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DISSERTATION ABSTRACT 
 
Lisa Marie Eytel 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
June 2019 
 
Title: Effects of Secondary Binding Motifs in Arylethynyl Anion Receptors 
 
 

Anions are abundant throughout our environmental and biological systems. These 

negatively charged and weakly coordinating species play crucial roles as ingredients in 

soil fertilizers and regulators of cellular processes. Supramolecular interactions, like 

anion-π, weak-σ, and hydrogen bonding, offer a convenient method to identify and 

quantify a variety of anions. However, we struggle to design selective molecular 

receptors due to the inherently complex thermodynamic and kinetic processes involved in 

host-guest interactions.  

2,6-bis(anilinoethynyl) receptors and the mono(anilinoethynyl) derivatives offer 

an easily modified scaffold for studying the influence of supporting secondary 

interactions on anion selectivity. Two mono-urea receptors with the ability to bind anions 

via anion-pi, aryl CH-hydrogen bonds, or weak-sigma interactions were synthesized. 

Association constants with halide anions Cl-, Br-, and I-, were measured by 1H NMR 

spectroscopy and UV-Vis spectroscopy titrations. The receptors aggregated to form a 2-

to-1 host-guest complex, with a different mechanism of complexation based on the 

supporting interaction of the aromatic core. Three additional bis-urea receptors with 

different secondary-binding motifs were synthesized and found to bind three disparate 

oxoanions at similarly high-affinities in non-polar solvents. In polar solvents, however, 
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the receptors bound each oxoanion in a predictable manner based on the acidity of the 

conjugate acid of the guest. This understanding is applied through an array of 

differentially substituted receptors for anions of environmental and biological interests.  

This dissertation contains previously published and unpublished co-authored 

material. 
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CHAPTER I 

 

THE ROAD TO ARYL CH---ANION BINDING WAS PAVED WITH GOOD 

INTENTIONS: FUNDAMENTAL STUDIES, HOST DESIGN, AND HISTORICAL 

PERSPECTIVES IN CH HYDROGEN BONDING 

 

 Chapter I is composed from a focus review published in Chem. Commun., 2019, 

Advance Article. I co-authored the review with Hazel A. Fargher, with editorial 

assistance from Prof. Michael M. Haley and Prof. Darren W. Johnson. The work in 

Chapter II includes co-authored, previously published material published in Chem. Eur. 

J., volume 23, 2017, with contributions from Annie K. Gilbert, Paul Görner, Dr. Lev N. 

Zakharov, Prof. Darren W. Johnson, and Prof. Michael M. Haley. Chapter III contains 

work co-authored with Alexander C. Brueckner, Dr. Jessica A. Lohrman, Prof. Michael 

M. Haley, Prof. Paul H.-Y. Cheong, and Prof. Darren W. Johnson. This work was 

previously published in Chem. Commun., volume 54, 2018. The work in chapter IV is 

unpublished work with contributions from Dr. Blakely W. Tresca, Anne-Lise Emig, Leif 

Winstead, Prof. Michael M. Haley, and Prof. Darren W. Johnson. Chapter V is also 

contains unpublished work with editorial contributions from Prof. Eleanor V. H. 

Vandegrift.  

 

General Introduction 

 The focus of this dissertation is on the use of differentially-substituted aryl urea 

receptors for anion detection. The main supporting interaction involved in the host-guest 
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complexes described herein is hydrogen bonds donated through the urea N-H groups. 

However, the secondary binding-motifs contributed by the aromatic core that makes-up 

the center of the sensing scaffolds can influence the binding behavior too. These 

supporting interactions can be weaker than or as strong as the main urea hydrogen 

bonding anchors. This dissertation teases apart the influence of these supporting 

interactions, with a focus on the use of aryl CH hydrogen bonds, in an effort to design 

selective and turn-on fluorescent anion receptors.  

 

Introduction to Sensing Anions via Hydrogen Bonding 

Anionic species play diverse and complex roles in environmental, industrial, and 

biological systems, which necessitates chemical methods for detecting, sensing, 

sequestering, and selectively binding these negatively charged species to understand their 

fate, transport, and modes of action. As examples in the environment, anions are often 

found as natural and anthropogenic sources of pollution. Arsenate (AsO4
3–) 

contamination in Bangladeshi wells has caused one of the largest mass-poisonings in 

history, affecting an estimated 85 million people.1 Nitrate (NO3
–) and dihydrogen 

phosphate (H2PO4
–) are essential for plant growth and are used in fertilizers to increase 

crop yield; however, over-application of these anions can be extremely detrimental to the 

environment, reaching surrounding bodies of water through agricultural run-off and 

promoting eutrophication.2 As an example in industrial processes, anions such as sulfate 

(SO4
2–) also serve as major contaminants, and can thereby inhibit the effective 

vitrification of radioactive waste.3 
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In organisms, anions are essential for numerous biological processes. Chloride 

(Cl–) is used to regulate membrane transport and control nervous system function, and the 

misregulation of chloride is linked with serious diseases such as cystic fibrosis.4 The 

hydrosulfide anion (HS–) is currently being studied for its therapeutic potential as a 

signaling agent at low concentrations, but, at high concentrations, it is a deadly toxin and 

requires detailed monitoring in applications where exposure to the anion or its conjugate 

base (hydrogen sulfide, H2S) exists.5 Anions are even implicated in systems beyond our 

own planet. While perchlorate (ClO4
–) serves as a rocket fuel additive and can lead to 

water contamination problems near terrestrial military bases (such as the Joint Base on 

Cape Cod, MA) and near flare manufacturing plants throughout California, perchlorate 

was also unexpectedly detected in soil on Mars.6,7 This finding perhaps hints at past 

microbial life on the Red Planet,7a and may suggest a future environmental cleanup 

challenge during terraforming by future humans seeking to populate other locations 

within the solar system.7b 

To understand, and potentially to monitor, the complicated roles that anions play 

in these many systems, the complex modes of action between an anionic “guest” and a 

molecular “host” has received increasing attention. Anions present several challenges as 

targets for molecular/ion recognition, including: (i) Anions tend to be harder to bind by 

traditional electrostatic interactions because they are larger, more polarizable, and more 

diffuse than comparable cations. (ii) Anions exist in a diversity of molecular geometries, 

ranging from spherical (the halides) to planar (nitrate) to octahedral (SiF6
2–), among other 

forms.8a (iii) Anions typically serve as weak to moderate bases, so their speciation can be 

pH dependent. As a result, proton transfer might occur rather than, e.g., hydrogen bond 
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formation during their interactions with a host. (iv) Anions tend to be highly solvated and 

particularly mobile, especially in polar protic solvents. Despite these challenges, 

supramolecular host-guest systems have emerged over the past few decades as a way to 

continuously monitor anions through reversible, non-covalent interactions.8 Molecular 

design and anion binding motifs can be used to modify and tailor host receptors for 

specific anion guests.9 Given the widespread use of hydrogen bonding in Nature, it is no 

surprise that a very popular approach that strongly mimics how proteins bind substrates is 

through the use of hydrogen bonding.9d,10  

Our Native Oregonian and famous sister school Beaver, Linus Pauling, predicted 

the significance of the hydrogen bond well before confirmation of its influence on the 

structure of DNA or the folding of proteins.11-13 In fact, despite decades of debate on the 

hydrogen bond, much of Pauling’s quite simple description of the hydrogen bond in The 

Nature of the Chemical Bond still drives today’s more inclusive, lengthy formal 

definition.10,14 Pauling defines a hydrogen bond quite succinctly as occurring “under 

certain conditions [when] an atom of hydrogen is attracted by rather strong forces to two 

atoms, instead of only one, so that it may be considered to be acting as a bond between 

them”.14  

Pauling’s definition reflects the traditional perspective of the hydrogen bond seen 

in structural biology, where the total interaction of the hydrogen bond is predominantly 

electrostatic and the distance between the donor and acceptor is less than the sum of the 

van der Waals radii.10,15 This classical definition of the hydrogen bond also reflects what 

many are taught in introductory chemistry courses: X–H···A reflects the strongly polar 
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hydrogen bond donor groups X–H (X = O, N, or halogen) on one side and hydrogen bond 

acceptor atoms A (A = O, N, halogen, etc.) on the other (Fig. 1a).  

 

Figure 1. (a) A representation of a polarized aryl CH hydrogen bonding interaction with 
an anion and (b) a highlight of the adenine·thymine dimer with the traditional and non-
traditional hydrogen bonding interactions highlighted.13 PDB ID: 4HLI60 

 

The definition and classification of a hydrogen bond has evolved quite a bit since 

the early observations and predictions of this attractive interaction, and a knowledge of 

this evolving history is perhaps useful in understanding the relatively recent emergence of 

CH bonds as hydrogen bond donors in molecule and anion recognition.15 In fact, the 

fields of host-guest chemistry and anion recognition now regularly employ acidic CH 

hydrogens as H-bond donors, and the resultant interactions have often been deemed 
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“weak” hydrogen bonds (irrespective of some stricter definitions we may learn in 

introductory organic chemistry courses).8,9,10,14 These and related emergent hydrogen 

bonding interactions are now well-recognized, in part due to an improved understanding 

of the interplay of the various attractive forces that comprise these interactions, including 

electrostatics, van der Waals forces, covalency, and degree of polarization.10,15,16 

 

History and Definition of the CH···X Hydrogen Bond 

The first indication of the existence of a possible CH hydrogen bond (HB) 

appears to have occurred in 1935, around the same time as studies emerged about more 

traditional hydrogen bonds.11,12 However, these non-traditional CH hydrogen bonds were 

largely ignored until the early 1960s when D. June Sutor first published a systematic 

approach to define the existence of CH hydrogen-bonds in crystal structures.17 Her 

survey of crystal structures with “'short' intermolecular and intramolecular C···O 

contacts” was the first step toward defining this weak interaction but was limited in scope 

to molecules containing C‒H···O contacts.17 

A few years later, Donohue challenged the Sutor definition of these short contacts 

as hydrogen bonds, in part suggesting the 2.6 Å contact was too long to be considered 

significant.18 With this dismissal—which appeared in a book celebrating the life and 

work of Linus Pauling and received almost no critical response—progress in the field 

halted until almost two decades later when Taylor and Kennard published a 

comprehensive survey of the neutron scattering data of 113 structures from the 

Cambridge Structural Database containing short C‒H···X contacts.19 In that work, they 

conclusively corroborated Sutor’s observations of the existence of C‒H···O hydrogen 
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bond and systematically defined the properties of C‒H···X HBs. They also expanded the 

definition of these short contacts to include general C‒H···X interactions, where X = N, 

O, and Cl. They continued to postulate that “the C‒H···X hydrogen bond may be a 

significant factor in determining the minimum energy packing arrangements of small 

organic molecules that contain nitrogen”.19 A recent review by Schwalbe provides a 

wonderful analysis of Sutor’s role in the discovery, controversy, and ultimate vindication 

of the importance of the CH hydrogen bond.20 Shortly after her death in 1990, Desiraju 

dedicated “The C–H···O Hydrogen Bond: Structural Implications and Supramolecular 

Design” to Dr. Sutor’s memory.21 

Nineteen years after the Taylor and Kennard work, Desiraju and Steiner published 

their book The Weak Hydrogen Bond: In Structure and Biology, wherein they further 

described the nature of the CH hydrogen bond.10 This weak hydrogen bond would then 

differ from classical “strong” hydrogen bonds defined as X–H···A, where A and X are 

assumed to be highly electronegative (e.g., O, N) and can approach each other closely, 

with the HBs observed between H2O molecules in crystalline ice serving as an example.15 

Similarly, in defining the weak hydrogen bond, A and X are only of moderate 

electronegativity (e.g., CH hydrogen bonds where X is C). The definition and properties 

presented by Steiner et al. provided the following standard definition guiding current 

research in the field of supramolecular anion receptors: 

“A X–H···A interaction is a hydrogen bond if i) it constitutes a local bond and ii) 
X–H acts as a proton donor to A: in the case of X–H + B:  X–H···:B. This 
definition implies a dipole-dipole interaction with a directional dependence.”10,15 

While this clear definition of the hydrogen bond emerged in the late 1990s and the 

field of crystal engineering was transformed in the mid-1990s by the CH···X interaction, 

the field of supramolecular anion receptor chemistry did not begin to fully utilize or 
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characterize this interaction in the solution-state until the mid-2000s.22,23 Recent work has 

shown that, when properly polarized by electron-withdrawing groups, CH HB donors can 

form hydrogen bonds similar in strength to those seen in more traditional HB donors.9d,24 

These studies have also revealed several advantages in using CH HBs, including a greater 

resistance to proton transfer and pH-dependent host speciation, a greater affinity for 

softer anions in certain cases, and an overall additive effect to achieve strong binding 

(much like in the adenine·thymine base-pairs in the double helical backbone of DNA, 

Fig. 1b).13 

Before we highlight current efforts in supramolecular anion receptors that utilize 

aryl CH hydrogen bonds as supporting interactions, we must first acknowledge the other, 

often competing and synergistic, supramolecular interactions at play in many such host-

guest complexes. For this review, we focus on the interactions between an aromatic host 

and an anionic guest, but we will briefly touch on other competing forces, as well as 

solvent and entropic effects. Synthetic organic anion receptors commonly incorporate six 

main intermolecular and/or intramolecular interactions, alongside 

hydrophobic/solvophobic effects: ion pairing forces, dipole-anion forces, hydrogen 

bonding, halogen bonding, weak-σ interactions, and anion-π interactions (Fig. 2).8,9,25 All 

of these binding forces rely on an attractive force between two or more atoms of differing 

electrostatic potentials. Interestingly, aryl CH hydrogen bonds, halogen bonding, weak-σ 

interactions, and anion-π interactions are all dependent on electron-withdrawing 

functional groups to create a positive electrostatic potential within the molecule to 

“catch” the anion.9 In fact, the use of electron-withdrawing groups to flip the quadrupole 
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moment in a phenyl ring to create a receptor capable of anion-π type interactions is how 

our group first stumbled into aryl CH hydrogen bonds.26 

Figure 2. Depiction of common intrermolecular binding forces at play in host‒anionic 
guest systems 

 

Aryl CH Hydrogen Bonding in Anion Receptors 

In some of our early studies on anion recognition, published in 2008 with 

collaborator Ben Hay and then-doctoral student Orion Berryman, we designed a series of 

sterically-geared electronegative triaryl-substituted triethylbenzene receptors with 

different dinitro-substitution patterns on the aryl substituents (1 and 2, Fig. 3).26 In 

designing these receptors we sought to experimentally probe the continuum between 

weak-σ interactions and anion-π interactions in neutral aromatic hosts;27 at the time of 

this research, the anion-π literature was heavily weighted towards computational studies, 

with a few solution-state studies of receptors that often featured other competing binding 

forces (e.g., ion-pairing or hydrogen bonding).27c One key finding that fell out of these 

halide binding studies was not a direct measurement of the strength of the anion-π or the 

weak-σ interactions; rather, it was the surprising appearance of downfield shifts in 1H 

NMR spectroscopy titration studies that indicated the possibility of a different binding 

force at play: aryl CH hydrogen bonding. The substitution pattern of the dinitro groups 

allowed for discrimination between competing arene-anion and CH-anion binding 

interactions, since the 3,5-dinitro substituted receptor 2 was predicted to block aryl 

CH···X– hydrogen bonding sterically, while the 2,4-dinitro substituted receptor 1 allowed 
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for two CH hydrogen bonds from the two weakly acidic ortho hydrogens within the anion 

binding pocket (Fig. 3).26  
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Figure 3. Optimized geometries of 1·Br– and 2·Br–. The 2,4-dinitro substituted 
triethylbenzene receptor 1 binds its guest via aryl CH hydrogen bonds versus the weak–σ 
binding mode depicted in the 3,5-dinitro substituted receptor 2. Figure adapted with 
permission of the American Chemical Society from ref. 26. Copyright 2008. 
 

A key contemporary experimental investigation at the time also explored the aryl 

CH···X– interaction, as reported by Sessler, Hay, Lee, and coworkers in the context of a 

series of strapped calix[4]pyrroles.28 These systems—designed to bind chloride—

contained either a phenyl, pyrrole, or furan moiety in the bridge/strap (Fig. 4). When 

compared to the unsubstituted calix[4]pyrrole, the phenyl and pyrrole straps (3 and 4, 

respectively) increased the affinity toward chloride by one and two orders of magnitude, 

respectively; however, the furan strapped system (5) showed an order of magnitude lower 

binding than the phenyl strapped system.28 This study was one of the first experimental 
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examples to show the significance of the aryl CH···X– hydrogen bond as a supporting 

interaction for anion binding in synthetic hosts. 
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Figure 4. Series of strapped calix[4]pyrroles designed to bind chloride and the crystal X-
ray diffraction structures of the Cl– complex. The key CH···Cl– interaction is clearly 
depicted in the 3·Cl– crystal structure (bottom). The added aryl CH hydrogen bond 
interaction available in the phenyl-strapped system 3 binds Cl– stronger than an 
unsubstituted calix[4]pyrrole and the furan-strapped system 5. 

 

Shortly after these two studies were published, Colleti and Re performed high 

level computations to determine the strength of binding of the halide ions (F–, Cl–, Br–, 

and I–) to benzene.29 Their results suggested bifurcated aryl CH···X– hydrogen bonds of 

intermediate strength to be the preferred binding mode of F–, Cl–, Br–, and I– with 

benzene. However, a stronger, singular aryl CH···X– HB dominated the fluoride- benzene 

interaction. This study, in combination with the previous solution-state analyses, 

appeared to rekindle interest in using aryl CH···X– hydrogen bonding as an additional 

supporting interaction in complex host-guest systems.9  



12 

N
t-Bu

NH HN

NH HNO O

R R

t-Bu

R = H, t-Bu, Oct, or OHep
8

N
t-Bu

N N

N NO O

R R

t-Bu
H

R = H, t-Bu, Oct, or OHep
9

+ HCl

H

H H

HCl
-

N
t-Bu

NH HN

S SO O

R R

t-Bu

OO

R = Me or NO2
7

t-Bu

NH HN

NH HNO O

OMe OMe

t-Bu

R = H, EWG, or EDG
6

H

R(a) (b)

(c)

 

Figure 5. (a) Generic scaffold of the phenylethynyl bis-urea anion receptors our lab has 
used to investigate aryl CH hydrogen bonding; (b) bis-sulfonamide scaffold 7; and (c) 
original pH sensitive pyridine (8) to pyridinium (9) anion binding receptors. 

 
This series of earlier studies also helped inspire the  longstanding collaboration 

between the Johnson and Haley labs at the University of Oregon in designing arylethynyl 

urea anion receptors, with a recent focus on phenylethynyl hosts (e.g. 6, Fig. 5a). This 

scaffold serves as a modified version of our original pyridylethynyl bis-urea and bis-

sulfonamide receptors in which the core pyridine/pyridinium is replaced with a phenyl 

ring that is not subject to proton transfer (7, Fig. 5b).30 Our traditional pyridine and 

pyridinium-based receptors (8 and 9, Respectively, Fig. 5c) showed a pH dependency, 

limiting the scope of the anions we could bind and making studies at a physiological pH 

more challenging due to competing proton transfer processes between host, anions, and 

solvent.31 To overcome these limitations, we asked: did protonated pyridine need to be 
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present in these receptor scaffolds? Graduate students at the time Calden Carroll, and 

later Blake Tresca, realized that the para-position on the aromatic core of the scaffold 

provided an easily functionalizable, fortuitous handle for polarizing the CH HB and 

studying substituent effects. In transitioning from a pyridine to a phenyl core, the 

opportunity to utilize aryl CH hydrogen bonding to bind anions was realized: by 

functionalizing the para-position on the core benzene ring with an electron-withdrawing 

substituent, the acidity of the aryl CH pointing into the binding pocket could be tuned as 

a hydrogen bond donor (Fig. 6, 10).32 
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Figure 6. The three anion receptors that brought our lab into its current generation of aryl 
CH hydrogen bond studies. Tresca et al. compared the binding affinities of the phenyl- 
(10), pyridine- (11), and pyridinium-core (12) receptors to realize the potential of the 
supporting aryl CH HB in our scaffolds. 

 
Similar to Sessler and coworkers’ research with strapped calix[4]pyrroles, Tresca 

et al. compared the affinity of halides with this phenyl-based receptor to those of the 

pyridine and pyridinium receptors (Fig. 6, 11 and 12).32 Receptor 12 showed the strongest 

binding for Cl–, attributed to the strong NH+ hydrogen bond combined with ion-pairing 

interactions.32 Phenyl-core receptor 10 featured an aryl CH HB in the binding pocket, 

which was further polarized by ortho-substituted alkynes. The resulting host-guest 

complex was not quite as stable as the complex with the pyridinium core when binding 

Cl–, as it showed a binding affinity an order of magnitude lower than 12. In comparison 
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to receptor 11, scaffold 10 also showed an order of a magnitude stronger affinity toward 

Cl–, which was attributed to the repulsion of the nitrogen lone pair toward anions in the 

binding pocket of 11. 1H NMR titration studies showed a downfield shift of the internal 

proton resonance, indicating the participation of the aryl CH hydrogen bond in 10·Cl–, 

and a crystal structure analysis of 10·Cl– showed short contacts between the aryl CH and 

Cl– at 3.579(3) Å, demonstrating the clear participation of the aryl CH HB in this scaffold 

(Fig. 7).32 

 

Figure 7. X-ray crystal structure of phenylethynyl bis-urea receptor 10 binding Cl‒ 
through urea NH and aryl CH hydrogen bonds. 

 

The arylethynyl bis-urea scaffolds reported from our group are inherently flexible 

and capable of binding anions in a variety of conformations, with the aryl CH HBs acting 

as supporting anion binding motifs to traditional urea NH HBs or anion-π 

interactions.32,33 This is not an uncommon approach in designing anion receptors.8a As a 

related approach to these flexible hosts, many others have shown that moderate to strong 

anion binding is also possible with multiple aliphatic and/or aryl CH HBs in pre-

organized macrocyclic receptors.34,9b-9d For example, triazolophane macrocycle receptors 
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bind anions solely through aryl CH hydrogen bonds and serve as an early example of 

shape persistent hosts for anions, also reported in 2008.35 Flood et al. exploited the large 

diploe moment of 1,4-disubstituted 1,2,3-triazole groups linked by 1,3-disubstituted 

aromatic groups to pre-organize at least six acidic, polarized aryl CH groups pointing into 

the center of the macrocyclic ring (Fig. 8, 13). This series of neutral macrocycles showed 

selective binding toward halides utilizing only aryl CH hydrogen bonding, establishing 

the significance and strength of the aryl CH···X– interaction to bind anions in solution 

and the solid state.35 
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Figure 8. Triazolophane macrocycle 13 and related tricarbazolo triazolophane 
macrocycle 14 bind anionic guests solely through aryl CH hydrogen bonds. 

 

Since that first triazolophane publication in 2008, the Flood group has reported a 

multitude of elegant differentially-substituted triazolophanes and their anion-binding 

properties.36 In one spectacular example in 2016, Lee et al. replaced the phenyl linkers in 

the macrocycle with carbazole groups to create a rigid receptor (Fig. 8, 14) easily 

synthesized (in one pot) and in high yields (70% on an 8-gram scale). This tricarbazolo 

triazolophane structure showed highly cooperative binding with high affinities toward 

larger, more diffuse, and notoriously weakly-coordinating anions, such as SbF6– and 
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PF6– in 20% MeOH in CHCl3 or the per-deutero equivalent. Strong π-stacking within 

this system also appeared to play a significant role in the self-assembly of this shape-

persistent macrocycle into slip-stacked sandwiches in solution and at the liquid/solid 

interface, forming 2D crystalline honeycomb and flower polymorphs. Despite these 

supporting intermolecular interactions, host binding toward the anions results solely due 

to the activated aryl CH hydrogen bonds.36 The uniqueness of the triazole subunit – a 

conjugated ring that is easy to synthesize through “click” chemistry with a highly 

activated CH groups – has led to its incorporation into a variety of other anion-binding 

scaffolds, including foldamers,38 pyrrolyl-based triazolophane macrocycles,39 strapped 

calix[4]pyrroles,40 and anion-responsive self-assembled bis(triazole)benzamide 

receptors,41 among others.42 

Another approach to incorporate aryl CH hydrogen bond donors lies in ring-

strained hydrocarbon macrocycles featuring aryl CH groups directed into the strained 

macrocyclic cavity. In 2016, the Stępień group synthesized octulene 15, a structural 

homologue to kekulene, which has hyperbolic curvature with approximately 30 kcal mol–

1 in strain energy.43 DFT geometries of the unsubstituted and methoxy-substituted ring 

showed a deep, saddle-like ring with eight aryl CH bonds pointing into the center of the 

large cavity (Fig. 9). The electrostatic potential (ESP) of these internal hydrogens was 

shown to be 23-24 kcal mol–1, making these aryl CH hydrogens about half as positive as 

the Flood triazolophane receptor (ESP = 41-55 kcal mol–1).37 This electrostatic potential 

is achieved through a neutral aromatic belt that lacks electron-withdrawing groups, but 

interestingly, is on par with the ESP of the aryl CH hydrogen bond donor in our most 
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polarized, electropositive arylethynyl bis-urea receptors (ESP = 28.9 and 22.1 kcal mol–1 

when the R group in Fig. 5 = NO2 and Cl, respectively).44  
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Figure 9. Chemical structure of aromatic belt octulene 15 and the gas-phase DFT 
geometries (level of theory: ωB97XD/6‐31G(d,p)) of the chloride-adduct showing the 
hyperbolic host pocket with eight aryl CH hydrogen bonds. Molecular models are 
reproduced with permission of Wiley from ref. 43. Copyright 2016. 

 

With eight electropositive aryl CH hydrogen bond donors and a rigid, pre-

organized binding cavity around the same size as that shown in triazolophane,35 Stępień 

and coworkers were able to bind Cl– with an association constant (Ka) of 2.2 x 104.43 This 

Ka, measured in 1% CD2Cl2 in C6D6, is particularly strong for a receptor that binds Cl– 

through only moderately-activated aryl CH hydrogen bonds. In comparison, the Flood 

triazolophanes, which feature many more electropositive aryl CH hydrogen bond donors, 

show a Ka of 1.3 x 105 in CH2Cl2.35 The strong association of octulene with Cl– shows the 
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combined strength of these “weak” aryl CH hydrogen bond and may suggest that 

incorporating strain into a macrocylic host may be another strategy to increase the acidity 

and hydrogen bond donor strength of aryl CH hydrogen bonds.43 
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Figure 10. Cyanostilbene-based macrocycle “cyanostar” 16 obtained through the 
Knoevenagel condensation binds anions through 10 aryl CH HBs per host and a strongly 
electropositive binding pocket. Electrostatic potential surface map reproduced with 
permission of Springer Nature from ref. 45. Copyright 2013.  

 

An even larger shape-persistent macrocyclic host was reported by Lee, Flood, and 

coworkers, again featuring all aryl CH hydrogen bonds oriented into the host cavity for 

anion recognition.45 This C5-symmetric penta-t-butyl-pentacyanopentabenzo[25]annulene 

macrocycle, aptly named “cyanostar”, was obtained through a one-pot Knoevenagel self-

condensation (Fig. 10). It strongly binds large, weakly coordinating anions through 

polarized cyanostilbene aryl and olefinic CH hydrogen bonds. It is important to note that 

the cooperative π-stacking behavior of the cyanostars with large anions plays a role in 

creating a 2-to-1 host-to-guest “sandwich” complex.45 This electropositive binding 

pocket, combined with a total of 20 CH hydrogen bonds, resulted in an overall binding 

affinity of log β12 > 11 for weakly coordinating anions PF6
–, ClO4

–, and BF4
– in 40% 

CD3OD in CD2Cl2. Since that initial report on cyanostars, the Flood group has continued 
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to investigate the anion binding properties of differentially-substituted cyanostar 

macrocycles and has contributed significantly to the field of aryl CH···X– hydrogen 

bonding by investigating the nature of the contributions of the aryl CH···X– hydrogen 

bond in these host-guest complexes.46 

 

Physical Organic Chemistry Investigations into the Nature of the Aryl CH 

Hydrogen Bond 

To employ aryl CH HBs as functional anion-binding motifs in supramolecular 

structures effectively—and perhaps still necessary in the recent past to convince skeptics 

that this attractive interaction rises to the level of inclusion as a hydrogen bond—detailed 

studies on the nature and contribution of these “non-traditional” hydrogen bond donors 

have been undertaken. Our lab became interested in using classical physical organic 

techniques to examine aryl CH HBs after receptor 10 showed moderate binding strength 

toward Cl–.32 We hypothesized that we could modulate the strength of the aryl CH HB in 

the binding pocket by installing various electron donating or withdrawing groups in the 

para position to the HB donor to study substituent effects. If these CH HBs were truly 

fundamentally related to their more traditional NH and OH counterparts, their HB 

binding energies should show linear free energy relationships to, e.g., traditional 

Hammett constants.  

In 2016, Tresca and colleagues in our lab implemented a linear free energy 

relationship (LFER) study to probe the characteristics of these CH···X– interactions by 

modulating the HB strength through these varied para-substituents.44 The modular 

synthesis of our receptors allowed us to build a series of receptors (Fig. 11a, 17).44 We 
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reported the association constants of the series of receptors with chloride, bromide, 

iodide, and nitrate in water-saturated CHCl3. We found that the  binding energies were 

well described in LFER studies by using Hammett parameters, showing that the acidity of 

the aryl CH HB could be modulated by EWGs and EDGs in the para position, much like 

NH and OH HBs. Additionally, plotting the electrostatic potential of the aryl CH HB 

(calculated at the B3LYP/6-31+g(d) level of theory) against the ΔG of binding in solution 

revealed that the aryl CH HB was an important contributor to the overall binding energy, 

with the strongest aryl CH anion HB contributing up to ‒2.20 kcal mol‒1.44 In fact, the 

aryl CH HB amounted to as high as 47% of the total binding energy with I–.44 

 

t-Bu

N N

N NO O

OMe OMe

t-Bu
H

R

R = NO2, Cl, F, H, 
t-Bu, OMe, NMe2

X = Cl
-, Br-

, I
-
, NO3

-

X
-H

H H

H

17

(a) (b)

 
Figure 11. (a) Chemical structure of the differentially substituted phenylethynyl bis-urea 
receptors 17 implemented in the LFER study by Tresca et al. (b) Hammett plot of the 
binding constants of the various receptors with Cl–, indicating a σp relationship between 
the binding strength and aryl CH hydrogen bond donor. Hammett plot reproduced with 
permission of the American Chemical Society from ref. 44. Copyright 2015. 

 

This research also highlighted differences in binding strength between the harder 

anions (Cl– and Br–) and the softer anions (I– and NO3
–). Performing Hammett plots with 
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σp or σm parameters for the different para substituents revealed subtle differences 

between the various anions.44 Binding energies with Cl– fit σp values best (Fig. 11b), 

while binding energies with I– better fit σm, suggesting that resonance contributions may 

play a more important role in binding the harder Cl– than when binding the softer I–. We 

also saw that NO3
– fit both σp and σm equally well, perhaps due to the added geometric 

considerations of the larger, trigonal planar anion.44 Using the induction (F) and 

resonance (R) parameters developed by Swain and Lupton enabled determination of the 

inductive and resonance contributions of the receptors when binding the different anions. 

This analysis also revealed slightly higher resonance contributions for the harder anions 

than for the softer anions. These findings reinforce that linear free energy relationships 

can be a powerful tool in deciphering subtleties in non-covalent interactions, and 

potentially even provide approaches to achieving selectivity for different anions.44 

Even without resorting to comprehensive LFER investigations, many other 

studies have explored the effect of polarizing CH bonds with electron withdrawing and 

donating groups. For example, in 2014 the Hill group reported an arylpyrrole oligomer 

possessing pyrrole NH and aryl CH hydrogen bonds for anion binding.47 These aryl CH 

hydrogen bonding motifs could be polarized through functional groups in the ortho-, 

meta-, and para-positions (Fig. 12a). When comparing five different receptors (18a-e) to 

six different anions (Cl–, HCO3
–, AcO–, H2PO4

–, NO3
–, and Br–), the authors could not 

pinpoint a consistent trend across all host-guest pairs, with one exception: host 18e.47 

This receptor, which combined a nitrogen lone pair pointing into the binding pocket with 

aryl CH HBs activated at the meta-position, bound all of the anions the weakest. This was 

likely due to the steric and/or electrostatic repulsion from the nitrogen lone pair pointing 
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into the binding pocket. For the remaining host-guest pairs, the authors concluded that 

steric hindrance of the anion binding pocket was just as important to consider as the 

polarization of the aryl CH HB in host-guest interactions.47 
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Figure 12. Chemical structures of various anion receptors used to probe the strength of 
the aryl CH hydrogen bond through differential substitution of (a) arylpyrrole oligomers 
18, (b) anthracene-amide based receptors 19, and (c) TREN-based receptors 20. 

 

The Kang group also reported on the effect of polarization of aryl CH hydrogen 

bonds on anion binding.48 Their receptors utilized an amide NH HB, a central anthracene 

CH HB, and an aryl CH polarized by an ortho pyridinium, a para-nitro group, or a 

control receptor without substituents (Fig. 12b, 19a-c, respectively). The unsubstituted 

receptor 19c showed no affinity toward a range of anions, while the slightly-more 
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polarized receptor 19b only bound H2PO4
–.48 Receptor 19a, however, which featured the 

most polarized aryl CH hydrogen bond, was able to bind all four anions studied (H2PO4
–, 

HSO4
–, Cl–, and Br–). In this case, the extent of polarization of this aryl CH HB, along 

with the favorable electrostatic interactions and possible N-methyl pyridinium CH HBs in 

19a, were critical in creating a favorable host-guest interaction in solution.48 

We previously collaborated with our colleagues in the lab of Michael Pluth at the 

University of Oregon to show that receptors of the type in Fig. 12c could bind the highly 

nucleophilic hydrosulfide anion (HS–, conjugate base of hydrogen sulfide, H2S).56 These 

studies revealed that a short CH···S contact contributed to the strong association of 

hydrosulfide in these complexes, and solution phase measurements supported the 

existence of this HB as well. In a continued attempt to determine the contribution of aryl 

CH hydrogen bonds in anion binding, the Pluth group published a series of tribenzamide 

TREN-based receptors (Fig. 12, 20).49 Within their series, two receptors were 

functionalized with CF3 electron withdrawing groups either in the meta (20a) or para 

(20b) position relative to the amide functional group. In the para position (20b), the CF3 

group polarized the NH HB donor, making it more acidic, through both inductive and 

resonance effects. Likewise, in the meta position (20a), the CF3 group more greatly 

polarized the aryl CH HB donor. Titration of 20a and 20b (R = CF3) with TBASH 

revealed higher binding affinities than a receptor with an unfunctionalized aryl ring. 

Furthermore, they saw that the Ka for 20b was three times greater than for 20a, 

suggesting that the amide NH HB was more important in anion binding than the aryl CH 

HB.  
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To further explore the system, the Pluth group then installed methyl groups in 

both the para (20b, R = CH3) and meta (20a, R’ = CH3) position to the amide functional 

group, decreasing the acidity of both NH and CH HB. Through titration of the methyl- 

substituted 20a and 20b with TBASH, the authors saw lower binding affinities than the 

unsubstituted receptor but did not observe a significant difference in binding strengths 

between the two methyl-substituted receptors.49  

Electrostatic potential surface (EPS) maps also serve as an efficient physical 

organic tool to visualize binding pockets and the extent of aryl CH hydrogen bond 

polarization without requiring the need to synthesize and study the anion-binding 

properties of a series of receptors. In their initial report on cyanostar macrocycles, Flood 

et al. attributed the strong binding toward weakly coordinating anions both to the 

electropositive cavity of the cyanostar and to the large size of the binding pocket (~4.5 

A).45 To visualize this cavity, they used an electrostatic potential map of an intermediate 

building block to show that the nitrile group was able to polarize the vinylic and aryl CH 

bonds, thereby lining the inner cavity with an electropositive region (Fig. 10). Using 

calculations at the B3LYP/6-31G* level of theory, the authors calculated the EPS of the 

vinyl CH HB in the advanced intermediate at 29 kcal mol–1, which represents a highly 

polarized CH bond and thus a strong CH HB donor.45,50 

Another way to study the contribution of a CH hydrogen bond to the overall anion 

binding in a receptor is through the use of deuterium equilibrium isotope effects (DEIEs); 

such studies are quite challenging to perform on traditional NH and OH donors due to 

proton exchange. We are fortunate to have a scaffold that presents a CH donor that is 

quite easy to label with deuterium (Fig. 13), and thus we embarked on a study with 
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collaborator Paul Cheong’s lab to investigate EIEs in an aryl CH HB an anion receptor.51 

In this investigation, receptors 21aH and 21aD were titrated with chloride in d6-DMSO 

and monitored through 13C NMR titrations. We reported a normal DEIE, with Ka21aH / 

Ka21aD = 1.019 +/- 0.010.51 We also reported the computed DEIEs of fragments of the 

receptors (Fig. 13).51 Interestingly, we saw that various fragments of the receptor showed 

an inverse DEIE. These results were surprising because they showed that the DEIE of the 

fragments would not be additive, as the inverse DEIEs would not sum to a positive DEIE, 

as was determined experimentally. Further analysis suggested that the origin of the 

different, normal DEIE of 21aH and 21aD was an emergent phenomenon resulting from 

combination of functional groups and binding geometries present in the host.51 

t-Bu t-Bu

NH HN

O ONH HN

OMe OMe

NO2

X

21aH: X = H
21aD: X = D

 

Figure 13. Deuterium labeled anion receptor 21 and subsequent computed EIE values 
involving the chloride complexes with fragments of receptor 20H/D. EIE spectrum 
reproduced with permission of the American Chemical Society from ref 51. Copyright 
2017.   
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Probing Solvent Effects in the Aryl CH···X– Interaction 

We would be remiss if we did not emphasize that—especially with weak 

interactions—the binding forces alone do not always dominate binding structure, 

selectivity, strength, etc.; rather, solvent effects and entropy (through enthalpy-entropy 

compensation, preorganization, and cooperativity, among other factors) play their own 

critical, oftentimes ambiguous roles.50,51 Unfortunately, our understanding of solvent 

effects in general in synthetic host-guest complexes remains incomplete, and efforts to 

understand these effects in anion recognition are in their infancy. This is therefore a 

roadblock in understanding and predicting how receptors with any variety of binding 

motifs will interact with and select various anions in solution, particularly in water.51 

Until recently, most of our understanding of solvent effects come from empirical 

reports of receptors examined in a few solvents. In 2017, the Flood group published a 

comprehensive study to untangle the forces that drive anion binding in macrocylic 

receptors, including electrostatics and solvent effects (Fig. 14).52 Experimental 1H NMR 

titrations with triazolophane receptor 22b and tetrabuylammonium chloride were 

conducted in solvents with a range in dieletric constant from εr = 4.7 (CHCl3) to εr = 56.2 

(10% v/v H2O in DMSO).52 Additionally, DFT calculations were performed on receptor 

22a to provide further insight into the binding events. From their experimental and 

computational results, the authors discovered a 1/εr dependence on anion affinity in 

aprotic solvents (Fig. 14). As the dielectric constant of the solvent decreased, the 

electrostatic forces of the receptor on the anion dominated the anion binding event and 

binding behavior became more and more similar to gas-phase calculations. As the 
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dielectric constant increased, electrostatics gave way to other inter- and intramolecular 

forces, such as dispersion, induction, and exchange forces. With the switch from aprotic 

solvents to a mixture of DMSO and water, Flood et al. found a deviation from the 1/εr 

dependency: instead of plateauing, binding affinities began to decrease linearly in a 

fashion that was not predicted by computational binding models (Fig. 14).52  

This unexpected trend in solvent influence on the strength of anion binding 

highlights how many forces are truly at play in these host-anion systems. While the 

strength of aryl CH hydrogen bonds can improve the overall association strength in a 

host-guest system, protect from proton transfer reactions, and even aid in anion binding 

selectivity, the role of dynamic electrostatic and solvent forces clearly warrants further 

scrutiny.53-55 
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Figure 14. Understanding solvent effects on aryl CH···anion receptors is the next frontier 
in understanding the nature of this unique bond. Triazolophane macrocycles 22a and 22b 
showed a predictable 1/εr dependency in aprotic solvents but an unexpected linear 
decrease in anion association strength in protic solvents.  Graphs reproduced with 
permission of Elsevier from ref. 52. Copyright 2017. 
 

 

Our Future in the Field of Aryl CH···Anion Hydrogen Bonding 

Flood’s comprehensive approach to teasing apart solvent effects on anion binding 

is a notable contribution to the understanding of CH-anion recognition, and they make 

sure to highlight how much work remains in generalizing our understanding of solvent 



28 

effects and moving theoretical models to shift from the gas phase into the more relevant 

solvent phase.52 We are inspired to continue thinking “beyond the electrostatic regime” in 

order to explain the deviation from the dielectric dependency upon moving into protic 

solvents, water-DMSO mixtures, and even neat water; to investigate solvent effects on 

our more flexible anion receptors; to explore the fundamental CH HB interactions and its 

role in driving anion binding selectivity; and to study the impact of solvent on hosts with 

binding geometries not perfectly designed for the guest. 

The use of aryl CH hydrogen bonds and other anion binding approaches in the 

development of molecular probes and sensors for anions of biological relevance is 

another area that requires continued exploration. In one case, these pursuits led us to 

report the first examples of supramolecular receptors for the reversible binding of 

biologically-critical yet highly-reactive hydrosulfide (HS–) anion.56 Subsequent to these 

studies, new receptors targeting these types of biologically relevant anions through the 

use of aryl CH HBs have appeared.49,57 We are now further exploring the use of aryl CH 

hydrogen bonds to bind other reactive, yet biologically-relevant (hydro)chalcogenide 

anions, including hydroselenide.58 

We also note that the studies on CH-anion HBs have focused on organic solvent 

mixtures predominantly, so there is still plenty of opportunity to study CH HBs in water 

to parallel other studies on anion recognition in water.53,55 We foresee combining the 

utility and tunability of the aryl CH···X– interaction with halogen bonding interactions to 

achieve strong and selective anion detection in water. These types of interaction motifs 

are now starting to appear in the design of organocatalysts and as bioisosteres in drug 

discovery. Finally, new generations of chemists continue to inspire us with the 
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development of new binding motifs to consider for anion recognition, with a recent report 

showing the RCF2H group can serve as a HB donor that may mimic the function of ROH 

HB donors.59 

 

Bridge to Chapter II 

 This chapter provided a general introduction and history of hydrogen bonding, 

with a particular focus on the aryl CH···anion hydrogen bond as a secondary binding 

motif. Chapter II will present two cases where urea hydrogen bonds are used as anchors 

in arylethynyl mono-urea anion receptors. One scaffold utilizes the aryl CH···anion 

interaction as a supporting binding motif, while the other scaffold is designed to promote 

an anion-pi interaction. The work in Chapter II will show that each of these secondary 

binding motifs influences the mechanism of binding in a 2-to-1 host-guest system.  
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CHAPTER II  

 

DO CH-ANION AND ANION-Π INTERACTIONS ALTER THE MECHANISM OF 

2:1 HOST-GUEST COMPLEXATION IN ARYLETHYNYL MONOUREA ANION 

RECEPTORS? 

 

 From L. M. Eytel, A. K. Gilbert, P. Görner, D. W. Johnson, M. M. Haley, “Do CH–

Anion and Anion–π Interactions Alter the Mechanism of 2:1 Host–Guest Complexation in 

Arylethynyl Monourea Anion Receptors?” Chem. Eur. J. 2017, 23, 4051-4054. The 

experimental work was performed by me or A. K. Gilbert or P. Görner under my guidance. 

The X-ray diffraction data was collected and solved by Dr. L. N. Zakharov. The writing is 

entirely my own with editorial assistance provided by Dr. L. N. Zakharov, Prof. D. W. 

Johnson and Prof. M. M. Haley.   

 

Introduction 

For the past few decades, the field of anion sensing has been dominated by 

supramolecular receptors.[1] Supramolecular hosts have been shown to bind anionic 

guests through a variety of host-guest interactions, including anion-π interactions, 

hydrogen bonds, and weak-σ interactions.[1–3] Disregarding the larger molecular structure 

or type of guest, supramolecular hosts are currently designed to include some degree of 

preorganization and an attractive binding pocket.[1,2,4] Ideally, such probes can be easily 

tuned for analyte specificity and optoelectronic responses.[1–5] 
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Arylethynyl urea scaffolds make up the foundation of the supramolecular anion 

sensing scaffolds in our studies. A preorganized binding cavity is formed by a rigid 

alkyne linkage between arene rings and urea-based hydrogen bond (HB) donors.[6,7] The 

easily-functionalized core and pendant arenes are strategic designs, as they can be 

modified with electron-donating or electron-withdrawing substituents to modulate the 

acidity of the HB donors.[7b] Our previously reported arylethynyl bis-urea (e.g., 1) and 

tris-urea receptors (2) have exhibited a variety of binding motifs for anions.[6–9] The 

majority of the bipodal hosts bind anions via aryl CH or pyridinium hydrogen bond 

donors at the core of the host, with the urea groups forming a U-shaped pocket that 

dominates the binding event, as shown in Figure 1.[7,8] This binding pattern is altered in 

trifluorophenyl tripodal receptor 2, however, where anion-π interactions influence 

selectivity in favour of binding nitrate over chloride.[9] Furthermore, the crystal structure 

of the tris-urea host indicated that only two of the three available urea “arms” were 

interacting with an anionic guest.[9] This suggested that the number of urea donors may 

influence anion binding as much as the type of binding motif utilized in the host-guest 

interaction. Anion-π interactions have been observed in a myriad of receptors, and the 

ability to tune arenes to increase their selectivity for anion-π binding has been shown in 

other arene-based hosts.[1,9,10]  

To elucidate both the degree of tunability of the anion binding motifs and the 

number of arylethynyl urea recognition elements necessary to bind an anion, we designed 

mono-urea host scaffolds 3 and 4 (Figure 1). The single “arm” permits more aggressive 

tuning of the arene core than what is synthetically accessible on the bis-arylethynyl 

scaffold, and the increased rotational freedom around the single ethynyl unit permits the 
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core arene to rotate to facilitate the preferred binding motif (i.e. anion-π, aryl CH H-bond, 

or weak-σ interactions). Berryman et al. utilized dinitro-substituted arenes in a tris-arene 

scaffold to host anions.[11] It was calculated that the 3,5-dinitro groups sterically block the 

aryl CH, preventing an H-bond interaction between the phenyl core and an anionic 

guest.[11] With the additional rotational freedom of scaffold 3, we hypothesized that the 

3,5-dinitrobenzene substitution pattern would promote anion-π or weak-σ interactions 

between the host scaffold and an anionic guest. Similarly, the pentafluoroarene scaffold 4 

was inspired by the trifluorophenyl tripodal receptor 2.[9] We hypothesized that the 

combination of an electron deficient aromatic ring and the removal of aryl H-bond donors 

would result in a scaffold that hosts anionic guests exclusively via an anion-π interaction 

in combination with the urea HB donors. 
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Figure 1. Previously reported bipodal bis-urea (1) and tripodal tris-urea (2) receptors 
along with the new monopodal arylethynyl mono-urea scaffolds (3, 4). 
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Results and Discussion 

Monopodal hosts 3 and 4 were synthesized as shown in Scheme 1. Desilylation of 

known ethynylaniline 5[8b,f] and subsequent Sonogashira cross-coupling with 1-iodo-3,5-

dinitrobenzene or iodopentafluorobenzene furnished cores 6 and 7 in 87% and 73% yield, 

respectively. Reaction of 6 or 7 with p-nitrophenyl isocyanate provided receptors 3 and 4 

in 73% and 71% yield, respectively. The final compounds were fully characterized by 1H, 

13C, and 19F NMR spectroscopies, and 2D 1H-13C HSQC NMR spectroscopy was used to 

assign the aryl and urea proton resonances of 3.  
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Scheme 1. Synthesis of arylethynyl mono-urea receptors 3 and 4. 
 

The anion binding characteristics of 3 and 4 were investigated with 

tetrabutylammonium (TBA) halide salts in 10% DMSO/CHCl3 or the perdeutero 

equivalent. Titration experiments were performed at 1.0 mM concentration of chosen 
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host (Figure 2).[12] Association constants (Ka) for 3 and 4 with halides Cl–, Br–, and I– 

were calculated using non-linear regression, non-cooperative fitting models in MatLab by 

simultaneously fitting the downfield shifting of the urea protons (Hb, Hc for 3; Ha, Hb for 

4).[13] The internal aryl proton (Ha) resonance shifts were also included in the fitting of 3. 

 

Figure 2. (a) 1H NMR titration of 3 with TBA+Cl– at 298K; [3] = 0.4 mM in 10% water-
saturated d6-DMSO/CDCl3. (b) 1H NMR titration of 4 with TBA+Br– at 298K; [4] = 1.0 
mM in 10% water-saturated d6-DMSO/CDCl3. Peak assignments refer to labelled 
hydrogen atoms in Figure 1. 
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Titrations were initially fit to a 1:1 host-guest model, but residual errors were 

large, indicating a poor fit. In addition, the serpentine-like shift of urea proton Hc in the 

titrations of 3 hinted at the possibility of higher-order binding stoichiometry (Figure 

2a).[14–16] Job’s plot analysis revealed a 2:1 host-guest model might be more appropriate 

for the binding stoichiometry (See ESI). Indeed, titrations fit to a 2:1 host-guest model 

provided minimalized residual errors.[15] The previous arylethynyl urea probes studied by 

our lab included at least two-urea recognition motifs to host a guest anion, and the fit of 

the mono-arylethynyl urea probes 3 and 4 to a 2:1 host-guest system further signifies the 

necessity of including multiple urea recognition motifs in a scaffold’s design.  

 

 

The stepwise Ka1 and Ka2 values for both 3 and 4 with the various halides were 

determined across three titrations with less than a 15% error (Table 1). The Ka1 values for 

3 are within error of each other, but the Ka2 values increase by an order of magnitude 

with increasing guest size. The trend could be related to the ability of the recognition 

scaffolds to donate increasingly linear hydrogen bonds in the assembled binding pocket. 

Interestingly, there is a clear statistically significant difference in the Ka1 values for 4 

with the halides, and the overall trend of association constants appears to be opposite in 4 

Table 1. Anion association constants (Ka) for receptors 3 and 4 obtained by fitting 
titration data to a step-wise 2:1 host-guest model in MatLab.a 
  

Host 
Cl–/M–1[a] Br–/M–1[a] I–/M–1[a] 

Ka1 Ka2 Ka1 Ka2 Ka1 Ka2 
3 300 740 320 1040 360 6570 
4 118000[b] 10200 930 2500 130 750 

[a] Anions added as tetrabutylammonium salts in 10% water-saturated d6-DMSO/CDCl3. 
Values represent an average of three 1H NMR titrations. Error is ca. ±15%. [b] Reference 
17. 
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versus 3; that is, in 3 there is a slight reverse Hofmeister trend in anion binding of I– > Br– 

> Cl– and in 4 the opposite is true: Cl– > Br– > I–. The change in anion preference could be 

due to the formation of an anion-π interaction in 4∙X–, and the smaller anions are capable 

of a closer interaction with the π-systems.[2] The preference for larger halides in 3 could 

be the result of both aryl CH hydrogen bonds becoming more linear, increasing the 

strength of the interactions.  

The order in which the anion binds the two hosts could shed additional light on 

the nature of the interactions of these hosts with anions. There are two likely mechanisms 

in which a 2:1 host-guest complex can form: two hosts associate, then an anion binds in 

the dimer pocket (Figure 3a), or one host binds the anion, followed by a second host 

binding the 1:1 complex (Figure 3b).[13,14] If a complex initially dimerizes/aggregates, the 

Ka1 value would likely be independent of the nature of anion present; this rings true for 

scaffold 3. Additionally, these Ka1 values are on the same order of magnitude as the 

dimerization constant for 3 in the absence of an anion/salt, suggesting that Ka13  might 

resemble a receptor dimerization event.[18] It is also possible the supporting “weak’ 

interaction in 3 (e.g., CH-anion from the dinitrophenyl ring) creates a competing trend in 

anion binding that prefers the softer iodide over chloride/bromide, and thus mechanism 

(b) is still at play but this competing selectivity cancels the anion binding dependence in 

Ka1.  

The 2:1 assembly situation is much more clear for the anion complexes of 4. Both 

Ka1 and Ka2 values of 4 change across the anion series, as predicted by relative anion 

basicity, supporting the 2:1 complex forming via a step-wise mechanism dominated by 
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traditional hydrogen bonding interactions with the ureas and possible supporting anion-π 

interactions with the pendant pentafluorphenyl rings (Figure 3b). 

 

Figure 3. Simplified equilibrium equations illustrating the two possible modes for 
formation of a 2:1 host-guest complex: (a) initially a dimer forms, followed by the anion 
addition to form the 2:1 complex, or (b) a 1:1 host-guest complex forms and a second host 
binds to form a 2:1 complex. 
 
 
 

Figure 4. X-ray crystal structure of 32∙Br–. Hydrogen bond interactions shown as dotted 
line. TBA+ counter cation and solvent molecules have been omitted for clarity. 

 

The 2:1 host-guest stoichiometry was further confirmed in the solid-state via X-

ray crystallography. Single crystals of 3 grown in the presence of TBA+Br– were obtained 

via slow evaporation from CHCl3/DMSO.[19] Two receptors asymmetrically encapsulate 

the Br– atom through a total of six weak hydrogen bond contacts (Figure 4). Each 
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receptor donates two hydrogen-bonds through the urea moiety and another weak CH 

hydrogen- bond through the dinitrophenyl core with distances Nd‒Br 3.27(1) Å, Nc‒Br 

3.63(2) Å, Cb‒Br 3.62(2) Å, Nd’‒Br 3.29(2) Å, Nc’‒Br 3.64(2) Å, Cb’‒Br 3.69(2) Å and 

angles Nd‒Hd•••Br 141.3(4)°, Nc‒Hc•••Br 146.3(2)°, Cb‒Hb•••Br 161.8(6)°, Nd’‒Hd’•••Br 

172.6(4)°, Nc’‒Hc’•••Br 151.2(9)°, Cb’‒Hb’•••Br 133.3(1)°. 

Although previous calculations predicted the aryl CH HBs would be inaccessible 

due to the steric hindrance of the nitro substituents,[11] the importance of aryl CH HBs is 

not lost in the crystal structure of scaffold 3. The ability for two equivalents of 3 to 

encapsulate an anionic guest via six weak hydrogen bonds also contributes to the large 

association constants seen in the solution state studies. Though solid state data has yet to 

be obtained, it is reasonable to hypothesize that 4 shows a similar binding interaction as 

3, with the CH HBs replaced by anion-pi interactions since 4 lacks CH HB donors. A 

color change was not seen upon the addition of anion, indicating that a weak-σ 

interaction/charge-transfer complex is not involved. This lends further credence to our 

speculation that anion-π is the most probable supporting interaction in the host-guest 

complex of 4, whereas CH-anion interactions are present in 3. An anionic guest can 

interact with 4 through two anion-π interactions, along with the four urea HB donors. 

In summary, the solid state data in combination with the solution phase Ka values 

provide a convincing argument for the necessity of at least two urea recognition motifs in 

a strong arylethynyl receptor scaffold. The inclusion of a phenyl core with the ability to 

host an anionic guest via an aryl CH HB or an anion-π interaction also appears to 

influence the order of the halide binding within the self-assembled binding pocket. 
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Further research on the effect of cooperativity of these monopodal arylethynyl-urea 

scaffolds is currently in progress.  

 

Experimental 

General methods  

1H, 13C, and 19F NMR spectra were obtained on a Varian Mercury 300 MHz (1H: 

300.09 MHz), Inova 500 MHz (1H: 500.10 MHz, 13C 125.75 MHz, 19F: 470.56 MHz), or 

Bruker Avance III HD 600 MHz NMR spectrometer with Prodigy multinuclear 

broadband BBO CryoProbe (1H: 600.02 MHz, 13C: 150.89 MHz). Chemical shifts (δ) are 

expressed in ppm downfield from tetramethylsilane (TMS) using non-deutrated solvent 

present in the bulk deutrated solvent (CDCl3, 1H 7.26 ppm, 13C 77.16 ppm; d6-DMSO: 1H 

2.50 ppm, 13C 39.52 ppm; d6-acetone 1H 2.05 ppom, 13C 206.7 ppm, 29.9 ppm). Mixed 

solvent systems were referenced to the most abundant solvent. All NMR spectra were 

processed using MestReNova NMR processing software. Unless otherwise specified, all 

materials were obtained from TCI-America, Sigma-Aldrich, or Acros and used as 

received. Tetrabutylammonium salts were dried at 50 °C in vacuo prior to use. Aniline 5 

was synthesized and desilated following known procedures.7 

Synthesis 

3,5-Dinitrophenyl aniline 6. In a sealable flask, 1-iodo-3,5-dinitrobenzene (1.20 

g, 4.08 mmol) was dissolved in DIPA (20 mL) and THF (20 mL). The mixture was 

purged with N2 for 30 min, then CuI (0.076 g, 0.408 mmol) was added. The mixture was 

purged for an additional 30 min, followed by the addition of Pd(PPh3)4 (0.38 g, 0.327 

mmol). An N2-purged solution of 4-tert-butyl-2-ethynylaniline (1.05 g, 6.05 mmol) in 



40 

DIPA (10 mL) and THF (10 mL) was then transferred into the flask via cannula. The 

flask was sealed and the mixture was stirred overnight at 50 °C. The cooled solution was 

filtered through a 6 cm silica gel plug eluting with CH2Cl2 and the concentrated in vacuo. 

Column chromatography (2:1 EtOAc:hexanes) of the crude material afforded 6 (1.24 g, 

87%) as an orange solid. 1H NMR (500 MHz, CDCl3) δ 8.95 (t, J = 1.8 Hz, 1H), 8.64 (d, 

J = 2.0 Hz, 2H), 7.41 (d, J = 2.1 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 6.72 (d, J = 8.4 Hz, 

1H), 4.21 (s, 2H), 1.30 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 148.94, 146.56, 141.69, 

140.39, 129.54, 129.43, 127.77, 117.84, 115.17, 105.45, 93.43, 90.39, 34.40, 31.74. 

HRMS (TOF-MS-ES–) for C18H16N3O4 [M–H] –: calcd 338.1141, found 338.1157.  

Pentafluorophenyl aniline 7. Following the procedure for the synthesis of 6, 

iodopentafluorobenzene (1.25 g, 4.25 mmol) was reacted with 4-tert-butyl-2-

ethynylaniline (1.11 g, 6.38 mmol) in the presence of THF (25 mL), DIPA (25 mL), CuI 

(0.040 g, 0.21 mmol), and Pd(PPh3)4 (0.393 g, 0.340 mmol). Product 7 was obtained via a 

silica plug (2:1 hexanes:EtOAc) as a black-brown solid and used without further 

purification (1.04 g, 72%). 1H NMR (500 MHz, CDCl3) δ 7.36 (d, J = 2.3 Hz, 1H), 7.21 

(dd, J = 8.5, 2.4 Hz, 1H), 6.73 (d, J = 8.7 Hz, 1H), 4.52 (s, 2H), 1.26 (s, 9H). 13C{19F} 

NMR (126 MHz, CDCl3) δ 147.25, 146.24, 141.08, 129.62, 128.91, 128.73, 128.22, 

114.60, 106.01, 105.56, 80.31, 78.72, 34.08, 31.47. 19F NMR (471 MHz, CDCl3) δ –

136.62 (dd, J = 22.1, 7.7 Hz), –153.44 (t, J = 41.0 Hz), –161.86 (m). HRMS (TOF-MS-

ES+) for C18H15NF5 [M–H] +: calcd 340.1125, found 340.1137. 

3,5-Dinitrophenyl receptor 3. In flame dried glassware, aniline 6 (0.250 g, 0.737 

mmol) and p-nitrophenyl isocyanate (0.212 g, 1.29 mmol) was dissolved in freshly 

distilled toluene (75 mL). The reaction mixture was stirred for 48 h at 50 °C. The reaction 
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was quenched with acetone, allowed to cool, and concentrated in vacuo. Product 3 was 

precipitated with acetone from a hexanes solution (0.271 g, 73%) as an orange solid. 1H 

NMR (500 MHz, d6-acetone) δ 9.18 (s, 1H), 8.91 (t, J = 2.1 Hz, 1H), 8.34 (s, 1H), 8.24 

(d, J = 9.1 Hz, 2H), 8.19 (d, J = 2.6 Hz, 1H), 7.80 (d, J = 9.2 Hz, 2H), 7.72 (d, J = 2.4 Hz, 

1H), 7.57 (dd, J = 8.9, 2.4 Hz, 1H), 1.36 (s, 9H). 13C NMR (126 MHz, d6-acetone) δ 

152.65, 149.82, 147.10, 146.93, 143.21, 139.15, 132.21, 130.51, 129.23, 127.29, 125.98, 

121.14, 119.19, 118.85, 111.74, 92.10, 91.43, 35.08, 31.63. HRMS (TOF-MS-ES–) for 

C25H20N5O7 [M–H] –: calcd 502.1363, found 502.1358. 

Pentafluorophenyl receptor 4. In flame dried glassware, aniline 7 (0.500 g, 1.47 

mmol) and p-nitrophenyl isocyanate (0.423 g, 2.58 mmol) was dissolved in freshly 

distilled toluene (150 mL). The reaction mixture was stirred for 72 h at 50 °C. The 

reaction was quenched with acetone, allowed to cool, and concentrated in vacuo. Pure 

product 4 was precipitated out of hot EtOAc (0.574 g, 71%) as a yellow solid. 1H NMR 

(500 MHz, d6-DMSO/CDCl3) δ 9.52 (s, 1H), 8.04 (s, 1H), 7.86 (dd, J = 9.2, 2.1 Hz, 2H), 

7.83 (d, J = 8.8 Hz, 1H), 7.37 (dd, J = 9.1, 2.3 Hz, 2H), 7.18 (d, J = 2.3 Hz, 1H), 7.16 

(dd, J = 8.8, 2.4 Hz, 1H), 1.05 (s, 9H). 13C{19F} (125.75 MHz, d6-DMSO/CDCl3) 151.99, 

145.76, 145.63, 145.57, 145.55, 138.52, 129.46, 127.91, 127.79, 124.96, 124.77, 120.10, 

117.24, 110.03, 109.80, 79.91, 79.26, 39.99, 30.88. 19F NMR (471 MHz, d6-

DMSO/CDCl3) δ –135.24 (m), –152.00 (m), –161.49 (m). HRMS (TOF-MS-ES+) for 

C25H18F5N3O7 [M–H] +: calcd 504.1347, found 504.1350. 

X-Ray Crystallography  

Diffraction intensities were collected at 173 K on a Bruker Apex2 CCD 

diffractometer using CuKα radiation, λ = 1.54178 Å. Space group was determined based 
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on systematic absences. Absorption correction was applied by SADABS.20 Structure was 

solved by direct methods and Fourier techniques and refined on F2 using full matrix least-

squares procedures. All non-H atoms were refined with anisotropic thermal parameters. 

All H atoms were refined in calculated positions in a rigid group model. There are two 

symmetrically independent molecules in the crystal structure. One of the terminal –Me 

groups in the [N(n-Bu)4]+ cation is disordered over two positions in the ratio 0.69/0.31. 

The Br– anion forms H-bonds to the two main molecules. Crystals of the investigated 

compound were very small needles and even using a strong Incoatec IµS Cu source the 

diffraction data were collected only up to 2θmax = 100°. The reflections at high angles 

were very weak and as a result reflection statistics at high angles is poor and value of Rint 

is high. While the found X-ray structure is not precise, it provides clear chemical 

information about the formed complex. All calculations were performed by the Bruker 

SHELXL-2013 package.21 

Crystal structure 32•(n-Bu)4NBr. C68H84BrN11O15S, M = 1407.43, 0.23 x 0.01 x 

0.01 mm, T = 173 K, Monoclinic, space group P21/c, a = 20.6647(10) Å, b = 10.3192(5) 

Å, c = 35.0367(16) Å, β = 104.992(3)°, V = 7217.0(6) Å3, Z = 4, Dc = 1.295 Mg/m3, 

μ(Cu) = 1.630   mm–1, F(000) = 2960, 2θmax = 100.0°, 25199 reflections, 7300 

independent reflections [Rint = 0.3631], R1 = 0.1166, wR2 = 0.2657 and GOF = 0.974 for 

7300 reflections (850 parameters) with I>2σ(I), R1 = 0.3173, wR2 = 0.3633 and GOF = 

0.974 for all reflections, max/min residual electron density +1.343/–0.516 eÅ3. CCDC 

1507418 contains the supplementary crystallographic data for these compounds. These 

data can be obtained free of charge from The Cambridge Crystallographic Data Centre 

via www.ccdc.cam.ac.uk/data_request/cif. 
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Titrations 

General Titration Procedures. Concentration of receptor was kept constant by 

preparing a stock solution of the receptor and performing a serial dilution with the 

receptor stock solution to dissolve the guest. Receptor concentration was maintained 

constant throughout the titration to avoid concentration effects on the proton chemical 

shifts. Tetrabutylammonium salts, purchased from TCI America or SigmaAldrich, were 

dried by heating to 50 °C in vacuo before use. Hamilton gas-tight syringes were used for 

all titrations. Titrations were performed in triplicate and the reported association 

constants represent the average fits across all titrations. Representative data are provided 

for each receptor and halide. 

1H NMR Titration Conditions. 1H NMR titrations were carried out on an Inova 

500 MHz NMR spectrometer (1H: 500.10 MHz). Chemical shifts (δ) are expressed in 

ppm downfield from tetramethylsilane (TMS) using non-deutrated solvent present in the 

bulk deutrated solvent (CDCl3, 1H 7.26 ppm; d6-DMSO: 1H 2.50 ppm). Mixed solvent 

systems were referenced to the most abundant solvent. All NMR spectra were processed 

using MestReNova NMR processing software. Association constants were determined 

using step-wise non-linear regression fitting in MatLab.13 

UV-Vis Titration Conditions. UV-Vis titrations were carried out on an HP 8453 

UV-Vis spectrometer. Water-saturated 10% DMSO/CHCl3 was prepared in the same 

manner as for the 1H NMR titrations. Association constants were determined by non-

linear regression using Open Data Fit.13 

 

Bridge to Chapter III  
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 Chapter II introduces the concept of selective anion sensing through modifying 

the secondary binding motifs. Chapter III follows-up with this concept through the 

synthesis and study of the anion-binding properties of three bis-urea anion receptor 

scaffolds with varied aromatic cores. Chapter III presents either a 2,6- or 3,5-pyridine or 

a bipyridyne-based bis-urea scaffolds that are found to bind three disparate oxoanions in 

equally high affinities. Surprisingly, the anion binding properties of these receptors are 

more dependent on solvent and entropic effects than on the supporting interactions.   
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CHAPTER III 

 

CONFORMATIONALLY FLEXIBLE ARYLETHYNYL BIS-UREA RECEPTORS 

BIND DISPARATE OXOANIONS WITH SIMILAR, HIGH AFFINITIES 

 

 From L. M. Eytel, A. C. Brueckner, J. A. Lohrman, M. M Haley, P. H.-Y. Cheong, 

and D. W. Johnson, “Conformationally flexible arylethynyl bis-urea receptors bind 

disparate oxoanions with similar, high affinities” Chem. Commun. 2018, 54, 13208-13211. 

I synthesized both pyridine receptors and completed the analytical work of all three 

receptors. A. C. Brueckner and Prof. P. H.-Y. Cheong completed the quantum mechanical 

analysis. Dr. J. A. Lohrman synthesized the bipyridine receptor through the crude bis-urea 

product. The writing is entirely my own with editorial assistance provided by A. C. 

Brueckner, Prof. P. H.-Y. Cheong,, Prof. M. M. Haley, and Prof. D. W. Johnson.   

 

Introduction 

Nitrogen and phosphorous species from agricultural run-off, particularly nitrate 

(NO3
–) and phosphates (e.g., HPO4

2–), are attributed to the hypoxic zone that appears in 

the Gulf of Mexico and other bodies of water each spring.1,2 Sulfate (SO4
2–) and 

perchlorate (ClO4
–) are also problematic environmental pollutants originating from 

sources such as nuclear waste and jet fuels, respectively.3,4 Recognition and dynamic 

monitoring of these weakly basic and charge-diffuse anions relies heavily on 

supramolecular receptors.5 
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 Binding sensitivity toward protic and aprotic oxoanions in supramolecular host-

guest systems, however, poses challenges. Many studies have reported designer 

supramolecular receptors for the purpose of binding these diffuse anionic systems by 

utilizing cages, flexible alkyl linkages, and charged binding units.6-8 Additional 

fundamental understanding of the factors influencing the binding of these anions will 

help advance receptor design for specific anions utilizing neutral, conformationally 

flexible receptors.   

Generally, larger, pre-organized binding pockets enhance the ability of a synthetic 

receptor to bind oxoanions.5,6,8 For instance, tetracarboxamide-based macrocycles and 

shape-persistent cyanostar macrocycles have been shown to bind oxoanions via higher-

order binding stoichiometries.8 Herein, we investigate a class of receptors featuring 

conformational flexibility that apparently allows guests of varying sizes to be 

accommodated in what we previously considered as relatively small binding pockets. 

Additionally, we explore the impact of supporting attractive interactions (e.g., aryl C–H 

hydrogen bond donors and pyridine lone pair hydrogen bond acceptors) on the binding 

affinities of protic and aprotic oxoanions.  

While we have reported a number of examples of recognition of spherical anions 

by pyridyl bis-urea receptors,9 only a few of these receptors have shown affinities for 

oxoanions.9e,10,11 One reason for this is the apparent size of the binding pocket: at first 

glance it does not intuitively appear large enough to bind oxoanions. However, an 

extended bipyridyl bis-urea host in this receptor class showed binding selectivity to 

dihydrogen phosphate (H2PO4
–) by rotating along the bipyridyl and/or alkynyl bonds, 
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suggesting other binding pockets might be accessible through conformational changes 

within this receptor class (Fig. 1).10,12   

 

 
Figure 1. Pyridine core bis-urea receptors utilized in this study. New receptor with 3,5-
pyridine core (1) shown in the “U”-conformation, along with the previously reported 
Chemdraw representation of 2,6-pyridine receptor (2) in the “W”-conformation and the 
modified bipyridine receptor (3) shown in the “S”-conformation.9a,10 

 

An extension of these studies revealed that a pyridine-based mono-urea receptor 

served as a model for the “W” conformation and bound oxoanions at a similar magnitude 

as a bipyridyl bis-urea, supporting the potential affinity of this alternate binding pocket to 

oxoanions.11 Subsequent studies of aryl mono-urea receptors indicated two urea binding 

units were preferred when binding anions (to the extent that even 2:1 host:guest 

complexes were favourable in this mono-urea host), indicating the next logical step was 

to investigate the affinity of pyridyl bis-urea receptors toward oxoanions.12 Herein we 
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report the solution-state association constants and computed binding geometries of three 

pyridine-based bis-urea receptors (Fig. 1) in the presence of three disparate tetrahedral 

oxoanions and find that they are all excellent hosts for these anions.  

To investigate the differences in oxoanion affinity between different binding 

interactions, we compared two similar pyridine-based receptors (3,5- and 2,6-bis(2-

anilinoethynyl)pyridine bis(4-methoxyphenyl)urea; Fig. 1, 1 and 2, respectively) as well 

as a bipyridyl-based bis-urea (Fig. 1, 3). In all interactions between hosts 1, 2, and 3 and 

the respective oxoanions, there are three major factors at play: the H-bond accepting or 

donating ability of the aromatic core of the receptor, the inherent properties of the anion 

(i.e., number of protons, pKa of corresponding acid, and ionic radii), and the size/shape of 

the binding pocket within each receptor. 

These pyridine receptors directly probe the preference of aryl H-bond acceptors or 

donors in protic and aprotic oxoanions. All receptors have the ability to bind anions in 

several conformations, including the U, W, and S conformation (Fig. 1, 1, 2, and 3, 

respectively).9b Newly designed host 1 allows for a weak aryl C–H hydrogen bond to 

anions; the presence of five hydrogen bond donors (one C–H and four N–H bonds) in the 

W-shaped pocket suggested 1 should preferentially bind more basic and/or aprotic 

oxoanions and halides.9 

We compared this to known host 2, which features our traditional 2,6-pyridyl 

core. We hypothesized 2 would prefer monoprotic oxoanions, as the nitrogen lone pair in 

the pocket acts as an H-bond acceptor. When investigating the 1-to-1 host-guest 

interaction, the homologous bipyridine receptor 3 was expected to have the greatest 

binding preference toward oxoanions, particularly diprotic oxoanions, due to the large 
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binding pocket and its ability to accept multiple H-bonds from the (di)protic oxoanions in 

the bipyridyl core.11  

 

Results and Discussion 

The syntheses of 1 and modified host 3 are based on previously reported 

strategies for related aryl acetylene bis-urea systems (Scheme 1, see appendix for detailed 

procedures).9a,10 The anion-binding characteristics of 1-3 were probed by spectroscopic 

titrations in 10% DMSO/90% water-saturated CHCl3 solutions, the perdeutero 

equivalent, or acetonitrile, with anions introduced as tetrabutylammonium (TBA) salts. 

1H NMR titrations were performed at 1.0 mM concentration of host, while UV-Vis 

titrations were performed at a host concentration of 25 μM. Association constants (Ka) for 

1-3 with dihydrogen phosphate (H2PO4
–), hydrogen sulfate (HSO4

–), and perchlorate 

(ClO4
–) were obtained using non-linear regression fitting models in Bindfit by 

simultaneously fitting the change in absorbance for each host–guest complex at the 

attributed λmax (Fig. 2).13,14 Ka’s for receptors 1-3 with bromide (Br–) were either 

previously reported or obtained using non-linear regression fitting models in MatLab by 

simultaneously fitting the downfield shifting of the urea protons (Hb, Hc for 1; Ha, Hb for 

2 and 3).13 The shifts of the internal aromatic proton (Ha) were also used in the fitting of 

1.  
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Scheme 1. Synthesis of 3,5-pyridine bis-urea receptor 1. 

 

Initial 1H NMR titration experiments were performed on 1 with bromide, a 

spherical anion with relatively well-characterized binding behavior.9 Consistent with 

other aryl CH hydrogen bonding phenylacetylene bis-urea receptors, the association 

constant for 1 with Br– was relatively low (Table 1). Nonetheless, 1H NMR titrations 

were used in an attempt to characterize the affinity of 1 with dihydrogen phosphate (Fig. 

2a). Fitting the downfield shifts of the selected protons resulted in a Ka value nearing the 

detection limits of 1H NMR spectroscopy. Furthermore, the serpentine-like shifts of 

multiple aromatic resonances and the appearance of peak-splitting, particularly in the 

presence of excess guest, indicated higher-order binding stoichiometries were likely 

occurring.8,12,13 To support this conclusion, fitting the titration data to a 2:1 host–guest 

binding model resulted in better fitting (as indicated by the shape of the residual 

asymptotic errors) than the 1:1 host–guest binding model (see appedix for detailed 

titration data).13 
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Figure 2. (a) 1H NMR titration of 1 with TBA+H2PO4
– at 298K; [1] = 1.0 mM in 10% d6-

DMSO / 90% H2O-saturated CDCl3. Equivalents of guest labelled at the right of spectra. 
Peak assignments refer to labelled hydrogens in Fig. 1. (b) UV-Vis titration of 2 with up 
to 36.7 equiv. of TBA+H2PO4

– at 298K; [2] = 25 µM in 10% DMSO / 90% H2O-saturated 
CHCl3. Arrows represent the change in ε at the wavelengths of HG as guest is added. (c) 
UV-Vis titration of 3 with up to 7.4 equiv. of TBA+H2PO4

– at 298K; [3] = 25 µM in in 
10% DMSO / 90% H2O-saturated CHCl3. Arrows represent the change in ε at the 
wavelengths of HG as guest is added. 

 

UV-Vis titration experiments were implemented to further investigate the 

surprising interaction strength between receptors 1-3 and the selected series of oxoanions. 

At the more dilute 25 μM host concentration (dissolved in 10% DMSO/90% H2O-

saturated CHCl3), a 1-to-1 host–guest interaction dominates the binding and 1:1 fitting 

models proved a better fit than higher binding stoichiometry models (i.e., 2:1 or 1:2 

host:guest).12,13 Job’s method of continuous variation further confirms this 1:1 binding 

stoichiometry (see appendix).  

To our surprise, all three receptors exhibited similar affinities toward all three 

oxoanions, with observed free-energies of binding (∆G) ranging from –6.56 to –6.32 kcal 

mol–1. In an attempt to understand the lack of trends in binding between the receptors 

with different supporting binding interactions and the disparate anions, we turned to 

quantum mechanical (QM) computations. Interestingly, the trend in computed free 

energies of binding (∆GQM) closely follows the trend in aqueous conjugate acid pKa (2, –

3, and –10 for H3PO4, H2SO4, and HClO4, respectively; Table 1).15  
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Table 1. Association constants (Ka) and free energies of binding (∆G, kcal mol–1) 
reported for receptors 1-3. Observed free energies obtained by fitting titration data to a 
step-wise 1:1 host-guest model in Bindfit.a,13,14 Quantum mechanical free energies 
computed at PBE/6-31G(d) in PCM(DMSO).17 

aAnions added as TBA+ salts in 10% DMSO/90% water-saturated CHCl3 or the 
perdeutero equivalent (unless noted). Values represent an average of three UV-Vis 
titrations at 25 µM host concentration. Error is ca. ±15%. bMeasured in acetonitrile. 
cValue obtained using 1H NMR titrations at 1 mM host concentration. dValue previously 
reported.9 eValue not detectible.  

 

The conformational freedom within these receptors appears to allow for the 

formation of binding pockets of appropriate size to host these oxoanions. In fact, DFT 

structures reveal all three receptors prefer the U-shaped binding conformation, with each 

binding pocket spanning roughly 5.9 Å between the proximal urea hydrogens (Hb for 1 

and Ha for 2 and 3, see appendix). The ionic radii of each oxoanion is also similar (~2.4 

Å),16 and space-filling models show that H2PO4
– is able to fit neatly into each of the 

receptors in their lowest-energy U-conformations (Fig. 3). Curiously, however, the 

secondary interactions with the varying pyridyl cores (CH donor versus pyridyl/bipyridyl 

H-bond acceptors) appear significant in the computed structures but did not contribute to 

dramatic changes in observed binding energies in the low-polarity mixed solvent system 

studied (10% DMSO/90% H2O-saturated CHCl3). Considering the accuracies of the 

experimental measurements and the wide range of computational methods tested,17 it 

appears that the discrepancies between the experimental and computational values are not 

simply in error. In the absence of other effects, we hypothesized that entropic and/or 

solvation effects in this solvent mixture contribute to these differences.  

Anion pKa15 
 1 2 3 

logKa ∆Gobs ∆GQM logKab ∆Gobsb logKa ∆Gobs ∆GQM logKa ∆Gobs ∆GQM 

Br– –9.0 2.07c –2.80c – – – 2.00d –2.72d – 1.78  –2.42 – 

H2PO4– 2.1 4.74 –6.44 –4.6 5.02 –6.83 4.77 –6.48 –9.7 4.83 –6.56 –12.8 
HSO4– –3.0 4.68 –6.37 1.3 3.21 –4.36 4.78 –6.49 –3.5 4.76 –6.47 –4.8 
ClO4– –10.0 4.66 –6.33 6.2 N.D.e ~0e 4.65 –6.32 7.3 4.71 –6.39 2.4 
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Figure 3. Space-filling models of receptors (a) 1, (b) 2, and (c) 3 binding H2PO4
–. 

Complexes computed at PBE/6-31G(d) in PCM(DMSO).  
 

To further investigate the presence of solvation effects, titrations were performed 

in neat acetonitrile, a more competitive, polar solvent (ε = 36.6 for CH3CN versus 

effective ε ~8.1–8.5 for 10% DMSO/90% water-saturated CHCl3 mixture).18 Due to 

solubility restrictions with 2 and 3 in pure CH3CN, titrations were only performed with 

receptor 1 and the array of oxoanions. In this more polar solvent, the observed binding 

energies follow the expected basicity trend, with 1 showing no detectible affinity toward 

the least basic ClO4
– anion. Additionally, the higher Ka value of 1 with H2PO4

– in 

acetonitrile versus that determined in the less polar, mixed solvent system indicates that 

this receptor has a particularly high selectivity toward this relatively large anion, even in 

competitive solvents. The stark contrasts between the binding energies in the less polar 
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solvent mixture and more polar solvent lends to the hypothesis that entropy/solvation 

plays a significant role in the binding events at play between these receptors and the 

tetrahedral oxoanions. To further understand the influence of the solvent and entropic 

effects on binding energies within this class of arylethynyl bis-urea receptors, we are 

currently pursuing the synthesis of receptors soluble in solvents with a range of polarities 

(i.e., soluble in solvents ranging from neat CHCl3 through DMSO). 

In conclusion, while the flexibility around the alkyl linkages in this class of 

receptors leads to a sizable binding pocket perfectly suited for tetrahedral oxoanions, we 

suspect that entropy and dynamic solvation effects are major contributors to the free 

energies of binding in these systems.  Thus, we are currently pursuing studies to tease-out 

the enthalpic and entropic contributions involved in these host-guest systems. While 

intuitively one might first look to pKb / conjugate acid pKa trends in predicting affinity of 

protic and aprotic oxoanions toward hydrogen bonding hosts, these studies serve as a 

reminder that—especially in conformationally flexible hosts—this might not always be 

the dominant factor influencing the binding of oxoanions.  

 

Experimental 

General methods  

1H, 13C, and 19F NMR spectra were obtained on a Varian Mercury 300 MHz (1H: 

300.09 MHz), Inova 500 MHz (1H: 500.10 MHz, 13C 125.75 MHz, 19F: 470.56 MHz), or 

Bruker Avance III HD 600 MHz NMR spectrometer with Prodigy multinuclear 

broadband BBO CryoProbe (1H: 600.02 MHz, 13C: 150.89 MHz). Chemical shifts (δ) are 

expressed in ppm downfield from tetramethylsilane (TMS) using non-deutrated solvent 
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present in the bulk deutrated solvent (CDCl3: 1H 7.26 ppm, 13C 77.16 ppm; d6-DMSO: 1H 

2.50 ppm, 13C 39.52 ppm; d6-acetone: 1H 2.05 ppom, 13C 206.7 and 29.9 ppm). Mixed 

solvent systems were referenced to the most abundant solvent. All NMR spectra were 

processed using MestReNova NMR processing software. All oxygen-sensitive reactions 

were performed under an inert atmosphere of nitrogen using Schlenk techniques. Unless 

otherwise specified, all materials were obtained from TCI-America, Sigma-Aldrich, or 

Acros and used as received. Tetrabutylammonium salts were dried at 60 °C in vacuo 

prior to use. Aniline 4 was synthesized and desilated following known procedures.1 2,6-

Pyridine receptor 2 was synthesized via known procedures.9a 2,2’-Bipyridyl-6,6’-bis-

ethynylaniline was synthesized following published procedures.10 

Synthesis 

Dianiline 6. To a sealable flask, 3,5-dibromopyridine (0.505 g, 2.13 mmol), CuI 

(0.099 g, 0.524 mmol), and Pd(PPh3)4 (0.212 g, 0.184 mmol) was added under nitrogen. 

A mixture of degassed DIPA (30 mL) and THF (30 mL) was added to the flask via 

cannula. The solution was continuously purged with N2 for an additional 30 min. An N2-

purged solution of 4-tert-butyl-2-ethynylaniline (1.11 g, 6.41 mmol) in degassed DIPA 

(15 mL) and THF (15 mL) was then transferred into the flask via cannula. The mixture 

was stirred overnight at 55 °C under an inert atmosphere. The cooled solution was 

filtered through a 10 cm silica gel plug eluting with CH2Cl2 and then concentrated in 

vacuo. Column chromatography (2:1 hexanes:Et2O) of the crude material afforded 6 

(0.368 g, 41%) as an brown-orange solid. 1H NMR (600 MHz, CDCl3) δ 8.67 (s, 2H), 

7.94 (s, 1H), 7.39 (d, J = 2.2 Hz, 2H), 7.23 (dd, J = 8.5, 2.2 Hz, 2H), 6.70 (d, J = 8.5 Hz, 

2H), 4.18 (s, 4H), 1.30 (s, 18H). 13C NMR (151 MHz, CDCl3) δ 150.48, 145.82, 141.17, 
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140.24, 128.99, 128.08, 120.47, 114.64, 106.53, 90.83, 90.15, 34.09, 31.51. HRMS 

(TOF-MS-ES+) for C29H31N3 [M+H] +: calcd 422.2596, found 422.2587. 

3,5-Pyridine receptor 1. In flame dried glassware under inert N2 atmosphere, 

aniline 6 (0.240 g, 0.568 mmol) was dissolved in freshly distilled toluene (75 mL) and p-

methoxyphenyl isocyanate (0.2 mL, 2.02 mmol) was added via syringe. The reaction 

mixture was stirred for 24 h at 55 °C. The reaction was cooled and the precipitate was 

isolated via vacuum filtration. The precipitate was washed with hexanes and dried to give 

1 (0.209 g, 51%) as a yellow-white solid. 1H NMR (500 MHz, d6-acetone) δ 8.75 (s, 2H), 

8.48 (s, 1H), 8.25 (d, J = 8.4 Hz, 2H), 8.18 (s, 1H), 7.91 (s, 1H), 7.57 (d, J = 2.5 Hz, 2H), 

7.49 (dd, J = 8.9, 2.5 Hz, 2H), 7.43 (d, J = 8.4 Hz, 4H), 6.84 (d, J = 8.5 Hz, 4H), 3.74 (s, 

6H), 1.34 (s, 18H). 13C NMR (151 MHz, d6-acetone/DMSO) δ 155.70, 153.23, 151.65, 

144.99, 141.36, 139.59, 139.57, 133.66, 127.96, 120.90, 120.53, 120.24, 114.57, 110.89, 

91.41, 90.57, 55.48, 34.52, 31.36. HRMS (TOF-MS-ES+) for C45H45N5O4 [M+H] +: calcd 

720.3566, found 720.3559. 

Bipyridine receptor 3. In flame dried glassware under inert N2 atmosphere, 2,2’-

bipyridyl-6,6’-bis-ethynylaniline (0.124 g, 0.248 mmol) was dissolved in freshly distilled 

toluene (50 mL) and p-methoxyphenyl isocyanate (0.150 mL, 1.52 mmol) was added via 

syringe. The reaction mixture was stirred at room temperature for 16 h. Hexanes was 

used to precipitate the crude product, which was then filtered and further washed with 

hexanes. A minimal amount of ethanol was then added to the crude product in a vial. The 

vial was sonicated and five drops of deionized water was added to re-precipitate the 

product. Receptor 3 was then isolated via vacuum filtration (0.104 g, 53%) as a cream-

colored powder. 1H NMR (500 MHz, d6-acetone/DMSO) δ 9.28 (s, 2H), 8.55 (d, J = 7.9 



57 

Hz, 2H), 8.23 (s, 2H), 8.20 (d, J = 8.8 Hz, 2H), 8.07 (t, J = 7.8 Hz, 2H), 7.90 (d, J = 7.6 

Hz, 2H), 7.60 (d, J = 2.4 Hz, 2H), 7.52–7.44 (m, 6H), 6.88 (d, J = 8.5 Hz, 4H), 3.75 (s, 

6H), 1.35 (s, 18H). 13C NMR (151 MHz, d6-acetone/DMSO) δ 155.73, 155.26, 152.93, 

144.77, 142.94, 139.33, 138.22, 133.31, 129.30, 128.72, 127.74, 120.88, 120.48, 120.09, 

114.31, 110.55, 94.55, 85.76, 55.27, 34.25, 31.12. HRMS (TOF-MS-ES+) for 

C50H48N6O4 [M+H] +: calcd 797.3815, found 797.3799. 

Titrations 

General Titration Procedures. Concentration of receptor was kept constant by 

preparing a stock solution of the receptor and performing a serial dilution with the 

receptor stock solution to dissolve the guest. Receptor concentration was maintained 

constant throughout the titration. Tetrabutylammonium salts, purchased from TCI 

America or SigmaAldrich, were dried by heating to 60 °C in vacuo before use. Hamilton 

gas-tight syringes were used for all titrations. Titrations were performed in triplicate and 

the reported association constants represent the average fits across all titrations. 

Representative data are provided for each receptor and anion. 

UV-Vis Titration Conditions. UV-Vis titrations were carried out on an Agilent 

Technologies Cary 60 UV-Vis spectrometer. Water-saturated 10% DMSO/90% CHCl3 

v/v% was prepared using HPLC-grade solvents purchased from SigmaAldrich or Fisher 

Scientific. Association constants were determined by non-linear regression models using 

Open Data Fit.13c All host solutions in 10% DMSO/90% CHCl3 started as deep, 

marigold-yellow solutions and transitioned to colorless over the course of the titrations. 

All host solutions in CHCN started as colorless and remained so over the course the 
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titrations. The 10% DMSO/90% CHCl3 spectra is more easily trackable when displayed 

as ε instead of absorbance. All data fit with change in absorbance values.  

1H NMR Titration Conditions. 1H NMR titrations were carried out on an Inova 

500 MHz NMR spectrometer (1H: 500.10 MHz). Chemical shifts (δ) are expressed in 

ppm downfield from tetramethylsilane (TMS) using non-deutrated solvent present in the 

bulk deutrated solvent (CDCl3, 1H 7.26 ppm; d6-DMSO: 1H 2.50 ppm). Mixed solvent 

systems were referenced to the most abundant solvent. All NMR spectra were processed 

using MestReNova NMR processing software. Association constants were determined 

using step-wise non-linear regression fitting in MatLab.13a 

Computations 

Complete Authorship of Gaussian 09. Gaussian 09, Revision D.01, M. J. 

Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. 

Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. 

Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. 

Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. 

Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. 

Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. 

Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. 

Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. 

Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. 

Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. 

Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. 

Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.19 
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General Computational Procedure. Manual, exhaustive conformation searches 

were performed to locate all relevant structures.  All conformers were optimized using 

the Gaussian 09 computational package (see above reference) using PBE19 with the 6-

31G(d)6 basis set for all atoms. Minima were confirmed with vibrational frequency 

computations, with all structures having zero imaginary vibrational frequencies. 

Frequencies were computed at 1 atm and 298.15 K (25 ºC) in order to match 

experimental reaction conditions as close as possible. All images were generated with 

PyMOL20 with distances in Ångströms (Å). 

 

Bridge to Chapter IV 

 Chapter III presents three bis-urea anion receptors with the ability to strongly bind 

oxoanions. Each of the receptors presented herein are capable of binding anions through 

different secondary binding motifs and were designed in an attempt to create selective 

sensors for diprotic, monoprotic, and aprotic oxoanions. Solvent and entropic effects 

contributed a bigger role in the overall binding energies than previously expected, 

though, and differential responses could not be achieved between the three receptors and 

the oxoanions studied. Chapter IV explores the concept of developing an array with a 

variety of bis-urea receptors to overcome the limitations of the lock-and-key method for 

anion sensing. 
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CHAPTER IV  

 

DEVELOPMENT OF A QUICK-SCREEN ARRAY FOR ANION SENSING 

 

This chapter is compiled from unpublished, co-authored work. I performed the 

analytical experimental work. Prof. Blakely W. Tresca synthesized the receptors or 

supervised undergraduates Leif Winstead and Anne-Lise Emig who assisted with the 

synthesis of the receptors. H. Camille Richardson performed the principal component 

analysis and linear discriminant analysis with supervision from Prof. P. H.-Y. Cheong. The 

writing is entirely mine with editorial assistance from Profs. M. M. Haley and D. W. 

Johnson.  

 

Introduction 

The ideal small molecule anion sensor exhibits a selective and highly sensitive 

detectible response toward an anion of interest.1 This idealized single receptor approach 

is referred to as the lock-and-key model, where one host receptor is designed to bind a 

specific anion over others.1, 2 In efforts to screen a variety of combinations of affinity, 

selectivity, and response, dozens of arylethynyl urea receptors have been synthesized and 

studied in our lab.3 Each receptor has varying electron-withdrawing and electron-

donating groups on the central arene core and the urea pendant phenyls in order to 

promote a change in selectivity toward different anionic guests by changing the strength 

of the hydrogen bond donors and acceptors. While we still seek the perfect lock-and-key 
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receptor for many anions of interest, the library of receptors provides a foundation for a 

quick-screen sensing array.2  

 A sensing array utilizes a composite response of multiple receptors, rather than a 

single molecule, to detect specific anions.2 This approach utilizes pattern recognition 

algorithms to identify an unknown analyte based on the differential data collected from 

all receptors, similar to taste receptors on a tongue. Sensing arrays and pattern 

recognition algorithms, such as principle component analysis (PCA), can also elucidate 

design rules for the lock-and-key model of anion sensors.2 This provides a quick screen 

of what substituents promote a spectroscopic response and any unexpected responses 

toward a certain anion from previously unscreened receptors.  

N

HN

t-Bu

NH

t-Bu

O NH HN O

R' R'

H

1 

R' = OMe or NO2  

Figure 1. Previously reported pyridinium receptor 1 showed on-to-off or off-to-on 
fluorescence with electron donating (R’ = OMe) or electron withdrawing (R’ = NO2) 
groups, respectively, in the para-position of the pendant phenyl with the presence of Cl–.4 
 

 Previously reported studies on the 2,6-bis(anilinoethynyl)pyridinium scaffold 

(Figure 1) showed that substitution of the pendant phenyls (R’) with an electron 

withdrawing group (EWG) promoted a selective off-to-on fluorescence response in the 

presence of chloride (Cl–), while an electron donating group (EDG) promoted an on-to-
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off response.4 Therefore, we hypothesized that in general, substitution of EWG’s at the 

R’ positon results in a turn-off fluorescence response for anions and EDG’s promote a 

turn-on fluorescence response.  

A series of phenyl derived bis-urea receptors were designed to test the generality 

of this design principle original proposed for the pyridine receptors (Figure 2). The R’ 

position of these phenyl receptors can be easily tuned with similar electron withdrawing 

or electron donating groups. Additionally, the strength of the hydrogen-bond donor of the 

core phenyl ring can be tuned more easily with para-substituents in comparison to its 

charged pyridinium counterpart.3f Herein, we report the optoelectronic properties 

resulting from a change in the R and R’ substituents on the core arene and pendant 

phenyls. Sixteen receptors were screened against five anions of biological and 

environmental interest with a multi-well plate reader. Principal component analysis was 

utilized to help identify how substituents influence fluorescence behavior and binding 

selectivity.  

HN

t-Bu

NH

t-Bu

O NH HN O

R' R'

R

2a-d R = OMe

3a-d R = t-Bu

4a-d R = CF3
5a-d R = NO

2

a R' = OMe

b R' = CF
3

c R' = H
d R' = NO

2  
Figure 2. Library of phenyl-based bis-urea anion receptors analyzed for fluorescence 
response.   
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Results and Discussion 

 The library of host compounds were previously synthesized.3f, 5 The absorbance 

and emission properties of the bis-urea receptors were measured in water-saturated 

chloroform (CHCl3). A method to quickly determine the fluorescence intensity change in 

the presence of chloride (Cl–), bromide (Br–), iodide (I–), nitrate (NO3
–), and perchlorate 

(ClO4
–) was developed. A stock solution of receptor ([H] = 0.10 mM) was prepared in 

water-saturated CHCl3 and 200 µL was distributed into six wells of a black quartz 96-

well plate. To each well, 50 µL of one salt solution ([X–] = 6.0-7.0 mM) was added, 

giving a total well volume of 250 µL and ~20 equivalents of anion. The sixth well served 

as a blank host control, to which 50 µL of the chloroform was added to give a final host 

concentration equal to that of the other wells ([H] = ~80 µM).  

Figure 3 shows the emission spectra for each fluorescent host and host-guest 

solutions. Unlike the previously reported turn-on fluorescence for pyrdinium receptor 1 

where R’ = NO2, all of the phenyl-based receptors studied herein with nitro substituents 

(2d, 3d, 4d, and 5a-d) were not fluorescent. This is likely due to the well-known 

quenching behavior of nitro groups.  

While the nitro-substituted receptors were not fluorescent, the receptors with the 

other electron-withdrawing group, trifluoromethyl (CF3), were quite fluorescent. 

Interestingly, the push-pull system 2b and the pull-push system 4a are the only receptors 

that quench in the presence of all five anions. In these two systems, the anion with the 

strongest association constant (Cl–) also results in the most quenching. Typically, iodide 

acts as a fluorescence quencher due to the heavy atom effect. This poses a question for 
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future computational study and subsequent synthetic design: what orbital interactions or 

change in binding conformations in these push-pull or pull-push systems might lead to 

the largest quench in fluorescence in the presence of a strongly bound anion?  

 

 
Figure 3. Fluorescence emission spectra of blank receptors 2a-c, 3a-c, and 4a-c in H2O-
sat. CHCl3 and upon binding Cl–, Br–, I–, NO3

–, and ClO4
–. Each group of spectra is 

individually normalized with respect to each receptor. Spectra represent an average of 
four experiments.  

 

Looking at the change in fluorescence of the receptors with unsubstituted phenyl 

bis-ureas (2c, 3c, and 4c), we see a significant increase in fluorescence in the presence of 

chloride and nitrate. This series of receptors is the only series to show predictable 
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behavior across all three receptors with all five anions, with fluorescence intensity 

increasing in the presence of most anions, with Cl– > NO3
– > Br–. Receptors 2c and 4c 

show an indiscriminate change in fluorescence in the presence of ClO4
– and I–, but 

receptor 3c shows a slight increase in fluorescence for ClO4
– and an indiscriminate 

change for I–. Receptors 3b and 4b showed similar trends as their unsubstituted 

counterparts, but the methoxy-substituted bis-urea receptors 2a, 3a, and 4a do not appear 

to have any trending patterns in their fluorescence response to anions.  

 
Figure 4. (a) Heat map of the maximum fluorescence at the optimal λexc for free 
receptors 2a-c, 3a-c, and 4a-c in H2O-sat. CHCl3 and upon binding Cl–, Br–, I–, NO3

–, and 
ClO4

–. Color corresponds to emission intensity in absorbance units (Table 1). (b) Heat 
map of the anion response for receptors 2a-c, 3a-c, and 4a-c with anions. Color 
corresponds to intensity ratio, change in emission intensity with 20 equiv. TBA+ salt, 
calculated by IR = I – I₀ / I₀. Maximum cut-off at 5.0 to highlight small changes. Values 
represent an average of four experiments. 

 

It is important to note that the spectra in figure 3 are individually normalized with 

respect to each receptor set. Thus, the aggregate data has been visualized as two 

additional heat-maps for comparisons between the difference receptors: 1) based on the 

maximum fluorescence intensity at the optimal wavelength for maximum emission of the 

blank receptors, and 2) as intensity ratios, which represent the overall change in 

fluorescence with respect to the blank receptor (Figure 4, Table 1). When looking at the 

raw maximum fluorescence intensity for each receptor, the spectra for 2c do not exhibit 

fluorescence in comparison to 3c and 4c (Figure 4a). In fact, with the exception of 2c, all 
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Table 1. Emission properties of receptors 2a-c, 3a-c, and 4a-c in H2O-sat. CHCl3 and the responses to 20 equiv anions.a 
aAnions added as tetrabutylammonium salts in H2O-sat. CHCl3. Values represent an average of four experiments. Error is ca. 
±20%. bIntensity ratio represents the change in intensity upon addition of anion. Calculated as IR = I – I₀ / I₀

Receptor 
λexc. 

(nm) 
λem. 

(nm) 

Emission Intensity (a.u.) Intensity Ratiob 

Blank Cl– Br– I– NO3– ClO4– Cl– Br– I– NO3– ClO4– 

2a 322 386 5320 2290 5130 6290 4820 7520 -0.57 -0.04 0.18 -0.09 0.41 

2b 342 382 170 1440 400 180 1090 200 -0.27 -0.09 -0.06 -0.14 -0.06 

2c 363 449 34500 25300 31200 32400 29500 32500 7.42 1.35 0.07 5.37 0.19 

3a 296 380 9680 9980 9800 8050 8860 11600 0.03 0.01 -0.17 -0.09 0.19 

3b 314 378 18800 88800 36100 13100 61300 26000 3.72 0.92 -0.30 2.26 0.38 

3c 296 380 28700 130000 59300 25100 105000 39400 3.54 1.07 -0.12 2.65 0.38 

4a 298 394 4680 1210 1970 3050 1930 4390 -0.74 -0.58 -0.35 -0.59 -0.06 

4b 298 388 14100 81800 28700 16900 49700 15500 4.79 1.04 0.19 2.52 0.10 

4c 298 396 24500 149000 59700 22300 86100 36900 5.08 1.44 -0.09 2.51 0.51 
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receptors with methoxy substituents are essentially not fluorescent compared to the 

receptors with weakly-donating or electron-withdrawing substituents. This leads to a 

second design rule to fall out of these studies: phenylethynyl bis-urea receptors with 

methoxy substituents are only weakly fluorescent, even in the presence of strongly bound 

anionic guests.  

Statistical analysis techniques, like pattern recognition algorithms, like principal 

component analysis (PCA) or linear discriminant analysis (LDA), can be used to process 

large data sets for differential sensing. These analytical methods produce score plots in 

two- or three-dimensional space and ultimately reveal a coordinate system where the 

analytes are best discriminated, or clustered, from one another.2 Once a matrix with a 

high level of discrimination (accuracy) is determined, unknown analytes can be quickly 

sorted and identified based on where they land on the matrix. Our brains utilize a similar 

method of discriminating flavor in foods via the taste receptors on our tongues: we can 

determine how a food tastes (i.e. sweet, salty, bitter, sour, etc.) by sorting the responses of 

the taste buds and relating them to a known category of flavor. In this sense, we can think 

of pattern recognition algorithms as a sort of electronic tongues.  

We applied principal component analysis (PCA) in an attempt to elicit other 

design rules regarding receptor substituents and anion response.2 The raw fluorescence 

data did not result in any significant clustering. However, upon taking the difference in 

fluorescence between the host-guest combination and the empty host, we were able to see 

some clustering emerge (Figure 5). At first, it appeared the major problem with the 

clustering was the significant overlap of the fluorescence data for iodide and perchlorate.
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After excluding the data for perchlorate, there were still outliers in the clustering. Upon 

analyzing these outliers, we noted that they were all data points for receptors with 

methoxy substituents. Thus, we then excluded the data for receptors 2a-c, 3a, and 4a but 

replaced the data for perchlorate sensing and achieved our best results for PCA. This 

supports the design principle outlined above: methoxy substituents on phenylethynyl bis-

urea receptors result in unpredictable and weak fluorescence responses, so these 

functional groups should be avoided in this system in array-based sensor platforms or in 

the development of possible turn-on fluorescence molecular probes. 

 

 
Figure 5. Principal component analysis matrix of receptors 3b, 3c, 4b, and 4c with the 
Cl–, Br–, I–, NO3

–, and ClO4
–. LDA accuracy = 0.791667 at a 95% confidence level.  

 

Linear discriminant analysis (LDA) was determined to be the best clustering 

method for the aggregate data, with an accuracy value of 0.792. While this value is not 

within an applicable range, it does indicate that we can use a pattern recognition 
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algorithm to better understand the design of our receptors and potentially achieve an 

anion sensing array in the future. Future array studies should include pyridine- and 

pyrdinium-based receptors, along with receptors modified with different binding motifs, 

like halogen-bonding receptors (see ref. 3k). Ideally, the different binding motifs will 

result in differential fluorescence sensing, which will increase the clustering in PCA. 

Once a combination of receptors with a high accuracy of clustering (greater than 0.9) is 

found, an unknown analyte can be sorted and deteceed based on the array clustering.1, 2  

In conclusion, this work presents the photophysical data for a collection of 

phenylethynyl bis-urea anion receptors and points to essential design elements for this 

class of anion sensors. If we want to design a phenyl-based anion receptor with high 

fluorescence intensity, we should not include a nitro or methoxy substitutent on the core 

or pendant arenes. Additional research is needed to better understand the relationship 

between the strength of the binding interaction and the fluorescent behavior, and, with 

that understanding, we can begin to build an anion sensing array with the receptor 

scaffolds studied in our lab. Furthermore, computational studies can help provide insight 

on the quenching behavior of the push-pull and pull-push systems presented herein.  

 

Experimental 

General methods  

1H spectra were obtained on a Varian Mercury 300 MHz (1H: 300.09 MHz), 

Inova 500 MHz (1H: 500.10 MHz, 13C 125.75 MHz, 19F: 470.56 MHz), or Bruker Avance 

III HD 600 MHz NMR spectrometer with Prodigy multinuclear broadband BBO 

CryoProbe (1H: 600.02 MHz, 13C: 150.89 MHz). Chemical shifts (δ) are expressed in 
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ppm downfield from tetramethylsilane (TMS) using non-deutrated solvent present in the 

bulk deutrated solvent (CDCl3: 1H 7.26 ppm, 13C 77.16 ppm; d6-DMSO: 1H 2.50 ppm, 

13C 39.52 ppm; d6-acetone: 1H 2.05 ppom, 13C 206.7 and 29.9 ppm). Mixed solvent 

systems were referenced to the most abundant solvent. All NMR spectra were processed 

using MestReNova NMR processing software. UV-Vis and fluorescence spectra were 

obtained using a Tecan Spark 20M Multimode Microplate reader equipped with a 

monochromator. A Hellma-Analytics quartz black glass 96-well plate topped with a UV-

clear plastic cover was used for the microplate studies. Unless otherwise specified, all 

materials were obtained from TCI-America, Sigma-Aldrich, or Acros and used as 

received. Tetrabutylammonium salts were dried at 60 °C in vacuo prior to use.  

Synthesis  

Receptors 2b, 2c, 5b, 5c, and 5d were synthesized via similar procedures as those 

reported in reference 5. 

Receptor 2c. 1H NMR (500 MHz, CDCl3) δ 8.41 (s, 2H), 7.97 (d, J = 9.1 Hz, 2H), 

7.72 (s, 2H), 7.66 (t, J = 7.8 Hz, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.36 (d, J = 8.0 Hz, 4H), 

7.15 (t, J = 7.7 Hz, 4H), 6.96 (d, J = 3.0 Hz, 2H), 6.91 – 6.85 (m, 4H), 3.70 (s, 4H), 1.89 

(s, 18H). 

Receptor 5b. 1H NMR (300 MHz, d6-DMSO) δ 10.30 (s, 2H), 8.54 (s, 2H), 8.08 (d, 

J = 7.8 Hz, 4H), 7.90 (d, J = 9.0 Hz, 2H), 7.72 (d, J = 8.8 Hz, 5H), 7.65 (s, 2H), 7.52 (s, 

2H), 7.41 (d, J = 8.8 Hz, 2H), 1.30 (s, 18H).  

Receptor 5c. 1H NMR (600 MHz, d6-DMSO) δ 9.42 (s, 2H), 8.28 (s, 1H), 8.26 (s, 

2H), 8.11 (s, 2H), 8.03 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 2.4 Hz, 2H), 7.49 – 7.46 (m, 6H), 

7.28 (t, J = 7.9 Hz, 4H), 6.98 (t, J = 7.3 Hz, 2H), 1.30 (s, 18H).  
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Receptor 5d. 1H NMR (300 MHz, d6-DMSO) δ 10.13 (s, 2H), 8.55 (d, J = 7.3 Hz, 

4H), 8.42 (s, 1H), 8.19 (d, J = 8.9 Hz, 4H), 8.04 (d, J = 8.9 Hz, 2H), 7.73 (d, J = 8.8 Hz, 

4H), 7.65 (s, 2H), 7.53 (d, J = 9.0 Hz, 2H), 1.33 (s, 18H). 

Array Screening 

General Array Procedures. Concentrated solutions of receptors 2-5 (2.18-3.64 

mg, [H] ≈ 0.400 mM) in 10.0 mL of water-saturated CHCl3 were prepared. A serial 

dilution was then performed with 2200-3500 µL of ~0.400 mM  solution of receptors 2-5 

was then diluted to 10.0 mL to yield the stock solution of receptors 2-5 ([H] ≈ 0.100 

mM). Concentrated solutions of tetrabutylammonium salts TBA·Cl, TBA·Br, TBA·I, 

TBA·NO3, TBA·ClO4 were prepared in 3.0 mL of water-saturated CHCl3 (6.4-7.8 mg, 

[X–] ≈ 7.0 mM). Each run consisted of 35 wells in a 5-by-7 matrix, with each well filled 

to a total volume of 250 µL. The wells in the top column and the first row of the plate 

contained only salt or receptor in order to act as the blank controls. For the blank host 

wells (vertical rows), this included 200 µL of receptor stock solution ([H] ≈ 0.100 mM) 

and 50 µL of chloroform to give a total [H] ≈ 80 µM. The blank anion wells (horizontal 

columns) included 50 µL of salt solution ([X–] ≈ 7.0 mM) and 200 µL of chloroform. The 

first well contained only water-saturated chloroform to act as a solvent control. All other 

wells contained 200 µL of receptor stock solution ([H] ≈ 0.100 mM) and 50 µL of one 

salt solution ([X–] ≈ 7.0 mM), giving a total well volume of 250 µL and ~20 equivalents 

of anion for each host (final [H] ≈ 80 µM).  

The UV-Vis absorbance spectra were first collected by scanning wells A1-E6 

(inclusive) from 200-1000 nm with 2 nm step-size excitation and a 50 ms settle time. The 

maximum emission wavelength was determined for the blank receptors. This wavelength 
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was then used as the excitation wavelength for the subsequent fluorescence scans. The 

fluorescence intensity scans were collected as a bottom reading with the monochromator. 

The excitation bandwidth was set at 5 nm, with collection beginning at λem+20 nm and 

ending at 750 nm. The Z-position was determined from well B1 (blank receptor) for each 

scan.  

 

Bridge to Chapter V 

 Chapters I-IV introduce complex research topics in the field of physical organic 

chemistry. Chapter V introduces a project-based learning approach to teaching physical 

organic chemistry topics to first-year graduate students. This case-study and intervention 

lays out a general method to approach science communication in an upper division 

chemistry course through a write-to-learn Wikipedia project.  
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CHAPTER V 

 

UNDERSTANDING THE UPPER-LEVEL CHEMISTRY STUDENTS’ 

PERSPECTIVE ON SCIENCE COMMUNICATION THROUGH WIKIPEDIA 

PROJECT-BASED LEARNING: A CASE-STUDY AND INTERVENTION 

 

 This chapter is comprised of unpublished, co-authored work. I conceived and 

designed the course project. Prof. Eleanor V. H. Vandegrift provided guidance and insight 

in creating the survey. The writing is entirely my own with editorial assistance from Prof. 

Eleanor V. H. Vandegrift.  

 

Introduction 

Research says that students who graduate with an advanced degree in science 

should be able to communicate science effectively “to a range of audiences, for a range of 

purposes, and using a variety of modes” (Jones, et al. 2010). Despite the clarity for a need 

for learning goals for science communication, there is on-going debate about the best 

approach to implement broad-audience focused science communication curriculum into 

an upper division science course (Brownell, et al. 2013; Mercer-Mapstone & Kuchel 

2015). While there is reason to believe science students gain the skills necessary to 

communicate with a broad audience through their general education coursework, research 

is needed to clarify connections on how these skills translate into their ability to 

communicate complex science topics for a general audience. 
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The standards for bachelor’s degrees in a variety of science disciplines focus on 

students’ ability to effectively communicate scientific results to scientists and to diverse 

audiences (AAAS, 2011; AAMC-HHMI, 2009). Despite the multiple degrees graduate 

students and professors hold, many have never received formal training on 

communicating science to diverse audience (Blanchard 2017; Mercer-Mapstone & 

Kuchel 2015; Baram-Tsarabi & Lewenstein 2017; Baram-Tsarabi & Osborne 2015). At 

what point do we draw the line between education focused on communicating science to 

a broad audience versus communicating to a specific scientific audience? How we 

approach engaging these two audiences should, in fact, be quite different (Brownell, et al. 

2013). However, the education system currently focuses on learning to communicate to a 

science audience, incorporating the perfect jargon and motivation-to-data ratio (Baram-

Tsarabi & Lewenstein 2017; Gardner, et al. 2017). Granted, this is a vital component of 

the science education process, but it leaves out a main motivation behind scientific 

research: to advance society through understanding the minutiae of life and nature 

(Higgins, et al., 2006, NSB, 2000). In educational settings, we neglect to stress the 

importance of communicating a specific chemistry topic to a broad audience, yet we, as 

researchers and society as a whole, rely on policymakers and media sources to correctly 

interpret results and understand the significances of the basic-science research (Brownell, 

et al., 2013; Mercer-Mapstone & Kuchel, 2015, Nadkarni & Stasch, 2013).  

Learning to explain complex scientific concepts to a general audience is often 

seen as a skill honed through years in a graduate program, general education courses, or 

even just in passing. To address this gap in formal science education, we designed an 
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end-of-term science communication project for a combined undergraduate/graduate-level 

chemistry course: Physical Organic Chemistry I.  

 

Aim of study 

In this case study, we explored how graduate-level chemistry students define and 

rank the importance of science communication before and after a project-based 

intervention. All students in the course answered survey questions about how they 

interact with science research on the web, their own perceived ability to communicate 

complex chemistry topics, their science educational background, and ways they think the 

general population interacts with science on the web.  Additionally, the graduate students 

wrote and published a Wikipedia article on a topic related to physical organic chemistry. 

Students presented their published page to their peers and instructors through a two-

minute elevator pitch. This project-based intervention aimed to broaden the students’ 

perceptions of science communication and provide an opportunity for students to write 

about a complex scientific topic for a general audience.  

The following questions guided this study:  

1. How do graduate-level chemistry students define science communication and its 

impact on society? 

2. How do the students’ perspectives of their own abilities to communicate science 

change after writing a Wikipedia article on a complex chemistry topic aimed at a 

general audience?  

 

Method 
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Participants  

A Wikipedia writing project was introduced into a mixed undergraduate and 

graduate-level course on physical organic chemistry. The students in the course ranged 

from third-year undergraduate students to second-year graduate students (N = 21; 19 

enrolled, 2 audited, 5 undergraduate students, 16 graduate students) in the Department of 

Chemistry & Biochemistry at a mid-sized public research university in the Pacific 

Northwest of the United States. One year of organic chemistry is a prerequisite for the 

course. The course met twice a week for 80 minutes each and a third day for 50 minutes.  

By the end of the term, students should be able to meet the following learning goals 

and objectives: 

1. demonstrate a firm foundation in the conceptual and quantitative thinking that 

underlies the theories and models that form the basis for reasoning about physical 

organic chemistry,  

2. demonstrate excellent critical thinking and problem solving abilities,  

3. integrate chemical concepts and ideas learned in lecture courses with skills 

learned in the laboratories,   

4. understand how scientific information is shared between peers in modern science, 

5. and demonstrate an awareness of the benefits and impacts of chemistry related to 

the environment, society, and other disciplines in the scientific community.  

The course provided an opportunity for students to increase proficiency in rationally 

estimating the solution to organic chemistry problems and properly analyzing the result 

for correctness. To this end, students ideally leave the course prepared to contribute 

solutions to society’s challenges at the intersection of science and society.  
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This physical organic chemistry course is the first in a two-course sequence that 

expands on the concepts taught in organic chemistry. It is taught through Modern 

Physical Organic Chemistry (Anslyn & Doughtery, 2006), alongside primary research 

experience from the instructor of record. To distinguish the graduate-level curriculum 

from the undergraduate-level curriculum, graduate students are assigned six reviews of 

primary literature, submitted with their solutions to problem sets, and an end-of-term 

project. The primary literature reviews required students to first search a non-peer 

reviewed journalism outlet (i.e. Science Daily, New York Times, etc.) for a recent press 

release on a chemistry related topic. Students then compared the press release to the 

original peer-reviewed journal article to analyze accuracy of the journalist’s interpretation 

of the research article. This recurring assignment was designed to engage students in 

ways the general public convey and consume science news.  

In an attempt to meet the goal of students contributing scientific solutions to society’s 

challenges, we realized the need for students to formally practice communicating a 

complex scientific topic to a general audience. Furthermore, the fact that students rely on 

Wikipedia as an information source means that the most up-to-date and accurate 

information needs to be on the webpage (Lladós-Masllorens, et al., 2017). It is often the 

first “hit” in a Google for most topics and most students (some professors!) regularly 

choose to use it as a reference point to refresh their memory on a subject or find resources 

for further reading. Inspiration for this particular project came from a Journal of 

Chemistry Education article titled “Glaring Chemical Errors Persist for Years on 

Wikipedia” (Mandler, 2017). The article, which is a response to another using Wikipedia 

editing as an assignment (Martineau & Boisvert, 2011), describes multiple chemistry-
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related Wikipedia pages with obvious errors and calls on educators to help remedy the 

pages to prevent future mistakes from occurring. This call to fix errors and create 

accurate chemistry-related articles resulted in the formation of the final project for 

graduate students: the task of publishing a Wikipedia article on a subject of their choice 

from physical organic chemistry.  

Procedures and materials  

Students were provided guidelines for the project during the fifth week of the ten-

week term (Figure 1, see appendix for complete details). Intermediate deadlines were 

provided to encourage students to work on the project over the course of the remaining 

five weeks. To encourage guided inquiry and self-learning in the graduate students, 

feedback was provided only on the scope of the topic (i.e. broadness, specificity, 

repetition, etc.) and accuracy/grammar of the finalized page. The first author offered two 

optional workshops on editing, compiling, and publishing Wikipedia pages, including 

how to add images to the page. All graduate students chose to attend at least one of two 

workshops. Additional help on organizing and publishing the pages was provided during 

office-hours or on a drop-in basis throughout the term. Graduate students were graded on 

the general scope and detail of their final page, and how engaging they were in presenting 

a two-minute elevator pitch to encourage people to read their article. No undergraduates 

chose to complete the project for extra-credit. 

All students were surveyed at the beginning and end of the course. Survey 

questions were distributed through Qualtrics. For the pre-survey, the students wrote their 

definition of science communication, their level of agreement with a range of statements 

related to the importance of science communication and perceptions of their own abilities 
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to communicate science, and their history related to their use of Wikipedia and other 

search engines for research. In the post-survey, students ranked the importance of a 

variety of features in a Wikipedia article that appeared as emergent codes in the initial 

survey’s short-response answers. Of the 21 students in the course, 21 completed the pre-

course survey and 18 completed the post-course survey (85.7%).  

 

Results and Discussion 

Defining science communication and how science can impact society  

Students were asked to define science communication during both pre- and post-

surveys. Responses were coded qualitatively and sorted into one of three emergent codes: 

explaining science to others to the point of understanding, presenting research findings 

from scientists, or presenting science to others (with no intent for audience to 

understand). Within each of these definitions, the intended audience was coded as non-

science background/general public or other scientists. Additionally, the original 

definitions were sorted into the AEIOU vowel analogy categories from the Burns et al. 

definition of science communication: Awareness, Enjoyment, Interest, Opinion-forming, 

and Understanding (Burns, et al. 2003). 

Overall, the students’ definitions for science communication in the pre-survey 

leaned toward presenting science to the general public, without mention of audience 

understanding (52%, with N total = 21). In the post-course survey, the definitions were 

more split between presenting science to others to the point of understanding and simply 

presenting science to others (41% each, with N total = 17). When analyzing the same 

definitions with the AEIOU code described by Burns et al., there was not a discernable 
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difference between the pre- and post-survey. The majority of students (86% pre- and 76% 

post-) defined science communication as a way to promote awareness of scientific 

concepts in their intended audience. Some students also explicitly promoted the verb 

“understand” in their definitions (23% pre and 41% post). The other verb definition from 

this sorting system was “opinion”. Burns et al. defines this as “the forming, reforming, or 

confirming of science-related attitudes.” This falls in with the ability to recognize how 

science can impact policy. Only 14% and 24% of students in the pre- and post-survey, 

respectively, defined science communication as a method to incite opinions. 

 

Table 1. Graduate student responses (N = 14) to the pre- and post- survey questions 
regarding their opinions on science communication, their abilities to communicate science, 
and the impact they can have on the public’s opinions of science.  

Survey question N = 14 Strongly 
Disagree Disagree Agree 

Strongly 
Agree 

Communicating science to the general 
public is important 

Pre-course - - 2 12 

Post-
course 

- - 5 9 

I have the ability to impact the public with 
science 

Pre-course - - 5 9 

Post-
course 

- 1 9 4 

The public is well-educated on science 
Pre-course 5 9 - - 

Post-
course 

6 7 1 - 

I am able to effectively communicate the 
importance of a topic of science to the 
general public (i.e. organic chemistry) 

Pre-course - 2 10 2 

Post-
course 

- 1 12 1 

I am able to effectively communicate the 
importance of a sub-topic of science to the 

general public (i.e. kinetics) 

Pre-course - 7 7 - 

Post-
course 

- 3 11 - 

My education has prepared me to defend 
science funding to the general public 

Pre-course - 3 10 1 

Post-
course 

- 3 10 1 
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Of the graduate students who completed the survey (N=14), 100% disagreed or 

strongly disagreed to the statement “The public is well-educated on science” in the pre-

survey and 92% disagreed or strongly disagreed with the statement in the post-statement 

(Table 1). Furthermore, 100% of the students said that they agreed or strongly agreed that 

communicating science with the public is important, but compellingly only 50% of the 

students in the pre-survey agreed that they were able to effectively communicate the 

importance of a sub-topic of science to the general public (i.e. kinetics, hydrogen 

bonding, proteins, CRISPR, etc.). The intervention described herein was designed to 

provide an experiential learning opportunity for graduate-level chemistry students to 

communicate a complex chemistry topic to a general audience through Wikipedia and 

build that lacking skill. 

Graduate students’ perspectives of their own abilities to communicate science to a 

broad audience 

Wikipedia was chosen for this project-based intervention because it is the most 

consulted source on the web, reaching billions of readers monthly (Anderson, et al. 

2016). It also provides an easy-to-use platform for students to edit and quickly publish an 

article from a broad range of chemistry-related topics (Martineau & Boisvert, 2011). In 

recent years, multiple educators have touted the benefits of students editing Wikipedia 

articles as an assignment, including collaborative learning, writing skills, and literature 

review skills (Martineau & Boisvert, 2011; Lladós-Masllorens, et al., 2017; Grange & 

Retief, 2018; Sternberger & Wyatt, 2018). 

Students chose their own topic with the guidelines that it must fit within the broad 

subject of physical organic chemistry and could not already have a completed article on 
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Wikipedia. Students selected topics ranging from basic science topics (e.g. field effect) to 

synthetic methods (e.g. co-solvent) to materials science topics (e.g. impregnation resins 

and electronic skin).1 Figure 1 shows the requirements students were provided to guide 

their article creations. 

 

 
Figure 1. The minimum requirements of the Wikipedia article assignment, as provided to 
the students. 
 

A note in these guidelines is the audience: these graduate students, who are 

aiming to be experts in their selected fields of chemistry, are communicating with 

sophomore-level undergraduate students with a basic background in organic chemistry. 

In this sense, the students are not communicating to a broad audience, as is described in 

their pre- and post-survey, but the audience is still far less knowledgeable in the field than 

the typical audience of a graduate student: professors, lifelong chemistry researchers, and 

other graduate students. Although some topics, particularly materials or application-based 

topics, resulted in Wikipedia articles that are accessible to a broader audience (e.g. 

electronic skin).  

                                                 
1 Screenshots of Wikipedia pages submitted by students can be viewed in the appendix.  

Your Wikipedia article must be well-written so a member of the public with general 
organic chemistry knowledge can understand it. It must include: 

• An introduction and at least three, well-written sub-sections; 
• A description of the chemical importance/applications of the subject matter; 
• A minimum of three high-quality images that help explain the topic; 
• A proper Wikipedia-style bibliography with at least eight citations provided 

for the general reader to find more information (you will likely find that you 
will need to use many more than eight citations to cover your topic properly). 
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After the course, student responses to the post-survey question about their own 

abilities to communicate a sub-topic of science to a broad audience changed favorably; 

79% of the students now agreed that they had the ability to communicate a sub-topic of 

science to a broad audience (Table 1).  

However, an open response question posed to students regarding any other 

pertinent information related to the Wikipedia project resulted in surprising revelations 

about the students’ own perceived abilities. One student wrote “I was a little nervous 

writing the page because I didn't really feel like an expert on the subject, and [sic.] did 

not want to present bad information as a fact.” This statement alone shows a lack of 

confidence in their abilities to research and write a Wikipedia article, even after earning a 

bachelor’s of science in chemistry and as a student in a PhD program. This lack of 

confidence could be due to the imposter syndrome, a well-studied feeling present in many 

graduate students, or something else entirely (Parkman, 2016). Another student sums this 

up perfectly by saying “It is very hard to write a good review article. It is not surprising 

that many scientists are bad at communicating science to general public.” 

 

Conclusion 

A third student noted that “We need more accurate science discussions in 

society,” and we could not agree more! This presents a question: How can we, as 

educators, continue to provide opportunities for students (who are training to be experts 

in their fields) to research and write about their subjects for a broad audience more often? 

Journal articles and conference presentations do not cut it – we need to broaden our 

training grounds to reach more members of the public. The Wikipedia project described 
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here is one possible method of reaching this goal: the articles on Wikipedia reach broad 

audiences, require intensive literature reviews, and place accurate chemistry information 

in an easily-accessible location on the web. While such a method does not directly 

engage the public in a discussion, it does ensure the knowledge is available for public 

consumption, ideally increasing the public understanding of science.  

 

Bridge to Chapter VI 

The research presented in Chapter V offers an approach to implement science 

communication practice in an upper division chemistry course. By assigning students to 

write a Wikipedia page on a complex physical organic chemistry topic, the students 

practice communicating a science topic for a broader audience and ensure the 

dissemination of accessible, science information to the public. The final Chapter VI in 

this dissertation offers opportunities for future research for the arylethynyl anion 

receptors described herein.  
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CHAPTER VI 

 

CONCLUSION AND FUTURE DIRECTIONS 

 

Conclusion 

The aim of this dissertation was to explore the impact of weak, intramolecular 

binding interactions on the anion binding selectivity of arylethynyl urea receptors. In 

doing so, we have furthered our understanding of tunable properties of arylethynyl urea 

receptors in an effort to design selective, sensitive, and responsive fluorescent sensors. 

Our initial study investigated the impact of secondary binding motifs, like aryl CH 

hydrogen bonds and anion-pi interactions, on anion selectivity. This study also influenced 

the design of our anion receptors by indicating the need for at least two urea recognition 

motifs in arylethynyl receptor scaffolds. The arylethynyl mono-urea receptors studied 

herein also elucidated the impact secondary interactions may have on the self-assembly 

properties of 2-to-1 host-to-guest systems with halides.  

To further probe the influence of secondary binding motifs on anion selectivity, 

we designed three pyridine-based receptors. These receptors were designed to 

preferentially bind diprotic, monoprotic, and aprotic oxoanions based on the hydrogen 

bond donating or accepting ability of the pyridine cores. Additionally, computational 

studies indicated the size of each binding pocket was a near-perfect fit for the range of 

oxoanions. However, the inherent conformational flexibility of the arylethynyl bis-urea 

scaffolds lead to a surprising lack of binding preference across the three anions studied. 

Additional binding experiments in a more polar solvent showed binding energies that 
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followed the expected trend of anion basicity. This study suggests the contribution of 

solvent and entropic effects contribute to a larger role in overall binding energies and 

needs to be investigated more thoroughly when looking for the perfect lock-and-key host-

guest pair.  

In an attempt to overcome the elusive lock-and-key method for anion sensing, we 

also laid-out an array sensing platform with sixteen phenylethynyl bis-urea receptors. The 

fluorescence response of each receptor was analyzed against five anions of biological and 

environmental interest. Interestingly, phenyl-based receptors with nitro-substituents were 

not fluorescent, unlike the pyridine-based counterparts that inspired this study. This study 

provided additional insights into the fluorescence response of receptors with methoxy-

substituents: the overall emission intensity is weak compared to other functional groups 

studied. Despite this property, when analyzing the intensity ratios, the methoxy receptor 

with unsubstituted phenyl ureas offers the most promising turn-on fluorescence response 

for chloride and nitrate. Additionally, principal component analysis (PCA) showed 

promise as a method to begin to discern sensing patterns based on the receptor-anion 

combination. Thus, we have laid-out future directions for work in the area of anion 

sensing arrays with the receptor scaffolds studied in our lab. 

Not only did the research presented herein provide insights into the binding 

behavior of supramolecular anion receptors, but it also offered an intervention method for 

approaching the teaching of physical organic chemistry topics to first-year graduate 

students. A write-to-learn Wikipedia article project was implemented in a physical 

organic chemistry course to aid in concept learning and promote science communication 

skills to the next generation of chemists. This case-study and intervention allowed us to 
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teach and share complex chemical concepts, like those presented in this dissertation, to 

upper division chemistry students who then learned to communicate these topics to a 

general audience, allowing access to the broader community.  

 

Future Directions 

The research presented in this dissertation provides a foundation for studying the 

effects of secondary binding motifs in arylethynyl anion receptors on binding selectivity. 

The work presented in Chapter III establishes the need to study the relationship of 

flexible anion receptors in solvents of varying polarity. Such a study could tease out 

complex solvent and entropic effects related to polarity, anion size, binding pocket size, 

conformational changes, and secondary binding interactions. An anion-sensing array 

combined with PCA, as described in Chapter IV, could be applied to such a study to 

quickly screen the impacts of the different components of the receptors on the binding 

responses. To accomplish this, it is necessary to first isolate receptors soluble in solvents 

with a range of dielectric constants, like those presented in Scheme 1. The synthesis of 

receptors 1 and 2 is already underway. 

In order to achieve the ideal array sensing platform for detection of unknown 

analytes, a larger variety of anion receptors should be studied. Analyzing receptors with a 

high intensity ratio response toward a wider range of anions would allow for differential 

sensing via PCA clustering by anions. Since different binding motifs and different sized 

binding pockets show varied responses toward the range of anions, arylethynyl bis-urea 

receptors with pyridinium and pyridine N-oxide cores, along with halogen-bonding 

receptors, could be applied in the array to promote a differential sensing response.  
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Scheme 1. Proposed synthetic approach to isolate two arylethynyl bis-urea receptors 
predicted to be soluble in polar and non-polar solvents.  

 

Additional computational studies are also needed to better understand the 

selectivity preferences of push-pull phenylethynyl systems described in Chapter IV.  

Furthermore, the solution-state fluorescence studies could be correlated to a solid-

state resistivity response by incorporating the receptors into a chemically sensitive field 

effect transistor (ChemFET). One would first need to determine the fluorescent response 

to a variety of anions in solution. The ideal receptor would have a large change in 

fluorescence in the presence of one or two anions. Once the appropriate receptor is 

selected, the fluorescent receptor and polymer matrix used in the ChemFET can be drop-

cast onto a glass slide. The fluorescence can be observed by the naked eye under a UV 

lamp. If the solution-state behavior is maintained in the polymer matrix, the fluorescent 

response should change in the presence of the selected anion(s). If there is a correlation 

between the change in fluorescence in the solid-state and a current response in the 

ChemFET devices, this approach could lead to a quick screen method to discover viable 
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chemical receptors for ChemFETs. Initial solid-state studies of the receptors studied in 

Chapter IV mixed with a polymer membrane are already underway (Figure 1).  

 

 
Figure 1. Photograph of the dropcasts of four receptors studied in Chapter IV in a 
polymer matrix used in ChemFET devices. The polymer matrix is pictured on the right as 
a control.   
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APPENDIX A 

 

SUPPLEMENTARY INFORMATION FOR CHAPTER II 

 

Titrations 

1H NMR titrations 

Tetrabutylamamonium chloride with 3. A concentrated solution of 3 (2.45 mg, 

[R]=4.87 mM) in 10% d6-DMSO/CDCl3 (1.00 mL) was prepared. A serial dilution was 

then performed with 250 μL of 4.87 mM solution of 3 diluted to 3 mL to yield the stock 

solution of 3 ([R]=0.406 mM). This solution was used in the dilution of TBACl guest 

solution (6.53 mg, [G]= 9.98 mM). The remaining stock solution (0.600 mL) was used as 

the starting volume in the NMR tube.  

 

Table 1. Representative titration data for Cl– with 3.   
 Guest (μL) [1] (M) [Cl–] (M) Equiv. Hc δ (ppm) Ha δ 

(ppm) 
Hb δ 

(ppm) 
1 0 4.06E-04 0.00E+00 0.00 9.553 8.725 8.126 
2 5 4.06E-04 8.25E-05 0.20 9.634 8.737 8.167 
3 10 4.06E-04 1.64E-04 0.40 9.713 8.751 8.208 
4 15 4.06E-04 2.43E-04 0.60 9.783 8.759 8.244 
5 20 4.06E-04 3.22E-04 0.79 9.844 8.771 8.276 
6 25 4.06E-04 3.99E-04 0.98 9.901 8.779 8.304 
7 30 4.06E-04 4.75E-04 1.17 9.950 8.785 8.329 
8 35 4.06E-04 5.50E-04 1.36 9.998 8.794 8.354 
9 40 4.06E-04 6.24E-04 1.54 10.039 8.800 8.375 

10 50 4.06E-04 7.67E-04 1.89 10.114 8.813 8.417 
11 60 4.06E-04 9.07E-04 2.24 10.186 8.824 8.452 
12 80 4.06E-04 1.17E-03 2.89 10.295 8.842 8.508 
13 100 4.06E-04 1.43E-03 3.51 10.385 8.857 8.556 
14 150 4.06E-04 2.00E-03 4.92 10.550 8.885 8.641 
15 200 4.06E-04 2.49E-03 6.15 10.661 8.903 8.709 
16 300 4.06E-04 3.33E-03 8.20 10.789 8.929 8.770 
17 400 4.06E-04 3.99E-03 9.84 10.873 8.939 8.810 
18 600 4.06E-04 4.99E-03 12.30 10.926 8.952 8.840 
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Figure 1. Binding isotherm for Cl– titration with 3 in 10% d6-DMSO/CDCl3 by 1H NMR. 
 

 
Figure 2. MatLab fit of binding isotherm for Cl– titration with 3. 
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Tetrabutylamamonium bromide with 3. A concentrated solution of 3 (5.16 mg, 

[R]=5.12 mM) in 10% d6-DMSO/CDCl3 (2.00 mL) was prepared. A serial dilution was 

then performed with 590 μL of 5.12 mM solution of 3 diluted to 3 mL to yield the stock 

solution of 3 ([R]=1.01 mM). This solution was used in the dilution of TBABr guest 

solution (45.03 mg, [G]=6.00 mM). The remaining stock solution (0.600 mL) was used 

as the starting volume in the NMR tube.  

 

Table 2. Representative titration data for Br– with 3.   
 Guest (μL) [1] (M) [Br–] (M) Equiv. Hc δ (ppm) Ha δ 

(ppm) 
Hb δ 

(ppm) 
1 0 1.01E-03 0.00E+00 0.00 9.590 8.730 8.144 
2 5 1.01E-03 4.95E-04 0.49 9.743 8.759 8.225 
3 10 1.01E-03 9.83E-04 0.98 9.828 8.770 8.270 
4 15 1.01E-03 1.46E-03 1.45 9.900 8.784 8.310 
5 20 1.01E-03 1.93E-03 1.92 9.943 8.793 8.333 
6 25 1.01E-03 2.40E-03 2.38 9.984 8.799 8.356 
7 30 1.01E-03 2.85E-03 2.83 10.024 8.805 8.377 
8 35 1.01E-03 3.30E-03 3.28 10.058 8.810 8.395 
9 40 1.01E-03 3.75E-03 3.72 10.089 8.816 8.412 

10 50 1.01E-03 4.61E-03 4.58 10.139 8.825 8.440 
11 60 1.01E-03 5.45E-03 5.41 10.194 8.834 8.470 
12 80 1.01E-03 7.05E-03 7.00 10.258 8.846 8.506 
13 100 1.01E-03 8.56E-03 8.50 10.312 8.855 8.534 
14 150 1.01E-03 1.20E-02 11.90 10.415 8.873 8.592 
15 200 1.01E-03 1.50E-02 14.87 10.458 8.885 8.616 
16 300 1.01E-03 2.00E-02 19.83 10.544 8.896 8.662 
17 400 1.01E-03 2.40E-02 23.79 10.581 8.904 8.682 
18 600 1.01E-03 3.00E-02 29.74 10.589 8.904 8.693 
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Figure 3. Binding isotherm for Br– titration with 3 in 10% d6-DMSO/CDCl3 by 1H NMR. 
 

 
Figure 4. MatLab fit of binding isotherm for Br– titration with 3. 
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Figure 5. 1H NMR spectra of Br– titration with 3. 
 

 

 

Tetrabutylamamonium iodide with 3. A concentrated solution of 3 (5.22 mg, 

[R]=5.18 mM) in 10% d6-DMSO/CDCl3 (2.00 mL) was prepared. A serial dilution was 

then performed with 590 μL of 5.18 mM solution of 3 diluted to 3 mL to yield the stock 

solution of 3 ([R]=1.02 mM). This solution was used in the dilution of TBAI guest 

solution (51.76 mg, [G]=5.94 mM). The remaining stock solution (0.600 mL) was used 

as the starting volume in the NMR tube.  
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Table 3. Representative titration data for I– with 3.   
 Guest (μL) [1] (M) [I–] (M) Equiv. Hc δ (ppm) Ha δ 

(ppm) 
Hb δ 

(ppm) 
1 0 1.01E-03 0.00E+00 0.00 9.590 8.730 8.144 
2 5 1.01E-03 4.95E-04 0.49 9.743 8.759 8.225 
3 10 1.01E-03 9.83E-04 0.98 9.828 8.770 8.270 
4 15 1.01E-03 1.46E-03 1.45 9.900 8.784 8.310 
5 20 1.01E-03 1.93E-03 1.92 9.943 8.793 8.333 
6 25 1.01E-03 2.40E-03 2.38 9.984 8.799 8.356 
7 30 1.01E-03 2.85E-03 2.83 10.024 8.805 8.377 
8 35 1.01E-03 3.30E-03 3.28 10.058 8.810 8.395 
9 40 1.01E-03 3.75E-03 3.72 10.089 8.816 8.412 

10 50 1.01E-03 4.61E-03 4.58 10.139 8.825 8.440 
11 60 1.01E-03 5.45E-03 5.41 10.194 8.834 8.470 
12 80 1.01E-03 7.05E-03 7.00 10.258 8.846 8.506 
13 100 1.01E-03 8.56E-03 8.50 10.312 8.855 8.534 
14 150 1.01E-03 1.20E-02 11.90 10.415 8.873 8.592 
15 200 1.01E-03 1.50E-02 14.87 10.458 8.885 8.616 
16 300 1.01E-03 2.00E-02 19.83 10.544 8.896 8.662 
17 400 1.01E-03 2.40E-02 23.79 10.581 8.904 8.682 
18 600 1.01E-03 3.00E-02 29.74 10.589 8.904 8.693 
        

 

 

 
Figure 6. Binding isotherm for I– titration with 3 in 10% d6-DMSO/CDCl3 by 1H NMR. 
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Figure 7. MatLab fit of binding isotherm for I– titration with 3. 
 

 
Figure 8. 1H NMR spectra of I– titration with 3. 
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Tetrabutylamamonium chloride with 4. A concentrated solution of 4 (2.96mg, 

[R]=5.88 mM) in 10% d6-DMSO/CDCl3 (1.00 mL) was prepared. A serial dilution was 

then performed with 511 μL of 5.88 mM solution of 4 diluted to 3 mL to yield the stock 

solution of 4 ([R]=1.00 mM). This solution was used in the dilution of TBACl guest 

solution (9.56 mg, [G]=14.9 mM). The remaining stock solution (0.600 mL) was used as 

the starting volume in the NMR tube. The calculated association constants for the 

titration of TBACl with 4 were at the limits of 1H NMR titrations, although errors were 

less than 15% across three titrations. The μM concentrations needed to obtain UV-Vis 

spectroscopy titration data dilute out the expected 2:1 host-guest model, however, leading 

to titrations only appropriately fit to a 1:1 host-guest model. 

 

Table 4. Representative titration data for Cl– with 4.   

 Guest (μL) [2] (M) [Cl–] (M) Equiv. Ha δ (ppm) Hb δ 
(ppm) 

1 0 1.00E-03 0.00E+00 0.00 9.617 8.119 
2 5 1.00E-03 1.23E-04 0.12 9.888 8.230 
3 10 1.00E-03 2.44E-04 0.24 10.145 8.335 
4 15 1.00E-03 3.62E-04 0.36 10.379 8.428 
5 20 1.00E-03 4.79E-04 0.48 10.562 8.502 
6 25 1.00E-03 5.94E-04 0.59 10.695 8.555 
7 30 1.00E-03 7.08E-04 0.71 10.775 8.587 
8 35 1.00E-03 8.19E-04 0.82 10.819 8.604 
9 40 1.00E-03 9.29E-04 0.93 10.847 8.615 

10 50 1.00E-03 1.14E-03 1.14 10.877 8.626 
11 60 1.00E-03 1.35E-03 1.35 10.892 8.631 
12 80 1.00E-03 1.75E-03 1.75 10.910 8.637 
13 100 1.00E-03 2.12E-03 2.12 10.919 8.640 
14 150 1.00E-03 2.97E-03 2.97 10.929 8.643 
15 200 1.00E-03 3.71E-03 3.71 10.933 8.643 
16 300 1.00E-03 4.95E-03 4.95 10.939 8.645 
17 400 1.00E-03 5.94E-03 5.93 10.941 8.645 
18 600 1.00E-03 7.43E-03 7.42 10.944 8.646 
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Figure 9. Binding isotherm for Cl– titration with 4 in 10% d6-DMSO/CDCl3 by 1H NMR. 
 
 
 

 
Figure 10. MatLab fit of binding isotherm for Cl– titration with 4. 
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Figure 11. 1H NMR spectra of Cl– titration with 4. 

 

 

Tetrabutylamamonium bromide with 4. A concentrated solution of 4 (5.21 mg, 

[R]=5.17 mM) in 10% d6-DMSO/CDCl3 (2.00 mL) was prepared. A serial dilution was 

then performed with 590 μL of 5.17 mM solution of 4 diluted to 3 mL to yield the stock 

solution of 4 ([R]=1.02 mM). This solution was used in the dilution of TBABr guest 

solution (23.01 mg, [G]=31.0 mM). The remaining stock solution (0.600 mL) was used 

as the starting volume in the NMR tube.  
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Table 5. Representative titration data for Br– with 2.    
 Guest (μL) [2] (M) [Br–] (M) Equiv. Ha δ (ppm) Hb δ 

(ppm) 
1 0 1.02E-03 0.00E+00 0.25 9.754 8.178 
2 5 1.02E-03 2.56E-04 0.50 9.975 8.285 
3 10 1.02E-03 5.08E-04 0.74 10.101 8.345 
4 15 1.02E-03 7.55E-04 0.98 10.181 8.382 
5 20 1.02E-03 9.99E-04 1.22 10.233 8.407 
6 25 1.02E-03 1.24E-03 1.45 10.266 8.422 
7 30 1.02E-03 1.47E-03 1.68 10.290 8.434 
8 35 1.02E-03 1.71E-03 1.90 10.307 8.441 
9 40 1.02E-03 1.94E-03 2.34 10.322 8.447 

10 50 1.02E-03 2.38E-03 2.77 10.341 8.456 
11 60 1.02E-03 2.82E-03 3.58 10.356 8.463 
12 80 1.02E-03 3.64E-03 4.35 10.369 8.468 
13 100 1.02E-03 4.42E-03 6.09 10.377 8.472 
14 150 1.02E-03 6.19E-03 7.61 10.388 8.477 
15 200 1.02E-03 7.74E-03 10.14 10.391 8.478 
16 300 1.02E-03 1.03E-02 12.17 10.394 8.478 
17 400 1.02E-03 1.24E-02 15.21 10.398 8.480 
18 600 1.02E-03 1.55E-02 0.25 10.398 8.480 

       
       

 
 

 
Figure 12. Binding isotherm for Br– titration with 4 in 10% d6-DMSO/CDCl3 by 1H 
NMR. 
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Figure 13. MatLab fit of binding isotherm for Br– titration with 4. 

 

 

 

Tetrabutylamamonium iodide with 4. A concentrated solution of 4 (5.21 mg, 

[R]=5.17 mM) in 10% d6-DMSO/CDCl3 (2.00 mL) was prepared. A serial dilution was 

then performed with 576 μL of 5.17 mM solution of 4 diluted to 3 mL to yield the stock 

solution of 4 ([R]=0.994 mM). This solution was used in the dilution of TBAI guest 

solution (26.11mg, [G]=31.21 mM). The remaining stock solution (0.600 mL) was used 

as the starting volume in the NMR tube.  
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Table 6. Representative titration data for I– with 4.    
 Guest (μL) [2] (M) [I–] (M) Equiv. Ha δ (ppm) Hb δ 

(ppm) 
1 0 9.94E-04 0.00E+00 0.26 9.644 8.131 
2 5 9.94E-04 2.58E-04 0.51 9.651 8.135 
3 10 9.94E-04 5.12E-04 0.77 9.661 8.141 
4 15 9.94E-04 7.61E-04 1.01 9.668 8.146 
5 20 9.94E-04 1.01E-03 1.26 9.675 8.151 
6 25 9.94E-04 1.25E-03 1.50 9.681 8.154 
7 30 9.94E-04 1.49E-03 1.73 9.685 8.156 
8 35 9.94E-04 1.72E-03 1.96 9.689 8.160 
9 40 9.94E-04 1.95E-03 2.42 9.691 8.161 

10 50 9.94E-04 2.40E-03 2.86 9.698 8.166 
11 60 9.94E-04 2.84E-03 3.70 9.708 8.170 
12 80 9.94E-04 3.67E-03 4.49 9.718 8.177 
13 100 9.94E-04 4.46E-03 6.28 9.726 8.183 
14 150 9.94E-04 6.24E-03 7.85 9.750 8.197 
15 200 9.94E-04 7.80E-03 10.47 9.767 8.206 
16 300 9.94E-04 1.04E-02 12.57 9.778 8.214 
17 400 9.94E-04 1.25E-02 15.71 9.788 8.223 
18 600 9.94E-04 1.56E-02 0.26 9.803 8.230 

 

 

 
Figure 14. Binding isotherm for I– titration with 4 in 10% d6-DMSO/CDCl3 by 1H 
NMR.  



103 

 
Figure 15. MatLab fit of binding isotherm for I– titration with 4. 
 
 

 
Figure 16. 1H NMR spectra of I– titration with 4. 
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UV-Vis titrations 

Tetrabutylammonium chloride with 4. A concentrated solution of 4 (2.00 mg, 

[R]=0.199 mM) in 10% DMSO/CHCl3 (20.00 mL) was prepared. A serial dilution was 

then performed with 50 μL of 0.199 mM solution of 4 diluted to 5 mL to yield the stock 

solution of 4 ([R]= 1.99 µM). A 2 mL solution of TBACl (2.53 mg, [G]=0.984 mM) was 

prepared by serial dilution with the stock solution of 4. The starting volume in the cuvette 

was 2.0 mL. 

 

Table 7. Representative titration data for Cl– with 4.   

 

 Guest (μL) [2] (M) [Cl–] (M) Equiv. 
1 0 1.99E-06 0.00E+00 0.00 
2 5 1.99E-06 2.45E-06 1.23 
3 10 1.99E-06 4.89E-06 2.46 
4 15 1.99E-06 9.74E-06 4.90 
5 20 1.99E-06 1.93E-05 9.71 
6 25 1.99E-06 2.87E-05 14.42 
7 30 1.99E-06 3.78E-05 19.05 
8 40 1.99E-06 4.68E-05 23.58 
9 50 1.99E-06 5.79E-05 29.13 
10 60 1.99E-06 6.86E-05 34.55 
11 70 1.99E-06 8.94E-05 45.02 
12 80 1.99E-06 1.09E-04 55.03 
13 100 1.99E-06 1.28E-04 64.60 
14 120 1.99E-06 1.47E-04 73.76 
15 140 1.99E-06 1.64E-04 82.54 
16 180 1.99E-06 1.97E-04 99.05 
17 220 1.99E-06 2.27E-04 114.28 
18 300 1.99E-06 2.55E-04 128.39 
19 400 1.99E-06 3.05E-04 153.69 
20 600 1.99E-06 3.49E-04 175.73 
21 800 1.99E-06 4.22E-04 212.24 
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Figure 17. UV-Vis spectra of  4 titrated with Cl– in 10% -DMSO/CHCl3. 

 
Figure 18. Open Data Fit fit of binding isotherm for Cl– titration with 4. 
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Job’s Plot Analysis 

 
Figure 18. Job’s plot analysis for Cl– titration with 3 in 10% d6-DMSO/CDCl3 by 1H 
NMR.  

 

 
Figure 19. Job’s plot analysis for Br– titration with 3 in 10% d6-DMSO/CDCl3 by 1H 
NMR.  
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Figure 20. Job’s plot analysis for Cl– titration with 4 in 10% d6-DMSO/CDCl3 by 1H 
NMR.  

 

 

 
Figure 21. Job’s plot analysis for Br– titration with 4 in 10% d6-DMSO/CDCl3 by 1H 
NMR.  
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NMR Spectra 

 
Figure 22. 1H NMR spectra of 6 in CDCl3. 
 

 

 
Figure 23. 13C NMR spectra of 6 in CDCl3. 
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Figure 24. 1H NMR spectra of 7 in CDCl3. 
 
 

 
Figure 25. 19F NMR spectra of 7 in CDCl3. 
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Figure 26. 13C NMR spectra of 7 in CDCl3. 
 
 
 

 
Figure 27. 1H NMR spectra of 3 in acetone-d6. 
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Figure 28. 13C NMR spectra of 3 in acetone-d6. 
 

 

 
Figure 29. 1H NMR spectra of 4 in CDCl3. 
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Figure 30. 13C NMR spectra of 4 in CDCl3/DMSO-d6. 
 

 
Figure 31. 19F NMR spectra of 4 in CDCl3/DMSO-d6. 
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APPENDIX B 

 

SUPPLEMENTARY INFORMATION FOR CHAPTER III 

 

Titrations  

UV-Vis titrations 

Tetrabutylammonium dihydrogenphosphate with 1. A concentrated solution 

of 1 (2.25 mg, [R] = 0.313 mM) in 10% DMSO/CHCl3 (10.00 mL) was prepared. A 

serial dilution was then performed with 800 μL of 0.313 mM solution of 1 diluted to 

10.00 mL to yield the stock solution of 1 ([R] = 25.0 µM). A 3.00 mL solution of 

TBAH2PO4 (2.14 mg, [G] = 2.10 mM) was prepared by solvation with the stock solution 

of 1. A serial dilution was then performed with 1200 μL of the 2.10 mM solution of 

TBAH2PO4 diluted to 3.00 mL with the stock solution of 1 to yield guest solution ([G] = 

8.41 mM). The starting volume in the cuvette was 2.0 mL. 

  
Figure 1. UV-Vis spectra of 1 titrated with H2PO4

– in 10% DMSO/CHCl3. 
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Table 1. Representative titration data for H2PO4
– with 1.   

 Guest (μL) [1] (M) [H2PO4
–] (M) Equiv. 

1 0 2.50E-05 0.00E+00 0.00 
2 5 2.50E-05 2.39E-06 0.10 
3 10 2.50E-05 4.78E-06 0.19 
4 20 2.50E-05 9.50E-06 0.38 
5 40 2.50E-05 1.88E-05 0.75 
6 60 2.50E-05 2.79E-05 1.11 
7 80 2.50E-05 3.67E-05 1.47 
8 100 2.50E-05 4.54E-05 1.82 
9 125 2.50E-05 5.60E-05 2.24 
10 150 2.50E-05 6.64E-05 2.65 
11 200 2.50E-05 8.62E-05 3.45 
12 250 2.50E-05 1.05E-04 4.20 
13 300 2.50E-05 1.23E-04 4.92 
14 350 2.50E-05 1.40E-04 5.60 
15 400 2.50E-05 1.56E-04 6.25 
16 500 2.50E-05 1.87E-04 7.47 
17 600 2.50E-05 2.15E-04 8.58 
18 700 2.50E-05 2.40E-04 9.61 
19 900 2.50E-05 2.85E-04 11.42 
20 1100 2.50E-05 3.24E-04 12.98 
21 1500 2.50E-05 3.88E-04 15.52 

 

 
Figure 2. Binding isotherm and Bindfit output for H2PO4

–  titration with 1. 
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Tetrabutylammonium hydrogensulfate with 1. A concentrated solution of 1 

(2.25 mg, [R] = 0.313 mM) in 10% DMSO/CHCl3 (10.00 mL) was prepared. A serial 

dilution was then performed with 800 μL of 0.313 mM solution of 1 diluted to 10.00 mL 

to yield the stock solution of 1 ([R] = 25.0 µM). A 3.00 mL solution of TBAHSO4 (3.23 

mg, [G] = 3.17 mM) was prepared by solvation with the stock solution of 1. A serial 

dilution was then performed with 1200 μL of the 3.23 mM solution of TBAHSO4 diluted 

to 3.00 mL with the stock solution of 1 to yield guest solution ([G] = 12.7 mM). The 

starting volume in the cuvette was 2.0 mL. 

 

Table 2. Representative titration data for HSO4
– with 1.   

 Guest (μL) [1] (M) [HSO4
–] (M) Equiv. 

1 0 2.50E-05 0.00E+00 0.00 
2 5 2.50E-05 3.61E-06 0.14 
3 10 2.50E-05 7.21E-06 0.29 
4 20 2.50E-05 1.43E-05 0.57 
5 40 2.50E-05 2.84E-05 1.13 
6 60 2.50E-05 4.21E-05 1.68 
7 80 2.50E-05 5.55E-05 2.22 
8 100 2.50E-05 6.86E-05 2.74 
9 125 2.50E-05 8.46E-05 3.38 
10 150 2.50E-05 1.00E-04 4.01 
11 200 2.50E-05 1.30E-04 5.20 
12 250 2.50E-05 1.59E-04 6.34 
13 300 2.50E-05 1.86E-04 7.43 
14 350 2.50E-05 2.11E-04 8.46 
15 400 2.50E-05 2.36E-04 9.44 
16 500 2.50E-05 2.82E-04 11.28 
17 600 2.50E-05 3.24E-04 12.96 
18 700 2.50E-05 3.62E-04 14.50 
19 900 2.50E-05 4.31E-04 17.23 
20 1100 2.50E-05 4.90E-04 19.58 
21 1500 2.50E-05 5.86E-04 23.42 
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Figure 3. UV-Vis spectra of 1 titrated with HSO4

– in 10% DMSO/CHCl3.  
 

 
Figure 4. Binding isotherm and Bindfit output for HSO4

–  titration with 1. 
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Tetrabutylammonium perchlorate with 1. A concentrated solution of 1 (2.27 

mg, [R] = 0.285 mM) in 10% DMSO/CHCl3 (10.00 mL) was prepared. A serial dilution 

was then performed with 900 μL of 0.285 mM solution of 1 diluted to 10.00 mL to yield 

the stock solution of 1 ([R] = 25.6 µM). A 3.00 mL solution of TBAClO4 (3.53 mg, [G] = 

3.44 mM) was prepared by solvation with the stock solution of 1. A serial dilution was 

then performed with 1000 μL of the 3.53 mM solution of TBAClO4 diluted to 3.00 mL 

with the stock solution of 1 to yield guest solution ([G] = 11.5 mM). The starting volume 

in the cuvette was 2.0 mL. 

 

Table 3. Representative titration data for ClO4
– with 1.   

 Guest (μL) [1] (M) [ClO4
–] (M) Equiv. 

1 0 2.56E-05 0.00E+00 0.00 
2 5 2.56E-05 3.27E-06 0.13 
3 10 2.56E-05 6.52E-06 0.25 
4 20 2.56E-05 1.30E-05 0.51 
5 40 2.56E-05 2.56E-05 1.00 
6 60 2.56E-05 3.80E-05 1.48 
7 80 2.56E-05 5.01E-05 1.96 
8 105 2.56E-05 6.49E-05 2.53 
9 125 2.56E-05 7.65E-05 2.98 
10 150 2.56E-05 9.06E-05 3.53 
11 200 2.56E-05 1.18E-04 4.59 
12 250 2.56E-05 1.43E-04 5.59 
13 300 2.56E-05 1.68E-04 6.55 
14 350 2.56E-05 1.91E-04 7.46 
15 400 2.56E-05 2.13E-04 8.33 
16 500 2.56E-05 2.55E-04 9.94 
17 600 2.56E-05 2.93E-04 11.43 
18 700 2.56E-05 3.28E-04 12.79 
19 900 2.56E-05 3.90E-04 15.20 
20 1100 2.56E-05 4.43E-04 17.27 
21 1500 2.56E-05 5.29E-04 20.65 
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Figure 5. UV-Vis spectra of 1 titrated with ClO4

– in 10% DMSO/CHCl3.  
 
 

 
Figure 6. Binding isotherm and Bindfit output for ClO4

–  titration with 1. 
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Tetrabutylammonium dihydrogenphosphate with 2. A concentrated solution 

of 2 (2.23 mg, [R] = 0.310 mM) in 10% DMSO/CHCl3 (10.00 mL) was prepared. A 

serial dilution was then performed with 800 μL of 0.310 mM solution of 2 diluted to 

10.00 mL to yield the stock solution of 2 ([R] = 24.7 µM). A 3.00 mL solution of 

TBAH2PO4 (2.02 mg, [G] = 1.97 mM) was prepared by solvation with the stock solution 

of 2 to prepare guest solution. The starting volume in the cuvette was 2.0 mL. 

 

Table 4. Representative titration data for H2PO4
– with 2.   

 Guest (μL) [2] (M) [H2PO4
–] (M) Equiv. 

1 0 2.48E-05 0.00E+00 0.00 
2 5 2.48E-05 5.61E-06 0.23 
3 10 2.48E-05 1.12E-05 0.45 
4 20 2.48E-05 2.23E-05 0.90 
5 40 2.48E-05 4.40E-05 1.78 
6 60 2.48E-05 6.53E-05 2.64 
7 80 2.48E-05 8.62E-05 3.48 
8 100 2.48E-05 1.07E-04 4.30 
9 125 2.48E-05 1.31E-04 5.30 
10 150 2.48E-05 1.56E-04 6.28 
11 200 2.48E-05 2.02E-04 8.16 
12 250 2.48E-05 2.46E-04 9.94 
13 300 2.48E-05 2.88E-04 11.64 
14 350 2.48E-05 3.28E-04 13.25 
15 400 2.48E-05 3.67E-04 14.80 
16 500 2.48E-05 4.38E-04 17.67 
17 600 2.48E-05 5.03E-04 20.30 
18 700 2.48E-05 5.63E-04 22.72 
19 900 2.48E-05 6.69E-04 27.01 
20 1100 2.48E-05 7.61E-04 30.69 
21 1500 2.48E-05 9.10E-04 36.70 
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Figure 7. Binding isotherm and Bindfit output for H2PO4

– titration with 2. 
 

 

Tetrabutylammonium hydrogensulfate with 2. A concentrated solution of 2 

(2.58 mg, [R] = 0.358 mM) in 10% DMSO/CHCl3 (10.00 mL) was prepared. A serial 

dilution was then performed with 700 μL of 0.358 mM solution of 2 diluted to 10.00 mL 

to yield the stock solution of 2 ([R] = 25.1 µM). A 3.00 mL solution of TBAHSO4 (2.27 

mg, [G] = 1.34 mM) was prepared by solvation with the stock solution of 2 to yield the 

guest solution. The starting volume in the cuvette was 2.0 mL. 
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Table 5. Representative titration data for HSO4
– with 2.   

 Guest (μL) [2] (M) [HSO4
–] (M) Equiv. 

1 0 2.51E-05 0.00E+00 0.00 
2 5 2.51E-05 3.81E-06 0.15 
3 10 2.51E-05 7.60E-06 0.30 
4 15 2.51E-05 1.14E-05 0.45 
5 35 2.51E-05 2.62E-05 1.05 
6 55 2.51E-05 4.07E-05 1.62 
7 75 2.51E-05 5.50E-05 2.19 
8 95 2.51E-05 6.89E-05 2.74 
9 115 2.51E-05 8.25E-05 3.29 
10 140 2.51E-05 9.90E-05 3.95 
11 165 2.51E-05 1.15E-04 4.59 
12 215 2.51E-05 1.46E-04 5.83 
13 265 2.51E-05 1.76E-04 7.01 
14 315 2.51E-05 2.04E-04 8.13 
15 365 2.51E-05 2.31E-04 9.20 
16 415 2.51E-05 2.56E-04 10.22 
17 515 2.51E-05 3.04E-04 12.12 
18 615 2.51E-05 3.48E-04 13.86 
19 715 2.51E-05 3.88E-04 15.46 
20 915 2.51E-05 4.59E-04 18.30 
21 1115 2.51E-05 5.20E-04 20.74 

 

 

  
Figure 8. UV-Vis spectra of 2 titrated with HSO4

– in 10% DMSO/CHCl3. 
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Figure 9. Binding isotherm and Bindfit output for HSO4

–  titration with 2. 
 

 

 

Tetrabutylammonium perchlorate with 2. A concentrated solution of 2 (2.58 

mg, [R] = 0.358 mM) in 10% DMSO/CHCl3 (10.00 mL) was prepared. A serial dilution 

was then performed with 6500 μL of 0.358 mM solution of 2 diluted to 10.00 mL to yield 

the stock solution of 2 ([R] = 23.3 µM). A 3.00 mL solution of TBAClO4 (2.79 mg, [G] = 

1.63 mM) was prepared by solvation with the stock solution of 2 to yield the guest 

solution. The starting volume in the cuvette was 2.0 mL. 
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Table 6. Representative titration data for ClO4
– with 2.   

 Guest (μL) [2] (M) [ClO4
–] (M) Equiv. 

1 0 2.33E-05 0.00E+00 0.00 
2 5 2.33E-05 4.65E-06 0.20 
3 10 2.33E-05 9.27E-06 0.40 
4 20 2.33E-05 1.84E-05 0.79 
5 40 2.33E-05 3.65E-05 1.57 
6 60 2.33E-05 5.41E-05 2.32 
7 85 2.33E-05 7.56E-05 3.25 
8 100 2.33E-05 8.82E-05 3.79 
9 125 2.33E-05 1.09E-04 4.67 
10 150 2.33E-05 1.29E-04 5.53 
11 200 2.33E-05 1.67E-04 7.19 
12 250 2.33E-05 2.04E-04 8.76 
13 300 2.33E-05 2.39E-04 10.25 
14 350 2.33E-05 2.72E-04 11.68 
15 450 2.33E-05 3.34E-04 14.33 
16 550 2.33E-05 3.90E-04 16.75 
17 700 2.33E-05 4.66E-04 20.02 
18 900 2.33E-05 5.54E-04 23.79 
19 1100 2.33E-05 6.30E-04 27.04 
20 1400 2.33E-05 7.25E-04 31.14 
21 1800 2.33E-05 8.27E-04 35.52 

 

 

 
Figure 10. UV-Vis spectra of 2 titrated with ClO4

– in 10% DMSO/CHCl3.  
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Figure 11. Binding isotherm and Bindfit output for ClO4

–  titration with 2. 
 

Tetrabutylammonium dihydrogenphosphate with 3. A concentrated solution 

of 3 (2.05 mg, [R] = 0.257 mM) in 10% DMSO/CHCl3 (10.00 mL) was prepared. A 

serial dilution was then performed with 975 μL of 0.257 mM solution of 3 diluted to 

10.00 mL to yield the stock solution of 3 ([R] = 25.1 µM). A 3.00 mL solution of 

TBAH2PO4 (2.46 mg, [G] = 2.42 mM) was prepared by solvation with the stock solution 

of 3. A serial dilution was then performed with 500 μL of the 2.42 mM solution of 

TBAH2PO4 diluted to 3.00 mL with the stock solution of 3 to yield guest solution ([G] = 

4.03 mM). The starting volume in the cuvette was 2.0 mL. 
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Table 7. Representative titration data for H2PO4
– with 3.   

 Guest (μL) [3] (M) [H2PO4
–] (M) Equiv. 

1 0 2.51E-05 0.00E+00 0.00 
2 5 2.51E-05 1.15E-06 0.05 
3 10 2.51E-05 2.29E-06 0.09 
4 20 2.51E-05 4.55E-06 0.18 
5 40 2.51E-05 9.00E-06 0.36 
6 60 2.51E-05 1.33E-05 0.53 
7 80 2.51E-05 1.76E-05 0.70 
8 100 2.51E-05 2.18E-05 0.87 
9 125 2.51E-05 2.68E-05 1.07 
10 150 2.51E-05 3.18E-05 1.27 
11 200 2.51E-05 4.13E-05 1.65 
12 250 2.51E-05 5.03E-05 2.01 
13 300 2.51E-05 5.89E-05 2.35 
14 350 2.51E-05 6.71E-05 2.68 
15 400 2.51E-05 7.49E-05 2.99 
16 500 2.51E-05 8.95E-05 3.57 
17 600 2.51E-05 1.03E-04 4.10 
18 700 2.51E-05 1.15E-04 4.59 
19 900 2.51E-05 1.37E-04 5.45 
20 1100 2.51E-05 1.55E-04 6.20 
21 1500 2.51E-05 1.86E-04 7.41 

 

 
Figure 12. Binding isotherm and Bindfit output for H2PO4

– titration with 3. 
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Figure 13. MatLab fit of binding isotherm for H2PO4

– titration with 3. 
 

 

 

Tetrabutylammonium hydrogensulfate with 3. A concentrated solution of 3 

(2.27 mg, [R] = 0.285 mM) in 10% DMSO/CHCl3 (10.00 mL) was prepared. A serial 

dilution was then performed with 800 μL of 0.285 mM solution of 3 diluted to 10.00 mL 

to yield the stock solution of 3 ([R] = 22.8 µM). A 3.00 mL solution of TBAHSO4 (2.87 

mg, [G] = 2.82 mM) was prepared by solvation with the stock solution of 3. A serial 

dilution was then performed with 1000 μL of the 2.82 mM solution of TBAHSO4 diluted 

to 3.00 mL with the stock solution of 3 to yield guest solution ([G] = 9.39 mM). The 

starting volume in the cuvette was 2.0 mL. 
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Table 8. Representative titration data for HSO4
– with 3.   

 Guest (μL) [3] (M) [HSO4
–] (M) Equiv. 

1 0 2.28E-05 0.00E+00 0.00 
2 5 2.28E-05 2.68E-06 0.12 
3 10 2.28E-05 5.34E-06 0.23 
4 20 2.28E-05 1.06E-05 0.47 
5 40 2.28E-05 2.10E-05 0.92 
6 60 2.28E-05 3.11E-05 1.37 
7 80 2.28E-05 4.11E-05 1.80 
8 105 2.28E-05 5.32E-05 2.33 
9 125 2.28E-05 6.26E-05 2.75 
10 150 2.28E-05 7.41E-05 3.25 
11 200 2.28E-05 9.63E-05 4.23 
12 250 2.28E-05 1.17E-04 5.15 
13 300 2.28E-05 1.37E-04 6.03 
14 350 2.28E-05 1.57E-04 6.87 
15 400 2.28E-05 1.75E-04 7.67 
16 500 2.28E-05 2.09E-04 9.16 
17 600 2.28E-05 2.40E-04 10.52 
18 700 2.28E-05 2.68E-04 11.78 
19 900 2.28E-05 3.19E-04 14.00 
20 1100 2.28E-05 3.63E-04 15.91 
21 1500 2.28E-05 4.33E-04 19.02 

 

 
Figure 14. UV-Vis spectra of 3 titrated with HSO4

– in 10% DMSO/CHCl3. 
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Figure 15. Binding isotherm and Bindfit output for HSO4

– titration with 3. 
 

 

  
Figure 16. MatLab fit of binding isotherm for HSO4

– titration with 3. 
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Tetrabutylammonium perchlorate with 3. A concentrated solution of 3 (2.27 

mg, [R] = 0.285 mM) in 10% DMSO/CHCl3 (10.00 mL) was prepared. A serial dilution 

was then performed with 900 μL of 0.285 mM solution of 3 diluted to 10.00 mL to yield 

the stock solution of 3 ([R] = 25.6 µM). A 2.00 mL solution of TBAClO4 (3.50 mg, [G] = 

5.12 mM) was prepared by solvation with the stock solution of 3. A serial dilution was 

then performed with 700 μL of the 5.12 mM solution of TBAClO4 diluted to 3.00 mL 

with the stock solution of 3 to yield guest solution ([G] = 11.9 mM). The starting volume 

in the cuvette was 2.0 mL. 

 

Table 9. Representative titration data for ClO4
– with 3.   

 Guest (μL) [3] (M) [ClO4
–] (M) Equiv. 

1 0 2.56E-05 0.00E+00 0.00 
2 5 2.56E-05 3.40E-06 0.13 
3 10 2.56E-05 6.79E-06 0.26 
4 20 2.56E-05 1.35E-05 0.53 
5 40 2.56E-05 2.67E-05 1.04 
6 60 2.56E-05 3.96E-05 1.54 
7 80 2.56E-05 5.22E-05 2.04 
8 105 2.56E-05 6.76E-05 2.64 
9 125 2.56E-05 7.96E-05 3.11 
10 150 2.56E-05 9.43E-05 3.68 
11 200 2.56E-05 1.22E-04 4.78 
12 250 2.56E-05 1.49E-04 5.82 
13 300 2.56E-05 1.75E-04 6.82 
14 350 2.56E-05 1.99E-04 7.76 
15 400 2.56E-05 2.22E-04 8.67 
16 500 2.56E-05 2.65E-04 10.35 
17 600 2.56E-05 3.05E-04 11.89 
18 700 2.56E-05 3.41E-04 13.31 
19 900 2.56E-05 4.06E-04 15.82 
20 1100 2.56E-05 4.61E-04 17.98 
21 1500 2.56E-05 5.51E-04 21.50 
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Figure 17. UV-Vis spectra of 3 titrated with ClO4

– in 10% DMSO/CHCl3.  
 
 
 

  
Figure 18. Binding isotherm and Bindfit output for ClO4

– titration with 3. 
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Figure 19. MatLab fit of binding isotherm for ClO4

– titration with 3. 
 

 

Acetonitrile titrations 

Tetrabutylammonium dihydrogenphosphate with 1. A concentrated solution 

of 1 (2.43 mg, [R] = 0.338 mM) in CH3CN (10.00 mL) was prepared. A serial dilution 

was then performed with 600 μL of 0.338 mM solution of 1 diluted to 10.00 mL to yield 

the stock solution of 1 ([R] = 20.3 µM). A 3.00 mL solution of TBAH2PO4 (2.80 mg, [G] 

= 2.75 mM) was prepared by solvation with the stock solution of 1. A serial dilution was 

then performed with 350 μL of the 2.75 mM solution of TBAH2PO4 diluted to 2.00 mL 

with the stock solution of 1 to yield guest solution ([G] = 0.481 mM). The starting 

volume in the cuvette was 2.0 mL. 
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Table 10. Representative titration data for H2PO4
– with 1.   

 Guest (μL) [1] (M) [H2PO4
–] (M) Equiv. 

1 0 2.03E-05 0.00E+00 0.00 
2 5 2.03E-05 1.37E-06 0.07 
3 10 2.03E-05 2.73E-06 0.13 
4 20 2.03E-05 5.44E-06 0.27 
5 40 2.03E-05 1.08E-05 0.53 
6 60 2.03E-05 1.60E-05 0.79 
7 80 2.03E-05 2.10E-05 1.04 
8 100 2.03E-05 2.60E-05 1.28 
9 125 2.03E-05 3.21E-05 1.58 
10 150 2.03E-05 3.80E-05 1.88 
11 200 2.03E-05 4.94E-05 2.44 
12 250 2.03E-05 6.01E-05 2.97 
13 300 2.03E-05 7.04E-05 3.48 
14 350 2.03E-05 8.02E-05 3.96 
15 400 2.03E-05 8.95E-05 4.42 
16 500 2.03E-05 1.07E-04 5.28 
17 600 2.03E-05 1.23E-04 6.07 
18 700 2.03E-05 1.37E-04 6.79 
19 900 2.03E-05 1.63E-04 8.07 
20 1100 2.03E-05 1.86E-04 9.17 
21 1500 2.03E-05 2.22E-04 10.97 

 

  
Figure 20. UV-Vis spectra of 1 titrated with H2PO4

– in CH3CN. 
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Figure 21. Binding isotherm and Bindfit output for H2PO4

–  titration with 1. 
 

 

 

Tetrabutylammonium hydrogensulfate with 1. A concentrated solution of 1 

(2.43 mg, [R] = 0.338 mM) in CH3CN (10.00 mL) was prepared. A serial dilution was 

then performed with 500 μL of 0.338 mM solution of 1 diluted to 10.00 mL to yield the 

stock solution of 1 ([R] = 16.9 µM). A 2.015 mL solution of TBAHSO4 (6.54 mg, [G] = 

9.56 mM) was prepared by solvation with the stock solution of 1. A serial dilution was 

then performed with 1400 μL of the 9.56 mM solution of TBAHSO4 diluted to 3.046 mL 

with the stock solution of 1 to yield guest solution ([G] = 4.39 mM). The starting volume 

in the cuvette was 2.0 mL. 
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Table 11. Representative titration data for HSO4
– with 1.   

 Guest (μL) [1] (M) [HSO4
–] (M) Equiv. 

1 0 1.69E-05 0.00E+00 0.00 
2 5 1.69E-05 1.25E-05 0.74 
3 10 1.69E-05 2.50E-05 1.48 
4 20 1.69E-05 4.97E-05 2.94 
5 40 1.69E-05 9.82E-05 5.82 
6 60 1.69E-05 1.46E-04 8.63 
7 80 1.69E-05 1.92E-04 11.38 
8 100 1.69E-05 2.38E-04 14.07 
9 125 1.69E-05 2.93E-04 17.36 
10 150 1.69E-05 3.47E-04 20.56 
11 200 1.69E-05 4.51E-04 26.71 
12 250 1.69E-05 5.49E-04 32.55 
13 300 1.69E-05 6.43E-04 38.11 
14 350 1.69E-05 7.32E-04 43.40 
15 400 1.69E-05 8.18E-04 48.44 
16 500 1.69E-05 9.77E-04 57.86 
17 600 1.69E-05 1.12E-03 66.48 
18 700 1.69E-05 1.26E-03 74.40 
19 900 1.69E-05 1.49E-03 88.43 
20 1100 1.69E-05 1.70E-03 100.50 
21 1500 1.69E-05 2.03E-03 120.18 
22 1900 1.69E-05 2.29E-03 135.54 
23 2300 1.69E-05 2.50E-03 147.87 

 

 
Figure 22. UV-Vis spectra of 1 titrated with HSO4

– in CH3CN.  
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Figure 23. Binding isotherm and Bindfit output for HSO4

–  titration with 1. 
 

 

Tetrabutylammonium perchlorate with 1. A concentrated solution of 1 (2.43 

mg, [R] = 0.338 mM) in CH3CN (10.00 mL) was prepared. A serial dilution was then 

performed with 300 μL of 0.338 mM solution of 1 diluted to 10.00 mL to yield the stock 

solution of 1 ([R] = 10.1 µM). A 2.00 mL solution of TBAClO4 (6.53 mg, [G] = 9.55 

mM) was prepared by solvation with the stock solution of 1. A serial dilution was then 

performed with 1300 μL of the 9.55 mM solution of TBAClO4 diluted to 3.00 mL with 

the stock solution of 1 to yield guest solution ([G] = 4.14 mM). The starting volume in 

the cuvette was 2.0 mL. 
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Table 12. Representative titration data for ClO4
– with 1.   

 Guest (μL) [1] (M) [ClO4
–] (M) Equiv. 

1 0 1.01E-05 0.00E+00 0.00 
2 5 1.01E-05 1.18E-05 1.16 
3 10 1.01E-05 2.35E-05 2.32 
4 20 1.01E-05 4.68E-05 4.62 
5 40 1.01E-05 9.25E-05 9.13 
6 60 1.01E-05 1.37E-04 13.55 
7 80 1.01E-05 1.81E-04 17.86 
8 100 1.01E-05 2.24E-04 22.09 
9 125 1.01E-05 2.76E-04 27.24 
10 150 1.01E-05 3.27E-04 32.26 
11 200 1.01E-05 4.24E-04 41.91 
12 250 1.01E-05 5.17E-04 51.08 
13 300 1.01E-05 6.06E-04 59.80 
14 350 1.01E-05 6.90E-04 68.11 
15 400 1.01E-05 7.70E-04 76.02 
16 500 1.01E-05 9.20E-04 90.81 
17 600 1.01E-05 1.06E-03 104.33 
18 700 1.01E-05 1.18E-03 116.75 
19 900 1.01E-05 1.41E-03 138.78 
20 1100 1.01E-05 1.60E-03 157.72 
21 1500 1.01E-05 1.91E-03 188.60 

 

  
Figure 24. UV-Vis spectra of 1 titrated with ClO4

– in CH3CN.  
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Figure 25. Binding isotherm ClO4

–  titration with 1. The change in absorbance is 
negligible. Fitting the data across a series of titrations with ClO4

– in CH3CN resulted in 
an error for Ka value. 

 

 

 

1H NMR titrations  

Tetrabutylammonium dihydrogenphosphate with 1. A concentrated solution of 

1 (2.09 mg, [R] = 0.968 mM) in 10% d6-DMSO/CDCl3 (3.00 mL) was prepared to yield 

the stock solution of 1. This solution (2.34 mL) was used in the dilution of TBAH2PO4 

guest solution (12.84 mg, [G] = 16.2 mM). The remaining stock solution (0.600 mL) was 

used as the starting volume in the NMR tube.  
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Table 13. Representative titration data for H2PO4
– with 1.   

 Guest (μL) [1] (M) [H2PO4
–] (M) Equiv. Hc  

δ (ppm) 

Hd  
δ 

(ppm) 

Ha  
δ 

(ppm) 

Hb  
δ 

(ppm) 
1 0 9.68E-04 0.00E+00 0.00 8.635 8.592 8.024 7.714 
2 5 9.68E-04 1.34E-04 0.14 8.829 8.575 8.125 7.819 
3 10 9.68E-04 2.65E-04 0.27 9.140 8.551 8.274 7.993 
4 15 9.68E-04 3.94E-04 0.41 9.444 8.529 8.409 8.152 
5 20 9.68E-04 5.21E-04 0.54 9.705 8.510 8.484 8.307 
6 25 9.68E-04 6.47E-04 0.67 9.927 8.496 8.626 8.419 
7 30 9.68E-04 7.70E-04 0.80 10.099 8.483 8.693 8.517 
8 35 9.68E-04 8.91E-04 0.92 10.215 8.472 8.733 8.581 
9 40 9.68E-04 1.01E-03 1.04 10.317 8.464 8.773 8.642 
10 50 9.68E-04 1.24E-03 1.28 10.455 8.453 8.824 8.708 
11 60 9.68E-04 1.47E-03 1.52 10.558 8.446 8.851 8.774 
12 80 9.68E-04 1.90E-03 1.97 10.639 8.436 8.877 8.811 
13 100 9.68E-04 2.31E-03 2.39 10.688 8.430 8.890 8.838 
14 150 9.68E-04 3.23E-03 3.34 10.801 8.442 8.902 8.902 
15 200 9.68E-04 4.04E-03 4.18 10.847 8.418 8.905 8.905 
16 300 9.68E-04 5.39E-03 5.57 10.831 8.415 8.904 8.904 
17 400 9.68E-04 6.47E-03 6.68 10.852 8.412 8.904 8.904 
18 600 9.68E-04 8.08E-03 8.35 10.925 8.411 8.906 8.906 

 

 
Figure 26. Binding isotherm for H2PO4

– titration with 1 in 10% d6-DMSO/CDCl3 by 1H 
NMR. 
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Figure 27. MatLab fit to a 2:1 model of the binding isotherm for H2PO4

– titration with 1. 
 

 

 
Figure 28. MatLab fit to a 1:1 model of the binding isotherm for H2PO4

– titration with 1. 
Improper fitting model due to lack of randomness of residuals.  
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Figure 29. 1H NMR spectra of H2PO4

– titration with 1. 
 

 

 

 

Tetrabutylamamonium bromide with 1. A stock solution of 1 (2.19 mg, [R] = 

1.01 mM) in 10% d6-DMSO/CDCl3 (3.00 mL) was prepared. This solution (2.34 mL) 

was used in the dilution of TBABr guest solution (28.1 mg, [G] = 37.3 mM). The 

remaining stock solution (0.600 mL) was used as the starting volume in the NMR tube.  

 

 

 

 

6.26.46.66.87.07.27.47.67.88.08.28.48.68.89.09.29.49.69.810.010.210.410.610.811.011.21.4
δ / ppm
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Table 14. Representative titration data for Br– with 1.   

 Guest (μL) [1] (M) [Br–] (M) Equiv. Hc  
δ (ppm) 

Hd  
δ 

(ppm) 

Hb  
δ (ppm) 

Ha  
δ (ppm) 

1 0 1.01E-03 0.00E+00 0.00 8.628 8.596 8.018 7.714 
2 5 1.01E-03 3.08E-04 0.30 8.657 8.592 8.056 7.717 
3 10 1.01E-03 6.12E-04 0.60 8.681 8.589 8.089 7.717 
4 15 1.01E-03 9.10E-04 0.90 8.701 8.584 8.116 7.718 
5 20 1.01E-03 1.20E-03 1.19 8.723 8.583 8.145 7.719 
6 25 1.01E-03 1.49E-03 1.47 8.744 8.580 8.174 7.720 
7 30 1.01E-03 1.78E-03 1.75 8.763 8.578 8.198 7.721 
8 35 1.01E-03 2.06E-03 2.03 8.780 8.575 8.220 7.722 
9 40 1.01E-03 2.33E-03 2.30 8.795 8.573 8.240 7.223 
10 50 1.01E-03 2.87E-03 2.83 8.821 8.569 8.276 7.726 
11 60 1.01E-03 3.39E-03 3.34 8.845 8.566 8.308 7.728 
12 80 1.01E-03 4.39E-03 4.33 8.885 8.561 8.363 7.731 
13 100 1.01E-03 5.33E-03 5.26 8.920 8.559 8.411 7.733 
14 150 1.01E-03 7.46E-03 7.36 8.985 8.550 8.506 7.739 
15 200 1.01E-03 9.33E-03 9.20 9.031 8.546 8.565 7.743 
16 300 1.01E-03 1.24E-02 12.26 9.094 8.538 8.655 7.747 
17 400 1.01E-03 1.49E-02 14.71 9.123 8.535 8.682 7.751 
18 600 1.01E-03 1.87E-02 18.39 9.160 8.532 8.722 7.756 

 

 
Figure 30. Binding isotherm for Br– titration with 1 in 10% d6-DMSO/CDCl3 by 1H 
NMR.  
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Figure 31. MatLab fit of binding isotherm for Br– titration with 1. 
 
 

 
Figure 32. 1H NMR spectra of Br– titration with 1. 

 

 

6.6.57.07.58.08.59.09.50.0
δ / ppm
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Job’s Plot Analysis 

 
Figure 33. Binding isotherm for H2PO4

– titration with 2 in 10% DMSO/CHCl3 by UV-
Vis.  
 
 

 
Figure 34. Binding isotherm for ClO4

– titration with 2 in 10% DMSO/CHCl3 by UV-Vis. 
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Figure 35. Binding isotherm for H2PO4

– titration with 3 in 10% DMSO/CHCl3 by UV-
Vis. 
 
 
 

 
Figure 36. Binding isotherm for ClO4

– titration with 3 in 10% DMSO/CHCl3 by UV-Vis. 
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Computations  

 Computed Geometries 

 
Figure 37. Optimized hosts with H2PO4

–.  
 

 

Atomic Coordinates 

[3,5-pyridine core•••H2PO4–] 
------------------------------------------------------------------------------ 
 Using  Gaussian 09:  AM64L-G09RevD.01 24-Apr-2013 
===============================================================
=============== 
 # pbepbe/6-31G*/auto gfprint gfinput scf=(direct,tight,maxcycle=300,xqc) 
 opt=(maxcycle=250) freq=noraman iop(1/8=18) Temperature=298.15 
 #N Geom=AllCheck Guess=TCheck SCRF=Check Test GenChk RPBEPBE/6-
31G(d)/Auto 
 Freq 
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------------------------------------------------------------------------------ 
 Pointgroup= C1   Stoichiometry= C45H47N5O8P(1-)   C1[X(C45H47N5O8P)]  
#Atoms= 106 
 Charge = -1 Multiplicity = 1 
------------------------------------------------------------------------------ 
 SCF Energy= -2956.88311529 Predicted Change= -4.813685D-08 
===============================================================
=============== 
 Optimization completed.            {Found        1        times} 
 Item      Max Val.    Criteria    Pass?      RMS Val.    Criteria    Pass? 
 Force      0.00001 ||  0.00045   [ YES ]      0.00000 ||  0.00030   [ YES ] 
 Displ      0.00349 ||  0.00180   [ NO ]       0.00349 ||  0.00180   [ YES ] 
------------------------------------------------------------------------------ 
      Atomic      Coordinates (Angstroms) 
       Type   X       Y       Z 
------------------------------------------------------------------------------ 
       C        -1.612533      -5.410922      -0.181670 
       H        -2.566112      -5.953815      -0.156234 
       N        -0.495643      -6.155740      -0.151178 
       C         0.679849      -5.508856      -0.162129 
       H         1.583435      -6.130829      -0.122005 
       C         0.811234      -4.093871      -0.218566 
       C         2.101653      -3.501664      -0.195091 
       C         3.247164      -3.052594      -0.149496 
       C         4.613580      -2.665090      -0.137395 
       C        -0.372017      -3.328524      -0.276966 
       H        -0.345049      -2.236162      -0.342888 
       C        -1.617575      -3.992137      -0.240195 
       C        -2.840331      -3.271509      -0.233372 
       C        -3.911540      -2.667467      -0.191991 
       C        -5.161960      -1.999071      -0.133954 
       C         5.581468      -3.676327      -0.353223 
       H         5.200721      -4.692832      -0.501453 
       C         6.959311      -3.421847      -0.393729 
       C         7.954187      -4.572629      -0.644049 
       C         7.795025      -5.646808       0.460433 
       H         6.770240      -6.054429       0.487184 
       H         8.012555      -5.221717       1.455813 
       H         8.489873      -6.489346       0.284975 
       C         9.418936      -4.089212      -0.635589 
       H        10.094067      -4.944633      -0.816442 
       H         9.696482      -3.642240       0.335231 
       H         9.607640      -3.340722      -1.425101 
       C         7.665382      -5.214344      -2.023913 
       H         7.791326      -4.475576      -2.834496 
       H         6.634580      -5.602855      -2.082765 
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       H         8.356952      -6.056615      -2.212813 
       C         7.350908      -2.081027      -0.203003 
       H         8.411377      -1.811036      -0.222155 
       C         6.430314      -1.054093       0.021939 
       H         6.767281      -0.027212       0.157155 
       C         5.040889      -1.310476       0.067438 
       N         4.089439      -0.325649       0.323405 
       H         3.122021      -0.635460       0.503318 
       C         4.328251       1.065486       0.354210 
       N         3.209284       1.765494       0.755166 
       H         2.370678       1.201718       1.015061 
       C         3.077214       3.162124       0.853741 
       C        -5.256548      -0.567917      -0.193065 
       N        -4.081113       0.177091      -0.286527 
       H        -3.190826      -0.339052      -0.193582 
       C        -3.988065       1.558060      -0.538910 
       N        -2.665086       1.970625      -0.601011 
       H        -1.941831       1.219079      -0.531238 
       C        -2.193266       3.251561      -0.957589 
       C        -6.545576       0.004948      -0.144063 
       H        -6.629625       1.089652      -0.200926 
       C        -7.686851      -0.796020      -0.033343 
       H        -8.655690      -0.288509       0.002876 
       C        -7.623073      -2.202238       0.037613 
       C        -8.866921      -3.102935       0.172165 
       C        -8.766520      -3.930796       1.477611 
       H        -8.723484      -3.269164       2.360199 
       H        -7.862705      -4.563227       1.489323 
       H        -9.645215      -4.593951       1.584934 
       C        -8.942273      -4.067634      -1.037454 
       H        -9.031461      -3.505175      -1.983170 
       H        -9.819828      -4.735032      -0.948145 
       H        -8.042243      -4.701692      -1.108452 
       C       -10.175057      -2.287059       0.219546 
       H       -11.037179      -2.970227       0.319721 
       H       -10.321823      -1.695071      -0.700922 
       H       -10.193818      -1.594967       1.079716 
       C        -6.341758      -2.770583      -0.017648 
       H        -6.213701      -3.857568       0.027232 
       O        -4.966428       2.306249      -0.675603 
       O         5.417098       1.578982       0.053375 
       C         4.066887       4.089733       0.446980 
       H         5.013085       3.715907       0.055615 
       C         3.824478       5.461775       0.546657 
       H         4.585194       6.182134       0.227374 
       C         2.604204       5.950412       1.048324 
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       O         2.464983       7.328458       1.069793 
       C         1.206608       7.834239       1.501135 
       H         0.380591       7.501192       0.842324 
       H         1.290484       8.931187       1.450547 
       H         0.977629       7.537048       2.543995 
       C         1.624559       5.035873       1.469671 
       H         0.659049       5.373703       1.854023 
       C         1.863215       3.659203       1.373345 
       H         1.081142       2.959259       1.689764 
       C        -0.814493       3.376467      -1.223864 
       H        -0.173225       2.490023      -1.168022 
       C        -0.242975       4.613335      -1.545863 
       H         0.835345       4.666618      -1.712263 
       C        -1.052527       5.760244      -1.609754 
       O        -0.598061       7.033082      -1.899730 
       C         0.765705       7.151049      -2.298795 
       H         0.904602       8.207225      -2.578000 
       H         0.989311       6.509375      -3.173607 
       H         1.464601       6.899345      -1.478794 
       C        -2.431247       5.641297      -1.354290 
       H        -3.052950       6.540768      -1.413887 
       C        -3.002680       4.409057      -1.029067 
       H        -4.072072       4.321373      -0.836066 
       P        -0.258074      -0.029645       1.314522 
       O         1.263926      -0.124987       1.315416 
       O        -0.650355       1.430063       2.006359 
       H        -1.504242       1.730905       1.625983 
       O        -0.836296      -1.153666       2.380852 
       H        -0.080810      -1.406154       2.950721 
       O        -1.082975      -0.181507       0.030400 
------------------------------------------------------------------------------ 
 Statistical Thermodynamic Analysis 
 Temperature= 298.150 Kelvin       Pressure= 1.00000 Atm 
===============================================================
=============== 
 SCF Energy=     -2956.88311529 Predicted Change= -4.813685D-08 
 Zero-point correction (ZPE)=      -2956.0544  0.82871 
 Internal Energy (U)=       -2955.9943  0.88874 
 Enthalpy (H)=       -2955.9934  0.88969 
 Gibbs Free Energy (G)=     -2956.1557  0.72740 
------------------------------------------------------------------------------ 
 Frequencies --      7.1336                11.5027                14.1963 
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[2,6-pyridine core•••H2PO4–] 

------------------------------------------------------------------------------ 
 Using  Gaussian 09:  AM64L-G09RevD.01 24-Apr-2013 
===============================================================
=============== 
 # pbepbe/6-31G*/auto gfprint gfinput scf=(direct,tight,maxcycle=300,xqc) 
 opt=(maxcycle=250) freq=noraman iop(1/8=18) Temperature=298.15 
 #N Geom=AllCheck Guess=TCheck SCRF=Check Test GenChk RPBEPBE/6-
31G(d)/Auto 
 Freq 
------------------------------------------------------------------------------ 
 Pointgroup= C1   Stoichiometry= C45H47N5O8P(1-)   C1[X(C45H47N5O8P)]  
#Atoms= 106 
 Charge = -1 Multiplicity = 1 
------------------------------------------------------------------------------ 
 SCF Energy= -2956.88200469 Predicted Change= -1.501878D-08 
===============================================================
=============== 
 Optimization completed.            {Found        1        times} 
 Item      Max Val.    Criteria    Pass?      RMS Val.    Criteria    Pass? 
 Force      0.00001 ||  0.00045   [ YES ]      0.00000 ||  0.00030   [ YES ] 
 Displ      0.00273 ||  0.00180   [ NO ]       0.00273 ||  0.00180   [ YES ] 
------------------------------------------------------------------------------ 
      Atomic      Coordinates (Angstroms) 
       Type   X       Y       Z 
------------------------------------------------------------------------------ 
       C        -1.706461      -5.136709       1.603766 
       H        -2.696919      -5.511445       1.875549 
       C        -0.537503      -5.807289       1.974989 
       H        -0.594661      -6.740166       2.546644 
       C         0.703869      -5.270018       1.629304 
       H         1.640987      -5.752606       1.919850 
       C         0.743454      -4.059550       0.889069 
       C         1.998544      -3.488488       0.543268 
       C         3.136160      -3.066443       0.331432 
       C         4.495849      -2.742613       0.096918 
       N        -0.390374      -3.421779       0.496252 
       C        -1.593640      -3.932064       0.866400 
       C        -2.764021      -3.212812       0.492536 
       C        -3.816686      -2.629002       0.237634 
       C        -5.064612      -2.029358      -0.071292 
       C         5.421488      -3.820124       0.178750 
       H         5.000580      -4.800216       0.419251 
       C         6.790618      -3.665538      -0.041789 
       C         7.796606      -4.829113       0.027879 
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       C         7.124415      -6.164187       0.406469 
       H         6.361942      -6.462160      -0.334427 
       H         6.638986      -6.109919       1.396775 
       H         7.882861      -6.966264       0.447211 
       C         8.879501      -4.516326       1.090760 
       H         9.622551      -5.334189       1.137487 
       H         8.426641      -4.403335       2.091147 
       H         9.420686      -3.582712       0.860761 
       C         8.475211      -5.003331      -1.353833 
       H         8.990204      -4.081055      -1.672483 
       H         7.729028      -5.254735      -2.127554 
       H         9.225135      -5.815698      -1.318944 
       C         7.225191      -2.354642      -0.352550 
       H         8.289367      -2.167254      -0.541565 
       C         6.358115      -1.269474      -0.432305 
       H         6.728857      -0.272188      -0.665604 
       C         4.963600      -1.419361      -0.206873 
       N         4.068753      -0.363154      -0.270241 
       H         3.061308      -0.556751      -0.100005 
       C         4.397587       0.995745      -0.502079 
       N         3.269302       1.782244      -0.534303 
       H         2.357316       1.294163      -0.354147 
       C         3.219410       3.175123      -0.703523 
       C        -5.257971      -0.604744      -0.088128 
       N        -4.188512       0.233806       0.193531 
       H        -3.246568      -0.191174       0.313249 
       C        -4.255118       1.636028       0.378426 
       N        -3.012067       2.154747       0.669259 
       H        -2.221204       1.463900       0.712552 
       C        -2.681382       3.502021       0.894448 
       C        -6.557569      -0.136984      -0.398981 
       H        -6.722384       0.939852      -0.406912 
       C        -7.601169      -1.021928      -0.677331 
       H        -8.577941      -0.587674      -0.912860 
       C        -7.436252      -2.423261      -0.666980 
       C        -8.572508      -3.416539      -0.981497 
       C        -9.904365      -2.699602      -1.283189 
       H        -9.820141      -2.034834      -2.160654 
       H       -10.246774      -2.094852      -0.425151 
       H       -10.688426      -3.446091      -1.502511 
       C        -8.794159      -4.355927       0.229917 
       H        -9.083750      -3.780174       1.126208 
       H        -7.880961      -4.923746       0.477288 
       H        -9.596865      -5.085300       0.012929 
       C        -8.189849      -4.264784      -2.219777 
       H        -7.251803      -4.821915      -2.055875 
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       H        -8.047049      -3.622618      -3.106262 
       H        -8.984755      -4.999126      -2.448776 
       C        -6.152898      -2.890398      -0.354789 
       H        -5.945787      -3.965938      -0.326458 
       O        -5.302351       2.296041       0.284955 
       O         5.557724       1.410077      -0.659764 
       C         4.339988       4.029221      -0.647809 
       H         5.329381       3.594271      -0.503972 
       C         4.184095       5.419488      -0.775654 
       H         5.075120       6.051434      -0.718556 
       C         2.909897       5.978352      -0.962241 
       O         2.642118       7.335197      -1.072028 
       C         3.754795       8.210062      -0.985519 
       H         4.490267       8.025772      -1.794668 
       H         4.276189       8.123401      -0.010529 
       H         3.350270       9.229020      -1.090597 
       C         1.791594       5.128164      -1.045727 
       H         0.801013       5.563961      -1.208143 
       C         1.942135       3.748995      -0.918650 
       H         1.066019       3.095753      -1.001693 
       C        -3.608752       4.571234       0.881263 
       H        -4.660956       4.355477       0.694114 
       C        -3.172046       5.880130       1.097750 
       H        -3.885573       6.710788       1.083156 
       C        -1.814437       6.166501       1.331828 
       O        -1.499495       7.497845       1.523111 
       C        -0.123557       7.809797       1.709307 
       H         0.294678       7.309477       2.605661 
       H        -0.081835       8.900824       1.855201 
       H         0.492165       7.537117       0.829623 
       C        -0.888465       5.108767       1.356664 
       H         0.176813       5.287094       1.520752 
       C        -1.323214       3.795170       1.139950 
       H        -0.590837       2.980450       1.154389 
       P        -0.134276      -0.034376      -0.390360 
       O        -1.337900       0.024849       0.568570 
       O        -0.273110       1.175560      -1.523338 
       H        -1.211914       1.235258      -1.795239 
       O        -0.252913      -1.350661      -1.342679 
       H        -0.323174      -2.142592      -0.719852 
       O         1.266350       0.120867       0.207207 
------------------------------------------------------------------------------ 
 Statistical Thermodynamic Analysis 
 Temperature= 298.150 Kelvin       Pressure= 1.00000 Atm 
===============================================================
=============== 
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 SCF Energy=     -2956.88200469 Predicted Change= -1.501878D-08 
 Zero-point correction (ZPE)=      -2956.0539  0.82808 
 Internal Energy (U)=       -2955.9944  0.88754 
 Enthalpy (H)=       -2955.9935  0.88849 
 Gibbs Free Energy (G)=     -2956.1544  0.72752 
------------------------------------------------------------------------------ 
 Frequencies --      6.4289                 9.4121                15.7228 
 
 
 
 
 
 

[Bipyridine core•••H2PO4–] 
------------------------------------------------------------------------------ 
 Using  Gaussian 09:  AM64L-G09RevD.01 24-Apr-2013 
===============================================================
=============== 
 # pbepbe/6-31G*/auto gfprint gfinput scf=(direct,tight,maxcycle=300,xqc) 
 opt=(maxcycle=250) freq=noraman iop(1/8=18) Temperature=298.15 
 #N Geom=AllCheck Guess=TCheck SCRF=Check Test GenChk RPBEPBE/6-
31G(d)/Auto 
 Freq 
------------------------------------------------------------------------------ 
 Pointgroup= C1   Stoichiometry= C50H50N6O8P(1-)   C1[X(C50H50N6O8P)]  
#Atoms= 115 
 Charge = -1 Multiplicity = 1 
------------------------------------------------------------------------------ 
 SCF Energy= -3203.67970897 Predicted Change= -7.545578D-09 
===============================================================
=============== 
 Optimization completed.            {Found        1        times} 
 Item      Max Val.    Criteria    Pass?      RMS Val.    Criteria    Pass? 
 Force      0.00001 ||  0.00045   [ YES ]      0.00000 ||  0.00030   [ YES ] 
 Displ      0.00372 ||  0.00180   [ NO ]       0.00372 ||  0.00180   [ YES ] 
------------------------------------------------------------------------------ 
      Atomic      Coordinates (Angstroms) 
       Type   X       Y       Z 
------------------------------------------------------------------------------ 
       C        -3.700700      -5.349797       0.721841 
       H        -4.744192      -5.268573       1.038436 
       C        -2.997836      -6.548607       0.813905 
       H        -3.484075      -7.445823       1.212061 
       C        -1.654051      -6.588267       0.417491 
       H        -1.064554      -7.503406       0.523296 
       C        -1.061885      -5.413176      -0.087699 
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       N        -1.736095      -4.249319      -0.186800 
       C        -3.031037      -4.197984       0.229646 
       C        -3.717651      -2.955350       0.178060 
       C        -4.404765      -1.936164       0.266766 
       C        -5.282912      -0.833413       0.408433 
       C        -4.830782       0.472192       0.806147 
       N        -3.477458       0.731139       0.915845 
       H        -2.808921       0.162735       0.352972 
       C        -2.908785       1.799257       1.654076 
       N        -1.553766       1.871297       1.438580 
       H        -1.175895       1.219549       0.710620 
       C        -0.653614       2.811957       1.965552 
       C        -5.826691       1.446887       1.060457 
       H        -5.503342       2.430601       1.400576 
       C        -7.181334       1.163471       0.888355 
       H        -7.894560       1.969732       1.086884 
       C        -7.647279      -0.100299       0.459206 
       C        -9.138316      -0.425342       0.238890 
       C       -10.049437       0.776233       0.562876 
       H        -9.823051       1.645217      -0.079457 
       H        -9.949840       1.092320       1.616115 
       H       -11.105475       0.500197       0.393525 
       C        -9.556587      -1.605930       1.150263 
       H        -8.958352      -2.510267       0.945558 
       H       -10.620661      -1.861962       0.990081 
       H        -9.420030      -1.347875       2.214914 
       C        -9.366981      -0.819114      -1.241691 
       H       -10.429819      -1.069997      -1.418461 
       H        -8.760436      -1.695402      -1.527275 
       H        -9.091861       0.011262      -1.914963 
       C        -6.669849      -1.077150       0.237830 
       H        -6.956464      -2.087641      -0.074091 
       O        -3.569000       2.539036       2.401097 
       C        -0.975466       3.768789       2.956064 
       H        -1.990217       3.799154       3.354530 
       C        -0.001923       4.668860       3.397221 
       H        -0.244089       5.416112       4.160443 
       C         1.302170       4.648012       2.868970 
       O         2.175502       5.597154       3.369471 
       C         3.482104       5.604935       2.810494 
       H         3.463812       5.784423       1.717515 
       H         4.018330       4.653415       2.999113 
       H         4.019084       6.428495       3.307438 
       C         1.632352       3.694943       1.889922 
       H         2.624266       3.654027       1.431796 
       C         0.660120       2.787509       1.456027 



154 

       H         0.922488       2.053276       0.688397 
       C         0.903378      -6.576879      -1.141413 
       H         0.266104      -7.443678      -1.338514 
       C         0.366568      -5.423250      -0.535986 
       N         1.097563      -4.309113      -0.317113 
       C         2.406357      -4.302206      -0.692249 
       C         3.018859      -5.435897      -1.290136 
       H         4.073484      -5.384792      -1.574269 
       C         2.252453      -6.575436      -1.518744 
       H         2.694954      -7.454041      -2.000449 
       C         3.190638      -3.138971      -0.460317 
       C         4.000623      -2.219487      -0.334500 
       C         5.006897      -1.239385      -0.137489 
       C         6.273448      -1.702637       0.299292 
       H         6.371425      -2.782623       0.456737 
       C         7.358914      -0.851689       0.539866 
       C         8.705954      -1.424853       1.024018 
       C         9.237894      -2.446983      -0.011203 
       H         9.410652      -1.962937      -0.988301 
       H         8.524687      -3.273861      -0.168927 
       H        10.193788      -2.885801       0.331348 
       C         8.506543      -2.135657       2.385764 
       H         7.765481      -2.949677       2.313265 
       H         8.147731      -1.424383       3.149858 
       H         9.458790      -2.573144       2.740161 
       C         9.774186      -0.327191       1.206841 
       H         9.469730       0.416988       1.963406 
       H         9.977869       0.206005       0.261697 
       H        10.721321      -0.782579       1.547293 
       C         7.129961       0.523643       0.317177 
       H         7.934616       1.245940       0.487252 
       C         5.903176       1.023151      -0.120801 
       H         5.759650       2.090489      -0.286955 
       C         4.802225       0.165885      -0.371142 
       N         3.579330       0.609072      -0.839988 
       H         2.819197      -0.090621      -0.993566 
       C         3.245460       1.940776      -1.188677 
       N         1.990281       1.998329      -1.747846 
       H         1.460963       1.087334      -1.777869 
       C         1.297880       3.152486      -2.155160 
       O         3.996317       2.915818      -1.005689 
       C        -0.099233       3.041635      -2.315575 
       H        -0.597248       2.097467      -2.060699 
       C        -0.861211       4.132184      -2.753201 
       H        -1.942752       4.009012      -2.853681 
       C        -0.236294       5.359989      -3.032184 
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       O        -0.890612       6.500474      -3.464776 
       C        -2.302806       6.415623      -3.576183 
       H        -2.615958       5.662387      -4.327477 
       H        -2.642357       7.411764      -3.901425 
       H        -2.779472       6.165682      -2.607481 
       C         1.155615       5.476332      -2.866779 
       H         1.628743       6.440250      -3.081757 
       C         1.920477       4.390611      -2.435994 
       H         2.997875       4.487514      -2.296794 
       P        -0.170249      -0.988826      -0.911894 
       O         1.138982      -0.551726      -1.590245 
       O         0.099375      -1.738210       0.522391 
       H         0.498858      -2.636016       0.347560 
       O        -0.802265      -2.168706      -1.854658 
       H        -1.224280      -2.853254      -1.261102 
       O        -1.198578       0.122918      -0.632044 
------------------------------------------------------------------------------ 
 Statistical Thermodynamic Analysis 
 Temperature= 298.150 Kelvin       Pressure= 1.00000 Atm 
===============================================================
=============== 
 SCF Energy=     -3203.67970897 Predicted Change= -7.545578D-09 
 Zero-point correction (ZPE)=      -3202.7835  0.89616 
 Internal Energy (U)=       -3202.7200  0.95961 
 Enthalpy (H)=       -3202.7191  0.96055 
 Gibbs Free Energy (G)=     -3202.8889  0.79077 
------------------------------------------------------------------------------ 
 Frequencies --      4.7093                10.1799                13.3351 
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NMR Spectra 

 
Figure 38. 1H NMR spectra of 6 in CDCl3.  
 

 
Figure 39. 13C NMR spectra of 6 in CDCl3. 
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Figure 40. 1H NMR spectra of 1 in acetone-d6.  
 
 

 
Figure 40. 13C NMR spectra of 1 in acetone-d6/DMSO-d6.  
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Figure 41. HSQC spectra of 1 in acetone-d6/DMSO-d6. 
 

 
Figure 42. 1H NMR spectra of 3 in acetone-d6/DMSO-d6. 
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Figure 43. 13C NMR spectra of 3 in acetone-d6/DMSO-d6. 
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APPENDIX B 

 

SUPPLEMENTARY INFORMATION FOR CHAPTER IV 

 

UV-Vis Spectra 
 
 

 
Figure 1. UV-Vis spectra of receptors 2a-2d in CHCl3.  
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Figure 2. UV-Vis spectra of receptors 3a-3d in CHCl3.  
 

 
Figure 3. UV-Vis spectra of receptors 4a-4d in CHCl3. 
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Figure 4. UV-Vis spectra of receptors 5a-5d in CHCl3. 

 

 

Fluorescence Spectra 

 
Figure 5. Fluorescence emission spectra of receptor 2a CHCl3. 
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Figure 6. Fluorescence emission spectra of receptor 2b CHCl3. 
 

 
Figure 7. Fluorescence emission spectra of receptor 2c CHCl3. 
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Figure 8. Fluorescence emission spectra of receptor 3a CHCl3. 
 

 

Figure 9. Fluorescence emission spectra of receptor 3b CHCl3. 
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Figure 10. Fluorescence emission spectra of receptor 3c CHCl3. 
 

 
Figure 11. Fluorescence emission spectra of receptor 4a CHCl3. 
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Figure 12. Fluorescence emission spectra of receptor 4b CHCl3. 
 

 
Figure 13. Fluorescence emission spectra of receptor 4c CHCl3. 
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NMR Spectra 

 
Figure 14. 1H NMR spectra of 2c in CDCl3. 
 

 
Figure 15. 1H NMR spectra of 5b in DMSO-d6. 
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Figure 16. 1H NMR spectra of 5c in DMSO-d6. 

 

 

 
Figure 17. 1H NMR spectra of 5d in DMSO-d6. 
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APPENDIX D 

 

SUPPLEMENTARY INFORMATION FOR CHAPTER V 

 
Figure 1. Front page of the final project guidelines given to students.  
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Figure 2. Back page of the final project guidelines given to students.  
 
 
 

 
Figure 3. Screenshot of Hydration number Wikipedia page created by a student for this 
project. Screenshot taken March 2018.  
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Figure 4. Screenshot of Coordination cage Wikipedia page created by a student for this 
project. Screenshot taken March 2018.  
 

 

 
Figure 5. Screenshot of Inherent chirality Wikipedia page created by a student for this 
project. Screenshot taken March 2018.  
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Figure 6. Screenshot of Electronic skin Wikipedia page created by a student for this 
project. Screenshot taken March 2019.  
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