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DISSERTATION ABSTRACT 
 
Andrea Katharine Steiger 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
December 2018 
 
Title: Self-Immolative Thiocarbamates for Studying COS and H2S Chemical Biology 
 
 

  In recent years, hydrogen sulfide (H2S) has garnered interest as the third addition 

to the gasotransmitter family. Essential to human physiology, H2S has roles in the 

cardiovascular, nervous, and respiratory systems and perturbations in physiological H2S 

levels have been correlated to a variety of diseases. As a result, there has been significant 

interest in the development of H2S-releasing compounds (H2S donors) that can mimic 

slow, enzymatic production for research and therapeutic applications. While a large 

library of H2S donors exists, several common drawbacks persist, such as: lack of spatial 

and temporal control, poorly understood mechanisms of release, uncontrolled kinetics, 

and low efficiency. These issues significantly limit the biological applications of many 

H2S donors.  

     This dissertation describes recent work to provide biocompatible H2S donors 

with controllable release kinetics using a robust, novel strategy for H2S delivery that 

relies on rapid enzymatic hydrolysis of carbonyl sulfide (COS) to H2S by the ubiquitous 

mammalian enzyme carbonic anhydrase (CA). Self-immolative thiocarbamates can be 

designed to release COS by a variety of stimuli, and in biological milieu this COS is 

rapidly converted to H2S by CA. This strategy has enabled the development of the first 

analyte-replacement fluorescent probe for H2S and has become a popular strategy for H2S 
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delivery in a variety of applications. Additionally, the unexpected cytotoxicity profile of 

enzyme-activated COS/H2S donors has piqued interest in COS chemical biology, and 

these donors are being used as tools for studying COS itself.  This dissertation includes 

previously published and unpublished coauthored work. 
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CHAPTER I 

 

EMERGING ROLES OF CARBONYL SULFIDE (COS) IN CHEMICAL 

BIOLOGY: SULFIDE TRANSPORTER OR GASOTRANSMITTER? 

 

This chapter includes previously published and coauthored material from Steiger, A.K.; 

Zhao, Y.; Pluth, M.D. “Emerging Roles of Carbonyl Sulfide (COS) in Chemical Biology: 

Sulfide Transporter or Gasotransmitter?” Antioxid. Redox Signal. 2018, 28(16), 1516-

1532.  

 

1.1 Introduction 

Small gaseous biomolecules, such as nitric oxide (NO), carbon monoxide (CO), 

and hydrogen sulfide (H2S), have attracted significant attention due to their important 

physiological roles as signaling molecules.1-10 Often referred to as gasotransmitters, these 

gases share several defining characteristics: they are membrane permeable, are generated 

endogenously by enzymes, and exert action on molecular targets at physiologically-

relevant concentrations.11, 12 We note that although commonly referred to as gaseous 

signaling molecules or gasotransmitters, these small gaseous molecules are actually 

solutes rather than gases when they act as signaling agents. In this dissertation, we use the 

terms gaseous signaling molecules and gasotransmitters to refer to the class of molecules 

rather than the physical state of the molecules in a biological environment. Highlighting 

the broad importance of these signaling molecules, gasotransmitter generation and/or 

metabolism has been implicated in diverse biological processes including vascular 

biology, immune functions, metabolism, and stress resistance/response.2, 6, 13-19 In 

addition to the primary gasotransmitter criteria, recent and growing evidence supports a 

complex cross-talk and interconnectivity between NO, CO, and H2S, suggesting that the 

interactions between these molecules play an important role in gasotransmitter 

function.20-25 For example, H2S inhibits CO production through regulation of heme 

oxygenase 1 (HO-1)26, 27 and can either stimulate or inhibit different nitric oxide synthase 

(NOS) isoforms.15-19 Similarly, both NO and CO inhibit H2S production from heme-

containing cystathionine β-synthase (CBS).28, 29 Complementing regulatory interactions 
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through enzymatic synthesis, NO and H2S also react through different redox pathways to 

generate reactive sulfur, nitrogen, and oxygen species (RSONS), including thionitrous 

acid (HSNO), perthionitrite (SSNO–), and nitroxyl (HNO), which further intertwine these 

gasotransmitters.22-24, 30, 31  

Despite the significant research on the chemical biology of NO, CO, and H2S, 

investigations into other potential gasotransmitters, such as SO2, NH3, or COS, remain 

significantly underdeveloped (Figure 1.1).11, 32 Both sulfur dioxide (SO2) and ammonia 

(NH3) are produced enzymatically in mammalian cells and are interconnected with 

established gasotransmitters, giving credence to the suggestion that they may play 

significant roles in biology. For example, SO2 can be generated from H2S by NADPH 

oxidase or from thiosulfate (S2O3
2–) by thiosulfate sulfurtransferase.33, 34 Alternatively, 

cysteine oxidation by cysteine dioxygenase (CDO) generates cysteine sulfonate, and 

subsequent transamination by aspartate aminotransferase (AAT) generates β-

sulfinylpyruvate, which spontaneously decomposes to extrude pyruvate and SO2.
35, 36 

Although still in its infancy, investigations into the possible biological actions of SO2 

have demonstrated roles as a vasorelaxant and also in providing protection against 

myocardial ischemia-reperfusion injury.34 Additionally, NH3 is formed in many 

pathways, including deamination of amino acids, nucleic acids, nucleotides, and 

nucleosides, as a byproduct of transsulfuration enzymes, including H2S-producing CSE 

and CBS, and from urea recycling.11 Once formed, NH3 may not only provide a viable 

form of nitrogen for DNA and RNA synthesis but also may contribute to acid-base 

buffering capacity. Additionally, NH3 has been demonstrated to increase inducible nitric 

oxide synthase (iNOS) expression in cultured astrocytes 37 and also to increase iNOS and 

neuronal nitric oxide synthase (nNOS) expression in animal models of 

hyperammonenemia.38 

Unlike SO2 or NH3, pathways for enzymatic COS synthesis in mammals have yet 

to be identified, although COS has been detected in various biological tissues and in 

exhaled breath, supporting the presence of pathways for endogenous generation (vide 

infra).39-41 Furthermore, COS shares an interconnection with H2S generation through the 

action of different metalloenzymes, including carbonic anhydrase (CA) activity, which 

rapidly converts COS to H2S.42-44 Although historical investigations on terrestrial COS  
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Figure 1.1 Structures, space filling models, and electrostatic potential maps of NO, CO, 
H2S, NH3, SO2, and COS.   
 

have focused on its atmospheric presence and importance in the global sulfur cycle, 

contemporary chemical investigations have focused primarily on COS-mediated peptide-

bond formation under prebiotic conditions, many of which suggest important roles of 

COS in origin of life chemical ligation.45, 46 When taken together with the potential role 

of  COS in thermophilic origin of life theories, COS detection in tissues, as well as its cell 

permeability and moderate water solubility, suggest that COS may play a much more 

significant role in mammalian chemical biology than initially appreciated. Building on 

these factors, this review focuses on current knowledge on biological COS formation and 

consumption, growing evidence that COS may play roles in sulfide transport and disease 

pathology, emerging chemical tools for investigating COS in biological contexts, and the 

potential role of COS as a new member of the gasotransmitter family.  

 

1.2 Basic Properties  

Carbonyl sulfide (COS, CAS 463-58-1; also referred to carbon oxysulfide, carbon 

monoxide monosulfide, carbon oxide sulfide, OCS) is a colorless and odorless gas in its 

pure form.47 Initially misidentified as a mixture of carbon dioxide (CO2) and H2S due to 
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its rotten egg smell in an impure state, COS was first characterized by Than in 1867 by 

the reaction of CO with elemental sulfur vapor in a glowing porcelain tube (eq. 1).48 

Although removal of CO impurities was not practical from the initial preparations, 

experimental modification allowed for generation and purification of COS by acid-

mediated hydrolysis of thiocyanate salts (eq. 2).48 This reaction can be used to prepare 

COS in the laboratory, but the produced gas requires significant purification due to 

common contamination by gaseous impurities.49 Commercial sources of high purity COS 

(often >97.5%) often contain significant levels of H2S as the main impurity. Although 

only moderately soluble in water, COS is stable in acidic solution but undergoes base-

mediated hydrolysis to generate H2S and CO2.47 As a moderately lipophilic gas (log 

Poct(COS) = 0.79 by comparison to log Poct(NO) =0.70),50 the dipole moment of COS is 

more similar to that of NO, CO, and H2S rather than the significantly more polar SO2 and 

NH3. These properties suggest a sufficient lipid solubility to enable cell membrane 

permeability and also penetration to the central nervous system. Basic properties of COS, 

as well as those of H2S, NO, CO, SO2, and NH3 are provided in Table 1.1. 

 

CO + S  →  COS     (eq 1) 

 

KSCN + 2 H2SO4 + H2O  →  COS + KHSO4 + NH4HSO4  (eq 2) 

 

Table 1.1 Basic physical properties of COS and other biologically-relevant gaseous 
molecules receiving attention as confirmed or potential gasotransmitters. 

Physical property COS H2S NO CO SO2 NH3 

Molecular weight (g/mol) 60.08 34.08 30.01 28.01 64.06 17.03 

Density (g/mL) 1.028 1.36 1.34 1.14 2.63 0.769 

Melting point (°C) -138.8 -82 -164 -205.0 -72 -77.8 

Boiling point (°C) -50.2 -60 -152 -191.5 -10 -33.3 

Dipole moment (D) 0.65 0.97 0 0.12 1.62 1.42 

Solubility (H2O, mol/L, 25 

°C)  

2.0x10-2 1.1x10-1 1.9x10-3 9.9x10-4 1.7 31 
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1.2.1 Toxicity and Safety 

Much like H2S, NO, and CO, COS is a flammable gas that is toxic in high 

concentrations. COS is a skin, eye, nose, throat, and lung irritant, matching many of the 

topical toxicity characteristics of H2S. These similarities are likely due to the hydrolysis 

of COS to form H2S upon contact with different mucosal membranes, which typically 

contain CA thus facilitating H2S generation (vide infra). Similarly, in toxicological 

investigations of COS, treatment of rats with the CA inhibitor acetazolamide (AAA) 

reduces measured blood levels of H2S, and also the toxicity of COS, suggesting that at 

least some of the observed COS toxicity is due to CA-mediated metabolism to H2S.42, 51 

Although specific hazardous concentrations of COS are not specified by the US 

Environmental Protection Agency (EPA), different reports have documented irritation in 

the upper respiratory tract at concentrations above 20 mg/L.52 Low to moderate 

concentrations are accepted to elicit lachrymatory effects, photophobia, nausea, increased 

salivation, headache, mental confusion, as well as other characteristics.52 Higher COS 

concentrations can result in decreased vision, tachycardia, and collapse, and continuous 

exposure to COS concentrations of 0.1% (v/v) can result in death within two hours due to 

respiratory paralysis. A limited number of animal studies have investigated acute or 

chronic COS toxicity, but toxicological investigations of 50 ppm levels of COS in rabbits 

for up to 7 weeks did not impact the myocardial ultrastructure significantly.53 Similarly, 

toxicological investigations in rats revealed LC50 of over 2000 mg/m3 with further 

investigations classifying COS as a non-carcinogenic, low-toxicity fumigant.54  

 

1.2.2 Natural Sources 

 COS is the most prevalent sulfur-containing gas in Earth’s atmosphere and is 

produced by both biological and chemical pathways (Figure 1.2).52, 55 Primary abiotic 

COS emissions occur from volcanos, hot springs, and oceans, with biotic sources 

stemming from soils, trees, marshes, plant roots, manure, microorganisms, and biomass 

burning (see section 3 for more detailed information).56 Up to one half of terrestrial COS 

is generated from secondary production in the global sulfur cycle through oxidation of 

atmospheric dimethyl sulfide (Me2S) and carbon disulfide (CS2).56 Anthropogenic 

sources of COS, which include aluminum production, coal and automobile fuel burning, 
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and industrial desulfurization, contribute minimally to global COS production, but more 

recent estimates indicate that industry and manufacturing may produce more COS than 

has been previously reported.57 Measurement of atmospheric COS levels from Antarctic 

ice cores have shown that COS levels have risen over the last 350 years, which has been 

attributed to human sources of industrialization.58 Once produced, COS is more stable in 

the atmosphere than the common sulfur-containing gases Me2S, H2S, and CS2, which 

results in a prolonged atmospheric lifetime of about four years.59 As a result, COS is 

generally transported from the troposphere to the stratosphere, where it undergoes 

photodissociation and oxidation to SO2 and sulfate particles, therefore influencing 

stratospheric ozone concentrations.52, 60 The long atmospheric lifetime, as well as its 

formation from CS2 in the atmosphere, make COS the primary sulfur gas in Earth’s 

atmosphere, with measured concentrations of 0.5 ppb.56  

 

 
Figure 1.2 Simplified overview highlighting the roles of COS in the global sulfur cycle. 
Primary COS emission sources include volcanoes and hot springs, biomass, and open 
ocean emission. Approximately one half of atmospheric COS is generated from the 
oxidation of Me2S and CS2 in the global sulfur cycle. Primary anthropogenic sources 
include aluminum production, coal and automobile fuel burning, and industrial 
desulfurization. Once produced, COS has a longer atmospheric lifetime than Me2S, H2S, 
or CS2 and is typically transported to the stratosphere, where it undergoes 
photodissociation and oxidation to SO2 and sulfate particles. COS uptake also occurs in 
plants, soils, marine algae, and microbes, which often convert COS to CO2.   
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Although oxidation of COS to sulfate occurs in the atmosphere by hydroxyl 

radical, the major sink of atmospheric COS is uptake by many plants, soils, marine algae, 

and microbes, which often convert COS to CO2. This conversion is typically mediated by 

the ubiquitous enzyme CA as well as other COS-metabolism enzymes (vide infra). In 

addition to COS metabolism by CA, some plants are able to convert COS to CS2, as 

demonstrated by increased CS2 release after COS absorption by moist soils.61 These 

observations suggest a link between CS2 and COS not only in the atmosphere, but also in 

soils and vegetation.  

 

1.3 Biological Roles of COS 

Growing evidence supports the importance of reactive sulfur species in biology, 

but surprisingly little attention has focused on the most-prevalent sulfur-containing gas in 

Earth’s atmosphere: COS. Reported investigations into the biological roles of COS 

remain sporadic and our understanding of the potential roles physiological and 

pharmacological roles of COS remain underdeveloped. Despite these limited reports, 

enzymatic COS production and consumption is well documented, and COS generation in 

cell culture and in exhaled breath in human subjects suggests a broader role for this 

important gas in diverse biological processes.  

 

1.3.1 Enzymatic Consumption of COS 

Carbonic anhydrases (CAs) are a family of ubiquitous metalloenzymes that 

catalyzes the reversible hydration of CO2 to bicarbonate (HCO3
–).62, 63 CAs are comprised 

of five classes found primarily in vertebrates (α-CAs), higher plants and some 

prokaryotes (β-CAs), archaebacteria (γ-CAs), and diatoms (δ-CAs and ξ-CAs). Although 

not its natural substrate, CA is also able to readily hydrolyze COS to H2S, providing a 

broad enzymatic platform for redox-neutral conversion of COS to H2S. The catalytic 

efficiency (kcat/KM) of CA-mediated COS conversion to H2S is less efficient than the 

canonical CO2 metabolism (~8 x 107 M-1 s-1),64 but still boasts a high catalytic efficiency 

of 2.2 x 104 M-1s-1 for bovine CA-II (Table 1.2).65 Drawing parallels to CA, other 

enzymes are also able to catalyze the hydrolysis of COS even though it is not their natural 

substrate. For example CS2 hydrolase, nitrogenase, CO dehydrogenase, and ribulose-1,5-
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bisphosphate carboxylase oxygenase (RuBisCO), have all been reported to hydrolyze 

COS.66-69 Of these enzymes, CS2 hydrolase, initially isolated from acidophilic and 

thermophilic archaea extremophiles66 exhibits the greatest catalytic efficiency of 

enzymatic COS hydrolysis (Table 1.2). Because the distribution of this enzyme is limited 

to extreme and sulfur-rich environments, such as sulfotaras, it is unlikely that CS2 

hydrolase contributes significantly to global COS consumption. The only known example 

of an enzyme for which COS is the natural substrate is carbonyl sulfide hydrolase 

(COSase), which was recently identified, purified from T thioparus strain THI115, and 

characterized.70, 71 COSase shares both a high sequence homology and shares a similar 

Zn(II) active site with the β-CAs and are structurally similar to enzymes in clade D of the 

β-CA phylogenetic tree.70 Importantly, COSase has a higher efficiency than widely-

distributed enzymes able to catalyze COS hydrolysis, suggesting that it may play an 

important role in the global consumption of atmospheric COS. Although less efficient 

than COSase, other metalloenzymes, such as CO dehydrogenase,68  RuBisCO,69 and 

nitrogenase 67 have been shown to metabolize COS in plants and bacteria with varied 

levels of catalytic efficiency (Table 1.2).  

 
Table 1.2 COS degrading enzymes and associated enzyme kinetic parameters. Modified 
from reference 70.70 
Enzyme Organism kcat 

(s-1) 

Km 

(µM) 

kcat/KM 

(M-1 s-1) 

Ref. 

CS2 hydrolase Acidianus sp. Strain A1-3 1800 22 8.2 x 107 66 

COSase T thioparus strain THI115 58 60 9.6 x 105
 

70 

CO dehydrogenase Rhodospirillum rubrum  

ATCC11170T 

0.52 2.2 2.4 x 105 68 

CA Bos taurus 41 1.9 x 103
 2.2 x 104 65 

RuBisCO Spinacia oleracea 3.8 1.8 x 103 2.2 x 103 69 

RuBisCO Rhodospirillum rubrum   6.3 5.6 x 103 1.1 x 103 69 

Nitrogenase Azotobacter vinelandii 0.16 3.1 x 103 5.2 x 101 67 
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1.3.2 Biological Production of COS 

Thiocyanate (SCN–) is a common organic anion found in plants, mammals, and 

natural environments. In plants, SCN– is formed from the hydrolysis of glucosinolates, 

often found in Cruciferae (Brassicaceae) by glucosidases.72 In mammals, SCN– is 

commonly found in saliva, blood, and milk, and derives from ingestion of glucosinolates, 

often derived from broccoli, cauliflower, and other cruciferous vegetables, as well as 

from cyanide (CN–) detoxification by the ubiquitous enzyme rhodanese.73 Although 

mammalian thiocyanate degradation primarily occurs through peroxidation by 

myeloperoxidase and lactoperoxidase,74 at a microbial level, a number of 

chemoorganotrophic bacteria are able to degrade SCN– as a source of nitrogen and sulfur. 

Furthermore, chemolithoautotrophic sulfur bacteria, such as Thiobacillus thioparus, have 

been identified that utilize SCN– as their primary energy source.75 More specifically, the 

enzyme thiocyanate hydrolase (SCNase), which catalyzes the hydrolysis of SCN– to COS 

and NH3 (eq. 3), was initially isolated and identified in T. thioparus strain THI115.76 

SCNase consists of three subunits (α (19 kDa), β (23 kDa), and γ (32 kDa)), which share 

a high sequence homology to bacterial nitrile hydratases, and maintains an unusual 

distorted square pyramidal low-spin Co(III) active site.77 Thiocyanate hydrolase has also 

been identified as the primary enzyme for initiating SCN– hydrolysis in the sulfur-

oxidizing bacterium Thiohalophilus thiocyanoxidans.78  

 

SCN– + 2 H2O  →  COS + NH3 + OH–   (eq 3) 

 

In addition to SCNase, COS can also be formed from archaeal CS2 hydrolase, 

which converts CS2 to H2S and CO2, but proceeds through intermediate generation of 

COS.66 CS2 hydrolase, isolated from Acidianus A1-3, which is a hyperthermophilic 

Archaea that lives in volcanic solfataras, has a structure that is similar to typical β-CAs, 

but does not hydrolyze CO2. Instead, this enzyme has evolved a highly hydrophobic 

tunnel that serves as a filter by blocking the entrance of CO2 into the active site, which is 

otherwise identical to that of CA.79 Similarly, in mammalian systems, CS2 can be 

metabolized to COS by the mixed-function oxidase enzyme system. Liver damage, as 

well as a measureable decrease in the concentration of cytochrome P450, is observed 
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when rats are treated with CS2.80-82 This damage has been attributed to the binding of 

reactive sulfur species that are released during the hydrolysis of CS2 to COS. Once 

released, the COS is further metabolized to H2S, most likely by hepatic CA. 

Alternatively, COS can function as a suicide substrate for cytochrome P450, generating 

CO2 but also reactive sulfur species that react with and inhibit the P450.81 

 

1.3.3 Abiotic COS generation 

In addition to enzymatic COS generation, abiotic COS production of has also 

been demonstrated. Because much of the COS in the atmosphere derives from open 

waters, a number of studies have investigated possible mechanisms of COS formation, 

such as the reaction of carbonyl groups of dissolved organic compounds with thiyl 

radicals.83 Interestingly, and possibly of more direct biological relevance, is the direct 

reaction of polysulfides with CO to generate COS.84 Inorganic polysulfides play an 

important role in the global sulfur cycle and such polysulfides, as well as their organic 

counterparts, are now understood to be of increasing importance in the biological action 

of H2S.85-89 By using inorganic polysulfides and CO, both of which are abundant in 

aquatic systems, mechanistic investigations revealed that the rate of COS generation had 

a first-order dependence in both CO and the molar sum of polysulfide species in 

solution.84 Although further investigations are needed to determine whether the reaction 

kinetics, pH, and temperature dependence make such mechanisms of COS formation 

viable under physiological conditions, these observations highlighted the interconnected 

role of COS with CO and polysulfides. 

 

1.3.4 COS Detection in Mammalian Systems  

Although the precise mechanisms of COS biosynthesis in eukaryotes remain 

unknown, two primary pathways for COS genesis have been postulated in investigations 

of COS in the body: metabolism (or impaired metabolism) of sulfur containing 

precursors, and direct generation by cohabitating bacteria. COS has also been detected as 

a metabolite of different sulfur-containing drugs, supporting that abnormal metabolism of 

sulfur-containing compounds may, in part, contribute to COS generation. One simple 

example of such is disulfiram (tetraethylthiuram disulfide), which functions as an 
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acetaldehyde dehydrogenase inhibitor and is commonly used for treatment of chronic 

alcoholism.50 Reduction of the dithiocarbamate disulfide in disulfuram, followed by 

partial hydrolysis to form diethylthiocarbamate, may provide a path for COS extrusion, 

although it is also possible that initial CS2 release generates COS as a metabolic 

byproduct. Additionally, metabolism of the commonly-used dithiocarbamate pesticides 

has also been demonstrated to release COS. Although such systems provide convenient 

examples of COS in biological contexts, the high concentrations of such sulfur-

containing molecules significantly simplifies COS detection. By contrast, detection of 

endogenous COS remains significantly more challenging. These challenges arise 

primarily from the likely low levels of COS as well as the efficient metabolism of COS 

by CA to form H2S, which has so far necessitated detection of COS from only gaseous 

biological samples or from the headspace of samples, where COS can be isolated outside 

of a CA-rich environment. Despite these challenges, observation of COS in mammalian 

cell culture, ex vivo tissues, and exhaled breath has provided compelling evidence for the 

importance of COS in biology and implications for COS involvement in various 

pathologies. 

One strategy for COS detection is to monitor the gas content of the headspace 

over cell culture or ex vivo tissues. One benefit of this approach is that analysis of the 

headspace is readily accessible through standard GC-MS techniques or by various 

spectroscopic techniques.90 In one such example, headspace analysis of porcine coronary 

artery (PCA) and cardiac muscle tissue in vitro demonstrated COS formation by GC-MS 

analysis.41 In addition, COS was found to induce arterial dilation. Moreover, stimulation 

of PCA with acetylcholine and calcium ionophore A23187 resulted in increased COS 

levels, suggesting that muscarinic acetylcholine receptors (mAChRs), which have already 

been shown to be involved in production of CO, NO, and H2S leading to 

vasorelaxation,91-96 may also be involved in COS genesis. Although a simple example, 

these experiments may suggest a promising starting point for future COS investigations.  

In addition to detection of COS in the headspace of tissue culture experiments, 

COS has also been detected in exhaled breath, providing evidence for the role of COS as 

a potential gaseous biomarker for various disease states. For example, investigations into 

the presence of sulfur gases in patients with cystic fibrosis (CF) revealed measurable 
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differences between COS levels in inhaled and exhaled breath.39 As a whole, CF patients 

had a reduced uptake of atmospheric COS by comparison with healthy patients. 

Furthermore, CF patients with reduced pulmonary function exhibited greater COS levels 

in exhaled breath than normal patients, with a strong inverse correlation between COS 

concentration and all four indices of pulmonary function in CF patients, with no 

correlation observed in normal patients. Prior research has also demonstrated an inverse 

correlation between pulmonary function and respiratory bacterial load,97-99 which when 

taken together, provide support for the hypothesis that cohabitating bacteria may play an 

important role in biological COS generation. Consistent with this hypothesis, recent 

studies have reported that CA distribution and activity may be altered in CF patients,100-

102 suggesting a lower potential for COS metabolism. One hypothesis, which is consistent 

with the experimental data, is that impairment of CA function/expression in CF patients 

may reduce COS metabolism in the lungs which, when coupled with increased bacterial 

load and COS production in the respiratory tract, may result in higher COS levels 

observed in exhaled gas. On the basis of these observations, these studies suggest that 

exhaled COS may provide a potential non-invasive biomarker for bacterial colonization 

of the respiratory tract of CF patients.  

Furthering the potential role of COS as a biomarker for lung pathologies in 

exhaled breath, COS has also been investigated as a potential marker of acute rejection 

(AR) after organ transplant. AR after lung allograft is a major risk factor for bronchiolitis 

obliterans (BO), which is one of the primary causes of death in lung transplant patients. 

Early detection and diagnosis of AR typically requires routine biopsies, which are 

invasive and associated with pulmonary complications. In a study investigating the 

efficacy of non-invasive breath testing for AR monitoring, comparisons between healthy, 

non-rejection patients and AR patients did not provide significant differences in exhaled 

ethane, isoprene, acetone, or H2S, all compounds that are potential organ transplant 

related biomarkers. Only exhaled COS levels were demonstrated to provide a biomarker 

for AR, with elevated COS levels observed for AR patients by contrast to non-rejection 

patients. Furthermore, individual patient tracking documented examples of COS levels 

increasing with worsening AR and decreasing with AR resolution. Although the direct 

COS origin was not identified, the authors hypothesized that abnormal metabolism of 
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sulfur-containing compounds in AR patients may be responsible for the observed 

increase in exhaled COS. 

In addition to direct lung pathologies, COS levels in exhaled breath have also 

been characterized in various stages of liver disease.40 When compared to patients with 

normal liver function, patients with hepatocellular injury (grouped to include: alcoholic 

cirrhosis, autoimmune cirrhosis, cryptogenic cirrhosis, fulminant hepatitis, hepatitis B, 

hepatitis C, 1-antitrypsin deficiency, and steatohepatitis) exhibited elevated COS levels in 

exhaled breath. Additionally, COS, but not CS2 or Me2S, was found to correlate with the 

severity of disease, resulting in increasing COS levels in early, mid, and end stage liver 

disease, potentially providing a diagnostic tool for early detection. By contrast, patients 

with bile duct injury diseases (grouped to include: cystic fibrosis, primary biliary 

cirrhosis, sclerosing cholangitis, and biliary obstruction) exhibited reduced COS levels in 

exhaled breath. These human studies are consistent with previous observations in isolated 

rat hepatocytes and liver microsomes, which have been observed to generate COS, 

possibly from CS2 metabolism or metabolism of other sulfur-containing compounds.51 

These data are also consistent with previous experiments where COS has been observed 

in exhaled breath of rats exposed to CS2, suggesting that the observed COS may be due to 

metabolism of CS2 or, by analogy, the incomplete metabolism of other sulfur-containing 

compounds.80  

The above examples provide key demonstrations of COS generation from 

metabolic abnormalities or bacterial colonization associated with disease, but also 

provide compelling evidence for the necessity of further exploration into potential 

metabolic pathways of COS in biology. Although mammalian COS production from 

natural sources remains poorly understood, one possible route for COS synthesis is SCN– 

hydrolysis by SCNase, although the presence of this enzyme has yet to be reported in 

mammals. Given that COS has been detected in biological samples, particularly in non-

diseased tissues, elucidation of possible enzymatic pathways for COS production remains 

an important area of investigation. Importantly, these studies additionally suggest a key 

role of bacterial colonization in COS generation in mammalian systems. In the cases of 

exhaled breath analysis, a distinct interplay between the host, mammalian tissues, and 
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bacterial colonization not only suggests a complex landscape in COS generation, but also 

may provide access to a convenient method of detection for a variety of disease states. 

 

1.4 COS Chemistry 

The most simple reactions of COS, including hydrolysis, oxidation, reduction, and 

dissociation, have been known for many years and are the main subject of a thorough 

COS review published in 1957.47 Since then, COS chemistry has expanded to address 

environmental concerns associated with COS contaminants in industrial settings, and 

catalysts for the low temperature rapid hydrolysis of COS have been developed. 

Although the most basic chemical reactions are well researched, more complex and 

biologically-relevant COS-related reactions remain less understood, even though 

contemporary investigations suggest important biological roles for COS stemming from 

initial thermophilic origin of life chemistry.  

 

1.4.1 Simple Reactions of COS 

Shortly after the initial synthesis of COS, early reactivity studies demonstrated 

that COS reacts with primary amines (1), such as excess aniline to generate diphenylurea 

and H2S.48 In such reactions, COS initially reacts with the amine to generate a stable, 

often isolable monothiocarbamate (2), which subsequently extrudes HS– to furnish an 

electrophilic isocyanate (3). In the presence of excess amine, the isocyanate intermediate 

is trapped by the amine to generate the urea product (4) (Figure 1.3). By tuning the 

reaction conditions, the generated isocyanate can also react with other nucleophiles, such 

as thiols, to furnish thiocarbamate esters (5). Although challenging to control the reaction 

conditions and stoichiometries on laboratory scale syntheses, these reactions are 

commonly used industrially in the manufacture ureas and thiocarbamates for use as 

herbicides and pesticides. Because COS is also known to a be a sulfur contaminant in 

natural gas and hydrocarbon streams, the chemistry detailed above can be utilized for 

COS removal through the addition of primary amines during the purification process.103 
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Figure 1.3 Amines react reversibly with COS to generate thiocarbamates, which can 
release H2S to afford electrophilic isocyanates. These isocyanates can be trapped in 
synthetically-useful reactions to generate ureas and thiocarbamate esters.  
 

1.4.2 Implications in Origins of Life and Prebiotic Bond Formation 

In addition to the role of COS in laboratory scale and industrial syntheses, 

contemporary investigations have focused on the potential role of COS in nascent bond-

forming reactions under prebiotic conditions. Perhaps unsurprisingly, the volcanic and 

geothermal generation of COS, as well as its bond forming potential with simple 

nucleophiles, appears consistent with the thermophilic origin of life requirements. Much 

of this work stems from studies by Hirschmann and co-workers in 1971 focused on 

peptide formation from 2,5-thiazolidinediones, in which a footnote comments that traces 

of dipeptides were formed from phenylalanine thiocarbamate– a known reaction product 

of amines with COS.104  

Over 30 years later, more detailed investigations into origin of life peptide 

synthesis were performed by mimicking volcanic or hydrothermal environments. Using 

prebiotic building blocks such as CO, nickel and iron sulfides ((Ni,Fe)S), and a reducing 

atmosphere of H2S or CH3SH at elevated temperatures (Figure 1.4a), amino acids (6) 

combined successfully to form dipeptides (7). Amino acid chirality was lost, however, 

likely due to the presence of metal sulfides that may promote racemization of the 

stereocenter of the anhydride intermediate under the harsh conditions investigated. Trace 

amounts of COS were detected during the course of the dipeptide-forming reactions, 

which was consistent with a proposed mechanistic explanation that involved COS as a 

key intermediate required to generate the thioanhydride (9) prior to dipeptide (10) 

formation (Figure 1.4b). Supporting the necessity of COS in these reactions, dipeptides 

were still formed if CO and H2S were replaced with COS, although removal of (Ni,Fe)S 

abolished dipeptide formation. Highlighting the feasibility of metal-mediated formation 

of COS, a recent report demonstrated the ability of Mo(II) complexes to function as pre-
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catalysts for the photocatalytic generation of COS from CO and S8 under relatively mild 

conditions.105 

 

 
Figure 1.4 (a) Hydrothermal generation of dipeptides in the presence of (Ni,Fe)S, 
H2S/MeSH, and CO. (b) The proposed mechanism for this conversion generates COS as 
a key intermediate.   
 

Furthering investigations into the role of COS in primordial amino acid chemistry, 

an elegant study by Ghadiri and co-workers demonstrated that COS can facilitate the 

direct formation of small peptides from amino acids in water under mild conditions in the 

absence of metal sulfides (Figure 1.5).46 Remarkably, even the simplest conditions, such 

as addition of excess COS gas to an aqueous buffered solution of phenylalanine resulted 

in 7% dipeptide formation after 2 days at 25 ºC. Further investigations revealed 

quantitative formation of thiocarbamate (8) upon addition of COS to a pH 8.9 buffered 

solution. Importantly, this intermediate showed good hydrolytic stability, and studies 

using analytically pure phenylalanine thiocarbamate showed it to be a competent 

intermediate in the peptide bond formation. Such reactions are proposed to occur through 

formation of a cyclic N-carboxyanhydride (Leuchs’ anhydride, 11), which functions as a 

versatile platform for subsequent reactions with different nucleophiles. Formation of this 

anhydride, however, requires extrusion of HS– from the thiocarbamate intermediate, 

which is hindered both by the stability of the thiocarbamate intermediate as well as by the 

poor leaving group ability of hydrosulfide anion. In further optimization of peptide bond 

formation, significant rate enhancements were observed in the presence of metal ions, 

oxidizing agents, and electrophilic alkylating agents, suggesting that such species (or 

Lewis acids in general) may facilitate decomposition of the monothiocarbamate 

intermediate and subsequent H2S release. 
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In addition to simple peptide forming reactions, the activation of amino acids by 

COS has been demonstrated to be a more general pathway to biologically-relevant 

peptide functionalization. For example, under mild aqueous conditions, COS facilitates 

the formation of aminoacyl phosphates (13) from amino acids and inorganic phosphate. 

Under identical conditions, no aminoacyl phosphates are observed in the absence of COS. 

Similarly, when inorganic phosphate is replaced with adenylic acid (5’-AMP), several 

amino acids produced aminoacyl adenylates (15), which are important for protein 

biosynthesis. Furthermore, in the presence of Ca(II) and an amino acid, COS was also 

found to facilitate pyrophosphate (14) formation through intermediate generation of an 

aminoacyl-phosphate anhydride. Combined with the above evidence that COS mediates 

peptide formation, this work suggests that both prebiotic peptide synthesis and  

 

 
Figure 1.5 Prebiotic chemistry mediated directly by COS including formation of 
peptides, aminoacyl phosphates, and inorganic phosphates. Each pathway proceeds 
through COS-mediated formation of thiocarbamate 8, followed by sulfide extrusion to 
generate electrophilic intermediate 11 (Leuchs’ anhydride), which functions as a versatile 
platform for subsequent reactions with different biologically-relevant nucleophiles.  

 

phosphoryl transfer reactions might have relied on a common, COS-activated 

precursor.106  

Although the atmospheric levels of COS are unlikely to generate suitable 

concentrations of the required thiocarbamate intermediates to facilitate efficient peptide 
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coupling under global prebiotic conditions, the higher temperatures and COS levels near 

geothermal locales of COS generation could likely facilitate access to the reaction 

manifolds associated with these important prebiotic bond forming reactions. More 

importantly, these studies set the stage for establishing the potential role of COS in 

biologically-relevant reactions and intermediate generation, paving the way for future 

applications of COS chemistry. 

 

1.5 Emerging Tools for COS Investigations 

Both chemical and biological tools are needed to expand our understanding of the 

potential roles of COS in biology. Because direct knockout, overexpression, and blockage 

of the enzymes associated with production of the currently identified gasotransmitters 

have proven essential in studying the chemical biology of these gases, the definitive 

identification of COS-producing enzymes or pathways will be equally important. Prior to 

such information, downregulation of biological COS will remain a significant challenge. 

In the interim, one potential strategy to increase COS bioavailability is to shunt pathways 

associated with COS metabolism. For example, because of the wide distribution of CA 

and its high activity toward COS hydrolysis, the use of CA inhibitors and/or enzymatic 

knockout could potentially be used to increase COS accumulation. Inhibition of CA by 

small molecules is a well-researched field,107-112 and a variety of methods are available 

for strong inhibition of a variety of CA isoforms. Unfortunately, such inhibition studies 

would also alter the normal CO2 / HCO3
– equilibrium, and thus normal buffering 

capacities and cellular pH levels, likely leading to complicating effects. Additionally, 

even small changes in pH would also alter the distribution of H2S and HS–, likely leading 

to confounding results.  

Prior to insights gleaned from such investigations, the development of small 

molecule chemical tools for COS research may offer an attractive platform for expanding 

our understanding of COS in biology. Chemical tools for detection and delivery of the 

canonical gasotransmitters NO, CO, and H2S have been invaluable for investigating the 

multifaceted roles of these important biological molecules,113-130 suggesting that similar 

constructs may find utility for COS investigations. Reaction-based fluorescent probe 

development for COS is likely to remain a significant challenge based on the inherent 
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reactivity of COS. Because COS is a weaker electrophile than CO2, strategies to intercept 

COS by nucleophilic trapping are likely to be plagued by unwanted side reactivity 

leading to significant selectivity challenges. By contrast to reaction-based detection 

motifs, small molecules that release COS may offer a more attractive first line of tools for 

investigating COS in different biological contexts.  

 

1.5.1 General Strategies to Develop COS Donors.  

Because of the structural similarities between COS and CO2, many 

decarboxylation reactions can be engineered to release COS rather than CO2 by simple 

replacement of an oxygen atom with a sulfur in the parent scaffold. This basic design 

concept enables structurally-diverse COS donors that provide access to both triggered- / 

active-release donors, such as those that respond to specific biological or biorthogonal 

stimuli, as well as slow- / passive-release donors, such as those activated by hydrolysis or 

reaction with ubiquitous cellular enzymes and nucleophiles. Additionally, easily-

accessible control compounds are available through synthesis of analogous carbamate 

compounds, which release CO2 rather than COS. Access to such control compounds are 

instrumental in differentiating the biological effects of the donor scaffolds themselves 

from the released COS. Recognizing the potential powerful utility of engineered COS 

release, our lab was the first to harness such motifs to develop COS-releasing small 

molecules.131 Since this initial report, we have been delighted that other researchers are 

using related strategies to broaden the palette of COS-releasing motifs available for future 

biological investigations.  

The key breakthrough in our initial design was recognizing that self-immolative 

benzyl carbamates (Figure 1.6a),132, 133 often used as delivery platforms for prodrugs, 

fluorophores, and other small-molecules,134-137 could be modified to release COS rather 

than CO2 by exchanging the canonical carbamate linker with a thiocarbamate (Figure 

1.6b). In a proof-of-concept demonstration of this approach, we established the utility of 

on-demand COS-extrusion as a strategy to access both analyte replacement fluorescent 

probes and triggered COS/H2S donors (See Chapter II).131 The early motivation of this 

work was to address a major challenge in reaction-based probes for small molecule 

analytes, especially RSONS. Activation of these reporter scaffolds results in analyte 
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consumption, thus perturbing homeostasis. Exploitation of the self-immolative 

decomposition of thiocarbamates to release COS enabled the generation of the first 

examples of analyte replacement fluorescent probes, which react with (and consume) H2S 

to produce a turn-on fluorescent response, concomitant with the release one equivalent of 

caged H2S in the form of COS, thus providing progress toward analyte homeostasis in 

reaction-based detection systems (Figure 1.6c). By using an H2S-reactive azide trigger, 

which is reduced to an amine upon reduction by H2S, we established that the subsequent 

self-immolative cascade reaction extrudes COS, which is quickly hydrolyzed to H2S by 

CA. Importantly, this donor motif was found to be stable in whole mouse blood prior to 

trigger activation, thus highlighting the biological stability of these platforms. Control 

experiments on thiocarbamate motifs lacking a latent fluorophore demonstrated that 

triggered reductive cleavage by tris(2-carboxyethyl)phosphine (TCEP) in mouse blood 

resulted in COS donation with nearly 50% efficiency and conversion to H2S by CA. 

Additionally, addition of the CA inhibitor AAA abrogated H2S production in vitro, 

confirming that H2S release is a result of CA-mediated COS hydrolysis. Although this 

initial report provided an important contribution toward H2S detection technology, the 

broader impact is providing a viable and highly tunable COS donating strategy for 

accessing chemical tools for expanding our understanding of the chemical biology of 

COS.  

 

1.5.2 Triggered/Active Release of COS 

Furthering the strategies outlined above, simple changes to the general self-

immolative thiocarbamate scaffold can provide access to new donor motifs with more 

specific functions. Notably, incorporation of protecting groups that selectively respond to 

specific stimuli and result in on-demand COS release may provide access to highly 

targeted COS donors with utility in investigating the chemical biology of COS, as well as 

for site-selective COS/H2S donation. Such triggerable donors can be expected to be 

useful in therapeutic applications where COS delivery is targeted to a specific location as 

well as for studying COS delivery with a high level of temporal control.  
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Figure 1.6 (a) Established strategy of using protected benzylcarbamates to deliver a 
payload after trigger activation. (b) Translation of this delivery technique by using 
protected benzylthiocarbamates enables access to COS releasing motifs. (c) Initial 
application of caged COS release to develop analyte replacement fluorescent probes for 
H2S based on azide reduction.  
 

ROS Triggered COS Donors. A powerful application of such responsive donors is the 

judicious choice of triggering analytes associated with contexts in which H2S can exert 

beneficial action. For example, because H2S has been demonstrated to provide protection 

against increased oxidative stress, a system in which COS release is triggered by reactive 

oxygen species (ROS) should not only provide access to actively-triggered COS donors, 

but also provide a platform with high pharmacological potential. Using an ROS-cleavable 

aryl boronate as the protecting group,138, 139 we developed a class of COS donors that 

respond to increased ROS levels (Figure 1.7a).140 Highlighting the responsive nature of 

this design platform, COS is released from PeroxyTCM-1 in a dose-dependent manner 

upon addition of H2O2 as well as other ROS and is quickly converted to H2S by CA.  

Supporting in vitro investigations, stimulation of endogenous ROS production in 

Raw. 264.7 cells by addition of phorbol 12-myristate 13-acetate (PMA) resulted in 

COS/H2S release from PeroxyTCM-1, as evidenced by an increase in fluorescence when 

imaged with the H2S-responsive probe HSN2.141 Providing early insights into the 

potential of such donors to impart cellular protections under conditions of increased 

oxidative stress, PeroxyTCM-1 exhibited a dose-dependent increase in cell viability in 

HeLa cells treated with exogenous H2O2, which is consistent with ROS protection.  
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Figure 1.7 (a) Strategy for using ROS-responsive aryl boronates to access ROS-triggered 
COS/H2S donors. (b) Structure of ROS-triggered COS donor PeroxyTCM-1 and control 
compounds PeroxyCM-1, which releases CO2, and TCM-1, which lacks the ROS-
activated trigger.  
 

Importantly, the use of carbamate control compound PeroxyCM-1 or triggerless TCM-1 

(Figure 1.7b) did not recapitulate the cytoprotective effects, suggesting that the observed 

cytoprotection was indeed due to the COS/H2S release rather than from the organic 

scaffold or reaction byproducts. In addition, in vitro investigations also demonstrated that 

H2O2 can react directly with COS to generate H2S, thus decreasing the need for CA and 

also highlighting the importance of COS as a potential ROS scavenger.  

 

Bio-orthogonal COS Release (See Chapter III). COS donors triggered through bio-

orthogonal methods have also been reported. One advantage of this approach is that the 

donor constructs are stable until exposure to a benign external stimulus and release COS 

without the need for a detrimental cellular trigger. Additionally, bio-orthogonal methods 

allow for the potential of high spatial and temporal resolution, as evidenced by the utility 

of such strategies for targeted drug delivery.142, 143 For example, incorporation of a COS-

releasing thiocarbamate into the cyclooctene reaction partner of the inverse-electron 

demand Diels-Alder (IEDDA) click reaction between cyclooctenes and tetrazines144-146 

enabled access to “click-and-release” COS donors (Figure 1.8).147 The initial 

cyclooctene-tetrazine click reaction generates a thiocarbamate-functionalized 

dihydropyridazine (26), which after spontaneous tautomerization, deprotonation, and 

rearomatization releases the cyclooctylpyridazine product (29), benzylamine, and COS. 

Direct COS release was confirmed by GC-MS, and H2S production was observed after 

incubation with CA. Although preliminary biological compatibility was demonstrated in 
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whole blood and plasma, further biological investigations and applications are needed to 

establish the fidelity of this platform in more complex contexts and to improve on the 

efficiency and rate of COS release.  

 
Figure 1.8 Bio-orthogonal COS donors based on the IEDDA click reaction. 

 

1.5.3 Continuous/Passive Release of COS 

A complementary approach to access caged COS donors is to develop continuous 

release COS donors, which are activated by ubiquitous cellular nucleophiles or enzymes. 

Such donors would result in continuous, rather than triggered, COS release, thus 

increasing basal COS levels in an otherwise normal physiological environment. Similar 

to well-known hydrolytically-activated donors for NO and H2S,148, 149 these compounds 

are likely to contribute to an important class of tools for investigating COS chemical 

biology. 

 

Nucleophile activation. Matson and co-workers recently investigated N-

thiocarboxyanhydrides (NTAs, Figure 1.9a) as COS-releasing molecules.150 These 

electrophiles release COS upon reaction with nucleophiles, and are analogous to the 

thiocarboxyanhydrides proposed by Hirschmann in studies of peptide couplings (9, 

Figure 1.4).104 In these scaffolds, COS release likely occurs through initial formation of 

an thiocarbamate intermediate (30) akin to those observed by Ghadiri and co-workers in 

COS-mediated peptide forming reactions (Figure 1.9b).46 After preparing small molecule 

(NTA1) and polymeric (polyNTA1) derivatives (Figure 1.9a), GC-MS experiments 

confirmed that the NTA derivatives release COS in the presence of mild biological 

nucleophiles, such as glycine. As further evidence of COS formation, the addition of CA 

resulted in H2S formation, which was confirmed using an H2S-responsive electrode. 

Because alkylthiocarbamates similar to 30 have been used previously as efficacious CA 

inhibitors,151 fine tuning of the structure of NTA derivatives and the resultant 

thiocarbamate intermediates may enable further tuning of rates of COS hydrolysis to H2S. 
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Cell culture investigations demonstrated the ability of NTA1, but not polyNTA1, to 

promote cell proliferation in brain-derived endothelial cells at levels akin to that observed 

by treatment with NaSH. As a whole, these continuous release NTA platforms provide a 

simple scaffold for further modifications based on the simplicity of the COS-releasing 

core and offer the benefit of innocuous peptide byproducts after COS release. 

 

Ubiquitous enzyme activation. Complementing COS donors that function by reaction 

with bioavailable nucleophiles, Chakrapani and co-workers recently reported 

thiocarbamate (32) and thiocarbonate (33) containing COS-donor motifs responsive to 

ubiquitous cellular esterases.152 Leveraging the design strategies outlined in sections 5.1-

2, installation of an ester functional group, which is cleaved by intracellular esterases,153 

generates a phenolic intermediate (34) that initiates the subsequent self-immolative 

collapse to extrude COS (Figure 1.9c). Esterase-mediated release of COS and subsequent 

conversion to H2S by CA was confirmed in vitro using both the methylene blue (MB) 

assay and also an H2S-responsive electrode. COS/H2S release was also confirmed in 

MCF-7 cells using the H2S-responsive probe NBD-fluorescein.154 One difference of these 

platforms from those outlined in sections 5.1-2 is the use of an S-alkylthiocarbamate 

rather than an O-alkylthiocarbamate, as well as investigation into COS/H2S release from 

thiocarbonates in addition to thiocarbamates. Preliminary mechanistic investigations 

suggest that the choice of thiocarbamate versus thiocarbonate may impact the rate 

limiting step of COS extrusion, thus providing a pathway for further control and tuning of 

reaction kinetics and release profiles.  

 

1.5.4 Outstanding Questions  

Although the recent introduction of a variety of COS donor compounds provides 

simple ways to introduce exogenous COS into biological samples, the direct CA-

mediated metabolism of COS to H2S represents a significant challenge in differentiating 

the biological actions of COS from those associated with H2S. Additionally, because 

COS metabolism by CA generates CO2/HCO3
– in addition to H2S, it is important to 

consider the total amount of COS metabolized in a system to ensure buffering capacities 

are not exceeded by these otherwise innocuous products. Answers to such questions will  
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Figure 1.9 Continuous-release COS donors including (a) N-thiocarboxyanhydride (NTA) 
COS-releasing molecules NTA1 and polyNTA1. (b) Proposed mechanism of COS 
release from NTA-based donors. (c) Esterase-cleaved COS donors and associated 
mechanism of COS release. 
 

likely require thoughtful and careful applications of available H2S and COS donors used 

in concert to investigate specific biomolecular questions. Whether available COS donors 

function merely as clever sources of biological H2S, or whether the released COS imparts 

different outcomes in biological contexts remains to be determined. If realized, COS-

releasing molecules that provide outcomes distinct from those attributed to available H2S 

donors will likely play a significant role in assessing the and advancing not only the role 

of COS as a potential gasotransmitter, but also its role in potential therapeutic 

applications associated with human health.  

 

1.6 Conclusions 

Key challenges remain in further elucidating the chemical biology of COS, but 

our current, albeit limited, understanding of the biological production and consumption of 

COS suggests that it may play diverse roles. Could COS be poised to be the next on the 

list of established gasotransmitters? This distinction will first require identification of 

enzymatic COS production in higher organisms and evidence that COS and H2S function 

independently. It is also possible that COS functions primarily as a source of ‘caged’ H2S 

that is liberated by CA metabolism. Such a pathway is intriguing because it would 

provide a source of reduced sulfur that is not ionizable through acid-base equilibria at 

physiological pH, and that is less susceptible to ambient or enzymatic oxidation through 
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direct action of oxidases or sulfur:quinone oxidoreductase (SQR),155 thus bypassing 

interaction with the sulfane-sulfur pool.156 Additionally, the neutral state of COS could 

enable distribution to locales that would otherwise be challenging for H2S/HS– alone.  

Finally, there is compelling evidence that COS stems from bacterial generation, 

especially in certain disease pathologies. In these cases, COS could provide a transport 

mechanism from pathogen to host. Even if eukaryotic COS synthesis is not a major 

source of endogenous COS, a thorough understanding of the role that COS plays in these 

diseases will likely be beneficial in early detection and treatment. When viewed more 

broadly, the absence of well-established metabolic pathways for COS formation in 

eukaryotic systems paired with the presence of COS-producing pathways from simple 

and abundant sulfur sources by a variety of bacteria may paint a broader, yet 

fundamentally underexplored picture of the COS functions in sulfur biology and 

transport.  

In this dissertation, I report novel chemical tools for studying COS and H2S 

chemical biology through the development of self-immolative thiocarbamates that can be 

triggered to release COS by a variety of stimuli. In Chapter II, I describe the first report 

of this strategy, initially established to address a significant problem in reaction-based 

detection of H2S: consumption of the analyte. In Chapters III and IV, I expand the library 

of thiocarbamate-based, COS-releasing scaffolds and report two novel H2S donation 

strategies: bioorthogonally-activated and cysteine-selective. In Chapters V and VI, I 

adapt this COS-releasing motif to develop H2S donors that are activated by ubiquitous 

enzymes, and in the process reveal unexplored physiological properties of COS itself. 

Finally, in Chapter VII, I survey a wide-range of scaffolds that could be used as COS-

releasing core motifs for cytotoxicity and CA inhibition and suggest ideal structures for 

researchers developing COS donors. Chapters II through VII contain both unpublished 

and previously published, coauthored material as is specified at the start of each chapter. 
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CHAPTER II 

 

SELF-IMMOLATIVE THIOCARBAMATES PROVIDE ACCESS TO 

TRIGGERED H2S DONORS AND ANALYTE REPLACEMENT FLUORESCENT 

PROBES 

 

This chapter includes previously published and coauthored material from Steiger, A.K.; 

Pardue, S.; Kevil, C.G.; Pluth, M.D. “Self-Immolative Thiocarbamates Provide Access to 

Triggered H2S Donors and Analyte Replacement Fluorescent Probes” J. Am. Chem. Soc. 

2016, 138, 7256-7259.  

 

2.1 Introduction 

The advent of chemical tools to probe and manipulate biochemical processes has 

revolutionized how biological processes are investigated.157-159 Spawning from initial 

investigations into fluorescent proteins,160, 161 small molecule fluorescent reporters now 

comprise a key pillar of investigative chemical biology with a remarkable diversity of 

fluorescent tagging and measurement technologies.162, 163 Recent years have witnessed a 

significant expansion of sensor development to include chemical tools for imaging 

different transition metal, alkali, and alkali earth ions.164-166 Many of these sensors 

provide real-time, quantitative measurements of ion fluxes due to the reversible 

interaction of the sensor with the analyte, thus providing methods for imaging the 

dynamic process of metal ion trafficking associated with signaling events ranging from 

Ca2+ sparks during muscle contraction167 to Zn2+ fluxes during mammalian egg 

fertilization.168 Complementing such investigative tools are small molecule donors that 

release caged analytes at controllable rates.124, 169-171 Such platforms provide powerful 

methods to control levels of specific analytes, which often include pro-drugs, metal ions, 

or small reactive sulfur, oxygen, and nitrogen species (RSONS), in different biological 

contexts.  

In the last two decades, RSONS have emerged as important bioinorganic 

molecules involved in myriad biological processes, many of which have been elucidated 

by utilizing chemical tools for small molecule detection and delivery. RSONS are 
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involved in the complex cellular redox landscape and are often involved in oxidative 

stress responses, immune responses and signaling pathways, as well as other emerging 

roles.172 For example, NO, HNO, and ONOO– play important roles ranging from smooth 

muscle relaxation to immune response173 and are largely intertwined with reactive 

oxygen species, such as O2
– and H2O2, which are critical in oxidative stress responses and 

have been implicated in various aging mechanisms.174 Similarly, reactive sulfur species, 

such as H2S, hydropolysulfides (HSn>1
–), and persulfides (RSSH) have recently garnered 

interest as important signaling molecules with roles in long term potentiation and 

cardiovascular health.2 By contrast to their metal ion counterparts, RSONS are often 

fleeting nature and often react irreversibly with cellular targets. This heightened reactivity 

has provided chemists with significant challenges in developing constructs that can 

release these molecules under controlled conditions, but have also provided different 

strategies to devise chemical tools for their detection by engineering reactive groups onto 

sensing platforms that react selectively albeit irreversibly with the analyte of interest.175  

Although small molecule donors and reaction-based probes have provided 

significant insights into the roles of RSONS in biology, key needs remain. For example, 

engineering donors with precise but modifiable triggers to enable analyte release in 

response to specific stimuli and developing reaction-based probes that do not irreversibly 

consume the analyte would enable new insights into RSONS biology. Motivated by these 

needs, as well as our interest H2S chemistry, we report here a new caged H2S releasing 

strategy and provide proof-of-concept applications in both small-molecule donor and 

reaction-based probe design. By leveraging triggerable self-immolative thiocarbamates, 

we demonstrate access to easily-modifiable H2S donors that can be triggered by external 

stimuli (Figure 2.1a), and address common issues of analyte consumption in reaction-

based fluorescent probes (Figure 2.1b) by developing analyte-replacement reaction-based 

platforms (Figure 2.1c). 
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Figure 2.1 (a) Caged donors triggered by different stimuli. (b) Reaction-based probes 
typically consume the target analyte. (c) Analyte-replacement reaction-based probes 
enabled by incorporation of caged analytes into reaction-based motifs. 
 

2.2 Results and Discussion 

Development of analyte-replacement sensing platforms requires two important 

components: a versatile H2S donation motif that releases H2S in response to a specific 

triggering event and a method to couple this caged donor to a reaction-based sensing 

platform with an optical output. As a proof-of-concept design toward this objective, we 

chose to use H2S-mediated azide reduction for our sensing platform, which has emerged 

as the most common method for H2S detection and exhibits high selectivity for H2S over 

other RSONs (Figure 2.2a).176 Although a number of H2S-donating motifs have been 

reported and have found utility as important research tools,122-124 none of these fit the 

design requirement of our approach. To develop an H2S donating motif compatible with 

our design requirements, we reasoned that common strategies in drug and fluorophore 

release, namely the self-immolative cascade decomposition of para-functionalized benzyl 

carbamates (Figure 2.2b),132, 133, 177 could be modified to enable triggered H2S release. 

Because self-immolative carbamates release an amine-containing payload and extrude 

CO2 as a byproduct, we reasoned that replacing the carbonyl oxygen with a sulfur atom to 

generate a thiocarbamate would result in carbonyl sulfide (COS) rather than CO2 release 

(Figure 2.2c). In a biological environment, COS is quickly hydrolyzed to H2S and CO2 by 

carbonic anhydrase (CA), which is a ubiquitous enzyme present in plant and mammalian 

cells.42, 110 The second byproduct of the thiocarbamate self-immolation is a reactive 

quinone methide, which rapidly rearomatizes upon reaction with available nucleophiles, 

such as water or nucleophilic amino acids such as cysteine.178, 179  On the basis of the 
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requirements outlined above, we expected that a quenched fluorophore could be 

functionalized with a p-azidobenzylthiocarbamate to enable H2S-mediated azide 

reduction to form the transient aryl amine intermediate, which would subsequently 

undergo the self-immolative cascade reaction to extrude COS/H2S and liberate the 

fluorophore to access an analyte-replacement sensing motif (Figure 2.2d).  

 

 
Figure 2.2 Established strategies for (a) H2S-mediated azide reduction and (b) self-
immolative carbamates to deliver an amine-bound fluorophore. Incorporation of self-
immolative thiocarbamates enables access to (c) triggered H2S donors, and (d) analyte 
replacement probes. 
 

To confirm that the COS could serve as a potential source of H2S donation, we 

first established that independently prepared COS could be efficiently hydrolyzed to H2S 

by CA. Upon addition of COS gas to deoxygenated aqueous buffer (PBS, 1 mM CTAB, 

pH 7.4) containing CA from bovine erythrocytes, we observed rapid H2S production 

using an H2S-responsive electrode. In the absence of CA, negligible current was observed 

from COS alone, which is consistent with slow and pH-dependent, nonenzymatic 

hydrolysis in water (Figure A4).180 We also observed a dose-dependent reduction in H2S 

production upon addition of the CA inhibitor acetazolamide (AAA),108 which confirmed 

the enzymatic hydrolysis of COS by CA (Figure 2.3).  
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Figure 2.3 Conversion of COS to H2S by carbonic anhydrase (CA) with varying 
concentrations of CA inhibitor acetazolamide (AAA) in PBS buffer, pH 7.4. 

 

We next prepared model thiocarbamates to confirm that the proposed 

decomposition cascade to release COS occurs efficiently and to demonstrate the 

biological compatibility of this donor motif. We incorporated an azide in the para 

position of the benzylthiocarbamate to function as the H2S-responsive trigger for self-

immolation and COS release. To facilitate NMR identification of the products, we first 

prepared azidobenzylthiocarbamate 1 with a p-fluoroaniline payload, and the 

corresponding carbamate 2 as a control compound (Figure 2.4a-c). Although 2 should 

undergo the same self-immolative decomposition upon azide reduction, it releases CO2 

rather than COS, and thus should not donate H2S upon reaction with CA. To monitor the 

reactivity of the model compounds under controlled reaction conditions, we used tris(2-

carboxyethyl)phosphine (TCEP), an azide-reducing agent, to trigger self-immolation, due 

to its near-instantaneous reduction of azides. In each case, 1H, 13C{1H}, and 19F NMR 

spectroscopy was used to monitor the reaction after reduction of the model complexes by 

TCEP. Consistent with our design hypothesis, we observed the disappearance of the 

benzylic peak, loss of the thiocarbonyl carbon peak, and formation of new resonances 

upon self-immolation by NMR spectroscopy (Figure A1-A3). All such changes were 

observed within 5 minutes of TCEP addition, confirming the rapid self-immolation of the 

scaffold upon reduction, and were consistent with COS release from the thiocarbamate 

scaffold upon azide reduction.   

Having confirmed that CA rapidly catalyzes COS hydrolysis, we next 

investigated the H2S-donating ability of model compounds 1 and 2 under identical 

conditions. Monitoring thiocarbamate 1 in buffer containing CA did not result in H2S 

formation, confirming that the thiocarbamates do not react directly with CA and that aryl 
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azides are stable in the presence of CA (Figure A5). Upon injection of TCEP, however, 

rapid release of H2S was observed, indicating that azide reduction to an amine is essential 

to trigger self-immolation and COS release. Additionally, repeating the experiment with 

added AAA significantly reduced the rate of H2S production, confirming that uninhibited 

CA is required for significant H2S production from the triggered thiocarbamate scaffold 

(Figure 2.4d). Finally, the analogous carbamate (2) was investigated under identical 

conditions, and as expected no H2S was produced upon addition of TCEP, confirming 

that the sulfur-containing thiocarbamate is required for H2S formation. In total, these 

experiments demonstrate the validity of using thiocarbamates as a triggerable source of 

H2S release in aqueous solution, which we expect will prove fruitful for researchers 

interested in the pharmacological and physiological roles of sulfide donating 

molecules.122, 123 

 
Figure 2.4 (a,b) Synthesis of model thiocarbamates and carbamates. (c) Model 
compounds. (d) H2S release from 1 after reduction by TCEP in the presence of CA, under 
identical conditions with the addition of AAA (2.5 µM,), and from carbamate 2. (e) 
Quantification of total sulfide in whole mouse blood after treatment 25 µM 3 and 4 after 
30 min of incubation time in the presence of excess TCEP.  
 

Expanding on our cuvette-based studies, we also investigated H2S release from 

model thiocarbamates in whole mouse blood to expand on the efficacy of H2S release 

from thiocarbamates in biologically-relevant contexts. Although murine systems provide 
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a convenient model, mice have among the lowest CA levels in mammals, with murine 

blood only containing about 15% of the CA present in human blood,181 and thus represent 

a challenging target for sulfide release mediated by CA. To quantify total sulfide levels, 

we used the monobromobimane (mBB) method which allows for the analytical 

measurement of different sulfide pools and is compatible with many types of biological 

samples.182 Measurement of the total sulfide, which includes free sulfide as well as bound 

sulfane-sulfur, revealed background levels of 8 µM, which are higher than total sulfide 

levels commonly observed and reported in plasma, but are consistent with the high 

sulfane-sulfur content in red blood cells.183, 182 We prepared thiocarbamate 3, which lacks 

the azide trigger, to confirm that the thiocarbamate group was stable in whole blood and 

did not release COS without activation of the trigger group, and compared results 

obtained with this model compound with azide-functionalized 4. Total sulfide levels were 

measured for each compound, as well as the control, after 30 minutes of incubation with 

excess TCEP (Figure 2.4e). Consistent with our expected results, only samples containing 

donor 4 with the azide trigger increased total sulfide levels in blood (p ≤ 0.0001). These 

results establish the stability of the thiocarbamate in biological milieu and confirm that 

endogenous CA in murine blood, even though significantly lower than in most other 

biological environments,181 is sufficient to hydrolyze the COS released from 

thiocarbamates after the self-immolation cascade is triggered, highlighting the efficacy of 

this H2S-releasing strategy in biological environments.  

Having confirmed the viability of triggered H2S release with the model 

compounds, we next applied this design to incorporate a fluorophore to access an H2S-

responsive fluorescent probe that releases H2S upon H2S detection. Our primary goal was 

to demonstrate that the thiocarbamate group could be appended to common fluorophore 

motifs and efficiently quench the fluorescence. We chose to use the methylrhodol 

(MeRho)184 fluorophore due to its high quantum yield and single fluorogenic amine, 

which could be readily converted into the desired thiocarbamate. Since the azide-

functionalized scaffold would be triggered by H2S to release both MeRho and COS, this 

would function as a fluorescent H2S probe that would replenish sulfide through the 

release of COS. To access the desired scaffold, we treated MeRho with 

thiocarbonyldiimidazole (TCDI) and NEt3 in DMF to afford methylrhodol isothiocyanate 
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(MeRho-NCS) in 60% yield. Subsequent treatment with 4-azidobenzyl alcohol and NaH 

afforded the methylrhodol thiocarbamate azide (MeRho-TCA) in 35% yield (Figure 

2.5a). We note that one benefit of this simple synthetic route is that almost any 

fluorophore containing a fluorogenic nitrogen can be functionalized with the benzylazide 

thiocarbamate group, thus providing access to a diverse library of fluorophores. 

 

 
Figure 2.5 (a) Synthesis of MeRho-TCA. (b) Fluorescence response of MeRho-TCA to 
H2S. Inset shows integrated fluorescence over time by comparison to MeRho-TCA in the 
absence of NaSH. (c) Selectivity of MeRho-TCA for H2S over other RSONs. Conditions: 
5 µM probe, 250 µM RSONs unless noted otherwise, in PBS buffer, 1 mM CTAB, pH 
7.4, 37 °C. λex = 476 nm, λem = 480-650 nm. 
 

With a sulfide-replenishing H2S probe in hand, we investigated the fluorescence 

response upon addition of sulfide. Treatment of MeRho-TCA with 50 equiv. of NaSH in 

aqueous buffer (PBS, 1 mM CTAB, pH 7.4) resulted in a 65-fold fluorescence turn-on 

over 90 minutes (Figure 2.5b). Additionally, we confirmed that the MeRho-TCA scaffold 

was selective for HS– over other RSONs, by measuring the fluorescence response to Cys, 
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GSH, Hcy, S2O3
2–, SO3

2–, SO4
2–, H2O2, and NO (Figure 2.5c). As expected, the MeRho-

TCA scaffold exhibited excellent selectivity for sulfide over other RSONs, demonstrating 

that the thiocarbamate linker group did not erode the selectivity of the azide trigger, and 

also establishing that the MeRho-TCA scaffold can function as a viable H2S reporter. 

Because MeRho-TCA releases H2S upon reaction with H2S, we note that one 

consequence of this analyte replacement approach is that the resultant fluorescence 

response is not directly proportional to the initial H2S concentration. Additionally, in 

isolated systems, two equiv. of HS– are required for complete azide reduction, suggesting 

that the first-generation analyte-replacement scaffolds only replace one half of the 

consumed sulfide.185 It is also possible, however, that in biological media one equiv. of a 

thiol may play a role in H2S-mediated azide reduction, which remains a question for 

future investigations.  In the present system, preliminary mechanistic investigations 

indicate that H2S-mediated azide reduction is the rate-limiting step of the self-immolative 

process, and that the subsequent release of COS and hydrolysis by CA to form H2S is 

rapid. Taken together, these data highlight the potential of this strategy to access analyte-

replacement, reaction-based fluorescent scaffolds.  

 

2.3 Conclusions 

In summary, we have outlined and demonstrated a new strategy for triggered H2S 

release based on self-immolative thiocarbamates. Importantly, this strategy provides 

solutions to key challenges associated with both H2S delivery and detection. 

Thiocarbamate-based H2S donors provide a new, versatile, and readily modifiable 

platform for developing new H2S donor motifs that can be triggered by endogenous or 

biorthogonal triggers. Similarly, this same H2S donation strategy can be coupled to 

fluorescent probe development to access reaction-based fluorescence reporters that 

replace the analyte that has been consumed by the detection event. In a broader context, 

we expect that the self-immolative thiocarbamate donors will find significant utility as a 

potential platform for academic and potentially therapeutic H2S donors. The following 

Chapters will show numerous examples of self-immolative thiocarbamates as triggerable 

COS/H2S donors activated by a variety of stimuli. In Chapter III, we report the first 
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example of a bio-orthogonal H2S donor using a self-immolative thiocarbamate to release 

COS upon activation. 

 

2.4 Experimental Details 

2.4.1 Materials and Methods 

Reagents were purchased from Sigma-Aldrich or Tokyo Chemical Industry (TCI) and 

used as received. p-Azidobenzylalcohol,186 O-(4-azidobenzyl)-N-tolylthiocarbamate,187 

methylrhodol,184 and COS gas49 were synthesized as previously reported. Spectroscopic 

grade, inhibitor-free THF was deoxygenated by sparging with argon followed by passage 

through a Pure Process Technologies solvent purification system to remove water and 

then stored over 4Å molecular sieves in an inert atmosphere glove box. Deuterated 

solvents were purchased from Cambridge Isotope Laboratories and used as received. 

Silica gel (SiliaFlash F60, Silicycle, 230-400 mesh) was used for column 

chromatography. Preparatory chromatography was performed on Silicycle SiliaPlates (1 

mm thickness). 1H, 13C{1H}, and 19F NMR spectra were recorded on a Bruker 600 MHz 

instrument. Chemical shifts are reported in ppm relative to residual protic solvent 

resonances. H2S electrode data were acquired with a World Precision Instruments (WPI) 

ISO-H2S-2 sensor connected to a TBR4100 Free Radical Analyzer. Fluorescence spectra 

were obtained on a Quanta Master 40 spectrofluorometer (Photon Technology 

International) equipped with a Quantum Northwest TLC-50 temperature controller at 

37.0 ± 0.05 °C. UV-visible spectra were acquired on a Cary 100 spectrometer equipped 

with a Quantum Northwest TLC-42 dual cuvette temperature controller at 37.00 ± 0.05 

°C. All air-free manipulations were performed under an inert atmosphere using standard 

Schlenk techniques or an Innovative Atmospheres N2-filled glove box. 

 

Spectroscopic Materials and Methods. Phosphate buffered saline (PBS) tablets (1X, 

CalBioChem) and cetyl trimethylammonium bromide (CTAB) were used to make 

buffered solutions (PBS, 140 mM NaCl, 3 mM KCl, 10 mM phosphate, 1 mM CTAB, 

pH 7.4) in Millipore water. Buffer solutions were sparged with N2 to remove dissolved 

oxygen and stored in an N2-filled glovebox. Anhydrous sodium hydrosulfide (NaSH) was 

purchased from Strem Chemicals and handled under nitrogen. Aqueous stock solutions of 
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NaSH were prepared in buffer in an N2-filled glovebox immediately prior to use.  Stock 

solutions of MeRho-TCA were prepared in an N2-filled glovebox in DMSO and stored at 

-25 °C until immediately before use. Septum-sealed cuvettes from Starna Scientific were 

used to obtain spectroscopic measurements under anaerobic conditions.  

 

H2S Electrode Materials and Methods. Phosphate buffered saline (PBS) tablets (1X, 

CalBioChem) and cetyl trimethylammonium bromide (CTAB) were used to make 

buffered solutions (PBS, 140 mM NaCl, 3 mM KCl, 10 mM phosphate, 1 mM CTAB, 

pH 7.4) in Millipore water. Buffer solutions were sparged with N2 to remove dissolved 

oxygen and stored in an N2-filled glovebox. Carbonic anhydrase (CA) from bovine 

erythrocytes (≥3,500 W/A units/mg) was obtained from Sigma Aldrich and a 1% CA 

stock solution was prepared in deoxygenated buffer (50 mM PIPES, 100 mM KCl, pH 

7.4) in a glovebox, and the absorbance at 280 nm (1 cm path length cuvette) at 37 °C was 

measured to be 3.825. The concentration of the stock solution was calculated to be 67 µM 

using 𝜀!"#!% = 19 for CA.188 The stock solution was stored under nitrogen at 4 °C and 

warmed to room temperature immediately before use. Stock solutions of tris(2-

carboxyethyl)phosphine (TCEP) and acetazolamide (AAA) were prepared under N2 with 

degassed buffer (PBS, pH 7.4) immediately prior to use. Thiocarbamate and carbamate 

stock solutions were prepared in an N2-filled glovebox in DMSO and stored at -25 °C 

until immediately before use.  

 

General Procedure for H2S Electrode Experiments. Scintillation vials containing 20.00 

mL of phosphate buffer (140 mM NaCl, 3 mM KCl, 10 mM phosphate, 1 mM CTAB, pH 

7.4) were prepared in an N2-filled glovebox. A split-top septum cap was placed on the 

vial after probe insertion and the headspace was sparged with N2. The WPI electrode was 

then inserted into the vial and the measured current was allowed to equilibrate before 

starting the experiment. With moderate stirring, the CA stock solution (50 µL, 67 µM) 

was injected, followed by subsequent injections of acetazolamide (10-50 µL of a 10 mM 

stock solution in PBS buffer), COS gas (10 µL, 0.345 µmol), TCA stock solution (10 

mM in DMSO), or TCEP stock solution (10 mM in PBS buffer).  
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General Procedure for Fluorescence Measurements. In an N2-filled glovebox, a septum-

sealed cuvette was charged with 3.00 mL of buffer (140 mM NaCl, 3 mM KCl, 10 mM 

phosphate, 1 mM CTAB, pH 7.4). The cuvette was removed from the glovebox and 

MeRho-TCA (60 µL of a 1 mM stock solution) was injected into the vial, after which a 

background spectrum was recorded. The desired analytes were then introduced, and the 

fluorescence spectrum was measured at designated time points.  

 

General Procedure for Measurement of Total Sulfide in Mouse Blood. Mice were 

maintained at the association for  assessment  and  accreditation  of  laboratory  animal  

care  international-accredited  Louisiana State  University  Health  Science  Center -

Shreveport  animal  resource  facility  and  maintained  in accordance with the National 

Research Council’s guide for care and use of laboratory animals. All  animal  studies  

were  approved  by  the  institutional  animal  care  and  use  committee  (protocol P-12-

011) and conformed to the guide for the care and use of laboratory animals published by 

the National Institutes of Health. Mice were anesthetized by IP injection with 150 mg/kg 

ketamine and 10 mg/ kg xylazine. Mouse whole blood was collected from the retroorbital 

capillary plexus from three C57BL/6J male mice and diluted 1:50 in PBS (phosphate 

buffered saline pH 7.4) or red blood cell lysing buffer (Sigma, St Louis). Samples were 

treated with either 3 or 4 at a final concentration of 25 µM.  A separate set of blood 

samples were left untreated and used for baseline sulfide measurements.  Once mixed 

with either compound 3 or 4, half of each sample was treated with 10 mM TCEP (tris(2-

carboxyethyl)phosphine hydrochloride) for 30 minutes while the other half remained 

untreated. Sulfide bioavailability was subsequently measured in all samples using the 

MBB method as previously reported.182, 189, 190 

 

2.4.2 Syntheses 

General procedure for the preparation of thiocarbamates. Sodium hydride (60% in oil, 

1.25 mmol) was added to a solution of the isothiocyanate (1 mmol) and the benzyl 

alcohol (1 mmol) in anhydrous THF (6-12 mL). The reaction mixture was stirred at room 

temperature under nitrogen for 18 hours. After the solvent was removed under reduced 

pressure, CH2Cl2 was added, and the resulting solution was washed with water and brine. 
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The organic layer was dried over sodium sulfate and filtered. The solvent was removed 

by rotary evaporation and the crude product was purified using either column 

chromatography (hexanes:EtOAc gradient) or silica gel preparatory thin layer 

chromatography (3:2 hexanes:EtOAc). 

 

O-(4-Azidobenzyl)-N-(4-fluorophenyl)thiocarbamate (1). Purification via preparatory 

TLC (3:2 hexanes/EtOAc) yielded the product as a pure white solid (107.9 mg, 35% 

yield). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 7.23-7.50 (m, 4H), 7.06-7.13 (m, 4H), 

7.44-7.48 (br s, 2H). Two rotomers were observable by 13C{1H} and 19F NMR: 13C{1H} 

NMR (150 MHz, DMSO) δ (ppm): 189.4 (187.9 minor), 161.3 (159.7 minor), 140.6 (d, 

J=15.4 Hz), 135.4 (134.3 minor), 133.7 (133.0 minor), 126.8 (125.5 minor), 120.1 (130.9 

minor), 116.5 (m), 71.0 (72.7 minor). 19F NMR (470 MHz, DMSO-d6) δ (ppm): -115.9 (-

116.4 minor). FTIR (ATR, cm-1): 3199, 3039, 2109, 1607, 1543, 1503, 1404, 1339, 1280, 

1220, 1168, 1014, 857, 787, 658. 

 

O-(4-Azidobenzyl)-N-(4-fluorophenyl)carbamate (2). p-Azidobenzyl alcohol (57.5 mg, 

0.386 mmol) and NEt3 (54 mL, 0.39 mmol) were combined in dry THF (2 mL), and 4-

fluorophenylisocyanate (44 mL, 0.39 mmol) was added dropwise. The reaction mixture 

was stirred under nitrogen at room temperature and shielded from light for 24 hours. The 

solvent was evaporated under reduced pressure, and the crude product was purified by 

preparatory TLC (2:1 hexanes/EtOAc) to yield the pure product as a white solid (61.8 

mg, 56%). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 9.79 (s, 1H), 7.48-7.44 (m, 4H), 

7.10-7.15 (m, 4H), 5.12 (s, 2H). 13C{1H} NMR (150 MHz, DMSO-d6) δ (ppm): 158.4, 

156.9, 153.4, 139.2, 135.4, 133.5, 130.0, 119.2, 115.4 (d, J= 22.2 Hz), 65.2. 19F NMR 

(470 MHz, DMSO-d6) δ (ppm): -120.82. HRMS (m/z): [M + Na]+ calcd for 

[C14H11FN4O2Na]+ 309.0764, found 309.0601. 

 

O-(4-Benzyl)-N-tolylthiocarbamate (3). Purification via column chromatography 

(hexanes/EtOAc gradient) yielded the product as a pure white solid (173.7 mg, 68%). 1H 

NMR (600 MHz, DMSO-d6) δ (ppm): 11.11 (s, 1H), 7.57-7.44 (m, 2H), 7.43-7.32 (m, 

4H), 7.23-7.06 (m, 3H), 5.49-5.58 (br s, 2H), 2.26 (s, 3H). 13C{1H} NMR (150 MHz, 
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DMSO-d6) δ (ppm): 187.4, 186.8, 136.0, 135.6, 135.1, 134.4, 134.0, 129.2, 128.8, 128.4, 

128.3, 128.2, 128, 122.9, 121.2, 72.0, 70.3, 20.4. HRMS (m/z): [M + H]+ calcd for 

[C15H16NOS]+ 258.0953, found 258.0948. 

 

Methylrhodol-isothiocyanate (MeRho-NCS). Methylrhodol (200 mg, 0.577 mmol) and 

NEt3 (480 µL, 3.46 mmol) were combined in dry DMF (2 mL) in oven-dried glassware. 

Thiocarbonyldiimidazole (TCDI, 211 mg, 1.16 mmol) was dissolved in dry DMF (6 mL) 

and added dropwise to the solution. The reaction mixture was stirred under nitrogen at 

room temperature for 24 hours then quenched with water. The organic layer was 

extracted with EtOAc, washed three times with aqueous LiCl (5%, 20 mL), dried over 

MgSO4, and the solvent was evaporated under reduced pressure. The crude product was 

purified using preparatory TLC on an oven-dried prep plate using dry hexanes:EtOAc 

(1:1) and isolated as a white solid (134 mg, 60%). 1H NMR (600 MHz, CDCl3) δ (ppm): 

8.03 (d, J=7.5 Hz, 1H), 7.68 (t, J=7.4 Hz, 1H), 7.63 (t, J=7.5 Hz, 1H), 7.15-7.12 (m, 2H), 

6.89 (dd, J1= 8.5, J2=2.1 Hz, 1H), 6.80-6.76 (m, 2H), 6.70 (d, J=8.8 Hz, 1H), 6.64 (dd, 

J1= 8.9, J2=2.5 Hz, 1H), 3.84 (s, 3H). 13C{1H} NMR (150 MHz, CDCl3) δ (ppm): 169.3, 

161.7, 153.0, 152.1, 151.9, 137.8, 135.4, 133.4, 130.2, 129.5, 129.2, 126.5, 125.4, 123.9, 

121.4, 118.5, 114.2, 112.4, 110.8, 101.1, 82.2, 55.8. FTIR (ATR, cm-1): 2922, 2852, 

2017, 1761, 1607, 1563, 1495, 1416, 1324, 1247, 1099, 1079, 941. HRMS (m/z): [M + 

H]+ calcd for [C22H13NO4SH]+ 388.0644, found 388.0471. 

 

O-(4-Azidobenzyl)-N-methylrhodolthiocarbamate (MeRho-TCA). In oven-dried 

glassware, MeRho-NCS (134 mg, 0.346 mmol) was dissolved in dry THF (5 mL). p-

Azidobenzylalcohol (150 mg, 1.00 mmol) was dissolved in dry THF (5 mL) and added to 

the solution of MeRho-NCS. Sodium hydride (60% in mineral oil, 18 mg, 0.45 mmol) 

was added and the reaction mixture was stirred at room temperature under nitrogen and 

protected from light for 24 hours. The solvent was evaporated under reduced pressure and 

the crude product was dissolved in EtOAc. The organic layer was washed with water and 

brine and dried over sodium sulfate. The product was purified by preparatory TLC (5% 

MeOH in DCM) while protected from light, to yield the pure product as a pale yellow 

solid (65 mg, 35%). 1H NMR (600 MHz, CDCl3) δ (ppm): 8.26 (br s, 1H), 8.02 (d, J=7.6 
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Hz, 1H), 7.67 (td, J1=7.5, J2=1.3 Hz, 1H), 7.62 (td, J1=7.5, J2=1.0 Hz, 1H), 7.43 (d, J=8.4 

Hz, 2H), 7.14 (d, J=7.5 Hz, 1H), 7.05 (d, J=8.4 Hz, 2H), 6.78 (d, J=2.5 Hz, 1H), 6.73 (d, 

J=8.2 Hz, 1H), 6.69 (d, J=8.8 Hz, 1H), 6.62 (dd, J1=8.8, J2=2.5 Hz, 1H), 5.59 (br s, 2H), 

3.84 (s, 3H). 13C{1H} NMR (150 MHz, CDCl3) δ (ppm): 206.9, 169.3, 161.5, 152.9, 

152.3, 151.7, 140.6, 135.1, 130.3, 129.9, 129.0, 128.8, 126.6, 125.1, 123.9, 119.3, 116.9, 

115.9, 112.0, 110.9, 109.2, 100.9, 82.5, 55.6, 53.5, 30.9, 29.7, 29.3. HRMS (m/z): [M + 

H]+ calcd for [C29H20N4O5SH]+ 537.1233, found 537.0827. 
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CHAPTER III 

 

BIO-ORTHOGONAL “CLICK-AND-RELEASE” DONATION OF CAGED 

CARBONYL SULFIDE (COS) AND HYDROGEN SULFIDE (H2S) 

 

This chapter includes previously published and coauthored material from Steiger, A.K; 

Yang, Y.; Royzen, M.; Pluth, M.D. “Bio-orthogonal “Click-and-Release” Donation of 

Caged Carbonyl Sulfide (COS) and Hydrogen Sulfide (H2S).” Chem. Commun. 2017, 53, 

1378-1380.  

 

3.1 Introduction 

With the recent addition of hydrogen sulfide (H2S) to the list of biologically-

relevant gasotransmitters,2 significant efforts have focused on developing H2S donors as 

powerful research, and potentially therapeutic, tools.122, 124 Available synthetic slow-

release donors have already made major impacts in H2S research, and several small 

molecule H2S donors have already entered clinical trials.123 Despite this promise, 

providing temporal control over H2S release remains a major challenge, and there is 

significant interest in developing synthetic H2S donors that are activated by well-defined 

triggering mechanisms that enable on-demand H2S release.  

 Aligned with this need, we recently pioneered the use of carbonyl sulfide (COS)-

releasing molecules as a strategy to access responsive H2S donors. We demonstrated that 

self-immolative thiocarbamates can be triggered to decompose and release COS, which is 

rapidly converted to H2S by the ubiquitous enzyme carbonic anhydrase (CA).131 

Analogous to the broad applications of self-immolative carbamates as delivery platforms 

for prodrugs, fluorophores, and other biologically-relevant payloads, thiocarbamates 

provide a highly tunable platform on which the triggering mechanism can be engineered 

to initiate self-immolation and COS release by specific analytes of interest. Since our 

initial report on caged COS/H2S release, passive H2S donation from small molecule and 

polymeric N-thiocarboxyanhydrides150 as well as responsive ROS-triggered donors that 

provide protection against cellular oxidative stress have been reported.140 Missing from 

current COS/H2S donor technologies are platforms activated by bio-orthogonal triggers to 
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allow precise temporal control for H2S release. Motivated by this need, we report here the 

first example of bio-orthogonal activation of COS/H2S release through adaptation of the 

well-developed inverse-electron demand Diels-Alder (IEDDA) click reaction to release 

COS/H2S (Scheme 3.1). 

 
Scheme 3.1 IEDDA reaction of thiocarbamate-functionalized TCO 1 with tetrazine to 
generate COS/H2S. 
 
3.2 Results and Discussion 

 The IEDDA reaction between a trans-cyclooctene (TCO) and a tetrazine is a 

proven platform for bio-orthogonal click reactions in living systems.144-146 In addition to 

providing an important biocompatible bond-forming tool, the IEDDA reaction has also 

been adapted for targeted drug release by using functionalized benzylic carbamates, 

which can be triggered to undergo self-immolative decomposition following the click 

reaction and subsequently release the attached drug, as well as CO2 as a byproduct.142, 191, 

192 We envisioned that a similar strategy could be leveraged to develop a fully bio-

orthogonal COS/H2S releasing platform by using a benzylic thiocarbamate-functionalized 

TCO (Scheme 3.1). The initial IEDDA click reaction would generate the thiocarbamate-

functionalized dihydropyridazine, which after tautomerization, deprotonation, and 

rearomatization can extrude COS, BnNH2, and the cyclooctylpyridazine product. To test 

this hypothesis, we prepared TCO 1 by treating (E)-cyclooct-2-enol with benzyl 

isothiocyanate in the presence of NaH.142 In parallel, we prepared the analogous 

carbamate-functionalized TCO 2, which undergoes the same IEDDA reaction but 

releases CO2 rather than COS (Scheme 3.2). Both TCO 1 and 2 are isolated as the axial 

isomer, which is estimated to be significantly more reactive than the analogous equatorial 

isomer.193 Importantly, this design strategy provides simple synthetic access to both the 

thiocarbamate donor and key carbamate control compounds. Additionally, click-and-
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release CO donors were recently reported utilizing an intramolecular Diels-Alder 

reaction, thus supporting the validity of our approach for accessing biorthogonal 

gasotransmitter release.194 

 

 
Scheme 3.2 Synthesis of thiocarbamate-functionalized COS/H2S donor TCO 1 and the 
associated carbamate-functionalized control compound TCO 2.  
 
 To confirm that the IEDDA reaction would initiate self-immolative 

decomposition of the thiocarbamate moiety, we monitored the reaction of 1 and 2 equiv. 

of bis-isopropyl-1,2,4,5-tetrazine in wet methanol-d4 by 1H NMR spectroscopy (Figure 

3.1a). Within 5 minutes of tetrazine addition, we observed disappearance of the alkene 

peaks (5.3-5.7 ppm), indicative of cycloaddition. New resonances corresponding to 

BnNH2 were subsequently observed at 4.25 ppm, while 1 continues to decompose over 

24 hours. Due to the complexity of this reaction and the different potential intermediates 

that could be formed en-route to COS extrusion, we also monitored product formation by 

mass spectrometry. Consistent with our design hypothesis we observed the re-aromatized 

IEDDA product (M+H+ 247.239), BnNH2 (M+H+ 108.091), and COS (M+H+ 61.044) 

(Figure 3.1b,c) using direct analysis in real time mass spectrometry (DART-MS). Taken 

together, these data indicate that addition of the tetrazine to 1 results in the expected click 

reaction and initiates self-immolation of the thiocarbamate moiety, thus producing COS.  

 Having confirmed the fidelity of the IEDDA reaction, we next investigated click-

and-release H2S-donation from this system in aqueous buffer at physiological pH (PBS, 

pH 7.4) using an H2S-selective electrode (Figure 3.2). Non-enzymatic background  
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Figure 3.1 (a) 1H NMR spectra of the reaction of 1 and tetrazine. (b) ESI-MS of reaction 
products, confirming self-immolation. (c) MS confirmation of COS formation. 
  

hydrolysis of COS to H2S is very slow at physiological pH, but is rapid in the presence of 

carbonic anhydrase (CA). Using biologically-relevant CA concentrations (25 µg/mL) we 

first monitored TCO 1 alone and confirmed that H2S is not released spontaneously in the 

presence of CA. As anticipated, the bis-isopropyl-1,2,4,5-tetrazine alone also failed to 

produce an H2S response. We next monitored H2S release from TCO 1 (50 µM) with 

varying concentrations of tetrazine (5 – 25 equiv.) and observed increased H2S 

production in the presence of excess tetrazine. Using a calibration curve, we measured 12 

µM H2S release from 50 µM TCO 1 with 25 equiv. of tetrazine, resulting in an H2S 

release efficiency of approximately 25%. As additional confirmation of the importance of 

CA for H2S formation, we performed identical reactions in the presence of acetazolamide 

(AAA, 2.5 µM), a known CA inhibitor. Furthermore, use of the control compound TCO 2 

in the presence of excess tetrazine failed to generate COS/H2S. Together, these data 

confirm that the IEDDA click reaction is necessary to generate COS, and that uninhibited 

CA is required for efficient conversion of this released COS to H2S at physiological pH.  
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Figure 3.2 H2S release profiles from TCO 1 (50 µM) with 5-25 equiv of tetrazine in the 
presence of CA (25 µg/mL) in buffer (PBS, pH 7.4). 
 
 To demonstrate the basic biological compatibility of the reaction, we also 

investigated H2S release from TCO 1 (50 µM) with the tetrazine (500 µM) in complex 

media (Figure 3.3). For these experiments, we chose to use whole sheep and bovine 

blood due to the presence of CA. Using sheep blood and plasma, diluted 1:1 in PBS (pH 

7.4) with no additional CA added, a similar H2S release profile was observed using an 

H2S-selective electrode. Additionally, H2S production was also observed in diluted whole 

bovine blood, although the process was slower. These experiments confirm that bio-

orthogonal click-and-release strategy has significant potential within a biological 

environment and endogenous CA levels are sufficient to allow for H2S donation from the 

released COS. Additionally, we confirmed the cellular compatibility of TCO 1 using the 

CCK-8 cell viability assay, which indicated that concentrations up to 100 µM of TCO 1 

are not cytotoxic in N2A neuroblastoma cells (Figure B1). 

 In an effort to expand this strategy to a cellular environment, we attempted to 

obtain cell images using a variety of fluorescent probes for H2S, including HSN2, WSP-

5, and SF7-AM.141, 195, 196 Unfortunately, we found that the click-and-release reaction was 

not compatible with these current fluorescent detection strategies for H2S. This 

observation was confirmed in cuvette-based fluorimetry studies as well, in which no 

fluorescent turn-on was observed after several hours despite the production of H2S, as 

confirmed by H2S-electrode experiments. Although unexpected, this outcome may be due 

to slower and/or less-efficient COS/H2S release from this first-generation IEDDA 

platform than from previously reported COS/H2S donors. In a closed system, it is also 
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possible that the tetrazine may also scavenge the generated H2S, as evidenced by a recent 

report demonstrating that H2S can partially reduce dialkoxy tetrazines to the 

dihydrotetrazine.197 Therefore, future investigations into the differential reactivity of H2S 

with substituted tetrazines appears warranted, both to increase the biocompatibility in this 

system and also to increase the initial efficiency of the IEDDA click reaction.198 For 

example, demonstrated recent report highlighted that the efficiency of the IEDDA 

reaction can be improved through strategic choice of the tetrazine. These, as well as other 

modifications to the thiocarbamate scaffold are expected to provide much more efficient 

H2S release from future click and release scaffolds. 

 

 
Figure 3.3 H2S release profiles from TCO 1 (50 µM) with 10 equiv of tetrazine in whole 
bovine blood (red), whole sheep blood (blue), and sheep plasma (grey), diluted 1:1 with 
buffer (PBS, pH 7.4).  
 

3.3 Conclusions 

 In summary, we have reported the first example of COS/H2S donors activated by 

a bio-orthogonal trigger, which provides a significant step toward developing controllable 

H2S donors with high temporal resolution. Given the novelty of this bio-orthogonal 

reaction in the field of sulfide donation, as well as the significant impact that similar click 

strategies have provided to adjacent fields in chemical biology, we anticipate that future 

optimization of this system will result in fast and highly targeted method for H2S 

donation. In Chapter IV, we design a more generalized scaffold for COS/H2S delivery 

using a self-immolative thiocarbamate activated by cysteine, a ubiquitous biothiol. 
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3.4 Experimental Details 

3.4.1 Materials and Methods  

All organic chemicals were purchased from Krackeler Scientific and used without 

further purification. Chromatographic purifications were conducted using SiliaSphere™ 

spherical silica gel 5µm, 60 Å silica gel (Silicycle). Thin layer chromatography (TLC) 

was performed on SiliaPlate™ silica gel TLC plates (250 µm thickness) purchased from 

Silicycle. 1H and 13C{1H} NMR spectra were acquired a Bruker NMR instrument at 400 

MHz (1H) and 100 (13C) MHz. Mass spectra were acquired using a DART-SVP ion 

source (IonSense, Saugus, MA, USA) coupled to a JEOL AccuTOF time-of-flight mass 

spectrometer (JEOL USA, Peabody, MA, USA) in positive ion mode. The DART ion 

source parameters were: grid voltage, 250 V; gas heater temperature, 350 °C. The mass 

spectrometer settings were: ring lens voltage, 5 V; orifice 1 voltage, 20 V; orifice 2 

voltage, 5 V; peak voltage 600 V. Spectra were obtained at 1 scan per second. The 

helium flow rate for the DART source was 2.0 L s−1.  

 

H2S Electrode Materials and Methods. Phosphate buffered saline (PBS) tablets (1X, 

CalBioChem) were used to make buffered solutions (PBS, 140 mM NaCl, 3 mM KCl, 10 

mM phosphate, pH 7.4) in Millipore water. Buffer solutions were sparged with N2 to 

remove dissolved oxygen and stored in an N2-filled glovebox. Whole bovine blood, 

whole sheep blood, and sheep serum were obtained from Carolina Biological Supply 

Company, stored at 4 °C, and warmed to room temperature immediately before use. 

Carbonic anhydrase (CA) from bovine erythrocytes (≥3,500 W/A units/mg) was obtained 

from Sigma Aldrich and a 1% CA stock solution was prepared in deoxygenated buffer 

(PBS, 140 mM NaCl, 3 mM KCl, 10 mM phosphate, pH 7.4) in a glovebox, and stored 

under nitrogen at 4 °C and warmed to room temperature immediately before use. Stock 

solutions of TCO 1 (10 mM) and tetrazine 2 (100 mM) were prepared in the dark in an 

N2-filled glovebox in DMSO and stored, shielded from light, at -25 °C. Stock solutions 

were thawed at room temperature immediately before use.  

 

General Procedure for H2S Electrode Experiments. Scintillation vials containing 20.00 

mL of degassed phosphate buffer (PBS, 140 mM NaCl, 3 mM KCl, 10 mM phosphate, 
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pH 7.4) were prepared in an N2-filled glovebox. A split-top septum cap was placed on the 

vial after probe insertion and the headspace was sparged with Ar. For electrode 

experiments in complex media, whole blood or serum (2.50 mL) was pipetted into a 10 

mL vial with phosphate buffer (PBS, 140 mM NaCl, 3 mM KCl, 10 mM phosphate, pH 

7.4) and stirred prior to the start of the experiment. The WPI electrode was then inserted 

into the vial and the measured voltage was allowed to equilibrate before starting the 

experiment, and the vial was wrapped in foil to shield the reaction from light. With 

moderate stirring, CA stock solution (50 µL, 2.5 µg/mL) was injected when applicable, 

followed by subsequent injections of acetazolamide (10 µL, 2.5 µM, 10 mM stock 

solution in PBS buffer), TCO stock (10 mM in DMSO), or tetrazine stock solutions (100 

mM in DMSO).  

 

3.4.2 Syntheses 

(E)-Cyclooct-2-enyl benzylcarbamate (1). A solution of (E)-cyclooct-2-enyl 4-

nitrophenyl carbonate (500 mg, 1.7 mmol) in CH2Cl2 (5 mL) was added to a solution 

containing benzylamine (370 µL, 3.4 mmol) and N,N-diisopropylethylamine (880 µL, 5.1 

mmol) in CH2Cl2 (5 mL). The reaction mixture was stirred at room temperature under a 

nitrogen atmosphere for 18 h. The reaction mixture was diluted with CH2Cl2 (50 mL) and 

washed with water (20 mL). The organic layer was dried over Na2SO4 and concentrated. 

The title product was purified by flash chromatography using a 9:1 mixture of 

hexanes:ethyl acetate to provide the product as a white powder (260 mg, 58%). 1H NMR 

(CDCl3, 400 MHz) δ: 7.36-7.26 (m, 5H), 5.83 (t, J = 12.3 Hz, 1H), 5.54 (d, J = 17.8 Hz, 

1H), 5.37 (s, 1H), 5.16 (bs, 1H), 4.38 (d, J = 5.5 Hz, 2H), 2.47 (d, J = 10.9 Hz, 1H), 2.09-

1.82 (m, 5H), 1.72-1.45 (m, 3H), 1.11-1.03 (m, 1H), 0.84-0.76 (m, 1H), which matches 

the previously-reported 1H NMR spectrum: Versteegen, R. M.; Rossin, R.; ten Hoeve, 

W.; Janssen, H. M.; Robillard, M. S. Angew. Chem. Int. Ed. 2013, 52, 14112-14116.  

 

O-(E)-Cyclooct-2-enyl N-benzylcarbamothioate (2). A solution of (E)-cyclooct-2-enol 

(120 mg, 0.95 mmol) in 1 mL THF was added dropwise to a suspension of NaH (45 mg, 

1.13 mmol, 60% in mineral oil) in 1 mL THF. The resulting suspension was stirred at 0 

ºC for 1 h under a nitrogen atmosphere. A solution of benzyl isothiocyanate (150 mg, 1.0 



	 50 

mmol) in 1 mL THF was added dropwise, and the mixture was stirred for an additional 

hour at 0 ºC. The reaction was quenched by addition of saturated aqueous NaHCO3 (2 

mL). The aqueous layer was extracted with ethyl acetate (3 x 10 mL), and the combined 

organic phases were dried with MgSO4. The title product was isolated as a white powder 

by flash chromatography using a 3:1 solution of hexanes:ether as a mobile phase (199 

mg, 76%). Note: Slow rotation around the thiocarbamate group results in the observation 

of rotational isomers on the NMR timescale, which results in a doubling of peaks in the 

NMR spectrum. This phenomenon has been observed previously in for thiocarbmates. 1H 

NMR (CDCl3, 400 MHz) δ: 7.58 (br s, 1H), 7.34-7.28 (m, 10H), 6.68 (br s, 1H), 5.92 (d, 

J = 10.9 Hz, 2H), 5.83-5.78 (m, 1H), 5.60-5.43 (m, 3H), 4.76 (d, J = 5.5 Hz, 2H), 4.47 (d, 

J = 6.8 Hz, 2H), 2.47 (d, J = 5.5 Hz, 1H), 2.37 (d, J = 9.6 Hz, 1H), 2.20-2.06 (m, 2H), 

2.05-1.32 (m, 13H), 1.11-1.09 (m, 1H), 0.87-0.77 (m, 3H). 13C{1H} NMR (CDCl3, 100 

MHz) δ: 189.45, 188.63, 136.88, 136.74, 132.61, 132.18, 130.92, 130.19, 128.61, 128.58, 

127.86, 127.68, 127.52, 127.20, 80.81, 79.17, 49.05, 47.02, 40.38, 40.37, 35.84, 35.83, 

35.79, 35.67, 28.90, 28.80, 24.34, 24.20. HRMS (ESI) m/z:  calcd. for C16H22NOS 

[M+H]+ 276.1422; found 276.1444 

 

Bis-isopropyl-1,2,4,5-tetrazine. Isobutyronitrile (691 mg, 10 mmol) and zinc triflate (182 

mg, 0.5 mmol) were combined with anhydrous hydrazine (1.6 mL) and stirred at 60 ºC 

for 24 h under nitrogen atmosphere. The reaction mixture was diluted with DMF (2 mL). 

An aqueous solution of NaNO2 (3.5 g in 50 mL) was slowly added. Inside a thoroughly 

ventilated fume hood, an aqueous 2M solution of HCl was added slowly until reaching 

pH~3. (Caution! The last step generates highly toxic fumes, containing reactive nitrogen 

species.) The product was extracted with CH2Cl2 (3x100 mL), dried with Na2SO4 and 

concentrated. The title product was obtained by chromatography using 1% Et2O in 

pentane (1.2 g, 72%). 1H NMR (CDCl3, 400 MHz) δ: 3.62 (sep, J = 6.8 Hz, 2H), 1.51 (d, 

J = 6.9 Hz, 12H). 13C{1H} NMR (CDCl3, 100 MHz) δ: 173.69, 34.14, 21.22. HRMS 

(DART) m/z:  calcd. for C8H15N4 [M+1]+ 167.1297; found 167.1306 
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CHAPTER IV 

 

CYSTEINE-ACTIVATED HYDROGEN SULFIDE (H2S) DELIVERY THROUGH 

CAGED CARBONYL SULFIDE (COS) DONOR MOTIFS 

 

This chapter includes previously published and coauthored material from Zhao, Y.; 

Steiger, A.K; Pluth, M.D. “Cysteine-Activated Hydrogen Sulfide (H2S) Delivery through 

Caged Carbonyl Sulfide (COS) Donor Motifs” Chem. Commun. 2018, 54, 4951-4954.  

 

4.1 Introduction 

Hydrogen sulfide (H2S) has joined the gasotransmitter family since its first 

recognition as an endogenous neuromodulator in 1996.199 Four main enzymes, including 

cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are responsible for 

endogenous H2S production, converting cysteine (Cys) and homocysteine (Hcy) to H2S.2, 

200, 201 Significant efforts have been contributed to develop H2S releasing agents (H2S 

donors) because the regulation of H2S levels has been found to mediate a wide variety of 

physiological processes, including anti-inflammation, oxidative stress reduction, and 

vasorelaxation.124, 129, 202-204 Although sulfide salts, such as sodium hydrosulfide (NaHS) 

and sodium sulfide (Na2S), have been widely used in the field, they are far from ideal 

donors because they release H2S spontaneously, resulting in a concentrated bolus of 

sulfide that oxidizes rapidly and does not mimic well-regulated endogenous H2S 

production. The use of these inorganic sulfide sources has even led to contradictory 

results,124 demonstrating the need for improved sources of H2S. These limitations suggest 

that controllable H2S donors, which are stable, only release H2S upon activation by 

certain stimuli, and have slower and controllable kinetics of sulfide release, are key 

research tools for H2S investigations. 

 Aligned with this need, our group recently reported the use of caged-carbonyl 

sulfide (COS) molecules as new H2S donors.131, 205 Unlike other known H2S donors, 

which directly release H2S as the activation product, COS-based donors are activated to 

release COS, which is quickly converted to H2S by the ubiquitous enzyme carbonic 

anhydrase (CA). We have demonstrated that caged-thiocarbamates and thiocarbonates 
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can serve as promising COS donors and can be activated to release COS through a self-

immolative cascade reaction.206 One important advantage of this strategy is that COS-

releasing scaffolds can be designed to deliver H2S under well-defined conditions. For 

example, H2S delivery from these caged-COS donors can be modulated by judicious 

trigger selection, and the rate of release can be manipulated through modification of the 

donor structure.206 Following our initial report, we, as well as others, have expended this 

strategy to include donors activated by different triggers, such as reactive oxygen species 

(ROS),140, 206 esterases,152, 207 nucleophiles,150 click chemistry,147 and light208, 209 (Figure 

4.1). 

 
Figure 4.1 Examples of currently available COS-based H2S donors that are activated by 
different triggering stimuli. 
 
 Cellular nucleophiles play crucial roles in biological systems. Among these, thiol 

species, such as Cys and reduced glutathione (GSH), attract the most attention due to 

their cellular abundance and potent reactivity. Cys and GSH have been widely used to 

trigger biologically active molecules and prodrugs to release caged compounds, including 

sulfur dioxide (SO2),210, 211 nitroxyl (HNO),212 and anti-cancer drugs.213 Importantly, thiol 

activation strategies have been adopted in H2S donor development and several thiol labile 

H2S donors exhibit promising protections in animal models with some of them currently 

in clinical trials.124, 202, 204 Motivated by these findings, we report here the first example of 

a Cys-activated COS/H2S donor through functionalization of a thiocarbamate with a Cys-

reactive acrylate moiety. We envision that such thiocarbamate compounds will expand 

the current COS-based H2S donor family and serve as promising research tools for H2S 

studies.  
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The reactions of Cys with acrylates in the preparation of substituted 1,4-

thiazepines have been known for decades.214, 215 The initial attack by Cys on the acrylate 

generates a thioether, which then undergoes an intramolecular cyclization to yield 1,4-

thiazepines. This cyclization strategy has been leveraged by Strongin,216 as well as 

others,217-220 to design a series of acrylate-based fluorescent probes for Cys detection. 

Similarly, the Berreau group has recently used a similar approach to develop a class of 

Cys-responsive CO donors.221 Building from these approaches, we adopt the Cys-acrylate 

reaction as a triggering mechanism to access new COS/H2S donors in which an aryl 

acrylate-functionalized thiocarbamate is activated through a Cys-mediated 

addition/cyclization sequence. The resultant phenolic intermediate then undergoes a 1,6-

elimination to release COS, which is quickly converted to H2S by CA (Scheme 4.1). 

 
Scheme 4.1 General design of Cys-triggered COS/H2S release from caged-thiocarbamate 
donors. 
 
4.2 Results and Discussion 

 To test our hypothesis that acrylate-functionalized thiocarbamates could serve as 

Cys-triggered COS/H2S donors, we prepared O-alkyl cysteine-sensitive thiocarbamate 

(OA-CysTCM-1) with an aryl acrylate trigger and an aniline payload by reacting 4-

(hydroxymethyl)phenyl acrylate and phenyl isothiocyanate. Upon activation, OA-

CysTCM-1 releases COS, which is quickly hydrolyzed to H2S by CA. In addition to OA-

CysTCM-1, we also prepared the corresponding carbamate (OA-CysCM-1) and 

triggerless thiocarbamate (OA-TCM-1)222 control compounds. OA-CysCM-1, obtained 

from the reaction between 4-(hydroxymethyl)phenyl acrylate and phenyl isocyanate, is 

expected to undergo the same Cys activation but would release CO2 instead of COS. OA-

TCM-1, on the other hand, maintains the thiocarbamate scaffold but lacks the acrylate 
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trigger, and thus is not expected to react with Cys or decompose to otherwise release 

COS (Scheme 4.2).  

 
Scheme 4.2 Synthesis of OA-CysTCM-1, OA-CysCM-1, and OA-TCM-1.  

 

 To evaluate Cys-activated H2S release from the donor motif, we used the 

methylene blue (MB) assay to monitor H2S release from OA-CysTCM-1 (50 µM) in the 

presence of Cys (0 – 500 µM) in PBS buffer (pH 7.4, 10 mM) containing cellularly-

relevant concentrations of CA (25 µg/mL). The MB assay was chosen to measure H2S 

production since it has been widely used to detect H2S from previously developed Cys-

activated H2S donors. In the absence of Cys, OA-CysTCM-1 was stable in aqueous 

buffer and did not release COS/H2S spontaneously. By contrast, the addition of Cys led to 

a dose-dependent COS/H2S release from OA-CysTCM-1 (Figure 4.2). These results 

demonstrate that OA-CysTCM-1 can be activated by Cys and the resultant COS is 

quickly converted to H2S in the presence of CA. 

 To further demonstrate that the observed H2S release is due to Cys activation via 

the proposed mechanism, we pretreated Cys with N-ethylmaleimide (NEM), a Cys 

scavenger, for 20 min, followed by the addition of OA-CysTCM-1. When compared to 

the regular activation conditions (Figure 4.3, bar 1), NEM pretreatment significantly 

diminished H2S release from OA-CysTCM-1, confirming that Cys was required for 

donor activation (Figure 4.3, bar 2). No H2S release was observed in the absence of CA, 

and, similarly, pretreatment of CA with acetazolamide (AAA), a CA inhibitor, also failed 

to provide H2S, confirming that H2S release from OA-CysTCM-1 proceeds through a 

COS-dependent pathway (Figure 4.3, bars 3 and 4).  

 In addition to Cys, other biologically relevant nucleophiles, such as GSH, 

oxidized glutathione (GSSG), Hcy, N-acetylcysteine (NAC), serine (Ser), and lysine  
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Figure 4.2 COS/H2S Release from OA-CysTCM-1 (50 µM) in the presence of 0 µM 
(black), 50 µM (red), 250 µM (blue), and 500 µM (green) Cys. The experiments were 
performed in triplicate and results are expressed as mean ± SD (n = 3). 
 

(Lys), were evaluated towards donor activation. As expected, none of these species 

triggered OA-CysTCM-1, and no COS/H2S release was observed due to the lack of the 

addition/cyclization activation sequence (Figure 4.3, bars 5-10). We also evaluated Cys-

triggered COS/H2S release from OA-CysTCM-1 in the presence of GSH. In these 

experiments, OA-CysTCM-1 (50 µM) was co-incubated with Cys (500 µM) and GSH (0 

– 1000 µM) and COS/H2S release was monitored by MB assay (Figure C2). A decrease 

of H2S release was observed as GSH concentration increased, indicating a potential GSH-

induced donor consumption. Although the effects of GSH were not significant in aqueous 

buffer, it should be taken into consideration when applying donors in biological systems. 

Since the acrylate trigger may be prone to esterase-catalyzed hydrolysis, we also 

incubated OA-CysTCM-1 with porcine liver esterase (PLE) to determine whether 

common esterases could generate COS/H2S release. Although we did observe H2S 

release, it was significantly less efficient than Cys activation (Figure 4.3, bar 11). As 

expected, treatment of control compounds OA-CysCM-1 and OA-TCM-1 with Cys in 

the presence of CA failed to generate H2S, demonstrating that both the aryl-acrylate 

trigger and the caged COS-containing thiocarbamate scaffold are crucial for COS release 

from this scaffold (Figure 4.3, bars 12 and 13). Taken together, these selectivity studies 
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demonstrate that OA-CysTCM-1 is highly sensitive towards Cys activation to release 

COS/H2S and inert to activation by other biomolecules, such as GSH, GSSG, Hcy, NAC, 

Ser, and Lys.  

 
Figure 4.3 COS/H2S Release from OA-CysTCM-1 (50 µM) in the presence of cellular 
nucleophiles (500 µM): (1) Cys, (2) Cys + NEM (10 mM), (3) Cys - CA, (4) Cys + AAA 
(10 µM), (5) Hcy, (6) NAC, (7) GSH (5.0 mM), (8) Ser, (9) Lys, (10) GSSG, and (11) 
PLE (1 U/mL). Cys (500 µM) effects on OA-CysCM-1 (12), and OA-TCM-1 (13) 
toward COS/H2S release. H2S concentration was measured after 3-h incubation. The 
experiments were performed in triplicate and the results were expressed as mean ± SD (n 
= 3). 
 
 We next sought to confirm that OA-CysTCM-1 would release COS/H2S upon 

reaction with Cys in a cellular environment. We incubated bEnd.3 cells with OA-

CysTCM-1 in the presence of Cys and visualized H2S-release using SF7-AM, a cell-

trappable H2S-responsive fluorescent probe.196 In the absence of OA-CysTCM-1, 

negligible SF7-AM fluorescence was observed, suggesting a minimum amount of 

endogenous H2S present in bEnd.3 cells. By contrast, addition of OA-CysTCM-1 

resulted in a significant increase in SF7-AM fluorescence, confirming that OA-

CysTCM-1 can be activated by Cys to release H2S in a cellular environment (Figure 4.4). 

These results demonstrate that OA-CysTCM-1 is a potent COS/H2S donor and Cys-

triggered H2S delivery can be visualized in complex biological systems, indicating 

applications of OA-CysTCM-1 as a potential H2S-related therapeutic or research tool.  
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Figure 4.4 H2S Release from OA-CysTCM-1 in bEnd.3 cells. Top: DIC (left) and GFP 
(right) channels with cysteine (250 µM) and SF7-AM (5 µM). Bottom: DIC (left) and 
GFP (right) channels with cysteine (250 µM), OA-CysTCM-1 (100 µM), and SF7-AM 
(5 µM). Scale bar represents 100 µM. 
 
4.3 Conclusions 

 In summary, we prepared and evaluated OA-CysTCM-1 as a Cys-triggered 

COS/H2S donor. Our studies demonstrate that OA-CysTCM-1 is stable in aqueous media 

and does not release COS/H2S until being activated by Cys. Importantly, H2S delivery 

from OA-CysTCM-1 is observed in a cellular environment, indicating OA-CysTCM-1 

can be used as a new efficacious Cys labile COS/H2S donor in complex biological 

systems. Taken together, our investigations demonstrate that H2S delivery from OA-

CysTCM-1 can be controlled and regulated through a COS-dependent pathway, making 

OA-CysTCM-1 a new member of COS-based H2S donor family with potential 

applications in the study of both H2S and COS chemical biology, especially when used in 

combination with available Cys-activated H2S donors. Activation of the donors 

developed in this chapter still results in consumption of biological thiols, however, and 

Chapter V addresses this limitation through the design of a COS/H2S donor activated by a 

ubiquitous intracellular enzyme. 

 

4.4 Experimental Details 

4.4.1 Materials and Methods 

Reagents were purchased from Sigma-Aldrich, Tokyo Chemical Industry (TCI), 

Fisher Scientific, or VWR and used directly as received. SF7-Am was synthesized as 
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previously reported.196 Silica gel (SiliaFlash F60, Silicycle, 230−400 mesh) was used for 

column chromatography. Deuterated solvents were purchased from Cambridge Isotope 

Laboratories (Tewksbury, Massachusetts, USA). 1H and 13C{1H}. NMR spectra were 

recorded on Varian 300 MHz, Bruker 500 MHz or Bruker 600 MHz NMR instruments at 

the indicated frequencies. Chemical shifts are reported in ppm relative to residual protic 

solvent resonances. Methylene blue (MB) absorbances were measured using an Agilent 

Cary 100 UV-Vis spectrometer. b.End3 cells were purchased from ATCC (Manassas, 

Virginia, USA). Cell imaging experiments were performed on a Leica DMi8 fluorescence 

microscope, equipped with an Andor Zyla 4.2+ sCMOS detector. 

 

H2S Release from OA-CysTCM-1 in PBS. An OA-CysTCM-1 stock solution (0.100 mL, 

10.0 mM in DMSO) was added to 20.0 mL of PBS (pH 7.40, 10.0 mM) containing CA 

(25.0 µg/mL) in a 25-mL scintillation vial. A Cys stock solution (0.100 M in H2O) was 

then added to generate the desired Cys working concentrations as shown in Figure 3. 

Next, 0.300 mL aliquots of the reaction mixture were transferred to UV cuvettes 

containing 0.300 mL of MB cocktail (0.0600 mL zinc acetate (1.00% w/v), 0.120 mL 

FeCl3 (30.0 mM in 1.20 M HCl), and 0.120 mL N,N-dimethyl-p-phenylene diamine (20.0 

mM in 7.20 M HCl) at different time points. The absorbance at 670 nm was then 

measured after 1 hour and was converted to H2S concentration by using the H2S 

calibration curve as shown in Figure C1. 

 

Selectivity Evaluation of H2S Release from OA-CysTCM-1 (Figure 3). All experiments 

were completed in 2.00 mL of PBS containing CA (25.0 µg/mL). After 3 hours of 

incubation at room temperature, 0.300 mL of the reaction aliquot was transferred to a UV 

cuvette containing 0.300 mL of the MB cocktail. The absorbance at 670 nm was then 

measured after 1 hour by the MB assay.  

 

Bar 1: Added Cys (10.0 µL, 0.100 M in H2O), followed by the addition of OA-   

CysTCM-1 (10.0 µL, 10.0 mM in DMSO).  

Bar 2: Added Cys (10.0 µL, 0.100 M in H2O), followed by the addition of NEM (2.50 

mg). After 20 min, OA-CysTCM-1 (10.0 µL, 10.0 mM in DMSO) was added.  
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Bar 3: Added Cys (10.0 µL, 0.100 M in H2O), followed by the addition of OA-

CysTCM-1 (10.0 µL, 10.0 mM in DMSO).  

Bar 4: Added Cys (10.0 µL, 0.100 M in H2O), followed by the addition of AAA (2.00 

µL, 10.0 mM in DMSO). After 20 min, OA-CysTCM-1 (10.0 µL, 10.0 mM in DMSO) 

was added.  

Bar 5: Added Hcy (10.0 µL, 0.100 M in H2O), followed by the addition of OA-

CysTCM-1 (10.0 µL, 10.0 mM in DMSO).  

Bar 6: Added NAC (10.0 µL, 0.100 M in H2O), followed by the addition of OA-

CysTCM-1 (10.0 µL, 10.0 mM in DMSO).  

Bar 7: Added GSH (10.0 µL, 0.100 M in H2O), followed by the addition of OA-

CysTCM-1 (10.0 µL, 10.0 mM in DMSO).  

Bar 8: Added Ser (10.0 µL, 0.100 M in H2O), followed by the addition of OA-CysTCM-

1 (10.0 µL, 10.0 mM in DMSO). 

Bar 9: Added Lys (10.0 µL, 0.100 M in H2O), followed by the addition of OA-

CysTCM-1 (10.0 µL, 10.0 mM in DMSO).  

Bar 10: Added GSSG (10.0 µL, 0.100 M in H2O), followed by the addition of OA-

CysTCM-1 (10.0 µL, 10.0 mM in DMSO).  

Bar 11: Added PLE (20.0 µL, 1.00 U/µL), followed by the addition of OA-CysTCM-1 

(0.100 mL, 10.0 mM in DMSO).  

Bar 12: Added Cys (10.0 µL, 0.100 M in H2O), followed by the addition of OA-CysCM-

1 (10.0 µL, 10.0 mM in DMSO).  

Bar 13: Added Cys (10.0 µL, 0.100 M in H2O), followed by the addition of OA-TCM-1 

(10.0 µL, 10.0 mM in DMSO).  

 

Cellular Imaging of H2S Release from OA-CysTCM-1. b.End 3 cells were plated in poly-

D-lysine coated plates (MatTek) containing 2 mL of DMEM and incubated at 37 °C 

under 5% CO2 for 24 h. The confluent cells were washed with PBS and then incubated 

with SF7-AM (5.00 µM) for 30 min. The cells were then washed with PBS and incubated 

with either OA-CysTCM-1 (100 µM) and cysteine (250 µM) or cysteine (250 µM) alone 

for 30 min. Prior to imaging, cells were washed with PBS and bathed in 2 mL of PBS. 

Cell imaging was performed on a Leica DMi8 fluorescent microscope using DIC for 
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brightfield and a standard GFP filter cube for fluorescence imaging and 100 ms and 50 

ms exposure times, respectively. The scale bar represents 100 µm. 

 

4.4.2 Syntheses 

S1. The benzyl alcohol compound S1 was prepared using a known procedure.223 Briefly, 

K2CO3 (207 mg, 1.50 mmol) was dissolved in acetone/H2O (25.0 mL, v/v 4:1), followed 

by the addition of acryloyl chloride (90.5 mg, 1.00 mmol) at 0 oC. To this reaction 

mixture, a solution of 4-hydroxybenzyl alcohol (124 mg, 1.00 mmol) was added 

dropwise and the reaction solution was stirred at 0 °C for 4 h. Brine was then added, and 

the reaction mixture was extracted with DCM (3 x 25.0 mL). The organic layers were 

collected, dried over MgSO4, and concentrated under vacuum. The product S1 was 

isolated as a clear oil (42.0%) after purification by column chromatography. 1H NMR 

(500 MHz, CDCl3) δ (ppm): 7.43 (d, J = 5.0 Hz, 2H), 7.16 (d, J = 5.0 Hz, 2H), 6.64 (d, J 

= 15.0 Hz, 1H), 6.36 (m, 1H), 6.05 (d, J = 10.0 Hz, 1H), 4.73 (s, 2H), 1.75 (br, 1H). 
13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 164.6, 150.0, 138.5, 132.7, 128.1, 127.9, 

121.6, 64.8. 

 

OA-CysTCM-1. S1 (178 mg, 1.00 mmol) and phenyl isothiocyanate (135 mg, 1.00 

mmol) were dissolved in THF (15.0 mL) and cooled to 0 oC. DBU (152 mg, 1.00 mmol) 

was then added, and the reaction solution was stirred at 0 °C for 4 h. The reaction mixture 

was then quenched by adding brine, and the aqueous solution was extracted with DCM (3 

x 25.0 mL). The organic layers were collected, dried over MgSO4, and concentrated 

under vacuum. OA-CysTCM-1 was isolated as white solid (35.4%) after purification by 

column chromatography. Two sets of NMR resonances showed up due to slow rotation 

around the thiocarbamate functional group at room temperature. 1H NMR (500 MHz, 

DMSO-d6) δ (ppm): 11.24 (s, 1H), 7.68 (br, 1H), 7.52 (br, 2H), 7.34 (br, 3H), 7.22 (br, 

3H), 6.54 (d, J = 15.0 Hz, 1H), 6.42 (dd, J = 15.0, 5.0 Hz, 1H), 6.17 (d, J = 10.0 Hz, 1H), 

5.55 (d, J = 50.0 Hz, 2H). 13C{1H} NMR (150 MHz, DMSO-d6) δ (ppm): 187.8, 187.4, 

164.6, 150.5, 134.2, 130.3, 129.9, 129.3, 128.9, 128.1, 125.6, 123.3, 122.3, 72.0, 70.3. IR 

(cm-1): 3228, 3039, 2919, 1734, 1592, 1547, 1494, 1446, 1402, 1335, 1293, 1146, 1018, 

968. HRMS m/z [M + Na]+ calcd. for [C17H15NNaO3S]+ 336.0670; found 336.0673. 
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OA-CysCM-1. S1 (178 mg, 1.00 mmol) and phenyl isocyanate (119 mg, 1.00 mmol) 

were dissolved in THF (15.0 mL) and cooled to 0 oC. TEA (101 mg, 1.00 mmol) was 

then added, and the reaction solution was heated to 65 °C and stirred for 5 h. The reaction 

mixture was then quenched by adding brine and the aqueous solution was extracted with 

DCM (3 x 25.0 mL). The organic layers were collected, dried over MgSO4, and 

concentrated under vacuum. OA-CysCM-1 was isolated as white solid (47.0%) after 

purification by column chromatography. 1H NMR (300 MHz, CDCl3) δ (ppm): 7.43 (t, J 

= 9.0 Hz, 4H), 7.32 (t, J = 9.0 Hz, 2H), 7.15 (d, J = 9.0 Hz, , 2H), 7.09 (t, J = 9.0 Hz, 

1H), 6.91 (br, 1H), 6.64 (dd, J = 15.0, 3.0 Hz, 1H), 6.35 (dd, J = 18.0, 9.0 Hz, 1H), 6.04 

(dd, J = 12.0, 3.0 Hz, 1H), 5.20 (s, 2H). 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 

164.6, 153.4, 150.5, 137.8, 133.8, 132.8, 129.6, 129.1, 127.8, 123.5, 121.7, 118.8, 66.3. 

IR (cm-1): 3367, 3064, 1735, 1709, 1634, 1598, 1532, 1502, 1447, 1407, 1318, 1298, 

1234, 1198, 1167, 1071, 982, 901, 819. HRMS m/z [M + Na]+ calcd. for [C17H15NNaO4]+ 

320.0899; found 320.0897. 
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CHAPTER V 
 

INHIBITION OF MITOCHONDRIAL BIOENERGETICS BY ESTERASE-
TRIGGERED COS/H2S DONORS 

 
This chapter includes previously published and coauthored material from Steiger, A.K.; 

Marcatti, M.; Szabo, C.; Szczesny, B.; Pluth, M.D. “Inhibition of Mitochondrial 

Bioenergetics by Esterase-Triggered COS/H2S Donors” ACS Chem. Biol. 2017, 12(8), 

2117-2123.  

 
5.1 Introduction 

Hydrogen sulfide (H2S) is an endogenously-produced signaling molecule that 

plays critical roles in mammalian biology. Physiological sulfide levels are tightly 

regulated, and enzymatic production derives primarily from cysteine and homocysteine 

metabolism by cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-

mercaptopyruvate transferase (3-MST).2 Continually broadening in scope, H2S plays 

important roles in cardioprotection,224 inflammation,225 vasodilation,226 as well as other 

processes. Because of this diversity, there is significant interest in developing both 

research and therapeutic strategies for regulating sulfide levels in different biological 

contexts.129 At the biological level, inhibition, knockout, and/or overexpression of H2S-

producing enzymes can be used to modulate endogenous H2S levels. Alternatively, 

chemical approaches using exogenous H2S donation often provide a more convenient and 

broader approach. For example, inorganic sulfide salts, such as NaSH and Na2S provide a 

convenient source of sulfide, however, the large and instantaneous bolus of sulfide 

released from such salts is often rapidly oxidized and fails to mimic the continuous H2S 

release associated with enzymatic synthesis, thus limiting the utility of these exogenous 

H2S sources.227 Because of these limitations, developing small molecules that undergo 

specific reactions to release H2S in a controlled manner to more closely mimic well-

regulated enzymatic production remains an important goal.122, 124 Aligned with these 

needs, naturally-occurring polysulfides such as diallyl trisulfide (DATS), which releases 

sulfide upon reaction with thiols,89, 228 hydrolysis-based H2S donors such as GYY4137 

and ADT-OH,229, 230 which slowly produce H2S in water, and a palette of thiol-activated 

donors, have all been developed.124, 170 Although such donors have been used in 
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applications ranging from probe development to in vivo studies, key challenges include 

low H2S donation efficiencies from hydrolysis-based donors and thiol consumption and 

redox perturbation from polysulfides and thiol-activated donors.  

As a step toward addressing these challenges, our group recently developed a new 

H2S donation strategy based on the intermediate release of carbonyl sulfide (COS), which 

is rapidly hydrolyzed to H2S by the ubiquitous enzyme carbonic anhydrase (CA).131 By 

leveraging well-established work on the triggered decomposition of benzylic carbamates 

commonly used in pro-drug and fluorophore release strategies,132, 231, 232 we demonstrated 

that self-immolative thiocarbamates can be readily engineered to respond to different 

stimuli and release COS/H2S. Specifically, cleavage of an analyte-specific protecting 

group unmasks a phenol, which then undergoes a self-immolative decomposition to 

release COS. Importantly, this strategy enables significant control over H2S donation 

depending on the trigger and provides access to important carbamate control compounds, 

which release CO2/H2O rather than COS/H2S. Furthermore, although COS hydrolysis by 

CA is rapid, some evidence suggests that COS may have unique roles in chemical 

biology, as evidenced by COS detection in the headspace above ex vivo porcine coronary 

arteries and by increased COS levels in exhaled breath from patients with cystic fibrosis, 

organ rejection, or liver disease.39-41, 233 Therefore, although self-immolative 

thiocarbamates have recently been shown to be useful as responsive H2S donors, they 

may also provide a platform for future studies of COS chemical biology. Following our 

initial report of caged COS/H2S release, we have expanded this approach to include 

COS/H2S donors activated by reactive oxygen species (ROS)140 and to access bio-

orthogonal “click-and-release”131 donors based on trans-cyclooctene / tetrazine click 

chemistry. Related COS-based donors based on nucleophilic addition to small molecule 

and polymeric cyclic N-thiocarboxyanhydrides resulting in the release of COS have also 

emerged recently.150 Although the nucleophile-based donors provide slow H2S release 

akin to enzymatic synthesis, the required consumption of cellular nucleophiles, such as 

thiols, to release COS/H2S is similar to other thiol-activated donors.  

To address these limitations, we viewed that installation of an ester as the 

triggering group to thiocarbamate-based platforms would provide access to slow-release 

COS/H2S donors upon ester cleavage by intracellular esterases that do not require 
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consumption of cellular nucleophiles for activation (Scheme 5.1). The strategy of using 

intracellular esterases to cleave esterified moieties on small molecules is a well-

established method used extensively to impart cellular trappability, improve membrane 

permeability, and in the activation of caged pro-drugs and other biological payloads.153, 

234-236 Additionally, activation by intracellular esterases eliminates the consumption of 

cellular nucleophiles for activation. Consistent with this design strategy, the Wang group 

recently reported esterase-triggered H2S donors utilizing a trimethyl lock unmasking of 

caged thioacids and demonstrated their anti-inflammatory effects.171 Similarly, during the 

preparation of this manuscript an esterase-activated S-alkyl thiocarbamate COS/H2S 

donor was reported, but detailed biological applications were not investigated.152 Here, 

we report the design, evaluation, and application of esterase-activated COS/H2S donors 

and provide further insights into the influence of COS donors on cellular bioenergetics.  

 

 
Scheme 5.1 Design of esterase-triggered self-immolative COS/H2S donors and proposed 
COS/H2S release mechanism.  
 
5.2 Results and Discussion 

Triggered COS/H2S donors benefit from a high degree of modularity and facile 

introduction of different triggering functionalities. To access an esterase-functionalized 

thiocarbamate, we first prepared 4-pivaloyl benzyl alcohol in one step,237 which was then 

treated with p-tolylisothiocyanate in the presence of DBU to afford donor 1 in moderate 

yield (Scheme 5.2). The analogous carbamate control 2 was prepared in good yield by 

treating 4-pivaloyl benzyl alcohol with p-tolylisocyanate and DBU. Carbamate 2 

provides an important control compound that undergoes the same self-immolative 

decomposition as 1, but releases CO2 instead of COS, thus enabling separation of the 

action of COS/H2S from that of the organic byproducts formed after donor activation. 
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Additionally, we also prepared triggerless thiocarbamate 3 as a control compound to test 

the thiocarbamate stability toward esterases. 

 

 
Scheme 5.2 (a) Synthesis of H2S donor 1, CO2-releasing analogue 2, and triggerless 
thiocarbamate 3. 
 

The mechanism of the cascade decomposition of similar benzyl carbamates has 

established previously to release CO2, the amine payload, and a quinone methide 

intermediate.132, 135, 231, 232 The final fate of the electrophilic quinone methide is dependent 

on which nucleophiles are present in the system, and is often scavenged by water to form 

4-hydroxy benzylalcohol, or can be scavenged by biological nucleophiles to afford thiol 

or amine-derived conjugates.238, 239 To confirm similar reactivity in the present system, 

we first demonstrated that the addition of porcine liver esterase (PLE) initiated a self-

immolative decomposition reaction as anticipated. After stirring 1 (14 mM) with PLE (28 

U/mL) in PBS (pH 7.4) with 10% DMSO for 48 hours, the organic layer was extracted 

and analyzed by NMR spectroscopy and mass spectrometry (Figure 1). Loss of the 

benzylic and thiocarbamate N-H protons at ~5.5 ppm and 11.1 ppm, respectively, in the 
1H NMR spectrum of the reaction mixture confirmed self-immolation (Figure 3.1a). As 

further evidence of the triggered cascade decomposition, the broad NMR resonances 

characteristic of O-alkyl thiocarbamates, which is due to the slow rotation around the 

thiocarbamte moiety on the NMR time scale, sharpen significantly upon ester cleavage 

with PLE. Additionally, the 13C{1H} NMR spectrum after treatment with PLE (Figure 

3.1b), clearly showed the loss of the C=S and benzylic carbon resonances at 185 and 70 

ppm, respectively. Both the 1H and 13C{1H} NMR spectra also show the formation of 

new aromatic species corresponding to several products, which were further 

characterized using mass spectrometry. Because the generated p-quinone methide is 

electrophilic, we expect that it would be scavenged by biological nucleophiles, such as 
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thiols, amines, or water, under physiological conditions. The mass spectrum acquired of 

the reaction mixture after treatment with PLE clearly showed formation of p-toluidine 

(m/z: 107.0) and the product corresponding to p-toluidine trapping of the o-quinone 

methide intermediate (m/z: 214.1) as expected (Figure D1). Taken together, the NMR 

spectroscopy and mass spectrometry studies confirm self-immolation of the scaffold as 

described in Scheme 5.1. 

 

 
Figure 5.1 (a) 1H NMR spectrum of 1 before (top) and after (bottom) treatment with 
PLE. (b) 13C{1H} NMR spectrum of 1 before (top) and after (bottom) stirring with PLE. 
(c) Mass spectrum of the products resulting from the decomposition of 1 upon reaction 
with PLE. 
 

With esterase-triggered donors in hand, we first confirmed that 1 was stable in 

aqueous solution in the absence of esterase. We next verified that addition of 1 to pH 7.4 

PBS buffer containing physiologically relevant levels of CA (25 µg/mL) did not result in 

H2S generation when monitored using an H2S-selective electrode, confirming that the 

esterase does not cleave thiocarbamates directly (Figure 5.2a). Further control 

experiments using the parent benzyl thiocarbamate 3, which lacks the ester trigger, 

confirmed that the benzyl thiocarbamate moiety is not cleaved directly by PLE. Having 

confirmed the stability of the donor platform prior to activation, we next treated 1 with 1 

U/mL PLE in the presence of CA and observed immediate H2S release (Figure 5.2a). As 

expected, increasing the PLE concentration to 20 U/mL under otherwise identical 

conditions resulted in significantly faster H2S release. Additionally, treatment of 1 with 

acetazolamide (AAA), a known CA inhibitor, significantly reduced the rate of H2S 

production, confirming that CA is necessary for COS conversion to H2S under the 
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reaction conditions. Supplementing the H2S electrode measurements, we also confirmed 

H2S release from 1 using an H2S-responsive fluorescent probe (Figure 5.2b). Consistent 

with the electrode data, incubation of 50 µM 1 with 5 µM MeRho-Az184 in the presence 

of CA and 1 U/mL PLE resulted in a fluorescence turn-on consistent with H2S release. 

We also attempted to obtain fluorescent live cell images by incubating 1 in BEAS 2B 

cells with MeRho-Az, but the high cytotoxicity of 1 and limited permeability of MeRhoAz 

in BEAS 2B cells limited our ability to obtain high quality images. Taken together, these 

data demonstrate that the thiocarbamate donors are stable until activated by esterases and 

release H2S in a COS-dependent manner. 

 

 
Figure 5.2 (a) H2S release from 1 in PBS (pH 7.4) in the presence of CA (25 µg/mL) 
with 1 U/mL (green trace) or 20 U/mL (blue trace) PLE. Addition of CA inhibitor AAA 
(2.5 µM) significantly reduces H2S release (black trace). No H2S release was observed 
from 1 in the absence of esterase (grey trace) or from thiocarbamate 3 lacking an ester 
trigger (brown trace). (b) Detection of H2S released from 1 with the H2S-responsive 
probe MeRho-Az. Conditions: 50 µM 1, 5 µM MeRho-Az, 25 µg/mL CA, 1 unit/mL 
PLE, 3 mL PBS (pH 7.4). 37 °C, λex= 476 nm, λem= 480-650 nm. 
  

We next investigated the cytotoxicity of 1-3 on BEAS 2B cells by measuring the 

reduction of a tetrazolium compound (MTT) to formazan by metabolically active cells, 
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and by measuring the release of lactate dehydrogenase (LDH) due to permeability of the 

plasma membrane, which is a sign of necrotic cell death. BEAS 2B human lung epithelial 

cells exhibit low expression of all three canonical H2S-producing enzymes, CBS, CSE, 

and 3-MST.240 To provide suitable comparisons with commonly-used synthetic donors, 

we first obtained comparable cytotoxicity data for known H2S donors GYY4137 and 

mitochondrially-targeted AP39 (Figure 5.3a,b).241 When compared to the DMSO vehicle, 

GYY4137 showed no significant cytotoxicity up to 30 µM using either the MTT or LDH 

assay. Similarly, AP39 showed minimal cytotoxicity at 30 µM and none at lower 

concentrations, indicating that neither of these H2S donors are significantly cytotoxic. By 

contrast, 10 µM of 1 resulted a significant decrease cell viability and increase in LDH 

levels, which was not observed for control compounds 2 or 3 (Figure 5.3c,d). The lack of 

cytotoxicity of control compound 2 suggests that the mechanism of cytotoxicity does not 

result from the formation of the electrophilic p-quinone methide intermediate242 because 

this species is formed upon activation of both donor 1 and control compound 2. Similarly, 

compound 3 does not reduce cell viability, confirming that the observed cytotoxicity of 1 

relies on triggering by cellular esterases and is not a result of the thiocarbamate scaffold 

itself. Importantly, the esterase-triggered COS/H2S donor 1 provides a significantly 

different toxicological profile from other commonly-used H2S donors. 

To investigate the underpinnings of the increased cytotoxicity of 1, and because 

H2S is a well-known inhibitor of mitochondrial cytochrome c oxidase,243 we analyzed the 

mitochondrial respiration of BEAS 2B cells treated with 1-3 using an Extracellular Flux 

Analyzer.244 As expected, incubation of BEAS 2B cells with increasing concentrations of 

1 for 24 hours negatively affected all major bioenergetics parameters, namely oxygen 

consumption linked with basal respiration, maximal respiration, and ATP synthesis 

(Figure 5.4a-f). These reductions are consistent with known inhibitory effects of H2S on 

cellular bioenergetics, primarily through inhibition of mitochondrial cytochrome c 

oxidase (Complex IV). By contrast, control compound 2 did not negatively impact the 

measured bioenergetics parameters, but rather resulted in increases in basal respiration 

and ATP synthesis. Compound 3 had no effect on basal respiration or ATP synthesis, and 

only slightly decreased maximal respiration at 10 µM. To better compare these results 

with known H2S donors, we also analyzed the mitochondrial respiration of BEAS 2B  
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Figure 5.3 Cell viability studies of AP39, GYY4137, and 1-3 in BEAS 2B using the (a,c) 
MTT and (b,d) LDH cell viability assays. 
 

cells incubated with AP39 and GYY4137 under the same conditions (Figure 5.4g-i). We 

failed to observe significant inhibition of cellular bioenergetics at the observed 

concentrations, raising the possibility that the inhibitory effects of 1 may not be from H2S 

release alone, but could also be due to direct COS inhibition of cytochrome c oxidase,245, 

246 which has been reported previously but received less scrutiny than direct H2S 

inhibition. Our previous investigations with ROS-activated140 and “click-and-release”131 

COS/H2S donors did not reveal donor cytotoxicity below 100 µM, suggesting that the 

observed cytotoxicity from 1 may be amplified by specific localization of the esterase-

activated 1 or efficient release H2S in local environments associated with the 

mitochondrial respiratory chain. 

 

5.3 Conclusions 

In conclusion, we have designed an easy-to-access, esterase-triggered COS/H2S 

donor and shown that it is rapidly activated by esterases to generate H2S in vitro using 

isolated PLE. Using toxicity assays and bioenergetics measurements, we demonstrated  



	 70 

 
Figure 5.4 Cellular bioenergetics analysis including (a) basal respiration, (b) maximal 
respiration, and (c) ATP synthesis in BEAS 2B cells upon addition of 1-10 µM of 1-3 as 
well as full bioenergetics data at (d) 1 µM, (e) 3 µM, and (f) 10 µM. For comparison, data 
was additionally collected for (g) basal respiration, (h) maximal respiration, and (i) ATP 
synthesis of BEAS 2B cells incubated with AP39 and GYY4137. Abbreviations: oligo: 
oligomycin, FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, AA/Rot: 
antimycin A and rotenone. Values represent the means ± SEMs from three independent 
biological experiments each with five replicates. The values that are significantly 
different by Student's t test are indicated by asterisks as follows: **, P < 0.01; *, P < 
0.05. 

 

that the increased cytotoxicity of 1 is due inhibition of mitochondrial respiration, whereas 

carbamate control compound 2 and triggerless thiocarbamate 3 failed to negatively 

perturb normal bioenergetics. Using AP39 and GYY4137, we confirmed that the 

disruption of cellular bioenergetics observed from 1 is significantly different than is seen 

with other H2S donors, potentially suggesting that either the amount of produced H2S, 

specific localization of the esterase-triggered scaffold, or direct inhibition of 

mitochondrial respiration by COS itself is responsible for the observed cytotoxicity. As a 

whole, the esterase-cleaved donor reported here provides a slow-release method of 

COS/H2S release in cellular environments. Further work investigating the relationship 
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between the kinetics of COS release and the cytotoxicity of esterase-activated donors is 

reported in Chapter VI.  
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CHAPTER VI 

 

TUNABLE ESTERASE-TRIGGERED SELF-IMMOLATIVE 

THIOCARBAMATES PROVIDE INSIGHTS INTO COS CYTOTOXICITY 

 

This chapter includes unpublished, coauthored material written by myself and C.M 

Levinn with editorial assistance by M.D. Pluth. The experimental work was performed by 

either myself or C.M Levinn. 

 

6.1 Introduction 

Hydrogen sulfide (H2S), the most recent addition to the gasotransmitter family,199 

plays important physiological roles in the cardiovascular,247 respiratory, as well as other 

organ systems.2 Significant interest in both research and therapeutic strategies for H2S 

delivery has led to the development of a library of synthetic small molecules that release 

H2S (H2S donors) by using different strategies.122, 129, 248-250 In one recently-developed 

approach, our group, as well as others, has reported H2S donors based on the triggerable, 

self-immolative decomposition of thiocarbamates to release carbonyl sulfide (COS), 

which is rapidly hydrolyzed to H2S by the ubiquitous mammalian enzyme carbonic 

anhydrase (CA).131 This COS-dependent H2S-releasing strategy is highly tunable and 

allows for triggering of H2S release by a variety of stimuli, including ROS,140, 208 

nucleophiles,150 cysteine,251 and light.208, 209, 252 

 In addition to functioning as a precursor for CA-mediated H2S release, COS is the 

most prevalent sulfur-containing gas in Earth’s atmosphere, and plays important roles in 

the global sulfur cycle. Despite this significance, few studies have investigated the 

physiological properties of COS directly.205 Currently, there are no known mechanisms 

of eukaryotic COS biosynthesis, although it has been shown that acetylcholine 

stimulation of porcine coronary artery (PCA) leads to an observed increase in COS, 

indicating that muscarinic acetylcholine receptors (mAChRs) could play a role in 

regulating COS synthesis.41 Additionally, it has been detected in the headspace of porcine 

coronary artery and cardiac muscle,41 suggesting potential endogenous production. COS 

has also been recognized COS as an exhaled breath biomarker for a variety of diseases, 
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including cystic fibrosis39 and liver disease and rejection,40, 233 which suggests a possible 

role in disease physiology. The consumption of COS by CA is well established and COS 

toxicity closely resembles that of H2S, which is likely due to CA-mediated hydrolysis 

within mucous membranes upon exposure. The rapid conversion of COS to H2S, with an 

associated rate constant of 2.2x104 M-1s-1 (for bovine carbonic anhydrase II), makes COS 

a convenient source of sulfide, but also makes disentangling the chemical biology of COS 

from H2S more challenging.65  

We recently reported an esterase-triggered COS-mediated H2S donor,207 wherein 

ester cleavage reveals an intermediate phenol that undergoes a 1,4-self-immolation 

cascade to release COS, followed by rapid hydrolysis to H2S. Contrary to previous 

reports of similar donors, however, these compounds exhibit significant cytotoxicity and 

fully inhibited major mitochondrial bioenergetic pathways in bronchial epithelium 

BEAS2B cells. Similar cytotoxicity profiles were not observed for other H2S donors, 

including NaSH, GYY4137, or AP39, at similar concentrations. Furthermore, analogous 

CO2-releasing carbamate control compound were non-cytotoxic, confirming that the 

observed cytotoxicity or bioenergetics impacts were not due to organic byproducts of 

donor activation. Taken together, these results led to the hypothesis that the observed 

effects could be due to a buildup of COS. Supporting this hypothesis, the rate of small 

ester cleavage by mammalian esterases is likely faster (around 5.1x104 – 5.8x105 M-1s-1) 

than the rate of CA-mediated COS hydrolysis to H2S,65, 253 which would result in a 

buildup of intracellular COS. Here we extend this hypothesis by preparing a library of 

esterase-cleaved COS-releasing donors in which the steric bulk of the ester and the 

electronic properties of the aniline payload are modified, and demonstrate that the 

differential cytotoxicity of these donors maps to the COS release rates, thus furthering the 

hypothesis that COS may exert different biological effects than H2S alone (Figure 6.1).  
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Figure 6.1 Esterase-triggered thiocarbamate-based H2S donors exhibit increased 
cytotoxicity, potentially due to the buildup of intracellular COS.  
 

6.2 Results and Discussion 

To further investigate whether the cytotoxicity of these esterase-activated 

COS/H2S donor could be related to COS directly, we chose to probe the relationship 

between COS release rates and the corresponding cytotoxicity. We hypothesized that if 

COS buildup was responsible for the observed cytotoxicity, then esters cleaved more 

quickly should result in increased cell death, whereas esters cleaved more slowly should 

have a diminished effect. In the esterase-activated donors, the rate of COS release 

depends not only on the rate of ester cleavage (“triggering”), but also on the rate of self-

immolative decomposition. There have been a number of reports demonstrating that rate 

of esterase activity varies directly with the steric bulk of the ester being cleaved,254, 255 

providing a rational strategy for manipulating the rate of triggering by intracellular 

esterases. Similarly, recent work has demonstrated that the electronics of the amine 

payload can affect the rate of thiocarbamate self-immolation.152, 206 To probe the 

relationship between rate of ester cleavage, self-immolative decomposition, and 

cytotoxicity, a suite of esterase-activated COS donors with varying ester sizes and 

payloads were prepared to shed some light on the assumed innocence of COS.  
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Figure 6.2 (a) Synthetic scheme for the development of a library of esterase-activated 
thiocarbamate COS/H2S donors (TCM1-14) and (b) table showing all compounds used in 
this study (TCM1-14 and CM1-14) with yields. 
 

 To probe the effects of steric bulk on the rate of COS release and cytotoxicity of 

esterase-triggered COS donors, we prepared a library of thiocarbamates functionalized 

with different esters. To prepare the donors, we first treated 4-hydroxy benzyl alcohol 

with different alkyl and aryl carbonyl chlorides to afford the corresponding esters. 

Reaction with p-tolyl isothiocyanate furnished the desired thiocarbamates (TCM1 to 

TCM9) in 14-90% yield (Figure 6.2a). In parallel, we also prepared the carbamate 

control compounds, which release CO2 rather than COS, by treatment of the carbonyl 

chloride intermediates with p-tolyl isocyanate (Figure 6.2b). To investigate the role of 

electronic modulation of the aniline payload on the rate of self-immolation and 

cytotoxicity of these compounds, a similar synthetic sequence was followed to access 
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esterase-triggered COS donors with electron-rich and electron-deficient amine payloads, 

(TCM10 to TCM14).  

With the library of esterase-activated COS/H2S donors in hand, we next measured 

the H2S release from these compounds in the presence of CA and porcine liver esterase 

(PLE). Direct detection of H2S using a sulfide-selective electrode is simple and fast, but 

analogous methods for rapid COS detection directly in solution. For this reason, we 

added excess CA to these experiments to ensure no buildup of COS and used the 

detection of H2S as an indirect measurement of COS release. We treated compounds 

TCM1 – TCM9 (Figure 6.2b, left) and TCM10 – TCM14 (Figure 6.2b, right) with 5 

U/mL PLE in the presence of CA (25 µg/mL) in PBS buffer (pH 7.4) and observed H2S 

release from each of compounds using a H2S-sensitive electrode. This data confirms that 

physiologically relevant amounts of CA and PLE are sufficient to result in H2S release 

from each of these donors. Consistent with our expectation that steric changes to the 

esters would results in different cleavage rates, we observed significantly different H2S 

release rates and efficiencies from the donor compounds containing a variety of different 

ester groups (Figure 3a). For example, donors with bulkier esters (cyclohexyl (TCM7), 

adamantyl (TCM8), or naphthyl (TCM9), yellow, orange, and light blue, respectively) 

generated H2S more slowly than those with smaller esters (methyl (TCM1), t-butyl 

(TCM5), or methyl cyclopropyl (TCM4), dark green, grey, and magenta, respectively). 

This qualitatively confirms that donors containing larger ester groups produce COS/H2S 

more slowly, consistent with slower hydrolysis by PLE.  

H2S release kinetics were also compared for a library of t-butyl ester 

functionalized donors containing a variety of electronically modulated amine payloads. 

We hoped to systematically decrease the rate of COS release through the introduction of 

electron-donating groups, although acidification of the N-H proton of the thiocarbamate 

has been reported to decrease the rate of COS release from similar donors functionalized 

with electron-withdrawing groups as well.206 Consistent with this hypothesis, the 

introduction of either strongly electron-withdrawing (NO2 (TCM14), CF3 (TCM13), pink 

and purple, respectively) or electron-donating (Ph (TCM10), black) groups decreased the 

rate and efficiency of the donors, indicating that both electron-withdrawing and electron-

donating groups slow down the rate of self-immolation following esterase hydrolysis. 
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The donors containing weakly electronically modified amine payloads TCM5, TCM11, 

and TCM12) appear to have very similar initial rates (Figure 6.3b).  

 
Figure 6.3 H2S release curves for compounds (a) TCM1 – TCM9 and (b) TCM5, TCM 
10-TCM14) in the presence of PLE (5 U/mL) and CA (25 µg/mL) at pH 7.4. (b and c)  
Cytotoxicity of compounds in HeLa cells. Data for donors (TCM1 – TCM14) is shown 
for 10 – 100 µM and compared to the cytotoxicity of the carbamate control compounds 
(CM1 – CM14) at 100 µM. (b) Cytotoxicity data for donors containing varying ester 
groups (TCM1 – TCM9), with steric bulk of the ester group decreasing from left to right. 
(c) Cytotoxicity data for donors containing varying amine payloads (TCM5, TCM10 – 
TCM14), with electronic donating-ability of the payload decreasing from left to right. 
Results are expressed as mean ± SD (n=6). The values that are significantly different by 
Student's t test are indicated by asterisks as follows: ***, p < 0.001 **, p < 0.01; *, p < 
0.05.   
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     We next sought to determine whether the observed differences in COS/H2S release 

rates translated to differences in cytotoxicities of compounds TCM1 – TCM14. To probe 

these effects, we incubated HeLa cells with the COS donor compounds at 10, 25, 50, and 

100 µM for 90 minutes and measured the resultant cell viability against the vehicle using 

the formazan dye-based CCK-8 cytotoxicity assay. We found that the cytotoxicity of the 

donors increased as the size of the ester decreased (Figure 6.3c), with the smallest ester 

(Me, TCM1) resulting in about 70% cell death at 100 µM. No significant cell death was 

observed, however, when cells were incubated with 100 µM of TCM9, which requires 

hydrolysis of a much larger naphthyl ester and has a much slower rate of COS/H2S 

release. To confirm that the observed cytotoxicity was not due to the organic byproducts 

of the donor constructs after activation, we also investigated the cytotoxicity of the 

corresponding carbamate control compounds (CM1 – CM14) using the same conditions. 

Overall, we found significantly less cytotoxicity of all of the carbamates up to 100 µM. 

No significant trend was observed in the cytotoxicity of the donors as the electronics of 

the payload were changed. While many of these donors (TCM5, TCM11 – TCM14) 

were cytotoxic, even as low as 25 µM, we did not find any correlation between 

cytotoxicity and the electronics of the amine payload (Figure 6.3d). Since the mechanism 

of decomposition of these donors may change due to acidification of the N-H proton, the 

cytotoxicity likely does not correspond to the rate of COS production.  

 This work provides evidence that cellular accumulation of COS is cytotoxic. 

Importantly, the cytotoxicity observed from many of these COS donors was completely 

eliminated when HeLa cells were incubated with the analogous, CO2-releasing 

carbamates, which control for all other byproducts, suggesting that COS directly for the 

observed effects. Cell death is dose-dependent for all of the cytotoxic COS-releasing 

compounds, and in general, the most cytotoxic donors were also found the have the most 

rapid kinetics of H2S release in the presence of CA. Overall, the hypothesis that the 

inclusion of a larger ester on these donors would decrease the rate of hydrolysis and 

prevent the build-up of COS was found to hold true. We were not able to systematically 

decrease the rate of COS release through electronic modulation of the amine payloads, 

but did find that both strongly electron-withdrawing and electron-donating groups 

diminished COS/H2S release, consistent with two previously suggested effects: that 
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electron-donating groups decrease the rate of self-immolation, and electron-withdrawing 

groups can result in a change in the mechanism of H2S release due to acidification of the 

N-H proton on the thiocarbamate.206 Due to a potential change in mechanism supported 

by a decrease in H2S production from donors containing electron-withdrawing payloads, 

it is impossible to correlate the cytotoxicity of these particular donors with their rate of 

COS/H2S release.  

In addition to providing new insights into the differential impacts of COS and 

H2S, this work also increases the tools available for increasing basal H2S concentrations 

without the need for external triggering mechanisms or consumption of cellular 

nucleophiles. To confirm that these donors release COS/H2S in a cellular environment, 

we incubated 100 µM Cy-TCM (TCM7) with SF7-AM in HeLa cells and observed an 

increase in fluorescence corresponding to H2S donation from the scaffold (Figure 6.4). 

This confirms the basic cellular viability of this compound as an H2S donor. Although the 

faster donors are too cytotoxic for use, the slower donors form library of enzyme-

activated COS/H2S donors viable for use in vivo. 

 
Figure 6.4 Live-cell imaging of H2S release from TCM7in HeLa cells. HeLa cells were 
treated with SF7-AM (5 µM) and Hoescht (5 µg/mL) for 30 min, washed, and incubated 
with FBS-free DMEM containing TCM7 (100 µM, top) or DMSO (0.5%, bottom) for 
one hour. Cells were then washed and imaged in PBS. Scale bar represents 100 µM. 
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6.3 Conclusions  

In conclusion, this work supports the hypothesis that rapid accumulation of COS 

likely results in cytotoxicity.207 Conclusively disentangling the effects of COS delivery 

from the physiological effects of H2S will require a systematic study of COS, the various 

CA isoforms, and the potential for subcellular localization of COS delivery from various 

donors. The work reported here suggests the likely role of COS in the cytotoxicity of 

many of these compounds, and provides is an important piece of early evidence that COS 

delivery may produce a cellular response that is different than that observed from H2S 

alone.  In Chapter VII, a variety of potential COS donor scaffolds are investigated for 

their cytotoxicity and CA inhibition properties to inform researchers on the best donor 

scaffolds for studying COS and H2S chemical biology. 

 

6.4 Experimental Details 

6.4.1 Materials and Methods 

Reagents were purchased from Sigma-Aldrich or Tokyo Chemical Industry (TCI) 

and used as received. SF7-AM was synthesized as previously reported.196 Spectroscopic 

grade, inhibitor-free THF was deoxygenated by sparging with argon followed by passage 

through a Pure Process Technologies solvent purification system to remove water. 

Deuterated solvents were purchased from Cambridge Isotope Laboratories and used as 

received. Silica gel (SiliaFlash F60, Silicycle, 230-400 mesh) was used for column 

chromatography. 1H, 13C{1H}, and 19F NMR spectra were recorded on a Bruker 500 or 

600 MHz instrument (as indicated). Chemical shifts are reported in ppm relative to 

residual protic solvent resonances. Mass spectrometric measurements were performed on 

a Xevo Waters ESI LC/MS instrument or by the University of Illinois, Urbana 

Champaign MS facility. H2S electrode data were acquired with a Unisense H2S 

Microsensor Sulf-100 connected to a Unisense Microsensor Multimeter. All air-free 

manipulations were performed under an inert atmosphere using standard Schlenk 

techniques or an Innovative Atmospheres N2-filled glove box. HeLa cells were purchased 

from ATCC (Manassas, Virginia, USA). Cell imaging experiments were performed on a 

Leica DMi8 fluorescence microscope, equipped with an Andor Zyla 4.2+ sCMOS 

detector.  
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H2S Electrode Experiments. Scintillation vials containing 20.00 mL of phosphate buffer 

(140 mM NaCl, 3 mM KCl, 10 mM phosphate, pH 7.4) were prepared in an N2-filled 

glovebox. The Unisense electrode was inserted into the vial and the vial was capped with 

a split-top septum to minimize oxidation. The current was allowed to equilibrate prior to 

starting the experiment. With moderate stirring, the CA stock solution (50 µL) was 

injected, followed by subsequent injections of TCA stock solution (50 µL) and PLE stock 

solution (100 µL). H2S release was monitored until leveling off.  

CCK-8 Cell Viability Experiments. HeLa cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin at 37 °C under 5% CO2. 96-well plates were seeded with 15,000 

cells/well overnight then washed, incubated in FBS-free DMEM containing vehicle 

(0.5% DMSO), TCA (10-100 µM), or carbamate (10-100 µM) for 90 minutes. Cells were 

then washed with PBS and CCK-8 solution (1:10 in FBS-free DMEM) was added to each 

well, and cells were incubated for 1-2 hours at 37 °C under 5% CO2. The absorbance at 

450 nm was measured using a microplate reader and the cell viability was measured and 

normalized to the vehicle group. Results are expressed as mean ± SD (n=6). P values 

were calculated using a Student’s T-test in Excel compared to DMSO alone.  

Cell Imaging. HeLa cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin at 37 °C under 5% CO2. Imaging dishes were seeded with HeLa 

cells overnight and then washed and incubated with SF7-AM (5 µM) and Hoechst 33342 

(5 µg/mL) in FBS-free DMEM for 30 min. Cells were then washed with PBS and 

incubated with either Cy-TCM (100 µM) or vehicle (DMSO, 0.5%) in FBS-free DMEM 

for 60 minutes prior to being washed with PBS and imaged.  

 

6.4.2 Syntheses 

General procedure for the synthesis of phenol esters. 4-Hydroxy benzyl alcohol (1.0 

equiv.) was dissolved in anhydrous THF (0.1 M solution), under and atmosphere of N2. 

The solution was cooled to 0 °C, followed by addition of Et3N. The reaction mixture was 

let stir for 5 minutes, after which the carbonyl chloride was added dropwise over 20 

minutes. The resultant mixture was stirred at 0 °C until the completion of the reaction 
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indicated by TLC. The reaction was quenched by adding brine (30 mL), and the aqueous 

solution was extracted with ethyl acetate (3 x 20 mL). The organic layers were combined, 

dried over anhydrous MgSO4, and concentrated under reduced pressure. The crude 

product was purified by silica column chromatography. Full spectroscopic data for each 

compound is reported in Appendix E. The preparation of MeCp-OH is also reported in 

the Appendix E..  

General procedure for preparation of thiocarbamates. The functionalized benzyl alcohol 

(1.0 equiv.) was dissolved in anhydrous THF (0.2 M solution) under an atmosphere of 

N2. Aryl isothiocyanate (1.1 equiv.) was added, followed by DBU (1.25 equiv.) at 0 °C. 

The resultant mixture was warmed to rt and stirred monitored by TLC. The reaction was 

quenched upon observation of by-product formation by TLC by addition of brine (20 

mL), and extracted with EtOAc (3 x 20 mL). The combined organic layers were dried 

over anhydrous MgSO4 or Na2SO4, concentrated under reduced pressure, and purified by 

silica column chromatography. Full spectroscopic data for each compound is reported in 

Appendix E. 

General procedure for preparation of carbamate controls. Functionalized benzyl alcohol 

(1.0 equiv.) was dissolved in anhydrous THF (0.1 M solution) under an atmosphere of 

N2. Aryl isocyanate (0.90 equiv.) was added, followed by DBU (1.25 equiv.) at 0 °C. The 

resultant mixture was warmed to rt and stirred monitored by TLC. The reaction was 

quenched upon observation of by-product formation by TLC by addition of brine (20 

mL), and extracted with EtOAc (3 x 20 mL). The combined organic layers were dried 

over anhydrous MgSO4, concentrated under reduced pressure, and purified by silica 

column chromatography. Full spectroscopic data for each compound is reported in 

Appendix E. 
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CHAPTER VII 

 

INVESTIGATIONS INTO THE CARBONIC ANHYDRASE INHIBITION OF 

COS-RELEASING DONOR CORE MOTIFS 

 

This chapter includes previously published and coauthored material from Steiger, A.K; 

Zhao, Y.; Choi, W.J.; Tillotson, M.R.; Crammond, A.; Pluth, M.D. “Investigations into 

the Carbonic Anhydrase Inhibition of COS-Releasing Donor Core Motifs” Biochem. 

Pharmacol. 2017, 149, 124-130.  

 

7.1 Introduction 

Hydrogen sulfide (H2S), now well established as an important gaseous signaling 

molecule, has been implicated in a wide variety of physiological processes since its initial 

recognition in 1996.12, 199, 256 H2S is produced endogenously and maintained at low (mid-

nanomolar) concentrations, and the administration of exogenous sulfide has been shown 

to provide a therapeutic benefit in various applications, including reduction of myocardial 

infarct size, vasodilation, and decrease in inflammation.2, 9 For example, GYY4137 and 

AP39, which undergo slow hydrolysis to release H2S, have been shown to exhibit anti-

inflammatory activity.229, 257 Additionally, appending H2S donor scaffolds to non-

steroidal anti-inflammatory drugs (NSAIDs) has been used to generate a number of H2S-

NSAID hybrids including ATB-346 and NBS-1120, which are based on naproxen and 

aspirin derivatives, respectively (Figure 7.1). Aligned with these positive impacts, new 

H2S donation strategies are emerging rapidly, and a number of H2S-releasing compounds 

are currently in clinical trials.123, 204 Recent goals in improving upon H2S-based 

therapeutics have included triggerable donation in response to specific (and variable) 

stimuli, controllable rates of H2S release, and the ability to append the H2S-releasing 

moiety to a variety of scaffolds to potentially access H2S-drug hybrids.  

 Building from these needs, our lab recently introduced a new strategy for H2S 

donation by using self-immolative carbonyl sulfide (COS)-releasing motifs (Figure 7.2a), 

which leverages the rapid hydrolysis of COS to H2S by carbonic anhydrase (CA), a 

ubiquitous mammalian zinc metalloenzyme that normally catalyzes the hydrolysis of CO2  
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Figure 7.1 Selected examples of H2S-releasing therapeutics currently in various stages of 

clinical development. 

 

under near diffusion-limited rates to regulate blood pH levels and tissue CO2 transport.258, 

259 Since our initial report,131 a number of related COS-donating scaffolds have been 

reported for H2S release.140, 147, 150, 152, 207-209 Complementing slow-release COS donors,150 

a common strategy has been to engineer the triggered self-immolative COS release, 

which can be activated by different stimuli, including ROS,140 esterase,152, 207 light,208, 209 

and bio-orthogonal triggers147 (selected triggered examples are shown in Figure 7.2b). In 

addition to providing functional H2S donor platforms, the availability of such COS 

donors may allow for the investigation of COS chemical biology, which has been largely 

under-studied.205 Because CA is required for the efficient conversion of COS to H2S in 

all of the above scaffolds, it is imperative to not only understand the mechanism of CA 

activity in COS hydrolysis, but to also to determine whether any of the COS-donating 

motifs are functional CA inhibitors. Significant prior research has focused on identifying 

CA inhibitors for therapeutic uses, such as treatment of glaucoma, epilepsy, and 

mountain sickness, and is the topic of numerous recent reviews.108, 111, 259 Because the 

structural scope of active CA inhibitors is broad and includes many sulfur-containing 

molecules, including dithiocarbamates and trithiocarbonates,260, 261 and we wanted to 

determine whether the sulfur-containing cores of possible COS-releasing scaffolds 

(Figure 7.2c) exhibit CA inhibition. If a COS-releasing motif functions as a viable CA 

inhibitor, donor scaffolds built from such motifs are unlikely to find widespread utility as 

functional H2S donors. Because efficient H2S release from COS donors relies on CA 

activity, such investigations are important in understanding the scope of potential COS-
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releasing structural motifs.  

 

 
Figure 7.2 (a) General strategy for H2S generation from COS-releasing molecules. A 
caged thiocarbamate is shown as an example system. (b) Selected examples of triggered 
COS donors with different core structural motifs. (c) Potential thiocarbonate, 
thiocarbamate, and dithiocarbonate motifs that could function as COS/H2S donors. 
 

7.2 Results 

7.2.1 Synthesis of Model Compounds 

The 15 model compounds used in our investigations were prepared using two 

general procedures. In synthetic procedure A (Figure 7.3a), one equivalent of an alcohol, 

thiol, or amine was combined with one equivalent of phenyl isothiocyanate or phenyl 
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isocyanate and base and was stirred until completion of the reaction. Following an 

extraction and purification by column chromatography, compounds 1, 2, 6, 9, and 14-15 

were isolated in 20-88% yield. In synthetic procedure B (Figure 7.3b), one equivalent of 

the alcohol, thiol, or amine starting material was combined with one equivalent of phenyl 

chloroformate and base. When the reaction was complete, the product was washed, 

extracted, and purified by column chromatography. Compounds 3-5, 7-8, and 10-13 were 

isolated in 32-82% yield. 

Our initial report of caged COS release utilized an O-alkyl thiocarbamate 

scaffold, but S-alkyl thiocarbamates and thiocarbonates have also been reported.152, 209 

Depending on the placement of the COS moiety in the caged core, there different 

constitutional isomers that can release COS, which motivated our selection of model 

compounds 1-5 (Figure 7.3c). Similarly, the availability of caged CO2 compounds, which 

generate CO2/H2O rather than COS/H2S, prompted our investigation of control 

compounds 6-8 (Figure 7.3d). Additionally, the recent interest in CS2 donor development 

prompted our inclusion of dithiocarbamates 9-10 (Figure 7.3e).262 Finally, we included 

isomers 11-15 as control compounds, which have similar functional motifs but lack the 

caged COS core (Figure 7.3f). For each of these model compounds, our goal was to 

determine whether the core structures exerted cytotoxicity or cell proliferative effects and 

also to measure the CA inhibition profiles for each compound to better guide future COS 

donor development. 

 

7.2.2 Cytotoxicity Evaluation  

Prior to measuring CA inhibition profiles, we first measured the cytotoxicity of 

each compound in A549 human lung adenocarcinoma cells using the CCK-8 cell 

proliferation assay. We chose concentrations ranging from 10 – 100 µM for each 

compound, which corresponds to the general concentration ranges typically used in 

biological experiments that use H2S-donating compounds. Incubation of A549 with 10, 

25, 50, or 100 µM of each compound did not result in significant cytotoxicity or 

proliferation, suggesting that the inherent core structures from each model compound do 

not significantly impact cell viability (Figure 7.4).  
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Figure 7.3 (a), (b) General synthetic procedures to prepare model compounds. Structures 
of the model compounds prepared and investigated in this study include (c) COS donor 
scaffolds (1-5), (d) CO2 donor scaffolds (6-8), (e) CS2 donor scaffolds (9-10), and (f) 
control scaffolds (11-15).   
 

7.2.3 Determination of CA Inhibitors 

To investigate the potential CA inhibition properties of each of the selected 

scaffolds, we used CA-mediated p-nitrophenyl acetate (pNPA) hydrolysis as a model 

system for measuring CA activity / inhibition. The CA-mediated hydrolysis of pNPA is 

slower than the near diffusion-limited hydrolysis of CO2, and the p-nitrophenol (pNP) 

product has a characteristic absorbance at 405 nM, thus providing a simple method to 

measure CA activities by UV-vis spectroscopy (Figure 7.5a)263. For each compound, we 

measured the rate of pNPA hydrolysis to pNP and compared these observed rates to those 

of CA alone, as well as the rate in the presence of the common CA inhibitor 

acetazolamide (AAA). In each case, the rate of production of pNP was then fit directly to 

a first-order exponential equation. Of the 15 compounds tested, 11 failed to produce 

significant changes in the rate of pNPA hydrolysis, suggesting that these compounds do 

not exhibit significant CA inhibition at concentrations typically used in H2S donor 

experiments. Four compounds, however, were found to inhibit CA activity: 2, 9, 12, and 

13. Of these compounds, 2 and 9 were moderate inhibitors and decreased the rate of  
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Figure 7.4 CCK-8 cytotoxicity assay of compounds 1-15. The cytotoxicity of each 
compound was investigated in A549 cells at 10, 25, 50 and 100 µM using the CCK-8 cell 
counting assay and compared to the DMSO vehicle. (a) caged COS scaffolds (1-5), (b) 
caged CO2 (6-8) and CS2 (9-10) scaffolds, and (c) control scaffolds (11-15). 
 

pNPA hydrolysis by about 50%. By comparison, compounds 12 and 13 were much more  

effective CA inhibitors and decreased the rate of hydrolysis to approximately that seen in 

the presence of AAA, which is recognized as a strong CA inhibitor (Figure 7.5b-f).  

 

7.2.4 Inhibition studies with potential decomposition products 

 In addition to the 15 compounds examined above, we also investigated the CA 

inhibition properties of thiophenol and benzyl thiol because these thiols could potential 

be generated as hydrolysis and/or decomposition products of 2, 9, 12, and 13. (vide 

infra). We found both thiophenol and benzyl thiol to inhibit CA (Figure 7.5e). The rate of 

hydrolysis in the presence of thiophenol alone was found to be similar to that of 12 and 

13, both of which, if deprotonated, would decompose to thiophenol. Similarly, the rate of 

pNPA hydrolysis observed in the presence of benzyl thiol is similar to that of 2 and 9, 

which would decompose to benzyl thiol.  
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Figure 7.5 (a) CA-mediated hydrolysis of pNPA to form pNP. pNPA assay of (b) caged 
COS scaffolds, (c) caged CO2 scaffolds, (d) caged CS2 scaffolds, and (e) control 
scaffolds. (f) Absorbance data was fit to a first order exponential to determine rate of 
hydrolysis in the presence of each compound and compared to AAA, PhSH, and BnSH.  
 

7.3 Discussion 

The recent introduction and adoption of triggered COS-releasing compounds for 

H2S donation highlights the potential of this strategy to access a broad class of H2S 

donors with potential therapeutic properties. In addition to providing functional COS/H2S 

donor platforms, the use analogous CO2/H2O-releasing compounds provide key control 

compounds that undergo the same self-immolative chemistry to generate the same 
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organic byproducts as the canonical donors, but which do not release COS/H2S. For all 

such scaffolds, a key component of the COS/H2S donor strategy is the requirement of 

CA-mediated COS hydrolysis to H2S. Because of this requirement, the donor motifs 

should not interfere with CA activity. With these considerations in mind, we wanted to 

measure cytotoxicity profiles and CA inhibition data for these potential COS-releasing 

moieties to help determine the most promising scaffolds for caged COS release. 

We identified a library of 15 compounds that include known and potential caged 

COS scaffolds, caged CO2 and CS2 motifs, and related control compounds as described in 

the Results section. Although each of these compounds represents a scaffold that could be 

used in a donor or control compound, they do not contain triggering moieties to allow for 

decomposition, meaning that they should not release COS spontaneously. By 

investigating the cytotoxicity and CA inhibition profile of each core motif, we hoped to 

identify the core structures with high CA compatibility for future COS/H2S donor design.   

As outlined in the Results section, none of the prepared model compounds were 

found to be cytotoxic in A549 cells at concentrations below 100 µM, suggesting that the  

core motifs are not inherently cytotoxic at concentration ranges typically used in H2S 

donation studies. Of the 15 compounds investigated, however, we did identify four 

compounds that inhibit CA activity: 2, 9, 12, and 13 (Figure 7.6a). At first, the only 

similarity between these compounds appeared to be the presence of a sulfur atom 

adjacent to the thiocarbonyl moiety. We also noticed, however, a unifying characteristic 

of these compounds is that deprotonation of the amide NH could lead to decomposition to 

form a thiol-containing byproduct (benzyl thiol for 2 and 9 or thiophenol for 12 and 13, 

Figure 7.6b). We hypothesized that these thiol byproducts may be responsible for the 

observed inhibitory properties, rather than the carbamate scaffolds themselves. Further 

supporting this hypothesis, we measured the inhibitory effects of benzyl thiol and  

thiophenol. Benzyl thiol exhibited similar CA inhibitory profiles to 2 and 9, and 

thiophenol inhibited CA similarly to 12 and 13. Aside from the shown CA inhibition 

properties, this additionally suggests the instability of these scaffolds at even moderately 

basic conditions, making them less reliable as COS donor constructs or as suitable 

controls.  
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Figure 7.6 (a) Structures of compounds identified as CA inhibitors. (b) Mechanism for 
production of thiophenol or benzyl thiol following deprotonation of 2, 9, 12, or 13. 
 

7.4 Conclusions 

In combination with recent work investigating stability and rate of COS/H2S 

release from different COS-releasing scaffolds,206 the present work provides an important 

resource for selecting the best scaffolds for COS donation in the design of H2S 

therapeutics. Four scaffolds (1, 3, 4, and 5) were identified that have either been reported 

to release COS or are likely to release COS through self-immolation that do not inhibit 

CA. These motifs are likely ideal starting points in the design of new COS/H2S donor 

motifs. Although this work provides the first insights into the potential CA inhibition 

properties of COS/H2S donor scaffolds, any structural modifications could impact the 

extent of inhibition, which will likely require future constructs to be tested for CA 

inhibition directly. Additionally, the identification of thiocarbamate 2 as a CA inhibitor 

should not completely eliminate this S-alkyl thiocarbamate motif from consideration as a 

COS/H2S donor core, because further functionalization of the core structure may impact 

or reduce the CA inhibition profiles. Indeed, similar scaffolds have been shown to be 

successful COS donors in recent reports.152, 209 Future work is required to determine the 

precise consequences of using a COS donor that inhibits CA as an H2S donor, but the 

efficiency, rate of decomposition, and rate of H2S production may all be affected. 

Through the rational selection of COS donor cores that provide efficacious COS/H2S 

release rates, suitable stability in the presence of biological milieu, and minimal CA 

inhibition, we expect the field of COS/H2S donors will continue to expand rapidly and 

provide access to new motifs with pharmacologically-relevant activities. Chapter VIII 
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will summarize the progress made in the development of self-immolative scaffolds for 

COS/H2S delivery reported in this dissertation. 

 

7.4 Experimental Details 

7.4.1 Materials and Methods  

Synthetic Materials. Reagents were purchased from Sigma-Aldrich, Alfa-Aesar, or Tokyo 

Chemical Industry (TCI) and used as received. Compounds 1-15 were synthesized as 

previously reported. Spectroscopic grade, inhibitor-free THF and DCM were 

deoxygenated by sparging with argon followed by passage through a Pure Process 

Technologies solvent purification system to remove water. Deuterated solvents were 

purchased from Cambridge Isotope Laboratories and used as received. Silica gel 

(SiliaFlash F60, Silicycle, 230-400 mesh) was used for column chromatography. 1H, and 
13C{1H} NMR spectra were recorded on a Bruker 500 MHz instrument. Chemical shifts 

are reported in ppm relative to residual protic solvent resonances.  

 

Spectroscopic Materials. Tris-HCl buffer was prepared from Tris hydrochloride (Sigma, 

50 mM) and deionized water obtained from a Synergy UV Millipore Water System and 

adjusted to pH 8.5 with a SevenMulti pH Probe (Mettler Toledo). UV-visible spectra 

were acquired on a Cary 60 UV-vis spectrometer equipped with a Quantum Northwest 

TC 1 temperature controller.  

 

Cell Culture Materials. A549 cells obtained from ATCC were grown in a 5% CO2 

incubator at 37 °C in Dulbecco’s Modified Eagle Medium (Gibco, high glucose, phenol 

red) with 5% FBS (VWR) and 1% penicillin streptomycin (Gibco). Cells were passaged 

(up to p 25) every 1-3 days upon reaching 85-90% confluency. Absorbance 

measurements were acquired using a Tecan Safire2 microplate reader. 

 

Cytotoxicity Assays. Stock solutions of the compounds (20 mM, 10 mM, 5 mM, 2 mM) 

were prepared in DMSO via serial dilution and used to make 100 µM, 50 µM, 25 µM, 

and 10 µM solutions of each compound in DMEM (no phenol red, no FBS). 96-Well 

plates were seeded with ~20,000 cells/well overnight prior to cytotoxicity experiments. 
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Cells were washed with PBS (Gibco) and incubated with the desired compound or with 

vehicle (0.5% DMSO) for one hour prior to being washed with PBS and incubated with 

CCK-8 solution (10% in DMEM). After 1 hour, the absorbance at 450 nm was measured 

on a plate reader, and the cell survival was calculated as a percent of the control and 

normalized to the vehicle group. The results are expressed as mean ± SD (n = 6).   

 

Determination of CA Inhibition. Stock solutions of each compound (20 mM in DMSO), 

acetazolamide (20 mM in DMSO), p-nitrophenylacetate (pNPA, 15 mM in ethanol), and 

CA (7.5 mg/mL in Tris buffer) were prepared and stored at 2-4 °C until immediately 

prior to use. pNPA (20 µL) was injected into the Tris HCl buffer (3 mL) immediately 

followed by the desired compound of interest (7.5 µL) with stirring at 37.00 ± 0.05 °C. 

Data collection began immediately prior to injection of CA (20 µL) and continued until 

the production of pNP was complete, as determined by a plateau in absorbance at 405 

nm. Absorption data was fit to a first-order exponential equation in Origin 8 to obtain 

pseudo first-order rate data, which are reported in units of s-1. All trials were completed in 

triplicate and rates are reported as mean ± SD (n = 3).   

 

7.4.2  Syntheses 

General synthetic procedure A. The alcohol, thiol, or amine starting material (1.0 equiv.) 

was combined with phenyl isothiocyanate or phenyl isocyanate (1.0 equiv.) in anhydrous 

THF (15 mL) at 0 °C, followed by the addition of base (1.2 equiv.). The resultant mixture 

was stirred at 0 °C for 20 min, after which the ice bath was removed, and the reaction 

mixture was stirred at r.t. until the completion of the reaction as indicated by TLC. The 

reaction was quenched by adding brine (30 mL), and the aqueous solution was extracted 

with ethyl acetate (3 × 15 mL). The organic layers were combined, dried over MgSO4, 

and evaporated under vacuum. The crude products from each reaction were purified by 

column chromatography. 

Compound 1 was prepared from benzyl alcohol and phenyl isothiocyanate in the 

presence of NaH. (yield: 75%). The characterization data match the reported data.140 

Compound 2 was prepared from benzyl mercaptan and phenyl isocyanate in the presence 

of NaH. (yield: 38%). The characterization data match the reported data.264 Compound 6 
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was prepared from benzyl alcohol and phenyl isocyanate in the presence of TEA (yield: 

20%) The characterization data match the reported data.265 Compound 9 was prepared 

from benzyl mercaptan and phenyl isothiocyanate in the presence of NaH. (yield: 75%). 

The characterization data match the reported data.266 Compound 14 was prepared from 

benzyl amine and phenyl isocyanate in the presence of TEA. (yield: 88%). The 

characterization data match the reported data.267 Compound 15 was prepared from benzyl 

amine and phenyl isothiocyanate in the presence of TEA. (yield: 64%). The 

characterization data match the reported data.268  

 

General synthetic procedure B. The alcohol, thiol, or amine starting material (1.0 equiv.) 

was combined with the phenyl chloroformate reagent (1.0 equiv.) in anhydrous DCM (15 

mL) at 0 °C, followed by the addition of base (1.0 equiv.). The resultant solution was 

stirred at 0 °C for 20 min, after which the ice bath was removed, and the reaction mixture 

was stirred at r.t. until the completion of the reaction as indicated by TLC. The reaction 

was quenched by adding brine (30 mL), and the aqueous solution was extracted with 

ethyl acetate (3 × 15 mL). The organic layers were combined, dried over MgSO4, and 

evaporated under vacuum. The crude products from each reaction were purified by 

column chromatography. 

 Compound 3 was prepared from benzyl alcohol and phenyl chlorothionoformate 

in the presence of pyridine. (yield: 57%). 1H NMR (500 MHz, CDCl3) δ (ppm): 7.55 (m, 

7H), 7.33 (t, J = 10.0 Hz, 1H), 7.16 (d, J = 10.0 Hz, 2H), 5.60 (s, 2H). 13C{1H} NMR 

(125 MHz, CDCl3) δ (ppm): 195.0, 153.5, 134.2, 129.6, 128.8, 128.7, 128.6, 126.6, 

122.0, 75.6. Compound 4 was prepared from benzyl mercaptan and phenyl chloroformate 

in the presence of TEA. (yield: 73%). The characterization data match the reported 

data.269 Compound 5 was prepared from benzyl mercaptan and phenyl thiochloroformate 

in the presence of TEA (yield: 71%). 1H NMR (500 MHz, DMSO-d6) δ (ppm): 7.53 (m, 

5H), 7.32 (m, 4H), 7.27 (m, 1H), 4.25 (s, 2H). 13C{1H} NMR (125 MHz, DMSO-d6) δ 

(ppm): 188.6, 137.3, 135.8, 131.1, 130.2, 129.4, 129.1, 127.9, 126.5, 34.9. Compound 7 

was prepared from benzyl alcohol and phenyl chloroformate in the presence of TEA. 

(yield: 62%). The characterization data match the reported data.270 Compound 8 was 

prepared from benzyl alcohol and phenyl thiochloroformate in the presence of NaH. 
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(yield: 32%). 1H NMR (500 MHz, CDCl3) δ (ppm): 7.57 (m, 2H), 7.44 (m, 3H), 7.39 (m, 

5H), 5.29 (s, 2H). 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 167.9,135.0, 134.9, 129.6, 

129.2, 128.6, 128.5, 127.7, 69.4. Compound 10 was prepared from benzyl mercaptan and 

phenyl chlorothionoformate in the presence of pyridine. (yield: 43%). The 

characterization data match the reported data.271 Compound 11 was prepared from benzyl 

amine and phenyl chloroformate in the presence of TEA. (yield: 82%). The 

characterization data match the reported data.272 Compound 12 was prepared from benzyl 

amine and phenyl thiochloroformate in the presence of pyridine. (yield: 57%). 1H NMR 

(500 MHz, DMSO-d6) δ (ppm): 8.85 (s, 1H), 7.46 (m, 2H), 7.41 (s, 3H), 7.35 (t, J = 5.0 

Hz, 2H), 7.26 (d, J = 10.0 Hz, 3H), 4.32 (s, 2H). 13C{1H} NMR (125 MHz, DMSO-d6) δ 

(ppm): 164.6, 139.3, 135.4, 129.4, 129.3, 129.1, 128.8, 127.8, 127.5, 44.7. Compound 13 

was prepared from benzyl amine and phenyl chlorodithioformate in the presence of TEA. 

(yield: 49%). 1H NMR (500 MHz, CDCl3) δ (ppm): 7.61 (m, 2H), 7.50 (m, 3H), 7.32 (m, 

3H), 7.17 (d, J = 10.0 Hz, 2H), 6.86 (br, 1H), 4.86 (d, J = 5.0 Hz, 2H). 13C{1H} NMR 

(125 MHz, CDCl3) δ (ppm): 195.3, 135.8, 135.6, 131.2, 130.4, 128.9, 128.6, 128.0, 

127.5, 50.2. 
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CHAPTER VIII 

 

CONCLUDING REMARKS 

 

 The significant interest in H2S as the newest gasotransmitter has motivated 

chemists and chemical biologists to develop a suite of chemical tools to study 

physiological H2S. These tools are can be broadly classified into two main categories: 

scaffolds to detect H2S (H2S probes) and small molecules that release H2S (H2S donors). 

Significant progress has been made in the design of H2S probes that are sensitive and 

selective for H2S as well as in the development of H2S donors that are well-controlled 

and contain a variety of functional groups. Several key challenges remain, however, 

including irreversible consumption of sulfide during detection in living systems and the 

use of donors that are poorly representative of enzymatic production of H2S. The work 

reported in this dissertation addresses many of the concerns and limitations that are 

commonly encountered in the development of chemical tools for H2S. An analyte-

replacement fluorescent probe for H2S was reported that can simultaneously detect H2S 

and release an equivalent of sulfide in the form of COS to help maintain homeostasis. 

This was the first report of the triggerable release of COS from self-immolative 

thiocarbamates and the use of COS as a source of sulfide through rapid hydrolysis to H2S 

in the presence of the ubiquitous mammalian enzyme, CA. Today, self-immolative 

thiocarbamates are a robust and highly tunable strategy for H2S delivery. The donors 

reported herein represent only a portion of the COS/H2S donors reported to date, but 

show that this strategy can be modified with ease to produce donors relevant for certain 

research and therapeutic applications. Additionally, the cytotoxicity of some of the 

enzyme-activated donors reported in this dissertation has piqued interest in COS 

chemical biology. While COS biology has been largely ignored in the past, the recent 

introduction of COS delivery agents may allow for more detailed investigations into this 

field. Significant work remains to be done to elucidate the physiological effects of COS 

from those of H2S. The rapid enzymatic consumption of COS and subsequent hydrolysis 

to H2S in mammalian tissues complicates simple experiments that may be done to 

observe the effects of COS. CA inhibition or knockdown experiments may provide some 
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insight into COS biology, however, since CA is responsible for regulation of intracellular 

pH, numerous other variable are likely to influence the results of such investigations. 

Since many CA isoforms exist, and the isoforms that rapidly hydrolyze COS are so far 

unidentified, there are potentially more complex, isoform-specific experiments that can 

be imagined. Finally, since there are currently only very limited methods to detect COS 

in biological milieu (i.e. headspace gas chromatography above tissue samples), the 

development of additional chemical tools, especially selective probes for COS, may be 

necessary to reach an in-depth understanding of COS in physiology. The work in this 

dissertation will hopefully serve as a springboard into a flourishing new field of COS 

chemical biology.  
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APPENDIX A 
CHAPTER II SUPPLEMENTARY INFORMATION 

 

	
Figure A1. 1H NMR spectra of 1 before (top) and after (bottom) TCEP addition.  
 

 
Figure A2. 13C{1H} NMR spectra of 1 before (top) and after (bottom) TCEP addition. 
 

 
Figure A3. 19F NMR spectra of 1 before (top) and after (bottom) TCEP addition. The 
presence of multiple signals is a result of multiple decomposition products that form 
following self-immolation due to the nucleophilicity of the resulting aniline species and 
the electrophilicity of the azaquinone methide byproduct. 
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Sulfide Electrode Experiments 

 
Figure A4. Addition of COS to PBS buffer results in minimial H2S formation until the 
addition of carbonic anhydrase (CA). 
 

 
 
Figure A5. No H2S is formed from 1 in PBS buffer until TCEP is added. 
 
NMR Spectra 
1H (600 MHz, DMSO-d6), 13C{1H} (150 MHz, DMSO-d6), and 19F NMR (564 MHz, 
DMSO-d6) NMR Spectra of 1 

	

0 50 100 150 200 250
Time (min)

0

1

2

3

4

5

R
es

po
ns

e 
(n

A
)

COS

CA

2 4 6 8 10
Time (min)

-5

0

5

10

15

R
es

po
ns

e 
(n

A
)

1

TCEP

O N
H

N3

S F



	 100 

 

	
 

 
 
 

 
 
 
 
 
 
 
 
 



	 101 

1H (600 MHz, DMSO-d6) and 13C{1H} (150 MHz, DMSO-d6) NMR Spectra of 3 
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1H (600 MHz, DMSO-d6), 13C{1H} (150 MHz, DMSO-d6), and 19F NMR (564 MHz, 
DMSO-d6) NMR Spectra of 4 
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1H (600 MHz, CDCl3) and 13C{1H} (150 MHz, CDCl3) NMR Spectra of MeRho-NCS 
 

 
 
 

O OMe

O

O

SCN



	 104 

 
 
1H (600 MHz, CDCl3) and 13C{1H} (150 MHz, CDCl3) NMR Spectra of MeRho-TCA 
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APPENDIX B 
 

CHAPTER III SUPPLEMENTARY INFORMATION 
	
Cytotoxicity of TCO 1 
 

	
Figure B1. N2A cells were cultured in high glucose Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% 
penicillin/streptomycin at 37 °C under 5% CO2. Once confluent, cells were incubated in 
FBS-free DMEM containing vehicle (0.5% DMSO) or TCO 1 (10 – 100 µM) for 3 hours 
in a 96-well plate. CCK-8 solution (10% in FBS-free DMEM) was added to each well, 
and cells were incubated for 3 hours at 37 °C. The absorbance at 450 nm was measured 
by using a microplate reader. The cell viability was measured and normalized to the 
vehicle group. Results are expressed as mean ± SEM (n = 6).  
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NMR Spectra 
1H (400 MHz, CDCl3) NMR Spectra of 1. 

	
 
1H (400 MHz, CDCl3) and 13C{1H} (100 MHz, CDCl3) NMR Spectra of 2. 
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1H (400 MHz, CDCl3) and 13C{1H} (100 MHz, CDCl3) NMR Spectra of Bis-isopropyl-
1,2,4,5-tetrazine. 
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APPENDIX C 
 

CHAPTER IV SUPPLEMENTARY INFORMATION 
 
H2S Calibration Curve 

UV cuvettes (1.50 mL capacity) were charged with 0.500 mL of the MB cocktail (vide 

infra) and 0.500 mL of PBS buffer (pH 7.40, 10.0 mM). The resultant solution was mixed 

thoroughly, followed by the addition of an NaSH stock solution (1.00 mM) to make the 

final H2S concentrations of 1.00, 3.00, 5.00, 10.0, 15.0, and 20.0 µM. The MB solution 

was allowed to react with H2S for 1 hour before measuring the absorbance at 670 nm. 

 
Figure C1. H2S calibration curve for the MB assay. 

 

Cys-Triggered H2S Release from OA-CysTCM-1 in the Presence of GSH 

An OA-CysTCM-1 stock solution (0.100 mL, 10.0 mM in DMSO) was added to 

20.0 mL of PBS (pH 7.40, 10.0 mM) containing CA (25.0 µg/mL) in a 25-mL 

scintillation vial. A Cys stock solution (100 µL, 100 mM in H2O) and a GSH stock 

solution (50.0 µL, 100 µL, or 200 µL, 100 mM in H2O) were then added so that the 

working Cys and GSH concentration ratios are 2:1, 1:1, and 1:2, respectively. Next, 

0.300 mL aliquots of the reaction mixture were transferred to UV cuvettes containing 

0.300 mL of MB cocktail (0.0600 mL zinc acetate (1.00% w/v), 0.120 mL FeCl3 (30.0 

mM in 1.20 M HCl), and 0.120 mL N,N-dimethyl-p-phenylene diamine (20.0 mM in 7.20 

M HCl)) at different time points. The absorbance at 670 nm was then measured after 1 
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hour and was converted to H2S concentration by using the H2S calibration curve as 

shown in Figure C1. 

 
Figure C2. GSH Effects on Cys-triggered COS/H2S release from OA-CysTCM-1 (50 
µM). The Cys concentration was 500 µM in all experiments, and H2S concentrations 
were measured after 2-h incubation. 
 
Fluorescence Imaging of H2S Release from OA-CysTCM-1 

 A stock solution of SF7-AM (1.50 µL, 20.0 mM in DMSO) was added to a vial 

containing PBS (pH 7.40, 3.00 mL), cysteine (250 µM), and carbonic anhydrase (25.0 

µg/mL). Fluorescence measurements (λex = 488 nm, λem = 498-700 nm) were taken either 

immediately upon addition of SF7-AM or after addition of OA-CysCM-1 (15.0 µL, 20.0 

mM in DMSO) or OA-CysTCM-1 (15.0 µL, 20.0 mM in DMSO) and taken periodically 

throughout the course of 120 minutes. 

 

 
 
Figure C3: Fluorescence response of SF7-AM (5.00 µM) with cysteine (250 µM) and 
carbonic anhydrase (25.0 µg/mL) (left); upon addition of OA-CysCM-1 (50.0 µM, 
middle); and upon addition of OA-CysTCM-1 (50.0 µM, right) over the course of 120 
minutes. λex = 488 nm. 
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NMR Spectra 
1H (500 MHz, CDCl3) and 13C{1H} (125 MHz, CDCl3) NMR Spectra of S1. 

 

	
A 
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1H (500 MHz, DMSO-d6) and 13C{1H} (150 MHz, DMSO-d6) NMR Spectra of OA-
CysTCM-1. Two sets of NMR resonances showed up in 13C NMR spectrum due to slow 
rotation around the thiocarbamate functional group at room temperature 
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1H (500 MHz, CDCl3) and 13C{1H} (125 MHz, CDCl3) NMR Spectra of OA-CysCM-1. 
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APPENDIX D 
CHAPTER V SUPPLEMENTARY INFORMATION 

Mass Spectrometry Data 

 

 
Figure D1. Mass spectrum of the reaction byproducts formed after stirring 1 with PLE in 
PBS buffer (pH 7.4, 1% DMSO) for 48 hours. Structures of potential byproducts have 
been labeled with their respective masses and reaction schemes detailing formation of 
these byproducts are shown. 
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Cytotoxicity of Na2S 
 

 
Figure D2. Cell viability studies of Na2S in BEAS 2B cells using the (a) MTT and (b) 
LDH cell viability assays.  
 
Cytotoxicity of 1 and 2 in HeLa cells 
 

	
Figure D3. Cytotoxicity assay of donor 1 and control compound 2 in HeLa cells using 
the CCK-8 assay. HeLa cells were cultured in a 96-well plate overnight in Dulbecco’s 
modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) 
and 1% penicillin/streptomycin at 37 °C under 5% CO2 and washed with PBS pH 7.4 
prior to incubation in FBS-free DMEM containing vehicle (0.5% DMSO, black bar), 1 
(green bars, 10-100 µM), or 2 (purple bars, 10-100 µM) for 1 hour. CCK-8 solution (10% 
in FBS-free DMEM) was added to each well, and cells were incubated for 3 hours at 37 
°C. The absorbance at 450 nm was measured using a microplate reader. The cell viability 
was measured and normalized to the vehicle group.  Results are expressed as mean ± SD 
(n=6). 
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NMR Spectra 
1H (600 MHz, DMSO-d6) and 13C{1H} (150 MHz, DMSO-d6) NMR Spectra of 1 
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1H (600 MHz, DMSO-d6) and 13C{1H} (150 MHz, DMSO-d6) NMR Spectra of 2 
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APPENDIX E 
 

CHAPTER VI SUPPLEMENTARY INFORMATION 
 
Synthesis / Spectral Details of Prepared Compounds   
 

 
 
Me-OH was prepared with 4-hydroxybenzyl alcohol and acetyl chloride according to the 
general synthetic procedure described above. (324 mg, 48% yield). Spectral data is in 
agreement with those reported in the literature.273 
 
 

 
 
 
Cp-OH was prepared with 4-hydroxybenzyl alcohol and cyclopropanecarbonyl chloride 
according to the general synthetic procedure described above. (506 mg, 65% yield). 
Spectral data is in agreement with those reported in the literature.274 
 
 
 
 

 
iPr-OH was prepared with 4-hydroxybenzyl alcohol and isobutyryl chloride according to 
the general synthetic procedure described above. (423 mg, 54% yield). Spectral data is in 
agreement with those reported in the literature.275 
 

 
 
 
tBu-OH was prepared with 4-hydroxybenzyl alcohol and pivaloyl chloride according to 
the general synthetic procedure described above. (329 mg, 39% yield). Spectral data is in 
agreement with those reported in the literature.237 
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Cy-OH was prepared with 4-hydroxybenzyl alcohol and cyclohexanecarbonyl chloride 
according to the general synthetic procedure described above. (388 mg, 41% yield). 
Spectral data is in agreement with those reported in the literature.275 
 
 

 
 
Ph-OH was prepared with 4-hydroxybenzyl alcohol and benzoyl chloride according to 
the general synthetic procedure described above. (726 mg, 79% yield). Spectral data is in 
agreement with those reported in the literature.276 
 
 
 

 
Ad-OH was prepared with 4-hydroxybenzyl alcohol and 1-adamantanecarbonyl chloride 
according to the general synthetic procedure described above. (416 mg, 36% yield). 1H 
NMR (500 MHz, CDCl3) δ (ppm): 7.37 (d, J=8.22 Hz, 2H), 7.05 (d, J=8.22 Hz, 2H ), 
4.69 (d, J=1.65 Hz, 2H), 2.86 (bs, 1H), 2.11 (m, 3H), 2.08 (d, J=3.17 Hz, 6H), 1.79 (d, 
J=3.51 Hz, 6H). 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 176.30, 150.52, 138.15, 
128.01, 121.67, 64.78, 41.03, 38.76, 34.46, 27.92. IR (cm-1) 3515.75, 2903.27, 2853.32, 
1718.00, 1504.69, 1452.47, 1222.53, 1189.10, 1160.28, 1040.92. HRMS m/z [M + H]+ 
calcd. For [C18H15O3]+ 279.1021; found 279.1030.  
 
 

 
 
Nap-OH was prepared with 4-hydroxybenzyl alcohol and 2-naphthoyl chloride 
according to the general synthetic procedure described above. (660 mg, 59% yield). 1H 
NMR (500 MHz, CDCl3) δ (ppm): 8.83 (s, 1H), 8.23 (dd, J=8.6, 1.7 Hz, 1H), 8.04 (d, 
J=8.1 Hz, 1H), 7.99 (d, J=8.6 Hz, 1H), 7.96 (d, J=8.1 Hz, 1H), 7.67 (ddd, J=8.1, 6.8, 1.3 
Hz, 1H), 7.62 (ddd, J=8.1, 6.8, 1.3 Hz, 1H), 7.50 (d, J=8.6 Hz, 2H), 7.30 (d, J=8.6 Hz, 
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2H), 4.78 (s, 2H), 1.66 (bs, 1H). 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 165.42, 
150.48, 138.57, 135.85, 132.51, 131.97, 129.50, 128.67, 128.42, 128.19, 127.86, 126.87, 
126.69, 125.46, 121.91, 64.88. IR (cm-1) 3319.86, 3058.22, 2867.44, 2360.09, 2341.52, 
1734.43, 1631.12, 1596.86, 1508.04, 1463.36, 1418.26, 1387.99, 1352.95, 1280.24, 
1225.79, 1194.70, 1164.29, 1080.76, 1013.92. HRMS m/z [M + H]+ calcd. For 
[C18H23O3]+ 287.1647; found 287.1647.  
 
 

 
 
MCp-OH was prepared from the corresponding carboxylic acid. MCp-COOH (1.50 g, 
1.0 equiv.) was dissolved in anhydrous dichloromethane (3.0 mL, 5.0 M solution), 
followed by addition of anhydrous DMF (60 µL, 0.05 equiv.). The reaction mixture was 
heated to reflux, and SOCl2 (1.20 mL, 1.1 equiv.) was added dropwise under reflux. The 
reaction mixture was stirred under reflux for two hours, then concentrated under reduced 
pressure. The crude reaction mixture was re-dissolved in a minimum of dichloromethane 
and added dropwise to a stirring solution of 4-(TBS-hydroxymethyl)phenol (2.0 g, 0.56 
equiv.), triethylamine (3.51 mL, 1.68 equiv.), and DMAP (500 mg, 0.28 equiv.) in 
dichloromethane (60 mL, 0.25 M solution). Upon completion (as determined by TLC) the 
reaction was quenched with 20 mL of brine, and extracted with methylene chloride (3 x 
20 mL). The combined organic layers were dried over anhydrous magnesium sulfate, and 
purified by silica column chromatography to yield 1.03 g (21% yield over two steps). 
MCp-OTBS (1.03 g, 1.0 equiv.) was dissolved in anhydrous THF (32 mL, 0.1 M 
solution) under an atmosphere of nitrogen, and cooled to 0 °C. TBAF (3.20 mL 1.0 M in 
THF, 1.0 equiv.) was added dropwise. The reaction was let stir for 30 minutes, quenched 
with brine (10 mL), and extracted with ethyl acetate (3 x 20 mL). The combined organic 
layers were dried over anhydrous MgSO4, concentrated under reduced pressure, and 
purified by silica column chromatography to yield MCp-OH as a white solid (365 mg, 
55% yield). 1H NMR (500 MHz, CDCl3) δ (ppm): 7.37 (d, J=8.40 Hz, 2H), 7.06 (d, J-
=8.40 Hz, 2H ), 4.67 (s, 2H), 1.90 (bs, 1H), 1.44 (m, 5H), 0.86 (m, 2H). 13C{1H} NMR 
(125 MHz, CDCl3) δ (ppm): 174.73, 150.38, 138.25, 127.97, 121.65, 64.73, 19.45, 18.81, 
17.47. IR (cm-1) 3356.76, 2969.77, 1736.30, 1652.94, 1606.43, 1507.08, 1465.16, 
1419.78, 1388.80, 1324.07, 1163.95, 1120.74, 1013.39. HRMS m/z [M + H]+ calcd. For 
[C12H15O3]+ 207.1021; found 207.1019. 
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TCM1 was prepared with p-tolyl isothiocyanate and Me-OH according to the general 
synthetic procedure described above. (25 mg, 14% yield).  1H NMR (500 MHz, DMSO-
d6, 60 °C) δ (ppm): 10.99 (s, 1H), 7.69-6.93 (m, 8H), 5.55 (s, 2H), 2.28 (bs, 6H). 
Broadness is observed in the 1H NMR spectrum due to rotation around the C-N bond of 
the thiocarbamate. 13C{1H} NMR (125 MHz, DMSO-d6, 25 °C) δ (ppm) 187.81, 187.20, 
169.67, 150.82, 136.45, 135.55, 134.86, 134.57, 134.01, 133.63, 130.23, 129.78, 129.69, 
129.35, 123.41, 122.47, 122.38, 71.89, 70.26, 60.23, 21.32, 21.24, 21.00, 20.90, 14.57. 
Splitting of peaks is observed in the 13C{1H} NMR spectrum due to slow rotation around 
the C-N bond of the thiocarbamate, yielding rotamers. IR (cm-1) 3195.71, 3170.76, 
3100.82, 3030.76, 2950.80, 1753.55, 1593.68, 1540.73, 1507.65, 1455.32, 1405.65, 
1365.85, 1342.19, 1218.90, 1206.36, 1186.16, 1173.45, 1162.22. HRMS m/z [M + H]+ 
calcd. For [C17H18NO3S]+ 316.1007; found 316.1016. 
 
 

 
 
TCM2 was prepared with p-tolyl isothiocyanate and Cp-OH according to the general 
synthetic procedure described above. (65 mg, 39% yield). 1H NMR (500 MHz, DMSO-
d6, 60 °C) δ (ppm): 10.97 (s, 1H), 7.65-6.97 (m, 8H), 5.55 (s, 2H), 2.28 (s, 3H), 1.89 (m, 
1H), 1.05 (m, 4H). Broadness is observed in the 1H NMR spectrum due to rotation 
around the C-N bond of the thiocarbamate. 13C{1H} NMR (125 MHz, DMSO-d6, 25 °C) 
δ (ppm): 187.81, 187.19, 173.35, 150.77, 136.46, 135.55, 134.86, 134.57, 134.02, 133.64, 
130.20, 129.78, 129.69, 129.35, 123.42, 122.47, 122.33, 71.88, 70.24, 21.00, 20.90, 
13.06, 9.52. Splitting of peaks is observed in the 13C{1H} NMR spectrum due to slow 
rotation around the C-N bond of the thiocarbamate, yielding rotamers. IR (cm-1) 3231.59, 
3173.53, 3099.77, 3029.41, 2921.09, 1854.61, 1741.51, 1594.89, 1544.77, 1509.09, 
1461.52, 1422.56, 1400.67, 1384.26, 1338.06, 1313.36, 1288.42, 1213.37, 1163.87, 
1142.12. HRMS m/z [M + H]+ calcd. For [C19H20NO3S]+ 342.1164; found 342.1174. 
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TCM3 was prepared with p-tolyl isothiocyanate and iPr-OH according to the general 
synthetic procedure described above. (52 mg, 31% yield). 1H NMR (500 MHz, DMSO-
d6, 60 °C) δ (ppm): 10.97 (1H, s), 7.67 – 6.94 (bm, 8H), 5.56 (s, 2H), 2.83 (sept, J=7.84, 
1H), 1.25 (d, J=7.84, 6H). Broadness is observed in the 1H NMR spectrum due to 
rotation around the C-N bond of the thiocarbamate. 13C{1H} NMR (125 MHz, DMSO-d6, 
25 °C) δ (ppm): 187.83, 187.21, 175.48, 150.91, 136.47, 135.56, 134.84, 134.57, 134.00, 
133.61, 130.23, 130.21, 129.80, 129.67, 129.34, 123.42, 122.47, 122.27, 71.91, 70.25, 
33.78, 30.83, 20.98, 19.13. Splitting of peaks is observed in the 13C{1H} NMR spectrum 
due to slow rotation around the C-N bond of the thiocarbamate, yielding rotamers. IR 
(cm-1) 3214.13, 3108.42, 3040.44, 2969.4, 2922.05, 1751.35, 1594.68, 1540.86, 1507.24, 
1402.57, 1340.66, 1316.76, 1288.55, 1228.48, 1189.68. HRMS m/z [M + H]+ calcd. For 
[C19H21NO3S]+ 344.1320; found 344.1308. 
 
 

 
 
TCM4 was prepared with p-tolyl isothiocyanate and MCp-OH according to the general 
synthetic procedure described above. (100 mg, 61% yield). 1H NMR (500 MHz, DMSO-
d6, 60 °C) δ (ppm): 10.99 (s, 1H), 7.66-6.99 (m, 8H), 5.54 (s, 2H), 2.28 (s, 3H), 1.38 (s, 
3H), 1.34 (q, J=3.84, 2H), 0.92 (q, J=3.84, 2H). Broadness is observed in the 1H NMR 
spectrum due to rotation around the C-N bond of the thiocarbamate. 13C{1H} NMR (125 
MHz, DMSO-d6, 25 °C) δ (ppm): 187.82, 187.18, 174.36, 150.97, 136.46, 135.55, 
134.85, 134.56, 133.93, 133.53, 130.13, 129.77, 129.68, 129.34, 123.43, 122.46, 122.34, 
71.92, 70.24, 21.00, 20.89, 19.43, 18.90, 17.31. Splitting of peaks is observed in the 
13C{1H} NMR spectrum due to slow rotation around the C-N bond of the thiocarbamate, 
yielding rotamers. IR (cm-1) 3208.15, 3172.09, 3102.38, 3034.45, 2969.61, 2924.52, 
2868.84, 1739.32, 1592.23, 1541.25, 1508.68, 1449.58, 1421.32, 1398.13, 1334.24, 
1315.04, 1287.58, 1211.63, 1189.86, 1166.87, 1123.90, 1013.25. HRMS m/z [M + H]+ 
calcd. For [C20H22NO3S]+ 356.1320; found 356.1311. 
 
 

 
 
TCM5 was prepared with p-tolyl isothiocyanate and tBu-OH according to the general 
synthetic procedure described above. (109.4 mg, 64% yield). Spectral data is in 
agreement with those reported in the literature.207 
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TCM6 was prepared with p-tolyl isothiocyanate and Ph-OH according to the general 
synthetic procedure described above. (34 mg, 22% yield). 1H NMR (500 MHz, DMSO-
d6, 60 °C) δ (ppm): 11.00 (s, 1H), 8.15 (m, 2H), 7.75 (m, 1H), 7.64 (m, 2H), 7.58-7.11 
(m, 8H), 5.59 (s, 2H), 2.28 (s, 3H). Broadness is observed in the 1H NMR spectrum due 
to rotation around the C-N bond of the thiocarbamate. 13C NMR (125 MHz, DMSO-d6, 
25 °C) δ (ppm): 187.84, 187.21, 165.06, 150.94, 136.47, 135.57, 134.87, 134.58, 134.31, 
133.96, 133.91, 130.27, 129.90, 129.85, 129.72, 129.70, 129.62, 129.47, 129.36, 129.31, 
123.44, 122.56, 122.50, 71.92, 70.25, 21.01, 20.91. Splitting of peaks is observed in the 
13C{1H} NMR spectrum due to slow rotation around the C-N bond of the thiocarbamate, 
yielding rotamers. IR (cm-1) 3200.22, 3156.21, 3092.37, 3028.96, 2969.84, 2925.83, 
1728.56, 1591.53, 1538.83, 1508.72, 1449.12, 1398.19, 1365.23, 1338.94, 1312.68, 
1263.16, 1249.22, 1225.59, 1209.75, 1188.14, 1174.53, 1079.50, 1056.59. HRMS m/z 
[M + H]+ calcd. For [C22H22NO3S]+ 378.1164; found 378.1165. 
 

 
 
TCM7 was prepared with p-tolyl isothiocyanate and Cy-OH according to the general 
synthetic procedure described above. (46 mg, 29% yield). 1H NMR (500 MHz, DMSO-
d6, 60 °C) δ (ppm): 10.97 (s, 1H), 7.62 – 7.14 (m, 8H), 5.55 (s, 2H), 2.61 (m, 1H), 2.28 
(s, 3H), 2.00 (d, J=12.2, 2H), 1.75 (m, 2H), 1.64 (2, J=13.1, 1H), 1.52 (m, 2H), 1.36 (m, 
2H), 1.29 (m, 1H). Broadness is observed in the 1H NMR spectrum due to rotation 
around the C-N bond of the thiocarbamate. 13C{1H} NMR (125 MHz, DMSO-d6, 25 °C) 
δ (ppm): 187.82, 187.20, 174.30, 150.91, 136.46, 135.56, 134.85, 134.57, 133.97, 133.58, 
130.22, 129.81, 129.68, 129.61, 129.34, 123.42, 122.47, 122.32, 71.91, 70.25, 42.51, 
28.93, 25.74, 25.18, 21.00, 20.90. Splitting of peaks is observed in the 13C{1H} NMR 
spectrum due to slow rotation around the C-N bond of the thiocarbamate, yielding 
rotamers. IR (cm-1) 3203.91, 3176.67, 3030.10, 2930.06, 2854.13, 1752.75, 1527.52, 
1511.28, 1386.41, 1311.79, 1208.06, 1178.02, 1165.88, 1147.76, 1114.41, 1017.32. 
HRMS m/z [M + H]+ calcd. For [C22H26NO3S]+ 384.1633; found 384.1629. 
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TCM8 was prepared with p-tolyl isothiocyanate and Ad-OH according to the general 
synthetic procedure described above. (40 mg, 26% yield). 1H NMR (500 MHz, DMSO-
d6, 60 °C) δ (ppm): 10.98 (s, 1H), 7.57 – 7.05 (m, 8H), 5.55 (s, 2H), 2.28 (s, 3H), 2.06 
(bs, 3H), 2.01 (bs, 6H), 1.75 (bs, 6H). Broadness is observed in the 1H NMR spectrum 
due to rotation around the C-N bond of the thiocarbamate. 13C{1H} NMR (125 MHz, 
DMSO-d6, 25 °C) δ (ppm): 187.83,187.19, 175.84, 151.07, 136.47, 135.55, 134.86, 
134.57, 133.95, 133.54, 130.21, 129.84, 129.68, 129.35, 123.43, 122.47, 122.29, 71.93, 
70.25, 60.23, 40.85, 40.53, 38.68, 36.31, 34.85, 30.25, 27.73, 27.62, 21.24, 21.15, 21.00, 
20.90, 14.57. Splitting of peaks is observed in the 13C{1H} NMR spectrum due to slow 
rotation around the C-N bond of the thiocarbamate, yielding rotamers. IR (cm-1) 3223.67, 
3181.01, 3109.75, 3039.47, 2917.77, 2904.34, 2848.45, 1743.95, 1595.09, 1535.42, 
1508.71, 1450.52, 1422.61, 1396.44, 1333.48, 1316.48, 1305.39, 1270.40, 1224.40, 
1178.41, 1165.19, 1043.19. HRMS m/z [M + H]+ calcd. For [C26H30NO3S]+ 436.1946; 
found 436.1943. 
 
 

 
 
TCM9 was prepared with p-tolyl isothiocyanate and Nap-OH according to the general 
synthetic procedure described above. (112 mg, 76% yield). 1H NMR (500 MHz, DMSO-
d6, 60 °C) δ (ppm): 11.01 (s, 1H), 8.85 (s, 1H), 8.21 (2, J=8.24, 1H), 8.13 (m, 2H), 8.07 
(d, J=8.24, 1H), 7.73 (t, J=7.79, 1H), 7.68 (t, J=7.79, 1H), 7.63-7.09 (m, 8H), 5.61 (s, 
2H), 2.29 (s, 3H). Broadness is observed in the 1H NMR spectrum due to rotation around 
the C-N bond of the thiocarbamate. 13C{1H} NMR (125 MHz, DMSO-d6, 25 °C) δ 
(ppm): 187.87, 187.23, 165.24, 151.05, 136.48, 135.84, 135.59, 134.88, 134.33, 133.94, 
132.58, 132.05, 130.33, 130.02, 129.93, 129.71, 129.52, 129.36, 129.13, 128.26, 127.67, 
126.56, 125.50, 123.44, 122.57, 71.94, 70.28, 55.38, 21.00, 20.91, 14.57. Splitting of 
peaks is observed in the 13C{1H} NMR spectrum due to slow rotation around the C-N 
bond of the thiocarbamate, yielding rotamers. IR (cm-1) 3216.92, 3160.40, 3084.34, 
3034.41, 2919.03, 2853.89, 1730.67, 1629.73, 1596.74, 1542.65, 1507.24, 1460.72, 
1400.09, 1343.64, 1280.39, 1179.23, 1161.82, 1127.63, 1061.28. HRMS m/z [M + H]+ 
calcd. For [C26H21NO3S]+ 428.1302; found 428.1290. 
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TCM10 was prepared with 4-biphenylyl isothiocyanate and tBu-OH according to the 
general synthetic procedure described above. (90.9 mg, 45% yield). 1H NMR (500 MHz, 
DMSO-d6, 60 °C) δ (ppm): 11.18 (s, 1H), 7.64 (m, 5H), 7.52 (d, J=8.1 Hz, 2H), 7.45 (t, 
J= 7.6 Hz, 2H), 7.35 (m, 1H), 7.13 (d, J= 8.8 Hz, 2H), 5.61 (s, 2H), 1.34 (s, 9H). 
Broadness is observed in the 1H NMR spectrum due to rotation around the C-N bond of 
the thiocarbamate.13C{1H} NMR (125 MHz, DMSO-d6, 60 °C) δ (ppm): 187.7, 176.8, 
151.3, 140.0, 137.2, 133.8, 129.9, 129.4, 127.8, 127.4, 126.9, 123.2, 122.2, 39.1, 27.2. 
FTIR (ATR, cm-1): 3212.31, 3035.48, 2969.43, 1748.39, 1594.62, 1578.16, 1540.37, 
1509.08, 1401.48, 1335.13, 1115.22, 1098.76, 1001.31, 833.74, 755.88, 685.14. HRMS 
m/z [M + H+] calc. 420.1633; found 420.1595.  
 

 
TCM11 was prepared with phenyl isothiocyanate and tBu-OH according to the general 
synthetic procedure described above. (71.2 mg, 55% yield). 1H NMR (500 MHz, DMSO-
d6, 60 °C) δ (ppm): 11.07 (s, 1H), 7.63-7.42 (m, 4H), 7.33 (m, 2H), 7.16 (m, 1H), 7.35 
(m, 1H), 7.12 (d, J= 8.7 Hz, 2H), 5.58 (s, 2H), 1.32 (s, 9H). Broadness is observed in the 
1H NMR spectrum due to rotation around the C-N bond of the thiocarbamate.13C{1H} 
NMR (125 MHz, DMSO-d6, 60 °C) δ (ppm): 187.9, 176.8, 151.3, 138.8, 133.8, 129.9, 
129.1, 125.4, 123.1, 122.2, 39.1, 27.3. FTIR (ATR, cm-1): 3218.40, 3125.23, 3061.19, 
2973.40, 1746.87, 1595.52, 1545.05, 1494.26, 1406.69, 1309.81, 1202.79, 1163.67, 
1117.27, 1013.63, 898.00, 782.7-, 685.16. HRMS m/z [M + H+] calc. 344.1320; found 
344.1309.  
 

 
 
TCM12 was prepared with p-fluorophenyl isothiocyanate and tBu-OH according to the 
general synthetic procedure described above. (100.1 mg, 58% yield). 1H NMR (500 
MHz, DMSO-d6, 60 °C) δ (ppm): 11.08 (s, 1H), 7.82-7.31 (m, 4H), 7.21-7.06 (m, 4H), 
5.57 (s, 2H), 1.33 (s, 9H). Broadness is observed in the 1H NMR spectrum due to rotation 
around the C-N bond of the thiocarbamate. 13C{1H} NMR (125 MHz, DMSO-d6, 60 °C) 
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δ (ppm): 176.8, 160.9, 158.9, 151.2, 133.6, 129.9, 125.5, 122.4, 123.1, 115.7, 39.0, 27.2. 
19F NMR (460.6 MHz, DMSO-d6, 60 °C) δ (ppm): -117.17. FTIR (ATR, cm-1): 3181.22, 
2971.41, 1747.38, 1596.49, 1537.94, 1504.04, 1393.87, 1336.73, 1275.72, 1186.62, 
1151.67, 1069.09, 1014.34, 893.61, 805.78, 684.83. HRMS m/z [M + H+] calc. 362.1226; 
found 362.1208.  
 
 

 
 
TCM13 was prepared with p-trifluoromethylphenyl isothiocyanate and tBu-OH 
according to the general synthetic procedure described above. (99.9 mg, 51% yield). 1H 
NMR (500 MHz, DMSO-d6, 60 °C) δ (ppm): 11.40 (s, 1H), 7.80 (br s, 2H), 7.68 (d, J= 
8.4 Hz, 2H), 7.52 (d, J= 8.5 Hz, 2H), 7.13 (d, J= 8.5 Hz, 2H), 5.61 (s, 2H), 1.32 (s, 9H). 
Broadness is observed in the 1H NMR spectrum due to rotation around the C-N bond of 
the thiocarbamate. 13C{1H} NMR (125 MHz, DMSO-d6, 60 °C) δ (ppm): 188.1, 176.8, 
151.3, 133.5, 130.0, 126.3, 125.7, 123.4, 122.6, 39.0, 27.2. 19F NMR (460.6 MHz, 
DMSO-d6, 60 °C) δ (ppm): -60.6. FTIR (ATR, cm-1): 3185.58, 2969.83, 1746.81, 
1601.25, 1544.38, 1510.27, 1461.11, 1396.96, 1317.40, 1164.31, 1110.57, 1067.89, 
1014.47, 895.83, 837.74, 730.01. HRMS m/z [M + H+] calc. 412.2294; found 412.1174.  
 
 

 
 
14S  was prepared with p-nitrophenyl isothiocyanate and tBu-OH according to the 
general synthetic procedure described above. (67.9l mg, 47% yield). 1H NMR (500 MHz, 
DMSO-d6, 60 °C) δ (ppm): 11.60 (s, 1H), 8.19 (d, J= 9.2 Hz, 2H), 7.85 (br s, 2H), 7.52 
(d, J= 6.7 Hz, 2H), 7.13 (d, J= 6.7 Hz, 2H), 5.59 (s, 2H), 1.32 (s, 9H). Broadness is 
observed in the 1H NMR spectrum due to rotation around the C-N bond of the 
thiocarbamate. 13C{1H} NMR (125 MHz, DMSO-d6, 60 °C) δ (ppm): 176.7, 151.3, 
143.6, 133.4, 130.1, 124.9, 122.2, 122.0, 39.0, 27.3. FTIR (ATR, cm-1): 3213.46, 
3075.42, 2969.58, 1746.40, 1595.02, 1548.26, 1507.20, 1393.72, 1333.09, 1162.50, 
1102.61, 1014.04, 893.97, 831.49, 747.03, 681.70. HRMS m/z [M + H+] calc. 389.1171; 
found 389.1154.  
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CM1 was prepared with p-tolyl isocyanate and Me-OH according to the general synthetic 
procedure described above. (65 mg, 36% yield). 1H NMR (500 MHz, CDCl3) δ (ppm) 
7.42 (d, J=8.35, 2H), 7.28 (m, 2H), 7.12 (m, 4H), 6.75 (bs, 1H), 5.19 (s, 2H), 2.32 (m, 
6H). 13C NMR (125 MHz, CDCl3) δ (ppm) 169.45, 153.42, 150.59, 135.15, 133.84, 
133.13, 129.55, 121.76, 118.87, 66.22, 21.13, 20.77. IR (cm-1) 3326.83, 2922.76, 
2360.39, 2341.56, 1762.07, 1704.91, 1597.57, 1524.66, 1508.13, 1451.05, 1406.66, 
1368.20, 1314.74, 1295.48, 1191.34, 1164.63, 1049.44, 1016.58.  HRMS m/z [M + H]+ 
calcd. For [C17H18NO4]+ 300.1236; found 300.1228. 
 
 

 
 
CM2 was prepared with p-tolyl isocyanate and Cp-OH according to the general synthetic 
procedure described above. (96 mg, 57% yield). 1H NMR (500 MHz, CDCl3) δ (ppm) 
7.42 (d, J=8.11, 2H), 7.28 (m, 2H), 7.12 (m, 4H), 6.69 (bs, 1H), 5.19 (s, 2H), 2.33 (s, 
3H), 1.87 (m, 1H), 1.19 (m, 2H), 1.05 (m, 2H). 13C NMR (125 MHz, CDCl3) δ (ppm) 
173.42, 153.39, 150.74, 135.14, 133.63, 133.13, 129.55, 129.50, 121.76, 118.76, 66.26, 
20.76, 13.03, 9.31. IR (cm-1) 3334.74, 3015.89, 2969.69, 2360.04, 2341.58, 1727.03, 
1598.07, 1526.98, 1508.92, 1448.66, 1406.77, 1381.64, 1314.94, 1295.88, 1204.23, 
1165.01, 1138.93, 1049.63, 1017.09. HRMS m/z [M + H]+ calcd. For [C19H20NO4]+ 
326.1392; found 326.1392. 
 
 

 
 
CM3 was prepared with p-tolyl isocyanate and iPr-OH according to the general synthetic 
procedure described above. (88 mg, 52% yield). 1H NMR (500 MHz, CDCl3) δ (ppm) 
7.44 (d, J=8.20, 2H), 7.28 (m, 2H), 7.13 (d, J=8.17, 2H), 7.10 (d, J=8.20, 2H), 6.60 (bs, 
1H), 5.20 (s, 2H), 2.83 (hept, J=7.0, 1H), 2.33 (s, 3H), 1.34 (d, J=7.0, 6H). 13C NMR 
(125 MHz, CDCl3) δ (ppm) 175.50, 153.32, 150.84, 135.08, 133.59, 133.19, 129.56, 
129.52, 121.69, 118.86, 66.29, 34.18, 20.76, 18.92. IR (cm-1) 3347.50, 2970.71, 2936.12, 
1755.62, 1702.87, 1594.82, 1528.43, 1508.77, 1459.20, 1407.82, 1314.10, 1229.85, 
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1178.37, 1164.49, 1118.47, 1069.53, 1041.40. HRMS m/z [M + H]+ calcd. For 
[C19H22NO4]+ 328.1549; found 328.1565. 
 
 

 
 
CM4 was prepared with p-tolyl isocyanate and MCp-OH according to the general 
synthetic procedure described above. (87 mg, 90% yield). 1H NMR (500 MHz, CDCl3) δ 
(ppm) 7.41 (d, J=8.03, 2H), 7.28 (d, J=8.11, 2H), 7.12 (d, J=8.03, 2H), 7.08 (d, J=8.11, 
2H), 6.68 (bs, 1H), 5.18 (s, 2H), 2.33 (s, 3H), 1.45 (bs, 5H), 0.87 (m, 2H). 13C NMR (125 
MHz, CDCl3) δ (ppm) 174.55, 153.40, 150.95, 135.14, 133.51, 133.12, 129.55, 129.47, 
121.74, 118.87, 66.28, 20.76, 19.43, 18.82, 17.49. IR (cm-1) 3336.98, 3042.16, 2969.35, 
1730.15, 1696.57, 1595.43, 1525.80, 1509.41, 1454.78, 1406.03, 1325.66, 1312.51, 
1226.40, 1211.00, 1198.55, 1166.74, 1139.45, 1129.51, 1073.47, 1050.49. HRMS m/z 
[M + H]+ calcd. For [C20H22NO4]+ 340.1549; found 340.1528. 
 
 

 
 
CM5 was prepared with p-tolyl isocyanate and tBu-OH according to the general 
synthetic procedure described above. (108 mg, 83% yield). Spectral data is in agreement 
with those reported in the literature.207 
 

 
 
CM6 was prepared with p-tolyl isocyanate and Ph-OH according to the general synthetic 
procedure described above. (246 mg, 79% yield). 1H NMR (500 MHz, CDCl3) δ (ppm): 
8.23 (m, 2H), 7.67 (m, 1H), 7.54 (t, J=7.84, 2H), 7.50 (d, J=8.49, 2H), 7.29 (m, 2H), 
7.26 (d, J=8.49, 2H), 7.14 (d, J=8.16, 2H), 6.63 (bs, 1H), 5.24 (s, 2H), 2.33 (s, 3H). 
13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 165.09, 150.90, 135.09, 133.86, 133.67, 
133.20, 130.20, 129.62, 129.58, 129.44, 128.60, 121.91, 118.90, 66.30, 20.77. IR (cm-1) 
3320.43, 2916.58, 1732.04, 1694.16, 1593.59, 1525.22, 1508.19, 1406.42, 1313.55, 

O

O N
H

O

O

Me

Me

O

O N
H

O

O

Me

O

O N
H

O

O

Me



	 130 

1269.13, 1235.09, 1193.82, 1162.28, 1062.11, 1015.89. HRMS m/z [M + H]+ calcd. For 
[C22H20NO4]+ 362.1392; found 362.1391. 
 

 
CM7 was prepared with p-tolyl isocyanate and Cy-OH according to the general synthetic 
procedure described above. (640 mg, 79% yield). 1H NMR (500 MHz, CDCl3) δ (ppm): 
7.41 (d, J=8.36, 2H), 7.28 (m, 2H), 7.12 (d, J=8.10, 2H), 7.09 (d, J=8.10, 2H), 6.78 (bs, 
1H), 5.18 (s, 2H), 2.59 (m, 1H), 2.33 (s, 3H), 2.09 (m, 2H), 1.85 (m, 2H), 1.73 (m, 1H), 
1.62 (m, 2H), 1.38 (m, 3H). 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 174.51, 153.45, 
150.84, 135.20, 133.60, 133.08, 129.53, 129.51, 121.74, 118.88, 66.26, 43.21, 28.96, 
25.74, 25.38, 20.77. IR (cm-1) 3357.69, 2963.07, 2934.63, 2858.40, 1740.97, 1701.30, 
1594.02, 1526.50, 1508.57, 1461.03, 1407.81, 1314.55, 1301.71, 1227.85, 1211.49, 
1191.90, 1179.93, 1010.75. HRMS m/z [M + H]+ calcd. For [C22H26NO4]+ 368.1862; 
found 368.1859. 
 

 
CM8 was prepared with p-tolyl isocyanate and Ad-OH according to the general synthetic 
procedure described above. (78 mg, 53% yield). 1H NMR (500 MHz, CDCl3) δ (ppm): 
7.43 (d, J=8.10, 2H), 7.29 (m, 2H), 7.13 (d, J=8.10, 2H), 7.07 (d, J=8.46, 2H), 6.59 (bs, 
1H), 5.20 (s, 2H), 2.33 (s, 3H), 2.11 (bs, 3H), 2.08 (d, J=2.92, 6H), 1.80 (m, 6H). 
13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 176.09, 153.35, 151.09, 135.09, 133.41, 
133.18, 129.57, 129.51, 121.76, 118.81, 66.33, 41.05, 38.75, 36.46, 27.91, 20.77. IR (cm-

1) 3335.00, 2905.92, 2852.06, 2360.58, 2341.57, 1728.80, 1598.69, 1528.20, 1508.60, 
1452.54, 1407.35, 1315.33, 1217.92, 1195.02, 1165.11, 1051.05. HRMS m/z [M + H]+ 
calcd. For [C26H30NO4]+ 420.2175; found 420.2152. 
 

 
 
CM9 was prepared with p-tolyl isocyanate and Nap-OH according to the general 
synthetic procedure described above. (302 mg, 71% yield). 1H NMR (500 MHz, CDCl3) 
δ (ppm): 8.82 (s, 1H), 8.22 (dt, J=8.67, 1.74, 1.74), 8.03 (d, J=8.18, 1H), 7.98 (d, J=8.67, 

O

O N
H

O

O

Me

O

O N
H

O

O

Me

O

O N
H

O

O

Me



	 131 

1H), 7.95 (d, J=8.18, 1H), 7.66 (m, 1H), 7.61 (m, 1H), 7.52 (m, 2H), 7.30 (m, 3H), 7.14 
(d, J=8.12, 2H), 6.63 (bs, 1H), 5.26 (s, 3H), 2.34 (s, 3H). 13C{1H} NMR (125 MHz, 
CDCl3) δ (ppm): 165.27, 151.00, 135.86, 135.10, 133.89, 133.21, 132.51, 131.99, 129.65, 
129.59, 129.51, 128.69, 128.43, 127.86, 126.88, 126.62, 125.44, 121.97, 118.87, 66.32, 
20.77. IR (cm-1) 3275.44, 2915.16, 1731.08, 1697.51, 1631.77, 1598.64, 1406.97, 
1353.34, 1314.70, 1281.60, 1260.92, 1218.37, 1197.35, 1129.82, 1065.23. HRMS m/z 
[M + H]+ calcd. For [C26H22NO4]+ 412.1549; found 412.1529. 
 

 
CM10 was prepared with 4-biphenylyl isocyanate and tBu-OH according to the general 
synthetic procedure described above. (161.9 mg, 56% yield). 1H NMR (500 MHz, CDCl3, 
rt) δ (ppm): 7.57-7.54 (m, 4H), 7.46-7.40 (m, 6H), 7.34-7.30 (m, 1H), 7.09-7.05 (m, 2H), 
5.21 (s, 2H), 1.36 (s, 9H). 13C{1H} NMR (125 MHz, CDCl3, rt) δ (ppm): 176.9, 151.1, 
140.5, 137.0, 136.5, 133.4, 129.6, 128.7, 127.7, 127.0, 126.8, 119.0, 66.5, 39.1, 27.1. 
FTIR (ATR, cm-1): 3313.48, 2969.35, 1746.36, 1689.12, 1592.73, 1509.58, 1480.26, 
1405.51, 1314.67, 1195.27, 1164.21, 1112.53, 1062.14, 896.62, 828.77, 784.19, 695.36. 
HRMS m/z [M + H+] calc. 404.1862; found 404.1845.  
 

 
CM11 was prepared with phenyl isocyanate and tBu-OH according to the general 
synthetic procedure described above. (122.6 mg, 78% yield). 1H NMR (500 MHz, CDCl3, 
rt) δ (ppm): 7.41-7.37 (m, 4H), 7.32-7.28 (m, 2H), 7.08-7.03 (m, 3H), 6.66 (s, 1H), 5.18 
(s, 2H), 1.36 (s, 9H). 13C{1H} NMR (125 MHz, CDCl3, rt) δ (ppm): 176.9, 151.1, 137.7, 
133.4, 129.5, 129.1, 123.6, 121.7, 118.7, 66.4, 39.1, 27.1. FTIR (ATR, cm-1): 3306.13, 
2970.18, 1746.49, 1693.12, 1595.72, 1529.13, 1508.09, 1395.71, 1314.76, 1195.33, 
1163.48, 1112.67, 1053.18, 1015.91, 896.33, 759.44, 694.14. HRMS m/z [M + H+] calc. 
328.1549; found 328.1553.  
 

 
CM12 was prepared with p-fluorophenyl isocyanate and tBu-OH according to the 
general synthetic procedure described above. (124.3 mg, 75% yield). 1H NMR (500 
MHz, CDCl3, rt) δ (ppm): 7.41-7.39 (m, 2H), 7.33 (br m, 2H), 7.08-7.05 (m, 2H), 7.01-
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6.98 (m, 2H), 6.63 (br s, 1H), 5.17 (s, 2H), 1.36 (s, 9H). 13C{1H} NMR (125 MHz, 
CDCl3, rt) δ (ppm): 177.0, 151.1, 133.3, 129.6, 121.7, 120.5, 115.8, 115.6, 66.5, 39.1, 
27.1. 19F NMR (460.6 MHz, CDCl3, rt) δ (ppm): -119.4. FTIR (ATR, cm-1): 3323.18, 
2967.74, 1744.75, 1691.02, 1589.24, 1527.64, 1508.77, 1406.82, 1314.52, 1194.09, 
1164.68, 1111.68, 1062.02, 897.11, 827.95, 704.67, 695.28. HRMS m/z [M + Na+] calc. 
368.1274; found 368.1271.  
 

 
CM13 was prepared with p-trifluoromethylphenyl isocyanate and tBu-OH according to 
the general synthetic procedure described above. (171.7 mg, 90% yield). 1H NMR (500 
MHz, CDCl3, rt) δ (ppm): 7.55 (d, J= 9.1 Hz, 2H), 7.49 (d, J= 7.4 Hz, 2H), 7.41 (d, J= 
9.1 Hz, 2H), 7.07 (d, J= 7.4 Hz, 2H), 6.87 (s, 1H), 5.19 (s, 2H), 1.36 (s, 9H). 13C{1H} 
NMR (125 MHz, CDCl3, rt) δ (ppm): 177.0, 152.9, 151.2, 140.9, 133.0, 129.7, 126.3, 
125.5, 125.2, 123.1, 121.8, 118.1, 66.7, 39.1, 27.1.19F NMR (460.6 MHz, CDCl3, rt) δ 
(ppm): -62.0. FTIR (ATR, cm-1): 3328.25, 2969.45, 1745.17, 1692.87, 1589.14, 1528.07, 
1508.84, 1314.86, 1256.64, 1215.86, 1194.32, 1164.25, 1110.81, 1062.66, 895.70, 
831.85, 700.40, 694.55. HRMS m/z [M + H+] calc. 396.1423; found 396.1410.  
 

 
CM14 was prepared with p-nitrophenyl isocyanate and tBu-OH according to the general 
synthetic procedure described above. (142.6 mg, 80% yield). 1H NMR (500 MHz, CDCl3, 
rt) δ (ppm): 8.19 (d, J= 7.3 Hz, 2H), 7.54 (d, J= 7.3 Hz, 2H), 7.41 (d, J= 8.5 Hz, 2H), 
7.08 (d, J= 8.5l Hz, 2H), 5.21 (s, 2H), 1.36 (s, 9H). 13C{1H} NMR (125 MHz, CDCl3, rt) 
δ (ppm): 177.1, 152.5, 151.3, 143.8, 143.1, 132.7, 129.8, 125.2, 121.9, 117.8, 66.1, 39.1, 
27.1. FTIR (ATR, cm-1): 3327.31, 2971.82, 1729.89, 1691.69, 1598.33, 1507.95, 
1407.53, 1335.48, 1276.09, 1216.16, 1195.58, 1164.38, 1112.36, 1051.41, 1016.71, 
897.17, 832.11, 750.35, 689.05. HRMS m/z [M + Na+] calc. 395.1219; found 395.1212.  
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NMR Spectra 
1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR spectra of Ad-OH.  
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR spectra of Nap-OH.  
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR spectra of MCp-OH.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 25 °C) NMR spectra of 
TCM1.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 25 °C) NMR spectra of 
TCM2.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 25 °C) NMR spectra of 
TCM3.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 25 °C) NMR spectra of 
TCM4.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 25 °C) NMR spectra of 
TCM6.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 25 °C) NMR spectra of 
TCM7.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 25 °C) NMR spectra of 
TCM8.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 25 °C) NMR spectra of 
TCM9.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 60 °C) NMR spectra of 
TCM10.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 60 °C) NMR spectra of 
TCM11. 
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1H (500 MHz, DMSO-d6, 60 °C), 13C (125 MHz, DMSO-d6, 60 °C), and 19F (470 MHz, 
DMSO-d6, 60 °C) NMR spectra of TCM12. 
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1H (500 MHz, DMSO-d6, 60 °C), 13C (125 MHz, DMSO-d6, 60 °C), and 19F (470 MHz, 
DMSO-d6, 60 °C) NMR spectra of TCM13.  
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1H (500 MHz, DMSO-d6, 60 °C) and 13C (125 MHz, DMSO-d6, 60 °C), NMR spectra of 
TCM14 
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RT) NMR spectra of CM1  
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RT) NMR spectra of CM2.  
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RT) NMR spectra of CM3.  
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RT) NMR spectra of CM4.  
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RT) NMR spectra of CM6.  
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RT) NMR spectra of CM7.  
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RT) NMR spectra of CM8.  
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RT) NMR spectra of CM9  
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RT) NMR spectra of CM10.  
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RTNMR spectra of CM11.  
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1H (500 MHz, CDCl3, RT), 13C (125 MHz, CDCl3, RT), and 19F (470 MHz, CDCl3, RT) 
NMR spectra of CM12. 
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1H (500 MHz, CDCl3, RT), 13C (125 MHz, CDCl3, RT), and 19F (470 MHz, CDCl3, RT) 
NMR spectra of CM13. 
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1H (500 MHz, CDCl3, RT) and 13C (125 MHz, CDCl3, RT) NMR spectra of CM14. 
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