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THESIS ABSTRACT 
 
Alexander Michael Babb 
 
Master of Science 
 
Department of Earth Sciences 
 
December 2018 
 
Title: Tidal Sensitivity of Low-Frequency Earthquakes on the San Andreas Fault - 

Analysis of a Declustered Catalog 
 
 

Low frequency earthquakes (LFEs) are detected at depths of 16-30 km on a 150 

km section of the San Andreas Fault (SAF) centered at Parkfield, CA. The LFEs are 

divided into 88 families based on waveform similarity. In continuous families a burst of a 

few LFE events recurs every few days while episodic families experience essentially 

quiescent periods often lasting months followed by bursts of hundreds of events over a 

few days. The occurrence of LFEs has also been shown to be sensitive to extremely small 

(~1 kPa) tidal stress perturbations. However, the clustered nature of LFE occurrence 

could potentially bias estimates of tidal sensitivity. Here we re-evaluate the tidal 

sensitivity of LFE families on the deep San Andreas using a declustered catalog. 

Declustered LFE families are still highly sensitive to primarily right-lateral shear stress 

(RLSS) and to a lesser extent fault normal stress (FNS). 
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CHAPTER I 

INTRODUCTION 

The lithospheric plates that compose the surface of the earth move at rates of up 

to 10s of mm/yr (Ryder and Burgmann, 2008; Murray et al. 2001; Thatcher and 

Lisowski, 1987). At their boundaries, the plates accommodate this motion on faults, or 

localized zones of deformation that accommodate slip through multiple mechanisms. For 

example, some faults gradually build up elastic strain over a time period and then 

abruptly release it during an earthquake, which can generate strong ground motion felt by 

humans. Alternatively, faults can slide stably, slipping at rates that are not sufficient to 

generate seismic waves.  The majority of fault zones world-wide host large earthquakes 

in their shallow seismogenic regions and deform aseismically below the brittle-ductile 

transition, where pressure and temperature conditions are amenable to plastic 

deformation (Scholz, 2002).  Traditionally, a section of fault is classified as either 

“seismic”, meaning it is capable of hosting an earthquake, or “aseismic” meaning slip is 

never accommodated at seismic slip speeds. The discoveries of slow-slip phenomena, 

such as non-volcanic tremor (NVT) (Obara, 2002), periodic slow slip events (SSEs) 

(Rodgers and Dragert, 2003), and low-frequency earthquakes (LFEs) below the 

seismogenic zone (Shelly et al., 2007a) reveal that the characterization of fault slip as 

seismic or aseismic is too restrictive. Instead, any given section of fault can accommodate 

deformation through multiple mechanisms that occur over different timescales (Ide et al., 

2007a; Beroza and Ide, 2011). 

A slow slip event (SSE) is the aseismic slip of a fault patch that occurs below 

velocities required to generate appreciable seismic radiation, resulting in event durations 
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of hours to days (Schwartz and Rokosky, 2007). These silent events went undetected 

until the broad implementation of high resolution Global Position System (GPS) 

networks, which have allowed for the detection of SSEs in Japan (Hirose et al., 1999; 

Ozawa et al., 2001), Cascadia (Dragert et al., 2001), Mexico (Lowry et al., 2001), Alaska 

(Freymueller et al., 2002), and elsewhere. A SSE’s geodetic signal manifests as a 

transient reversal of longer-term plate motion (Hirose et al., 1999; Dragert et al., 2001). 

GPS inversion of displacements during recurrent SSEs in the Cascadia subduction zone 

results in strain releases equivalent to Mw ~6 earthquakes over durations of several weeks 

(Schmidt et al., 2010).  

Shortly after the discovery of SSEs, a seismic signal dubbed NVT, was found to 

correlate temporally and spatially with SSEs on the subducting Philippine Sea plate in 

southwest Japan (Obara et al., 2004; Hirose and Obara, 2005) and the Cascadia 

subduction zone (Rogers and Dragert, 2003). NVT was also detected on the deep San 

Andreas Fault (Nadeau and Dolenc, 2005; Nadeau and Guilhem, 2009). NVT is different 

from ordinary recorded earthquakes in that it lacks impulsive P- and S-wave arrivals, has 

dominant amplitudes at lower frequencies of 1-10 Hz with rapid amplitude decay at 

increasing frequencies, and durations on the order of minutes to days (Kao et al. 2005; 

Shelly et al., 2007b). The coupled phenomenon of tremors occurring simultaneously with 

SSEs is termed episodic tremor and slip (ETS) (Rogers and Dragert, 2003). In subduction 

zones and strike-slip faults, ETS occurs near the transition zone, where the updip plate 

transitions from being frictionally locked to stable sliding (Obara and Hirose, 2006; 

Shelly et al., 2006). During ETS, the aseismic slip front can propagate at rates of up to 15 

km/day along the plate interface, and often includes tremor migration (Dragert and 
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Rogers, 2004; Obara, 2002; Obara et al., 2004; Schmidt et al., 2010). The NVT is thought 

to represent simultaneous seismic failure of numerous asperities embedded within an 

aseismically slipping matrix (Shelly et al., 2006; Ito et al., 2007). 

The Japan Meteorological Agency (JMA) created a new class of events, called 

low-frequency earthquakes (LFEs), in 1999 after their detection using a newly installed 

dense network of highly sensitive short-period seismometers. Despite not knowing the 

nature of LFE occurrence, the JMA started cataloging the events (Nishide et al., 2000). 

LFEs were later found to temporally and spatially occur mostly as part of tremor episodes 

(Obara and Hirose, 2006), like the ETS in Cascadia. Shelly et al. (2007b), using high 

quality LFEs as template events, systematically searched tremor for matching waveforms 

revealing a nearly continuous sequence of LFEs during periods of active tremor. This 

established the idea that tremor results from the superposition of numerous LFEs and is 

believed to be generated by shear slip on the fault considering the consistent focal 

mechanisms between individual LFEs and SSEs (Ide et al. 2007b; Shelly et al., 2007b). 

While the spectral characteristics of tremor and LFEs are essentially identical, high-

quality low-noise recordings of LFEs frequently contain S-wave arrivals, which allow for 

better constraint on hypocentral locations (Shelly et al., 2006). To further constrain 

locations, combinations of stacked waveform cross-correlation and double-difference 

tomography can be employed (Shelly et al., 2006). 

NVT and LFEs have both been noted for their extreme sensitivity to small stress 

perturbations. Studies of stress changes on the SAF due to the 2003 Mw 6.5 San Simeon 

and the 2004 Mw 6.0 Parkfield earthquakes discovered increased tremor rates in areas 

with increased shear-stresses of 6 to 9 kPa respectively (Nadeau and Guilhem, 2009; 
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Shelly and Johnson, 2011). NVT triggering in response to teleseismic surface and body 

waves with stress transients on the order of kilopascals has been observed in multiple 

studies (Gomberg et al., 2008; Miyazawa and Brodsky, 2008; Peng et al., 2009; 

Rubinstien et al., 2007). Most notably, studies of tidal stress perturbations have 

confirmed that NVTs are sensitive to stress changes as small as fractions of a kilopascal 

in Japan, Cascadia, and the San Andreas Fault (Rubinstein et al., 2008; Nakata, et al. 

2008; Lambert et al. 2009; Thomas et al. 2009, Thomas et al., 2012). Previous work by 

Thomas et al. (2012) established LFE sensitivity to tidally induced stress components on 

the SAF using a decade-long catalog of events. This thesis builds on their work to 

establish LFE sensitivity to tidally induced stresses on the deep San Andreas Fault (SAF). 

The San Andreas Fault is a right-lateral strike-slip fault that extends 

approximately 1,200 km across California, separating the Pacific Plate from the North 

American Plate. In this study we focus on a 150 km transitional segment centered on 

Parkfield, CA (Fig. 1). The SAF to the northwest of Parkfield is characterized 

predominately by creep and hosts numerous small magnitude earthquakes. To the 

southeast the fault is thought to be locked and few earthquakes have been recorded 

(Burford and Harsh, 1980; Shulz et al., 1982; Argus and Gordon, 2001).The locked 

portion was last ruptured in the Mw 7.8 1857 Fort Tejon earthquake, which is thought to 

have nucleated near Parkfield (Sieh, 1978). The section directly beneath Parkfield has 

hosted six Mw 5.5 –  6.5 earthquakes since 1881, with the most recent being 2004.  

Shelly and Hardebeck (2010) successfully cataloged 88 LFE families along the 

SAF, comprising over 550,000 individual LFEs grouped based on waveform similarity. 

Centered at Parkfield, CA the families range in depth from the base of the seismogenic  
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Fig. 1. (top) Parkfield, CA area location map with LFE locations plotted as circles and 
squares, representing continuous and episodic LFE families, respectively, color-coded by 
family ID numbers starting in the northwest and ending in the southeast along the fault. 
Relocated earthquakes (post 2001) from the catalog of Waldhauser and Schaff (2008) are 
shown as black dots. The San Andreas Fault is delineated in red. Surface seismic stations 
used for detection and borehole stations used for locations are shown by white and grey 
diamonds and black triangles respectively. The cities of Bitterwater and Cholame are 
labeled by black squares with white outlines and Parkfield a yellow star. (bottom) Along-
fault cross section of the SAF, centered at Parkfield (0 km) and viewed from the 
southwest, showing locations of LFE families from the top panel color-coded by their 
family ID number. Reference families are labeled by their ID numbers. Relocated 
earthquakes within 10 km of the fault from the top panel are plotted as black dots. 
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zone to the top of the Moho (16-30 km) and span just over 80 km to the north and 60 km 

to the south on the SAF. The families are split into northern and southern groups by a 15 

km quiescent gap directly beneath Parkfield, CA. Tremor activity within the families 

varies from highly episodic to nearly continuous (Fig. 2).  Episodic families tend to reside 

more shallowly and can have concentrated periods of high activity, with more than 200 

LFEs in less than a week, followed by multiple months of dormancy. Continuous families 

tend to reside at greater depth and often have a period of a few events recurring every 3-5 

days.  

The Earth is influenced by tidal forces which arise from the gravitational fields of 

the Sun and Moon. These forces produce deformations in the solid Earth and ocean. On 

large length scales the crust of the Earth is considered to be elastic, and as so experiences 

elastic deformation in response to the gravitational changes caused by the orbits of the 

Sun and Moon. The solid Earth deformations are called body tides. At low latitudes the 

surface of the Earth moves vertically through a range greater than 40 cm in just over 6 

hours (Baker, 1984). For our research area, the magnitude of stresses in the crust induced 

by body tides are on the order of kPa and are far enough inland that ocean tidal loading 

does not significantly contribute to the stresses (Thomas et al., 2012). Two dominant tidal 

cycles, termed diurnal and semidiurnal, arise. Diurnal tides are characterized by a single 

high tide and low tide every day. Semidiurnal tidal cycles experience two high and two 

low tides of approximately equal magnitude each day. The combined signals of these two 

tidal cycles produce a mixed semidiurnal tidal cycle of two high and two low tides of 

different magnitudes each day. Because the Moon orbits in the same direction of the 

Earth’s rotation, a lunar day is approximately 24 hours and 50 minutes whereas a solar 
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day is 24 hours. The tidal periods of interest for this project are listed in Table 1.  
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Figure 2. Example time series in 2007 of cumulative number of LFEs over a four-month time period for three LFE families 
(55, 19, and 85). Family 55 is highly episodic with quiescent periods of months punctuated by periods of days with extremely 
high LFE rates. Family 85 is a continuous family with small quiescent periods of less than a week, frequently interspersed with 
LFE episodes of smaller magnitude than family 55. Family 19 exemplifies the transitional behavior between the two 
endmembers of episodic and continuous LFEs.  



 

9 

Table 1. Tidal constituents present at Parkfield, CA 
Tidal constituents Symbol Period (h) FFT amplitude (Pa) 
Semidiurnal FNS RLSS 

Lunisolar K2 11.97 112.26 20.30 
Principal solar S2 12.00 399.63 80.63 
Principal lunar M2 12.42 695.09 91.49 
Larger lunar elliptic N2 12.66 149.15 18.37 

Diurnal   
Lunar K1 23.93 885.98 77.98 
Solar* S1 24.00  5.82 0.52 
Solar P1 24.07 286.91 25.52 
Lunar O1 25.82 589.53 54.94 
Larger lunar elliptic Q1 26.87 113.95 10.97 

*Diurnal solar constituent S1 does not have an appreciable amplitude at Parkfield.  
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CHAPTER II 
METHODS 

LFE Catalog 

This study utilizes a declustered low-frequency earthquake catalog of over 80,000 

LFE clusters from Thomas et. al. (2018). The original catalog was produced by Shelly 

and Hardebeck (2010), who grouped more than 500,000 LFEs into 88 unique families 

using waveform templates. To create a template, a single LFE event is visually identified 

from seismic records at a borehole station near the fault.  The event is then cross-

correlated every 0.05 s through the previous eight years of borehole data and the 100 

most similar events are stacked into a master template. Waveform stacks are then created 

at all California Integrated Seismic Network stations by combining the 400 events in each 

family that have the highest summed correlation with the master template. This technique 

improves the signal to noise ratio, resolving clear P- and S-wave arrivals. The 

hypocentral locations are determined from both P- and S-wave arrivals and the 3D 

seismic velocity structure. 

Declustering the LFE Catalog 

To decluster the original catalog, Thomas et al. employed a method using 

recurrence intervals between individual LFEs within given families (2018). For each LFE 

family the time between an LFE and its previous event was calculated, creating a list of 

interevent times or recurrence intervals, Tr. A smoothed histogram of log(Tr) is plotted as 

a function of time using step sizes of 0.1 and bin widths of 0.6 log (days). For all LFE 

families the recurrence intervals separated into two or three distinct populations with 

local maxima separated by local minima. The values of the local minima were used to 

separate the individual LFEs of a given family into their respective populations. For 
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continuous families, the interevent times separated into two distinct groups of short and 

long populations (Fig. 3). Episodic families have three groups representing short, 

intermediate, and long populations (Fig. 4). In both continuous and episodic families, the 

long recurrence interval populations are thought to represent the first LFE event in a 

creep episode with the short recurrence interval populations being LFEs contained within 

an ongoing episode. Episodic families also include a third intermediate population, which 

is characteristic of the first LFE event within short-duration episodes, or “bursts” 

occurring within the longer duration episode. 

Schuster Test and Spectra 

To confirm that the catalog from Thomas et al. (2018) was successfully 

declustered, the catalog was evaluated using the Schuster spectrum. The Schuster 

spectrum is an extension of the Schuster test and was developed by Ader and Avouac 

(2013) with the purpose of detecting periodicities in seismicity rates. The Schuster 

spectrum can also be used to determine whether or not a catalog has been properly 

declustered, and it works by performing a set of numerous individual Schuster tests over 

a continuous range of periods. The Schuster test provides the statistical probability that 

the distribution of the event times relative to a periodic perturbation results from a 

uniform random process. This value allows for the rejection of the null hypothesis that 

events from a catalog do not correlate with a specified period. In the LFE catalog, each 

event represents a phasor with a unit length and an angle corresponding to the event time 

on a 360° trigonometric circle. For example, testing for a period of 24 hours, event times 

of 12 AM, 6 AM, 12 PM, and 6 PM would have angles of 0°, 90°, 180°, and 270° 

respectively. P-values can  
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Figure 3. LFE distribution of continuous family 5. (a) Date versus log(Tr) for continuous 
family 5. Red horizontal lines mark boundaries between recurrence interval populations. 
(b) Smoothed histogram of log(Tr). Local minima are marked by vertical red lines. The 
values are used to separate each individual LFE in family 5 into populations of events 
with similar preceding recurrence intervals. (c) Cumulative number of events versus time 
plot for family 5 for 4 days in 2012. Each individual LFE occurrence is indicated by the 
symbol corresponding to the long and short log(Tr) populations. Legend in Figure 3c 
shows the definition of duration for a given episode. Figure from Thomas et al. (2018). 
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Figure 4. LFE distribution of episodic family 55. (a) Date versus log(Tr) for episodic 
family 55. Red horizontal lines mark boundaries between recurrence interval populations. 
(b) Smoothed histogram of log(Tr). Local minima are marked by vertical red lines. The 
values are used to separate each individual LFE in family 55 into populations of events 
with similar recurrence intervals. (c) Cumulative number of events versus time plot for 
family 55 for 5 days in 2012. Each individual LFE occurrence is indicated by the symbol 
corresponding to the long, intermediate, and short log(Tr) populations. Legend in Figure 
4c shows the definition of duration for a given episode. Figure from Thomas et al. (2018). 
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be calculated with respect to sine-wave functions of specified period !  . Each event is 

assigned a phase θk, where !"    is the time of event number !  : 

!" = 2% &"'  
 

The phasors are plotted as unit length steps in the direction of their corresponding phase 

angle. The distance between the origin and the endpoint of the walk is !  , with !   being 

the number of events in the considered catalog. The probability !  , that a distance of !   

can be reached by a uniformly random two-dimensional walk, is equivalent to the 

probability of the null hypothesis that the event times are distributed from a uniform 

seismicity rate (Schuster, 1897; Ader and Avouac, 2013) 

! = #-%& '   

This equation calculates what is referred to as the Schuster p-value. A lower p-value 

indicates higher probability that the events stacked over period !   are non-uniform, giving 

the probability of periodicity at the specified period !  . Figure 5 shows an example of a 

single Schuster test for LFE family 9, testing the tidal period of N2 (12.658 hr), resulting 

in a p-value low enough to reject the null hypothesis of a uniform seismicity rate 

signifying a significant non-uniform component to seismicity at the period tested. The 

previous test was repeated on the declustered catalog of the same family, shown in Figure 

6, and failed to reject the null-hypothesis. 



 

15 

 

Figure 5. Schuster walk of LFE family 9 tested at the tidal period of N2 (12.658 hr) with 
a result indicating a non-uniform component to seismicity. Walk initiates at the origin in 
dark blue and finishes inside the black circle in dark red. The blue and red dashed lines 
represent the 99.9% and 95% confidence intervals respectively. The black outlined circle 
locates the walk’s end. The test returns a significant result when the walk ends outside of 
the respective confidence interval. 
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Figure 6. Schuster walk of declustered LFE family 9 tested at the tidal period of N2 
(12.658 hr) with a result unable to reject the null hypothesis of uniform seismicity. Walk 
initiates at the origin in dark blue and finishes inside the black circle in dark red. The blue 
and red dashed lines represent the 99.9% and 95% confidence intervals respectively. The 
black outlined circle locates the walk’s end. The test returns a significant result when the 
walk ends outside of the respective confidence interval. The test returns a significant 
result when the walk ends outside of the respective confidence interval. 
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Percent Excess 

The magnitudes of stresses in the crust induced by body tides are on the order of 

kPa. Previous work by Thomas et al. (2012) computed the tidally induced stress 

components consisting of the right-lateral shear stress (RLSS), fault-normal stress (FNS), 

and their time derivatives (dRLSS and dFNS). A15-day time series of the FNS and RLSS 

is shown in Figure 7. 

In order to evaluate the correlation of LFE events with tidal loading, we employed 

methodology from Thomas et al. (2009). Percent excess, !"#   , is the value of excess 

events calculated by the following equation 

!"# = 	
('-))
)  

 
 

where !   is the observed frequency of events and !   is the expected frequency of events. 

The expected number events,	  !  , is the number of events that occur under a specified 

loading condition assuming that LFEs occurrence times are randomly distributed with 

respect to time. The loading conditions of interest include the signs of both the stress 

components and their derivatives. Four load components we analyze are tidally induced 

right-lateral shear stress (RLSS), right-lateral shear stress rate (dRLSS), fault normal 

stress (FNS), and fault normal stress rate (dFNS). The !"#    value represents a percentage 

surplus or deficit of events when positive or negative respectively. In this analysis we 

examine !"#    values of all individual LFE families by first calculating !  , the total number  
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Figure 7. Time series of tidally induced shear (red) and normal (blue) stresses computed 
over a period of approximately two weeks for the SAF striking N42°W beneath 
Parkfield. 
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of events that occur during times of positive tidally induced stress. The percent of time a 

given family spends in a state of positive tidally induced stress is computed and then 

multiplied by the total number of events in that family’s catalog, giving the value !  . 

When used in the above equation, the resulting !"#    value can be used to evaluate to what 

degree an LFE family correlates with a given tidal component. To determine the 

confidence interval of a !"#    value for a given LFE family, a synthetic catalog is created 

by randomly distributing the total number events between the first and last event of the 

original catalog; this process is repeated to create 50,000 synthetic catalogs. The !"#    

values are calculated for each synthetic catalog and the distribution of values is used to 

construct a two-sided 95% confidence interval. This is repeated across all LFE families 

for the RLSS, FNS, dRLSS, dFNS components. 
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CHAPTER III 

RESULTS 

Schuster Spectra 

Schuster spectra of LFE families from the original catalog compared to the 

declustered families from the catalog of Thomas et al. (2018) indicate successful 

declustering of the catalog. Spurious p-values across many periods tested from the 

original catalog vanish, revealing significant p-values at the known tidal periods of 

highest amplitudes. To illustrate this, the Schuster spectrum of the original catalog of 

LFE family 9 (Fig. 8) shows hundreds of significant periods, each indicating a significant 

non-random component to seismicity at the respective periods. The Schuster spectrum of 

the declustered catalog of LFE family 9 (Fig. 9) indicates significant p-values at the 

known tidal periods of S2, M2, K1, and Q1, with all other periods resulting in values 

below the significance threshold.  

 Figure 10 shows the results of the Schuster spectra for all continuous (Fig. 10a) 

and episodic (Fig. 10b) LFE families. All continuous families to the north of Parkfield 

have at least one tidal period with a significant p-value, with most having more than two. 

All but four continuous families to the south of Parkfield have at least one tidal period 

with a significant p-value, with just over half having two or more. Episodic families with 

significant p-values only exist for four families with respect to period K1.  

Spatial Distribution of LFE Family Sensitivity to Tidal Stresses 

The sensitivity to tidal stresses for each LFE family was calculated and plotted for 

family locations along strike and with depth. Figure 11a shows the cross section of the  
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Figure 8. Schuster spectrum of original LFE family 9 catalog. The eight tidal periods that dominate in magnitude at Parkfield 
are shown as blue vertical lines, with the respective tidal symbols above in the attached blue boxes. The 99.99% confidence 
interval is show in a dashed red line. Each grey circle represents the p-value calculated at the respective period tested, in units 
of days, on the x-axis. Many periods tested return significant p-values, indicating a high probability of a non-uniform 
component to seismicity at the respective period tested. 
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Figure 9. Schuster spectrum of declustered LFE family 9 catalog. The eight tidal periods that dominate in magnitude at 
Parkfield are shown as blue vertical lines, with the respective tidal symbols above in the attached blue boxes. The 99.99% 
confidence interval is show in a dashed red line. Each grey circle represents the p-value calculated at the respective period 
tested, in units of days, on the x-axis. After declustering, spurious correlations disappear leaving only periods of the earth tides 
with significant p-values signifying non-uniform components to seismicity at the respective periods, indicating a successfully 
declustered catalog. 
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Figure 10. Top and bottom panels show continuous and episodic LFE families, respectively, labeled by family number on the 
x-axis with tidal periods on the y-axis. Each square is color coded by its p-value calculated from the Schuster spectra at the 
given period. Green and yellow squares indicate p-values above the 99.9% and 95% confidence intervals, respectively. Gray 
squares indicate a non-significant p-value. The period K1/P1 is halfway between the tidal periods K1 and P1 in time, which is 
the tidal period S1, but not labeled as such due to a lack of a stress influence in the research area. 
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Figure 11. Cross section of SAF centered beneath Parkfield (0 km) with LFE locations color-coded by !"#    values and plotted 
as circles and squares, representing continuous and episodic families, respectively. From top to bottom, each panel represents 
the !"#    values calculated with respect to FNS, RLSS, dFNS, and dRLSS tidal components. Significant !"#    values are 
indicated via solid outlines and values falling below the confidence level of 95% are indicated via dashed lines. 
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SAF with the 88 LFE families identified by Shelly and Hardebeck (2010). For the 

subsequent panels, each family is color-coded by its sensitivity to the respective stressing 

condition (!"#    value). Overall, all 54 continuous families correlate with at least one tidal 

component tested. Of the 34 episodic families, 15 do not correlate with any tidal 

component tested. Figure 11b shows families’ correlation with tensile (positive) FNS. A 

group of 8 continuous families between ~3-15 km (locked section southeast of Parkfield) 

shows a significant deficit in events. Below the creeping section of the SAF northwest of 

Parkfield, significant families correlate with tensile FNS with the exception of families 1 

and 2. Of families correlating with tensile FNS, episodic families contain the highest !"#    

values compared to continuous families. Figure 11c shows families’ correlation with 

positive RLSS. All continuous families are correlated with RLSS at a significance level 

of 95% or greater. Sensitivity to shear stress varies systematically along strike, with the 

most sensitive families located to the northwest beneath the creeping section, decreasing 

in excess events towards families situated beneath the locked segment in the southeast. 

Of the significant episodic families with respect to the RLSS component, 10 out of 14 are 

located below the creeping section of the SAF. The four episodic families on the locked 

portion of the fault that do display significance are clustered in space. To the southeast of 

Parkfield, families decrease in their magnitudes of sensitivity from approximately 30% to 

just under 10% further to the southeast. Figure 11c shows families’ correlation with 

dFNS. The significance of these values were found by Thomas et al. (2012) to be due to 

spurious correlation with RLSS. Figure 11d shows families’ correlation with dRLSS. All 

but two significant families indicate a deficit with respect to dRLSS. 
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RLSS !"#   vs Declustered RLSS !"#   
 

Figure 12 shows !"#    values for the original catalogs of LFE families plotted 

against !"#    values of declustered LFE families for the RLSS tidal component. All 56 

continuous LFE families retain a positive correlation indicating significantly more events 

than expected during times of positive RLSS. For episodic families, 14 of 32 have 

significantly more events than expected. Continuous families on the creeping section of 

the SAF are increasingly sensitive to RLSS from southeast to northwest. Episodic 

families tend to have less of a surplus of events compared to the original catalog. The gap 

in values between 18-21% from original catalogs is not as clearly preserved in 

declustered catalogs. The declustered values of episodic families are more scattered 

compared to declustered continuous families. 
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Figure 12. Original LFE catalog !"#    values plotted against declustered LFE catalog !"#    
values plotted as circles and squares, representing continuous and episodic families, 
respectively. Solid error bars and symbol outlines indicate significant !"#    values, 
whereas dashed error bars and symbol outlines indicate insignificant !"#    values. Error 
bars represent the 95% confidence interval. 
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CHAPTER IV 

DISCUSSION 

The influence of tides on tremor and LFEs has been studied around the world, 

with significant tidal correlations discovered in subduction zones beneath Japan (Shelly 

et al., 2007a; Nakata et al, 2008; Ide, 2012; Ide and Tanaka, 2014; Yabe et al., 2015), 

Cascadia (Rubinstein et al., 2008; Lambert et al., 2009; Royer et al, 2014), and Taiwan 

(Chen et al., 2018). In an effort to further this field of study, the robust nature of LFEs 

sensitivity to tidal influences on the San Andreas Fault centered beneath Parkfield is 

discussed hereafter. 

Previous work on this research area was conducted by Thomas et al. (2012), who 

established tidal sensitivity of LFE families on the SAF. An underlying assumption for 

the Schuster test and Schuster spectra is the independence of events from one another. 

The naturally clustered nature of LFE events violates this assumption and could 

potentially bias results. In an effort to further validate the previous work’s results, we 

conducted analyses using a declustered version of the LFE catalog from Thomas et al. 

(2018). 

!"#   Values 

Analysis of the declustered catalogs returned significant !"#    values with respect 

to the right-lateral shear stress tidal component for all 54 continuous LFE families and 15 

of 34 episodic families. These results substantiate previous work analyzing tidal influence 

on the LFE families of the original LFE catalogs, confirming a widespread influence of 

RLSS on continuous LFE families (Thomas et al. 2012). Families that correlate with 

tensile (positive) FNS on the creeping section locate more deeply than the neighboring 
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insignificant families. These families were identified by Thomas et al. as correlating 

highly with FNS and they have retained their significance after declustering (2012). 

Another noteworthy collection of families is the cluster correlating negatively with 

tensile FNS along the stretch of the fault from 3-15 km southeast of Parkfield. This group 

has retained its significance from previous investigation and was found to exist on a 

releasing right bend of the SAF, which experiences fault-normal clamping (Thomas et al. 

2012). 

When calculating !"#    values, as the population of events in a family’s catalog 

decreases, the confidence intervals increase. Declustering of episodic families results in a 

large reduction of events. A single burst of events in an episodic family can contain 

hundreds of events (Fig. 2 Family 55, Fig. 4), of which only the initiating event is kept. In 

addition, the average recurrence interval can be longer than 30 days. This drastic 

reduction in total events for an episodic family can remove more than 90% of its original 

catalog. Because the catalog still spans approximately the same length in time with many 

fewer events, the variation of random event distribution results in the increased span of 

confidence intervals. This effect could explain the reduction of total significant episodic 

LFE families with respect to given tidal components compared to previous work by 

Thomas et al. (2012). Another potential influence on the change in episodic families 

could be caused by the clustered character of their seismicity. After prolonged periods of 

quiescence, episodic families experience large bursts of events during periods of 

accelerated background slip. Thomas et al. suggest the magnitude of the background fault 

slip is much larger than the weaker tidal stress contribution during an active slip episode, 

resulting in the lack of significant tidal influence in episodic families (2012).  
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Schuster Spectra 

The Schuster spectrum was computed for original and declustered catalogs for all 

LFE families. The purpose of this analysis was twofold. Schuster spectra are suitable for 

determining whether a seismic catalog has been properly declustered, as well as detecting 

unknown periodicities within the catalog (Ader and Avouac, 2013). Figures 8 and 9 

illustrate both of these results. Prior to declustering, LFE families typically experience 

seismicity in bursts, ranging from just a few events for continuous families to hundreds of 

events in episodic families. The clustered nature of this seismicity results in extremely 

low p-values across many periods tested in the Schuster spectra (Fig. 8), each of which 

corresponds to the probability that seismicity at the respective period resulted from 

uniform random process. Successful declustering of the catalog removes these spurious 

correlations, which allows for genuine periodic perturbations to be resolved (Figure 9).  

The aggregate results of the Schuster spectra for the declustered catalogs are 

shown in Figure 10. Continuous LFE families that correlate with tidal constituents far 

outnumber episodic families and also show a difference in sensitivity between the 

creeping (Families 1-40) and locked (Families 41-88) segments of the fault. The deeper 

continuous families beneath the creeping section, which have the highest !"#    values for 

the RLSS component, are also influenced by multiple tidal constituents. Beneath the 

locked segment continuous families are less influenced overall, especially by tidal 

constituents O1 and S2. The tidal components ranked in order of highest to lowest 

amplitudes calculated from the tidal stress time series are K1, M2, O1, S2, P1, N2, Q1, 

and K2 (Table 1). For RLSS, the tidal constituents ranked from highest to lowest are M2, 

S2, K1, O1, P1, K2, N2, and Q1 (Table 1). In decreasing order, the total number of 
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families with significant values from the Schuster test at the respective period are K1, 

M2, S2, and O1. Generally, the larger tidal constituents correlate more strongly than 

weaker constituents. Constituents with amplitudes smaller than S2 are not present on the 

Schuster spectra except for the case of K1/P1. P1 ranks as the fifth largest tidal 

constituent for Parkfield, CA. Exactly halfway between K1 and P1 is a tidal period of S1, 

with a period of 24 hours. This constituent does not contribute an appreciable amplitude 

for the area of Parkfield, or even globally (Ray and Egbert, 2004). Because the phases of 

K1 and P1 vary by less than three degrees when using the Schuster test, it is possible that 

the families with significant p-values between the periods K1 and P1 result from the 

superposition of their individual amplitudes. Only four episodic LFE families (32, 33, 34, 

36) return significant values at the largest period, K1. These four families cluster closely 

between 15-18 km north of Parkfield with depths ~21-23 km and had the highest 

significant !"#    values of episodic families with respect to the RLSS tidal component.  

These results indicate that stresses induced by solid earth tides modulate 

seismicity of individual LFE families. Continuous families, which are generally located 

deeper on the fault, experience deformation more often than do episodic families, as 

shown by the more frequent and small bursts of activity for continuous families. Their 

activity is more readily influenced by small induced RLSS, with !"#    values of almost 

50% for some families, as well as their cyclic modulations by tidal constituents across the 

fault. Episodic families overall respond less strongly to induced RLSS, and they lack 

significant modulation on the scale of individual tidal constituents.  

The significant correlation of LFEs with tidally induced RLSS has been used to 

infer fault rheology in the LFE source region. To generate seismic slip on an asperity at 
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depths between 15-30 km, several conditions must be met. Tremor must manifest from 

shear failure producing seismic radiation (Ide et al., 2007), which requires brittle failure 

of the LFE source. Beeler et al. (2013) concluded that ductile mineral flow mechanisms 

of dislocation glide and creep are inconsistent with observed fault creep, advocating for 

brittle-frictional behavior as the method for explaining tide-LFE correlation. The LFE 

source fails seismically as it is loaded by stress from both aseismic creep of the larger-

scale surrounded fault zone (Shelly et al., 2007) in addition to the solid earth tides (Beeler 

et al., 2013). Deep brittle failure sensitive to small stress perturbations can only occur if 

the fault has low effective normal stress (Thomas et al. 2009, 2012; Beeler et al., 2013, 

2018). Low effective normal stress is achieved through high pore fluid pressure on the 

order of lithostatic pressure (Thomas et al., 2009), which has been imaged by geophysical 

surveys of the region (Becken et al., 2011). The lack of LFE correlation to FNS can also 

be explained by pore fluid pressure. Hawthorne et al. (2010) found changes in normal 

stress cause changes in pore pressure, which dampens the magnitude of FNS on the fault 

by more than 90%, assuming hydraulic diffusivity is sufficiently low on the tidal time 

scale. 
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CHAPTER IV 

CONCLUSIONS 

 This study analyzed the tidal sensitivity of declustered LFE families on the SAF 

centered at Parkfield, CA. The goal was to validate previous work by Thomas et al. 

(2012) using a declustered LFE catalog to satisfy the statistical analyses’ underlying 

assumptions of independent events. We first used the Schuster test and its extension, the 

Schuster spectrum, to evaluate the declustering of the LFE catalog from Thomas et al. 

(2018). In addition, the Schuster spectra allowed for the detection of periods containing a 

significant nonrandom component to seismicity in LFE families, providing a more 

detailed view of tidal influence on LFE families along the SAF. Percent excess 

calculations were performed for each family using the declustered catalog as well.  

 Schuster spectra from the original catalog were compared to those from the 

declustered catalog of Thomas et al. and indicated a successful declustering, 

demonstrated by the extensive reduction in spurious significant results across the 

timescales of interest. Percent excess results confirmed the extreme sensitivity of LFEs to 

tidally induced stresses, with all continuous LFE families resulting in significant excess 

events during times of positive RLSS. Continuous LFE families on the northern creeping 

segment of SAF have higher !"#    values compared to those located on the southern 

locked segment, suggesting the creeping section is more amenable to deformation and 

small stress changes. The cluster of LFE families was negatively correlated with tensile 

FNS along the fault 3-15 km southeast of Parkfield after declustering. 

Episodic families exhibit a decrease in overall sensitivity to tidal stress likely due 

to the combination of decreased catalog events and larger background fault slip during 
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active episodes. Schuster spectra results suggest a general trend of increased tidal stress 

amplitudes at given periods influencing more LFE families, as well as the spatial 

heterogeneity of LFE sensitivity between the creeping and locked regions of the SAF. 

This study therefore corroborates the correlation of LFEs with solid earth tides and 

upholds the inference that low effective stress facilitates frictional slip on the deep SAF 

(Thomas et al. 2009; 2012; Beeler et al. 2013; 2018).  
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