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DISSERTATION ABSTRACT 
 
Huiying Ji 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
March 2019 

Title: Local Nucleic Acid Base Conformation Study by Guanine Fluorescent Analogue 6-
Methyl Isoxanthopterin (6-MI) Labeled DNA 

Understanding the local conformations of DNA at the level of individual nucleic acid 

bases is important for the study of the mechanism of DNA sequence-dependent behavior. 

Here we apply linear absorption, circular dichroism (CD), and fluorescence spectroscopy 

to study the DNA local base conformation using 6-methyl Isoxanthopterin (6-MI) labeled 

DNA. We interpret excitation–emission peak shift (EES) measurements of the 6-MI, both 

as a ribonucleotide monophosphate in solution and as a site-specific substituent for guanine 

in various DNA constructs, by implementing a simple two-state model. We show that the 

spectroscopic properties of the 6-MI probe in DNA can be used to obtain detailed 

information about local base conformations and conformational heterogeneity and 

fluctuations. Based on these findings, we apply a simple theoretical model to calculate CD 

of 6-MI substituted DNA constructs. We find that our model can be used to extract base-

sequence-dependent information about the local conformation of the 6-MI probe as 

modulated by the local base or base-pair environment. We next apply 6-MI to probe the 

ligand insertion of small molecules to duplex DNA, further extending the potential of 6-

MI as a useful reporter of local nucleic acid base conformation. These studies served to 

establish a new level of sophistication in qualitatively analyzing 6-MI structural behavior 

in terms of local base stacking and unstacking conformations. 
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CHAPTER I 

INTRODUCTION 

 

Deoxyribonucleic acid (DNA) carries genetic information that instructs and 

regulates genome expression. Fundamental gene regulational processes such as DNA 

replication, repair, and transcription all require precise reading and transferring of genetic 

information from DNA. Such biological information is encoded in the sequence of 

nucleotides and can be accessed by DNA-binding proteins.  Since genetically coded base 

sequences are located 'inside' the DNA duplex, proteins that read-out base sequences 

must somehow access the DNA "interior". The accessibility of information from the 

DNA “interior” is facilitated by DNA “breathing”, i.e. thermally driven DNA structural 

fluctuations at physiological temperatures that temporarily open up duplex DNA. 1–4  

How do we understand the sequence-dependent behavior of DNA dynamics and 

conformational heterogeneity? How are DNA-protein interactions achieved with such 

precision? What is the mechanism of recognition of a specific sequence? To begin to 

answer these questions requires knowledge of the local conformations of DNA at the 

level of individual nucleic acid bases. 

Spectroscopy provides powerful tools to study conformations of DNA with 

instantaneous response and non-intrusive measurement during biological processes. 

However, overlapping spectral features across nucleic acid bases often hinder 

spectroscopic measurements that attempt to sensitively examine specific sites in DNA. 

To overcome this issue, fluorescent nucleic acid base analogues, which can be site-

specifically substituted for natural bases, are often utilized to allow direct observation of 

regions of interests. 1–3,5,6 
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This work focuses on the study of DNA local base conformation using 6-methyl 

Isoxanthopterin (6-MI) labeled DNA. 6-MI is a fluorescent guanine analogue that can 

serve as a sensitive reporter of DNA conformational changes at its labeled site. 6-MI 

structure is shown in Figure 1.1. 6-MI absorbs at a wavelength region that is transparent 

for canonical DNA bases and amino acids. 6-MI maintains hydrogen bonds with 

complementary cytosine. Depending on the flanking bases, its spectroscopic properties 

such as fluorescence, absorption and circular dichroism (CD) can be extremely sensitive 

to its local conformation and other environmental factors 5,7,8.  

 

In this work, I expanded upon the application possibilities of 6-MI as a 

fluorescent base analogue, and set important foundations for future research. By site-

specifically positioning the 6-MI probe within DNA, my co-workers and I have 

demonstrated how one might extract base-sequence-dependent information about the 

local conformation of the 6-MI probe as modulated by the local base or base-pair 

environment.  

We examined the conformational heterogeneity of 6-MI in various sequence 

contexts of duplex and ssDNA constructs. We gained more comprehensive understanding 

 
Figure 1.1: The structure of (A) guanine/cytosine base pair and (B) 6-MI/cytosine base 
pair. Structural differences between guanine and 6-MI are emphasized in red.  
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of 6-MI electronic structure by studying the excitation−emission shift (EES) of the 6-MI 

substituted oligonucleotide constructs. Applying standard methods that were originally 

developed for nucleic acids by Schellman9–11 Tinoco12,13 and further extended by others14, 

I constructed protocols and computational modules to simulate circular dichroism in 

MATLAB and Python. I calculated CD of 6-MI substituted DNA constructs and achieved 

good agreement with experimental results. These studies served to establish a new level 

of sophistication in qualitatively analyzing 6-MI structural behavior in terms of local base 

stacking and unstacking conformations.  

To further extend the potential of 6-MI as a useful reporter of local nucleic acid 

base conformation, I applied 6-MI to probe the ligand insertion of small molecules to 

duplex DNA, which is relevant to intercalation processes and protein-DNA interactions. I 

studied the interaction of duplex DNA with intercalator molecules Acridine Orange (AO) 

and 9-amino-6-chloro methoxyacridine (ACMA) that is covalently attached to the DNA 

backbone. I characterized 6-MI/AO Förster resonance energy transfer (FRET) pairs, thus 

establishing this as a meaningful system to study local DNA base conformation in future 

experiments involving single-molecule microscopy and multi-dimensional spectroscopy. 

We discovered that when 6-MI was substituted for guanine in DNA constructs, there was 

no significant preference or hindrance of AO intercalation at the 6-MI labeled site. Our 

results show that unlike free ACMA, which interacts with dsDNA via intercalation, 

tethered ACMA displaces the base on the complementary strand across from the ACMA 

attachment site. Duplex DNA constructs in which a tethered ACMA is placed directly 

opposite to a single 6-MI residue within the complementary strand may be an interesting 

model system to study base insertion and un-insertion processes. Such structures can be 

found in biologically important processes such as DNA methylation and DNA repair.  
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Dissertation Outline and Acknowledgements of the Contributions by Others 

This dissertation describes research done in the lab of Prof. Andrew H. Marcus 

and Prof. Peter H. von Hippel, with whom the experiments and calculations were co-

developed, and the material was co-written. This dissertation also includes the 

contributions of following collaborators: Prof. Marina G. Guenza, Dr. Neil P. Johnson, 

Dr. Thomas H. Steinberg, Dr. Pablo G. Romano and Dr. Mohammadhasan Dinpajooh. 

Chapter II presents the study of excitation−emission shift (EES) of the 6-MI 

substituted oligonucleotide constructs, and contains material co-authored with Neil P. 

Johnson, Thomas H. Steinberg, Peter H. von Hippel and Andrew H. Marcus. In these 

experiments, a variety of spectroscopic techniques were utilized to measure the EES of 6-

MI. In this work, the fluorometry was performed by Neil P. Johnson and Thomas H. 

Steinberg. The two-state theoretical model of 6-MI electronic structure was co-developed 

with Andrew H. Marcus. In this chapter, we lay out the foundations of using the 6-MI 

probe as a tool to study sequence-dependent DNA local conformation. Manifested by the 

two-state model, we advanced our understanding of 6-MI spectroscopic properties that 

applied to studies described in later chapters.  

Chapter III presents the theoretical treatments of circular dichroism (CD) 

calculations, which connect nucleic acid base conformation to spectroscopic observables. 

This chapter contains unpublished material co-authored with Neil P. Johnson, 

Mohammadhasan Dinpajooh, Marina G. Guenza, Peter H. von Hippel, and Andrew H. 

Marcus. We present the fundamentals of these CD calculations and the determination of 

critical spectroscopic parameters for this model. All of the CD calculations presented in 

my dissertation were based on the content described in this chapter. The description of 

CD calculations of the canonical base dinucleotides includes unpublished material co-
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authored with Pablo G. Romano, Mohammadhasan Dinpajooh and Marina G. Guenza. 

The results of molecular dynamics (MD) simulations used in the CD calculations were 

performed by Pablo Romano and Mohammadhasan Dinpajooh in the Guenza group. The 

scheme to compare the results of MD simulation to CD using the matrix method was co-

developed by Mohammadhasan Dinpajooh, Pablo G. Romano, Marina G. Guenza, and 

Andrew H. Marcus. 

Chapter IV presents the CD calculation conducted for 6-MI labeled DNA and 

DNA canonical dinucleotides. This chapter contains unpublished material co-authored 

with Neil P. Johnson, Peter H. von Hippel, and Andrew H. Marcus. Experimental CD and 

fluorometry were performed by Neil P. Johnson. We have found that single 6-MI 

substituted DNA constructs can be used to sensitively probe local nucleic acid base 

conformation. Qualitative agreement between calculations and experimental results 

reinforces the idea that the CD of 6-MI could be a useful probe of DNA secondary 

structure. 

Chapter V presents the study of the interaction of the intercalator molecules 

Acridine Orange (AO) and 9-amino-6chloro methoxyacridine (ACMA) with 6-Methyl 

Isoxanthopterin (6-MI) substituted DNA constructs by steady state fluorometry and 

circular dichroism (CD) spectroscopy. This chapter contains unpublished material co-

authored with Neil P. Johnson, Peter H. von Hippel and Andrew H. Marcus. Substantial 

work presented in this chapter that involves the determination and interpretation of 

experimental spectra of probe labeled DNA was carried out by Neil P. Johnson. We 

discovered that, in comparison to guanine, the 6-MI probe base does not significantly 

perturb the DNA lattice such that there is a preference or hindrance of intercalation at the 

6-MI substitution site. Thus, 6-MI can be used as an accurate reporter of the intercalation 
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process. We subsequently explored the potential of using single site substituted 6-MI 

DNA constructs to measure ACMA, by labeling 6-MI on the complementary strand of 

ACMA within duplex DNA. Our results indicate that unlike free ACMA, which interacts 

with dsDNA via intercalation, tethered ACMA displaces the base on the complementary 

strand across from the ACMA attachment site. Thus, duplex DNA constructs in which a 

tethered ACMA is placed directly opposite to a single 6-MI residue within the 

complementary strand may be an interesting model system to study flipped out bases in 

dsDNA.  
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CHAPTER II 

SEQUENCE-DEPENDENT CONFORMATIONAL HETEROGENEITY AND 

PROTON- TRANSFER REACTIVITY OF THE FLUORESCENT GUANINE 

ANALOGUE 6‑METHYL ISOXANTHOPTERIN (6-MI) IN DNA 

 

Overview 

Chapter II presents the study of excitation−emission shift (EES) of the 6-MI 

substituted oligonucleotide constructs. This section is reprinted with permission from Neil 

P. Johnson, Huiying Ji, Thomas H. Steinberg, Peter H. von Hippel, and Andrew H. Marcus, 

“Sequence-Dependent Conformational Heterogeneity and Proton-Transfer Reactivity of 

the Fluorescent Guanine Analogue 6-Methyl Isoxanthopterin (6-MI) in DNA,” J. Phys. 

Chem. B, 2015, 119 (40), pp 12798–12807. Copyright © 2015 American Chemical Society. 

In these experiments, a variety of spectroscopic techniques were utilized to measure the 

EES of 6-MI. In this work, the fluorometry was performed by Neil P. Johnson and Thomas 

H. Steinberg. The two-state theoretical model of 6-MI electronic structure was co-

developed with Andrew H. Marcus. The additional co-authors provided editorial assistance. 

In this chapter, we lay out the foundations of using the 6-MI probe as a tool to study 

sequence-dependent DNA local conformation. Manifested by the two-state model, we 

advanced our understanding of 6-MI spectroscopic properties that applied to studies 

described in later chapters.  

 

Introduction 

A number of recent biophysical studies of DNA replication and transcription have 

relied on spectroscopic measurements that sensitively probe the local conformations and 



 8 

dynamics of site-specific positions within protein−nucleic acid complexes. Some of these 

experiments use fluorescent chromophores that are incorporated into the nucleic acid 

backbone, or that are attached to a base using a flexible linker.1−3 Another important class 

of fluorescently labeled nucleic acid constructs involves the site-specific substitution of 

one (or two) native base(s) within the nucleotide sequence by a fluorescent base 

“analogue”.4−9 Such base-substituted DNA constructs are useful probes of local 

conformation, since the chromophores themselves can experience Watson−Crick base-

pairing and base-stacking interactions similar to those of native bases. Moreover, the base 

analogues absorb light at significantly lower energies than do the canonical bases and 

proteins, so that they can be selectively excited and detected within large macro- molecular 

complexes.10-12 

Previous experiments performed on fluorescent-base-analogue-substituted DNA 

constructs have used UV peak absorbance, fluorescence, and circular dichroism (CD) to 

study local base conformation. However, little attention has been devoted to understanding 

the presence of inhomogeneous broadening of the absorption line-shape and its relationship 

to local base conformational heterogeneity. When a base analogue chromophore is 

dissolved in a low-viscosity polarizable liquid such as water, changes to its charge 

distribution upon electronic excitation induce rapid structural reorganization of the local 

solvent. These excited-state relaxations occur on picosecond time scales, which lead to 

emission from the lowest energy level of the excited electronic state.13 For a fluorescent 

base analogue that is substituted within a DNA strand, flanking bases can shield the 

chromophore from the aqueous solvent, so that local structural rearrangements might occur 

very slowly, possibly exceeding the nanosecond time scale of fluorescence. It is also 

possible that the fluorescent base analogue substituted within a DNA construct can 
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experience multiple local base conformations that are separated by relatively high 

activation barriers. If such conformational substates absorb at different energies, the 

resulting absorption spectrum is a weighted sum of substate contributions−a situation that 

leads to inhomogeneous broadening of the line shape.14 Because the intrinsic lineshapes of 

individual substates are themselves broad, the cumulative absorption spectrum is often 

featureless and does not directly reveal the presence of multiple distinct species.  

Information about the dispersion of local chromophore conformations and their 

interconversions can be determined using “site-selective” spectroscopic methods.13−16 For 

example, when a spectrally narrow optical source is used to excite the system, the peak 

fluorescence energy can vary as the excitation energy is scanned across the absorption 

line.14 It is sometimes found that the narrow distribution of substates selected using either 

red-edge or blue-edge excitation do not relax to a single globally minimized excited 

electronic state on the time scale of fluorescence. In such systems, a photoselected substate 

undergoes relaxation to its locally minimized conformation, which has its own 

characteristic emission energy. Thus, the presence of multiple substates comprising a 

heterogeneous mixture can affect the peak position of the fluorescence, depending on 

whether the system is excited on the blue-edge or the red-edge of the absorption line.14 

The heterogeneity of chromophores in solution has been studied in high-viscosity 

solvents using various site-selective spectroscopies.14,17−19 Such heterogeneity is most 

readily observed in polar solvents at low temperatures, for which the electronic transition 

dipole moment of the chromophore is strongly coupled to the slowly rearranging solvent 

shell. At elevated temperatures structural relaxations occur faster than the fluorescence 

lifetime, so that the system appears homogeneous on this time scale. When the environment 

relaxation is slower than fluorescence, site-selective measurements can provide 
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information about the presence of different probe microenvironments and their dynamical 

behavior. In this way, site-selective experiments have provided rough estimates of the 

mobility of chromophores in membranes20,21 and in proteins.21,22 

In this work, we apply steady-state excitation−emission spectroscopy to study 

conformational heterogeneity of the fluorescent guanine (G) analogue 6-methyl 

Isoxanthopterin (6-MI), which is site-specifically substituted for G in various DNA 

constructs. 6-MI was introduced as a fluorescent probe to study the local environments of 

G residues in DNA7,23−25 (see Figure 1.1). The 6-MI:C base pair (bp) maintains the three 

Watson− Crick hydrogen bonds with C that are characteristic of G:C base pairs in duplex 

B-form DNA (dsDNA). The imino hydrogen at the N3 position of the 6-MI free base (6,8- 

dimethyl Isoxanthopterin) is reported to be slightly acidic, with pKa = 8.4.26 The behavior 

of 6-MI in DNA is similar to that of G with respect to its effect on the thermal stability of 

dsDNA, ligand access to the major groove, and template-dependent nucleotide addition by 

DNA polymerase (although subsequent elongation beyond the newly formed bp 6-MI:C is 

inhibited).5 

The lowest lying electronic transition (S1 ← S0) of the 6-MI chromophore in 

aqueous buffer is centered at ∼340 nm, and its peak emission lies close to 425 nm.27 The 

S1 excited state is characterized by a 6 ns lifetime and a fluorescence quantum yield of 

∼0.7. Two faster population relaxation processes (∼3 ns, ≤ 1 ns) appear when 6-MI is 

substituted for G within single- stranded (ss) or double-stranded (ds) DNA.23 The 

fluorescence intensity of 6-MI becomes progressively quenched in ss- and dsDNA 

constructs, which is thought to reflect effects of base stacking.5,23 

Here we examine the conformational heterogeneity of 6-MI in various sequence 

contexts of duplex and ssDNA constructs. Accessibility of the weakly acidic N3 hydrogen 
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to potential hydrogen bonding acceptors depends on the local 6-MI environment, thus 

providing a spectroscopic signature to probe local base conformational heterogeneity. We 

find that conformational heterogeneities of 6-MI that are stable on time scales exceeding 

the fluorescence lifetime (nanoseconds or greater) can be observed in substituted DNA 

constructs in aqueous solution at room temperature. This local conformational 

heterogeneity of the 6-MI probe base depends significantly on DNA sequence context and 

strandedness. 

 

Materials and Methods 

 6-MI-substituted DNA constructs were purchased from Integrated DNA 

Technologies (Coralville, IA) and from Fidelity Systems (Gaithersburg, MD). 6-MI 

ribonucleotide monophosphate (NMP) was obtained from Fidelity Systems, and used 

without further purification. The sequences and nomenclatures of the DNA constructs are 

shown in Table 2.1. Oligonucleotide concentrations were determined using extinction 

coefficients provided by the manufacturer. Duplex DNA constructs were annealed by 

combining equimolar solutions of complementary strands, followed by heating the mixture 

to 90 °C and allowing it to gradually cool. Solutions were buffered using the following 

conditions: pH 7.6 (50 mM Tris, 150 mM NaCl); pH 6.2 (50 mM phosphate buffer, 150 

mM NaCl). For titrations of 6-MI NMP, samples were prepared in 10 mM sodium 

pyrophosphate, pH 6−10.3, buffer conditions previously used to determine the pKa of 6,8-

dimethylisoxanthopterin.26 Unless otherwise stated, experiments were carried out at 20 °C.  

 Fluorescence spectra and steady-state fluorescence anisotropy were measured using 

a Jobin−Yvon FluoroMax-3 spectrophotometer. The samples were excited over the 

wavelength range 300−400 nm, and the emission spectra were measured over the 300−375 
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nm wavelength range, or in some cases over the 380−500 nm wavelength range. All spectra 

were corrected for background contributions from the buffer solution itself. The peak 

emission wavelengths were determined by fitting the emission spectra to a polynomial or 

a Gaussian function. The error associated with the peak emission wavelength determined 

by repetition of experiments was ±1 nm (∼±100−200 cm−1).  

 CD spectra of 4 μM oligonucleotide solutions were measured using a Jasco model 

J-720 CD spectrophotometer with a temperature-controlled cell holder, as described 

previously.5 The CD spectra were measured over the 300−450 nm wavelength range. Each 

measurement was tested for reproducibility by repeating 8−20 times, and the resulting data 

were averaged together. CD spectra are defined in terms of the difference in extinction of 

the sample excited using left- and right-circularly polarized light: εL − εR (in M−1 cm−1) per 

mole of 6-MI residue.  

For DNA melting experiments, the UV absorbance was monitored at 260 nm using 

a Cary UV spectrophotometer equipped with a Peltier temperature controller. Samples 

were heated from 20−85 °C at a rate of 1 °C min−1, and the absorbance was measured at 

1 °C intervals. 

 

 

Table 2.1. Base sequences and nomenclature for the 6-MI-containing ssDNA constructs 
used in in Chapter II.. The letter X indicate the 6-MI probe. The regions that contain the 
6-MI analogue and flanking bases are highlighted in red. Duplex DNAs are the same 
molecules annealed with a fully complementary strand.  

DNA construct Nucleotide base sequence 

ssGXG 5'-CTA ATC ATT GXG TTC GGT CCT TGC-3' 
ssGXXG 5'-CTA ATC ATT GXX GTT CGG TCC TTG C-3' 
ssTXT 5'- CTA ATC ATT GTX TTC GGT CCT TGC -3' 

ssTXXT 5'- CTA ATC ATT GTX XTT CGG TCC TTG C -3' 
ssTXG 5'- CTA ATC ATT GTX GTT CGG TCC TTG C -3' 

ssTXTXG 5'- CTA ATC ATT XTX GTT CGG TCC TTG C -3' 
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Results 

Excitation-Emission Shift (EES) 

 We performed excitation−emission studies with the 6-MI substituted 

oligonucleotide constructs with sequences shown in Table 2.1. In some cases, the peak 

emission wavelength was relatively insensitive to the excitation energy. For example, when 

we excited the ssGXG sample over the 320−375 nm (26 666−31 250 cm−1) wave- length 

range, the peak emission occurred at 425 nm (23 529 cm−1), irrespective of the excitation 

wavelength (Figure 2.1 A). We define the excitation−emission shift (EES) as the difference 

between the energy of the exciting optical source and that of the peak emission, and we 

plot this function versus excitation energy in Figure 2.1 A (black filled circles). For this 

sample, the EES appeared to be a linear function of the excitation energy, with slope equal 

to approximately unity (0.97) over nearly the full range of excitation energies investigated. 

Deviation of the EES from linearity occurred only at the extreme red-edge of the absorption 

band.  

In other cases, the plot of EES versus excitation energy exhibited a pronounced 

demarcation of behaviors. We illustrate this using the dsGXG construct (see Figure 2.1 B). 

At excitation energies much greater than that of the peak absorbance (∼350 nm, 28 571 

cm−1), the EES scaled linearly, similar to the behavior we observed for the ssGXG sample. 

However, as the excitation energy approached the absorption maximum, the emission peak 

began to shift so that the EES became a weaker function of excitation energy. Thus, for the 

dsGXG construct, it was possible to identify two distinct regimes of behavior. At high 

excitation energy the EES scaled linearly, while at intermediate energies a transition to 

nonlinear scaling was observed. These results suggest the presence of more than 
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one conformational substate, each with distinct electronic properties that persist on time 

scales longer than the fluorescence lifetime. 

 
Figure 2.1: Excitation–emission shift (EES). Absorbance and emission spectra of (A) 
ssGXG and (B) dsGXG constructs, taken at 20 °C and pH = 7.6. Emission spectra were 
excited over the wavelength range 320–370 nm in 10 nm increments at the energies 
indicated by vertical arrows. Normalized emission spectra are shown in the 
corresponding color, and vertically displaced for clarity. Black circles are the 
“excitation–emission shift” (EES), i.e., the difference between the excitation and peak 
emission energies. Gray dashed lines are linear fits to the blue-edge of the EES data. 

 

Theoretical Considerations of the EES 

To describe the relationship between the EES of 6-MI substituted DNA constructs 

and the presence of multiple conformational substates, we applied standard principles of 

molecular photochemistry.13, 28 The mathematical details of the model are presented in the 

Appendix A.  

We envision a multidimensional free energy hypersurface to characterize the 

ground and excited electronic states, which are coupled to nuclear motions (see Figure 2.2).  
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It is useful to think about a one-dimensional projection of this surface onto a single 

generalized nuclear coordinate Q, which serves as a reaction coordinate for state-to-state 

interconversion. The shape of the ground electronic surface, including the position of its 

minimum (defined at Q = 0), is determined by the equilibrium distribution of local 

 
Figure 2.2: Homogeneous one-state model and heterogeneous two-state model for 
excitation–emission shift (EES) experiments. Panels (A) and (C) show hypothetical free 
energy surfaces associated with ground and excited electronic states, both as a function 
of the generalized conformation parameter Q. Panels (B) and (D) show the expected 
EES, Y ≡ Eex(Q) – Eemmax(Q) (solid blue lines) as a function of the rescaled excitation 
energy [X ≡ Eex(Q) – Eex(0)], where Eex(0) is the energy of the peak absorbance. Panels 
A and B depict the situation for an optically homogeneous sample. Panels C and D depict 
an optically heterogeneous two-state sample with an activation barrier ΔG⧧ = G⧧ – Gg1. 
For the heterogeneous two-state system, the EES undergoes an excitation energy-
dependent transition between the two substates, as depicted in panel D for three different 
energetic conditions. 
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environment configurations. It follows from thermodynamic principles that these surfaces 

can be well-approximated as parabolic functions near their minima.13 Upon optical 

excitation, the induced polarization leads to relaxation of the local environment, which 

occurs much faster than the fluorescence lifetime. The equilibrium distribution of local 

configurations in the excited state is different from that in the ground state, so that the 

minimum of the excited electronic surface is displaced at Q = d1. The extent to which the 

excited state is stabilized by environment relaxation is characterized by the reorganization 

free energy λ1, which is the average optical energy that is absorbed and converted into heat 

before emission of fluorescence. The Stokes shift is the energy difference between the 

peaks of the absorption and fluorescence spectra. It can be understood from simple 

geometrical considerations that the Stokes shift is equal to twice the reorganization free 

energy 2λ1 (see Appendix A). 

For the ssGXG sample discussed above (see Figure 2.2 A), local conformations 

experienced by the 6-MI probe must rapidly interconvert, so that the ground and excited 

free energy surfaces may be described as single parabolic wells. This model is 

representative of an optically homogeneous system, for which the energy gap between 

ground and excited electronic surfaces is parametrized by the coordinate Q. The peak 

emission energy Eemmax is the energy gap at Q = d1, which for a homogeneous system is 

independent of excitation energy. 

We define the EES as the difference between the excitation and peak emission 

energies, 𝑌 ≡ 𝐸&'(𝑄) − 𝐸&,,-'. The energy of the peak absorbance of the 6-MI substituted 

DNA construct can vary depending on base sequence context and secondary structure27. 

We therefore define the rescaled excitation energy, 𝑋 ≡ 𝐸&'(𝑄) − 𝐸&'(0), where 𝐸&'(0) 

is the peak absorption energy. It is straightforward to show that the EES plot (i.e. a graph 
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of 𝑌 versus 𝑋) for an optically homogeneous system is a line with slope equal to unity, and 

y-intercept equal to the Stokes’ shift 2𝜆2 (see Appendix A and Figure 2.2 B). 

Our EES experiments performed on dsGXG indicate that this system is optically 

heterogeneous (see Figure 2.1 B). Molecules excited at the red-edge of the absorption band 

represent energetically selectable substates, which do not readily interconvert with 

substates that are excited using higher energy light. The observed shift in peak emission 

energy with changing excitation is due to the presence of distinct conformations or 

chemical species and local environments of the 6-MI probe, each with spectroscopically 

resolvable optical transition energies. 

To explain these observations, we consider a two-state model, which captures the 

essential elements of the problem (see Figure 2.2 C).29 We assume that the 6-MI probe may 

adopt one of two possible conformations (labeled 1 and 2) in duplex DNA, each with 

ground and excited electronic free energy surfaces that depend on the generalized 

coordinate Q. As we shall see, these two conformations may be assigned to protonated and 

deprotonated forms of 6-MI. The ground-state surface on the left (shown in dark blue) 

represents substate 1 at Q = 0, while the surface on the right (shown in light blue) represents 

substate 2 at Q = x. Optical excitation of the system on the blue-edge of the absorption 

band favors substate 1, while excitation on the red-edge favors substate 2. The free energy 

of activation, ΔG⧧, between the two substates occurs at the coordinate Q = dc, where the 

ground-state surfaces cross. The effect of tuning the excitation energy across the absorption 

band is to adjust the weights of substates 1 and 2 that are electronically excited, and thus 

to tune the peak energy of the fluorescence. This model can explain the observed 

fluorescence peak shift as a function of excitation energy. 
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We simplify the model, and thus reduce the number of descriptive parameters, by 

making the approximation that each substate is characterized by the same reorganization 

free energy (λ1 = λ2= λ), and by the same excited electronic state displacement (d1 = d2 = d). 

The EES can then be described by the equation 

 

𝑌 = 𝑋 + 2𝜆 51 + 𝑃8 9
𝑥
𝑑<=	 (2.1) 

 

where we have used the same definitions for X and Y as above for the homogeneous one-

state system (see Appendix A for derivation). In Eq. (2.1), 𝑃8 = 1 − 𝑃2, is the Boltzmann 

population associated with sub-states 2. In the limit that only sub-state 1 is thermally 

populated (𝑃8 = 0), we see that Eq. (2.1) recovers the behavior of the homogeneous system. 

In the opposite limit (𝑃8 = 1), Eq. (1) reduces to a line with slope equal to unity and y-

intercept 2𝜆(1 + 𝑥 𝑑⁄ ). These two limiting behaviors are depicted in Fig. 3D as vertically 

displaced dashed gray lines. When both sub-states are thermally populated, there exists a 

narrow range of excitation energies over which the EES makes a transition from one linear 

regime to the other, as shown in Fig. 3D. An inflection point occurs at the transition, which 

is specified by 𝑄 = 𝑑@, and for which each sub-state is equally populated (𝑃2 = 𝑃8 = 1 2⁄ ). 

The coordinates of the inflection point are given by 𝑋@ = −2(𝜆 𝑑⁄ )𝑑@  and 𝑌@ = 𝑋@ +

𝜆[2 + (𝑥 𝑑⁄ )]. The free energy of transition and the free energy of activation are given by 

the Marcus formulas13, 28 

 

Δ𝐺° = 𝐺F8 − 𝐺F2 = −
1
2𝛼𝑥

8 + 𝛼𝑥𝑑@	, (2.2) 

and  
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Δ𝐺I =
1
2𝛼𝑑@

8	, (2.3) 

 

where α = 2λ/d2 is a “polarizability” that characterizes the curvature of the free energy 

surfaces. According to Eq. (2.2), the free energy of reaction increases linearly with respect 

to dc. Thus, an equilibrium system that favors substate 1 (ΔG° > 0) will tend to exhibit an 

EES transition on the low-energy side (i.e., the red-edge) of the absorption band, while a 

system that favors substate 2 (ΔG° < 0) will tend to exhibit a transition on the blue-edge of 

the absorption band. An isoenergetic system (ΔG° = 0) will exhibit a transition on the red-

edge of the absorption peak, at the coordinates 𝑋@ = −(𝜆 𝑑⁄ )𝑥 and 𝑌@ = 2𝜆.  

A quantitative fit of EES data to Eq. (2.1), or to more general versions of the model 

(e.g. with 𝜆2 ≠ 𝜆8 and/or 𝑑2 ≠ 𝑑8, see SI section), can be used to obtain optimized values 

for the parameters 𝑑@ , 𝑥, 𝑑2,8, 𝜆2,8, and through Eq. (2.2) and (2.3), values for Δ𝐺° and 

Δ𝐺I. In the remainder of this work, we have specialized to the case 𝑑2 = 𝑑8 = 1, and 

specific values of the nuclear coordinate Q (i.e., dc, and x) are determined relative to the 

excited-state displacement. As mentioned previously, this simplification serves to reduce 

the number of parameters needed to faithfully represent our experimental data, while 

retaining the essential elements of the two-state model. 

EES of 6-MI Ribonucleotide Monophosphate (NMP) 

As mentioned previously, the 6-MI chromophore is also a weak acid with ionizable 

hydrogen at the N3 (Watson–Crick) position (see Figure 1.1), which is characterized by a 

pKa value that is considerably lower than that of the equivalent position (N1, see Figure 

1.1) in guanine, and thus falls into the physiologically relevant pH range.26 6-MI NMP is 

soluble in aqueous solution, and the equilibrium concentrations of protonated and 

deprotonated forms depend on pH. To test whether the optical heterogeneity we observed 
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in 6-MI substituted DNA systems is related to the acid–base properties of the 6-MI probe, 

we performed pH-dependent EES experiments on aqueous solutions of 6-MI NMP. 

 

In Figure 2.3 A, we present examples of our pH-dependent EES measurements at 

pH = 7, 8.5, and 9.5. These data were fit to Eq. (2.1), and the model curves are shown 

superimposed on the experimental data points. Details of the fitting procedure are provided 

in the Appendix A. We see that, by increasing the pH through the vicinity of the pKa (=8.4), 

the inflection points of the experimental EES curves move systematically toward 

increasing excitation energy, as predicted by the two-state model described above. We 

obtained excellent agreement between Eq. (2.1) and the experimental EES data over the 

full range of pH values we investigated (5–10.5). In Figure A.1, we show additional EES 

data and model fits for 6-MI NMP taken at other pH values. We obtained identical results 

from these experiments using pyrophosphate buffer, and independently using 50 mM Tris, 

 
Figure 2.3: EES data and model fits of 6-MI NMP in aqueous solutions for different pH 
conditions. (A) The EES [Y ≡ Eex(Q) – Eemmax(Q)] for 6-MI NMP is plotted versus the 
rescaled excitation energy X ≡ Eex(Q) – Eex(0), where Eex(0) is the energy of the peak 
absorbance. Solid curves are fits of Eq. (2.1) to the data. (B) The standard Gibbs free 
energy ΔG° was determined from an analysis of similar data over the pH range 5–10.3 
(see Figure A2.1). A fit of these data to the acid–base equilibrium equation ΔG° = 2.3 
RT (pKa – pH) (shown in red) yields the value pKa = 8.7 ± 0.3. 



 21 

150 mM NaCl. In Table A.1, we list the optimized parameters that we determined from 

these experiments. 

From the above analyses, we determined the reorganization free energy (λ = 2850 

± 40 cm–1) and the displacement of the ground electronic surface of the deprotonated state 

relative to the protonated one (x/d = 0.21). We found that the optimized values we obtained 

for λ and x/d were nearly the same for all of the pH conditions that we examined, while the 

optimized values for ΔG° and ΔG⧧ varied systematically. We compared these values to 

those predicted by the principles of acid–base equilibria. For the acid–base reaction HA ⇌ 

H+ + A–, we may write the equilibrium condition [A–]/[HA] = 10(pH–pKa). This ratio is equal 

to the equilibrium constant Keq for the reaction 6-MI (protonated) ⇌ 6-MI– (deprotonated). 

Thus, for a particular value of pKa, we determined theoretical values for ΔG° = −RT ln Keq. 

In Figure 2.3 B, we plot the experimental values we obtained for ΔG° as a function of pH. 

The red line is the best fit of the function ΔG° = 2.3RT (pKa – pH) to these data, which 

yields the value pKa = 8.7 ± 0.3. We note that theory and experiment agree very well over 

the pH range 7–10. 

The pKa value we determined for 6-MI NMP (= 8.7 ± 0.3) is higher than that 

previously reported for the 6-MI base (=8.4 ± 0.1, in the form of 6,8DMI, 6,8-

dimethylisoxanthopterin).26 The larger pKa value of the 6-MI NMP may be due to the 

presence of the phosphate group, which can stabilize the uncharged protonated form. 

Furthermore, the phosphate group of 6-MI NMP is itself ionizable with pKa = 6–7.30 The 

presence of this second ionizable site in 6-MI NMP is likely the reason for the departure 

of the experimentally observed values of ΔG° from theory at low pH (<7, see Figure 2.3 

B). This is because protonation of the phosphate group at low pH decreases its negative 

charge, which in turn stabilizes the deprotonated state of the 6-MI N3 site leading to a 
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decrease in the observed value of ΔG°. Our results suggest that the acid–base chemistry of 

6-MI NMP in aqueous solution is responsible for the spectral heterogeneity apparent in the 

EES data for these samples. 

EES of 6-MI Substituted DNA Constructs 

In Figure 2.4, we present experimental EES data from single-stranded (Figure 2.4 

A) and duplex (Figure 2.4 B) DNA samples containing the GXG sequence. Superimposed 

on these are theoretical curves derived from our analysis using the heterogeneous two-state 

model (see previous and Appendix A).  

 
Figure 2.4: EES data for 6-MI substituted DNA constructs. Experimental EES data and 
their corresponding fits to the heterogeneous two-state model are shown for (A) ssGXG 
and (B) dsGXG, as a function of the rescaled excitation energy at 20 °C. X = 6-MI. (C) 
EES data for ssGXG at 20 °C (○), 35 °C (△), 50 °C (□), and 80 °C (×). (D) Temperature 
dependence of Keq = [6-MI– (deprotonated)]/[6-MI (protonated)] for the acid–base 
reaction of ssGXG, dsGXG, and 6-MI NMP. Oligonucleotide sequences are shown in 
Table 2.1. 
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The resulting values of ΔG° and ΔG⧧ for the proton-transfer reaction show that the 

anionic form of 6-MI is more stable in dsGXG (Keq = [6-MI– (deprotonated)]/[6-MI 

(protonated)] = 0.3 ± 0.11) than in ssGXG (Keq = 0.03 ± 0.01). We found that EES data for 

ssDNA samples were insensitive to temperature variation, which is very similar behavior 

to that we found for the 6-MI NMP samples. In Figure 2.4 C, we show as an example EES 

data sets for the ssGXG sample taken over the 20–80 °C temperature range. On the other 

hand, our analyses of EES data for the duplex DNA samples did exhibit temperature-

dependent changes in the values of Keq. In Figure 2.4 D, we plot the values of Keq for the 

dsGXG sample as a function of temperature, which decrease with increasing temperature. 

Upon complete thermal denaturation of the DNA duplex, the value of Keq for the dsGXG 

sample reaches that obtained for ssGXG. 

The dsGXG sample undergoes cooperative thermal melting with midpoint 

transition temperature Tm = 74 °C. Because the value of Keq also appears to undergo a 

cooperative change over this temperature range, we conclude that the enhanced 

stabilization of the deprotonated state we observed in room temperature duplex DNA is a 

consequence of secondary structure.  

We note that the ssGXG sample also unstacks over this temperature range, albeit 

noncooperatively and to a lesser extent than does dsDNA. If base stacking contributed to 

the temperature effects observed for the dsDNA samples, we might expect to observe a 

similar decreasing trend in the values of Keq for the ssGXG sample over this temperature 

range. On the contrary, the value of Keq for this sample appears to increase only very 

slightly over this range, and its behavior is indistinguishable from that of the 6-MI NMP. 

To better understand the proton-transfer reactivity of 6-MI-substituted DNA 

constructs, we examined the behavior of the 6-MI probe in various sequence contexts (see 
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Table 2.1). In Figure A.3, we show comparisons between experimental data for all DNA 

constructs and model curves, which are based on our two-state analysis. 

For the case of ssDNA constructs, we obtained best fits to our data when we set λ1 

= λ2, and when the value of x was nearly the same for all samples (see Table A.2). We thus 

found that the optimization conditions required to model 6-MI substituted ssDNA 

constructs were very similar to those for the 6-MI NMP samples previously discussed, 

although the displacement of the ground-state surface of the deprotonated state for ssDNA 

constructs (x ≃ 0.31) was somewhat larger than for 6-MI NMP (x ≃ 0.21). This result 

indicates that 6-MI in ssDNA requires a greater displacement of its proton along the 

reaction coordinate to achieve its deprotonated form, in comparison to 6-MI NMP in 

aqueous solution. The excellent agreement between theory and experiment for all of the 

ssDNA constructs indicates that the optical heterogeneity we observed in these systems 

can be explained using the two-state model. In contrast, in order to obtain agreement 

between theory and experiment for dsDNA, it was necessary to allow λ1 and λ2 to vary 

independently, and for the value of x to vary within the range 0.2–0.4 (see Table A.3). The 

results of this analysis yielded values for ΔG°, ΔG⧧, and Keq characteristic of the 

equilibrium between protonated and deprotonated states of 6-MI substituted DNA with 

different sequence contexts. These values are compared graphically in Figure 2.5,  and are 

reported in Tables A.2 and A.3. 

To further test whether the effects we observed are specific to the 6-MI probe, we 

examined the EES for single-stranded and duplex DNA constructs that contained the 

fluorescent cytosine analogue pyrollocytosine (PC), and the fluorescent adenine analogue 

2-aminopurine (2-AP). In Figure S2, we present EES data for single-stranded and dsDNA 
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constructs containing the sequences C(PC)A or G(2-AP)G (see Table 2.1 for complete 

sequences). 

 

In each case, the EES data appear to behave as an optically homogeneous one-state 

system. The pKa values of PC and 2-AP are less than 4,6, 31 so that both of these analogues 

are expected to exist entirely in their deprotonated forms near neutral pH. Thus, our 

 
Figure 2.5: Standard free energy of reaction, free energy of activation, and equilibrium 
constant for proton transfer in 6-MI substituted DNA constructs. Standard free energies 
of reaction ΔG° (A, B), free energies of activation ΔG⧧ (C, D), and deprotonation 
reaction equilibrium constant Keq (E, F) of ssDNA (left) and dsDNA (right) at pH = 7.6 
(blue) and pH = 6 (red). Horizontal dashed lines indicate the values for 6-MI NMP at pH 
= 7.6. Representative fits of EES curves for all single-stranded and duplex DNA 
constructs are shown in Figure A2.2. The optimized values of the fitting parameters are 
presented in Table A.2 and Table A.3. 
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observations support the conjecture that a proton-transfer reaction plays a role in the optical 

heterogeneity we have observed in 6-MI-substituted DNA constructs. 

We note that the local environment experienced by 6-MI in DNA is likely very 

different from that of 6-MI NMP in aqueous solution. The effects of stacking with 

neighboring bases in both single-stranded and duplex DNA constructs, in addition to the 

further screening from the solvent due to Watson–Crick base-pairing complementarity in 

the duplex constructs, are expected to limit accessibility of the aqueous solvent to the 6-MI 

probe. To test this conjecture, we performed EES experiments on 6-MI substituted single-

stranded and duplex DNA at two different pH values (6 and 7.6). We found for nearly all 

of the DNA constructs we investigated, our results are experimentally indistinguishable at 

the two different pH values (see Figure 2.5, and Figures A.2 and A.3). In contrast, this 

same variation in pH shifts the equilibrium concentrations of 6-MI NMP between its 

protonated and deprotonated forms by nearly an order of magnitude (Figure 2.5 and Figure 

2.1). This apparent insensitivity to pH of the EES data of 6-MI-substituted ss- and dsDNA 

constructs could be interpreted in multiple ways. For the case of duplex DNA constructs, 

variations in pH over this narrow range may not influence the local environment of the 6-

MI probe since the cooperatively stabilized structure of the dsDNA in which the 6-MI 

probe is contained is also insensitive to pH over this range.32 On the other hand, it is 

possible that these results indicate that the participation of solvent water does not dominate 

the proton-transfer reaction for either ss or duplex DNA, which instead depends on the 

local proximity of adjacent or opposing DNA bases. 

A notable exception to the general behavior described above occurs for the 

ssGXXG construct (Figure 2.5 E). In this case, the change in pH shifts the equilibrium 

concentrations between protonated and deprotonated forms by a factor of 2.6. It is possible 
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that the ssGXXG sequence somewhat destabilizes the local ssDNA stacking, thus 

increasing the exposure of the 6-MI dimer probe to the solvent environment, although 

much less so than 6-MI NMP in aqueous solution. To obtain some information about local 

base conformation within the single-stranded and duplex GXXG and TXXT constructs, we 

performed circular dichroism (CD) experiments at pH = 7.6 (see Figure A.5). CD spectra 

for these constructs are sensitive to the exciton interactions between nearest neighbor 6-MI 

probes, which depend on the degree of base-stacking interactions. The CD spectra of the 

ssGXXG and ssTXXT constructs are nearly identical, and the signs and magnitudes of the 

CD indicate that the two 6-MI residues are stacked in a right-handed B-form conformation 

(Figure A.5). We speculate that some previously unconsidered interaction between the two 

6-MI probes (e.g., a minor pH-dependent conformation change) may render the ssGXXG 

sequence sensitive to pH. 

Our findings allow us to make some general statements pertaining to the local 

environment experienced by the 6-MI probe in DNA. In 6-MI-substituted ssDNA 

constructs, the protonated form of the 6-MI probe can be stabilized relative to that of the 

6-MI NMP in solution (see Figure 2.5 E). The effect appears to be most pronounced when 

6-MI is positioned adjacent to a T, and much less so when 6-MI is next to a G. Exceptions 

are the sequences GXXG (discussed above), TXG and TXTXG. The latter represent 

combinations of 6-MI next to flanking T and G, which may lead to an overall cancellation 

of effects. When 6-MI is positioned adjacent to a G (or to another 6-MI), the effect of 

hybridization in duplex DNA is to stabilize the deprotonated form of the probe relative to 

the equilibrium in its corresponding single-stranded construct (and in the NMP). This 

enhanced stability of the deprotonated 6-MI in dsDNA is absent for TXT and TXTXG 

sequences with probe residue flanked on both sides by a T (see Figure 2.5 F). Sequences 
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containing G or (6-MI):C base pairs are expected to be more stable than sequences 

containing A:T base pairs. These results indicate that Keq = [6-MI– (deprotonated)] / [6-MI 

(protonated)] increases in stable duplex structures. 

 

Discussion and Conclusions 

We have studied the optical heterogeneity of the fluorescent guanine analogue 6-

MI, which we have shown to be sensitive to pH changes near neutrality when it is dissolved 

in aqueous solution, or to its local macromolecular environment when it is substituted for 

G in single-stranded and duplex DNA. We have quantified the degree of optical 

heterogeneity of 6-MI using steady-state excitation–emission shift (EES) measurements, 

in which the difference between the peak emission and excitation energies is recorded as a 

function of excitation energy. We demonstrated that the EES for 6-MI NMP in solution, 

and 6-MI-substituted DNA constructs, are well-described using a heterogeneous two-state 

model. On the basis of this approach, we determined the values of ΔG° and ΔG⧧, the 

standard free energies of reaction and activation, to characterize the equilibrium 

distribution of the two substates. This approach can potentially be generalized to provide 

information about fluorescent probes of local macromolecular structure other than 6-MI, 

which may exist in multiple substates that are stable on the time scale of the florescence 

lifetime. 

By performing EES experiments on 6-MI NMP in aqueous solution, we determined 

that the distribution of the two substates is pH-dependent. These data can be understood in 

terms of simple acid–base chemistry, in which the first substate was identified as the 

protonated species, and the second substate as the deprotonated species. As expected for 

two-state behavior, EES data obtained from the 6-MI NMP system could be self-
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consistently modeled for all values of pH using the same value of the parameter x, which 

represents the relative displacement of the protonated and deprotonated ground-state free 

energy surfaces. We obtained excellent agreement between theory and experiment under 

the constraint λ1 = λ2. We observed similar behavior for 6-MI-substituted ssDNA 

constructs (see below). We calculated the equilibrium constant Keq = [6-

MI– (deprotonated)] / [6-MI (protonated)] from the value of ΔG°, which we determined by 

fitting the EES data to the two-state model. The resulting value for the pKa of 6-MI (8.7 ± 

0.3, see Figure 2.3 B) agrees very well with that previously reported in the literature, where 

it was established that the ionizable proton resides at the N3 position of 6-MI26. We note 

that the pKa values determined from fluorescence measurements are the same as those 

determined by UV absorbance,26 suggesting that the pH-dependent optical heterogeneity 

of 6-MI NMP reflects a ground-state equilibrium phenomenon. 

Our EES experiments on 6-MI-substituted DNA also revealed the presence of 

optical heterogeneity in these systems. Here too, the heterogeneity could be understood 

using the same two-state model as was used to explain the 6-MI NMP samples. We 

interpret these observations to mean that the optical heterogeneity of 6-MI in DNA is due 

to an equilibrium distribution between protonated and deprotonated species. This 

assumption is supported by control experiments on single-stranded and duplex DNA 

constructs with nucleic acid base substitutions using the fluorescent probes pyrollocytosine 

(PC) and 2-aminopurine (2-AP). Neither PC or 2-AP contain an ionizable proton, and we 

found that single-stranded and duplex DNA constructs containing these probes as 

substituents behave as homogeneous one-state systems, as expected (see Figure A2.2). 

The above findings lead us to conclude that the value for the equilibrium constant Keq, 

which we determined from our two-state analysis of EES data, is a measure of the lability 
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of the N3 proton of 6-MI. Our approach can thus be used to quantify the “acidity” of 6-MI 

within different macromolecular environments, such as DNA. 

The existence of the deprotonated form of 6-MI was detected in all of the DNA 

constructs we investigated (see Figure 2.5, Figure A.3, Table A.2 and Table A.3). The 

value of the equilibrium constant of 6-MI substituted ssDNA constructs was generally less 

than or equal to that of the free probe in aqueous solvent at physiological pH, and varied 

between Keq = 0.01 and 0.06, depending on the probe sequence context. An exception was 

the sequence ssGXXG, which has two guanine bases flanking the 6-MI probes. Our EES 

data for ssDNA constructs were relatively insensitive to variation in pH (=6, 7.6, see Figure 

A.4). In contrast, the value of Keq for 6-MI NMP in aqueous solution was sensitive to pH 

(=0.06 ± 0.02 at pH 7.6, =0.02 ± 0.01 at pH 6, see Figure 2.4, Figure A.4, Table A.1 and 

Table A.2). Our results suggest that while the acid–base equilibrium of 6-MI NMP depends 

strongly on solution pH, a 6-MI probe residue embedded in ssDNA experiences a local 

environment that stabilizes the protonated form, and is at least partially shielded from the 

aqueous solvent. 

We next consider how the secondary structure of ssDNA might perturb the acidity 

of the 6-MI N3 hydrogen. It is possible that base-stacking interactions, which play a 

dominant role in the stability of both single-stranded and duplex DNA, might severely 

restrict the accessibility of hydrogen acceptors that drive proton exchange with 6-MI. If 

base stacking were the predominant factor affecting proton-transfer reactivity, we might 

expect the equilibrium to shift toward the deprotonated state if the temperature is elevated 

to induce thermal unstacking of bases in ssDNA. On the contrary, we found that the value 

of Keq was nearly equal to that of 6-MI NMP at room temperature, and this value only 
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marginally increased over the temperature range (20–80 °C, see Figure 2.4 D). Hence, 

base-stacking interactions do not appear to influence the acidity of 6-MI in ssDNA. 

For DNA constructs in which the 6-MI probe residues were positioned adjacent to 

a G (or to another 6-MI), we found that the value of Keq was generally larger in dsDNA 

than for the same sequences in ssDNA. For example, the value of Keq is nearly 10-fold 

greater for dsGXG than for ssGXG. Exceptions to this behavior were observed for the 

sequences TXT and TXTXG, in which the 6-MI probe residues were positioned at sites 

adjacent on both sides to a T (see Figure 2.5, Tables A.2 and Table A.3). Stacking 

interactions between 6-MI and adjacent T residues are expected to be much weaker than 

the interactions between 6-MI and an adjacent G (or to another 6-MI) due to the 

considerable difference in surface areas between G and T. These results suggest that 

mechanically rigid sequences of dsDNA, in which the probe residue was positioned 

adjacent to a G, resulted in stabilization of the deprotonated form of 6-MI. In contrast, more 

flexible sequences of dsDNA, in which the probe residue was positioned adjacent to a T, 

did not experience a significant change in acid–base equilibrium relative to the same 

sequence in ssDNA. 

As we previously discussed, thermal unstacking of ssGXG does not significantly 

alter the value of Keq (see Figure 2.4 C). However, the enhanced value of Keq in dsGXG 

does drop precipitously at elevated temperatures due to thermal denaturation, suggesting 

that the enhanced stability of the deprotonated form of 6-MI in duplex DNA is due to the 

cooperatively stabilized duplex structure. We note that the deprotonated form of 6-MI is 

generally more favored in duplex DNA than it is for the 6-MI NMP in solution, while the 

protonated form of 6-MI is more favored in ssDNA. Finally, the secondary structure 

associated with the duplex DNA environment is expected to decrease the accessibility of 
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the 6-MI probe to solvent water relative to the 6-MI NMP and the 6-MI-substituted ssDNA 

constructs. Taken together, these observations suggest that the enhanced stability of the 

deprotonated form of 6-MI in duplex DNA is likely associated with the Watson–Crick 

hydrogen bond between the 6-MI N3 hydrogen and its complementary C on the opposite 

DNA strand. Unlike the hydrogen bonds between the canonical DNA bases G and C, in 

which the proton remains associated with the donor base G (see Figure 1.1), the 6-MI:C 

hydrogen bond seems to involve significant proton transfer to the imino nitrogen of the 

acceptor base C. The latter situation is sometimes referred to as a low-barrier hydrogen 

bond (LBHB), in which the proton can be nearly equally shared between the hydrogen 

bond donor and acceptor sites. Such systems have been studied by determining hydrogen 

bond distances by X-ray crystallography, or through NMR measurements of 1H–15N 

dipolar coupling.33 The possible existence of LBHBs in proteins and small molecules has 

been an area of active interest and debate.34-38 The nuclear wave function of an LBHB in 

its ground vibrational level is expected to have its maximal amplitude coincident with the 

position of the energy barrier, so that the ionizable proton might undergo quantum 

mechanical tunneling between protonated and deprotonated states.34 The existence of this 

system would represent an interesting system for future spectroscopic investigations. 

The values of ΔG° and ΔG⧧ that we have determined for the various DNA 

substrates can be used to construct projections of the free energy landscape onto the proton-

transfer coordinate. Because these surfaces depend sensitively on base sequence context of 

the 6-MI probe, this information could be used to infer couplings between the proton-

transfer coordinate and other nuclear degrees of freedom, such as base torsional motions 

and the disruption of Watson–Crick hydrogen bonds. As an example, we compared model 

free energy surfaces derived from our results for the duplex DNA constructs dsGXG and 
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dsTXT, which we illustrate in Figure 2.6. The forward proton-transfer reaction is 

thermodynamically and kinetically more favorable for the dsGXG construct (Keq = 0.30) 

than for the dsTXT construct (Keq = 0.01, see Table A.3). In the dsGXG construct, the 6-

MI probe is expected to experience a mechanically more stable local environment than in 

the dsTXT construct. This leads to a free energy surface for the proton-transfer reaction 

with nearly isoenergetic end-states bridged by a relatively low activation barrier. 

 

We note that hydrogen bond strength is greatest when the pKa values of the donor 

and acceptor groups are similar to each other.39 The lower pKa value of 6-MI NMP (=8.7, 

see Figure 2.6) in comparison to dGMP (=9.740) likely contributes to the enhanced lability 

of the 6-MI N3 proton in duplex DNA. Furthermore, this Watson–Crick hydrogen bond 

involves the directional interaction between the 6-MI N3 proton and the lone pair electronic 

orbital of the imino nitrogen of the opposing C. The weaker acidity of 6-MI probes with 

adjacent T residues (in comparison to G residues, see Figure 2.5 and Figure 2.6) may be 

 
Figure 2.6: Reaction coordinates for proton exchange dsGXG and dsTXT. The absolute 
positions of the curves on the Y-axis are arbitrary, and they have been offset for clarity. 
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due to the disruption of this orbital overlap resulting from the larger thermal fluctuations 

associated with T-rich sequences. 

In this work, we have shown that the spectroscopic properties of the 6-MI probe in 

DNA can be used to obtain detailed information about local base conformations and 

conformational heterogeneity and fluctuations. Such information may be helpful in 

understanding detailed aspects of the mechanisms of specific and nonspecific protein–

DNA interactions, including those involved in DNA replication, recombination, and repair. 

In work in progress, we are utilizing 6-MI substituted DNA constructs to understand the 

roles of thermal fluctuations of local base conformations in the assembly and functional 

pathways of protein–DNA complexes, and we expect that the improved spectroscopic 

understanding of the 6-MI probe obtained in this study will provide new insights into what 

“it sees” within DNA molecules. 

 

Summary and Bridge to Chapter III 

In this chapter we have reported excitation–emission peak shift (EES) 

measurements of the fluorescent guanine (G) analogue 6-methyl Isoxanthopterin (6-MI), 

both as a ribonucleotide monophosphate (NMP) in solution and as a site-specific 

substituent for G in various DNA constructs. Changes in the peak positions of the 

fluorescence spectra as a function of excitation energy indicate that distinct subpopulations 

of conformational states exist in these samples on time scales longer than the fluorescence 

lifetime. Our pH-dependent measurements of the 6-MI NMP in solution show that these 

states can be identified as protonated and deprotonated forms of the 6-MI fluorescent probe. 

We implement a simple two-state model, which includes four vibrationally coupled 

electronic levels to estimate the free energy change, the free energy of activation, and the 
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equilibrium constant for the proton transfer reaction. These parameters vary in single-

stranded and duplex DNA constructs, and also depend on the sequence context of flanking 

bases. Our results suggest that proton transfer in 6-MI-substituted DNA constructs is 

coupled to conformational heterogeneity of the probe base, and can be interpreted to 

suggest that Watson–Crick base pairing between 6-MI and its complementary cytosine in 

duplex DNA involves a “low-barrier-hydrogen-bond”.  

We next utilize these findings in using the 6-MI probe to extract local base 

conformational information. In Chapter III, we have laid out the theoretical treatments of 

circular dichroism (CD) calculations, which connect nucleic acid base conformation to 

spectroscopic observables. 



 36 

CHAPTER III 

THEORETICAL ASPECTS OF CIRCULAR DICHROISM CALCULATIONS  

 

Overview 

Chapter III presents the theoretical treatments of circular dichroism (CD) 

calculations, which connect nucleic acid base conformation to spectroscopic observables. 

This chapter contains unpublished material co-authored with Neil P. Johnson, 

Mohammadhasan Dinpajooh, Marina G. Guenza, Peter H. von Hippel, and Andrew H. 

Marcus. We present the fundamentals of these CD calculations and the determination of 

critical spectroscopic parameters for this model. All the CD calculations presented in my 

dissertation were based on the content described in this chapter. The description of CD 

calculations of the canonical base dinucleotides includes unpublished material co-

authored with Pablo G. Romano, Mohammadhasan Dinpajooh and Marina G. Guenza. 

The results of molecular dynamics (MD) simulations used in the CD calculations were 

performed by Pablo Romano in the Guenza group. The scheme to compare the results of 

MD simulation to CD using the matrix method was co-developed by Mohammadhasan 

Dinpajooh, Pablo G. Romano, Marina G. Guenza, and Andrew H. Marcus. 

 

 Introduction 

Circular dichroism (CD) spectroscopy is routinely utilized to qualitatively 

examine the interactions between exciton-coupled molecular chromophores. This method 

is extremely sensitive to the presence of chiral chromophore conformations, and to 

protein- and ligand-induced changes of chromophore conformations. For example, the 

CD spectrum of base analogue dinucleotide substituted DNA constructs will change 

dramatically upon addition of various amounts of gene 32 protein, which is due to the 
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protein-induced unstacking of the analogue bases. Moreover, CD can be used to indicate 

the polarity preference of gene 32 binding upon binding to the ssDNA lattice.1  

In order to quantitatively analyze CD spectra, we have constructed a simple 

theoretical model to aid in our understanding of local interactions between a fluorescent 

base analogue site-specifically positioned within a DNA construct and the native bases 

and ligands that can comprise its immediate environment.  

In principle, quantitative structural information about single base-analogue-

substituted DNA constructs can be obtained by comparing the results of spectroscopic 

measurements (e.g., CD and absorption) to the predictions of theoretical models that can 

be used to estimate the conformation-dependent resonant interactions between the 

Electric Dipole Transition Moments (or EDTMs) of nearby residues.  

CD is particularly useful to understand our fluorescent Guanine analogue 

substituted DNA constructs due to the low-energy electronic transitions of 6-MI, which 

can be spectrally distinguished from the natural DNA bases. By using the fluorescent 

analogue bases as site-specific probes of local base conformation, it is possible to isolate 

the CD signals from these probes outside of the spectral window that is obscured by the 

natural DNA bases. We calculated CD of 6-MI substituted DNA constructs and achieved 

good agreement with experimental results (See Chapter IV). We then further extended 

our analysis to study the CD of 6-MI DNA constructs in the presence of the intercalator 

dye 9-amino-6-chloro methoxyacridine (ACMA) (see Chapter V).  

To simulate the CD spectra of the probe-labeled DNA constructs, we applied ‘the 

Matrix’ methods that were originally developed for nucleic acids by Schellman2–4, 

Tinoco5,6,  and further extended by others7. This approach, which is based on estimating 

the couplings between site EDTMs, has been shown to produce results that agree with 
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experiment for DNA sequences that favor the B form at wavelengths greater than 220 

nm6,8. In this chapter, we outline the approach as we have implemented it.  

 

 Approximations and Principles of Theoretical Model 

In our calculations, chromophores including natural bases and fluorescent probes 

are treated as a group of spectroscopically well-defined individual sub-units. A DNA 

polymer can be regarded as an ensemble of purines and pyrimidines, which are treated as 

such sub-units. We assume that such sub-unit are only slightly perturbed by other sub-

units and the environment. Note that these sub-units do not necessarily belong to the 

same molecule.  

The linear rearrangement of electrons on a chromophore induced by the electric 

field is characterized by the electric dipole transition moments (EDTMs), denoted by μ. 

The circular rearrangement of electrons of a chromophore induced by the magnetic field 

is characterized by the magnetic dipole transition moments (ΜDTMs), denoted by m. 

Electronic transitions occur when either (or both) electric or magnetic field radiation 

displaces electrons to a new state. We approximate the electronic transitions on each sub-

unit as a set of point dipoles originating from the chromophore centers.  

Is the point dipole approximation (PDA) adequate to describe the electronic 

couplings between nucleic acid base sites within a DNA molecule? The accuracy of the 

PDA is expected to improve when the inter-site separation 〈𝑅#$〉 is greater than: (i) the 

‘size’ of the molecule; and (ii) the transition dipole radius |𝝁#| 𝑒⁄ , where the fundamental 

charge unit 𝑒 = 1.6 × 10-19 C. For a pair of stacked bases in dsDNA, 〈𝑅#$〉 ~ 3.5 Å. 

Although this separation is comparable to the average dimension of a nucleotide base (~ 

5 Å), it is significantly greater than the dipole radii of nearly all the transitions relevant to 
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this work (< 1 Å, see Table 3.1-3.4, Table 3.6-3.7). Based on the above considerations, it 

is unclear how much error is introduced by using the Point Dipole Approximation. 

Nevertheless, the PDA represents a reasonable starting point to model resonant coupling 

within the 6-MI- and ACMA-labeled DNA constructs. We note that previous studies 

using the PDA to model oligonucleotides have been shown to be successful in a number 

of situations4,6,8,9.  

A non-zero CD spectrum requires a helical redistribution of electronic charge 

density upon electric or magnetic (or both) excitation of the coupled transitions within the 

molecule. This effect is summarized by the Rosenfeld equation for the rotational strength 

𝑅𝑆 = 𝐼𝑚{𝝁 ∙ 𝒎} (3.1) 

In the following, we assume that the intrinsic CD of individual chromophores is 

negligible, since individual chromophoric sub-unit are essentially achiral. Finite CD 

bands arise only because of pairwise chromophore-chromophore interactions. In an 

achiral molecule, the electron redistribution of a transition is always planar. Since most 

chromophores, we considered in the calculation are planar, we assume there’s negligible 

intrinsic magnetic dipole moment (μ ≠ 0, m = 0). We consider solely the coupling 

between an electric dipole allowed transition and the magnetic dipoles induced by other 

electric dipole allowed transitions on neighboring chromophores. The cumulative CD is 

therefore the sum of all pairwise couplings. 

 

Electronic Coupling and Rotational Strength 

We consider the probe substituted DNA construct as a collection of probe and 

nucleotide base sites. Each site can support a variable number of local EDTMs. The ith 

EDTM is associated with an optical transition from a ground electronic state |𝑔# > to an 
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excited state |𝑒# > with transition energy 𝜀# and frequency 𝜐#. The EDTM is specified by 

a molecular frame orientation angle 𝜃# and magnitude |𝝁#|. 

If a pair of electronic transitions are not too close to each other to deviate from the 

point dipole approximation, their electronic coupling is purely Coulombic given no 

electron exchange between them. We approximate the resonant electronic coupling 

between the ith and jth EDTM (assumed to be on different sites) using the point dipole-

dipole expression. 

𝑉#$ =
𝝁# ⋅ 𝝁$ − 3𝑹=#$ ⋅ 𝝁#𝝁$ ⋅ 𝑹=#$

4𝜋𝐷𝜖B𝑅#$C
 (3.2) 

In Eq. (3.2), 𝑹#$ = 𝑹$ − 𝑹# is the inter-site separation vector, and the ‘hats’ indicate 

vectors of unit length. ε0 = 8.854 × 10-12 kg-1	m-3	s2	C2 is the permittivity of a vacuum. D 

is the relative permittivity, or the dielectric constant. Note that 𝑉#$ = 𝑉$#.  

In general, the resonant coupling between the ith and jth EDTMs with energies 𝜀# 

and 𝜀$, respectively, gives rise to a pair of energetically shifted transitions, one with 

symmetric (+) and the other with anti-symmetric (−) molecular frame polarizations. Eq. 

(3.2) can be applied to both degenerate (𝜀# = 𝜀$) and non-degenerate (𝜀# ≠ 𝜀$ ) types of 

pairwise coupling. We next consider separately the treatment of degenerate versus non-

degenerate electronic coupling. The energy diagram of electronic coupling is shown in 

Figure 3.1.  

For cases in which the ith and jth EDTMs are degenerate with energy 𝜀# = 𝜀$ =

𝜀#$ , each exciton is assigned a rotational strength, which depends on the spatial 

arrangement of the individual sites according to the triple product 
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𝑅𝑆#$
± = ±

𝜀#$
4ℏ {𝝁$ 	× 	𝝁# ∙ 𝑹#$} 

(3.3) 

These two CD bands of opposite sign occur at energies slightly above and below 

𝜀#$.  

𝜀#$
± = 𝜀#$ ± 𝑉#$ (3.4) 

𝑅𝑆#$T corresponds to the transition that occurs at energy 𝜀#$T and 𝑅𝑆#$
_  corresponds to the 

transition that occurs at energy 𝜀#$
_ .  

 
Figure 3.1: (A) Energy level diagram of degenerate coupling between two 
energetically identical electronic transitions. (B) Energy level diagram of non-
degenerate coupling between two energetically different electronic transitions. 
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Eq. (3.4) describes the special case in which the coupled two-level systems have 

degenerate transition energies. For cases in which the ith and jth EDTMs correspond to 

nondegenerate transitions with 𝜀# ≠ 𝜀$, a more general solution10 is  

𝜀#$
± = 𝜀#$ ± VΔ#$X + Z𝑉#$Z

X (3.5) 

Here we have defined the average energy 𝜀#$ =
[
X
\𝜀# + 𝜀$]  and the non-

degeneracy parameter Δ#$ =
[
X
\𝜀$ − 𝜀#]. The preceding expressions accurately account 

for the effects of the resonant coupling, irrespective of the degree of degeneracy and the 

extent of exciton delocalization. In all cases, the effect of coupling between the ith and jth 

EDTMs is to increase the separation between their respective transition energies. For 

purposes of notation, we designate the energies of coupled pairs of degenerate transitions 

𝜀#$
±, and for non-degenerate transitions 𝜀#($)

`a  and 𝜀$(#)
`a . If 𝜀# > 𝜀$, 𝜀#($)

`a = 𝜀#$T , 𝜀$(#)
`a = 𝜀#$

_ . If 

𝜀# < 𝜀$, 𝜀#($)
`a = 𝜀#$b , 𝜀$(#)

`a = 𝜀#$T. 

For cases in which the ith and jth EDTMs are non-degenerate, with respective 

energies 𝜀# ≠ 𝜀$ , the effect of the resonant coupling on the rotational strengths is 

described by Eq. (3.6) 

𝑅𝑆#($)
`a = −

𝜀#𝜀$𝑉#$
ℏ\𝜀$X − 𝜀#X]

c𝝁$ 	× 	𝝁# ∙ 𝑹#$d (3.6) 

Here 𝑅𝑆#($)
`a  is the rotational strength experienced by the ith EDTM due to its resonant 

coupling to the jth EDTM. We note that interchanging the indices i and j in Eq. (3.6) 

inverts the sign such that 𝑅𝑆#($)
`a = −𝑅𝑆$(#)

`a . 𝑅𝑆#($)
`a  corresponds to the transition that 

occurs at energy 𝜀#($)
`a  and 𝑅𝑆$(#)

`a , which corresponds to the transition that occurs at energy 

𝜀$(#)
`a .  
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For each pairwise interaction, degenerate and non-degenerate coupled, there are 

two pairs of resulting rotational strengths with corresponding energy levels. The total CD 

is the result of all pairwise interactions. 

The ith rotational strength is related to the ith differential absorption band with 

respect to left and right circularly polarized light  

𝑅𝑆# 	=
3 ln 10𝑐X𝐷𝜖Bℏ

4𝜋𝛮i
j
k𝛼m#(𝜐) − 𝛼n# (𝜐)o

10𝜐

p

bp

𝑑𝜈 =
3 ln 10𝑐X𝐷𝜖B
4𝜋𝛮i ∙ 10

∙
Δ𝐴#
𝜐  (3.7) 

In Eq. (3.7), 𝛼m#(𝜐) and 𝛼n# (𝜐) are the absorption coefficients for left and right circularly 

polarized light, and Δ𝐴# = ∫ k𝛼m#(𝜐) − 𝛼n# (𝜐)o
p
bp 𝑑𝜈 is the CD band that corresponds to 

𝑅𝑆#  and 𝜐# . 𝑁v  is Avogadro’s number. We assume Gaussian lineshape for the line 

broadening 

𝛼m#(𝜐) − 𝛼n# (𝜐) =
𝑅𝑆#

√2𝜋 ∙ 𝜎#
𝑒
b(ybyz){
X|z{  (3.8) 

where 𝜎# is the width of the band.  

The total CD signal is a function of energy (frequency) resulting from the sum of 

individual CD bands, each with rotational strength 𝑅(𝜐#) centered at frequency 𝜈# 

𝛼m(𝜐) − 𝛼n(𝜐) =}
𝑅𝑆#

√2𝜋 ∙ 𝜎##

𝑒
b(ybyz){

X|z{  (3.9) 

Note that the signs of the CD bands are the same as those of the corresponding rotational 

strengths.  

We further note that according to Eq. (3.2) and (3.6), the value for 𝑉#$  is 

dependent on the dielectric constant D. For all the calculations that follow, we have 

assumed the value for the dielectric constant 𝐷 = 2. This produces CD spectra similar in 

scale to those obtained from experiment8,9,11. Our assessment of a favorable comparison 
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between calculated and experimental CD is therefore based mainly on the ability of our 

procedure to reproduce the CD spectral shape. 

 

Determination of Electric Dipole Transition Moments (EDTMs) 

The input parameters needed for the above calculations include the local EDTM 

orientation angles 𝜃#, magnitudes |𝝁#| (C m), and transition energies 𝜀# (J), in additional 

to the spectral standard deviations 𝜎# (s-1). The values of the orientation angles 𝜃# were 

obtained from linear dichroism experiments performed on molecular crystals and oriented 

polymer films, in addition to quantum chemical calculations. We obtained values for |𝝁#|, 

𝜀# and 𝜎# from spectral decomposition analyses of absorption data, which include prior 

experimental studies.  

We determined the EDTM magnitude by integrating the experimental absorbance 

lineshape according to the Eq. (3.10)7.  

|𝝁#|X =
3𝑙𝑛10𝑐𝜖𝜖Bℏ

𝜋𝑁v
j
𝛼#(𝜐)
10	𝜐 𝑑𝜐

p

bp

=
3𝑙𝑛10𝑐𝜖𝜖Bℏ

𝜋𝑁v
∙
𝐴#
𝜐  (3.10) 

To determine the value of |𝝁#|X in units of C2 m2 using Eq. (3.2), we use the appropriate 

values and units for the absorption coefficient 𝛼# (M-1 cm-1) as a function of the optical 

frequency 𝜐 (s-1), the vacuum permittivity 𝜖B = 8.854 × 10-12 kg-1 m-3 s2 C2, Planck’s 

constant ℏ = 1.0546 × 10-34 m2 kg s-1, the speed of light c = 2.99 × 108 m s-1, and 

Avogadro’s number 𝑁v = 6.022 × 1023 mol-1. Note that we used SI unit for all variables 

in our calculation except for the absorption coefficient 𝛼# (M-1 cm-1).   

The corresponding dimensionless oscillator strength is  
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𝑓# =
4𝜋𝑚�

3ℏ𝑒X 𝜐
|𝝁#|X =

4𝑚�𝑐𝜖B ln 10
𝑁v𝑒X

j
𝛼#(𝜐)
10 𝑑𝜐

p

bp

 (3.11) 

Here 𝑚� = 9.109×10−31 kg is the electron rest mass.  

In the second equality of Eq. (3.10), we have defined the integrated area 𝐴# =

∫ 𝛼#(𝜐)
p
bp 𝑑𝜐 , which approximates the transition frequency as constant across the 

absorption lineshape. We modeled the experimental lineshape as a Gaussian 

𝛼#(𝜐) =
𝐴#

√2𝜋 ∙ 𝜎#
𝑒
b(ybyz){

X|z{  (3.12) 

for which we have defined the standard deviation as 𝜎#.  

EDTMs of natural bases 

In Figure. 3.2, we illustrate the definitions for the ith EDTM orientation angle 𝜃# 

that we used in our calculations for the natural nucleic acid bases. These definitions are in 

accordance with the conventions established by DeVoe and Tinoco12.  

 

The plane of the nucleobase is defined as the one containing atoms C4, C5 and C8 

in the case of the purines (Adenine and Guanine), and atoms N1, C4 and C5 in the case of 

 
Figure 3.2: Definitions for EDTM angles of natural orientation DNA bases. 
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the pyrimidines (Cytosine and Thymine). The center of the molecule is defined as the 

mid-point of atoms C4 – C5 in the case of purines or N1 – C4 in the case of pyrimidines. 

The lowest energy EDTMs lie within the plane of the nucleobases, and they are assumed 

to pass through the molecule center. The orientation angle 𝜃# is defined as a counter-

clockwise rotation relative to the above axes, as shown.  

In Table 3.1-Table 3.4, we list the DNA natural bases EDTM parameters that we 

have used for our calculations. In all cases, we list the reference(s) from which we have 

obtained the relevant values. Although there is a well-established literature underlying the 

assignments we have made, we note that there does not appear to be uniform agreement 

for the correct orientation angles. We include other possible assignments in Appendix B.  

 

Table 3.1. Electric dipole transition moment (EDTM) parameters used for Thymine (T).6 

 

Table 3.2. EDTM parameters used for Adenine (A).13 

 

 

 

transition, i 𝜀# (cm-1) 𝜆# (nm) 𝑓# |𝝁#| (D) |𝝁#| 𝑒⁄  (Å) 𝜃# (°) 𝜎# (cm-1) 

1 37 736 265 0.19 3.27 0.68 -19 2 022 

2 46 512 215 0.1 2.14 0.45 71 3 146 

3 51 282 195 0.1 2.04 0.43 -36 1 034 

4 56 497 177 0.4 3.88 0.81 -20 1 475 

transition, i 𝜀# (cm-1) 𝜆# (nm) 𝑓# |𝝁#| (D) |𝝁#| 𝑒⁄  (Å) 𝜃# (°) 𝜎# (cm-1) 

1 36 700 272 0.047 1.65 0.34 66 1 550 

2 38 800 258 0.24 3.63 0.76 19 1 550 

3 43 370 231 0.027 1.15 0.24 -15 700 

4 46 840 213 0.14 2.52 0.52 -21 1 050 

5 48 320 207 0.12 2.30 0.48 -64 1 000 
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Table 3.3. EDTM parameters used for Cytosine (C). 6,14 

transition, i 𝜀# (cm-1) 𝜆# (nm) 𝑓# |𝝁#| (D) |𝝁#| 𝑒⁄  (Å) 𝜃# (°) 𝜎# (cm-1) 

1 37 594 266 0.145 2.86 0.60 25 1 592 

2 43 478 230 0.0876 2.07 0.43 6 2 097 

3 47 170 212 0.132 2.44 0.51 76 903 

4 50 761 197 0.468 4.43 0.92 -27 3 206 

5 60 606 165 0.134 2.17 0.45 0 1 550 

6 66 667 150 0.187 2.44 0.51 60 1 550 

 

Table 3.4. EDTM parameters used for Guanine (G).6 

 

EDTMs of 6-MI 

The structure of the 6-MI Guanine analogue maintains the same Watson-Crick 

hydrogen-bonding pattern with the complementary cytosine base as does guanine. The 

lowest energy (𝜋 → 𝜋∗) electronic transitions of 6-MI are polarized within the plane of 

the polycyclic ring.15,16  

Analogously to natural bases, we illustrate the definitions for the ith EDTM 

orientation angle 𝜃# for 6-MI in Figure 3.3. 

transition, i 𝜀# (cm-1) 𝜆# (nm) 𝑓# |𝝁#| (D) |𝝁#| 𝑒⁄  (Å) 𝜃# (°) 𝜎# (cm-1) 

1 36 765 272 0.132 2.76 0.57 35 1 550 

2 40 323 248 0.192 3.18 0.66 -75 1 550 

3 49 020 204 0.354 3.92 0.82 -75 1 550 

4 53 476 187 0.386 3.92 0.82 -9 1 550 

5 62 893 159 0.225 2.76 0.57 -4 1 550 

6 64 935 154 0.103 1.84 0.38 -75 1 550 

7 68 966 145 0.172 2.3 0.48 -4 1 550 
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The peak absorption and fluorescence spectra of 6-MI in aqueous solution are 

known to exhibit inhomogeneous spectral line broadening, which depends on pH, and in 

6-MI substituted DNA constructs on nucleic acid base sequence and secondary 

structure.17 In 6-MI substituted ssDNA constructs, the 6-MI peak absorbance tends to 

shift to longer wavelengths in comparison to that of the 6-MI monomer in solution. This 

effect is more pronounced in 6-MI substituted dsDNA constructs than in ssDNA 

constructs.17 Previous studies have shown that the observed spectral inhomogeneity is 

due to the presence of 6-MI conformational bi-stability corresponding to two equilibrium 

positions for the N3 proton, which forms one of the Watson-Crick hydrogen bonds 

between 6-MI and Cytosine (see Chapter II). The bi-stability of the protonated state of 6-

MI gives rise to two distinct sub-populations of the lowest energy EDTM (which we refer 

to as transitions 1’ and 1) with slightly different peak transition energies and Gaussian 

standard deviations. 

In Figure 3.4, we show the excitation spectra of the three 6-MI substituted ssDNA 

constructs that we examined in the current work (YGG, GYG, GGY, see Chapter IV for 

base sequence details). These spectra were measured by detecting the 6-MI emission at 

435 nm while varying the excitation wavelength. The excitation spectra have the 

advantage over absorption spectra that the underlying absorptive transitions of the 6-MI 

 
Figure 3.3: Definitions for EDTM angles of 6-MI Guanine fluorescent analogue 
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probe can be isolated from those of the surrounding nucleic acid bases of the DNA 

construct. We note that the excitation spectral amplitudes vary with base sequence due to 

differences in the fluorescence quantum yield, while the spectral lineshape for these 

samples is approximately independent of base sequence.  

 

To determine the relative populations of the two protonated states of the 6-MI 

probe within the ssDNA constructs, we performed a Gaussian spectral decomposition 

analysis on each of these excitation spectra, which yielded the peak positions and line 

 
Figure 3.4: Excitation spectra and Gaussian decomposition analysis of 6-MI 
substituted ssDNA constructs. The lowest energy features labeled 1’ and 1 are due to 
the presence of two stable, spectrally distinct 6-MI protonation states within the 
nucleobase environment. 
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widths of the underlying absorptive transitions. The results presented in Table 3.5 show 

that for these constructs the underlying 6-MI transition energies and widths are 

approximately independent of nucleic acid base sequence. We therefore used for our 

calculations the average values of the transition energy and standard deviations given in 

Table 3.6.  

 

Table 3.5. Peak transition energies 𝜀#  and standard deviations 𝜎#  from Gaussian 

decomposition analysis of excitation-emission spectra for the 6-MI substituted DNA 

constructs studied in this work (see Chapter IV). These parameters were found to be 

independent of sequence context. We therefore used the averages of these values for our 

calculations, which are given in Table 3.6. 

transition, i YGG GYG GGY 

𝜀# (cm-1) 𝜎# (cm-1) 𝜀# (cm-1) 𝜎# (cm-1) 𝜀# (cm-1) 𝜎# (cm-1) 

1’ 27 180 1 232 27 370 1 315 27 353 1 304 

1 29 589 1 788 29 829 1 825 29 783 1 812 

2 34 148 1 412 34 209 1 282 34 172 1 272 

 

Table 3.6. EDTM parameters used for 6-methyl Isoxanthopterin (6-MI). 15 

transition, i 𝜀# (cm-1) 𝜆# (nm) 𝑓# |𝝁#| (D) |𝝁#| 𝑒⁄  (Å) 𝜃# (°) 𝜎# (cm-1) 

1’ 27 303 366 0.262 4.52 0.94 74.5 1 284 

1 29 734 336 0.286 4.52 0.94 74.5 1 808 

2 34 596 289 0.244 3.87 0.81 -25 1 452 

 

EDTMs of ACMA 

To determine the EDTM parameters for ACMA, we analyzed the absorption 

spectrum, which was previously reported by others.18,19 We applied the reported 

extinction coefficient of ACMA in determining the magnitude of EDTM. ACMA EDTM 

angle definition is shown in Figure 3.5.  
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We performed a Gaussian decomposition analysis on the ACMA absorption 

spectrum, as shown in Figure 3.6.  

 

We modeled the EDTM orientations based on the same short- and long-axis 

polarized assignments determined for quinacrine, for which the chromophore is 

chemically identical to ACMA and exhibits an absorption spectrum that is slightly shifted 

to lower energy. We assumed that the lowest energy electronic transition (S0 → S1) lies 

along the short-axis of the tricyclic ring system, and the next two electronic transitions 

(S0 → S2 and S0 → S3) lie along the long-axis of the tricyclic ring. From the ACMA 

 
Figure 3.5: Definitions for EDTM angles of ACMA. 

 
Figure 3.6: Absorption spectrum and Gaussian decomposition analysis of ACMA. The 
three lowest energy electronic transitions (S0 →  S1, S2, S3) are each coupled to 
vibrational motions that give rise to vibronic sub-bands labeled 1a, 1b, …, 2a, 2b, …, 
etc. 
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absorption spectrum, we see that each electronic transition exhibits a vibronic progression 

with vibrational spacing ~ 1,100 cm-1. We thus assigned transitions 1a – 1c to the short-

axis polarized S0 → S1 manifold, transitions 2a and 2b to the long-axis polarized S0 → S2 

manifold, and transitions 3a – 3c to the long-axis polarized S0 →  S3 manifold. The 

resulting EDTM parameters are listed in Table 3.7. 

 

Table 3.7. EDTM parameters used for 9-amino-6-chloro methoxyacridine (ACMA).  

transition, i 𝜀# (cm-1) 𝜆# (nm) 𝑓# |𝝁#| (D) |𝝁#| 𝑒⁄  (Å) 𝜃# (°) 𝜎# (cm-1) 

1a 23 122  432 0.0037 0.58 0.12 0 439 

1b 24 372 410 0.002 0.42 0.09 0 371 

1c 24 956 401 0.0155 1.15 0.24 0 1 576 

2a 29 407 340 0.0018 0.36 0.08 90 285 

2b 30 347 330 0.0066 0.68 0.14 90 1 159 

3a 37 692 265 0.0929 2.29 0.48 90 1 331 

3b 36 118 277 0.0392 1.52 0.32 90 706 

3c 39 751 252 0.0647 1.86 0.39 90 3 435 

 

 

Circular Dichroism Calculation of the Dinucleotide 

 We applied the theoretical model described and EDTMs determined above to 

calculate the CD of the dinucleotides. We utilized the results of molecular dynamic (MD). 

CD is the net result of all conformations of dinucleotide in solution.  

MD simulation of the dinucleotide 

Molecular Dynamics (MD) simulations were performed using the GROMACS 

software program.20 The simulation program “Nucleic Acid Builder” from Ambertools 

was used to generate the ideal B-forms of dinucleotides as the initial structures.21 The 

dinucleotides were then solvated in a cubic box with the box length determined by the 
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largest distance between the atoms in the dinucleotides plus 40 Å, i.e. the relative 

distance between the edge of the simulation box and the dinucleotides were set to 20 Å. 

The Amber99+parmbsc0 force-field22 was used for dinucleotides solvated in TIP3P water 

models.23 Sufficient sodium ions were added to neutralize charges along the phosphate.24 

The solvated structure energy was then minimized using the Steepest Descent algorithm 

for 5000 steps. The whole system was then heated to T=300 K and equilibrated in the 

canonical (NVT) ensemble for 500 ps. This was followed by a secondary 500 ps 

equilibration in the isothermal-isobaric (NPT) ensemble using the BDP velocity rescaling 

thermostat25 and Parrinello-Rahman barostat.26 The MD production runs were then 

performed in the NPT ensemble using the Verlet integrator and LINCS constraints with a 

timestep of 2 fs. The production runs for the AA, AT, TA, and TT dinucleotides 

consisted of 1 µs and the trajectories were saved every 1 ps while production periods of 

0.2 µs were used for the rest of the dinucleotides, where the trajectories were saved every 

0.2 ps.  

CD calculation of the dinucleotide 

Overall, 1 million trajectory frames were used to obtain the average CD spectra 

reported for all dinucleotides. To report the statistical uncertainties in the CD spectra, 50 

block averages were used to report the standard error of the mean, where each block 

consisted of 20,000 frames. 

We obtained reasonable calculated CD results compared to the experimental 

results27. Here we show the results of all 16 dinucleotides in Figure 3.7 – Figure 3.10.  
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Figure 3.7: Circular dichroism of (A) AA, (B) AC, (C) AG, (D) AT, the polarity of 
each dinucleotide is from 5’ to 3’.  

 
Figure 3.8: Circular dichroism of (A) TA, (B) TC, (C) TG, (D) TT, the polarity of 
each dinucleotide is from 5’ to 3’. 
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Figure 3.9: Circular dichroism of (A) GA, (B) GC, (C) GG, (D) GT, the polarity of 
each dinucleotide is from 5’ to 3’. 
 

 
Figure 3.10: Circular dichroism of (A) CA, (B) CC, (C) CG, (D) CT, the polarity of 
each dinucleotide is from 5’ to 3’. 
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Bridge to Chapter IV 

In the next chapter, we will apply the CD calculation method presented in this 

chapter to calculate CD for 6-MI labeled DNA and DNA canonical dinucleotides. 
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CHAPTER IV 

LOCAL NUCLEIC ACID BASE CONFORMATION REVEALED BY CIRCULAR 

DICHROISM STUDIES OF 6-METHYL ISOXANTHOPTERIN SUBSTITUTED DNA 

CONSTRUCTS 

 

Overview 

Chapter IV presents the CD calculation conducted for 6-MI labeled DNA and 

DNA canonical dinucleotides. This chapter contains unpublished material co-authored 

with Neil P. Johnson, Peter H. von Hippel, and Andrew H. Marcus. Experimental CD and 

fluorometry were performed by Neil P. Johnson. We have found that single 6-MI 

substituted DNA constructs can be used to sensitively probe local nucleic acid base 

conformation. Qualitative agreement between calculations and experimental results 

reinforces the idea that the CD of 6-MI could be a useful probe of DNA secondary 

structure. 

 

Introduction 

A useful strategy to study changes in the local conformations of nucleic acids is to 

employ fluorescent nucleic acid base analogues, which can be site-specifically positioned 

within a DNA construct such as a model replication fork. Base analogues such as 2-

aminopurine [2-AP, an analogue of adenine (A)]1,2 and 6-methyl Isoxanthopterin [6-MI, 

an analogue of guanine (G)]3–5 absorb light at wavelengths longer than 300 nm, which is 

a spectral range where canonical protein and nucleic acid components are optically 

transparent. Because the electronic structures of such base analogue probes are typically 

sensitive to interactions with nearby chemical groups, site-specific spectroscopic 
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measurements of the optical properties of these analogues, such as absorbance, circular 

dichroism (CD) and fluorescence spectroscopy often depend sensitively on the details of 

the local DNA and protein environment. 

In previous work, our groups have used excitation-emission fluorescence and CD 

spectroscopy to study the local conformations of DNA and protein-DNA complexes in 

which two adjacent (in the same strand) nucleotide residues have been substituted by 

‘dimeric pairs’ of the fluorescent base analogue probe 6-methyl Isoxanthopterin (6-

MI).1,4,6 In those studies, the 6-MI dinucleotide served as an optical dimer probe of local 

base conformation, because the collective excitations (called excitons) of the 6-MI 

dinucleotide depends on the electronic coupling between the degenerate and non-

degenerate electronic transitions of the monomer subunits. In a similar fashion, useful 

information about local base conformations is available from experiments in which a 

single base of a DNA construct is substituted with a fluorescent base analogue probe. In 

such cases, local interactions between the single-site-substituted analogue probe and its 

nearest neighbor bases affect the CD spectrum and the fluorescence quantum yield, 

which may be interpreted qualitatively in terms of local base stacking and unstacking 

conformations.  

In the present study we have applied a simple theoretical model (see Chapter III) 

to aid our understanding of local interactions between a single 6-MI analogue probe4,6,7 

site-specifically positioned within a DNA construct that comprises its immediate 

environment. Specifically, we have studied the CD of 6-MI-substituted ss and dsDNA 

constructs in three different sequence contexts, and find that our model can be used to 

extract base-sequence-dependent information about the local conformation of the 6-MI 

probe as modulated by the local base or base-pair environment.  
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Our results indicate that information about local base conformation – in both 

single and duplex DNA strands – can be obtained through consideration of the non-

degenerate couplings between the EDTMs of the 6-MI probe and those of adjacent 

canonical DNA bases.  

 

Materials and Methods 

Experimental procedures 

Preparation of DNA constructs labeled with 6-MI 

 Unlabeled and 6-MI substituted DNA oligonucleotides were purchased from 

Integrated DNA Technologies (Coralville, IA) and from Fidelity Systems (Gaithersburg, 

MD). The sequences and nomenclature of the principle DNA constructs used in this work 

are shown in Table 4.1. Solutions of oligonucleotides were prepared in an aqueous buffer 

solution containing 0.1 M NaCl and 10 mM NaPO3 at pH 7.0, which were adjusted to 35 

mM concentrations of the single strands using extinction coefficients provided by the 

manufacturer. Duplex DNA constructs were prepared by combining the single strand 

oligonucleotide solutions at equal concentrations and annealed by heating to 90 °C and 

cooling overnight in an insulated copper block. `All experiments were performed at 20°C 

unless otherwise specified.  

Table 4.1. Base sequences and nomenclature for the 6-MI-containing ssDNA constructs 
used in Chapter IV. The letter Y indicate the 6-MI probe. 6-MI labeled DNA constructs 
were also designed to form complementary sequences with CCC in inverse (3’-5’ and 5’-
3’) orientations. 
 

DNA construct Nucleotide base sequence 
CCC 3'-C GGA CCC ACG G-5' 
GGG 5'-G CGT GGG TGC C-3' 
YGG 5'-G CCT YGG TGC C-3' 
GYG 5'-G CCT GYG TGC C-3' 
GGY 5'-G CCT GGY TGC C-3' 
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Spectroscopy. We performed absorption, CD and excitation-emission spectroscopic 

measurements on both ss- and dsDNA constructs labeled with 6-MI and ACMA probes 

in defined positions. Fluorescence excitation and emission spectra were obtained using a 

Jobin-Yvon FluoroMax-3 spectrophotometer. For the DNA constructs containing 6-MI 

(shown as green, red, and blue curves in Figure 4.1), excitation spectra were recorded by 

varying the excitation wavelength over the 250 – 425 nm wavelength range while 

monitoring at the 435 nm emission peak. We measured the emission spectra of the 6-MI 

DNA constructs by exciting at the 350 nm peak absorbance and monitoring the 

fluorescence emission over the 350 – 550 nm range. For the ACMA-containing DNA 

construct (black curves), we varied the excitation over the 250 – 500 nm range, while 

detecting at 490 nm. We recorded emission spectra for the ACMA construct by exciting 

at the lowest energy peak absorbance at 435 nm, and detecting emission over the 450 – 

600 nm range. We performed our absorption measurements using a Cary 3E UV-Vis 

spectrophotometer. We performed CD measurements using a Jasco model J-720 CD 

spectrophotometer. For the 6-MI labeled samples, we obtained absorbance and CD 

spectra over the 200 – 450 nm range. For samples containing ACMA, we measured 

absorbance and CD over the 300 – 600 nm range. We tested for reproducibility by 

repeating each measurement 3 – 4 times. The CD intensity parameters (the y-axes of the 

plotted CD spectra) represent the difference in absorption of the sample when excited by 

left- and right-circularly polarized light [𝜀" − 𝜀$ (in M-1 cm-1)] per mole of 6-MI probe 

chromophore. Note that all of the DNA constructs that we used employed a ‘monomer 

probe’ – i.e., one probe chromophore per DNA construct. All spectra were corrected for 

background contributions determined using the buffer solution alone. 

 



61 

Results 

In Figure 4.1, we show the excitation and emission spectra corresponding to the 

6-MI-labeled ssDNA constructs. For the 6-MI labeled DNA constructs, the shapes of the 

excitation and emission spectra are independent of sequence context (YGG, GYG and 

GGY), although the relative intensities vary due to differences in fluorescence quantum 

yield. The spectral lineshape of the lowest energy absorptive feature, which is centered at 

approximately 355 nm, is inhomogeneously broadened. This inhomogeneity was studied 

previously in 6-MI-substituted ss and dsDNA constructs, and is due to the presence of 

two energetically distinct probe-nucleotide base environments that affect the degree of 

protonation of the 6-MI N3 hydrogen6.  

 
Figure 4.1: (A) Emission spectra of the YGG, GYG and GGY ssDNA constructs. 6-MI 
labeled ssDNA constructs were excited at 350 nm. (B) Excitation spectra of the YGG, 
GYG, and GGY ssDNA constructs. The detection wavelength for the excitation spectra 
was at 435 nm. Monomer electronic transitions were labeled with arrows to denote the 
transition energies. Y1, Y1’ and Y2 are transitions of 6-MI monomer. Y1, Y1’ are two 
transitions with dipole moments that have identical orientation on 6-MI. Their transition 
energies depend on the local environment of 6-MI, including both the solution pH and 
the local DNA sequence. (C) Schematics of the central portions of the duplex DNA 
constructs near the spectral probes.  
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Prior work has shown that the two 6-MI transition energies are not correlated to 

differences in local base stacking conformation, but rather differences in the degree of 6-

MI protonation (see Chapter II). From our Gaussian decomposition analyses of these 

spectra (See Figure. 3.4 and Table 3.5), we obtained EDTM parameters for the lowest 

energy transitions (S0 → S1’ centered at 366 nm, S0 → S1 centered at 336 nm, and S0 → S2 

centered at 289 nm, see Table 3.6). Because the spectral widths and transition energies 

are experimentally indistinguishable for each of the three 6-MI-substituted DNA 

constructs, we used the average parameter values listed in Table 3.5 for our CD 

calculations. The EDTM orientations for these transitions were determined in previous 

work5. We assumed that the EDTM orientation for transition S0 → S1’ and S0 → S1 are 

identical.  

We studied the sequence-dependence of the local base stacking conformations of 

6-MI substituted ssDNA constructs by examining the CD of the three sequences: YGG, 

GYG and GGY. Each of these ssDNA constructs is an 11-mer mixed-base 

oligonucleotide, which has little tendency to form loops or other secondary structural 

motifs. Although the three-base nomenclature is useful to delineate the different samples 

we have studied, it does not emphasize the presence of a flanking thymine on both the 3’ 

and 5’ sides of the three-base sequence. We also measured the CD of the corresponding 

duplex DNA constructs CCC/YGG, CCC/GYG, and CCC/GGY, which were formed by 

hybridization of the 6-MI labeled strands with their complementary CCC strand. For 

control measurements, we examined a sample with sequence CCC/GGG. 
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In Figure 4.2 A and C, we present experimental CD spectra of the ss and ds DNA 

constructs, respectively, over the wavelength range of the 6-MI transition energies (280 – 

445 nm, 22,000 – 36,000 cm-1).  

 

For each of the ss and ds DNA constructs, the placement of the 6-MI probe 

relative to its various neighboring bases and associated EDTMs gives rise to distinctly 

different CD spectra. As expected, our control GGG and CCC/GGG samples did not 

exhibit measurable CD at wavelengths greater than 300 nm. Thus, for samples containing 

the 6-MI probe, the optical activity at these wavelengths is due predominantly to the three 

6-MI EDTMs (designated Y1’ at 366 nm, Y1 at 336 nm and Y2 at 289 nm) and to their 

couplings to native base residues whose transitions occur at shorter wavelengths. In 

 
Figure 4.2: (A) Experimental and (B) simulated CD of ssDNA constructs, which assume 
that the nucleotides adopt the B-form conformation. A similar comparison is made for 
(C) experimental and (D) simulated CD of dsDNA. In panel B, the wavelengths of the 
uncoupled 6-MI transitions are indicated: Y1’ (366 nm), Y1 (336 nm) and Y2 (289 nm) 
(see Table 3.6). 
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Appendix C, we show these experimental (and simulated, see below) CD spectra over the 

broader spectral range 200 – 400 nm (25,000 – 50,000 cm-1), which spans the transition 

energies of the native bases in addition to those of the 6-MI probe. At wavelengths 

shorter than 280 nm (> 32,000 cm-1), the CD exhibits a prominent quasi-conservative 

Cotton effect centered at 268 nm, which arises due to the transitions and couplings of the 

native base residues within the 11-mer, and is consistent with an overall right-handed B-

form conformation8. For completeness, we show in Appendix C the same CD spectra in 

Figure 4.2 as a function of wavenumber. 

In Figure 4.2 B and D, we present our CD calculations of the 6-MI substituted ss 

and ds DNA constructs, respectively, for which we assumed the B-form conformation. 

We tested these calculations for self-consistency by varying the number of flanking bases 

in proximity to the 6-MI probes (see Appendix C). We found that in order to convergent 

results, it was necessary to include the couplings between transitions localized to bases 

separated by distances as large as half a helical turn. We thus included for all of our 

calculations all 11 bases for the ss DNA constructs, and all 22 bases for the ds DNA 

constructs. By following this protocol, we were able to obtain simulated CD spectra that 

agreed qualitatively with experiment, as we discuss further below. For all of the 6-MI 

substituted ss and ds DNA constructs that we studied, we found that both the shapes and 

magnitudes of the experimental CD exhibited sensitivity to the sequence-specific position 

of the 6-MI probe, and to the secondary structure of the DNA construct. We first consider 

the CD of the ss DNA constructs: YGG, GYG and GGY (see Figure 4.2 A). We note that 

each of these exhibited a negative amplitude ‘shoulder’ at ~ 305 nm, which arises from to 

the opposing rotational strength contributions of the Y2 and Y1 transitions. However, the 

dependence of the CD spectra on the sequence-specific position of the 6-MI probe can be 
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understood in terms of varying rotational strength contributions of the low energy Y1 and 

Y1’ transitions. In the case of the YGG sequence (red curve), there is mainly a broad 

positive feature at ~ 335 nm, which is due to overlapping positive rotational strength 

contributions of both the Y1 and Y1’ transitions. On the other hand, the GGY sequence 

(green curve) exhibited a relatively weak CD spectrum, with a slightly positive feature at 

~ 340 nm (Y1 transition) and a slightly negative feature at ~ 370 nm (Y1’ transition). 

Finally, the GYG sequence (blue curve) exhibited two (unequal) negative amplitude 

features at ~ 330 nm (Y1 transition) and at ~ 360 nm (Y1’ transition).  

The spectral features we observed in the CD of the 6-MI substituted ss DNA 

constructs are also present in our calculations, which assumed the B-form conformation 

(see Figure 4.2 B). Yet, the agreement between experimental and simulated CD varies 

depending on the site-substitution position of the 6-MI probe. For example, the simulated 

YGG spectrum (red) exhibits two overlapping low-energy features with positive 

amplitude, in agreement with experiment. Similarly, the simulated CD of the GGY 

sequence (green) exhibits two weakly negative features, which is very similar to the 

experimental spectrum. We note that the slightly positive feature seen in the experimental 

CD at ~ 340 nm is qualitatively similar to the slightly negative amplitude of this same 

feature in the simulated spectra. On the other hand, the experimental and simulated CD 

spectra of the GYG sequence (blue) are qualitatively different from one another. Most 

notably, the overlapping low-energy features in the experimental CD are strongly 

negative, while these same features appear to be strongly positive in the simulated spectra.  

We next discuss the CD of the 6-MI substituted ds DNA constructs YGG/CCC, 

GYG/CCC and GGY/CCC, which are shown in Figure 4.2 C. The CD for these samples 

exhibited interesting similarities to those of the ss DNA constructs, and important 
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differences (compare to Figure 4.2 A). For each of the 6-MI substituted ds DNA 

constructs, the amplitudes of the low-energy Y1 and Y1’ features at ~ 335 nm and ~ 370 

nm, respectively, were more negative than the CD of the corresponding ss DNA 

constructs. This effect can also be seen in the simulated CD spectra of the YGG/CCC and 

GGY/CCC sequences, which assumed the B-form conformation and agree reasonably 

well with experiment (see Figure 4.2 D). However, similar to our results for the ss DNA 

GYG sequence, we obtained unfavorable agreement between experimental and simulated 

CD for the GYG/CCC sequence since the low energy Y1 and Y1’ features exhibited 

negative amplitude in the experiment and positive amplitude in the simulated spectra.  

It is perhaps surprising that we have obtained reasonable agreement between 

experimental and simulated CD spectra assuming the B-form geometry for the YGG and 

GGY ssDNA constructs, and for the YGG/CCC and GGY/CCC dsDNA constructs. In 

contrast, we found that we could not obtain, based on the B-form geometry, similarly 

favorable agreement between experimental and simulated CD for the GYG and 

GYG/CCC sequences. Without further analyses, we might interpret these results to 

suggest that the 6-MI probe experiences an approximately B-form local conformation 

within both ss and ds DNA constructs when the 6-MI probe base is positioned in between 

a flanking pyrimidine and a flanking purine (as is the case for the YGG and GGY 

sequences), but experiences a conformation that deviates from B-form when the 6-MI 

probe is positioned in between two flanking purines (as is the case for the GYG 

sequence). Such an effect could occur due to the presence of the additional atoms within 

the polycyclic ring of the 6-MI probe base in comparison to Guanine, which may lead to 

unfavorable base-stacking interactions with its two flanking purines.  
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To test whether our theoretical model can account for the sequence dependent CD 

spectra we observed in our experiments, we performed calculations as a function of the 6-

MI rotation angle 𝜃, which is defined in Figure 4.3. This angle describes the rotation of 

the 6-MI probe base about the sugar-phosphate backbone (defined as the z-axis in Figure 

4.3 A) relative to the B-form conformation. This rotation is affected while maintaining 

the atoms of the base within the same plane as for the B-form conformation. In addition, 

we assume that all of the remaining bases remain in the B-form geometry.   

 

In Figure 4.4, we show the results of our calculations for each of the three 6-MI 

substituted ss DNA constructs in comparison to the experimental spectra. In each case, 

we show a family of simulated spectra to illustrate the sensitivity of these calculations to 

the rotation angle 𝜃. The dependence of these calculations over a broader range of angles 

is demonstrated in Appendix C.   

For each of the 6-MI substituted ss DNA constructs, we were able to find an 

optimal 6-MI conformation that matched best with the experimental spectra. For both the 

GYG and GGY sequences, the simulated CD exhibited sensitivity to the rotation angles 

 
Figure 4.3: Molecular structural model of the ss oligonucleotide YGG with Y = 6-MI 
probe base (see Table 4.1 for complete sequences). The 6-MI probe base (shown in red) 
is rotated by the angle 𝜃 relative to its B-form conformation (shown in blue). Views are 
shown from the side (A) and from the top (B).  
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close to the optimal angles that we obtained. Only a 1º difference in 6-MI conformation 

leads to a significant change that can invert the sign of CD. However, the simulated CD 

of the YGG sample did not exhibit this degree of sensitivity to the choice of the rotation 

angle 𝜃.   

 

 

 
Figure 4.4: Comparison between experimental and simulated CD spectra of the 6-MI 
substituted ss DNA constructs (A) YGG, (C) GYG and (E) GGY. The corresponding 
optimized conformations are shown in panels (B), (D), (F), with the 3’ end facing the 
top of the page. The 6-MI probe is shown in its B-form conformation in blue and in its 
rotated conformation in red.  
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From the above comparisons, we determined the angles most consistent with our 

experimental results. We note that in our model, any deviation of the 6-MI probe base 

angle from its B-form conformation corresponds to increasing its occlusion (i.e. stacking) 

with one of its flanking neighbor bases while decreasing its stacking with its other 

neighboring base. In the case of the ss YGG sample, the 19º rotation of the 6-MI probe 

base (shown in Figure 4.4 B) indicates that it becomes less stacked with its 3’ flanking G 

 
Figure 4.5: Comparison between experimental and simulated CD spectra of the 6-MI 
substituted ds DNA constructs (A) CCC/YGG, (C) CCC/GYG and (E) CCC/GGY. The 
corresponding optimized conformations are shown in panels (B), (D), (F), with the 3’ 
end facing the top of the page. The 6-MI probe is shown in its B-form conformation in 
blue and in its rotated conformation in red. The opposing strand is shown in black.  
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and more stacked with its 5’ flanking T. In the case of the ss GYG sample, the -9º 

rotation of the probe base indicates that it becomes more stacked with its 3’ flanking G 

and less stacked with its 5’ flanking G (see Figure. 4.4 E). Finally, for the GGY sample, 

we find that the comparison between experimental and simulated CD could not be 

improved by changing the 6-MI rotation angle (Figure. 4.4 F).  

In the case of the ss CCC/YGG sample, the -5º rotation of the 6-MI probe base 

(shown in Figure 4.5 B) indicates that it becomes more stacked with its 3’ flanking G and 

less stacked with its 5’ flanking T. In the case of the CCC/GYG sample, the 32º rotation 

of the probe base indicates that it becomes less stacked with its 3’ flanking G and more 

stacked with its 5’ flanking G (see Figure 4.5 E). Finally, for the CCC/GGY sample, the 

5º rotation of the 6-MI probe base (shown in Figure 4.5 B) indicates that it becomes less 

stacked with its 3’ flanking G and more stacked with its 5’ flanking T. (Figure 4.5 F).  

 

Discussion 

Our results suggest that the extent of base stacking of 6-MI probe is different 

among DNA constructs. It is especially interesting for the case of YGG and GGY. 6-MI 

in the YGG construct is flanked by 3’ G and 5’ T, while in GGY construct 6-MI is 

flanked by 3’ T and 5’ G. 6-MI conformation is not only dependent on the type of 

neighboring canonical bases, but also affected by the polarity of neighboring bases. 

CD is extremely sensitive in GYG and GGY sequences around optimal results 

(see Figure 4.5). Only one degree difference in 6-MI conformation would cause 

significant change in simulated CD result and even flip the sign of CD. But in YGG, 

however, one-degree difference will not change CD significantly. If CD spectra of YGG, 

GYG and GGY reflect the secondary structure of ssDNA, then spectral shapes would be 
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expected to change with temperature, as observed (see Figure 4.6). Interestingly the 

temperature dependent changes in the CD spectra also depend on the sequence context of 

the 6-MI probe. Larger spectral changes are observed for 6-MI residues at the edge of the 

GGG (YGG and GGY) tract while CD spectra of probe at the center (GYG) are nearly 

invariant with temperature. In Figure 4.7, we showed the CD intensity at 350 nm. The 

extent of CD temperature-dependence in three constructs is YGG > GGY > GYG.  

The temperature dependent CD might be influenced by flanking T residues 

(…GTGGGTC…), which could act as flanking temperature-dependent hinges. This 

could explain the insensitivity of GYG to temperature compared to YGG and GGY. In 

other words, 6-MI stacked by Guanine is less flexible than 6-MI stacked by Thymine.  

 

However, the CD signal of the 6-MI probe of YGG and GGY respond differently 

to temperature. The "terminal" Guanine nucleotides are adjacent to Thymine residues 

with different polarity. Pyrimidine-Purines sequences in the dsDNA are more flexible 

than Purines-Pyrimidine sequences.9 Our results might suggest that, likewise, TG 

sequence 5' to the GGG sequence is more flexible than the GT sequence at the 3' end 

although our oligonucleotides are single stranded.  

 
Figure 4.6: Temperature dependence of CD signal for the indicated single stranded 
construct (A) YGG, (B) GYG, (C) GGY. Temperature is indicated by the color code, 20 
– 60 oC in 10o intervals.  
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Figure 4.7: CD intensity at 350 nm as a function of temperature from Figure 4.6.  

 

Based on SAXS experiments, the mean number of stacked bases in dA30 is 3 - 6 

bases in 100 mM.10,11 although this value could differ in our sequence, it gives an idea of 

the appropriate length of B form DNA for CD calculations. It was previously believed 

that nearest neighbor contributes most to CD signal. Yet our base-number dependent 

calculation shows otherwise. In Figure 4.8, we show CD calculation results when various 

number of 6-MI neighboring bases are included. Bases as far as half a turn away can have 

significant effect on final CD.  
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Figure 4.8: Calculations of the CD spectra of the GYG 6-MI substituted (A) ss and (B) 
ds DNA constructs (see Table 4.1). The calculations assumed B-form conformation, and 
were carried by including the couplings to successively larger numbers of flanking bases 
relative to the 6-MI probe, as indicated by the color code.  
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Discrepancy between calculated CD with experimental results could come form: 1. 

DNA can possess secondary structure in solution. Especially for ssDNA, the bases are 

flexible in solution. Fluctuations between different conformations are anticipated. CD 

signal is the average result of all stationary conformations at the given experimental 

condition. 2. Parameter (EDTM) uncertainty can also lead to the shift of peak position 

and coupling strength. We have carefully chosen the EDTM set. Nevertheless, 

incomplete assignment of EDTM and uncertainly of EDTM magnitude and energy 

contribute to discrepancy of simulated CD. 3. We have not considered non-zero intrinsic 

CD of any DNA bases. Although natural bases intrinsic CD are small enough to be 

negligible in our calculation, where strong CD peak comes from parallel interaction. 4. In 

our calculation, we adopt point dipole approximation, where each molecule is treated as a 

point. EDTM on one molecule have the same origin. However, distance and molecule are 

at the same order of scale. The failure of point dipole approximation may lead to 

complications of the coupling strength.  

 

Conclusions and Future Direction 

In this chapter, we have presented the study of DNA local conformation by single 

6-MI labeled DNA constructs facilitated by CD calculation. CD calculation adds to the 

level of sophistication in qualitatively analyzing 6-MI structural behavior in terms of 

local base stacking and unstacking conformations. Qualitative agreement between 

calculations and experimental results reinforces the idea that the CD of 6-MI could be a 

useful probe of DNA secondary structure. Such CD calculation can be easily applied to 

DNA constructs with known conformation. More sophisticated electronic coupling model, 
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extended dipole for instance, could be applied to improve the accuracy of CD calculated 

results.  

 

Summary and Bridge to Chapter V 

In this chapter, we have presented the study of DNA local conformation using 

single 6-MI labeled DNA constructs. In the next chapter, we applied 6-MI to probe the 

ligand insertion of small molecules to duplex DNA.  
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CHAPTER V 

STUDIES OF FREE AND TETHERED INTERCALATOR MOLECULES 

INTERACTING WITH 6-MI LABELED DNA 

 

Overview 

Chapter V presents a study, using steady state fluorometry and circular dichroism 

(CD), of the interactions of the model intercalators Acridine Orange (AO) and 9-amino-

6-chloromethoxyacridine (ACMA) with DNA constructs, which have been site-

specifically labelled with the 6-Methyl Isoxanthopterin (6-MI) base analogue probe. This 

chapter contains unpublished material co-authored with Neil P. Johnson, Peter H. von 

Hippel and Andrew H. Marcus. Substantial exploratory experimental work involving the 

determination and interpretation of experimental spectra of probe labeled DNA, which 

was carried out by Neil P. Johnson, is included and interpreted in this chapter as well. In 

this work we have shown that, compared to guanine residues inserted at the same site, 

there is no significant preference for, or discrimination against, intercalation of AO 

moieties at or near the 6-MI labeled probe position. Thus, 6-MI can be used as a ‘non-

discriminating’ reporter of local AO intercalation at and near guanine bases.  

In this chapter we have also explored the potential of using single site-substituted 

6-MI DNA constructs to measure interactions with tethered ACMA. Our results suggest 

that, unlike free ACMA that interacts with dsDNA by general intercalation, covalently-

tethered ACMA displaces the base on the complementary strand across from the ACMA 

attachment site. Tethered ACMA and strategically positioned single site-substituted 6-MI 

DNA constructs may turn out to be an interesting model system for the study of 
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intercalated aromatic amino acid residues in DNA-protein interactions, and also perhaps 

of the enzymatic mechanisms used to ‘flip out’ bases in DNA repair processes.  

 

Introduction 

Intercalation occurs when a planar (aromatic) organic molecule binds between 

adjacent base pairs of duplex DNA, forming a sandwich-like structure1,2. The insertion of 

such an intercalator between two adjacent base pairs leads to significant local 

conformational changes, involving both the local unwinding and extension of the dsDNA 

structure, and can result in the perturbation of biological processes such as DNA 

transcription, replication and repair. Extensive studies have also focused on the 

development of potentially clinically useful intercalative drugs, since DNA is the primary 

target for many anticancer and antibiotic drugs.  

Both experimental3,4,5 and computational studies6,7,8,9 have attempted to 

understand the kinetics and structural mechanisms of the insertion into duplex DNA of 

potential intercalating drugs. Nevertheless, it is clear that more incisive studies will be 

required to develop drugs with optimal base-pair sequence selectivity and reduced side 

effects. The ability to monitor intercalation at specific sites using well-characterized base 

analogue probes such as 6-MI should be helpful in moving forward with more incisive 

rational and novel drug design.  

In prior work, the von Hippel and Marcus groups have used CD experiments 

performed on 6-MI dimer probes to study DNA and protein-DNA complexes10,11. Here 

we investigate the potential of single site-specifically-placed 6-MI probes to measure 

DNA local structural changes upon intercalation of a ligand near the probe base. Steady-

state CD measurements and CD calculations (details presented in Chapter III and Chapter 
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IV) indicate that significant structure-dependent coupling occurs between the electronic 

states of the 6-MI probe and those of adjacent native bases (or of an adjacent intercalator 

probe) within a DNA construct. Hence, the CD spectrum of the low energy transitions of 

the 6-MI probe can be a sensitive measure of the local DNA conformation. Here we 

report studies of a strategically positioned single 6-MI residue in the presence and 

absence of a positionally-defined intercalator ligand. 

 

Among the many different intercalating agents that have been studied12, acridine 

derivatives are among those that have been most thoroughly investigated as possible 

clinically relevant agents.13 Acridine Orange (AO) is a well-studied DNA intercalator. It 

binds DNA via intercalation and stabilizes pigment-DNA complexes through charge 

neutralization of DNA backbone phosphate groups14. We have determined in this study 

 
Figure 5.1: Structure of (A) free intercalator Acridine Orange (AO) and (B) DNA 
backbone-tethered intercalator 9-amino-6-chloromethoxyacridine (ACMA).   
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that 6-MI and AO (Figure 5.1 A) can serve as a Förster resonance energy transfer (FRET) 

donor-acceptor chromophore pair. A 6-MI molecule (FRET donor) when in its electronic 

excited state may transfer energy to an AO (FRET acceptor) molecule in proximity 

through the Förster non-radiative resonant dipole-dipole coupling mechanism. The 

intensity of fluorescence from the acceptor chromophore is highly dependent on its 

distance and orientation relative to the donor chromophore, thus making 6-MI a useful 

reporter of its interaction with AO at the 6-MI substitution site position.  In additional, 

AO’s fluorescence signal serves as an indicator of AO concentration and its mode of 

binding.  In this work, we have characterized the FRET interactions between 6-MI and 

AO in DNA. We have then exploited this FRET donor-acceptor chromophore pair to 

confirm that 6-MI can be utilized as an excellent site-specific probe of the intercalation 

process.  

We performed two types of measurements to study FRET interactions between 6-

MI substituted DNA and acridine-type intercalators. In the first series of experiments we 

carried out titration studies of 6-MI-containing DNA constructs with AO free in solution. 

In a second set of experiments, we performed studies using 6-MI-labeled DNA constructs 

to which an acridine-type intercalator (ACMA) had been covalently attached to the DNA 

via a flexible linker, thus limiting the possible positions at which the ACMA probe could 

intercalate.  

 Since AO free in solution can, in principle, bind anywhere along the DNA 

substrate, titration studies with this ligand cannot provide defined local information about 

the details of the intercalation process. This uncertainty can be reduced by studying an 

intercalator that is site-specifically tethered to the DNA backbone. ACMA is a planar 

cation derivative of acridine that can be covalently attached to the DNA backbone via a 
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5-carbon linker (Figure 5.1 B). There is good evidence that free ACMA, like other 

polycyclic planar molecules that interact with duplex DNA via intercalation15, inserts 

itself between base pairs of dsDNA, thereby unwinding and elongating the DNA near the 

insertion site position.  

It has been assumed that tethered ACMA will similarly intercalate into duplex 

DNA.16,17 We attempted to characterize this putative intercalated structure by placing 6-

MI residues into the dsDNA complex at various positions. Our results indicate that, 

unlike free ACMA, which interacts with dsDNA via intercalation, tethered ACMA 

displaces the base on the complementary strand across from the ACMA attachment site. 

This probe-labeled DNA construct may thus serve as a useful model system to study 

DNA-protein interactions involving the partial or total intercalation of aromatic amino 

acid residues, as well as the ‘base-flipping’ mechanisms in dsDNA that occur in 

biologically important processes such as the enzymic scanning mechanisms used to 

locate structural defects in DNA repair.  

 

Materials and Methods 

Chemicals 

6-MI-substituted DNA constructs were purchased from Integrated DNA 

Technologies (Coralville, IA) and from Fidelity Systems (Gaithersburg, MD). 6-MI 

ribonucleotide monophosphate (NMP) was obtained from Fidelity Systems and was used 

without further purification. ACMA-substituted DNA constructs were purchased from 

Glen Research Corporation. The sequences and nomenclatures of the DNA constructs we 

have used are shown in Table 5.1 and Table 5.2. Oligonucleotide concentrations were 

determined using extinction coefficients provided by the manufacturer. 6-MI NMP 
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concentrations were determined using extinction coefficients reported previously11. 

Duplex DNA constructs were formed and annealed by combining equimolar solutions of 

complementary strands, followed by heating the mixture to 90 °C and gradually cooling 

to room temperature. Solutions were buffered at pH 7.5-7.6 in 50 mM phosphate buffer 

containing 150 mM NaCl. All experiments were performed at 20°C. Acridine Orange 

hydrochloride hydrate was purchased from Sigma Aldrich and used as received (Product 

Number: 318337). AO stock solutions were made using the same buffer and salt 

conditions described above.   

 

 

Table 5.1. Base sequences and nomenclature for the 6-MI-containing dsDNA 
constructs used in  Chapter V. The letter X indicates the 6-MI probe. 6-MI-labeled DNA 
constructs were designed so that their sequences were complementary to one another in 
inverse (3’-5’ and 5’-3’) orientations. 

DNA  
construct 

Nucleotide base sequence 

dsTXT 5’-CTAATCATTGT X TTCGGTCCTTGC-3’ 
3’-GATTAGTAACACAAGCCAGGAACG-5’ 

dsTGT 5’-CTAATCATTGT G TTCGGTCCTTGC-3’ 
3’-GATTAGTAACACAAGCCAGGAACG-5’ 

dsGXG 5’-CTAATCATTGG X GTCGGTCCTTGC-3’ 
3’-GATTAGTAACACAAGCCAGGAACG-5’ 

dsGGG 5’-CTAATCATTGG G GTCGGTCCTTGC-3’ 
3’-GATTAGTAACACAAGCCAGGAACG-5’ 

 

Table 5.2. Base sequences and nomenclature for the 6-MI- and ACMA-containing 
ssDNA constructs used in  Chapter V. The letter Y indicate the 6-MI probe, and the 
letter Z indicates the ACMA probe. 6-MI and ACMA labeled DNA constructs were 
also designed to form complementary sequences with one another in inverse (3’-5’ and 
5’-3’) orientations. 

DNA  
construct 

Nucleotide base sequence DNA 
construct 

Nucleotide base sequence 

CCC 3'-C GGA CCC ACG G-5' YGG 5'-G CCT YGG TGC C-3' 
GGG 5'-G CGT GGG TGC C-3' GYG 5'-G CCT GYG TGC C-3' 
CZC          3'-C GCA CZC ACG G-5' GGY 5'-G CCT GGY TGC C-3' 
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Spectroscopy 

Absorption spectra were measured using a Cary 3E UV-visible 

spectrophotometer. Fluorescence spectra were measured in a Jobin−Yvon FluoroMax-3 

spectrophotometer. All fluorescence titration spectra (shown in Figure 5.3 and Figure 5.4) 

were obtained using the same cuvette and the same slit setting. Circular dichroism spectra 

were measured using a Jasco model J-720 CD spectrophotometer with a temperature-

controlled cell holder, as described previously.11 CD spectra are defined in terms of the 

difference in extinction of the sample excited using left- and right-circularly polarized 

light: εL-εR (in M−1 cm−1) per mole of 6-MI residue. All spectra were corrected for 

background contributions determined using the buffer solution alone. 

 

Results 

The 6-MI/AO FRET Pair  

6-MI and AO display significantly different absorbance spectra (Figure 5.2). At 

335 nm (indicated by the black arrow in Figure 5.2), where 6-MI has a strong absorbance 

peak, the absorbance of AO is close to zero. Upon 335 nm excitation, the fluorescence 

spectrum of 6-MI significantly overlaps with the peak absorbance of AO, which spans the 

range 450-500 nm. Such spectral overlap of 6-MI emission with AO absorbance is a 

necessary condition for a FRET interaction to occur. We observed FRET between 6-MI 

ribonucleotide monophosphate (NMP) and AO in solution (Figure 5.3). Upon the 

addition of AO to the sample cuvettes and irradiation at 335 nm, fluorescence signals at 

523 nm appeared while fluorescence signals at 435 nm decreased, indicating that AO was 

interacting with the 6-MI NMP via the FRET mechanism. 
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We then studied the FRET interactions between 6-MI substituted DNA and free 

AO in solution with further fluorescence titration experiments (Figure 5.4 and Table 5.3). 

Previous studies have shown that 6-MI fluorescence properties are dependent on the 

sequences of the bases within the oligonucleotide construct11,18. Bearing this in mind, we 

 
Figure 5.2: Spectral overlap of 6-MI NMP and AO monomer in aqueous (buffered) 
solution. The intensities of the absorbance spectra were normalized to the absorption 
peaks for easier observation of the spectral overlap. When illuminated at 335 nm, 6-MI 
is directly excited and resonantly transfers energy to AO, causing AO to fluoresce. A 
minimal fluorescence signal comes from direct AO excitation at 335 nm. The 
absorbance spectrum of AO was recorded using a 20 μΜ sample concentration. The 
spectrum was normalized to its optical density (OD) at 492 nm. The 6-MI absorbance 
and emission spectra were also normalized by setting the spectral peak intensities to 
unity.  
 

Figure 5.3: Fluorescence titration of AO into a solution of 6-MI NMP. (For buffer 
conditions see Materials and Methods.) Concentrations of 6-MI and AO monomers are 
indicated by color-coding (see figure). The intensities of the various spectral peaks 
were normalized to account for the changes in 6-MI NMP concentration due to the 
volume change of the solution because of AO stock solution addition.  
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conducted this experiment using two 6-MI substituted DNA constructs, which we refer to 

as dsTXT and dsGXG. These constructs were designed so that the flanking bases of the 

6-MI probes were always either T or G. The full base sequences of these constructs are 

shown in Table 5.1.  

Our nomenclature emphasizes that the 6-MI probe base was always flanked Ts or 

Gs, respectively. The remaining bases were identical between the two constructs. We also 

examined the fluorescence spectra of the unlabeled constructs dsTGT and dsGGG, which 

served as controls.  We titrated AO stock solution into samples containing the dsTGT, 

dsGGG, dsTXT and dsGXG constructs, all dissolved in standard buffer solution. In each 

case, we measured the fluorescence spectra at an excitation wavelength of 335 nm, the 

spectra are shown in Figure 5.4. Free AO in buffer exhibited very low fluorescence 

(Figure 5.4 A), as expected due to its low extinction coefficient at 335 nm in the absence 

of DNA. Nevertheless, closer inspection showed (see Figure 5.4 B) that the free AO 

solution did exhibit some background fluorescence, which peaked at 523 nm and 

depended linearly on AO concentration.  

 

 

Table 5.3. Concentration of Acridine Orange, dsDNA and the ratio of their 
concentrations in fluorescence titration experiment shown in Figure 5.3. 

Spectrum 
Color 

[AO] (μΜ) [DNA] (μΜ)  [AO]/[DNA] 

 

0 4.00 0 
3.00 3.38 0.91 
5.21 
6.90 
8.22 
9.30 
10.19 
10.94 
11.57 

2.93 
2.59 
2.32 
2.10 
1.91 
1.76 
1.63 

1.82 
2.73 
3.64 
4.55 
5.45 
6.36 
7.27 
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Figure 5.4: Fluorescence titration experiments. (A) Fluorescence of buffer solution 
containing increasing AO concentration (control sample). The peak intensities were 
normalized to the AO concentrations present in the DNA-containing solutions to 
permit consistent comparisons of the fluorescence intensity with that of the other 
samples. (B) Same as (A), but with an amplified y-axis scale. (C) dsTGT sample 
fluorescence with increasing AO concentration. (D) dsTXT sample fluorescence with 
increasing AO concentration. (E) dsGGG sample fluorescence with increasing AO 
concentration. (F) dsGXG sample fluorescence with increasing AO concentration. The 
concentrations of AO and dsDNA corresponding to each spectrum are shown in Table 
5.3.  
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Both the dsTXT and dsGXG constructs exhibited fluorescence from the 6-MI 

probe, which peaked at 425 nm (green spectra in Figure 5.4 D and F) and was absent in 

the other samples. The dsGXG construct exhibited a much lower 6-MI fluorescence 

intensity than dsTXT, suggesting excited state deactivation (i.e., quenching) by the two 

flanking Guanine residues. Upon addition of AO to the sample cuvettes and irradiation at 

335 nm, fluorescence signals at 523 nm appeared in both dsTXT and dsGXG constructs, 

indicating that AO was interacting with the 6-MI probes via the FRET mechanism. For 

the dsTXT sample, as the AO / DNA ratio was increased the fluorescence signal at ~425 

nm from the 6-MI chromophore decreased, while the fluorescence at ~530 nm from the 

AO chromophore increased. At all concentrations, we detected the presence of a single 

isosbestic point at ~ 500 nm, which is consistent with the notion that the FRET signal 

reflects the presence of AO bound to DNA within the Förster radius defined by the 6-MI / 

AO interaction. We observed very similar results for the dsGXG sample. Nevertheless, 

the reduction of the 6-MI fluorescence was not as pronounced for the dsGXG sample as 

for the dsTXT sample.  

Stronger AO fluorescence was observed in the dsTXT and dsGXG samples than 

in the dsTGT and dsGGG samples (Figure 5.4 C and E). It is important to note that the 

dsTGT and dsGGG samples exhibited significantly stronger AO fluorescence than the 

control buffer sample that did not contain dsDNA (Figure 5.4 A). This enhanced 

fluorescence is due to the resulting background emission from direct excitation of AO at 

335 nm of the AO-dsDNA intercalation complex. The AO emission spectrum is 

enhanced when AO interacts with dsDNA, serving as an indicator of intercalation 

binding. 
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Tethered ACMA and 6-MI Labeled DNA  

We next explored the potential use of single 6-MI labeled DNA to measure the 

conformation of tethered intercalator ACMA with reduced positional uncertainty relative 

to the DNA binding positions of free AO intercalator. We designed three 6-MI labeled 

ssDNA constructs in which three consecutive Guanine bases serve as controls, with each 

G residue substituted in turn by 6-MI in the probe-labeled constructs, (see Table 5.2).  

ACMA has two low energy electronic transitions, which are observed in the 

absorbance spectrum near 350 nm and 450 nm (Figure 5.5). Each electronic transition in 

ACMA exhibits vibronic sub-bands with an approximate spacing of 1250 cm-1.19 This 

feature is apparent also in the absorbance spectrum of ACMA labeled DNA. The 6-MI 

substituted dsDNA sequences CZC/YGG, CZC/GYG, CZC/GGY exhibited similar 

absorbance, emission and excitation spectra to those of non-6-MI labeled sequences 

(Figure 5.5 A, B, D), with insignificant energy shifts and variation of intensities due to 6-

MI sequence-dependent behavior. The absorbance peak positions were invariant in the 

ssCZC and dsCZC/GGG structures (Figure 5.5 A). Peak electronic transition intensity at 

450 nm and its associated vibronic structure, which are due to the ACMA absorption, 

were observed to be identical in the ssDNA and dsDNA structures, while the 350 nm 

band, which arises primarily from 6-MI absorption, exhibited hyperchromism in the 

duplex DNA complexes. 

Figure 5.5 B shows fluorescence spectra of duplex DNA constructs with 6-MI at 

different positions across from the ACMA attachment site. Wavelengths for these 

experiments were chosen so that either 6-MI or ACMA were selectively probed. 

Interestingly, we observed significant differences between the YGG and GGY constructs, 

in which the 6-MI probes were both flanked by G and T, but with opposite polarity.  
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Figure 5.5: (A) Absorbance spectra of ACMA and 6-MI probe-labeled DNA 
constructs CZC, CZC/GGG, CZC/YGG, CZC/GYG, CZC/GGY with Z representing 
tethered ACMA and Y representing 6-MI. (B) Emission spectra of the CZC, YGG, 
GYG and GGY ssDNA constructs. CZC was excited at 450 nm. 6-MI labeled ssDNA 
constructs were excited at 350 nm. (C) CD spectra of CZC, CZC/GGG, CZC/YGG, 
CZC/GYG, and CZC/GGY. (D) Excitation spectra of CZC, YGG, GYG, and GGY. 
The detection wavelength for the excitation spectra was 435 nm for 6-MI labeled 
YGG, GYG and GGY, and 490 nm for ACMA-labeled CZC. Monomer electronic 
transitions were labeled with arrows to denote the transition energies. Y1, Y1’ and Y2 
are transitions of 6-MI monomer. Y1, Y1’ are two transitions with dipole moments that 
have identical orientation on 6-MI. Their transition energies depend on the local 
environment of 6-MI, including both the solution pH and the local DNA sequence. Z1, 
Z2, Z3 are electronic transitions of ACMA. The superscripts a, b and c represent 
different vibronic modes within the same electronic transition. (E) Schematics of the 
central portions of the duplex DNA constructs in the vicinity of the spectral probes.  
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Circular dichroism (CD) spectra of the various duplex DNA constructs labeled on 

both strands are shown together with the spectrum of single-stranded CZC in Figure 5.5 

C. The interaction of ACMA with ssDNA is shown to produce a significant CD signal, 

which has not been previously reported. The CD spectra exhibited bands from two 

electronic transitions at 450 nm and 350 nm, together with the vibrational progressions of 

these transitions (labeled in Figure 5.5 D). The planar ACMA molecule is achiral, so has 

no intrinsic optical activity. CD spectra of the tethered ACMA-ssDNA (CZC) molecule 

indicate that the chromophore experiences the asymmetric environment of ssDNA, which 

is consistent with the presence of stacking interactions between the chromophore and the 

DNA bases (Figure 5.5 C). The CD spectra of the double-stranded DNA constructs are 

more intense than those of the single-stranded components, both near 450 nm, where the 

signal is due to the ACMA alone, and near 350 nm where both ACMA and 6-MI can 

contribute. In addition, the negative CD signal associated with the 350 nm transition of 

the ssDNA construct changes sign in the duplex CZC/GGG construct.  

 

Discussion 

The AO-dsDNA Intercalation Complex 

To further investigate the presence of FRET between 6-MI and AO in different 

dsDNA samples, we examined the fluorescence intensity at two signature wavelengths, 

425 nm and 580 nm. We assumed that the signal at 425 nm is representative of 6-MI 

fluorescence resulting from direct excitation of 6-MI at 335 nm. We assumed that the 

fluorescence at 580 nm originated from excited AO, resulting from FRET interactions 

between 6-MI and AO. Note that we did not use the peak intensity at 530 nm to define 

the AO excited state population. This is because 6-MI has a fluorescence ‘tail’ 
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component between 500 nm and 550 nm, which could result in ‘background 

contamination’ of our FRET signal. We thus detect the AO fluorescence at 580 nm to 

eliminate the contribution of any spectral component that does not reflect the FRET 

interaction when evaluating AO fluorescence.  

In Figure 5.6 A and B, we present the signature intensities and the associated 

FRET efficiency, respectively, from 6-MI and AO for both the dsTXT and dsGXG 

constructs upon titration with AO. We define the FRET efficiency as the ratio of 

intensities of the acceptor fluorescence and the total (donor + acceptor) fluorescence: 

EFRET = I580/(I425+I580). As the concentration ratio of AO to 6-MI-substituted DNA 

([AO]/[DNA]) was increased, we observed that the value of EFRET increased for the 

dsTXT construct, while the value of EFRET appeared to saturate at a plateau value for the 

dsGXG construct. In Figure 5.6 C and D, we present the signature intensities and 

associated EFRET values from 6-MI and AO for the fluorescence titration experiment in 

Figure 5.3, where we examined the FRET efficiency between 6-MI NMP and AO. 

Despite the fact that 6-MI NMP has a much higher fluorescence quantum yield then 6-MI 

substituted into DNA at the same AO to 6-MI ratio, 6-MI labeled in dsDNA leads to 

higher FRET efficiency than 6-MI NMP in solution. This effect can be explained by the 

binding of AO to DNA and the inverse 6th-power dependence of the FRET efficiency on 

the donor-acceptor separation, which is associated with the Förster dipole-dipole 

coupling mechanism.20 Binding of AO to dsDNA by intercalation results in much smaller 

distances between the 6-MI residue and AO than for unbound AO and 6-MI NMP, which 

are, of course, free to diffuse separately in solution. 
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Figure 5.6: Fluorescence titration experiments. (A) Intensities of the fluorescence peaks 
of the dsTXT and dsGXG constructs at the signature wavelengths 425 nm for 6-MI, and 
580 nm for AO, versus [AO]/[DNA]. (B) dsTXT and dsGXG FRET efficiency 
(I580/I425+I580) at increasing [AO]/[DNA]. (C) 6-MI NMP intensity of fluorescence at 
signature wavelengths 425 nm for 6-MI, and 580 nm for AO, at increasing [AO]/[6-MI 
NMP]. (D) 6-MI NMP FRET efficiency at increasing [AO]/[6-MI NMP]. 
 

 
Figure 5.7: AO absorbance overlaps with the emission spectra of dsGXG, dsTXT and 6-
MI NMP excited at 335 nm. The absorbance spectrum of AO was recorded at a 20 μΜ 
sample concentration. The spectrum was normalized to its optical density (OD) at 492 
nm. The concentrations of the dsGXG and dsTXT constructs were 4 μM, while the 
concentration of the 6-MI NMP sample was 0.39 μM. The emission spectra were 
normalized to the peak intensities, as previously. 
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Our observations of differences in FRET behavior between the two samples could 

be explained by the sequence-dependent excitation-emission-shift effect of 6-MI. As 

shown in Figure 5.7, the dsGXG and dsTXT constructs emit at different energies when 

excited at 335nm. The dsGXG construct emits at shorter wavelength than the dsTXT 

construct, thus having smaller spectral overlap with the AO absorption spectrum. Note 

that the 6-MI NMP peak emission wavelength falls between those of dsTXT and dsGXG. 

Both the dsGXG and dsTXT DNA constructs were 24 base-pairs in length, and thus 

could, in principle, intercalate up to 11 AO molecules. However, our observations 

indicate that FRET interactions between 6-MI and AO occurred at AO / DNA ratios 

smaller than unity. Thus, FRET interactions between AO and 6-MI were detected at 

anomalously low concentrations. There are two possible explanations for this observation. 

Either AO interacts preferentially with the 6-MI probe site within the dsDNA construct; 

or the Förster distance (R0) corresponding to the 6-MI / AO donor-acceptor pair is 

sufficiently large that all intercalation sites within the DNA duplex are close enough to 

allow for efficient energy transfer. Note that these two hypotheses are not mutually 

exclusive. We next tested these possibilities. 

AO can be selectively excited at 500 nm. As shown in Figure 5.8, AO has higher 

fluorescence intensity when it interacts with any type of duplex DNA, in comparison to 

free AO in buffer solution. AO bound to DNA might have a higher fluorescence quantum 

yield due to its shielding from quenching interactions with the solvent, or from steric 

interactions between the AO probe and DNA that deactivate vibrational relaxation 

pathways. In fact, the AO fluorescence intensity is indistinguishable between 6-MI 

labeled DNA and canonical DNA. We thus conclude that 6-MI, in comparison to 

Guanine, has no significant relative preference (positive or negative) for intercalation or 
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near the 6-MI labeled site. This indicates that – in the context of its function as a base 

analogue to Guanine – 6-MI as an interaction partner with AO is likely very similar to G.   

 

However, since 6-MI exhibits sequence-dependent fluorescence behavior, it does 

have a significant effect on the AO FRET signal. As shown in Figure 5.9, when excited at 

335 nm, AO in buffer solution exhibits a low fluorescence quantum yield. The 

fluorescence intensities of dsTGT-AO and dsGGG-AO complexes are much higher than 

those of uncomplexed AO. However, these intensities are significantly lower in 

comparison to their 6-MI-labeled counterparts dsTXT-AO and dsGXG-AO. 

AO is known to form aggregates in solution at concentrations as low as 5 μM.21,22 

Aggregation results in a shift of the absorbance spectrum of AO, as shown in Figure 5.10. 

As the AO concentration was increased, the peak absorbance at 495.8 nm decreased, 

while the shoulder of the absorbance at 473.4 nm increased. We fit the AO absorption 

spectra at different concentrations to three Gaussian peaks and assigned these, 

 
Figure 5.8: Fluorescence excited at 500 nm of AO in buffer solution containing 
dsTGT, dsGGG, dsTXT and dsGXG constructs. The fluorescence intensity of AO in 
buffer is normalized to be consistent with other samples containing duplex DNA at the 
same [AO]/[DNA] ratio. 
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respectively, to represent the intensities of monomer, dimer, and higher aggregates of AO 

(for details see Appendix D). 

 

We calculated the Förster distance (R0) for this system based on the 6-MI NMP 

emission and AO monomer absorption spectra at different concentrations (showed in 

Figure 5.10). This calculation was performed using the PyMol Förster distance calculator. 

Details of the calculation are given in Appendix D. With AO concentrations ranging from 

0.65 - 21.41 μM, the value of the Förster distance R0 increased with AO concentration 

(Figure 5.11). However, the variation of R0 was small in comparison to the average value 

<R0> = 43.25 Å. We note that the value of R0 for the Cy3/Cy5 FRET pair is around 50 Å. 

This range is significantly larger than the distance between two neighboring base pairs at 

3.4 Å, but smaller than the total length of a 24-mer duplex DNA (~78 Å). Since 6-MI is 

positioned close to the middle of the two duplex DNA constructs, FRET does not provide 

a suitable way to distinguish between different intercalation sites of AO, based on the 

distance from 6-MI. Note that the change of EFRET could also be due to the presence of an 

 
Figure 5.9: Fluorescence excited at 335 nm of AO in buffer containing dsTGT, 
dsGGG, dsTXT and dsGXG constructs. The fluorescence of AO in buffer solution is 
normalized to be consistent with other samples containing duplex DNA at the same 
[AO]/[DNA] ratio. 
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antenna effect of multiple acceptors (AO) around the donor (6-MI NMP or 6-MI probe in 

DNA).23,24 

 
Figure 5.10: The absorbance spectra of AO in buffer solution at concentrations 
ranging from 0.65 μM to 21.41 μM.   
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Tethered ACMA and 6-MI labeled DNA  

How might we interpret the circular dichroism spectra of the ACMA-labeled 

DNA constructs (Figure 5.5 D)? The increased chirality seen at 450 nm, where only 

ACMA absorbs, could reflect greater stacking of ACMA in the double-stranded 

molecule. In this scenario, the relative intensities of the 450 nm CD band would be 

expected to scale with stacking (CZC/GGG > CZC/GYG > CZC/GGY > CZC/ YGG). If 

this interpretation is correct, it would suggest that 6-MI at the 5' and 3' end of the GGG 

sequence inhibits insertion of tethered ACMA into the duplex, with a greater inhibition 

for the 5' substitution. Alternatively, non-degenerate coupling between ACMA and 6-MI 

could influence the CD in this region. ACMA might couple differently to the 6-MI 

residues in positions YGG and GGY as a result of the right-handed helical structure of 

the duplex DNA. This has been confirmed by calculated CD spectra (see Appendix D).  

It is worth noting that the CD spectra of CZC/YGG and CZC/GGY have troughs 

of equal apparent intensities near 325 nm and 350 nm, thus resembling the CD pattern 

seen with single-stranded GYG, which suggests that this feature can be observed in the 

 
Figure 5.11: R0 calculated based on spectral overlap of the 6-MI NMP emission 
spectrum (shown in Figure 5.7) and the AO absorbance spectra in buffer solution at 
concentrations ranging from 0.65 μM to 21.41 μM (shown in Figure 5.10). 
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absence of ACMA and may have its origin in the optical activity of 6-MI itself within the 

construct.  

The CD spectra of the doubly labeled duplexes fall into two classes. First, the 

spectra of CZC/GGG and CZC/GYG, with a peak near 340 nm (where 6-MI and ACMA 

have electronic transitions) and troughs at 450 nm (signal primarily from ACMA) are 

nearly identical. Second, the spectra of CZC/GGY and CZC/YGG are similar in shape, 

with overlaying troughs at 300 – 400 nm and peaks at 450 nm. 

 
Figure 5.12: (A) Emission spectra of CZC/GGG, CZC/YGG, CZC/GYG and 
CZC/GGY constructs excited at 365 nm. (B) Excitation spectra of CZC, CZC/GGG, 
CZC/YGG, CZC/GYG and CZC/GGY. The detection wavelength for the excitation 
spectra was 550 nm.  
 

 
Figure 5.13: A model of the CZC/GYG construct with the 6-MI base ‘flipped out’. 
ACMA is the colored red, 6-MI is colored blue. 
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That observation that the CD spectra of CZC/GGG and GGG/GYG are almost 

identical is surprising. This suggests not only that the ACMA residue does not interact 

with 6-MI in the CZC/GYG complex, but that the 6-MI residue appears to be chirally 

‘transparent’ in this construct. These results are compatible with the hypothesis that 

ACMA ‘pushes’ the 6-MI directly across from its attachment site out of the duplex. 6-MI 

has no intrinsic optical activity, and if extruded from the duplex and able to rotate freely 

it would have no CD signal and the CD of CZC/GYG would resemble that of the 

equivalent duplex DNA construct containing no 6-MI (CZC/GGG). This model (shown 

in Figure 5.13) is consistent with the fluorescence results. The overall fluorescence 

emission from 6-MI decreased by a factor of 2-3 in the duplex compared to the ssDNA; 

for example, the emission intensity of CZC/GYG is less than half of the GYG intensity 

(Figure 5.12 A). The relative fluorescence of the CZC/GYG > CZC/GGY > CZC/YGG 

constructs is different from the relative intensities of the equivalent ssDNA sequences, 

which decreases as GGY > YGG > GYG (Figure 5.5 B). The relative fluorescence 

intensity of GYG is the lowest of the single stranded constructs and CZC/GYG has the 

greatest emission intensity of the duplex constructs. This could be explained if the 6-MI 

residue were ‘flipped out’ of the duplex and exposed to solvent, rather than stacked with 

adjacent bases – an environment favoring nonradiative decay. This hypnosis has been 

confirmed by CD calculation, as is detailed in Appendix D.  

Finally, it is worth noting that excitation at 365 nm (a wavelength at which the 

excitation of 6-MI is dominant and the contribution of ACMA is minimal) contributes to 

the fluorescence of ACMA at 550 nm (Figure 5.12 B), indicating energy transfer from 6-

MI to ACMA in the double-strand DNA complex.  

 



 

 98 

Conclusions and Future Direction 

Studies of the interactions between free intercalator AO with 6-MI-labeled DNA 

show that 6-MI can serve as a useful probe of the interactions of Guanine in studies of the 

mechanism(s) of intercalating ligand insertion at defined neighboring sites. Since duplex 

DNA, 6MI, and AO have distinct optical properties, we have been able to conduct 

spectroscopic experiments at different wavelengths to obtain information about the 

behavior of the different components involved in the intercalation complex. For example, 

in titration experiments we have isolated signals attributed to DNA, 6MI, AO, and the 

6MI/AO complex. This information should be useful in future spectroscopic studies of 

such probe interactions at defined positions within dsDNA.  

Additional AO titration experiments with a variety of DNA sequences are 

required to provide information about the stoichiometry of AO intercalation. 

Understanding intercalation kinetics is a difficult topic, and yet seems to be directly 

connected to DNA fluctuations. Both experimental3,4,5 and computational studies6,7,8,9 

have been carried out to understand intercalation kinetics and the structural issues that 

guide these processes.. Significant questions pertain to the possible role(s) of DNA 

fluctuations during intercalation. For example, does the small ligand induce a DNA 

conformational change first, or do the relevant fluctuations exist and occur in the absence 

of the potential intercalator? It appears that 6MI and AO can serve as potentially useful 

candidate probe for single molecule FRET studies, which can then serve to obtain 

information about the kinetics of time-resolved AO intercalation into single DNA 

duplexes at 6MI labeled sites.  

In MD modeling of the intercalation process, a base-pair ‘rolling’ mode towards 

the minor or major groove can be observed24-25. Such a base-pair rolling mode can also be 
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regarded as a DNA ‘bending’ mode. It may well be possible to monitor this bending 

motion using single molecule experiments. The 6-MI/AO FRET pair could be utilized as 

a powerful probe in single-molecule spectroscopy and CD calculations, and such 

experiments and calculations could be built upon our present studies. Some preliminary 

experiments have been performed and are illustrated in Appendix D.  

In possible future smFLD (Florescence Linear Dichroism) experiments25, the 

acceptor (AO) signal would depend on the excitation of the donor chromophore (6MI), 

which is excited using polarized light. By detecting smFRET and smFLD signals, it 

might be possible to define important intermediate steps in the intercalation process.  

Our groups have a long history of exploring ‘DNA breathing’ and related topics. 

It is our goal to elucidate this intuitive, yet sophisticated regime of DNA dynamics based 

on the insights gained from previous studies26,27. Intercalation can be considered as a 

perturbation (or consequence) of natural DNA breathing28,29. Thus, by exploring the 

properties of intercalation complexes we should be able to gather useful information to 

extend our mechanistic interpretations of both DNA fluctuations and intercalation. 

Finally, kinetic intercalation studies of planar aromatic compounds into specific sites in 

dsDNA constructs can also be regarded as models for biologically important stacking and 

intercalation interactions of defined aromatic amino acid residues of proteins with 

DNA30, and our group should be in a good position to interpret such results 

mechanistically. We look forward to future studies along these lines. 
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CHAPTER VI 

CONCLUDING REMARKS 

 

Summary 

The work I presented in this dissertation focuses on the study of DNA local base 

conformation using 6-methyl Isoxanthopterin (6-MI) labeled DNA. By studying the 

spectroscopic properties of 6-MI within its surrounding DNA environment, we can learn 

about nucleic acid base stacking that play an important role in biological processes.  

We first examined the conformational heterogeneity of 6-MI in various sequence 

contexts of duplex and ssDNA constructs. We implemented a simple two-state model to 

interpret the excitation–emission peak shift (EES) measurements of 6-MI. We obtained 

excellent agreement between theory and experiment. Our pH-dependent EES 

measurements of the 6-MI NMP in solution show that these states can be identified as 

protonated and deprotonated forms of the 6-MI fluorescent probe. Our results suggest that 

proton transfer in 6-MI-substituted DNA constructs is coupled to conformational 

heterogeneity of the probe base and can be interpreted to suggest that Watson–Crick base 

pairing between 6-MI and its complementary cytosine in duplex DNA involves a “low-

barrier-hydrogen-bond”.  

We next utilized these findings in the study of DNA local conformation facilitated 

by circular dichroism (CD). We have studied the CD of 6-MI-substituted ss and dsDNA 

constructs in different sequence contexts. In order to quantitatively analyze CD spectra, we 

have constructed a simple theoretical model to aid in our understanding of local interactions 

between a fluorescent base analogue site-specifically positioned within a DNA construct 

and the native bases and ligands that can comprise its immediate environment. Qualitative 
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agreement between CD calculations and experimental results reinforces the idea that 6-MI 

could be a useful probe of DNA secondary structure. Such CD calculation can be easily 

applied to DNA constructs with known conformation. Our results suggest that the extent 

of base stacking of 6-MI probe is different among DNA constructs.  

We next applied 6-MI to probe the ligand insertion of small molecules to duplex 

DNA, further extending the potential of 6-MI as a useful reporter of local nucleic acid base 

conformation. We have determined in this study that 6-MI and AO can serve as a Förster 

resonance energy transfer (FRET) donor-acceptor chromophore pair. We have shown that, 

compared to guanine residues inserted at the same site, there is no significant preference 

for, or discrimination against, intercalation of AO moieties at or near the 6-MI labeled 

probe position. Thus, 6-MI can be used as a ‘non-discriminating’ reporter of local AO 

intercalation at and near guanine bases. We have also explored the potential of using single 

site-substituted 6-MI DNA constructs to measure interactions with tethered ACMA. Our 

results suggest that, unlike free ACMA that interacts with dsDNA by general intercalation, 

covalently-tethered ACMA displaces the base on the complementary strand across from 

the ACMA attachment site. 

Throughout this dissertation, the application possibilities of 6-MI as a fluorescent 

base analogue have been expanded and have set important foundations for future research. 

 

Future Direction 

A number of future research projects could be built on the work presented in this 

dissertation.  

Future time-correlated single photon counting (TCSCP) experiments will be 

needed to map out the structure of 6-MI potential energy surface. Preliminary results show 
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individual 6-MI fluorescent lifetime components vary at different wavelengths (emission 

or excitation) and pH conditions. Multiple lifetime components with varying distributions 

would confirm the validity of the two-state (or even multiple-state models). Further time-

resolved anisotropy experiments should reveal the number of different relaxation modes 

that exist in sequence-dependent 6-MI systems, and their relative time scales.  

The 6-MI/AO FRET pair characterization grants possible future smFLD 

(Florescence Linear Dichroism) experiments, in which the acceptor (AO) signal would 

depend on the excitation of the donor chromophore (6MI), which is excited using polarized 

light. By detecting smFRET and smFLD signals, it might be possible to define important 

intermediate steps in the intercalation process.  

The simple theoretical model we constructed to quantitatively analyze CD spectra 

could be applied to other biological systems of different DNA constructs and fluorescent 

probe. For example, such CD calculation could be applied to the system of gp32 protein 

and dimer 6-MI labeled ssDNA. We have observed CD signal change with the addition of 

gp32. It could come from the nondegenerate electronic coupling of tryptophan and 6-MI. 

We could learn how tryptophan site might be involved in gp32 protein binding to 6-MI 

labeled site.  

More advanced exciton coupling theory could be incorporated to the CD calculation 

protocols and computational modules presented in this work to evaluate the adequacy of 

applying point dipole approximation in the CD calculation.  

Finally, we are involved in on-going collaborations in which we have applied 

extended dipole model to combine the MD simulation and the CD calculation. CD offers 

more comprehensive experimental results for simulation results to compare to. As CD is 
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the net result of all conformation of dinucleotide in solution, CD calculation might be 

utilized to investigate the dynamic of dinucleotide in solution.  
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APPENDIX A 

SUPPLEMENTARY INFORMATION FOR CHAPTER II: SEQUENCE-DEPENDENT 

CONFORMATIONAL HETEROGENEITY AND PROTON TRANSFER 

REACTIVITY OF THE FLUORESCENT GUANINE ANALOG 6-METHYL 

ISOXANTHOPTERIN (6-MI) IN DNA 

 

Homogeneous One-State Model for Excitation-Emission Shift (EES) Experiments 

We first consider a chemical system that exists as a single optical conformation with 

ground and excited electronic states that couple to nuclear degrees of freedom. The system 

is depicted in Figure 2.2A using displaced harmonic functions of a single generalized 

coordinate 𝑄. Ground and excited state free energy surfaces are, respectively, described by  

𝐺#$(𝑄) =
1
2𝛼$𝑄

+ + 𝐺-$ (A.1) 

and 

𝐺.$(𝑄) =
1
2𝛼$

(𝑄 − 𝑑$)+ + 𝐺1$. (A.2) 

In Eq. (A.1) and (A.2), 𝛼$ is a polarizability that characterizes the curvature of the free 

energy surfaces. For simplicity, we have assumed these to be the same in the ground and 

excited states. The displacement 𝑑$ of the excited state surface relative to the ground state 

is a measure of the coupling between electronic excitation and vibrational motions, and it 

is related to the reorganization energy according to 𝜆$ = $
+
𝛼$𝑑$+.  

The energy gap between ground and excited surfaces is thus parameterized by the 

coordinate 𝑄 

𝐸15(𝑄) = 𝐺.$(𝑄) − 𝐺#$(𝑄). (A.3) 

Substitution of Eqs. (A.1) and (A.2) into Eq. (A.3) yields 
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𝐸15(𝑄) = 𝐺1$-$ + 𝜆$ − 2𝜆$𝑄/𝑑$, (A.4) 

where we have set 𝐺1$-$ = 𝐺1$ − 𝐺-$. Equation (A.4) describes the energy of an optical 

field needed to resonantly excite the system, which depends on the nuclear coordinate 𝑄. 

Because the peak absorption may vary from system to system, we define the rescaled 

excitation energy 

𝑋(𝑄) ≡ 𝐸15(𝑄) − 𝐸15(0) = −2(𝜆$ 𝑑$⁄ )𝑄, (A.5) 

which has its origin at the absorption peak energy 𝐸15(0). 

Immediately after electronic excitation, we assume that the system undergoes rapid 

vibrational relaxation so that the peak emission energy 𝐸1;;<5 occurs at 𝑄 = 𝑑$.  

𝐸1;;<5 = 𝐺.$(𝑑$) − 𝐺#$(𝑑$) = −𝜆$ +	𝐺1$-$ (A.6) 

The ‘excitation-emission shift’ (i.e., the EES) is the difference in energy between the peak 

emission, and the resonant excitation, which is again parameterized by 𝑄 

𝑌(𝑄) ≡ 𝐸15(𝑄) − 𝐸1;;<5 = −2(𝜆$ 𝑑$⁄ )𝑄 + 2𝜆$ 

																																= 𝑋(𝑄) + 2𝜆$. 
(A.7) 

The second equality in Eq. (A.7) makes the substitution given by Eq. (A.5).  

Equation (A.7) shows that for the homogeneous one-state model, the excitation-

emission shift 𝑌(𝑄) is a linear function of 𝑋(𝑄), with unit slope and y-intercept equal to 

twice the reorganization energy (i.e. the Stokes’ shift). A plot of the Eq. (A.7) versus the 

rescaled excitation energy is shown in Figure 2.2 B.  

 

Heterogeneous Two-State Model for Excitation-Emission Shift (EES) Experiments 

We next generalize the above model to describe a heterogeneous mixture of multiple 

conformations, each determined by a different ground and excited free energy surface. We 
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consider the simplest case of a two-state system, which is depicted in Figure 2.2 C. The 

ground and excited free energy surfaces of sub-state 2 are given by 

𝐺#+(𝑄) =
1
2𝛼+

(𝑄 − 𝑥)+ + 𝐺-+ (A.8) 

and 

𝐺.+(𝑄) =
$
+
𝛼+(𝑄 − 𝑥 − 𝑑+)+ + 𝐺1+, (A.9) 

respectively, while those of sub-state 1 are given by Eqs. (A.1) and (A.2). In Eqs. (A.8) 

and (A.9), the parameter 𝑥 is the displacement of the ground free energy surface of sub-

state 2 relative to that of sub-state 1. The parameter 𝑑+ specifies the displacement of the 

excited state surface of sub-state 2 relative to its ground state.  

We assume that the system is in thermal equilibrium, so that each sub-state may be 

assigned a 𝑄-dependent Boltzmann weight  

𝑃$(+)(𝑄) = 𝑒𝑥𝑝C−𝐺#$(+)(𝑄) 𝑘E𝑇⁄ G 𝑍(𝑄)⁄ , (A.10) 

where 𝑍(𝑄) = 𝑃$(𝑄) + 𝑃+(𝑄) = 1 is the partition function. We note that in this model, 

only the ground state energies contribute to the Boltzmann weights 𝑃$ and 𝑃+, so that the 

possibility of photochemical processes that alter these values are not considered. In this 

two-state system, the energy gap between ground and excited free energy surfaces is a 

Boltzmann weighted sum of contributions from sub-states 1 and 2 

𝐸15(𝑄) = 𝑃$(𝑄)[𝐺.$(𝑄) − 𝐺#$(𝑄)] + 𝑃+(𝑄)[𝐺.+(𝑄) − 𝐺#+(𝑄)] 

= 𝑃$(𝑄)C−2(𝜆$ 𝑑$⁄ )𝑄 + 𝜆$ + 𝐺1$-$G 

 

+𝑃+(𝑄)C−2(𝜆+ 𝑑+⁄ )𝑄 + 𝜆+ + 𝐺1+-+ + 2(𝜆+ 𝑑+⁄ )𝑥G. 

(A.11) 
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In Eq. (A.11), we have applied the definitions 𝐺1+-+ = 𝐺1+ − 𝐺-+ and 𝜆+ = $
+
𝛼+𝑑++. The 

rescaled excitation energy is thus given by 

𝑋(𝑄) = −2[𝑃$(𝑄)(𝜆$ 𝑑$⁄ ) + 𝑃+(𝑄)(𝜆+ 𝑑+⁄ )]𝑄. (A.12) 

The peak emission energy is also a Boltzmann weighted sum of terms. Emission 

from sub-state 1 occurs with energy gap defined at 𝑄 = 𝑑$, and from sub-state 2 with 

energy gap at 𝑄 = 𝑥 + 𝑑+. The peak emission energy is therefore given by 

𝐸1;;<5(𝑄) = 𝑃$(𝑄)[𝐺.$(𝑑$) − 𝐺#$(𝑑$)] 

+𝑃+(𝑄)[𝐺.+(𝑥 + 𝑑+) − 𝐺#+(𝑥 + 𝑑+)] 

= 𝑃$(𝑄)C−𝜆$ + 𝐺1$-$G + 𝑃+(𝑄)C−𝜆+ + 𝐺1+-+G. 

(A.13) 

We calculate the EES by subtracting Eq. (A.13) from Eq. (A.11)  

𝑌(𝑄) ≡ 𝐸15(𝑄) − 𝐸1;;<5(𝑄) 

= −2 K
𝑃$(𝑄)𝜆$
𝑑$

+
𝑃+(𝑄)𝜆+
𝑑+

L 𝑄 + 2𝑃$(𝑄)𝜆$ + 2𝑃+(𝑄)𝜆+(1 + 𝑥 𝑑+⁄ ) 

= 𝑋(𝑄) + 2𝑃$(𝑄)𝜆$ + 2𝑃+(𝑄)𝜆+(1 + 𝑥 𝑑+⁄ ). 

(A.14) 

In the final equality of Eq. (A.14), we have made use of the expression for the rescaled 

excitation energy given by Eq. (A.12).   

Equation (A.14) is the most general expression for the EES of a two-state system. The 

limiting behavior of Eq. (A.14) is determined by considering the cases where the 

population resides entirely in sub-state 1, or in sub-state 2. In the former case (𝑃$ = 1, 𝑃+ = 

0), Eq. (A.14) reduces to the linear expression for a homogeneous one-state system, as 

given by Eq. (A.7). In the latter case (𝑃$ = 0, 𝑃+ = 1), Eq. (A.14) reduces to the linear 

expression  

𝑌(𝑄) = −
2𝜆+
𝑑+

𝑄 + 2𝜆+(1 + 𝑥 𝑑+⁄ ) = 𝑋(𝑄) + 2𝜆+(1 + 𝑥 𝑑+⁄ ). (A.15) 
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Equation (A.15) shows that when population resides entirely in sub-state 2, the EES is a 

linear function of the reduced excitation energy with unit slope and y-intercept 

2𝜆+(1 + 𝑥 𝑑+⁄ ), which is vertically displaced from that of the opposite limit, as shown in 

Figure 2.2 D.   

By inspection of Eq. (A.14), one can see that the effect of tuning the excitation 

energy across the absorption band maximum (by varying the parameter 𝑄 from positive to 

negative values) is to adjust the relative contribution of sub-states 1 and 2 to the EES. The 

EES thus undergoes an energy-dependent transition from the linear behavior described by 

Eq. (A.7) to the linear behavior described by Eq. (A.15), as shown in Figure 2.2 D for three 

different energetic conditions. The mid-point of the transition occurs at the value of 𝑄 =

𝑑M, where the ground free energy surfaces of sub-states 1 and 2 cross. At this point in the 

EES plot [𝑋(𝑑M), 𝑌(𝑑M)], the populations of the sub-states 1 and 2 are exactly equal (i.e. 

𝑃$ = 𝑃+ = 1 2⁄ ). The Cartesian coordinates of the transition point are given by  

𝑋(𝑑M) = −O
𝜆$
𝑑$
+
𝜆+
𝑑+
P 𝑑M (A.16) 

and 

𝑌(𝑑M) = −O
𝜆$
𝑑$
+
𝜆+
𝑑+
P 𝑑M + 𝜆$ + 𝜆+(1 + 𝑥 𝑑+⁄ ) (A.17) 

The two-state expression for the EES given by Eq. (A.14) can be greatly simplified 

by making the additional assumptions 𝜆$ = 𝜆+ = 𝜆, and 𝑑$ = 𝑑+= 𝑑. Under these conditions, 

Eq. (A.14) reduces to Eq. (2.1) of the main text and Eq. (A.16) and (A.17) take on the 

forms 𝑋M = −2(𝜆 𝑑⁄ )𝑑M and 𝑌M = 𝑋M + 𝜆[2 + (𝑥 𝑑⁄ )]. 

 

Formulas for Free Energies of Transition and Activation 
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The crossing point is 𝑄 = 𝑑M is related to the free energies of transition and activation 

through the Marcus formulas 1-2. Under this condition, the energies of the two ground free 

energy surfaces are equal, i.e. 𝐺#$(𝑑M) = 𝐺#+(𝑑M). This condition when applied to Eqs. 

(A.1) and (A.8) can be used to derive the Marcus formulas described by Eqs. (2.2) and (2.3) 

of the main text.  

 

Two-State Model Fitting Procedure for EES Data 

As described in the main text, we analyzed our EES data for both 6-MI NMP samples 

in aqueous solution, as well as 6-MI substituted ssDNA, using Eq. (2.1) of the main text. 

Equation (2.1) makes use of the assumptions 𝜆$ = 𝜆+ = 𝜆, and 𝑑$ = 𝑑+= 𝑑. For our analysis 

of 6-MI substituted dsDNA constructs, it was necessary to allow for 𝜆$ ≠ 𝜆+, in which case 

we fit our data to Eq. (A.14).  

For all of the analyses performed in this work, we made the simplifying assumption 𝑑$ 

= 𝑑+= 𝑑 = 1, so that the parameters 𝑥, 𝜆$(+), and 𝑑M can be considered to be measured in 

units of 𝑑. We determined the value of the reorganization energy 𝜆$ by extrapolating the 

EES data to a diagonal line in the limit of large excitation energy [𝑋 ≡ 𝐸15(𝑄) − 𝐸15(0)]. 

This line has the form described by Eq. (A.7), with y-intercept equal to the Stokes’ shift, 

which is equal to twice the value of 𝜆$. For cases in which 𝜆$ ≠ 𝜆+, we treated 𝜆+ as an 

adjustable variable in the expression given by Eq. (A.15).  

In fitting our EES data to Eq. (2.1) [or alternatively to Eq. (A.14)], it was necessary to 

determine the Boltzmann weights 𝑃$(𝑄) and 𝑃+(𝑄) = 1 − 𝑃$(𝑄), which are given by Eq. 

(A.10). The Boltzmann weights are functions of the parameters that characterize the ground 

state free energy surfaces of sub-states 1 and 2, which are given by Eqs. (A.1) and (A.8), 

respectively. These surfaces are completely specified by the parameters 𝑥 , 𝜆$(+) , and 
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Δ𝐺° = 𝐺-+ − 𝐺-$ = 𝐺-+  (setting 𝐺-$  = 0). We further made use of the fact that the 

polarizability may be written 𝛼$(+) = 2𝜆$(+) 𝑑+⁄ . In practice, once the value(s) of 𝜆$(+) 

were determined by the extrapolation procedure described above, we then self-consistently 

varied the parameters 𝑥 and Δ𝐺° to obtain the best fit of Eq. (2.1) or Eq. (A.14) to the 

experimental EES data. These optimized values were then substituted into Eq. (2.2) to 

determine the crossing point 𝑑M, which was in turn used in Eq. (2.3) to determine the free 

energy of activation Δ𝐺T. 

 

Table A.1.  Parameters for fitting EES plot of 6-MI NMP. 
__________________________________________________________________ 
pH a Δ𝐺° a Δ𝐺T 𝑥             𝜆$            𝑑M  𝜆+      b KVW 
(cm-1)  (cm-1)             (cm-1)   (cm-1) 
__________________________________________________________________ 
5 900 2104 0.21 2829 0.86  2829  0.01 ± 0.00 
6 863 1965 0.21 2811 0.84  2811  0.02 ± 0.01 
7 638 1169 0.21 2815 0.65  2815        0.05 ± 0.02 
7.6 525 794 0.22 2870 0.53  2870        0.06 ± 0.02 
8 350 448 0.21 2872 0.40  2872        0.18 ± 0.07 
8.3 200 211 0.21 2867 0.27  2867        0.38 ± 0.15 
8.5 200 211 0.21 2868 0.27  2867        0.38 ± 0.15 
9 -350 99 0.21 2862 -0.19 2862        5.4 ± 2.1 
9.5 -500 276 0.21 2868 -0.31 2868       11.2 ± 4.3 
10 -450 207 0.21 2868 -0.27 2868         8.8 ± 3.4 
10.3 -325 109 0.21 2887 -0.17 2887         5.7 ± 4.8 

___________________________________________________________________ 
a Standard free energies of reaction (Δ𝐺°) and free energies of activation (Δ𝐺T) defined in 
Eqs. (2.2) and (2.3). Uncertainties of Δ𝐺° and Δ𝐺T are ±	100 cm-1.  
b Equilibrium constant for the reaction [6-MI (protonated)] ⇌  [6-MI- (deprotonated)]. 
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Table A.2.  Parameters for fitting EES plot of ssDNA a 
_____________________________________________________________________ 
 Δ𝐺°   Δ𝐺T   𝑥   𝜆$  𝑑M      𝜆+       KVW 
 (cm-1)  (cm-1)   (cm-1)     (cm-1) 
____________________________________________________________________ 
pH7.6 
6-MI 600 1010 0.22 2829 0.60 2829 0.06 ± 0. 02 
GXG 750 1038 0.31 2419 0.66 2419 0.03 ± 0.01 
GXXG 360 381 0.31 2329 0.40 2329 0.18 ± 0.07 
TXT 800 1159 0.30 2534 0.68 2534      0.02 ± 0.01 
TXXT 900 1264 0.32 2650 0.69 2650      0.01 ± 0.00 
TXG 600 632 0.31 2521 0.54 2521 0.06 ± 0.02 
TXTXG 600 735 0.31 2495 0.54 2495      0.06 ± 0.01 
       
pH 6        
6-MI 913 2157 0.21 2827 0.87 2827 0.01 ± 0.00 
GXG 700 900 0.32 2454 0.61 2454 0.03 ± 0.01 
GXXG 550 521 0.32 2450 0.46 2450 0.07 ± 0.03 
TXT 850 1228 0.31 2534 0.70 2534 0.02 ± 0.01 
TXXT 975 1479 0.31 2741 0.73 2741  0.01 ± 0.00 
TXG 600 732 0.31 2521 0.54 2521      0.06 ± 0.02 
TXTXG 700 921 0.31 2495 0.61 2495      0.03 ± 0.01 

_____________________________________________________________________ 
a Abbreviations as in Table A.1. 
 
Table A.3.  Parameters for fitting EES plot of dsDNA 
_____________________________________________________________________ 
             

     Δ𝐺° Δ𝐺T 𝑥   𝜆$   𝑑M   𝜆+        KVW 
 (cm-1)         (cm-1)   (cm-1)    (cm-1) 
____________________________________________________________________ 
pH7.6 
GXG 250 253 0.32 1987 0.36 2500 0.30 ± 0.11 
GXXG 500 594 0.31 2238 0.52 2800 0.09 ± 0.03 
TXT 900 1420 0.31 2304 0.79 2800       0.01 ± 0.00 
TXXT 450 668 0.23 2374 0.54 2800        0.11 ± 0.04 
TXG 250 293 0.23 2100 0.37 2700 0.30 ± 0.11 
TXTXG 550 914 0.23 2350 0.62 2800         0.07 ± 0.03 

        
pH 6        
GXG 250 253 0.31 2101 0.35 2500 0.30 ± 0.11 
GXXG 550 663 0.31 2376 0.53 2800        0.07 ± 0.03 
TXT 950 1184 0.4 2284 0.72 2500         0.01 ± 0.00 
TXXT 550 810 0.25 2437 0.58 2800 0.07 ± 0.03 
TXG 289 347 0.23 2300 0.39 2800         0.25 ± 0.09 
TXTXG 640 1004 0.26 2350 0.65 2800         0.05 ± 0.02 

_____________________________________________________________________ 
a Abbreviations as in Table A.1. 
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Figure A.1 EES data of 6-MI nucleotide monophosphate (NMP) in aqueous solution, as a 
function of rescaled excitation energy and pH. (A-F) pH = 6, 7, 7.5, 8, 8.5, and 9, 
respectively. Solid curves are fits to the data using Eq. (2.1) of the main text. The values 
of the optimized parameters are given in Table A.1.  
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Figure A.2 EES data on pyrrolocytosine (PC) and 2-aminopurine (2-AP) substituted DNA, 
as a function of rescaled excitation energy. (A) ssC(PC)A, (B) dsC(PC)A, (C) ssG(2-AP)G 
and (D) dsG(2-AP)G. pH = 7.5, 20 °C.  
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Figure A.3 EES versus excitation energy for 6-MI substituted ss and dsDNA constructs. 
Black circles, experimental results; black line theoretical fit; red and green lines, EES of 
protonated and deprotonated 6-MI probe, respectively. pH = 7.5, 20 °C. Solid curves are 
fits to the data using Eq. (2.1) of the main text for the ssDNA substrates, and using Eq. 
(A.14) for the dsDNA substrates. The values of the optimized parameters are given in 
Tables A.2 and A.3.  
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Figure A.4 EES data versus rescaled excitation energy for 6-MI substituted ssDNA, as a 
function of pH = 6.2 (crosses), 7.6 (circles). 
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Figure A.5 CD spectra of 6-MI residues in various dsDNA constructs. dsTXXT (black), 
dsGXXG (red), ssTXXT (magenta), ssGXXG (green). DNA sequences and nomenclature 
as in Fig. 1. The units of CD are given in terms of εL – εR (in M-1 cm-1) per mole of 6-MI 
residue. 
 

In duplex DNA the CD of adjacent 6-MI residues have a bimodal shape centered at the 

absorption maximum that is characteristic of B form DNA3, 4. CD measurements show that 

the 6-MI dimer is stacked in a right helical conformation in duplex DNAs (Figure A.5). 

ssTXXT and ssGXXG also exhibited some exciton coupling characteristic of base stacking, 

although this signal was less than for the corresponding dsDNA. 
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APPENDIX B 

SUPPLEMENTARY INFORMATION FOR CHAPTER III: THEORETICAL 

ASPECTS OF CIRCULAR DICHROISM CALCULATIONS 

Alternative EDTMs Assignments for Natural Bases 

Table B.1. Comparison of experimental electronic transition moment in Thymine and 
Derivatives. The EDTMs assignments highlighted in gray are chosen in calculation.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Compound Transitions Transition 
energy center 
(cm-1) /(nm) 

oscillator 
strength 

Orientation * 
(°) 

Dipole 
radius 

(Å) 

ref 

1-
methylthymine 

1 
2 

36630(273) 
48309(207) 

0.19 
0.28 

14±2 or -
19±2 

-76±2 or 
71±2 

 ref1 

1-Methyluracil 1 
2 

36364(275) 
46948(213) 

0.195 
0.260 

-9 
-53 or 59 

 ref2 

1 37500(266.7) 0.19 0±1 or 7±1  ref3 
Thymine 1 37594(266)  -31±6 or 

51±20 
 ref4 

1 36000(277.8)  -12  ref2,5 
Thymidine S0 ⟶ S1 37500(266.7) 0.24  0.77 ref6 
Thymine or 

Uracil 
1 
2 
3 
4 

265 
215 
195 
177 

3.27 
2.14 
2.04 
3.88 

-19 
71 
-36 
-20 

0.68 
0.45 
0.43 
0.81 

ref7 
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Table B.2. Comparison of experimental electronic transition moment in Adenine and 
Derivatives. The EDTMs assignments highlighted in gray are chosen in calculation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Compound Transitions Transition 
energy center 
(cm-1) /(nm) 

oscillator 
strength 

Orientation 
(°) 

Dipole 
radius 

(Å) 

ref 

9-
methyladenine 

1 
2 
3 
4 
5 
6 
7 
8 

36364(275) 
37736(265) 
46948(213) 
49020(204) 
53476(187) 
57143(175) 
62500(160) 
68027(147) 

0.10 
0.20 
0.25 
0.11 
0.30 
~0.1 
0.23 
~0.1 

83 
25 
-45 
15 
72 

~45 
6 

~-45 

 ref8, 

9 

1 275  -3±3  ref10 
1 
2 
3 
4 
5 

36710(272.4) 
38820(257.6) 
43370(230.6) 
46840(213.5) 

~48320(207.0) 

0.047 
0.24 
0.027 
0.14 

~0.12 

66±7 
19±7 
-15±6 
-21±7 
-64±10 

0.34 
0.75 
0.24 
0.52 
0.48 

ref11 

Adenosine S0 ⟶ S1 
S0 ⟶ S2 

36700(272.5) 
38800(257.7) 

0.05 
0.24 

  ref6 



 119 

Table B.3. Comparison of experimental electronic transition moment in Cytosine and 
Derivatives. The EDTMs assignments highlighted in gray are chosen in calculation. 
 

 

 
 
 
 
 
 
 
 
 
 
 

Compound Transitions Transition 
energy center 
(cm-1) /(nm) 

oscillator 
strength 

Orientation 
(°) 

Dipole 
radius 

(Å) 

ref 

1-
methylcytosine 

1 
2 

37736(265) 
43478(230) 

 12±3 
-11 to 9 (-

1) 

 ref12 

Cytosine 1 
2 

37736(265) 
43478(230) 

 9 or 51 
4 to 56 

 ref12 

1 
2 
3 
4 
5 
6 

37594(266) 
43478(230) 
47170(212) 
50761(197) 
60606(165) 
66667(150) 

0.14 
0.03 
0.13 
0.36 
0.15 
0.20 

6 
-46 
76 

-27 or 86 
~0 or ~60 
~0 or ~60 

 ref13 

1 
 
2 

37000 to 
41000 

(270.3 to 
243.9) 

44000(227.3) 

 14±1 
 

-5±3 

 ref14 

1 
2 
3 
4 
5 
6 

272 
231 
214 
196 
163 
151 

2.86 
2.07 
2.44 
4.43 
2.17 
2.44 

6 
-46 
76 
-27 
0 
60 

0.60 
0.43 
0.51 
0.92 
0.45 
0.51 

ref7 

Cytidine 
 
 

1 
2 

37313(268) 
41667(240) 

 25±3 or -
46±4 

6±4 or -
27±3 

 ref4 

S0 ⟶ S1 36800(271.7) 0.21   ref6 
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Table B.4. Comparison of experimental electronic transition moment in Guanine and 
Derivatives. The EDTMs assignments highlighted in gray are chosen in calculation. 
 

 

 

 

 

Compound Transitions Transition 
energy center 
(cm-1) /(nm) 

oscillator 
strength 

Orientation 
(°) 

Dipole 
radius 

(Å) 

ref 

9-
Ethylguanine 

1 
2 
3 
4 
5 
6 
7 

36700(272.5) 
40200(248.8) 
48600(205.8) 
53500(186.9) 
63000(158.7) 
65000(153.8) 
69000(144.9) 

0.14±0.01 
0.21±0.01 
0.38±0.03 
0.42±0.03 

 
 

-4±3 or 
35±4 
-75±3 

-71±4 or -
79±4 

-9±4 or 41 
~0 or ~40 

 
~0 or ~40 

 ref15 

1 
2 

35971(278) 
39526(253) 

 44±5 or -
14±5 

115±10 or 
95±10 

 ref12 

Guanine 
Hydrochloride 

1 
2 
3 

36300(275.5) 
40600(246.3) 
51800(193.1) 

0.13±0.01 
0.22±0.01 

0.7 

2 or 77 
-82 or -14 
-75 or -17 

 ref15 

Guanine 1 
2 

35714(280) 
40323(248) 

 4±3 or -
61±4 

31±3 or -
88±4 

 ref4 

1 
2 
3 
4 
5 
6 
7 

272 
248 
204 
187 
159 
154 
145 

2.76 
3.18 
3.92 
3.92 
2.76 
1.84 
2.30 

-4 
-75 
-75 
-9 
-4 
-75 
-4 

0.57 
0.66 
0.82 
0.82 
0.57 
0.38 
0.48 

ref7 

Guanosine 
 
 
 
 
 

1 
2 
3 
4 

36765(272) 
40650(246) 
50000(200) 
53763(186) 

0.15 
0.24 
0.40 
0.48 

-24 
88 
86 

-8 to 44 

 ref16 

S0 ⟶ S1 
S0 ⟶ S2 

36700(272.5) 
40300(248.1) 

0.19 
0.21 

 0.69 
0.69 

ref6 
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EDTMs Assignment of Acridine Orange 

Table B.5. Comparison of experimental electronic transition moment in Acridine Orange. 
The EDTMs assignments highlighted in gray are chosen in calculation. 
 

 

 

 

 

 

Compoun
d 

Transitio
ns 

Transition energy center 
(cm-1) /(nm) 

oscillat
or 

strength 

Orientatio
n (°) 

Dipol
e 

radius 
(Å) 

ref 

Acridine 

Orange 
 
 
 
 
 
 
 
 
 
 
 

 

1 
2 
3 

19920(502) 
30303(330) 
36764(272) 

 -78±2 
-20±2 
-67±2 

 ref1

7 

1 
 
 
 
 
 
 
 
 
2 
3 

19920(50
2) 
 
 
 
 
 
 
 
 

30303(33
0) 

36764(27
2) 

 
19500(512.

8) 
19970(500.

8) 
21100(473.

9) 
21300(469.

5) 
22650(441.

5) 
22670(441.

1) 
24190(413.

4) 
24040(416.

0) 

 
 
 
 
 
 

 

-87±2 
0 
90 
0 
90 
0 
90 
0 
90 

-8±3 
-65±2 

 ref1

8 

Monomer 
 

 

 

 

Dimer 
 

1 
2 
3 
4 

492 
294 
261 
230 

 90 
0 
90 
- 

ref1

9 

1 
2 
3 
4 
5 

540 
458 
294 
261 
230 

1.00 
9.18 
2.40 
10.29 
2.50 

0 
90 
0 
90 
- 
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APPENDIX C 
 

SUPPLEMENTARY INFORMATION FOR CHAPTER IV: LOCAL NUCLEIC ACID 
BASE CONFORMATION REVEALED BY CIRCULAR DICHROISM STUDIES OF 

6-METHYL ISOXANTHOPTERIN SUBSTITUTED DNA CONSTRUCTS 
 

 

 
Figure C.1: Comparison between experimental CD spectra (panels (A), (C), (E) & (G)) 
and model calculations (panels (B), (D), (F) & (H)) of 6-MI substituted ss and ds DNA 
constructs, which are described in Table 4.1 of the main text. The spectra are shown in 
terms of wavenumbers (panels (A) – (D)) and wavelength (panels (E) – (H)), over the 
full range of 6-MI probe and nucleotide transition energies. The site EDTM transition 
energies used in our calculations are indicated by vertical arrows in panels B and F, 
where Y = 6-MI, A = adenine, C = cytosine, G = guanine, and T = thymine. The values 
for the EDTM parameters are given in Chapter III.  
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Figure C.2: (A) Experimental and (B) simulated CD of ssDNA constructs, which 
assume that the nucleotides adopt the B-form conformation. A similar comparison is 
made for (C) experimental and (D) simulated CD of dsDNA. In panel B, the wavelengths 
of the uncoupled 6-MI transitions are indicated: Y1’ (27303 cm-1), Y1 (29734 cm-1) and 
Y2 (34596 cm-1) (see Table 3.6). The spectra are shown in terms of wavenumbers.  
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Figure C.3: Comparison between experimental (thick black curves) and simulated 
(colored) CD spectra of the 6-MI substituted ss (panels A, C & E) and ds (panels B, D 
& F) DNA constructs as a function of the 6-MI probe rotation angle. The probe rotation 
angle is defined in Figure 4.3 of the main text. 
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Figure C.4:  Comparison between experimental (thick black curves) and simulated 
(colored) CD spectra of the 6-MI substituted ss (panels A, C & E) and ds (panels B, D 
& F) DNA constructs as a function of the 6-MI probe rotation angle. Same as Figure 
C.3, but with the horizontal axis in wavenumber.  
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APPENDIX D 

SUPPLEMENTARY INFORMATION FOR CHAPTER V: STUDIES OF FREE AND 

TETHERED INTERCALATOR MOLECULES INTERACTING WITH 6-MI 

LABELED DNA 

 
D.1 Acridine Orange Absorbance Gaussian Decomposition  

We decomposed the AO absorbance spectra at different concentrations to three 

Gaussian peaks, and assigned them to the abundance of monomer (f1), dimer (f2), and 

higher order aggregates (f3). The results of our decomposition analysis are summarized in 

Figure D.1 and Table D.1. 

𝑓"(𝜈) = 𝑎"	 × 𝑒
+(,-./0/

)1                                                                                                     

𝑓2(𝜈) = 𝑎2	 × 𝑒
+3,-.101

4
1

                                                                                                       

𝑓5(𝜈) = 𝑎5	 × 𝑒
+(,-.606

)1                                                                                                       
 
𝑓(𝜈) = 𝑓"(𝜈) + 𝑓2(𝜈) + 𝑓5(𝜈)                                                                                                      

 
As the concentration of AO was increased, the relative proportions of the three 

components changed. Most importantly, the fractional monomer number density 

decreased with increasing AO concentration (see Fig D.1 E). Thus, one cannot apply the 

usual Beer-Lambert law to AO since both the extinction coefficient and the value of λmax 

was dependent on AO concentration. As a result, we did not determine the AO 

concentration by its absorption. Instead, we prepared AO solutions with solid AO in a 

volumetric flask. We found that although the shape of AO absorbance spectrum 

depended on concentration, the total absorbance [i.e., the integrated optical density (OD) 

from 350 nm to 600 nm] was linearly proportional to AO concentration at values as high 

as approximately 15 μM (see Figure D.1 F). 
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Figure D.1: Gaussian decomposition analysis of Acridine Orange (AO) absorbance. 
(A) AO absorbance spectra and Gaussian fits at various concentrations (indicated by 
colors). (B) Same as (A), but with original OD at implied concentrations. (C) AO 
molar absorption spectra at different concentrations decomposed into three Gaussian 
peaks. (D) AO absorption spectra with original OD decomposed into three Gaussian 
peaks. (E) Number fraction of monomer at different AO concentrations. (F) Integrated 
OD across the spectral range 350 – 600 nm were examined at different concentrations. 
The averages of three peaks were labeled by dashed lines on top of the absorbance 
spectra.  
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Table D.1 AO absorbance fitting parameters 
 

# [AO] 
(μΜ) 

a1 a2 a3 b1 
(cm-1) 

b2 
(cm-1) 

b3 
(cm-1) 

c1 
(cm-1) 

c2 
(cm-1) 

c3 (cm-

1) 
1 0.65 0.0226 0.0199 0 20200 21200 0 585.1 1185 0 
2 1.30 0.0471 0.0353 0.0104 20190 21150 22520 619.2 989 1582 
3 1.95 0.0629 0.0525 0.0132 20180 21130 22670 614.8 1072 1939 
4 2.60 0.0821 0.0737 0.0178 20180 21110 22700 608.6 1107 2066 
5 3.24 0.0934 0.0894 0.0207 20180 21120 22910 604.8 1129 2249 
6 6.42 0.1578 0.1903 0.0443 20170 21090 22760 579.2 1195 2308 
7 9.53 0.2048 0.2842 0.0644 20160 21090 22840 565.6 1225 2385 
8 12.95 0.2410 0.3658 0.0850 20150 21090 22790 555.7 1240 2455 
9 15.58 0.2602 0.4478 0.0965 20140 21110 22940 544.7 1276 2466 
10 21.41 0.2982 0.5368 0.1142 20150 21140 23000 549.3 1312 2543 

Ave (cm-1)     20170±20 21123±34 22792±150    
Ave (nm)     495.79 473.43 438.75    
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D.2 Determination of Förster Distance (R0) 

Both theoretical and experimental methods were utilized to determine the Förster 

distance (R0) of FRET donor-acceptor pair 6-MI NMP and AO. We calculated R0 based 

on the spectral overlap using the PyMol Förster distance calculator (See 

https://pymolwiki.org/index.php/Forster_distance_calculator ). In these calculations, we 

used the value 𝛷 =	0.7 for the fluorescence quantum yield1 of the donor (6-MI) in the 

absence of the acceptor (AO).   

We measured R0 experimentally by fluorescence titration shown in Figure 5.3. 

The probability of an excited 6-MI molecule transferring its electronic excited state 

energy by the Förster dipole-dipole coupling mechanism is dependent upon the 

distribution of AO molecules within its immediate vicinity. In this measurement, energy 

transfer and other interactions between AO molecules are not considered.2,3 We assume 

isotropic distributions for both donors and acceptors. The decay of the donor intensity 

with increasing acceptor concentration is dependent on the Förster distance R0. The 

following equations show the analytical form for the donor excited state population decay, 

to which we fit our experimental data. Here FD is the 6-MI fluorescence intensity in the 

absence of AO in solution, and FDA is the 6-MI fluorescence intensity in the presence of 

AO at different concentrations. The ratio FDA / FD is a function of 𝛾. 𝛾 = 𝐴/𝐴< is the 

ratio of the acceptor concentration (𝐴) and the critical concentration (𝐴<). Examples of 

our fitting results are shown in Figure D.2. Förster distance R0 (Å) is related to the critical 

concentration 𝐴< (mol/L).  
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D.3 Circular Dichroism Calculation of ACMA Labeled Constructs 

Experimental results are compatible with the hypothesis that ACMA ‘pushes’ the 

6-MI directly across from its attachment site out of the duplex (see Figure 5.12 in Chapter 

V). Following this hypothesis, we have calculated CD of ACMA tethered DNA 

constructs. We applied the CD calculation presented in Chapter III and IV to the 6-MI 

and ACMA labeled DNA constructs. Assignments of the ACMA electric dipole transition 

moments are not available from the literature. We therefore derived its parameters based 

on ACMA’s similarity to quinacrine. Detailed descriptions can be found in Appendix B. 

FDA
FD

= 1− π exp(γ 2 )[1− erf (γ )]

erf (γ ) = 2
π

exp(−x2 )dx
0

γ

∫

γ = A
A0

A0 (M ) = 447 / R0
3(Å)

 
Figure D.2: Examples of Förster distance (R0) measurement fitting results. We used 
either integrated intensity (from 400-450nm) or peak intensity at 422nm to evaluate 
donor fluorescence intensity. The fluorescence titration results correspond to these two 
plots was shown in Figure 5.3 in main text.  
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We began these calculations by placing ACMA in an arbitrary position, where 

ACMA is parallel to the base pairs. We used three ‘anchor’ atoms to place ACMA (see 

the three colored atoms in Figure D.3) on top of the pseudo base pair. Note that the base 

pair we used as the target to place AMCA does not exist in our DNA constructs. We next 

carried out CD calculation exploring three conformational freedoms, i.e. three angles that 

contribute to ACMA conformational change. These three angles (θ_r, θ_f and θ) are 

illustrated in Figure D.4. We assumed that conformation of the 6-MI probe base was 

unaltered by the presence of the ACMA and retained the conformation presented in 

Chapter III. However, for the CZC/GYG construct when 6-MI is at the complementary 

position of ACMA, the 6-MI was shown to be ‘flipped out’.  

 
Figure D.3: The initial placement of ACMA on the CCC/GGG constructs. 

 
Figure D.4: Angles corresponds to three conformational freedoms.  
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CZC 

 

Single stranded CZC experimental CD have a negative vibrational feature around 

450 nm, a negative feature around 300 nm, and a slightly positive signal around 375 nm. 

We found that the calculated CD signal at 450 nm were greatly affected by ACMA 

rotation (θ_r) around the Z-axis, as shown in Figure D.5 A. The rotational (θ_f) motion of 

ACMA around the long-axis also affected the 450 nm feature but did not result in a 

negative peak as observed experimentally (see Figure D.5 B). With θ_r = 90°, an 

optimized feature at 450 nm was achieved, which compared favorably to experimental 

observations (see Figure D.5 C). With θ_r = 90°, the calculated CD are shown as a 

function as θ_f (Figure D.5 C). The optimal results (shown in Figure D.5D and Figure 

 
Figure D.5: Comparison between experimental and simulated CD spectra of the 
ACMA tethered ss CZC construct as a function of ACMA rotation angles. (A) CD 
calculated results as a function of θ_r. (B) CD calculated results as a function of θ_f. 
(C) CD calculated results as a function of θ_f, when θ_r = 90°. (D) Optimal results 
achieved. θ_r = 90°, θ_f = ±90°. 
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D.6) were achieved when ACMA sits orthogonal to the pseudo base pair. It is reasonable 

to assume ACMA in ssDNA has more flexibility then ACMA in dsDNA, with no 

constraints from the complementary bases. It is possible that the ss CZC construct has 

multiple ACMA conformational states that cause a negative net CD signal at ~300nm, 

which we were not able to model using only the two adjustable degrees of freedom. 

 

CZC/GGG 

With the more constrained duplex DNA conformation, only θ_r and θ were 

allowed to change in this set of CD calculation involving CZC/GGG. Figure D.7 A shows 

the calculated CD results of the CZC/GGG construct when the B-form conformation was 

assumed for the canonical bases. We found that the calculated CD is highly dependent on 

the angle θ_r. We also calculated the CD in the absence of the ACMA complementary 

Guanine in the same manner (see Figure D.7 B). Insignificant differences between Figure 

D.7 A and Figure D.7 B suggest that the presence of the complementary Guanine does 

not affect the calculated CD signal in the 280 nm – 600 nm region. We found that the 

calculated CD did not change significantly when the ACMA complementary Guanine 

rotated around the backbone (Figure D.7 D). The complementary Guanine of ACMA had 

 
Figure D.6: The ss CZC conformation that produces optimal CD result, as shown in 
Figure D.5D, where θ_r = 180°, θ_f = ±90°. (A) Top view of CZC from 3’ to 5’, only 
nearest neighbors of ACMA were shown. (B) Side view of CZC 
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little effect on the net CD spectrum. Our best results were achieved when the ACMA was 

positioned perpendicular to the pseudo base pair, with θ_r ≈ 90° (see Figure D.8).  

 

 
Figure D.7: Comparison between experimental and simulated CD spectra of the 
ACMA tethered CZC/GGG construct as a function of ACMA rotation angles. (A) CD 
calculated results as a function of θ_r. (B) CD calculated results as a function of θ_r, in 
the absent of ACMA complementary guanine. (C) CD calculated results as a function 
of θ_r, when θ = 180°. (D) CD calculated results as a function of θ, when θ_r = 90°. 
(E) Optimal results achieved. θ_r ranges from -88° to -92°, θ_f = 0°, θ does not show 
strong correlation with CD calculated results. 
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CZC/YGG 

Unlike the CZC/GGG construct, the complementary Guanine has a large effect on 

the calculated CD of the CZC/YGG construct around 350 nm (see Figure D.9 A B, and 

D). The most favorable results were achieved when complementary Guanine is ‘flipped 

out’ (see Figure D.9 E, and F, and Figure D.10). Again, we discovered that ~450nm CD 

feature are mostly dependent on θ_r. 

 

CZC/GYG 

The CD features around 450 nm are predominantly dependent on ACMA 

conformation (see Figure D.11 A, B, C). 6-MI conformation (θ) changes CD significantly 

at 300-400 region (Figure D.11 D). Optimal results were achieved when complementary 

6-MI is “flipped out” (see Figure D.11 E, and F, and Figure D.12). 

 

 
Figure D.8: The CZC/GGG conformation that produces optimal CD result, as shown 
in Figure D.7 E, where θ_r = 90°. (A) Side view of CZC/GGG (B) Top view of 
CZC/GGG from 3’ to 5’, only nearest neighbors of ACMA were shown. 
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Figure D.9: Comparison between experimental and simulated CD spectra of the ACMA 
tethered CZC/YGG construct as a function of ACMA rotation angles. (A) CD calculated 
results as a function of θ_r. (B) CD calculated results as a function of θ_r, in the absent of 
ACMA complementary guanine. (C) CD calculated results as a function of θ_r, when θ = 
180°. (D) CD calculated results as a function of θ, when θ_r = 90°. (E) Optimal results 
achieved when θ_r ranges from -60° or 120°, θ_f = 0°, θ = 180°. (F) Optimal results 
achieved when θ_r = -90°, θ_f = 0°, θ = 160°, 170°, 180°, -170° or -160°. 

 
Figure D.10: The CZC/YGG conformation that produces optimal CD result, as shown 
in Figure D.7 E, where θ_r = 120° (-60°), θ_f = 0°, θ = 180°. (A) Side view of 
CZC/YGG (B) Top view of CZC/YGG from 3’ to 5’, only nearest neighbors of ACMA 
were shown.  
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Figure D.11: Comparison between experimental and simulated CD spectra of the 
ACMA tethered CZC/GYG construct as a function of ACMA rotation angles. (A) CD 
calculated results as a function of θ_r. (B) CD calculated results as a function of θ_r, in 
the absent of ACMA complementary 6-MI. (C) CD calculated results as a function of 
θ_r, when θ = 180°. (D) CD calculated results as a function of θ, when θ_r = 90°. (E) 
Optimal results achieved when θ_r = ±90°, θ_f = 0°, θ = 180°. (F) Optimal results 
achieved when θ_r = -90°, θ_f = 0°, θ = 140°, 150°, 160°, 170°, 180°.  
 

 
Figure D.12: The CZC/GYG conformation that produces optimal CD result, as shown 
in Figure D.11 E, where θ_r = 90° (-90°), θ_f = 0°, θ = 180°. (A) Side view of 
CZC/GYG (B) Top view of CZC/GYG from 3’ to 5’, only nearest neighbors of ACMA 
were shown. 
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CZC/GGY  

Note the similarity of experimental CD between CZC/GGY and CZC/YGG. The 

optimal orientation of ACMA are also similar. The sharp peak at around 300 nm is 

caught by the calculated CD, when θ_r is about 120 (-60°) (see Figure D.13 E). All 

ACMA EDTM orientation are either along the short axis or long axis of ACMA. It is 

impossible to distinguish of conformation at θ_r=120° or -60°, by CD calculation alone. 

 
Figure D.13: Comparison between experimental and simulated CD spectra of the 
ACMA tethered CZC/GGY construct as a function of ACMA rotation angles. (A) CD 
calculated results as a function of θ_r. (B) CD calculated results as a function of θ_r, in 
the absent of ACMA complementary guanine. (C) CD calculated results as a function 
of θ_r, when θ = 180°. (D) CD calculated results as a function of θ, when θ_r = 90°. 
(E) Optimal results achieved when θ_r ranges from 100° to 120°, θ_f = 0°, θ = 180°. 
(F) Optimal results achieved when θ_r = -90°, θ_f = 0°, θ = 90°, 120°.  
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D.4 AO-DNA Absorbance and CD Titration 

We conducted titration experiments where we add AO to different DNA samples. 

Concentrations of AO and DNA in solution are indicated by the line color (see Table 

D.2). 

 
Figure D.14: The CZC/GGY conformation that produces optimal CD result, as shown 
in Figure D.13E, where θ_r = 110° (-70°), θ_f = 0°, θ = 180°. (A) Side view of 
CZC/GGY (B) Top view of CZC/GGY from 3’ to 5’, only nearest neighbors of ACMA 
were shown. 

 
Figure D.15: Buffer-AO titration experiments (A) Buffer-AO absorbance spectra per 
M DNA. (B) Buffer-AO absorbance spectra per M AO (except when AO concentration 
was zero).  (C) Buffer-AO CD spectra per M DNA. (D) Buffer-AO CD spectra per M 
AO (except when AO concentration was zero).  
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Figure D.16: dsGG(X)G-AO titration experiments (A) dsGGG-AO absorbance spectra 
per M DNA. (B) dsGXG-AO absorbance spectra per M DNA. (C) dsGGG-AO CD 
spectra per M DNA. (D) dsGXG-AO CD spectra per M DNA. (E) dsGGG-AO 
absorbance spectra per M AO (except when AO concentration was zero). (F) dsGXG-
AO absorbance spectra per M AO (except when AO concentration was zero). (G) 
dsGGG-AO CD spectra per M AO (except when AO concentration was zero). (H) 
dsGXG-AO CD spectra per M AO (except when AO concentration was zero). 
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Figure D.17: dsTG(X)T-AO titration experiments (A) dsTGT-AO absorbance spectra 
per M DNA. (B) dsTXT-AO absorbance spectra per M DNA. (C) dsTGT-AO CD 
spectra per M DNA. (D) dsTXT-AO CD spectra per M DNA. (E) dsTGT-AO 
absorbance spectra per M AO (except when AO concentration was zero). (F) dsTXT-
AO absorbance spectra per M AO (except when AO concentration was zero). (G) 
dsTGT-AO CD spectra per M AO (except when AO concentration was zero). (H) 
dsTXT-AO CD spectra per M AO (except when AO concentration was zero). 
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Table D.2. Concentration of Acridine Orange, dsDNA and the ratio of their 
concentrations in absorbance and CD titration experiments shown in Figure D.15, Figure 
D.16 and Figure D.17. 

Spectrum 
Color 

[AO] (μΜ) [DNA] (μΜ)  [AO]/[DNA] 

 

0 
1.99 
3.95 
7.80 
11.54 
15.19 
18.75 
22.22 
25.61 
28.92 
32.14 
35.29 

4.00 
3.97 
3.95 
3.90 
3.85 
3.80 
3.75 
3.70 
3.66 
3.61 
3.57 
3.53 

0 
0.5 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 

D.5 AO-DNA CD Calculation 

 
Figure D.18: X-ray structure of 452D, d (CG (5-BrU) ACG)2 crystalized with 4 
DACA intercalating molecules. DACA molecules are colored red. (A) Duplex side 
view (B) Duplex oriented view (C) Single stranded side view (D) Single stranded 
oriented view 
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Crystal structure of AO-DNA intercalating complex is not available on PDB. We 

found the DACA X-ray structure complexed to d(CG(5-BrU)ACG)2 at 1.3-Å resolution4. 

DACA is an Acridine derivative. We calculated CD of this construct, where we substitute 

DACA with AO, guanine with 6-MI. We are able to get CD calculated results that 

resemble the experimental result shown in Figure D.16 and D.17. Our preliminary results 

are shown in Fig D.19. It might be feasible to use CD calculation method to gain AO-

DNA complex conformational information.  

 

D.6 ACMA Sequence Dependent Fluorescence and CD 

In order to study the interaction between 6-MI and ACMA in duplex DNA we 

need information about DNA constructs labeled with ACMA alone. Here we examined 

the fluorescence and CD of tethered ACMA DNA constructs shown in Table D.3. It has 

been previously claimed that tethered ACMA inserts between bases in ssDNA, primarily 

based on evidence from fluorescence measurements.  Hypochromism and UV line 

broadening can be larger for tethered ACMA in ssDNA than in dsDNA, which has been 

interpreted as meaning that tethered ACMA stacks more in single stranded construct5. 

Furthermore, line broadening may indicate that the ACMA moiety has greater 

 
Figure D.19: AO-DNA CD calculation results based on the structure of 452D.   
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conformational inhomogeneity in ssDNA compared to dsDNA as a result of the greater 

flexibility of ssDNA.5  

 

The CD spectra of the ACMA-labeled ssDNA are shown in Figure D.20. These 

spectra exhibit bands from two electronic transitions at 450 and 350 nm, together with the 

vibrational progressions of these transitions (see Figure 5.5 D). The planar ACMA 

molecule is achiral and has no intrinsic optical activity. The CD spectra of the tethered 

ACMA-ssDNA molecule indicate that the chromophore experiences the asymmetric 

environment of ssDNA, consistent with the idea of stacking interactions between the 

chromophore and the DNA bases. 

In general, the CD signals from of ACMA are relatively weak; the intensity per 

ACMA is about 50% the intensity per nucleotide (compare left and right panels of the 

CD spectra, Figure D.20) with the exception of the TZT spectrum. The TZT 

oligonucleotide has complementary terminal sequences that could potentially pair with 

each other to form a stem loop structure and conceivably alter the CD spectrum.  

Base stacking interactions stabilize a B form conformation within the persistence 

length of ssDNA6. Base stacking with T is weaker than for other DNA bases. Thus, 

flanking T residues may allow more flexibility at the ACMA attachment site, leading to a 

qualitatively different interaction of the TXT oligonucleotide with ACMA in which the 

Table D.3. Base sequences and nomenclature for the ACMA-containing ssDNA 
constructs used in these studies. The letter Z indicates the ACMA probe. 

DNA 
construct 

Nucleotide base sequence 

TZT          3'-C GCA TZT ACG G-5' 
CZC          3'-C GCA CZC ACG G-5' 
AZA           3'-C GCA AZA ACG G-5' 
GZG           3'-C GCA GZG ACG G-5' 
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intercalant exhibits a binding mode within the ss molecule with more stacking and a 

larger CD signal.  

 
Figure D.20: Sequence-dependent ACMA CD. 
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Formation of double stranded complexes TZT/AAA and CZC/GGG increases the 

intensity of the CD signal near 450 nm in the duplex compared to the ss construct. This 

increase is much greater for CZC/GGG than for TZT/AAA, in comparison to the CD of 

their respective ss components. This result is consistent with the idea that ACMA is 

already more stacked in the ss TZT construct than the ss CZC construct. In addition, the 

negative CD signal associated with the 350 nm transition of ssDNA changes sign in the 

duplex molecules.  

Intercalation of ACMA adjacent to an Adenine can increase its fluorescence by up 

to a factor of 4 compared to other base; this is the physical basis of selective staining of 

A-T rich chromosomes by quinacrine. Fluorescence emission of tethered ACMA is also 

enhanced in DNA consisting of only A and T bases.5,7 QY of tethered ACMA in an A 

rich environment is 0.4 – 0.6 (compared to a QY of 0.8 for free ACMA)5. 

In contrast ACMA is quenched by stacking with Guanine9–11. The excited state 

lifetime of ACMA decreases considerably in the presence of guanine. Quenching is 

thought to occur through electron transfer (ET).10,12 Guanine is the most oxidizable base 

and ACMA can act as an electron donor. Each successive A-T placed between tethered 

ACMA and G decreases ET by a factor of 103 (G, A and ACMA are on the same strand 

of DNA in a duplex molecule).11 

We have also observed this effect of A and G on the fluorescence emission of 

tethered ACMA in ssDNA; fluorescence emission from ACMA in single stranded AZA 

is greater than the other sequence contexts while signal from GZG is lowest (Figure D.21 

A). In addition, we observed similar effects of proximal A and G bases in the 

complementary strand; the fluorescence of TZT/AAA increases compared to TZT while 
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the fluorescence of ACMA decreased in the CZC/GGG duplex compared to CZC (Figure 

D.21 B). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure D.21: Sequence dependent ACMA fluorescence intensity. (A) Fluorescence 
emission spectra of single-stranded AZA, GZG, TZT and CZC excited at 450 nm. (B) 
Fluorescence emission spectra of single-stranded CZC, TZT and double-stranded 
CZC/GGG and TZT/AAA excited at 450 nm. 
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