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DISSERTATION ABSTRACT

Zachary R. Sailer

Doctor of Philosophy

Department of Chemistry and Biochemistry

September 2018

Title: Predicting Phenotypes in Sparsely Sampled Genotype-Phenotype Maps

Naturally evolving proteins must navigate a vast set of possible sequences to evolve

new functions. This process depends on the genotype-phenotype map. Much effort

has been directed at measuring protein genotype phenotype maps to uncover evolu-

tionary trajectories that lead to new functions. Often, these maps are too large to

comprehensively measure. Sparsely measured maps, however, are prone to missing

key evolutionary trajectories. Many groups turn to computational models to infer

missing phenotypes. These models treat mutations as independent perturbations

to the genotype-phenotype map. A key question is how to handle non-independent

effects known as epistasis. In this dissertation, we address two sources of epista-

sis: 1) global and 2) local epistasis. We find that incorporating global epistasis

improves our predictive power, while local epistasis does not. We use our model

to infer unknown phenotypes in the Plasmodium falciparum chloroquine transporter

(PfCRT) genotype-phenotype map, a protein responsible for conferring drug resis-

tance in malaria. From these predictions, we uncover key evolutionary trajectories

that led high resistance. This dissertation includes previously published and unpub-

lished co-authored material.
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CHAPTER I

INTRODUCTION

Over several billion years, proteins have evolved and diversified to perform various

functions necessary for life. This is an incredible feat, since naturally evolving proteins

must navigate a vast space of possible sequences to acquire new functions [1, 2]. While

sequence space is large, it is also sparse–comprised mostly of nonfunctional or inviable

sequences [3]. How do proteins navigate sequence space and evolve new functions?

The genotype-phenotype map is a key determinant of protein evolution. John

Maynard Smith illustrated protein genotype-phenotype maps using a famous word

game. [4, 5]. He imagined protein sequences as English words. To evolve between

two words, evolution can only proceed through adjacent meaningful words. In the

evolution from WORD to COST, there are 16 possible trajectories (Figure 1A), but

only one trajectory is accessible. The distribution of meaningful words strongly shapes

evolution in this space. This is analogous to how Smith imagine proteins navigate

sequence space. Evolutionary trajectories are strongly shaped by the distribution of

phenotype in sequence space. Ogbunugafor et al. [5] extended the word game to

show how proteins might evolve a quantitative phenotype by mapping each word’s

frequency from various books pulled in Google Books Ngram viewer (Figure 1B). In

this space, proteins accumulate mutations that incrementally improve the phenotype

over evolutionary time.

The word game shows that to understand how a protein evolved, it is necessary to

study the genotype-phenotype map [6, 7, 2, 8, 9, 10]. The genotype-phenotype map

insight to key evolutionary questions like: why is one evolutionary trajectory taken

over another? What are the biological, chemical, and physical determinants of acces-

1



Figure 1: John Maynard Smith’s wordgame. A) Panel shows the full map
of English words between WORD and COST. Red word represent meaningful words
English words, black words represent gibberish words. The edges represented single
letter substitutions between words. The red trajectory represents the only accessible
trajectory. B) Panel shows the word game with quantitative phenotypes. The colors
represent the frequency of each word in Google’s Ngram viewer.

sible evolutionary trajectories? Is evolution constrained? Is evolution predictable?

Measuring complete protein genotype-phenotype maps, however, is often intractable.

The number of genotypes grows rapidly as the number of mutations increases. For

example, in the word game (Figure 1), four mutations led to a binary genotype-

phenotype with 16 genotypes. The same word game with 15 mutations (a modest

number) leads to a map 32,768 genotypes. The numbers compound even quicker if we

consider any amino acid at each site. For example, a protein with all 20 amino acids

at 15 sites leads to a genotype-phenotype map with > 1019 genotypes. Even mod-

ern high-throughput techniques cannot characterize maps with this many genotypes.

Further, there are many cases in which high-throughput methods are not currently

possible. As a result, even small genotype-phenotype maps can be experimentally

challenging to characterize.

The Genotype-Phenotype Map that Led to Malarial Drug Resistance

A timely example is the chloroquine resistance transporter (PfCRT) protein that

evolved to confer drug resistance in plasmodium falciparum [11]. Eight mutations were

identified in PfCRT, that confers resistance to chloroquine (CQ). For many decades,

chloroquine was the primary malaria treatment before these chloroquine-resistance
2



parasites naturally evolved and stunted its effectiveness. This was disastrous for

world health [11]. Summers et al. constructed the genotype-phenotype map from

the 8 mutations. This is shown in Figure 2A [11]. Many questions immediately

arose: How did the eight mutations arise? What evolutionary trajectories were the

most probable (i.e. in what order did the mutations occur)? Why did this system

take many decades to evolve–a stark contrast from other evolutionary systems like

influenza or HIV [10].

3



Figure 2: Incomplete PfCRT genotype-phenotype map shows epistasis. A)
Panel shows known and unknown phenotypes in PfCRT’s genotype-phenotype map.
Nodes represent genotypes. Edges represent single substitutions. Node color rep-
resents the measured CQ uptake. White nodes represent genotypes that were not
measured. B) Panel shows one possible evolutionary trajectory in PfCRT. Labels
show position and mutation that occurred only each edge in the trajectory. C) Panel
shows the Pobs vs. Padd curve plot for the observed phenotypes. Points represent geno-
types. Error bars represent uncertainty in the measured phenotypes (two standard
deviations). Red line represents the 1:1 line. D) Panel shows the quantitative effects
of each mutation. Black bars represent the effect of each mutation in the trajectory.
White bars represent the effect of the each mutation in the derived genotype’s genetic
background. Red star highlights mutation 356T which flips sign when introduced in
the trajectory versus the derived background.

PfCRT plays a key role in transporting chloroquine out of the cell’s digestive

vacuole (DV). CQ is a diprotic base that diffuses into the DV[12]. Here, it de-

protonates in the acidic environment and becomes trapped. It accumulates in high

4



concentration, prevents the cell from detoxifying, and causes cell death [13]. To

counteract the high accumulation of CQ, the parasite hijacked PfCRT to transport

CQ out of the digestive vacuole. The eight mutations that arose in nature malarial

strains enabled PfCRT to transport de-protonated CQ molecules across the vacuole

membrane and into the intercellular space.

To understand how PfCRT evolved the ability to transport CQ, Summers et al.

sought to measure portions of the genotype-phenotype map. They constructed dif-

ferent combinations of the 8 mutations in PfCRT (shown in color in Figure 2). They

expressed these mutants on the membrane of Xenopus laevis oocytes cells. They then

left the cells in saturating concentrations of protonated CQ and measured the CQ

uptake over time. This took Summers et al. a few years to measure 52 genotypes–only

a fraction of the entire map.

Using the information from the measured 52 genotypes, Summers et al. inferred

a set of evolutionary trajectories that led to high-CQ transportation PfCRT [11].

One of these trajectories is shown in Figure 2B. Interestingly, they found that every

trajectory required at least one neutral step–a substitution that led to no change in

CQ uptake. They suggest that this may be the reason that CQ resistance took many

decades to evolve.

Though a few possible trajectories were proposed, it is unclear whether these

are key trajectories without knowing the complete genotype-phenotype map. It is

possible that important genotypes were not measured, and therefore, key trajectories

were missed. Measuring new genotypes, however, takes many weeks. At this rate, it

would take over a decade to measure the complete genotype-phenotype map. On the

other hand, more efficient experimental methods (such as high-throughput methods)

are not currently possible.
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Computational Approach to Inferring Missing Phenotypes

To alleviate the experimental challenges, this dissertation develops a computational

approach to infer missing phenotypes from sparsely-sampled genotype-phenotype

maps. In the PfCRT space, our model could shave off years of experimental work.

We followed simple approach proposed by R.A. Fisher in 1918. He modeled each

mutation as an independent perturbation to a quantitative phenotype [14, 15]. The

phenotype of any genotype is simply the sum of its mutations. This is known as an

additive model. We can estimate the effects of mutations in an additive model using

ordinary linear regression. The regression has the form:

Pobs = Padd + ε (1)

where Pobs is the observed phenotypes, ε represents the regression residuals, Padd is

the additive model. Padd has the form

Padd = βref + β1x1 + β2x2 + ... (2)

where βi represents the quantitative effect of mutation i, xi is 0 if the mutation is

present and 1 otherwise, and βwt is a reference phenotype.

When we apply an additive model to the PfCRT genotype-phenotype map, it

yields a fit with R2 = 0.65. The error in the predictions can be seen in the correlation

plot, Pobs versus Padd, shown in Figure 2C. A few immediate problems appear in the

correlation plot of Pobs versus Padd that we will address throughout this dissertation.

Epistasis Impairs Prediction

The residual term in the additive model has a special name; it is called epistasis.

Epistasis has many forms and arises from different sources [15, 16, 17, 18, 19, 20, 21,

22, 23]. Formally, epistasis is defined as a mutation having a different effect in two
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different genetic backgrounds. This appears as deviations from the additive model.

Epistasis plays an profound role in shaping evolutionary trajectories [2, 24, 25, 26,

16, 27, 17, 28, 29, 30, 10, 19, 31, 32, 33, 34, 20, 35, 23]. It can determine the specific

order in which mutations accumulate [25, 19], stochastically open and close pathways

[36, 37], and entrench mutations over evolutionary time, [38, 33], and lead to long

range history contingency in a genotype-phenotype map [39, 36].

Epistasis is can be observed in PfCRT. In Figure 2D, the effect of each mutation

in the trajectory is shown as black bars in Figure 2B. Summers et al. also measured

the effect of these mutations in the derived genetic background, shown as white bars.

We can see that each mutation has a different effect when introduced in the trajec-

tory versus in the derived background. This observation is the result of epistasis.

Interestingly, the +356T switches sign. It has a positive effect in the trajectory but a

negative effect in the derived background. This is an extreme case known as sign epis-

tasis. This non-additivity in the PfCRT genotype-phenotype map causes the additive

model to yield poor results.

This dissertation addresses epistasis when predicting phenotypes. The following

chapters analyze epistasis in various genotype-phenotype maps and identifies key

features that improve predictive power. Finally, we apply our improved model to

the PfCRT genotype-phenotype map and predict unknown phenotypes. We then

collaborate with the Martin lab (Australia National University), responsible for the

original PfCRT data in Summers et. al [11], to experimentally characterize 25 new

genotypes. We then compare these to our predictions. In the final chapter, we

layout the limitations of this approach and propose alternative avenues for future

improvement.
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Chapter-by-chapter Breakdown

Chapter II addresses the problem of epistasis by dissecting epistasis into two sources:

global and local epistasis. We analyze various experimental genotype-phenotype maps

collected from the literature. We identify global epistasis–or nonlinearity between the

genotype and phenotype–in many of these maps. It explains a small fraction of

the epistasis on these maps. We then analyze these maps for local epistasis. We

find extensive high-order epistasis–or specific interactions between two, three, four,

or even more mutations. We employ a rigorous statistical approach to confirm the

observed epistasis is not due to experimental uncertainty. From this, we conclude

that high-order epistasis is a ubiquitous feature of biology. The work in this chapter

was published as a research article in the journal Genetics, and co-authored with

Prof. Michael J. Harms.

Chapter III then explores the role that high-order epistasis plays in shaping evolu-

tionary trajectories through genotype-phenotype maps. We pull various experimental

genotype-phenotype maps from the literature. We enumerate evolutionary trajecto-

ries through each map and calculated their relative probabilities. We then com-

putationally removed local epistatic interactions and observe their effects on these

trajectories. In every map, we find that removing high-order epistasis drastically

changed the trajectories we observed. From this, we conclude that high-order epista-

sis plays a significant role in evolution, and therefore, cannot be ignored. The work in

this chapter was published as a research article in the journal, PLoS Computational

Biology , and co-authored with Prof. Michael J. Harms.

Chapter IV addresses one possible source of high-order epistasis, molecular ensem-

bles. We use a simple toy model of proteins, called protein lattice models, to explore

how the protein’s conformational ensemble shapes it’s evolutionary trajectories. We

first find that a two-state protein exhibits no high-order epistasis. On the other hand,
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we find that a 3+ state protein exhibits extensive high-order epistasis. This suggests

that high-order epistasis in lattice proteins arises from the conformational ensemble.

We examine the ensemble over the course of an evolutionary trajectory and find the

cause of high-order epistasis. Because mutations affect each conformation in a slightly

different way, the effect of a mutation changes over the course of an evolutionary tra-

jectory. This leads to extensive high-order epistasis in lattice proteins. We concluded

that this phenomena is likely ubiquitous in molecular systems since conformational

ensembles are a common feature in biological systems. The work in this chapter was

published as a research article in the journal, Proceedings of the National Academy

of Sciences, and co-authored with Prof. Michael J. Harms.

Chapter V addresses a major problem when including local epistasis to predict

missing phenotypes in sparsely-sampled genotype phenotype maps. Using both com-

putational and experimental genotype-phenotype maps, we show that adding local

epistasis yields poor predictions. The problem with fitting epistasis to sparse data is

that it leads to biased estimates of epistatic coefficients. As a result, the predictions

are biased. Fitting global epistasis, on the other hand, improves predictions. Thus,

we conclude that the best approach to predicting phenotypes is to ignore local epista-

sis. The work in this chapter is currently in preparation and co-authored with Prof.

Michael J. Harms.

In Chapter VI, we apply our model to infer missing phenotypes in the PfCRT

genotype-phenotype map. We work in collaboration with Rowena Martin’s group

at Australia National University. The Martin group measured 25 genotypes not

previously characterized, while we generated predictions. We address a key feature

in the observed phenotype. Two mutations are necessary for CQ transport. We

model this feature by including a preprocessing step that classifies genotypes as no-

CQ transport or positive-CQ transport. We then fit a nonlinear additive model to

positive-CQ genotypes. We predict the 204 unknown phenotype and find that many of
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the genotypes are nonfunctional. We then compare our predictions to the genotypes

measured by the Martin group and find that our model accurately predicts with a

known uncertainty. Finally, we map our predictions on the full PfCRT genotype-

phenotype map and infer evolutionary trajectories that lead to high-CQ uptake. We

find that many trajectories are inaccessible. The work in this chapter is currently in

preparation and co-authored with Robert Summers, Sarah Shafik, Alex Joule, Prof.

Rowena Martin and Prof. Michael J. Harms.

Broader Impacts

An immediate broader impact from this work is the prediction of unknown PfCRT

genotypes. We were able to draw new conclusions about evolution of PfCRT. Specif-

ically, we reveal many low-transport proteins in the genotype-phenotype map that

make many evolutionary trajectories inaccessible. We also observe many neutral steps

in the observed evolutionary trajectories. This could explain why CQ resistance took

so many decades to evolve. It also informs future experimental work directed at

understanding the evolution of drug resistance.

An even broader impact is the generalization of our model. By the end of the dis-

sertation, we present a general model for predicting phenotypes in sparsely-sampled

genotype-phenotype maps. Together, with high-throughput experimental techniques,

this model has the potential to uncover massive genotype-phenotype maps that were

previously inaccessible. We also address the problem of epistasis and conclude that

epistasis provides a simple metric of the uncertainty. This allows us to predict large

genotype-phenotype maps from very few phenotypes with known uncertainty. Fur-

ther, this dissertation informs the user how many phenotypes must be measured

before reaching the maximum predictive power.

All software used in this dissertation is free and open source. The prediction

models can be accessed and downloaded on Github (https://github.com/harmslab).
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All of the code is written in Python and built on top of core scientific python pack-

ages. Each software package includes extensive documentation and examples on how

to apply to various types of experimental data, Many examples are also written in

Jupyter notebooks–reproducible electronic notebooks that include code, text, and fig-

ures in a single document. This was our best effort to follow an open and reproducible

approach to science.
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CHAPTER II

DETECTING HIGH-ORDER EPISTASIS IN NONLINEAR

GENOTYPE-PHENOTYPE MAPS

Author Contributions

Zachary Sailer (ZRS) and Michael Harms (MJH) conceptualized the paper. ZRS
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Abstract

High-order epistasis has been observed in many genotype-phenotype maps. These

multi-way interactions between mutations may be useful for dissecting complex traits

and could have profound implications for evolution. Alternatively, they could be a

statistical artifact. High-order epistasis models assume the effects of mutations should

add, when they could in fact multiply or combine in some other nonlinear way. A

mismatch in the “scale” of the epistasis model and the scale of the underlying map

would lead to spurious epistasis. In this paper, we develop an approach to estimate the

nonlinear scales of arbitrary genotype-phenotype maps. We can then linearize these

maps and extract high-order epistasis. We investigated seven experimental genotype-

phenotype maps for which high-order epistasis had been reported previously. We

find that five of the seven maps exhibited nonlinear scales. Interestingly, even after

accounting for nonlinearity, we found statistically significant high-order epistasis in all

seven maps. The contributions of high-order epistasis to the total variation ranged

from 2.2% to 31.0%, with an average across maps of 12.7%. Our results provide
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strong evidence for extensive high-order epistasis, even after nonlinear scale is taken

into account. Further, we describe a simple method to estimate and account for

nonlinearity in genotype-phenotype maps.

Introduction

Recent analyses of genotype-phenotype maps have revealed “high-order” epistasis—that

is, interactions between three, four, and even more mutations [40, 41, 32, 42, 43, 44,

45, 46, 27, 47, 48, 49, 50, 51]. The importance of these interactions for understand-

ing biological systems and their evolution is the subject of current debate [44, 52].

Can they be interpreted as specific, biological interactions between loci? Or are they

misleading statistical correlations?

We set out to tackle one potential source of spurious epistasis: a mismatch between

the “scale” of the map and the scale of the model used to dissect epistasis [14, 53,

54, 15, 16, 7]. The scale defines how to combine mutational effects. On a linear

scale, the effects of individual mutations are added. On a multiplicative scale, the

effects of mutations are multiplied. Other, arbitrarily complex scales, are also possible

[55, 56, 57].

Application of a linear model to a nonlinear map will lead to apparent epistasis

[14, 53, 54, 15, 16, 7]. Consider a map with independent, multiplicative mutations.

Analysis with a multiplicative model will give no epistasis. In contrast, analysis

with a linear model will give epistatic coefficients to account for the multiplicative

nonlinearity [15, 16]. Epistasis arising from a mismatch in scale is mathematically

valid, but obscures a key feature of the map: its scale. It is also not parsimonious, as

it uses many coefficients to describe a potentially simple nonlinear function. Finally,

it can be misleading because these epistatic coefficients partition global information

about the nonlinear scale into (apparently) specific interactions between mutations.

Most high-order epistasis models assume a linear scale (or a multiplicative scale
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transformed onto a linear scale) [58, 7, 44, 52]. These models sum the indepen-

dent effects of mutations to predict multi-mutation phenotypes. Epistatic coefficients

account for the difference between the observed phenotypes and the phenotypes pre-

dicted by summing mutational effects. The epistatic coefficients that result are, by

construction, on the same linear scale [58, 44, 52].

Because the underlying scale of genotype-phenotype maps is not known a priori,

the interpretation of high-order epistasis extracted on a linear scale is unclear. If a

nonlinear scale can be found that removes high-order epistasis, it would suggest that

high-order epistasis is spurious: a highly complex description of a simple, nonlinear

system. In contrast, if no such scale can be found, high-order epistasis provides a

window into the profound complexity of genotype-phenotype maps.

In this paper, we set out to estimate the nonlinear scales of experimental genotype-

phenotype maps. We then account for these scales in the analysis of high-order

epistasis. We took our inspiration from the treatment of multiplicative maps, which

can be transformed into linear maps using a log transform. Along these same lines,

we set out to transform genotype-phenotype maps with arbitrary, nonlinear scales

onto a linear scale for analysis of high-order epistasis. We develop our methodology

using simulations and then apply it to experimentally measured genotype-phenotype

maps.

Materials and Methods

Experimental data sets

We collected a set of published genotype-phenotype maps for which high-order epista-

sis had been reported previously. Measuring an Lth-order interaction requires knowing

the phenotypes of all binary combinations of L mutations—that is, 2L genotypes. The

data sets we used had exhaustively covered all 2L genotypes for five or six mutations.

These data sets cover a broad spectrum of genotypes and phenotypes. Genotypes
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included point mutations to a single protein [25], point mutations in both members

of a protein/DNA complex [32], random genomic mutations [18, 6], and binary com-

binations of alleles within a biosynthetic network [59]. Measured phenotypes included

selection coefficients [25, 18, 6], molecular binding affinity [32], and yeast growth rate

[59]. (For several data sets, the “phenotype” is a selection coefficient. We do not

differentiate fitness from other properties for our analyses; therefore, for simplicity,

we will refer to all maps as genotype-phenotype maps rather than specifying some as

genotype-fitness maps). All data sets had a minimum of three independent measure-

ments of the phenotype for each genotype. All data sets are available in a standardized

ascii text format.

Nonlinear scale

We described nonlinearity in the genotype-phenotype map by a power transformation

(see Results) [60, 61]. The independent variable for the transformation was ~P add, the

predicted phenotypes of all genotypes assuming linear and additive affects for each

mutation. The estimated additive phenotype of genotype i, is given by:

P̂add,i =

j≤L∑
j=1

〈∆Pj〉xi,j (3)

where 〈∆Pj〉 is the average effect of mutation j across all backgrounds, xi,j is an index

that encodes whether or not mutation j is present in genotype i, and L is the number

of sites. The dependent variables are the observed phenotypes ~Pobs taken from the

experimental genotype-phenotype maps.

We use nonlinear least-squares regression to fit and estimate the power transfor-

mation from ~Padd to ~Pobs :

~Pobs ∼ τ( ~̂Padd; λ̂, Â, B̂) + ε̂,
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where ε is a residual and τ is a power transform function. This is given by:

~Pobs =
( ~̂Padd + A)λ − 1

λ(GM)λ−1
+B,

where A and B are translation constants, GM is the geometric mean of ( ~̂Padd + A)

, and λ is a scaling parameter. We used standard nonlinear regression techniques to

minimize d:

d = (~Pscale − ~Pobs)
2 + ε.

We then reversed this transformation to linearize Pobs using the estimated parameters

Â, B̂, and λ̂. We did so by the back-transform:

Pobs,linear = {λ̂(GM)λ−1(Pobs − B̂) + 1}1/λ̂ − Â. (4)

High-order epistasis model

We dissected epistasis using a linear, high-order epistasis model. These have been

discussed extensively elsewhere [58, 52, 44], so we will only briefly and informally

review them here.

A high-order epistasis model is a linear decomposition of a genotype-phenotype

map. It yields a set of coefficients that account for all variation in phenotype. The

signs and magnitudes of the epistatic coefficients quantify the effect of mutations and

interactions between them. A binary map with 2L genotypes requires 2L epistatic

coefficients and captures all interactions, up to Lth-order, between them. This is

conveniently described in matrix notation.

~P = X~β : (5)

a vector of phenotypes ~P can be transformed into a vector of epistatic coefficients
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~β using a 2L × 2L decomposition matrix that encodes which coefficients contribute

to which phenotypes. If X is invertible, one can determine ~β from a collection of

measured phenotypes by

~β = X−1 ~P . (6)

X can be formulated in a variety of ways [52]. Following others in the genetics

literature, we use the form derived from Walsh polynomials [58, 44, 52]. In this form,

X is a Hadamard matrix. Conceptually, the transformation identifies the geometric

center of the genotype-phenotype map and then measures the average effects of each

mutation and combination of mutations in this “average” genetic background (Figure

3). To achieve this, we encoded each mutation at each site in each genotype as -1

(wildtype) or +1 (mutant) [58, 44, 52]. This has been called a Fourier analysis,[7, 62],

global epistasis [52], or a Walsh space [58, 25]. Another common approach is to use a

single wildtype genotype as a reference and encode mutations as either 0 (wildtype)

or 1 (mutant) [52].
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Figure 3: Epistasis can be quantified using Walsh polynomials. A) A
genotype-phenotype map exhibiting negative epistasis. Axes are genotype at po-
sition 1 (g1), genotype at position 2 (g2), and phenotype (P ). For genotypic axes,
“0” denotes wildtype and “1” denotes a mutant. Phenotype is encoded both on the
P -axis and as a spectrum from white to blue. The map exhibits negative epistasis:
relative to wildtype, the effect of the mutations together (P11 = 2) is less than the
sum of the individual effects of mutations (P10 +P01 = 1+2 = 3). B) The map can be
decomposed into epistatic coefficients using a Walsh polynomial, which measures the
effects of each mutation relative to the geometric center of the genotype-phenotype
map (green sphere). The additive coefficients β1 and β2 (red arrows) are the average
effect of each mutation in all backgrounds. The epistatic coefficient β12 (orange ar-
row) the variation not accounted for by β1 and β2. Geometrically, it is the distance
between the center of the map and the “fold” given by vector connecting P00 and P11.

One data set (IV, Table I) has four possible states (A, G, C and T) at two of the

sites. We encoded these using the WYK tetrahedral-encoding scheme[63, 32]. Each

state is encoded by a three-bit state. The wildtype state is given the bits (1, 1, 1).

The remaining states are encoded with bits that form corners of a tetrahedron. For

example, the wildtype of site 1 is G and encoded as the (1, 1, 1) state. The remaining

states are encoded as follows: A is (1,−1,−1), C is (−1, 1,−1) and T is (−1,−1, 1).
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ID genotype phenotype L ref
I scattered genomic mutations E. coli fitness 5 [18]
II chromosomes in asexual fungi A. niger fitness 5 [6]
III protein point mutants bacterial fitness 5 [25]
IV DNA/protein point mutants DNA/protein binding affinity 5 [32]
V chromosomes in asexual fungi A. niger fitness 5 [6]
VI alleles in biosynthetic network S. cerevisiae haploid growth rate 6 [59]
VII alleles in biosynthetic network S. cerevisiae diploid growth rate 6 [59]

Table 1: All data sets have 2L genotypes except the DNA/protein interaction data
set (IV), which has 128 genotypes. This occurs because the data set has 2 DNA
sites (each of which have 4 possible bases) and 3 protein sites (each of which has two
possible amino acids).

Experimental uncertainty

We used a bootstrap approach to propagate uncertainty in measured phenotypes into

uncertainty in epistatic coefficients. To do so we: 1) calculated the mean and standard

deviation for each phenotype from the published experimental replicates; 2) sampled

the uncertainty distribution for each phenotype to generate a pseudoreplicate vector

~Ppseudo that had one phenotype per genotype; 3) rescaled ~Ppseudo using a power-

transform; and 4) determined the epistatic coefficients for ~Ppseudo,scaled. We then

repeated steps 2-4 until convergence. We determined the mean and variance of each

epistatic coefficient after every 50 pseudoreplicates. We defined convergence as the

mean and variance of every epistatic coefficient changed by < 0.1 % after addition of

50 more pseudoreplicates. On average, convergence required ≈ 100, 000 replicates per

genotype-phenotype map. Finally, we used a z-score to determine if each epistatic

coefficient was significantly different than zero. To account for multiple testing, we

applied a Bonferroni correction to all p-values [64].

Computational methods

Our full epistasis software package—written in Python3 extended with Numpy and

Scipy [65]—is available for download via github (https://harmslab.github.com/epistasis).
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We used the python package scikit-learn for all regression [66]. Plots were generated

using matplotlib and jupyter notebooks [67, 68].

Results and Discussion

Nonlinear scale induces apparent high-order epistasis

Our first goal was to understand how a nonlinear scale, if present, would affect es-

timates of high-order epistasis. To probe this question, we constructed a five-site

binary genotype-phenotype map on a nonlinear scale, and then extracted epistasis

assuming a linear scale. The nonlinear scale we chose was a saturating function:

Pg,trans =
(1 +K)Pg
1 +KPg

, (7)

where Pg is the linear phenotype of genotype g, Pg,trans is the transformed phenotype

of genotype g, and K is a scaling constant. As K → 0, the map becomes linear.

As K increases, mutations have systematically smaller effects when introduced into

backgrounds with higher phenotypes.

We calculated Pg for all 2L binary genotypes using the random, additive coeffi-

cients shown in Figure 4A. These coefficients included no epistasis. We then trans-

formed Pg onto the nonlinear Pg,trans scale using Equation 7 with the relatively shallow

(K = 2) saturation curve shown in Figure 4B. Finally, we applied a linear epistasis

model to Pg,trans to extract epistatic coefficients.
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Figure 4: Nonlinearity in phenotype creates spurious high-order epistatic
coefficients. A)Simulated, random, first-order epistatic coefficients. The mutated
site is indicated by panel below the bar graph; bar indicates magnitude and sign
of the additive coefficient. B) A nonlinear map between a linear phenotype and a
saturating, nonlinear phenotype. The first-order coefficients in panel A are used to
generate a linear phenotype, which is then transformed by the function shown in B.
C) Epistatic coefficients extracted from the genotype-phenotype map generated in
panels A and B. Bars denote coefficient magnitude and sign. Color denotes the order
of the coefficient: first (βi, red), second (βij, orange), third (βijk, green), fourth (βijkl,
purple), and fifth (βijklm, blue). Filled squares in the grid below the bars indicate the
identity of mutations that contribute to the coefficient.

We found that nonlinearity in the genotype-phenotype map induced extensive

high-order epistasis when the nonlinearity was ignored (Figure 4C). We observed

epistasis up to the fourth order, despite building the map with purely additive co-

efficients. This result is unsurprising: the only mechanism by which a linear model

can account for variation in phenotype is through epistatic coefficients [53, 54, 15].

When given a nonlinear map, it partitions the variation arising from nonlinearity

into specific interactions between mutations. This high-order epistasis is mathemati-

cally valid, but does not capture the major feature of the map—namely, saturation.

Indeed, this epistasis is deceptive, as it is naturally interpreted as specific interac-

tions between mutations. For example, this analysis identifies a specific interaction

between mutations one, two, four, and five (Figure 4C, purple). But this four-way

interaction is an artifact of the nonlinearity in phenotype of the map, rather than a

specific interaction.
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Nonlinear scale and specific epistatic interactions induce different patterns of non-additivity

Our next question was whether we could separate the effects of nonlinear scale and

high-order epistasis in binary maps. One useful approach to develop intuition about

epistasis is to plot the the observed phenotypes (Pobs) against the predicted phenotype

of each genotype, assuming linear and additive mutational effects (Padd) [55, 56, 7].

In a linear map without epistasis, Pobs equals Padd, because each mutation would have

the same, additive effect in all backgrounds. If epistasis is present, phenotypes will

diverge from the Pobs = Padd line.

We simulated maps including varying amounts of linear, high-order epistasis,

placed them onto increasingly nonlinear scales, and then constructed Pobs vs. Padd

plots. We added high-order epistasis by generating random epistatic coefficients and

then calculating phenotypes using Eq. 5. We introduced nonlinearity by transforming

these phenotypes with Eq. 7. For each genotype in these simulations, we calculated

Padd as the sum of the first-order coefficients used in the generating model. Pobs is

the observable phenotype, including both high-order epistasis and nonlinear scale.

High-order epistasis and nonlinear scale had qualitatively different effects on Pobs

vs. Padd plots. Figure 5A shows plots of Pobs vs. Padd for increasing nonlinearity

(left-to-right) and high-order epistasis (bottom-to-top). As nonlinearity increases,

Pobs curves systematically relative to Padd. This reflects the fact that Padd is on a

linear scale and Pobs is on a saturating, nonlinear scale. The shape of the curve

reflects the map between the linear and saturating scale: the smallest phenotypes are

underestimated and the largest phenotypes overestimated. In contrast, high-order

epistasis induces random scatter away from the Pobs = Padd line. This is because the

epistatic coefficients used to generate the map are specific to each genotype, moving

observations off the expected line, even if the scaling relationship is taken into account.
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Figure 5: Epistasis and nonlinear scale induce different patterns of non-
additivity. A) Patterns of nonadditivity for increasing epistasis and nonlinear scale.
Main panel shows a grid ranging from no epistasis, linear scale (bottom-left) to high
epistasis, highly nonlinear scale (top-right). Insets in sub-panels show added non-
linearity. Going from left to right: K = 0, K = 2, K = 4. Epistatic coefficient
plots to right show the magnitude of the input high-order epistasis, with colors and
annotation as in Fig 2C. B) Plot of Pobs against P̂add for the middle sub panel in panel
A. Red line is the fit of the power transform to these data. C) Correlation between
epistatic coefficients input into the simulation and extracted from the simulation after
linearization by the power transform. Each point is an epistatic coefficient, colored
by order. The Pearson’s correlation coefficient is shown in the upper-left quadrant.
D) Correlation between epistatic coefficients input into the simulation and extracted
from the simulation without application of the power transform.

Nonlinearity can be separated from underlying high-order epistasis

The Pobs vs. Padd plots suggest an approach to disentangle high-order epistasis from

nonlinear scale. By fitting a function to the Pobs vs Padd curve, we describe a transfor-
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mation that relates the linear Padd scale to the (possibly nonlinear) Pobs scale [56, 7].

Once the form of the nonlinearity is known, we can then linearize the phenotypes so

they are on an appropriate scale for epistatic analysis. Variation that remains (i.e.

scatter) can then be confidently partitioned into epistatic coefficients.

In the absence of knowledge about the source of the nonlinearity, a natural choice is

a power transform [60, 61], which identifies a monotonic, continuous function through

Pobs vs. Padd. A key feature of this approach is that power-transformed data are

normally distributed around the fit curve and thus appropriately scaled for regression

of a linear epistasis model.

We tested this approach using one of our simulated data sets. One complication

is that, for an experimental map, we do not know Padd. In the analysis above, we

determined Padd from the additive coefficients used to generate the space. In a real

map, Padd is not known; therefore, we had to estimate Padd. We did so by measuring

the average effect of each mutation across all backgrounds, and then calculating P̂add

for each genotype as the sum of these average effects (Eq. 3).

We fit the power transform to Pobs vs. P̂ add (solid red line, Figure 5B). The

curve captures the nonlinearity added in the simulation. We linearized Pobs using

the fit model (Eq. 4), and then extracted high-order epistatic coefficients. The ex-

tracted coefficients were highly correlated with the coefficients used to generate the

map (R2 = 0.998) (Figure 5C). In contrast, applying the linear epistasis model to

this map without first accounting for nonlinearity gives much greater scatter between

the input and output coefficients (R2 = 0.934) (Figure 5D). This occurs because phe-

notypic variation from nonlinearity is incorrectly partitioned into the linear epistatic

coefficients.

24



Nonlinearity is a common feature of genotype-phenotype maps

Our next question was whether experimental maps exhibited nonlinear scales. We

selected seven genotype-phenotype maps that had previously been reported to exhibit

high-order epistasis (Table 1) and fit power transforms to each dataset (Figure 6, S1).

We expected some phenotypes to be multiplicative (e.g. datasets I, II and IV were

relative fitness), while we expected some to be additive (e.g. dataset IV is a free

energy). Rather than rescaling the multiplicative datasets by taking logarithms of

the phenotypes, we allowed our power transform to capture the appropriate scale. The

power-transform identified nonlinearity in the majority of data sets. Of the seven data

sets, three were less-than-additive (II, V, VI), two were greater-than-additive (III, IV),

and two were approximately linear (I, VII). All data sets gave random residuals after

fitting the power transform (Figure 6, S1).

Figure 6: Experimental genotype-phenotype maps exhibit nonlinear phe-
notypes. Plots show observed phenotype Pobs plotted against P̂add (Eq. 3) for data
sets I through IV. Points are individual genotypes. Error bars are experimental stan-
dard deviations in phenotype. Red lines are the fit of the power transform to the
data set. Pearson’s coefficient for each fit are shown on each plot. Dashed lines
are Padd = Pobs. Bottom panels in each plot show residuals between the observed
phenotypes and the red fit line. Points are the individual residuals. Error bars are
the experimental standard deviation of the phenotype. The horizontal histograms
show the distribution of residuals across 10 bins. The red lines are the mean of the
residuals.
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High-order epistasis is a common feature of genotype-phenotype maps

With estimated scales in hand, we linearized the maps using Eq. 4 and re-measured

epistasis (Figure S2). We used bootstrap sampling of uncertainty in the measured

phenotypes to determine the uncertainty of each epistatic coefficient (see Methods),

and then integrated these distributions to determine whether each coefficient was

significantly different than zero. We then applied a Bonferroni correction to each

p-value to account for multiple testing.

Despite our conservative statistical approach, we found high-order epistasis in ev-

ery map studied (Figure 7A, S3). Every data set exhibited at least one statistically

significant epistatic coefficient of fourth order or higher. We even detected statisti-

cally significant fifth-order epistasis (blue bar in Figure 7A, data set II). High-order

coefficients were both positive and negative, often with magnitudes equal to or greater

than the second-order terms. These results reveal that high-order epistasis is a robust

feature of these maps, even when nonlinearity and measurement uncertainty in the

genotype-phenotype map is taken into account.
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Figure 7: High-order epistasis is present in genotype-phenotype maps. A)
Panels show epistatic coefficients extracted from data sets I-IV (Table 1, data set label
circled above each graph). Bars denote coefficient magnitude and sign; error bars are
propagated measurement uncertainty. Color denotes the order of the coefficient: first
(βi, red), second (βij, orange), third (βijk, green), fourth (βijkl, purple), and fifth
(βijklm, blue). Bars are colored if the coefficient is significantly different than zero
(Z-score with p-value < 0.05 after Bonferroni correction for multiple testing). Stars
denote relative significance: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). Filled
squares in the grid below the bars indicate the identity of mutations that contribute
to the coefficient. The names of the mutations, taken from the original publications,
are indicated to the left of the grid squares. B) Sub-panels show fraction of variation
accounted for by first through fifth order epistatic coefficients for data sets I-IV (colors
as in panel A). Fraction described by each order is proportional to area.

We also dissected the relative contributions of each epistatic order to the remaining

variation. To do so, we created truncated epistasis models: an additive model, a model

containing additive and pairwise terms, a model containing additive through third-

order terms, etc. We then measured how well each model accounted for variation in

the phenotype using a Pearson’s coefficient between the fit and the data. Finally,

we asked how much the Pearson coefficient changed with addition of more epistatic

coefficients. For example, to measure the contribution of pairwise epistasis, we took

the difference in the correlation coefficient between the additive plus pairwise model
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and the purely additive model.

The contribution of epistasis to the maps was highly variable (Figure 7B, S3).

For data set I, epistatic terms explained 5.9% of the variation in the data. The

contributions of epistatic coefficients decayed with increasing order, with fifth-order

epistasis only explaining 0.1% of the variation in the data. In contrast, for data set

II, epistasis explains 43.3% of the variation in the map. Fifth-order epistasis accounts

for 6.3% of the variation in the map. The other data sets had epistatic contributions

somewhere between these extremes.

Accounting for nonlinear genotype-phenotype maps alters epistatic coefficients

Finally, we probed to what extent accounting for nonlinearity in phenotype altered

the epistatic coefficients extracted from each space. Figure 8 and S4 show correlation

plots between epistatic coefficients extracted both with and without linearization.

The first-order coefficients were all highly correlated between the linear and nonlinear

analyses for all data sets (Figure S5).
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Figure 8: Nonlinear phenotypes distort measured epistatic coefficients.
Sub-panels show correlation plots between epistatic coefficients extracted without
accounting for nonlinearity (x-axis) and accounting for linearity (y-axis) for data sets
I-IV. Each point is an epistatic coefficient, colored by order. Error bars are standard
deviations from bootstrap replicates of each fitting approach.

For the epistatic coefficients, the degree of correlation depended on the degree

of nonlinearity in the dataset. Data set I—which was essentially linear—had identi-

cal epistatic coefficients whether the nonlinear scale was taken into account or not.

In contrast, the other data sets exhibited scatter off of the line. Data set III was

particularly noteworthy. The epistatic coefficients were systematically overestimated

when the nonlinear scale was ignored. Two large and favorable pairwise epistatic

terms in the linear analysis became essentially zero when nonlinearity was taken into

account. These interactions—M182T/g4205a and G283S/g4205a—were both noted

as determinants of evolutionary trajectories in the original publication [25]; however,

our results suggest the interaction is an artifact of applying a linear model to a non-

linear data set. Further ≈ 20% (six of 27) epistatic coefficients flipped sign when

nonlinearity was taken into account (Figure 8, III, bottom right quadrant).
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Overall, we found that low-order epistatic coefficients were more robust to the

linear assumption than high-order coefficients. Data set IV is a clear example of

this behavior. The map exhibited noticeable nonlinearity (Figure 6). The first- and

second-order terms were well correlated between the linear and nonlinear analyses

(Figure 8, S4, S5). Higher-order terms, however, exhibited much poorer overall cor-

relation. While the R2 for second-order coefficients was 0.95, the correlation was

only 0.43 for third-order. This suggests that previous analyses of nonlinear genotype-

phenotype maps correctly identified the key mutations responsible for variation in the

map, but incorrectly estimated the high-order epistatic effects.

Discussion

Our results reveal that both nonlinear scales and high-order epistasis play important

roles in shaping experimental genotype-phenotype maps. Five of the seven data sets

we investigated exhibited nonlinear scales, and all of the data sets exhibited high-

order epistasis, even after accounting for nonlinearity. This suggests that both should

be taken into account in analyses of genotype-phenotype maps.

Origins of nonlinear scales

We observed two basic forms of nonlinearity in these maps: saturating, less-than-

additive maps and exploding, greater-than-additive maps. Many have observed less-

than-additive maps in which mutations have lower effects when introduced into more

optimal backgrounds [69, 17]. Such saturation has been proposed to be a key factor

shaping evolutionary trajectories [69, 17, 19, 70, 71]. Further, it is intuitive that

optimizing a phenotype becomes more difficult as that phenotype improves. Our

nonlinear fits revealed this behavior in three different maps.

The greater-than-additive maps, in contrast, were more surprising: why would

mutations have a larger effect when introduced into a more favorable background?
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For the β-lactamase genotype-phenotype map (III, Figure 6), this may be an artifact

of the original analysis used to generate the data set [25]. This data set describes the

fitness of bacteria expressing variants of an enzyme with activity against β-lactam

antibiotics. The original authors measured the minimum-inhibitory concentration

(MIC) of the antibiotic against bacteria expressing each enzyme variant. They then

converted their MIC values into apparent fitness by sampling from an exponential

distribution of fitness values and assigning these fitness values to rank-ordered MIC

values [25]. Our epistasis model extracts this original exponential distribution (Fig-

ure S6). This result demonstrates the effectiveness of our approach in extracting

nonlinearity in the genotype-phenotype map.

The origins of the growth in the transcription factor/DNA binding data set are

less clear (IV, Figure 6). The data set measures the binding free energy of variants of

a transcription factor binding to different DNA response elements. We are aware of no

physical reason for mutations to have a larger effect on free energy when introduced

into a background with better binding. One possibility is that the genotype-phenotype

map reflects multiple features that are simultaneously altered by mutations, giving rise

to this nonlinear shape. This is a distinct possibility in this data set, where mutations

are known to alter both DNA binding affinity and DNA binding cooperativity [72].

Best Practice

Because nonlinearity is a common feature of these maps, linearity should not be

assumed in analyses of epistasis. Given a sufficient number of phenotypic obser-

vations, however, the appropriate scale can be estimated by construction of a Pobs

vs. Padd plot and regression of a nonlinear scale model. With this scale in hand,

one can then transform the genotype-phenotype map onto a linear scale appropriate

for analysis using a high-order epistasis model. Our software pipeline automates this

process. It takes any genotype-phenotype map in a standard text format, fits for non-

31



linearity, and then estimates high-order epistasis. It is freely available for download

(https://harmslab.github.com/epistasis).

One important question is how to select an appropriate function to describe the

nonlinear scale. By visual inspection, all of the data sets we studied were monotonic

in P̂add and could be readily captured by a power transform. Other maps may be

better captured with other functions. For example, inspection of a Pobs vs P̂add plot

could reveal a non-monotonic scale, leading to a better fit with a polynomial than a

power-transform. Another possibility is that external biological knowledge motivates

scale choice [56].

The choice of model determines what fraction of the variation is assigned to “scale”

versus “epistasis.” The more complicated the function chosen, the more variation

in the data is shifted from epistasis and into scale. One could, for example, fit a

completely uninformative Lth-order polynomial, which would capture all of variation

as scale and none as epistasis. Scale estimation should be governed by the well-

established principles of model regression: find the simplest function that captures

the maximum amount of variation in the data set without fitting stochastic noise.

Because epistasis is scatter off the scale line (noise), model-selection approaches like

the F-test, Akaike Information Criterion, and inspection of fit residuals are a natural

strategy for partitioning variation between scale and epistasis.

Interpretation

Another powerful aspect of this approach is that it allows explicit separation of two

distinct origins of non-additivity in genotype-phenotype maps.

This can be illustrated with a simple, conceptual, example. Imagine mutations to

an enzyme, expressed in bacteria, that have a less-than-additive effect on bacterial

growth rate. To a first approximation, this epistasis could have two origins. The first

is at the level of the enzyme: maybe the mutations have a specific, negative chemical
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interactions that alter enzyme rate. The second is at the level of the whole cell:

maybe, above a certain activity, the enzyme is fast enough that some other part of

the cell starts limiting growth. Mutations continue to improve enzyme activity, but

growth rate does not reflect this. These two origins of less-than-additive behavior will

have different effects in a Padd vs. Pobs plot: saturation of growth rate will appear as

nonlinearity, interactions between mutations at the enzyme level will appear as linear

epistasis. Our analysis would reveal this pattern and set up further experiments to

tease apart these possibilities.

This may also provide important evolutionary insights. One important question

is to what extent evolutionary paths are shaped by global constraints versus specific

interactions that lead to specific historical contingencies [36, 33, 19]. For example,

recent work has shown specific epistatic interactions lead to sequence-level unpre-

dictability, while a globally less-than-additive scale leads to predictable phenotypes

in evolution [19]. Our analysis approach naturally distinguishes these origins of non-

additivity, and thus these evolutionary possibilities. Prevailing magnitude epistasis

[6], global epistasis [19], and diminishing-returns epistasis [17, 69, 71, 70] will all

appear as nonlinear scales. In contrast, specific interactions will appear in specific

coefficients in the linear epistasis model. Our detection of nonlinearity and high-order

epistasis in most datasets suggests that both forms of non-additivity will be in play

over evolutionary time.

High-order epistasis

Finally, our work reveals that high-order epistasis is, indeed, a common feature of

genotype-phenotype maps. Our study could be viewed as an attempt to “explain

away” previously observed high-order epistasis. To do so, we both accounted for

nonlinearity in the map and propagated experimental uncertainty to the epistatic

coefficients. Surprisingly—to the authors, at least—high-order epistasis was robust
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to these corrections.

High-order epistasis can make huge contributions to genotype-phenotype maps.

In data set II, third-order and higher epistasis accounts for fully 31.0% of the variation

in the map. The average contribution, across maps, is 12.7%. We also do not see a

consistent decay in the contribution of epistasis with increasing order. In data sets II,

V and VI, third-order epistasis contributes more variation to the map than second-

order epistasis. This suggests that epistasis could go to even higher orders in larger

genotype-phenotype maps.

The generality of these results across all genotype-phenotype maps is unclear.

The maps we analyzed were measured and published because they were “interesting,”

either from a mechanistic or evolutionary perspective. Further, most of the maps

have a single, maximum phenotype peak. The nonlinearity and high-order epistasis

we observed may be common for collections of mutations that, together, optimize a

function, but less common in “flatter” or more random genotype-phenotype maps.

This can only be determined by characterization of genotype-phenotype maps with

different structural features.

The observation of this epistasis also raises important questions: What are the

origins of third, fourth, and even fifth-order correlations in these data sets? What,

mechanistically, leads to a five-way interaction between mutations? Does neglecting

high-order epistasis bias estimates of low-order epistasis [73]? What can this epistasis

tell us about the biological underpinning of these maps [74, 75, 43, 76]?

The evolutionary implications are also potentially fascinating. Epistasis creates

temporal dependency between mutations: the effect of a mutation depends strongly

on specific mutations that fixed earlier in time [77, 78, 36, 33] How does this play

out for high-order epistasis, which introduces long-range correlations across genotype-

phenotype maps? Do these low magnitude interactions matter for evolutionary out-

comes or dynamics? These, and questions like them, are challenging and fascinating
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future avenues for further research.
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CHAPTER III

HIGH-ORDER EPISTASIS SHAPES EVOLUTIONARY TRAJECTORIES
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Abstract

An important question in evolutionary biology is the extent to which past events

shape later evolution. High-order epistasis—where the effect of a mutation is de-

termined by interactions with two or more other mutations—provides insight into

this link between past and present. If high-order epistasis determines evolutionary

trajectories, it reveals that the effect of a mutation depends on multiple, past substi-

tutions: the past can strongly shape the present. High-order epistasis makes small,

but detectable, contributions to genotype-fitness maps, but its evolutionary conse-

quences remain poorly understood. To determine the effect of high-order epistasis on

evolutionary trajectories, we computationally removed high-order epistasis from ex-

perimental genotype-fitness maps and then compared trajectories through maps both

with and without high-order epistasis. Here we show that high-order epistasis, despite

its small magnitude, strongly shapes the accessibility and probability of evolutionary

trajectories. This suggests that evolutionary outcomes are profoundly dependent on

multiple, past events.
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Author Summary

A key goal for evolutionary biologists is understanding why one evolutionary trajec-

tory is taken rather than others. This requires understanding how individual muta-

tions, as well as interactions between them, determine the availability of evolution-

ary pathways. We used a robust statistical analysis to reveal interactions between

up to five mutations in published datasets, meaning that the effect of a mutation

can depend on the presence or absence of four other mutations. Simulations reveal

that these interactions strongly shape evolutionary trajectories, and that mutations

which occur early in a trajectory continue to exert profound effects on later evolu-

tion. These multi-way interactions are ubiquitous in biological datasets, suggesting

that past events strongly determine future outcomes.

Introduction

Epistasis creates historical contingency, as it means that the effect of a mutation

depends on previous substitutions [25, 16, 36, 19, 9, 37]. Interactions between pairs of

mutations can cause mutations to accumulate in a specific order [25, 19], stochastically

open and close pathways [36, 37], and make evolution irreversible [38, 33].

The effects of high-order epistasis—interactions between three or more muta-

tions—on evolution are less well understood. Statistically-significant high-order epis-

tasis has been observed in multiple genotype-phenotype maps [40, 44, 42, 52, 32, 41,

22, 37, 79], even when steps are taken to minimize its contribution to epistasis mod-

els [22]. Its magnitude is generally lower than the individual and pairwise epistatic

effects of mutations [22]. Several studies have suggested that it can alter evolutionary

outcomes [44, 37, 79], but its overall importance for evolution is not well understood.

Does high-order epistasis alter evolutionary outcomes? Or are trajectories primarily

shaped by the additive and pairwise epistatic effects of mutations?
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We set out to assess the effect of high-order epistasis on evolutionary trajecto-

ries through experimentally measured genotype-fitness maps. We decomposed these

maps into contributions from nonlinear scale, additive effects, and epistasis at differ-

ent orders ranging from second to fifth. We then calculated “truncated” maps with

different orders of epistasis deleted. By comparing the fitness values and probabilities

of individual evolutionary trajectories through the truncated maps, we can reveal the

extent to which high-order epistasis determines evolutionary outcomes.

Materials and Methods

Removal of high-order epistasis

We used the following protocol to remove specific orders of epistasis from genotype-

fitness maps. The steps correspond directly to the pipeline shown in Fig S1, which is

described in detail in Sailer et al. [22].

1. We identified an appropriate, possibly nonlinear, scale for the map by fitting a

power transformation to the genotype-fitness map:

~Fexperimental =
( ~̂Fadd + A)λ − 1

λ(GM)λ−1
+B, (8)

where ~Fexperimental is the vector of the observed fitness values, ~̂Fadd is the fitness

of each genotype assuming each mutation has the same, average effect in all

backgrounds, A and B are translation constants, GM is the geometric mean of

( ~̂Fadd + A) , and λ is a scaling parameter. ~̂Fadd is given by:

Fadd,i =

j≤L∑
j=1

〈∆Fj〉xi,j

where 〈∆Fj〉 is the average effect of mutation j across all backgrounds, xi,j is

an index that encodes whether or not mutation j is present in genotype i, and
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L is the number of sites. We first regressed F̂add, and then regressed the power

transform.

2. We linearized each map by transforming each element in ~Fexperimental with the

nonlinear scale and coefficients determined in step 1. For each element in

~Fexperimental, we performed:

Flinear = {λ̂(GM)λ−1(Fexperimental − B̂) + 1}1/λ̂ − Â.

3. We decomposed the variation in fitness into epistatic coefficients using a linear

decomposition of the form:

~β = X−1 ~Flinear,

where ~β is a collection of epistatic coefficients (ranging from 0th to Lth order)

and X is a design matrix that indicates which coefficients contribute to fitness

in which genotype. For most of the work described, we used a Hadamard

matrix for X, which uses the geometric center of the genotype-fitness map as

a reference state. [58, 44, 52, 22]. To construct this matrix, we encoded each

mutation within each genotype as -1 (wildtype) or +1 (mutant) [52, 22]. For the

final section, we use a “local” matrix for X, which measures the effect of each

mutation relative to a defined reference phenotype. To construct this matrix,

we encoded each mutation within each genotype as 0 (wildtype) or 1 (mutant).

These to forms of X can be readily inter-converted [52].

4. We truncated epistasis from the linearized map by setting the epistatic coeffi-

cients from orders of interest to 0, creating ~βtrunc.

5. We recalculated the linearized fitness values, with truncated epistasis by:

~Flinear,trunc = X~βtrunc.
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6. We transformed the ~Flinear,trunc onto the original, nonlinear scale using Eq. 8,

with ~Flinear,trunc in place of ~Fadd.

7. We used the final ~Ftrunc values to construct a genotype-fitness map in which

orders of epistasis were selectively removed, leaving the global, nonlinear scale

intact.

We quantified the contribution of epistasis to each map (φ) by determining the differ-

ence in the variation explained by the ith and (i−1)th orders. φ = ρ2
i −ρ2

i−1, where ρ2
x

is the squared Pearson coefficient between linear fitness values in a model truncated

to order x (~Flinear,trunc−to−x) and linear fitness values determined from the original

map (~Flinear).

Evolutionary Trajectories

We calculated the probability of a given evolutionary trajectory as series of inde-

pendent, sequential fixation events. We assumed that the time to fixation for each

mutation was much less than the time between mutations (the so-called strong selec-

tion/weak mutation regime) [80, 25, 18]. The relative probability of an evolutionary

trajectory i is the product of its required fixation events relative to all possible tra-

jectories:

pi =

∏
x∈Si

πx→x+1∑
j∈T
∏

x∈Sj
πx→x+1

,

where πx→x+1 is the fixation probability for genotype x+ 1 in the x background, Si is

the set of steps that compose trajectory i, and T is the set of all forward trajectories.

The model assumes the mutation rate is the same for all sites, and that population

size and mutation rates are fixed over the evolutionary trajectory [81, 82, 18, 25, 83].

We calculated πx→x+1 for each step using the Gillespie model [84]

πx→x+1 =
1− e−sx→x+1

1− e−Nsx→x+1
=

1− e−(1−wx+1/wx)

1− e−N(1−wx+1/wx)
,
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where N is population size, s is the selection coefficient and wx and wx+1 are the

relative fitnesses of the x and x+ 1 genotypes visited over the trajectory.

To determine the difference between sets of trajectories in maps with and without

high-order epistasis, we measured the magnitude of the difference in probability for

all L! forward trajectories through each space. We did so by:

θ =

∑i=L!
i=1

∣∣∣pexperimentali − ptrunci

∣∣∣
2

,

where pexperimentali is the probability of the ith trajectory within the experimental

map and ptrunci is the probability of that same trajectory in a truncated map, with

high-order epistasis removed.

Software

We implemented the epistasis and trajectory models using Python 3 extended with the

numpy and scipy packages [65]. We used the python package scikit-learn to perform

linear regression with truncated forms of these models [66]. Plots were generated using

matplotlib and jupyter notebooks [67, 68]. Our full software package is available in

the epistasis package via github (https://harmslab.github.com/epistasis).

Results

High-order epistasis is common in all maps

Our first goal was to determine the contributions of each order of epistasis to fitness

in six experimentally measured genotype-fitness maps (Table 2). Each map consisted

of all possible combinations of 5 mutations (25 = 32 genotypes) in a haploid genome.

The mutations in datasets I and IV arose during adaptive, experimental evolution

of E. coli, and occur throughout the genome [18, 85]. The mutations in datasets II

and VI each occur in single genes that confer drug resistance in E. coli and HIV,
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respectively [25, 27]. The mutations in datasets III and V were introduced randomly

into the A. niger genome [6]. Previous workers characterized components of fitness

for each genotype under defined experimental conditions. For four of the datasets (I,

III, IV, and V), the authors measured relative fitness using competition assays. In

dataset II, the authors measured minimum inhibitory concentration in the presence of

an antibiotic, and from this estimated relative fitness [25]. In dataset VI, the authors

measured HIV infectivity in an ex vivo assay, then treated this activity as a proxy

for fitness [27]. All datasets exhibited a single fitness peak.

ID genotype organism reference
I scattered genomic mutations E. coli [18]
II β-lactamase enzyme point mutations E. coli [25]
III chromosomes combinations A. niger [6]
IV scattered genomic mutations E. coli [85]
V chromosomes combinations A. niger [6]
VI envelope glycoprotein point mutations HIV-1 [27]

Table 2: Experimental genotype-fitness maps

We previously analyzed four of these datasets, finding small magnitude, but

statistically-significant, high-order epistasis in each map [22]. We used this same

approach to characterize epistasis in the remaining two maps (Figure S1, Materials &

Methods). We sought to account for confounding effects that could lead to spurious

epistasis, which would, in turn, lead to spurious effects on evolutionary trajectories.

The most important confounding effect is the scale of the map. Models of high-order

epistasis sum the effects of mutations and then account for deviation from this ex-

pectation by epistasis [58, 52]. But there is no a priori reason to assume mutational

effects should add: they may multiply or combine on some other nonlinear scale

[15, 9, 52, 22]. To account for this, we empirically determined a nonlinear scale for

each map using a power-transform, and then used this to linearize each map [22].

We then decomposed the linearized maps into epistatic coefficients using Walsh

polynomials [58, 44, 52]. This approach uses the geometric center of the genotype-
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fitness map as reference state and reveals global correlations in the effects of mutations

across the map. Each order of epistasis accounts for variation that is not explained

by the sum of all lower-order contributions. For example, third-order coefficients

account for any “leftover” variation in the fitness of triple mutants after the first-

order (additive) and second-order (pairwise) effects of those mutations are taken into

account.

We determined the contribution of each order of epistasis to the total variation

in fitness for each dataset by sequentially setting fifth-, fourth-, third-, and second-

order epistatic coefficients to zero. We recalculated the fitness of each genotype using

each “truncated” model. This is directly analogous to decomposing a sound wave

into a sum of frequencies using a Fourier transform [52]. After decomposition, the

original sound wave can be approximated by a sum of principal frequencies, followed

by a reverse Fourier transform. By selectively including frequencies, one can identify

those that contribute most to the final sound wave. Our analysis follows the same

logic, approximating fitness (the sound wave) using a collection of epistatic coefficients

(sound frequencies).

We quantified the contribution of each epistatic order by measuring the change

in fitness when the ith order of epistasis was included in the model. As a metric,

we used φ = ρ2
i − ρ2

i−1, where ρ2
x is the squared Pearson’s coefficient between the

measured fitness of each genotype and its fitness calculated for a model truncated to

the xth order. φ ranges from -1 to 1. Figure 9A shows this calculation for dataset I.

As epistatic orders are added, ρ2 between the truncated model and measured fitness

values improves. This allows determination of φ for each order: first-order coefficients

(additive effects) account for 94.0% of variation in fitness; second-order (pairwise epis-

tasis) for 3.8%; third for 1.2%, fourth for 0.9%, and fifth for 0.1%.

43



Figure 9: Contributions of epistasis to variation in fitness. Panel A: Cor-
relation between observed (linearized) fitness and fitness calculated for truncated
epistasis models for dataset I. Each point on the plot is a single genotype-fitness pair;
the dashed line is a 1:1 line. Colors correspond to the truncation order: to first (red),
second (orange), third (green), fourth (blue), and fifth (purple). ρ2 and φ for each
order are shown on the plot, colored by order. Panel B summarizes the contributions
of each order of epistasis to the variation in fitness for all six datasets. Dataset is
indicated with roman numeral. Colors follow panel A.

We then applied this analysis to all six datasets. Figure 9B summarizes these

results. The total contribution of epistasis to variation in fitness ranged from 6.0%

(dataset I) to 32.2% (dataset VI). Other datasets exhibited intermediate levels of

epistasis, comparable in magnitude to high-order epistasis observed in similar datasets

[22, 44, 79]. In all datasets, the first-order (additive) effects of mutations made the

largest contribution to variation in fitness. Outside of this, there was no simple

pattern in the relative contributions of the different orders. In dataset I, II and IV,

the contribution of epistasis to variation decayed with increasing order. In dataset V,

epistasis does not decay. In dataset VI, the addition third-order epistasis (without

fourth-order epistasis) actually does a worse job of predicting fitness than second-order

alone. The quantitative and qualitative differences in the contribution of epistasis

across datasets allow us to study how altering epistasis alters evolutionary trajectories.
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Epistasis alters evolutionary trajectories

Our next question was how each order of epistasis altered evolutionary trajectories.

We first back-transformed our truncated, linearized maps onto the original scale.

This creates a genotype-fitness map without specific epistatic interactions, but on the

original, possibly nonlinear, scale of the map. We calculated the relative probabilities

of all L! forward trajectories through these maps, starting from the ancestral state

and ending at the derived state [25, 6, 18]. Because the maps describe fitnesses of

asexual organisms with large population sizes, we modeled trajectories as a series

of sequential fixation events captured by a Gillespie model for haploid organisms

with large population size (Materials & Methods). [80, 25, 18]. In this scheme, the

probability of a trajectory is the product of the probabilities of its individual fixation

events, normalized across all trajectories.

We visualized these trajectories by overlaying them on the genotype-fitness map

weighted by their relative probabilities. Higher probability mutations have thicker

lines connecting them. Figure 10 shows this analysis for dataset I. We started with a

purely additive map (top left). All trajectories are accessible with similar probabil-

ities because, in this map, all mutations are individually favorable. We then added

successive orders of epistasis and recalculated trajectories through each new map.

The addition of second-order epistasis altered the availabilities of trajectories. The

changes are most readily evident in the lower row in Figure 10, which shows the

change in the probability of each edge and node in the map. The left side of the map

is red (indicating loss of probability), while the right side of the map is blue (indi-

cating gain of probability). Addition of each new order, moving left to right across

Figure 10, alters the probability of trajectories through the map.

45



Figure 10: Epistasis alters evolutionary trajectories through genotype-
fitness maps. Figure show the effects of increasing orders of epistasis on evolutionary
trajectories for dataset I. Top Row: Genotype-fitness maps with increasing amounts
of epistasis included, increasing from none (far left) to fifth-order (far right). Networks
show all 25 genotypes, arranged from ancestral (top) to derived (bottom), colored by
relative fitness from low (purple) to high (yellow). Edges show the probability of a
given mutation in a given background from low (thin) to high (heavy). Mutations
with no probability have no edge. The numbers above the arrows are φ, with 95%
confidence intervals in brackets. Bottom row: Change in trajectory probability
as each order of epistasis is added. Edges reveal loss of probability (red) or gain
of probability (blue). The weight of the edge is directly proportional to the change
in probability. Mutations whose probability do not change have no edge. For each
node, the thickness of the ring reveals the change in probability that this genotype is
visited. For genotypes whose probability goes down, the red area indicates the loss
in probability. For genotypes whose probability goes up, the blue area indicates the
increase in probability. The numbers below each network are θ, with 95% confidence
intervals in brackets. The p-value measures whether the observed value of θ would be
expected from fitting experimental noise (Fig 3).

To quantify differences in the sets of trajectories with increasing epistasis, we

calculated the change in the probabilities of all 120 forward trajectories through

maps with different amounts of epistasis included (θ). A θ of 0.0 indicates that the

set of trajectories through the spaces are identical, while a θ of 1.0 means the sets of

trajectories do not overlap at all (Materials & Methods). Intermediate values indicate

that some fraction of the trajectory probability density is shared between the maps.

In dataset I, trajectories through the additive and second-order epistatic maps have

θ = 0.390. Put another way, the addition of pairwise epistasis to the additive map

shifts 39.0% of the trajectory probability density. Addition of each new order of

epistasis has a smaller effect on trajectory probability: θ2→3 = 0.340, θ3→4 = 0.292,
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and θ4→5 = 0.122.

To determine confidence intervals on our estimates of φ and θ, we sampled from

the fitness measurement uncertainty for each genotype, generating a collection of

pseudoreplicate genotype-fitness maps (Figure S2A). We then decomposed each pseu-

doreplicate map into epistatic coefficients (including refitting the scale) and remea-

sured φ and θ for each epistatic order. Figure 11A shows this calculation for dataset

I. From these distributions, we can determine 95% confidence intervals for φ and θ

(shown as gray, bracketed values in Figure 10).

Figure 11: Changes in trajectories are not the result of experimental un-
certainty. Data in panel A and B are for dataset I. Panel A shows the distribution
of φ and θ for 10,000 pseudoreplicates generated by sampling uncertainty in each the
fitness of each genotype (Fig S2A). Colors denote order of epistasis, as in panel A.
Panel B shows the epistasis extracted from datasets without epistasis, but experi-
mental uncertainty (Fig S2B).

We next asked whether the observed epistasis and its effect on trajectories could

be the result of uncertainty in the fitness values. An epistasis model accounts for

random noise as leftover variation, and thus as apparent epistasis [22]. We thus

posed the following question: if the epistasis at a given order resulted only from

noise, what effect would it have on φ and θ? To ask this question, we constructed
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“null” maps with truncated epistasis, but noisy fitness values (Figure S2B). We took

our truncated maps at each order and then assigned each fitness the same variance

that was measured for the original, un-truncated fitness values. We sampled from this

uncertainty to generate pseudoreplicates, extracted apparent epistasis—in this case,

arising from noise—and then calculated φ and θ for the pseudoreplicate. This allows

us to construct distributions of φ and θ for epistasis arising purely from experimental

noise.

We show this calculation for dataset I in Figure 10B. Unlike the experimental dis-

tributions, which spread out in φ, the distributions arising from random noise cluster

at low values of φ. The φ/θ distributions of second-, third-, and fourth-order epistasis

minimally overlap in Figure 10A versus Figure 10B. This indicates that the signal for

epistasis in the datasets is greater than expected from noise in the measured fitness

values. In contrast, the φ/θ distribution for fifth-order epistasis overlaps between Fig-

ure 10A and 10B: the effect of fifth-order epistasis cannot be distinguished from noise.

Because we are interested in the effect of epistasis on trajectories (θ), we determined

a p-value for each θ. We took the mode of θ at each order from Figure 10A, and

determined its percentile on the corresponding null distribution in Figure 10B. For

second-, third-, and fourth-order epistasis, this yields a p-value < 0.05. In contrast,

the p-value for fifth order was 0.12.

With these quantification tools in hand, we next studied the relationship between

epistasis and evolutionary trajectories for the increasing levels of epistasis exhibited by

the remaining five datasets. Figure S3-S8 summarize our analyses for all six datasets.

It is helpful to compare dataset I (Figure 10) and dataset V (Figure 12). While

epistasis accounts for 6.0% of variation in fitness for dataset I, it accounts for 32% of

the variation in fitness for dataset V. The large amount of epistasis in dataset V means

that epistasis at all orders has a massive effect on evolutionary trajectories through

this space. The addition of fourth-order epistasis is particularly striking. With only
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third-order epistasis and down, there are multiple paths through the space. With

the addition of fourth-order epistasis, all paths but two become inaccessible. The

addition of fifth-order epistasis opens the space up again, but to a different set of

trajectories than what existed in the third-order space.

Figure 12: Epistasis alters trajectories in dataset V. Altered trajectories in
dataset V with increasing epistasis. Colors, panel layouts, and statistics are as in Fig
2.

We next asked whether magnitude of epistasis or the order of epistasis was a

stronger predictor of its effect on evolutionary trajectories. We plotted φ versus θ for

each order for each dataset on a single plot (Figure 13A). This reveals a correlation

between the magnitude of the epistasis and its effect on trajectories. In contrast, we

see no correlation between the order of epistasis and its effect on evolutionary trajec-

tories (Figure 13B). When epistasis contributes more than ≈5% of the variation in

fitness, regardless of order, the divergence in trajectory probabilities with and without

the epistasis is 40% or greater. The magnitude of epistasis—not its order—predicts

its effect.
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Figure 13: The magnitude of epistasis, not its order, predicts its effects on
trajectories. Plot shows θ graphed against φ for all datasets. Points are colored by
the order of epistasis: second (orange), third (green), fourth (blue), and fifth (purple).
Error bars are 95% confidence intervals. Gray points are orders that could not be
distinguished from experimental uncertainty (p < 0.05).

High-order epistasis limits evolutionary predictability

Our next question was more practical: how important is epistasis for predicting evo-

lutionary trajectories in these datasets? We imagined an experiment in which we

measured the effects of all mutations in the ancestral genotype. We then asked if we

could take these individually measured mutational effects and predict evolutionary

trajectories.

To ask this question, we re-analyzed the epistasis present in all six datasets, this

time using the ancestral genotype as the reference state. In this formulation, the first-

order coefficients are the effect of each mutation by itself in the ancestral background,

the second-order coefficients are the difference in the effects of mutations introduced in

pairs versus separately, and third-order coefficients are the difference in the fitness of

genotypes combining three mutations versus two mutations that cannot be explained

by the first- and second-order coefficients. (This has been called the “biochemical” or

“local” model of high-order epistasis [52].) We describe this further in the Materials

& Method section.

To characterize the effect of epistasis on our ability to predict evolutionary tra-
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jectories of increasing length, we calculated the probability of all possible forward

trajectories of a defined number of steps starting from the ancestral genotype, and

then repeated this probability calculation using maps truncated to various orders of

epistasis. The difference in the actual and truncated map trajectory probability dis-

tributions measures our predictive power for evolutionary trajectories. We show these

results in Figure 14 for all six datasets. In each panel, we plot inclusion of increasing

orders of epistasis left-to-right (starting from additive and going to fifth-order) and

increasing trajectory length bottom-to-top (starting from one-step and going to five-

step). The overlap between the trajectory distribution for the truncated and real map

for each epistasis/trajectory-length is shown as a color ranging from white (perfect

prediction) to red (poor prediction).

Figure 14: Epistasis complicates predicting trajectories from the ancestral
genotype. Panels show trajectory prediction accuracy (color) for different amounts
of epistasis included in the model (x-axis) and for different length trajectories away
from the ancestral genotype (y-axis). Accuracy is measured as the difference in the
probability distributions for trajectories through the truncated and original maps,
ranging from 0.0% (red, poor accuracy) to 100% (white, perfect accuracy). Panels
A-F correspond to datasets I-VI.
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We found that all orders of epistasis were important for predicting evolutionary

trajectories. Dataset IV (panel D) illustrates behavior seen across all datasets, so we

will use it as a specific example. In this dataset, additive coefficients are inadequate to

capture even two-step trajectories: the trajectory probability distribution for two-step

mutations only overlaps by 53.0% for the truncated and real maps. The prediction

gets worse for longer trajectories, dropping to 39.4% for three steps, 30.5% for four

steps, and 0.0% for five steps. The overlap for the final step is 0.0% because the

additive model does not predict that the five-mutation genotype will be more fit

than the four-mutation genotype. Trajectories in the additive map therefore do not

proceed to this final genotype.

Adding pairwise epistasis to the model allows perfect “prediction” of the two-step

trajectories, as we have perfect knowledge of the fitness values of all possible single

and double mutants. But the three-step and four-step trajectories are predicted worse

with pairwise epistasis included than with the additive map. The three-step overlap is

25.9%, while the four-step and five-step trajectory overlap is 0.0. The four-mutation

and five-mutation genotypes are predicted to have low fitness. Adding third-order

epistasis—now imagining that we characterized all possible single, double, and triple

mutants in the ancestral genotype—allows us to “predict” trajectories up to three

steps long; however, it fails for four- and five-step trajectories. The overlap is 25.1%

and 45.2% respectively. Even the addition of fourth-order epistasis is insufficient to

capture the five-step trajectories: the overlap for five-step trajectories is 0.0%.

Dataset IV is a particularly clean example, but all six datasets exhibit similar

behavior (Figure 14). Neglecting epistasis leads to poor predictions of trajectories

starting from the ancestral genotype. The lower-order the truncation, the worse the

prediction as more mutations accumulate. Third- and fourth-order epistasis had an

appreciable effect on all datasets. Fifth-order epistasis had an effect in four of the six

datasets. Like the analysis using the global model above, high-order epistasis relative
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to the ancestral genotype potently alters evolutionary trajectories.

Discussion

Our analysis reveals that high-order epistasis can strongly shape evolutionary trajec-

tories. Removal of three-, four-, and five-way interactions between mutations signif-

icantly alters the probabilities of trajectories through genotype-fitness maps (Figure

10, Figure 12). This result is robust to uncertainty in the measured fitness values

(Figure 11) and appears to be a general pattern in many maps (Figure 13). Finally,

neglecting high-order epistasis leads to poor predictions of evolutionary trajectories

through these maps (Figure 14).

In the majority of datasets, low-order models provide useful estimates of fitness.

For datasets I-IV, ignoring three-way and higher-interactions yields fitness values

within 15% of the actual map (Figure 9B). Dataset I would be particularly close,

yielding fitness values within 2.5% of the actual map. This is consistent with other

analyses of high-order epistasis in other datasets, which suggest that additive and

pairwise epistatic effects can often provide sufficient information to predict multi-

mutation fitness values to within 5-10% [40, 44, 42, 52, 32, 41, 22, 37].

While low-order models can often describe fitness with some degree of precision,

low-order models are inadequate to describe evolutionary trajectories in any of the

datasets. Even in dataset I, third- and fourth-order interactions potently shape evo-

lutionary trajectories. The probability distributions of trajectories with and without

fourth-order epistasis differ by 29.2%. And, as the magnitude of epistasis increases,

its effect on trajectories grows (Figure 13A). In some instances, addition of high-order

interactions completely shifts the set of trajectories available (Figure 12).

The effect of high-order epistasis on evolutionary trajectories is profound. We can

build this intuition by imagining predicting evolutionary trajectories. If we start with

knowledge of the individual effects of mutations in the ancestral background we can
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predict the first move perfectly, but not the second move. Pairwise epistasis means

the effect of the second mutation is modulated by the presence of the first. We might

try to overcome this difficulty by measuring the effect of each mutation and each pair

of mutations, thereby accounting for pairwise epistasis. But our results reveal this

is still insufficient to predict trajectories past the second step. There are three-way

interactions that alter the effect of the third mutation, even after accounting for the

first- and second-order effects of mutations. This continues all the way to fifth-order

in these five-site datasets.

This has two implications. First, this adds to the growing recognition of extensive

contingency in evolution [86, 36, 19, 33]. The effect of an event today is contingent

on a whole collection of previous events. Remarkably, we found that this contingency

is mediated by epistasis at all orders, including up to five-way interactions between

mutations. Second, this work implies that measuring the individual effects of many

mutations in a single genetic background, despite revealing a local fitness landscape

[34, 37, 20], will be of limited utility for understanding evolution past the first few

moves.

We expect the effect of high-order epistasis on trajectories will be amplified in

larger maps that have more mutations. In a larger map, more mutations com-

pete for fixation—each modulated by high-order interactions with previous substi-

tutions—leading to even greater contingency on specific substitutions that occurred

in the past. Further, the small maps we studied artificially limit the effects of high-

order epistasis, as larger maps could, potentially, have even higher-order interactions.

But even if no epistasis above fifth-order is present, trajectories will have more steps in

a larger map; therefore, a fifth-order interaction could alter the relative probabilities

of many more future moves in a larger space.

One open question is the effect of recombination on this radical contingency. We

studied trajectories in which mutations fixed sequentially. This means our results are
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directly applicable to asexual organisms and loci in tight linkage, such as mutations

to individual genes. Once recombination comes into play, other dynamics become

possible. While recombination can completely overcome pairwise epistasis [87], it is

unclear whether this result will apply to higher-order interactions.

High-order epistasis appears to be a ubiquitous feature of experimental genotype-

fitness (and genotype-phenotype) maps [40, 44, 42, 52, 32, 41, 22, 37]. The origins of

this epistasis remain unknown. Further, epistasis may go to much higher-order than

yet observed, leading to extremely long-term memory in evolution. The observation

of cryptic epistasis between genetic backgrounds that appear similar, but in which

mutations have radically different effects, may point to high-order epistasis between

mutations in diverging backgrounds[88, 34]. Whatever the origins or order may be,

our work reveals that combinations of early substitutions continue to have an effect

as future mutations accumulate: the past continues to press upon the present.
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CHAPTER IV

MOLECULAR ENSEMBLES MAKE EVOLUTION UNPREDICTABLE
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Abstract

Evolutionary prediction is of deep practical and philosophical importance. Here we

show, using a simple computational protein model, that protein evolution remains

unpredictable even if one knows the effects of all mutations in an ancestral protein

background. We performed a virtual deep mutational scan—revealing the individual

and pairwise epistatic effects of every mutation to our model protein—and then used

this information to predict evolutionary trajectories. Our predictions were poor.

This is a consequence of statistical thermodynamics. Proteins exist as ensembles of

similar conformations. The effect of a mutation depends on the relative probabilities

of conformations in the ensemble, which in turn depend on the exact amino acid

sequence of the protein. Accumulating substitutions alter the relative probabilities

of conformations, thereby changing the effects of future mutations. This manifests

itself as subtle, but pervasive, high-order epistasis. Uncertainty in the effect of each

mutation accumulates and undermines prediction. Because conformational ensembles

are an inevitable feature of proteins, this is likely universal.
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Significance

A long-standing goal in evolutionary biology is predicting evolution. Here we show

that the architecture of macromolecules fundamentally limits evolutionary predictabil-

ity. Under physiological conditions, macromolecules like proteins flip between mul-

tiple structures, forming an ensemble of structures. A mutation affects all of these

structures in slightly different ways, redistributing the relative probabilities of struc-

tures in the ensemble. As a result, mutations that follow the first mutation have a

different effect than they would if introduced before. This implies that knowing the

effects of every mutation in an ancestor would be insufficient to predict evolutionary

trajectories past the first few steps, leading to profound unpredictability in evolution.

We therefore conclude that detailed evolutionary predictions are not possible given

the chemistry of macromolecules.

Introduction

Is evolution predictable? This is a fundamental question in evolutionary biology,

both for philosophical [89, 90, 91, 36] and practical reasons [34, 92]. Deep mutational

scanning experiments provide an intriguing new avenue to think about evolutionary

prediction. These experiments reveal the effects of huge numbers of mutations and

thus provide rich information about local adaptive landscapes [1, 93, 20]. This leads

to a simple question: if we know the effect of every mutation in an ancestral genotype,

can we predict future evolutionary trajectories? If not, what limits our ability to make

predictions?

To pose this question, we attempted to predict the evolution of simple physical

protein model given a virtual deep mutational scan. In this context, prediction is

knowing which mutations would accumulate, in what order, given knowledge of the

effects of the mutations in the ancestral background.We attempted an “easy” pre-
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diction, reasoning that it could act as a starting point for more difficult scenarios

involving more complex evolutionary processes. To maximize predictive success, we

studied adaptive trajectories in which the environment was stable, there was consis-

tent directional selection, and mutations were fixed by selection rather than drift.

We studied the evolution of improved thermodynamic stability—a shared feature

of all folded proteins and a target of natural selection in many contexts [94, 95, 96].

This is a useful phenotype for a number of reasons. First, because stability is a ther-

modynamic quantity, studying it may reveal features common to the evolution of other

thermodynamic properties such as allostery and ligand binding. Second, biological

systems—from molecules to ecosystems—are ultimately physical; therefore, insights

at the physical level may provide insights for higher levels of biological organization

[39, 97].

Surprisingly, we found that our predictions were quite poor. We even added all

pairwise epistatic effects of mutations to our predictive model, requiring a massive

virtual deep mutational scan of all possible pairs of mutations. Even this did not

allow robust predictions of evolutionary trajectories. We find that the unpredictabil-

ity arises directly from the thermodynamic ensemble of conformations populated by

macromolecules—revealing a profound link between protein physics and the evolu-

tionary process.

Materials and Methods

All of our analyses are are contained in Python scripts and Jupyter notebooks avail-

able on Github (https://github.com/harmslab/notebooks-epistasis-ensembles). Full

details are given in the SI Appendix.

For the protein lattice model simulations, we extended the latticeproteins package

originally written by Prof. Jesse Bloom (https://github.com/harmslab/latticeproteins)

[98] using Miyazawa and Jernigan contact energies (from Table V in their paper) and
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reduced temperature units [99]. We randomly generated 12-site protein sequences and

then evolved each sequence until the fraction folded was ≈ 0.7. We calculated the

probability of a given evolutionary trajectory as a series of independent, sequential

fixation events using a strong-selection, weak-mutation model [80]. In this model, the

fixation probability for going from genotype x to x+ 1 is:

πx→x+1 = 1− e−(wx+1/wx−1),

where wx and wx+1 are the relative fitnesses of the x and x + 1 genotypes (SI Ap-

pendix).

To quantify the difference between the predicted and actual trajectories, we cal-

culated the magnitude of the difference in probability of all observed trajectories

through each space [35]

We predicted the ∆G◦N for each genotype and then used this to predict evolution-

ary trajectories. For the additive model, the predicted stability of a genotype with a

set of {M} mutations was:

∆Ĝ◦N,{M} = ∆G◦N,anc +
∑
i∈{M}

∆∆G◦N,i

where ∆G◦N,anc is the stability of the ancestor and ∆∆G◦N,i is the effect of the ith

mutation in the ancestral background. For the pairwise epistatic model, we added

epistatic coefficients:

∆Ĝ◦N,{M} = ∆G◦N,anc +
∑
i∈{M}

∆∆G◦N,i +
∑

i<j∈{M}

∆∆∆G◦N,ij

where ∆∆∆G◦N,ij accounts for any pairwise epistasis between the mutations i and j.

We quantified this epistasis by introducing mutations i, j, and then i and j together.

We then took the difference:
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∆∆∆G◦N,ij = ∆G◦N,ij −
(
∆G◦N,anc + ∆∆G◦N,i + ∆∆G◦N,j

)
where ∆∆G◦N,i and ∆∆G◦N,j are the individual effects of mutations i and j in the

ancestral background and and ∆G◦N,ij is the stability of the ij double mutant.

To extract high-order epistasis, we used the epistasis package (https://harmslab.github.com/epistasis)

[22]. A genotype with Lmutations is described by 2L hierarchical epistatic coefficients

[58, 44, 52, 22]. We generated all 26 binary combinations of the substitutions that ac-

cumulated between the ancestor and most probable final sequence, calculating ∆G◦N

for all 64 mutants. Because we were doing predictions starting from the ancestral

state, we used the so-called “biochemical model” that uses the ancestral genotype as

the reference state ? ]. See SI Appendix for further details.

Software

All of our analyses are are contained in Python scripts and Jupyter notebooks avail-

able on Github (https://github.com/harmslab/notebooks-epistasis-ensembles). For

the protein lattice model simulations, we extended the latticeproteins package orig-

inally written by Prof. Jesse Bloom (https://github.com/harmslab/latticeproteins)

[98]. All protein lattice simulations use the effective interresidue contact energies

estimated by Miyazawa and Jernigan and reduced temperature units [99]. We used

the epistasis Python package for our analysis of high-order epistasis in binary lattice

protein maps. (https://github.com/harmslab/epistasis) [22].

Generating ancestral sequences

We randomly generated 12-site protein sequences and then evolved each sequence so

it was adjacent to a fitness peak, but not at the peak, allowing for future evolution.

Starting from the random sequence, we calculated the effect of all possible mutations

and then chose one randomly, weighted by its effect on stability. We continued this
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until the fraction folded was ≈ 0.7.

Evolutionary trajectories

We calculated the probability of a given evolutionary trajectory as a series of in-

dependent, sequential fixation events. We described the fitness of each genotype as

proportional to the fraction of the molecules in the native conformation. This is given

by:

w =
1

1 + e∆G◦N
.

We assumed that the time to fixation for each mutation was much less than the

time between mutations (the so-called strong selection/weak mutation regime) [80].

The relative probability of an evolutionary trajectory i is the product of its required

fixation events relative to all possible trajectories:

pi =

∏
x∈{Si} πx→x+1∑

j∈{T}
∏

x∈{Sj} πx→x+1

,

where πx→x+1 is the fixation probability for genotype x+ 1 in the x background, {Si}

is the set of steps that compose trajectory i, and {T} is the set of all trajectories.

The model assumes the mutation rate is the same for all sites, that the population

size is large, and that mutation rates are fixed over the evolutionary trajectory [80].

We calculated πx→x+1 for each step using the Gillespie model for infinite populations

[80]:

πx→x+1 = 1− e−(wx+1/wx−1),

where wx and wx+1 are the relative fitnesses of the x and x+ 1 genotypes visited over

the trajectory.

To quantify the difference between between the predicted and actual trajectories,

we calculated the magnitude of the difference in probability of all observed trajectories
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through each space [22]. We did so by:

θ =
∑
i∈{T}

|ppred,i − pactual,i|
2

,

where {T} is the set of all trajectories observed in both maps, ppred,i is the probability

of the ith trajectory in the predicted map, and pactual,i is the probability of that same

trajectory in the actual map. This ranges from 0 (perfect overlap) to 1 (no overlap).

Epistasis analysis

A genotype with L mutations is described by 2L hierarchical epistatic coefficients

[58, 44, 52, 22]. We generated all 26 binary combinations of the substitutions that

accumulated between the ancestor and most probable final sequence, calculating ∆G◦N

for all 64 mutants. Because we were doing predictions starting from the ancestral

state, we used the so-called “biochemical model” that uses the ancestral genotype

as the reference state [52]. First-order coefficients describe the effects of individual

mutations (∆∆G◦N). Second-order coefficients capture the difference between the

individual effects of mutations and their effect together (∆∆∆G◦N). Third-order

coefficients capture leftover variation in phenotype after first- and second-order effects

are accounted for (∆∆∆∆G◦N). This continues to the Lth order. Because we are using

∆G◦N as our phenotype, it is already on a defined linear scale and can be analyzed

without empirically identifying the scale [52, 22].

Results

We set out to predict trajectories that increased the stability of a lattice protein.

Lattice models have been used extensively in studies of protein folding and evolution

[100, 101, 3, 98, 97]. A lattice model captures the fact that the weak interactions

that define the structure of a protein stochastically break and form under cellular
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conditions, causing proteins to fluctuate between multiple conformations [102, 103,

104]. These structural ensembles are critical to functions such as allostery [105, 104],

enzyme activity [103], complex assembly [106], and regulation [107].

A lattice model describes a protein ensemble as a collection of conformations

on a grid. Some conformations will be favored, others disfavored. The favorability

of each conformation is quantified by its internal energy (Ec), which depends on

the contacts between amino acids in that conformation. Conformations with more

favorable contacts are more likely than those with fewer contacts. The overall stability

of the protein is described by the free energy of the native conformation (∆G◦N), which

quantifies the population of the native conformation relative to all other conformations

in the ensemble (Figure 15A). Using reduced temperature units, this is given by:

∆G◦N = EN + ln

(
−e−EN +

C∑
i=1

e−Ei

)
, (9)

where EN is the internal energy of the native conformation and the sum on the right

goes over all C conformations in the ensemble.
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Figure 15: Evolution is unpredictable in protein lattice models. Panel
A shows the meaning of ∆G◦N using five lattice model conformations of the many
thousands possible. Each conformation is a single, non-intersecting chain on a 2D
grid. Amino acids are shown as circles colored by position in the sequence from black
to white. Peptide bonds are dark bars. Non-covalent interactions are red stars. The
strength of each noncovalent interaction depends on the identities of the interacting
amino acids. The contact energy of each conformation is shown as a dark line; the
Boltzmann-weighted average of the non-native conformations is shown as a dashed
line. B) Relative probabilities of evolutionary trajectories starting from an ancestral
genotype (center). Circles indicate genotypes; lines indicate mutational steps. The
size of each circle and width of each line indicates its probability. Dashed gray lines
indicate increasing number of sequence differences from the ancestor. The orange
trajectory is the highest probability trajectory. C) Predicted trajectories using an
additive predictive model. The left panel is colored as B. The genotypes visited in
the actual trajectories but not the predicted trajectories are shown as purple “×” with
sizes proportional to their probability. The right panel shows the difference between
the predicted and actual trajectories. Red lines indicate trajectories missed in the
prediction; blue lines indicate trajectories incorrectly added by the prediction. D)
Predicted trajectories using a pairwise epistatic predictive model, with colors as in C.
E) Divergence between predicted and actual trajectories for 1,000 starting genotypes
as a function of number of mutations. Gray points are individual simulations. Red
bars are the means for all genotypes after that number of steps.

We studied evolution in a strong-selection, weak-mutation regime [84]. This as-

sumes the population size is large and that mutations fix sequentially—a reasonable
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assumption for a single gene for which recombination is rare. This also removes uncer-

tainty due to drift. We defined fitness as proportional to the fraction of the molecules

in the native conformation: w = 1/[1 + exp(∆G◦N)], as the fraction of molecules

folded—not the free energy—is under selection in most biological contexts [95].

We generated a random 12 amino acid protein sequence with w ≈ 0.7 as our start-

ing point (see Materials & Methods). We calculated w for all genotypes differing by

a single mutation relative to the ancestor and then determined the relative fixation

probability for all point mutants. We then stepped out to all accessible genotypes and

repeated the protocol. Any mutation with a non-zero fixation probability was consid-

ered accessible. Iterating this procedure generates a branching set of trajectories that

improve the stability of the original native conformation. By comparing the relative

fixation probabilities for each mutation along each trajectory, we can calculate the

total probability flux through each possible trajectory (see Materials & Methods).

We started by calculating ground-truth evolutionary trajectories against which to

compare our predictions (Figure 15B). For the sequence in Figure 15B, we found one

main evolutionary trajectory (shown in orange) leading to a fitness peak six mutations

away. There were also several lower probability trajectories accessible (shown in gray).

We next set out to predict these trajectories using information extracted from

a virtual deep mutational scanning experiment. We calculated the change in ∆G◦N

for all 228 possible point mutants to the ancestral genotype. Using this information,

we could then predict ∆G◦N for any genotype as the free energy of the ancestor plus

the sum of the effects of all mutations in the genotype. Finally, we could use these

predicted ∆G◦N values to calculate probable evolutionary trajectories.

These predictions were quite poor (Figure 15C). While the first move is correctly

identified, the next move is incorrect. For the sequence shown in Figure 15C, our

predicted trajectories are limited to a peak directly adjacent to the ancestral genotype

rather than the actual peak six mutations away.
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This result is unsurprising: we did not include any epistasis in our predictions.

Like real proteins, residues in a lattice model form direct contacts with each other.

We would therefore expect to see pairwise epistasis—a difference in ∆G◦N when muta-

tions are introduced together versus separately. We therefore re-ran our predictions of

trajectories accounting for both the individual effects of mutations and pairwise epis-

tasis between them. Practically, this involved another, larger virtual deep-mutational

scanning experiment: we calculated ∆G◦N for all 228 possible single mutants and all

22, 836 possible double mutants. By comparing the effects of each mutation together

and in pairs, we could build a more sophisticated prediction model that accounts for

pairwise interactions between mutations (see Materials & Methods).

Addition of pairwise epistasis improved our predictions relative to the additive

model, but we still performed quite poorly (Figure 15D). Although the addition of

pairwise epistasis allows the trajectories to escape the local region of the ancestral

genotype, the predicted and actual trajectories diverge after the second step. Many

genotypes are visited that were not seen in the actual trajectories, while many geno-

types in the actual trajectories were missed (purple crosses). This includes the actual

fitness peak.

To verify that this was a robust feature of lattice proteins, we then repeated

our pairwise epistasis predictions for 1,000 different random starting sequences. To

characterize the quality of our predictions, we calculated the difference in the prob-

abilities of matched trajectories between our predicted and actual maps (θ). This

metric ranges from 0.0 (no difference) to 1.0 (complete difference) (see Materials &

Methods). We then calculated θ as a function of number of steps from the ancestral

genotype for all 1,000 spaces (Figure 15E). In all spaces, we correctly predict the first

two moves. (This is because we built the prediction model using the fitnesses of these

genotypes—hardly a difficult prediction.) Addition of the third mutation, however,

causes immediate divergence between the predicted and actual trajectories. This di-
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vergence continues until, by the sixth step, the predicted and actual maps have an

average divergence of 0.9.

Ensembles induce epistasis

Our predictions accounted for all pairwise epistasis, yet still failed. It follows that

there must be three-way (or greater) epistatic interactions between mutations. This is

surprising, as lattice models are built from pairwise contacts alone. What is the source

of this “high-order” epistasis? We know that these interactions must be indirect at a

structural level, as the only direct interactions are pairwise. We therefore searched

for mechanisms that would lead to indirect interactions between mutations.

Allostery, where binding at one site indirectly affects activity at a distant site, is

a useful analog of this problem. One way that allostery can arise is through a confor-

mational ensemble [105, 104]. Binding at one site perturbs the relative populations

of different structures in the conformational ensemble. This can, indirectly, change

activity at another site. We hypothesized that a similar phenomenon was leading to

evolutionary unpredictability.

Figure 16 shows a highly simplified lattice model that illustrates indirect, “ensemble-

induced” epistasis between a pair of mutations. (The logic can be extended to indirect

multi-way interactions between mutations, but visualization of the phenomenon is

much easier for pairwise epistasis). In this example, we have a six amino acid protein

where each site can be either hydrophobic (H) or polar (P). We will consider intro-

ducing two mutations that do not contact one another in the the structure: H2P

(orange) and H4P (purple). We start with the non-epistatic case (panel A). This

ensemble has only two conformations: A and B. ∆G◦A is simply the difference in

the contact energy between conformation A and conformation B (Figure 16A, Table

3). H2P destablizes conformation A, H4P indirectly stabilizes conformation A by

destabilizing conformation B. If we sum the effects of the mutations, we obtain the
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correct stability of the double mutant.

Figure 16: Conformational ensembles induce epistasis. Panels show how
epistasis arises from the conformational ensemble of a simple, six-residue lattice pro-
tein. In this model, residues can be either hydrophobic (H, white circles) or polar
(P, filled circles). Favorable H-H contacts are worth -1 and are denoted by a red
star. Colors denote mutations: H2P (orange) and H4P (purple). Solid red lines
indicate the contact energies of each conformation. Genotypes are denoted above
each sub-panel. The thermodynamic stability of state A is shown for each geno-
type (for example, ∆G◦A,WT ). The information used to calculate ∆G◦predictedA,H2P/H4P is
shown along the bottom of panels A and C. Panel A: In the two-state system, the
effects of H2P and H4P sum in the H2P/H4P mutant; therefore, ∆G◦predictedA,H2P/H4P is
correct (green check mark). In panel B, we see that addition of a third state in
the ensemble leads to epistasis. ∆G◦A for each genotype is now the difference in the
contact energy of conformation A and the Boltzmann-weighted sum of the contact
energies of conformations B and C (dashed red line). Because of this nonlinearity,
∆G◦A,WT + ∆∆G◦A,H2P + ∆∆G◦A,H4P 6= ∆G◦A,H2P/H4P (red “×”).

What if we add a third conformation (C) to the thermodynamic ensemble? This

is shown in panel C. ∆G◦A is now the difference between the contact energy of A

and the log of the Boltzmann-weighted sum of the contact energies of B and C

(Figure 16B, Table 3). The mutations now no longer behave additively. In the wild

type background, H2P is destabilizing by 0.6 (reduced energy units). In the H4P

background, H2P is destabilizing by only 0.4. This is indirect, ensemble-induced
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epistasis. In the wildtype background, H2P destabilizes conformation A such that

it has the same contact energy as conformation B. These states strongly compete

with one another, causing H2P to have a relatively large effect (0.6). H4P alters this

effect by destabilizing conformation B. This means that, when H2P is introduced,

conformation B does not compete effectively with conformation A. As a result, H2P

has a more mild effect (0.4).

ensemble complexity Phenotype
two-state EN − EU
three-state EN + ln

(
e−EU + e−EU′

)
full ensemble EN + ln

(
−e−EN +

∑C
i=1 e

−Ei

)
Table 3: Mathematical formulation of multi-state ensembles in lattice proteins.

The presence of the third state in the ensemble leads to epistasis between these

mutations and an incorrect prediction of the double-mutant stability. Predicting the

effect of a mutation in a future genetic background therefore requires knowing its

effect on every member of the ensemble, not simply its aggregate effect on the entire

population of states. This is, in practice, impossible to measure. Ensemble-induced

epistasis is directly analogous to ensemble-induced allostery [105, 104]; however, we

have now substituted mutations for binding events and binding sites.

Evolutionary trajectories exhibit extensive ensemble-induced epistasis

From our reasoning above, we would predict that ensemble-induced epistasis would

arise for any conformational ensemble with more than two states, and that it could

lead to epistasis of any order. We therefore set out to quantify the epistasis present

in our evolutionary trajectories. Quantitatively, epistasis accounts for variation not

accounted for by lower-ordered effects of mutations. Pairwise epistasis is the difference

in the effects of two mutations introduced together versus separately. Three-way

epistasis is the difference in ∆G◦N for a triple mutant versus the predicted ∆G◦N from
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the individual and pairwise epistatic coefficients. In thermodynamic terms, individual

effects are ∆∆G◦N , pairwise interactions are ∆∆∆G◦N , and three-way interactions are

∆∆∆∆G◦N . This can be extended to any order of interaction [58, 52, 22].

Measuring an Lth-order interaction requires characterizing 2L combinations of mu-

tations. To access a collection of 2L genotypes, we constructed binary genotype-

phenotype maps containing all possible combinations of the mutations between the

ancestral genotypes and their highest probability genotype six mutations away (e.g.

between the ancestor and the peak on Figure 15B). We decomposed epistasis in ∆G◦N

using a linear model capturing the individual effects of mutations and any interactions

between them [58, 52, 22] using the ancestral genotype as the reference state [52].

We detected high-order epistasis in every calculated trajectory. Figure 17A shows

the average magnitude of epistatic coefficients of increasing order for all spaces. The

magnitude decays with increasing order, but is still detectable up to sixth order in

all spaces.
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Figure 17: Ensemble-induced epistasis leads to unpredictibility. Panels A-C
are jitter plots that show the average magnitude of epistasis |ε| observed for increasing
orders of epistasis in 1,000 maps generated from full ensemble (A), two-state (B),
and three-state (C) ensembles. Gray points represent the average magnitude of the
epistastic coefficients at a given order for a single map. Red bars indicate the means.
Panels D-F show divergence between the “true” trajectories and predicted trajectories
for full (D), two-state (E), and three state maps (F). For clarity, panel 3D reproduces
the data in panel 1E.

If the ensemble is, indeed, the source of this epistasis, we predicted that it would

disappear if we removed the ensemble. We therefore generated truncated lattice

models that had only two or three conformations in their ensemble. The two-state

ensemble had the native state and the lowest energy non-native conformation (N

and U). The three state ensemble had the native state and the two lowest energy

non-native conformations (N , U and U ′).

We predicted that the two-state model would exhibit only pairwise epistasis, while

the three-state model would exhibit higher-ordered epistasis. This can be understood

from the energy function for each ensemble. ∆G◦N for the two-state model is linear

with respect to contact energy (Table 3). The only epistasis that arises is via direct

interactions encoded in the contact energy. In a three-state (or higher) ensemble,

∆G◦N no longer reduces to a linear difference in contact energies (Table 3). This

means that mutations have nonlinear effects on the probabilities of conformations
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within the ensemble, leading ensemble-induced epistasis (Figure 16).

To investigate epistasis in these reduced ensembles, we generated binary maps as

before: we used either a two-state or three-state ensemble to calculate ∆G◦N for each

genotype, calculated evolutionary trajectories, and then built binary maps between

the ancestor and most probable final genotype. We then decomposed these maps

to extract epistasis. As predicted, the two-state ensembles exhibited only pairwise

epistasis (Figure 17B). In contrast, the three-state ensemble exhibited extensive high-

order epistasis (Figure 17C)—just like the full ensemble (Figure 17A).

We next asked whether reducing the ensembles altered predictability. If the un-

predictability we initially observed arises from epistasis induced by the ensemble, we

would predict high predictability for two-state ensemble, but poor predictability for

the three-state ensemble. We observed precisely this pattern. A pairwise prediction

model was able to perfectly predict evolutionary trajectories for two-state ensemble

(Figure 17E), but failed to predict evolutionary trajectories for the three-state en-

semble (Figure 17F). The unpredictability observed for the three-state ensemble is

directly comparable to the unpredictability observed for the full ensemble (Figure

17D).

Predictions fail even when high-order epistasis is included

If molecular ensembles lead to epistasis which undermines evolutionary prediction, an

obvious solution is to characterize even higher orders of epistasis. What if we knew

all three-way interactions? Or four-way interactions? Is there some order of epistasis

that, when characterized, allows long-range evolutionary predictions?

We cannot ask this question for open-ended evolutionary trajectories as it rapidly

becomes intractable. (Even for our twelve-site lattice protein, quantifying all possible

three-way interactions would require characterizing 1,533,034 genotypes). Instead,

we chose to try to predict trajectories from ancestral to derived genotype through
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the binary maps above, each containing 26 genotypes. We built increasingly complex

epistatic models, ranging from first-order (constructed from characterization of six

point mutants in the ancestral background) to sixth-order (constructed from charac-

terization of all combinations of point mutants in the ancestral background).

We found that incorporation of high-order epistasis led to little improvement in

our predictions. Figure 18 shows the deviation between our predicted and actual

trajectories for models incorporating increasingly higher orders of epistasis. Panel

A shows predictions using the full ensemble. The additive model begins to deviate

from the actual trajectories after the first step; the pairwise after the second; the

three-way after the third. As soon as the model has to make a prediction beyond the

phenotypes that were used to build the model, trajectories begin to deviate. Even our

fifth-order model—which required knowing the phenotypes of 63 of the 64 genotypes

in the space—does not always correctly predict the final step (purple curve).

Figure 18: Addition of high-order epistasis does not lead to predictability.
Panels show the deviation between predicted and actual trajectories through binary
genotype-phenotype maps using predictive models with increasing orders of epistasis:
additive (red), pairwise (orange), three-way (green), four-way (blue), five-way (pur-
ple) and six-way (pink). Panels correspond maps using a full-ensemble (A), two-state
ensemble (B) and three-state ensemble (C) maps. Each curve is averaged over 1,000
maps.

This unpredictability arises from the thermodynamic ensemble. Panels B and

C show the same analysis for the two-state and three-state ensembles respectively.

For the two-state ensemble, we were able to predict trajectories perfectly with the

addition of pairwise epistasis. For the three-state model, we see similar behavior to

the full ensemble: inclusion of high-order epistasis does not improve predictions. This

is because the epistasis does not capture specific interactions, but instead reveals that
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the ensemble is changing quantitatively and nonlinearly as mutations accumulate. No

matter what order of epistasis is characterized, the future remains obscure.

Discussion

Our work demonstrates that the physical properties of proteins can lead to profound

evolutionary unpredictability. Because each mutation alters the relative probabilities

of all conformations of a protein, the quantitative effect of a mutation is different in

every genetic background. As a result, the effect of a mutation early in a trajectory

does not predict its effect later and evolutionary trajectories become unpredictable.

Because thermodynamic ensembles are a natural aspect of molecular architecture and

ubiquitous for function, we expect this is a universal link between the biochemistry

of macromolecules and their evolution.

A key point from our work is that unpredictability can arise even in this extraor-

dinary simple system. The problem of predicting evolution will only become harder

as the complexity and realism of the models increases. Using a larger protein, for

example, would increase the number of possible options and degeneracy of trajec-

tories, making predictions more challenging. Likewise, constructing a more realistic

evolutionary model—incorporating drift, for example—increases the number of avail-

able trajectories and makes evolutionary prediction more challenging than the strong

selection case (SI Appendix).

Ensemble-induced epistasis is likely common

Our work suggests that any macromolecule that populates three or more conforma-

tions can exhibit ensemble-induced epistasis. This is an extraordinarily common set

of conditions, as most macromolecular functions require populating multiple states

[102, 105, 103, 104]. For example, consider an allosterically inhibited enzyme that

takes two conformations E (inactive) and E∗ (active). An inhibitor I binds to E,
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shifting the population from E∗ to E. The fraction of the enzyme in the active form

given [I] is:

E · I � I + E � E∗

factive =
[E∗]

[E∗] + [E] + [E · I]
.

This protein has three distinct states—E∗, E and E · I—that have different struc-

tures and would thus respond differentially to mutations. We would therefore expect

ensemble-induced epistasis in factive.

In addition to theoretical considerations, there is experimental evidence that

ensemble-induced epistasis shapes evolution [108, 109]. The most direct is an en-

gineered evolutionary trajectory that converts a protein from one fold to another

[108, 97]. Midway through the trajectory, a single mutation switches the fold. If

introduced earlier in the trajectory, the mutation does not have the same effect. The

fold-switching mutation has its singular effect because other mutations have pre-

stabilized the alternate fold. This is ensemble-induced epistasis: mutations perturb

the relative stability of a non-native conformation, opening up a new evolutionary

trajectory.

Another observation is the presence of high-order epistasis in every combinatorial

protein genotype-phenotype studied [44, 22]. The phenotypes studied are diverse,

including binding affinity, spectroscopic properties, and enzyme activity. Although

there is no direct evidence that the high-order epistasis in these maps arises from

underlying ensembles, ensemble-induced epistasis provides a simple, universal expla-

nation that unites these disparate observations of high-order epistasis.

One question that remains is how our observations in lattice models map quan-

titatively to real proteins. What is the magnitude of ensemble-induced epistasis in

real systems? How many steps can be predicted before real evolutionary predictions
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diverge? This will depend on the details of the sequence and its associated ensem-

ble. Our results suggest, however, that ensemble-induced epistasis will eventually

lead to divergence between predicted and actual trajectories in any protein genotype-

phenotype map.

It also remains to be seen if something analogous to ensemble-induced epistasis

exists on a larger scale, such as in a signaling network. Such networks do exhibit

ensemble-like behavior, populating a collection of different configurations that rear-

range in response to stimuli, sometimes even exhibiting stable three-state character

[110, 111] We might therefore be able to explain high-order epistasis in such systems

using an ensemble framework [44, 22].

Interpreting epistasis

Our analysis also sheds light on the question of the origin and interpretation of high-

order epistasis. First, our work shows that it is relatively easy to create a system with

irreducible high-order epistasis, even with a very simple lattice protein. There is no

simple scale that reduces the epistasis [15, 22]: it is an integral part of the system.

Second, our work shows there is no mechanistic interpretation for epistatic coeffi-

cients that arise by such a process. The epistasis is fundamentally statistical rather

than biological [15]. The ensemble effectively encrypts the interactions that give rise

to the epistasis. A three-way interaction cannot be interpreted in a direct physical

manner, nor in a way to predict which conformations changed. It quantifies the effect

of the mutation, integrated over its effect on all conformations in the ensemble. In

our view, the best interpretation of epistasis in macroevolutionary trajectories is as a

means to quantify uncertainty in future predictions—not necessarily as a way to gain

mechanistic insight into the system.
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Evolution is unpredictable

Epistasis makes a relatively small contribution to variation in our lattice models (Fig-

ure 17A), as well as real datasets [44, 22]. This allows prediction of phenotypes with

relatively high accuracy, as has been noted before in lattice models [98]. Approximate

phenotypes are, however, insufficient for predicting trajectories. Because evolution-

ary trajectories are a contingent series of steps, small uncertainties in phenotypes are

amplified into large uncertainties in trajectories [35]. Practically, this means you can

predict a multi-mutation phenotype from a deep mutational scanning experiment,

but likely not its evolutionary accessibility from the ancestral state.

Many previous discussions of unpredictability have revolved around robustness of

trajectories to external factors such as environmental perturbation [90], genetic drift

[36], or a change in the nature of selection [112]. The unpredictability we observe arises

from the architecture of protein systems themselves. Our work indicates that the

physical architecture of biomolecules naturally leads to ensemble-induced epistasis.

Accumulating mutations thus alter the effects of future mutations, making evolution

unpredictable given information about the effects of mutations in the ancestral state.
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CHAPTER V

UNINTERPRETABLE INTERACTIONS: EPISTASIS AS UNCERTAINTY

Author Contributions

Zachary Sailer (ZRS) and Michael Harms (MJH) conceptualized the paper. ZRS

conducted the simulations and computational analysis. ZRS generated figures. ZRS

and MJH wrote the chapter.

Introduction

Epistasis—that is, non-additivity between mutations—is a ubiquitous feature of genotype-

phenotype maps [1, 113, 44, 114, 32, 79, 115, 116, 117, 118, 119, 22, 120, 121,

122]. Epistasis can provide mechanistic insight into the determinants of phenotypes

[123, 124, 40, 51]; however, it also complicates predicting unmeasured phenotypes

[9, 34, 23, 125], as the effect of a mutation changes depending on the presence or ab-

sence of other mutations. Despite a century of work [14], epistasis remains challenging

to analyze and interpret [15, 16, 87, 44, 122].

One approach is to decompose epistasis into specific pairwise and high-order in-

teractions between mutations [58, 44, 52, 22, 126, 122]. This is often done by treating

each coefficient as a linear and independent perturbation to the additive phenotype

[58, 52]. Such an approach is a direct extension of classic approaches in quantitative

genetics and biochemistry. In a genetics context, one might measure the effect of a

mutation in two genetic backgrounds to dissect metabolic and regulatory pathways

[40, 51]. Likewise, mutant cycles are a mainstay of biochemistry. Introducing muta-

tions individually and together allows one to infer the nature of physical interactions
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between residues in macromolecules [123, 124].

Although linear epistasis models are very commonly used [44, 114, 32, 79, 120,

121], two recent observations raise questions about their utility. The first is that

regression can lead to biased estimates of linear epistatic coefficients, and thus poor

predictive power of epistatic models [73]. The second is that one can generate maps

with extensive pairwise and high-order epistasis using a toy model of proteins that

do not explicitly include such interactions [23]. This indicates that there may be

no simple way to relate linear epistatic coefficients back to underlying biology, thus

undermining their utility as indicators of biological mechanism.

Motivated by these concerns, we set out to systematically investigate linear epistatic

models constructed from twelve published genotype-phenotype maps. We focused on

two criteria for utility: the ability of such models to predict unmeasured pheno-

types and the ability of such coefficients to provide mechanistic insight into the map.

We studied maps for which all 2L combinations of L mutations were measured. Be-

cause these maps have the same number of observations as coefficients in a high-order

epistatic model, they can be readily decomposed into epistatic coefficients from second

to Lth-order. Further, the selected maps cover many different classes of genotypes,

phenotypes, and total magnitudes of epistasis.

We find that the epistatic coefficients we extract by regression from such maps

are quite poor at predicting unmeasured phenotypes. This arises from bias in the

regressed coefficients—exactly as predicted by Otwinowski and Plotkin [73]. Further,

we find we can generate epistatic coefficients similar to experimental coefficients by

simply using randomly assigned phenotypes. This suggests that the pairwise and

high-order interactions we extract are likely decompositions of random noise. We

therefore propose that we should not decompose genotype-phenotype maps into spe-

cific interactions between mutations using linear models. Rather, in the context of a

whole genotype-phenotype map, epistasis is best interpreted as a global metric cap-
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turing roughness [7, 127]. This translates directly to a measure of uncertainty on

predicted phenotypes, as well as an indication that an improved mechanistic model

is required.

Materials and Methods

Linear epistasis models

We used a linear epistasis model to decompose genotype-phenotype maps into up to

Lth-order epistatic coefficients. The model is linear in that it consists of a collection

of independent epistatic coefficients that are summed to describe each phenotype

[14, 52]. (The assumption of linearity contrasts with other models, such as a Potts

model, in which mutations sum in a nonlinear fashion [118]). There are two common

formulations a linear epistasis model, the Hadamard model (sometimes called a Walsh

or Fourier model) and the biochemical model [52]. The approaches differ in their

choice of coordinate origin. Each model has been described in detail elsewhere [58,

44, 52]. The two models are related by a simple set of linear transformations [52].

Throughout the text, we describe our results using the Hadamard model, but our

conclusions are robust to the choice of model (see supplemental figures referenced

throughout the text).

The Hadamard model uses the geometric center of the map as the coordinate

origin [58, 44, 52, 22]. Each genotype is made up of L sites. In a binary genotype-

phenotype map, the sites have two possible states: “wildtype” or “derived”. Both

states have equal effects but opposite signs. Each mutation is treated as a linear

perturbation away from the origin of the map,

P = βorigin +
L∑
i

βixi (10)
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where βorigin is the origin of the genotype-phenotype map, βi is the effect of site i, and

xi is 1 if site i is “wildtype” and −1 if “derived”. We can then add linear coefficients

to describe interactions between mutations to Eq. 10. For pairwise interactions, this

has the form:

P = βorigin +
L∑
i

βixi +
L∑
j<i

βijxixj (11)

where βij is a pairwise epistatic coefficient. For the high-order model, the expansion

continues:

P = βorigin +
L∑
i

βixi +
L∑
j<i

βijxixj +
L∑

k<j<i

βijkxixjxk + .... (12)

The model can be expanded all the way to Lth-order interactions.

Linearizing experimental genotype-phenotype maps

Prior to extracting epistatic coefficients from experimental genotype-phenotype maps,

we corrected each map for global epistasis, which arises when mutations combine

on some scale other than an additive scale [17, 70, 56, 22, 21]. This violates the

assumption of linearity inherent in the epistasis models [14, 15, 22]. Global epistasis

manifests as a non-normal distribution of the residuals between the ~Pobs (the vector

of observed phenotypes) and ~Padd (the vector phenotypes calculated using an additive

model) [22, 21]. Such epistasis can be minimized by identifying a nonlinear function

T that captures global curvature in the relationship between ~Pobs and ~Padd, yielding

normally distributed fit residuals [60, 7, 22, 21]:

~Pobs = T (~Padd) + ~ε. (13)
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where ~ε are the fit residuals. We linearized all experimental maps by fitting a second-

order spline to the ~Pobs vs. ~Padd curve for each map prior to extracting linear epistatic

coefficients [21].

Epistasis and linear regression

We used linear regression to regress epistasis models against experimental and simu-

lated genotype-phenotype maps. We formulated the problem as follows:

~Pobs = X~β + ~ε (14)

where ~Pobs is a vector of observed phenotypes (corrected for global epistasis), ~β is

a vector of epistatic coefficients, X is a matrix that encodes the sign of each coeffi-

cient according to Eq. 12, and ~ε is a vector of residuals. The goal was to estimate

coefficients in ~β that minimized the magnitudes of the values in ~ε.

We used three different regression approaches: ordinary least-squares, lasso, and

ridge. The number of coefficients in these maps grows rapidly with the number of sites.

For a binary map with L sites, there are 2L possible fit coefficients. Lasso and ridge

regression are strategies to identify only those coefficients that contribute significantly

to the variation in the data. These strategies have been used previously to dissect

linear epistatic models [73, 126]. Throughout the text, we describe results using lasso

regression, but our conclusions are robust to the choice of regression strategy (see

supplemental figures referenced throughout the text).

Simulating epistatic genotype-phenotype maps

We constructed genotype-phenotype maps using Equations 10 and 12. First, we set

the additive coefficients to random values drawn from a normal distribution. We
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then added all 2nd- through Lth-order epistatic coefficients. We set the values of the

coefficients to random values drawn from a different normal distribution. The widths

of the additive and epistatic distributions were tuned to match the relative magnitudes

of epistatic coefficients extracted from experimental maps. Further, we could tune the

fraction of epistasis in a simulated genotype-phenotype map by changing the relative

widths of the additive and epistatic distributions with respect to one another.

Software

We implemented the epistasis models using Python 3 extended with numpy, scipy,

and pandas [65, 128]. We used the Python package scikit-learn to perform ordinary-

, lasso-, and ridge- regression [66]. We used the Python package lmfit to perform

nonlinear-least squares regression [129]. Plots were generated using matplotlib and

Jupyter notebooks [67, 68]. Our full software packages are available in the gpmap

(https://harmslab.github.com/gpmap) and epistasis (https://harmslab.github.com/epistasis)

packages on Github.

Results

Regression yields biased estimates of epistatic coefficients

We started with a straightforward question: What fraction of a genotype-phenotype

map must we observe to resolve a linear epistatic model that predicts unmeasured

phenotypes? We simulated a genotype-phenotype map consisting of all 28 binary

combinations of 8 mutations. We then assigned random epistatic coefficients using

an 8th-order Hadamard matrix, such that epistasis accounted for 20% of the variation

in phenotype (see methods). The epistatic coefficients were similar in magnitude and

sign to those extracted from experimental genotype-phenotype maps (Fig S1).

To test our ability to predict phenotypes, we masked a fraction of the genotypes,

fit linear epistatic models to the unmasked genotypes, and attempted to predict the
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masked genotypes. We then calculated the correlation between the model and un-

masked observations (ρ2
train) and the model and masked observations (ρ2

test). We

repeated this for 1,000 pseudo-replicate training and test sets.

As a starting point, we fit the additive model (Eq. 10). We found that the

additive model converged on ρ2
train = ρ2

test = 0.8 when ' 30% of the map was used

for the fit (red lines, Fig 19A). The model converges once each mutation has been

observed across a sufficient number of genetic backgrounds to average out the epistatic

perturbations to the phenotype. Because, by construction, 20% of the variation in

the map is due to epistasis, the best the additive model can do is explain 80% of the

variation in phenotype.

Figure 19: Linear epistatic coefficients cannot be estimated from an in-
complete, simulated genotype-phenotype map. A) Fit scores versus the per-
cent of the genotypes in the map used to train the model, from 10% to 90%. The
dashed gray line indicates the amount of additive variation in the map (80%). Colors
indicate model order: additive (red), pairwise epistasis (green), and high-order epis-
tasis (blue). Dashed lines indicate ρ2

train and solid lines indicate ρ2
test. B) Fit scores

versus the fraction of map used to train the model. Blue curve uses regressed coef-
ficients (reproduced from panel A). Gray curve shows ρ2

test if we use the coefficients
used to generate the map. C) Value of a pairwise epistatic coefficient as we add data
to the fit. Gray line indicates the value of the coefficient used to generate the map.

We next tried to improve our predictive power by adding coefficients describing

either pairwise interactions between mutations (Eq. 11) or all interactions (up to

eighth-order) (Eq. 12). Because Eq. 12 is the model we used to generate the map,

this model should, in principle, be able to explain all variation in the map.
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We found that neither the pairwise nor high-order models performed as well as

the additive model (green and blue lines, Fig 19A). Even when 90% of the genotypes

were included in the training set, the pairwise and high-order models had ρ2
test of 0.73

and 0.62—much less than the value of 0.80 achieved by the additive model. Worse,

this failure to predict the test set was accompanied by much higher ρ2
train values. The

high-order model, in particular, had a correlation of 1.0 with the training set (Fig

19A, dashed blue line), even while test set correlation languished around 0.6 (Fig

19A, solid blue line).

This result arises because regression yields biased estimates of the epistatic coef-

ficients [73]. We know that high-order epistasis is present, because we used the same

high-order model we are now fitting to generate the underlying map. The fit coef-

ficients, however, do not accurately capture this variation. This can be seen in Fig

19B. The blue line reproduces ρ2
test for the high-order model from Fig 19A. The gray

curve shows values of ρ2
test calculated using the epistatic coefficients used to generate

the map. The divergence between these curves indicates that the regression fails to

extract the correct values for the epistatic coefficients.

This can also be seen by examining the values of the extracted epistatic coefficients.

The blue curve in Fig 19C shows the estimated value of a single, pairwise epistatic

coefficient within the high-order model as data are added to the training set. The

gray line shows the coefficient used to generate the map. Rather than monotonically

converging to the true value, the estimated coefficient fluctuates in both magnitude

and sign as data are added. This was common for all coefficients. We found that,

on average, 65% of the pairwise coefficients flipped signs as data was added to our

model.

These observations were robust to the choice of epistatic model and regression

method. We used the Hadamard epistatic model with lasso regression for the results

shown, but obtained identical results for all combinations of the Hadamard and bio-
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chemical epistatic models with ordinary, lasso, or ridge regression (see methods, Fig

S2).

Predictive epistatic models cannot be extracted from experimental genotype-phenotype

maps

We next asked whether experimental genotype-phenotype maps exhibited similar bias

in their regressed epistatic coefficients. We analyzed 12 experimentally characterized

genotype-phenotype maps (Table 4). All maps contained all combinations of L muta-

tions, ranging in size from 32 to 128 genotypes. The maps consisted of very different

classes of genotypes: collections of point mutations within a single gene, scattered

genomic point mutations, or alternate alleles of genes in a metabolic network. The

measured phenotypes are also diverse: competitive fitness, binding affinity, and pa-

rameters like growth rate and sporulation efficiency.

ID genotype phenotype L reference
I genomic mutations E. coli fitness 5 [18]
II point mutants bacterial fitness 5 [25]
III chromosomes A. niger fitness 5 [6]
IV point mutants binding affinity 5 [32]
V alleles in network S. cerevisiae growth rate 6 [59]
VI alleles in network S. cerevisiae growth rate 6 [59]
VII genomic mutations E. coli fitness 5 [85]
VIII genomic mutations E. coli fitness 5 [85]
IX chromosomes A. niger fitness 5 [6]
X alleles in network S. cerevisiae sporulation 6 [59]
XI alleles in network S. cerevisiae mating 6 [59]
XII genomic mutations E. coli fitness 6 [79]

Table 4: Published experimental genotype-phenotype maps.

We started by linearizing the experimental genotype-phenotype maps (see meth-

ods) [22, 21]. We then dissected each map into linear epistatic coefficients. Because

all genotype-phenotype pairs in these maps have been measured, we have the same
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number of observations as epistatic coefficients. We can therefore decompose epistasis

into linear coefficients using a matrix transformation [58, 52], avoiding complications

arising from regression. We found that all of these maps exhibited statistically signif-

icant pairwise and high-order epistatic interactions. Epistasis contributed from 6%

to 79% of the variation in these maps (Fig 20A).

Figure 20: Predictive epistatic coefficients cannot be resolved from ex-
perimental genotype-phenotype maps. A) Bars show the fraction of variation
in phenotype explained by additive effects (red), pairwise epistasis (green), or any
order of high-order epistasis (blue). Each bar is for one of the twelve experimental
genotype-phenotype maps. B) Each sub-panel shows ρ2

train (black) and ρ2
test (red) for

the map indicated above the graph as epistatic orders are added to the model. The
x-axis is the number of parameters used in the fit. Points are, from left to right:
additive, pairwise, and high-order epistasis. Points and lines indicate the mean of
1,000 pseudoreplicate samples. Error bars are standard deviation of pseudoreplicate
results. The dashed lines indicate the fraction of the variation in the map explained
by the additive model. These fits used the Hadamard model with lasso regression.
See Fig S3 for other epistatic models and regression strategies.

We next probed our ability to extract predictive epistatic coefficients from the lin-

earized maps. We created a training set consisting of 80% of the genotype-phenotype

pairs in each map, regressed models against this set of observations, and then pre-

dicted the phenotypes of the remaining 20% of the genotypes. As above, we fit the
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additive, pairwise and high-order models. We then repeated this for 1,000 pseudo-

replicate training and test sets on each map.

As with our simulations, we found we could not reliably extract predictive epistatic

coefficients (Fig 20B). In 11 of 12 maps, the additive model performed better than

any other model. In seven of the twelve maps (I, VII, VIII, IX, X, XI, and XII),

ρ2
test consistently decreased with each addition of epistatic coefficients. In four of the

maps (II, III, V, and VI) the addition of pairwise epistasis led to a drop in ρ2
test that

was partially offset by the addition of high-order coefficients. Ultimately, however,

the high-order model did no better than the additive model in these maps. Map IV

was the the only map in which adding epistatic coefficients had any positive effect:

the addition of pairwise epistasis led to a small increase in ρ2
test (from 0.80 to 0.87).

This is achieved, however, by increasing the number of fit parameters from 10 to 40,

implying that each epistatic coefficient contributed very little to the overall model.

As with the simulated maps, these observations were robust to the choice of epistatic

model and regression strategy (Fig S3).

Experimental epistatic coefficients cannot be distinguished from a random model

These results indicate that predictive, linear epistatic coefficients cannot be estimated

by regression in these genotype-phenotype maps. We must characterize essentially

every phenotype in a genotype-phenotype map to resolve the epistatic coefficients

that describe the map. But, if we have measured every phenotype, there are no more

phenotypes to predict. One might conclude that understanding epistasis requires

measuring every genotype-phenotype pair in a map.

Given the effort required to measure every phenotype, we posed another question:

is it worth exhaustively characterizing a map just to extract epistatic coefficients? Or,

put differently, are the epistatic coefficients one can decompose from a complete map
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informative? We approached this question by comparing the epistatic coefficients

extracted from an experimental genotype-phenotype map to those extracted from a

null model. Our null model was a random map: we generated phenotypes with an

additive model and then perturbed each phenotype by a random value drawn from

a normal distribution centered at zero. This is an appropriate null model because

the generating model has no mechanistic interactions at all; any correlations between

mutations arise from noise. Such a map consists entirely of “statistical” epistasis [15].

We decomposed the epistasis in Map VIII using all 32 measured phenotypes and

compared the resulting epistasis to our null model. Fig 21A-C shows the epistasis

extracted from the experimental map. In this map 26% of the variation in phenotype

is due to epistasis (Fig 21B). The residuals between the additive model and the

observed phenotypes are normally distributed (Fig 21B). When we decompose the

epistasis, we find that pairwise coefficients capture 16.2% and high-order coefficients

capture 9.2% of the variation in phenotype.
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Figure 21: Experimental maps resemble random maps. Panels A and D
show genotype-phenotype maps. Each node is a genotype; each edge is a single point
mutation. Colors indicate quantitative phenotype. Panels B and E show the corre-
lation between the observed phenotypes and the additive model, with fit residuals
shown below the plot. Panels C and F indicate the magnitude of epistasis in each
map as in Fig 20A (top subpanel) and the values of all model coefficients (bottom
subpanel). Colors indicate additive components (red), pairwise components (green),
and high-order components (blue). Each bar shows the value of a single model coef-
ficient: the red bars correspond to the 5 additive coefficients, the green bars to the
10 pairwise coefficients, and the blue bars to the 17 high-order coefficients. Panels
A-C are for experimental map VIII; panels D-F are for a simulated map with random
epistasis.

We next constructed our null map. We generated a collection of random additive

coefficients and calculated Padd for each genotype. We then added random pertur-

bations to each phenotype, drawn from a normal distribution with a mean of 0 and

a standard deviation selected to yield a total magnitude of epistasis similar to the

experimental map. This sampling procedure gave the Pobs vs. Padd curve shown in Fig

21E. As with the experimental map, epistasis accounted for 26% of the total variation

in the map. We then decomposed this random epistasis with a high-order epistasis
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model (Fig 21F).

The overall structure of epistasis is indistinguishable between the experimental

and a random map, even though the values of the specific epistatic coefficients are

different (Fig 21C vs. F). If we generate many random maps—effectively, sampling

over the possible configurations of epistatic coefficients that arise from a random

variation in phenotype—we cannot distinguish the experimental map from among

the decoys (Fig S4). This suggests that the linear epistatic coefficients extracted

from this map should be viewed as decompositions of random noise, unless this can

be shown otherwise.

Using an additive model to treat epistasis

Our results speak against decomposing epistasis into collections of linear interac-

tion terms. So how should we treat epistasis? We will touch on nonlinear treatments

in the discussion, but before doing so, we will explore our top-performing epistasis

model from above: the additive model.

The additive model treats epistasis as residual variation not explicitly accounted

for by the model. If we measure the phenotypes of a set of combinatorial genotypes,

we observe the effect of each mutation in a large number of genetic backgrounds

(Fig 22A). We can describe the effect of mutation i with two numbers, its average

effect 〈βi〉 and the variance of its effect σ2
i . This same logic applies at the level of

whole genotypes. If we have linearized the genotype-phenotype map [7, 22, 21], the

residuals between ~Pobs and ~Padd will be normally distributed (Fig 21B). As a result,

the phenotype of a genotype g is given by:

Pobs,g = Padd,g±ξ (15)

where ξ is the standard deviation of the residuals between ~Pobs and ~Padd. This is the
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basic definition of epistasis given by Fisher [14], applied across the whole map.

This view is particularly useful for predicting unmeasured phenotypes. First:

it means each predicted phenotype has a known, normally distributed uncertainty.

Even if a large amount of variation remains unexplained by the additive model, it is

safely partitioned into a random normal distribution. Put another way, ξ acts as a

prediction interval. Second: because the additive model has few terms, we can train

it using a very small amount of data.

Figure 22: Epistasis as uncertainty. A) A partially characterized map. Circles
represent genotypes, some of which have been measured (filled), some of which have
not (unfilled). Lines represent single point mutations. Given these observations, we
measure the effect of mutation 1 in five different backgrounds (red arrows) and can
thus calculate the mean and variance in its effect across the map (〈β1〉 and σ1). B)
ρ2
test versus the average number of times each mutation is seen in randomly sampled

genotype-phenotype maps with epistasis responsible for 10% (blue) to 60% (brown)
of the variation in the maps. Points indicate where ρ2

test is within 5% of the maximum
predictive power of the additive model. C) A calibration curve indicating how many
times, on average, one must observe each mutation in map to resolve the additive
coefficients in a map with different fractions of epistasis.

Following this line of reasoning, we asked how many phenotypes we would have to

measure to construct a maximally predictive additive model. We constructed additive

maps with different alphabet sizes (ranging from 2 to 5) and numbers of mutations

(ranging from 6 to 8). We then injected random epistasis ranging in magnitude from

10% to 60% of the variation in the phenotype. We simulated experiments where

we measured one random genotype at a time, added it to our observations, and
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predicted the phenotypes of the remaining genotypes. We then plotted ρ2
test as a

function of the average number of times we saw each individual mutation across all

genetic backgrounds (〈nobs〉).

When plotted as a function of 〈nobs〉, ρ2
test rapidly rises and then saturates at the

magnitude of the epistasis in the map, independent of alphabet size and number of

mutations (Fig 22B). We next asked, as a function of the magnitude of the epistasis

in the map, when our predictions would be within 0.05 of the best achievable ρ2
test.

This is indicated by the points on Fig 22B. We plotted these values as a function of

the magnitude of the epistasis in the map. This reveals a linear relationship between

the average number of times we need to see each mutation and the total epistasis in

the map (Fig 22C).

We set out to test this approach using a partially sampled, experimental genotype-

phenotype map characterizing the binding specificity of dCas9 to 23-base-pair oligonu-

cleotides (Fig 23A). The published experiment sampled 59, 394 of the 7 × 1013 (423)

possible oligonucleotides. Although all bases were sampled at all positions, there was

significant bias towards a specific base at each position in the library (Fig 23A). The

map exhibited a highly non-linear relationship between ~Pobs and ~Padd (Fig 23B), so

we linearized the map with a 5th-order spline (Eq. 13), yielding normal residuals

between ~Pobs,linearized and ~Padd (Fig 23C). We then assessed the predictive power of

the map: we added genotypes individually to a training set and evaluated our ability

to predict the test set. We found that we were able to fit a model using ≈ 4, 000

genotypes to predict the remaining ≈ 55, 000 measurements. Because of the biased

sampling of genotypes in the map, it took 4, 000 genotypes to observe each individual

mutation a sufficient number of times to resolve the additive effects of all mutations

(Fig 23D). Our prediction curve saturated after we had seen each mutation at least

39 times. This is in good agreement with our calibration curve on simulated data,

which indicated we would need to observe each mutation an average of 40 times (with

93



random sampling) to saturate an additive model in which epistasis was responsible

for 38% of the variation in the map.

The predictive power of this model is quite good considering its simplicity: we are

able to predict any phenotype to ±38% given we only sampled one, one-billionth of

a percent of the map. Extensive epistasis remains, but it follows a normal distribu-

tion with a known standard deviation. While there are certainly more sophisticated

models, an additive model provides significant predictive power for this map.

Figure 23: A predictive, additive model can be trained on a large
genotype-phenotype map. A) Summary of the genotype-phenotype map reported
in [117]. Map consists of 23 sites, each with four bases with the frequency at each site
shown in the sequence logo. The total map has 7 × 1013 genotypes; the publication
reports measured phenotypes for 59, 394 genotypes. B) Raw Pobs vs. Padd plot for
the map. Each point is a genotype. The fit residuals are shown below the main
plot. We fit an 5th-order spline to linearize the map (red curve). C) The linearized
form of the map, with epistasis removed using the spline shown in panel B. D) A
predictive model can be trained using ≈ 4, 000 genotypes. The bottom x-axis shows
the number of unique genotypes used to train the model (sampled randomly); the
top x-axis shows the fewest number of times any mutation was seen in that sample
given the bias in the frequencies of the input mutations. ρ2

test was measured against
the remaining 50, 000+ genotypes not used to train the model.

Discussion

Our results suggest that a linear model should not be used to extract pairwise and

multi-way interactions between mutations in a genotype-phenotype map. Regressed

epistatic coefficients are biased (Fig 19B), unstable to the addition of new data (Fig

19C), and not useful for predicting unmeasured phenotypes (Fig 20A). Far from
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being an anomaly, this appears to be a shared feature of a collection of a dozen high-

precision, combinatorially-complete genotype-phenotype maps (Fig 20B). Further,

we can generate epistatic coefficients very similar to those observed in these maps

using a simulated map in which we added random, normally distributed noise to each

phenotype (Fig 21). This argues for viewing epistatic coefficients as uninterpretable

decompositions of random variation, unless shown otherwise.

Viewed mechanistically, this is unsurprising. The epistatic models under investi-

gation assume linearity, but biology is nonlinear [26, 130, 17, 70, 56, 22, 21]. There

is no reason to believe that a linear model will capture a complicated nonlinear sys-

tem in a predictive and interpretable way. For example, we showed recently that we

could generate high-order epistasis using a toy thermodynamic model of proteins with

only explicit pairwise interactions [23]. The epistasis arise because mutations have a

nonlinear effect on the relative populations of individual protein conformations. As

a result, epistatic coefficients cannot be interpreted mechanistically—they are purely

“statistical” [15].

Further, our results indicate that the signs and magnitudes of specific epistatic

interactions extracted from genotype-phenotype maps have no universal meaning.

For example, in Fig 19C, the selected pairwise coefficient flips between positive, zero,

and negative. If different genotypes of the map are characterized, we obtain different

values for the pairwise coefficient, and thus a different interpretation for the effect of

epistasis on the phenotype.

Treating epistasis with an additive model

A simple way to treat epistasis is as the residual variation after fitting an additive

model (Eq. 15). Despite its simplicity, this is a useful perspective. It can be used

to predict unmeasured phenotypes in a genotype-phenotype map with known un-

certainty. This is because deviation from the additive model is determined by the
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magnitude of epistasis in the map (Fig 22A). Further, the simplicity of the model

means we can characterize an extremely sparse sample of combinations of mutations

across a genotype-phenotype map and still predict missing phenotypes (Fig 22C).

This suggests that sparsely sampling combinatorial genotypes, rather than aiming

to exhaustively characterize point mutants, may be a powerful way to understand

and predict genotype-phenotype maps. As long as each mutation is seen across a

sufficiently large number of genetic backgrounds, we can resolve its average effect

across a volume of the genotype-phenotype map. In contrast, exhaustively sampling

point mutations in a single background—such as a deep mutational scan—will yield

mutational effects specific to whatever genetic background is used. Epistasis is not

averaged out, meaning such coefficients should not provide high predictive power

when mutations are combined.

Interpretation of epistasis as a prediction interval only holds when the fit residuals

are normally distributed about zero. Curvature between ~Pobs and ~Padd will lead

to non-normal residuals and, thus, a distorted picture of the uncertainty [22, 21].

Multiple methods exist for linearizing genotype-phenotype maps, including taking

the log of phenotypes [15], power transforms [22], splines [21], and even mechanistic

models [56, 131]. This is one area for improvement, as better global models will

decrease the amount of variation that must be explained by the additive model. For

example, in our analysis of the dCas9 binding specificity, there is still structure in

the residuals, with some clustering along Padd despite linearization using an 5th-order

spline (Fig 23C). A model that captures such variation could improve predictive

power. Further improvement of global models will thus be an important area of

investigation.
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Moving away from linear models

We see three promising ways forward. The first is to view epistasis in terms of its

consequences for evolutionary trajectories. This includes metrics like the number of

accessible trajectories, number of fitness peaks, and summary statistics such as the

roughness to slope ratio [7, 127, 132]. These metrics generally do not allow prediction

of unmeasured phenotypes nor mechanistic understanding of the map, but can provide

useful insights into evolutionary trajectories and outcomes without the poor behavior

observed in linear epistasis models.

The second is to use non-biological, nonlinear models to extract information from

each map. These include tools such as Potts models [133, 118], variational auto

encoders [134, 135], and neural networks [136, 137]. Such approaches can yield pre-

dictive models of genotype-phenotype maps, and will no doubt continue to grow in

popularity and sophistication. One downside to these models is a requirement for

massive amounts of training data—which may not always be feasible, even in the

modern high-throughput era. Further, it may be difficult to link such models to an

underlying biological mechanism.

The third is to attempt to model the underlying mechanistic process that leads to

the map [70, 56, 131, 138]. Rather than taking a “top-down” approach, in which one

dissects epistasis into statistical interactions that are hopefully meaningful, one can

instead take a “bottom-up” approach, in which one calculates phenotypes from geno-

types using a mechanistic biological model. This model can then be trained against

measured phenotypes. This provides a predictive model for unmeasured phenotypes,

as well as providing mechanistic insight into map between genotype and phenotype.

A good example is that of Schenk et al, who dissected a genotype-phenotype map

by explicitly modeling the effect of each mutation on protein stability and enzymatic

activity [56]. This model captured extensive variation in the map that could not

be described with a linear model, while also providing mechanistic insight into the
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protein under investigation.

Conclusion

Epistasis was described by Fisher as residual variation left over after fitting an additive

model [14]. While it may sometimes be productive to separate these residuals into

specific statistical coefficients, a better approach is to build better model. In our

view, the long-term goal should not be interpreting epistatic interactions between

mutations; rather, the long-term goal should be building mechanistic models that fit

experimental observations and, ultimately, make epistasis disappear.
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CHAPTER VI

PREDICTING DRUG RESISTANCE IN MALARIA VIA THE PFCRT

GENOTYPE-PHENOTYPE MAP
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Introduction

Genotype-phenotype maps strongly shape evolution [4, 80, 26, 25, 8, 30, 7, 36, 9, 32,

37, 35, 23, 120]. The distribution and connectivity of phenotypes in a map deter-

mines the accessibility of adaptive evolutionary trajectories [6, 7, 2, 8, 9, 10], tunes

evolutionary dynamics [139, 140, 18, 30], and alters population structure [141, 142].

Studying such maps can, however, be challenging as the size of a map rapidly increases

as the number of mutations increases. For example, a map with four sites, each of

which can can be in one of two states, has only 16 genotypes (24). In contrast, a map

with 15 such sites has 32,768 genotypes (215). Because of the experimental challenge

of exhaustively characterizing every genotype, researchers often only have access to

portions of a map of interest [143, 27, 11, 37]. Being able to infer the phenotypes of

missing portions of a genotype-genotype map could therefore be extremely useful.

In this work, we set out to infer unmeasured phenotypes in a map of intermediate

size, containing 28 = 256 genotypes. This regime is particularly important, as the
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evolution of features like drug or pesticide resistance often involve 5-10 mutations

(32 to 1,024 genotypes) [25, 144, 55, 145, 11, 79]. Many important questions in such

maps require knowledge of the phenotypes of all (or most) genotypes: Were there

many or few evolutionary trajectories between the ancestral and modern protein?

Were the pathway(s) adaptive, or were functionally neutral steps required? Why

does resistance sometime evolve quickly [146, 147, 148], while taking decades in other

scenarios [149, 150]?

A map with hundreds of combinatorial genotypes is large enough it may be dif-

ficult to characterize exhaustively, particularly for phenotypes that are difficult to

characterize by high-throughput methods. Unfortunately, such a map is also small

enough that it is not readily analyzed using sophisticated, data-hungry machine learn-

ing models. To address this problem, we have developed a straightforward approach

to infer missing phenotypes from a small number of measured phenotypes. Our goal is

to use combinatorial samples covering ≈ 20% of a map to infer the remaining ≈ 80%,

with well-characterized uncertainty in our predictions. Such knowledge would al-

low robust and statistically-informed analysis of evolutionary trajectories through a

modeled genotype-phenotype map.

As a model system, we used the map for the evolution of the Plasmodium fal-

ciparum Chloroquine Resistance Transporter (PfCRT). PfCRT gives the malarial

parasite resistance to chloroquine (CQ), a front-line malarial treatment for many

decades [151, 150]. CQ is a diprotic base that diffuses into the P. falciparum food

vacuole where it protonates, accumulates, and causes cell death by interfering with

heme metabolism [152, 153] (Fig 24A). Eight mutations gave PfCRT the ability to

transport protonated CQ out of the food vacuole [151, 154, 11] (Fig 24A).

100



Figure 24: We have a sparse sample of phenotypes in the transition from
low to high PfCRT CQ transportation activity. A) Cartoon representation
of the mechanism of PfCRT-induced CQ resistance. A list of the eight mutations
that accumulated between the ancestral and derived protein is shown on the right,
with the ancestral amino acid in lowercase and the derived amino acid in uppercase.
B) Network shows the complete PfCRT genotype-phenotype map. Nodes represent
genotypes; edges represent single mutations. Node color indicates the previously
measured level of CQ transport [11]. White nodes represent genotypes that have not
been measured. C) One possible evolutionary trajectory from the ancestral protein
to the modern PfCRT. Only six of the eight steps increase CQ transport.

The PfCRT map is an excellent system for developing a predictive model. The

Martin lab previously characterized 52 of the 256 possible combinations of the 8 mu-

tations in PfCRT [11]. They expressed these mutants in Xenopus laevis oocytes and

then quantified CQ uptake by these cells, allowing them to fill in 20% of the PfCRT

genotype-phenotype map (Fig 24B). From this, they were able to infer possible evo-

lutionary trajectories that led to high CQ transport in PfCRT [11]. One of these
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trajectories is shown in Fig 24C. Interestingly, they found that every trajectory re-

quired at least one step in which the mutation did not alter CQ uptake. The lack of

adaptive trajectories may explain why CQ resistance took many decades to evolve.

Although a few possible trajectories were revealed, it is unclear whether there are

other accessible trajectories without knowing the complete genotype-phenotype map.

There are 8! = 40, 320 possible forward trajectories through this map. The measured

phenotypes allow us to assess the accessibility of 428 of these trajectories. This leaves

39, 892 trajectories—98.9%—for which we are missing one or more mutational steps.

Measuring new phenotypes, however, is quite labor intensive, making it difficult to

completely characterize the map.

We therefore set out to build a predictive model of the PfCRT genotype-phenotype

map. The model incorporates the additive effects of mutations, a nonlinear scale, and

logistic classifier. Further, we study the prediction error in the model, allowing for us

to account for prediction uncertainty in evolutionary analyses. We have released our

implementation of the model as an open source Python software package (GPSEER;

https:github.com/harmslab/gpseer). The approach we describe should be general to

many genotype-phenotype maps.

Results

Model development

We started with a linear, additive model that treats each mutation as an indepen-

dent perturbation to the quantitative phenotype of CQ transport. We then added

non-additive features to this model, as needed, to better describe the experimental

observations.

We started by describing the phenotype of any genotype as the sum of the effects

of its mutations [15, 155]:

Pobs ∼ Pmodel
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where Pobs is the observed phenotype and Pmodel is a linear model with the form:

Pmodel ∼ βref + β1x1 + β2x2 + .... (16)

βref is the phenotype of the reference genotype, βi represents the quantitative effect

of mutation i, and xi is 0 if the mutation is present and 1 otherwise. We can estimate

the effects of mutations in an additive model using linear regression:

Pobs = Pmodel + ε, (17)

where ε is the regression residual.

We fit this model to the 52 previously measured phenotypes of PfCRT. This

yielded an R2
train value of 0.65 between the model and the training data. In an effort

to improve the model, we then inspected a graph of observed phenotype (Pobs) versus

the predicted phenotype (Pmodel) (Fig 25A). This is an extremely powerful plot that

can reveal mismatches between the linear, additive model and the statistical process

that generated the data [22, 21].
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Figure 25: We can train models on measured phenotypes to predict pre-
viously unmeasured phenotypes. Panels show observed phenotype (Pobs) vs.
predicted phenotype (Pmodel) for different input data and models. Vertical error-
bars represent experimental uncertainty (two standard deviations) in the observed
phenotypes. The dashed line is the 1:1 line (perfect agreement); the R2 for is
shown on each plot. The top row (panels A-E) shows fit quality for the training
set (52 previously published phenotypes); the bottom row (panels F-J) shows fit
quality for the test set (24 newly measured phenotypes). Columns, from left to
right, are increasing model sophistication: additive (A,F), additive+classifier (B,G),
additive+classifier+nonlinear (C,H), additive+classifier+nonlinear+pairwise epista-
sis (D,I), and additive+classifier+nonlinear+all epistatic orders (E,J).

The first observation we made from this graph was that genotypes appear to fall

into two distinct classes. One class consisted of genotypes for which Pobs remained

close to zero, even as Pmodel changes (red arrows, 25A). The other class consisted of

genotypes for which Pobs increased monotonically with Pmodel (blue arrow, 25A). This

suggested two, different, underlying processes. The linear model ends up making a

poor compromise between these two classes.

We addressed this issue by adding a classifier to the model. We defined a threshold

of 5% CQ uptake, corresponding to the minimum detection threshold of the CQ-

transport assay [11]. We labeled genotypes with Pobs ≥ 5% as transporters and

Pobs < 5% as non-transporters. We then constructed a logistic classifier that predicts

the class of any genotype given its sequence (see Materials & Methods). We trained
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this model on the PfCRT dataset and colored the points on the Pobs vs. Pmodel

curve according to the likelihood the genotype belonged to the transporter or non-

transporter class (Fig 25B). Note that the spread of points indicated by the red arrow

in Fig 25A has collapsed to a set of overlapping red points in Fig 25B. We could then

train the linear model against members of transporter class. The resulting fit is shown

in Fig 25B, with an R2
train of 0.79.

After we applied the classifier, we noticed a second feature of the Pobs vs. Pmodel

plot: nonlinearity between Pobs and Pmodel (yellow line in Fig 25B). Such curvature

arises when mutations do not add, but instead combine on a nonlinear scale [22, 21].

We therefore set out to improve the model by linearizing our data by 2nd-order spline

interpolation [21]. The spline we fit is shown as the yellow line in Fig 25B. We used

the spline to linearize the data and then re-fit the additive model. The resulting fit

is shown in Fig 25C; the addition of the nonlinear spline improved R2
train to 0.81.

The additive model, classifier, and nonlinear correction leave 19% of the quan-

titative variation unaccounted for (the scatter off the line in Fig 25C). One way to

treat the remaining scatter is with epistatic interactions between specific mutations

[58, 52, 44, 22, 126]. We added all pairwise interactions to the model and then fit the

model parameters using lasso regression [156, 126]. This approach uses L1 regulariza-

tion to penalize the addition of unneeded parameters, thereby minimizing the number

of new parameters added. This approach added 24 parameters, while increasing the

R2
train to 0.91 (Fig 25D).

Finally, it has been noted previously that under-specifying epistasis—that is, ig-

noring multi-way interactions—can lead to biased estimates of the low-order terms

[73, 157]. We therefore also built a complete, high-order model that has all pairwise

through eight-way interactions between mutations [58, 44, 52, 22]. As before, we used

lasso regression to discard parameters that did not contribute to the fit. This added

70 more parameters than the pairwise model, increasing the R2 to 0.97 (Fig 25E).
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Testing the model with newly measured phenotypes

While the Harms lab developed the model using the original 52 measured PfCRT

genotypes [11], the Martin lab measured 24 new phenotypes to test the predictive

power of the model (Table 1). Genotypes were selected to sample across genotypes

scattered throughout the map, as well as to different magnitudes of predicted pheno-

types. CQ uptake was measured relative to the derived, 8-mutation PfCRT variant,

where 100% indicates transport activity identical to this protein. The CQ uptake of

the newly measured genotypes ranged from 0% to 129.2± 6.4% (Table 1). 14 of the

24 newly measured genotypes exhibited no transport above the detection threshold

(5% CQ transport).

Table 1: Measured CQ transport phenotypes.
% CQ uptake

genotype mean std err n
INKAENTR 0.0 0.8 5
MNTAQSTR 6.4 1.0 6
MNTSQSTI 0.8 0.8 4
METAESTR 42.5 2.3 5
MNTSENTR 0.5 0.3 4
MNTAENTR 1.2 0.6 4
MEKSENTR 0.7 0.2 4
IETAQNTR 15.0 2.6 5
IETAESII 51.8 2.8 4
METAENTI 42.8 4.9 4
INTSESII 44.0 3.3 3
IETSQSIR 61.7 4.5 3
IETSQNIR 64.9 0.6 3
METSQSTI 86.2 2.5 3
INKAQNIR 0.7 0.5 4
MNKAENIR 1.0 0.9 4
MNKAQSIR 1.5 1.1 4
MNKSQNIR 0.9 1.0 3
MNKAQNTR 0.1 0.2 5
MNKAQNII -0.1 0.2 5
INTSQSII 3.0 0.9 10
METSESII 129.2 6.4 10
IETAQNII 2.2 1.7 9
IEKSESII -0.1 0.3 14
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We then used the 24 newly measured phenotypes to test the predictions of the

models we had trained on the 52 published PfCRT genotypes. We predicted the phe-

notypes of all 24 new phenotypes and then compared the predictions to the measure-

ments (Fig 25F-J). The addition of the classifier and nonlinear spline both improve the

fit to the test data, with the R2
test increasing from 0.40, to 0.78, to 0.90 (Fig 25F-H).

The addition of pairwise epistasis, however, dramatically undermined the predictive

power of the model. While R2
train jumps from 0.81 to 0.91 with the addition of pair-

wise epistasis (Fig 25D), R2
test fell from 0.90 to 0.30. (25I). The high-order epistatic

model exhibited identical behavior (compare Fig 25E and J). This suggests that the

epistatic interactions between mutations are not meaningful, but instead arise from

over-fitting.

These results are summarized in Fig 26A. While R2
train climbs monotonically as the

model is made more complicated, R2
test climbs with the addition of the classifier and

nonlinear terms, but then drops precipitously upon addition of epistasis. To verify

that this was not due to something specific to our training or test set, we repeated the

analysis using k-fold cross validation. We combined the 76 phenotypes (the original

52 plus the newly measured 24) and then sampled from this set to create arbitrary

pseudoreplicate 52-phenotype training sets and 24-phenotype test sets. These results

replicate what we saw on the initial test and training set: fitting epistatic interactions

leads to poor predictive power (Fig 26B).
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Figure 26: The additive+classifier+nonlinear model captures the most
variation without over fitting. In all panels, lines denote R2

train (black) and R2
test

(red). In Panels A and B, model complexity increases from left to right: additive
model, add the classifier, add a nonlinear spline, add pairwise epistasis, and add high-
order epistasis. A) R2

train calculated from the 52 phenotypes used to train the model;
R2
test calculated from the 24 newly measured phenotypes. B) R2

train calculated from 50-
genotype pseudoreplicate samples from the 76 total genotypes; R2

test from the matched
26-genotype pseudoreplicate test set. C) The mean of R2

train and R2
test, calculated for

the additive+classifier+nonlinear model applied to pseudoreplicate samples, converge
as the number of observations in the training set is increased.

We next set out to identify how many genotypes we would need to measure to fully

train our best model (additive+classifier+nonlinear). We again took a pseudorepli-

cate cross-validation approach. We sampled the 76 measured phenotypes to create

training sets ranging from 10 to 66 genotypes. We then trained our model on each

pseudoreplicate training set and asked how well that model did, both at reproducing

its training set and in predicting its matched test set. The results are shown in Fig

26C. R2
train starts high and then decays. This is because we start with almost as many

parameters as observations, and can identify a model that fits those few observations

extremely well. As the number of observations increases, R2
train decreases because

more variation not accounted for by the model is encountered. In contrast, the pre-

dictive power of the model, measured by R2
test, steadily increases until it plateaus

at ≈ 60 genotypes. This indicates that measuring more than 60 genotypes provides

sufficient data to train the model.
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Model error

We next set out to quantify the error in our predictions. This model has two main

sources of error: incorrect classification of genotypes as non-transporter or trans-

porter, and quantitative uncertainty in the predicted phenotypes from the additive

and non-linear portion of the model.

We estimated the false-positive and false-negative rate of the classifier using a

pseudoreplicate approach. We took the 76 measured genotypes, broke them into

5,000 arbitrary 61-genotype training sets paired with 15-genotype test sets. We then

retrained the classifier on these pseudoreplicate sets and measured our false positive

and false negative rates. The average false positive and negative rates were 6.2% and

5.2%, respectively.

The uncertainty on our quantitative predictions is given by the fit residuals (scatter

off the 1:1 line in Fig 25C,H) [157]. The standard deviation on the residuals is 19%,

meaning that we can predict each quantitative phenotype (i.e. the phenotype of each

member of the transporter class) to ±19% CQ uptake. This is much higher than the

average experimental uncertainty on each phenotype (2.4% CQ uptake); we therefore

treated the residual uncertainty as the quantitative uncertainty on each predicted

phenotype.

The PfCRT map has a small number of viable genotypes

Using the predictive model, we can now reconstruct the entire map. We retrained the

additive+classifier+nonlinear model on the 76 total experimental measurements. We

then used the model to predict the remaining 180 genotypes, yielding an estimate of

the complete PfCRT genotype-phenotype map (Fig 27A).
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Figure 27: Only a few pathways to high CQ-transport proteins are acces-
sible. A) Complete genotype-phenotype map with 76 measured and 178 predicted
phenotypes. Nodes are genotypes. Colors are as in Fig 1. Star and dashed lines indi-
cate first mutation, which does not exhibit CQ transport. Viable trajectories (which,
after the first mutation, only pass through genotypes with detectable CQ transport)
are shown in gray; adaptive trajectories (which, after the first mutation, continuously
improve CQ transport) are shown in blue. B) Contribution of mutations to classifier,
where the x-axis is the odds that the mutation is found in genotypes that transport
CQ. C) The estimated number of viable trajectories, integrated over experimental un-
certainty in the measured phenotypes and prediction uncertainty in the model. The
arrow indicates the number of trajectories in the maximum likelihood model. D) The
estimated number of adaptive trajectories, integrated over uncertainty as in panel C.
The arrow indicates the number of trajectories in the maximum likelihood model.

We found that the majority of the map—163 genotypes—exhibited no detectable

CQ transport. Strikingly, none of the single mutants exhibit detectable activity—meaning

that the first evolutionary step in this transition had very little effect on CQ trans-

port. Note that this was a prediction of the original, 52-genotype model; we validated

this result by experimentally measuring all six previously unmeasured single-mutants:

they did, indeed, exhibit no activity (Table 1).

The reason for the low number of CQ transport genotypes is revealed by the

classifier. We counted how often each mutation appears in genotypes that the classifier
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places in the transporter class. If a mutation does not contribute to the classifier, it

will appear in both classes equally (odds = 0.5). We found that the only the n75E

and k76T mutations are strongly enriched in transporters (27B), consistent with their

proposed critical roles in CQ transport [11]. Only 64 genotypes have both of these

mutations, thus strongly constraining the map.

PfCRT evolution is highly constrained

We next set out to understand the nature of evolutionary trajectories through this

estimated map. We calculated the number of “viable” pathways—defined as trajecto-

ries in which every genotype after the single-mutant exhibited transport activity. We

found that there were 612 trajectories that met this criterion through the estimated

map (gray trajectories in Fig 27A). To account for uncertainty in the classifier, we

generated 5,000 replicate maps in which we flipped the the classification of genotypes

between transporter and non-transporter according to the estimated false negative

and false negative rates. This yielded the distribution seen in Fig 27C. Within the

accuracy of the predictive model, we conclude there are between 150 and 650 trajec-

tories that pass only through genotypes that transport CQ. This corresponds to 0.4%

to 1.6% of the possible forward trajectories.

This is likely an overestimate of the number of evolutionarily realistic trajectories;

however, as many of these trajectories require transitions from higher to lower CQ

transport. We therefore calculated the set of trajectories that continuously improve

CQ transport. As before, we allowed the first mutation to have no effect, as there

are no single mutants with measurable CQ transport. We then considered a trajec-

tory accessible if each subsequent mutational step improved or had no effect on CQ

transport. This yields the 51 blue trajectories shown in Fig 27A. To account for

uncertainty in the experimental measurements and model, we again sampled from

the error distributions. As before, we started by sampling the classifier false positive
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and false negative rates. We then added an additional layer of sampling, perturb-

ing each the phenotype of each genotype in the transporter class by sampling from

experimental or prediction uncertainty for that phenotype.

This yields the distribution shown in Fig 27D. 50% of the re-sampled maps yield

no adaptive trajectories; 95% of the samples have 75 or fewer adaptive trajectories.

This suggests that only < 0.2% of forward paths through this map are adaptive with

respect to CQ transport. Recall also that we allowed an (apparently) non-adaptive

step for the first mutation and allowed any step that did not decrease fitness, even

if it’s effect was neutral. We can therefore conclude that there are no trajectories

through the map that continuously improve CQ transport within our detection limit,

and that there are very few that do so after the first non-adaptive step.

Discussion

We have measured only 76 of 256 genotypes—29.7% of the map—but can now make

robust conclusions about the distribution of CQ-transport activity across the PfCRT

map and how this may shape the evolutionary process. The model we employ is

lightweight, fast and should be applicable to other, potentially very large, genotype-

phenotype maps.

Global features, not local epistasis, are useful for prediction

One key conclusion from our work is that estimating global features—a classifier and

nonlinear scale—was much more powerful than estimating individual epistatic inter-

actions between residues. The classifier identified a step-function in the map, from

non-functional to functional, mediated by the two mutations n75E and k76T. Once

the genotypes were classified, the nonlinear function then identified the appropriate

scale on which to sum mutational effects. Both the classifier and scale capture a large

amount of the variation in a phenotype with few, meaningful, parameters to allow
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prediction of unmeasured phenotypes.

In contrast, modeling specific epistatic interactions between residues gave no pre-

dictive power (Fig 26A). The values of pairwise epistatic coefficients cannot be ex-

tracted reliably from sparse samples of maps that contain high-order epistasis [157],

because the high-order epistasis biases the low-order terms. Since every map we have

investigated exhibits high-order epistasis [44, 35, 122, 121], it follows that the addi-

tion of epistatic coefficients describing specific interactions will not provide predictive

information [157]. The PfCRT dataset demonstrates this quite powerfully: even the

addition of pairwise epistatic coefficients strongly undermines prediction (Fig 26A).

This suggests that the scatter off the linear model (Fig 25C) is caused by a mechanism

besides specific interactions between mutations.

Another powerful aspect of using global features, rather than specific epistasis,

is that we can fit the model with relatively few measured phenotypes. We recently

estimated that seeing each mutation across ≈ 40 combinatorial backgrounds was

sufficient to estimate its additive effect [157]. Our results are in line with this: our

predictions only marginally improve after we have observed 20% of the map (Fig

26C), which corresponds to seeing each mutation at least 26 times. This implies that

the number of genotypes one must characterize to resolve the map increases linearly

with the number of mutations, even as the number of genotypes in the whole map

scales exponentially.

Because the number of model terms increases linearly, our implementation should

be effective even for massive genotype-phenotype maps. The primary requirement

is that the training data consists of combinatorial genotypes, rather than different

mutations introduced individually into the same genetic background. This is because

the additive coefficients will be much more effectively resolved if one can average over

background-dependent effects [157].
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Future improvements

There are a two main ways to improve the model. The first would be defining a more

general framework for the classifier. For the PfCRT map, a logistic classifier readily

identified the two classes of genotypes visually apparent in the data. In other maps,

a different classifier may be much more effective. This could be a Gaussian process

classifier [158, 159] (which we have, in fact, implemented in our software package), a

variant of a principle-component analysis [160], or any number of other unsupervised

classifier algorithms [66].

The second—and probably more important—way to improve the approach would

be through a better description of the underlying nonlinearity that gives rise to the

map itself. We currently fit the nonlinear scale with a spline [21]. This is a powerful

way to identify the curvature in data, but the spline is an empirical parameter that

has no intrinsic, mechanistic meaning. In principle, it would be much more powerful

to define a model that describes the mechanism that underlies the nonlinearity in

the map [56, 23, 21]. With such a model in hand, one could describe the global

shape of the model without resorting to the ad hoc approach of fitting a nonlinear

scale. Further, such a mechanistic model could potentially remove apparently random

epistatic interactions between the mutations, thus yielding a highly predictive model.

PfCRT evolution

Filling in the PfCRT map revealed that there are, in fact, very few viable trajectories

connecting the ancestral genotype to the modern, high-resistance genotype. Several

observations from the initial study have been borne out and extended with this analy-

sis. First, across the whole map, CQ activity strictly requires both E75 and T76. This

lends further credence to the idea that both of these residues are directly involved in

transporting the positively charged from of CQ. As has been noted previously, n75E

added a negative charge, while k76T removed a positive charge—strongly suggesting
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that these mutations operate by an electrostatic mechanism [154].

Second, because both n75E and k76T are required, the first step in any single-step

trajectory starting at the ancestor likely did not alter CQ transport. This means that

selection for CQ resistance could not drive the first mutation to a high frequency.

This may indicate why CQ resistance took so long to evolve in PfCRT, relative to

the evolution of other forms of antibiotic resistance. One of several low-probability

scenarios were likely required: 1) The first mutation rose to a high frequency by

drift or selection for some other trait, followed by fixation of the second mutation by

selection; 2) The second mutation occurred by chance in a low-frequency member of

the population that already had the first mutation; or 3) The two mutations were

brought together by recombination across the gene.

Finally, the requirement for both n75E and k76T dramatically lowers the number

of possible evolutionary trajectories through the map. It is conceivable, within the

uncertainty of the model and experimental measurements, that there is in fact only

one path from ancestral to derived—suggesting that adaptive evolution can indeed

be highly constrained yet still reach high-fitness peaks [25, 145, 127].

Conclusion

These results show that a simple model can be quite effective in filling in unmea-

sured phenotypes in a genotype-phenotype map. Treating global properties—such

as classifying genotypes with shared behavior and fitting nonlinear scale—allowed us

to apply an additive model that explained 81% of the variation in an experimental

genotype-phenotype map. Adding complexity via specific epistasis, far from helping,

dramatically undermined the prediction of phenotypes. This implies that one need

not measure a massive number of genotypes to infer the global properties of the map.
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Materials and Methods

Linear epistasis models

We used a linear epistasis model to decompose the PfCRT genotype-phenotype map

into up to 8th-order epistatic coefficients. We used the Hadamard model which uses

the geometric center of the map as the coordinate origin. Each genotype is made up

of L sites. Each site has two possible states: “wildtype” or “derived” which are treated

as a linear perturbations away from the origin of the map,

P = βorigin +
L∑
i

βixi (18)

where βorigin is the origin of the genotype-phenotype map, βi is the effect of site i,

and xi is 1 if site i is “wildtype” and −1 if “derived”.

We can add linear coefficients to describe interactions between mutations to Eq.

18. For pairwise interactions, this has the form:

P = βorigin +
L∑
i

βixi +
L∑
j<i

βijxixj (19)

where βij is a pairwise epistatic coefficient. For the high-order model, the expansion

continues:

P = βorigin +
L∑
i

βixi +
L∑
j<i

βijxixj +
L∑

k<j<i

βijkxixjxk + .... (20)

The model can be expanded all the way to 8th-order interactions.

Logistic classifier model

We used a logistic classifier to classify genotypes in the Pobs vs. Padd plot as active

or inactive. A genotype is active if it’s observed phenotype Pobs is greater than a
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defined threshold. The threshold represents the detection limit in our experiment.

We labelled the observed phenotypes Pobs as 0 (inactive) or 1 (active):

Pobs,class =


1 if Pobs > threshold

0 else

We then construct and train a logistic model to classify the additive phenotypes Padd

given the observe phenotype classes Pobs,class:

Pobs,class = Padd,class =


1 if α0β0 +

∑L
i αi(βixi) + ξ > 0

0 else

where βi are the additive coefficients determined in 18, αi are the odds that

genotypes with mutation i are inactive, and ξ is the error in our model (which follows

a logistic distribution) [161, 162].

Nonlinear model

We addressed global epistasis in the genotype-phenotype map by identifying a non-

linear function T that captures global curvature in the relationship between ~Pobs and

~Padd,

~Pobs = T (~Padd) + ~ε. (21)

where ~ε are the fit residuals. We fit a 2nd-order spline to the Pobs vs. Padd curve [21]

in the PfCRT map. We then used this transform to linearize the map and extract

linear epistatic coefficients.
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Software

All software is free and open source. The prediction models can be accessed and down-

loaded on Github (https://github.com/harmslab/gpseer). All of the code is written in

Python and built on top of core scientific python packages [65, 128, 129, 67]. We have

written extensive documentation and examples of how to apply to various types of

experimental data (https://gpseer.readthedocs.io). The software takes a list of geno-

types with their measured phenotypes and, from that, trains the model. The code

is written with a modular application programming interface, allowing users to try

each layer of the model—classifier, nonlinear fit, and epistasis—with simple Python

scripts (or integrated into a programming environment such as Jupyter). Because

it is built on the existing epistasis package (https://github.com/harmslab/epistasis)

[22], it can also handle arbitrary genotype alphabets (it builds the alphabet from the

input data). Finally, all statistical tests and cross-validation are implemented within

the software, allowing for any researcher to fit and select between different predictive

models of the genotype-phenotype map.
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CHAPTER VII

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation addresses a key question when predicting genotype-phenotype maps.

How should we handle non-additivity–or epistasis? We identified two sources of epis-

tasis: 1) global epistasis and 2) local epistasis. Each source must be treated sepa-

rately. First, global epistasis is important feature to capture. If a global feature, like

nonlinearity, can be resolved from a sparsely-sampled genotype phenotype map, it

can inform prediction. This dissertation shows various ways to infer global epistasis.

Local epistasis, on the other hand, should be treated as uncertainty. In general, spe-

cific epistatic interactions cannot be accurately estimated from a sparsely-sampled

genotype-phenotype map. As a consequence, using local epistasis yields biased pre-

dictions.

A major limitation of this approach is when local epistasis is a large contributor

to the variation in a genotype-phenotype map. In this scenario, the model will not

predict phenotypes accurately. However, this model will estimate how much local

epistasis is present within a heavy computational cost. We can apply this model and

know immediately if we will be able to predict phenotypes accurately.

A major benefit of this approach is that it can predict massive genotype-phenotype

maps from very sparse data. The model is extremely lightweight and computationally

optimized. It also generalizes to predict any arbitrary genotype-phenotype map.

Further, the interpretation of the model parameters are intuitive. Each mutation has

an average quantitative effect on the phenotype. We can resolve which mutations are

key to function and use this information direct further analysis.

A key follow up to this dissertation is: can we do better than a nonlinear additive
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model? Recently, new approaches have been proposed that pull information from

outside the genotype-phenotype map. For example, some groups are exploring vari-

ational auto-encoders (VAE) as a viable approach. VAEs use a deep neural network

to decompose a large set of aligned genotypes, identify latent key features, and re-

compose these features to predict unknown phenotypes. The interpretation of such

models are less clear, since the latent variable is not interpretable. However, they

offer a promising future for phenotypic prediction.
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CHAPTER VIII

APPENDIX

Figure 28: Experimental genotype-phenotype maps exhibit nonlinear phe-
notypes. Plots show observed phenotype Pobs plotted against P̂add (Eq. 3) for data
sets V through VII. Points are individual genotypes. Error bars are experimental
standard deviations in phenotype. Red lines are the fit of the power transform to
the data set. Pearson’s coefficient for each fit are shown on each plot. Dashed lines
are Padd = Pobs. Bottom panels in each plot show residuals between the observed
phenotypes and the red fit line. Points are the individual residuals. Errorbars are
the experimental standard deviation of the phenotype. The horizontal histograms
show the distribution of residuals across 10 bins. The red lines are the mean of the
residuals. Datasets VI and VII form distinct clusters because each map has a single,
large-effect mutation. The two clusters correspond to genotypes with and without
the large-effect mutation.
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Figure 29: Nonlinear phenotypes can be transformed to linear scale to
estimate high-order epistasis. Flowchart shows the steps for estimating high-
order epistasis in nonlinear genotype-phenotype maps. The plots beneath the chart
show this pipeline for data set II. In step 1, a power transform function is used to fit the
Pobs versus P̂add plot and estimate the map’s scale. In step 2, the inverse of the fitted
transform is used to back-transform Pobs to a linear scale, Plinear. In step 3, a linear,
high-order epistasis model is used to fit the variation in Plinear. In the left plot, points
are individual genotypes, red line is the resulting fit and dashed line is the Padd = Pobs.
In the middle plot, the blue line is the new scale of Pobs after back transforming. In the
right plot, bars represent additive and epistatic coefficients extracted from the linear
phenotypes. Error bars are propagated measurement uncertainty. Color denotes the
order of the coefficient: first (βi, red), second (βij, orange), third (βijk, green), fourth
(βijkl, purple), and fifth (βijklm, blue). Bars are colored if the coefficient is significantly
different than zero (Z-score with p-value <0.05 after Bonferroni correction for multiple
testing). Stars denote relative significance: p < 0.05 (*), p < 0.01 (**), p < 0.001
(***). Filled squares in the grid below the bars indicate the identity of mutations
that contribute to the coefficient.
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Figure 30: High-order epistasis is present in genotype-phenotype maps. A)
Panels show epistatic coefficients extracted from data sets V-VII (Table 1, data set
label circled above each graph). Bars denote coefficient magnitude and sign; error bars
are propagated measurement uncertainty. Color denotes the order of the coefficient:
first (βi, red), second (βij, orange), third (βijk, green), fourth (βijkl, purple), and fifth
(βijklm, blue). Bars are colored if the coefficient is significantly different than zero
(Z-score with p-value <0.05 after Bonferroni correction for multiple testing). Stars
denote relative significance: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). Filled
squares in the grid below the bars indicate the identity of mutations that contribute
to the coefficient. The names of the mutations, taken from the original publications,
are indicated to the left of the grid squares. B) Sub-panels show fraction of variation
accounted for by first through fifth order epistatic coefficients for data sets I-IV (colors
as in panel A). Fraction described by each order is proportional to area.
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Figure 31: Nonlinear phenotypes distort measured epistatic coefficients.
Sub-panels show correlation plots between epistatic coefficients extracted without
accounting for nonlinearity (x-axis) and accounting for linearity (y -axis) for data
sets V-VII. Each point is an epistatic coefficient, colored by order.
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Figure 32: Additive coefficients are well estimated, even when nonlinearity
is neglected. Sub-panels show correlation plots between both additive and epistatic
coefficients extracted without accounting for nonlinearity (x-axis) and accounting for
linearity (y-axis) for data sets I-VII. Each point is an epistatic coefficient, colored by
order. Error bars are standard deviations from bootstrap replicates of each fitting
approach.
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Figure 33: Exponential fitness model leads to global nonlinearity in the
β-lactamase data set (III). A) A recapitulation of the map used in the original
publication [? ]. We first rank-ordered the genotypes according to the measured
property (the minimum inhibitory concentration of a β-lactam antibiotic against a
clonal population of bacteria expressing that protein). This gave us 13 classes of
genotypes, as some genotypes had equivalent MIC values. We then drew 3,000 random
fitness values from the distribution W = 1+x, where x is an exponential distribution
centered around x̄ = 0.1. We took the top 13 values from this distribution and
assigned them, in value order, to each of the 32 β-lactamase genotypes. Panel A
shows the average and standard deviation of the fitness values W assigned to each of
these ranks if we repeat the protocol above 1,000 times. B) Best fit for the power-
transform for data set III. Solid red line denotes the best fit (nonlinear). This fit
successfully pulls out the original distribution of W .
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Figure 34: Flow chart for removing epistasis in a genotype-fitness map. This chart describes the pipeline
we used to truncate epistasis from genotype-fitness maps. The data shown are for dataset II. Networks (left) show
all 25 genotypes, arranged from ancestral (top) to derived (bottom), colored by relative fitness from 1.0 (purple)
to 1.30 (yellow). The correlation plots (middle) show the fitness of each genotype plotted against the fitness of
that genotype assuming each mutation has a linear, additive effect on fitness (Fadd). Y-axes correspond to: the
experimentally measured fitness (Fexperimental, panel 2); the experimentally measured fitness linearized using the
red scale in panel 2 (Flinear, panel 3); fitness values with third-, fourth- and fifth-order epistasis removed, on the
linear scale from panel 3 (Flinear,trunc, panel 5); and fitness values with truncated epistasis on the red nonlinear
scale from panel 2 (Ftrunc, panel 6). The right-most panels show the fraction of variation explained by first- (red),
second- (orange), third- (green), and fourth-order (purple) epistatic coefficients. The area occupied by each color
indicates its contribution to the fitness on the linear scale.
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Figure 35: Schematic of our resampling protocol. Two-mutation maps are shown throughout, colored by
fitness from low (purple) to high (yellow). We sampled from two maps: the original map with uncertainty (A,
red) and a “null” map in which epistasis was removed, but experimental uncertainty maintained (B, blue). We
used the same sampling protocal on each (“Start”). We generated pseudoreplicates (s1, s2, ...sn) from uncertainty
(Gaussian curves above the color spectrum in A and B). We then truncated the pseudoreplicate to ith and (i−1)th

order epistasis and calculated φ and θ for each pseudoreplicate: {(φ1, θ1), (φ2, θ2), ...(φn, θn). We can then plot
and compare these distributions on φ/θ axes.
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Figure 36: Epistasis alters trajectories in dataset I. A) Colors, panel layouts, and statistics are as in Fig
2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel layouts are as in Fig 3.
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Figure 37: Epistasis alters trajectories in dataset II. A) Colors, panel layouts, and statistics are as in Fig
2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel layouts are as in Fig 3.
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Figure 38: Epistasis alters trajectories in dataset III. A) Colors, panel layouts, and statistics are as in Fig
2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel layouts are as in Fig 3.
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Figure 39: Epistasis alters trajectories in dataset IV. A) Colors, panel layouts, and statistics are as in Fig
2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel layouts are as in Fig 3.
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Figure 40: Epistasis alters trajectories in dataset V. A) Colors, panel layouts, and statistics are as in Fig
2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel layouts are as in Fig 3.
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Figure 41: Epistasis alters trajectories in dataset VI. A) Colors, panel layouts, and statistics are as in Fig
2. B) Colors, panel layouts, and statistics are as in Fig 1A. C-D): Colors and panel layouts are as in Fig 3.



Effect of population size on predictability

We explored how population size changed the effect of ensemble-induced epistasis

on evolutionary predictability. We repeated our evolutionary predictions using the

variable population size variant of Gillespie’s fixation model:

πx→x+1 =
1− e−(wx+1/wx−1)

1− e−Ne·(wx+1/wx−1)
, (22)

where Ne is the effective population size [80]. Because the total number of accessible

trajectories becomes very large without selection to winnow out low fitness trajec-

tories, we limited our simulations to subsets of trajectories for this calculation. We

selected these subsets by making only three mutational steps from each genetic back-

ground rather than all possible moves. For each genotype, we calculated ∆∆G◦ for

all possible mutations. We then randomly selected three of these mutations, weighted

by their relative probability given our fitness function. We introduced each of these

individually, creating a 3-way branching set of trajectories. We repeated this proto-

col for seven steps, yielding a final, discrete set of 37 = 2, 187 trajectories. We then

attempted to predict the probabilities of trajectories within this sampled set, rather

than completely open-ended evolutionary trajectories.

Fig S1A shows the overlap between the predicted and actual trajectory probabil-

ities after seven steps for effective population sizes ranging from one to one million.

At a high population size (Ne = 1 × 106), we recapitulate our results from an infi-

nite population model (Fig 3D). At the lowest population size (Ne = 1), we exactly

predict the probabilities of all evolutionary trajectories. At first blush, this looks like

evolution has become predictable, but this is not the case. At Ne = 1, drift dominates

and all trajectories have equal probabilities. (This is the population genetics equiva-

lent of infinite temperature). As a result, evolution is completely unpredictable. Our

model can correctly predict that all trajectories are equally accessible because Eq. 22
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reduces to one for all w: πx→x+1 no longer depends on the ∆∆G◦ values we calculate.

By Ne = 10, we already observe a small amount of divergence between our predicted

and true trajectories.

We can more rigorously characterize the role of drift versus population size by

calculating the Shannon entropy of all trajectories through the map:

S = −
∑
i∈{T}

pilog(pi), (23)

where pi represents the probability of an individual trajectory, summed over the set

of all trajectories {T}. When all trajectories have equal probability (Ne = 1), the

entropy is high. As specific trajectories begin to increase in probability, the entropy

drops. This is shown in Fig S1B. For Ne = 1, the entropy is 7.69. For Ne = 1× 106,

the average entropy is 4.55.

A comparison of Fig S1A and S1B reveals an inverse correlation between the ef-

fect of the ensemble on predictability and the effect of drift. As the effect of drift

decreases, predictability due to the ensemble increases. Put another way: the more

selection favors specific trajectories, the more ensemble-induced epistasis makes evo-

lution unpredictable. The less selection favors specific trajectories, more drift make

evolution unpredictable. There is no sweet spot in population size at which both drift

and ensemble-induced epistasis have negligible effects on predictability.
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Figure 42: Unpredictability from the ensemble and neutral drift trade off
with effective population size. Panel A shows a jitter plot of divergence between
the true trajectories and trajectories predicted using a pairwise epistasis model using
a full ensemble lattice model. Each series shows the divergence after seven steps using
the effective population size shown. Panel B shows the Shannon entropy for the “true”
trajectories from the simulations on the left as a function of population size. Gray
points represent θ and S for individual maps. Red bars indicate the means.
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Figure 43: Epistasis in a simulated genotype-phenotype map. Panel A
shows simulated genotype-phenotype map using Hadamard coefficients. Each node
is a genotype; each edge is a single point mutation. Colors indicate quantitative
phenotypes. Panel B shows the correlation between the observed phenotypes and the
additive model, with fit residuals shown below the plot. Panel C shows the magnitude
of epistasis in the map (top sub panel) and the values of all model coefficients (bottom
sub panel). Colors indicate additive components (red), pairwise components (green),
and high-order components (blue). In the bottom sub panel, each bar shows the value
of a single model coefficient: the red bars correspond to the 8 additive coefficients,
the green bars to the 28 pairwise coefficients, and the blue bars to the 220 high-order
coefficients.
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Figure 44: Linear epistatic coefficients cannot be estimated from an in-
complete, simulated genotype-phenotype map. Panels show the fitting and
prediction performaces of different epistasis models (Hadamard or biochemical) and
regression methods (ordinary least-squares, lasso, or ridge). Each subpanel shows
the fit scores versus the fraction of data used to train the model, from 10% to 90%,
for different epistasis models. The dashed gray line indicates the amount of additive
variation in the map (80%). Colors indicate model: additive (red), pairwise epistasis
(green), and high-order epistasis (blue). Dashed lines indicate ρ2

train and solid lines
indicate ρ2

test.
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Figure 45: Predictive epistatic coefficients cannot be extracted from ex-
perimental genotype-phenotype maps. Each row shows ρ2

train (black) and ρ2
test

(red) for a different experimental map (indicated to the left of each row) as epistatic
orders are added to the model. The x-axis shows the results for various epistasis
models (Hadamard or biochemical) and regression methods (ordinary least-squares,
lasso, or ridge). Points are, from left to right: additive, pairwise, and high-order
epistasis. Points and lines indicate the mean of 1,000 pseudoreplicate samples. Error
bars are standard deviation of pseudoreplicate results. The dashed lines indicate the
fraction of the variation in the map explained by the additive model.
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Figure 46: Epistasis in experimental maps looks like random epistasis.
Panels show the epistatic coefficients extracted from 29 decoy, simulated genotype-
phenotype maps and 1 experimental genotype-phenotype map (dataset VIII). All
maps have a fraction of epistasis equal to 26%. Epistasis was added to the 29 decoy
maps by drawing a random epistasis parameter from a normal distribution for each
phenotype. Panel 20 shows the results for the experimental map. In each panel,
the top subpanel indicates the magnitude of epistasis in each map and the bottom
subpanel indicates the values of all model coefficients. Colors indicate additive com-
ponents (red), pairwise components (green), and high-order components (blue). In
the bottom sub panel, each bar shows the value of a single model coefficient: the
red bars correspond to the 5 additive coefficients, the green bars to the 10 pairwise
coefficients, and the blue bars to the 17 high-order coefficients.
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