+ρ0,g −

i

2
Ω0ρg,+ (A.5d)

ρ̇0,g =−
[

Γ

2
+ i∆0

]
ρ0,g +

i

2
Ω−ρ0,− +

i

2
Ω+ρ0,+ −

iΩ0

2
(ρg,g − ρ0,0) (A.5e)

ρ̇+,− =− [Γ− i (∆− −∆+ − 2∆B)] ρ+,− −
i

2
Ω+ρg,− +

i

2
Ω∗−ρ+,g

ρ̇+,0 =− [Γ + i (∆+ + ∆B −∆0)] ρ+,0 −
i

2
Ω+ρg,0 +

i

2
Ω∗0ρ+,g (A.5f)

ρ̇+,+ =− Γρ+,+ −
i

2

(
Ω+ρg,+ − Ω∗+ρ+,g

)

ρ̇+,g =−
[

Γ

2
+ i (∆+ + ∆B)

]
ρ+,g +

i

2
Ω−ρ+,− +

i

2
Ω0ρ+,0 −

iΩ+

2
(ρg,g − ρ+,+)

ρ̇g,0 =−
[

Γ

2
− i∆0

]
ρg,0 −

i

2
Ω∗−ρ−,0 −

i

2
Ω∗+ρ+,0 +

iΩ∗0
2

(ρg,g − ρ0,0) (A.5g)

ρ̇g,+ =−
[

Γ

2
− i (∆+ + ∆B)

]
ρg,+ −

i

2
Ω∗−ρ−,+ −

i

2
Ω∗0ρ0,+ +

iΩ∗+
2

(ρg,g − ρ+,+)

ρ̇g,− =−
[

Γ

2
− i (∆− −∆B)

]
ρg,− −

i

2
Ω∗+ρ+,− −

i

2
Ω∗0ρ0,− +

iΩ∗−
2

(ρg,g − ρ−,−)

ρ̇g,g =Γ (ρ0,0 + ρ−,− + ρ+,+)− i

2

(
Ω∗−ρ−,g − Ω−ρg,−

)
+

− i

2

(
Ω∗+ρ+,g − Ω+ρg,+

)
− i

2
(Ω∗0ρ0,g − Ω0ρg,0)
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APPENDIX B

DUAL POLARIZER NOISE REDUCTION

Let the output of the fiber have electric field ~E = EÊ with polarization angle

α+ δn(t) where δn(t) is a small amount of noise (on the order of a few degrees). This

field, along with its relation to polarizers are shown in Figure B.1.

B.1 One Polarizer

As shown in Figure B.1a, one polarizer has polarization vector D̂out at angle γ.

After passing through this polarizer, the electric field becomes

~Eout =
(
~E · D̂out

)
D̂out = E cos [γ − α− δn(t)] D̂out.

The power output is then

Pout = Pin cos2 [γ − α− δn(t)] .

Doing a series expansion around small angles δn(t) ≈ 0, the power output is

P 1 pol
out = Pin cos2 [γ − α]+2Pin cos(γ−α) sin(γ−α)δn(t)+Pin

[
sin2(γ − α)− cos2(γ − α)

]
δ2
n(t).

In general, the noise in the power output of the beam is of order δn(t), except in

limiting cases where γ − α = nπ
2

.
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(a)

~E = EÊ
<latexit sha1_base64="w7xnmlptTINHa3KhrDbRvjb24WE=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHoRilLwWMHaQhPKZjtpl242YXdTKKH/xIsHRbz6T7z5b9y2OWjrCwsP78wws2+Ycqa0635bpbX1jc2t8nZlZ3dv/8A+PHpSSSYptmjCE9kJiULOBLY00xw7qUQShxzb4ehuVm+PUSqWiEc9STGIyUCwiFGijdWzbX+MNG9Mbxr+kGgDPbvq1ty5nFXwCqhCoWbP/vL7Cc1iFJpyolTXc1Md5ERqRjlOK36mMCV0RAbYNShIjCrI55dPnTPj9J0okeYJ7czd3xM5iZWaxKHpjIkequXazPyv1s10dB3kTKSZRkEXi6KMOzpxZjE4fSaRaj4xQKhk5laHDokkVJuwKiYEb/nLq/B0UfMMP1xW67dFHGU4gVM4Bw+uoA730IQWUBjDM7zCm5VbL9a79bFoLVnFzDH8kfX5A2Bgk3o=</latexit><latexit sha1_base64="w7xnmlptTINHa3KhrDbRvjb24WE=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHoRilLwWMHaQhPKZjtpl242YXdTKKH/xIsHRbz6T7z5b9y2OWjrCwsP78wws2+Ycqa0635bpbX1jc2t8nZlZ3dv/8A+PHpSSSYptmjCE9kJiULOBLY00xw7qUQShxzb4ehuVm+PUSqWiEc9STGIyUCwiFGijdWzbX+MNG9Mbxr+kGgDPbvq1ty5nFXwCqhCoWbP/vL7Cc1iFJpyolTXc1Md5ERqRjlOK36mMCV0RAbYNShIjCrI55dPnTPj9J0okeYJ7czd3xM5iZWaxKHpjIkequXazPyv1s10dB3kTKSZRkEXi6KMOzpxZjE4fSaRaj4xQKhk5laHDokkVJuwKiYEb/nLq/B0UfMMP1xW67dFHGU4gVM4Bw+uoA730IQWUBjDM7zCm5VbL9a79bFoLVnFzDH8kfX5A2Bgk3o=</latexit><latexit sha1_base64="w7xnmlptTINHa3KhrDbRvjb24WE=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHoRilLwWMHaQhPKZjtpl242YXdTKKH/xIsHRbz6T7z5b9y2OWjrCwsP78wws2+Ycqa0635bpbX1jc2t8nZlZ3dv/8A+PHpSSSYptmjCE9kJiULOBLY00xw7qUQShxzb4ehuVm+PUSqWiEc9STGIyUCwiFGijdWzbX+MNG9Mbxr+kGgDPbvq1ty5nFXwCqhCoWbP/vL7Cc1iFJpyolTXc1Md5ERqRjlOK36mMCV0RAbYNShIjCrI55dPnTPj9J0okeYJ7czd3xM5iZWaxKHpjIkequXazPyv1s10dB3kTKSZRkEXi6KMOzpxZjE4fSaRaj4xQKhk5laHDokkVJuwKiYEb/nLq/B0UfMMP1xW67dFHGU4gVM4Bw+uoA730IQWUBjDM7zCm5VbL9a79bFoLVnFzDH8kfX5A2Bgk3o=</latexit><latexit sha1_base64="w7xnmlptTINHa3KhrDbRvjb24WE=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHoRilLwWMHaQhPKZjtpl242YXdTKKH/xIsHRbz6T7z5b9y2OWjrCwsP78wws2+Ycqa0635bpbX1jc2t8nZlZ3dv/8A+PHpSSSYptmjCE9kJiULOBLY00xw7qUQShxzb4ehuVm+PUSqWiEc9STGIyUCwiFGijdWzbX+MNG9Mbxr+kGgDPbvq1ty5nFXwCqhCoWbP/vL7Cc1iFJpyolTXc1Md5ERqRjlOK36mMCV0RAbYNShIjCrI55dPnTPj9J0okeYJ7czd3xM5iZWaxKHpjIkequXazPyv1s10dB3kTKSZRkEXi6KMOzpxZjE4fSaRaj4xQKhk5laHDokkVJuwKiYEb/nLq/B0UfMMP1xW67dFHGU4gVM4Bw+uoA730IQWUBjDM7zCm5VbL9a79bFoLVnFzDH8kfX5A2Bgk3o=</latexit>

D̂out
<latexit sha1_base64="jQihQNnaTcRCSo1UqKC3CKimEcw=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHos6sFjBfsBbSib7bZdutmNu5NCCfkdXjwo4tUf481/47bNQVtfWHh4Z4aZfcNYcIOe9+0U1tY3NreK26Wd3b39g/LhUdOoRFPWoEoo3Q6JYYJL1kCOgrVjzUgUCtYKx7ezemvCtOFKPuI0ZkFEhpIPOCVoraA7IpjeZb1UJZj1yhWv6s3lroKfQwVy1Xvlr25f0SRiEqkgxnR8L8YgJRo5FSwrdRPDYkLHZMg6FiWJmAnS+dGZe2advjtQ2j6J7tz9PZGSyJhpFNrOiODILNdm5n+1ToKD6yDlMk6QSbpYNEiEi8qdJeD2uWYUxdQCoZrbW106IppQtDmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPZ++SgA==</latexit><latexit sha1_base64="jQihQNnaTcRCSo1UqKC3CKimEcw=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHos6sFjBfsBbSib7bZdutmNu5NCCfkdXjwo4tUf481/47bNQVtfWHh4Z4aZfcNYcIOe9+0U1tY3NreK26Wd3b39g/LhUdOoRFPWoEoo3Q6JYYJL1kCOgrVjzUgUCtYKx7ezemvCtOFKPuI0ZkFEhpIPOCVoraA7IpjeZb1UJZj1yhWv6s3lroKfQwVy1Xvlr25f0SRiEqkgxnR8L8YgJRo5FSwrdRPDYkLHZMg6FiWJmAnS+dGZe2advjtQ2j6J7tz9PZGSyJhpFNrOiODILNdm5n+1ToKD6yDlMk6QSbpYNEiEi8qdJeD2uWYUxdQCoZrbW106IppQtDmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPZ++SgA==</latexit><latexit sha1_base64="jQihQNnaTcRCSo1UqKC3CKimEcw=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHos6sFjBfsBbSib7bZdutmNu5NCCfkdXjwo4tUf481/47bNQVtfWHh4Z4aZfcNYcIOe9+0U1tY3NreK26Wd3b39g/LhUdOoRFPWoEoo3Q6JYYJL1kCOgrVjzUgUCtYKx7ezemvCtOFKPuI0ZkFEhpIPOCVoraA7IpjeZb1UJZj1yhWv6s3lroKfQwVy1Xvlr25f0SRiEqkgxnR8L8YgJRo5FSwrdRPDYkLHZMg6FiWJmAnS+dGZe2advjtQ2j6J7tz9PZGSyJhpFNrOiODILNdm5n+1ToKD6yDlMk6QSbpYNEiEi8qdJeD2uWYUxdQCoZrbW106IppQtDmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPZ++SgA==</latexit><latexit sha1_base64="jQihQNnaTcRCSo1UqKC3CKimEcw=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHos6sFjBfsBbSib7bZdutmNu5NCCfkdXjwo4tUf481/47bNQVtfWHh4Z4aZfcNYcIOe9+0U1tY3NreK26Wd3b39g/LhUdOoRFPWoEoo3Q6JYYJL1kCOgrVjzUgUCtYKx7ezemvCtOFKPuI0ZkFEhpIPOCVoraA7IpjeZb1UJZj1yhWv6s3lroKfQwVy1Xvlr25f0SRiEqkgxnR8L8YgJRo5FSwrdRPDYkLHZMg6FiWJmAnS+dGZe2advjtQ2j6J7tz9PZGSyJhpFNrOiODILNdm5n+1ToKD6yDlMk6QSbpYNEiEi8qdJeD2uWYUxdQCoZrbW106IppQtDmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPZ++SgA==</latexit>

~Eout
<latexit sha1_base64="UfdU+IQ1e45VX/pEHMpTbLL8zYQ=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosiuCxgv2ANpTNdtou3ezG3U2hhPwOLx4U8eqP8ea/cdvmoK0vLDy8M8PMvmHMmTae9+0U1tY3NreK26Wd3b39g/LhUVPLRFFsUMmlaodEI2cCG4YZju1YIYlCjq1wfDurtyaoNJPi0UxjDCIyFGzAKDHWCroTpOld1ktlYrJeueJVvbncVfBzqECueq/81e1LmkQoDOVE647vxSZIiTKMcsxK3URjTOiYDLFjUZAIdZDOj87cM+v03YFU9gnjzt3fEymJtJ5Goe2MiBnp5drM/K/WSczgOkiZiBODgi4WDRLuGunOEnD7TCE1fGqBUMXsrS4dEUWosTmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPayeSgg==</latexit><latexit sha1_base64="UfdU+IQ1e45VX/pEHMpTbLL8zYQ=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosiuCxgv2ANpTNdtou3ezG3U2hhPwOLx4U8eqP8ea/cdvmoK0vLDy8M8PMvmHMmTae9+0U1tY3NreK26Wd3b39g/LhUVPLRFFsUMmlaodEI2cCG4YZju1YIYlCjq1wfDurtyaoNJPi0UxjDCIyFGzAKDHWCroTpOld1ktlYrJeueJVvbncVfBzqECueq/81e1LmkQoDOVE647vxSZIiTKMcsxK3URjTOiYDLFjUZAIdZDOj87cM+v03YFU9gnjzt3fEymJtJ5Goe2MiBnp5drM/K/WSczgOkiZiBODgi4WDRLuGunOEnD7TCE1fGqBUMXsrS4dEUWosTmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPayeSgg==</latexit><latexit sha1_base64="UfdU+IQ1e45VX/pEHMpTbLL8zYQ=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosiuCxgv2ANpTNdtou3ezG3U2hhPwOLx4U8eqP8ea/cdvmoK0vLDy8M8PMvmHMmTae9+0U1tY3NreK26Wd3b39g/LhUVPLRFFsUMmlaodEI2cCG4YZju1YIYlCjq1wfDurtyaoNJPi0UxjDCIyFGzAKDHWCroTpOld1ktlYrJeueJVvbncVfBzqECueq/81e1LmkQoDOVE647vxSZIiTKMcsxK3URjTOiYDLFjUZAIdZDOj87cM+v03YFU9gnjzt3fEymJtJ5Goe2MiBnp5drM/K/WSczgOkiZiBODgi4WDRLuGunOEnD7TCE1fGqBUMXsrS4dEUWosTmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPayeSgg==</latexit><latexit sha1_base64="UfdU+IQ1e45VX/pEHMpTbLL8zYQ=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosiuCxgv2ANpTNdtou3ezG3U2hhPwOLx4U8eqP8ea/cdvmoK0vLDy8M8PMvmHMmTae9+0U1tY3NreK26Wd3b39g/LhUVPLRFFsUMmlaodEI2cCG4YZju1YIYlCjq1wfDurtyaoNJPi0UxjDCIyFGzAKDHWCroTpOld1ktlYrJeueJVvbncVfBzqECueq/81e1LmkQoDOVE647vxSZIiTKMcsxK3URjTOiYDLFjUZAIdZDOj87cM+v03YFU9gnjzt3fEymJtJ5Goe2MiBnp5drM/K/WSczgOkiZiBODgi4WDRLuGunOEnD7TCE1fGqBUMXsrS4dEUWosTmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPayeSgg==</latexit>

↵ + �n(t)
<latexit sha1_base64="WlphRS+lOP7Y5UUtbSmwe6oZSSY=">AAAB+3icbZBNS8NAEIY39avWr1iPXoJFqAglEUGPRS8eK9gPaEKYbLft0s0m7E7EUvpXvHhQxKt/xJv/xm2bg7a+sPDwzgwz+0ap4Bpd99sqrK1vbG4Vt0s7u3v7B/ZhuaWTTFHWpIlIVCcCzQSXrIkcBeukikEcCdaORrezevuRKc0T+YDjlAUxDCTvcwporNAu+yDSIZz7PSYQQlnFs9CuuDV3LmcVvBwqJFcjtL/8XkKzmEmkArTuem6KwQQUcirYtORnmqVARzBgXYMSYqaDyfz2qXNqnJ7TT5R5Ep25+3tiArHW4zgynTHgUC/XZuZ/tW6G/etgwmWaIZN0saifCQcTZxaE0+OKURRjA0AVN7c6dAgKKJq4SiYEb/nLq9C6qHmG7y8r9Zs8jiI5JiekSjxyRerkjjRIk1DyRJ7JK3mzptaL9W59LFoLVj5zRP7I+vwBOKST5A==</latexit><latexit sha1_base64="WlphRS+lOP7Y5UUtbSmwe6oZSSY=">AAAB+3icbZBNS8NAEIY39avWr1iPXoJFqAglEUGPRS8eK9gPaEKYbLft0s0m7E7EUvpXvHhQxKt/xJv/xm2bg7a+sPDwzgwz+0ap4Bpd99sqrK1vbG4Vt0s7u3v7B/ZhuaWTTFHWpIlIVCcCzQSXrIkcBeukikEcCdaORrezevuRKc0T+YDjlAUxDCTvcwporNAu+yDSIZz7PSYQQlnFs9CuuDV3LmcVvBwqJFcjtL/8XkKzmEmkArTuem6KwQQUcirYtORnmqVARzBgXYMSYqaDyfz2qXNqnJ7TT5R5Ep25+3tiArHW4zgynTHgUC/XZuZ/tW6G/etgwmWaIZN0saifCQcTZxaE0+OKURRjA0AVN7c6dAgKKJq4SiYEb/nLq9C6qHmG7y8r9Zs8jiI5JiekSjxyRerkjjRIk1DyRJ7JK3mzptaL9W59LFoLVj5zRP7I+vwBOKST5A==</latexit><latexit sha1_base64="WlphRS+lOP7Y5UUtbSmwe6oZSSY=">AAAB+3icbZBNS8NAEIY39avWr1iPXoJFqAglEUGPRS8eK9gPaEKYbLft0s0m7E7EUvpXvHhQxKt/xJv/xm2bg7a+sPDwzgwz+0ap4Bpd99sqrK1vbG4Vt0s7u3v7B/ZhuaWTTFHWpIlIVCcCzQSXrIkcBeukikEcCdaORrezevuRKc0T+YDjlAUxDCTvcwporNAu+yDSIZz7PSYQQlnFs9CuuDV3LmcVvBwqJFcjtL/8XkKzmEmkArTuem6KwQQUcirYtORnmqVARzBgXYMSYqaDyfz2qXNqnJ7TT5R5Ep25+3tiArHW4zgynTHgUC/XZuZ/tW6G/etgwmWaIZN0saifCQcTZxaE0+OKURRjA0AVN7c6dAgKKJq4SiYEb/nLq9C6qHmG7y8r9Zs8jiI5JiekSjxyRerkjjRIk1DyRJ7JK3mzptaL9W59LFoLVj5zRP7I+vwBOKST5A==</latexit><latexit sha1_base64="WlphRS+lOP7Y5UUtbSmwe6oZSSY=">AAAB+3icbZBNS8NAEIY39avWr1iPXoJFqAglEUGPRS8eK9gPaEKYbLft0s0m7E7EUvpXvHhQxKt/xJv/xm2bg7a+sPDwzgwz+0ap4Bpd99sqrK1vbG4Vt0s7u3v7B/ZhuaWTTFHWpIlIVCcCzQSXrIkcBeukikEcCdaORrezevuRKc0T+YDjlAUxDCTvcwporNAu+yDSIZz7PSYQQlnFs9CuuDV3LmcVvBwqJFcjtL/8XkKzmEmkArTuem6KwQQUcirYtORnmqVARzBgXYMSYqaDyfz2qXNqnJ7TT5R5Ep25+3tiArHW4zgynTHgUC/XZuZ/tW6G/etgwmWaIZN0saifCQcTZxaE0+OKURRjA0AVN7c6dAgKKJq4SiYEb/nLq9C6qHmG7y8r9Zs8jiI5JiekSjxyRerkjjRIk1DyRJ7JK3mzptaL9W59LFoLVj5zRP7I+vwBOKST5A==</latexit>

�
<latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit>

�
<latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit>

~E = EÊ
<latexit sha1_base64="w7xnmlptTINHa3KhrDbRvjb24WE=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHoRilLwWMHaQhPKZjtpl242YXdTKKH/xIsHRbz6T7z5b9y2OWjrCwsP78wws2+Ycqa0635bpbX1jc2t8nZlZ3dv/8A+PHpSSSYptmjCE9kJiULOBLY00xw7qUQShxzb4ehuVm+PUSqWiEc9STGIyUCwiFGijdWzbX+MNG9Mbxr+kGgDPbvq1ty5nFXwCqhCoWbP/vL7Cc1iFJpyolTXc1Md5ERqRjlOK36mMCV0RAbYNShIjCrI55dPnTPj9J0okeYJ7czd3xM5iZWaxKHpjIkequXazPyv1s10dB3kTKSZRkEXi6KMOzpxZjE4fSaRaj4xQKhk5laHDokkVJuwKiYEb/nLq/B0UfMMP1xW67dFHGU4gVM4Bw+uoA730IQWUBjDM7zCm5VbL9a79bFoLVnFzDH8kfX5A2Bgk3o=</latexit><latexit sha1_base64="w7xnmlptTINHa3KhrDbRvjb24WE=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHoRilLwWMHaQhPKZjtpl242YXdTKKH/xIsHRbz6T7z5b9y2OWjrCwsP78wws2+Ycqa0635bpbX1jc2t8nZlZ3dv/8A+PHpSSSYptmjCE9kJiULOBLY00xw7qUQShxzb4ehuVm+PUSqWiEc9STGIyUCwiFGijdWzbX+MNG9Mbxr+kGgDPbvq1ty5nFXwCqhCoWbP/vL7Cc1iFJpyolTXc1Md5ERqRjlOK36mMCV0RAbYNShIjCrI55dPnTPj9J0okeYJ7czd3xM5iZWaxKHpjIkequXazPyv1s10dB3kTKSZRkEXi6KMOzpxZjE4fSaRaj4xQKhk5laHDokkVJuwKiYEb/nLq/B0UfMMP1xW67dFHGU4gVM4Bw+uoA730IQWUBjDM7zCm5VbL9a79bFoLVnFzDH8kfX5A2Bgk3o=</latexit><latexit sha1_base64="w7xnmlptTINHa3KhrDbRvjb24WE=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHoRilLwWMHaQhPKZjtpl242YXdTKKH/xIsHRbz6T7z5b9y2OWjrCwsP78wws2+Ycqa0635bpbX1jc2t8nZlZ3dv/8A+PHpSSSYptmjCE9kJiULOBLY00xw7qUQShxzb4ehuVm+PUSqWiEc9STGIyUCwiFGijdWzbX+MNG9Mbxr+kGgDPbvq1ty5nFXwCqhCoWbP/vL7Cc1iFJpyolTXc1Md5ERqRjlOK36mMCV0RAbYNShIjCrI55dPnTPj9J0okeYJ7czd3xM5iZWaxKHpjIkequXazPyv1s10dB3kTKSZRkEXi6KMOzpxZjE4fSaRaj4xQKhk5laHDokkVJuwKiYEb/nLq/B0UfMMP1xW67dFHGU4gVM4Bw+uoA730IQWUBjDM7zCm5VbL9a79bFoLVnFzDH8kfX5A2Bgk3o=</latexit><latexit sha1_base64="w7xnmlptTINHa3KhrDbRvjb24WE=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHoRilLwWMHaQhPKZjtpl242YXdTKKH/xIsHRbz6T7z5b9y2OWjrCwsP78wws2+Ycqa0635bpbX1jc2t8nZlZ3dv/8A+PHpSSSYptmjCE9kJiULOBLY00xw7qUQShxzb4ehuVm+PUSqWiEc9STGIyUCwiFGijdWzbX+MNG9Mbxr+kGgDPbvq1ty5nFXwCqhCoWbP/vL7Cc1iFJpyolTXc1Md5ERqRjlOK36mMCV0RAbYNShIjCrI55dPnTPj9J0okeYJ7czd3xM5iZWaxKHpjIkequXazPyv1s10dB3kTKSZRkEXi6KMOzpxZjE4fSaRaj4xQKhk5laHDokkVJuwKiYEb/nLq/B0UfMMP1xW67dFHGU4gVM4Bw+uoA730IQWUBjDM7zCm5VbL9a79bFoLVnFzDH8kfX5A2Bgk3o=</latexit>

~Eout
<latexit sha1_base64="UfdU+IQ1e45VX/pEHMpTbLL8zYQ=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosiuCxgv2ANpTNdtou3ezG3U2hhPwOLx4U8eqP8ea/cdvmoK0vLDy8M8PMvmHMmTae9+0U1tY3NreK26Wd3b39g/LhUVPLRFFsUMmlaodEI2cCG4YZju1YIYlCjq1wfDurtyaoNJPi0UxjDCIyFGzAKDHWCroTpOld1ktlYrJeueJVvbncVfBzqECueq/81e1LmkQoDOVE647vxSZIiTKMcsxK3URjTOiYDLFjUZAIdZDOj87cM+v03YFU9gnjzt3fEymJtJ5Goe2MiBnp5drM/K/WSczgOkiZiBODgi4WDRLuGunOEnD7TCE1fGqBUMXsrS4dEUWosTmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPayeSgg==</latexit><latexit sha1_base64="UfdU+IQ1e45VX/pEHMpTbLL8zYQ=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosiuCxgv2ANpTNdtou3ezG3U2hhPwOLx4U8eqP8ea/cdvmoK0vLDy8M8PMvmHMmTae9+0U1tY3NreK26Wd3b39g/LhUVPLRFFsUMmlaodEI2cCG4YZju1YIYlCjq1wfDurtyaoNJPi0UxjDCIyFGzAKDHWCroTpOld1ktlYrJeueJVvbncVfBzqECueq/81e1LmkQoDOVE647vxSZIiTKMcsxK3URjTOiYDLFjUZAIdZDOj87cM+v03YFU9gnjzt3fEymJtJ5Goe2MiBnp5drM/K/WSczgOkiZiBODgi4WDRLuGunOEnD7TCE1fGqBUMXsrS4dEUWosTmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPayeSgg==</latexit><latexit sha1_base64="UfdU+IQ1e45VX/pEHMpTbLL8zYQ=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosiuCxgv2ANpTNdtou3ezG3U2hhPwOLx4U8eqP8ea/cdvmoK0vLDy8M8PMvmHMmTae9+0U1tY3NreK26Wd3b39g/LhUVPLRFFsUMmlaodEI2cCG4YZju1YIYlCjq1wfDurtyaoNJPi0UxjDCIyFGzAKDHWCroTpOld1ktlYrJeueJVvbncVfBzqECueq/81e1LmkQoDOVE647vxSZIiTKMcsxK3URjTOiYDLFjUZAIdZDOj87cM+v03YFU9gnjzt3fEymJtJ5Goe2MiBnp5drM/K/WSczgOkiZiBODgi4WDRLuGunOEnD7TCE1fGqBUMXsrS4dEUWosTmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPayeSgg==</latexit><latexit sha1_base64="UfdU+IQ1e45VX/pEHMpTbLL8zYQ=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosiuCxgv2ANpTNdtou3ezG3U2hhPwOLx4U8eqP8ea/cdvmoK0vLDy8M8PMvmHMmTae9+0U1tY3NreK26Wd3b39g/LhUVPLRFFsUMmlaodEI2cCG4YZju1YIYlCjq1wfDurtyaoNJPi0UxjDCIyFGzAKDHWCroTpOld1ktlYrJeueJVvbncVfBzqECueq/81e1LmkQoDOVE647vxSZIiTKMcsxK3URjTOiYDLFjUZAIdZDOj87cM+v03YFU9gnjzt3fEymJtJ5Goe2MiBnp5drM/K/WSczgOkiZiBODgi4WDRLuGunOEnD7TCE1fGqBUMXsrS4dEUWosTmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPayeSgg==</latexit>

↵ + �n(t)
<latexit sha1_base64="WlphRS+lOP7Y5UUtbSmwe6oZSSY=">AAAB+3icbZBNS8NAEIY39avWr1iPXoJFqAglEUGPRS8eK9gPaEKYbLft0s0m7E7EUvpXvHhQxKt/xJv/xm2bg7a+sPDwzgwz+0ap4Bpd99sqrK1vbG4Vt0s7u3v7B/ZhuaWTTFHWpIlIVCcCzQSXrIkcBeukikEcCdaORrezevuRKc0T+YDjlAUxDCTvcwporNAu+yDSIZz7PSYQQlnFs9CuuDV3LmcVvBwqJFcjtL/8XkKzmEmkArTuem6KwQQUcirYtORnmqVARzBgXYMSYqaDyfz2qXNqnJ7TT5R5Ep25+3tiArHW4zgynTHgUC/XZuZ/tW6G/etgwmWaIZN0saifCQcTZxaE0+OKURRjA0AVN7c6dAgKKJq4SiYEb/nLq9C6qHmG7y8r9Zs8jiI5JiekSjxyRerkjjRIk1DyRJ7JK3mzptaL9W59LFoLVj5zRP7I+vwBOKST5A==</latexit><latexit sha1_base64="WlphRS+lOP7Y5UUtbSmwe6oZSSY=">AAAB+3icbZBNS8NAEIY39avWr1iPXoJFqAglEUGPRS8eK9gPaEKYbLft0s0m7E7EUvpXvHhQxKt/xJv/xm2bg7a+sPDwzgwz+0ap4Bpd99sqrK1vbG4Vt0s7u3v7B/ZhuaWTTFHWpIlIVCcCzQSXrIkcBeukikEcCdaORrezevuRKc0T+YDjlAUxDCTvcwporNAu+yDSIZz7PSYQQlnFs9CuuDV3LmcVvBwqJFcjtL/8XkKzmEmkArTuem6KwQQUcirYtORnmqVARzBgXYMSYqaDyfz2qXNqnJ7TT5R5Ep25+3tiArHW4zgynTHgUC/XZuZ/tW6G/etgwmWaIZN0saifCQcTZxaE0+OKURRjA0AVN7c6dAgKKJq4SiYEb/nLq9C6qHmG7y8r9Zs8jiI5JiekSjxyRerkjjRIk1DyRJ7JK3mzptaL9W59LFoLVj5zRP7I+vwBOKST5A==</latexit><latexit sha1_base64="WlphRS+lOP7Y5UUtbSmwe6oZSSY=">AAAB+3icbZBNS8NAEIY39avWr1iPXoJFqAglEUGPRS8eK9gPaEKYbLft0s0m7E7EUvpXvHhQxKt/xJv/xm2bg7a+sPDwzgwz+0ap4Bpd99sqrK1vbG4Vt0s7u3v7B/ZhuaWTTFHWpIlIVCcCzQSXrIkcBeukikEcCdaORrezevuRKc0T+YDjlAUxDCTvcwporNAu+yDSIZz7PSYQQlnFs9CuuDV3LmcVvBwqJFcjtL/8XkKzmEmkArTuem6KwQQUcirYtORnmqVARzBgXYMSYqaDyfz2qXNqnJ7TT5R5Ep25+3tiArHW4zgynTHgUC/XZuZ/tW6G/etgwmWaIZN0saifCQcTZxaE0+OKURRjA0AVN7c6dAgKKJq4SiYEb/nLq9C6qHmG7y8r9Zs8jiI5JiekSjxyRerkjjRIk1DyRJ7JK3mzptaL9W59LFoLVj5zRP7I+vwBOKST5A==</latexit><latexit sha1_base64="WlphRS+lOP7Y5UUtbSmwe6oZSSY=">AAAB+3icbZBNS8NAEIY39avWr1iPXoJFqAglEUGPRS8eK9gPaEKYbLft0s0m7E7EUvpXvHhQxKt/xJv/xm2bg7a+sPDwzgwz+0ap4Bpd99sqrK1vbG4Vt0s7u3v7B/ZhuaWTTFHWpIlIVCcCzQSXrIkcBeukikEcCdaORrezevuRKc0T+YDjlAUxDCTvcwporNAu+yDSIZz7PSYQQlnFs9CuuDV3LmcVvBwqJFcjtL/8XkKzmEmkArTuem6KwQQUcirYtORnmqVARzBgXYMSYqaDyfz2qXNqnJ7TT5R5Ep25+3tiArHW4zgynTHgUC/XZuZ/tW6G/etgwmWaIZN0saifCQcTZxaE0+OKURRjA0AVN7c6dAgKKJq4SiYEb/nLq9C6qHmG7y8r9Zs8jiI5JiekSjxyRerkjjRIk1DyRJ7JK3mzptaL9W59LFoLVj5zRP7I+vwBOKST5A==</latexit>

D̂out
<latexit sha1_base64="jQihQNnaTcRCSo1UqKC3CKimEcw=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHos6sFjBfsBbSib7bZdutmNu5NCCfkdXjwo4tUf481/47bNQVtfWHh4Z4aZfcNYcIOe9+0U1tY3NreK26Wd3b39g/LhUdOoRFPWoEoo3Q6JYYJL1kCOgrVjzUgUCtYKx7ezemvCtOFKPuI0ZkFEhpIPOCVoraA7IpjeZb1UJZj1yhWv6s3lroKfQwVy1Xvlr25f0SRiEqkgxnR8L8YgJRo5FSwrdRPDYkLHZMg6FiWJmAnS+dGZe2advjtQ2j6J7tz9PZGSyJhpFNrOiODILNdm5n+1ToKD6yDlMk6QSbpYNEiEi8qdJeD2uWYUxdQCoZrbW106IppQtDmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPZ++SgA==</latexit><latexit sha1_base64="jQihQNnaTcRCSo1UqKC3CKimEcw=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHos6sFjBfsBbSib7bZdutmNu5NCCfkdXjwo4tUf481/47bNQVtfWHh4Z4aZfcNYcIOe9+0U1tY3NreK26Wd3b39g/LhUdOoRFPWoEoo3Q6JYYJL1kCOgrVjzUgUCtYKx7ezemvCtOFKPuI0ZkFEhpIPOCVoraA7IpjeZb1UJZj1yhWv6s3lroKfQwVy1Xvlr25f0SRiEqkgxnR8L8YgJRo5FSwrdRPDYkLHZMg6FiWJmAnS+dGZe2advjtQ2j6J7tz9PZGSyJhpFNrOiODILNdm5n+1ToKD6yDlMk6QSbpYNEiEi8qdJeD2uWYUxdQCoZrbW106IppQtDmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPZ++SgA==</latexit><latexit sha1_base64="jQihQNnaTcRCSo1UqKC3CKimEcw=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHos6sFjBfsBbSib7bZdutmNu5NCCfkdXjwo4tUf481/47bNQVtfWHh4Z4aZfcNYcIOe9+0U1tY3NreK26Wd3b39g/LhUdOoRFPWoEoo3Q6JYYJL1kCOgrVjzUgUCtYKx7ezemvCtOFKPuI0ZkFEhpIPOCVoraA7IpjeZb1UJZj1yhWv6s3lroKfQwVy1Xvlr25f0SRiEqkgxnR8L8YgJRo5FSwrdRPDYkLHZMg6FiWJmAnS+dGZe2advjtQ2j6J7tz9PZGSyJhpFNrOiODILNdm5n+1ToKD6yDlMk6QSbpYNEiEi8qdJeD2uWYUxdQCoZrbW106IppQtDmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPZ++SgA==</latexit><latexit sha1_base64="jQihQNnaTcRCSo1UqKC3CKimEcw=">AAAB9HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHos6sFjBfsBbSib7bZdutmNu5NCCfkdXjwo4tUf481/47bNQVtfWHh4Z4aZfcNYcIOe9+0U1tY3NreK26Wd3b39g/LhUdOoRFPWoEoo3Q6JYYJL1kCOgrVjzUgUCtYKx7ezemvCtOFKPuI0ZkFEhpIPOCVoraA7IpjeZb1UJZj1yhWv6s3lroKfQwVy1Xvlr25f0SRiEqkgxnR8L8YgJRo5FSwrdRPDYkLHZMg6FiWJmAnS+dGZe2advjtQ2j6J7tz9PZGSyJhpFNrOiODILNdm5n+1ToKD6yDlMk6QSbpYNEiEi8qdJeD2uWYUxdQCoZrbW106IppQtDmVbAj+8pdXoXlR9S0/XFZqN3kcRTiBUzgHH66gBvdQhwZQeIJneIU3Z+K8OO/Ox6K14OQzx/BHzucPZ++SgA==</latexit>

�
<latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit>

�
<latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit><latexit sha1_base64="7gxsz35rV55iow5b8W6EqtQy0sk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qXMptk2NtksSVYopf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMG6WCG+v7315hbX1jc6u4XdrZ3ds/KB8eNY3KNGUNqoTS7QgNEzxhDcutYO1UM5SRYK1odDurt56YNlwlD3acslDiIOExp2id1ewOUErslSt+1Z+LrEKQQwVy1Xvlr25f0UyyxFKBxnQCP7XhBLXlVLBpqZsZliId4YB1HCYomQkn822n5Mw5fRIr7V5iydz9PTFBacxYRq5Toh2a5drM/K/WyWx8HU54kmaWJXTxUZwJYhWZnU76XDNqxdgBUs3droQOUSO1LqCSCyFYPnkVmhfVwPH9ZaV2k8dRhBM4hXMI4ApqcAd1aACFR3iGV3jzlPfivXsfi9aCl88cwx95nz+G7Y8V</latexit>

�
<latexit sha1_base64="g+IRNevPc1g3Nk0ZK/Q3r3J8OUI=">AAAB7HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosevFYwdRCG8pmO2mXbjZhdyKU0t/gxYMiXv1B3vw3btsctPWFhYd3ZtiZN8qkMOR5305pbX1jc6u8XdnZ3ds/qB4etUyaa44BT2Wq2xEzKIXCgARJbGcaWRJJfIxGt7P64xNqI1L1QOMMw4QNlIgFZ2StoBshsV615tW9udxV8AuoQaFmr/rV7ac8T1ARl8yYju9lFE6YJsElTivd3GDG+IgNsGNRsQRNOJkvO3XPrNN341Tbp8idu78nJiwxZpxEtjNhNDTLtZn5X62TU3wdToTKckLFFx/FuXQpdWeXu32hkZMcW2BcC7ury4dMM042n4oNwV8+eRVaF3Xf8v1lrXFTxFGGEziFc/DhChpwB00IgIOAZ3iFN0c5L86787FoLTnFzDH8kfP5A8PYjqQ=</latexit><latexit sha1_base64="g+IRNevPc1g3Nk0ZK/Q3r3J8OUI=">AAAB7HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosevFYwdRCG8pmO2mXbjZhdyKU0t/gxYMiXv1B3vw3btsctPWFhYd3ZtiZN8qkMOR5305pbX1jc6u8XdnZ3ds/qB4etUyaa44BT2Wq2xEzKIXCgARJbGcaWRJJfIxGt7P64xNqI1L1QOMMw4QNlIgFZ2StoBshsV615tW9udxV8AuoQaFmr/rV7ac8T1ARl8yYju9lFE6YJsElTivd3GDG+IgNsGNRsQRNOJkvO3XPrNN341Tbp8idu78nJiwxZpxEtjNhNDTLtZn5X62TU3wdToTKckLFFx/FuXQpdWeXu32hkZMcW2BcC7ury4dMM042n4oNwV8+eRVaF3Xf8v1lrXFTxFGGEziFc/DhChpwB00IgIOAZ3iFN0c5L86787FoLTnFzDH8kfP5A8PYjqQ=</latexit><latexit sha1_base64="g+IRNevPc1g3Nk0ZK/Q3r3J8OUI=">AAAB7HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosevFYwdRCG8pmO2mXbjZhdyKU0t/gxYMiXv1B3vw3btsctPWFhYd3ZtiZN8qkMOR5305pbX1jc6u8XdnZ3ds/qB4etUyaa44BT2Wq2xEzKIXCgARJbGcaWRJJfIxGt7P64xNqI1L1QOMMw4QNlIgFZ2StoBshsV615tW9udxV8AuoQaFmr/rV7ac8T1ARl8yYju9lFE6YJsElTivd3GDG+IgNsGNRsQRNOJkvO3XPrNN341Tbp8idu78nJiwxZpxEtjNhNDTLtZn5X62TU3wdToTKckLFFx/FuXQpdWeXu32hkZMcW2BcC7ury4dMM042n4oNwV8+eRVaF3Xf8v1lrXFTxFGGEziFc/DhChpwB00IgIOAZ3iFN0c5L86787FoLTnFzDH8kfP5A8PYjqQ=</latexit><latexit sha1_base64="g+IRNevPc1g3Nk0ZK/Q3r3J8OUI=">AAAB7HicbZBNS8NAEIYn9avWr6pHL8EieCqJCHosevFYwdRCG8pmO2mXbjZhdyKU0t/gxYMiXv1B3vw3btsctPWFhYd3ZtiZN8qkMOR5305pbX1jc6u8XdnZ3ds/qB4etUyaa44BT2Wq2xEzKIXCgARJbGcaWRJJfIxGt7P64xNqI1L1QOMMw4QNlIgFZ2StoBshsV615tW9udxV8AuoQaFmr/rV7ac8T1ARl8yYju9lFE6YJsElTivd3GDG+IgNsGNRsQRNOJkvO3XPrNN341Tbp8idu78nJiwxZpxEtjNhNDTLtZn5X62TU3wdToTKckLFFx/FuXQpdWeXu32hkZMcW2BcC7ury4dMM042n4oNwV8+eRVaF3Xf8v1lrXFTxFGGEziFc/DhChpwB00IgIOAZ3iFN0c5L86787FoLTnFzDH8kfP5A8PYjqQ=</latexit>

D̂mid
<latexit sha1_base64="HsgYcjSctZTfVuvnYMeIafNP34c=">AAAB9HicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiyqAuXFewF2qFkMpk2NMmMSaZQhnkONy4UcevDuPNtTNtZaOsPgY//nMM5+YOEM21c99spra1vbG6Vtys7u3v7B9XDo7aOU0Voi8Q8Vt0Aa8qZpC3DDKfdRFEsAk47wfh2Vu9MqNIslo9mmlBf4KFkESPYWMvvj7DJ7vJBJliYD6o1t+7OhVbBK6AGhZqD6lc/jEkqqDSEY617npsYP8PKMMJpXumnmiaYjPGQ9ixKLKj2s/nROTqzToiiWNknDZq7vycyLLSeisB2CmxGerk2M/+r9VITXfsZk0lqqCSLRVHKkYnRLAEUMkWJ4VMLmChmb0VkhBUmxuZUsSF4y19ehfZF3bP8cFlr3BRxlOEETuEcPLiCBtxDE1pA4Ame4RXenInz4rw7H4vWklPMHMMfOZ8/OkmSYg==</latexit><latexit sha1_base64="HsgYcjSctZTfVuvnYMeIafNP34c=">AAAB9HicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiyqAuXFewF2qFkMpk2NMmMSaZQhnkONy4UcevDuPNtTNtZaOsPgY//nMM5+YOEM21c99spra1vbG6Vtys7u3v7B9XDo7aOU0Voi8Q8Vt0Aa8qZpC3DDKfdRFEsAk47wfh2Vu9MqNIslo9mmlBf4KFkESPYWMvvj7DJ7vJBJliYD6o1t+7OhVbBK6AGhZqD6lc/jEkqqDSEY617npsYP8PKMMJpXumnmiaYjPGQ9ixKLKj2s/nROTqzToiiWNknDZq7vycyLLSeisB2CmxGerk2M/+r9VITXfsZk0lqqCSLRVHKkYnRLAEUMkWJ4VMLmChmb0VkhBUmxuZUsSF4y19ehfZF3bP8cFlr3BRxlOEETuEcPLiCBtxDE1pA4Ame4RXenInz4rw7H4vWklPMHMMfOZ8/OkmSYg==</latexit><latexit sha1_base64="HsgYcjSctZTfVuvnYMeIafNP34c=">AAAB9HicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiyqAuXFewF2qFkMpk2NMmMSaZQhnkONy4UcevDuPNtTNtZaOsPgY//nMM5+YOEM21c99spra1vbG6Vtys7u3v7B9XDo7aOU0Voi8Q8Vt0Aa8qZpC3DDKfdRFEsAk47wfh2Vu9MqNIslo9mmlBf4KFkESPYWMvvj7DJ7vJBJliYD6o1t+7OhVbBK6AGhZqD6lc/jEkqqDSEY617npsYP8PKMMJpXumnmiaYjPGQ9ixKLKj2s/nROTqzToiiWNknDZq7vycyLLSeisB2CmxGerk2M/+r9VITXfsZk0lqqCSLRVHKkYnRLAEUMkWJ4VMLmChmb0VkhBUmxuZUsSF4y19ehfZF3bP8cFlr3BRxlOEETuEcPLiCBtxDE1pA4Ame4RXenInz4rw7H4vWklPMHMMfOZ8/OkmSYg==</latexit><latexit sha1_base64="HsgYcjSctZTfVuvnYMeIafNP34c=">AAAB9HicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiyqAuXFewF2qFkMpk2NMmMSaZQhnkONy4UcevDuPNtTNtZaOsPgY//nMM5+YOEM21c99spra1vbG6Vtys7u3v7B9XDo7aOU0Voi8Q8Vt0Aa8qZpC3DDKfdRFEsAk47wfh2Vu9MqNIslo9mmlBf4KFkESPYWMvvj7DJ7vJBJliYD6o1t+7OhVbBK6AGhZqD6lc/jEkqqDSEY617npsYP8PKMMJpXumnmiaYjPGQ9ixKLKj2s/nROTqzToiiWNknDZq7vycyLLSeisB2CmxGerk2M/+r9VITXfsZk0lqqCSLRVHKkYnRLAEUMkWJ4VMLmChmb0VkhBUmxuZUsSF4y19ehfZF3bP8cFlr3BRxlOEETuEcPLiCBtxDE1pA4Ame4RXenInz4rw7H4vWklPMHMMfOZ8/OkmSYg==</latexit>

�
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(b)

FIGURE B.1. Laser power control with polarizers. (a) Electric field names (above
beam) and field polarization directions (below beams) before and after one polarizer.
(b) Electric field names and field directions before, between, and after two polarizer.

B.2 Two Polarizers

As shown in Figure B.1b, assume there is a middle polarizer between the fiber

and output polarizer. The middle polarizer has polarization vector D̂mid at angle β.

Then after the middle polarizer the electric field is

~Emid =
(
~E · D̂mid

)
D̂mid = E cos [β − α− δn(t)] D̂mid.

After the output polarizer, the electric field is

~Eout =
(
~Emid · D̂out

)
D̂out = E cos [β − α− δn(t)] cos[γ − β]D̂out.

where, again, γ is the angle of the output polarization vector D̂out. The power output

is

Pout = Pin cos2 [β − α− δn(t)] cos2[γ − β].
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Doing another expansion for small noise, the power is

Pout = Pin cos2 [β − α] cos2 [γ − β] + 2Pin cos(β − α) sin(β − α) cos2 [γ − β] δn(t) +

Pin cos2 [γ − β]
[
sin2(β − α)− cos2(β − α)

]
δ2
n(t).

If the middle polarizer if aligned with the ideal polarization axis of the fiber β = α,

this becomes

P 2 pol
out = Pin cos2 [γ − α]− Pin cos2 [γ − α] δ2

n(t).

Therefore, for the 2 polarization setup, the noise is reduced to order δ2
n(t).
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APPENDIX C

MOT COIL WATER COOLING RATE

Due to large current used in the experimental anti-Helmholtz coils, they are

designed to be water-cooled to prevent overheating. This cooling method is analyzed

in detail here.

C.1 Heat Equation

In considering the heating of the coils, the only input source of energy is the power

dissipated by the current, P = I2R. This heating is dissipated by 5 mechanisms:

– Heating the water via conduction, Qwater

– Power radiated from coils, Prad

– Heating the aluminum coil mount, QAl

– Heating the copper wires, QCu

– Heating the air around the coils via conduction, Qair

Equating the input and output powers gives,

I2R =
d

dt
Qwater + Prad +

d

dt
QAl +

d

dt
QCu +

d

dt
Qair (C.1)

A few simplifications should be made. Assume the copper and aluminum of the coils

have the same temperature. Both the convection to the air and the radiated power

are much smaller than the convection to the water and heating of the coils, so both of

these terms can be dropped12. The heating rate to the water, Qwater, is derived below

12Including conduction to the air changes the growth rate of the temperature, the variable γ in
as defined in equation C.8, by less than 1%. The radiative power dissipated, even though it scales
as T 4, is a few orders of magnitude less than other loss mechanisms.
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in Section C.2. The heating of the aluminum and copper follows from introductory

thermodynamics as

QAl = mAlCAl∆T (C.2)

QCu = mCuCCu∆T , (C.3)

respectively. Additionally, the resistance of the coils will change as the coils change

temperature as,

R(T ) = R0 [1 + α(T − T0)] (C.4)

where R0 and T0 are a reference resistance and temperature respectively.

Combing these equations with C.1 gives

I2R0 [1 + α(T − T0)] = ṁwCw(T − Tw)

(
1− exp

[ −hcA
ṁwCw

])
+ (mC)eff

∂T

∂t
, (C.5)

where ṁw is the water mass flow rate through the cooling channel and (mC)eff is an

effective value for the combined heating of the aluminum mount and copper wires. If

the have the same temperature at all times, then this equals

(mC)eff = mAlCAl +mCuCCu. (C.6)

Because of the large contact area between the wires and mount and their relatively

small volume, it is safe to make this equal-temperature assumption.

The power equation has the form

∂T

∂t
= γT + β (C.7)
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with

γ =
I2R0α− ṁCw

(
1− exp

[
−hcA
ṁCw

])

(mC)eff
(C.8)

β =
I2R0(1− αT0) + ṁCwTw

(
1− exp

[
−hcA
ṁCw

])

(mC)eff
(C.9)

The differential equation is solved by

T (t) =

(
Tw +

β

γ

)
eγt − β

γ
(C.10)

This result is problematic if γ > 0. The limiting case where γ = 0 (i.e. when the

heating just balances the cooling) gives a steady state temperature of Tw when the

current is

Ilim =

√
ṁCw
R0α

(
1− exp

[−hcA
ṁCw

])
. (C.11)

Currents above this will heat the coils indefinitely (γ > 0) according to the model.

This indefinitely heating results from ignoring radiative and thermal conduction to

the air. Currents below Ilim will result in a steady temperature of Tf = β/ |γ|. As

noted in the text, currents used in the experiment are far below Ilim.

With the solution for T (t), the resistance of the wires as a function of time

becomes

R(t) = R′0
[
1 +Rm

(
1− e−|γ|t

)]
, (C.12)

where R′0 is the chilled coil resistance

R′0 = R0 [1− α(T0 − Tw)] (C.13)
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Parameter Value

Aluminum support volume 3.52× 10−5 m3

Copper wire volume 1.73× 10−5 m3

Water flow rate, ṁw [141]13 3.43 litre / min = 0.217 kg / s
Water chiller set temperature, Tw 15◦C
Cooling channel Length, L 9.7× 10−2 m
Cooling channel surface area, A 3.29× 10−2 m2

TABLE C.1. Water-cooled MOT coil parameters. Variable names reference equations
C.2, C.3, and C.5.

T0 is a reference temperature used in defining the “normal” resistance of the wires,

R0, and Rm is a maximum change of resistance

Rm =
I2R0

|γ| (mC)eff
=

∣∣∣∣α−
ṁCw
I2R

(
1− exp

[−hcA
ṁCw

])∣∣∣∣
−1

. (C.14)

As noted in the text, measuring the resistance of the anti-Helmholtz coils as a function

of time is straightforward and provides a clear method to find a value for γ.

C.2 Water Cooling Rate Derivation

A closed channel through which water flows can be used to regulate the

temperature of the bulk medium. The rate that heat flows from the bulk into the

water and leaves the medium is calculated here, following the general formalism of

[142].

Divide the length of the channel into a small segment dx, as shown in figure C.1.

The mass of water, dm, that flows through this channel in time dt will absorb heat,

13We cannot locate a manual for our chiller, RTE100. The RTE101 has the same specifications
as our chiller and the plumbing and circuit diagrams match the innards of our chiller, leading us to
trust the RTE101 manual.
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dx

H

W

L

FIGURE C.1. Water cooling channel dimensions

dq, from the walls of the channel according to

dq = q̇dt, (C.15)

where q̇ is the rate of heat transfer. This rate is from conduction from the walls into

the fluid, which follows

q̇ = hc(Ts − Tf )dA, (C.16)

where dA is the surface area of the fluid that is in contact with walls of the channel,

hc is the conduction coefficient (discussed below in Section C.3), and Ts is the (fixed)

temperature of the walls of the channel and Tf is the temperature of the fluid. If the

perimeter of the volume of water has length P, then the surface area is just dA = Pdx.

Assume the heat is absorbed uniformly throughout the fluid (there is no

temperature gradient from the surface into the bulk of the liquid), so that the absorbed

heat will warm the water by an amount dT as

dq = dmCdTf , (C.17)
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where C is the specific heat of the water. Combining equations C.15 through C.17

gives

hc(Ts − Tf )Pdx =
dm

dt
CdTf . (C.18)

In this equation dm/dt is just the mass flow rate through the fluid, ṁ. The total

change in the temperature from the input, Tin, to the output, Tout, is found by

integrating along the total length of the channel, L.

hcP

ṁC

∫ L

0

dx =

∫ Toutput

Tinput

dTf
Ts − Tf

exp

[−hcPL
ṁC

]
=

Ts − Tout
Ts − Tin

(C.19)

Now, consider the total heat absorbed by the water in the channel,

Q = mC(Tout − Tin). (C.20)

This occurs at a rate

Q̇ = ṁC(Ts − Tin)

[
1− Ts − Tout

Ts − Tin

]
. (C.21)

Using the result of equation C.19 gives an equation for the rate that heat is absorbed

into the water from the bulk of

Q̇ = ṁC(Ts − Tin)

[
1− exp

[−hcA
ṁC

]]
, (C.22)

where A = PL is the total surface area of the water-flow channel and Ts is the

temperature of the walls of the water-flow channel.
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C.3 Conduction Coefficient

The conduction coefficient, hc can be related to the Nusselt Number, Nu a ratio

between the thermal conduction of heat from surface into fluid and the thermal

convection of heat into into the fluid. This is,

Nu =
hcLc
k

(C.23)

where Lc is a characteristic length of a flow and k is the thermal conductivity of

the fluid. For a long rectangular channel with a width that is 4-times the height

and a uniform temperature of the channel, the Nusselt number is 4.439 [142]. The

characteristic length for a flow through a long tube is

Lc = 4
cross-sectional area

perimeter of cross-sectional area
=

2HW

H +W
(C.24)

where H and W are as shown in figure C.1. This gives a conduction coefficient of

hc =
kNu(H +W )

HW
(C.25)

Relating this to our experiment, for water, k = 0.6098 W / mK [143], and our channel

has H = 1/8′′ and W = 1/2′′. These give the conduction coefficient hc = 5.3 ×

102 W / K m2.
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APPENDIX D

BAYESIAN EVOLUTION DERIVATION

Equation 4.4 gives the probability distribution for fluorescence rate (variable x)

from a single atom, Fl1-at(x). With a known number of atoms in the MOT, the

measurement of the fluorescence from n atoms in the MOT can be used to update

information about the fluorescence rate average, R, and standard deviation, σR, from

one atom with Bayes theorem.

With a noisy measurement, y as in section 4.2.3, the noise in a measurement

must have value

ζ = y − (B + nr) , (D.1)

where B is the (assumed constant) background fluorescence rate, n the number of

atoms in a MOT, and r is the single-atom fluorescence rate. The probability for the

noise to have this value is

p (ζ = y −B + nr) =
1√

2πσ2
ζ

exp

[
− (y − (B + nr))2

2σ2
ζ

]
,

which is similar to Equation 4.8 with multiple atoms in the MOT. Then, Bayes’

theorem just says that the single atom signal fluorescence evolves according to

Fl1-at(r)→
Fl1-at(r)p (ζ = y −B + nr)∫ ∞

−∞
Fl1-at(r)p (ζ = y −B + nr) dr
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The normalization function is

∫ ∞

−∞
Fl1-at(r)p (ζ = y −B + nr) dr =

1

2πσRσzeta
×

∫ ∞

−∞
exp

[−(r −R)2

2σ2
R

]
exp

[
− (y − (B +Nr))2

2σ2
ζ

]
dr,

which integrates to

1√
2π
(
σ2
RN

2 + σ2
ζ

) exp

[
− (y − (B +NR))2

2
(
σ2
RN

2 + σ2
ζ

)
]
. (D.2)

Thus, the single-atom fluorescence probability evolves according to

Fl1-at(r) →
1√

2π
σ2
Rσ

2
ζ

(σ2
rn

2+σ2
ζ)

exp

[
− (r −R)2

2σ2
R

]
exp

[
− (y − (B + nr))2

2σ2
ζ

]
×

exp

[
− (y − (B + nR))2

2
(
σ2
Rn

2 + σ2
ζ

)
]

=
1

√
2π

√
σ2
Rσ

2
ζ

n2σ2
R+σ2

ζ

× exp




−
[
r − (Rσ2

ζ+ynσ2
R−Bnσ

2
R)

n2σ2
R+σ2

ζ

]2

2
σ2
Rσ

2
ζ

n2σ2
R+σ2

ζ


 .

This is, of course, just a Gaussian. Starting at i, and evolving to i+1 while measuring

data point yi+1, the average and variance evolve as:

Ri+1 =
Riσ

2
ζ+(yi−B)nσ2

R,i

n2σ2
R,i+σ

2
ζ

σ2
R,i+1 =

σ2
Ri
σ2
ζ

n2σ2
R,i+σ

2
ζ
.

(D.3)

It is good to note that if n = 0, then Ri+1 = Ri and σ2
R,i+1 = σ2

R,i. This should

be the case as with no atoms in the MOT, no information can be gained about the
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fluorescence rate from a single atom. For this reason, when there are no atoms in the

MOT, our algorithm instead updates the background fluorescence rate average and

standard deviation as discussed in Section 4.2.6.
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APPENDIX E

GAUSSIAN SAMPLED OSCILLATION AMPLITUDE

Photons are measured by the APD as both a background rate, β, which is

Gaussian-distributed with average rate B and a fluorescence rate from the atom,

α which is Gaussian distributed with variance σα and whose average oscillates in

time as described in the text:

α(t) = α0 [1 +mα cos(2πfαt)] . (6.22)

These two random values are sampled together, so that their total rate f and rate

variance σ2 are just the sum of the two,

fl(t) = 〈Fl〉 [1 + ε cos(2πfαt)]

σ2 = σ2
B + σ2

α,
(E.1)

with average total background fluorescence and (dimensionless) total fluorescence

oscillation amplitude defined as

〈Fl〉 = B + α0, and

ε = α0mα/ (B + α0) .
(E.2)

For single-atom fluorescence, as shown in Figure 4.3, the fluorescence is relatively

close to a Poisson distribution and can be written after time T as

σ2(T ) = 〈fl(T )〉 (1 + η) , (E.3)
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where η is a parameter that compares the variance to the mean rate. Because of the

Gaussian assumption for the photon rates, as time progresses both the variance and

the mean for the fluorescence distribution grows linearly. Thus, the parameter η is

constant over all times. The variances as measured in Figure 4.3 should then hold

for estimates of the oscillation parameter (m) for the atom. Photon arrivals between

time t = 0 and t = T produce a pulse chain,

p(t) =
∑

i

δ(t− ti) (E.4)

which has a power spectrum [132]

S(f) =
1

T

[
〈fl(T )〉+

{
〈fl2(T )〉 − 〈fl(T )〉

}
〈ei2πf(tc−tc′ )〉

]
, (E.5)

where the brackets donate statistical averages and the exponentials result from Fourier

transforms of the photon arrivals [144]. With a variance defined relative to the average

rate, it is possible to write

〈fl2〉 = σ2 − 〈fl〉2 = 〈fl〉+ 〈fl〉η − 〈fl〉2, (E.6)

which simplifies the power spectrum to

S(f) =
1

T

[
〈fl(T )〉+

{
〈fl(T )〉2 + η〈fl(T )〉

}
〈ei2πf(tc−tc′ )〉

]
. (E.7)
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To calculate the statistical average of the exponential, integrate over both tc and tc′

with both exponentials normalized by average photon rate. This produces

〈ei2πf(tc−tc′ )〉 =
1

〈f(T )〉2
∣∣∣∣
∫ T

0

f(t)e−i2πftdt

∣∣∣∣
2

, (E.8)

so that the spectrum becomes

S(f) =
1

T

[
〈f(T )〉+

∣∣∣∣
∫ T

0

f(t)e−i2πftdt

∣∣∣∣
2
]

+
η

T

∣∣∣
∫ T

0
f(t)e−i2πftdt

∣∣∣
2

〈f(T )〉 . (E.9)

The first term is identical to the Poisson-distributed rate calculated by Matzner and

Bar-Gad [132], while the second term corresponds to the Gaussian modification made

here. The added noise from the Gaussian-distributed fluorescence then increases the

spectral power over the Poisson-distributed signal. The average fluorescence is given

by

〈f(T )〉 =

∫ T

0

f(t)dt = 〈Fl〉T [1 + ε sinc(2πfαT )] . (E.10)

In the limit of small ε and at f = fα, the last term is

η

T

∣∣∣
∫ T

0
fl(t)e−i2πftdt

∣∣∣
2

〈fl(T )〉 = η〈Fl〉×
[
ε2

4
+ sinc (πfαT ) + ε sinc (πfαT ) +

ε2

4
sinc(2πfαT ) {1 + 4 sinc(πfαT ) + sinc (2πfαT )}

]
.

(E.11)

All of the oscillating terms decay rapidly at high frequencies (or long times), so they

can be dropped. Inserting the Poisson-distributed spectrum, gives a final form for

the power spectrum at f = fα

S (f = fα) = 〈Fl〉+
〈Fl〉2Tε2

4
+ η

ε2〈Fl〉
4

. (E.12)
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Similarly, far from the driving frequency, fα, the spectrum becomes just

S(f →∞) = 〈Fl〉, (E.13)

which is just the average measured fluorescence rate (from the background and an

atom). Now, from the power spectrum from the APD, the oscillation amplitude can

be measured as

ε =

√
4 [S (f = fα)− 〈Fl〉]
〈Fl〉2T + η〈Fl〉 (E.14)

Just setting η = 0 returns the Poisson-distributed result of Matzner and Bar-Gad

[132] for the oscillation parameter mp. Comparing these results gives

ε =

√
〈Fl〉T
〈Fl〉T + η

mp. (E.15)

The quantity 〈Fl〉T is the total number of photons counted in time T without any

oscillations. This value should be much larger than the added super-Poissonian noise,

η. Using the simpler Poisson result of Matzner and Bar-Gad is justified.

The atom’s fluorescence is responsible for the oscillations. Then writing the

Poisson form of ε (setting η = 0) in terms of the atomic oscillation amplitude gives

mα =
2

α0

√
S (f = fα)− (B + α0)

T
. (E.16)
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APPENDIX F

PARAMETRIC RESONANCE DERIVATION

A parametric resonantor is one where the value for the restoring spring constant

oscillates [131]. This means that the resonant frequency also oscillates. . Taking

the simplest equation for a damped, harmonic oscillator and allowing it to become

parametric gives the differential equation for its position, z

z̈ +
β

m
ż +

κ

m
z [1 + cos(ωt)] = 0 (F.1)

where m is the mass of the oscillator, κ is the restoring force spring constant, β is

the damping coefficient, and ω is the oscillation frequency of the parametric spring

constant. This frequency is not necessarily the same as the constant oscillation

frequency, ω0 =
√
κ/m. Assume that the differential equation can be solved by

an equation z(t) given by

z(t) = a(t) cos(νt) + b(t) sin(νt)

ż(t) = [ȧ(t) + νb(t)] cos(νt) +
[
ḃ(t)− νa(t)

]
sin(νt) (F.2)

z̈(t) =
[
ä(t) + 2νḃ(t)− ν2a(t)

]
cos(νt) +

[
b̈(t)− 2νȧ(t)− ν2b(t)

]
sin(νt)

for some frequency ν. Putting these equations into the differential equation F.1 gives

0 =

[
ä+ 2νḃ− ν2a+

β

m
ȧ+ ω2

0νb+ ω2
0a+ ω2

0aε cosωt

]
cos(νt) +

[
b̈− 2νȧ− ν2b+

β

m
ḃ− β

m
νa+ ω2

0b+ ω2
0bε cosωt

]
sin(νt).
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Replacing the two frequencies with the natural frequency of the oscillator and a small

deviation frequency ζ:

ω → 2ω0 + ζ

ν → ω0 + 1
2
ζ,

(F.3)

and noting that

cos(ωt) cos(νt) = cos [(ω + ν)t] + cos [(ω − ν)t] = cos [3νt] + cos [νt]

cos(ωt) sin(νt) = sin [(ω + ν)t]− sin [(ω − ν)t] = sin [3νt]− sin [νt] ,

the differential equation becomes

0 =

[
ä+ 2νḃ− ν2a+

β

m
ȧ+

β

m
νb+ ω2

0a+ ω2
0aε

]
cos(νt) +

[
b̈− 2νȧ− ν2b+

β

m
ḃ− β

m
νa+ ω2

0b− ω2
0bε

]
sin(νt),

after dropping the quickly rotating 3ν terms. Further, assume that

ȧ ∼ ζa

ḃ ∼ ζb
(F.4)
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Dropping terms that scale as the very small ζ2, the following changes are made to

the differential equations:

ä ≈ 0

b̈ ≈ 0

ν2 ≈ ω0(ω0 + ζ)

νȧ ≈ ω0ȧ

νḃ ≈ ω0ḃ.

These changes give a final differential equation of the form

0 =

[
2ḃ− ζa+ ω0

εa

2
+

βȧ

ω0m
+
βνb

ω0m

]
cos(νt) +

−
[

2ȧ+ ζb+ ω0
εb

2
+
βνa

ω0m
− βḃ

ω0m

]
sin(νt).

Under the assumption of small damping, β ∼ ζ, the differential equation can be

simplified to

0 =

[
2ḃ− ζa+ ω0

εa

2
+
β

m
b

]
cos(νt) +

−
[
2ȧ+ ζb+ ω0

εb

2
+
β

m
a

]
sin(νt).

This is solved only when the coefficients for both cos(νt) and sin(νt) vanish. Forcing

both to vanish produces coupled differential equations for ȧ and ḃ that follow the
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vector equation

d

dt



a

b


 = −




β
2m

(
1
4
εω0 + ζ

2

)

(
1
4
εω0 − ζ

2

)
β

2m






a

b


 . (F.5)

Assuming an eigenvalue solution, the equations of motion are

a(t) = a0e
−λt

b(t) = b0e
−λt

with eigenvalue

λ =
β

2m
∓
√

1

16
ε2ω2

0 −
ζ2

4
. (F.6)

A non-parametric resonator will be damped to z = 0. This solution will behave

similarly unless λ < 0. This exponential growth of the oscillator amplitude occurs if

ζ2 <
1

4
ε2ω2

0 −
β2

m2
.

In terms of the frequencies, this parametric resonance is excited for frequencies

2ω0 −
ω0

2

√
ε2 − ε2TH < ω < 2ω0 +

ω0

2

√
ε2 − ε2TH (F.7)

if the parametric strength is above a threshold strength

ε2TH =
4β2

m2ω2
0

. (F.8)
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78, 2096 (1997).

[42] R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University Press,
New York, 2008).

[43] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, ninth ed. (Cambridge University Press, 2007).

[44] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

[45] R. Wagner and J. P. Clemens, Phys. Rev. A 79, 042322 (2009).

[46] R. Wagner and J. P. Clemens, J. Opt. Soc. Am. B 27, A73 (2010).

[47] H.J.Carmichael and K. Kim, Optics Communications 179, 417 (2000).

[48] D. A. Steck, Quantum and atom optics (2017), [Online; accessed February, 6
2018. http://steck.us/teaching].

[49] R. Shankar, Principles of Quantum Mechanis, 2nd ed. (Springer, New York,
1994).

235

https://doi.org/10.1103/PhysRevA.67.033403
https://doi.org/10.1103/PhysRevA.67.033403
https://doi.org/10.1103/PhysRevA.73.043406
https://doi.org/10.1103/PhysRevA.73.043406
https://doi.org/10.1103/PhysRevA.36.428
https://doi.org/10.1103/PhysRevLett.96.033003
https://doi.org/10.1103/PhysRevA.57.R20
https://doi.org/10.1103/PhysRevA.57.R20
https://doi.org/10.1103/PhysRevLett.78.2096
https://doi.org/10.1103/PhysRevLett.78.2096
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevA.79.042322
https://doi.org/10.1364/JOSAB.27.000A73


[50] Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, Phys. Rev. Lett.
51, 1175 (1983).

[51] T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park,
C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett. 87, 133603 (2001).

[52] E. Cook, Laser Cooling and Trapping of Neutral Strontium for Spectroscopic
Measurements of Casimir-Polder Potentials, Ph.D. thesis, University of Oregon
(2017).

[53] J. B. Mackrory, T. Bhattacharya, and D. A. Steck, Phys. Rev. A 94, 042508
(2016).

[54] P. W. Milonni, The Quantum Vacuum (Academic Press, Inc., San Diego, 1994).

[55] G. K. Campbell and W. D. Phillips, Philosophical Transactions of the Royal
Society A 369, 4078 (2011).

[56] G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N.
Luiten, and C. Salomon, Phys. Rev. Lett. 82, 4619 (1999).

[57] O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Nature
444, 71 (2006).
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