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DISSERTATION ABSTRACT

Megen Elizabeth Brittell

Doctor of Philosophy

Department of Geography

December 2018

Title: Neuro-imaging Support for the Use of Audio to Represent Geospatial Location
in Cartographic Design

Audio has the capacity to display geospatial data. As auditory display design

grapples with the challenge of aligning the spatial dimensions of the data with

the dimensions of the display, this dissertation investigates the role of time in

auditory geographic maps. Three auditory map types translate geospatial data into

collections of musical notes, and arrangement of those notes in time vary across

three map types: sequential, augmented-sequential, and concurrent. Behavioral

and neuroimaging methods assess the auditory symbology. A behavioral task

establishes geographic context, and neuroimaging provides a quantitative measure

of brain responses to the behavioral task under recall and active listening response

conditions.

In both behavioral and neuroimaging data, two paired contrasts measure

differences between the sequential and augmented-sequential map types, and

between the augmented-sequential and concurrent map types. Behavioral data

reveal differences in both response time and accuracy. Response times for the

augmented-sequential map type are substantially longer in both contrasts under

the active response condition. Accuracy is lower for concurrent maps than for
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augmented-sequential maps; response condition influences direction of differences
 

in accuracy between the sequential and augmented-sequential map types. 

Neuroimaging data from functional magnetic resonance imaging (fMRI) show 

significant differences in blood-oxygenation level dependent (BOLD) response 

during map listening. The BOLD response is significantly stronger in the left 

auditory cortex and planum temporale for the concurrent map type in contrast to 

the augmented-sequential map type. And the response in the right auditory cortex 

and bilaterally in the visual cortex is significantly stronger for augmented-sequential 

maps in contrast to sequential maps. Results from this research provide empirical 

evidence to inform choices in the design of auditory cartographic displays, enriching 

the diversity of geographic map artifacts. 

Four supplemental files and two data sets are available online. Three 

audio files demonstrate the three map types: sequential (Supplementary Files, 

Audio 1), augmented-sequential (Supplementary Files, Audio 2), and concurrent 

(Supplementary Files, Audio 3). Associated data are available through OpenNeuro 

(https://openneuro.org/datasets/ds001415). 
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CHAPTER I
 

INTRODUCTION 

Auditory display offers a communication medium for multi-dimensional 

data, with the potential to extend and augment established graphic cartographic 

techniques. Adopting auditory display into the cartographer’s toolbox may 

provide several benefits. Human hearing, which detects and processes auditory 

input, possesses multiple pattern detection capabilities (e.g., Wojtczak, Mehta, 

& Oxenham, 2017). Such capabilities support detection of patterns in data that 

may not be apparent in speech-based (e.g., Zhao, Plaisant, Schneiderman, & 

Duraiswami, 2004) or visual (e.g., Diaz-Merced et al., 2011) displays. Creating 

auditory displays also supports inclusive design principles (see Lobben, Brittell, 

& Perdue, 2015); as a non-visual modality, audio enhances access to geospatial 

data by people who are blind or low vision. Finally, auditory displays provide 

an opportunity to investigate spatial thinking and cartographic design with less 

susceptibility to visual bias. Auditory geographic map design challenges vision-

based assumptions about inherent properties of geospatial data, countering ocular-

centric momentum that cartographic theory and guidelines traditionally couch in 

visual terms (MacEachren, 1995; Robinson, Morrison, Muehrcke, Kimerling, & 

Guptill, 1995; Wood, 1968). 

Several challenges, however, accompany these potential benefits and auditory 

geographic map design cannot overcome them without a better understanding 

of how audio can communicate the spatial dimensions of geospatial data. 

Existing tools to implement auditory displays target a user group composed of 

sound engineers and digital music composers who possess a specialized skill set 
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(Goudarzi, 2016; Kramer et al., 1997). But such skills are neither common nor
 

widely taught among geographers and cartographers. Identification of necessary 

functionality to support auditory cartography is necessary to bridge the gap 

between domain expertise in geospatial data and specialist skills in sound design. 

Design guidelines to underpin auditory-map creation lag behind those of their 

visual counterparts. Published guidelines describe design of auditory computer 

interfaces and sonification of general scientific data (e.g., Brewster, Wright, & 

Edwards, 1995; L. Brown, Brewster, Ramloll, Burton, & Riedel, 2003; Dubus 

& Bresin, 2013), but do not address unique needs of geospatial data (Brittell, 

2018). While several approaches to auditory map design have been proposed (see 

Chapter II: Background), consensus has not been reached on a definitive, usable 

solution. Geographic concepts behind visual- and tactile-map-design choices 

similarly apply to the auditory domain (e.g., distinction between topography, 

topology, and time in transportation maps Tatham, 1995), but techniques of 

modality-specific representation do not. Not only are there fundamental differences 

between the human perceptual systems, but using a visual model to inform 

auditory design detrimentally biases design choices (Frauenberger, Putz, Hoeldrich, 

& Stockman, 2005). However, advances in interdisciplinary research in sonification 

(Hermann, Hunt, & Neuhoff, 2011; Kramer et al., 1997) and methods for the study 

of spatial cognition (e.g., neuroimaging, Lobben, Lawrence, & Olson, 2009) create 

an opportune research setting to investigate cartographic applications of auditory 

display. 

To support and facilitate further adoption of auditory display into the 

cartographer’s toolbox, this dissertation describes an empirical study that 

investigates the representation of geospatial data in audio by exploring the role of 

2
 



time in auditory thematic maps. Seeking to understand how temporal arrangement 

influences uptake of information from an auditory map display, this research 

addresses two research questions: 

RQ1:	 How does the temporal aspect of auditory map symbolization
 

influence effectiveness in communicating general spatial patterns
 

in the data?
 

RQ2:	 How does neural activation in response to serial audio
 

symbolization of a geographic map contrast with that of
 

simultaneous audio symbolization?
 

This research takes an approach that differs from previous work in three 

major ways. First, the proposed auditory map symbology challenges a simplistic 

use of time. Existing approaches to the display of spatial data in audio adopt 

time-based symbology: Meijer (1992) “distribute an image in time” encoding one 

spatial dimension in time, and Zhao, Plaisant, Shneiderman, and Lazar (2008) 

“temporalize” geospatial data to encode two spatial dimensions in time. While 

time is a strong dimension of audio, the argument presented here is that, as a 

multidimensional display modality, an auditory display can depict geospatial data 

without reducing it to a linear sequence. Second, the production of usable auditory 

maps relies on a design process that starts with data rather than translating a 

graphic display. A direct connection between an auditory map and its underlying 

data promotes auditory displays to first-class citizens among cartographic products. 

And third, the evaluation employs neuroimaging methodology that avoids (some) 

visual bias in design and evaluation of auditory maps. While experience using 

graphic maps and training in graphic map design encourages comparison with 
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visual displays and taints design choices, brain activation reveals differences in 

neural responses to auditory maps that listeners need not consciously recognize 

or be able to articulate. 

This manuscript provides a review of the literature in Chapter II: Background. 

Interdisciplinary contributions spanning geography, psychology, neuroscience, 

and computer science provide a foundation for the work. The methods detailed 

in Chapter III: Methodology describe the design of three auditory map types 

and their evaluation with a combination of behavioral and neuroimaging 

techniques. A behavioral measure provides insight into effectiveness of the 

auditory map display, while neuroimaging assesses differences in neural activity 

in response to the temporal arrangement of audio streams and the information 

that they encode. Chapter IV: Results presents results of the empirical study 

and Chapter V: Discussion interprets those results. Beyond confirmation that 

behavioral differences exist or that one specific design was different from another, 

the results provide evidence of differing patterns and intensities of brain responses 

across map designs. Chapter VI: Conclusions describes implications of this work. 

The manuscript ends with a collection of appendices that provide details of study 

implementation. 
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CHAPTER II
 

BACKGROUND 

Investigation of how the temporal aspect of audio-based map designs 

influence cognitive processes is necessarily an interdisciplinary activity (using 

“interdisciplinary” as defined by Baerwald, 2010). This chapter traverses traditional 

disciplinary boundaries and draws from literature across multiple academic 

disciplines. Geography is a natural starting point for this discussion, contributing 

literature that provides theoretical frameworks to organize geospatial data ranging 

from digital data formats (e.g., Peuquet, 1984, 2001), to spatial cognition (e.g., 

P. J. Gersmehl & C. A. Gersmehl, 2007; Golledge, 2002). Further, theories from 

cartography contribute techniques for the representation and display of geospatial 

data to support cartographic communication. Computer science offers conceptual 

models and software tools for data storage, processing, and transmission by 

machines. And research in human computer interaction and human factors informs 

the design of computer-based displays to help humans extract information and 

produce knowledge from digital data (e.g., Schneiderman & Plaisant, 2010; Zhao, 

B. K. Smith, Norman, Plaisant, & Schneiderman, 2004). Psychology literature 

informs abstract and applied models of the human side of that interaction with 

a robust understanding of the human perceptual systems (Goldstein, 2014). 

The subfield of psychoacoustics (Bregman, 1990; Cook, 1999) offers evidence 

of the capabilities and limitations of the human sensory systems, and helps 

explain connections between stimulus characteristics and observable behavioral 

responses. Neuroscience, then, explores mechanisms of human cognition and 

behavior from the perspective of brain structure and neural connectivity. Relatively 
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new methodologies from neuroscience, such as functional magnetic resonance 

imaging (fMRI, see Bandettini, 2012; Ogawa, Lee, Kay, & Tank, 1990), offer 

quantifiable metrics of human responses that reduce (some forms of ) bias, which 

arise in evaluation of unfamiliar geographic map types. With the preceding general 

overview of contributions by the various selected disciplines, the literature review 

continues without explicit distinctions between the traditional disciplines. 

The combined literature provides both theoretical support and empirical 

evidence across four general themes: geospatial data, representation, sonification, 

and the current state of audio cartography. These themes form a foundation for 

investigating auditory geographic maps. Geospatial data and their representation 

in geographic maps establish the scope of the application domain. The focus on 

geospatial data highlights the spatial reference frame in which non-spatial data 

is positioned and which makes maps a unique case of multi-dimensional data 

display. Digital formats, mental representations, and geographic map artifacts 

constitute distinct representations of geospatial data. The review describes each 

representation in turn before examining relationships between them. Narrowing the 

scope of the inquiry to thematic geographic maps, the narrative continues with 

a more extensive examination of sonification and uses of audio in cartography. 

Within the limited existing research on audio-only geographic maps, examination 

reveals a tendency to reduce spatial data to a linear stream while the necessity 

and implications of that design choice remain unclear. The chapter concludes by 

summarizing the current state of auditory cartography. This summary identifies a 

gap in the literature around the use of time in audio cartography and outlines the 

contribution that this research makes to help address it. 
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Geospatial Data
 

Geospatial data stem from observations of the physical and cultural world 

that are characterized by their association with geographic space, which spans 

a range of spatial extents from the immediate surroundings of an individual to 

the entirety of the earth’s surface. Observations associated with a location in 

space make geospatial data necessarily multidimensional, and distinct from other 

multidimensional data sets (Brittell, 2018; Skupin & Fabrikant, 2003). Spatial 

dimensions create a reference frame in which to arrange non-spatial data values. 

To set the stage and scope for investigating its auditory representation, this 

section introduces geospatial data by describing one approach to organizing data 

in conceptual categories, outlining dimensionality, and putting forward a definition 

of spatial pattern. 

Characteristics of geospatial data belong to three conceptual categories: 

space, time, and attribute. These categories occur under many labels. Berry (1964) 

adapts a structure from anthropology to organize “geographic facts” by place, time, 

and characteristic. MacEachren, Wachowicz, Edsall, Haug, and Masters (1999) 

refer to where, when, and what components of data and “space-time-attribute 

patterns.” Lobben (2003) uses three criteria to categorize data: space, time, and 

variable. D. Guo, Chen, MacEachren, and Liao (2006) describe a “spatio-temporal 

and multivariate data cube” with labels space, time, and multiple variables. And, 

in human geography, Keller, Buck, Zare, and Popescu (2014) describe a “human 

geographic data cube” with “physical (i.e., terrain) and human (e.g., income, 

political, and cultural) variables” to predict future events, implicitly occurring 

in or over time. Terminology varies, but each of these examples propose similar 

conceptual categorization of data. And, notably, all include a category for space 
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and refer to time; these two conceptual categories within geospatial data play 

fundamental roles in this exploration of auditory maps. 

The three categories that make up the spatial data cube comprise multiple 

data dimensions. Each dimension provides a basis for measurement (“level of 

measurement”, MacEachren, 1994; “measurement scale”, Dent, 1999; “level 

of organization”, Bertin, 1967/2011). For example, and of particular interest 

in geography, ordinal or ratio axes measure space, which is inherently relative 

(P. J. Gersmehl & C. A. Gersmehl, 2007; Montello & Raubal, 2012; Richter & 

Winter, 2014; Skupin & Fabrikant, 2003). Although relatively rare, space may be 

a single dimension. For example, the political boundaries of states may be used 

as the critical criteria for segmenting a data set, and a single nominal variable 

(state name) may be used to organize data (e.g., D. Guo et al., 2006). More 

commonly, the physical world embodies our conception of the space category, and 

data values on each of two or three dimensions describe locations in physical space 

(Peuquet, 1984). The two (surface of the earth) or three (surface of the earth and 

elevation) dimensions of physical space are orthogonal; geographic polar coordinates 

or pro jected Cartesian coordinates uniquely identify location in physical space. 

Higher dimensions of space are plausible (Peuquet, 1984), but largely isolated to 

theoretical discussion. The time axis from the data cube structures our experience 

with the world, but is unique in that it does not have a physical presence (Vasiliev, 

1996). In contrast to space, time proceeds in a single direction, and the nature of 

the time dimension may preclude extension to higher dimensionality (Peuquet, 

1984). A notable exception is the concept of time in narratives that may run 

contrary to the single uniform path (Caquard & Fiset, 2014). The third category of 

the data cube captures observable attributes of objects or events that do not belong 
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to either of the other two categories. Attribute dimensions fall under labels such as
 

“descriptor data” (Peuquet, 1984) and “multivariate” (D. Guo et al., 2006). The 

number and qualities of dimensions in the attribute category are flexible. Breaking 

down the three categories of geospatial data into component dimensions come into 

play when discussing representations and the alignment of data dimensions with 

the display dimensions. Arranging data values according to spatial dimensions gives 

rise to the concept of spatial patterns. 

From a geography perspective, interest lies not in individual data points, 

but in relationships between those points and variability among their respective 

values over geographic space. Robinson et al. (1995) point to a shift during the 

Enlightenment from depicting the locations of entities on reference maps to a 

“holistic concern with the spatial extent and variation of features” (p. 27). This 

holistic concern describes spatial patterns that emerge from the data when taken at 

an appropriate scale and are fundamental to spatial knowledge (Golledge, Marsh, 

& Battersby, 2008; Nystuen, 1968). Understanding the occurrence of phenomena 

across space is fundamental1 to geographic inquiry (Robinson & Bryson, 1957), 

and researchers describe spatial patterns or distributions by the existence (or lack) 

of structure (Robinson, 1975), areal pattern (Dent, 1999), and change over time 

(P. J. Gersmehl & C. A. Gersmehl, 2007). These descriptors do not quantify 

spatial patterns, but describe characteristics that are of interest when considering 

spatial patterns. Further, beyond a single instance of spatial pattern, comparison of 

distributions is a common task within geography (Robinson & Bryson, 1957) and 

1 While fundamental, the concept of distribution spans levels of complexity. For example, 
Golledge et al. (2008) describes distribution itself as “simple”, while identifying arrangement of 
a distribution and measuring similarity of distributions are classified as difficult and complex, 
respectively. This distinction between recognizing a phenomenon and reasoning about it is 
consistent with theories of development, in which the ability to perceive phenomena precedes 
the ability to create an external representation of them (e.g., Piaget & Inhelder, 1948/1956). 
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a sub ject of importance across many disciplines (e.g., Boyle et al., 2016; Mowrer, 

1938; Nettl, 1960; Saltré, Duputié, Gaucherel, & Chuine, 2015). The research 

presented in this manuscript does not seek a measure of relative similarity between 

spatial patterns, but offers comparison as an example task to which geospatial data 

could serve as input. Moving forward, this chapter posits that spatial pattern 

is a concept and subject of sufficient consequence to warrant investigation of 

its representation. Spatial pattern defines the the scope of the discussion of 

representation and communication of geospatial data. 

Two dimensions of spatial data and one dimension of attribute data are both 

necessary and sufficient to manifest a spatial pattern. While spatial patterns in 

real world data are time dependent, a snapshot of geospatial data can be taken at 

a single point in time. Data from a single point in time define a spatial pattern, 

and the specific time at which a snapshot records data provides context to help 

interpret or make meaning of such a pattern. In this research, three geospatial data 

dimensions (two spatial and one attribute) are the critical contributors to spatial 

pattern and multiple forms can express these thematic patterns. 

Representations 

Geospatial data take many forms, and these representations are intertwined 

with the meaning that can be made from the data and the uses to which they 

can efficiently be put. Importantly, any representation of geospatial data that is 

not the earth itself is a model, which is necessarily incomplete and inaccurate. 

A representation influences how we think about the data (see, e.g., Couclelis, 

1992; Kitchin & Dodge, 2007). The conceptual framework organizes geospatial 

data dimensions across three categories (space, time, and attribute) and provides 

10
 



a useful reference frame to also describe representations of geospatial data in
 

various forms. Common forms of geospatial data include machine readable digital 

data, mental representations, and geographic map artifacts. Each of these forms 

is distinguishable from the others by the medium in which it manifests. After 

expanding on the idea of alignment between the dimensions of geospatial data 

and those of its representation, this section addresses each of these forms in 

turn, as well as how they relate to one another. The discussion outlines how each 

representation relates to the dimensions of the data. 

Effective alignment between the dimensions of geospatial data (as they 

exist in reality) and those of a representation influences the effectiveness of a 

representation. Such alignment considers both the number and quality of the 

dimensions, and assignments that fall within conceptual categories (Dubus & 

Bresin, 2013, e.g., mapping temporal data to the time dimension of a display) 

may provide advantages over those that cross conceptual boundaries.2 The display 

must have a sufficient number of dimensions to represent all pertinent dimensions 

of the knowledge (Bertin, 1967/2011), possibly with redundant encoding. The 

identification of pertinent dimensions is tied to to the intended purpose or use 

of the representation (e.g., “functional context,” Robinson, 1975). With an 

interest in spatial pattern, two spatial dimensions and one attribute dimension 

constitute pertinent dimensions of the geospatial data within the context of this 

research. Alignment between the qualities of the dimensions considers level of 

measurement and associated perceptual qualities. Qualities of the dimensions must 

be compatible, but are not necessarily equal; crafting representations that create 

2 The potential for within category symbolization to provide advantages does not deny 
potential advantages of crossing category boundaries. For example, visual displays arrange 
attribute data on spatial dimensions of the display to help identify multidimensional 
autocorrelation (Skupin & Fabrikant, 2003). 
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sufficient alignment between geospatial data and its representation is both an art
 

and a science. 

Machine Readable Digital Data 

Modern systems that store, process, and archive data on computers use 

digital data formats.3 Geospatial data is no exception, with active areas of research 

and development in spatial data structures, spatial query algorithms, and metadata 

standards to accompany spatial data. Within a digital data representation, a 

process of abstraction converts geospatial data to a series of ones and zeros (binary 

digits, or “bits”). Sources that create a digital representation and applications that 

interpret it share an understanding of the abstraction process (e.g., marshalling 

data) and such an understanding embeds meaning behind particular combinations 

of bits. While the spatial and temporal dimensions of the data, for example, do 

not necessarily reside at corresponding spatial locations on a computer disk and 

exist continuously and concurrently regardless of the time they represent, a known 

abstraction technique allows users of the data to infer meaning. As an abstraction, 

however, digital representations of geospatial data are incomplete. Theoretical 

computer science provides techniques for determining the minimum number of 

bits or information required to represent critical details and optimization may 

omit or simplify details that are not deemed to be critical. Despite the apparent 

objective nature of digital data, the choice of variables to record, the precision with 

which measurements are taken, researcher bias or expectations of the outcome 

all play a role in the completeness of a data set. For example, field recordings 

3 Digital data may be a record of primary source geospatial data, or an archival record of 
output from map design or data analysis (Donkin, 1970; Tobler, 1959). While recognizing the 
importance of other non-digital data records, such as handwritten field notes, this discussion 
restricts the scope of data to computer-based digital data. 
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are limited snapshots of a phenomenon or an event that can be interpolated with 

varying degrees of feasibility and accuracy (e.g., a discrete number of sensors 

at weather stations report temperature values), and software libraries optimize 

storage and processing algorithms to suit intended use cases (e.g., rendering visual 

display: digital objects for the management of spatial data within the GeoTools4 

are integrated with the Java Swing5 graphics library). Even given the limitations 

associated with incomplete and sub jective data, digital representations of geospatial 

data have great advantages. Digital data contribute to widespread availability of 

digital datasets, enhance feasibility of simulation studies and complex statistical 

analysis, and facilitate automation of both data analysis and display in geographic 

map artifacts. 

The implementation of digital representations combine both artistic and 

scientific techniques. Design of digital representations benefits from a creative 

approach. With a plethora of choices in design, creative use of metaphor (e.g., 

philosophy of data structures informed by theories of spatial cognition, Couclelis, 

1992) strengthens the alignment between dimensions of geospatial data and 

abstract dimensions of digital data, and thus increase fidelity of the representation 

to the underlying data. And scientific methods measure and assess the efficiency 

of resulting implementations. Multiple approaches that provide equivalent function 

can be compared to guide choices between implementations, selecting those that 

appropriately balance storage space and computational power as required by the 

application, which can be unique to geospatial data. Implicit authority of digital 

data to serve as evidence of “truth” means that implications of the choices in 

4 Open Geospatial Consortium, GeoTools, http://www.geotools.org
 

5 Oracle, Java Swing.
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implementing a digital representation of geospatial data are broad, and underscore 

the importance of provenance and reproducibility. Notably, however, an example 

from anthropologists and sound artists illustrates tension between varying levels of 

regard for digital data products based on their role as archival records in contrast 

to artifacts that were produced through conscious planning and design (Samuels, 

Meintjes, Ochoa, & Porcello, 2010). The value of digital data is not simply in their 

existence, but in the extent to which they support humans in making meaning or 

enhancing knowledge of the real world phenomena or events that they represent. 

Mental Representations 

Receiving input from first hand observations of the world or from digital 

data, the human brain (and those of other species) have an ability to encode, 

reason about, and remember geospatial data. The mechanisms that support mental 

representations are well understood for some aspects of perception and cognition, 

but are still largely theoretical for others. For example, the spatial locations of 

stimuli seen within the environment are represented by neurons in primary sensory 

cortices that have a similar spatial arrangement6 (e.g., retinotopic organization of 

neurons, Constantinidis & Wang, 2004) and the location of neural activation of 

grid cells in the hippocampus corresponds with location in the real world (Hartley, 

Lever, Burgess, & O’Keefe, 2013). However, ongoing research is investigating the 

6 The observation of similarity between the spatial arrangement of environmental features and 
that of neurons which selectively respond to those features does not imply semantic importance. 
For example, a linear array of lights may be encoded as an aggregate attribute (e.g., angle of the 
line) rather than a persistent explicit representation of the location of each light as it ascends 
the visual processing pathways of the brain. Connections between lower and higher levels of 
processing are an an active area of research (e.g., Silson, Chan, Reynolds, Kravitz, & Baker, 
2015), and while lower level perception in the primary sensory cortices is necessary to influence 
higher level cognition (MacEachren, 1995), it is not sufficient to reliably induce or predict a 
specific higher level response. 

14
 



role of such organization at higher levels of cognition, such as the precise nature 

of mental representations of space (e.g., Chrastil & Warren, 2014; Montello, 1997) 

and the brain structures that support them (e.g., Boccia, Nemmi, & Guariglia, 

2014). And alignment of the time and attribute dimensions of geospatial data with 

respective dimensions of a mental representation are inconsistent or unknown; 

for example, a gradient of frequency selective neurons (an attribute of sound) are 

arranged spatially in the cortex. Along with wide acceptance that the brain stores 

a representation of geospatial data (at whatever level of alignment between the 

data dimensions and the dimensions of the mental representation) researchers 

accept that mental representations are incomplete subsets of reality (Wood, 

1972). Processes that support perception encode details to address a given 

task, while unnecessary detail is ignored. And the brain fills in details that are 

needed to reason through a logical task but may be missing. Not only are mental 

representations incomplete versions of geospatial data (Montello, 2002; Tversky, 

1993), but their formation is highly variable. For example, empirical studies 

reveal individual differences in map reading (e.g., Hegarty, Montello, Richardson, 

Ishikawa, & Lovelace, 2006; Thorndyke & Stasz, 1980). Previous experience 

influences mental representations (Montello, 2002; Muehrcke, 1973) and uptake of 

information from a geographic map (Schito & Fabrikant, 2018). Further, encoding 

strategy is flexible (Kulhavy & Stock, 1996; Nees & Walker, 2008, 2011) and 

attention modulates the selection of details to encode. While incomplete mental 

representations lead to errors in spatial judgements (Golledge, 2002), they are 

sufficient to support many purposes, even being noted as an “accomplished system 

for the representation, explanation, and prediction of geographic phenomena” 

(Couclelis, 1992). 
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Mental representations, like digital representations, are understood through 

both creative and scientific approaches. Until relatively recently inspection of the 

brain in living humans was largely limited to observable behaviors in response 

to the presentation of controlled stimuli. Despite and perhaps because of those 

limits, psychologists develop elegant experimental designs to isolate phenomena of 

interest and explain observable behaviors. And pioneering work in spatial cognition 

advances knowledge of how the brain acquires and represents information (e.g., 

O’Keefe, 2014; O’Keefe & Dostrovsky, 1971). Theories of spatial knowledge and 

mental representations of space (e.g., anchor point theory, Couclelis, Golledge, 

Gale, and Tobler, 1987; cognitive collages, Tversky, 1993) emerge and evolve 

as supporting or contradictory evidence emerges. As technologies progress, 

additional tools for the scientific investigation of mental representations provide 

insight into both the influence of external stimuli and the manifestation of mental 

representations in expressed behaviors. A mixture of creative and systematic 

approaches to understanding mental representations of geospatial data give the 

power to capture nuances of the human information processing (in contrast to the 

deterministic information processing on computers). And understanding mental 

representations allows cartographers to apply theories of spatial cognition to map 

design (e.g., “cognitive cartography”, Montello, 2002), educators to design effective 

tools to teach spatial thinking (P. J. Gersmehl, 2011; Golledge et al., 2008), and 

researchers to interpret geographic map artifacts as reflections of the people and 

situations that produced them (Kitchin & Dodge, 2007). To both create and 

externalize (e.g., sketch maps Newcombe, 1985) mental representations, people 

employ geographic map artifacts. 
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Geographic Map Artifacts
 

Geographic map artifacts – and thematic maps in particular (Figure 1), 

which support investigation of relationships between data at different locations 

(Montello, 2002; Robinson et al., 1995) – serve as communication channels (Cobb, 

1977; Koláčny,´  1969; Morrison, 1974), data storage volumes (Cobb, 1977; Donkin, 

1970; Morrison, 1974), and persuasive instruments (Kitchin & Dodge, 2007). In 

the context of this research, communication of spatial patterns from digital data 

representations in thematic geographic maps is the primary ob jective. Like machine 

readable data, geographic map artifacts have a physical form, but, instead of 

targeting use on and by machines, geographic maps are designed to be perceived 

by humans, and symbolization influences the way a map observer perceives 

and reasons about the geospatial information contained in a map (Golledge, 

2002; Ogao & Kraak, 2001). The geographic map artifacts themselves have 

dimensionality that is inextricably tied to the modality of the display. Symbology 

assigns dimensions of the data to dimensions of the display, and the modality 

of the display determines the available display dimensions. Through alignment 

of data dimensions with display dimensions, geographic map artifacts depict 

generalized and simplified geospatial data, and decisions that lead to the abstract 

representation are influenced by the intended use (for a review, see Medyckyj-

Scott and Blades, 1991; Robinson et al., 1995). The use of metaphor (Fabrikant, 

Montello, Ruocco, & Middleton, 2004; MacEachren et al., 1999) and structure 

(Gattis, 2001) facilitate communication of a spatial pattern despite incomplete 

data, but a map documents only the map maker’s interpretation of their physical, 

social, or cultural environment. As a design process, one set of geospatial data gives 
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FIGURE 1. A choropleth map, in which color represents population density, is one 
example of a thematic map that uses a visual cartographic technique to illustrate 
spatial pattern. Data Source: U.S. Census Bureau 

rise to many possible geographic map artifacts (Robinson, 1975), and the result 

reflects the cartographers subjectivity (Montello, 2002). 

While empirical studies provide some guidelines, many of the design 

choices are the result of the cartographers intuition or preference (Montello, 

2002; Muehrcke, 1973). In the case of geographic map artifacts that serve 

as a communication medium or evoke and support thinking about spatial 

patterns, these imperfections and subjectivities mirror those of the target mental 

representations. A common understanding of the symbolic representation, which 

the map maker and the map reader share, embeds meaning in the features of a 

geographic map artifact without requiring absolute accuracy. And incomplete 

data are not necessarily problematic; geographic map artifacts target the human 

perceptual systems, which gather only a partial view of the world. Instead, the 

symbology is an abstract representation that must maintain high fidelity to the 

essence of the data (P. J. Gersmehl, 1985). And, in the case of thematic maps, 

conveying the gist of the data and spatial patterns of relationships between data at 
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different locations has higher precedence (Robinson, 1986) than query for individual
 

data values. 

The design of symbology demonstrates the art and science of geographic 

map artifacts, which require a systematic relationship between the data and the 

display. There is no single optimal design (Kitchin & Dodge, 2007) and existing 

guidelines are a mixture of anecdotal experience (Couclelis, 1992; Muehrcke, 1973) 

and empirical evidence from psychophysics (Montello, 2002). While geographic 

maps embrace social and artistic expression to varying degrees (e.g., see discussion 

in MacEachren, 1995), all design processes involve decisions that are not fully 

specified by the requirements. With an exponential number of possible pairings, 

aligning data variables with display dimensions is an artistic part of design 

(noted in the context of sonification design Asquith, 2013), but computers can 

alleviate the time cost of exploring multiple different arrangements (Essinger, 

1986). Since the late 1950s (Montello, 2002) and gaining momentum in the 1970s 

(e.g., Morrison, 1974; Muehrcke, 1973) cartographers’ interest in automation lead 

to work formalizing design knowledge and establishing deterministic guidelines. 

The interest in automation offers one explanation for subsequent resurgent 

interest studies of the psychophysical properties of map symbols (Montello, 2002). 

Computers support map design by providing functionality to both apply rules that 

systematically translate data into display dimensions and sub jectively implement 

exceptions to those rules. For example, workflows for visual geographic maps apply 

both systematic assignment of data values to features in the map display (e.g., 

automatically mapping ratio values to graduated symbol sizes in ArcMap) and 
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flexibility to adjust results of the automated process (e.g., manually7 increasing the 

distance between symbols to avoid occlusion in Adobe Illustrator). 

Relationships Between Representations 

Digital, mental, and geographic map artifact representations do not exist in 

isolation; one representation may serve as input to or output from another. The 

choice of a representation influences efficiency of later use and translation to an 

alternate form. And the influence of a data model propagates downstream through 

the communication channel, such as a geographic map artifact, to interact with 

efficiencies in use of the data by map readers. For example, theories of spatial 

cognition influence digital representations (e.g., raster and vector formats in GIS, 

see Couclelis, 1992). And digital representations of spatial data that optimize data 

structures for graphic rendering discard data that may be critical to alternative 

display modalities (e.g., screen readers Mynatt & Edwards, 1992). 

Each translation to, from, or between representations loses data. For example, 

the contents of a digital data set filter the physical world into discrete observations. 

A geographic map artifact that displays such data sets cannot depict values that 

were never recorded (but, notably, interpolation techniques mitigate the impact 

of sparse data sets with varying degrees of accuracy). Further, the map reader 

cannot extract meaning from the map that is depicted in a way that is not both 

perceptible and meaningful. The cartographer’s experience, positionality, and a 

priori expectations influence selection and symbolization of data. For example, in 

this research, pilot study data reveal the use of learned strategies for exploration 

7 While some adjustments can be automated, e.g., dynamic label placement, manual efforts to 
polish map layout provide an added value in map design (Brewer, 2016). 
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of two dimensional data space, “transects”, and use of contour lines to draw the
 

surface that they hear. 

Similarly, translation of one geographic map artifact into another often loses 

data. Translation of a graphical representation to other display modalities (an 

“adaptation strategy”, Savidis and Stephanidis, 1995, widespread in applications 

that address accessibility post hoc) may produce suboptimal results (Frascara 

& Takach, 1993; Frauenberger et al., 2005; Ojala, Lahtinen, & Hirn, 2016; Rice, 

Jacobson, Golledge, & Jones, 2005; Savidis & Stephanidis, 1995). The specific 

data that is lost depends on the form of the representation and the processes that 

produced them. 

Just as translations between representations may lose data, eliminating 

unnecessary translations between representations preserves data. Ideally this 

would mean a mechanism to insert a digital data representation directly into a 

mental representation (“open brain, insert map here”). But short of direction 

injection, a perceptible geographic map artifact is necessary. Design of auditory 

geographic maps in this study originates with digital data and explicitly avoids an 

intermediate visual geographic map artifacts. As a display medium which has a 

limited presence in cartography, this means first investigating how geospatial data 

can be represented in sound. The next section explores sound as a display modality, 

both in general and as a medium for the display of geographic map artifacts. 

Sonification and Audio Cartography 

Sonification is the representation of data in non-speech audio (although 

the definition has a history of varying details and nuances, de Campo, 2007; 
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Dubus and Bresin, 2013; Supper, 2015). To represent data,8 sonification designers 

create a relationship between data values and dimensions of non-speech audio.9 

Parameters of sound synthesis modulate the physical properties of sound waves and 

provide some control over perceptual characteristics of the result, although still not 

completely predictable. As an introduction, this section provides an overview of 

several aspects of sonification that inform the design of auditory geographic map 

artifacts (see additional review and history of sonification in Hermann et al., 2011; 

Kramer et al., 1997) and reviews previous work on auditory geographic map design 

and evaluation. 

Dimensions of Audio 

Audio is characterized by both properties of a physical sound wave and by 

the qualities perceived through the human sense of hearing. Sound waves are 

longitudinal pressure waves whose physical properties include frequency, or the 

number of oscillations per second (hertz, Hz), and amplitude, or the magnitude 

of displacement from a reference level (decibel, dB). When sensed by the ear, 

sound waves produce perceptual sensations that are associated with, e.g., pitch 

and loudness. Relationships between physical properties of a sound wave and 

the perceptual properties that they evoke (see also reviews of psychoacoustics, 

8 Sound can also evoke emotion, which has been explored in cartography (e.g., Edsall, 2011), 
but such applications are distinct from the display of spatial patterns in geospatial data and 
beyond the scope of this manuscript. 

9 Speech-based audio plays an important role in in rich oral traditions and in some computer-
based applications, but is beyond the scope of this work. For example, Aboriginal songlines relate 
spatial information. And turn-by-turn directions delivered through synthesized speech are a 
widely used feature in mobile device applications (e.g., talking GPS, see review in Currier, 2011) 
While a turn-by-turn sequence can support navigation along a linear path, such an approach 
does not directly generalize to thematic data. Verbal descriptions of thematic data are under 
investigation (Frye, 2015, e.g., GeoDescriber). Natural language to describe spatial patterns, 
however, is often inefficient (Rinck, 2005) and relies heavily on interpretation by the describer. 
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e.g., Deatherage, 1972) mean that sound can serve as a channel to communicate 

data, including multi-dimensional data. However, these relationships are neither 

deterministic nor independent (Brewster, 2003). For example, frequency of a 

sound wave is often perceived as pitch, but may be influenced by the presence 

of harmonics. And amplitude loosely translates to loudness, but the perceived 

loudness is affected by the frequency of the sound. Recognizing that the plethora 

of perceptual dimensions of sound are more numerous than can be exhaustively 

covered here (Levitin, 2002, identifies six to eight auditory dimensions that can 

be perceived and remembered; Krygier, 1994, describes nine “abstract sound 

variables”; Dubus and Bresin, 2013, list thirty auditory dimensions across five 

categories for use in parameter mapping sonification), this section presents selected 

dimensions of sound and perceptual qualities, with which the physical properties 

of the sound wave are strongly associated (i.e., physical properties of the sound 

wave can be modulated to encode and communicate data). The selected dimensions 

of sound are commonly used in sonification and are detectable by untrained 

listeners.10 

10 In this usage, “untrained” means that detection of the audio characteristic does not require 
specialized formal training (e.g., ear training in music; this definition does not preclude a need 
for training to associate a specific audio characteristic with its semantic meaning in the map). 
Further, musical training does not necessarily advantage listeners in the identification of sound 
events (Alexander, O’Modhrain, Gilbert, Zurbuchen, & Simoni, 2012), although training may 
provide vocabulary to describe what they hear. An analogous example in visualization is 
the detectability of different hues; a sighted person can determine that a blue and a red map 
symbol have different hue without special training to view graphics. While Schito and Fabrikant 
(2018) report statistically significant correlations between previous experience and map reading 
performance, the influence of music experience does not stand out from that of domain expertise 
(“terrain interpretation”) or familiarity with computers (“technical ability”). 
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Frequency
 

Mapping data values to frequency is common in sonification and software 

functionality to implement this mapping is readily available. Pitch is the perceptual 

quality strongly associated with frequency (although there is an interaction between 

frequency and perceived loudness). Frequency readily communicates ordinal values 

(Krygier, 1994), supporting the detection of relative differences. Collections of 

frequencies create patterns in two ways. The spectral shape of harmonics, or 

frequencies that are integer multiples of a common lowest frequency, contribute to 

the timbre of a sound. Groups of notes that have varying fundamental frequencies 

create musical intervals and chords, whose detection and interpretation is culturally 

informed (informal training) and identification and naming can be learned (music 

training). 

Amplitude 

Software functionality to control the amplitude of a sound wave is widely 

available both during initial waveform rendering and in post-processing. Amplitude 

relates to perceived loudness (Deatherage, 1972), and depends on the frequency 

of the sound. Published tuning curves, e.g., provide quantitative scaling factors 

to achieve “constant loudness” by attenuating amplitudes based on frequency. 

Amplitude values can convey ordinal data (Krygier, 1994), but are limited to 

relative comparisons. Amplitude-based patterns may occur over time, but are less 

apparent when sounds occur simultaneously. Sound waves with low amplitudes may 

contribute to an overall quality of the sound (timbre), but be masked by stronger 

sounds. 
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Spatial Location
 

The human auditory system localizes sound sources using multiple monaural 

(e.g., amplitude) and binaural cues (e.g., interaural time difference). Perceived 

azimuth (horizontal, or direction in the axial plane) has relatively high resolution, 

while distance and elevation (vertical, or direction in the sagittal plane) have lower 

resolution. Notably, localization of sounds is necessarily egocentric, or relative to 

the listener; conveying allocentric relationships between data requires a perspective 

transformation by the listener. Despite the apparent simplicity of using spatial 

dimensions of the display to represent spatial dimensions of the data, effective use 

of the spatial display dimensions is unresolved (Nees & Walker, 2009). Guidelines 

do recommend the use of spatial sound to draw attention to a single location or 

variable within a display (L. Brown et al., 2003; Krygier, 1994) or encourage an 

immersive experience (Schito & Fabrikant, 2018). 

Note Rate 

Many physical properties of a sound wave can contribute to perceptual 

grouping of sound events that occur over time. In this discussion, the note rate 

describes both the duration of individual sound events and the inter-onset interval 

that separate sound events in time (two physical characteristics of sound that may 

be considered independently. Co-varying duration and onset of sound events creates 

an audio symbol that unfolds over time, but has a persistent perceived quality of 

fast or slow.11 Relative differences in the note rate (e.g., “faster”) convey ordinal 

relationships in the underlying data. The note rate is a periodic pattern of sound 

11 The perception of note rate requires sufficient time to elapse in order to detect rate. What 
constitutes sufficient time depends on the duration of sound events. A similar property is also true 
of frequency. If a sound event is too short, human hearing detects a click devoid of pitch. 
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events. In this use of periodic note rate, the temporal aspect of the display is 

subservient to the persistent quality of fast or slow.12 

Pattern 

“But hearing data, it turns out, also can open new scientific frontiers. 
That’s thanks to the remarkable human ability to parse sound for 
patterns and meaning. ‘The auditory system is the best pattern-
recognition device that we know of,’ says Bruce Walker, a professor 
of psychology and director of the Georgia Institute of Technologys 
Sonification Lab.” (Hadhazy, 2014) 

Multiple characteristics of sound within and across dimensions of audio 

combine to create patterns. Patterns emerge not from individual entities, but 

from relationships between multiple characteristics or instances of sound events 

when taken at an appropriate scale. For example, multiple frequencies that occur 

simultaneously produce chords (intervals between frequencies conform to musical 

structure). And rhythmic combinations of notes can produce emergent patterns 

(e.g., streaming in African xylophone music Bregman, 1990). Or combinations of 

audio characteristics create sounds that have unique or identifying qualities (e.g., 

timbre of sounds associated with the physical materials that produce them Paté, 

Boschi, Carrou, & Holtzman, 2016). For example, assignment of multidimensional 

data sets to audio dimensions produces “hiss” or “tuning-fork-like” of qualities 

when sonifying nine data dimensions (Yeung, 1980). Perceived as qualities of the 

sound (e.g., hiss or fast note rate), pattern aligns with the attribute category of 

12 Interactive interfaces, such as those that represent data values according to a cursor location, 
movement speed confounds the perception of spatial patterns and temporal patterns; variability 
in the speed as a cursor moves across regularly spaced data features can produce an irregular 
temporal pattern that may be misinterpreted as spatial variability (Brittell, Young, & Lobben, 
2013). In the use of note rate, the timeline of the sonification is controlled (i.e., not interactive) to 
avoid unintended emergent temporal patterns. 
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the geospatial data cube. Design that incorporates some common patterns, such
 

as musical chords, are straight forward to implement. And exploratory sonification 

leads to emergent patterns (de Campo, 2007). However, complex patterns, such as 

those in African xylophone music, require a high degree of skill in composition and 

are less amenable to systematic production from diverse data sets. The ability to 

communicate of pattern motivates exploration of sonification to represent complex 

data sets (Alexander, Zurbuchen, Gilbert, Lepri, & Raines, 2010; Supper, 2014; 

Walker & Mauney, 2010). 

The dimensions described above by no means constitute an exhaustive 

list. Nor do they represent a minimum list. For example, any perceived sound 

wave has a spectral envelope that is often associated with timbre, or the quality 

of a sound that lets the listener distinguish between human voices or musical 

instruments. These dimensions do, however, provide a sufficient base in which to 

ground discussion of the design of auditory geographic maps. 

Parameter Mapping Sonification 

Having identified dimensions of data and dimensions of auditory display, 

it remains to explore mappings between data and display. Parameter mapping 

sonification (akin to the term “map symbology”, from cartography) creates a 

systematic relationship between data values and display dimensions, and is a 

popular sonification technique (Dubus & Bresin, 2013). But no prescriptive 

guidelines apply to all design situations (Nees & Walker, 2009; Robare & Forlizzi, 

2009). In the absence of prescriptive design guidelines, or in the case of audio 

cartography a general lack of design guidelines, similarity to sounds experienced 
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in the real world and guidelines from the design of auditory computer interfaces 

help guide choices in parameter mapping. 

Parameter mappings that are “intuitive” or “natural” reflect sounds with 

which we have experience in the real world (Dubus & Bresin, 2013; Gaver, 1989). 

Familiarity reduces the time required to learn a parameter mapping (Dingler, 

Lindsay, & Walker, 2008) and decreases susceptibility to ambiguity (Dubus & 

Bresin, 2013). For example, sonification of population data might start with an 

audio clip of the sound of voices in a crowd and modulate frequency or amplitude 

to encode data values. However, as an abstract representation, sonification in the 

applied domain of geographic maps may represent data for phenomena that do not 

emit sound (Montello, 2002), or exceed what could be experienced first hand. 

The spatial extent of map contents, or the geographic space represented in a 

map, may far exceed the the bounds of our perceptual systems. We can explore a 

map of the earth, which stretches 24,901 miles along the equator (Evers, J. (Ed.), 

2011), even though we can only feel items within arms reach (about three feet), 

see the horizon at a distance of just over three miles (French, 1982), or hear a low 

frequency foghorn, which was designed for long distance perceptibility, up to eight 

nautical miles (9.2 miles) away (Clingan, 2017). A desire to represent in maps that 

which we understand to exist, but is beyond what we can directly perceive leads 

to abstract symbolic representations in geographic maps. Further, a distinction 

between what we can perceive first hand from our environment and what a map 

can represent reinforces the geographic map as a tool for abstract representation. 

A strict alignment between categories or dimensions of geospatial data and a 

geographic map is not necessary: the spatial dimension of the data need not align 

with the spatial dimension of the display. 
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Where mapping to natural sounds fall short, a growing body of literature
 

provides guidelines for the use of audio in computer interfaces (e.g., Brewster et al., 

1995; Frauenberger et al., 2005; Nees & Walker, 2009; Sumikawa, 1985) and data 

displays (e.g., L. Brown et al., 2003; Flowers, 2005; Walker & Kramer, 2006). 

General guidelines recommend the use of metaphor. The “distance-similarity” 

metaphor (Fabrikant et al., 2004; MacEachren et al., 1999), for example, may 

partially explain the effectiveness of spatialization, or presentation of non-spatial 

data on the spatial dimensions of a display. And explicit structure in the display 

may reflect inherent structure in the data to increase perceived similarity (Gattis, 

2001). For example, shared linear structure makes natural language a good display 

option for route descriptions (Richter & Winter, 2014). 

Auditory Display Applications 

Auditory displays have found use in data exploration by research scientists13 

(e.g., Alexander et al., 2010; Cherston, Hill, Goldfarb, & Paradiso, 2016; Diaz-

Merced et al., 2011; Hegg, Middleton, Robertson, & Kennedy, 2018; St. George, 

Crawford, Reubold, & Giorgi, 2017) as part of research communication with 

the public (e.g., Alexander et al., 2010; Asquith, 2013; Supper, 2014), and in 

applications that improve access to data for people who are blind (e.g,. Zhao et al., 

2008). Two things that these diverse applications have in common are the qualities 

of the underlying data and presentation in an auditory display. These sonification 

projects all create representations of large, multidimensional data sets in audio. 

13 Amid increasing appreciation of the power and possibility of auditory display across multiple 
disciplines and settings (Alexander et al., 2010; Kramer et al., 1997), however sonification 
continues to contend for legitimacy in scientific circles (Asquith, 2013; Samuels et al., 2010; 
Supper, 2015). 
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Existing cartographic designs occasionally include an auditory display, 

yet tend to be multimodal displays that rely on a visual (see review in Brauen, 

2014), proprioceptive (e.g., Brittell et al., 2013), or haptic (e.g., De Felice, Renna, 

Attolico, & Distante, 2007) components to communicate location. Early sound 

synthesis tools offered a promising new technique for cartographic design (e.g., 

Fisher, 1994; Krygier, 1994 augment visual geographic maps with audio, and 

Cassettari and Parsons, 1993 consider audio as an emerging new data type). After 

an intervening decline in interest, the introduction of browser-based audio synthesis 

capabilities renews interest in audio to augment interactive web maps (see Brauen, 

2014, for review). However, these displays typically rely on visual information to 

convey spatial location. Accessibility applications also adopt auditory displays 

(both speech and non-speech), which commonly complement another modality 

(see also Currier, 2011). However, the interface through which map readers query 

the display is serial; map readers move a stylus around a tablet device, soliciting 

sonification of the single data point that corresponds to the location of the cursor. 

And listeners struggle to reconstruct general spatial information from the sequential 

display (Alty & Rigas, 2005; Brittell et al., 2013; Delogu et al., 2010). These 

displays cast audio to a supporting role augmenting or providing redundant 

encoding of a subset of the information already available in a visual display. 

While audio serves an important role in these multimodal displays, the ability of 

audio to convey pattern presents a relatively unexplored frontier in cartographic 

representations of the spatial dimensions of data. 

Stand-alone auditory displays, which encode spatial location in audio, are 

more rare (see also Brittell, 2018). Several examples come from applications that 

display spatial data, but not necessarily geo-spatial data. Flowers, Buhman, and 
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Turnage (1997) uses frequency and time as two axes for an auditory display of
 

scatterplots, depictions of spatial data that is not specifically geographic. And 

L. Brown et al. (2003) published guidelines for the design of auditory mathematical 

graphs that continue to rely on time as the x-axis. Among the limited number 

of auditory geographic maps that convey geographic location through audio, 

converting two dimensional spatial data into a linear sequence is the most common 

design strategy. A virtual cursor imitates the movement of a pointing device (but 

without the proprioceptive feedback). Examples include iSonic (“gist” action, 

Zhao et al., 2008), in which the virtual cursor follows a predetermined scan path, 

and AudioGraph (Rigas & Alty, 2005), in which paired auditory notes encode 

coordinate locations and a virtual cursor traces shape outlines. 

Implementation of a sequential display of data values is straight forward, but 

there are usability issues in the resulting displays. 

Toward Audio Cartography 

Given this background, the objective of the research presented in this 

manuscript is to better understand how the temporal order of an auditory display 

influences map listening and learning. Guidelines from computer-based user 

interfaces and sonification in other application domains provide a starting point. 

Where guidelines fall short, there is a dearth of established convention to fall back 

on. Or, rather, entrenched cartographic convention is based on visual displays, 

which stand to bias or hinder design decisions (Frauenberger et al., 2005; Nees & 

Walker, 2009). Instead of falling back on visual traditions, there is a need to step 

outside our comfort zone and better understand how to represent geospatial data in 
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audio, including the implications of transforming spatial data dimensions into linear
 

sequences. 

Sonification of geospatial data offers benefits in data exploration and 

accessibility. Novel approaches to data display (alone or in multimodal applications, 

Cartwright, 1996) have the potential to expose patterns in the data that are 

not apparent in alternate displays (Diaz-Merced et al., 2011). And a better 

understanding of how to communicate geospatial data through audio can lead to 

alternative display tools, reducing the need to seek exceptions to social and legal 

accessibility requirements citing, e.g., the “visual nature” of GIS tools (C. Brown & 

McKinney, 2015). 

Audio synthesis technologies are widely available and auditory displays have 

no inherent deficiency that would preclude use in geographic map design; the 

limitation is a lack of prior knowledge about how to wield the tools of auditory 

display to sonify geospatial data. Even more generally, sonification is a relatively 

new technique. Advancing from a debut of computer music in 1951 to widely 

available sound synthesis in the 1980s (Robare & Forlizzi, 2009), technology to 

support auditory display is now widely available. But guidelines to effectively use 

sonification are not yet mature (Nees & Walker, 2009). And, in any application 

domain, the adoption of new tools disrupts the status quo and pushes designers 

outside of their comfort zone. For example, Sigsworth (2018) notes that with the 

the arrival of electronic drum machines imagination poses the main limitation; after 

spending years honing their skill at controlling physical drumsticks he observes 

how it was “their minds and not their limbs that were limiting them.” Although, 

experience with cartographic techniques (or with drumsticks) provides invaluable 

intuition to overcome gaps in formal design guidelines (Montello, 2002; Muehrcke, 
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1973), a lack of guidelines for auditory-geographic-map design partly because 

auditory-geographic-map design hasn’t widely been done before. 
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CHAPTER III
 

METHODOLOGY 

An empirical study explores the influence of temporal arrangement of data 

within an auditory display and provides evidence to address the two research 

questions. Three auditory map types demonstrate varied temporal arrangement 

of data within the audio stream. The three auditory map types encode location 

in time, in acoustic properties of sound, or in both time and acoustic properties. 

The encoding of location in time mimics a previously established approach to map 

sonification, while the encoding of location in two acoustic properties of sound 

(frequency and note rate) is a novel approach. Evaluation follows a two-pronged 

approach to understand the contribution that the temporal arrangement of an 

auditory display makes to the communication of spatial information through an 

auditory map. Borrowing a model from psychology, behavioral and functional 

magnetic resonance imaging (fMRI) methods offer complementary perspectives on 

the relationship between stimuli and perception1 (Goldstein, 2014). The behavioral 

data inform the investigation of a stimulus-perception relationship, addressing the 

first research question: 

RQ1:	 How does the temporal aspect of auditory map symbolization
 

influence effectiveness in communicating general spatial patterns
 

in the data?
 

1 In this use, “perception” encompasses detecting, encoding, and recognizing information from 
the environment. This usage contrasts with discussion of perception in the cartography literature 
that often focuses on psychophysics and low-level stimulus processing (Montello, 2002). 
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while the neuroimaging data offer insight into the stimulus-physiology relationship, 

addressing the second research question: 

RQ2:	 How does neural activation in response to serial audio
 

symbolization of a geographic map contrast with that of
 

simultaneous audio symbolization?
 

Rather than relying solely on theoretical and established (often ocular-

centric) ideas about cartographic design, this research adopts a methodology 

that combines behavioral and neuroimaging metrics to investigate these research 

questions. The combination of behavioral and neuroimaging methods offers 

insight into the implications of map design beyond that available from either 

method alone. Illustrative instances of auditory symbology demonstrate feasibility 

of the implementation and enable assessment. Guidelines from research in 

human-computer interaction, theories of spatial information from geography 

and spatial cognition, and existing auditory maps inform the design. Yet a 

scarcity of established guidelines for usable audio-only map displays necessitates 

the introduction of novel designs. Behavioral data provide a measure of map 

effectiveness, and demonstrate the degree of correlation between systematic 

modulation of the stimuli and variations in performance. Behavioral geography 

has widely adopted behavioral methods (Montello, 2016), which have been long 

established in psychology. The neuroimaging data provide a measure of relative 

brain activation in the context of a map reading task. Following technological and 

methodological advances in cognitive neuroscience, geographers have relatively 

recently started to probe patterns of brain activation to explain observed differences 

in map effectiveness (P. J. Gersmehl & C. A. Gersmehl, 2006; Lobben et al., 2009). 

Augmenting behavioral data with evidence of neural responses to map stimuli 
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moves beyond a question of whether or not a specific design “works” to investigate 

the mechanisms behind how or why aspects of a design work. 

This chapter describes the design of three auditory geographic map types and 

the methodology employed to evaluate differences between them. First, the text 

introduces several factors that influence the design of auditory symbology and the 

resulting auditory geographic map artifacts. The thematic geographic maps used 

in this study are auditory representations of geospatial data, and the symbology 

strives to isolate the temporal component of the display. The second section 

describes the methodology and test instrument used to evaluate the auditory map 

types. Chapter V: Discussion describes the validity of this approach in greater 

detail. 

Design of Auditory Geographic Maps 

Geographic map designs realize a balance between precise display of the 

underlying geospatial data, emergent qualities of the rendered map artifact, and 

constraints that the research design imposes. The design of auditory geographic 

maps are no exception. This section describes the data dimensions selected for 

representation in the auditory display, two digital representations of those data 

dimensions, the parameter mappings selected to render three auditory geographic 

map types, and details of the experimental design with which the design choices 

were intertwined. 

Geospatial Data Dimensions and Measurement Level 

With the objective of representing and communicating spatial patterns in 

geospatial data, the auditory maps symbolize three dimensions of the underlying 
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data. Two spatial dimensions describe location within a planar raster. And a single
 

attribute dimension encodes (synthesized) population data values. The two spatial 

dimensions are orthogonal and establish a Cartesian plane.2 Eight uniform discrete 

units subdivide each axis, creating an eight-by-eight raster grid.3 Both the grid 

cells and the overall map extent are isotropic, which enforces an ob jective equality 

(but ignores possible subjective or perceptual differences, e.g., horizontal vs. 

vertical distance judgements in both auditory and visual perception). The attribute 

dimension consists of population data (see the description of the stimuli below). 

For simplicity, three ordinal levels aggregate numeric population values.4 These 

data are recorded in digital files that are used as input to automated processing 

that renders auditory geographic maps. 

2 Geographic pro jections systematically flatten the earth’s three dimensional surface 
accompany the extensive display of geographic maps on flat surfaces such as paper and computer 
screens. In auditory geographic maps, the need to pro ject geospatial data into a flat plane is not 
obvious and even reinforces the primacy of a graphical representation (an inferior approach to 
auditory map design, as argued in Chapter II: Background). Increasing ability to simulate three-
dimensional figures in computer graphics and adoption of auditory displays in cartography are 
changing the role of projections. 

3 In the design of visual geographic maps the cartographic process involves generalization 
and simplification of the geospatial data (Muehrcke, 1973; Robinson et al., 1995). Similarly, 
generalization and simplification processes are applied to cartographic design of non-visual maps, 
however, the degree of data reduction tends to be much greater in, e.g., tactile (Tatham, 1995) 
and auditory displays. The extreme simplicity of the data used in this study makes sequential 
sonification of each grid cell feasible based on both limits to working memory and reasonable 
duration of study sessions, but simplification to that degree is not believed to be strictly necessary 
for auditory display. 

4 The number of classes limits the resolution of the spatial pattern that a geographic map 
can convey, but has only a weak influence on the impression of spatial patterns (evaluated in the 
context of visual geographic maps, MacEachren, 1982a) Within reason, a larger number of classes 
could be encoded in a single display dimension; human perceptual abilities bound the extent to 
which a single auditory dimension can be subdivided and still effectively communicate data values 
(Pollack & Ficks, 1954). 
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Three Auditory Map Types 

Two approaches to using time in auditory geographic map design explore the 

implications of temporal arrangement on efficacy of representing spatial location 

and conveying spatial pattern in audio. A sequential map type mimics existing 

auditory geographic map displays. Each cell of a raster data set is represented 

by a sound event, such as a musical note. A concurrent map type compresses the 

sound events in time, while avoiding auditory masking (Deatherage, 1972) from the 

simultaneous presentation of multiple sound events. Each cell of a raster data set is 

assigned a location with the sound design space; producing multiple sound events 

at the same time produces complex sounds. But substantial differences between 

these two map types confound attempts at direct comparison. 

The sequential and concurrent map types differ in two important ways. First, 

the number of display dimensions used to encode two spatial dimensions of the data 

differ. The sequential map type reduces the two spatial dimensions to a single time 

dimension, and uses relative order of the sound events in time to encode location; 

a single sound event carries no location information. In contrast, the concurrent 

map type provides information about location within each group of sound events, 

which represent a single cell of the raster data. Notably, these two parameter 

mappings are not mutually exclusive. Second, the amount of information encoded 

in a single group of sound events differs. In the sequential symbology, each sound 

event explicitly encodes a single attribute value, devoid of location information. In 

contrast, a sound event in the concurrent symbology, encodes three data values in 

each sound event: two spatial dimensions and one audio dimension. Rather than a 

direct comparison of the sequential and concurrent map types, an additional hybrid 

map type creates a set of three map designs with incremental differences. 
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An augmented-sequential map type serves as a hybrid between the sequential
 

and concurrent map types (Figure 2). Using both temporal order and frequency-

note rate pairs, sound events in the augmented-sequential map type provide 

redundant location information. In contrast to the sequential map type, frequency 

and note rate augment each sound event with explicit location information. 

Compared with the concurrent map type, augmented-sequential map type uses the 

same set of possible (three parameter) sound events, but, the sound events occur 

sequentially in time. In this way, two paired comparisons tease apart the influence 

of explicitly encoding additional information in each sound event (sequential vs. 

augmented-sequential) from the effect of temporal order (augmented-sequential vs. 

concurrent). 

These three map types represent only a small subset of the vast number 

of possible parameter mappings (see Nees & Walker, 2009, and discussion in 

Chapter II: Background). The chosen parameter mappings are neither optimal 

for use in more general audio cartography applications, nor are they the most 

aesthetically pleasing combinations. They do, however, satisfy the experimental 

constraints (see design constraints, described below), and support isolation of 

temporal arrangement for investigation. Beyond simply satisfying constraints, 

the selected parameter mappings are also amenable to automation. Automation 

encourages reproducibility and minimizes subjective decisions in the cartographic 

implementation of stimuli for experimental evaluation. The remainder of this 

section provides additional detail on the design and implementation of the three 

auditory geographic map types. 
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FIGURE 2. Three auditory geographic map types encode spatial location in 
audio. Two dimensional location is symbolized on a single time dimension of the 
display (sequential), two attribute dimensions of frequency and note duration 
(concurrent), or redundantly on both time and frequency-note duration pairs 
(augmented-sequential). Across all three auditory geographic map types, a single 
attribute dimension of the display (amplitude) encodes the attribute dimension of 
the geospatial data. 

Digital Representations 

The geospatial data and auditory geographic maps were stored in digital files 

with distinct formats. Two equivalent digital data representations support auditory 

map rendering under different uses of the time dimension of the display (Figure 3): 

the auditory geographic maps present spatial data either one data record at a time 

(sequential and augmented-sequential) or with multiple data values overlapping in 

time (concurrent). A matrix representation, which mirrors a common data format 

used to represent raster geospatial data, records a data value for each cell of the 

grid in a two dimensional array. A sequential audio rendering reads data values 
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FIGURE 3. Two digital data representations support rendering of the auditory 
geographic map types. An example data set illustrates the relationships between 
those formats. A matrix representation of the data (top left) forms the basis for 
rendering the sequential and augmented-sequential map types. Each symbol in the 
display, i.e., note in the auditory map or square in the visual analogue (top right), 
aligns with a cell of the matrix (an example of that alignment is highlighted in 
yellow). A tabular representation of the data (bottom right) supports rendering 
of the concurrent map type. Each row of the table reflects a change to the audio-
synthesis parameters that is required to encode the underlying data; changes are 
specified in physical properties of the sound wave: delay (onset and offset time of 
the sound event), note rate within the sound event, and frequency of the musical 
note(s). 

from the matrix representation one cell at a time and follows a pre-determined 

order to traverse the entire space (64 grid cells; see geospatial data dimensions, 

described below). The size of the matrix-based digital data file scales proportionally 

with the size of the geospatial data set, sensitive to both data resolution and spatial 

extent (here fixed to an 8×8 grid). In contrast, an alternative data format better 

supports audio rendering in which multiple dimensions of the audio change at the 

same time, and multiple audio notes play concurrently. Rather than conforming to 
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the established format for raster geospatial data, a table records audio parameter
 

changes at each time-step of the rendering and improves efficiency for rendering 

the concurrent map type (notably the transformation between the matrix and 

tabular formats and its inverse preserve data for the 64 data records). The size of 

the tabular digital data files grows with the complexity of spatial patterns within 

the data (as measured by the number of parameter changes need to represent 

the data, and related to the degree of autocorrelation in the data, Olson, 1975, 

described in the context of visual complexity). Sampled waveforms in digital files 

store all rendered auditory geographic maps, regardless of the auditory map type. 

The file format conforms to the waveform audio file (WAV) format. The rendered 

files are all the same size, sharing the same sample rate (44,100 samples per second) 

and duration (56 seconds). The rendered auditory geographic maps are the result 

of applying three audio parameter mappings to the digital representations of the 

geospatial data. 

Design Constraints 

Requirements stemming from the experimental design choices constrain 

design of the auditory symbology. Limiting the resolution of data across all three 

dimensions increases experimental control and makes initial evaluation feasible (see 

Chapter V: Discussion for reflection on the impact on validity). One advantage of 

the low resolution raster data set is the small number of data points it contains 

(sixty-four grid cells in an eight-by-eight square). As the duration of sequential 

auditory geographic map playback scales with the size of the data set, smaller 

datasets (and thus shorter playback duration) make room for multiple maps in a 

one-hour session with study participants. At five hundred milliseconds per data 
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value, 64 sequential sound events require at least 32 seconds; temporal overlap 

in the concurrent map symbology reduces the total duration. A complementary 

advantage of the raster data format is the ability to break up the data into natural 

subsets of equal size (rows). The neuroimaging data collection creates substantial 

acoustic noise which can be restricted to short bursts and interleaved with periods 

of relative quiet during which to play subsets of the data (or in the case of the 

concurrent map type, a repetition of the full map). Inserting extra time between 

playback of contiguous rows, and during which scanner noise occurs, accommodates 

the unique needs of the neuroimaging methodology with a concomitant increase 

in the total duration of an auditory map (approximately one minute duration for 

an instance of the sequential map type with 500 millisecond sound events). With 

these constraints in mind, the next section describes the adopted audio parameter 

mapping. 

Audio Parameter Mappings 

The auditory symbology assigns the three data dimensions to dimensions 

of the auditory display following a parameter mapping sonification approach. 

From among the widely recognized dimensions of audio that software parameters 

can control, the audio symbology uses temporal order, frequency (pitch), note 

rate (tempo), and amplitude (loudness). Within the organizational framework 

of the geographic data cube, data and display dimensions are associated with 

a category of data (space, time, and attribute), and each mapping occurs either 

within a category or across category boundaries. The two spatial data dimensions 

are mapped to temporal order, frequency-note rate pairs, or both. The attribute 

dimension of the data is mapped to amplitude. These geographic data hold time 
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constant,5 and participants interpret spatial patterns in the generated data without 

the context of a timeline. This section describes each parameter mapping, and 

Table 1 and Table 2 summarize the details. 

Two distinct approaches map the spatial dimensions of the geospatial data to 

dimensions of the auditory display. In one approach, spatial location is mapped to 

time. The sequential and augmented-sequential map types assign the two spatial 

data dimensions to positions within a linear sequence that plays out over time. A 

virtual cursor traverses two-dimensional geographic space sonifying each data point 

that it encounters along its path. This approach to representing spatial dimensions 

neither uses spatialized audio, nor encodes location of the spatial data in any other 

attributes of the sound. 

5 With no temporal data to represent, there is no particular benefit to reserving the time 
dimension of the auditory display for a within-category parameter mapping. However, ceding the 
time dimension of the auditory display for representation of spatial data dimensions could have 
a knock-on effect on choices when design guidelines are generalized to more diverse real world 
maps, eliminating a use of the display’s time dimension in a way that is analogous to animation in 
visual maps. The potential requirement to display time in an auditory geographic map points to a 
need to understand the representation of spatial data dimensions in audio on spatial or attribute 
dimensions of the auditory display. 
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TABLE 1. The three auditory map types use two approaches to parameter mapping sonification to encode spatial 
data: time-based (sequential and augmented-sequential map types) and attribute-based location (augmented­
sequential and concurrent map types). While the underlying data systematically modulates the selected auditory 
dimensions, all perceptible qualities of the sound are present in an auditory stream; those characteristics of the sound 
that are explicitly held constant are also listed in the table. The table reports time in milliseconds (ms). 

Cardinal 
Reference 

Audio 
Dimension Description Values 

 
ca
ti
on

L
o

 
T
im

e-
b
as
ed

north-south temporal order 
among rows 

start in the north, progress to the 
south 

0–49000 ms, by 7000 ms 
(onset relative to map) 

west-east temporal order 
within row 

start in the west, progress to the 
east 

0–3500 ms, by 500 ms 
(onset relative to row) 

constants: frequency (pitch) C4 (261.63 Hz) 

note duration (rate) 450 ms (1 note per cell) 

temporal envelope attack, decay 75 ms (0.15×note duration)

sustain 300 ms (0.6×note duration) 

event duration total duration of each sound event 500 ms 

 
ca
ti
on

L
o

 
A
tt
ri
b
u
te
-b
as
ed

north-south frequency (pitch) high in the north, low in the south C3–E5 (130.81–659.26 Hz) 

west-east note duration (rate) slow in the west, fast in the east 
(value based on regions with 
homogeneous data) 

69–550 ms (1–8 notes per cell) 

temporal order 
among columns 

start in the west, progress to the 
east 

0–438 ms (onset relative to cell) 

temporal envelope attack 22–175 ms (0.35×note duration) 

decay 9–75 ms (0.15×note duration) 

sustain 38–300 ms (0.6×note duration) 

constants: event duration total duration of each sound event 500 ms 

45
 



TABLE 2. Within the parameter mapping sonification, all three auditory map 
types use amplitude of the sound wave to encode the non-spatial data (population). 

Data 
Value 

Audio
 
Dimension Description Values
 

population amplitude
(loudness) 

greater amplitude (less 
attenuation) represents higher 
population value 

[ 0.10, 0.40, 0.85 ] 
(fractional 
attenuation) 

Consistent with an established precedent (e.g., Zhao, B. K. Smith, et al., 

2004) a time-based auditory symbology reduces planar location to a linear stream, 

and one sound event plays for each of the sixty-four raster grid cells following an 

English reading order (left to right, and top to bottom). Each sound event lasts 500 

milliseconds (450 millisecond on time with a smooth attack and decay), resulting 

in a four second row duration. A quiet pause (three seconds6) separates one row 

from the next, and provides an interval during which the scanner noise occurs 

without masking the stimulus audio. Relative position within a burst of eight sound 

events (one sound event for each cell in the row), and among the eight bursts of 

sound events (one burst of sound events for each row) indicates spatial location 

of the data. All of the sound events are rendered sequentially without temporal 

overlap; the attribute data value determines the amplitude of the sound, and all 

other parameters are held constant. 

The second approach, the concurrent map type, assigns spatial location to 

a combination of time and attribute.7 Frequency, which is perceived as pitch, 

6 Map playback starts 500 milliseconds after the one acquisition, and ends 500 milliseconds 
before the next volume acquisition starts (Perrachione & Ghosh, 2013). Combined with a two-
second acquisition time (TA, see below) this necessitates a three second pause between bursts of 
the auditory stimulus. 

7 The design process makes an effort to identify an attribute-attribute pair of audio display 
dimensions that could serve as a orthogonal axes of a reference frame in which to represent two 
spatial dimensions of the data. The effort to identify, implement, and automate combinations of 
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encodes one spatial dimension: vertical (latitude, or northing). Note rate, which
 

results from subdividing a sound event into an integer number of equal duration 

notes and gives rise to a perceived quality of slow or fast, encodes the second 

spatial dimension: horizontal (longitude, or easting). A published finding in the 

neuroscience literature motivates this particular pair of auditory dimensions. 

Among macaques, Baumann et al. (2011) found that frequency selective neurons 

were spatially arranged in a gradient (tonotopy; see also Hall, 2006) that was 

orthogonal to that of energy over time (“temporal or periodotopic dimension”). 

Appreciating that evidence of tonotopic and periodotopic arrangement of neurons 

in non-human primates does not necessarily generalize to humans, if such an 

arrangement exists it could influence the uptake of spatial information through 

audio and provides tenuous support8 for the parameter mapping in the absence 

of other concrete guidelines for the design of auditory map symbology. Encoding 

location in frequency-note rate pairs excludes any spatial audio cues. 

Independent of the temporal order, frequency encodes location along the 

north-south axis (vertical, or within columns). The frequencies range from 659.26 

Hz (E5) to 130.81 Hz (C3). Intermediate rows were encoded in frequencies drawn 

from an arpeggio of the C-major scale, intervals that fall well above the threshold 

of noticeable differences (Deatherage, 1972, citing Shower and Biddulph, 1931). 

High frequencies indicate locations in the north, or the top row of the raster 

grid; lower frequencies indicate locations toward the south, or the bottom row of 

attribute parameters pairs, however, demands a greater time investment in design than is available 
within this dissertation project. 

8 As observed of retinotopic organization of neurons supporting vision (see footnote 6 of 
Chapter II: Background, above), the spatial arrangement of neurons in lower level perception 
do not necessarily predetermine or uniquely predict subsequent higher level processing of sensory 
input. 
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the raster grid. Intervals in the major scale also ensure that any combination of 

notes create neither dissonance (as defined in a Western musical tradition), nor 

perceptual effect of a beat frequency (Campbell & Greated, 1987), which could 

confound perception of detection of the note rate (see below). 

Also independent of order, but delineated in time, the rate of notes within 

sound events represent eight discrete locations along a west-east axis (horizontal, or 

within rows). The note rate varies between one and eight notes per sound event 

(550 and 69 milliseconds per note, respectively), and note duration includes a 

smooth attack and decay, which overlap with those of temporally adjacent notes. 

Note duration within each sound event is inversely proportional to the index of 

the horizontal location.9 The auditory symbology assigns slow rates (one note per 

sound event) to locations in the west, and fast rates (eight notes per sound event) 

to locations in the east. The minimum change in rate (12.5%) between levels of the 

note rate is almost twice the threshold for detectability (Drake & Botte, 1993), and 

the notes are long enough to convey perceptible changes in pitch (Turnbull, 1944). 

Finally, a single note rate represents contiguous cells that share the same attribute-

data value. Grouping adjacent cells that share the same data value (homogeneous 

cluster) favors the representation of general spatial patterns, which is the ob jective 

of the geographic maps in this study, over individual data values. The onset and 

duration of a sustained sound event encode the east-west extent of the group within 

each row; the note rate represents the location of the center of the overall group 

(see Figure 3, above). 

9 In this design process, alternative rhythmic arrangements introduce complexity to the 
auditory symbol design without providing a substantial benefit. Leveraging such emergent 
patterns in the design of auditory geographic maps is left to future exploration. 
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Notably, the name “concurrent” indicates overlap, but does not strictly
 

require simultaneous or instantaneous sound events. The staggered onset of the 

sounds events occur on 500 millisecond intervals,10 which shares a similar structure 

to the 500 millisecond sound events of the sequential and augmented-sequential 

map types and avoids confusing the staggered onset with the repeated notes of 

the note rate coding. Introducing staggered onsets requires a strategy for choosing 

the temporal delay (integer multiple of 500 ms) for sound events. Because the 

frequency-note rate pairs provide sufficient location information, the staggered 

onset values could be randomly assigned (akin to jitter used in visualizations to 

avoid occlusion of overlapping graphic symbols). However, systematic assignment 

provides an additional parameter of the auditory display that can be controlled 

as part of the design. Staggered onset values that redundantly encode horizontal 

position within the geospatial data create a metaphorical sweep or glance across the 

map from west to east. With the temporal overlap, the concurrent auditory map 

type encodes the entire map in a single four-second audio burst (equivalent to the 

duration of a single row in the sequential map type). 

Both of these approaches to mapping spatial data dimensions to auditory 

display dimensions cross conceptual boundaries of the geographic data cube. The 

sequential and augmented-sequential map types assign spatial data dimensions to 

a temporal display dimension; the augmented-sequential and concurrent map types 

assign spatial data dimensions to attribute display dimensions. Although a within-

category mapping is possible, since human hearing detects egocentric location cues 

of a sound source, this auditory symbology does not employ spatial cues. Instead of 

spatial cues, the chosen auditory symbology gives the map reader control over their 

10 The human auditory system has the ability to discriminate differences in onset time at a 
much higher resolution 
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experience through selective attention. Similar to the ways that someone viewing 

a map directs their gaze to collect fine visual details from spatial locations in a 

graphic display, someone listening to a map consciously attends to fine auditory 

details on individual dimensions of a sonic display, or multidimensional patterns 

that emerge from concurrent representation of display dimensions. 

Across all three auditory map types, the attribute dimension of the geospatial 

data is encoded in an attribute dimension of the audio: amplitude. This mapping 

stays within the conceptual category of attribute. Amplitude, which is perceived as 

loudness, encodes classed attribute data values at three discrete levels.11 Fractional 

attenuation values between 0.1 and 0.8512 of a reference value of 90 dB implements 

the variable amplitude levels; the baseline volume of the speakers or headphones 

matches participants’ subjective preferences on each day of data collection. The 

middle fractional attenuation value (0.4) is numerically offset toward the low end 

of the range to produce a sub jective perceptual effect of lying halfway between 

the extreme values. Polarity of the mapping aligns data values with proportional 

amplitude values, following an analogy with the noise made by groups of people: 

large groups with many people are (often) louder than small groups. Further 

perceptual scaling through frequency-based attenuation reduces the impact of 

interaction between frequency (used in the augmented-sequential and concurrent 

map types to encode location) and perceived loudness. 

11 Notably, struggles to identify specific amplitude values, and that perceived loudness varies 
considerably between individuals. However, at least in the case of visual geographic maps, 
participants’ ability to tell sequential symbol levels apart has been observed to have little impact 
on uptake of general spatial patterns (MacEachren, 1982b). The auditory symbology in the 
three auditory geography map types designed for this study requires listeners to perceive relative 
differences, but does not necessitate determination of absolute values. 

12 The maximum amplitude value was less than one to avoid a clipping artifact in the digital 
waveform (amplitude of the waveform exceeds the dynamic range of the digital wave format), 
which appears when multiple full volume sound events occur simultaneously. 
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Given the above parameter mappings (and the seven-second acquisition
 

period, TR, of the scan sequence, described below), the auditory symbology for 

all map types produce geographic map artifacts with 56 second duration. And 

auditory map design tightly couples with timing of the acquisition, an important 

consideration for the detection of associated neural activity (Hall et al., 1999). In 

the sequential map type, presentation of 64 data values (an 8×8 raster grid) fills 

eight acquisition periods, one for each row. The temporal overlap in the concurrent 

symbology shortens the time needed to display the entire geospatial data set to 

four seconds, which fill one acquisition period. Repeating the map eight times, the 

total duration for concurrent map playback is 56 seconds. Multiple repetitions of 

the concurrent map type also allow map listeners to selectively attend to different 

features each time. 

Evaluation of Geographic Map Designs 

Behavioral and neuroimaging methods evaluate the three auditory geographic 

map types described above. Justifying the design decisions with theories based 

in psychoacoustics and harnessing software functionality to implement audio 

synthesis, however, are just the first step. Understanding the extent to which 

those designs are effective in their role of communicating spatial pattern is equally 

important. As increasingly recognized over the last century, scientific methods to 

investigate map cognition help formalize and systematize the long held belief that 

map design influences map use, and that the influence extends beyond low-level 

sensory perception (P. J. Gersmehl & C. A. Gersmehl, 2006; MacEachren, 1995; 

Montello, 2002): perception is necessary, but alone is not sufficient to accomplish 

map reading. Borrowing from psychology and neuroscience, this study observes 
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the effect of the use of time in auditory geographic map design through two
 

lenses. Behavioral evaluation indicates where symbolization leads to performance 

differences. Physiological measures, such as neuroimaging, provide insight into the 

reasons behind the differences. After grounding the methodological approach to 

geographic map evaluation in literature, this section describes the test instrument 

and planned analyses. 

Behavioral Testing 

Within the overarching objective to improve design of auditory maps, 

this research seeks to examine the variability in responses to auditory map 

designs in relation to the temporal arrangement of the audio. A subsequent 

behavioral action is one part of that response, which is widely used to study spatial 

cognition and map use (see review in Montello, 2016). Given that effectiveness of 

communication is a necessary criterion for map evaluation, a behavioral action 

that relies on information gleaned from the map constitutes an observable metric 

of the directional relationship between stimulus and perception. Further, such a 

metric also provides indirect evidence that listeners are attending to the given 

task, particularly in the neuroimaging setting, which is susceptible to non-task 

distractions. The behavioral testing component in this study seeks to measure the 

influence temporal arrangement has on communication effectiveness. 

Behavioral methods provide metrics through which to evaluate (auditory) 

maps by measuring effects on communication of spatial distribution. While 

Muehrcke (1973) notes that “in theory, it should be possible to measure the 

communication efficiency [...] by simply measuring the correlation between input 

and output information” (p. 190), in practice quantifying inputs and outputs is 
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not simple. A measure of correlation requires a specific task context and depends 

on quantifiable and comparable values across both the input map and resulting 

output mental representation. Quantifying those inputs and outputs can be 

problematic. Even through quantitative data fill the raster grid, the target or 

critical characteristic(s) of that data set may be complex or ambiguous. As input 

to a geographic map display, aggregate characteristics at the level of the data set 

may be of greater interest than individual data values. In this study, the input 

is a raster data set that manifests spatial patterns; Appendix D: Experimental 

Stimuli lists quantitative metrics that characterize those patterns. Measuring the 

resulting mental representation, too, is difficult. Following one component of a 

task described by MacEachren (1982b), a paired comparison served as a way to 

externalize or express one feature of a mental representation. Participants make a 

judgement about the relative magnitudes of data values at pairs of locations under 

two memory conditions: recall and active listening. Successful query of a mental 

representation suggests that a geographic map display has communicated sufficient 

task-critical information. The “correlation” between the input and the output in 

this scenario then becomes a record of whether or not the response to the paired 

comparison matches the correct directional inequality according to an ob jective 

comparison of input data values. Beyond a measure of accuracy, the behavioral 

data also reflect whether or not the participants attend to the task even in the 

confined and noisy setting of the MR scanning environment. 

The behavioral testing approach to evaluating map effectiveness makes two 

key assumptions. First, it assumes that the only way to successfully answer the 

task question is by extracting data from the auditory display and forming an 

accurate mental representation of that information. With a paired comparison task, 
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there is a high likelihood of selecting a correct answer by guessing. To mitigate 

the negative impact of this assumption, the analysis compares performance across 

conditions with the expectation that any difference reflects both differences between 

the conditions and differences in guessing that are modulated by the conditions. 

Second, there is an implicit assumption in many quantitative analyses that all 

people perform the task similarly and comparison against a group average value is 

meaningful. There is, however, a high degree of variability between individuals. To 

mitigate the influence of that variability, a within-subject design sought to measure 

relative differences in effectiveness. 

While the data from these behavioral methods provide insight into map 

effectiveness, they cannot indicate the mechanistic causes of any observed 

differences. And literature from human computer interaction has documented 

people’s inability to both consciously recognize and subsequently articulate why 

a display works (Nielsen, Clemmensen, & Yssing, 2002). Neuroimaging, the second 

prong of this research approach, complements the behavioral data by providing an 

opportunity to investigate (unconscious) responses by observing underlying neural 

activity that occurs during map listening. 

Neuroimaging 

Neuroimaging offers a quantitative metric for empirical evaluation of auditory 

map effectiveness by targeting brain responses to geographic map listening. 

Neuroimaging data reflect a quantitative measure of blood flow through the blood-

oxygen level dependent contrast (BOLD), which is an indicator13 of localized 

13 Despite inherent uncertainty associated with using BOLD as a proxy for neural activity, 
fMRI is “currently the dominant paradigm for assessing behavior-related brain physiological 
changes in humans” (Ekstrom, 2010, p. 234). There is a strong reproducible correlation between 
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brain activity (Ogawa et al., 1990). Data collected through neuroimaging provide 

a unique lens through which to observe participant reactions to map listening.14 

While listeners’ conscious impressions of the display relate to perceived and 

physical map characteristics, people often struggle to both identify and describe 

usability issues in software interfaces (among both participants and researchers, 

Nielsen et al., 2002; Walker and Kramer, 2006). And, unlike the assessment of 

visual maps, which can be investigated by eye tracking (see Montello, 2002), 

the study of auditory maps and underlying attentional control, which is served 

by covert attention shifts, cannot be directly observed. Understanding how the 

auditory stimulus modulates the neural response to the temporal arrangement 

support the expanded use of audio in map design. 

Neuroimaging data measures BOLD response as an indicator of the neural 

response to the auditory geographic maps. Two pairs of contrasts15 evaluate 

differences in neural responses to listening to the three auditory map types. Two 

contrasts (A>B and A<B) measure differences (activation and deactivation) in 

neural response attributable to the level of explicit location information: sequential 

compared to augmented-sequential. The other two (C>D and C<D) measure the 

the BOLD signal and neural activity as measured by single cell recordings (e.g., in the visual 
cortex Kanwisher, 2010). (For a detailed history and review of fMRI, see Amaro, Jr. and Barker, 
2006; Bandettini, 2012; Cohen and Schmitt, 2012; Maus and van Breukelen, 2013.) 

14 Cartographers and geographers have established a precedent for using fMRI to explore 
the uptake of information from a cartographic map (e.g., Lobben et al., 2009; Rozovskaya & 
Pechenkova, 2012; Zhang, Copara, & Ekstrom, 2012) and to understand spatial thinking (e.g., 
Auger, Mullally, & Maguire, 2012). Studies using fMRI have the potential to identify mechanisms 
behind observed behavioral differences on geospatial tasks (Lobben, Lawrence, & Pickett, 2014, 
2005). 

15 The experimental design supports an additional analysis to assess the factorial interaction 
(Amaro, Jr. & Barker, 2006) between auditory geographic map type and response condition 
was considered, but the collected data is insufficient to support such analysis (short duration of 
response activity, often a single TR; limited repetitions, only one instance of each condition of the 
3×2 factorial design within each run). The influence of auditory symbology relative to response 
condition is left to future work. 
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difference in response attributable to temporal arrangement: augmented-sequential 

compared to concurrent. All fMRI measurements are relative (see discussion 

in Aguirre & D’Esposito, 2000), and comparison between paired experimental 

conditions removes the need for an arbitrary control condition or rest. The two 

step difference between the “established” sequential audio maps and the novel 

concurrent audio maps supports isolation of the influence of temporal arrangement 

from the influence of different levels of information. These four contrasts identify 

whole brain activation patterns. 

Design of the neuroimaging study relies on three important assumptions. 

First, the use of contrasts that represent subtraction of neural activity levels 

assumes that processing is supported by separable cognitive actions, or pure 

insertion (i.e., subtraction of two processes produces a measure of a cognitive 

task, Donders, 1868/1969; and see Aguirre and D’Esposito, 2000). Even through 

it is expected to be invalid, particularly in the presence of scanner noise (Hall 

et al., 1999) or when cognitive resources are overwhelmed, violation of the pure 

insertion assumption does not preclude informative results (see Amaro, Jr. & 

Barker, 2006) To minimize the impact of confounds stemming from interrelated 

and non-separable brain activity, a third map type (augmented-sequential) holds 

constant as many aspects of the display as possible while retaining the ability to 

compare with established map designs. Second, the selected general linear model 

(GLM) analysis approach assumes a linear relationship between stimuli and the 

BOLD response (Mumford, 2010, and see neuroimaging analysis described below). 

Physiological responses such as adaptation contribute to a non-linear relationship 

between the stimulus and neural response. Documented violations of the linearity 

assumption, however, are not sufficiently problematic to reject the GLM approach 
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(Boynton, Engel, Glover, and Heeger, 1996, observed in visual cortex). Third, the
 

analyses rely on functional specialization in the brain. Neurons that are selectively 

active in response to specific stimuli or cognitive tasks tend to be co-located in 

the brain. As an ongoing topic of debate, contemporary fMRI techniques provide 

evidence that continues to support functional specificity, although to a more 

conservative degree (Kanwisher, 2010). Finally, the group level analysis relies on 

consistency in spatial layout of functional areas in the brain across individual 

participants. Although general patterns of functional activation are comparable 

across individuals, functional activation does not strictly align with anatomical 

regions and there may be strong individual differences. 

Taking the three audio map types and a methodological approach that pairs 

behavioral and neuroimaging methods, a empirical study evaluates participant 

responses to a map listening task. 

Experimental Design 

This section describes the implementation of a test instrument that uses 

behavioral and neuroimaging methods. A block design captures information 

about sustained neural activity related to processing map content (in contrast to 

the lower-level process of sensing audio, which relates more directly to the onset 

or change of stimuli). The block design detects sustained neural activity better 

than event related design (e.g., Visscher et al., 2003, evaluated in the context of 

sustained attention to changing visual stimuli). Encoding and rehearsing spatial 

patterns that the auditory display presents requires sustained activity beyond 

simple detection in the sensory cortex. Regular presentation order in the block 

design benefits the detection of activation which can be suitable for initial stages of 
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an investigation (e.g., identification of regions of interest for further investigation 

Aguirre and D’Esposito, 2000; although such regularity is problematic in studies 

that seek to model the shape of the hemodynamic response function, see Liu, 

Frank, Wong, and Buxton, 2001). 

The study follows a protocol that was reviewed and approved by the 

University of Oregon Institutional Review Board. 

Target Population 

The target population is adults with normal hearing. Recruiting targets 

a sample population from a broad cross section of ages (18-65 years old) and 

experience (no limiting selection criteria; see Table 3). Although accessibility 

for people who are blind is a potential application domain, this study uses a 

combination of auditory and visual materials, which precludes generalization of 

the results to a general population with, for example, more diverse levels of vision. 

The study recruits participants around the University of Oregon campus, but has 

no requirement that participants be students or have any particular educational 

background or training. 

The target sample size is twenty four of participants. The documented lack of 

metrics to serve as estimates in power analysis (Q. Guo et al., 2014) coupled with 

the uniqueness of the selected scan sequence and the novelty of the task precluded 

an a priori power calculation. Instead, the selected target sample size balances 

general guidelines with typical study sizes reported in the literature. 
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TABLE 3. Eligibility criteria for participation in the study aim to accept a broad 
range of people, while taking into account the task design and safety considerations 
for the MR scanning environment. 

Criterion Justification 
18–65 years old Restrict the study population to adults, who 

can autonomously give informed concent 

normal hearing Stimuli (auditory maps) were presented 
aurally 

normal or corrected to normal 
vision 

Instructions and response options were 
presented visually 

no permanent metal devices 
or implants, and not currently 
pregnant 

Safety and precautionary considerations for 
the MR scanning environment 

Procedures 

Each participant attends two sessions on separate days. At the start of each 

session, participants provide their informed consent to participate, confirm that 

they met the eligibility criteria, and (in the first session) confirm their availability 

for both study sessions. As part of the informed consent process, participants 

indicate whether or not they consented to the public release of their de-identified 

study data. Participants receive compensation for their time at a rate of $25 per 

hour for a training session, and $35 per hour for a scanning session. 

The first session, a training session, occurs in a private computer lab 

setting and lasts up to an hour. To start the session, the researcher provides 

information about the study and participants answer demographic questions (see 

Appendix A: Demographic Questions). The researcher then introduces the three 

audio types and the map interpretation task, encouraging participants to develop 

a general idea of any spatial patterns that the data create. After listening to 
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the auditory geographic map examples, participants verbally describe what they 

have heard. After hearing descriptions and examples of the three audio types, 

participants complete a practice run consisting of a set of six maps (trials), one 

for each condition. Participants are encouraged to ask clarifying questions as they 

arise. Throughout the session, participants provide unstructured feedback on the 

overall design of the three audio types. 

On a later date, participants complete a scanning session in the Lewis Center 

for Neuroimaging on the University of Oregon campus. At the start of the session, 

and after again indicating their informed consent to participate, participants listen 

to samples of each of the three audio types. Participants then review a safety 

questionnaire with the MR Technologist, adjust a pair of MR safe glasses (as 

needed for corrected to normal vision), adjust the volume for stimulus presentation 

through MR safe headphones to a comfortable level, and are helped into the 

scanner. 

The scanning session comprises two functional scans and four reference scans 

(Figure 4). Functional images record the BOLD signal while participants listen to 

and make judgements about the maps. During each functional scan, participants 

complete one set (run) of six questions (trials). The reference scans, which provide 

information to assist with image processing and interpretation, are acquired before, 

between, and after the functional scans. The first acquisition, a short reference 

scan, records participant position within the scanner and head coil, and serves 

as participants’ first exposure to the sounds of the MR scanner. Between the 

two functional runs, an anatomical image offers an opportunity to rest between 

task runs, and the resulting data facilitates registration of the functional images 

to standard space for the group analysis. Finally, a pair of field strength images 
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capture information to create a field map that is used in the pre-processing step
 

of analysis to mitigate inhomogeneity in the main magnetic field. The researcher 

checks in with the participants between scans, speaking through the headphones 

and listening for participants’ verbal responses through the intercom system. The 

overall scanning session lasts approximately one hour. 

FIGURE 4. The structure of the scanning session builds on the sparse sampling 
TR of seven seconds. Each task activity – listen and response – spans eight TRs. 
Paired task activities make up trials, and six trials comprise a functional run. 
Three reference scans and two functional runs lead to approximately 45 minutes in 
the scanner. 
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Test Instrument
 

The test instrument borrows several elements of the study design described 

by MacEachren (1982b, hereafter the “original task”). Modifications to the design 

accommodate the auditory stimuli, adapt to the fMRI methodology, and constrain 

the scope of the study. The auditory stimuli take longer to display than visual 

stimuli, limiting the number of maps that can be displayed during a one-hour 

session. The value comparison task was simplified from the paired comparisons 

for all possible pairs of regions to a single comparison between two locations.16 

Response options correspond to two buttons in a binary forced choice task. While 

the extraction of exact data values is one function of map displays, the scope of this 

study is limited to only “general” map features, which are particularly challenging 

to interpret from auditory displays (e.g., Alty & Rigas, 2005; Delogu et al., 2010). 

In contrast to the original study, geographic map complexity, which is measured 

in this case as the number of levels in the classed attribute data and the degree of 

spatial clustering, is held constant across map instances. 

Recruiting A paper flyer posted around the University of Oregon campus 

solicits participation. The flyer introduces the topic of the study, states the 

eligibility criteria (Table 3, above), and directs anyone interested in participating 

to a web-based form for more information. The researcher contacts respondents 

via their indicated preferred contact method (email or phone) to provide additional 

information about the study and to schedule data collection sessions, making an 

16 Although the use of a visual prompt introduces a confound in the form of translation between 
visual and auditory representations of location, the graphics constituted a robust and familiar way 
to present location to participants who were sighted. 
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effort to schedule scanning sessions within three days of that participant’s training 

session. 

Behavioral Task A behavioral task measures the degree to which the auditory 

maps effectively communicate general map information. The training session 

introduces the behavioral task and testing procedure that is followed during 

the scanning session. A verbal description of the geographic maps indicate that 

they represent population, which provides a geospatial context for the simple 

raster data. The training used terminology such as “the number of people” and 

“where were there more people” when instructing participants how to interpret the 

auditory display. 

The task consists of listening to a map and then making a judgement about 

the relative magnitudes of the data values (loudness) at two target locations. In 

a randomized order, participants listen to two maps in each of the audio map 

types. A fixation icon appears 500 milliseconds before the start of the auditory 

map playback in the center of the screen on a white background. The icon 

remains on the screen during the map playback. The shape of the fixation icon 

(Figure 5) indicates the temporal arrangement of the upcoming auditory map type; 

the display gives no indication of the pending response condition. During map 

listening, participants are free to have their eyes open or closed. After listening to a 

map, the software displays a reminder of the task instructions and then visually 

FIGURE 5. The screen displays a visual fixation icon 500 milliseconds prior to 
the start of the map listening activity, and throughout that activity. The shape of 
the icon indicates the temporal arrangement of the upcoming auditory map type: 
sequential (left) or concurrent (right). 
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presents two target locations. Similar to the original task, the training primes 

participants to attend to general map information, or patterns that the data create. 

The training session introduces the instructions verbally and during the scanning 

session a graphic reminds participants of the task instruction (Figure 6). If the 

participants close their eyes during map listening, presentation of the instruction 

image without an accompanying stimulus sound serves as a cue that the map 

playback has ended. During the response portion of the task the software renders 

two squares, which correspond with two locations in the geospatial data, on an 

otherwise blank light colored background (Figure 7). Participants choose the 

location at which there is a higher (louder) data value, entering their answers using 

two arrow keys on a keyboard (training session) or button box (scanning session). 

The target location nearer the west (left) edge of the geographic map is associated 

with the response button under the index finger of the right hand17; the index 

finger is on the left side of the hand when extended, palm down. Similarly, the 

target location further to the east (right) was associated with the response button 

under the middle finger. Responses were made under two memory conditions. After 

one of the two instances of each audio type, the map stimulus was silent during 

the response activity (recall; Figure 8); in the other instance, the map data played 

a second time (active listening). The effective display area on the screen for all 

graphical displays (fixation icon, instructions, and response prompt) has a square 

aspect ratio. 

17 A left handed version of the response buttons establishes a similar egocentric association 
between the position of the response options within the geographic map and the finger assigned to 
each response option. 
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FIGURE 6. A graphic reminder of the task instruction precedes each response 
activity. The graphic depicts the button box hardware (or arrow keys in the 
computer-based training session, not pictured), and visually highlights the mapping 
between physical buttons and the response options. This instruction graphic is 
specific to the right hand, and a version of the graphic depicting the left hand is 
also available. 

FIGURE 7. The visual display of two target locations indicates the start of the 
response activity. This example graphic shows a location on the upper left edge 
in black and a location on the lower right in red. The black and red squares 
corresponded to the index- and middle-finger response buttons, respectively (right 
hand). 
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FIGURE 8. The behavioral task consists of two parts. First, participants listen to 
an auditory map rendered in one of the three map types. Second, a visual prompt 
indicates two locations within the map that participants are asked to compare 
under two memory conditions. A visual analogue of the task (top right) provides 
further illustration, but is not available to participants during the task. 
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Scan Sequence A custom sparse sampling scan sequence addresses the unique
 

needs of presenting auditory stimuli in the MR scanning environment (Belin, 

Zatorre, Hoge, Evans, & Pike, 1999; De Martino, Moerel, Ugurbil, Formisano, 

& Yacoub, 2015). This custom scan sequence balances the timing needs with 

constraints of the data collection technique. A Siemens Skyra 3T scanner in the 

Lewis Center for Neuroimaging on the University of Oregon campus collected 

neuroimaging data. An MPRAGE sequence (TR 2500 ms, TE 3.43 ms, flip 

angle 7°, voxel size 1 mm × 1 mm × 1 mm, matrix size 256 × 256, 176 slices) 

captures anatomical images. And a spin-echo echo planar imaging (EPI) sequence 

(epif2d1 64, TR = 7000 ms, TA = 2000 ms, TE = 27 ms, flip angle 90°, slice 

thickness 4 mm, voxel size 3.25 mm × 3.25 mm, matrix size 64 × 64, 33 slices) 

captures functional images. Although acceleration techniques promise improved 

spatial resolution, exploration of one such technique (multi-band acquisition) 

reveals an interaction with the sparse sampling that precludes its use (see 

Appendix B: Scan Sequence Development: Multi-band Acceleration). 

Using this configuration, two instances of the EPI sequence acquire data 

for two functional runs. Each run consists of six trials, which in turn break down 

into listen and respond activities (Figure 4, above). The listen task produces 48 

volumes for each run, eight volumes for each condition. The number of volumes 

collected during the response task varies depending on how quickly a participant 

responds. The maximum duration of a run is 12.6 minutes, which is within the 

typical duration of a functional scan (five to 15 minutes, Maus & van Breukelen, 

2013). 

During image acquisition, vibration in the gradient coils and other scanner 

hardware create substantial noise, which can exceed 100 dBA (see reviews by 
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McJury & Shellock, 2000; Moelker & Pattynama, 2003). This noise poses two 

potential problems. The first consideration is the impact of acoustic noise from the 

scanner on participants. Even when the noise levels fall below standard thresholds 

for causing permanent hearing damage during a single scanning session (McJury 

& Shellock, 2000; Shellock & Crues, 2004), scanner noise can still cause discomfort. 

Second, the acoustic scanner noise interferes with perception of auditory stimuli. 

Scanner noise has been found to increase sensitivity thresholds for the perception 

of pure tones (Ulmer et al., 1998), decrease magnitude of the neural response 

to pure tones (including interaction with relative timing of scanner noise and 

stimulus presentation, Langers, Van Dijk, & Backes, 2005), and distract attention 

away from the task (Moelker & Pattynama, 2003) with implications in working 

memory (Tomasi, Caparelli, Chang, & Ernst, 2005, letter recognition task). This 

study uses passive hearing protection to mitigate the high level of acoustic noise.18 

Magnetic resonance (MR) physics offer some intuition about what these 

choices in scan sequence design mean to data collection and the resulting data 

set. Functional magnetic resonance imaging (fMRI) acquires digital images that 

create a three-dimensional representation of the brain (or body). The scanner 

cannot acquire digital images instantaneously, and instead records a series of two-

dimensional slices, which are subsequently reconstructed into a three-dimensional 

volume. The number of slices depends on the spatial extent of the volume and the 

thickness of the slices: greater spatial extent necessitates either a greater number 

of slices or thicker slices with lower spatial resolution. To encode slice location in 

the MR signal, gradients systematically distort the main magnetic field and radio 

18 Alternate approaches to reducing scanner noise exist, ranging from passive hearing protection 
to modulation of sequence parameters (see reviews by McJury & Shellock, 2000; Moelker & 
Pattynama, 2003) and design of scanner hardware (e.g., Bowtell & Peters, 1999). But these 
approaches are beyond the scope of this study. 
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frequency (RF) pulses selectively excite molecules within a transverse plane (xy­

plane). Intensities at locations within the two-dimensional slice are reconstructed 

from measurements in k-space (angle, phase, and amplitude of spatial frequencies). 

The number of samples recorded from k-space relates directly to the in-plane 

spatial resolution of the resulting image, and the time required to acquire a single 

slice. The number of slices and the time to acquire a slice combine to determine 

the time needed to collect a single volume (acquisition time, TA). The time interval 

between volume acquisitions (repetition time, TR) depends on the experimental 

design. While scanner hardware and laws of physics dictate a minimum TA, TR is 

a flexible scan sequence parameter. 

Sparse sampling inserts a delay between the end of one volume acquisition 

and the start of the next. The schedule on which the scanner acquires volumes 

(TR) is slower than strictly necessary to acquire the image (TA). But such a 

delay creates an effective quiet interval (although notably not silent, Moelker and 

Pattynama, 2003). Further, reducing the baseline level of activity in the primary 

auditory cortex provides a higher signal to noise ratio (Hall et al., 1999), but it also 

reduces the number of volumes that are acquired in the fixed amount of time. In 

this study, a TR of seven seconds was selected. This slow TR (within the range 

that Perrachione and Ghosh, 2013 recommend) produces quiet intervals of time 

that are free from the noise of the gradient coils, and during which to present 

auditory stimuli. Notably, however, the hemodynamic response peaks several 

seconds after the onset of a related stimulus (Belin et al., 1999; Talavage, Gonzalez-

Castillo, & Scott, 2014). The neural activity of interest likely flows across multiple 

acquisitions and is contaminated by the sensory response to acoustic scanner noise 
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FIGURE 9. The peak of the hemodynamic response, illustrated as an approximate 
hemodynamic response function (HRF), lags behind the onset of the stimulus. In 
the selected scan sequence and with the three auditory map types, the measured 
BOLD intensity reflects response to both the stimuli, but residual and new scanner 
noise also contaminate the measurement. 

(Figure 9). A different TR may have captured the BOLD signal nearer its peak (see 

Hall et al., 1999), but would also extend the playback time for each map. 

Sparse sampling inserts extended spin relaxation time between acquisitions 

The extended relaxation time produces higher intensities in the measured 

BOLD signal in the first slices of a volume compared to those acquired later in 

the sequence (see also Appendix B: Scan Sequence Development: Multi-band 

Acceleration). Although higher intensity at the start of the volume provides 

higher signal to noise ratio, it also creates an intensity gradient from the superior 

(top of the head) to inferior (toward the neck) slices in the image, following the 

slice acquisition order. This intensity gradient confounds direct comparison of 

intensity magnitudes across superior and inferior regions of the brain,19 but does 

not preclude comparison between task conditions within brain regions. 

Presentation Hardware In the scanning session, a desktop computer (Mac 

OSX 10.10.5, 2.7 GHz processor) runs the presentation software. MR-safe 

19 In addition to the spatial gradient of intensities, other spatial inhomogeneities, e.g., spatially 
heterogeneous shapes of the hemodynamic response function, also challenge the validity of direct 
comparisons across different brain regions. 
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headphones,20 which attenuate scanner noise (passive hearing protection), deliver 

auditory stimuli. Both ears receive identical copies of the single channel audio. The 

headphones fit snuggly in the 20-channel head coil. A foam wedge offers additional 

attenuation of scanner noise as propagated through bone conduction (see Moelker 

& Pattynama, 2003) and additional foam sponges provide support to help the 

participants hold their heads still. Participants view a projected screen image 

through a mirror mounted on the head coil. Participants enter their answers to the 

behavioral task via two buttons on a button box.21 Between scans, the researcher 

communicates with participants using a microphone connected to the headphones 

and hears participants’ verbal responses over the intercom system. 

A laptop computer (Mac OSX 10.11.6, 2.53 GHz processor) runs the 

presentation software during the training session. The internal speakers and built-in 

screen display the auditory geographic maps and graphic prompts. Participants 

press arrow keys on the built-in keyboard to indicate their responses to task 

questions. 

Presentation Software Custom software uses PsychoPy (Peirce, 2007, 2009) to 

automate stimulus presentation. The PsychoPy toolbox provides functionality to 

present both visual and auditory stimuli and offers microsecond level control over 

timing. In addition to stimulus delivery, the software records behavioral responses 

and synchronization messages from the scanner. 

The software requires three parameters at runtime to configure the 

presentation for each session. A unique participant identifier labels each of the 

20 NordicNeuroLab, AudioSystem, http://www.nordicneurolab.com/products/AudioSystem. 
html 

21 Psychology Software Tools, Inc., Celeritas Fiber Optic Response System, https://pstnet.com/ 
products/celeritas/ 
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FIGURE 10. PsychoPy-based software automates presentation of auditory map 
stimuli (Peirce, 2007, 2009). The implementation loops though six map instances 
(trials) during which which participants listen to an auditory map and then make 
a judgement about the map contents. A trigger pulse synchronizes stimulus 
presentation with the fMRI acquisition. The flow of Run2 was identical to that 
of Run1. 

output files and serves as a link across data types (demographic, behavioral, 

and neuroimaging data; see also Appendix C: Data Dictionaries). The type of 

session (training or scanning) determines the conditional display of the instruction 

graphic (response via keyboard arrow keys or buttons on the button box). The 

participants’ self-reported preferred hand facilitates interpretation of the coded 

response events from the keyboard or button box, and determines the conditional 

display of the response graphic. 

The software presents sets of stimuli in three runs: one run during the 

training session and two runs during the scanning session. A loop controls 

presentation of the map trials (Figure 10); PsychoPy built-in functionality 

randomizes the presentation order of the trials. Within each run (training, Run1, 

Run2), a pre-determined set of six maps were displayed, each map is presented 

exactly once, and each condition (map type × response) occurs exactly once. The 

randomized order mitigates learning effects and task transition effects (Maus & 

van Breukelen, 2013). The three sets of stimuli contain comparable collections of 

map properties (see stimuli, described below). The order of the two sets of maps 

used in the scanning session is counterbalanced across participants. 
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Stimuli Synthesized map data provide experimental control. A custom R 

script systematically generates map data as point patterns (spatstat::rMatClust; 

κ=70, scale=0.2 in a square window with side length 1, and µ=20). Counts of the 

number of points that fall in each grid cell (rgeos::gIntersects) transforms a point 

patterns into an 8×8 raster grid. Quantile breaks (classInt::classIntervals) class 

the raster data into three levels. The use of quantiles ensures that each map has 

approximately equal numbers of cells that belong to each data level (MacEachren, 

1982a). Each trial depicts a unique data instance to avoid the possibility that 

participants recognize repeated data, and characteristics of the data sets are 

balanced across runs to the extent possible (see also Appendix D: Experimental 

Stimuli). 

Criteria for experimental control include only those instances that possess 

suitable task response options. A pair of square regions that each cover an 

area equal to two rows tall and two columns wide serve as target locations for 

the comparison task (see Figure 7, above). The two target locations are non­

adjacent and non-overlapping across both rows and columns. The general direction 

(northeast vs. southwest) and distance between the two target locations is balanced 

within each run. To avoid ambiguous comparisons and act as a control for the 

level of difficulty across instances of the task, each target region contains strictly 

homogeneous data values, and the data value was “low” in one region and “high” 

in the other. The relative position of the correct response (western or eastern; 

corresponding to the higher value within the pair of target locations) is balanced 

within each run. The script generates data until a sufficient number of data sets 

satisfy the experimental controls. 
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A custom Python script uses the Pyo22 module to render the digital data in 

auditory geographic maps. The script renders audio offline to ensure consistent 

stimuli across study sessions. Manual editing (Audacity) removes any instances 

of clipping. Supplemental audio files Supplementary Files, Audio 1 (sequential), 

Supplementary Files, Audio 2 (augmented-sequential), and Supplementary Files, 

Audio 3 (concurrent) provide examples of the auditory geographic map types. The 

three supplemental files represent a single data set in each of the three auditory-

map types; Figure 3, above, illustrates the data that these auditory-map examples 

represent. 

Data 

This study produces data in the form of processing scripts and empirical 

observations. A collection of scripts automate the preparation of stimuli, present 

stimuli, and analyze empirical data. The scripts that create the auditory map 

stimuli serve as artifacts to document design decisions. The PsychoPy experiment 

script details stimulus and task timing. And the R and bash scripts that perform 

and automate statistical analyses create a reproducible analysis pipeline and 

document parameters of the analyses. 

Empirical data include both behavioral performance and neuroimaging 

metrics. Behavioral data from both the training and scanning sessions reflect 

details of the map instances, their presentation order, response values, and response 

time. Notably, data from the training session is contaminated with substantial 

noise as participants learned the task and instances of the task were interrupted 

22 Olivier Blanger, Pyo, http://a jaxsoundstudio.com/software/pyo/. 
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by questions for clarification.23 The scanning sessions produce collections of image 

files for each participant. Automated processing converts the images After minimal 

processing (see neuroimaging analysis, described below), the neuroimaging data 

and associated metadata conform to the Brain Imaging Data Structure (BIDS, 

v1.0.2; Gorgolewski et al., 2016) standard. In accordance with participant consent 

to the release of their respective data sets the data are publicly available through 

OpenNeuro (https://openneuro.org/datasets/ds001415). 

Analysis 

The analysis handles the two types of empirical data, behavioral data and 

neuroimaging, separately. Behavioral data collected during the scanning session 

addresses the first research question (RQ1: influence of temporal aspect of audio 

on communication of spatial patterns). Neuroimaging data addresses the second 

research question (RQ2: contrast in neural activity in response to sequential vs. 

continuous auditory stimuli). 

Behavioral Analysis Analysis examines the behavioral data from the scanning 

session for evidence of differences in performance between the three different map 

types. Response time and accuracy provide a quantitative measure of performance 

under each of the two response conditions. Response time data reflects the time 

that elapses between the onset of the response prompt (and audio playback in 

23 The behavioral data collected during the training session are incomplete. Multiple trials 
in the training session were interrupted by questions (five trials) or incorrect advance by the 
software (one trial); no more than one interruption occurred in a single session. Data associated 
with interrupted trials reflect not only task performance, as measured by response time and 
accuracy, but also the time spent asking questions and confusion about the task itself (beyond 
the target relative judgement of data values). And, due noise in the behavioral data set from the 
training session, which already consists of a small number of observations, an originally planned 
comparison between performance in a computer-lab setting and performance in the scanner is not 
feasible. 
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the active listening condition) and the subsequent button press. A binary score 

(correct or incorrect) measures accuracy. Each of the 22 participants contribute 

two response time and two accuracy values for each of the six experimental 

conditions: three map types and two response conditions. The analysis conducts 

separate comparisons for the two response conditions. A Friedman rank sum test 

(Conover, 1971; Sheskin, 1997; as implemented in R stats::friedman.test), a non­

parametric test that accommodates heterogeneous variance and lack of normality 

in the data, tests the response time data. Four tests assess the degree of difference 

in response time between paired experimental conditions. Within each response 

condition, two tests measure differences between concurrent and augmented-

sequential map types, and between augmented-sequential and sequential map 

types were measured. A McNemar test for significant changes (Conover, 1971; 

Sheskin, 1997; as implemented in R stats::mcnemar.test), a non-parametric test 

for paired measures with binary outcomes, quantifies the likelihood of differences in 

response accuracy. This analysis consists of eight tests, which correspond with four 

conditions (two map types and two response conditions) for each of the two runs 

(repeated measures). 

Neuroimaging Analysis Neuroimaging data provide a quantitative measure 

of differences in the BOLD response in association with the presentation of three 

types of auditory geographic maps. The analysis covers standardization of the data 

format, preprocessing, and statistical analysis. 

The first step of the analysis standardizes the format of the data files. 

MRIConvert (mcverter, 2.1.0 build 440, Lewis Center for Neuroimaging, University 
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of Oregon) converts raw data from the scanner (DICOM24) into a standard 

image format (NifTI25) that analysis software accept as input. Utilities from 

the FMRIB26 Software Library (FSL, v5.0.10, Jenkinson, Beckmann, Behrens, 

Woolrich, and Smith, 2012), a software suite for neuroimaging analysis, apply 

rotations in increments of 90 degrees to orient the images with the standard axes 

and updates the NifTI headers (reorient2std, FSL utilities) and trim the image to 

focus on the brain (robustfov, FSL utilities). An automated tool removes personally 

identifiable facial features from the images (mri deface, v1.22, FreeSurver, Harvard; 

Bischoff-Grethe et al., 2007). And JSON-formatted sidecar files accumulate 

metadata (dcm2niix, v1.0.20171215, Chris Rorden; custom script to update 

locally defined fields). The BIDS Validator (bids-validator, v0.26.14, International 

Neuroinformatics Coordinating Facility, Stanford) checks compliance with the BIDS 

standard (Gorgolewski et al., 2016). 

Preprocessing is consistent with recommendations from the literature and 

leverages functionality from FSL. A custom script extracts stimulus timing 

information from the log files, creating a tab separated file (consistent with the 

BIDS format) and a space separated explanatory variable files (EV, consistent with 

the FSL three-column format). Event timestamps reflect both onset relative to 

the first scanner synchronization message and an adjusted onset, which tools in 

FSL expect, that accommodates the sparse sampling sequence by adjusting the 

midpoint of the TA to align with the midpoint of the TR. An automated processing 

24 Digital Imaging and Communications in Medicine, ISO 12052, https://www.dicomstandard. 
org/ 

25 Neuroimaging Informatics Technology Initiative, National Institutes of Health, https: 
//nifti.nimh.nih.gov/nifti-1 

26 Wellcome Centre for Integrative Neuroimaging (FMRIB), University of Oxford, https: 
//www.ndcn.ox.ac.uk/divisions/fmrib 
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pipeline (fsl anat, beta, FSL utilities) applies bias correction to the anatomical 

images and restricts the field of view. Double-gradient echo images yield a fieldmap 

(fsl prepare fieldmap, FSL FUGUE utilities) that represents inhomogeneity in the 

main magnetic field. The brain extraction tool (BET, FSL, S. M. Smith, 2002) 

isolates the portion of the each image that represents the brain from non-brain 

data. FMRI Expert Analysis Tool (FEAT, v6.00, FSL; M. W. Woolrich, Ripley, 

Brady, and Smith, 2001; M. Woolrich, Behrens, Beckmann, Jenkinson, and Smith, 

2004), performs image registration (FLIRT, FSL, Jenkinson, Bannister, Brady, and 

Smith, 2002; seven degrees of freedom and boundary based registration, BBR), 

unwarping (FUGUE, FSL, Jenkinson, 2002, 2004), motion correction (MCFLIRT, 

FSL, Jenkinson et al., 2002), spatial smoothing27 with a Gaussian kernel (SUSAN, 

S. M. Smith and Brady, 1997; five millimeter full width half maximum), and pre-

whitening (FILM, M. W. Woolrich et al., 2001) to address temporal autocorrelation 

Visualization tools (FSLView, v3.2.0, FSL utilities; FSLeyes, v0.22.6, McCarthy, 

2018) facilitate inspection of the output from each step of the preprocessing. 

Two parallel analyses measure statistical significance of directional differences 

in the BOLD response during the listening portion of the task. One analysis 

evaluates the influence that the level of explicit location information has on the 

neural response with contrasts between the sequential and augmented-sequential 

map types. The other assesses differences attributable to the temporal arrangement 

with contrasts between the augmented-sequential and concurrent map types. Both 

analyses use a general linear model (GLM; see Beckmann, Jenkinson, and Smith, 

2003) approach to whole brain analysis in three passes. 

27 Spatial smoothing improves the power to detect activity in a limited number of volumes, but 
does so at the expense of spatial resolution (Desmond & Glover, 2002). 
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The first level analysis calculates parameter estimates for the contrasts of
 

interest within each subject and for each run (FEAT, M. W. Woolrich et al., 2001; 

fixed effects, no slice timing correction, see Perrachione and Ghosh, 2013). The 

calculation convolves the stimulus time course with the double gamma model 

of the HRF (Glover, 1999), which is a standard approach in fMRI analysis and 

recommended for sparse sampling sequences (Perrachione & Ghosh, 2013). The 

result of the convolution models the expected BOLD response (Figure 11). 

The two passes of higher level analysis compute a group level result (FEAT, 

v6.00, FSL; M. Woolrich et al., 2004). The first higher level analysis (FEAT; fixed 

effects), combines the two runs within sub ject. This pass processes data from all 

participants in a single computation modelling the mean for each participant. 

The final higher level analysis (FEAT; mixed effects) combines the results from 

individual subjects into a group average. A voxel-wise threshold for all top level 

analyses (z=3.1 and α=0.001, see, Woo, Krishnan, and Wager, 2014) filters the 

activation maps, and among voxels with values that exceed the threshold, cluster-

wise probabilities control the family-wise error rate and determine statistical 

significance of (α=0.05, p=0.0125, see Eklund, Nichols, and Knutsson, 2016; 

Woo et al., 2014; corrected for multiple comparisons, Judd, McClelland, and 

Ryan, 2009; Worsley, 2001). To probabilistic atlases, the Harvard-Oxford Cortical 

Structural Atlas, which was provided by the Center for Morphometric Analysis 

(CMA) at Massachusetts General Hospital, and the Julic¨ h Histological Atlas, 

which was developed by Zilles and Amunts and provided by Simon Eickhoff, guide 

identification of anatomical regions of the brain with which to align clusters that 

have significant functional activation. 
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FIGURE 11. The analysis of neuroimaging data measures correspondence between 
the observed BOLD signal and a model of the expected brain activity. The 
auditory stimulus occurs in short bursts during the quiet interval between image 
acquisitions (top). Interpretation of the display contents spans multiple bursts 
of the auditory stimuli; grouping the the individual events reflects the sustained 
activity (middle). The model convolves the stimulus time course with a double 
gamma approximation of the hemodynamic response function (HRF; bottom). 
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CHAPTER IV 

RESULTS 

Twenty two participants1 (ages 20 to 62, average = 34 years old; 16 females) 

completed paired training and scanning sessions. Demographic data provide 

information about the sample population (see Table 4). Participants self-reported 

level of music experience varies widely from no experience (five participants) to 

one participant who has 41 years of experience. The majority of participants use 

maps regularly, where map use includes the use of direction-finding applications 

on mobile devices. Although recruiting does not explicitly select for dominant 

hand, all participants are right handed. Of the sample population, twenty-one 

participants gave consent to include data collected during their sessions in a public 

release. 

Training session durations range from 34 to 63 minutes (average = 51 

minutes; median = 52 minutes). The session duration includes time spent 

describing the study and conducting the informed consent process. The planned 

one-hour schedule provides sufficient time to complete the majority (16 of 22) of 

the scanning sessions; none of the scanning session durations exceed 75 minutes. 

As needed, the additional time accommodates, e.g., providing clarification on the 

MR safety screening form and adjusting a set of MR safe glasses for participants to 

    wear in the scanner.

1 With fixed funding to support data collection, two situations produce an overall study 
population size that is smaller than the 24 participants in the original plan. One participant 
chose to discontinue participation before completing the scanning session. One late cancellation 
was a billable scanning session, for which there is no data. 
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TABLE 4. Aggregated demographic details show diverse levels of experience for the 
sample population who participated in the study sessions. 

Age (years) 
Range 20–62 
Average 34 
Median 28

Music Experience (years) 
Range 0–41 
Average 9 
Median 5

Gender 
Female 16 
Male 6 

Map Use 
Daily 14 
Occasionally 7 
Rarely 1 

Preferred Hand 
Right 22 

Behavioral Results 

Response time and accuracy measure performance during the scanning 

session. The analysis describes only the portion of the task associated with the 

response activity (for analysis of listening activity, see neuroimaging results, 

described below). 

Overall response times are faster for both the sequential and concurrent map 

types in contrast to the augmented-sequential map type (Table 5). The response 

times and variability differ between response condition (Figure 12); under the active 

listening condition, response times have particularly high variability, ranging from 

0.60 seconds to 56.96 seconds (Figure 13). Under the active listening response 

condition, the observed difference in response time between augmented-sequential 

and concurrent map types is unlikely to occur by chance (Friedman T=4.55, 

p=0.03; Table 6). 
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TABLE 5. Average response time (top) and accuracy (bottom) values across the 3
 
map type × 2 response type conditions. 

Average Response Time (seconds) 

Recall Active Listening Overall 
Sequential 4.0 16.8 10.4 
Augmented-sequential 4.1 25.8 15.0 
Concurrent 4.2 12.0 8.1 
Overall 4.1 18.2 11.2 

Average Accuracy (%) 

Recall Active Listening Overall 
Sequential 57.1 85.7 71.4 
Augmented-sequential 81.0 71.4 76.2 
Concurrent 35.7 64.3 50.0 
Overall 57.9 73.8
 65.9
 

FIGURE 12. Behavioral data, in the form of response time and accuracy, provide 
descriptive measures of task performance. Within each participant, the response 
time value represents the average of two trials for each condition. 
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FIGURE 13. Response time by participant, sorted on the maximum response time 
(for any trial condition). Within each participant, the value represents the average 
of two trials for each condition. In contrast to an aggregate metric, this response 
time plot makes visually apparent the high variability of response time (particularly 
in response to the augmented-sequential map type). 

TABLE 6. The Friedman Rank Sum test for differences in means is applied to 
evaluate the influence of map type on response time. 

Recall Active Listening 
Contrast T-score P-value T-score P-value 
Sequential vs. Augmented-sequential 1.636 0.201 2.909 0.088 

Augmented-sequential vs Concurrent 0 1 4.546 0.033 

Within the active listening condition, there was expected to be a relationship 

between the response time and the onset of the second target region as playback of 

the second target region provides task critical information. Regardless of response 

condition, participants respond both before and after the display sonifies task 

critical data (Figure 14). Responses that occur before the onset of the second 

target region either rely on a mental representation or indicate guessing. 
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FIGURE 14. The relationship between response time and the onset of the second 
target region suggests different strategies across the two response conditions and 
within the active listening condition. Response times corresponding to judgments 
made from a mental representation of the map contents (recall condition) are 
similar across all map types and tend to occur within the first TR. A bimodal 
distribution of response times is apparent among observations from the sequential 
playback (particularly those in which the second target region played more than 
halfway through the map playback) suggests that participants choose either to 
make a judgement from memory or to wait until the display sonifies task-critical 
information. 

TABLE 7. A McNemar test for significant changes evaluates the influence of 
map type on accuracy for the two sets of map stimuli, which were presented in a 
counterbalanced order. 

Recall Active Listening 
Contrast χ2 P-value χ2 P-value 

S
et

 A

Concurrent vs. Augmented-sequential 7.692 0.006 0 1.000 

Augmented-sequential vs. Sequential 0.444 0.505 0.1 0.752 

S
et

 B

Concurrent vs. Augmented-sequential 4.267 0.039 2.5 0.114 

Augmented-sequential vs. Sequential 5.143 0.023 2.25 0.134 
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The concurrent map type has the lowest accuracy scores and the augmented-

sequential map type has the highest accuracy scores (Table 5, above). Surprisingly, 

accuracy in response to the augmented-sequential map type is higher for recall than 

for active listening (81.8% and 72.1%, respectively). 

Neuroimaging Results 

The contrast between the concurrent and augmented-sequential map type 

produces one statistically significant cluster in which activation in response to the 

concurrent map type was stronger than that to the augmented-sequential map type 

(Table 8 and Figure 15). The statistically significant cluster overlaps with the left 

planum temporale and auditory cortex; although only the result on the left side is 

statistically significant, the data show bilateral differences in activation. 

Three statistically significant clusters indicate a stronger response to the 

augmented-sequential map type than to the sequential map type (Table 8 and 

Figure 16). Each statistically significant cluster is unilateral, but the data reveal 

bilateral activation corresponding to each of those clusters that passes the voxel­

wise threshold but does not survive the cluster-wise correction for family wise error. 
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TABLE 8. Two directional contrasts reveal statistically significant differences 
between the neural activation in response to the concurrent map type and that of 
the augmented-sequential map type, and between the augmented-sequential and 
sequential map types. The location of the cluster is described by the coordinates 
(MNI152) of the peak z-statistic. 

Contrast Cluster x y z voxels p-value 

Augmented-sequential > Sequential 

1 -44 -24 14 655 <0.001 

2 50 -26 12 403 <0.001 

3 -6 -74 2 236 <0.001 

4 16 -56 2 127 0.006 

5 40 2 -12 121 0.008 

Concurrent > Augmented-sequential 
1 62 -18 8 1005 <0.001 

2 -46 -26 10 773 <0.001 

FIGURE 15. A cluster-wise analysis finds statistically significant clusters in the 
left and right auditory cortex. The contrast in this analysis relates the level of 
neural activation to the temporal arrangement of the auditory geographic map 
symbology: activation in response to the concurrent map type is greater than that 
of the augmented-sequential map type. The significant cluster is outlined in blue, 
and the image coordinates correspond to peak activation within the cluster. 

87
 



FIGURE 16. A cluster-wise analysis finds five statistically significant clusters that 
overlap with the left and right auditory cortex (clusters 1 and 2), left and right 
visual cortex (clusters 3 and 4) and the right insula (cluster 5). In each cluster, 
neural activation corresponds to the level of encoded information: activation 
in response to the augmented-sequential map type is greater than that of the 
sequential map type. The significant cluster is outlined in blue, and the image 
coordinates correspond to peak activation within the cluster. 
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Design Feedback
 

Participant comments during the training session provide insight into user 

preferences and usability related to the three auditory map types. This summary 

groups comments according to three themes: mapping data to the dimensions of 

audio, reflection on the three audio types, and reflection on the map reading task. 

Mappings from data to audio parameters receive mixed responses. One 

participant notes that the “pitch and rhythm easy to follow; they have order” (sub­

04). But, in contrast, others find the differences in speed difficult to interpret. The 

“warble” (sub-12) of the notes in the east distorted the loudness. And, because 

there are “more notes [in the east,] its hard to tell where one cell ends and the 

other begins” (sub-03). The use of volume to convey data values also requires 

practice. It was initially hard to “tell what is loud” (sub-17) and “volume in 

different peaks is hard to compare” (sub-05). Reflecting on their strategy for 

listening to the maps, one participant reports that he is “figuring out louder 

locations, but comparing peaks was harder” (sub-18). 

Overall, participants agree that the sequential and augmented audio types 

are easier to interpret than the concurrent audio. One participant describes the 

map display that follows a reading order saying: “I like these [sequential] better, 

they’re not as busy” (sub-16). But despite the simplicity, participants note that 

the sequential audio type is also challenging (“eight series are hard to remember,” 

sub-01, and “all the same tones [make it] way harder to delineate between rows,” 

sub-12) or inefficient (“obviously took longer but, information is just in one 

[dimension],” sub-09). Another participant remarks that it is “hard to notice all 

three [frequency, note duration, and volume] at the same time” (sub-04) in the 

concurrent audio type. 

89
 



Beyond the parameter mapping and types of audio maps, the data itself also 

influenced perceived difficulty. One participant reflected on the two instances of 

the concurrent audio maps in the training session, saying of the first one “it was 

so obvious,” but of the second one “this is tricky” (sub-20). Despite an attempt to 

control map complexity in the stimulus design, the spatial patterns in the data still 

influence the ease of interpreting map content. 
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CHAPTER V
 

DISCUSSION 

This research seeks to better understand the role and influence of temporal 

arrangement of an auditory geographic map display. The analysis of data from 

the empirical study provides evidence of differences in behavioral and neural 

responses to the three auditory map types. The discussion reflects on the auditory­

geographic-map design, provides an interpretation of the empirical results, and 

considers potential threats to validity. 

Reflection on Audio Design 

The sequential and augmented-sequential map types create a one-to-one 

mapping between data records and sound events. But, by stringing out the data 

into a linear sequence, the map playback duration is proportional to the size of 

the dataset. The linear-time-based presentation was feasible for the small test 

data set, but the approach scales poorly to larger, real-world raster data sets. 

Long sequences place a high demand on working memory and require listeners to 

mentally reconstruct two-dimensional space. Further, compared to visual maps, 

which convey spatial patterns in a few seconds, communication that takes almost a 

minute to render (for even a small 8×8 raster data set) is prohibitively inefficient. 

Revisiting the established convention of displaying space over extended periods of 

time prompts investigation of novel symbology for auditory geographic maps. 

The auditory map symbology revisits the design decisions around the 

temporal aspect of the auditory display. This research uses functional magnetic 

resonance imaging (fMRI) to evaluate the cognitive impacts of the new types of 
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auditory maps, and the fMRI acquisition sequence constrains the duration of audio
 

playback. Timing in the map display had to align with short (five second) silent 

intervals between bursts of scanner noise. The design also prioritizes the isolation 

of temporal order and map duration over polished aesthetic properties of the maps. 

Within these constraints of the broader research project, the auditory dimensions of 

frequency (pitch) and note rate (tempo) create a two dimensional reference frame. 

The concurrent auditory symbology achieves the goal of reducing geographic 

map playback duration, but is sub-optimal. There are certainly more aesthetically 

pleasing approaches, but this version conforms to requirements of the fMRI 

scanning environment and its production can be fully automated.1 The original 

notion of a concurrent auditory geographic map symbology leveraged musical 

structures of sound. A combination of multiple frequencies that become a chord 

is present in the concurrent map type as implemented. However, the second 

dimension of audio that aligns with the second spatial dimension of the data 

reflects a compromise in favor of functionality that is both available in the sound 

synthesis software and feasible within the scope of this project. 

When listening to the three auditory map types, the listener has no control 

over the presentation order or speed. The sequential map type is the most 

prescriptive: the display presents one data value at a time in a fixed order and 

with fixed note duration as determined by the cartographer. In contrast, the 

concurrent map type relinquishes some control over the map-listening experience. 

By presenting multiple pieces of information at any given time, the concurrent map 

type allows the listener to attend to various aspects of the complex sound as they 

1 In the long run, a fully automated approach is neither appropriate nor possible for geographic 
map design. Just as experienced cartographers modify the automated symbology output from 
GIS software such as ArcMap using graphic design software such as Adobe Illustrator, auditory 
geographic maps will also require manual polishing. 
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choose. For comparison, a static visual geographic map is not typically considered 

“interactive”, but the viewer controls the location of their gaze, attending to 

and gather detailed information from viewer-selected regions of the map in a 

viewer-specified order. Research in user interfaces explores the ways that interface 

designers can expose control of the experience to the user (see, e.g., guidelines 

for interface design by Schneiderman and Plaisant, 2010). A user’s ability to 

change the speed of an animation is an example of how an interface designer or a 

cartographer may give some control to a user or map reader. However, the software 

still mediates the interaction; the user can only control those aspects of the display 

that the interface designer choses to expose. In the case of the concurrent map 

type, listeners might selectively attend to low frequency notes as the map plays, 

but the current implementation does not provide an option to change the specific 

frequencies or the speed of the playback. 

Interpretation of Empirical Results 

The behavioral data addresses the first research question (RQ1: influence 

of temporal aspect of audio on communication of spatial patterns). As a tool 

to communicate spatial pattern, and as measured by response accuracy, this 

concurrent auditory map type is ineffective. The difference in accuracy in the 

contrast between concurrent and augmented sequential map types under the 

recall response condition is statistically interesting (McNemar χ2=7.69, p=0.006; 

Table 7). However, the inconsistency between the two sets of map stimuli indicates 

that the observed difference may not be practically significant. While overall 

accuracy of responses to trails under the concurrent-map-type condition, post-hoc 
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FIGURE 17. Performance accuracy for the concurrent map type is at the level of 
chance (left). Response condition may modulate performance accuracy (right), but 
the exploratory visualization and small number of observations precludes drawing a 
robust conclusion. 

exploration of the accuracy data suggests that an interaction may exist between 

accuracy and the response condition (recall or active listening; Figure 17). 

While no differences in response time between the paired contrasts of interest 

stand out as being statistically interesting (Table 6), the notable differences in 

response time across the response conditions (recall and active listening; see 

Figure 12) indicate that at least two map use cases should be considered separately 

in future analysis. Patterns in the observed response time values also point to 

potential differences in task strategy. 

In the sequential and augmented-sequential map types, response time 

observations suggest more than one strategy.2 With the playback of the sound 

events that represent the second response option, the auditory display provides 

sufficient task-critical information to make or confirm a judgement about relative 

value. In the active listening response condition, some participants seem to rely 

on a mental representation of the data and enter their response shortly after the 

response prompt appears. Others apparently rely on the playback (either a literal 

2 The number of strategies may also increase with the inclusion of a more diverse participant 
population. For example, Pasqualotto, Spiller, Jansari, and Proulx (2013) report that people who 
are blind tend to adopt different behavioral and cognitive strategies for handling spatial data than 
their sighted peers. 
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repetition of the auditory map representation or mental rehearsal3 to extract 

sufficient information to make a decision or to confirm the result of querying a 

mental representation. Interestingly, the direction of the difference in accuracy 

for the sequential and augmented-sequential map types differ between the two 

response conditions. In contrast to a previous report that demonstrates an increase 

in accuracy with the encoding of more information in a complex sound (Schito & 

Fabrikant, 2018), accuracy in response to the augmented-sequential map type is 

lower than that of the sequential map type under the active listening response 

condition. While interesting, this directional relationship could be an artifact of 

the small sample size rather than a true difference in mean accuracy. Across all the 

map types, performance is likely to improve with additional training and practice 

that provide familiarity with both the auditory representation and alignment 

between the auditory geographic map and the visual response prompt. 

The neuroimaging data addresses the second research question (RQ2: 

contrast in neural activity in response to sequential vs. continuous auditory 

stimuli). Through a cluster-wise analysis, the data reveal statistically significant 

differences in activation associated with both the level of information explicitly 

encoded in sound events and the temporal arrangement of the sound events. 

The two contrasts between the augmented-sequential and sequential map 

types provide measures of the influence that the level of encoded information 

has on listeners’ neural response. In the contrast that measures differences in 

neural activation in which the response to the augmented-sequential map type is 

greater than that of the sequential map type (augmented-sequential > sequential), 

3 Nees and Walker (2008) describe a similar temporal delay proportional to the length of time 
between the start of the auditory representation and the display of task critical information as 
indication of a “sensory-musical encoding,” describing the encoding strategy as being “like a tape 
recorder in their minds”(Nees & Walker, 2011). 
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five groups of voxels pass the threshold of statistical significance using cluster-

based analysis to control the family-wise error rate (no groups pass the voxel-wise 

threshold for the opposite contrast in which activation in response to the sequential 

map type is greater than that of the augmented-sequential map type). Bilateral 

activation in auditory cortex (clusters 1 and 2) is not surprising. The activation on 

the left side (cluster 1) is somewhat superior to (toward the top of the head from) 

the auditory cortex, which, according to the Juelich Histological Atlas, falls in the 

secondary somatosensory cortex.4 Analysis reveals bilateral activation in visual 

cortex in clusters 3 and 4. A response in the visual cortex to auditory stimuli is 

interesting, but again not unexpected. The difference in activation could stem from 

many causes ranging from a cognitive strategy for handling spatial information that 

is biased by visual experience, to overwhelming difficulty of the task that recruits 

help from expansive regions of the brain. Cluster five overlaps with the right insula. 

Reports of asymmetry in neural responses are common (e.g., asymmetry in the 

planum temporale among musicians Keenan, Thangaraj, Halpern, & Schlaug, 

2001). And allocation of non-verbal auditory processing is one of many reported 

functions of the insula (e.g., auditory sequencing, see Bamiou, Musiek, & Luxon, 

2003). 

The two contrasts between the concurrent and augmented-sequential map 

types measure differences in brain response attributable to temporal arrangement. 

The contrast that identifies voxels that exhibit a stronger response to the 

concurrent map type than the (concurrent > augmented-sequential) produces to 

groups of voxels that pass the threshold for statistical significance using cluster­

4 The supplementary motor area, located in somatosensory areas has been reported to respond 
more strongly to temporal than spatial stimuli, Coull, Charras, Donadieu, Droit-Volet, and Vidal, 
2015; but the reported location is superior (toward the top of the head) to the peak activation 
observed in this study. 
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based analysis to control the family-wise error rate (the contrast in the opposite
 

direction produces no statistically significant clusters). Statistically significant 

results of the contrast between the concurrent and augmented-sequential map 

types fall bilaterally in auditory cortex in clusters 1 and 2. With different levels 

of auditory information to process at a given time, differential activation in the 

primary sensory areas are not surprising. 

Contrary to a-priori expectations, the data do not show a difference in 

activation within the supplementary motor area (SMA), which contributes to the 

accumulation of information over time (Coull et al., 2015). Nor are there apparent 

differences in activation in areas of the brain known to process spatial information 

(e.g., parahippocampal place area, Epstein, Harris, Stanley, and Kanwisher, 1999, 

which is active when viewing maps, Rozovskaya and Pechenkova, 2012; or the 

retrosplenial cortex, Auger et al., 2012). In future work, the use of a region-of­

interest analysis could help explain how the auditory stimuli influence these task-

relevant brain regions. 

Reflection on Experimental Design and Threats to Validity 

The auditory-map designs, which satisfy requirements for experimental

evaluation in an fMRI environment, incorporate many decisions that influence th

interpretation of results, but their full exploration was beyond the scope of this 

study. One such decision was the use of a small raster data set as the underlying 

geospatial data. The simple 8×8 raster grid is an abstract form of geospatial data,

        

e 

5 

5 Real world geospatial data sets tend to be much larger, and future work will need to 
investigate the extent to which results obtained from small, low resolution data sets scale and 
apply to larger and more complex data sets. While data simplification is a common and necessary 
step in cartographic design (Muehrcke, 1973), there are many possible approaches. Extending the 
ideas about auditory geographic map design from this research to more realistic applications could 
involve implementing the three auditory map types for larger raster data sets. Or it could involve 
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and could easily apply to or be interpreted in a non-geographic context. As a 

common type of geospatial data, the use of population data bolsters face validity 

by providing geographic context for the experimental task (similar to the way that 

Langers et al., 2005 used a behavioral task to monitor subjects, but did not include 

behavioral data in their analysis). 

As with any user interface, there are inconsistencies between sub jective 

impressions of effectiveness and quantitative metrics of performance. Some of the 

participants approached the auditory symbology with initial skepticism; however, 

with just a limited amount of practice (less than one hour), participants were able 

to make some sense of the auditory map displays. Participants occasionally express 

concern that they were performing poorly, but overall accuracy was better than 

chance. Although a high level of performance could happen by chance, there is 

also a possibility that the novelty of listening to maps negatively impacted their 

confidence. As an example, on participant stated “I’m probably tone deaf ” (sub­

09), yet that participant responded correctly to three of the four trials of the 

concurrent map type (in which discriminating between frequencies is critical to 

the task). 

Several potential threats to validity limit the evaluation and conclusions 

that can be drawn from the behavioral data. First, while behavioral testing 

illuminates trends in performance, there is high variability between individuals. 

Demographic data provide clues about prior experience with active music listening, 

they cannot perfectly capture all aspects of an individual’s history that could 

influence performance. Differences between sub jects’ performance, which are 

attributable to previous experience with map reading (Muehrcke, 1973, related 

a conceptual shift in the way that structural features of the data set are described and handled, 
e.g., an ob ject-based approach that leverages hierarchical reasoning (Timpf & Frank, 1997). 
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to visual map reading) or musical training (weak, but statistically significant,
 

correlation with task performance, Schito and Fabrikant, 2018; modulated strength 

of BOLD response, Coffey, Musacchia, and Zatorre, 2017) likely influence task 

performance. At the same time, however, the variety of backgrounds and experience 

help break free from design conventions (see Montello, 2002; Robinson, 1986) that 

may be introducing or propagating bias in development of sonification techniques 

in cartography. While the diversity of participants and their prior experience 

introduces noise into the measurements, detectable differences that remain may 

indicate universal properties of perception and cognition. Second, the MR scanning 

environment is a threat to ecological validity. Participants endeavour to listen 

carefully to subtle changes in audio streams while they lie on their back, with 

their head in a small (70 centimeter diameter) tube, and the scanner bombards 

them with loud intermittent noise. Participants mention that the scanner noise 

distracts from the map listening task at inopportune points in time. Right after 

hearing an audio burst, information is in sensory memory (Levitin, 2002), and 

when interleaved volume acquisition starts, the acoustic scanner noise clobbers the 

task relevant information, disrupting encoding and mental rehearsal. The scanner 

noise comes in just as participants are trying to reflect on the data display and 

synthesize new information with their mental representation of past information. 

The extent of the influence of the MR scanning environment on performance of 

the map listening task is unknown. Future work that conducts more trials in a 

computer-lab setting could provide a reference data set to evaluate the impact 

that the the scanning environment has on task performance. Finally, the duration 

of each map limits the number of trials within the one-hour sessions. The small 

number of observations yield low statistical power. Still, descriptive summary 
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statistics can provide insight into differences between the auditory map types and 

inform interpretation of the neuroimaging data. 

While neuroimaging offers a unique perspective in the assessment of map 

effectiveness, challenges and threats to validity accompany the method. First, 

the extreme simplification of the map data and the unusual environment for 

map listening threaten ecological validity. The simple map data occupy a square 

grid made up of eight rows and eight columns (8×8 raster grid, however, “real 

maps that are almost never composed of convenient little squares” Olson, 1975). 

But raster data facilitate experimental control, and small data size constrains 

playback duration for sequential map symbology. Providing even twice the 

isotropic resolution in the data would quadruple playback duration, and would 

tax the listener’s working memory even further. Second, participants perform 

the map listening task in the MR scanner, which allows acquisition of brain 

images. The MR scanning environment likely influences behavioral performance 

through distraction (Liem, Lutz, Luechinger, Jäncke, & Meyer, 2012) and added 

stress associated with the unfamiliar space. And acoustic noise of the scanner 

during acquisition leads to activity in the auditory cortex that is unrelated to the 

task. Sparse sampling mitigates saturation of the auditory response and makes 

auditory stimuli easier to hear. An unfortunate side effect of the sparse sampling 

is intermittent loud noise. The scanner noise creates an abrupt interruption just as 

participants are trying to process what they have just heard. Third, even though 

the design of the auditory symbology endeavors to isolate the temporal component 

of the auditory map implementations, the degree to which a single aspect of the 

auditory display can be isolated without sacrificing ecological validity is limited. 

Recognizing the perceptual interactions between dimensions of audio it was not 
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realistic to expect that a change to the temporal arrangement within an audio
 

stream would not influence other aspects of the audio. A hybrid augmented-

sequential auditory map symbology serves as an intermediate step that reduces, 

but does not eliminate, confounding interactions in the transition between the 

established sequential playback auditory geographic map type and the more 

compact concurrent audio representation. 
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CHAPTER VI
 

CONCLUSIONS 

The three auditory geographic map types introduced in this manuscript 

provide further evidence that sound can encode multidimensional data, and 

take a small step toward understanding how to do so in a way that listeners can 

understand. While performance on trials that use the concurrent map type was 

not strong, the task established context and directed participants’ attention toward 

interpretation of the auditory stimuli as geographic maps. The neuroimaging, then, 

provided an alternative way to investigate the influence of temporal arrangement 

across the three auditory map types. 

In response to the research questions posed at the outset of this research, 

this research identifies patterns in the way that the brain responds to the auditory 

geographic maps amid imperfections in the specific implementation of the 

auditory symbology. As implemented in the concurrent map type, the overlapping 

temporal arrangement of the auditory map symbolization correlates with difficulty 

interpreting general spatial patterns in the data. Whether attributable to the 

temporal overlap of symbols or the pairing of frequency and note rate, accuracy on 

the comparison task is poor for maps using the novel concurrent audio symbology. 

Even though the specific instance of auditory symbology leaves something to 

be desired in the realm of cartographic communication, controlled differences 

between the three map types still provide insight into how design choices influence 

map listening. Neural activation is stronger bilaterally in the auditory cortex, 

overlapping the right planum temorale and left Heschl’s Gyrus, in response to 

concurrent audio symbolization of geospatial data in contrast against that of the 
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augmented-sequential symbology. Although not known to selectively process spatial 

information, stronger activation in the planum temporale suggests future work to 

better understand the auditory geographic map display as a symbolic language, 

akin to music or natural language. Further, in contrast to a sequential, single-

attribute encoding of data, augmenting the display with additional parameter 

mappings evokes a greater response bilaterally in the visual cortex. While this 

activation could indicate recruitment of additional brain regions to handle the 

more complex sound, implicating the visual cortex in response to auditory stimuli 

suggests a benefit to using a rich parameter mapping sonification to represent 

geospatial data. 

This dissertation attributes the limited adoption of auditory display in 

cartography to a lack of established auditory mapping techniques. The ubiquity 

of visual maps, which provide the ma jority of experience with maps, feed a visual 

bias among cartographers that influences not only the types of artifacts that are 

considered “maps” but also the way that people who are sighted think about 

spatial information. While these observations may help to explain the existing 

dearth of auditory maps, they do not justify the continued exclusion of audio from 

development of new cartographic techniques. To move forward, geographic map 

design needs to consider audio both early in the process and as a primary display 

modality. Although many cartographers unfortunately dismiss audio as a potential 

medium for displaying geographic information, an expansive sonification design 

space is available for use in auditory geographic maps. Exploring the design space 

with an ear toward geospatial data facilitates adoption of audio into cartographic 

design and contributes to the development of diverse geographic map artifacts. 
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APPENDIX A
 

DEMOGRAPHIC QUESTIONS 

Study participants provide demographic information by responding to a 

demographics questionnaire. The demographic data describe the sample population 

participating in the study, but do not contribute to the quantitative analysis. 

Section IV: Results reports participant responses in aggregate. 

1. What is your age? 

2. What is your gender? 

3. Which hand is your dominant hand? 

4. Do you have experience with map reading? If so, how often do you use maps? 

(daily, seasonally, occasionally, rarely) 

5. Do you have music experience? If so, how many years of informal experience 

or formal training do you have? 
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APPENDIX B
 

SCAN SEQUENCE DEVELOPMENT: MULTI-BAND ACCELERATION 

The magnetic resonance imaging (MRI) scanner produces substantial noise 

during image acquisition, and this noise poses a substantial challenge to the 

presentation of auditory stimuli. Recent techniques that use custom scan sequence 

parameter promises theoretical advantages to accommodate presentation of the 

auditory geographic maps. Sparse sampling and multi-band acceleration are two 

such techniques that balance overall scan duration, acquisition time for a single 

volume, and spatial resolution of the resulting images while accommodating 

auditory stimuli. Sparse sampling inserts a quiet interval between acquisitions, 

during which auditory stimuli can be presented without interference from the 

scanner noise. Multi-band acceleration reduces the amount of time required to 

acquire a single volume. This appendix describes the scan sequences and illustrates 

an observed negative consequence of combining the two techniques. 

Multi-band acceleration uses concurrent excitation and readout of two or 

more slices within a single volume (Larkman et al., 2001). Recording multiple 

slices at the same time reduces the total time required to collect a volume (TA). 

The resulting time savings translates into an increase in the number of volumes in 

a scanning session, a reduction of the scanning-session duration, or an increase in 

spatial resolution. Images recoded using multi-band acceleration are susceptible 

to spurious detection from signal bleed across concurrent slices; the impact is 

minimal for an acceleration factor of two and increases for higher acceleration 

factors (Todd et al., 2016, evaluated within visual and motor cortices). Combining 

sparse-sampling with multi-band acquisition offers the benefit of a longer silent 
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TABLE 9. Custom scan sequence parameters accommodate scanner noise on 
the presentation of auditory stimuli using both sparse sampling and multi-band 
acquisition (A). Adjustments to mitigate the observed stripe artifact include slice 
acquisition order (B), slice spacing (C), and omission of the multi-band acquisition 
at the expense of spatial resolution in slice thickness (D). 

TR 
(ms) 

TE 
(ms)

Slice 
Order 

Thickness
(mm) 

Slice 
Spacing
(mm) 

Slice 
Duration

(ms) 

Number
of 

Slices 

Voxel 
Size 
(mm) 

A 7000 25 interleaved 2 2 26.7254 72 2×2 
B 7000 25 descending 2 2 26.7254 72 2×2 
C 7000 25 descending 2 3 39.4681 48 2×2
D 7000 25 descending 4 4 63.8333 31 2×2

interval while maintaining a fixed TR and without sacrificing spatial resolution 

(De Martino et al., 2015, evaluated within Hershel’s Gyrus). 

Although in theory the combination of sparse-sampling with multi-band 

acquisition (Table 9) gives the best of both worlds, pilot data reveals a spin history 

effect that is visually apparent in the coronal and sagittal views (Figure 18). Data 

collected under the theoretically grounded parameters reveals an unanticipated 

artifact, which, in hindsight, is not surprising. The implementation of sparse 

sampling in this study turns off both the gradient and RF pulses during the quiet 

interval. The absence of the RF pulses allowed extended relaxation time between 

TRs. As a result, the first samples (slices) of an acquisition recorded higher 

intensity values than the later samples in the same acquisition. The multi-band 

acceleration distributes the first samples across the z-axis of the volume, placing 

them spatially adjacent to samples that are collected after the application of RF 

pulses resumes. Ultimately the detrimental impact of the artifact outweighs the 

apparent advantages of the combined sparse-sampling and multi-band sequence. 

The scan sequence parameters used in the study employ sparse sampling, but 

exclude multi-band acceleration. Forgoing the multi-band acceleration mitigated 
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the stripe artifact, or abrupt changes in signal intensity across slices, but obviously
 

does not eliminate the underlying cause: spin history.1 Without the acceleration of 

multi-band imaging, a concomitant aspect of the sequence had to reactively change. 

As the desired time course of the stimuli restricts adjustments to the acquisition 

time (TA) or repetition time (TR), the selected scan sequence parameters sacrifice 

spatial resolution (4 mm slice thickness, in contrast to the originally planned 2 

mm). 

The option to use headphones is a redeeming side-effect of the decision to 

forgo multi-band acceleration. Multi-band acceleration necessitates use of the 

32-channel head coil, which has relatively restrictive internal dimensions and 

requires use of insert earphones2 to present auditory stimuli. Without the need 

for multi-band capabilities and accepting lower spatial resolution (4 mm slices) in 

the digital images obtained, the 20-channel head coil, which has more generous 

internal dimensions, is an option. This larger head coil provides room for MR-safe 

headphones3 that offer better sound quality than the insert earphones. 

1 Mitigation techniques such as clustered acquisition with silent steady state (Schwarzbauer, 
Davis, Rodd, & Johnsrude, 2006), or read-out omissions (Bartsch et al., 2007) could address the 
spin history effect. Although scan sequence development considered these approaches, clustered 
acquisition was not available, and an option to apply continuous RF pulses during the quiet 
interval was not identified within the LCNI supported software until after data collection had 
concluded. 

2 Sensimetrics, Model S14, http://www.sens.com/products/model-s14 

3 NordicNeuroLab, AudioSystem, http://www.nordicneurolab.com/products/AudioSystem. 
html 
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FIGURE 18. An intensity artifact of the multi-band acquisition was visually 
apparent as a stripe in the coronal (left) and sagittal (right) views. A. Interleaved 
multi-band acquisition, 2 mm slices; B. Sequential (descending) multi-band 
acquisition; C. Sequential (descending) multi-band acquisition with a 100 mm 
gap between slices; D. Sequential (descending) acquisition without multi-band, 4 
mm slices. 
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APPENDIX C
 

DATA DICTIONARIES 

The test instrument produces two types of tabular data:1 demographic 

data and behavioral responses. This appendix provides data dictionaries that 

describe the structure and contents of the tabular data (see also the associated 

metadata files in JSON format that is available with the data). The data format 

follows recommended organization for tidy data (Wickham, 2014) and the specific 

fields they contain conform to the BIDS standard (Brain Imaging Data Structure, 

v1.0.2). The data are available from OpenNeuro (https://openneuro.org/datasets/ 

ds001415). 

Data files from sessions with a single participant are linked by a unique 

participant identifier: pNum. Each participant receives a temporary numeric 

identifier when the training session is scheduled; the number is a number selected 

from a uniform distribution (R, stats::runif) to obscure the date of participation 

and protect participant identity. After data collection, all data sets are sorted by 

the temporary numeric identifier and assigned an archival participant identifier 

using a one-up counter. The pNum is a two digit number with the prefix “sub-” (see 

the BIDS specifications for requirements related to the subject identifier). 

Demographic Data 

Participants respond to the demographic questions (see Appendix A: Demographic 

Questions) on paper at the start of the computer-based training session. The paper 

1 Metadata associated with the neuroimaging data are available in JSON formatted files that 
conform to the BIDS standard (Brain Imaging Data Structure, v1.0.2). 
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format allows participants to enter any value they chose for each question, with one 

exception: participants were asked to select one of the listed levels of experience 

with map reading. The responses are manually digitized for aggregation and 

storage in computer files (Table 10); in the case of categorical variables, the actual 

responses written on paper are listed in the right-hand column. Each participant 

session contributes one row to a tidy (Wickham, 2014) tabular file of demographics 

data. 

Behavioral Data 

The PsychoPy experiment records behavioral responses to the map listening 

task. Each behavioral data file is associated with the session in which it was 

collected by the pNum in the filename (see the BIDS specifications for details of 

the file naming convention). A custom script extracts pertinent details from the 

log files and creates tabular data files (Table 11; see the BIDS specifications for 

requirements related to the record of event details). Each participant generates 

two behavioral data sets: one collected during the computer-based training session 

and one for the scanning session. During the training participants learn about the 

three map types and the task protocol. The resulting data are susceptible to noise. 

Examples of noise sources include asking questions during the response activity 

(increasing the response time) or advancing to the response activity before hearing 

an entire map (skipping the map presentation and then having no basis to respond 

in the memory condition). 

110
 



TABLE 10. The data dictionary for demographic data describes the data fields and range of valid values for the 
digitized demographic data, which were collected through the paper questionnaire. 

variable type (units) 
digitized 
values description response values 

participant id character “sub-<NN>” Unique identifier for the 
participant concatenating the 
prefix “sub-” with a two digit 
number 

<randomized, assigned> 

gender categorical “female” 
“male” 

Participant gender, articulated 
by participant 

“FEMALE”, “F”, “female” 
“Male”, “male” 

age integer (years) 18–65 Participant age at the time of 
participation 

<number>; “<number> 
yrs”; “<number> years 
old” 

hand categorical “right” 
“left” 

Dominant hand, self-reported 
by participant 

“RIGHT”, “Right”, 
“right”, “R” 

has map boolean True 
False 

Flag indicating whether or not 
the participant indicated map 
reading experience through 
self-report 

level map categorical “daily” 
“seasonally” 
“occasionally” 

“rarely” 
NA 

Level of self-reported map 
reading experience (or NA if 
not applicable, i.e., has map is 
false) 

Continued on next page 
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Table 10 – continued 

variable type (units) 
digitized 
values description response values 

has music boolean True 
False 

Flag indicating whether or 
not the participant indicated 
informal music experience or 
formal music training through 
self-report (training, practice, 
performance) with music 

“yes”, “15 years” 
“no”, “No” 

years music integer (years) 1–65 
NA 

Number of years of self-
reported music experience 
(or NA if not applicable, i.e., 
has music is false) 

test order categorical “AB” 
“BA” 

Counterbalanced order in 
which the stimulus sets were 
presented 
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TABLE 11. The data dictionary for behavioral data describes the data fields and 
range of valid values for the behavioral data, which were extracted from the log 
files. 

variable type (units) values description 
onset float (seconds) 2.5–695.5 Stimulus onset relative to 

the first trigger pulse 

duration float (seconds) 0.0–56.0 Length of time that the 
stimulus was presented. 
When the duration is 
shorter than the duration 
of the audio clip, the audio 
played from the start and 
was truncated when the 
‘duration’ time had elapsed. 

trial type categorical “sequential” 
“augmented” 
“concurrent” 

The experimental condition 
describing the auditory 
symbology used in the 
stimulus 

task categorical “listen” 
“response” 

The activity participants 
were asked to complete 
during each phase of the 
trial 

response type categorical “active” 
“memory” 

NA 

The activity participants 
were asked to complete 
during each phase of 
the trial (or NA if not 
applicable, i.e., task is 
“listen”) 

map num integer 0–18 
NA 

Map identifier indicating 
the auditory stimulus 

stim file character <filename> Name of the file containing 
the auditory stimulus 
waveform (or NA if 
not applicable, i.e., 
response type is “memory”) 

Continued on next page 
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Table 11 – continued 
variable type (units) values description 
correct answer categorical “black” 

“red” 
NA 

The response option which 
contained the higher 
data value (correct task 
response) (or NA if not 
applicable, i.e., task is 
“listen”) 

answer categorical “black” 
“red” 
NA 

The response option 
selected by the participant 
in response to the task 
question (or NA if not 
applicable, i.e., task is 
“listen”) 

is correct boolean True 
False 
NA 

The response option 
selected by the participant 
in response to the task 
question (or NA if not 
applicable, i.e., task is 
“listen”) 

sparse float (seconds) 5.0–698.0 Stimulus onset shifted to 
align with the midpoint of 
the TR (for use in FSL to 
account for sparse sampling 
with a TR longer than TA) 
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APPENDIX D 

EXPERIMENTAL STIMULI 

A collection of software tools (Table 12) automate data generation of eighteen 

raster data sets (Figure 19). Table 13 indicates the study session (training or 

scanning) to which each map belongs and reflects the degree of balance in the 

response options (Table 13). 

TABLE 12. Software tools from R and Python libraries generate map data and 
render auditory geographic maps. Post-processing uses Audacity to identify and 
remove any clipping. 

Name Version Description 
R v3.1.1 Synthesize data sets
classInt v0.1-23 assign data values into discrete levels (low, 

medium, high) 

docopt v0.4.5 accept and handle command line arguments 

rgeos v0.3-121 convert point patterns into grid representation 

sp v1.2-3 define structures to represent and plot spatial 
data 

spatstat v1.47 generate clustered point patterns 

RColorBrewer v1.1-2 create color palette for visual representations 

Python v2.7 Render audio maps
Pyo v0.7.9 render audio waveforms from matrix and tabular

data 

argparge v1.1 accept and handle command line arguments 

csv v1.0 read tabular playback actions for rendering 
concurrent map type 

math v2.7 compute exponents (Python standard library) 

numpy v1.12.0 interpret string input as array of numeric values 

Audacity v2.0.6 View and edit waveforms 
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FIGURE 19. A visual depiction of the geospatial data illustrates the map stimuli 
used in the empirical evaluation. (The visual versions exist for the purpose of 
illustration in this document; participants do not view the graphics.) 
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TABLE 13. To the extent possible, the three sets of stimuli balance characteristics of the response option pairs.
 

Session 
Type Run 

Assigned Condition 
Audio Type Response 

Correct 
Answer 

Black Red 
X Y X Y Direction Distance 

Map 1 train sequential memory black -3 2 1 -2 315 5.66 
Map 2 train sequential active black -2 -3 3 1 39 6.40 
Map 3 scan 1 sequential memory red -1 3 2 0 315 4.24 
Map 4 scan 2 sequential memory red -2 2 3 3 11 5.10 
Map 5 scan 1 sequential active black -2 -1 1 2 45 4.24 
Map 6 scan 2 sequential active red -2 3 3 2 349 5.10 
Map 7 train hybrid memory red -3 0 0 -3 315 4.24 
Map 8 train hybrid active red -3 -2 2 2 37 6.40 
Map 9 scan 1 hybrid memory red -3 3 0 1 326 5.00 
Map 10 scan 2 hybrid memory black -3 -2 1 0 27 4.47 
Map 11 scan 1 hybrid active black -3 -3 -1 1 63 4.47 
Map 12 scan 2 hybrid active black -3 0 1 -3 323 5.00 
Map 13 train concurrent memory red 0 -2 2 1 57 3.61 
Map 14 train concurrent active black 0 0 3 -3 315 4.24 
Map 15 scan 1 concurrent memory red -1 -1 3 3 45 5.66 
Map 16 scan 2 concurrent memory black 0 2 3 -1 315 4.24 
Map 17 scan 1 concurrent active black -1 0 2 -3 315 4.24 
Map 18 scan 2 concurrent active red -1 -3 2 3 63 6.71 
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