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DISSERTATION ABSTRACT

Paul Schale

Doctor of Philosophy

Department of Physics

June 2019

Title: Search for Gravitational Waves from Magnetars During Advanced LIGO’s
Second Observing Run

We explore magnetar activity as a source for gravitational waves, and present

the results of a search for short and intermediate-duration gravitational-wave

signals from four magnetar bursts in Advanced LIGO’s second observing run. We

find no evidence of a signal and set upper limits on the root sum squared of the

total dimensionless strain (hrss) from incoming intermediate-duration gravitational

waves ranging from 1.1× 10−22 at 150 Hz to 4.4× 10−22 at 1550 Hz at 50% detection

efficiency. From the known distance to the magnetar SGR 1806-20 (8.7 kpc) we can

place upper bounds on the isotropic gravitational wave energy of 3.4 × 1044erg at

150 Hz assuming optimal orientation. This represents an improvement of about

a factor of 100 in energy sensitivity from the previous search for such signals,

conducted during Initial LIGO’s sixth science run. The short duration search

yielded upper limits of 2.1× 1044 erg for short white noise bursts, and 2.3× 1047 erg

for 100 ms long ringdowns at 1500 Hz, both at 50% detection efficiency. We also

analyze GW170817, the first detection of gravitational waves from a binary neutron
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star system, and search for a signal following the merger with a novel semi-modeled

approach using principle component analysis.

This dissertation contained previously published co-authored material.
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CHAPTER I

INTRODUCTION

In 1610, the Italian astronomer Galileo Galilei pointed his newly-made

telescope to the sky and changed the world. The telescope was a revolutionary tool,

immediately leading to the discovery of Jovian moons and later countless celestial

objects. Later breakthroughs in telescope technology, like the radio telescope,

opened up new frontiers in physics and allowed for observations that had not

been possible. From radio pulsars to the cosmic microwave background, these

phenomena have been critical to our understanding of how the universe works.

Gravitational waves (GWs) first entered scientific consciousness shortly after

Einstein published his Theory of General Relativity1. Due to the difficulty in

detecting the very faint effects of GWs, they remained a theoretical prediction until

1982. That year, Taylor and Weisberg presented indirect evidence of the emission

of GWs: a binary neutron star system (PSR 1913+16), discovered by Russell Hulse

and Joseph Taylor in 1974, was slowly losing energy at precisely the rate predicted

by Einstein [3]. But direct detection remained out of reach.

The first attempts at directly observing GWs were done with resonant

bar detectors called Weber bars (named for Joseph Weber, the pioneer of the

technique) [4]. When a GW whose frequency matches the resonant frequency of the

bar passes through, the bar will vibrate. If the GW is strong enough, the vibrations

can be measured, allowing detection of GWs. Though Weber himself claimed to

1This discovery was not without complication. After Einstein had convinced the broader
scientific community of the existence of GWs, he began to doubt their existence and attempted
to publish a paper with this conclusion. This resulted in his first experience with American peer
review, and he was eventually convinced that he was in error and never published his attempted
refutation.
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have made a detection, scientists who attempted to replicate the experiment found

no evidence for any signal (see, e.g., [5]).

In 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO)

[6, 7] opened a new era of astronomy with the first detection of gravitational

waves, enabling the use of gravity itself to study the cosmos. For the first time,

the merger of black holes was directly observed. Not only did this directly confirm

the existence of gravitational waves, a key part of Einstein’s theory of gravity, it

allowed precision measurements of the dynamics of strong gravitational fields. In

cosmology, direct observation of binary black hole mergers allow population and

spin measurements, constraining models of galaxy and star formation.

This was followed by the detection of several more binary mergers, including

a binary neutron star (BNS) merger in 2017. This signal was accompanied by a

burst of γ-rays and a long-lived multi-band electromagnetic afterglow [8]. A wealth

of information can be found by studying this light. For example, it shows that

many heavy elements were produced during the merger. These elements cannot

be produced in large quantities by supernovae, and so their natural abundances had

been ascribed BNS mergers. This event, named GW170817, confirmed that theory.

The observation of compact binaries is only the beginning for the new field

of gravitational wave astronomy. Countless processes are theorized to produce

significant GW emission. Some sources, like rotating neutron stars, are known to

produce GWs, but the amount is uncertain. Others, like cosmic strings (topological

defects left over from the early universe) are theoretical objects whose existence is

uncertain.

GW astronomy sets itself apart from electromagnetic astronomy in the

difficulty of detection. For reasons that are not currently, and may never be,
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known the constants of nature dictate that waves in the electromagnetic field

are easy to generate and detect while waves in spacetime are not. Even after

twenty-five years of work, only the brightest sources of gravitational radiation

have become detectable, and this has required achieving a level of sensitivity

considered unthinkable before this project began. Countless advances, from the

extremely stable laser to the advanced seismic isolation system and sophisticated

software analysis pipelines, were required to achieve this result. And the process is

ongoing, with hundreds of scientists currently working to boost the sensitivity of

the detectors in preparation for the third observing run of Advanced LIGO.

Since GW signals are so weak, simply proving the existence of a signal is a

difficult task, and the unique characteristics of each potential source dictate the

ideal way for a search to be conducted. Matched filtering works well to detect well-

modeled signals (like binary black hole mergers), but cannot be used when there is

significant uncertainty in the source’s dynamics (such as supernovae). Sources vary

widely in frequency and timescale, with each signal presenting unique challenges.

Short signals may be easily mistaken for a class of detector noise artifacts known

as glitches, and so require careful data quality control. Longer signals require more

computational resources, and must be careful of narrowband ‘lines’ in the detector

noise spectrum.

Once detected, GWs enable measurements that cannot be made with

electromagnetic observations. Any astronomical body that emits detectable GWs

must be extremely compact, making it appear as a single point to EM observers.

But since GWs are produced by oscillations in the distribution of mass and energy,

those distributions are encoded in the GW signal. While these distributions are

known for black holes, the makeup and structure of neutron stars is still uncertain.
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The burst of GWs from the merger of a BNS system is extremely energetic,

visible by LIGO from distances up to and exceeding 50 Mpc. Neutron stars

are expected to radiate GWs through other mechanisms as well. Since these

mechanisms are predicted to produce much weaker GWs, nearer sources are

required.

This dissertation is primarily concerned with the detection of GWs from

magnetars, neutron stars thought to have an extremely strong magnetic field,

during Advanced LIGO’s second observing run. To that end, Chapter II contains

an overview of Einstein’s Theory of General Relativity, including the propagation

and generation of GWs. Chapter III is concerned with the interaction of those

GWs with matter, the theory of their detection, and the construction of the LIGO

instruments. Chapter IV lays out the current understanding of magnetars, both

as astronomical objects and potential emitters of GWs. Chapter V outlines the

method for the search for GWs from magnetars during LIGO’s second observing

run, the limits of the sensitivity for that search, and the implications for astronomy.

In Chapter VI, we revisit the first binary neutron star merger, GW170817, using

the methods of the previous chapter, and discuss the prospects of, and a search

for, signals following that merger. Finally, Chapter VII contains some concluding

remarks.

Previously published co-authored material is found in chapters III and V.

Previously unpublished co-authored material is found in Chapter VI.
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CHAPTER II

MATHEMATICAL BACKGROUND

Building on Special Relativity, Einstein added one more big idea: the

equivalence principle. Noting that gravitational mass was identical to inertial mass,

he reasoned that acceleration is indistinguishable from the pull of a gravitational

field (neglecting tidal effects). This principle shows the way to unify a theory

of gravitation with Special Relativity: we replace the inertial frames of Special

Relativity with freely falling frames. However, we quickly run into mathematical

trouble, as these reference frames can now accelerate with respect to each other.

Luckily for Einstein, the mathematics needed to deal with this, differential

geometry, had been invented the previous century. Below is an overview of the

concepts needed to understand the basics of General Relativity, with an eye to

gravitational waves (GWs).

2.1. Overview of Differential Geometry

2.1.1. Vectors, Tensors, and One-Forms

A vector is often thought of a set of numbers: a velocity vector is defined

by specifying the components vx, vy, and vz. This notion of a vector is wholly

dependent on a coordinate system, and a change of coordinate system can be

accomplished by defining a new vector v′ = (v′x, v
′
y, v
′
z). However, these are really

the same vector expressed in different coordinate systems. So instead, we can

identify the vector as ~v whose components are only defined once we have specified a

coordinate system. We can then write ~v = vaea, where we sum over all values of a,
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and {~ea} is the set of basis vectors in our chosen coordinate system. Note that, for

a particular choice of a, va is a number, while ~ea is a (unit) vector.

It is easy to see how to find the components in a different coordinate system:

~v = va~ea = v′a~e′a. Thus we can see that the old components va and the new

components v′a are related by a transformation matrix: v′a = Λa
bv
b.

Vectors now have a counterpart, called covectors or one-forms. Covectors

are written with a tilde over them rather than an arrow, the basis covectors are

ω̃a (note the raised index for noting which basis covector), their components are

written with a lowered index, and they transform with the inverse transpose of the

vectors’ transformation matrix: w′b =
(
(Λ−1)T ) a

b wa.y

With this construction, we can see that the product vawa is invariant under a

change of coordinate system:

v′aw′a = Λa
bv
b
(
(Λ−1)T ) c

a wc

=
(
Λ−1)caΛ

a
bv
bwc

= δcbv
bwc

= vawa

(2.1)

Thus covectors can be thought of as functions, invariant of coordinate

transformations, that map vectors into real numbers. Similarly, vectors can be

thought of a functions on covectors. We can combine vectors and covectors into an

object called a tensor, for example T = ~x ⊗ w̃ (⊗ is called the tensor product).

Here, T is a tensor that takes a covector and a vector and returns a number.

Writing this in index notation (T ab = xawb) we can clearly see how the tensor acts
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on the inputs: ~x acts on the input covector, w̃ on the input vector, and the result is

multiplied together.

The notation in this dissertation will be as follows: numbers, whether they

be a single variable x or a component of a vector, covector, or tensor xµ, wµ, or

Tµν , respectively, will be written in normal typeface. Vectors will be bold with

an arrow, ~x, (three vectors will not be bold) covectors bold with a tilde w̃, and

tensors will be bold with no diacritic, T. With Einstein summation notation, any

time the same letter is used twice in a term (e.g. xαwα), it is being summed over.

When that letter is Greek, it sums over four dimensions; when Latin, over only

three (excluding time).

2.1.2. Manifolds, Derivatives, and Curvature

A manifold is a set a points with a sense of points being near each other in

a way that looks like ordinary Euclidean space locally. Globally, the space can be

curved in ways that violate Euclid’s axioms, and connected in unusual ways (such

as the surface of a sphere or torus). On top of the structure of a manifold, we can

impose a definition of infinitesimal distance between nearby points with an object

called the metric, a tensor field denoted g, which may vary on the manifold. At

every point p ∈ M, there is a metric tensor g(p) associated with that point. We

can then use the metric to measure any vector x with L2 = gµνx
µxν .

The metric also defines the correspondence between vectors and covectors.

Thus, the metric gµν and its inverse gµν can be used to lower and raise the index,

respectively. We can write the previous equation as L2 = gµνx
µxν = xνx

ν , where xν

are the components of the covector dual to ~x. In flat Euclidean space, the metric
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is simply the identity matrix, so vectors and covectors are identical and these

equations are equivalent to the Pythagorean Theorem.

Note that a manifold is not required to have a metric (a Newtonian spacetime

manifold is one such example1), but such manifolds are mostly in the interest of

mathematicians. Properties of the metric in general relativity will be discussed in

the next section.

Since manifolds can have complicated global structure, it is not necessarily

possible to find a single mapping that takes the entire manifold into Euclidean

space. For example, no two-dimensional map can accurately depict the surface of

the Earth. For the purposes of general relativity, this is mostly irrelevant outside of

cosmology (regarding the global topology of the universe) and black holes (due to

the singularities, both as a mathematical artifact in some coordinate systems and

the real singularity at the center). Mathematically, the compatibility of different

maps over the same patch gives rise to the concepts of differentiable and smooth

manifolds. The manifolds of general relativity are smooth manifolds, which are

differentiable in the respects that physicists want.

Manifold curvature is apparent in a number of ways, though to discuss this we

must let go of some assumptions used in flat space. First, vectors no longer point

from one location to another; associated with each point we define a vector space

called the tangent vector space. A vector exists in a tangent vector space associated

with a specific point on the manifold. Since we can only compare members of the

same space, vectors can only be compared if they are defined at the same location.

1This is because an invariant spacetime distance cannot be defined. An observer traveling from
one event to another would see no spatial distance between the events, only a time difference. A
different observer would observe the same time difference, but may also see a spatial displacement.
Treated without time, Newtonian space is simply Euclidean 3-space, which is a manifold equipped
with a flat metric.
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A curve can be measured by integrating the infinitesimal length of its tangent

vectors along the the curve. Next, we allow the basis vectors to vary along the

manifold. Now consider the derivative operator. Previously, for some vector field

~x, the derivative taken along the µth direction would simply be ∇µ~x = ~eρ∂µx
ρ.

Just as in three dimensions, this derivative can be easily converted to a directional

derivative. In three dimensions, we have (~y · ~∇)~x. In four dimensions with Einstein

summation notation, this can be written as yµ∇µx
ν . However, in curved space the

unit vectors change, so the derivative can be expanded:

∇µ~x =∇µ

(
xρ~eρ

)
=~eρ∂µx

ρ + xρ∇µ~eρ

(2.2)

By multiplying by ω̃ν and applying some index gymnastics, we can find the

component form, where the covariant derivative is denoted by a semicolon, and the

partial derivative by a comma:

xν;µ =ω̃ν~eρx
ρ
,µ + ω̃νxρ∇µ~eρ

=δνρx
ρ
,µ +

(
ω̃ν∇µ~eρ

)
xρ

=xν,µ + Γν ρµx
ρ

(2.3)

where Γνρµ = ω̃ν∇µeρ, and are called Christoffel symbols, and their presence

in the equation accounts for the changes in the basis vectors across the manifold.

This can be visualized with the surface of the earth, taking the coordinates to be

latitude and longitude: stand at a point north of the equator, face west, and walk

in a straight line. Eventually, you will find that you are no longer traveling due
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west, but south of west; the unit vector indicating which direction “west” is has

changed along your path.

Following the same reasoning, we can see that the covariant derivative of a

covector will be similar:

wν;µ = ∂µwν − Γρ νµwρ (2.4)

And this is easily generalized to the covariant derivative of tensors: for each

vector (up) index, we add the proper Christoffel; for each covector (down) index, we

subtract the proper Christoffel. For example:

T µνσ;ρ = T µνσ,ρ + ΓµγρT
γν
σ + Γν γρT

µγ
σ − Γγ σρT

µν
γ (2.5)

In this dissertation, the semicolon will be used for this covariant derivative,

and a comma for the ordinary partial derivative.

Though the metric does not explicitly appear in the definition, the Christoffel

symbols are in fact derived from the metric: recall that the metric defines

correspondence between vectors and one-forms. The set of basis vectors (or the

basis one-forms) may be chosen arbitrarily (as long as they span the whole space),

but the metric will then define the corresponding basis one-forms (or basis vectors).

With vectors only defined locally, we have lost the usual sense of how

to define a straight line. However, with this covariant derivative, we can

define straight lines using the idea of parallel transport. First, let the curve S,

parameterized by λ, be defined as a mapping from R into M, which is then

mapped into Rn by some mapping ψ. Thus, at any particular value of λ, we have a

corresponding p(λ) ∈ M, and ξµ(λ) ∈ Rn. The tangent vector to the curve is then
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uµ = dξµ

dλ
. Now suppose there is another vector defined at every point along this

curve, yµ. This vector is said to be parallel transported along the curve if and only

if it does not change as you travel along the curve:

uν∇νy
µ = 0 (2.6)

In words, the left side of the equation asks how the vector ~y changes as one

moves in the direction of the vector ~u – the directional derivative along the curve.

This concept can be used to define a straight line (remember, we no longer have the

notion of a vector traveling from one point to another). This is done by demanding

that the tangent vector parallel transport itself:

uν∇νu
µ = 0 (2.7)

By equation 2.3, we can expand this expression:

0 =uν∂νu
µ + uνΓµνρu

ρ

=
du

dλ
+ Γµνρu

ρuν

=
d2ξµ

dλ2
+ Γµνρ

dξν

dλ

dξρ

dλ

(2.8)

The result is four second order differential equations. Note that, in flat space,

all Christoffel symbols are zero and the equations reduce to d2ξµ

dλ2
= 0, or straight

lines in the Euclidean sense.
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Another important property of vectors is commutativity, uµ∇µy
ν = yµ∇µu

ν .2

This property is so named because a vector defines a directional derivative; thus the

action of uµ on yν is uµ∇µy
ν .

To find an explicit formula for the Christoffel symbols in terms of the metric,

we demand that vectors not change length as they are parallel transported along a

curve. Thus:

0 =uα∇α

(
gµνx

µxν
)

=uαxµxν∇αgµν + 2uαxµgµν∇αx
ν

(2.9)

Because the vector is being parallel transported, uα∇αx
ν = 0. Since the

equation is true for all curves, we must have ∇αgµν = 0. This can be expanded:

0 =∇αgµν

=gµν,α + Γσµαgνσ + Γσναgµσ

(2.10)

After an algebra trick, we have:

Γσµν = gσα
(
gµν,α + gµα,ν − gαν,µ

)
(2.11)

To connect this to physics, we go back to Newton’s first law, which requires

that an object that experiences no forces cannot change its motion. Relativity

demands the same, but in four dimensions. Since time is already included in the

definition of the path followed, we no longer have to specify anything about the

2This property only holds in a coordinate basis, where the unit vectors can be expressed as the
partial derivative of a coordinate, ~eµ = ∂µ. All bases in this dissertation will be coordinate bases.

12



velocity. Instead, it suffices to insist that objects in free-fall follow straight lines:

the geodesics described above. And, as we shall see later in this chapter, the

concept of “gravity” that Newton studied is simply a consequence of the curvature

of spacetime. The path of a free-falling object, which looks like a parabola in three

dimensions, is actually a straight line on the four dimensional spacetime manifold.

2.2. Minkowski Spacetime

Before discussing how this curvature manifests itself in general relativity, we

must take a step back and discuss how flat space operates. Newtonian mechanics

held that space and time were separate, and thus the universe could be thought of

as a set of manifolds with three spacial dimensions, with the manifolds labeled by

time. Partly due to the apparent incompatibility of Maxwell’s electromagnetism

with Galilean relativity applied to such a spacial structure, Einstein was led

to unify the time and space dimension into a single manifold. To preserve the

invariance of electromagnetic laws, and particularly the speed of light, upon

transformation to any inertial reference frame, the manifold is equipped with a

metric of signature (−1, 1, 1, 1) (this is a free choice of sign; some literature flips all

of the signs). In the absence of any curvature, this is called Minkowski Spacetime.

Setting the speed of light set to 1, the metric for Minkowski Spacetime can be

represented with the matrix:

ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(2.12)
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We can see that this metric recovers the familiar spacetime interval from

special relativity:

ηµνx
µxν = −(x0)2 + (x1)2 + (x2)2 + (x3)2 (2.13)

The laws of electromagnetism are much easier to express in 4 dimensions. For

example, the conservation of charge in three dimensions is ~∇ · ~J + dρ
dt

= 0. In 4

dimensions, we instead use the current density as J = (ρ, Ji), and the equation

becomes ∇ · J = ∇µJ
µ = 0. Likewise we define a four-potential A = (V,Ai). Gauge

transformations are then Aµ → Aµ + ξ,µ.

The metric of special relativity, shown above, corresponds to a flat manifold.

However, the equivalence of gravitational mass and inertial mass led to the idea

that gravity is not a force, but a manifestation of the geometry of the spacetime

manifold. A simple explanation of the interaction is this: “Space acts on matter,

telling it how to move. In turn, matter reacts back on space, telling it how to

curve.” [9, p. 5]

Though globally spacetime is curved, the structure of a manifold requires

that it looks flat locally. Thus, it is always possible to find a coordinate system

at any point p such that gµν(p) = ηµν . It is only when we inquire about the

relationship between two separated objects that the geometry of spacetime enters

our calculations.

2.2.1. Riemann Curvature Tensor

As a starting point, the Christoffel symbols defined above look like a good

way to quantify curvature. Unfortunately, though they look like tensors, they are

not tensors because they do not transform as tensors—they identify how the partial
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derivatives in a particular coordinate system differ from the covariant derivative,

so they must be identified with a particular coordinate system. On the other hand,

vectors, scalars, etc transform properly by definition, so any equation between such

objects that involves curvature will be suitable.

We define the Riemann Curvature Tensor through its action on vectors and

covectors. The following equations are equivalent:

(∇α∇β −∇β∇α)wγ = R δ
αβγ wδ

(∇α∇β −∇β∇α)xγ = R γ
αβ δx

δ

(2.14)

At first glance, this does not seem to be a tensor at all—it’s a second order

differential operator, but tensors are supposed to be linear machines. Surprisingly,

the action of the Riemann tensor on a covector field only depends on the value

of the covector at the point being evaluated [10, p.36], and thus is a tensor. This

comes from the fact that covariant derivatives, acting on scalars, are simply partial

derivatives, and thus commute.3

One place the Riemann tensor shows up is in geodesic deviation. In the

presence of curvature, the distance between initially parallel geodesics can change.

This effect, which is also known as tidal acceleration, can be modeled in the

following way:

Consider a family of geodesics P(λ, n), each labeled by n and parameterized

by the same parameter λ, which are parallel at λ = 0. Now, consider one such

geodesic and label the tangent vector uα. Then, since it’s a geodesic, we know:

3The proof from [10] involves multiplying a vector field by a smooth scalar field whose value is
1 at the point in question and arbitrary everywhere else. It is then shown that, after operating on
the vector field with the Riemann tensor, the scalar field drops out.
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uβ∇βu
α = 0 (2.15)

We can then consider how this changes as we move to a nearby geodesic,

identifying this as the covariant derivative with respect to nγ, the vector that

points in the direction of the next geodesic. This is still zero, but we can

manipulate it:

0 =nγ∇γ(u
β∇βu

α)

=(nγ∇γu
β)(∇βu

α) + uβnγ∇γ∇βu
α

=(uβ∇βn
γ)(∇γu

α) + uβnγ∇γ∇βu
α

=uβ∇β(nγ∇γu
α)− uβnγ∇β∇γu

α + uβnγ∇γ∇βu
α

=uβ∇β(uγ∇γn
α) +R α

γβ σu
σuβnγ

(2.16)

For the second line we used the product rule, commutation of vectors and

relabeling of summed over indices for the third, inverse product rule for the fourth,

and the definition of the Riemann tensor along with vector commutation for the

last line. Now let us make sense of the first term, uβ∇β(uγ∇γn
α). The piece inside

parenthesis asks how the separation between geodesics changes as we move along

one, so we can identify this as the relative velocity of nearby geodesics. Since we

then take the covariant derivative again along the geodesic, this term represents the

relative acceleration of nearby geodesics. Thus, we can use the Riemann tensor to

calculate geodesic deviation, an important facet of curvature.

Similarly, if a vector xµ is parallel transported around a small square defined

by the vectors uα and vβ, the change will be given by
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(δx)ν = Rν
µαβx

µuαvβ (2.17)

We can also write the Riemann tensor explicitly in terms of the Christoffel

symbols [9, Equation 11.12]:

Rα
βγδ = Γαβδ,γ − Γαβγ,δ + ΓαµγΓ

µ
βδ − ΓαµδΓ

µ
βγ (2.18)

This form makes it apparent that the Riemann tensor is not a differential

operator. This definition also allows us to prove the Bianchi identity

0 = Rρµσν;η −Rρµση;ν +Rρµνη;σ (2.19)

We note the symmetries of the Riemann tensor

Rµνρσ = −Rµνσρ

Rµνρσ = Rρσµν

Rµνρσ = −Rνµρσ

(2.20)

Finally, the contractions of Riemann:

Rµν =Rσ
µσν

R =Rµ
µ = gµνRµν

(2.21)
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The first, Rµν is called the Ricci curvature tensor, and the second, R, is the

scalar curvature. Note that all other possible contractions of the Riemann tensor

are either zero or equal to Ricci up to a sign.

2.3. General Relativity

The overarching goal of General Relativity is to identify gravity as the

manifestation of the curvature of spacetime. In the previous section we explored

what curvature means and how it becomes apparent. In this section, we will

see how curvature is produced by mass and energy and how the laws of General

Relativity give rise to gravitational radiation. But if we are to construct a tensor

equation relating mass and energy to geometric curvature, we need a tensor that

describes them.

2.3.1. Stress-Energy Tensor

The stress-energy tensor, denoted as T µν is a second rank tensor which, when

cast into a particular coordinate system, indicate the location and movement

of momentum and energy. In particular, T µνxν = pµ is the four-momentum

density traveling through a hypersurface perpendicular to xν . Examining the

individual components in a particular coordinate system, we can see where the

name comes from: if xν is timelike, then pµ is simply the static four-momentum

(or the four-momentum traveling through time). Thus we can identify T 00 as the

energy density in that coordinate system. Similarly, T k0 is the k component of

the three-momentum density. We can then see that T 11 will be the x-momentum

density traveling in the x-direction, with the same holding for T 22 and T 33. These

terms are generally known as pressure. The rest of the terms, T jk are called shear
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or stress, and quantify the linear momentum density being carried in a different

direction. For a swarm of particles, the stress-energy tensor at a point can be easily

by examining the particles in a small volume around that point:

T µν =
∑
A

mAu
µ
Au

ν
A (2.22)

Here, we are summing over the particles in the small volume, were mA is the

mass of particle A, and uµ is its four-velocity. If these particles form a perfect fluid

(and thus have a well-defined density and pressure), this can be simplified:

T µνfluid = pgµν + (ρ+ p)uµuν (2.23)

Now, uµ is the four-velocity of the fluid (since the volume is small, this is a

single value). In the rest frame in flat space, u0 = 1 and uj = 0, so this reduces to

what we expect: mass density and pressure with no stresses or linear momentum:

T µν =



ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


(2.24)

But if we boost into a frame which is moving with respect to the fluid—for

example, if uµ = (γ, βγ, 0, 0):

T µν =



γ2ρ+ (γ2 − 1)p (ρ+ p)γ2β 0 0

(ρ+ p)γ2β p+ γ2β2(ρ+ p) 0 0

0 0 p 0

0 0 0 p


(2.25)
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Finally, we wish to find a conservation of mass/energy expression equation.

This is done the same way as conservation of charge, by insisting that the integral

over a four-volume be constant. This may raise the question of why we cannot have

a bit of energy enter the four-volume from outside of it and remain there; however

because time is one of the four dimensions this is impossible. Just as we united

the divergence of the volume current density and the time derivative of the charge

density into ∇µJ
µ = 0, the conservative of stress-energy can be written as:

∇µT
µν = T µνµ = 0 (2.26)

2.3.2. Einstein’s Equations

Finally we come to the Einstein field equations, which relate the distribution

of mass, energy, momentum, stresses, and pressures to the geometry of spacetime.

The equations take the following form:

Gµν = 8πTµν (2.27)

where Gµν is the Einstein tensor, defined as

Gµν = Rµν −
1

2
Rgµν (2.28)

Since Einstein’s equations are an axiom of the theory, there is no way to

prove its truth from any other principles. However, we can justify it in several

ways. First the spacetime terms are derived only from the metric. Next, it satisfies
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the same conservation law as the stress-energy tensor, so, Gµν
;ν = T µν ;ν = 0. The

only first-order equation matching this constraint is Gµν = aRµν + bRgµν .4

The ratio of a to b can be found by applying the conservation law. We start

with the Bianchi identity for the Riemann tensor and contract twice with the

metric, finding that two of the terms reduce to the Ricci tensor, and the second

to the scalar curvature R:

0 =Rρµσν;η −Rρµση;ν +Rρµνη;σ

=Rµν;η −Rµη;ν +Rσ
µνη;σ

=R µ
µν; −R;ν +Rσ

ν;σ

=2R µ
µν; −R;ν

(2.29)

Next, we raise the ν index, use the fact that gµν;α = 0 to distribute the

covariant derivative, and change by a numerical factor to match convention:

0 =2Rµν
;µ − gµνR;µ

=
(
Rµν − 1

2
gµνR

)
;µ

(2.30)

Thus, in order to match the conservation of mass-energy is expressed in the

equation T ;ν
µν = 0, we must have, up to a constant factor, Gµν = Rµν − 1

2
Rgµν .

4One other term is allowed: a constant multiplied by the metric, Λgµν , the cosmological
constant term. If it is nonzero, spacetime far from any mass will not be flat. The measured upper
limit for the value of Λ is about 1 × 10−43m−2 [11], small enough that it can be safely neglected
for our purposes. When used, it is not included in the Einstein tensor but rather added as another
term to Equation 2.27
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So here we have a mathematical representation of how matter and energy

(whose information is contained in Tµν) affects the geometry of spacetime. We

have already seen how this geometry affects matter. So here we have a complete

description of the theory of general relativity. There’s one problem remaining: to

simultaneously solve Einstein’s equations, a set of 10 coupled nonlinear second

order partial differential equations of four variables, together with the geodesic

equation for each object involved, which is a second order nonlinear ordinary

differential equation. Few full solutions have been found, and they have all involved

a large degree of symmetry. Even the case of a binary black hole system has not

been solved; only numerical simulations are possible.

The difficulty in solving Einstein’s equations comes partly from the fact

that the definition of coordinates is bound up in the solution. So, unlike in

electromagnetism, it is not possible to calculate the field based on the distribution

of mass since the distribution of mass cannot be known with knowing the field.

2.4. Linearized Theory

When curvature is small, we can use an approximation to neglect the higher

order terms that make the equations so difficult to solve. We begin by writing the

metric as gµν = ηµν + hµν where ηµν is the metric of flat spacetime and hµν is a

small perturbation. We calculate the Ricci curvature tensor and scalar curvature

assuming that hµν is small in the sense that we can discard quadratic terms. Next,

define the “bar” operation, h̄µν = hµν − 1
2
ηµνh. Note that then h̄ α

α = 0. Then, since

Rgµν = Rηµν to first order in hµν , the Einstein tensor becomes Gµν = R̄µν . Using

the definition of the Riemann tensor from [12]:
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Rµν = Rα
µαν =gαβRαµβν

≈1

2
ηαβ
(
hαν,µβ − hαβ,µν + hµβ,αν − hµν,αβ

)
=

1

2

(
h α
αν,µ − h α

α ,µν + h α
µ ,αν − h α

µν,α

) (2.31)

Then,

Gµν =R̄µν

=
1

2

(
h̄ α
αν,µ − h̄,µν + h̄ α

µ ,αν − h̄ α
µν,α

)
=

1

2

(
h̄ α
αν,µ + h̄ α

µ ,αν − h̄ α
µν,α

) (2.32)

The last term is the d’Alembertian, and the other terms vanish if h̄ ν
µν, =

0. Next we make the gauge transformation that will ensure that. Gauge

transformations are infinitesimal coordinate transformations xµ(P) → xµ(P) +

ξµ(P), where the functions ξµ are small in the same sense as hµν . Effectively, these

are small wiggles in the coordinate system. The only quantity that changes is the

metric, particularly: hµν → hµν−ξµ,ν−ξν,µ. The gauge that eliminates the unwanted

terms can then be found. This gauge is called the transverse traceless gauge, and

we indicate that with a superscript TT . With the correct choice of functions ξν ,

h̄TT α
αν, = h̄ α

αν, − ξ α
α,ν − ξ α

ν,α = 0 (2.33)

Thus we find the elegant equation:

2h̄TTµν = −16πTµν (2.34)
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2.4.1. Gravitational Waves in Free Space

In empty space, this becomes 2h̄TTµν = 0, the wave equation. Thus, in the

limit of weak gravity, disturbances in the spacetime propagate as waves. Note,

however, that this is still only an approximate solution. At the outset, we decided

to neglect all higher order terms in hµν . Physically, this means we neglected any

curvature of spacetime caused by the stress-energy of the wave itself. Further

discussion of the energy content of GWs is located in Chapter III, and analysis

of a complete GW solution is found in [9, p.957-961].

Then, we have:

Gµν =− 1

2
h̄TT α
µν,α

=− 1

2
2h̄TTµν

(2.35)

From this equation, along with the gauge condition, we can make a few

observation. First, in empty space, this is the wave equation, 2h̄TT
µν = 0. Second,

the gauge condition h̄TT α
αν, = 0 means that we can find a coordinate system

where the amplitude is perpendicular to the propagation direction (this is the

transverse part of “transverse traceless gauge”). Third, for a solution of the form

h̄TTµν = Cµνe
ikσxσ , the equation requires that kσk

σ = 0, making the wave vector a

null vector and showing that gravitational waves must travel at the speed of light.

Finally, as already discussed above, the wave is traceless. Combining these with the

symmetry demanded by the metric, we arrive at the matrix:
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h̄µν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


(2.36)

2.4.2. Emission of Gravitational Waves

This section closely follows [9, §38.10]

Exact solutions of Einstein’s Equations that produce gravitational waves (e.g.,

a binary black hole system) are not currently known. We can, however, study

an approximation of it, and the results are shown to be accurate by numerical

relativity simulations. In particular, we will assume that all motion in the source

is much less than the speed of light; this allows us to return to the Newtonian

definition of time, and work with only the spatial components.

Unlike electromagnetic radiation, which is dipolar, quadrupole radiation is

the first possible radiation mode for GWs: conservative of mass/energy prohibits

a time-changing monopole moment, and conservation of momentum disallows any

such change in dipole moment. Any analog to magnetic radiation would violate the

conservation of angular momentum. Thus the strongest radiation term must come

from the quadrupole moment.

To derive the exact equation, we return to the notation of linearized theory,

but without the assumption that curvature is small. We can write Einstein’s

equations in a similar way as we did before, operating in the Lorentz gauge (but

not the transverse traceless gauge yet):

h̄µν,αβη
αβ = −16π

(
T µν + tµν

)
(2.37)
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Here, tµν represents the deviation from linearized theory, and is unknown.

We will deal with this not by calculating it, but by carefully manipulating the

equations and eventually finding the appropriate approximation that allows us to

neglect it.

Equation 2.37 is essentially a 4-dimensional version of the Poisson equation.

Since all nonlinearity has been safely stashed in tµν , we can treat h̄µν as a tensor in

flat space. So, it can be turned into an integral simply:

h̄µν(t,x) = 4

∫
all space

[T µν + tµν ]ret

|x− x′| d3x′ (2.38)

Now we must make simplifying assumptions. First, we assume that there is a

single source of size L producing GWs. Next, we assume that we are far from the

source, in the sense that r >> L, and restrict to the spacelike components h̄jk.

Then, to first order, the integral becomes:

h̄jk(t,x) ≈ 4

r

∫
source

[
T jk + tjk

]
ret
d3x′ (2.39)

Next, we develop a math trick. Taking the divergence of Equation 2.37:

(T µν + tµν),ν =h̄µν,αβνη
αβ

=(h̄µν,ν),αβη
αβ

=0

(2.40)

We’ve used the gauge condition for the last equality. We can further write:
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0 =(T µν + tµν),ν

=(T 0ν + t0ν),ν

=(T 0ν + t0ν),ν0

=(T 0l + t0l),l0 + (T 00 + t00),00

(2.41)

We can also do a different substitution:

0 =(T µν + tµν),ν

=(Tmν + tmν),ν

=(Tmν + tmν),νm

=(Tml + tml),lm + (T 0l + t0l),l0

(2.42)

Subtracting the two equations yields (T 00 + t00),00 = (Tml + tml),lm. Next, we

consider the term:

[
(T 00 + t00)xjxk

]
,00

= (T lm + tlm),lmx
jxk

=
[
(T lm + tlm),lx

jxk
]
,m
− (T lj + tlj),lx

k − (T lk + tlk),lx
j

=
[
(T lm + tlm),lx

jxk
]
,m
−
[
(T lj + tlj)xk − (T lk + tlk)xj

]
,l

+ 2(T jk + tjk)

=
[
(T lm + tlm)xjxk

]
,lm
− 2
[
(T lj + tlj)xk − (T lk + tlk)xj

]
,l

+ 2(T jk + tjk)

(2.43)
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Thus,

T jk + tjk =
1

2

[
(T 00 + t00)xjxk

]
,00

+
[
(T lj + tlj)xk − (T lk + tlk)xj

]
,l

− 1

2

[
(T lm + tlm)xjxk

]
,lm

(2.44)

Note that the last two terms are divergences. This means that when we

integrate over the source, the divergence theorem can be used to turn them into

surface integrals over the bounding surface. Since there is neither matter nor strong

gravitational fields there, these terms vanish when integrated. Thus, our integral

becomes:

h̄jk(t, xj) =
2

r

∫
source

[
(T 00 + t00)retx

′jx′k
]
,00
d3x′ (2.45)

Now we assume that the source is nearly Newtonian, with its gravitational

field holding little energy compared to its mass energy. After swapping the order of

integration and differentiation, we see the (retarded) quadrupole moment:

h̄jk(t, xj) =
2

r

d2

dt2

∫
source

T 00
retx

′jx′kd3x′

=
2

r

d2Ijkret

dt2

(2.46)

Now we remove the trace to find h̄TTjk :

h̄TTjk (t, xj) =
2

r

d2ĪTTjk
dt2

(2.47)

Removing the trace from the Ijk yields the reduced quadrupole moment:
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ĪTTjk =

∫
T 00
(
xjxk −

1

3
δjkr

2
)
d3x (2.48)

Finally, in order to have the correct units, we must add back the constants

which had been set to 1:

h̄TTjk =
2

r

G

c4
¨Ī
TT

jk

(
t− r

c

)
(2.49)

So any system with a quadrupole moment that varies in time will emit

gravitational radiation. In essence, this translates to any dynamic system that lacks

axial symmetry, which includes any orbiting objects. The simplest case, a binary

system of equal masses, is examined in Appendix A.1.

This type of system also allowed for the first indirect detection of GWs

from the PSR B1913+16 (also named the Hulse-Taylor binary in honor of the

astronomers who discovered it) [3]. This system is made up of two neutron stars,

one of which is pulsar. By timing the pulses, Hulse and Weisberg were able to

measure the orbital period to high precision. Observations spaced out over a decade

clearly showed that the period was decreasing, implying that the system was losing

energy. Calculations from General Relativity of the expected losses to gravitational

radiation matched those losses, providing an indirect proof of the existence of GWs.

The direct detection of the GWs emitted is, as we will show in the next

chapter, an extremely difficult task, requiring a well-funded international

collaboration. To its great credit, the National Science Foundation generously

funded this effort. The indirect detection of GWs from the Hulse-Taylor binary

doubtless entered into their consideration.
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CHAPTER III

GRAVITATIONAL RADIATION AND LIGO

This chapter contains co-authored material from [13]

As shown in the previous chapter, Einstein’s General Relativity gives rise

to a new phenomenon: gravitational waves. This is another concrete prediction

that diverges from Newtonian gravity. However, as Einstein quickly realized,

gravitational waves are extremely difficult to produce, and there was no known

process that could create waves large enough to detect at the time. As shown

in Equation 2.49, the equation for the amplitude of GWs has a pre-factor of

G/c4, making any GWs produced extremely small. Since the time of Einstein,

experimental methods have been greatly improved, and new astronomical sources of

GWs identified. In this chapter, we discuss the instrument that made the detection

of GWs possible: the Laser Interferometer Gravitational-wave Observatory (LIGO).

We begin by showing how objects react to passing GWs.

3.1. The Effect of GWs on Matter

Gravitational waves, being small changes in the metric tensor, manifest

themselves (in Newtonian terms) as small changes in the gravitational force on

objects. The most obvious way to do this is to to place an object at a particular

location and see how it moves, but this method has a serious flaw, as we will show.

Consider a freely falling object (a test mass). First, note the form of the metric for

flat space with a gravitational wave incoming from the z-direction:

ds2 = −dt2 +
(
1 + h+(t)

)
dx2 + 2h×dxdy +

(
1− h+(t)

)
dy2 + dz2 (3.1)
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Being unconnected to anything and far from any gravitational body, the test

mass can move in any direction if subjected to a force. We can use the geodesic

equation to find the equation of motion:

d2xα

dτ 2
+ Γαµγ

dxµ

dτ

dxγ

dτ
= 0 (3.2)

Since it starts at rest in its own frame, dxj

dτ
= 0 at t = 0. Thus, in this frame

(at t = 0), this reduces to:

0 =
d2xα

dτ 2
+ Γα00

dx0

dτ

dx0

dτ

=
d2xα

dτ 2
+ Γα00

(3.3)

Now, the Christoffels are found via derivatives of the metric (Equation 2.11):

Γµαβ =
1

2
gµν
(
∂αgµβ + ∂βgνα − ∂νgαβ

)
(3.4)

The Christoffels we’re looking for will then be:

Γµ00 =
1

2
gµν
(
∂0gµ0 + ∂0gν0 − ∂νg00

)
= 0

(3.5)

All of these terms vanish because the identified components of the metric are

constant. The gravitational wave only appears in the gxx, gxy, and gyy components.

Thus, the equation of motion of the test mass is simple as there is no acceleration:

xα(τ) = constant. Also note that this generalizes to any gravitational wave, not

just one traveling in the z-direction.

How can this be true, if we are to measure gravitational waves? We must

remember what we have calculated is what happens to the coordinate location of
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the test mass in the particular frame and gauge. In a different frame, we would find

a different equation of motion just the same as we would under Galilean relativity.

What we desire is to find some coordinate system-invariant measurement of the

gravitational wave. This requires measuring a scalar. We will measure the distance

between the two test masses, using light as our ruler.

But first, we should make sense of why the test mass remains at the same

coordinates in the transverse-traceless gauge. Recall that transforming into

the transverse-traceless gauge introduced small wiggles into the coordinate

system. These wiggles evidently exactly cancelled out the wiggles caused by the

gravitational wave.

Now, consider the distance between the two test masses as the gravitational

wave passes, assuming that the wavelength of the gravitational wave is much longer

than the distance between them, and thus h+ and h× can be considered constants

(a more general treatment can be found in Section 3.3). We place them along the

x-axis for simplicity and integrate along the curve γ(t) = (0, t, 0, 0). Since the curve

changes in only one direction, only one term survives:

L =

∫ L0

0

√
gxx dx = L0

√
1 + h+ ≈ L0

(
1 +

1

2
h+

)
(3.6)

The change in length is then 1
2
Lh+. We measure the strength of gravitational

waves with the quantity ∆L
L

, which is equal to 1
2
h+ in this case. This value is called

strain, and is dimensionless.

So in principle, the detection of gravitational waves is simple: continually

measure the distance between two suspended objects and wait for a gravitational

wave to change it. The scale involved makes this task nearly impossible: Consider

two neutron stars, orbiting each other with just 1 light-second of separation
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between them. In this orbit, they would be traveling over 1,000 km/s, and complete

an orbit every 15 minutes. But from 1 kpc away, the GW strain would be less than

1 × 10−20. For this to produce an observed change in distance of 1 mm, the two

objects would have to be separated by 1017 meters, or roughly the distance to the

star Sirius. So in order to detect GWs, very large and extremely sensitive detectors

are needed.

3.2. LIGO

There are currently two detectors that make up the LIGO network [6, 7]:

one in Hanford, Washington and the other in Livingston, Louisiana1. The two

detectors share most aspects of the design, including 4 km long arms. Widely-

spaced detectors are important for gravitational wave detection because terrestrial

noise sources will be uncorrelated, allowing coherence to be a powerful tool for

identification of real astrophysical signals. The detectors feature long arms because

of the nature of gravitational waves discussed above.

3.2.1. Laser Interferometry

When two waves overlap, the result is simply the sum of them. Changing

the relative phase between the waves will change the interference pattern. In

interferometry, this principle is exploited to make high-precision measurements

by coupling the objects we wish to measure to the phase of light. The particular

kind of interferometer used in LIGO observatories is the Michelson interferometer.

It works by sending a laser beam into a beam splitter, down perpendicular arms

1Virgo, a sister organization, operates a similar instrument in Pisa, Italy. There is another
detector under construction in Japan by the KAGRA collaboration, and LIGO plans to build
expand its network with a detector in India.
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to suspended test masses, and then recombining them and measuring the output

light, as shown in Figure 3.1. When the arms are exactly the same length, the laser

power at the output will be at its maximum. But if one of the mirrors moves by a

quarter of the wavelength of the light, when it reaches the output its phase will be

shifted by π (since it travels the arm once in each direction), and the output power

will be zero.

FIGURE 3.1. Diagram of a Michelson inteferometer.

Since visible light has a wavelength of 400–700 nm, this design quickly

reaches length scales of about 100 nm. But even with 4 km long arms of the LIGO

interferometers, this would reach only strain of 10−11. A gravitational wave with
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an amplitude of 10−21, like GW150914, will move the mirrors by only 4 × 10−18 m,

about 0.2% of the diameter of a proton.

3.2.2. How a GW is Observed by LIGO

To see precisely how an interferometer reacts to gravitational waves, consider

a GW hitting the detector from directly above. As discussed in the previous

section, the length of the x-arm will be:

Lx =

∫ L0

0

√
gxxdx (3.7)

Similarly, the length of the y-arm will be:

Ly =

∫ L0

0

√
gyydy (3.8)

However, we cannot easily measure each of these separately. Though the

technique of interferometry, we can measure the difference between the two, the

Differential ARm-length Measurement (DARM):

DARM =Lx − Ly

=

∫ L0

0

√
gxx dx−

∫ L0

0

√
gyy dy

=
1

2

(∫ L0

0

h̄xx dx−
∫ L0

0

h̄yy dy
) (3.9)

For wavelengths much longer than the arms, the integrals are trivial and we

find that DARM = 1
2

(
h̄xx − h̄yy

)
= h+. For a discussion of the signal produced by

GWs from other directions and of shorter wavelengths, see Section 3.3.
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3.2.3. Detector Design

Each LIGO detector follows the basic design outlined above, with a host of

improvements that together increase the sensitivity by a factor of a billion. We

outline a few of the most important ones here. First, we start with an extremely

stable and monochromatic laser, because any instabilities will show up at the

output. Rather than a single laser beam traveling through once, the inteferometer

is made up of a series of optically resonant cavities. Each arm is a Fabry-Pérot

cavity, which allows photons to travel the arms multiple times and effectively

lengthens the arms. There are also resonant cavities on both the input and

output sides of the beam splitter, which work to recycle laser power back into the

interferometer and removed undesired modes from the laser beam, improving the

purity of the input light further. The arms and optical cavities are all inside of a

vacuum system because air would cause additional noise. All mirrors are isolated

from the ground by multiple levels of seismic isolation, both active and passive.

Fundamental physics also places theoretical limits on the sensitivity of the

instrument. At low frequencies, noise due to the radiation pressure of the light

impinging on the test masses. Sensitivity at high frequency is limited by shot noise,

caused by the quantum nature of photons. Increasing the laser power reduces the

shot noise, but at the price of increased radiation pressure noise. Currently, the

LIGO instruments are limited by seismic noise at low frequency, and the laser

power is constrained by hardware complications that arise with increased power.

The resonant optical cavities, while essential to the performance of the

detector, also greatly increase the difficulty of operation. Each cavity must

be kept in resonance simultaneously with all of the other cavities in order for

data to be collected. When the detector is in this state, it is referred to as “in
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lock.” Small deviations from the optimal configuration cause disturbances that

spread throughout the detector and can quickly knock the detector out of lock.

A multitude of sensors and actuators must work together seamlessly to keep the

system operating effectively.

Finally, in order to reach high sensitivity, careful data analysis is required.

Many different gravitational wave searches are carried out, and each is tuned to

the specific sources targeted. In Chapter V, one such search (using two different

software pipelines) is presented, and Chapter VI explores the prospect of a signal

following the merger of a binary neutron star system. All searches are concerned

with data quality, which is the subject of the next two sections.

3.2.4. Physical Environment Monitor (PEM)

When trying to study movement at a scale smaller than a proton, one quickly

discovers that the world is very loud and shaky place. In order to be sure that

detected signals are coming from the cosmos and not earth, each LIGO detector

has hundreds of sensors monitoring every noise source we can think of. A map

of the sensors in the Hanford detector is shown in Figure 3.2. Some are also

used to diagnose problems with the operation of the detector: for example, high

winds at Hanford can cause enough shaking that the optical cavities wander out

of resonance, resulting in the loss of lock. So, we have anemometers monitoring

the wind on top of each building and seismometers checking for increased ground

motion. The wind pushing on the buildings also slightly deforms the buildings

themselves, so tilt meters have been installed in some buildings (seismometers

cannot differentiate rotational motion from translational).

37



FIGURE 3.2. A map of the sensors which make up LIGO Hanford’s PEM system.
Available online at http://pem.ligo.org/channelinfo/index.php

Glitch detection is another important role for the environmental monitoring

system. Though signal morphology is often a strong veto for matched filter

searches, glitches that look similar to expected signals present a huge problem.

Unmodeled searches, which cannot veto glitches as effectively, are especially

vulnerable to glitches in data. A standard step in validating any candidate GW

signal is the examination of all relevant auxiliary channels to search for coincident

signals that would point to a local (rather than astronomical) source. See [14] for

a full explanation of how the modeled searches for Compact Binary Coalescences

(CBC) deal with glitches.
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3.2.5. Glitches

While it is often convenient to model noise as a stationary Gaussian process,

the noise in LIGO detectors is often more complicated. The noise slowly evolves

over time (thus is non-stationary), and is frequently interrupted by transient non-

Gaussian features, called glitches. These glitches have many different shapes, sizes,

and causes. Some come from the environment (everything from trains, trucks, and

snowplows to lightening strikes, power line fluctuations, wind, and ravens pecking

at ice built up on liquid nitrogen lines2), and others from the electronics and

controls systems. The detector characterization team works to identify, classify, and

understand each type of glitch. With this work done, data segments with glitches

can be easily identified and discarded, allowing searches to be more sensitive to real

signals from GWs.

One particularly problematic type of glitch is the blip glitch. Blip glitches are

short transients about 10 milliseconds long, in the hundreds of Hz range (example

shown in Figure 3.3). Unlike many other glitch types, they do not show up in any

auxiliary channels. They are also similar to high mass CBC signals, making them

particularly problematic for those searches. As they occur about twice an hour,

understanding and eliminating these glitches is a high priority for the Detector

Characterization group.

Through analysis of blip glitch rates and auxiliary channel data, we

discovered a possible clue to their source: at Hanford, the rate greatly increased

at times during the winter of 2015 when the relativity humidity rate inside of

the vacuum enclosure areas (VEAs) dropped to near 0%, as shown in Figure 3.4.

Livingston also experiences blip glitches, but showed little variation in time.

2https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=37630
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FIGURE 3.3. Q-scans of data from the Hanford detector. Top left, top right, and
bottom left are blip glitches, while bottom right is GW150914. While GW150914 is
easily differentiated from the blip glitches because of its frequency evolution, high
mass ratio systems spend less time in the inspiral phase and so look closer to blip
glitches.
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FIGURE 3.4. Comparison of the blip glitch rate with the relative humidity. When
the air was very dry (during segments 1 and 2), the blip glitch rate was higher than
when it was not (segment 3). This difference was statistically significant.

This correlation, along with the short nature of the glitches, suggests that the

source could be related to a discharge of static electricity in electronic components.

The most likely suspect was the electrostatic drives, which produce high voltages

that are used to actively damp the test masses through the electrostatic force.

However, a later investigation which used magnetometers to monitor for such static

discharges did not find any correlation.

It is possible that there are two distinct causes of these blip glitches: one

that is caused by low humidity, and another that occurs regardless of weather
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conditions. Investigations of blip glitches are ongoing, and no cause has yet been

found.

3.3. Antenna Response Functions

Previously, we examined how a detector would respond to long-wavelength

GWs traveling in the z-direction. Of course in the real world, gravitational waves

come from all directions, in both polarizations, and in shorter wavelengths. To

see how a generalized GW will be felt, we begin by defining the antenna response

function, which states how the detector responds to GWs from a given location and

polarization. Consider the strain matrix for the detector’s rest frame (in the TT

gauge):

h̄µν =


hxx hxy hxz

hxy hyy hyz

hxz hyz hzz

 (3.10)

We have ignored the time-dimension since we are still using linearized gravity.

Following the calculations from above, we see that only the hxx on the length of

the x-arm, and similar reasoning shows that only hyy has an effect on the y-arm.

Thus in order to find the detector’s response to a gravitational wave, we need only

transform it into the detector’s coordinate system and simply read off the two

relevant matrix elements.

Next recall that, for any GW, the strain matrix in its own TT frame is:

h̄µν =


h+ h× 0

h× −h+ 0

0 0 0

 (3.11)
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Here, the z-axis is pointed from the source to the detector. To transform the

wave propagation frame into the detector’s frame, we need three rotations: First,

we rotate around the z-axis until the x-axis is parallel to the detector’s x-y plane,

calling this the polarization angle ψ. Next, we rotate around the (new) z-axis until

it is parallel to the detector’s z-axis, with this angle θ being complementary to the

altitude of the source. Finally, we rotate by the (new) z-axis until the coordinate

systems are aligned. This angle φ is equal to the source’s azimuth. These rotations

can be carried out through matrix multiplication, with the full transformation

taking the form:

R =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1




1 0 0

0 cos θ − sin θ

0 sin θ cos θ




cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.12)

Since the strain tensor is second-rank, we must transform both indices:

h̄det
µν =R α

µ R β
ν h̄wp

αβ

=R α
µ h̄wp

αβ(R−1)β ν

(3.13)

Written in matrix equation form, h̄det = Rh̄wpR−1. Following Equation 3.9,

DARM = 1
2

(
h̄xx − h̄yy

)
, so the signal seen by the detector will be:

DARM =
h+

2

(
(1 + cos2 θ) cos 2φ cos 2ψ − 2 cos θ sin 2φ sin 2ψ

)
+
h×
2

(
− (1 + cos2 θ) cos 2φ sin 2ψ − 2 cos θ sin 2φ cos 2ψ

) (3.14)

43



Expressing this in the form DARM = F+h+ + F×h×, we see that the antenna

factors F× and F+ are given by:

F+ =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

F× =− 1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ

(3.15)

In practice, we also have another problem. Because detectors are located

at different points on a rotating Earth, the altitude and azimuth of astronomical

objects must be calculated from their absolute coordinates in the equatorial

coordinate system. This can be done in two ways: either calculate the azimuth

and altitude for a particular source at a particular time and detector and use the

above transformation, or do a series of transformations. For the latter method,

an incoming GW is first transformed into a non-rotating frame fixed to the center

of the earth, then to one rotating with the Earth, then to the relevant detector’s

frame.

Finally, there is one more complication in real interferometers. We had

assumed that the wavelength of any GW was long compared to the detector, and

this assumption holds: a wavelength of 4 km corresponds to a frequency of nearly

75 kHz, and LIGO data is only calibrated up to 4 kHz. However, these instruments

are not simple Michelson interferometers; the arms are resonant Fabry-Pérot

cavities, so each photon travels down each arm multiple times before recombining

at the beam splitter. An exact calculation of this effect, done by analyzing the light

as a wave rather than individual photons, is done in [15], and finds that the error is

small (a few percent) up to about 1 kHz.
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3.4. Energy in Gravitational Waves

Since GWs are capable of moving objects, they must contain energy. But

calculating how much energy they contain is not trivial: the most obvious place to

look is the stress-energy tensor, but the GW solution we found was for empty space

where Tµν = 0, to linear order in hµν . Any contributions to the stress-energy tensor

from GWs then must be at least quadratic in hµν , and so the linear approximation

must be abandoned. Carrying out the calculation of the Einstein tensor to the next

order is described in [9, p.969] as a “straightforward but long calculation”, with the

result:

TGW
µν =

1

32π
〈h̄jk,µh̄jk,ν〉 (3.16)

The angle brackets indicate that this must be averaged over multiple waves.

Stress-energy from gravitational waves cannot be localized: At any point there

exists a reference frame in which spacetime is locally flat, and thus the gravitational

field cannot contribute any stress-energy. Writing this as GW fluence (energy flux

per unit area) in terms of the two polarizations:

FGW =
c3

16πG

∫ (
ḣ2

+ + ḣ2
×
)
dt (3.17)

We will use this equation when calculating the minimum detectable energy for

the GW searches in Chapters V and VI.

3.5. The First Detection: GW150914

Since shortly after Einstein first published his theory of General Relativity,

scientists had known that gravitational radiation was predicted by the theory. It
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was not until 1989 that observations of the Hulse-Taylor binary, which showed the

system slowly losing energy at the rate expected by the emission of GWs, offered

indirect proof of the existence of GWs [16].

The first direct detection of gravitational waves was made on September 14,

2015, when the two LIGO detectors observed the merger of a binary black hole

(BBH) system [17]. Through careful analysis of the waveform, it was determined

that the system was originally composed of two black holes which weighed 29 and

36 solar masses. During the merger, 3 solar masses of energy (M�c
2) was released,

resulting in a single black hole with a mass of 62 M�. In addition to the wealth of

information in gravitational wave data, this was the first time black holes of 30-plus

solar masses had been identified. Since then, nearly a dozen more BBH mergers

have been observed [18].

3.6. The First Binary Neutron Star Merger: GW170817

LIGO’s second observing run yielded the first detection of an inspiraling

binary neutron star system [8]. This detection, on August 17 2017, was also the

first time gravitational waves were detected in conjunction with electromagnetic

observations, as GRB 170817A was detected by Fermi-GBM 1.7 seconds later [19].

Observing both light and gravitational waves from a single event allows a new

and independent measurement of the Hubble constant [20]. And since neutron

stars are much lighter than the black holes observed merging, the inspiral phase

was observable for much longer, increasing the significance of the detection and

yielding detailed information about the spins of the stars and the tidal effects they

experienced. More on the discovery and an in-depth look at hypothesized post-

merger signals and ways to search for them are in found in Chapter VI.
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As we saw in Chapter II, any object with a time-varying quadrupole moment

will emit gravitational radiation. While the cataclysmic merger of binary systems of

compact objects like black holes and neutron stars are the strongest known sources

of GWs, many other processes are known to produce them. In the next chapter, we

discuss the astrophysics of magnetars, which are a possible source of GWs.
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CHAPTER IV

MAGNETAR ASTROPHYSICS

4.0.1. Neutron Stars

Neutron stars are widely accepted to be formed during supernovae, where

a dying star with high metallicity collapses due to falling rates of nuclear fusion,

bounces off of the core and explodes, losing most of the original mass of the star.

The core, compressed to supranuclear densities, lives on as a neutron star. They

generally have a mass of 1–2 M� with a radius of about 10 km. As stars spin and

have magnetic fields, so too do neutron stars; since their formation involves a huge

decrease in radius, conservation of angular momentum and magnetic flux predict

a corresponding increase in angular velocity and magnetic field strength. Both of

these features have been observed: neutron stars typically have polar magnetic

fields of 1011–1013 G (compare to our sun’s 1–2 G1), with spin rates from under 0.1

Hz to as high as a few hundred Hz.

The makeup of neutron stars is not fully understood. The star is supported

against further gravitational collapse only by neutron degeneracy pressure and

the strong nuclear force. This state of matter, with neutrons (along with a few

protons and electrons) packed together more tightly than in an atomic nucleus,

is found nowhere else in the universe and cannot be reproduced in a laboratory.

This makes it difficult to determine the physical characteristics of neutron star

matter. The equation of state, which describes how density depends on pressure,

is not yet known, though there are a number of models for it (see more discussion

in Chapter VI). These models must accurately account for a wide range of physical

1https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html
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phenomenon, from the more ordinary magnetohydrodynamics that governs their

atmospheres to the quantum field theory of the individual neutrons, to the general

relativistic effects caused by the strong gravitational field.

It is even possible that some neutron stars are not neutron stars, but quark

stars, an even denser star where the quarks are packed too tightly for hadronization

to be possible [21]. None have been confirmed to exist, though one star was

identified as a possible candidate before further observations confirmed that it is

an ordinary neutron star [22, 23]. As they are more dense than neutron stars, they

would be excellent targets for gravitational wave searches.

A wide range of behaviors have been observed from neutron stars. Many are

pulsars, which emit regular pulses of light. The frequency of these pulsations (up

above 1 Hz), along with their stability, prove that these must be neutron stars:

No other known object is compact enough to allow for that rotational velocity

while having the ability to emit light [24]. Most pulsars emit primarily at radio

frequencies, but some emit x-rays. The first x-rays pulsars discovered were in

binary systems and powered the emission by pulling matter off of their neighbor.

However, some x-ray pulsars did not have a neighbor, and thus could not be

powered by accretion. These were named the Anomalous X-ray Pulsars (AXPs).

A separate group of neutron stars, known for occasional short bursts of soft γ-rays,

were named the Soft Gamma Repeaters (SGRs). As more has become known about

these objects, they have been combined into a single class: magnetars.

4.1. History of SGRs and AXPs

The first observations of magnetars were the soft γ-ray bursts from SGRs,

and were originally categorized as a new type of GRB. However, unlike typical
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GRBs (which are caused by cataclysmic events like BNS mergers and supernovae),

these tended to come from the same locations. It was not until 1979, when a new,

massively energetic event was observed at the same location where bursts of soft

γ-rays had previously been seen, that a neutron star was hypothesized as the

source [25]. The timescale of the burst was so short (milliseconds) and the event

so energetic (1046 erg), that the source must be a very small and very energetic

object.

This object (now named SGR 0526-66) and other repeating sources of soft

γ-rays became known as Soft Gamma Repeaters (SGRs), though it was unknown

what physical characteristics caused them to be different from other neutron stars.

In the 1990s, a new class of pulsars was identified, called the Anomalous X-

ray Pulsars (AXPs). Unlike other x-ray pulsars, these stars were not powered by

their rotation (known by comparison of the pulsed EM energy and their loss of

rotational energy) nor accretion, as they were isolated neutron stars.

As more observations of AXPs and SGRs were made, it became clear that

these two groups had more in common than originally thought. SGR-like bursts

were observed from an AXP [26]. A previously-identified SGR was found to give

off pulsed x-rays [27]. What they shared was an unusually strong magnetic field

which fed its energy into the previously unexplained behaviors. A summary of the

observations from SGRs and AXPs is found in Sections 4.3 and 4.4.

4.2. The Magnetar Hypothesis

The magnetar hypothesis states that the AXPs and SGRs are two mani-

festations of the same phenomenon—a star whose magnetic field powers emission

and outbursts [28]. Their magnetic field strengths are generally in the range of
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1014 − 1015 G, though some are lower. For example, the magnetar SGR 0418+5729

has a dipolar field strength of only 7.5 × 1012 G, which is lower than some non-

magnetar pulsars [29]. They spin at a rate of 1 revolution every 2 to 12 seconds, as

evidenced by the x-ray pulsations. The fact that all magnetars have spin periods

in such a narrow range points to a common spin-down mechanism during birth.

Currently there are 23 confirmed magnetars, with another 6 candidates2. In

the next sections, we discuss the current understanding of magnetars and their

activities.

4.2.1. Magnetic Field Strength

Magnetic fields in magnetars are estimated through the spin-down rate.

Through classical electrodynamics, a spinning magnetic dipole will radiate away

energy and angular momentum, slowing its rate of rotation. This rotation rate can

be calculated with great precision for pulsars, including magnetars with detectable

pulsations. Combining this with an estimate of the star’s angular momentum yields

the rate of change of the rotational kinetic energy E:

Ė =
d

dt

1

2
IΩ2 = IΩΩ̇ (4.1)

Here, I is the star’s moment of inertia and Ω is its rotational velocity.

Following [24, p.8-9], this can be compared to the energy radiated by the spinning

magnetic dipole by analyzing the magnetic field of the star in two regimes: near

the magnetar, where the field moves in lock step with the rotation of the star, and

far from it, where such evolution is prohibited by relativity and thus radiation

fields dominate. The former is simply the field of a magnetic dipole, Bdipole(r) =

2See the catalog at http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
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B0(a/r)3, where a is the radius of the star. The latter is Bwave(r) = B0(a/r). They

must be equal at the point that an object rotating at the same rate as the star

would being traveling at the speed of light, which is at a distance of r = c/Ω. Thus,

at this location we have Bwave = B0(aΩ/c)3. The power radiated by the field per

unit area will be 2B2c/3µ0 (the factor of 2/3 is due to the radiation pattern). If

the torque due to the spinning dipole magnetic field is responsible for the star’s

rotation slowing down, we arrive at:

Ė =
8πB2

0a
6Ω4

3µ0c3
(4.2)

Combining this with Eq. 4.1 yields:

B0 =

√
3µ0c3IΩ̇

8πa6Ω3
(4.3)

It is usually more convenient to write this in terms of rotational period (P =

2π/Ω) and its time derivative (Ṗ = −2πΩ̇/Ω2):

B0 =

√
3µ0c3IP Ṗ

32π3a6
≈ 3.2× 1019

√
P

1 sec
Ṗ G (4.4)

4.3. Continuous Emission

Though initially SGRs were not known to be x-ray pulsars, all SGRs have

now been discovered to emit pulsed x-rays. Since the light is beamed from a

particular location on the star, the timing of the pulses indicates the spin period

of the star. This allows for the estimation of the dipole magnetic field strength, as

outlined above.
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Some magnetars have also experienced ”glitches” in their rotation rate, where

the rotation rate suddenly speeds up by a small amount. The same behavior has

been seen in ordinary pulsars. The leading hypothesis is that the inner core of

the star rotates faster than the crust, and when a glitch occurs some angular

momentum is transferred outward. However, anti-glitches, where the rotation

rate suddenly decreases, have also been observed in two magnetars [30, 31]. The

mechanism responsible for anti-glitches is not understood, and may lead to new

theories about ordinary glitches.

The measured values for energy radiated in these pulsed emissions shows that

magnetars are very different than typical pulsars: there is significantly more energy

radiated in x-rays than there is rotational energy lost. And since magnetars have

no companion object to take energy from, magnetars must be powered by their

magnetic fields. In the next section, we will discuss the transient events that first

brought magnetars to the attention of astronomers, and further reinforce the need

for a large amount of energy stored in the magnetic field.

4.4. Short Bursts and Giant Flares

Occasionally and unpredictably, magnetars give off short bursts of soft

γ-rays, lasting 0.01–1 sec. The burst duration and time between bursts follow

lognormal distributions [32]. They can occur at any point in the star’s rotation,

and the light curves vary widely, even among bursts from the same magnetar. The

exact mechanism behind these bursts is unknown, but may be caused by seismic

events, Alfvén waves in the star’s atmosphere, magnetic reconnection events, or

some combination of these (see e.g. [33]). In particular, one model posits that the

magnetic field gradually weakens, which causes strain in the crust of the magnetar.
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When the crust formed, the magnetic and gravitational forces cancelled out, but

this changes as the magnetic field weakens. Eventually, the crust cracks, allowing a

reconfiguration of the magnetic field nearby and releasing a large amount of energy

[34].

Giant flares are the much larger (and rarer) cousins of short bursts. At their

peak, which lasts a few tenths of a second, they reach intensities in the range of

1045 erg/s. Though the initial peak is short-lived, giant flares have long tails: the

persistent emission does not return to normal levels for hundreds to thousands of

seconds. Only three giant flares have been definitively identified (all coming from

magnetars in or near the Milky Way), though some extra-galactic γ-ray bursts

may have actually been magnetar giant flares [35, 36]. Recently, some bursts with

energies between that of short bursts and giant flares have been reported [37]. This,

and other theoretical work (e.g. [34]), suggests that giant flares and short bursts are

caused by similar mechanisms.

4.4.1. Quiescence and Outbursts

Some magnetars exhibit variability in their activity. They may have long

periods of quiescence where their continuous pulsed emission is reduced and they

produce no short bursts, then suddenly and unpredictably awaken. In just days,

their emission can rise by order of magnitude and produce a flurry of short bursts

[38]. These are called transient magnetars, and the first one discovered was XTE

J1810–197 [39].

At present, we have do not have enough data on magnetars to have a

complete picture. Fewer than 30 magnetars have been identified. Only three

magnetars have been observed producing a giant flare, and each has only done so
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once, so we do not know if a magnetar is even capable of producing more than one

in its lifetime.

4.5. Magnetars as a Source of GWs

As they are highly compact objects capable of intense outbursts, magnetars

are a promising source of GWs. In the next chapter, we present a search for such

GWs, targeting two possible emission types at two timescales. The first would is

motivated by so-called quasi-periodic oscillations, will be discussed below in Section

4.5.1. The second mechanism is an excitation in the fundamental mode (or f-mode)

of the star, which is primarily damped by gravitational radiation and would last

less than a second.

4.5.1. Quasi-Periodic Oscillations

After giant flares, there is a soft X-ray tail which lasts for hundreds of

seconds. Quasi-periodic oscillations (QPOs) have been observed in this tail of giant

flares [40, 41] and some short bursts [42, 43], during which various frequencies

appear, stay for hundreds of seconds, and then disappear again, indicating a

resonance within the magnetar. Many possible resonant modes in the core and

crust of the magnetar have been suggested to cause the QPOs, although it is

unclear which modes actually produce them. For QPOs well above 100 Hz, Alfvén

waves may be the cause [34].

Some of these resonant modes, such as f-modes and r-modes, couple well to

GWs. Other modes, such as the lowest order torsional mode, do not create the time

changing quadrupole moment needed for GW emission (see Section 2.4.2). None of

these models provide precise predictions for emitted GW waveforms.
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4.5.2. Estimates of GW Energy

Though there are no exact models of GW emission from magnetars, a few

papers have worked to model and constrain the output GW energy. For example,

[44] built on a previous model to constrain the GW energy of a giant flare to 1048–

1049 erg. This energy is far above the electromagnetic energy of giant flares, and

would be detectable for most waveforms up to a few kilohertz at distances of 10 kpc

(for full upper limits and their astrophysical implications, see Chapter V).

Later, a pair of papers set the upper limit much lower [45, 46]. The first used

theory to show that only a small fraction of a giant flare’s energy would flow into

the star’s f-mode. Since this is the mode that most directly couples to gravitational

radiation, this severely limits the GW energy that can be produced. The other

relied on numerical magnetohydrodynamics with general relativity, and directly

modeled the GWs emitted during a giant flare (which were mostly, but not all,

from the f-mode). The gravitational waves created in their simulations would not

be detectable by Advanced LIGO even when operating at design sensitivity. They

also show that the emitted GW energy is strongly dependent on the magnetic

field strength, with the resulting strain going as (Bpole)
3.3, and would require the

magnetar to have a field stronger than 1016 G.

Nevertheless, we searched for evidence of GWs coincident with magnetar

activity. A brief overview of the source properties is below, and the search is

explained in Chapter V.

4.6. SGR 1806-20

The magnetar bursts for which I searched for a gravitational wave counterpart

all came from SGR 1806-20. This magnetar was one of the first identified, and
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produced a giant flare in 2004 [47]. Its magnetic field is the strongest yet measured,

at an estimated 2 × 1015 G, and it has had periods of vigorous bursting activity

since the 2004 giant flare.

The bursts studied are all at much lower energy than a giant flare, with

the highest being 1038 erg (assuming a distance of 8.7 kpc and isotropic energy

distribution). Light curves for the bursts are shown in Fig. 4.1. Both the plots

as well as notification of the bursts themselves came from David Palmer, who found

them in sub-threshold SWIFT-BAT data [48].

Since these are sub-threshold events, they have not been officially named.

Here, we adopt the convention used by the Fermi Gamma Ray Monitor, which

labels bursts according to the source type, name (if location is unavailable),

and date. Thus the burst from SGR 1806-20 on February 25, 2017 is called

SGR1806170225.

4.7. GRB170304003A

The other burst was classified as a GRB from the Small Magellanic Cloud.

The data from the Fermi satellite is displayed in Figure 4.2. The spectrum was

similar to that of many SGR short bursts. Though no SGR is known to be at this

location, the presence of an energetic burst makes this an appealing target for a

GW search.
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FIGURE 4.1. Data from SWIFT-BAT for the three bursts from SGR 1806-20
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FIGURE 4.2. Data from the Fermi GBM for the GRB170304A
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CHAPTER V

SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH MAGNETAR

TRANSIENTS

This chapter contains co-authored material from [49].

So far, LIGO [7] and Virgo [50], have reported detections of eleven

gravitational-wave (GW) signals from coalescence of compact binary systems [18].

Isolated compact objects may also emit detectable GWs, though they are predicted

to be much weaker than compact binary coalescences [51]. Because of the high

energies and mass densities required to generate detectable GWs, neutron stars and

supernovae are among the main targets of non-binary searches.

The large energies involved originally led to the belief that magnetar bursts

could be promising sources of detectable gravitational waves, e.g. [44, 52]. Further

theoretical investigation indicates that most mechanisms are likely too weak to

be detectable by current detectors [45, 46]. Nevertheless, due to the large amount

of energy stored in their magnetic fields and known transient activity, magnetars

remain a promising source of GW detections for ground-based detectors with rich

underlying physics.

This search was triggered following identification of magnetar bursts by γ-

ray telescopes. The methodology is similar to one done during Initial LIGO’s

sixth science run [1, 53] with a few improvements and the use of an additional

pipeline targeted toward shorter-duration signals (X-Pipeline) [54]. This pipeline

has been used to look for GWs coincident with γ-ray bursts (GRBs) (see [55]

for such searches during Advanced LIGO’s first observing run). There were also

two other searches for GW counterparts from magnetar activity during Initial
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LIGO using different methodology — one triggered by observations of the 2004

giant flare [56], the other short bursts during Initial LIGO’s fourth science run

[57, 58, 59]. Additionally, a magnetar was considered as a possible source for a

GRB during Initial LIGO (GRB 051103), and a search using X-Pipeline and the

since-deprecated Flare pipeline placed upper limits on GW emission from the star’s

fundamental ringing mode [35].

This search was performed on data coincident with the four short bursts from

magnetars during Advanced LIGO’s second observing run for which there was

sufficient data (we require data from two detectors) for both short-duration (less

than a second long) and intermediate-duration (hundreds of seconds long) signals.

Table 5.1 describes the four bursts; the light curves can be found in Chapter IV.

In addition to the four studied bursts, there were five bursts that occurred during

times when at least one detector was offline. No GW analysis was done on them.

All GW detector data comes from the two LIGO detectors because Virgo was not

taking data during any of these bursts.

Source Date Time Duration Fluence Distance
(UTC) (s) (erg cm−2) (kpc)

SGR 1806-20 Feb 11, 2017 21:51:58 0.256 8.9× 10−11 8.7
SGR 1806-20 Feb 25, 2017 06:15:07 0.016 1.2× 10−11 8.7
GRB170304A March 4, 2017 00:04:26 0.16 3.1× 10−10 –
SGR 1806-20 April 29, 2017 17:00:44 0.008 1.4× 10−11 8.7

TABLE 5.1. List of magnetar bursts considered in this GW search. GRB170304A
is described in GCN circular 20813; data on SGR 1806-20 burst activity is courtesy
of David M. Palmer.
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5.0.1. Excess Power Searches

Fundamentally, all multi-detector GW searches seek to identify GW signals

that are consistent with the data collected at both detectors. Some searches

identify candidate signals in each detector separately, then later consider only

the candidates that occur in all detectors within the light-travel time and with

the same signal parameters. However, this generally requires a model that can

accurately predict how the GW strain evolves over time, which in turn can

be used to predict the response of the detectors. These predictions are called

templates, which are then compared against the detector data. We cannot perform

a templated search here because there is no current model which can produce

templates for magnetar GW bursts. Instead, we first combine the two data

streams to create a time-frequency map where the value in each time-frequency

pixel represents some measure of the GWs (often energy) consistent with the

observations from the detectors. The way this is done in the analysis pipelines used

for this search will be discussed below.

The next step is to identify GW signals in the time-frequency map. This

is done by clustering together groups of pixels, calculating the significance of

each cluster with a metric, and searching for the most significant cluster. Finally,

we conduct the same search on data where we know there is no signal, and

compare this background to the search result for data taken around the time of

the magnetar burst (the ”on-source” data). In order to cover a broader range

of frequencies and time scales, we use two different analysis pipelines which use

different clustering algorithms.

The short-duration search uses seed-based clustering implemented by X-

Pipeline, which focuses on groups of bright pixels (the seed) [54]. Specifically,
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the clusters considered by X-Pipeline are groups of neighboring pixels that are

all louder than a chosen threshold. This approach works well for short-duration

searches, but fails for longer-duration signals for two reasons: random noise will

tend to break up the signal into multiple clusters, and each pixel is closer to the

background, so fewer of them will be above the threshold.

We rely on STAMP [60] for the intermediate-duration search. STAMP offers a

seedless method whose clustering algorithm integrates over many, randomly chosen,

Bézier curves [61, 62]. Because of this, it can jump over gaps in clusters caused

by noise, and thus it is better suited for longer-duration signals. Additionally, it

can build up signal-to-noise ratio (SNR) over many pixels of only slightly elevated

SNR. This method was previously used to search for signals from magnetars during

Initial LIGO [1, 53].

5.1. STAMP

The Stochastic Transient Analysis Multi-detector Pipeline (STAMP) was

designed to search for unmodeled long-lived narrowband signals, and is described

in detail in [60]. Below is an overview and analysis of features germane to the

particularities of this search.

5.1.1. Cross-Power and the Filter Function

Since any gravitational wave can be treated as superposition of plane waves,

the phase difference between the GWs incident on each detector is determined

by the distance between the detectors and the sky locations. This is the basis

of coherent GW searches. STAMP implements this idea by first considering the
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cross-power in the data streams of the two detectors. The cross-power in a time-

frequency pixel is given by

CP = s̃∗I(t; f)s̃J(t; f)e2πifΩ̂·∆~xIJ/c (5.1)

Here, s̃I is the Fourier transformed data stream from the detector I, Ω̂ is a

unit vector indicating sky location, and ∆~xIJ is the displacement vector between

the two detectors. The complex exponential term is required to correct for the

difference in the GW’s phase at the two sites.

Next, we must account for the two independent polarizations of GWs and the

effect they have on the detectors. To do this, we calculate the antenna functions

FA
I (Ω̂, t), which describe how the interferometers react to GW strain in a particular

polarization at a particular sky location. They defined using the equation s̃I(t; f) =∑
A h̃

A(t; f, Ω̂, A)FA
I (Ω̂, t) + ñ(t; f), where h̃A(t; f, Ω̂, A) is the strain due to the GW

with polarization A at frequency f , and ñ(t; f) is the noise in the detector. Now,

we can expand the cross power relation, taking an average over pixels and assuming

that the noise at each site is uncorrelated with both the signal and the noise at the

other site:

〈CP 〉 =
∑
A,A′

〈h̃∗AFA
I h̃

A′
FA′

J e2πifΩ̂·∆~xIJ/c〉

=
∑
A,A′

〈h̃∗Ah̃A′〉FA
I F

A′

J e2πifΩ̂·∆~xIJ/c
(5.2)

For co-located detectors, the antenna functions will be the same, and thus the

average of the cross power due to a signal will always be a real number. However,

the detectors are not co-located; thus in some cases we expect to find a complex

number with nonzero imaginary part. With information about the polarization of
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the gravitational waves, we can refine this, see Section 5.1.8 below. For example, if

the GWs are unpolarized (i.e., the polarizations are uncorrelated), then:

〈CPunc〉 =
∑
A

〈h̃∗Ah̃A〉FA
I F

A
J e

2πifΩ̂·∆~xIJ/c (5.3)

Though in this case, we are looking for an elliptically polarized signal,

without knowing the two polarization angles ι and ψ, using the unpolarized filter

function is the best we can do.

After this, STAMP uses an estimate of the detectors’ power spectral density

(PSD) to whiten the data (an example of a PSD is found in Figure 5.1). Then each

pixel is divided by the variance of the surrounding pixels. An example SNR map,

made using data taken a few hours before the burst on February 25, 2017, is shown

in Figure 5.2. If the detector data is Gaussian noise, the resulting SNR of the pixels

will follow a Gaussian distribution.

5.1.2. Clustering Algorithm

We are searching for intermediate-duration (on the order of hundreds of

seconds) gravitational waves, with few theoretic clues as to the waveform. For the

range of frequencies that LIGO is sensitive to, hundreds of seconds corresponds to

quality factors at least in the thousands. Since gravitational waves are caused by

oscillations of matter, the creation of such waves requires a high finesse mechanical

mode, which must have a very small bandwidth.

Thus we focus on narrowband gravitational wave signals. Such signals appear

in the time-frequency map described above as curves that are a single pixel wide.

So the problem of finding gravitational waves is reduced to finding curves with the

loudest SNR.
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FIGURE 5.1. An estimate of the PSD of the noise in the Hanford detector during
O2. The red bars are frequencies which are excluded due to excess noise at those
specific frequencies, see Section 5.1.3.

For short and loud signals, a viable method might be to consider only the

loudest pixels in the map. This is how X-Pipeline works, which will be discussed

later in this chapter. For longer and weaker signals, however, this is not ideal. Such

a signal would only rise slightly higher than the noise in the data stream, and could

be overpowered by noise at times. So instead of relying on individual loud pixels,

we generate random groupings of pixels (clusters) according to the expected signal

morphology and calculate the SNR of each cluster, and record the loudest cluster

in each time-frequency map [61]. When a map returns a higher SNR than expected

from random noise, we can conclude that a signal is present (see Section 5.1.6 for

details).

In particular, we generate 30 million Bézier curves, which are a type of

smooth curve parameterized by three points. These curves are continuous in
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FIGURE 5.2. An example of a time-frequency SNR map calculated by STAMP.
This map was used as part of the background for the February 25 burst, as
explained in Section 5.1.6. The black bars are at frequencies that have been
notched out due to known noise sources.

frequency, but the time-frequency maps only have values for integer frequencies.

To resolve this discrepancy, we average as appropriate, e.g. SNR(f = 59.4Hz) =

0.6× SNR(f = 59Hz) + 0.4× SNR(f = 60Hz).

There is one last constraint on our clusters: since we hope to find signals

related to QPOs, it makes sense to search for signals with the same signal

morphology as QPOs, namely monochromatic ones. It is unclear how precisely

monochromatic QPOs are, so we allow the signal frequency to change by up to 10%

of the original frequency.
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Finally, we must decide how to construct the multi-pixel SNR statistic.

Summing the SNR of each pixel in the cluster is not ideal, since this method will

tend to include noise on either side of the signal. Taking the mean of the pixels

is also not ideal because we would like to bias toward longer clusters. So we use a

middle ground, and use:

SNRtot =
1√
n

n∑
i

SNR(pi) (5.4)

where SNR(pi) is the SNR of the ith pixel in the cluster.

5.1.3. Detector Noise

Generally in gravitational wave detector data analysis, we assume that the

data is Gaussian. This assumption makes the statistics and significances reported

by searches also come out Gaussian. However, in reality we know that this is not

the case. In the time domain, short non-Gaussian transients, called glitches, are

numerous and well studied. In frequency, the spectrum contains many lines due to

everything from the AC frequency of the power mains to injected calibration lines

to mechanical resonances in various detector components.

One significant advantage of this longer duration search is that short-duration

glitches can be mostly ignored. All clusters are a minimum of 50 seconds long,

reducing the impact of short glitches, and dividing by the variance of nearby pixels

suppresses broadband glitches.

Lines, frequencies with unusually high noise, can be a major problem for this

search, since we are searching for a signal that looks like a line (see Figure 5.1).

For example, the power grid operates at 60 Hz, so excess noise is expected (and
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seen) at 60 Hz and its harmonics. The suspensions that hold the test masses have

resonances at about 500 Hz and harmonics at 1000 Hz.

In order to mitigate these, we first eliminate frequencies with a known line.

We used the list of lines used for the all-sky long duration stochastic search. Any

other lines that may be present will be somewhat suppressed through dividing

by the background PSD, and we examined the background to ensure that no one

frequency was showing up more often than would be expected by chance.

5.1.4. Non-Monochromatic Waveforms

For simplicity, we injected exactly monochromatic waveforms. But there is no

strong reason to demand that GWs from magnetars be exactly monochromatic. As

explained above, these injections to do not place constraints on type of waveforms

that are detectable, but the upper limits are derived from those particular

waveforms. Since incoming waveforms may change in frequency, we examine the

detectability of such waveforms.

The main effect on detection efficiency comes from the particular choice of

frequency bins. With a purely monochromatic signal that falls into exactly one

frequency bin (e.g., 150 Hz), the clustering algorithm can recover all of the power

from the signal. With a signal between frequency bins (e.g., 149.5 Hz), half of the

signal power will be split between two bins. For this case, the clustering algorithm

will not recover all of the signal power: it will take a weighted average of the power

in the relevant pixels (if the clustering algorithm was changed to use all of the

power in the relevant pixels, more noise would also be included). Thus, for the

worst-case of signals exactly between frequency bins, only half of the signal power

will be recovered. This is borne out in studies of recovery efficiency.
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This same problem will occur for non-monochromatic signals. Even if they

begin exactly in one frequency bin, over time they change in frequency. If the

time it takes the signal to move between frequency bins is much smaller than the

attenuation time, we expect to recover about 75% of the injected power, regardless

of the starting frequency of the signal. On the other hand, monochromatic signals

would vary between 50% and 100% recovery, depending on how close the starting

frequency is to the center of a bin.

5.1.5. The Role of Randomness

At a cursory level, this search operates like any other: given a chunk of data,

the algorithm quantifies the amount of the desired signal, and compares this to

similar data segments where there is known to be no signal. But the random

nature of the cluster selection in this algorithm insert another layer of uncertainty.

The number of clusters searched over is an important parameter: generating

fewer clusters increases the chance of missing signal power, which increases the

likelihood of missing the signal. On the other hand, using too many clusters wastes

computation time.

We can start by making a rough estimate of the number of possible different

clusters. The Bézier curves are parameterized by three points: each having a

frequency and time value. Constraining these to be exactly centered on a pixel

in the time-frequency map (otherwise the number of possible clusters is infinite), we

find 8013 × 24503 ≈ 4 trillion. While this estimate neglects the constraints we’ve

placed on allowed clusters (minimum length and maximum change in frequency), it

clearly shows that we have no hope of exhaustively searching each and every one.
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The previous search for GWs from magnetars during Initial LIGO [53] used

30 million clusters, so we start by evaluating how well the pipeline performs with

that number of clusters. To see if this number is sufficient, we first look at the

distribution of cluster SNR for a background experiment, and one with an injection

added (the particular injection here is a ringdown at 150 Hz and a characteristic

time of 400 seconds; the injections are fully explained in Section 5.1.7). The results

are plotted in Figure 5.3. This injection is successfully recovered, but to ensure

that all similar injections would be recovered, we re-reun this experiment with

different seeds for the pseudo-random number generator (PRNG) that determines

the clusters. The result, plotted in figure 5.4, shows that the search is working

properly.

FIGURE 5.3. Histogram of the SNR of clusters for the STAMP search. Left: a
background experiment, right: with an injection added. Note the shoulder on the
right side of the distribution with the injection.
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FIGURE 5.4. Running the search on the same data with the same injection but
different PRNG seeds yields slightly different results. The mean SNR is 13.2,
with a standard deviation of 0.51. Searching over more clusters would tighten
this distribution, but require more computational time.

When it comes to estimating the background and sensitivity of the search,

the randomness complicates matters again. For each case, we run the search on

a chunk of data, either with or without an injection (each of these is considered

an ”experiment”). But since the particular clusters searched are determined by

a PRNG, changing the seed of the PRNG changes which clusters are searched.

Since we search a sufficient number of clusters, we know it cannot have a huge

effect on the search (i.e. we know all loud signals will be detected), but it can

change upper limits. However, as will be shown in Sections 5.1.6 and 5.1.7, since

the on-source is only run once (and thus with only one PRNG seed), we can solve
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these problems by choosing a particular PRNG seed for use in all background and

injection experiments.

5.1.6. Background Estimation

If we assume perfectly Gaussian noise in the detectors, it is relatively

straight forward to calculate the rate at which clusters with a particular SNR will

appear [63]. Unfortunately, the noise in the detectors is known to not be perfectly

Gaussian. Since we’re interested in calculating the expected rate of rare events

(strong signals), this precludes any confidence in such a calculation. Instead, we

will estimate the expected rate of false alarms by analyzing data in which we know

there are no GW signals.

In many searches, this is done by time slides. This process involves analyzing

not-quite-coincident data: if the data from Hanford was taken more than 10

milliseconds after the data from Livingstone, then there this cannot contain a

coincident GW signal. This is because the light travel time (and thus the GW

travel time, see Chapter II) is about 10 milliseconds. This makes it easy to generate

a huge amount of background data: take all of the data from each detector, slide by

15 milliseconds and analyze. Slide by another 15 milliseconds and repeat. With this

method, LIGO was able to push the false alarm rate for a GW150914-type event to

below 1 per 200,000 years [17].

However, since this search focuses on nearly-monochromatic signals, such

a strategy will not work. The signal may well be at the same frequency 15

milliseconds later, so the time slides could contain what appears to be a coincident

signal, caused by a real GW. Instead, we divide the background time into 33

separate segments, then use the data from different time segments in each detector.
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Thus there can be no contamination from real astrophysical signals, unless those

signals last significantly longer than 1600 seconds. Because the properties of the

noise tend to change over time, we calculate a separate background for each event.

These backgrounds, along with the SNR of the loudest cluster found during the

on-source, are plotted in Figure 5.5.

FIGURE 5.5. SNR distribution of the background (lines) and onsource result
(open circles) for each burst for the intermediate-duration search. As expected, the
background distributions are similar; since many background analyses give louder
SNR than the on-source, we conclude that no signal has been detected. Inset: a
detailed view of the on-source results.
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5.1.7. Injections and Upper Limits

In order to assess the sensitivity of this analysis pipeline, we add software

injections of the signal type that we are searching for. In this case, we do not

have an exact waveform, but we have a rough timescale (hundreds of seconds)

and frequency evolution (monochromatic). These waveforms do not determine the

signals that can be detected by this pipeline; the only constraints are on minimum

length (50 seconds) and change in frequency (10% of maximum frequency).

For the injections, we used two waveforms, half-sine Gaussians and ringdowns

(exponentially decaying sine waves), each at five frequencies (55, 150, 450, 750, and

1550 Hz) and two characteristic times (150 and 400 sec).

Since the search is computationally intensive and a large number of injections

are required to obtain good upper limits, we use an algorithm called Singletrack to

reduce the computation required. Instead of running the search on all 30 million

randomly selected clusters for every injection trial, we run the full search, with

fixed random seed, on only a small number for each waveform. From these runs, we

extract the most commonly selected clusters, and search on only these clusters in

order to obtain the upper limits.

To test the effectiveness of this strategy, we analyze the SNR recovered by

this method versus running the standard search. The results are plotted in Figure

5.6. Because this method requires searching over the same clusters in each injection

run, there is some concern that we may be anomalously (in)sensitive to a particular

injection because of the choice of seed. But as we saw in Section 5.1.5, we are

searching enough clusters that this effect should smaller than about 1 SNR. Note

that, by using the same random seed for the on-source search, we guarantee that

75



the results found by these injection studies are reflective of the on-source search’s

sensitivity.

FIGURE 5.6. Singletrack’s effectiveness in recovering injections.

In setting the upper limit, we seek to determine the minimum amplitude

signal that can be reliably recovered by this search. Here there are two terms to

define: “reliably” and “recovered.” Though there are many defensible choices, we

choose to define an injection as “recovered” if Singletrack produces more SNR

than the loudest on-source event. Using this definition, we can produce recovery

efficiency curves like Figure 5.7. As for “reliably”, searches in LIGO often report

recovery efficiency values of 50% or 90%. For this search, we use 50%.

5.1.8. Polarization

For a GW source on a particular point in the sky, how would the LIGO

detectors react to an incoming GW? The answer depends on the polarization of
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FIGURE 5.7. Recovery efficiency curve for one of the waveforms injected.

the waves. As discussed in Chapter 1, GWs come in two polarizations, + and ×.

For gravitational waves from the zenith, the detectors are very sensitive to +,

but completely insensitive to ×. Since this is a triggered search, we know the sky

location of any GWs, so we can calculate the sensitivity to both polarizations.

However, we do not know the polarization of the incoming GWs. If they are due

to an oscillating quadrupole, then they will be elliptically polarized, following the

equations (derived in Appendix A.1):

h+ =
h0

2
(1 + cos2 ι)

h× =h0 cos ι

(5.5)
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In addition, the SNR of each pixel is calculated using the cross power between

the two detectors. This results in a complicated expression for the relationship

between polarization and cross power. For elliptically polarized GWs, the result is

[60, Eq. A48]:

〈Ŷ
(
t; f, Ω̂, ι, ψ

)
〉 =2Re

[1

2

δff0
2Ns

(
F+
I F

+
J

[
A2

+ cos(2ψ)2 + A2
× sin(2ψ)2

]
+ F+

I F
×
J

[
(A2

+ − A2
×) cos(2ψ) sin(2ψ)− iA+A×

]
+ F×I F

+
J

[
(A2

+ − A2
×) cos(2ψ) sin(2ψ) + iA+A×

]
+ F×I F

×
J

[
A2

+ sin(2ψ)2 + A2
× cos(2ψ)2

])
e−2πif(Ω̂·∆~xIJ/c)Q̃IJ(t; f, Ω̂, ι, ψ)

]
(5.6)

The last two terms are the light travel time correction and the filter function

(which were discussed briefly above), respectively. It is instructive to plot this,

without taking the real part and sans filter function/travel time correction,

parametrically in the complex plane. Figure 5.8 shows the result for the sky

location of SGR 1806-20 during the February 25 short burst.

It may be surprising that the cross power usually has an imaginary

component. We can see that this is due to the fact that the detectors do not have

the same orientation: the imaginary part of the cross power is A+A×
(
F×I F

+
J −

F+
I F

×
J

)
, and thus will be zero if the detectors have the same orientation (and

therefore the same antenna functions). More concretely, this occurs because of two

effects: first, differing antenna functions mean that the two detectors will treat each

polarization differently, producing a different signal. Second, differing orientations

mean that they will not even agree on the definition of the polarizations. And
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FIGURE 5.8. Complex-valued cross power over all source polarizations for a GW
signal from SGR 1806-20 during the February 25 short burst. The units are the
fraction of power recovered compared to ideally oriented detectors and source
polarization. The differing orientations of the detectors mean that this plot will
never reach the ideal value of 1, instead approaching about 0.96.

because each detector produces a single scalar strain value, these disagreements

can not be untangled.

The broad range of magnitudes is also striking. Partly this is due to the

different antenna functions for the two polarizations, but a large effect is due

to the pattern of radiation from a quadrupole. As discussed in Chapter II, pure

quadrupolar radiation, analogously to the more familiar dipolar radiation of

electromagnetism, is not spherically symmetric in its power output. If the axis of
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rotation is pointed directly toward (or away from) Earth, we receive much more

GW energy than if the axis of rotation is perpendicular to our line of sight.

Now consider the effect of detector noise, filter function, and taking the real

part: detector noise is assumed to be uncorrelated, meaning that the phase of the

noise in each pixel should be random. The phase of the filter function, combined

with taking the real part, chooses which phase of the cross power to be understood

as possibly astrophysical. However, elliptically polarized signals present a problem:

the phase of the cross power depends on the polarization. Since this is not known,

we have no way to know which is the ideal filter function. And with a non-ideal

filter function we would be throwing away signal power, and thus SNR, reducing

the sensitivity of the search.

But without knowing the polarization of the incoming GWs, we cannot

know what the ideal filter function is. In fact, it is possible for the cross power to

have any complex phase, so no filter function can hope to recover waves with any

polarization. However, as shown in Figure 5.8, signals that result in a large amount

of cross power cluster around two phases. These phases can be deduced from the

cross power function plotted. The ends of the boomerang occurs at ι = 0, π: this

must be the case because changing the angle ψ can only change the real part, but

changes nothing at ι = 0, π besides the initial phase. Taking ι = 0 in Equation 5.6,

A+ = A× = h0, so we find:

〈Ŷ
(
t; f, Ω̂, ι, ψ

)
〉 =2h2

0Re
[1

2

δff0
2Ns

(
F+
I F

+
J − iF+

I F
×
J + iF×I F

+
J + F×I F

×
J

)
e−2πif(Ω̂·∆~xIJ/c)Q̃IJ(t; f, Ω̂, ι, ψ)

] (5.7)

The phase is then:
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φ = arctan
(F×I F+

J − F+
I F

×
J

F+
I F

+
J + F×I F

×
J

)
(5.8)

For ι = π, this changes by an overall sign.

In light of this analysis, we must re-evaluate the choice of filter function.

Following other analyses using this software pipeline, we chose the unpolarized

filter function, taking only the real part (as illustrated in Figure 5.8). Instead of

choosing this middle ground, we could instead run the analysis twice, running along

the phases calculated above. However, this approach suffers from two problems

that reduces its efficacy: first, this will increase the noise. Second, it produces

the greatest gains when the antenna factors are poor and the chances of making

detections are lowest. So for this analysis, the unpolarized filter functions will be

used.

5.2. X-Pipeline

X-Pipeline is a software package designed to search for short-duration

gravitational wave signals in multiple detectors, and includes automatic glitch

rejection, background calculation, and software injection processing (for details,

see [54]). It forms coherent combinations from multiple detectors, thus making it

relatively insensitive to non-GW signals, such as instrumental artifacts. X-Pipeline

is used primarily to search for GWs coincident with γ-ray bursts (GRBs), but is

suitable for any short-duration coherent search.

X-Pipeline takes a likelihood approach to estimating the GW energy found

in each time-frequency pixel. It models the data collected at the detectors as

a combination of signal and detector noise, then uses a maximum likelihood

technique to calculate the estimated GW signal power in each time-frequency pixel.
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For clustering, X-Pipeline selects the loudest 1% of pixels and connects

neighboring pixels. Each connected group is a cluster, and the clusters are scored

based on the likelihood described in the previous paragraph. We want to pick the

time length of the pixels in the time-frequency map so that signal is present in the

smallest number of time-frequency pixels, as this will recover the signal with the

highest likelihood. Since we do not have a model for the waveform we are searching

for, we use multiple pixel lengths and run the clustering algorithm on all of them.

After clusters are identified, X-Pipeline identifies which candidate clusters are

likely glitches by comparing three measurements of signal energy: coherent energy

consistent with GWs, coherent energy inconsistent with GWs, and sum of the

signal energy in all detectors (referred to as incoherent energy). GW signals can

be differentiated from noise by the ratio of coherent energy inconsistent with GWs

to the incoherent energy (see Sections 2.6 and 3.4 of [54] for full details).

The primary target of this search are GWs produced from the excitation of

the magnetar’s fundamental mode, which are primarily dampened by the emission

of GWs [64, 65]. We have chosen parameters for X-Pipeline to search for signals

a few hundred milliseconds long. The search window begins 4 seconds before the

γ-rays arrive and ends 4 seconds after. The frequency range for the short-duration

search is 64–4000 Hz, and the pixel lengths are every factor of 2 between 2 s and

1/128 s, inclusive.

5.3. Results and Upper Limits

No signals were found by either the short- or intermediate-duration searches.

We present the results and upper limits on GW strain and energy for each analysis

below.
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5.3.1. Short-Duration Search Upper Limits

No significant signal was found by X-Pipeline. After glitch rejection, the most

significant cluster for the February 25 burst had a p-value of 0.63.

Following the previous f-mode search [35], we injected white noise bursts

(frequencies: 100–200 Hz and 100–1000 Hz; durations: 11 ms and 100 ms), and

ringdowns (damped sinusoids, at frequencies: 1500 Hz and 2500 Hz; time constants:

100 ms and 200 ms), and chirplets (chirping sine-Gaussians; this differs from the

prior search, which used sine-Gaussians). The best limits for the white noise bursts

were for the 11 ms long bursts in the 100–200 Hz band, at 2.1 × 1044 erg in total

isotropic energy and hrss (root sum squared of the GW strain) of 5.6 × 10−23 at

the detectors. We are most sensitive to ringdowns at 1500 Hz and a time constant

of 100 ms, with an upper limit of 2.3 × 1047 erg and hrss of 1.9 × 10−22. Directly

comparing the hrss limits to [57], we see that limits have improved by roughly

a factor of 10, though the ringdowns we used had slightly different parameters.

Comparing to [35], which provided only energy upper limits assuming a distance

of 3.6 Mpc, we see an improvement of factor of 60 after correcting for the larger

distance. This corresponds to roughly a factor of 8 improvement in hrss limits. A

full list of upper limits for the waveforms tested is found in Table 5.2.

5.3.2. Intermediate-Duration Search Upper Limits

To calculate upper limits, we add software injections of two waveforms (half-

sine Gaussians and exponentially decaying sinusoids) at five frequencies (55, 150,

450, 750, and 1550 Hz) and at two timescales (150 seconds and 400 seconds).

Reported upper limits are for 50% recovery efficiency, where recovery is defined as

finding a cluster, at the same time and frequency as the injection, with SNR greater
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Injection Type Frequency (Hz) Duration/ hrss Energy (erg)
τ (ms)

chirplet 100 10 5.42× 10−23 8.49× 1043

chirplet 150 6.667 4.93× 10−23 1.58× 1044

chirplet 300 3.333 5.29× 10−23 7.27× 1044

chirplet 1000 1 1.15× 10−22 3.82× 1046

chirplet 1500 0.6667 1.69× 10−22 1.81× 1047

chirplet 2000 0.5 2.32× 10−22 5.92× 1047

chirplet 2500 0.4 3.06× 10−22 1.56× 1048

chirplet 3000 0.3333 3.96× 10−22 3.65× 1048

chirplet 3500 0.2857 5.30× 10−22 8.51× 1048

white noise burst 100–200 11 5.57× 10−23 2.09× 1044

white noise burst 100–200 100 7.88× 10−23 4.15× 1044

white noise burst 100–1000 11 1.00× 10−22 1.04× 1046

white noise burst 100–1000 100 1.83× 10−22 3.55× 1046

ringdown 1500 200 1.89× 10−22 2.25× 1047

ringdown 2500 200 2.87× 10−22 1.37× 1048

ringdown 1500 100 1.89× 10−22 2.25× 1047

ringdown 2500 100 2.80× 10−22 1.30× 1048

TABLE 5.2. Upper limits on isotropic energy from the short-duration search for the
February 25 burst from SGR 1806-20. For white noise bursts, we give the duration
of the injection; for the other waveforms, the characteristic time. All limits are
given at 50% detection efficiency, meaning that a signal with the given parameters
would be detected 50% of the time.

than that of the on-source (for the February 25 event, it was 6.09). Full results are

shown in Table 5.3.

Due to the improved sensitivity of Advanced LIGO, we are able to set

strain upper limits about a factor of 10 lower than the previous search during

Initial LIGO [1], see Fig. 5.9. Unlike the previous search, this search showed little

difference in hrss sensitivity between the two injection lengths. STAMP has been

refined to improve PSD estimation, which explains the small gap between the

injection timescales for this search.
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FIGURE 5.9. Upper limits for the the intermediate-duration search (above) and
short-duration search (below), along with the sensitivity of the detectors. We plot
hrss at 90% detection efficiency for the intermediate-duration search here to allow
direct comparison to published figures for the previous search in Initial LIGO [1].
Short-duration limits are for 50% efficiency as before. The Advanced LIGO search
limits are for the February 25 burst from SGR 1806-20 during the second observing
run, and detector sensitivity is calculated from data during the analysis window.
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5.4. Astrophysical Implications

This search has set the strongest upper limits on short- and intermediate-

duration GW emission associated with magnetar bursts. The energy limits, which

are as low as 1044–1047 erg, are now well below the EM energy scale of magnetar

giant flares (1046 erg). The short bursts analyzed here were much weaker than

a giant flare (see Table 5.1), so for these bursts the limit is much larger than the

observed electromagnetic energy. In addition, these limits assume ideal orientation

of the magnetar (both sky position and polarization of produced GWs). The

impact of other polarizations on the intermediate-duration search are discussed

above, and plotted in Figure 5.10.

The upper limits set by this search are still far above the GW energy from

f-mode excitation during a giant flare according to [46], unless the magnetic field

strength is far higher than currently accepted value of 2 × 1015 G [2]. Using

Equation 2 from [46], f-mode GW emission from a giant flare would be about

1.4 × 1038 erg. A surface magnetic field of 1.8 × 1016 G would be required to reach

the best upper limit found with the short-duration source.

As the LIGO detectors increase in sensitivity, these upper limits will improve,

and will be well-positioned to place meaningful limits on emitted GW energy in

the event of a future nearby magnetar giant flare. For reference, the distances to

some nearby magnetars are shown in Table 5.4. Analysis of GW waveforms from

magnetar would give great insight into the inner workings of both magnetars and

neutron stars in general.

Thanks to the detection of the merger of two neutron stars in GW170817,

the study of neutron stars through GWs has already begun. From the nature of

neutron star in equilibrium to its behavior during cataclysmic merger events, the

87



FIGURE 5.10. Minimum detectable energy for the intermediate-duration search vs
distance for SGR 1806-20 for varied sky locations and GW polarizations at 55 Hz.
The lines show how the variation in sky position (caused by the earth’s rotation)
and polarization (assumed to be random) affects the sensitivity; the purple 95th
percentile line indicates that the network sensitivity will be better than indicated
by that line only 5% of the time. The shaded region indicates the sensitivity to
GW energy from the burst on February 25. Here, the uncertainty is only due to the
unknown polarization.
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Magnetar Distance (kpc)

Swift J1822.31606 1.6
SGR 0418+5729 2
SGR 0501+4516 2

1E 2259+586 3.2
XTE J1810197 3.5

4U 0142+61 3.64
1RXS J170849.0400910 3.8
CXOU J164710.2455216 3.9

Swift J1834.90846 4.2
1E 1547.05408 4.5

TABLE 5.4. List of all magnetars within 5 kpc of Earth, along with their
distances. SGR 1806-20 is 8.7 kpc from Earth. All data from [2]

window is already being opened. This work, as well as ways that the searches

outlined in this chapter can be adapted for the case of BNS merger events, is the

topic of the next chapter.
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CHAPTER VI

GW170817 AND THE PROSPECT OF DETECTING POST-MERGER SIGNALS

This chapter contains material from an upcoming paper, co-authored with

Michael Coughlin, Scott Coughlin, James A. Clark, and Andres Bauswein, titled

“The missing components: boosting the sensitivity of post-merger gravitational-

wave searches using principal component analysis.”

On August 17, 2017, the inspiral and coalescence of two neutron stars was

detected for the first time [8]. The neutron stars were between 1.17 and 1.6 M�,

with total mass of 2.74 M�, and at a distance of 40+8
−14Mpc. The merger was

followed by GRB 170817A 1.7 seconds later, ushering in the era of multi-messenger

gravitational wave astronomy.

The detection was complicated by a large glitch which occurred in the

Livingston detector during the inspiral phase (and before the merger). This caused

online searches to veto the event from that interferometer, but the Hanford data

showed a clear signal. Initial data analysis efforts dealt with the glitch through

gating, where the data during the glitch time is set to zero (with windowing on

either side so as to not introduce large artifacts from the gating). Later, a team

used a Bayesian inference software package called BayesWave [66] to reconstruct

the Livingston data without the glitch. This cleaned data was then used for all

published results, and will be used in the next section.

In Section 6.1, we show how the GW signal for this event can be recovered

by adapting the STAMP search algorithm discussed in Chapter V. The rest of

the chapter covers the possibility of a GW signal produced after the merger of

two neutron stars: In Section 6.2, we discuss the current understanding of post-

merger astrophysics, expectations for GW signals, and a recent paper purporting to
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have found such a signal following GW170817. In Section 6.3, we explain how the

STAMP search can be adapted for such signals and we find no such post-merger

signal in the data. Finally, Section 6.4 explores an adaptation of the X-Pipeline

software package designed to search for post-merger signals.

6.1. Detection of the GW Signal

The two best pipelines for CBC analysis recovered a signal roughly 60 seconds

long [8], making this signal long enough to be visible to STAMP. To tailor the

search to a BNS-type signal, a few adjustments were needed.

Since the signal length is shorter than for the magnetar intermediate duration

search, the time-frequency pixels should be shorter. We chose to use 1 second long

pixels, still with an overlap of 50% (down from 4 seconds).

To determine the ideal frequency range, we consider the signal morphology

of a BNS signal: as the inspiral progresses, the frequency increases as the orbit

shrinks. With smaller orbits, the GW luminosity increases which further increases

the rate of orbital decay. The result is that little signal energy is emitted at higher

frequency. So, while parameter estimation pipelines estimated a peak frequency

around 3 kHz, little signal energy is found over 300 Hz. In addition, because the

signal frequency increases very quickly, the signal power will be spread among

many time-frequency pixels, making it difficult for STAMP to find. So, we set the

maximum frequency at 300 Hz.

Next we must consider where to set the low frequency limit. Going back in

time from the merger, the signal extends down to essentially zero frequency, though

the signal weakens and the detector sensitivity worsens. Still, the signal is clearly

visible in spectrograms to at least 40 Hz, so we set the lower limit to 30 Hz.
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Finally, we ran the search using clusters modeled for signals from compact

binary coalescences (“CBC clusters”) in addition to the randomly selected Bézier

curves. The SNR time-frequency map, both with the glitch and with the glitch

removed, can be found in Figure 6.1.

The CBC clusters recovered the signal with an SNR of 19.0, while the

Bézier clusters found a loudest cluster with an SNR of 13.2. By treating this as a

triggered search on GRB 170817A, we can estimate the background in the same

way as for the magnetar search. Out of 1,000 background experiments, the loudest

background cluster found for the CBC clusters and Bézier clusters was 7.3 and

9.0, respectively. Since this is far lower than the on-source, we can conclude that

the data contains a real signal, with a false alarm probability1 of under 0.1%.

Running more background experiments would decrease the false-alarm probability,

but since searches designed for CBC signals have already proven this signal to be

astrophysical, there is little motivation to use more computational resources to do

so. Plots of the backgrounds, compared with the on-source recovery, are shown in

Figure 6.2.

6.2. Post-Merger Astrophysics

With Binary Black Hole mergers (BBHs), the post merger physics is relatively

straight-forward: the two black holes merge into a larger one, releasing a huge burst

of GWs. Barring any unforeseen effects from quantum gravity no light can escape,

which is consistent with the BBH observations so far. What is left is an isolated

black hole, with properties dictated by general relativistic conservation laws.

1We define ‘false alarm probability’ as the probability that a segment of data with no GW
signal will be assigned an SNR louder than the loudest background experiment.
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FIGURE 6.1. SNR maps for GW170817. Above: before data cleaning. Below:
with glitch removal via BayesWave. Even before glitch removal, the signal is
recovered with SNR of 11, well above the loudest background.
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FIGURE 6.2. Comparison of the recovery of GW170817 with STAMP to
background.
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Neutron star mergers are not as simple. Unlike black holes, which are point-

like singularities, neutron stars are extended in space and are, at some level,

“squishy.” Late in the inspiral phase, the tidal forces on each neutron star causes

them to deform slightly (see [67] for estimation of this effect on GW170817).

Furthermore, the end result of the merger is not clear. If the mass is large enough,

a prompt collapse to a black hole is expected, but the amount of mass required

is not known precisely. Stable, non-spinning neutron stars are supported against

further gravitational collapse by the strong nuclear force, but this is only feasible

up to some mass limit, called the Tolmann-Oppenheimer-Volkoff (TOV) limit.

Above that limit, the gravitational force dominates and collapse to a black hole

cannot be avoided. The primary factor in determining the exact value of the TOV

limit is the neutron star Equation of State (EoS), the relationship between density

and pressure. A “soft” EoS is one where neutron star matter is very compressible

(the density increases quickly with increasing pressure) and would result in a lower

maximum neutron star mass. Though the exact value of the TOV limit is not

currently known, two neutron stars above 2 M� have been observed [68, 69], setting

the lower limit.

The question of whether the remnant is above the TOV limit is not the end

of the story, however. In addition to the support provided by neutron star pressure,

centrifugal force provided by rotation and forces due to differential rotation can

also protect against collapse. This allows for the possibility of supramassive neutron

stars—those with a mass larger than the limit for non-rotating neutron stars—as

the product of the merger. The evolution of these objects is a subject of current

research, and will be further discussed below.
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Another effect expected from BNS mergers is the ejection of some neutron

star material. This happens due to two effects: first, the tidal forces cause some

material to be thrown from the stars and form an accretion disk. Second, the

collision of the surfaces of the two neutron stars can cause some matter to be

ejected [70]. The huge flux of free neutrons allows the production of heavy

elements (those heavier than iron) through the rapid neutron capture process (or

r-process) [71]. This occurs when neutron capture happens more quickly than other

radioactive processes which would ordinarily result in fission or α-particle emission.

The ejecta cools from the expansion, though it is also heated by the radioactive

decay from the r-process nuclei and possibly the remnant star (if it is not a black

hole). This bubble of matter, predicted to be visible at optical wavelengths for

days after a merger as an afterglow, was observed after GW170817. At first it

was dominated by blue to UV wavelengths [72], but rapidly shifted to red and IR

[73]. Using these observations, combined with estimates of the total mass and GRB

energy, [70] estimated that the TOV limit is about 2.17 M�.

6.2.1. Short GRBs

High energy γ-ray bursts (GRBs) have been observed for many years,

generally falling into two categories: long GRBs, which last longer than 2 seconds

and are thought to be caused by supernovae, and short GRBs (SGRBs), which

are shorter than 2 seconds and are strongly believed to come from BNS or NS-

BH mergers. SGRBs begin suddenly, which points to a highly compact source.

While they have a short peak, some SGRBs have a longer tail lasting ∼ 100

seconds, pointing towards a continued source of energy. Since black holes cannot
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emit energy, this suggests that the result of the BNS merger does not immediately

collapse to a black hole in all cases.

Instead, the two neutron stars might merge together to form a supra-massive

neutron star, supported from further gravitational collapse by its rapid rotation.

This star could continually provide energy to the cloud of matter surrounding

it, producing the extended emission tails and x-ray plateaus seen in some short

GRBs [74]. The total mass of the binary that produced GW170817 was 2.74 M�

[8]. which is likely above the TOV limit2. Thus the remnant would require some

mechanism other than neutron degeneracy pressure in order to remain stable, like

the centrifugal force provided by rapid rotation.

6.2.2. Magnetars From BNS Mergers

One possible intermediate object is a millisecond magnetar, with a magnetic

field strength ∼ 1015 G [76]. While all magnetars currently known have rotational

periods of 2–12 seconds, a millisecond magnetar would rotate on a timescale of

milliseconds. To explain the slow and uniform rotation rate of galactic magnetars,

scientists have proposed that a highly effective braking mechanism slows their

rotation shortly after birth.

Stable neutron stars above the TOV limit fall into two categories:

hypermassive and supramassive. The more massive of the two categories,

hypermassive neutron stars, are supported by differential rotation. They are

expected to collapse quickly, as the differential rotation is halted by internal forces.

Supramassive neutron stars, on the other hand, are supported by the centrifugal

force caused by their rotation, which is uniform. However, like all neutron stars,

2Most EoS models place the TOV limit close to 2 M�[75]
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they would have a rotating magnetic field that would slow the rotation rate

through magnetic torque. Once the rotation slows to the point that the centrifugal

force can no longer support the weight of the star, it collapses. This is likely to

happen within about 12 hours, and may emit GWs before doing so [77].

6.3. Post-Merger Signals

There has been much work on models of post-merger GW emission as well as

searches for such signals. The LVC paper found no signal [78]. However, there was

a paper published that purported to find a signal in the data that the LVC released

to the public [79] (hereafter vP-DV). In particular, the paper reported the existence

of an anti-chirping signal, which was used to explain the central engine of the GRB

that occurred shortly after the BNS merger.

Just as we adapted STAMP to search for the BNS signal, we can do the same

for this signal. The SNR map produced by STAMP starting just before the merger

is shown in Figure 6.3. Here, unlike the magnetar search, we have a short window

and strong priors on the waveform provided by vP-DV: We search for waveforms

of the form f(t) = (fmax − f0)e−αt + f0. In addition to the three parameters

shown in the equation (α, f0, fmax), we vary the start time and the length of the

cluster. Varying the length of the cluster is necessary to recover the maximum

SNR: including pixels after the signal has decreased too far will decrease the SNR

of the cluster. As for the values of the parameters, we have a strong prior on the

start time: vP-DV’s theory requires that the anti-chirp begins before the GRB,

giving a 1.7 second window.

Furthermore, vP-DV reported the exact parameters of their recovered signal.

In attempting to verify this signal, we search for both this particular cluster as well
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FIGURE 6.3. SNR time-frequency map, with 1/8 sec pixels, starting just before
the merger of GW170817. The end of the inspiral is visible at the start of the
window, beginning at about 200 Hz. No post-merger signal is apparent, and
STAMP confirms that none is present.

as clusters of the same form with different parameters. The parameters searched

over are noted in Table 6.1.

f0 fmax α tstart

vP-DV 98 650 0.33 1.1
Narrow 92–104 640–650 0.31–0.35 0.75–1.5
Broad 92–200 500–800 0.1–1 0–2

TABLE 6.1. Parameters of antichirp signal searched over. ‘Narrow’ matches the
signal reported by vP-DV, while ‘Broad’ is over a range of similar waveforms
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In addition to searching for this specific signal, we also searched for general

narrowband signals by searching over Bézier curves in the same timescale. Neither

study found evidence of any signal following GW170817.

6.3.1. Setting Upper Limits

The purported signal discovered by vP-DV had an energy of 0.002 M�c
2

assuming a distance of 40 Mpc. Calculations of an ideal matched filter indicate that

such a weak signal is not detectable using any means; even when using the optimal

matched filter and setting a lower threshold for detection, the lowest amount

of energy that could possibly be detected is 0.015 M�c
2 [80]. Given that vP-

DV’s model does not provide an exact waveform with which one could perform a

matched filter search, even this limit is impossible to reach. He does, however, give

enough information for us to calculate an upper limit on the predicted emission

using STAMP.

We produced injections that followed the signal morphology of the vP-DV

waveform, adapting code provided by the authors of [80]. This model assumes GW

emission from a quadrupole (as in Appendix A.1) whose characteristics aside from

rotational velocity do not change. An example of such an injection added to LIGO

data is shown in Figure 6.4.

To calculate upper limits, we follow the same procedure outline in Chapter

V. We place upper limits on both the existence of any antichirping signal as well

as the antichirp with the parameters reported in [79]. Since we injected only

that waveform, the difference here is the threshold SNR: the loudest antichirping

cluster in the on-source was found to be 4.32, so that is the threshold for the

general antichirp. But the loudest antichirp cluster with the particular parameters
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FIGURE 6.4. SNR time-frequency map, with 1/8 sec long pixels, of LIGO data
with an antichirp injection added. The injection starts just before 1 second at 650
Hz.

from [79], was 1.70. The fact that this SNR is lower than the general case is a

restatement of the principal finding: the signal purported by [79] is not recovered

by this search.

The injection study finds that the minimum detectable energy for this search

(at 50% recovery efficiency) is 4.1 × 1052 erg and 1.2 × 1053 erg for narrow and

broad search parameters, respectively. In solar masses, this is 0.023 M�c
2 and

0.0955 M�c
2. As expected, these energies are both larger than the minimum energy

detectable by an ideal matched filter search.
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6.4. X-Pipeline with PCA

In the standard configuration of X-Pipeline (see Chapter V, for example),

only the loudest few pixels are utilized. However, many waveforms have power

spread across multiple frequencies, so the standard approach may throw away signal

as well as noise. For such waveforms that are well-defined, a matched filtering

approach is preferred. On the other hand, there are some waveform families that

are not tightly constrained, yielding too many similar waveforms for a matched

filter to be feasible. Thus a middle ground approach can bring better results. Post-

merger signals from BNS systems fall into this category: as discussed above, there

are a number of different models for predicting the resulting GW signal, but usually

they require parameters that are currently unknown (such as the neutron star

equation of state).

For this analysis, we first obtain a catalog of waveforms, made from a set of

simulations. The spectrograms of the waveforms are decomposed, using principle

component analysis, into basis spectrograms3. However, since the goal of this search

is to find evidence for a signal (rather than source characterization), we only keep

the first principle component. This component will be shared by all waveforms in

the catalog. Later components would be able to differentiate between waveforms,

but that task only matters once a detection is confirmed.

We then use X-Pipeline to convolve this principle component spectrogram

over the time-frequency map, reporting the time and peak frequency at which they

have the greatest overlap. An example of an injected signal compared with the

principle component spectrogram is shown in Figure 6.5.

3Each input waveform has a well-defined peak frequency. Before deconomposition, each
waveform is aligned to the same peak frequency. During the search, this value is varied.
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FIGURE 6.5. Injected signal (upper left), compared to the signal reconstructed
using the PCA method (upper right). This signal was constructed with the BHBLP
equation of state. The lower left plot shows how the SNR recovered depends on the
central frequency and the first PCA component. In the lower right, we compare the
sensitivity of the PCA search to traditional X-Pipeline
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The performance of this method varies slightly with different models, usually

performing slightly better than traditional X-Pipeline. Some waveforms do not

match the first principle component as well (e.g., the waveform shown in Figure

6.5). Though the reconstruction does not match the signal as well as the signal in

Figure 6.6, the PCA algorithm performs very well on it.

FIGURE 6.6. Same plots as in Figure 6.5 for the NL3 EoS.

Future work will extend the search to include more PCA components. Using

templates that adhere more closely to the actual signal will boost SNR, though the

additional degree of freedom may increase the background as well. The additional

computational resources needed may require a coarser-grained search over PCA

parameters, which would could also limit sensitivity.
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CHAPTER VII

CONCLUSION

In the study of neutron stars, gravitational waves are invaluable. Analyses

of GW170817 have already constrained models of the neutron star equation of

state, verified theories about r-process nucleosynthesis, and contributed to our

understanding of cosmology through estimates of neutron star binary populations

and measurement of the Hubble parameter [20].

Gravitational waves from isolated neutron stars may be next. Though

of much lower energy, signals from isolated neutron stars will be extremely

informative. Current observations of neutron stars are limited to the

electromagnetic spectrum, leaving the interior inaccessible to direct measurement.

Gravitational waves have no such limitation. Any oscillations, provided that

they are not axially symmetric, produce gravitational radiation which cannot be

absorbed in the way light can.

The greatest challenge at the present is the detection of GWs. Even the

strongest sources from the most cataclysmic processes result in only the tiniest

of ripples in spacetime. To detect any GWs at all required a herculean effort by

many scientists over many years. This dissertation covered a few more steps toward

better gravitational wave astronomy.

7.1. The Search

The searches described here concern neutron stars, emitting gravitational

radiation through three very different mechanisms. First, we explored GWs from

isolated galactic magnetars, produced in conjunction with the transient bursting
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activity characteristic of SGRs. Because of the uncertainty in the mechanism and

mechanics of SGR bursts, we cast a broad net and used two separate analysis

pipelines: X-Pipeline, designed for short-duration signals, and STAMP, targeted

to intermediate-duration ones. Though no signal was detected, this search placed

new limits on the GW power associated with those bursts.

Second, we showed that GW170817, caused by the merger of two neutron

stars, can be found with an adaptation of the STAMP search. Analyses specifically

designed for BNS signals produced better recoveries, but this analysis reinforces the

flexibility and reliability of STAMP.

Finally, we examined the possibility of a post-merger signal from the object

leftover after GW170817, and discussed the development of a new semi-modeled

search for these GWs. Here we relied on principle component analysis to extract

characteristics that multiple numerical models had in common. The technique

offers improvement over currently-used methods.

7.2. Looking to the Future

It is currently an exciting time for LIGO, gravitational wave astronomy,

and more broadly, time-domain astronomy. Strain sensitivity will soon reach a

level where detections are routine, and new gravitational wave sources may be

just around the corner. As more GW detectors operate for more and more time

at greater and greater sensitivities, more secrets of the universe will be unlocked.

Magnetar giant flares, galactic supernovae,a and other rare phenomena will be

studied in great detail with GWs.

Sir Isaac Newton famously said “If I have seen further it is by standing on

the shoulders of Giants.” Nowhere is this more evident than in gravitational-
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wave astronomy. All of the work in this dissertation was only possible because of

contributions to the field from thousands of people: from the origins of the field to

the construction of the instruments and software tools and many thankless tasks. It

is my hope that this work will allow others to see a little further.
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APPENDIX

OTHER DERIVATIONS

A.1. GW emission from a quadrupole

Consider the case of a rotating system where all mass is confined to a single

axis, e.g. a rotating rod or a binary star system. Assuming the system rotates in

the x − y plane and defining t = 0 as a time when all mass is lined up along the

x-axis, the quadrupole moment tensor is:

Ijk = I


cos2(ωt) sin(ωt) cos(ωt) 0

sin(ωt) cos(ωt) sin2(ωt) 0

0 0 0

 (A.1)

where the system is rotating with frequency ω, and I is the moment of inertia

for the system. For an observer whose line of sight to the source forms angle ι with

the source’s z-axis, the transverse traceless part of this is:

ITTjk = PjlIlmPmk −
1

2
Pjk
(
PlmIml

)
(A.2)

where Pjk = δjk − nlnm is the projection operator when nm is the unit

vector pointing from the observer to the source. Confining our observer to y = 0

for simplicity, nm = (− sin ι, 0, cos ι), so the projection operator is:

Pjk =


cos2 ι 0 cos ι sin ι

0 1 0

cos ι sin ι 0 sin ι

 (A.3)
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So then,

PjkIkl =I


cos2 ι 0 cos ι sin ι

0 1 0

cos ι sin ι 0 sin2 ι




cos2 ωt sinωt cosωt 0

sinωt cosωt sin2 ωt 0

0 0 0



=I


cos2 ι cos2 ωt cos2 ι cosωt sinωt 0

sinωt cosωt sin2 ωt 0

cos ι sin ι cos2 ωt cos ι sin ι sinωt cosωt 0


(A.4)

Thus PlmIml = I
(

cos2 ι cos2 ωt+ sin2 ωt
)
. And,

PjlIlmPmk = Mr2


cos4 ι cos2(ωt) cos2 ι cos(ωt) sin(ωt) sin ι cos3 ι cos2 ωt

cos2 ι sin(ωt) cos(ωt) sin2(ωt) sin ι cos ι sinωt cosωt

cos3 ι sin ι cos2(ωt) cos ι sin ι sin(ωt) cos(ωt) cos2 ι sin2 ι cos2 ωt


(A.5)

The other term is:

−1

2
Pjk
(
PlmIml

)
= −1

2

(
cos2 ι cos2(ωt) + sin2(ωt)

)


cos2 ι 0 cos ι sin ι

0 1 0

cos ι sin ι 0 sin2 ι

 (A.6)

Then we calculate ITT , and rotate it with the rotation matrix:

R =


cos ι 0 − sin ι

0 1 0

sin ι 0 cos ι

 (A.7)

109



After doing all of that math, we find that h+ = stuff ∗ 1
2

(
1 + cos2 ι

)
and

h× = stuff ∗ cos ι. With an assist from Mathematica, we find:

hTTjk =
2

r

G

c4
¨Ī
TT

jk

=
2

r

G

c4

d2

dt2

[
R−1

(
PjlIlmPmk −

1

2
Pjk
(
PlmIml

))
R
]

=
8G

c4

Iω2

2

1

r


1
2

cos(2ωt)
(
1 + cos2 ι) sin(2ωt) cos ι 0

sin(2ωt) cos ι −1
2

cos(2ωt)
(
1 + cos2 ι) 0

0 0 0


(A.8)

In the last line, we have divided up the prefactor into groups to show the

logic of the equation: the physical constants, rotational energy, and the factor

of 1
r

which shows that this is radiation. Note that this equation is only true for

the quadrupole tensor outlined above, and does not hold when there is additional

spherical symmetry (for example, a rotating neutron star with a mountain).
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[23] JE Trümper et al. The puzzles of RX J1856.5–3754: neutron star or quark star?
Nuclear Physics B-Proceedings Supplements, 132:560–565, 2004.

[24] F Curtis Michel. Theory of neutron star magnetospheres. University of Chicago
Press, 1991.

112
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