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DISSERTATION ABSTRACT

George Joseph de Coster

Doctor of Philosophy

Department of Physics

September 2018

Title: Effective Soft-Mode Theory of Strongly Interacting Fermions in Dirac
Semimetals

We present an effective field theory for interacting electrons in clean semimetals

(both three dimensional Dirac semimetals and graphene) in terms of their soft or

massless bosonic degrees of freedom. We show, by means of a Ward identity, that the

intrinsic semimetal ground state breaks the Sp(4M) symmetry of the theory. In Fermi

liquids this enables one to identify the massive, non-Goldstone modes of the theory

and integrate them out. Due to the vanishing density of states in semimetals, unlike

in Fermi liquids, both Goldstone and non-Goldstone modes are equally soft, and so

all two-particle correlations need to be kept. The resulting theory is not perturbative

with respect to the electron-electron interaction; rather, it is controlled by means of

a systematic loop expansion and allows one to determine the exact asymptotic form

of observables in the limits of small frequencies and/or wave vectors. Equivalently, it

provides a mechanism of determining the long time-tail and long wavelength behavior

of observables and excitations. As a representative application, we use the theory to

compute the zero-bias anomaly for the density of states for both short and long-range

interactions in two and three dimensions. We find that the leading non-analyticity in
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semimetals with a long-ranged interaction appears at the same order in frequency as

the one in Fermi liquids, since the effects of the vanishing density of states at the Fermi

level are offset by the breakdown of screening. Consequently, we are able to provide

a logical scheme to determine the leading non-analytical behavior of observables in

semimetals using knowledge of the corresponding non-analyticities in a Fermi liquid.
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CHAPTER I

INTRODUCTION

There is no shortage of fascinating phases of matter to study, and this dissertation

will be devoted to the understanding of just one class, Dirac semimetals in two and

three dimensions. More specifically, we will theoretically investigate the nature of

interacting electrons in Dirac semimetals.

Dirac semimetals are a class of solid state system with a storied development.

The conditions for their existence were first laid out in 1937 by Conyers Herring, who

proved that electronic band structures in crystals can cross each other linearly at

positions of high symmetry in momentum space [1]. Their name is derived from the

fact that the band crossings can be viewed as the linear version of a regular zero-gap

semiconductor, also known as a semimetal, and the energy-momentum dispersion

of electrons near the band crossings can be described by a Dirac Hamiltonian [2].

In 1947 Philip Wallace first theoretically derived the Dirac spectrum in the two

dimensional material graphene [3]. In the 1970s, theoretical studies of the zero-

gap semiconductor α-Sn showed that under suitable strain, electrons near the Fermi

energy behave according to a three dimensional version of the Dirac Hamiltonian [4–

6]. Graphene was first experimentally realized by Novosolev et al. in 2004, and thus

two dimensional Dirac semimetals became a reality [7, 8]. The first realization of the

three dimensional case was in Cd3As2 by Neupane et al. in 2014. While strained

α-Sn was the first material theoretically predicted to be a Dirac semimetal, growth

of the appropriately strained state was not achieved until 2017 by Xu et al. [9–11]

This dissertation will focus on deriving an effective quantum field theory to

understand the nature of strongly interacting electrons in a clean Dirac semimetal.
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By clean we mean that the Dirac semimetal crystal is devoid of impurities, and

strongly interacting implies that the Coulomb interaction between electrons is not

perturbatively weak, even after accounting for any renormalizations. The strength

of the Coulomb interaction will be quantitatively discussed in Chapter II. The

construction of the effective field theory will involve integrating out the electron

(fermionic) degrees of freedom from the action of the quantum partition function in

order to obtain an action in terms of soft, bosonic degrees of freedom. The analogous

program in a Fermi liquid has proven phenomenally successful at determining the

long time-tail and wavelength behavior of observables and correlation functions that

couple to the soft bosonic modes [12–16]. Mathematically the long time-tail and and

wavelength behaviors respectively manifest as algebraic decays of quantities in time or

position. This is equivalent to a non-analytic dependence on vanishing frequency and

momentum when the quantity is Fourier transformed to frequency-momentum space.

The concept of long time-tail and wavelength phenomena, and non-analyticities will

be elaborated on in Chapter III. The immediate application of the effective field

theory in the case of the Dirac semimetal is determining non-analytical properties of

observables, and comparing the results to their Fermi liquid counterparts.

In Chapter II, using α-Sn as an example, we give an in depth introduction to

Dirac semimetals, and their time reversal symmetry broken state known as Weyl

semimetals. In Chapter III we briefly discuss the Goldstone Theorem, the nature of

soft modes in a Fermi gas, and the impact of soft modes on observables in condensed

matter systems. Chapters IV and V are the novel parts of this dissertation. In

Chapter IV we derive the effective field theory in terms of soft bosonic degrees of

freedom for interacting electrons in clean Dirac semimetal systems, and determine

the nature of the soft bosonic modes. In Chapter V we employ the field theory to

2



calculate non-analytic corrections to observables, ultimately comparing the results to

those for Fermi liquids.
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CHAPTER II

INTRODUCTION TO DIRAC AND WEYL SEMIMETALS

Basics of k · p Theory

The most crucial ingredient for investigating any condensed matter system is the

Hamiltonian. In this chapter we will discuss the k ·p Kane-Hamiltonian for diamond

lattice crystals1 [17], and explicitly show how it gives rise to Dirac and Weyl semimetal

Hamiltonians under different conditions [5, 6]. k · p Theory is a deep subject and we

will only summarize some of its key ideas here, referring to the literature for further

details [18–20].

Recall the Pauli equation for the two component, spinful electron wavefunction

ψ(r), in a crystal with Hamiltonian Ĥ, is given to order O(v/c)2 by:

Ĥψ(r) ≡
(
p̂2

2me

+ V0(r)− ĤR

)
ψ(r) = Eψ(r) , (2.1a)

ĤR ≡ e~σ · p̂× E
4m2

ec
2

+
e~2

8m2
ec

2
∇ · E +

p4

8m3
ec

2
, (2.1b)

with p̂ the momentum operator, me the electron mass, v ≡ 〈p̂〉 /me, and E the

eigenenergy. V0(r) is the static, equilibrium potential of the crystal lattice and has the

same periodicity as the crystal, that is V0(r) = V0(r+R) for any Bravais lattice vector

R. E = (1/e)∇V0(r) is the electric field of the crystal. The operator ĤR contains

the relativistic corrections to the Schrödinger Equation that appear from taking the

non-relativistic expansion of the Dirac equation. The first term in Equation (2.1b) is

known as the Pauli spin orbit coupling term, the second is known as the Darwin term,

1A diamond lattice is formed by two inter-penetrating face centered cubic (fcc) lattices of the
same element.
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and the third is a correction to the non-relativistic kinetic energy. We will ignore the

last term in ĤR for the current discussion, since it will principally serve to complicate

expressions. Bloch’s theorem states the solutions to Equation (2.1a) with ĤR set to

zero can be written as

ψσn,k(r) = eik·ruσn,k(r), (2.2)

where n ∈ N is the discrete band index, and uσn,k(r) is the Bloch function with the

same periodicity as the crystal lattice. We have also explicitly included the spin

index σ =↑, ↓. k is the crystal momentum wavevector, assuming periodic boundary

conditions on a crystal with side lengths L, it takes values k = 2π
L

(Nx, Ny, Nz) for

Ni=x,y,z = 0,±1,±2 . . . ± L/a. This set of k values defines the Brillouin Zone (BZ).

It is important to understand the two components of the solution ψσn,k(r): eik·r can

be viewed as a free-electron type envelope wavefunction extended across the entirety

of the crystal, while uσn,k(r) contains the details of an electron’s wavefunction within

a single unit cell of the crystal and thus carries important local information2. The

Bloch functions are unit cell (u.c.) normalized, and form an orthonormal basis of

integrable functions we can use as a basis to represent the Hamiltonian operator:

∫
u.c.

dr ūσn,k(r)uσ
′

n′,k(r) = δσσ
′

n,n′ . (2.3)

2The ‘nearly free’ nature of electrons in a metal can be ascribed to the fact that uσn,k(r) ≈ const
in the conduction band of a metal, and can safely be ignored [21].
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Inserting Equation (2.2) into (2.1) we carry out the action of p̂ on the plane wave

eik·r to obtain the equation:

(
p̂2

2me

+ V0(r) +
~2k2

2me

+
~k · π
me

+
e~p̂ · σ × E

4m2
ec

2
− e~2∇ · E

8m2
ec

2

)
un,k(r)

= En(k)un,k(r) , (2.4a)

π := p̂+
e~σ × E
4m2

ec
2

. (2.4b)

In general we will want to know the behavior of En(k) around some momentum k0

where En(k0) is an extremum. Usually this is at the BZ center known as the Γ point

where k0 = 0, or a corner of the BZ where (k0)i = ±π/a for at least one of i = x, y, z.

We can use Equation (2.3) to expand un,k(r) a basis of functions defined at k0:

un,k(r) =
∑
ν′

cnν′(k)un,k0(r) (2.5)

Inserting this into Equation (2.4), multiplying from the left by u∗ν,k0
(r) and integrating

over real space, we obtain an algebraic eigenvalue problem for the dispersion En(k)

in terms of only k and material constants:

∑
ν′,σ′

[(
Eν′(k0) +

~2k2

2me

)
δνν′ +

~
me

k · P σ,σ′

νν′ + ∆σσ′

νν′ −Dσσ′

νν′

]
cσ
′

nν′(k) = En(k)cσnν(k) ,

(2.6)
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where

P σ,σ′

νν′ =

∫
dr ūσνk0

(r)πuσ
′

ν′k0
(r) , (2.7a)

∆σ,σ′

νν′ =

∫
dr ūσνk0

(r)
e~p̂ · σ × E

4m2
ec

2
uσ
′

ν′k0
(r) , (2.7b)

Dνν′ = δσσ
′
∫
dr ūσνk0

(r)
e~2∇ · E

8m2
ec

2
uσν′k0

(r) . (2.7c)

We have now arrived at what looks like the momentum space Schrödinger equation

for free electrons coupled by the momentum dependent k ·Pνν′ term. The spin orbit

coupling and Darwin terms, respectively ∆ and D, can provide constant couplings

between bands, but also the terms principally responsible for band inversions, which

we will discuss later. Equation (2.6) is an equation for an infinite matrix, but often one

is only interested in the physics of a few bands, or just one in the case of a Fermi liquid.

Suppose the bands we are interested in are given by n ∈ S = {n1, . . . , nN}, then by

means of the technique known as Löwdin perturbation theory, one can calculate a

Hamiltonian that is block diagonal for the states n ∈ S and m /∈ S [22]. Technically,

this means one uses perturbation theory to account for the coupling between the

n and m states, allowing one to focus solely on the n ∈ S states, which now have

renormalized couplings amongst themselves. We call the reduced matrix acting on

the set of bands S the k · p Hamiltonian for S. In the case of a Fermi liquid, we

are generally just interested in the conduction band c. Usually spin orbit coupling is

negligible in such a situation, and we can set ∆ = 0, and π = p̂ in Equation (2.7).

To second order in perturbation theory the Hamiltonian describing electrons in the

conduction band relative to the zone center k = 0, is given by:

Ec(k) = Ec(0) +
~2k2

2m∗c
, (2.8)

7



where

me

m∗c
= 1 +

2

me

∑
ν

|Pcν |2

Ec(0)− Eν(0)
. (2.9)

There is no linear term because Ec(k0) is an extremum, which implies that Pcc = 0.

We have thus arrived at the familiar, simple kinetic Hamiltonian that is the basis of

Fermi liquid theory. It is a good approximation to use when Ec(0) − Eν(0) is large

for all ν 6= c.

When bands lie close to each other in energy, or are degenerate, it is necessary

to incorporate multiple bands in the Löwdin perturbation theory for an accurate

description of the En(k) in a small neighborhood of k0. The determination of k · p

Hamiltonians is made easier by exploiting the discrete symmetries of the underlying

crystal. Symmetries dictate several properties of un,k(r), and specifically what

elements Pnn′ can be non-zero. Exact forms of k · p Hamiltonians for any reduced

set of bands can thus be constructed to arbitrary order in k, and one then relies

on perturbation theory or numerical methods to determine the values of Pnn′ and

effective masses [23, 24].

One last important point is that the inclusion of spin orbit coupling in k · p

theory generically renders spin a bad quantum number. When describing electrons at

the Γ point, the Bloch functions can be chosen to be eigenstates of the total angular

momentum operator J2 and its projection Jz, similar to the case of the Hydrogen

atom when spin orbit coupling is included. A heuristic way to understand this is that

near any individual atom in a crystal, the potential is approximately radial, allowing

one to write the Pauli spin orbit coupling term as a quantity proportional to σ · l, for

l the orbital angular momentum operator. A Bloch wave function can constructed

8



as a superposition of atomic orbitals, allowing one to adapt the J2, Jz basis to the

Bloch functions. We will see such a basis employed in the next section.

k · p Theory of α-Sn

In this dissertation we are interested in the physics of Dirac and Weyl semimetals.

A crystal structure these electronic systems can occur in is the cubic diamond lattice

allotrope of tin known as α-Sn. We will need the k ·p Hamiltonian of the conduction,

valence and sub-valence bands of α-Sn around the Γ point. These bands consist of

the p-like heavy and light-hole states carrying total angular momentum J = 3/2, and

s-like states with J = 1/2 coming only from spin. At the Γ point, the heavy-hole

states form the valence band, and are described by the basis functions |Γ+
8,v,±3/2〉

with angular momentum projection numbers Jz = ±3/2. The light-hole states form

the conduction band and are given by |Γ+
8,c,±1/2〉 with Jz = ±1/2. The s-like states

form the sub-valence band, they are given by |Γ−7 ,±1/2〉. We define an ordered basis

at the Γ point:

{
|1〉 = |Γ−7 , 1/2〉 , |2〉 = |Γ−7 ,−1/2〉 , |3〉 = |Γ+

8,v,+3/2〉 ,

|4〉 = |Γ+
8,c,+1/2〉 , |5〉 = |Γ+

8,c,−1/2〉 , |6〉 = |Γ+
8,v,−3/2〉

}
. (2.10)
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The k · p Hamiltonian acting on these states is given by [25]:

H(k) =

EΓ−7
+ T 0 − 1√

2
Pk+

√
2
3
Pkz

1√
6
Pk− 0

0 EΓ−7
+ T 0 − 1√

6
Pk+

√
2
3
Pkz

1√
2
Pk−

− 1√
2
Pk− 0 EΓ+

8
+ U + V −S− R 0√

2
3
Pkz − 1√

6
Pk− −S†− EΓ+

8
+ U − V 0 R

1√
6
Pk+

√
2
3
Pkz R† 0 EΓ+

8
+ U − V S†+

0 1√
2
Pk+ 0 R† S+ EΓ+

8
+ U + V


,

(2.11)

where P is the momentum matrix element, and

k2
‖ = k2

x + k2
y, k± = kx ± iky, k2 = k2

‖ + k2
z ,

ε = tr ε̃ = εxx + εyy + εzz,

T = ~2
2me

(γ0k
2
‖ + kzγ0kz) + a′ε,

U = − ~2
2me

γ1k
2 − aε, V = − ~2

2me
γ2(k2

‖ − 2k2
z) + b(εxx − εzz),

S± = − ~2
me

√
3γ3k±kz, R = − ~2

2me

√
3(µk2

+ − γ̄k2
−).

In this Hamiltonian, the x, y, and z axes are aligned with the (100), (010), and (001)

axes of the crystal respectively. The coefficients γi=1,2,3 are the modified Luttinger

parameters appropriate to the Kane model, and a, a′, and b are the deformation

potentials. For notational brevity we have defined µ = (γ3 − γ2)/2, γ̄ = (γ3 + γ2)/2.

The effects of (001) epitaxial strain have been included in Equation (2.11) according

to the generalized methods of Bir and Pikus [19, 26]. The matrix ε̃ is the strain

tensor, and for (001) epitaxial strain its components are given by εxx = εyy = ε‖

10



and εzz = −2c12ε‖/c11 = −0.85ε‖. Assuming pseudomorphic growth of α-Sn on a

zincblende substrate, the epitaxial strain is given by ε‖ = asub
l /aSnl − 1, for a

sub/Sn
l

the lattice constant of the substrate/α-Sn. The values of the parameters in Equation

(2.11) can be found in Table 1. The exact values of EΓ−7
and EΓ+

8
are arbitrary for

the current discussion, what is important is their energy bandgap:

Eg = EΓ−7
− EΓ+

8
. (2.12)

Notice in Table 1 that Eg < 0 for α-Sn, this is because it has an inverted band

structure, directly resulting from the large values of the spin orbit coupling ∆σσ′

νν′ ,

and Darwin term Dσσ′

νν′ , which we discussed earlier, and have now absorbed into the

definitions of EΓ−7
and EΓ+

8
[27, 28]. Typically in diamond3 lattices the s-like Γ−7

band is the conduction band, and the p-like Γ+
8,v bands are the sub-valence bands

[29]. In Figure 1 we have plotted the energy levels along the kz-axis E(0, 0, kz), of

α-Sn subject to a (001) epitaxial strain of ε‖ = −0.0012, which can be achieved

by pseudomorphic growth of α-Sn on CdTe substrates [30, 31]. In 2017, Xu et al.

achieved the Dirac semimetal state in α-Sn by pseudomorphic growth on InSb(111), a

different zincblende crystal with a smaller lattice constant than α-Sn [11]. In Figure 2

we have made the sign of Eg positive to schematically demonstrate the dispersion for

a crystal with regular band ordering. In both cases the |Γ−7 ,±1/2〉 and |Γ+
8,c,±1/2〉

bands strongly repel each other due to the kz dependent coupling manifest in the

terms H1,4(k) and H2,5(k) in Equation (2.11). Importantly, as we see for α-Sn in

3Some examples are Si, InSb and CdTe. The latter two aren’t diamond lattice crystals but
zincblende. A diamond lattice is a zincblende lattice in which both basis atoms are the same
element.
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TABLE 1. Table of bare parameters for α-Sn k · p Hamiltonian. Values are taken
from [5, 32–35] Note: Ep = 2meP

2/~2, and ~2/(2me) = 3.809982 eV Å2.

γ0 γ1 γ2 γ3 κ P (eV· Å) EP (eV) Eg (eV)

1 4.19 -1.73 1.64 -2.18 9.55 23.93 -0.413

a (eV) b (eV) d (eV) a′ (eV) c11 (GPa) c12 (GPa) c44 (GPa) aSn
l (Å)

7.77 -2.4 -4.1 -14.81 69.0 29.3 36.2 6.4892

Figure 1, this repulsion imbues the |Γ+
8,c,±1/2〉 band with opposite curvature to the

|Γ+
8,v,±3/2〉 band along the kz-axis, resulting in a band crossing for any ε‖ < 0.

Γ8
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1
2


Γ8
+, ±

3
2


Γ7
-, ±

1
2


-0.04 -0.02 0.00 0.02 0.04
-0.3

-0.2

-0.1

0.0
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kz [Å
-1]

E
[e
V
]

FIGURE 1. Inverted band structure for the Γ+
8,c/v and Γ−7 bands of α-Sn near the Γ

point of the BZ. An epitaxial strain of ε‖ = −0.0012 is incorporated in the calculation
to generate a band crossing between the Γ+

8,c/v bands.

The Dirac semimetal state of α-Sn

We will now examine the Γ+
8,c/v band crossing for general ε‖ < 0. Since we

have established that the bands we are interested in are Γ+
8,c/v we can use Löwdin

perturbation theory to perturbatively decouple the Γ+
8,c/v and Γ−7 bands. To O(k2)
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FIGURE 2. Schematic typical band structure about the Γ point of a cubic diamond
lattice crystal. The values corresponds to the band structure of α-Sn if Eg were
positive in Fig. 1. There are no longer any band crossings despite the presence of
epitaxial strain.

this renormalizes the modified Luttinger parameters, now simply called the Luttinger

parameters γ̃i:

γ1 → γ̃1 = γ1 +
2|P |2

3meEg
= −15.1 (2.13a)

γ2 → γ̃2 = γ2 +
2|P |2

6meEg
= −11.4 (2.13b)

γ3 → γ̃3 = γ3 +
2|P |2

6meEg
= −8.01 (2.13c)

The energies Ec/v(0, 0, kz) can be read off the diagonal entries of H(0, 0, kz):

Ec/v(0, 0, kz) = −aε− ~2

2me

γ̃1k
2
z ±

(
b(εzz − εxx)−

~2

me

γ̃2k
2
z

)
= −aε− ~2

2me

γ̃1k
2
z ±

(
−1.85bε‖ −

~2

me

γ̃2k
2
z

)
. (2.14)
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Due to the fact b, ε‖, γ̃2 < 0, the momenta kz = ±k0 = ±
√
−1.85bε‖me/γ̃2~2 are real

valued solutions of Ec(0, 0,±k0) = Ev(0, 0,±k0). Taylor expanding to first order the

reduced k · p Hamiltonian around ±k0ẑ for small k we obtain:

H(k ± k0ẑ) ≡ H±α-Sn(k) = ED ∓ v0~γ̃1kz ± v0~ τz ⊗

 2γ̃2kz
√

3γ̃3k−
√

3γ̃3k+ −2γ̃2kz

 ,

(2.15a)

ED = EΓ+
8
− aε− v0~

k0

2
, (2.15b)

v0 =
~
me

k0 ≈ 8.74× 10−4 c×
√
|ε‖| . (2.15c)

We have defined the Dirac energy ED, bare Dirac velocity4 v0 and additional Pauli

matrices τx,y,z acting on the space of sgn Jz = ±1, and σx,y,z acting on the space

of |Jz| = 3/2, 1/2. There are many important properties of H±α-Sn(k) one should

understand. First, it is anisotropic and tilted along the kz axis due to the γ̃1kz term.

If we ignore the global energy shift, anisotropies and tilt and fix the Dirac velocity to

some vD for all directions, H±α-Sn(k) becomes:

H±D(k) = ±~vDk · (τz ⊗ σ) . (2.16)

This new Hamiltonian looks exactly like the massless Dirac Hamiltonian from high

energy physics [36]. For the idealized HD, the electron energy dispersion forms perfect

Dirac cones around the Dirac nodes ±k0ẑ. There are four copies of the Dirac cones,

two at each Dirac node. If we focus on the σ space, the Equation (2.16) can also be

4In the literature what we call the Dirac velocity is often called the Fermi velocity. We distinguish
between the two to emphasize that the Dirac velocity is specific to the Dirac point, and may differ
from the Fermi velocity if the chemical potential is not located at the Dirac point.
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written as:

HD(k)i = λivDk · σ , (2.17)

for λ1,4 = +1 and λ2,3 = −1. λi is called the chirality of the Dirac cone, and it is

essential that
∑

i λi = 0. If the sum rule weren’t obeyed, HD(k) would be unphysical

due to the chiral anomaly, which manifests as a lack of charge conservation in the

presence of parallel external electric and magnetic fields [37, 38]. The form of the

Hamiltonian k · σ is known as the Weyl Hamiltonian, originally used to describe

relativistic, massless spin-1/2 particles [36].

The Dirac velocity v0, of the Dirac semimetal state in α-Sn is proportional to

√
ε‖, which is necessarily perturbatively small for the methods of Bir and Pikus to

apply5. A reasonable upper limit for v0 therefore comes from setting |ε‖| = 0.01.

Then in any given direction, due to γ̃i ≈ O(10), electrons in the Dirac cone spectrum

will experience a velocity on the order O(10−4c). Other Dirac semimetals, such as

Na3Bi and Cd3As2, have strain independent Fermi velocities on the order of O(10−4c)

[39]. These Fermi velocities are small compared to the typical velocities in metals,

ranging from O(10−3c) to O(10−2c), and in graphene where v ≈ O(10−2c) [8, 40].

The strength of the Coulomb interaction in quantum electrodynamics is set by the

fine structure constant α, as we are dealing with Dirac electrons with some velocity

v0 < c, the strength of the Coulomb interaction between electrons near the Dirac

point is governed by the modified structure constant

αv0 =
1

4πε

e2

~v0

= α
c

v0

=
1

εr137

c

v0

, (2.18)

5In addition to the breakdown of perturbation theory, a very large ε‖ tends to induce crystals to
assume new equilibrium structures, further invalidating the k · p Hamiltonian
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where ε = ε0εr is the permittivity of the material, ε0 is the permittivity of free

space and εr is the dielectric constant of the material. In vacuum εr = 1, and for

materials in general εr > 1. From the above equation we can then conclude that in

graphene αv ≈ 100/εr137 < 1, and the Coulomb interaction between electrons can

be considered slightly weak. However, in α-Sn we have αv0 ≈ 104/(εr137) ≈ 73/εr,

which is very large if εr ≈ 1. Single crystals of unstrained α-Sn have been measured

to have dielectric constants as high as εr = 24 at room temperature [41], so we can

expect εr in strained α-Sn to bring αv0 down to some O(1) to O(10) number, which is

the strong coupling regime quantum field theory techniques are well suited to treat.

Compare this with the case of electrons in a metal, for which the strength of the

Coulomb interaction is set by the dimensionless density parameter rs, which is the

ratio of the average bare Coulomb energy6 per particle to its kinetic energy. rs can

be expressed in the following ways :

rs =
r0

a0

=
1

kFa0

= 2α
c

vF

, (2.19)

where a0 is the Bohr radius, r0 = 1/kF is the average wavelength of an energy at the

Fermi surface, kF is the Fermi wave vector, and vF the Fermi velocity. The factor of 2

relating rs to αvF is a consequence of the quadratic kinetic energy p2/2m in a metal,

compared to the linear case of a Dirac semimetal. While in most metals the Fermi

velocity is of the order vF = O(10−3c, with 2 < rs < 6, it is well understood that

Landau Fermi liquid theory and quantum field theoretic methods accurately describe

physics in this coupling regime [40, 42].

6By bare we mean setting εr = 1.
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The Weyl semimetal state of α-Sn

When subjected to an external magnetic field B, time reversal symmetry is

broken in the Dirac semimetal. Due to the Zeeman coupling of electrons’ spin to

magnetic fields, the Dirac semimetal state is broken into a so called Weyl semimetal

state. To see this consider the Zeeman coupling term:

HZ =
µBg

~
J ·B . (2.20)

The Landé g-factor is a material dependent quantity, µB is the Bohr magneton. The

matrices J are the generators of the 4 dimensional representation of SU(2) and are

given by:

Jx =



0
√

3
2

0 0
√

3
2

0 1 0

0 1 0
√

3
2

0 0
√

3
2

0


, Jy =



0 −
√

3
2
i 0 0

√
3

2
i 0 −i 0

0 i 0 −
√

3
2
i

0 0
√

3
2
i 0



Jz =



3
2

0 0 0

0 1
2

0 0

0 0 −1
2

0

0 0 0 −3
2


. (2.21)

For simplicity, we restrict ourselves to the simplified Dirac Hamiltonian of α-Sn in

Equation (2.15). When the Zeeman term is added to H±D(k), each set of Dirac

nodes split in momentum space into two non-degenerate Weyl nodes, as demonstrated

in Figure 3. There are two distinct types of splitting for α-Sn. The first case is

Bx = By = 0 and Bz 6= 0 and is demonstrated in Figure 3b. The magnetic field
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coupled Hamiltonian takes the form:

H±D(k) +HZ =
µBg

~
Bz (τz ⊗ σ0)± ~vDk‖ ·

(
τz ⊗ σ‖

)
±
(
~vDkz ±

µBg

~
Bz

)
(τz ⊗ σz) . (2.22)

From the Dirac cones originally at k = (0, 0,±k0), we obtain two non-degenerate

Weyl cones at k = (0, 0,±k0 ± µBg
vD~2Bz), offset in energy. Ignoring the energy offsets,

for momenta close to the Weyl nodes the Hamiltonian is given by:

HW1(k) = λ~vDk · σ , (2.23)

for λ = ±1. As can be seen from Figure 3b, the Weyl nodes are isolated from other

bands making the reduced two band Hamiltonian in Equation (2.23) an accurate

description of the physics near the nodes. The Weyl Hamiltonian is very special

because it is highly robust against being gapped by perturbations. Any perturbative

term P , involving the two bands can be decomposed into a linear combination of

Pauli matrices

P = p0σ0 + p · σ . (2.24)

For constant pµ=0,1,2,3 such a term can only shift the energy/momentum location of

a Weyl node, but it cannot gap the Weyl cones. The original Dirac Hamiltonian

in Equation (2.16) did not share this robustness to arbitrary small perturbations,

because many Hermitian terms that are block off-diagonal compared to k · (τz ⊗ σ)

can be written down that would open up a gap in the Dirac spectrum. For Dirac

semimetals, various symmetries are necessary to forbid the existence of such gapping
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terms. The other band crossings we see in Figure 3b actually lie on a closed ellipse

of band degeneracies in k − E space, forming a ‘line-node’ degeneracy. They do not

share the Weyl Hamiltonian’s simple two band form, and are not highly protected

against perturbation induced gapping.

The case in which the magnetic field components Bx, By 6= 0 and Bz = 0 is more

complicated. Without loss of generality we can fix By = 0 by a rotation. Under such

a field the new band structure is shown in Figure 3c. Unlike the Bz 6= 0 case, there

are only two band crossings, both being Weyl nodes with the same energy. A non-

trivial unitary transformation of the Hamiltonian around these Weyl nodes results in

a Hamiltonian:

HW2(k) =
∑
i=x,y,z

~uikiσi + ~u0kzσ0 . (2.25)

Here the Pauli matrices σµ act on a complicated linear combination of all the original

bands. The velocities ui depend on Bx and have the property ux = uy. There

is also an additional tilt along the kz axis through the u0 term. In HW2(k), the

chirality of a Weyl node is given by sgn (uxuyuz). The case of a general B will be a

more complicated combination of what has already been discussed. The most general

linear, two-band Hamiltonian one can write down describing electrons in the vicinity

of a Weyl node is:

HW3(k) =
∑
i=x,y,z

~ui · kiσi + ~u0 · kσ0 . (2.26)

The chirality of a specific Weyl node in this Hamiltonian is given by sgn (ux ·uy×uz).

We have so far discussed Dirac semimetals that become Weyl semimetals upon

the breaking of time reversal symmetry. There also exists a class of Dirac semimetals
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FIGURE 3. (a) Schematic plot of idealized Dirac dispersion with Dirac node circled
by purple. Plots (b) and (c) respectively show the result of applying a magnetic field
in the z and x direction to the dispersion in (a). The Weyl nodes are circled by purple,
all other crossings cannot be described by the Weyl Hamiltonian. The gapped bands
in (c) are a consequence of the inter Dirac cone coupling elements in Jx.
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that form a Weyl semimetal upon breaking inversion symmetry [43]. This is not

the case for α-Sn, and so cannot be demonstrated in the current k · p Hamiltonian

example. As already stated, α-Sn possesses a diamond lattice, which is formed by

two inter-penetrating fcc lattices of the same element. A zincblende lattice is the

inversion asymmetric case of diamond, in which the two fcc lattices are formed by

different elements. HgTe is an example of a zincblende lattice with the same type of

band inversion as α-Sn, and thus is adiabatically equivalent to an inversion symmetry

broken form of α-Sn7. It has been shown that HgTe is not a Weyl semimetal, and

thus breaking inversion symmetry in strained α-Sn cannot realize a Weyl semimetal

state [44].

Suitable Minimal Model for Dirac and Weyl Semimetals

There are multiple real material systems in which Dirac and Weyl semimetals

arise, each with their own unique Hamiltonians and Zeeman coupling terms. We have

also seen that applying a magnetic field can dramatically complicate any analysis due

to the non-trivial band couplings in the Zeeman Hamiltonian of Equation (2.20). For

phenomenological studies, it is therefore desirable to work with a minimal model [45].

For the purposes of this dissertation, we will be interested in Dirac semimetals

that reduce to Weyl semimetals upon the breaking of time reversal symmetry, so

that we can eventually use our work to study magnetic effects in Dirac and Weyl

semimetals. A suitable minimal model for this problem looks similar to Equation

7By adiabatically equivalent, we mean that upon adding inversion symmetry breaking terms to
the α-Sn k · p Hamiltonian, one can continuously deform it into the Hamiltonian for HgTe without
crossing any bands.
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(2.16) [46]:

HD(k) = ~vDk · (τz ⊗ s) . (2.27)

This Hamiltonian describes a single Dirac node, in which sµ = σµ are the Pauli

matrices acting on the spin-1/2 degrees of freedom, and τµ act on the chirality degrees

of freedom. The Zeeman coupling term is given by:

HZ = µB · s . (2.28)

All coefficients have been absorbed into a single coupling constant µ. The simplicity

of this model is immediately obvious. Any magnetic field B, will split the Dirac

nodes into Weyl nodes at the same energy, and not mix any quantum numbers. It

will be the model we use in the rest of this work, and therefore expect our results

to qualitatively describe phenomena in general Dirac and time reversal symmetry

broken Weyl semimetals.
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CHAPTER III

INTRODUCTION TO SOFT MODES

The Goldstone Theorem

The Goldstone theorem (also known as the Nambu-Goldstone theorem) is a

powerful concept that is the foundation of much of the physics explored in this

dissertation. In its high energy incarnation, the theorem is straightforward and

easy to prove [47–49]. Within the realm of condensed matter physics, the theorem

becomes far more complicated as the Lorentz invariance of a relativistic theory is

abandoned by fixing a frame for the problem, and allowing the Coulomb interaction

to be instantaneous. A full statement and proof of the theorem in this context did

not exist until 2012 [50, 51]. In this section we will state the theorem as it applies

to fermionic Lagrangians, for a rigorous proof of the statement and the bosonic case,

we refer to Reference [52].

Spontaneous Symmetry Breaking

Let LF be a fermion Lagrangian density for fermionic (Grassman valued) fields

ψ and ψ̄,

LF (ψ̄, ψ) = ψ̄Lψ + V (ψ̄, ψ) , (3.1)

where L is the quadratic level Lagrangian operator and V is the interaction term of

order O(ψ4). We say LF has a continuous symmetry if it is invariant under the action
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of some Lie group G.1 Let the Lie algebra associated to G be denoted by g, and its

generators {ga}. Then for any ga ∈ {ga}, and θ ∈ R, it must be that:

LF (eiθgaψ̄, e−iθgaψ) = LF (ψ̄, ψ) . (3.2)

We can now introduce a symmetry breaking term LSB that is not invariant under the

action of G

LSB = λψ̄Mψ , (3.3)

where λ is an infinitesimal real number, and M is a hermitian matrix, linearly

composed of the generators ga, such that for some gb ∈ {ga} we have [gb,M ] 6= 0. In a

ferromagnet LSB would represent the Zeeman coupling to an external magnetic field

of strength λ. We now assume that through adding LSB we have eliminated enough

symmetries from the Hamiltonian HT , associated to LF + LSB, such that HT has a

unique ground state. The order parameter ∆, of the action is then defined as the the

expectation of LSB/λ with respect to the ground state:

∆ = 〈ψ̄Mψ〉 . (3.4)

The symmetry of LF generated by the gb such that [gb,M ] 6= 0 is defined to be

spontaneously broken if limλ→0 ∆ 6= 0. An equivalent statement is to say the symmetry

is spontaneously broken when the homogeneous ∆-susceptibility χ∆, diverges in the

1It is important that the measure term of the partition function is also invariant under the action
of G, otherwise one arrives at an anomaly, see for example Reference [53].
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same limit:

lim
λ→0

χ∆ = lim
λ→0

∆

λ
=∞ . (3.5)

The Goldstone Bosons

For the generators ga that don’t commute with M , we can construct the bosonic

field πa, from the fermion biproduct term

πa = iψ̄[ga,M ]ψ . (3.6)

The fields πa are called the Goldstone bosons of the λ = 0 ground state, and their

correlation functions (called Goldstone modes) are soft (massless). More specifically,

the retarded real space Goldstone mode is given by

DR
aa(t, r) = −θ(t) 〈[πa(t, r), πa(0, 0)]〉 . (3.7)

The frequency momentum-space version of the Goldstone mode is given by

Daa(ω, q) =
Q(ω, q)

αλ+ P (ω, q)
, (3.8)

for which in the limit ω, q → 0, the function P (ω, q) → 0, and Q(ω, q) and α are

constant. The order parameter expectation value is related to Daa by the relation:

∆ ∝ λDaa(ω = 0, q = 0) . (3.9)
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The Goldstone mode Daa(ω, q) contains important information about the excitations.

Since P (ω, q) goes to zero at ω = 0, q = 0, one obtains the frequency-momentum

dispersion ω(q) satisfying ω(q) → 0 as q → 0. The dispersion can be written in the

general form

ω(q) ∝ |q|n , (3.10)

and is broken into two types, those for n-odd (Type I) and n-even (Type II). It has

been proven in References [50, 51] that the number of type I and II Goldstone modes,

nI and nII respectively, satisfy the following equations:

nI + 2nII ≥ nBG , (3.11a)

nBG − (nI + nII) =
1

2
rank〈[ga, gb]〉 . (3.11b)

where nBG is the number of generators broken by M , and ga, gb ∈ {ga| [ga,M ] 6= 0}.

We see only if rank〈[ga, gb]〉 = 0 does the number of Goldstone modes equal the

number of broken generators. For actions that are Lorentz invariant, the only type

of Goldstone mode that can occur has the dispersion ω(q) = q, and nBG = nI .

In condensed matter problems, Lorentz invariance is generally not present, so one

has to be careful in identifying all the Goldstone modes. For example, in the case

of a Heisenberg ferromagnet with magnetization in the z direction, the symmetries

corresponding to two of the three generators of SU(2), σx and σy, are broken, but

there is only one soft spin-wave excitation.
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Soft Modes in Fermi Gases and Semimetals

The Goldstone modes discussed in the previous chapter were just one class of

soft modes that can appear in a physical system. A generalized soft mode can be

defined as a frequency and momentum space correlation function C(ω, q), that can

be expressed as the ratio of two functions Q(ω, q) and P (ω, q), such that P (ω, q) has

real valued roots ω0, q0 and Q(ω0, q0) is finite:

C(ω, q) =
Q(ω, q)

P (ω, q)
. (3.12a)

There several phenomena in addition to spontaneous symmetry breaking that give rise

to soft modes, for in depth discussions see References [13] and [54]. For the purposes of

this dissertation we will be concerned with the cases of soft single particle excitations

and Goldstone modes. To understand sfot single particle excitations, consider non-

interacting electrons with an energy-momentum dispersion relation ε(k), spin σ,

and chemical potential µ, described by fermion (Grassmann-valued) fields ψ̄nσ(k)

and ψnσ(k) that depend on a wave vector k and a fermionic Matsubara frequency

ωn=0,±1,... = 2πT (n + 1/2). In terms of these fields, the quantum partition function

Z is given by [21]:

Z =

∫
D[ψ̄, ψ] eS0[ψ̄,ψ] , (3.13)

for the finite temperature action S0:

S0 =
∑
k,n

∑
σ

ψ̄n,σ(k) [iωn + µ− ε(k)] ψn,σ(k) . (3.14)

27



Defining ξ(k) = ε(k)− µ, the single particle Green function is given by:

Gn(k) = 〈ψn,σ(k)ψ̄n,σ(k)〉 =
1

iωn − ξ(k)
. (3.15)

The Green function is divergent whenever the wave vector satisfies ε(k) = µ and

ωn = 0. In the case of a d dimensional Fermi gas, where ε(k) = k2/2me, the Green

function is soft for an entire d−1 dimensional manifold of wave vectors, i.e. the Fermi

surface. The same is true for a Dirac or Weyl semimetal for a chemical potential tuned

away from the Dirac/Weyl points, but when the chemical potential lies specifically

at the Dirac/Weyl points, and does not intersect any other band, then the Green

function is divergent at only finitely many wave vectors.

The simple non-interacting partition function also possesses a Goldstone mode.

Consider subjecting the fermion fields to a frequency dependent rotation:

ψn,σ(k) → ψ̄n+α,σ(k) ,

ψ̄n,σ(k) → ψ̄n+α,σ(k) , (3.16a)

here α is a real constant, not necessarily an integer. In the imaginary time τ

representation of the fields ψσ(τ,k), this is equivalent to performing the U(1) gauge

transformation:

ψn(τ,k) → e−i2παTτψσ(τ,k) ,

ψ̄σ(τ,k) → ei2παTτ ψ̄σ(τ,k) . (3.16b)

We can define this operation as the action under some operator T̂α, which in the

imaginary time representation clearly leaves the measure term in Z invariant. Under
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the action of T̂α, while the second and third terms of Equation (3.14) are invariant

as they are carry no frequency index information, the first term is not. The action

becomes:

S0 →
∑
k,n

∑
σ

ψ̄n,σ(k) [iωn+α + iµ− ε(k)] ψn,σ(k) . (3.17)

For transformations fluctuating slowly in time, i.e. α � 1, the action of T̂α only

weakly modifies the action S0, and in the limit α→ 0, T̂α becomes an exact symmetry

of S0. Consider the action of T̂α on the Green function of particles near the Fermi

surface:

T̂α lim
ωn→0

Gn(k) = T̂α [−iπsgn (ωn)δ(ξ(p))− P (1/ξ(p))]

= −iπsgn (ωα)δ(ξ(p))− P (1/ξ(p)) , (3.18)

where by P we denote the Cauchy principal value operator, and sgn (ωn) reflects the

Fermi surface being approached from above or below, corresponding respectively to

advanced (hole) or retarded (particle) degrees of freedom. We emphasize that this

can only be discussed at zero temperature (T = 0), at which point the Matsubara

frequencies become a continuum and their limiting behavior can be discussed. The

last line follows from the fact that as the limit ωn → 0 has been taken, the action of

T̂α is entirely responsible for the sign of the frequency. If we now take the limit of

α→ 0, the last line remains unchanged. We can then conclude that the quantity

lim
ωn→0

Gn(k) , (3.19)
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is invariant under the action of T̂α only for sgnα = sgnn, but for sgnα 6= sgnn the

expectation value is changed even in the α → 0 limit. This is a case of spontaneous

symmetry breaking; we have found an ground state expectation value that is not

invariant under the action of a symmetry of S0. More specifically it is the imaginary

part Im limωn→0Gn(k) that spontaneously breaks the symmetry, as Re limωn→0Gn(k)

is insensitive to the action of T̂α. The imaginary part of Gn(k) also known as the

spectral density function [21], and it is the order parameter of this broken symmetry.

In order to apply the concepts developed in Section 3.1 to the symmetry breaking

we just found, we need to expand the group under consideration, as U(1) turns out

to be only a subgroup of the larger symmetry group. Let us rewrite the action S0 in

frequency-position space:

S0 =
∑
n

∫
dx ψ̄n,σ(x) [iωn + µ− ε(−i∇)] ψn,σ(x) . (3.20)

Clearly any transformation T̂ that leaves
∑

n ψ̄nψn invariant is a symmetry of the

action, except for the iωn term. We can think of T̂ as rotations in Matsubara frequency

space, and for a model with 2M Matsubara frequencies, {T̂} comprise the group

Sp(2M), which follows from the Grassman nature of the ψ(x) fields [55]. We can

express general rotations in frequency space that mix the frequencies n1 and n2 as:

T̂±nm = δnm[1 + (δnn1 + δnn2)(cos θ − 1)] + (δnn1δmn2 ± δnn2δmn1) sin θ . (3.21)

The action of T̂± on the Matsubara vector ψ(x) mixes the n1 and n2 components of

ψ(x) with a mixing angle θ. The generator of this transformation t̂±, can be found
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by taking the infinitesimal θ limit:

t̂±nm = (δnn1δmn2 ± δnn2δmn1) . (3.22)

It is important to observe that we are in different a situation than the one posed

in the Goldstone theorem. In this case, the symmetry breaking term LSB ≡∑
n

∫
dx ψ̄n,σ(x)ψn,σ(x)iωn is always present in the Lagrangian, and the symmetry

breaking field λ ≡ |ωn| is an internal degree of freedom.2 We can rewrite the iωn term

in S0 as:

∑
n

iωnψ̄n(x)ψn(x) = i
∑
nm

ψ̄n(x)ωnδnmψm(x)

= i
∑
nm

|ωn|ψ̄n(x)sgn (ωn)δnmψm(x) . (3.23)

Treating ωn as an external field, the intuitive choice for the term analogous to ψ̄Mψ

in the Goldstone theorem is in this case

i
∑
nm

ψ̄n(x)sgn (ωn)δnmψm(x) . (3.24)

To determine the Goldstone boson, we need to know the commutator of t̂± and the

sgn (ω̂)1 operator, by explicit computation one obtains

[sgn (ω̂)1, t±]nm = [sgn (ωn1)− sgn (ωn2)] [δnn1δmn2 ∓ δnn2δmn1 ] . (3.25)

2This result is similar to the case of the action of a classical Heisenberg ferromagnet coupled to
an external magnetic field h. The presence of h violates the rotational symmetry of the action, and
imbues what would be the transverse Goldstone modes of the h = 0 problem with an h dependent
mass. Suppose that the magnetic field was in fact an internal degree of freedom, as would be the
case if we were to consider a spin orbit coupling term which scales as |k|. The ferromagnetic action
would not be generally rotationally invariant except for h→ 0, and the original Goldstone modes of
the problem would still be soft.
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We see that the commutator is only non-zero for ωn1ωn2 < 0, reflecting the fact that

sgn (ωn) is invariant under frequencies rotations that preserve the sign of ωn. We

will now assume ωn1ωn2 < 0 for the rest of discussion, so that we can make the

simplification sgn (ωn1) − sgn (ωn2) = sgn (ωn1 − ωn2). The Goldstone boson is then

given by

Q±n1n2
(x) =

∑
nm

ψ̄n(x)[sgn (ω̂)1, t±]nmψm(x)

= sgn (ωn1 − ωn2)
(
ψ̄n1(x)ψn2(x)∓ ψ̄n2(x)ψn1(x)

)
. (3.26)

Fourier transforming we obtain the momentum space description of the field,

Q±n1n2
(q) =

sgn (ωn1 − ωn2)
∑
k

(
ψ̄n1(k+ q/2)ψn2(k− q/2)∓ ψ̄n2(k+ q/2)ψn1(k− q/2)

)
≡

∑
k

Q±n1n2
(k; q) . (3.27)

The derivation of this Goldstone boson has been slightly ad-hoc as we had to

guess what exactly to write down for the symmetry breaking term. In Section 4.6

we will rigorously derive the Goldstone bosons of a Fermi liquid, semiconductor

and Dirac semimetal by means of a Ward identity, which is the same technique

used to show πa are the Goldstone bosons in conventional spontaneous symmetry

breaking. For now, let us examine the momentum space correlation functions

〈Q±n1n2
(k; q)Q±n1n2

(k;−q)〉, which must be summed over to obtain the real space

Goldstone mode 〈Q±n1n2
(x)Q±n1n2

(0)〉. The correlation functions will contain four point
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functions of the form:

Dnm(k, q) = 〈ψ̄n,σ(k+)ψm,σ(k−)ψ̄m,σ(k−)ψn,σ(k+)〉 ,

= −Gn(k+)Gm(k−) ,

=
Gn(k+)−Gm(k−)

iΩn−m − ε(k+) + ε(k−)
(3.28)

where k± = k ± q/2. The second line follows from Wick’s theorem assuming n 6=

m, and the third by algebraic manipulation using Equation (3.15) and the formula

−ab = (a− b)/(1/a− 1/b). When taking the limit ωn, ωm → 0, the numerator is only

non-zero provided ωnωm < 0, which follows directly from the first line in Equation

(3.18), and is precisely the condition imposed by requiring [sgn (ω̂)1, t±]nm 6= 0. Upon

analytic continuation to real frequencies according to Ω1−2 → Ω+i0+, Equation (3.28)

becomes

D(k, q → 0,Ω→ 0) =
iImG(k,Ω = 0)

Ω− ε(k+) + ε(k−)
. (3.29)

This correlation function is soft, and diverges as q,Ω→ 0 provided ImG(k,Ω = 0) is

non-zero, which is equivalent to stating that the d dimensional non-interacting system

possesses a d − 1 dimensional Fermi surface. Any lower dimensional Fermi surface

results in ImG(k ± q,Ω = 0) vanishing as q,Ω → 0, and will be the principal topic

of discussion in Section 4.6. We will also show that all moments of Dnm(k, q) with

respect to |k| are soft, in particular
∑

kDnm(k, q), which is necessary to show that

the fluctuations of Q±n1n2
(q) are soft.
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The Importance of Soft Modes

In Chapter IV we will follow a program to map the strongly interacting version

of the fermionic field theory for Dirac semimetals in Equation (3.13) to a bosonic field

theory emphasizing the effects of the Goldstone and other soft bosonic modes of the

action. The ultimate usefulness of this theory will be its ability to exactly capture

the non-analytic behaviors of observables and correlation functions. In this section

we will discuss some of the many profound effects soft modes can have.

The first thing to note is a soft correlation implies long time tails or long

wavelength phenomena. Consider the imaginary time representation of the Green

function

G(τ,k) =
1

β

∑
n

1

iωn − ξ(k)
e−iωnτ

=

 −e
−ξ(k)τ [1− nF (ξ(k))] for τ > 0

e−ξ(k)τ [nF (ξ(k))] for τ < 0

−−−→
T→0

 e−ξ(k)τθ(ξ(k)) for τ > 0

e−ξ(k)τθ(−ξ(k)) for τ < 0
, (3.30)

where θ(x) denotes the Heaviside step function. The different limits for sgn τ = ∓1

respectively mark the difference between advanced and retarded modes. We see at

T = 0 the green function exponentially decays in imaginary time, with a half life

τ0 = 1/ξ(k), which diverges for particles at the Fermi surface ξ(kf ) = 0. A real time

analog of this example is found in the correlation function for diffusive processes, for

example fluctuations in the magnetization of a fluid of uncharged, spin 1/2 particles

34



[54]. In such a case, the correlation function of magnetization C(t,k) behaves as

C(t,k) ∝ e−Dk
2t , (3.31)

for a diffusion coefficient D. The lifetime of this correlation function τ0 = 1/Dk2,

diverges for long wavelength fluctuations k → 0. We can calculate the local real time

correlation function

C(t,x = 0)
1

V

∑
k

C(t,k) ∝ 1

td/2
, (3.32)

and see that local correlations decay algebraically in time. This is a quintessential

property of soft correlations. We can further Laplace transform C(t,x = 0) to the

complex frequency z-domain with Im z > 0 to

C(z) = i

∫ ∞
0

dt eiztC(t,x = 0) ∝ z
d
2
−1 , (3.33)

which holds for when (d/2) is not an even integer. C(z) can now be seen to possess

non-analytic dependence on the complex frequency z as z → 0. If an observable

couples to a soft mode, it can be expressed in terms of integrals of soft modes3, and

found to also have non-analytic dependences on frequency and/or wave vectors. A

paradigmatic example is the density of states non-analytic dependence on frequency

about the Fermi energy, also known as the zero bias anomaly. The non-analyticity

can be directly observed in the dependence of the conductance on the applied voltage

in scanning tunneling spectroscopy measurements used to probe the density of states

[56]. In disordered metals and strongly doped semiconductors, Altshuler and Aronov

3Often it’s a convolution of soft and massive modes.
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showed in Reference [16] that

N(µ+ ω)−NF ∝ |ω|(d−2)/2 . (3.34)

At zero temperature this result holds for frequencies near the Fermi energy, and

at non-zero temperature it is true for frequencies that are large with respect to

temperature. It follows from the coupling of massive modes in a disordered metal

to the Goldstone modes, known as the diffusons. Non-analyticities in the density of

states are especially important because many other observables, or susceptibilities are

proportional to the density of states (e.g. conductivity) or inversely so (e.g. resitivity),

these quantities then inherit the density of states non-analyticity, in addition to any

other non-analyticities due to their particular structure.

The presence of interaction terms in the action, i.e. terms quartic and higher

the fields, allow soft and massive modes to couple. In extreme cases, a mode that

is massive at the level of a quadratic saddle point expansion can become soft. For

example, consider a classical Heisenberg ferromagnet with the Hamiltonian

H = −J
∑
〈i,j〉

si · sj , (3.35)

where J is the coupling constant, si are spins at lattice site i, and the sum is over

nearest neighbors. Below the Curie temperature the system is ferromagnetic, with

some magnetization m0ẑ. Then at the saddle point level, the longitudinal magnetic

susceptibility χL(k) is massive and the transverse susceptibility χT (k) is massless,
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and are described by

χL(k) ∝ 1

t+ k2
,

χT (k) ∝ 1

k2
, (3.36a)

with t ∝ (TC − T )/T the dimensionless distance from the critical point. If higher

order corrections about the saddle point are taken into account, the coupling of the

longitudinal and transverse modes makes χL(k) massless in momentum space for

dimensions d < 4, and algebraically decaying in real space for d > 2:

χL(k→ 0) ∝ kd−4 , (3.37)

χL(r →∞) ∝ 1/r2d−4 . (3.38)

In the presence of a magnetic field, χL(k) is once again massive, but the homogeneous

longitudinal susceptibility diverges with vanishing field in d < 4 as a result of the mode

coupling:

χL = ∂m/∂h ∝ h(d−4)/2 . (3.39)

These discoveries were first made by Vaks, Larkin and Pikin in 1968, and Brezin and

Wallace in 1973 [57, 58], and showcase some of the profound consequences of the

presence of soft modes on an entire phase.

One final consequence of soft modes we will mention is the modification of phase

transitions. As an example, Belitz, Kirkpatrick and Vojta found in 1997 that the

static spin susceptibility of a Fermi liquid exhibits a T = 0 non-analyticity of the

form χs(q) ∝ q2 log q in d = 3 as a result of the soft modes in the system [59]. In
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metallic ferromagnets with small Curie temperatures, this non-analytic behavior has

the profound effect of modifying the nature of the second order ferromagnetic phase

transition to be first order, see Reference [13] for a detailed review.

Until now, we have not discussed any non-analytic properties resulting directly

from the soft, single particle Green function in Equation (3.15). It is indeed

responsible for non-analytic functions appearing in physical observables, for example

in a non-interacting clean Fermi gas in d = 3 dimensions with particle density n, the

optical conductivity is

σ(ω) =
ne2

me

i

ω
, (3.40)

reflecting the ballistic motion of the electron current in the presence of an electric

force field. Now once again consider the density of states, which in d dimensions and

for an energy momentum dispersion ε(k) ∝ kp goes as

N(ω) ∼ (µ+ ω)
d
p
−1 , (3.41)

with ω measured from the Fermi surface. While (µ+ω)
d
p
−1 is a non-analytic function

for non-integer values of d/p at ω + µ = 0, it is analytic for ω → 0. Without

interactions or disorder there is no non-analyticity in the density of states about

the Fermi surface (unless µ = 0). As stated at the beginning of this subsection,

the program of the next chapter will be to integrate out the fermionic degrees of

freedom of the partition function for interacting electrons in Dirac semimetals and

graphene. One might be concerned about the fate of any non-analyticities due to

non-interacting electrons, and whether such a program accounts for them. As the

non-interacting fermion action is Gaussian (quadratic) in the fermionic fields, the
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partition function can be solved exactly. Mathematically speaking, this means Z[J ]

can be computed exactly for any source functional J , that couples to terms linear or

quadratic in ψn(k), and thus all thermodynamic quantities and response functions can

be computed. When integrating out the fermionic fields, the exact, non-interacting

solution will be encoded in the saddle point of the new bosonic field theory theory,

and thus so will any non-interacting fermionic induced non-analyticities.
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CHAPTER IV

DERIVING THE EFFECTIVE FIELD THEORY

Fermionic Action

The quantum partition function is defined as [60–62]:

Z =

∫
D[ψ̄, ψ] eS[ψ̄,ψ], (4.1)

where the action S for a semimetal is given by:

S =

∫
dx

∑
σ′σαα′

ψ̄α
′

σ′ (x)
[
−∂τδα

′α
σ′σ − εα

′α
σ′σ (−i∇)

]
ψασ (x) + Sint. (4.2)

We have used space and imaginary time coordinates x = (x, τ),
∫
dx =

∫
V
dx
∫ 1/T

0
dτ ,

and the fields ψ, ψ̄ are fermionic (Grassmann valued) fields describing the electrons

in the system. We have adopted a unit system where ~ = 1. In this work, we will

be concerned with two types of semimetals: the d = 2 dimensional Dirac semimetal

graphene, and d = 3 Dirac semimetals. We will always refer to the d = 2 case as

graphene, and the d = 3 case as DSMs, for any discussion including both cases, we

will speak of semimetals. For the DSM case we are letting σ be a genuine spin index,

while α runs over the cone index[63]. For simplicity we limit ourselves to 2 cones, one

can generalize to more cones if desirable. In graphene σ runs over the sub-lattices A

and B of the 2D Carbon lattice (pseudo-spin), and α runs over the two non-degenerate
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Dirac cones that appear in the Brillouin Zone. 1 For now we will be concerned with

developing the theory for DSMs, an analogous program can be followed for graphene.

The explicit dispersion relation for DSMs as discussed in Chapter II is given

by[4]:

ε(∇)α
′α
σ′σ = −ivD (σz ⊗∇ · σ)α

′α
σ′σ ≡ −ivDσ

α′α
z ∇ · σσ′σ′ , (4.3)

and the interaction part Sint is given by:

Sint = −1

2

∑
σ′σα′α

∫
dx1dx2 v(x1 − x2)ψ̄ασ (x1)ψ̄α

′

σ′ (x2)ψα
′

σ′ (x2)ψασ (x1) . (4.4)

For a short ranged interaction in d-dimensions, v(x) ≡ Γδ(d)(x), and a long ranged

interaction takes the form v(x) = Γ/|x|. Switching to momentum space via Fourier

transformation, defining four-momentum k = (iωn,k), we have the relations

ψ̄(k) ≡ ψ̄n(k) =
√
T/V

∫
dx e−ikx ψ̄(x) , (4.5a)

ψ(k) ≡ ψn(k) =
√
T/V

∫
dx eikx ψ(x) , (4.5b)

ψ(x) ≡ ψn(k) =
√
T/V

∑
n,k

e−ikx ψ(k) . (4.5c)

1To make the action (4.2) apply to graphene, one would need to include an additional resolution
of identity acting on the real spin indices, two account for the spin degeneracy of graphene’s Dirac
cones.

41



Then in momentum space the action reads:

S = S0 + Sint , (4.6a)

S0 =
∑
k

ψ†(k) (iωn1− vD(σz ⊗ k · σ))ψ(k)

≡
∑
k

ψ†(k)G−1
0 (ωn,k)ψ(k) , (4.6b)

Sint = − T

2V

∑
σσ′
αα′

∑
{ki}

δk1+k2,k3+k4v(k1 − k4)ψ̄ασ (k1)ψ̄α
′

σ′ (k2)ψα
′

σ′ (k3)ψασ (k4) .(4.6c)

After Fourier transforming to momentum space, the short ranged interaction scales

as a constant v(k) ∝ Γ, and the long ranged interaction scales as v(k) ∝ k1−d for

d = 2, 3. Now, let α = ±1, then the non-interacting Green function Ḡ0, in this basis

is a diagonal matrix composed of the of the Green function for each Dirac cone G0,

Ḡ0(iωn,k) = −ωn1+ vD(σz ⊗ k · σ)

ω2 + v2
Dk

2

≡ (G0(iωn,+k), G0(iωn,−k)

≡ δαβG0(iωn, αk) . (4.7)

We are interested in long wavelength effects, so it will be convenient to decompose the

interaction term into the direct, exchange and cooper interaction channels[21]. These

are the different interaction processes that can take place involving small momentum

transfer between quasiparticles. This decomposition is not exact, there are left over

interactions that involve the exchange of large momentum, which will be unimportant

to the EFT, so they are discarded. For a rigorous derivation see the Appendix A.

Note that since we lack a Fermi surface to project the interaction term onto, a further

angular momentum decomposition of the interaction is not possible, contrary to the
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Fermi liquid case in Reference [64].

Sint ≈ Sd
int + Se

int + Sc
int , (4.8a)

where the three channels, direct, exchange and cooper are respectively given by:

Sd
int =

− T

2V

∑
α,β=±

∑
k,p

∑
q

′
Γd(q)(ψα(k), s0ψ

α(k + q))(ψβ(p+ q), s0ψ
β(p)) ,

(4.8b)

Se
int =

− T

2V

∑
α,β=±

3∑
i=0

∑
k,p

∑
q

′
Γei (p− k)(ψα(k), siψ

α(k + q))(ψ(p+ q), siψ(p)) ,

(4.8c)

Sc
int =

− T

2V

∑
α,β
σ,σ′

∑
k,p

∑
q

′
v(p+ k)Θ(|p+ k| > λ)ψ̄ασ (k)ψ̄βσ′(−k + q)ψβσ′(p+ q)ψασ (−p) .

(4.8d)

Here the inner product is the usual complex one, (ψ, φ) = ψ†φ, the variable q =

(iΩn, q) comprises a wave vector q and a bosonic Matsubara frequency Ωn = 2πTn.∑′
q denotes a sum over wave vectors that is restricted to q < Λ with cutoff wave

number Λ. The long-wavelength properties we are interested in do not depend on Λ.

Note that without this cutoff all interaction channels would be the same. The channel

specific interactions are given by Γd(q) = v(q) and Γei (p−k) = 1
2
v(p−k)Θ(|p−k| >

Λ)(−,+,+,+)i.
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Converting the Action to a Bosonic Formulation

In order to map the fermionic action onto a bosonic one, we follow the procedure

of Reference [65] of first defining bispinor fields η, which encompass the particle-hole

degrees of freedom of the fermions:

ηαn(k) =
1√
2

(ψ̄αn,↑(−k), ψ̄αn,↓(−k), ψαn,↓(k),−ψαn,↑(k))T , (4.9)

ηα+
n (k) = Cηαn(−k)

i√
2

(−ψαn,↑(−k),−ψαn,↓(−k), ψ̄αn,↓(k),−ψ̄αn,↑(k)) , (4.10)

where we have defined the charge conjugation matrix C = i(τ1 ⊗ s2) in the spin-

quaternion basis spanned by τi ⊗ sj, (i, j = 0, 1, 2, 3), with τj = −sj = −iσj, and σ0

the 2×2 identity matrix. The quaternion matrices act on the particle-hole components

of the bispinors, while the spin matrices act on the spin components. This can be

seen explicitly by examining the action of τi ⊗ s0 and τ0 ⊗ si on ηn(k). Let us now

write the action in the language of the bispinors. We construct a Green function for

the spin-quaternion space by requiring:

S0 =
∑
k

ψ†(k)Ḡ−1
0 (k)ψ(k) = −i

∑
k

η+
n (k)G̃−1

0 (iωn,−k)ηn(k) , (4.11)
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where a contraction over all suppressed indices is implied. Using the notation

(G0)−1
ij ≡ lij, we show in the appendix that the Green function must take the form:

(G̃0)−1(iωn,−k) =

δαβ



l11(ωn,−αk) l21(ωn,−αk) 0 0

l12(ωn,−αk) l22(ωn,−αk) 0 0

0 0 l22(ωn, αk) −l21(ωn, αk)

0 0 −l12(ωn, αk) l11(ωn, αk)


. (4.12)

For the DSM this reads explicitly:

(G̃α
0 )−1(iωn,−k) =

= αvD



iωn/αvD + kz kx + iky

kx − iky iωn/αvD − kz

iωn/αvD + kz kx + iky

kx − iky iωn/αvD − kz


=

 (G−1
0 (iωn,−αk))T

(G−1
0 (iωn,−αk))T

 .
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We now define a bilinear tensor product

Bαβ
nm(x,y) =

= ηα+
n (x)⊗ ηβm(y)

=
i

2



−ψn↑(x)ψ̄m↑(y) −ψn↑(x)ψ̄m↓(y) −ψn↑(x)ψm↓(y) ψn↑(x)ψm↑(y)

−ψn↓(x)ψ̄m↑(y) −ψn↓(x)ψ̄m↓(y) −ψn↓(x)ψm↓(y) ψn↓(x)ψm↑(y)

ψ̄n↓(x)ψ̄m↑(y) ψ̄n↓(x)ψ̄m↓(y) ψ̄n↓(x)ψm↓(y) −ψ̄n↓(x)ψm↑(y)

−ψ̄n↑(x)ψ̄m↑(y) −ψ̄n↑(x)ψ̄m↓(y) −ψ̄n↑(x)ψm↓(y) ψ̄n↑(x)ψm↑(y)


,

(4.13)

and its Fourier transform

Bαβ
nm(k,p) =

1

V

∫
dx dy e−ik·x+ip·yBαβ

nm(x,y) , (4.14a)

Bαβ
nm(x,y) =

1

V

∑
k,p

eik·x−ip·yBαβ
nm(k,p) . (4.14b)

The 4 × 4 matrix Bαβ
nm(k,p) can be expanded in the spin-quaternion basis defined

above,

Bαβ
nm(k,p) =

3∑
i,r=0

i
rB

αβ

nm(k,p) (τr ⊗ si) , (4.15a)

i
rB

αβ

nm(k,p) ≡ 1

4
tr
[
(τr ⊗ si)†Bαβ

nm(k,p)
]
. (4.15b)

It is further useful to define

Bαβ
nm(k; q) = Bαβ

nm(k + q/2,k − q/2) , (4.16)
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with analogous definitions for other objects that depend on two wavevectors.

Q-matrix Field Theory

Our next step is to constrain the matrices B in the interaction terms to a classical

matrix field Q by means of a Lagrange multiplier field Λ̃. The fermion fields then

enter the action only bilinearly and can be integrated out exactly. This way we obtain

an effective action A that depends on Q and Λ̃ according to

Z =

∫
D[ψ̄, ψ]eS[ψ̄,ψ] =

∫
D[η]eS[η]

=

∫
D[η]eS0[η]+Sint[B]

∫
D[Q, Λ̃]eTr [Λ̃T (Q−B)]

=

∫
D[η]eS0[η]−Tr [Λ̃TB]

∫
D[Q, Λ̃]eTr [Λ̃TQ]+Sint[Q]

=

∫
D[Q, Λ̃]eA[Q,Λ̃] . (4.17)

Here and in what follows Tr denotes a trace over all degrees of freedom, including the

continuous position in real space, while by tr we will denote a trace over all discrete

degrees of freedom that are not explicitly shown. Note the components of ηn(k) are

not independent and det G̃0 = (det Ḡ0)2. Hence the following equality:

∫
D[ψ̄, ψ]eTr ψ̄G−1

0 ψ =

∫
D[η]e−iTr η+G̃−1

0 η = det Ḡ−1
0 = (det G̃−1

0 )1/2 = e
1
2

Tr ln G̃−1
0 .

(4.18)

Since Tr [Λ̃TB] = η+Λ̃η, it gets lumped in the with the log term. The new action A

is:

A[Q, Λ̃] = A0 + Tr [Λ̃TQ] + Aint[Q] . (4.19)
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Following the discussion above,

A0 =
1

2
Tr ln(G̃−1

0 − iΛ̃) ≡ 1

2
Tr lnG−1, (4.20)

where

(G̃−1
0 )αβnm(k,p) = δk,pδ

αβ
nm(τ0 ⊗G−1

0 (iωn,−αk))T .

(4.21)

Next we use the fact that for the standard inner product on R
n, ( , ), the following

holds: (a, Ab) = aiAijbj = Tr (ATa⊗ b), where a, b ∈ Rn and A ∈ Matn×n(C). This

yields for the interaction terms:

Aint = Ad
int + Ae

int + Ac
int , (4.22a)

with the direct, exchange and cooper channels having the explicit forms

Ad
int =

T

2V

∑
r=0,3

(−1)r
∑
n1,n2
n3,n4

δn1−n2,n4−n3

∑
k,p

∑
q�Λ

Γd(q)×

×tr ((τr ⊗ s0)TQαα
n1n2

(k, k+ q))tr ((τr ⊗ s0)TQββ
n3n4

(p+ q, p)) ,

(4.22b)

Ae
int =

T

2V

∑
r=0,3

(−1)r
3∑
i=1

∑
n1,n2
n3,n4

δn1−n2,n4−n3

∑
k,p

∑
q�Λ

Γei (p− k)×

×tr ((τr ⊗ si)TQαβ
n1n2

(k, k+ q))tr ((τr ⊗ si)TQβα
n3n4

(p+ q, p)) ,

(4.22c)
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A
c(s)
int =

T

4V

∑
r=1,2

∑
n1,n2
m

∑
k,p

∑
q�Λ

Γc(s)
αβγδ

k,p (q)×

×tr ((τr ⊗ s0)TQαβ
n1,−n1+m(−k, k+ q))tr ((τr ⊗ s0)TQγδ

−n2,n2+m(−p,−p− q)) ,

(4.22d)

A
c(t)
int =

T

4V

∑
r=1,2

3∑
i=1

∑
n1,n2
m

∑
k,p

∑
q�Λ

Γc(t)
αβγδ

k,p (q)×

×tr ((τr ⊗ si)TQαβ
n1,−n1+m(−k, k+ q))tr ((τr ⊗ si)TQγδ

−n2,n2+m(−p,−p− q)) .

(4.22e)

We have further decomposed the Cooper channel into its singlet and triplet

components. In this case the interaction coefficients in the cooper channel are given

in Appendix A.

Symmetry Properties, and Representation of Observables

We now provide some useful symmetry properties of the Q-matrices derived in

Reference [14]. B as defined in Equation (4.13) is self-adjoint under the operation

defined in Equation (4.10). Q inherits this property, so it holds that

Q+ = CT QT C = Q . (4.23a)
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In the spin-quaternion basis defined in Eq.(4.15) this implies

i
rQ

αβ

nm(x,y) =

 +
+

+
−


r

 +
−
−
−


i

i
rQ

βα

mn(y,x) ,

(4.23b)

i
rQ

αβ

nm(k,p) =

 +
+

+
−


r

 +
−
−
−


i

i
rQ

βα

mn(−p,−k) ,

(4.23c)

i
rQ

αβ

nm(k; q) =

 +
+

+
−


r

 +
−
−
−


i

i
rQ

βα

mn(−k; q) .

(4.23d)

Here the symbols

 +
+

+
−


r

etc. denote a factor of +1 for r = 0, 1, 2, and a factor

of −1 for r = 3, and analogously for i. These relations imply that all of the Q-

matrix elements are not independent. In a model with N Matsubara frequencies,

only N(N + 1)/2 matrix elements are independent. We will later choose these to be

the ones with n ≥ m. Physical correlation functions can be easily derived using the

source functional formalism [21, 66]. By maintaining the appropriate source terms in

the fermionic action while transforming to the Bosonic one, one can derive the relevant

correlation functions in terms of Q-matrices. For the purposes of this dissertation,

we will be most interested in the density of states, which is given by:

N(ω) = − 1

π
Im TrG+(ω) . (4.24)

Here G+(ω) is the fermionic retarded Green function, and we have suppressed all

additional indices that are traced over by Tr . It is obtained by analytic continuation
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of the Matsubara Green function defined in Equation (4.7)

G+(ω) ≡ G(iωn → ω + i0+) . (4.25)

To compute N(ω) we need the diagonal components of G(iωn,x − y), which in the

Q-matrix formalism are given by:

Gα
σσ(iωn,x− y) =

i

2
tr [(τ0 + iτ3)⊗ (s0 − σis3) 〈Qαα

nn(x,y)〉] , (4.26)

for σ = +1,−1 corresponding to spin ↑, ↓ respectively. Using Im iQ = ReQ, the

density of states is calculated in the Q-matrix formalism as:

N(ω) =
4

π
Re tr 〈00Qαα

nn(x,x)〉
∣∣∣∣
iωn→ω+i0+

. (4.27)
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Saddle Points

We minimize the action A with respect to Qαβ
mn(k, p) and Λ̃αβ

mn(k, p). This

is a straightforward functional derivative problem when using the following two

properties. First in momentum space the Tr (Λ̃TQ) term takes the form:

Tr (Λ̃TQ) = tr

∫
dxdy(Λ̃T )αβnm(x,y)Qαβ

nm(x,y)

= tr (Λ̃T )αβnm(k,p)Qαβ
nm(−k,−p), (4.28)

where the transpose acts on the spin-quaternion basis in the last equality, and

repeated indices are summed over. Secondly, for any function f(Â) of matrices Â,

the derivative acting on the trace of f(Â) has the property

∂Xtr (f(Â)) = tr (f ′(Â)∂XÂ) . (4.29)

The saddle point equations can then be expressed as

0 = − i
2

(GT )βαnm(p,k) + (Qsp)αβmn(−k,−p), (4.30a)

0 = Λ̃sp
mn(k, p) +

δ

δQmn(k, p)

∣∣∣∣
Qsp

Aint[Q], (4.30b)

with G = (G̃−1
0 − iΛ̃sp)−1 the saddle point Green function. Using the decomposition

of Aint, we can write out the last term in the equation above more explicitly using

∂Mtr (ATM) ≡ A:

δAint

δQαβ
mn(k,p)

=
δAd

int

δQαβ
mn(k,p)︸ ︷︷ ︸

(i)

+
δAe

int

δQαβ
mn(k,p)︸ ︷︷ ︸

(ii)

+
δAc

int

δQαβ
mn(k,p)︸ ︷︷ ︸

(iii)

,

(4.31a)
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(i) =
T

V

∑
r=0,3

(−1)r(τr ⊗ s0)
∑
n1,n2

s

∑
q

′
δn1−n2,n−mδ

αβΓd(q)×

×δk+q,ptr
(
(τr ⊗ s0)TQββ

n1n2
(s+ q, s)

)
, (4.31b)

(ii) =
T

2V

∑
r=0,3

(−1)r
3∑
i=0

(τr ⊗ si)
∑
n1,n2

s

∑
q

′
δn1−n2,n−m(τr ⊗ si)T ×

×
[
δp,k+qΓei (k− s)Qβα

n1n2
(s+ q, s) + δk,p+qΓei (s− p)Qβα

n1n2
(s, s+ q)

]
.

(4.31c)

We have ignored the Cooper channel (iii), because its effects will not be included

in field theory we will build. If one’s aim were to build an effective field theory to

explore s and p-wave superconductivity in semimetals, the singlet and triplet Cooper

channels, respectively, would need to be accounted for.

Dirac Semimetal Ansatz

There are multiple solutions to the saddle point equation, the one we will consider

maintains the Dirac semimetal spin structure, which can be determined by computing

tr ((τr ⊗ si)† × l), for all r and i, and l the operator of the non-interacting action in

bispinor space. The ansatz for the DSM solution then takes the form:

(Qsp)αβmn(k,p) = δk,pδ
αβ
mnτ0 ⊗

[
0Qα

n(p)s0 +1 Qα
n(p)s1 +2 Qα

n(p)s2 +3 Qα
n(p)s3

]
≡ Qα

n(p)δk,pδ
αβ
mn , (4.32)

(Λ̃sp)αβmn(k,p) = δk,pδ
αβ
mnτ0 ⊗

[
−0Λ̃α

n(p)s0 +1 Λ̃α
n(p)s1 −2 Λ̃α

n(p)s2 +3 Λ̃α
n(p)s3

]
≡ Λ̃α

n(p)δk,pδ
αβ
mn . (4.33)
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Note that the alternating signs of the Λ̃ ansatz are just in place to give −iΛ̃sp
mn(k, p)

the explicit form:

−i(Λ̃sp)αβmn(k,p) = δk,pδ
αβ
mn

 Λ11 0

0 Λ22

 , (4.34)

Λ11 =

 i 0Λ̃α
n(p) + 3Λ̃α

n(p) 1Λ̃α
n(p) + i 2Λ̃α

n(p)

1Λ̃α
n(p)− i 2Λ̃α

n(p) i 0Λ̃α
n(p)− 3Λ̃α

n(p)

 ,

Λ22 =

 i 0Λ̃α
n(p) + 3Λ̃α

n(p) 1Λ̃α
n(p) + i 2Λ̃α

n(p)

1Λ̃α
n(p)− i 2Λ̃α

n(p) i 0Λ̃α
n(p)− 3Λ̃α

n(p)

 .

Defining Λ̃ = (1Λ̃, 2Λ̃, 3Λ̃), in turn allows us to write

−i(Λ̃sp)αβmn(k,p) ≡ δk,pδ
αβ
mnΛ̃sp

n (p) = δk,pδ
αβ
mnG̃

−1
0 (i 0Λ̃α

n(p), Λ̃α
n(p)/vD) ,

(4.35)

Thus, by the linearity of the Hamiltonian the saddle point Green function reads:

Gαβ
nm(p, k) = δk,pδ

αβ
mnG̃0(iωn + i 0Λ̃α

n(p), αp+ Λ̃α
n(p)/vD) (4.36)
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If we assume charge neutrality, then Γ(q = 0) = 0 as it is just the integral of the

potential over all space.2 Then by the saddle point equations (4.30) we have:

Λ̃α
n(p)δk,pδ

αβ
mn = −δp,kδαβnm

T

V

∑
s,n1

(τ0 ⊗ si)Γei (p− s)tr
[
(τ0 ⊗ si)TQα

n1
(s)
]
.

(4.37)

Using (τ0 ⊗ si)
T =

 +
−
+
−


i

(τ0 ⊗ si)
†, the forms of Q and Λ̃ and the saddle point

equation for Q we get:

iΛ̃α
n(p) =

2T

V

∑
m,s

Γei (p− s)

ω̃2
m + vDs̃2

 ω̃m
αs̃xvD
αs̃yvD
αs̃zvD


i

, (4.38)

where we have defined ω̃m ≡ ωm + 0Λ̃α
m(s) and αvDs̃i = αvDsi + iΛ̃α

m(s). Equation

(4.38) can then be solved iteratively. Note that this is equivalent to computing the

electron self energy. We obtain

0Λ̃α
n(p) = 0 , (4.39a)

iΛ̃α
n(p) =

T

V

∑
m

∑
|p−s|>Λ

v(p− s)eiωm0 vDsi
ω2
m + v2

Ds
2
. (4.39b)

In the first line we used the oddness of the ωm sum, assuming 0Λ̃α
m(s) ≡ fα(s)

is some function independent of m, see Appendix D. In the second line, we set

iΛ̃α
n(s) ≡ 0 and plugged this into (4.38). It is easy to see Eq. (4.39b) is UV divergent.

Here it is important to recall that the Hamiltonians we are dealing with are linear

approximations about a Dirac point, therefore it is necessary to impose a UV cutoff

Λ′ that reflects the transition from linear to quadratic or higher power momentum

2This follows from the Jellium model, see Reference [61].
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dispersion relations (Crystals have smooth cutoffs [67]). Remember there was freedom

in how we chose our cutoff Λ for the interaction terms, so the result of the integral Eq.

(4.39b) ultimately depends on the relative values of Λ and Λ′. If they are the same,

the integral is zero, if they are different we just get iΛ̃α
n(p) ∝ Γpi in all interaction

cases and dimensions. This is ultimately a renormalization of the Dirac velocity and

can be absorbed into the definition of vD. We can write our saddle point Q solution

as:

Qαβ
mn(k, p) = δk,pδ

αβ
mnQ

α
n(p)

=
i

2
δk,pδ

αβ
mnG̃0(iωn,−αp)T

= − i
2
δk,pδ

αβ
mn

τ0 ⊗ (iωnσ0 − αvDp · σ)

ω2
n + p2v2

D

. (4.40)

Now observe that if we consider the small frequency limit of the Q saddle point:

lim
n→0

Qα
n(p) = τ0 ⊗

(
π

2
sgnωnδ(vDp)σ0 + P

i

2

p̂ · σ
vDp

)
, (4.41)

where P denotes the Cauchy principal value. We can see that this saddle point is

not invariant under rotations in ωn-space between frequencies of different signs (i.e.

mixing of retarded and advanced degrees of freedom), however, in the limit of zero

frequency, the action A is invariant. Following our discussion in Section 3.2, by the

Goldstone theorem we know that soft modes must be present. At this point, one might

draw on earlier works [14, 64, 68], and immediately integrate out the non-Goldstone

modes. We will show this would pose issues due to the fact that the non-Goldstone

modes are still soft, but not for symmetry breaking reasons.
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Ward Identity

Generalized bosonic basis for all two band systems

We would like to develop a Ward Identity to determine the soft modes of the

system. To do this, we note that the bare action can be viewed in another way. Let

us restrict ourselves to discussing the physics of a single Dirac cone, and diagonalize

the Hamiltonian. In this section the index σ is a band index, such that σ = 0, 1

corresponds to the conduction and valence band respectively. This new basis is

equivalent to thinking of spinless fermions now with a band index determined by

σ, and will prove to be the best formalism to directly compare the Fermi liquid,

semiconductor and semimetal Ward identities. In the band basis, the bare action of

the system is given by:

S0 =
∑
n,k

∑
σ

ψ̄σ(k) [iωn − εσ(k) + µ] ψσ(k) . (4.42)

Semimetal Fermi Liquid Semiconductor

ξ0(k) vD|k| k2/2m+ Eg − µ k2/2m+ Eg − µ
≡ k2/2m− µeff ≡ k2/2m+ µeff

ξ1(k) −vD|k| −k2/2m− µ −k2/2m− µ

TABLE 2. Forms of H − µN for semimetals, metals and semiconductors.
H − µN for semimetals, metals and semiconductors. Eg and µeff are always

positive, but for metals µ > Eg (the chemical potential is in the conduction band),
and for semiconductors µ < Eg (the chemical potential lies in the gap). One could
also consider a quadratic semimetal, which is the gapless case of a semiconductor

with Eg = µ = 0.

We want to allow this action to describe semimetals, metals and insulators.

Therefore εσ is general, and we include a chemical potential µ. Then defining

ξσ(k) = εσ(k) − µ, we list the possible cases in Table 2. In the case of semimetals,
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the transformation matrix U(k) to bring Ĥ to this basis is momentum dependent.

Therefore the interaction term Sint acquires additional momentum structure, making

this basis ill suited for formulating the effective field theory. It is, however, the ideal

basis for computing the Ward identity, as will see. We redefine the spinors to be given

by:

ησn(k) =
1√
2

(ψσ(k),−ψ̄σn(−k))T , (4.43a)

η+σ
n (k) = (τ2η

σ
n(−k))T =

1√
2

(ψ̄σ(k), ψσn(−k)) .

(4.43b)

Then B = η+ ⊗ η as usual, except now we decompose B and Q matrices as

Qσ1σ2
nm (p, q) =

∑3
r=0 rQ

σ1σ2
nm (p, q)τr, etc. For [Qσ1σ2

nm (x, y)]T = (QT )σ2σ1mn (y,x), with

(QT ) denoting a transpose acting on the τ basis, we have that

Q+ ≡ τT2 Q
T τ2 = Q . (4.44a)

This results in the following properties:

rQ
σ1σ2
nm (x, y) =

 +
−
−
−


r

rQ
σ2σ1
mn (y,x) , (4.44b)

rQ
σ1σ2
nm (p, q) =

 +
−
−
−


r

rQ
σ2σ1
mn (−q,−p) . (4.44c)

The diagonal basis makes all the dispersion relations even in momentum, so the Green

function takes on a simple general form. The action can once again be mapped to a
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bosonic one using the techniques of Section 4.3. We get:

A[Q, Λ̃] = A0 + Tr [Λ̃TQ] + Aint[Q] , (4.45a)

where

A0 =
1

2
Tr ln

(
G−1

0 − iΛ̃
)
, (4.45b)

(G−1
0 )σ1σ2nm (k, p) = τ0

δσ1σ2δnmδk,p
iωn − ξσ1(p)

. (4.45c)

Ward Identity for Noninteracting Electrons

Consider transformations of the bispinors given by:

ηn(x)→
∫
dy T̂ (±)

nm (x, y)ηm(y) , (4.46a)

where the operator T̂ (±) defines non-local infinitesimal rotations in frequency-band

space:

T̂ (±)
nm (x, y) = τ0(t(±))αβnm(x, y) , (4.46b)

(t(±))αβnm(x, y) = δnmδ
αβδ(x− y) +

[
δn1δm2δ

ασδβτ ∓ δn2δm1δ
ατδβσ

]
ϕ(±)(x, y) .

(4.46c)
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Here the indices 1, 2 correspond to fixed Matsubara frequency indices n1 and n2

respectively, not actual numbers. The function ϕ(±) is given by

ϕ(±)(x, y) =
1

2
[φ(x, y)± φ(y,x)] = ±ϕ(±)(y,x) . (4.46d)

It is easy to check T (±) is symmetric, and since it acts as identity in τ space, it leaves

τ2 invariant, (T (±))T τ2T
(±) = τ2 (see Appendix E). The condition (T (±))T τ2T

(±) = τ2

implies the set of all {T±} forms the group Sp(4M), where 2M is the number of

Matsubara frequencies, and the additional factor of 2 comes from the number of

bands. The action of T on τ2 implies that for η → Tη, it follows Q ≡ τ2η ⊗ η →

TQT T . Q is not invariant under the action of T , it transforms as Qαβ
nm(x, y) →

Qαβ
nm(x, y) + δQαβ

nm(x, y) with

δQαβ
nm(x, y) =∫

dy1ϕ
(±)(y, y1)

(
δβσm1Q

ατ
n2(x, y1)∓ δβτm2Q

ασ
n1 (x, y1)

)
+∫

dx1ϕ
(±)(x,x1)

(
δασn1Q

τβ
2m(x1, y)∓ δατn2Q

σβ
1m(x1, y)

)
,

(4.47)

where we have defined δαβnm ≡ δαβδnm. The Lagrange multiplier field Λ̃ transforms as

Q does, on account of the bilinear coupling between the two. Of the three terms in the

action in Equation (4.45), the second one is invariant under these transformations,

but A0 and Aint are not. Focusing on noninteracting electrons for the time being, we
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find in Appendix F, A0 → A0 + δA0 with

δA0 =
1

2

∑
p,k

ϕ(±)(k, p)tr [iΩ1−2 + (−ξσ(k) + ξτ (p))] (Gτσ
21 (p, k) +Gστ

12 (−k,−p)) .

(4.48)

A Ward identity can now be derived by the techniques of Reference [69]. We introduce

a matrix source field J for Q in the partition function to obtain the generating

functional

Z[J ] =

∫
D[Q, Λ̃] eA0+Tr (Λ̃TQ)+Tr (JQ) . (4.49)

Then by performing the infinitesimal rotation defined by ϕ(±), differentiating with

respect to Jτσn2n1
(y,x), and putting J = 0, we obtain a Ward identity:

〈
δA0Q

στ
n1n2

(x,y)
〉
A0

+
〈
δQστ

n1n2
(x,y)

〉
A0

= 0 . (4.50)

From Equations (4.48) and (4.50) we see that this relates correlation functions of

the structure 〈trGQ〉 to 〈Q〉. The former can be rewritten in terms of 〈QQ〉 by

generalizing the generating functional given in Equation (4.49). Since the Q are

isomorphic to B, we can write the source term JQ = xJQ + (1 − x)JB with an

arbitrary real number x. Putting this source term in the original S[η, Λ̃, Q] action

before integrating out η makes the generating functional

Z[J ] =

∫
D[Q, Λ̃] e

1
2

Tr ln[G−1+i(1−x)JT ]+xTr (JQ)+Tr (Λ̃TQ) . (4.51)

Note that this is independent of x, and that by choosing x = 1 we recover Equation

(4.49). By differentiating with respect to J , choosing x = 0 and x = 1, respectively,
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and putting J = 0 we obtain an identity

〈Gτσ
n2n1

(x2,x1)〉 = −2i 〈Qστ
n1n2

(x1,x2)〉 . (4.52a)

Then differentiating 〈Q34〉Z[J ] with respect to J12 (for 1-4 being general indices) we

find

〈Gσ1σ2
n1n2

(x1,x2)Qσ3σ4
n3n4

(x3,x4)〉 = −2i 〈Qσ1σ2
n1n2

(x1,x2)Qσ3σ4
n3n4

(x3,x4)〉 . (4.52b)

Equation (4.52b) allows us to rewrite the trG as a trQ in Equation (4.48) when we

insert δA0 into Equation (4.50). We are then able to use the symmetry properties of

Q, further simplifying the expression. Equation (4.50) now reads explicitly as3

〈δA0Q
σ3σ4
n3n4
〉 =

= −4i
∑
p,k

ϕ(±)(k, p) [iΩ1−2 + (−ξσ1(k) + ξσ2(p))] 〈0Qσ2σ1
n2n1

(p, k)Qσ3σ4
n3n4

(p3, p4)〉

≡ −ϕ(±)(p3,p4)
[
±δσ4σ1n4n1

δσ3σ2n3n2

(
〈Qσ2σ2

n2n2
(p3,p3)〉 − 〈Qσ1σ1

n1n1
(p4,p4)〉

)
+

+ δσ3σ1n3n1
δσ2σ4n2n4

(
〈Qσ2σ2

n2n2
(p4,p4)〉 − 〈Qσ1σ1

n1n1
(p3,p3)〉

)]
= −〈δQσ3σ4

n3n4
(p3,p4)〉 . (4.53)

3The total factor of −4i comes from a factor of 2 from the trace, 2 from summing the two G’s
using the Q symmetry properties and -2i from the above identity.
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Differentiating (4.53) with respect to φ yields two identities, one for ϕ(+) and one for

ϕ(−). Adding them gives us the Ward identity:

Dσ1σ2σ3σ4
n1n2,n3n4

(k,p; q) ≡
〈

0Q
σ1σ2
n1n2

(k; q) 0Q
σ3σ4
n3n4

(p;−q)
〉

=

i

4
δk,−pδ

σ1σ3
n1n3

δσ2σ4n2n4

〈0Qσ1σ1
n1n1

(p− q/2)〉 − 〈0Qσ2σ2
n2n2

(p+ q/2)〉
iΩ1−2 + ξσ2(k− q/2)− ξσ1(k+ q/2)

+
i

4
δk,pδ

σ1σ4
n1n4

δσ2σ3n2n3

〈0Qσ1σ1
n1n1

(p+ q/2)〉 − 〈0Qσ2σ2
n2n2

(p− q/2)〉
iΩ1−2 + ξσ2(k− q/2)− ξσ1(k+ q/2)

(4.54)

Let us now define J1234 = δσ1σ3n1n3
δσ2σ4n2n4

, then upon restricting ourselves to Qnm where

n ≥ m, and noting n1 6= n2, we arrive at the Ward identity in its final form:

Dσ1σ2σ3σ4
n1n2,n3n4

(k,p; q) ≡
〈

0Q
σ1σ2
n1n2

(k; q) 0Q
σ3σ4
n3n4

(−p;−q)
〉

=

i

4
δk,pJ1234

〈0Qσ1σ1
n1n1

(k+ q/2)〉 − 〈0Qσ2σ2
n2n2

(k− q/2)〉
iΩ1−2 + ξσ2(k− q/2)− ξσ1(k+ q/2)

.

(4.55)

Soft Modes in Noninteracting Electron Systems

Let us first discuss the Ward identity for noninteracting systems. We will see

that it reveals a family of soft modes for each system, corresponding to the symmetry

breaking Goldstone modes identified in the saddle point expansion. Consider the

limiting behavior of (4.55) for ω1, ω2, q → 0. Using equation (4.52a), we see this is

determined by:

−2i
〈

0Q
σσ
n1n1

(p+ q/2)
〉

=
1

iωn1 − ξσ(p+ q/2)
, (4.56)
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which in the limit ωn1 → 0 goes to

−iπsgn (ωn1)δ(ξ
σ(p+ q/2))− P

(
iωn1

ξσ(p+ q/2)2
+

1

ξσ(p+ q/2)

)
, (4.57)

where P denotes the Cauchy principal value. We then see the limiting behavior of

Equation (4.55) for small frequencies is:

Dσ1σ2σ3σ4
n1n2,n3n4

(k,p; q)→ i

4
δk,pJ1234

1

iΩ1−2 + ξσ2(p− q/2)− ξσ1(p+ q/2)
×

[−iπ (sgn (ωn1)δ(ξ
σ1(p+ q/2))− sgn (ωn2)δ(ξ

σ2(p− q/2)))−

− P

(
iωn1 + ξσ1(p+ q/2)

ξσ1(p+ q/2)2
− iωn2 + ξσ2(p− q/2)

ξσ2(p− q/2)2

)]
.

(4.58)

For simplicity assume σ1 = σ2, then in the small q limit we obtain

Dσ1σ1σ3σ4
n1n2,n3n4

(k,p; q)→ i

4
δk,pJ1234

1

iΩ1−2 + ξσ1(p− q/2)− ξσ1(p+ q/2)
×

[iπ(sgn (ωn2)− sgn (ωn1))δ(ξ
σ1(p))−

−P
(
iΩ1−2 + ξσ1(p− q/2)− ξσ1(p+ q/2)

ξσ1(p)2

)]
.

(4.59)

This is an extension of the argument by Belitz and Kirkpatrick in Reference [14].

We see that in Fermi liquids, for n1n2 < 0, the numerator approaches something

finite, while the denominator goes to zero, whereas for n1n2 > 0, the numerator

and denominator cancel, leaving a finite number. This in turn implies that there

is an infinite number of soft modes in the conduction band of Fermi liquids (i.e.

σ1 = σ2 = 0) that can be obtained by taking all possible moments of Equation (4.55)
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with respect to the center-of-mass wave vector p, provided Qn1n2 satisfies ωn1ωn2 < 0.

These soft modes are the Goldstone bosons of the system, previously identified by the

saddle point Qsp
n1n2

not being invariant under mixing between retarded and advanced

frequencies. By equivalently inspecting D for σ1 6= σ2 in Fermi liquids, and all choices

of (σ1, σ2) in semiconductors, one can easily see there are no soft-modes for those

cases. This is because either the delta functions cannot be satisfied by real valued

momenta for interband excitations (due to filled/empty bands) or the denominator

in Equation (4.57) picks up a ”mass” determined by the energy gap Eg that prevents

it from vanishing in intraband excitations.

We would like to now extend this argument to semimetals to understand the

nature of the soft modes such systems. However, the conclusions above do not

immediately apply to semimetals due to their vanishing density of states (DOS).

Due to the lack of a Fermi surface, ξσ(p) = 0 requires p = 0 in DSMs. Thus, if q = 0,

the delta functions in Equation (4.59) yield zero for any moment of the center-of-mass

wave vector p, i.e.

∫
dp pd−1+mf(p)δ(ξσ(p)) = 0, (4.60)

for any function f(p) that is finite at p = 0. Thus we need to use the full function

Equation (4.58). Let us focus first on the real part of this equation. Calculating the
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mth p moment of ReDσ1σ2σ1σ2
n1n2n1n2

(k,p, q) we find

∑
k,p

pmReDσ1σ2σ1σ2
n1n2n1n2

(k,p, q) ∝

∝ π

4

∫
dp pm

sgn (ωn1)δ(ξ
σ1(p+ q/2))− sgn (ωn2)δ(ξ

σ2(p− q/2))

iΩ1−2 + ξσ2(p− q/2)− ξσ1(p+ q/2)

≈ π

4

∫
dΩ

∫
dp δ(ξσ1(p))

[
|p− q/2|d−1+msgn (ωn1)

iΩ1−2 + ξσ2(p− q)− ξσ1(p)
−

− |p+ q/2|d−1+msgn (ωn2)

iΩ1−2 + ξσ2(p)− ξσ1(p+ q)

]
=

π

4
Sd−1

qd−1+m

vD

[
sgn (ωn1)

iΩ1−2 + ξσ2(q)
− sgn (ωn2)

iΩ1−2 − ξσ1(q)

]
, (4.61)

where in the second line we have used that for semimetals δ(ξ1(p)) = δ(ξ0(p)), and

neglected corrections to the angular integration limits due to the q/2 shifts.4 In the

third line Sd−1 is the area of the d − 1 sphere. In the analogous calculation for a

Fermi liquid, the delta function would contribute to leading order in q a factor of the

density of states at the Fermi level NF , to the final expression, for semimetals we see

NF is replaced by the wave number dependent DOS of semimetals qd−1/vD.

At this level of approximation, we see that n1n2 > 0 yields a non-zero result

provided σ1 6= σ2. This agrees with the decomposition made by Abrikosov and

Beneslavskii in Reference [4]. One could be tempted at this moment to claim modes

that have n1 = n2 and σ1 6= σ2 are of less importance to the field theory, and can

be integrated out. However, the calculations done thus far are in the qvD � Ω1−2

limit. Dimensional analysis, or a rigorous calculation show that if we move away from

this limit, Equation (4.61) will pick up a ωd−1+m
ni

dependence. We have therefore

4The trick of Taylor expanding the δ-function has the unfortunate consequence of eliminating
any log divergent log(1/q) type terms from the final result. These will be present in later sections
of the work when the integrals are performed exactly.
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demonstrated that all channels of Dσ1σ2σ1σ2
n1n2n1n2

(k,p, q) are equally important5 in non-

interacting semimetals. Moreover, Equation (4.61) suggests that the generalized

particle-hole excitations in semimetals behave like those in Fermi liquids, only with

any instance of NF replaced by q and ωni dependent terms that scale as the the

semimetal DOS N(ω) ∼ |ω|d−1 ∼ qd−1. This is indeed the case, and the claim can be

made more rigorous by an exact calculation. Equation (4.57) allows us to write the

zeroth moment of the Ward identity, Equation (4.55), in the following way:

Dσ1σ2n1n2
(q) ≡ 1

V

∑
k,p

Dσ1σ2σ1σ2
n1n2n1n2

(k,p; q) =

1

8

1

V

∑
p

1

iωn1 − ξσ1(p+ q/2)

1

iωn2 − ξσ2(p− q/2)
,

(4.62)

We will first considerDσ1σ2n1n2
(0), as this will already demonstrate the softness/massiveness

of each mode. These results are summarized in Tables 3 and 4, in which we can

easily see the softness/massiveness of the various modes. It is immediately obvious

that all DSM modes are equally soft, but with a vanishing weight that scales as the

density states times a log divergent term. What we would like to now demonstrate,

is that modulo logarithmic divergences, the particle-hole modes of semimetals can be

viewed as those for Fermi liquids in the semimetal limit. By this we mean taking

µ,NF ,me → 0, while keeping vF = kF/me fixed. This is of interest because it

has implications for the difference in the scaling behavior of observables for the two

5We have not addressed what the imaginary part of D does in the text. Due to the lack of a
chemical potential, the Cauchy principal value will vanish at 0 momentum, so it cannot provide any
O(1) terms as in the Fermi liquid case. Moreover it ignores the frequency signs, so it cannot elevate
any subset of modes to greater importance.
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systems. To demonstrate the limiting behavior, we will need the non-zero momentum

dependence of Dσ1σ2nm (q) for the two systems.

It is sufficient to compute the particle-hole excitations in the conduction band

for Fermi liquids D00
nm(q), as that is where the soft modes occur. For semimetals,

all channels are soft, so we must compute all channels of Dσ1σ2nm (q). We note here

that from Equation (4.62) it is easy to see that the quantity ImDσ1σ2(n+m)n(q) is odd

in ωn, and thus any contraction over ωn will eliminate the imaginary part. Table

3 already demonstrates that ImDσ1σ2(n+m)n(q) is soft, with a faster vanishing weight

than the real part. We can thus restrict ourselves to evaluating ReDσ1σ2(n+m)n(q) for

semimetals. If explicit knowledge of ImD is desired, it can be computed from ReD

using the Kramers-Kronig relationship [61]. Defining:

ϕ(q, ωn, ωm) =


i log

[
−iqvD − |ωn + ωm|
iqvD − |ωn + ωm|

]
for ωnωm > 0

i log

[
−iqvD − |Ωn−m|
iqvD − |Ωn−m|

]
for ωnωm < 0

,

(4.63a)

in the limit of small q we obtain for DSMs (d = 3):

ReDσ1σ2nm (q) =
1

π(4vD)3

[
−(−1)σ1+σ2(|ωn|+ |ωm|)+

6ωnωm + (−1)σ1+σ2(q2v2
D + 3(ω2

n + ω2
m))

6qvD
ϕ(q, ωn, ωm)

]
.

(4.63b)

The following property then gives us the appropriate form of ReDσ1σ2nm (0) in Table 3:

lim
q→0

i

q
log

(
−iqvD −X
iqvD −X

)
= − 2

X
(4.64)
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System Dirac Semimetal

(σ1, σ2, sgn(ωmωn))

(0, 0,+)
ω2

1/v
3
D

iω1 − iω2

log

(
ΛvD + iω1

iω1

)
− ω2

2/v
3
D

iω1 − iω2

log

(
ΛvD + iω2

iω2

)
(0, 0,−)

ω2
1/v

3
D

iω1 − iω2

log

(
ΛvD + iω1

iω1

)
− ω2

2/v
3
D

iω1 − iω2

log

(
ΛvD + iω2

iω2

)
(0, 1,+)

ω2
1/v

3
D

iω1 + iω2

log

(
ΛvD + iω1

iω1

)
− ω2

2/v
3
D

iω1 + iω2

log

(
ΛvD + iω2

iω2

)
(0, 1,−)

ω2
1/v

3
D

iω1 + iω2

log

(
ΛvD + iω1

iω1

)
− ω2

2/v
3
D

iω1 + iω2

log

(
ΛvD + iω2

iω2

)
(1, 1,+) − ω2

1/v
3
D

iω1 − iω2

log

(
ΛvD + iω1

iω1

)
+

ω2
2/v

3
D

iω1 − iω2

log

(
ΛvD + iω2

iω2

)
(1, 1,−) − ω2

1/v
3
D

iω1 − iω2

log

(
ΛvD + iω1

iω1

)
+

ω2
2/v

3
D

iω1 − iω2

log

(
ΛvD + iω2

iω2

)
TABLE 3. Tabulated results for Dσ1σ2nm (0) in d = 3 for Dirac Semimetals. Real valued
coefficients of proportionality have been suppressed in each case. Note that (−1)σi

determines the band, such that 0 and 1 are conduction and valence respectively.

Equation (4.63) was obtained using dimensional regularization to suppress UV

divergent terms that scale like Λ and log Λ, see Reference [66]. This is because

the bands are not linear to the Brillouin zone boundary, and crystals have smooth

cut-offs [67]. This trick has the unfortunate side effect of also suppressing any

terms with a logarithmic non-analyticity, i.e. the terms that scaled as Ω log(ΛvD/Ω)

in Table 3, for Λ a UV cut-off, are not present in the result. By dimensional

analysis we could conclude that for q 6= 0, we are suppressing terms of the order

q2v2D+Ω2

vDq+Ω
log(Λ2/(q2 + Ω2/v2

D)), which is correct. In the development of the effective

field theory in Section 4.7, such terms will be treated exactly.
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System Fermi Liquid Semiconductor

(σ1, σ2, sgn)

(0, 0,+)
im

3/2
e sgnωn√

µeff + iωn +
√
µeff + iωm

m
3/2
e√

µeff − iωn +
√
µeff − iωm

(0, 0,−)
im

3/2
e sgnωn√

µeff + iωn −
√
µeff + iωm

m
3/2
e√

µeff − iωn +
√
µeff − iωm

(0, 1,+)
im

3/2
e

sgnωn
√
µeff + iωn + i

√
µ+ iωm

m
3/2
e√

µeff − iωn +
√
µ+ iωm

(0, 1,−)
im

3/2
e

sgnωn
√
µeff + iωn + i

√
µ+ iωm

m
3/2
e√

µeff − iωn +
√
µ+ iωm

(1, 1,+)
m

3/2
e√

µ− iωn +
√
µ+ iωm

m
3/2
e√

µ− iωn +
√
µ+ iωm

(1, 1,−)
m

3/2
e√

µ− iωn +
√
µ+ iωm

m
3/2
e√

µ− iωn +
√
µ+ iωm

TABLE 4. Tabulated results for Dσ1σ2nm (0) in d = 3 for Fermi liquids and
semiconductor. In the case of semiconductors, due to the bandgap none of the modes
have real valued ω poles, i.e. they are all massive. Note that real valued coefficients of
proportionality have been suppressed in each case. Note that sgn≡ sgn (ωnωm), and
(−1)σi determines the band, such that 0 and 1 are conduction and valence respectively.
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For σ1 = σ2 = 0 in Fermi liquids in d = 3 we must compute:

D00
nm(q) =

=
1

8

1

(2π)2

∫ 1

−1

dη

∫ ∞
0

dp
p2

iωn + µ− (p2 + q2/4 + pqη)/2me

×

× 1

iωm + µ− (p2 + q2/4− pqη)/2me

=
1

16

1

(2π)2

∫ 1

−1

dη

∫ ∞
0

dp
p2

iωn + µ− (p2 + q2/4 + pqη)/2me

×

× 1

iωm + µ− (p2 + q2/4− pqη)/2me

+ (η → −η) ,

(4.65)

where in the second line we have used the fact that substituting η → −η turns the

second integral into the first. The p-integral is now even and can be evaluated by

contour integration. We then approximate assuming qvF, ωi � µ. For ωnωm > 0 we

get:

D00
nm(q) ≈ 1

8π
sgn (ωn + ωm)

NF +O(meq,
meωi
vF

) +O( q
2

vF
,
ω2
i

v3F
)√

2 + i(ωn + ωm)/8µ− q2/4k2
F

i

vFq
×

× log

[
2kF

√
2 + i(ωn + ωm)/2µ− q2/4k2

F − iq
2kF

√
2 + i(ωn + ωm)/2µ− q2/4k2

F + iq

]
,

(4.66a)

where the numerical coefficients of the sub-leading terms have been suppressed. Note

for q < kF the log term is always imaginary, so D00
nm(q) is overall real. For q → 0 we

recover the same behavior as shown in Table 4, provided one assumes ωi � µ. For
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ωnωm < 0 we obtain the limiting behavior

D00
nm(q) ≈ 1

16π
sgn (Ωn−m)

NF +O(meq,
meωi
vF

) +O( q
2

vF
,
ω2
i

v3F
)

vFq
i log

[
Ωn−m − iqvF

Ωn−m + iqvF

]
+O

(
ωi
v3

F

)
. (4.66b)

One can readily see from the soft Fermi liquid correlation function, Equation (4.66b),

that the semimetal correlation function has the same behavior as a Fermi liquid with

me, NF → 0, but vF → vD fixed. Dimensionality of the coefficients of the q’s and

ωi’s in the numerator ensure that the only leading order terms that can survive are

q2/vF and ω2
i /v

3
F. If a term like qΩ/v2

F existed in the numerator it would remain in

the semimetal limit, but no such term is there. A similar limiting behavior could be

derived for the Fermi liquid massive modes in Equation (4.66a), if one had not made

the assumption µ � q, ωi in obtaining it. However, while an explicit analysis of the

massive modes is technically feasible, the resulting expressions are rather cumbersome,

and thus will not be discussed in this text.

Before moving on, let us briefly return to the suppressed logarithmic non-

analyticities in the DSM case. If one were to impose a UV cut-off in the Fermi

liquid theory and perform the above integrals exactly, and never make expansions

assuming µ� q, ωi, one would obtain logarithmic factors that schematically scale as

log(Λ/(kF +q+Ω)). In the limit kF → 0, this function scales as the logarithmic terms

we suppressed in the DSM case through dimensional regularization. This observation

ultimately reflects the equivalence of different regularization schemes, i.e. instead of

using dimensional regularization, we could have introduced an artificial mass term to

the DSM propagators, and then taken the limit of vanishing mass to reproduce our

results [66].
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One could repeat the entire soft mode exercise in d = 2 to compare Fermi liquids

with graphene, and see the same story play out. Since the expressions involved are

significantly more cumbersome, we can make our argument purely with dimensional

analysis. The correlation function, D00
nm(q), for Fermi liquids in d = 2 will once again

scale like density of states N over energy E:

D00
nm(q) ∝ N(q, ωi)

E(q, ωi)
, (4.67)

where E(0, 0) ∝ µ for massive modes (ωnωm > 0) and E(0, 0) = 0 for soft modes

(ωnωm < 0). The density of states term for d = 2 expands like:

N(q, ωi) = NF +O(
q

vF

,
ω

v2
F

) + . . . (4.68)

Therefore, in the semimetal limit me, NF , µ → 0, vF → vD fixed, the linear terms in

q and ωi are retained, which scale as the bare DOS in graphene, N(ω) ∝ ω/v2
D.

The Ward identity only identifies which elements of 0Qnm are soft. One can

show that the same statement holds for arbitrary values of r, the reason being that

the 〈0Q0Q〉 and 〈rQrQ〉 correlation functions are related by means of an unbroken

symmetry. Consider the following transformation:

Tnm = δnm(δnn2xrτr + (1− δnn2)τ0) , (4.69)

where xr = (1, i, 1, i)r. Tnm is clearly orthogonal, and S0[Q] is clearly invariant under

Q → Q̃ = TQT T . Under such a transformation 0Qnn2 = trQnn2 → tr Q̃nn2 ∝ rQnn2
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for n 6= n2, thus:

〈0Q0Q〉 =

∫
D[Q,Λ]eS0[Q,Λ]trQtrQ

→
∫
D[Q̃, Λ̃]eS0[Q̃,Q̃]tr Q̃tr Q̃

=

∫
D[Q,Λ]eS0[Q,Λ]tr Q̃tr Q̃ ∝ 〈rQrQ〉 .

Hence rQ correlations have the same behavior as those for 0Q.

The Case of Interacting Electrons

At this point in our analysis, we would be motivated to construct an effective

field theory for semimetals that explicitly includes all Qnm modes, unlike the Fermi

liquid case in which modes with ωnωm > 0 are integrated out due to their massiveness.

The question that remains is what is the impact of interactions on the conclusions

of the non-interacting Ward identity? Formulated more succinctly, can interactions

cause certain modes in semimetals to become truly soft or truly massive?

Let us first return to the original action of the problem, and rewrite the

interaction between fermionic fields ψ(x) as one mediated by a potential ϕ(x) coupled

to the fermions by some constant γ:

S = S0[ψ] + S0[ϕ] + γ

∫
dx
∑
n,m,σ

ϕm(x)ψ̄σn+m(x)ψσn(x) .

(4.70)

In this form it is easy to see that the interacting part of the action is also invariant

under rotations between retarded and advanced degrees of freedom for vanishing

external frequency (Ωm → 0). Hence, any saddle point solution of the action that
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breaks this rotational symmetry is a Goldstone mode, even when interactions are

included. We can now repeat the Ward identity derivation, including interaction

terms. To this end, within the A0 term, we can shift Λ̃ → 〈Λ̃〉 + iδΛ̃, where 〈Λ̃〉 is

determined by the saddle point. Then we arrive at a new Ward identity:

−4i[iΩ1−2 + (ξ∗)σ2(k− q/2)− (ξ∗)σ1(k+ q/2)]Dσ1σ2σ3σ4
n1n2n3n4

(k,p; q)

= J1234δk,pNn1n2(k, q)−W σ1σ2σ3σ4
n1n2n3n4

(k,p; q) .

(4.71)

Here ξ∗ is the Hartree-Fock corrected dispersion relation, and

Nn1n2(k, q) = 〈0Qσ1σ1
n1n1

(k+ q/2)〉 − 〈0Qσ2σ2
n2n2

(k− q/2)〉 , (4.72a)

W σ1σ2σ3σ4
n1n2n3n4

(k,p; q) = 〈0Qσ3σ4
n3n4

(p;−q)δAint〉 , (4.72b)

δAint =
4T

V

∑
p1,q1
n′1n
′
2

∑
α

r=0,3

Γd(q1)0Q
αα
n′1n
′
2
(p1,p1 − q1)

×
[
rQ

σ2σ1
n2,n′2−n′1+n1

(k+ q/2,k− q/2 + q1)−

−(−1)rrQ
σ2σ1
n′2−n′1+n2,n1

(k+ q/2− q1,k− q/2)
]
. (4.72c)

Provided that the saddle point selected is still that of a semimetal, the one point part

of the correlation function, Nn1n2(k, q) will behave as in the noninteracting case, only

with renormalized Dirac velocities, and quasi particle residues. If we were to select a

saddle point that broke the semimetal phase, either opening a gap or creating a Fermi

surface, the conclusions of the previous section would not apply, and we would be in a

semiconductor or Fermi liquid like regime respectively. The semimetal saddle point,
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however, is perturbatively stable [70–75]. Therefore, the only significant alteration

in the Ward identity’s behavior would have to originate from the 3-point correlation

function W σ1σ2σ3σ4
n1n2n3n4

(k,p; q). As W is a function that vanishes with the interaction

coupling γ, while Nn1n2 does not, we know W cannot cancel the numerator behavior

seen for non-interacting semimetals except for special values of γ. Let us now assume

the worst happens, the interaction term somehow adds a constant numerator to one

channel of sgnωmωn, but not the other. Then, we would still be compelled to explicitly

account for all the bosonic modes in an effective field theory, because the vanishing

denominator of a soft-mode with or without zero weight can impact the non-analytic

dependence of observables on frequency and wave number. In the following section,

we will therefore derive an effective field theory that accounts for all Q degrees of

freedom.
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Expansion About The Dirac Semimetal Saddle Point

Action

Having determined the saddle point solutions in Equation (4.30), we can now

expand the action about them. Letting Λ̃→ Λ̃sp + Λ and Q̃→ Qsp +Q in A[Q̃, Λ̃] as

defined in (4.19) yields:

A = Asp +A(2) + ∆A , (4.73)

where Asp is the saddle point action, A(2) denotes the Gaussian fluctions and ∆A

contains fluctuations of cubic or higher order resulting from the expansion. Note that

as these come from the Tr logG term, they only contain powers of Λ̄:

∆A = −
∞∑
n=3

in

2n
Tr (GspΛ)n . (4.74)

The Gaussian part is found to be:

A(2) =
1

4
Tr (GspΛGspΛ) + Tr (ΛTQ) +Aint[Q] ,

(4.75)

with Gsp defined by:

(Gsp)αβmn(k,p) = −δk,pδαβmn
τ0 ⊗ (iωns0 + αvDp · σ)

ω2
n + p2v2

D

≡ δk,pδ
αβ
mnG

α
n(p) , (4.76)
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where we have let v∗D ≡ vD, and σ is acting in s-space. It is now convenient to define

the inverse Green function G−1
sp ≡ L:

Lαβmn(k,p) = δk,pδ
αβ
mnτ0 ⊗ (iωns0 − αvDp · σ)

≡ δk,pδ
αβ
mnL

α
n(p) . (4.77)

Next, for any function of m 4-momenta f , define f1...m ≡ fn1...nm(p1 . . .pm), and

the operation f ‡1...m = fn1...nm(p1 . . .pm)‡ = fn1...nm(−p1 . . . − pm). Finally, we will

now impose on all objects with two 4-momenta f12 that n1 ≥ n2. Observe that

i
rL

α
1 = (1/4)tr ((τr ⊗ si)†Lα1 ) ∝ δr0. Letting i

0L
α
1 ≡ iLα1 and iGα

1 = 1
4
tr (τ0 ⊗ s†i )Gα

1 , we

can define the matrix Mαβ
12 and its inverse:

ijMαβ
12 ≡

∑
i1,i2

i1Lα1
i2Lβ2 tr (si1sisi2sj) , (4.78a)

ijM−1αβ
12 =

1

4

∑
i1,i2

i1Gα
1
i2Gβ

2 tr (s†isi2s
†
jsi1) (4.78b)

The inverse is only defined on the i, j indices. Some useful properties of the M -matrix

are:

ijMαβ
12 = jiMβα

21 , (4.78c)

ijM−1αβ
12 = jiM−1βα

21 , (4.78d)

We are now in a position to decouple Λ and Q at the Gaussian level. This comes at

the cost of coupling them at all orders higher than the quadratic part of the action,

but it provides us a Gaussian theory for which we can define individual Q and Λ

78



propagators. Let

Λαβ
12 → 2Lα1 Λ̄αβ

12 L
β
2 − 2Lα1 Q̄

αβ
12 L

β
2 , (4.79)

where we have defined

i
rQ̄

αβ
12 =

 +
+

−
−


r

 +
−
+
−


i

i
rQ

αβ
12 . (4.80)

A transformation like Equation (4.79), where M → AM̄A for n×n matrices M and A,

imparts a Jacobian to the measure of the partition function D[M ]→ det(A)2nD[M ].

We generally don’t have to worry about this term as it will factor out in the partition

function’s normalization term whenever we compute expectation values. Under the

transformation the Gaussian action minus the interaction contribution A(2)
0 = A(2)−

Aint, becomes:

A
(2)
0 = 4

∑
i,j,r
...

 +
−
−
+


r

 +
−
−
−


j

ijM
αβ

12 I12

(
i
rΛ̄

αβ
12

j
rΛ̄

αβ
12

‡ − i
rQ̄

αβ
12

j
rQ̄

αβ
12

‡)
,

(4.81)

where I12 = 1− δn1n2/2 prevents over counting of the n1 = n2 terms. Then the higher

order terms become:

∆A = −
∞∑
n=3

(−2i)n

2n
Tr (((Q̄− Λ̄)L)n) . (4.82)
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We will need the third order term later on, so let us explicitly write it here. To that

end, let us define

Q/αβ12 = [Q̄− Λ̄]αβ12 Θ(n1 ≥ n2) ,

(irQ
αβ

12 )+ ≡

 +
+

+
−


r

 +
−
−
−


i

i
rQ/

βα
21

‡
Θ(n2 > n1) ,

(4.83)

We emphasize that the object Q/+ is the only one to violate the n1 ≥ n2 rule. With

this definition we have:

∆A(3) = −4i

3
Tr ((Q/+Q/+)L)3 , (4.84a)

∆A(4) = −2Tr ((Q/+Q/+)L)4 , (4.84b)

We can now write down the Gaussian action. For simplicity we will focus on the

impact of the direct channel, although an extension to include all interaction channels

can be done. The Gaussian level action reads:

A = 4
∑
i,j,r
...

 +
−
−
+


r

 +
−
−
−


j

ijM
αβ

12 I12
i
rΛ̄

αβ
12

j
rΛ̄

αβ
12

‡

−4
∑
i,j,r
...

 0
−
−
0


r

 +
−
−
−


j

ijM
αβ

12 I12
i
rQ̄

αβ
12

j
rQ̄

αβ
12

‡

−
∑
r=0,3
...

 +
−
+
−


i

 +
+

−
+


j

 +
0

0
+


r

ijW
αβ,µν

12,34 I12
i
rQ

αβ
12

j
rQ

αβ
34

‡
, (4.85)

where we have specified that Q is purely non-interacting in the r = 1, 2 channels in

the second line. The W tensor is the Gaussian level coupling in the r = 0, 3 channels
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including both non-interacting and interacting contributions:

1

4
ijWαβ,µν

12,34 = ijMαβ
12 δ

αµ
13 δ

βν
24 − δij

4T

V
δ1−2,3−4Γd1−2δ

αβδµνδi0 .

(4.86)

We will need the inverse of the tensor W−1, which is defined by satisfying the following

identity (repeated indices are summed over):

ij
1
αβ,µν
12,34 = δijδαµ13 δ

βν
24 = ikWαβ,µ̄ν̄

12,3̄4̄
kjW−1µ̄ν̄,µν

3̄4̄,34 = ikW−1αβ,µ̄ν̄
12,3̄4̄

kjW µ̄ν̄,µν
3̄4̄,34

. (4.87)

While W−1 can be constructed for all interactions, we will initially want to focus on

what the direct channel does to the semimetal system. This corresponds to setting

Γei ≡ 0 in Equation (4.86). In such a case the inverse is given by:

ijW−1αβ,µν

12,34 =
1

4
ijM−1αβ

12 δ
αµ
13 δ

βν
24 +

T

V
Γ̃d1−2

i0M−1αβ

12
0jM−1µν

34 δ
αβδµνδ1−2,3−4 .(4.88)

See Appendix G for properties of this tensor. The function Γ̃d1−2 is the random phase

approximation (RPA) corrected interaction

Γ̃d1−2 ≡
Γd1−2

1− Γd1−2χ1−2

, (4.89)
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with the susceptibility χ1−2 given by:

χ1−2 ≡ χm(q) = 4
T

V

∑
σ34

δ1−2,3−4
00M−1σσ

3,4

= 4
T

V

∑
σpn

00M−1σσ
n+m,n(p+ q,p)

≡ T

V

∑
3,4

δ1−2,3−4Tr (G3G4) . (4.90)

The first line is specific to DSMs but the second line is general to all semimetals. By

virtue of the fact that the effective field theory naturally builds in RPA corrections at

the Gaussian level, it is no longer perturbative in the interaction coefficient Γ. This

is because Γ is now included to all orders in the Gaussian theory. The higher order

terms, ∆A, in the EFT are still perturbative, but now in a loop sense.

For any calculation, we will need the exact form of Γ̃ in equation (4.89), which

in turn requires χ1−2. This can be directly computing using the Feynman trick at

T = 0 [66]. Setting (Ωm, q) = (ωn1 − ωn2 ,k1 − k2), we obtain

(d = 3) χm(q) = − q2

π2vD

(
11

36
+

1

6
log(

Λ2

q2 + Ω2
m/v

2
D

)

)
, (4.91a)

(d = 2) χm(q) = −1

4

q

vD

1√
1 + z2

m

, (4.91b)

with zm = Ωm/vDq. For long ranged interactions, the purely quadratic term in χm(q)

for d = 3 can be treated as a correction to the electric permittivity εr. The polarization

bubble in Eq. (4.91a) agrees modulo a factor of 2 with Abrikosov and Beneslavskii6

and Eq. (4.91b) agrees exactly with Kotov et al. for graphene [4, 76]. It is also

worth observing that χm(q) scales with one additional power of q (or equivalently

6They didn’t allow for two cones of different chirality in their original calculation. The
polarization bubble scales linearly with the number of Dirac cones
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Ωm) than the soft modes discussed in Section 4.6, which reflects the fact that χm(q)

is proportional to a frequency integral of the soft modes.

The field theory we have derived is a local one in the sense that all vertices are

finite or vanish in the limit of small momentum and or wavelength, similar to the case

of the field theory derived for Fermi liquids in Reference [14]. This conclusion can be

reached by means of a scaling argument. For a semimetal, frequency and momentum

scale the same Ω ∼ k, we can therefore perform the scaling analysis purely in terms

of Ω. Now consider the higher order terms in the action ∆A(n) ∝ LnQ/n. As the

inverse Green function scales as L ∼ Ω, then ∆A(n) ∼ ΩnQ/n, which vanishes in the

small Ω limit. The Gaussian term is subtler, as the term due to the electron-electron

interaction scales as (T/V )Γd. While Γd ∼ Ω−2(log |Ω|)−1, the T/V term protects

this from being divergence in the zero frequency limit because T ∼ Ω and V ∼ k−d,

and thus (T/V )Γd ∼ Ω2(log |Ω|)−1.

Propagators

Any calculation for which we will employ the effective field theory will involve

〈QQ〉 correlation functions. In the r = 0, 3 channels they are given by

〈irQ
αβ
12

j
sQ

µν
34

‡〉 =
1

4I12

δrsT
4
r T

1
i T

1
j

[
T 2
j
jiW−1µν,αβ

34,12 + T 2
i
ijW−1αβ,µν

12,34

‡
]

=
1

4I12

δr,sT
4
r T

1
i T

1
j ×

×
[
T 2
j

(
1

4
jiM−1µν

34 δ
αµ
13 δ

βν
24 + T 3

r

T

V
Γ̃d3−4

j0M−1µν

34
0iM−1αβ

12 δ
αβδµνδ1−2,3−4

)
+ T 2

i

(
1

4
ijM−1αβ

12

‡
δαµ13 δ

βν
24 + T 3

r

T

V
Γ̃d3−4

i0M−1αβ

12

‡
0jM−1µν

34

‡
δαβδµνδ1−2,3−4

)]
,

(4.92)
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where we have defined:

T 1
i =

 +
−
+
−


i

T 2
i =

 +
−
−
−


j

(4.93a)

T 3
r =

 +
0

0
+


r

T 4
r =

 +
−
−
+


r

, (4.93b)

That the propagator is a sum of two terms differing under the operation i ↔ j

composed with ‡ can be understood as follows. The Q-fields are classical (bosonic)

fields, so the propagator reflect the fact that they commute, which amounts to being

symmetric under the operation we just defined. However, the Gaussian level coupling

is not invariant under this operation, so the propagator must take the form of a sum

over terms reflecting the operation. This can be seen explicitly by computing the

propagator from first principles using source functions. It is worth noting that the

Gaussian propagator for semimetals has presented complications that did not arise in

the case of a clean or disordered Fermi liquid. Technically speaking, this is because

spin orbit coupling was not present in those cases, and thus the tensor M was diagonal

in the i, j indices, and depended only on the modulus of momentum |p|, for which a

change in sign of p doesn’t affect the propagator.7

It is important to note that all higher order corrections to A depend on Q/, that

is ∆A[Q̄, Λ̄] ≡ ∆A[Q/]. This means that if one were to analyze the derived EFT by

means of a loop expansion, one will never simply compute 〈ΛΛ〉 correlation functions,

but instead compute either 〈QQ/〉 or 〈Q/Q/〉 correlation functions. This is sensible as

7Since developing this theory, a slicker mechanism of expressing the chirality quantum number
in the basis of SU(2) was devised, which greatly simplifies many of the expressions here. This will
be featured in future works.
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Λ is not actually a physical field that fluctuates in the system, it is a mathematical

construct (Lagrange Multiplier field) which exists to constrain Q to bi-fermion fields.

If we were to treat Λ perturbatively, it would relax the constraint on Q, effectively

introducing spurious soft modes to the partition function. Notice at the Gaussian

level, the Q̄ and Λ terms have the same coefficients, but with opposite signs. This

means that the 〈Q/Q/〉 correlation function contains only the interaction dependent

part of the of the 〈Q̄Q̄〉 correlation function. We are therefore able to treat Λ exactly

by formerly eliminating it from the field theory in favor of Feynman rules for Q̄ and

Q/. The 〈Q/Q/〉 correlation function is given by

〈irQ/
αβ
12

j
sQ/

µν
34

‡〉 =

1

4I12

δrsT
3
r Γ̃d1−2δ1−2,3−4δ

αβδµν
T

V

[
T 2
j
j0M−1µν

34
0iM−1αβ

12 + T 2
i
i0M−1αβ

12

‡
0jM−1µν

34

‡
]
.

(4.94)

We are now equipped with an effective field theory and Feynman rules that can be

used to determine the impact of strong interactions on various physical observables.

The usefulness of the field theory will then become evident, as it will enable us to

identify the leading non-analytic corrections to physical observables, which as we

discussed in the Chapter III, correspond to long time-tail and long-ranged correlation

behavior. The ultimate power of the field theory is that due to the highly local nature

of the higher order A(n) terms in the theory, one can perform a renormalization group

analysis of the scaling of observables following the techniques of Reference [77], which

will be the focus of future works.
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CHAPTER V

A SIMPLE APPLICATION: A LOOP EXPANSION FOR THE DENSITY OF

STATES

The Loop Expansion for the Density of States

A simple yet interesting application of the EFT is determining the non-analytic

corrections to the density of states (DOS). Recall from Equation (4.27), the DOS is

given by:

N(ω) =
4

π
Re
∑
α

〈00Q̃αα
nn(x,x)〉|iωn→ω+i0+

≡ ReN(iωn)|iωn→ω+i0+ , (5.1)

where Q̃ is the field in A[Q̃, Λ̃]. Then we have:

N(iωn) =
4

π

∑
α

0
0Q

spαα
nn(x,x) +

4

π
Re
∑
α

〈00Q̃αα
nn(x,x)〉

≡ N sp(iωn) + δN(iωn) , (5.2)

where N sp(iωn) ∝ −ω(d−1)
n /vdD for semimetals, and vD is the Hartree-Fock corrected

Dirac velocity. Computing 〈00Qαα
nn(x,x)〉 requires us to use a loop expansion in the
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FIGURE 4. Diagrammatic representation of DOS calculation.

EFT. To one loop order ∆A(3) contributes:

δN(iωn) = − 4

π
Re

1

V

∑
α,k

〈00Qαα
nn(x,x)∆A(3)〉A(2)

= −16i

3π
Re

1

V

∑
α,k

〈00Qαα
nn(k,k)Tr

[
((Q/+Q/+)L)3

]
〉A(2)

≡ −16i

3π
ReF (iωn) ,

⇒ δN(ω) =
16

3π
ImF (iωn)|iωn→ω+i0+ . (5.3)

Our goal is now to show that F (iωn) is equivalent to the diagram in Figure 4, as was

found by Belitz and Kirkpatrick in Reference [14]. Following Appendix H:

F (iωn) =
T

V 2
6
∑
p,k
m 6=n

−(iωn)2iωm − iωmv2
Dk

2 − 2iωnvDk · p
(ω2

n + v2
Dk

2)2(ω2
m + v2

Dp
2)

Γ̃dn−m(k− p)

=
6

4

T

V 2

∑
p,k
m 6=n

tr (G(iωn,k)G(iωm,p)G(iωn,k)) Γ̃dn−m(k− p) , (5.4)

where the first line is specific to d = 3 dimensions (DSMs) and the second is general

to all dimensions. The difference between the first line for a DSM and graphene is

simply a factor of 2. The goal is to now asymptotically analyze this integral in d = 2

and d = 3 dimensions, for both long ranged and short ranged interactions. We will

explicitly present the long ranged interaction correction to the DOS for DSMs in this

chapter, and refer to Appendices H, I and J for the other cases.
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Non-Analytic Corrections to the Density of States in Dirac Semimetals

We want to determine the leading non-analytic behavior of the following term

as T → 0:

F (iωn) =
6

4

T

V 2

∑
q,k
m 6=0

tr (G(iωn,k)G(iωn + iΩm, q+ k)G(iωn,k)) Γ̃dm(q) , (5.5)

for the screened interactions derived in Equation (4.91a):

Long Ranged Γ̃dl (Ωm, q) =
Γ

q2 + nq2 log(Λ2v2
D/(q

2v2
D + Ω2

m))

≡ Γ

q2
Vl(q

2v2
D + Ω2) , (5.6a)

Short Ranged Γ̃ds(Ωm, q) =
Γ

1 + εrq2 + nq2 log(Λ2v2
D/(q

2v2
D + Ω2

m)

≡ Γ

q2
Vs(q

2, q2v2
D + Ω2) . (5.6b)

In the long ranged case we have absorbed the dimensionless renormalized permittivity

ε0 into Γ, and defined the screening parameter n. If we use the bare Coulomb

interaction as the basis for the long ranged interaction, then n is a dimensionless

constant proportional to the fine structure constant αf = 1/137:

n =
Γ

6π2vD
∼ αf

6π2

c

vD
. (5.7)

As discussed in Chapter II the Dirac velocity in a DSM is on the order of vD ∼

O(10−5c) to 1O(10−4c), resulting in n being a number on the order of O(1) to O(10).

This is reminiscent of the density parameter rs ∼ O(1) to O(10) in metals, and the

reason we refer to the Dirac Semimetal as strongly interacting. We will refer to the

limit n → 0 as the unscreened limit, which will be useful in assessing the validity of
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our results. In the unscreened limit:

lim
n→0

Vl(q
2v2
D + Ω2) = 1 (5.8a)

lim
n→0

Vs(q
2, q2v2

D + Ω2) =
1

1/q2 + εr
(5.8b)

The case of a long ranged interaction

We will begin by calculating the right hand side of Equation (5.5) for the screened

long ranged interaction in Equation (5.6a), the short ranged case is found in Appendix

I . We can isolate the RPA corrected self energy term in F (iωn) as:

Σα
l (iωn,k) =

T

V

∑
q,m6=0

Gα(iωn + iΩm, q+ k)Γ̃dm(q)

→ 1

(2π)4

∫
dΩ

∫
dq Gα(iωn + iΩ, q+ k)Γ̃dl (Ω, p)

= − Γ

(2π)4

∫
dΩ

∫
dq

1

q2

i(ωn + Ω)σ0 + αvD(q+ k) · σ
(ωn + Ω)2 + v2

D(q + k)2
Vl(q

2v2
D + Ω2) .

(5.9)

In the second line we have used that fact that for T → 0, the point m = 0 is measure

zero on the real line and its inclusion/exclusion does not affect the integral. Let us

first compute the leading non-analytic behavior1 of the unscreened self energy term

1The self energy integral can be done exactly for the unscreened interaction, but not for the
screened one. We restrict ourselves to using asymptotics to determine the leading behavior in the
unscreened case to have a basis of comparison for the harder problem.
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Σ̃α
l (iωn,k). Shifting Ω→ Ω− ωn and scaling out vD we have:

Σ̃α
l (iωn,k) = −α Γ

8π2

∫ ΛvD

0

dq

∫ 1

−1

dη
vDk+ q

|vDk+ q|
· σ

= −α Γ

8π2
k · σ

∫ Λ/k

0

dq

∫ 1

−1

dη
1 + qη

|k̂ + q|

≈ −α Γ

8π2
k · σ

∫ Λ/k

1

dq

∫ 1

−1

dη

(
η +

(1− η2)

q

)
= −α 2Γ

3(2π)2
k · σ log

(
Λ

q

)
. (5.10)

Observe that the denominator in the first line has an infrared (IR) divergence when

k = 0. By scaling q with k in the second line, we have transfered the k = 0

divergence to the ultraviolet (UV) upper limit of the integral. In the third line

we Taylor expanded the integrand around q = ∞, and cut off the integral at 1 to

protect ourselves from introducing fictitious IR blow-ups. The log (Λ/q) term of our

unscreened self energy term agrees with the results of Abrikosov and Beneslavskii,

and Throckmorton et al. [4, 78]. Note that Γ and vD have the same units for the

long ranged interaction, and as a consequence Σ̃α
l (iωn,k) does not scale with vD.

We will next determine the self energy Σα
l (iωn,k), for the screened interaction,

but first we will prove that any non-analytic behavior will originate from k → 0. To

do this, let us set k = 0 in the denominator of the integrand in Equation (5.9):

− Γ

(2π)4

∫
dΩ

∫
dq

1

q2

i(ωn + Ω)σ0 + αvD(q+ k) · σ
(ωn + Ω)2 + v2

Dq
2

Vl(q
2v2
D + Ω2)

= − 2Γ

(2π)3

∫
dΩ

∫
dq

i(ωn + Ω)σ0 + αvDk · σ
(ωn + Ω)2 + v2

Dq
2

Vl(q
2v2
D + Ω2)

= − 2Γ

(2π)3vD

∫ ΛvD

0

dq̄

∫ 2π

0

dθ q̄
i(ωn + q̄ cos θ)σ0 + αvDk · σ

q̄2 + ω2
n + 2ωnq̄ cos θ

Vl(q̄
2)

= − Γ

(2π)2vD

∫ ΛvD

0

dq̄ q̄Vl(q̄
2)

(
αvDk · σ
|q̄2 − ω2

n|
+ iσ0

sgn (q̄ − |ωn|)− 1

2ωn

)
(5.11)
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In the third line we switched to the coordinate system q̄(cos θ, sin θ) = (Ω, q). In the

first term in the final line the integral is infinite for any real value of ωn, and it is

some kind of logarithmic infinity due the first order pole for q̄ at |ωn| (the presence

of Vl will lightly modify this statement as we will see). Thus, the linear k term will

kill the infinity as k → 0, meaning Σα
l (iωn,k) does not have an IR divergence, but

its derivative with respect to k does. The second term is integrable, and can be done

exactly:

− 1

2ωn

∫ ωn

0

dq̄Vl(q̄
2)

q̄

2ωn
= Λ2v2

D

e1/n

2n
Ei

(
−1

n
+ 2 log

(
|ωn|
ΛvD

))
≈ ωn

4(1− 2n log(|ωn|/ΛvD))
(5.12)

The last line is true for ωn → 0, and we have used the asymptotic form of the

exponential integral Ei(x) ≈ ex/x for x→∞. While the function in Equation (5.12)

is non-analytic in ωn, it goes to 0 faster than linearly as ωn → 0. The conclusion

of this discussion is that the leading non-analytic behavior in Σα
l (iωn,k) comes from

Σα
l (0,k) which we will now calculate asymptotically.

Σα
l (0,k) = −α Γ

(2π)3
k · σ

∫ ΛvD

0

dq

∫
dΩ

∫ 1

−1

dη Vl(q
2 + Ω2)

q
vDk

η + 1

Ω2 + q2 + 2qkηvD + v2
Dk

2

= −α Γ

(2π)3
k · σ

∫ ΛvD

0

dq̄

∫ π

0

dθ

∫ 1

−1

dη q̄Vl(q̄
2)

q̄
vDk

η sin θ + 1

q̄2 + 2q̄η sin θvDk + v2
Dk

2

= −α Γ

(2π)3
k · σ

∫ Λ/k

0

dq̄

∫ π

0

dθ

∫ 1

−1

dη Vl(q̄
2k2v2

D)
q̄2η sin θ + q̄

q̄2 + 2q̄η sin θ + 1

≈ −α Γ

(2π)3
k · σ

∫ Λ/k

1

dq̄

∫ π

0

dθ

∫ 1

−1

dη Vl(q̄
2k2v2

D)q̄

(
η sin θ

q̄
+

1− 2η2 sin2 θ

q̄2

)
= −α Γ4π

3(2π)3
k · σ

∫ 1

k/Λ

dq̄
1

q̄
Vl(q̄

2/Λ2)

= −α2

3

Γ

(2π)2
k · σ

log
(
1 + 2n log

(
Λ
k

))
2n

. (5.13)
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In the the third line we scaled q̄ with k to move the IR divergence to the UV, and

then asymptotically expanded the last term in the integrand, cutting it off in the

fourth line to prevent artificial infinities. The k log(1 + 2n log 1/k) non-analyticity is

very interesting. Using Fermionic many body theory, Throckmorton et al. calculated

Σα
l (0,k) to two loop order, and found a leading k log2(Λ/k) non-analyticity. However,

if you consider their entire expression for Σα
l (0,k), it contains the first two terms of

(1/2n) log(1 + 2n log(Λ/k)) when Taylor expanded with respect to 2n. By using

lim
n→0

log 1 + 2n log x

2n
= log x , (5.14)

we recover Equation (5.9) in the unscreened limit. We can now plug Σα
l (0,k) into

Equation (5.5):

F (iωn) ≈ −6

4

2

3

Γ

(2π)2

1

(2π)3

∫
dk tr

(
G(iωn,k)2(τz ⊗ k · σ)

) log
(
1 + 2n log

(
Λ
k

))
2n

= −iΓ 16

(2π)4

Λ

v3
D

ωn

∫ 1

0

dk
k4

(k2 + (ωn/ΛvD)2)2

log
(
1 + 2n log

(
1
k

))
2n

. (5.15)

In the second line we have scaled k with Λ. This is a tricky integral to apply the usual

asymptotic analysis to, because the integrand goes to 0 at both ends of the integral,

so any non-analyticity is coming from the middle. If we set ωn = 0 in the integrand

we obtain a finite, non-zero number. One could try Taylor expanding the first term

for small ωn, but you would see that all terms of the Taylor expansion contribute

to the same order of the leading ωn non-analyticity. We will have to use a different

technique, so let us first demonstrate it works for the leading non-analyticity in the

unscreened case, and then apply it to the screened case. Defining ω̄n = ωn/ΛvD, for
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unscreened interactions we have:

F̃ (iωn) = iΓ
16

(2π)4

Λ

v3
D

ωn

∫ 1

0

dk
k4

(k2 + ω̄2
n)2

log (k) . (5.16)

We will do this integral using complex analysis. We could use the branch cut along the

−1 1 Re k

Im k

O −iε

i|ω̄n|

C1

FIGURE 5. Integration path used to evaluate Equation (5.16).

negative axis, or we could equivalently introduce a small parameter iε to log(k+iε), so

that the branch cut is now along the imaginary axis interval (−iε,−i∞). Evaluating

the contour integral in Figure 5 we obtain:

f(ω̄n) =

∫
C

dk
k4

(k2 + ω̄2
n)2

log (k + iε)

=

∫ 1

0

dk
k4

(k2 + ω̄2
n)2

(log (k + iε) + log (−k + iε)) +

∫
C1

dk
k4

(k2 + ω̄2
n)2

log (k + iε)

−−→
ε→0

∫ 1

0

dk
k4

(k2 + ω̄2
n)2

(2 log (|k|) + iπ) +

∫ π

0

dθ i
ei5θ

(ei2θ + ω̄2
n)2

iθ . (5.17)

We then have

F̃ (iωn) = iΓ
16

(2π)4

Λ

v3
D

ωn
1

2
Re lim

ε→0

(
f(ω̄n)−

∫ π

0

dθ i
ei5θ

(ei2θ + ω̄2
n)2

iθ

)
.

(5.18)
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FIGURE 6. We have plotted R(ω) = g2(ω)/g1(ω) versus ω to show that the
asymptotic analysis is correct.

The last term in Equation (5.18) only contains analytic ω̄n contributions to f(ω̄n),

and since ω̄n � 1, to leading order we can set it equal to zero in the denominator.

Then we can compute

∫ π

0

dθ ieiθiθ = 2− iπ . (5.19)

Next, we use the residue theorem to determine:

f(ω̄n) = −sgn (ω̄n)
π

2
((1 + i3π/2)ω̄n + 3ω̄n log |ω̄n|) . (5.20)

In Figure 6 we numerically demonstrate that the asymptotic behavior
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g1(ω̄n) ≡ 1

2
Re (f(ω̄n)− 2) ≈

∫ 1

0

dk
k4

(k2 + ω̄2
n)2

log k ≡ g2(ω̄n) , (5.21)

is correct. Putting everything together, the leading non-analytic behavior of F̃ (iωn)

is:

F̃ (iωn) ≈ −i sgn (ωn)
6

(2π)3

Γ

vD

ω2
n

v3
D

log

(
|ωn|
ΛvD

)
. (5.22)

We could anticipate from the earlier discussion of Σ and Σ̃, that the leading non-

analytic behavior in F comes from sending − log |ωn| to log(1− n log |ωn|)/2n. This

will prove correct, but getting there takes a couple steps. First, the integrand with

ωn = 0 in the denominator of Equation (5.15) can be done exactly:

F0(iωn) ≡ lim
ωn→0

(
F (iωn)

ωn

)
= −iΓ 16

(2π)4

Λ

v3
D

ωn

∫ 1

0

dk
log
(
1 + 2n log

(
1
k

))
2n

= iΓ
16

(2π)4

Λ

v3
D

ωne
1/2nEi(− 1

2n
)

2n
(5.23)

Next, let us Taylor expand the log(1+2n log 1/k) term in Equation (5.15) in 2n using

log 1/k > 0 for k ∈ (0, 1):

F (iωn) = −iΓ 16

(2π)4

Λ

v3
D

ωn

∫ 1

0

dk
k4

(k2 + (ωn/ΛvD)2)2

1

2n

∞∑
j=1

−(2n)j logj(k)

j
.

(5.24)

We are interested in obtaining the following integral:

ij(ω̄n) = lim
ε↘0

∫ 1

0

dx logj(x+ iε)
x4

(x2 + ω̄2
n)2

. (5.25)
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Let us again use the contour C defined in Figure 5, and define the integral:

kj(ω̄n) = lim
ε↘0

∫
C

dx logj(x+ iε)
x4

(x2 + ω̄2
n)2

=

∫ π

0

dθ
iei5θ(iθ)j

(e2iθ + ω̄2
n)2︸ ︷︷ ︸

≡Kj(ω̄n)

+

∫ 1

0

dx
(
logj(x) + (log(x) + iπ)j

) x4

(x2 + ω̄2
n)2

.

(5.26)

One can then derive the following recursion relationship between ij(ω̄n) and kj(ω̄n):

ij(ω̄n) =
1

2

Re [kj(ω̄n)−Kj(ω̄n)]−
j∑
a=1
a-even

(
j

a

)
ij−a(ω̄n)(iπ)a

 (5.27)

Since we are interested in the leading non-analytic behavior of F (iωn), we ultimately

only need to determine the leading non-analytic behavior of each ij(ω̄n), which we will

see scale as |ω̄n| logj(|ω̄n|). The lesser terms will scale as |ω̄n| loga<j(|ω̄n|) for a ∈ N,

and upon inserting these terms back into the sum in Equation (5.24), they ultimately

yield terms in F (iωn) like ω2
n log(1 − 2n log |ω̄n|)/ logs |ω̄n| for s ∈ N. These terms

are non-analytic, but vanish faster than the leading term, so can be safely ignored.

Additionally, all of the terms Kj(ω̄n) are analytic in ω̄n, and when resummed will

not contribute any non-analyticities in ω̄n, moreover their constant terms Kj(0) only

provide another way to calculate F0(iωn). To leading order in ω̄n � 1, we obtain by

the residue theorem:

kj(ω̄n) ≈ −sgn (ω̄n)ω̄n
3π

2
logj(|ω̄n|) . (5.28)
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FIGURE 7. We have plotted R(ω) = g4(iω)/g3(iω) versus 1/ω to show that the
asymptotic analysis is correct.

By Equation (5.27) and the discussion above we have:

F (iωn)− F0(iωn) ≈ −iΓ 16

(2π)4

Λ

v3
D

ωn
1

2n

∞∑
j=1

−(2n)jkj(ω̄n)

j

≈ −i sgn (ωn)
6

(2π)3

Γ

vD

ω2
n

v3
D

log
(

1− 2n log
(
|ωn|
ΛvD

))
2n

. (5.29)

This result again yields the unscreened calculation for n→ 0. Numerical comparison

of the asymptotic result can be found in Figure 7, using the following functions:

g3(ω) ≡ −3π

4

|ω|
2n

log(1− 2n log(|ω|)) , (5.30a)

g4(ω) ≡
∫ 1

0

dk

(
k4

(k2 + ω2)2
− 1

)
log(1− 2n log(x))

2n
. (5.30b)
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The DOS non-analyticity can finally be determined by analytic continuation of iωn →

ω + i0+, and then computing the imaginary part of F :

ImF (ω + i0+) ≈ 3

(2π)3

Γ

vD

ω2

v3
D

1

2n
log

([
1− 2n log

(
|ω|

ΛvD

)]2

+ n2π2

)

−−→
ω→0

6

(2π)3

Γ

vD

ω2

v3
D

1

2n
log

(
2n

∣∣∣∣log

(
|ω|

ΛvD

)∣∣∣∣) . (5.31)

We will discuss this result in the following section.

Density of States Non-Analyticities for All Cases

Using Equation (5.3) and the results of the previous section and Appendices H

and I, we find for DSMs the DOS correction goes for screened long range, unscreened

long range and screened short ranged interactions respectively as:

δNDSM
LRS (ω) = O(ω2) +

4Γ

π4vD

ω2

v3
D

1

2n
log

(
2n

∣∣∣∣log

(
|ω|

ΛvD

)∣∣∣∣) , (5.32a)

δNDSM
LRUS(ω) = O(ω2) +

4Γ

π4vD

ω2

v3
D

log

(
|ω|

ΛvD

)
, (5.32b)

δNDSM
SR (ω) = O(ω2, ω4) +

4Γ

π5v6
D

ω4 log

(
|ω|

ΛvD

)
. (5.32c)

Note that for units of energy E, and length L, the units of Γ are [Γ] = E×L for long

ranged interactions and [Γ] = E × Ld for short. By the results of Appendices H and

J we find the DOS corrections for graphene go as:

δN gra
LR (ω) = O(ω) + c1(ng)|ω|

Γ

v3
D

− c2(ng)|ω|
Γ

v3
D

log

(
|ω|

ΛvD

)
, (5.33a)

δN gra
SR (ω) = O(|ω|, ω2) +

2

5π2

Γng
v5
D

ω2|ω| log

(
|ω|

ΛvD

)
, (5.33b)
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where the ci(ng)’s are real and positive dimensionless constants, and defined in

Appendix J. In this case, the units [Γ] = E × L and [ng] = 1 for long ranged

interactions, and [Γ] = E × L2 and [ng] = L for short. Note that in Fermi liquids

we would already identify |ω| as a non-analytic correction to the DOS in 2D, but

since graphene’s bare DOS is proportional to |ω|, it is merely a correction to the 1
v2D

coefficient in the bare DOS.

Now that we have our non-analytic corrections to the DOS, let us understand

them in detail. First recall that Γ > 0 for repulsive electron-electron interactions,

and Γ < 0 for attractive. We will assume that Γ > 0 for the long ranged interactions,

which is the case if it is Coulomb. Notice that the ω2 log | log |ω|| non-analytic term

is unique to δNDSM
LRS (ω), and dominates N(ω) at small frequencies. Γ > 0 implies

δNDSM
LRS (ω) yields a net increase to the DOS near the Fermi energy/Dirac point.

Compare this to the unscreened case δNDSM
LRUS(ω), in which the ω2 log |ω| is negative

as ω approaches zero. As N(ω = 0) = 0 in a DSM, this would actually drive the DOS

to be negative for a range of ω near the Fermi energy, a clearly unphysical result. The

RPA built into the effective field theory we derived is therefore essential to obtaining

physically sensible results for long ranged interactions in DSMs. For Γ > 0, the

leading non-analyticity of δNDSM
SR (ω) is also negative for small frequencies, but as it

comes with a ω4 prefactor, it cannot drive the DOS to be negative due to the bare

DOS scaling as ω2. Moreover, as phonons are always present in the crystal systems,

we can assume attractive short ranged interactions exist, in which case Γ < 0, and

δNDSM
SR (ω) yields an increase to the DOS about the Fermi energy.

For graphene, we find the well known result in δN gra
LR (ω) that the long ranged

interactions provide a net increase to the DOS about the Fermi energy, and in the

unscreened limit of ng → 0, this is still true as c(0) > 0 [76, 79]. When Γ > 0, the
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short ranged DOS non-analyticity provides a negative correction to the DOS, but

cannot drive the system to an unphysical state because both the bare |ω| and long

range corrected −|ω| log |ω| scaling of the DOS protect the positivity of N(ω) for

ω → 0.

It is additionally interesting to compare our results to those for Fermi liquids

as enumerated in References [14] and [77], as there are some striking resemblances

between the two cases which give insight to the physics behind the results. The

leading non-analytic corrections to the DOS in a Fermi liquid scale as2 :

(1 < d < 3) δN(ω) ∝ |ω|d−1 ,

(d = 3) δN(ω) ∝ |ω|2 log |ω| .

The scaling here assumes short ranged interactions for d < 3, and in d = 3 is

independent of short or long ranged interactions because the polarization bubble for

Fermi liquids ultimately screens the interaction to make it short ranged. Also, because

a Fermi liquid possess a Fermi surface with non-zero density of states N(ω = 0) = NF ,

it isn’t unphysical if δN(ω) < 0 for ω → 0. The most interesting observation to

make is that for semimetals with long ranged interactions and Fermi liquids, modulo

logarithmic factors, the leading non-analyticities occur at the same power of ω. This

can be understood as a competition between the scaling DOS and the interaction

with momentum. In Fermi liquids, a ratio of the density of states at the Fermi level

NF to a short ranged interaction appears in the relevant integrals, to lowest order in

momentum the ratio scales as NF/(1/Γ). In semimetals it is a ratio of a vanishing

2Technically, the |ω| non-analyticity in d = 2 for Fermi liquids comes with a prefactor of zero.
This is a consequence of the prefactor changing signs as d crosses through 2. However, it is how
δN(ω) would scale if the integral did not accidentally vanish.
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DOS to a long range interaction that appears, which for small momentum goes like

pd−1/(pd−1/Γ)f(p), for f(p) a function that takes into account screening and doesn’t

impact the algebraic scaling of p. The other terms are analogous in the integrals for

Fermi liquids and semimetals, so the vanishing DOS effectively eats the long range

interaction, modulo the screening factor, and hence we end up with the same power of

ω in the non-analyticities. We have already noted that the effect of screening in d = 3

for DSMs modifies the log |ω| portion of the non-analyticity to log | log |ω||. This is

special to d = 3 because it requires the log |Λ/(q2 +ω2/v2
D)| screening induced by the

RPA in Equation (4.91a), which can only happen in d = 3 due to the momentum

integration measure.

In the short ranged interaction case for semimetals, the competition of DOS and

interaction weakens to scale as pd−1/(1/Γ) for small momentum, making the non-

analyticities appears with at least an additional power of ωd−1 over the long ranged

case, which comes from the bare DOS in the semimetal. In d = 3, the ω4 log |ω|

non-analyticity reflects this for DSMs. In d = 2, the term that would yield ω2 log |ω|

dependence in δN gra
SR (ω) vanishes due to an angular integration. 3 However, a ω2

correction is present in δN gra
SR (ω), and represents the analytic contribution that follows

our scaling argument.

By the physical intuition outlined above, equipped with the knowledge of the

Fermi liquid case, we could have anticipated the algebraic form of the DOS non-

analyticities in semimetals. Determining the subtle differences that arose due to the

complicated nature of screening in semimetals required the machinery of the effective

field theory.

3This is actually reminiscent of the vanishing prefactor in d = 2 for Fermi liquids, detailed in the
previous footnote.
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Outlook to Other Observables

The insight we just developed to understand the subtle differences in the DOS

corrections for Fermi liquids and semimetals extends to other observables. For

example, while not explicitly derived in this work, we have found the leading non-

analytic correction to the static spin susceptibility in DSMs to scale as

χs(q) ∼ q2 log |q|×log | log |q||, while in Fermi liquids the non-analyticity is of the form

χs(q) ∼ NF q
2 log |q|. Through careful analysis of the diagrammatic expressions and

relevant integrals for χs(q), one can conclude that the q2 log |q| scaling in the Fermi

liquid calculation becomes q2 log | log |q|| if one replaces the internal DOS-interaction

term NFΓ, with Γ/ log |p| to schematically represent the IR scaling of the same term

for a Dirac semimetal. Finally, the additional log |q| in χs(q) for the DSM case can

be understood as resulting from the factor of log[Λ/(p2 +Ω2/v2
D)] present in the DSM

soft modes, as discussed in Section 4.6, and showcased in Equation (4.91a).

102



CHAPTER VI

SUMMARY AND CONCLUSION

We must ultimately assess the merit of the endeavor undertaken in this

dissertation, and discuss the usefulness of the field theory we derived. This is most

easily done by comparing our effective field theory with those of other systems.

Disordered Fermi liquids were the original material system for which the Q-matrix

formalism was developed [65]. In that case the bosonization program is far simpler

due to a following facts: first, the Green function in a disordered Fermi liquid is

massive as disorder gives electrons an inelastic scattering time, which in turn makes

the saddle point for Qnn(x) homogeneous, that is Qsp
nn(x) ∝ sgn (ωn). This enables one

to construct a non-linear sigma model for the soft and massive Q correlations using

the non-linear constraint Q2 = 1. Additionally, there is only one set of soft modes, the

diffusons, so many massive modes are integrated out and one arrives at a very simple

field theory [64]. In a clean Fermi liquid the situation is already more complicated, the

saddle point is not homogeneous, and the ground state possesses an infinite number

of Goldstone modes as discussed in Section 4.6. Still, one is able to integrate out

the massive modes from this theory, and arrive at an effective field theory, though

one more complicated than the disordered case. The additional complications of

cleanliness principally impact calculations, making them require some more effort to

arrive at a conclusion.

In the semimetal case, we have proven in Section 4.6 that all bosonic modes are

soft , thus there are no massive modes to integrate out in the effective field theory.

The structure of the Dirac semimetal Hamiltonian also makes the Gaussian level

operator for the bosonic theory complicated and nearly unwieldy. We saw in Chapter
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V that massaging loop expansions into a tractable form requires a non-trivial amount

of effort. Since the original development of the field theory, a slicker form with a

simpler Gaussian action has been obtained. This was achieved by expressing the chiral

quantum number matrices in the basis of SU(2), as was done for spin and particle-hole

quantum numbers in Section 4.1. It is still non-trivial to calculate observables in this

field theory. Thus, if one is merely interested in obtaining low order diagrammatic

corrections to observables, it would be advisable to use the fermionic formulation

of the action, and employ regular many body theory. The reason the effective field

theory is a powerful tool is because it allows us to conclude that any non-analyticities

we determine from it are asymptotically exact. This follows from the discussion of the

scaling of the vertices of cubic and higher order terms in the field theory in Section

4.7. In the Fermi liquid case, the irrelevance of the higher order terms was formally

proven using renormalization group arguments in Reference [77], which future works

will be extended to the Dirac semimetal case. The appeal of precisely determined

non-analyticities is undeniable. Exact expressions are unattainable in regular many

body perturbation theory, due the simple reason one cannot be sure if the next order

Feynman diagram in a calculation will introduce a stronger non-analyticity, or cancel

an old one. The perils of many body perturbation theory is exemplified by the

density of states discussion in Chapter V. Calculating corrections to one loop order

using the fermionic theory yields an unphysical result, and one needs to perform a

sum over all loop orders to obtain the correct result. By incorporating the random

phase approximation at the Gaussian level of the action, no such effort is needed

when using the bosonic field theory.
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APPENDIX A

INTERACTION DECOMPOSITION

Consider the full interaction (ignoring cone indices):

Sint = − T

2V

∑
k,p,q
σ1,σ2

v(q)ψ̄σ1(k)ψ̄σ2(p+ q)ψσ2(p)ψσ1(k + q)×

× [Θ(|q| < λ) + Θ(|q| > λ) {Θ(|p− k| < λ) + Θ(|p+ k+ q| < λ)}

+Θ(|q| > λ) {Θ(|p− k| > λ) + Θ(|p+ k+ q| > λ)}] . (A.1)

We have split the momentum sums in a seemingly odd way, and introduced some

large momentum cutoff λ. Using the innerproduct notation (a, b) = a†b, the first 3

terms, upon massaging, respectively become:

Sd
int = − T

2V

∑
α

∑
k,p

∑
q

′
v(q)(ψα(k), s0ψ

α(k + q))(ψβ(p+ q), s0ψ
β(p)) , (A.2a)

Se
int = − T

2V

∑
α

3∑
i=0

 −
+

+
+


i

∑
k,p

∑
q

′1

2
v(p− k)Θ(|p− k| > λ)×

×(ψ(k)α, siψ(k + q))(ψβ(p+ q), siψ(p)) , (A.2b)

Sc
int = − T

2V

∑
α,β
σ,σ′

∑
k,p

∑
q

′
v(p+ k)Θ(|p+ k| > λ)ψ̄ασ (k)ψ̄βσ′(−k + q)ψβσ′(p+ q)ψασ (−p) .

(A.2c)

Due to the momentum restrictions, the remaining terms will not impart hydrodynamic

content. Note that even though there is no Fermi Surface, the nature of the

decomposition screens the exchange channel. We will need to further decompose
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the Cooper channel into its singlet and triplet components:

S
c(s)
int = − T

2V

∑
σ 6=σ′

∑
α,β
γ,δ

∑
k,p

∑
q

Γc(s)
αβγδ

k,p (q)ψ̄ασ (k)ψ̄βσ′(−k + q)ψδσ′(p+ q)ψγσ(−p) ,

(A.3a)

S
c(t)
int = − T

2V

∑
σ,σ′

∑
α,β
γ,δ

∑
k,p

∑
q

Γc(t)
αβγδ

k,p (q)ψ̄ασ (k)ψ̄βσ′(−k + q)ψδσ′(p+ q)ψγσ(−p) .

(A.3b)

Defining ṽ(p) ≡ v(p)Θ(|p| > λ), we can write the Cooper singlet and triplet specific

interactions as:

Γc(s/t)
αβγδ

k,p (q) =
1

2

(
ṽ(p+ k)δαγδβδ ± ṽ(p− k+ q)δαδδβγ

)
. (A.4)

Some useful properties are:

Γc(s/t)
αβγδ

k,p (q) = Γc(s/t)
αβγδ

−p,−k(q) = Γc(s/t)
αβγδ

−k,−p(−q)

= Γc(s/t)
αβγδ

p+q,k−q(q) = ±Γc(s/t)
αβδγ

k,−p−q(q) = ±Γc(s/t)
αβδγ

p+q,−k(q) .

(A.5)
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APPENDIX B

BISPINOR ADDENDUM

Checking that (4.11) holds. First let’s make the observation, that since ψ are

Grassmannian fields, it is easy to show that:

∑
k

η+
n (k) · ηm(k) =

i

2

∑
σ,k

(ψ̄m,σ(k)ψn,σ(k) + ψ̄n,σ(k)ψm,σ(k)) .

Next observe for G−1
0 (k) = diag(A1(k), A2(k)) where A1,2 are 2x2 matrices:

η+Aη =
i

2

 s2
2ψ

s2ψ̄

A

 ψ̄

s2ψ


=

i

2

(
−ψTA1ψ̄ + ψ†sT2A2s2ψ

)
=
i

2

(
ψ†AT1 ψ + ψ†sT2A2s2ψ

)
, (B.1)

due to anticommuting ψ’s. The structure of G−1
0 is essential, as ψ-ψ couplings do

not occur in the original Hamiltonian. Then we require that the spin-quaternion

Hamiltonian returns the original action:

i
∑
k

ψ†(k)H(k)ψ(k) =
∑
k

η+
n (k)G−1

0 (k)ηn(k) ,

and is charge conjugate symmetric:

(τ1 ⊗ 1)H(τ ∗1 ⊗ 1) = H . (B.2)

107



This implies

∑
k ψ
†(iωn,−k)A1(k)Tψ(iωn,−k) =

∑
k ψ
†(k)H(k)ψ(k)⇒ AT1 (iωn,−k) = H(k) ,∑

k ψ
†(iωn,k)sT2A2(k)s2ψ(iωn,k) =

∑
k ψ
†(k)H(k)ψ(k)⇒ −s2A2(iωn,k)s2 = H(k) .

We have used s2 = −sT2 . Then we immediately obtain the Lagrangian in the main

text (4.12).
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APPENDIX C

SADDLE POINT ADDENDUM

In this Appendix we explain the derivation of the Λ̃ part of the saddle point

Equation (4.31). The aim is to obtain a form of the saddle point equation for Λ̃ in

the spin-quaternion basis, using standard matrix notation we have:

i
rΛ̃ =

1

4

∑
k,j

(τr ⊗ sj)kjΛ̃jk . (C.1)

Then Equation (4.30) for Λ̃ tells us:

Λ̃ij = − δ

δQij

Aint . (C.2)

Schematically, the RHS of the above equation goes like:

δ

δQkj

Aint =
δ

δQij

T

2V

∑
. . . tr ((τr ⊗ si)†Q)tr ((τr ⊗ si)†Q)

=
T

2V

∑
. . . 2× (τr ⊗ si)†jktr ((τr ⊗ si)†Q) . (C.3)

The 2 in the second line is because our Ansatz combines the two derivative terms.

Note that there is currently a sum over i and r, but if we want to pick out a specific

i
rΛ̃ component, this requires tracing with respect to the appropriate τr ⊗ si tensor:

i
r

(
δ

δQ
Aint

)
=
T

4

∑
. . . (τr ⊗ si)kj(τr ⊗ si)†jktr ((τr ⊗ si)†Q) = 4

∑
. . .irQ . (C.4)
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APPENDIX D

SELF-ENERGY ω-TERM

Given Λ̃0
n(p) = 0, we have:

Λ̃0
n(p) = = −4

T

V

∑
m,k

Γs(p, k, 0)Q0
m(k)

= 2i
T

V

∑
m,k

(v(0)− 1

2
v(p− k)

Iωn − IΛ̃0
m(p)

(Iωm − IΛ̃0
m(p))2 + v2

D(k + Λ̃m(k))2
.(D.1)

By charge neutrality v(0) = 0. Next, if we assume Λ̃m(k) is m independent, then we

see at least at T = 0, this integral is odd in ω when we assume Λ̃0
n(p) = const. So

iteratively we would always get 0 (i.e. 0 is a solution).
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APPENDIX E

INVARIANCE OF τ2 UNDER T (±)

We demonstrate the invariance of τ2 under the action of T (±):

∑
l,γ

∫
dy T̂ (±)(x, y)

(
T̂ (±)(y, z)

)T
= 1+

∑
l,γ

∫
dy (δn1δl2δ

ασδγτ ∓ δn2δl1δ
ατδγσ)ϕ(±)(x, y)δ(y− z)δβγδml +

+
∑
l,γ

∫
dy

(
δm1δl2δ

βσδγτ ∓ δm2δl1δ
βτδγσ

)
ϕ(±)(z, y)δ(x− y)δαβδnl

= 1+
(
δn1δm2δ

ασδβτ ∓ δn2δm1δ
ατδβσ

)
ϕ(±)(x, z)

+
(
δm1δn2δ

βσδατ ∓ δm2δn1δ
βτδασ

)
ϕ(±)(z, x)

= 1 . (E.1)
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APPENDIX F

DETERMINING δA0

Under the transformation of Λ̃, the free part of the action goes as:

1

2
Tr ln(G−1 − iδΛ̃) =

1

2
Tr ln(G−1(1− iGδΛ̃)) =

1

2
Tr (lnG−1 ln(1− iGδΛ̃))

≈ 1

2
Tr (lnG−1 − iGδΛ̃) ≡ A0 + δA0 . (F.1)

Recall the definition:

δΛ̃βα
mn(y,x) =

∫
dz
[
ϕ(±)(x, z)

(
δασn1 Λ̃βτ

m2(y, z)∓ δατn2 Λ̃βσ
m1(y, z)

)
+

ϕ(±)(y, z)
(
δβσm1Λ̃τα

2n(z, x)∓ δβτm2Λ̃σα
1n (z, x)

)]
.

(F.2)

We must calculate the resulting change in the action:

δA0 = − i
2

TrGδΛ̃

= − i
2

∑
n,m,α,β

∫
dxdy trGαβ

nm(x, y)δΛ̃βα
mn(y,x)

= − i
2

∑
m,α

∫
dxdydz tr

[
Gσα

1m(x, y)Λ̃ατ
m2(y, z)ϕ(±)(x, z)

∓Gτα
2m(x, y)Λ̃ασ

m1(y, z)ϕ(±)(x, z)

+Gασ
m1(x, y)Λ̃τα

2m(z, x)ϕ(±)(y, z)∓Gατ
m2(x, y)Λ̃σα

1m(z, x)ϕ(±)(y, z)
]
.

Now we use the property that −iGΛ̃ ≡ G(−iΛ̃+G−1
0 −G−1

0 ) ≡ 1−GG−1
0 . The matrix

contractions have suppressed sums and integrals, we will explicitly include δ(x) like

objects in the following derivation to preserve the triple integral and sum structure.
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It then follows that:

δA0 =
1

2

∑
m,α

∫
dxdydz tr

[(
δστ12 δ(x− z)δ(y)δα −Gσα

1m(x, y)(G−1
0 )ατm2(y, z)

)
ϕ(±)(x, z)

∓
(
δστ12 δ(x− z)δ(y)δα −Gτα

2m(x, y)(G−1
0 )ασm1(y, z)

)
ϕ(±)(x, z)

+
(
δστ12 δ(z− y)δ(x)δα − (G−1

0 )τα2m(z, x)Gασ
m1(x, y)

)
ϕ(±)(y, z)

∓
(
δστ12 δ(z− y)δ(x)δα − (G−1

0 )σα1m(z, x)Gατ
m2(x, y)

)
ϕ(±)(y, z)

]
. (F.3)

It is trivial to see ϕ(−)(x,x) = 0, and the ϕ(+)(x,x) terms kill each other because

they come as ±. We are now in the position to apply the triple convolution theorem:

∫
dxdydz (G−1

0 )nm(z, x)Grs(x, y)ϕ(y, z) =
∑
q,p,k

(G−1
0 )nm(k, p)Grs(p, q)ϕ(q, k) .

(F.4)

Recalling

(G−1
0 )βαnm(p, q) = δnmδp,qτ0 diag(iωn − ξ−(p), iωn − ξ+(p)) , (F.5)
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we have:

δA0 = −1

2

∑
m,α

∑
p,q,k

tr
[
±Gσα

1m(p, q)(G−1
0 )ατm2(q, k)ϕ(±)(k, p)− ((τ, 1)↔ (σ, 2))

+(G−1
0 )τα2m(p, q)Gασ

m1(q, k)ϕ(±)(k, p)∓ ((τ, 1)↔ (σ, 2))
]

=
1

2

∑
p,k

tr
[
iΩ1−2 × ϕ(±)(k, p) (Gτσ

21 (p, k)±Gστ
12 (p, k)) +

+(−ξσ(k) + ξτ (p))× ϕ(±)(k, p)Gτσ
21 (p, k)

±(−ξσ(p) + ξτ (k))× ϕ(±)(k, p)Gστ
12 (p, k)

]
=

1

2

∑
p,k

ϕ(±)(k, p)tr [iΩ1−2 + (−ξσ(k) + ξτ (p))]× (Gτσ
21 (p, k) +Gστ

12 (−k,−p)) .

(F.6)

In the last line we use the property:

ϕ(±)(p, q) = ±ϕ(±)(−q,−p) . (F.7)

Finally, we have the following expressions for δQ in momentum space:

δQαβ
nm(k, p) =

∑
q

ϕ(±)(−p, q)
(
δβσm1Q

ατ
n2(k,−q)∓ δβτm2Q

ασ
n1 (k,−q)

)
+

+ϕ(±)(k, q)
(
δασn1Q

τβ
2m(q, p)∓ δατn2Q

σβ
1m(q, p)

)
(F.8a)

δQστ
12 (k, p) =

∑
q

ϕ(±)(k, q)Qττ
22 (q, p)−Qσσ

11 (k, q)ϕ(±)(q, p) (F.8b)

〈δQαβ
nm(k, p)〉 = ϕ(±)(k, p)

[
±δβσm1δ

ατ
n2 (〈Qττ

22 (k, k)〉 − 〈Qσσ
11 (p, p)〉) +

+δασn1 δ
τβ
2m (〈Qττ

22 (p, p)〉 − 〈Qσσ
11 (k, k)〉)

]
(F.8c)
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APPENDIX G

W−1 TENSOR PROPERTIES

From the exact form of the W−1 tensor, Equation (4.88) it is easy to see that:

ijW−1αβ,µν

12,34 = jiW−1µν,αβ

34,12 , (G.1)

ijW−1αβ,µν

12,34

‡
= ijW−1ᾱβ̄,µ̄ν̄

12,34 , (G.2)

where ¯(±) = ∓.
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APPENDIX H

DOS CORRECTION IN DETAIL

In Chapter V we defined:

F (iωn) =
6

4

T

V

∑
m 6=0
q

′
I(iωn, iωn + iΩm, vDq)Γ̃dm(q) , (H.1a)

I(iωn, iωm, vDq) =
1

V

∑
k

tr (G(iωn,k)G(iωm,k+ q)G(iωn,k)) . (H.1b)

We have brought back the notation of
∑

q
′ to mean |q| < Λ, an arbitrary cutoff we

chose in Appendix A to split up the interaction channels. At the end of this Appendix

we will prove F (iωn) = −F (−iωn), so that we only need to evaluate F (iωn) for ωn > 0.

Let Σ ≡ Q/ + Q/+, then by Wick’s theorem, and cyclic symmetry of the summation,

F (iωn) in (5.3) becomes1:

F (iωn7) =
3

V

∑
...
¬n7

t̃i1i2i3i4i5i6r1r3r5
× i2Lσ22

i4Lσ33
i6Lσ11 〈00Qαα

77
i1
r1

Σσ1σ2
12 〉〈i3r3Σ

σ2σ3
23

i5
r5

Σσ3σ1
31 〉 ,

(H.2)

for t̃i1i2i3i4i5i6r1r3r5
= tr (si1 · · · si6)tr (τr1τr3τr5). Due to the fact that

〈00Qαα
77

i1
r1
Q/σ1σ212

(+)〉 ∝ δr1,0(δ71δ72(. . .) + δ0,1−2(. . .)) , (H.3)

1Note that . . . ,¬n7 means sum over everything but n7
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we have the constraints n1 = n2 and r1 = 0. It then follows that:

t̃i1i2i3i4i5i60r3r5
= 2

 +
−
−
−


r3

δr3r5tr (si1 · · · si6) ≡ 2

 +
−
−
−


r3

δr3r5t
i1...i6 . (H.4)

This property kills the Q/+ contraction because Q/+
12 has a built in n2 > n1 (see

Equation (4.83)). Finally, as discussed above 〈QQ/〉 = 〈QQ〉 as Q and Λ̄ don’t couple,

thus:

F (iωn7) =
6

V

∑
...
¬n7

 +
−
−
−


r

ti1i2i3i4i5i6 × i2Lσ22
i4Lσ33

i6Lσ11 〈00Qαα
77

i1
0 Q̄

σ1σ2
12 〉〈i3r Σσ2σ3

23
i5
r Σσ3σ1

31 〉 .

(H.5)

Let us evaluate the relevant correlation functions:

〈00Qαα
77

i1
0 Q̄

σ1σ2
12 〉

≡

 +
−
+
−


i3

〈00Qαα
77

i1
0 Q

σ1σ2
1̄2̄

‡〉Θ(n1 ≥ n2)

=
1

4I77

 +
−
−
−


i1

(
1

4
i10M−1σ1σ2

1̄2̄ δασ1
71̄

δασ2
72̄

+
T

V
Γ̃d1−2δ1̄,2̄

i10M−1σ1σ2
12

00M−1αα
77

)

+

 +
−
−
−


0

(
1

4
0i1M−1αα

77

‡
δασ1

71̄
δασ2

72̄
+
T

V
Γ̃d1−2δ1̄,2̄

00M−1αα
77

‡0i1M−1σ1σ2
12

‡
)Θ(n1 ≥ n2)

=
1

8
δασ1

71̄
δασ2

72̄

 +
−
−
−


i1

i10M−1σ1σ2
1̄2̄ + 0i1M−1αα

77

‡

Θ(n1 ≥ n2) . (H.6)
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Where we have used Γ̃d0 ≡ 0 via the Jellium model argument again, and I77 = 1/2.

For F (iωn7) we get:

F (iωn7) =
3

4V

∑
...
¬n7

 +
−
−
−


r

ti1i2i3i4i5i6 × i2Lα7̄
i4Lσ33

i6Lα7̄ ×

×

 +
−
−
−


i1

i10M−1αα

1̄2̄ + 0i1M−1αα

77

‡

Θ(n1 ≥ n2)〈i3r Σασ3
7̄3

i5
r Σσ3α

37̄
〉 .

(H.7)

From Section 4.7 we have have that:

〈i3r Q/
ασ3
7̄3

i5
r Q/

σ3α
3̄7

‡〉 ∝

 +
0

0
+


r

Θ(n3 ≥ n7)Θ(n7 ≥ n3)

〈i3r Q/
ασ3
7̄3

+i5
r Q/

σ3α
37̄

+〉 ∝

 +
0

0
+


r

Θ(n3 > n7)Θ(n7 > n3) (H.8)
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Both of these terms will drop about because of the

 +
−
−
−


r

in F (iωn7) (the second

one would drop out from frequency restriction too). The terms that survive are:

〈i3r Q/
ασ3
7̄3

i5
r Q/

σ3α
37̄

+〉 =

 +
0

0
−


r

 +
−
−
−


i5

T

4V
Γ̃d7̄−3δ

ασ3Θ(n7 > n3)×

×

 +
−
−
−


i5

i50M−1ασ3
7̄3

0i3M−1ασ3
7̄3 +

 +
−
−
−


i3

i30M−1ασ3
7̄3

‡0i5M−1ασ3
7̄3

‡

 ,

〈i3r Q/
ασ3
7̄3

+i5
r Q/

σ3α
37̄ 〉 =

 +
0

0
−


r

 +
−
−
−


i3

T

4V
Γ̃d7̄−3δ

ασ3Θ(n3 > n7)×

×

 +
−
−
−


i3

i50M−1ασ3
7̄3

0i3M−1ασ3
7̄3 +

 +
−
−
−


i5

i30M−1ασ3
7̄3

‡0i5M−1ασ3
7̄3

‡

 .

Plugging all this into F (iωn7), shifting 7̄ → 7 → (n,k) and 3 → (m,p), and now

writing all the momenta/frequencies explicitly, we obtain:

F (iωn) =

6T

16V 2

∑
mα
p,k

ti1...i6(1− δnm)Γ̃dn−m(k− p)i2L
α
n(k)i4L

α
m(p)i6L

α
n(k)×

×

 +
−
−
−


i1

i10M−1ᾱᾱ

nn(k,k) + 0i1M−1αα

nn(k,k)

×
×
[
i50M−1αα

nm(k,p)0i3M−1αα

nm(k,p)+

+

 +
−
−
−


i3

 +
−
−
−


i5

i30M−1ᾱᾱ

nm(k,p)0i5M−1ᾱᾱ

nm(k,p)

 ,

(H.9)
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where we have employed ijM−1αβ
12

‡
= ijM−1αβ

n1n2
(−p1,−p2) = ijM−1ᾱβ̄

n1n2
(p1,p2) for

¯(±) = ∓. Massaging this by hand is somewhat of a fool’s errand because of how ugly

t and M are when expressed in terms of well known tensors. However, plugging the

objects into Mathematica allows it to evaluate the sum simply, and we get:

F (iωn) =
T

V 2
6
∑
p,k
m

−(iωn)2iωm − iωmv2
Dk

2 − 2iωnvDk · p
(ω2

n + v2
Dk

2)2(ω2
m + v2

Dp
2)

(1− δnm)Γ̃dn−m(k− p)

=
6

4

T

V 2

∑
p,k
m

tr (G(iωn,k)G(iωm,p)G(iωn,k)) (1− δnm)Γ̃dn−m(k− p) ,

(H.10)

where the first line is specific to DSMs in d = 3, and the second line is for general

dimensions (The difference between the first line for 3D DSMs and graphene is simply

a factor of 2.) Finally let us demonstrate F (iωn) = −F (−iωn):

F (−iωn) = const×
∑
q,p
m 6=0

tr (G2(−iωn,p)G(−iωn + iΩm,p+ q))Γ̃dm(q)

= const×
∑
q,p
m 6=0

(−1)tr (G2(iωn,p)G(iωn − iΩm,p+ q))Γ̃dm(q)

= −const×
∑
q,p
m 6=0

tr (G2(iωn,p)G(iωn + iΩm,p+ q))Γ̃dm(q)

= −F (iωn) ,

(H.11)

where the second line result follows immediately form the explicit form of F , and the

third line follows from Γ̃dm = Γ̃d−m. In the following Appendix I, we will need the
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explicit form of I(iωn, iωm, vDq) as defined in Eq. (H.1):

IDSM(iωn, iωm, vDq) =

−1

2πv3
D

[
iωn|ωm| − iωm|ωn|
v2
Dq

2 + Ω2
n−m

+

+
ωn + ωm

2vDq
log

(
2ivDq|ωm| − v2

Dq
2 − (ωn − ωm)(ωn + ωm)

2ivDq|ωn|+ v2
Dq

2 − (ωn − ωm)(ωn + ωm)

)]
, (H.12a)

Igra(iωn, iωm, vDq) =

− 2iΩn−m

πv2
D(v2

Dq
2 + Ω2

n−m)
+

iωm(v2
Dq

2 − (ωn − ωm)(ωn + ωm))

v2
Dπ(v2

Dq
2 + Ω2

n−m)3/2(v2
Dq

2 + (ωn + ωm)2)1/2
×

× log

(
v2
Dq

2 + ω2
n + ω2

m −
√

(ωn + ωm)2(v2
Dq

2 + Ω2
n−m)

v2
Dq

2 + ω2
n + ω2

m +
√

(ωn + ωm)2(v2
Dq

2 + Ω2
n−m)

)
. (H.12b)

These were computed directly using the Feynman parameter trick. One could have

chosen to make use of the identity

I(iωn, iωm, vDq) = ∂iΩn−m
1

V

∑
k

tr (G(iωn,k)G(iωm,k+ q)) , (H.13)

but the sum in this case is UV divergent, whilst I is not, complicating matters.
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APPENDIX I

EXPLICIT EVALUATION OF NON-ANALYTIC CORRECTIONS TO THE

DENSITY OF STATES IN DIRAC SEMIMETALS

First consider the DSM case, at T = 0 one can massage F to following expression:

F (iωn) = F1(iωn) + F2(iωn) + F3(iωn) (I.1a)

F1(iωn) = − 3

πv3
D

T

V

∑
q

∑
m>n

Γ̃dm(q)
2iωn(Ωm − ωn)

v2
Dq

2 + Ω2
m

(I.1b)

F2(iωn) = − 3

πv3
D

T

V

∑
q

∑
m≥−n
m 6=0

Γ̃dm(q)

2vDq
(2ωn + Ωm) log

(
−vDq + 2iωn + iΩm

vD + 2iωn + iΩm

)
(I.1c)

F3(iωn) = − 3

πv3
D

T

V

∑
q

∑
m>n

Γ̃dm(q)

2vDq
(2ωn − Ωm) log

(
iΩm − vDq
iΩm + vDq

)
. (I.1d)

The best way to evaluate F2 and F3 is to turn them into a single integral, so one isn’t

doing asymptotic analysis piece wise, and avoiding any branch cut issues with logs.

Shifting m → m − 2n − 1 in F2, and ignoring the measure zero term at T = 0 gives

us F2 + F3 = F4 as:

F4(iωn) = − 3

πv3
D

T

V

∑
q

∑
m>n

log

(
iΩm − vDq
iΩm + vDq

)
×

×
[(

Γ̃d
(
q,

Ωm − 2ωn
vDq

)
− Γ̃d

(
q,

Ωm

vDq

))
Ωm

2vDq
+

ωn
vDq

Γ̃d
(
q,

Ωm

vDq

)]
, (I.2)
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Recall, in d=3 Γ̃dm(q) ≡ Γ̃d(q, zm) takes the form:

Long Ranged Γ̃dl (Ωm, q) =
Γ

q2 + nq2 log(Λ2v2
D/(q

2v2
D + Ω2

m))

≡ Γ

q2
Vl(q

2v2
D + Ω2) , (I.3a)

Short Ranged Γ̃ds(Ωm, q) =
Γ

1 + εrq2 + nq2 log(Λ2v2
D/(q

2v2
D + Ω2

m)

≡ Γ

q2
Vs(q

2, q2v2
D + Ω2) . (I.3b)

for n = Γ/12π2vD � 1.

The Case of an Unscreened Long Ranged Interaction

We will present an alternative method for computing the unscreened long ranged

interaction’s contribution to the DOS non-analyticity, and then use that method to

evaluate the screened short ranged interaction case. The unscreened interaction is

obtained by setting n = 0 in Γ̃dl (Ωm, q) above. Let us set T = 0 and consider ωn → 0.

Next, define λ = ΛvD/ωn, then upon a change of variables, first Ω → zqvD then

q → q̄ωn/vD, F1 becomes:

F1(iωn) = − 6iω4
n

4π4v6
D

∫ λ

0

dq̄

(
−
∫ 1/q̄

0

+

∫ λ/q̄

0

)
dzΓ̃d(q̄ωn/vD, z)

zq̄ − 1

1 + z2
. (I.4)

Recall that the Λ cutoff present in both integrals is due to interaction cutoff. In

the second integral let q̄ → q̃/ω, we see immediately that it generates a function

c1iωn + c2iω
2
n, for ci real, regardless of interaction type. These do not provide any

non-analyticities so we can ignore them. Now consider ωn → 0 in the first integral,
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asymptotic analysis yields, for long range interactions:

F1(iωn) =
6iΓω2

n

4π4v4
D

∫ λ

0

dq̄

∫ 1/q̄

0

dz
zq̄ − 1

1 + z2
= id1

Γ

Λ2v6
D

ω4
n

⇒ F1(z) = −d1iz
4sgn Im z (I.5)

where the last line follows from the oddness of each Fi(z) across the imaginary axis.

Here d1 = 3/8π4ε1 is a real number. Upon analytic continuation Im (F1(ω + i0+)) ≈

−d1ω
4
nΓ/Λ2v6

D and provides no non-analyticity. Next we evaluate F4.

F4(iωn) = − 3

πv3
D

4π

(2π)4

∫ Λ

0

dq q2

∫ ΛvD

ωn

dΩ
ωn
vDq

Γ̃d
(
q,

Ωm

vDq

)
log

(
iΩ− vDq
iΩ + vDq

)
= − 3Γ

4π4v4
D

ω2
n

∫ λ

0

dq̄

∫ λ/q̄

1/q̄

dz log

(
iz − 1

iz + 1

)
= − 3Γ

4π4v4
D

ω2
n

∫ λ

0

dq̄

[
−
∫ 1/q̄

0

dzf(z) +

∫ λ/q̄

0

dzf(z)

]
(I.6)

Let us consider the limiting behavior of f(z), for z → 0, the log to leading order goes

likes log((iz − 1)/(iz + 1)) ≈ iπ − 2iz. Then to leading order in ωn we obtain:

F4(iωn) ≈ − 3Γω2
n

4π4v4
D

∫ λ

0

dq̄

[
−
∫ 1/q̄

0

dz(iπ − 2iz) +

∫ λ/q̄

0

dzf(z)

]

≈ 3iΓω2
n

4π3v4
Dε1

log

(
ΛvD
ωn

)
− 3Γω2

n

4π4v4
D

∫ λ

0

dq̄

∫ λ/q̄

0

dzf(z) .

Let us now prove that the λ/q̄ portion of the integral will not provide any non-

analyticities. Let q̄ → λq̃, then we obtain:

−3ΓωnΛvD
4π4v4

D

∫ 1

0

dq̃

∫ 1/q̃

0

dz log

(
iz − 1

iz + 1

)
. (I.7)
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The integrand and limits now don’t contain ωn, and thus cannot contribute anything

to the non-analytic dependence of F4(iωn) on ωn. Now consider such a function

iR(ωn) = iωnc1 + iω2
nc2 + . . . for ci real. Upon analytic continuations, we get iR(ω +

i0) = i(ω + i0) + . . ., clearly the imaginary part will only pick up even contributions,

and they will all be analytic. Hence, for unimportant c1 and c2, F4 becomes:

F4(iωn) ≈ 3iΓω2
n

4π3v4
Dε1

log

(
ΛvD
ωn

)
+ ic1ωn + ic2ω

2
n + . . . (I.8)

Using log(|ωn|) = (1/2)(log(iωn)+ log(−iωn)), and the fact that F4(iωn) is odd in ωn,

we get for the non-analytic part of F4:

FNA(z) = −i 3Γz2

8π3v4
D

[
log

(
z

ΛvD

)
+ log

(
−z
ΛvD

)]
sgn Im (z)

⇒ ImFNA(ω + i0+) =
3Γ

4π3vD

ω2

v3
D

log

(
|ω|

ΛvD

)
, (I.9)

which is precisely what we found in Equation (5.22). By equation (5.3), we the leading

non-analytic correction to the DOS for unscreened, long ranged interactions is:

δNNA(ω) =
4Γ

π4vD

ω2

v3
D

log

(
|ω|

ΛvD

)
. (I.10)

The Case of a Short Ranged Interaction

We now need to evaluate equations (I.4) and (I.6) for short ranged interactions.

For similar reasons to those in the previous section, the
∫ λ/q̄

0
dz portions of each

integral will not yield non-analyticities1. In this case, the non-analyticity comes from

1An additional step of Taylor expanding the interaction is necessary to see this.
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F1:

FNA
1 (iωn) =

6iΓω4
n

4π4v6
D

∫ λ

0

dq̄

∫ 1/q̄

0

dz
zq̄ − 1

1 + z2

× 1

1 + ε2q̄2ω2
n/v

2
D + nq̄2ω2

n log(1 + z2)/v2
D

→ 6iΓω4
n

4π4v6
D

∫ λ

0

dq̄

∫ 1/q̄

0

dz
zq̄ − 1

1 + ε2q̄2ω2
n/v

2
D

= −6iΓω4
n

8π4v6
D

∫ λ

0

dq̄
1

q̄
− ε2q̄ω

2
n

1 + ε2q̄2ω2
n/v

2
D

= −6iΓω4
n

8π4v6
D

(
log

(
ΛvD
|ωn|

)
− 1

2
log(1 + ε2Λ2)

)
⇒ FNA

1 (z) =
6iΓz4

16π4v6
D

[
log

(
z

ΛvD

)
+ log

(
−z
ΛvD

)]
sgn Im (z)

⇒ ImFNA
1 (ω + i0+) =

6Γ

8π4v6
D

ω4 log

(
|ω|

ΛvD

)
. (I.11)

The limit in the second line comes from z → 1/q̄ → 1/λ, and the n log(1 +

z2)q̄2ω2
n/v

2
D ≈ nω2

n/v
2
D term in this limit can be ignored2 Finally, F4 does not provide

any non-analyticities, and thus Equation (I.11) is the most important contribution to

the DOS.3

2Dimensionality check: in 3d short ranged [Γ] = E × V , and [vD] = E × L.

3In the case that ε2 = 0 as is assumed in some cases in the literature [78], F1(iωn) still provides
the ω4 logω non-analyticity, and F4 provides a less important ω6 logω non-analyticity.
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APPENDIX J

EXPLICIT EVALUATION OF NON-ANALYTIC CORRECTIONS TO THE

DENSITY OF STATES IN GRAPHENE

Recall to compute δN(ω) we need:

F (iωn) =
6

4

T

V

∑
m 6=0
q

I(iωn, iωn + iΩm, vDq)Γ̃dm(q) , (J.1a)

Igra(iωn, iωn + iΩm, vDq) =

2iΩm

πv2
D(v2

Dq
2 + Ω2

m)
− (iωn + iΩm)(Ωm(2ωn + Ωm) + v2

Dq
2)

v2
Dπ(v2

Dq
2 + Ω2

m)3/2(v2
Dq

2 + (2ωn + Ωm)2)1/2
l(qvD,Ωm, ωn) ,

(J.1b)

l(qvD,Ωm, ωn) =

log

(
v2
Dq

2 + ω2
n + (ωn + Ωm)2 −

√
(v2
Dq

2 + (2ωn + Ωm)2)(v2
Dq

2 + Ω2
m)

v2
Dq

2 + ω2
n + (ωn + Ωm)2 +

√
(v2
Dq

2 + (2ωn + Ωm)2)(v2
Dq

2 + Ω2
m)

)
.

(J.1c)

Recall, in d=2 Γ̃dm(q) ≡ Γ̃d(q, zm) takes the form:

Long Ranged Γ̃d(q, zm) =
Γ

q + ngq(1 + z2
m)−1/2

, (J.2a)

Short Ranged Γ̃d(q, zm) =
Γ

1 + ngq(1 + z2
m)−1/2

. (J.2b)

with ng = Γ/4vD. For long ranged interactions ng is dimensionless, for short ranged

it has units [ng] = L (equivalently for long ranged interactions [Γ] = E×L and short

ranged Γ = E × L2). We see that since Γ̃dm(q) is even in m, the sum over the first

term in Igra drops out in both interaction cases. We can write the T → 0 limit of

127



F (iωn) as:

F (iωn) = −6

4

1

v2
Dπ(2π)3

∫ ∞
0

d~q

∫ ΛvD

0

dΩ
Γ̃d(q,Ω/qvD)

(v2
Dq

2 + Ω2)3/2
×

×
[

(iωn + iΩ)(Ω(2ωn + Ω) + v2
Dq

2)l(qvD,Ω, ωn)

(v2
Dq

2 + (2ωn + Ω)2)1/2
+ (Ω→ −Ω)

]
= − i3ω2

n

v4
D(2π)3

∫ ∞
0

dq̄ q̄

∫ λ

0

dΩ̄
Γ̃d(q̄ωn/vD, Ω̄/q̄)

(q̄2 + Ω̄2)3/2
×

×
[

(1 + Ω̄)(Ω̄(2 + Ω̄) + q̄2)l(q̄, Ω̄, 1)

(q̄2 + (2 + Ω̄)2)1/2
+ (Ω̄→ −Ω̄)

]
, (J.3)

where a ΛvD cutoff has been imposed on the frequency integral which would otherwise

be UV divergent. In the second line we used Ω→ Ω̄ωn and q → q̄ωn/vD. Once again

we define λ = ΛvD/ωn.

The Case of a Long Ranged Interaction

Let us now first consider the case of a long ranged interaction, in which case

we can write Γ̃d(q̄ωn/vD, Ω̄/q̄) = vD
ωnq̄

v
(

Ω̄
q̄

)
. Then consider some number c � 1, and

break up the frequency integral.

F (iωn) = − i3ωn
v3
D(2π)3

∫ ∞
0

dq̄

(∫ c

0

+

∫ λ

c

)
dΩ̄

v
(

Ω̄
q̄

)
(q̄2 + Ω̄2)3/2

×

×
[

(1 + Ω̄)(Ω̄(2 + Ω̄) + q̄2)l(q̄, Ω̄, 1)

(q̄2 + (2 + Ω̄)2)1/2
+ (Ω̄→ −Ω̄)

]
. (J.4)

The first integral is ωn independent, and just yields a O(ωn) contribution to the DOS

correction. Let’s focus on the second integral for ωn → 0. Since c � 1, we have

Ω̄� 1 and:

√
q̄2 + Ω̄2 + 4Ω̄ + 4 ≈

√
q̄2 + Ω̄2 +

2 + 2Ω̄√
q̄2 + Ω̄2

− 2(1 + Ω̄)2

(q̄2 + Ω̄2)3/2
. (J.5)
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Then for Ω̄→∞ we have

l(q̄, Ω̄, 1) ≈ log

(
q̄2 + 1 + (1 + Ω̄)2 − (q̄2 + Ω̄2)− 2− 2Ω̄ + 2(1+Ω̄)2

q̄2+Ω̄2

q̄2 + 1 + (1 + Ω̄)2 + (q̄2 + Ω̄2) + 2 + 2Ω̄− 2(1+Ω̄)2

q̄2+Ω̄2

)

≈ log

(
(1 + Ω̄)2

(q̄2 + Ω̄2)2

)
≈ 2 log

(
|Ω̄|

q̄2 + Ω̄2

)
. (J.6)

To leading order l(q̄, Ω̄, 1) is even in Ω̄, expanding the numerator in Eq. (J.4) we get

to leading order:

F (iωn) ≈ O(iωn)− i12ωn
v3
D(2π)3

∫ ∞
0

dq̄

∫ λ

c

dΩ̄
(3Ω̄2 + q̄2)

(q̄2 + Ω̄2)2
v

(
Ω̄

q̄

)
log

(
|Ω|

q̄2 + Ω̄2

)
= O(iωn) +

i12ωn
v3
D(2π)3

∫ λ

c

dΩ̄

∫ ∞
0

dx
1

Ω̄

3 + x2

(1 + x2)2
v

(
1

x

)[
log
(
Ω̄
)

+ log
(
1 + x2

)]
= O(iωn)− iωn

Γ

v3
D

c1(ng) log

(
|ωn|
ΛvD

)
+ iωn

Γ

v3
D

c2(ng) log2

(
|ωn|
ΛvD

)
, (J.7)

where in the second line we let q̄ → Ω̄x, and c1(ng) and c2(ng) are real constants that

depend on ng. They can be easily numerically evaluated given a value of ng. By the

techniques of the previous section, upon analytic continuation we yield for the DOS

correction:

δN(ω) =
16

3π
ImF (ω + i0+) ≈ +|ω| Γ

v3
D

c1(ng)− |ω|c2(ng)
Γ

v3
D

log

(
|ω|

ΛvD

)
, (J.8)

where we have absorbed multiplicative factors into the ci’s. They are defined as:

c1(ng) ≡
8

π3

∫ ∞
0

dx
3 + x2

(1 + x2)2

1

1 + ng(1 + 1/x2)−1/2
, (J.9a)

c2(ng) ≡
32

π3

∫ ∞
0

dx
3 + x2

(1 + x2)2

log(1 + x2)

1 + ng(1 + 1/x2)−1/2
. (J.9b)
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The Case of a Short Ranged Interaction

In the short ranged interaction case, Equation (J.3) is UV divergent for q → 0,

so it now reads:

F (iωn) = − 3iω2
nΓ

v4
D(2π)3

∫ λ

0

dq̃

∫ λ

−λ
dΩ̄

q̃

1 + q̃2 ωn
vD
ng(q̃2 + Ω̄2)−1/2

1

(q̃2 + Ω̄2)3/2
×

×(1 + Ω̄)(Ω̄(2 + Ω̄) + q̃2)

(q̃2 + (2 + Ω̄)2)1/2
l(q̃, Ω̄, 1) . (J.10)

Upon changing coordinates to q̄(cos θ, sin θ) = (Ω̄, q̃) we get:

F (iωn) = − 3iω2
nΓ

v4
D(2π)3

∫ λ

0

dq̃

∫ 1

−1

dη
1

q̄ + q̄2 ωn
vD
ng(1− η2)

(1 + q̄η)(q̄2 + 2q̄η)

(q̄2 + 4q̄η + 4)1/2
×

× log

(
q̄2 + 2q̄η + 2− q̄

√
q̄2 + 4q̄η + 4

q̄2 + 2q̄η + 2 + q̄
√
q̄2 + 4q̄η + 4

)
. (J.11)

This integral doesn’t blow up in the IR limit because the log term in the last line

goes to zero as −2q̄ as q̄ → 0. We are interested in the leading behavior as ω̄n → 0,

so we Taylor expand the integrand around ωn = 0 and for q̄ →∞, yielding:

F (iωn) ≈ − 3iω2
nΓ

v4
D(2π)3

∫ λ

1

dq̃

∫ 1

−1

dη
(1 + q̄η)(q̄2 + 2qη)

q

(
1

q̄
− 2η

q̄2

)
×

×
(

1 +
ngωnq̄(−1 + η2)

vD

)[
log(η2)− log(q̄2)

]
. (J.12)

The leading non-analytic behavior of F (iωn) for iωn → 0 is then:

F (iωn) ≈ i
2

5π3
ω3
n

Γng
v5
D

log2

(
|ωn|
ΛvD

)
+O

(
ω3 log

(
|ωn|
ΛvD

)
, ω log

(
|ωn|
ΛvD

)
, ωn

)
. (J.13)
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Upon computing ImF (ω + i0+) the terms not explicitly written down vanish, or are

less important. Finally, analytic continuation yields the leading non-analytic DOS

correction:

δN(ω) =
2

5π2

Γng
v5
D

ω2|ω| log

(
|ω|

ΛvD

)
. (J.14)
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