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DISSERTATION ABSTRACT 

 

Fahad M Alresheed 

 

Doctor of Philosophy 

 

Department of Special Education and Clinical Sciences 

 

September 2018 

 

Title: Comparing Single-Case Design Non-Overlap Metrics and Visual Analysis 

Examining School Based Interventions for Students with Autism Spectrum 

Disorder 

High prevalence of individuals with autism spectrum disorder (ASD) and the 

legislation movement impacted the placement of students with ASD in general education 

settings. Hence, the increase raised the need to conduct research for ASD populations, 

and to examine the effectiveness of these interventions. With the increase of single case-

design (SCD) studies, there is a demand to include SCD in the evaluation of evidence- 

based practices (EBPs), to analyze and interpret SCD results in meaningful ways beside 

visual analysis, and to generate effect size estimates. This dissertation contains four 

systematic literature reviews which examine single-case intervention research targeting 

academic, social communication, play, and functional life skills for children with ASD in 

school settings. 132 studies with 924 AB phase contrasts were analyzed using visual 

analysis and three non-overlap measures. Sensitivity and specificity of Tau-U, IRD, and 

Baseline Corrected Tau were tested on detecting intervention effects. Also, the three 

methods were examined in their agreement with interpretations based on the visual 

analysis and the effect of confounding factor on their scores. The analysis demonstrated 

that the three methods performed fairly well in distinguishing effective from non-

effective interventions. The three non-overlap methods had a moderate to substantial 

level of agreement with visual analysis. The author recommended further research on the 
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impact of confounding factors especially baseline trend and autocorrelation as well as the 

use of effect size methods with high sensitivity and visual aids to improve the reliability 

and accuracy of visual analysis.  
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CHAPTER I 

INTRODUCTION 

Autism Diagnostic Criteria and Prevalence 

Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders 

characterized by restricted and repetitive behaviors and interests as well as deficits in 

social communication. These symptoms are present from early childhood (American 

Psychiatric Association, 2013). Often, children with ASD show comorbid disorders (Jang 

& Matson, 2015) and challenging behaviors such as aggression and inattention (Mazurek, 

Kanne & Wodka, 2013), attention deficit/hyperactivity disorder, mood disorders, and 

anxiety disorders (Mannion, Leader & Healy, 2013; Matson, Rieske & Williams 2013; 

Van Steensel, Bögels & Perrin, 2011). Other comorbid disorders include epilepsy and 

sleep problems (Mannion et al.). The Center for Disease Control and Prevention latest 

estimate shows that one in 68 children have been identified with ASD in the United 

States. ASD occurs across all racial, socioeconomic, and ethnic groups and it is almost 

five times more common among boys than girls (CDC, 2014). ASD symptoms impact 

several areas of development and can adversely affect the ability to function in society as 

well as learn new skills. 

Characteristics of Autism 

Deficits in social communication and repetitive behaviors can increase the risk of 

developing challenging behaviors thus affecting children’s educational goals and the way 

to reach them, as well as their community involvement (Sigafoos, Arthur-Kelly & 

Butterfield, 2006). Types of social communication delays include limitations in initiating 

conversation, requesting information, listening and responding, and interacting with 
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others (VanMeter, Fein, Morris, Waterhouse, & Allen, 1997; Volkmar, Carter, Grossman, 

& Klin, 1997). Horner, Carr, Strain, Todd, & Reed (2002) identified the primary 

challenging behaviors seeing in children with ASD as aggression, property destruction, 

tantrums, self-injury, and stereotypies. Children with ASD are also at increased risk for 

comorbid disorders including challenging behavior like aggression and inattention 

(Hartley, Sikora, & McCoy, 2008), attention deficit/hyperactivity disorder, depression 

and mood disorders, and anxiety disorders (Ghaziuddin, Ghaziuddin, & Greden, 2002; 

Matson & Williams 2013; Van Steensel, et al., 2011). Social communication delays, 

repetitive behaviors and comorbidity disorders may interfere with academic progress and 

friendship development (Thiemann, & Goldstein, 2001). Children with ASD and 

comorbid disorders need individualized and intensive instruction, creating great 

challenges to the local education agencies serving increasing numbers of children with 

ASD (Bagatell, Mirigliani, Patterson, Reyes & Test, 2010; Centers for Disease Control 

and Prevention, 2010; Carnahan & Williamson, 2013).  

Academic, Social Communication, Play, and Functional Life Skills 

 Children with ASD need to learn a variety of skills that will allow them to learn, 

work and live successful lives. First, academic skills, including math and prerequisite 

skills, and general knowledge are important for children with ASD to function in society. 

Unfortunately, most research in this area targets literacy and less research has been done 

in other academic areas (Pennington, 2010; Spencer, Evmenova, Boon & Hayes-Harris, 

2014). For example, there are few studies targeting science and social studies curriculum 

for students with ASD. Furthermore, studies targeting prerequisite skills for academic 

performance are very limited in number (Alresheed, Machalicek, Sanford, & Bano, 
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2018). Second, social communication skills are essential for development. For example, a 

child with ASD will have more opportunities to engage in school activities, interact and 

play with others and make requests if he or she can initiate conversations (Kagohara et 

al., 2012). Third, play skills are important because they help the child acquire social and 

language skills (Pierucci, Barber, Gilpin, Crisler & Klinger, 2015). Finally, children with 

ASD must acquire functional life skills to be independent. Individuals lacking these skills 

will struggle to maintain relationships and be productive members of society (Ayres, 

Mechling & Sansosti, 2013). 

 Legislation and court decisions in the last 40 years have had great impact in the 

delivery of treatment of children with ASD as well as research in this field. The 

Education for All Handicapped Children Act passed of 1975 as well as the Americans 

with Disabilities Act of 1990 established the right of children with disabilities to a free 

and appropriate public education in the least restrictive environment (IDEA, 2004). In 

2010, it was estimated that 38.5% of students with ASD were in general education 80% 

or more of the time they were in school (U.S. Department of Education, 2012). 

Furthermore, several court decisions have entitled children to rehabilitative and 

educational as opposed to custodial and institutional types of programs. At the same time, 

research underscored the importance of interaction with peers as a source of learning for 

children with ASD (Carter, Sisco, Chung & Stanton-Chapman, 2010). As a consequence 

of all these factors, there has been a greater focus on interventions implemented in school 

settings, particularly in general education classrooms. Programs have introduced school-

based and home-based instruction (Reichow, Doehring, Cicchetti & Volkmar, 2010). 

Schools are a great environment for delivering interventions to students with ASD. 
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Children are in school many hours a day and for most of their developing years. Schools 

allow the possibility of delivering intensive and comprehensive interventions (Koegel, 

Matos-Freden, Lang & Koegel, 2012). 

Effectiveness of Interventions 

Considering the need for individualized instruction combined with a growing 

emphasis on inclusive education, higher education, employment, and independent living 

for children with ASD, the identification of effective interventions is critical (Callahan, 

Henson & Cowan, 2008; IDEA, 2004; Wong et al., 2015). A diagnosis of ASD can have 

great impact on individuals and their families who are confronted with a wide variety of 

treatments often without evidence of effect. Consequently, it is critical that we have a 

way to identify what has been done and what seems to be a promising intervention for 

these individuals. A variety of organizations have developed guidelines and methods to 

evaluate empirical evidence to help identify evidence-based practices (EBPs) for the 

treatment of individuals with ASD (Reichow, et al., 2010). Evidence-based practice is 

now the standard in education, especially in the special education field (Odom, 2009). 

Single-Case Designs and Evidence-Based Practices 

Studies employing single-case designs (SCD) have enhanced the special 

education field by providing evidence for practices that have benefited individuals with 

disabilities and their families (Horner, Carr, Halle, Mcgee, Odom and Wolery, 2005). The 

Council for Exceptional Children Working Group (2014) stresses the importance of SCD 

results for clinical and public policy decisions. Furthermore, their researchers suggest that 

findings from SCD should be considered for inclusion in systematic reviews and meta-

analyses that aim to synthesize the existing evidence about intervention effects. Studies 



5 

using SCDs have been recently included in the process to identify evidence-based 

practices (EBPs). For example, What Works Clearinghouse (WWC) has introduced SCD 

as an acceptable methodology beside group-based designs as evidence to evaluate best 

practices. A panel of experts drafted a pilot version of standards to use with single-case 

design studies. The draft was released in 2010 (Kratochwill et al., 2013). In 2015, a 

second panel of experts worked to develop criteria to determine the level of intervention 

effectiveness for studies that met WWC standards. Other groups of researchers have 

already included SCD in their reviews of EBPs as well. Lately, Wong and colleagues 

(2015) published a review of EBPs for children, youth and young adults with ASD. The 

authors noted the importance of including SCD in any evaluation of EBPs. 

Single-Case Design vs Group Designs 

Single-case design has several advantages over other designs when is used to 

evaluate interventions and provide evidence of effectiveness. SCD can be used to 

determine the utility of an intervention for a small number of individuals. With this 

purpose in mind, researchers have used SCD across different disciplines such as behavior 

analysis, psychology, special education, and medicine. Investigators implementing SCD 

assign different treatments to the same individual and measure the outcomes over time 

(Hedges, Pustejovsky & Shadish, 2012). Group design, on the other hand, uses 

summative evaluation of effect for a large number of participants (Lane & Gast, 2014). 

While a group study is logical when the researcher wants to learn about a particular 

population, most educational professionals work with one child or small group of 

children. A well-researched intervention may prove to be ineffective with a particular 

child even if delivered with integrity. It is critical that education professionals assess 
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whether an intervention is effective for each child after implementation (Riley-Tillman & 

Burns, 2009). The main factor contributing to this heterogeneity is the comorbidity 

between diagnoses such as ASD, ADHD, anxiety disorders, and intellectual disability 

(Lenroot & Yeung, 2013). This heterogeneity affects not only the symptoms of ASD but 

also the changes over time and the responses to interventions (Levitt & Campbell, 2009). 

Rigor of the Studies 

As with any other type of research design, SCD is applied with different levels of 

methodological rigor. Considering that the quality of a SCD study can vary, several 

authors have proposed guidelines to guide researchers when conducting studies or when 

synthesizing studies employing SCD. Critical appraisal guidelines to assess the rigor of 

research findings on healthcare and medicine existed a long time ago (Crombie, 1996). 

Knowing poorly conducted from well-conducted single-case design studies is important 

to better interpret the outcomes of research. It helps to increase the accuracy and 

transparency of the studies. One way to analyze the quality of studies is to implement 

quality appraisal tools. Several reporting standards and quality evaluation tools for SCD 

studies have been developed.  

Task Force on evidence-based interventions for school psychology (2003) and the 

quality indicators for SCDs published by Horner and colleagues (2005) were the first 

tools. Raters made their judgments based on the following criteria: (a) description of 

participants and settings; (b) dependent variables; (c) independent variables; (d) baseline; 

(e) experimental control and internal validity; (f) external validity; and (g) social validity. 

Some of the tools were generated for a specific research domain (i.e. ASD, psychosocial 

interventions for individuals with ASD, or social skills training of children with ASD). 
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These tools are the Evaluative Method by Reichow, Volkmar, and Cicchetti, (2008); the 

Smith, Jelen, and Patterson Scale (2009); T. Smith et al. (2007); and Wang and Parrila 

(2008) scales. Other exclusive tools are used for a specific discipline such as 

augmentative and alternative communication. In this field, researchers used the Certainty 

Framework developed by Simeonsson and Bailey (1991) and the Evidence in 

Augmentative and Alternative Communication Scales (EVIDAAC; Schlosser et al., 

2008). In 2008, Logan, Hickman, Harris, and Heriza developed an evaluation scale to be 

used in medicine and rehabilitation. The same year, Tate and colleagues created the 

Single-Case Experimental Design Scale to be implemented within the field of 

neurorehabilitation. In 2010, Kratochwill and colleagues designed the standards of what 

is known as What Works Clearinghouse to be used for educational research. Two 

federally sponsored organizations, the National Autism Center and the National 

Professional Development Center for Autism Spectrum Disorder, developed their own 

rubrics in 2008 and 2009 (i.e. Scientific Merit Rating Scale and The National 

Professional Development Center on Autism Spectrum Disorders rubric) to examine 

single-case literature. Maggin and Chafouleas (2010) developed the Protocol for 

Assessing Single-Subject Research Quality. Finally, Schlosser (2011) and Schlosser, 

Sigafoos, and Belfiore (2009) developed exclusive tools to evaluate one treatment vs. two 

or more treatments. A summary of standards and quality evaluation tools for SCD studies 

are presented in Table 1. 
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Table 1  

Standards and Quality Evaluation Tools for SCD Studies 

Tool Author Year Specific 

discipline 

Task Force on Evidence-Based 

Interventions for School 

Psychology 

 2003 General 

Quality Indicators form single-

subject research 

Horner and colleagues 2005 General 

Quality Indicators in Single-Case 

Research on Psychosocial 

Interventions for Individuals with 

ASD 

Smith and colleagues 2007 Psychosocial 

interventions for 

individuals with 

ASD 

Single Subject Research Quality 

Indicators 

Reichow, Volkmar, 

and Cicchetti, 

2008 For individuals 

with ASD 

Quality indicators for Single-Case 

Research on Social Skill 

Interventions for Children with 

ASD 

Wang and Parrila 2008 Social skills 

training for 

individuals with 

ASD 

Evidence in Augmentative and 

Alternative Communication Scales 

Schlosser and 

colleagues 

2008 Augmentative 

and alternative 

communication 

Evaluating Rigor and Quality of 

Single-Subject Research Designs 

Logan and colleagues 2008 Medicine and 

rehabilitation 

Single-Case Experimental Design 

Scale 

Tate and colleagues 2008 Neuro- 

rehabilitation. 

Scientific Merit Rating Scale National Autism 

Center 

2008 ASD 

The National Professional 

Development Center on Autism 

Spectrum Disorders rubric 

National Professional 

Development Center 

for Autism Spectrum 

Disorder 

2009 ASD 

What Works Clearinghouse Kratochwill and 

colleague 

2010 General 



9 

PASS-RQ Maggin and 

Chafouleas 

2010 General 

 

 

Measuring SCD – Visual Analysis 

Conducting a visual analysis is usually the first step when evaluating SCD in 

research practices (Ray, 2015). Visual analysis is a process to evaluate a participant’s 

performance within and between conditions using systematic procedures. Visual analysis 

evaluates several factors present in a graph. These factors include: (a) level; (b) trend; (c) 

variability; (d) immediacy of effect; and (e) overlap (Lane & Gast, 2014). The person 

conducting visual analysis makes a judgment about the presence or absence of a 

functional relationship between the intervention and the outcome, rather than about the 

magnitude and consistency of this outcome (Valentine, Tanner-Smith, Pustejovsky & 

Lau, 2016). Despite its benefits, the process of visual analysis can be subjective and 

ambiguous. Historically, agreement between visual analysts has been low to moderate 

(Ninci, Vannest, Willson, & Zhang, 2015). However, research in this area has had 

important limitations. Ottenbacher (1993) conducted a quantitative review of the 

literature examining interrater agreement (IA) for visual analysis. The review reported a 

mean interrater agreement index of .58. There have been no other systematic reviews of 

visual analysts’ agreement until Ninci and colleagues (2015) published their meta-

analysis. The authors’ purpose was to determine the overall agreement between raters in 

published literature and to examine potential moderators affecting the agreement. The 

study provided a mean IA of .76, which was an improvement relative to Ottenbacher’s 

findings. Although Ninci and colleagues reported a higher IA index, it is difficult to 
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compare both reviews since they included different studies and used differences indices 

of agreement.  

Several limitations of the two previously mentioned reviews make it difficult to 

draw conclusions about overall levels of agreement and generalize their outcomes. For 

example, it has been observed that analysts with lower level of expertise produced higher 

levels of agreement (Ninci et al., 2015). However, it is worth noting that analysts’ 

expertise has been very limited in many studies. In other studies, it has been poorly 

described or not described at all (Wolfe, Seaman, & Drasgow, 2016). Furthermore, Ninci 

and colleagues noted that studies that operationally defined the characteristics to be 

analyzed visually reported higher rates of agreement. However, researchers studying 

visual analysis agreement rarely provide raters with operational definitions (Wolfe, 

Seaman, & Drasgow). Although visual analysis can provide important information about 

the effectiveness of interventions, certain characteristics of the data (e.g., presence of 

trend in the baseline, high variability of the data) make it difficult for visual analysts to 

make accurate judgements. Although criteria have been established to guide the process, 

visual analysis seems to allow some degree of subjectivity. Because of these limitations, 

it is often recommended to use other methods to measure the effect of an intervention, 

such as nonparametric techniques, together with visual analysis (Kazdin, 2011). 

Measuring SCD – Standardized Effect Size Methods 

The fact that SCD has historically relied on visual analysis of graphs to judge the 

effectiveness of an intervention has complicated the inclusion of SCD studies in 

evidence-based practices reviews (Valentine et al., 2016). Shadish, Hedges, Horner, & 

Odom, 2015, pointed to the importance of using good standardized effect size measures 
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using scales that have the same meaning across reviewed studies. These standardized 

effect size measures can benefit SCD research by making research studies more 

accessible and more useful when informing policy decisions. This past decade has seen a 

growing interest in the development of new methodologies for analyzing and 

synthesizing data from SCDs (Shadish, 2014; Smith, 2012).  

Effect size is “a value that reflects the magnitude of the treatment effect” 

(Borenstein, Cooper, Hedges & Valentine, 2009. P.3). The American Psychological 

Association now highlights the importance of reporting effect sizes in research. Although 

statistical analysis is not often used to assess treatment effects in applied research that 

uses SCD, there has been recent evidence that statistical analysis can be applied to single-

case studies (Hedges, Pustejovsky & Shadish, 2013). While some researchers note that 

effect sizes are practically a necessity for fully understanding the findings of a study and 

can compare studies (Shadish et al., 2015), other researchers consider reporting effect 

sizes best practice when presenting empirical research findings in many fields (Nakagawa 

& Cuthill, 2007). WWC standards suggest that SCD research must include visual analysis 

as well as quantitative measurement in order to be scientifically validated (Kratochwill et 

al., 2010). The author agrees with Parker and Hagan-Burke (2007) in regards to the 

importance of statistical analysis as a way to supplement visual analysis rather than 

substituting it. 

Measuring SCD – Nonparametric Methods 

The use of nonparametric methods is common in SCD research. These methods 

can be calculated by hand, do not require extensive training, and are easily interpretable 

(Vannest & Ninci, 2015). The most common type of methods that have been proposed for 
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use with SCDs are non-overlap indices, which rely on examination of the distributional 

overlap of the outcome data across phases (Parker, Vannest & Davis, 2011). In the last 

decade, several researchers have developed new non-overlap methods and published 

reviews analyzing the performance of these methods when compared to each other and to 

visual analysis. Several researchers have documented the superior performance of some 

of the methods.  

The concept of overlap refers to data falling above or below an imaginary line that 

separates baseline and interventions phases (Vannest & Ninci, 2015). Using non-overlap 

methods has some advantages. They blend well with visual analysis of graphed data, are 

easy to use, and they do not require to make assumptions about the distribution of data. 

Although some of the methods might combine non-overlap with median calculation, non-

overlap methods do not rely on means, medians or modes but rather rely on the value of 

individual data points (Parker et al., 2011). Data in applied settings are often variable, 

containing extreme scores and baseline trend (Vannest & Ninci). 

Despite their advantages, most non-overlap methods share some weaknesses. 

When Parker, Vannest, and Davis compared nine non-overlap methods, they concluded 

that most were insensitive to outcomes at the top end of the distribution. This is a serious 

disadvantage when one is trying to compare two successful interventions. Furthermore, 

most methods are insensitive to positive baseline trend.  

One of the oldest methods is the extended celeration line (ECL) or “split middle” 

line (White & Haring, 1980). ECL calculates the proportion of Phase B data above a 

“split middle” median line. Although ECL is one of the few methods that controls for 
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trend, it assumes that baseline data is linear. ECL has been published as PEM-T (Wolery, 

Busick, Reichow & Barton, 2010). 

Percentage of non-overlapping data (PND) was created by Scruggs, Mastropieri 

and Casto (1987) for synthesizing single-case research. PND is very popular and can 

easily be calculated in the great majority of cases. However, several limitations have been 

identified by Parker, Hagan-Burke, and Vannest (2007). For example, PND ignores all 

baseline data except for one data point, which because of its extremity, is likely the most 

unreliable. Because it has a ceiling-and-floor effect, PND cannot discriminate magnitudes 

at the higher and lower ranges. Consequently, PND is an accurate measure of overlap 

only when data is stable and does not include trend or outliers. 

In 2006, Ma develop the percentage of data exceeding the median (PEM). PEM 

identifies the overlap based on the median score of the baseline rather than a single data 

point like PND does. In other words, PEM is the percentage of data points in the 

intervention that exceeds the median of the baseline. However, if there is large variability 

or trend in the baseline, the median might not be a good reflection of the baseline 

(Vannest & Ninci, 2015). A critical advantage of PEM over PND is the fact that PEM 

reflects an effect size in the presence of floor or ceiling baseline data points. PEM has 

also some important limitations: It is insensitive to magnitude of data points above the 

median and it does not consider variability and trend. 

Percentage of All non-overlapping data (PAND) was the variation on PND 

proposed by Parker et al., (2007). The change is the identification of the total number of 

data points that do not overlap between baseline and intervention phases. PAND uses all 

data from both phases, avoiding the PND focus on one unreliable data point (Parker et 
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al.). The authors also suggest that the index can be converted into a Phi effect size index. 

Pearson’s Phi can be calculated and translated into Cohen’s d (Schneider, Goldstein, & 

Parker, 2008). Like PND, PAND is insensitive at the upper end of the scale. When there 

is no data overlap between phases, both PND and PAND give a 100% score, regardless 

of the distance between the two data clusters. Neither PND nor PAND control positive 

baseline trend.  

Percentage of zero data (PZD) is the degree to which behavior is eliminated in 

treatment (Harvey, Boer, Meyer, & Evans, 2009) so it is used when the treatment’s goal 

is to eliminate negative behaviors rather than reduce them (Parker et al., 2011). It is easy 

to calculate but can be distorted if treatment is terminated immediately after zero data 

point occurs (Harvey et al., 2009). Just like PND, PZD statistics are overly sensitive to 

outliers and trend (Allison & Gorman, 1993).  

Pairwise data overlap (PDO; Parker & Vannest, 2007) calculates the overlap of all 

possible paired data comparisons between baseline and intervention phases. PDO has 

advantages and limitations.  PDO produces more reliable results than other non-

parametric indices, and relates closely to established effect sizes (e.g., Pearson r, Kruskal-

Wallis W).  However, it takes slightly longer to calculate since it requires that individual 

data point results be written and added, making calculation laborious for long and 

crowded data series (Wendt, 2009). 

To address the lack of control for baseline trend in most of the previous methods, 

Manolov and Solanas (2009) developed the percentage of non-overlapping corrected data 

(PNCD) as a modification of PND. A data-correction procedure is to be implemented 

prior to applying the PND in order to eliminate from the data a possible pre-existing trend 
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that was not related to the introduction of the intervention. Unstable baselines have been 

regarded as undesirable, but they can be common in applied settings in which the 

introduction of the treatment is subjected to factors that cannot always be controlled by 

the practitioners (Manolov & Solanas).  

Non-overlap of all pairs (NAP; Parker & Vannest, 2009) was developed mainly to 

improve upon existing SCD overlap-based methods: PND, PAND, and PEM. NAP is 

interpreted as the percentage of all pairwise comparisons across baseline and treatment 

phase, which show improvement across phases or, more simply, the percentage of data, 

which improve across phases. The concept of score overlap is identical to that used by 

visual analysts of SCD graphs and is the same as is calculated in the other overlap 

indices, PAND, PEM and PND (Parker & Vannest). NAP is a “complete” non-overlap 

index as it individually compares all baseline and treatment phase data points. Using 

more data in the analysis increases the sensitivity of the measure (Vannest & Ninci, 

2015).   

Improve Rate Difference (IRD; Parker, Vannest, & Brown, 2009) is based on the 

risk-reduction technique used in medical research. IRD is defined as the difference in 

improvement rates between Phases A and B. Just like PAND, it begins by identifying the 

minimum number of data points needing removal to eliminate all data overlap between 

the phases. This method tends to be more robust than PND and PEM because it uses 

more data in the calculation (Vannest & Ninci, 2015).  

Percent exceeding the median trend line (PEM-T; Wolery et al., 2010) is an 

improved version of PEM that considers the trend in the baseline data. PEM-T is 

calculated by using first the split-middle technique (White & Haring, 1980), a common 



16 

approach to determine trend in SCD data. After drawing a trend line in the baseline phase 

using split-middle technique, this line is extended to the treatment phase. The data points 

in the treatment phase above the trend line are counted and the percentage of non-overlap 

is calculated.  

Tau-U (Parker, Vannest, Davis, & Sauber, 2011) is a non-overlap method that 

was developed to address the problems of the previous methods. Just like NAP, Tau-U 

uses all pairwise comparisons across baseline and treatment phases. Tau-U also adjusts 

for positive baseline trend, can handle small data sets, and discriminates magnitudes at 

the upper and lower limits (Vannest & Ninci, 2015). 

Published literature regarding the benefits and limitations of the different non-

overlap methods was reviewed by the investigator in order to decide which methods to 

include them in this review. Parker and Hagan-Burke (2007) compared PND, PEM and 

IRD and their agreement with visual analysis. The authors concluded that IRD was the 

metric with the highest agreement. IRD allows the calculation of confidence intervals and 

is not limited to data that meets certain assumptions. Also, IRD has been extensively used 

in published meta-analysis of single-case research, making it the most validated non-

overlap method (Mason, Ganz, Parker, Burke & Camargo, 2012). Parker, Vannest, Davis 

and Sauber (2011) described three critical limitations of nonverlap measures: (a) lack of 

statistical power, (b) low ability to discriminate the magnitude of successful 

interventions, and (c) inability to account for trend. The authors presented Tau-U as a 

method that addresses these limitations. Tau-U is a complete measure that includes both 

trend and level. Because it includes level and trend, Tau-U is not likely to hit a ceiling 

like other non-overlap methods. This characteristic gives Tau-U higher discriminating 
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power with the top results. In 2011, Parker Vannest and Davis compared nine nonverlap 

methods. The authors concluded that Tau-U had several advantages over other nonverlap 

methods. Tau-U was the only method able to control Phase A monotonic trend, which is 

the tendency for scores to increase over time. Tau-U was one of the measures with the 

greatest statistical power, which is required to produce results with high precision. 

Finally, the authors noted that all methods shared some degree of insensitivity to results 

at the top end. However, Tau-U proved to be the most sensitive. 

Brossart, Vannest, Davis & Patience (2014) provided suggestions for integrating 

visual and statistical analysis in single-case research. After reviewing the strengths and 

weaknesses of all non-overlap methods available, they selected IRD and Tau-U for their 

paper. They concluded that Tau-U was the best available method for analyzing single-

case data. Both IRD and Tau-U are easily understood and interpreted by interventionists. 

Rakap, Snyder and Pasia (2014) conducted a review comparing 12 non-overlap methods. 

Based on the findings, the authors recommended the use of both IRD and Tau-U to 

supplement visual analysis judgements. Both measures show good levels of 

discriminability, are compatible with visual analysis, allow for classification of 

intervention magnitude, and do not require data assumptions. According to Rakap (2015) 

using Tau-U has two important advantages. First, it considers both level change across 

phases and baseline trend, which is congruent with single-case research logic. Second, it 

is a non-parametric technique compatible with visual analysis. In their review of non-

overlap methods, Chen, Hyppa-Martin, Reichle & Symons (2016) concluded that some 

methods are more sensitive and more consistent with visual analysis than others. 

According to the authors, improvement rate difference (IRD), when compared to percent 
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of data points exceeding the median (PEM), percent of all non-overlapping data (PAND), 

Phi, non-overlap of all pairs (NAP) and Tau-novlap overlap indices, was the most 

consistent with visual analysis judgement and one of the most effective in differentiating 

the magnitude of intervention effect.  

Tarlow (2016) identified some limitations in Tau-U and proposed an improved 

method of correcting baseline trend and measuring effect size, Baseline Corrected Tau. 

Tarlow’s study demonstrated that both methods show to be robust to autocorrelation and 

correlate highly. However, the study also showed that Tau-U can yield out-of-bounds 

results, with scores less than -1 or greater than +1. Baseline Corrected Tau did not show 

this weakness. Finally, Baseline Corrected Tau showed to control baseline trend more 

effectively than Tau-U. Since Tarlow introduced and field-tested this new measure, no 

studies have been published replicating this testing and Tarlow’s outcomes. A summary 

of the major effect size metrics for single case design are presented in Table 2. 

Table 2 

Major Effect Size Metrics for Single Case Designs 

Metric Author Year Discerption Control 

trend 

Extended 

Celeration Line 

(ECL) 

White and 

Haring 

1980 ECL calculates the proportion of 

Phase B data above a “split 

middle” median line 

Yes 

Percentage of 

non-overlapping 

data (PND) 

Scruggs 

and 

colleagues 

1987 PND is an accurate measure of 

overlap only when data is stable 

and does not include trend or 

outliers 

No 
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Percentage of 

Data Exceeding 

the Median 

(PEM) 

Ma 2006 PEM is the percentage of data 

points in the intervention that 

exceeds the median of the 

baseline 

No 

Percentage of All 

non-overlapping 

data (PAND) 

Parker and 

colleagues 

2007 PAND is the variation on PND 

except the identification of the 

total number of data points that 

do not overlap between baseline 

and intervention phases 

No 

Table 2 

(continued). 

    

Metric Author Year Discerption Control 

trend 

Pairwise data 

overlap (PDO) 

Parker and 

Vannest, 

 PDO calculates the overlap of 

all possible paired data 

comparisons between baseline 

and intervention phases 

No 

Percentage of 

zero data (PZD)  

Harvey 

and 

colleagues 

2009 PZD is the degree to which 

behavior is eliminated in 

treatment and used when the 

treatment’s goal is to eliminate 

negative behaviors rather than 

reduce them 

No 

Percentage of 

non-overlapping 

corrected data 

(PNCD) 

Manolov 

and 

Solanas 

2009 PNCD is the same as PND 

except that a data-correction 

procedure is implemented prior 

to applying the PND to 

eliminate from the data a 

possible pre-existing trend 

Yes 

Non-overlap of 

all pairs (NAP) 

Parker & 

Vannest,  

2009 NAP is interpreted as the 

percentage of all pairwise 

comparisons across baseline and 

treatment 

No 
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Improve Rate 

Difference (IRD)  

Parker and 

colleagues 

2009 IRD is based on the risk-

reduction technique used in 

medical research. IRD is defined 

as the difference in 

improvement rates between 

Phases A and B. 

No 

Table 2 

(continued). 

    

Metric Author Year Discerption Control 

trend 

Percent 

exceeding the 

median trend line 

(PEM-T) 

Wolery 

and 

colleagues 

2010 PEM-T is an improved version 

of PEM that considers the trend 

in the baseline data. PEM-T is 

calculated by using first the 

split-middle technique in 

bassline phase and then extend 

the line to the treatment phase 

Yes 

Tau-U  Parker and 

colleagues 

2011 Tau-U is adjusts for positive 

baseline trend, can handle small 

data sets, and discriminates 

magnitudes at the upper and 

lower limit 

Yes 

Baseline 

Corrected Tau 

Tarlow  2016 Baseline Corrected Tau showed 

to control baseline trend more 

effectively than Tau-U 

Yes 

 

 

This study will contribute to previous literature by using visual analysis as well as 

non-parametric measures of effect with a larger sample (i.e., 924 AB phase contrasts, 132 

studies, and 369 students). The purpose of this dissertation is to answer the following four 

a priori research questions: 

1. To what extent are IRD, Tau-U, and Baseline Corrected Tau sensitive and 

specific in detecting intervention effects in SCD studies?  
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2. To what extent do IRD, Tau-U and Corrected-Baseline Tau outcomes agree 

with interpretations based on visual analysis? 

3. To what degree does autocorrelation, number of data points, presence of 

undesired trend in baseline or intervention, and degree of overlap affect 

interpretation in visual analysis and statistical analysis?  

4. What is the typical range of non-overlap estimates from interventions deemed 

effective by visual analysts? 
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CHAPTER II 

METHODS 

Search Procedures 

The author conducted electronic searches to identify studies targeting school-

based interventions for students with ASD. The following search procedures generated a 

total of 9,140 studies. Inclusion and exclusion criteria were applied to this sample. 

Three databases were searched including: Education Resources Information 

Center (ERIC), PsycINFO, and MEDLINE to find studies targeting academic, social 

communication, play, and functional life skills. The author defined academic skills as 

those skills needed to succeed in educational settings, such as post-secondary education, 

and to live an independent functional life. Social communication skills were defined as 

the use of verbal and non-verbal communication for social purposes, ability to change 

communication matching it to context or following the needs of listeners and following 

rules for conversation and storytelling. Play skills were defined as participation, 

engagement and appropriate behavior during a group or solitary play activity. Functional 

life skills were defined as the abilities that assist in living independently such as self-care, 

household, pre-vocational, community safety, self-determination, or health/hygiene skills. 

The searches were completed using the following key words: “autis*,” Asperger, 

or pervasive developmental disorder (pervasive developmental disorder-not otherwise 

specified; PDD-NOS) and “intervention,” in combination with “academic,” “general 

education,” “literacy,” “math*,” “writing,” “science,” “organization,” or “task 

engagement,” “communication,” “vocalization,” “sign language,” “speech,” 

“augmentative and alternative communication,” “AAC,” “social,” “conversation,” 
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Initial search using electronic 

database (ERIC, PsysINFO, 

and MEDLINE) “autis*,” 

Asperger, or pervasive 

developmental disorder 

(pervasive developmental 

disorder-not otherwise 

specified; PDD-NOS) AND 

“intervention” 

IN 

COMBINATION 

WITH   

“academic,” “general 

education,” 

“literacy,” “math*,” 

“writing,” “science,” 

“organization,” OR 

“task engagement.” 

“play” OR 

“leisure" 

“communication,” 

“vocalization,” “sign 

language,” “speech,” 

“augmentative and 

alternative 

communication,” 

“AAC,” “social,” 

“conversation,” 

“friendship,” OR 

“pragmatic” 

“functional 

life,” “self-

care,” 

“vocational,” 

“safety”, 

“health,” 

“hygiene” OR 

“sex*” 

Total number 

potential 

studies (n = 

9,140)  

After reading the titles 

and abstracts, studies 

not meeting the 

inclusion criteria were 

excluded. Duplicate 

studies were also 

excluded. 

(n = 162)  

After conducting 

ancestral searches of 

included studies, some 

studies were added. 

(n = 197)  

After conducting a full 

text screening, some 

studies were excluded 

because they did not 

meet inclusion criteria. 

 (n = 166) 

Total number of 

studies included (n = 

132) 

Figure 1. Search procedures for the literature review on academic, social communication, play and 

functional life skills interventions targeting students with ASD in school settings; n = number of 

studies. 
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 “friendship,” “pragmatic” “play,” “leisure,” “functional life,” “self-care,” “vocational,” 

“safety,” “health,” “hygiene,” or “sex*.” Search procedure is presented in figure 1. 

The author limited the search results to English language studies published in a 

peer-reviewed journal between 1995 and 2014. This search initially produced 9,140 

articles to review for potential inclusion. The author identified 132 studies for inclusion 

after eliminating duplicate articles, applying inclusion criteria and conducting ancestral 

searches.  

Inclusion and Exclusion Criteria 

The author read the method section of each study to find articles that met 

inclusion criteria. To be included, a study was required to (a) implement intervention to 

improve academic skills (i.e., literacy, mathematics, science, social studies) or related 

skills (i.e., prerequisite skills and engagement and task completion); social 

communication (i.e., conversation, nonverbal communication, vocalization, sign 

language, and Augmentative and Alternative Communication); play (i.e., solitary play 

and group play); or functional life skills (i.e., self-care, safety, health, sex, hygiene, self-

determination, and vocational); (b) target at least one participant with a medical diagnosis 

or educational classification of ASD between the ages of three and 21 years; (c) use a 

single-case research design (i.e., multiple-baseline design, multiple-probe design, reversal 

or withdrawal design, or changing criterion design). Single-case designs are especially 

appropriate for special education research because they emphasize the performance of 

individual students. Group designs are more concerned with the effects of interventions 

on groups of individuals (Horner et al., 2005); and (d) conduct intervention in a private or 

public-school setting (i.e., preschool, elementary school, middle school, junior high or 
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high school, transition age program serving students aged 19 to 21 years of age). 

Interventions were considered school based if all sessions took place in a special 

education or general education classroom, playground, cafeteria, gymnasium, library, or 

any other area within the school campus. 

Exclusion criteria were (a) group design studies; (b) designs without a return to 

baseline following an intervention condition (e.g., ABC [i.e., Bagatell et al., 2010; 

Kinnealey et al., 2012], AB [i.e., Cicero & Pfadt, 2002); (c) one baseline used to evaluate 

effectiveness of two or more different interventions (i.e., ABAC/ACAB [i.e., Reisener, 

Lancaster, McMullin & Ho, 2014], and ABCD [i.e., Coleman-Martin, Heller, Cihak & 

Irvine, 2005); (d) alternating treatment designs (i.e., Angermeier, Schlosser, Luiselli, 

Harrington & Carter, 2008; Armstrong & Hughes, 2012; Cihak & Foust, 2008; Cihak, 

Kildare, Smith, McMahon & Quinn-Brown, 2012; Cihak & Schrader, 2008; Cihak, 

Smith, Cornett & Coleman, 2012; Fletcher, Boon & Cihak, 2010; Ganz, Boles, Goodwyn 

& Flores, 2014; Hetzroni & Ne'eman, 2013; Johnston, Buchanan & Davenport, 2009; 

Kurt & Tekin-Iftar, 2008; Lorah et al., 2013; Polychronis, McDonnell, Johnson, Riesen & 

Jameson, 2004; Riesen, McDonnell, Johnson, Polychronis & Jameson, 2003; Tincani, 

2004; Wilson, 2013); (e) combination of designs (i.e., Cihak, Wright & Ayres, 2010; 

Couper et al., 2014; Fentress & Lerman, 2012; Marcus & Wilder, 2009; Mucchetti, 2013; 

Paterson & Arco, 2007; Shillingsburg, Powell & Bowen, 2013); (f) studies with fewer 

than three data points in baseline phases (i.e., Reagon, Higbee & Endicott, 2006; Sancho, 

Sidener, Reeve & Sidener, 2010; Van der Meer et al., 2013); and (g) interventions 

implemented in university clinics, in family homes, or in other community settings (i.e., 

Delano, 2007; Gunby, Carr & Leblanc, 2010; Palmen, Didden & Arts, 2008; Taylor, 
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Hughes, Richard, Hoch & Coello, 2004; Tekin-Iftar & Birkan, 2010). A summary of the 

inclusion and exclusion criteria are presented in Table 3. 

Table 3 

Inclusion and Exclusion Criteria for Selection of the Articles 

Inclusion criteria 

1. Implement intervention to improve academic or related skills, social 

communication, play or functional life skills. 

2. Target at least one participant with a medical diagnosis or educational 

classification of ASD between the ages of three and 21 years. 

3. Use a single-case design (i.e., multiple-baseline design, multiple-probe design, 

reversal design, or changing criterion design). 

4. Conduct intervention in a school setting (i.e., preschool, elementary school, 

middle school, junior high or high school, transition age program serving students 

aged 19 to 21 years of age). 

Exclusion criteria 

1. Group design studies. 

2. Designs without a return to baseline following an intervention condition (e.g., 

ABC and AB). 

3. One baseline used to evaluate effectiveness of two or more different 

interventions (e.g., ABAC, ACAB and ABCD). 

4. Alternating treatment designs. 

5. Combination of designs. 

6. Studies with fewer than three data points in baseline or treatment phases. 

7. Interventions implemented in university clinics, in family homes, or in other 

community settings. 
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Data Extraction 

After the implementation of inclusion and exclusion criteria, a total of 924 AB 

phase contrasts, 132 studies, and 369 students were recognized. These were drawn from 

12 studies utilizing withdrawal designs (i.e., ABAB or ABCAC), 70 studies using 

multiple-baseline designs (i.e., across participants [n =51], across behaviors [n =7], 

across tasks [n =6], across settings [n =3], and across skills [n =3]) and 50 studies with 

multiple-probe design (i.e., across participants [n =22], across behaviors [n =11], across 

tasks [n =7], across responses [n =4], across routines [n =2], across behaviors and settings 

[n =1], across participants and settings [n =1], across stimuli [n =1], and across skills [n 

=1]). In studies using ABAB withdrawal designs, AB contrasts were identified by pairing 

each A phase with the consecutive B phase. One of the withdrawal studies used an 

ABCAC design. In this case, each A phase was paired with the following C phase. The B 

phase was not used. The median number of data points in Phase A (i.e., the baseline 

condition) was 5 (IQR: 9-4), and in Phase B (i.e., the intervention condition) was 11 

(IQR: 18 -7). 

Variable Coding 

A word document was created for each of the 132 studies and each study was coded for 

the following variables: (a) type of design (i.e., withdrawal designs, multiple-baseline 

designs, multiple-prop designs, and changing-criterion design); (b) number of 

participants with ASD (students with different types of disabilities other than ASD were 

excluded); (c) participant demographics including age, gender, race and ethnicity; (d) 

diagnoses and severity (i.e., high functioning, moderate or severe); (e) type of school 

setting (i.e., general or special education classroom, public or private school, playground, 
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cafeteria, gymnasium, library, or any other area within the school campus); (f) targeted 

skills according to the target skills (i.e., academic skills, social communication skills, 

play skills, or functional life skills); (g) intervention (h) interventionist (e.g., teacher, 

paraprofessional, research assistant, peer); (i) inter-rater reliability procedures and scores; 

(j) treatment integrity procedures and scores; (k) social validity assessment and 

outcomes; and (l) assessment of generalization and maintenance. 

Rigor of the Studies 

The author used Reichow (2011) guidelines to evaluate the rigor of the studies. 

Like the current study, Reichow’s method targets young children and children with ASD. 

Therefore, Evaluative Method was the closest to the objective of this review among all 

instruments. An Excel sheet was developed for each of the 132 included studies. The 

Excel sheet had a total of 13 columns. Six columns were reserved for the primary 

indicators (i.e., participant characteristics, independent variable, dependent variable, 

baseline condition, visual analysis, and experimental control). Each primary indicator 

was evaluated as high, acceptable, or unacceptable. The following six columns were 

intended for the secondary quality indicators (i.e., inter-observer agreement, kappa, blind 

raters, fidelity, generalization or maintenance, and social validity). Each secondary 

indicator was evaluated using a dichotomous scoring system. A “yes” score meant that 

the quality indicators were present. A “no” score was used if the indicators were not 

present. The last column was intended for the overall judgement, either a strong, 

acceptable or weak study. A study is determined to be strong if (a) each primary indicator 

is rated as high, and (b) at least three of the six secondary indicators are present. A study 

is considered adequate if (a) it has a high score on at least four primary indicators 
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(without any unacceptable scores in any other primary indicator), and (b) at least two of 

the six secondary indicators are present. A study is considered weak if (a) it receives a 

high score in fewer than four primary indicators, or (b) if fewer than two of the six 

secondary indicators are present.  

Preparation of Data 

Using a MacBook computer, the author created a folder for each study. Then, a 

screenshot was taken of each graph and saved it as a png image in the appropriate folder. 

A total of 924 AB contrasts were numbered and saved in the folders. The author extracted 

data from the graphs by using the UN-SCAN-IT version 5.2 (Silk, 1992) to manually 

digitize underlying x, y data points. Then, the data was saved in an Excel database sheet. 

To extract contrasts from the graphs using withdrawal, multiple-baseline, or multiple-

probe designs, the author identified each adjacent AB pair (baseline and following 

intervention phase). Each pair was treated separately. Similarly, when a combination of 

withdrawal and multiple-baseline or multiple-probe designs was present, each adjacent 

AB pair was extracted.  

Effect Size Calculation 

Tau-U 

Tau-U scores were calculated for each contrast. Parker et al. (2011) introduced 

Tau-U as an alternative to regression-based and existing non-overlap models of statistical 

analysis of single-case research data. Tau-U combines assessment of non-overlap 

between A-B experimental phases while controlling for positive baseline trend. Parker 

and colleagues published different variations of Tau-U in their original paper. However, 

in 2011, they presented a revised version of the metric. In this revision, Tau-U seems to 
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refer to the variation that compares A and B phases and adjusts for phase A trend. Tau-U 

is now defined as: 

Tau-U  = Tau -  tA. 

To calculate Tau-U, the author pasted the data saved in the Excel sheet into the 

Tau-U calculator lab at the Single Case Research website (www.singlecaseresearch.org). 

Baselines were corrected, and both baselines and comparison phases were weighted to 

obtain final Tau-U scores. Tau-U scores range from 0% to 100% and can be interpreted 

using the following criteria: (a) 65% or lower suggests a weak effect; (b) between 66% 

and 92% suggests a medium to high effect; and (c) 93% to 100% suggests a strong effect 

(Parker & Vannest, 2009).  

Baseline Corrected Tau 

Tarlow’s method was selected as the second effect size metric because the author 

wanted to replicate Tarlow’s outcomes. Baseline Corrected Tau process to calculate 

effect size involves three different steps. First, monotonic baseline trend is identified and 

its statistical significance analyzed with Kendall’s Tau rank correlation coefficient. Next, 

baseline trend (if there is one) is corrected across A and B phases using Theil-Sen 

estimator. Finally, effect is calculated using Kendall’s (1962) method. A dummy code 

phase variable is correlated with either the original or the corrected data from the 

previous steps. 

To calculate Baseline Corrected Tau, the author first determined whether each AB 

contrast presented a statistically significant monotonic baseline trend conducting a Tau 

analysis for the A phases only. When baseline trend was present, the author removed the 

trend by performing a Theil-Sen regression of a time (x) variable onto the baseline 
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observations (y). Finally, Baseline Corrected Tau analysis was conducted to calculate 

effect size and yield a Tau value. These calculations were made using the Web-Based 

Calculator developed by the author (Tarlow, 2016) and available at 

http://www.ktarlow.com/stats/tau.  

IRD 

Improvement rate difference (IRD) was selected as a third effect size metric. The 

author’s decision was based on the outcomes of Chen and colleagues (2016) review of 

effect size metrics. The authors concluded that IRD was one of the best effect size 

metrics in differentiating the magnitude of intervention effect as well as the most 

consistent with visual analysis judgement. To calculate IRD, the author first calculated 

two improvement rates (IRs). The IR for each phase is defined as the number of 

“improved data points” divided by the total data points in that phase: 

         # improved data points 

IR =  

            # total data points 

 

Improved data points in the baseline and the treatment phase have different 

definitions. An improved data point in baseline is any data point that ties or exceeds all 

data points in the treatment phase.  An improved data point in the treatment phase is any 

data point that exceeds all data points in the baseline phase.  “Exceeds” refers to higher 

levels of behaviors we wish to increase (e.g., homework completion) and to lower levels 

of behaviors we wish to decrease (e.g., tantrums). Improved data points are identified 

visually (Parker et al., 2009).   

The author then calculated the difference of the improvement rate of the treatment 

phase minus the improvement rate of the baseline phase: IRD = IRT - IRB. IRD scores 
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range from 0 to 100% or 1.00. A negative IRD score indicates deterioration below 

baseline levels (Parker et al., 2009). From comparing visual ratings with IRD, Parker et 

al. (2009) estimated tentative benchmarks. Very small and questionable effects scored 

about .50 and below. Moderate-size effects had IRD scores of around .50 to .70. Effects 

rated as large and very large generally received IRD scores of .70 or .75 and higher.  

Visual Analysis 

 Visual analysis was conducted to determine whether there was an effect present in 

each phase contrast and study. The author used visual analysis procedures based on the 

procedures used by Petersen-Brown et al. (2012). Ten raters independently rated the 924 

AB phase contrasts and the 132 studies. The raters were doctoral and master students 

who had completed graduate courses on SCD methodology and had experience in 

research employing SCD. See Table 4 for a summary of raters’ demographic information. 

Raters were asked to use the singlecase.org website to complete the Visual Analysis 

Training Program before being asked to judge the graphs in the current study. The 

purpose of the training program was to assess their reliability judging graphs using visual 

analysis techniques. Raters were asked to judge multiple-baseline (MBD) and ABAB 

designs and have a minimum correlation average score of 90% compared to the experts. 

After completing the training program, the author conducted a 20-minute workshop for 

each individual rater to introduce the two rubrics (i.e., contrast rubric and study rubric) 

that they would use in the visual analysis of the data and modeled the procedure to judge 

the contrasts and the studies. Raters assessed integrity of the visual analysis instruction 

delivered by the author. Each step was scripted with space provided for the participants to 

write yes or no for each material and procedure as it was covered and taught. The 
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integrity checklist contained five materials and 11 procedures, a total of 16 variables. The 

participants recorded yes if the procedure was followed by the author or the materials 

were used. They used no for steps not followed or materials not used. The author counted 

the number of “yes” and “no” answers for each participant and calculated the percentage. 

Then, an average across participants was calculated. The overall integrity score was 92%. 

The most common score was 100% and the median was 100%. The range of scores was 

from 70% to 100%. 

Table 4 

Summary of Raters’ Demographic Information 

Participant School department Position Terminal degree, 

certification 

Correlation 

scores in 

online 

training 

Rater 1 School Psychology PhD student M.A. BCBA 91% 

Rater 2 School Psychology PhD student M.A. BCBA 96% 

Rater 3 Special education Faculty member Ph.D. 90% 

Rater 4 Special education PhD student M.S. 91% 

Rater 5 Special education PhD student M.A. BCBA 90% 

Rater 6 Special education PhD student M.S. BCBA 99% 

Rater 7 Special education PhD student M.A. BCBA 90% 

Rater 8 School Psychology Master student B.A. 90% 

Rater 9 Special education Master student B.S. RBT 90% 

Rater 10 School Psychology Master student B.S. 93% 
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Inter-rater 1 Special education PhD student M.S. RBT 92% 

Inter-rater 2 School Psychology Master student B.A.  90% 

Inter-rater 3 School Psychology PhD student M.S. BCBA 92% 

Note. B.A.= Bachelor of arts; B.S.= Bachelor of science; M.A.= Master of arts; 

M.S.= Master of science; Ph.D.= Doctor of philosophy; BCBA= Board certified 

behavior analyst; and RBT= Registered behavior technician. 

 

These raters evaluated changes in level, trend, variability, immediacy, and overlap 

between phases A (baseline) and B (treatment). A change of level was determined by 

looking at the change of mean between phases A and B. A change of trend was defined as 

a change in slope showing a systematic increase or decrease of performance over time. 

Variability was defined as the degree to which performance fluctuates around the mean 

or the slope of phase A versus phase B. Immediacy of effect referred to whether there 

was a difference between the last three data points of the A phase and the first three data 

points of the B phase. Although the majority of the studies involved acquiring skills, a 

few studies involved decreasing certain negative behaviors. In all features, the change 

had to be positive if the intended outcome was to increase behavior and the change had to 

be negative if the intended outcome was to decrease behavior. Overlap was defined as to 

whether there was any overlap between data points in phase A and data points in phase B. 

The author took a screen shot of each contrast. The screen shots were resized so 

they were each the same dimension (i.e., 3.5 X 3.5 inches) and were saved as a portable 

network graphics (PNG) image. A Word document was created for each study. Then, all 

contrast graphs from the same study were copied together in the Word document 
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associated with that study with an accompanying contrast rubric for each graph. Each 

graph was given an individual number for identification. At the end of the Word 

document, all of the graphs were pasted again together with an overall study rubric. The 

contrast rubrics included level, trend, variability, immediacy, and overlap. Each feature 

was to be scored using two categories (i.e., change, no change) except for overlap where 

raters scored using “yes” or “no”. For the study rubrics, the author used a 1 to 7-point 

scale, where 1 indicates there is no functional relationship between the treatment and the 

outcome; 4 represents moderate functional relationship; and 7 indicates a strong 

relationship. The author used the rubric published by the singlecase.org website. The 

rubrics included narrative anchors to assist raters in selecting the right scores (i.e., weak, 

moderate, and strong relationship). 

The 924 contrast graphs were distributed as equally as possible among the raters. 

Each rater received a mean of 92.4 graphs and 13.2 studies. The median for the graphs 

was 92.5 and for the studies was 13.5. The graph mode was 86 and the study mode was 

13. Finally, the range of graphs was 86 to 99. The range of studies was 6 to 19. Each rater 

was provided with a printed booklet containing all of the phase contrasts and studies they 

were assigned to analyze. They were asked to evaluate each contrast and complete the 

rubrics indicating how many features showed a change. If raters detected change in at 

least three of the five features in one contrast, an intervention effect was coded for that 

specific contrast by the author. After the raters rated each contrast in each individual 

study, they made a holistic judgement of the intervention effect for the whole study. This 

judgement was recorded in the 7-point scale rubric provided. Based on the benchmarks 



36 

provided by the singlecase.org website, a score of 1 or 2 indicated weak effect. A score of 

3, 4, or 5 indicated medium effect. A score of 6 or 7 indicated strong effect. 

Statistical Analysis 

 Following the procedures used in Petersen-Brown et al. (2012) as well as Chen et 

al. (2016), receiver operating characteristic (ROC) analysis, kappa coefficient, and 

Pearson’s correlation coefficient were used to answer the first two questions in the 

current study. 

Sensitivity and Specificity 

Receiver Operating Characteristic (ROC) was originally used in signal analysis 

theory (Swets, 1988). According to the theory, the two most important accuracy 

measurements of a predictor are the true-positive proportion and the false-positive 

proportion. In other words, “hits” versus “false alarms”. A metric or predictor will always 

require a trade-off between the two measurements unless the metric or predictor is 

perfect. When casting a net to catch as many true positives as possible, one will 

mistakenly catch some negatives (i.e., type I error). See Figure 2 for a confusion matrix 

showing the four possible proportions in ROC analysis. 

Confusion Matrix Visual Analysis  

Effect No effect 

 

 

Non-overlap 

metric 

 

Effect 

a 

True- positive 

(TP) 

Correct 

b 

False-positive 

(FP) 

Type I Error 

 

a+b 

 

No effect 

c 

False-negative 

(FN) 

Type II Error 

d 

True- negative 

(TN) 

Correct 

 

c+d 

 a+c b+d a+b+c+d=N 

Precision = a/(a+b) Positive Predictive Value 
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True-Positive Proportion = a/(a+c) Sensitivity 

True-Negative Proportion = d/(b+d) Specificity 

False-Positive Proportion = b/(b+d) 1-Specificity 

 

Figure 2. Confusion matrix for relative operating characteristic (ROC) analysis. 

ROC was later extended to be used in the fields of medicine and psychology to 

analyze the accuracy and performance of diagnostic tools. Specifically, ROC analysis 

measures the sensitivity and specificity of a metric. Sensitivity refers to the metric’s 

ability to detect true positives and specificity refers to the metric’s ability to detect true 

negatives. ROC analysis produces a ROC curve and the area under the curve (AUC) 

shows the accuracy of the metric. A metric’s accuracy is determined by the relationship 

between sensitivity and specificity. When sensitivity increases, specificity decreases, and 

vice versa. An AUC above 0.80 has been demonstrated in past research (e.g., Muller et 

al. 2005) to indicate a reasonable metric. 

The author used the SPSS software package to obtain ROC analysis outcomes. 

First, the author inserted all the scores for each of four variables (i.e., Tau-U, IRD, 

Baseline Corrected Tau, visual analysis) into SPSS Data Editor. The values for the visual 

analysis variable were adjusted to two possible values (0 for “no effect” and 1 for 

“effect”). The measurements for the three non-overlap methods were adjusted as “scale”, 

while “nominal” was used for visual analysis. Second, ROC curve was selected from the 

Analyze drop-down menu. Third, visual analysis was entered as “state variable” with a 

value of 1. The three non-overlap methods were entered as “test variable”. SPSS 

provided the ROC curve and the table with the AUC scores. With this process, the author 

was able to create a ROC curve that showed the ability of the non-overlap metrics to rank 

the positive cases versus the false positive cases (1-specificity) based on a gold standard 



38 

(i.e., visual analysis). In this study, true positives are the phase contrasts correctly 

classified by the metrics as showing effect. A large number of true positives indicate a 

high level of sensitivity. False positives are the phase contrasts incorrectly classified by 

the metrics as showing effect. A large number of false positives indicate a low level of 

specificity.  

To calculate sensitivity and specificity, the outcomes of the three non-overlap 

methods must be compared with visual analysis. Consequently, they must have the same 

type of outcomes, in this case dichotomous outcomes (effect vs no effect). To accomplish 

this, a cutoff score must be selected for each method. The author used ROC analysis to 

find the best cutoff score for each non-overlap method. Three different cutoff scores were 

selected for each method and sensitivity and specificity were calculated for each of the 

three cutoff scores (i.e., Tau-U = 0.61; IRD = 0.65; Baseline Corrected Tau = 0.41). The 

equations are the following:  

Prevalence of Effect = Teffect/ Total × 100  

Specificity is the fraction of those with no effect which will have a negative test 

result: Specificity: D/(D+B) × 100. Specificity=true negatives/(true negative + false 

positives). 

The previous procedures will also allow the calculation of type I (false positives) 

and type II (false negatives) errors made by the three non-overlap metrics included in the 

review. 

Kappa Coefficients 

 As seen in the previous section, ROC analysis can evaluate the sensitivity and 

specificity of a metric. Sensitivity and specificity are calculated for each possible score of 
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the metric. Consequently, ROC analysis can also help select a specific value or score to 

use as a threshold that provides the best trade-off between sensitivity and specificity. By 

selecting a threshold (Tau-U = 0.61; IRD = 0.65; Baseline Corrected Tau = 0.41) cutoff 

score, the author was able to transform the metrics into dichotomous measures that could 

differentiate intervention effects based on the visual analysis results. To determine the 

extent to which the non-overlap methods of IRD, Tau-U, and Baseline Corrected Tau 

outcomes agreed with interpretations based on visual analysis, the author used Kappa 

coefficient to analyze the agreement between the effect size metrics outcomes and visual 

analysis judgements for all 924 phase contrasts included in this review.  

Kappa (Cohen, 1960) is a statistic that evaluates inter-rater reliability. It can be 

used with ordinal or nominal measurement scales. Kappa counts for the probability of 

agreement based on chance. Kappa is used to evaluate the inter-rater agreement between 

two raters or between two types of classification systems on a dichotomous outcome. 

Kappa is calculated by looking to the relative observed agreement and subtracting the 

probability based on chance and dividing by 1 minus the probability based on chance. 

Kappa can be expressed as the following equation:  k = (Pr(a) – Pr(e))/ (1- Pr(e)).  

The author used the SPSS software package to obtain Kappa coefficient 

outcomes. First, the scores for each one of three non-overlap metrics were entered and 

computed separately. For each metric, the author inserted the scores for two variables 

(e.g., Tau-U and visual analysis) into SPSS Data Editor. The values for both the visual 

analysis variable and the metric variable were adjusted to two possible values (0 for “no 

effect” and 1 for “effect”). The three non-overlap variables and the visual analysis 

variable were adjusted as “nominal”. Second, Crosstabs option was chosen from the 
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Descriptive Statistics at the Analyze drop-down menu. Third, the scores from the visual 

analysis were entered in the Column box and each one of the scores of the three non-

overlap metrics were entered in the Row box. Lastly, Kappa coefficient was selected for 

the Statistics option. SPSS provided two tables (i.e., Crosstabulation and Symmetric 

Measures) for each one of the three non-overlap metrics. Kappa coefficient calculated the 

agreement between visual analysis and non-overlap metrics and provided the 

corresponding Kappa coefficient percentages. Kappa coefficient can be interpreted using 

different guidelines (i.e., Landis & Koch, 1977; Fleiss, 1981; Altman, 1991). The author 

used Landis and Koch guidelines following Petersen & Brown (2012) and Chen et al. 

(2016) examples. Values from 0.0 to 0.2 show slight agreement, 0.21 to 0.40 show fair 

agreement, 0.41 to 0.60 show moderate agreement, 0.61 to 0.80 show substantial 

agreement, and 0.81 to 1.0 show almost perfect or perfect agreement. 

Test for Normality and Pearson Correlation  

A normality test was conducted to determine if the data roughly fit a bell curve 

shape and Pearson correlation was used to determine the strength and direction of a linear 

relationship between IRD, Tau-U and Baseline Corrected Tau, and visual analysis 

outcomes. The author used correlation coefficient r for all 924 phase contrasts included in 

this review.  

Pearson’s correlation coefficient (Cohen, 1988) is a statistical measure of the 

strength of a linear relationship between paired data. Usually, the coefficient goes by r 

and has three outcomes. Correlations are never lower than -1 or higher than 1. A 

correlation of -1 indicates that the two variables are perfectly, negatively, and linearly 

related. A correlation coefficient of 1 means that the two variables are perfectly, 
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positively, and linearly related. Last, a correlation of 0 means that the two variables do 

not have any linear relation. According to Cohen (1988), the strength can be assessed by 

the following general guidelines: (a) 0.10 < | r | < 0.30 small / weak correlation; (b) 0.30 

< | r | < 0.50 medium / moderate correlation; and (c) 0.50 < | r | large / strong correlation.  

The author used the SPSS software package to obtain test for normality and 

Pearson’s correlation coefficient outcomes. To test for normality, the scores for the four 

variables (i.e., visual analysis and three non-overlap metrics outcomes) were entered into 

SPSS Data Editor. Then, Explore option was chosen from the Descriptive Statistics at the 

Analyze drop-down menu. Last, the visual analysis and the three non-overlap metrics 

outcomes were entered in the dependent variables box. To obtain Pearson’s correlation 

coefficient outcomes, the scores for each one of three non-overlap metrics were entered 

and computed separately. For each metric, the author inserted the scores for two variables 

(e.g., Tau-U and visual analysis) into SPSS Data Editor. The values for the visual 

analysis variable were adjusted to two possible values (0 for “no effect” and 1 for 

“effect”) and the values for the metric variable were simply entered.  The three non-

overlap variables and the visual analysis variable were adjusted as “scale”. Second, 

Bivariate option was chosen from the Correlate at the Analyze drop-down menu. Third, 

the scores from the visual analysis and the three non-overlap metrics were entered in the 

variables box. Lastly, Pearson coefficient was selected for the Correlation Coefficients 

option and two-tailed was selected for the test of significance. SPSS provided two tables 

(i.e., Test of Normality and Correlations) for each one of the three non-overlap metrics 

and for the visual analysis outcomes. 
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Factors Affecting Analysis 

Previous research suggests that agreement between visual and statistical analysis 

can be expected when the data is clear. However, the presence of certain patterns, such as 

short data sets, trend, and variability in the data can complicate analysis. The use of non-

overlap methods can help keep visual analysis objective (Brossart et al., 2014). Following 

Brossart and colleagues’ recommendations, the author identified the graphs that 

demonstrated the following patterns: (a) baseline trend, (b) short data phases (i.e., 

between 3 and 6 data points), (c) overlap, and (d) autocorrelation. The purpose was to 

analyze the impact of these common patterns in the interpretation of visual analysis of the 

data and the scores of the selected non-overlap methods.  

The author analyzed the effect of number of data points in the interpretation of 

visual and statistical analysis. First, two separate Excel sheets were created, one for 

baseline phases and the other for intervention phases. Each Excel sheet contained the 

names of the contrasts (e.g., unique ID number), the number of data points, and the 

outcomes of visual analysis and the three non-overlap methods. Based on the accepted 

standards for single-case designs, three to five data points reported in an experimental 

phase were considered short baseline or intervention phase, respectively. Second, the 

author used a unique color to code for those contrasts that were considered to have a 

weak effect by visual analysis and the three methods. A different unique color was used 

for the contrasts considered to have a strong effect by visual analysis and the three 

methods. To separate weak from strong effect, the author used the same cutoff scores that 

were used in the previous research questions (Tau-U = 0.61; IRD = 0.65; Baseline 

Corrected Tau = 0.41). Third, the author counted all of the contrasts in each of four 
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categories (i.e., short/long phase and weak/strong effect) for visual analysis, Tau-U, IRD, 

and Baseline Corrected Tau. Fourth, the mean and the median of Tau-U, IRD and 

Baseline Corrected Tau scores were calculated for both categories (i.e., short/long phase). 

Finally, the author analyzed the outcomes to identify possible patterns in the data. 

The author analyzed the effect of overlap in the interpretation of visual and 

statistical analysis. To make sure the visual analysis judgements were reliable when 

identifying overlap, the author used all of the 272 contrasts rated by two visual analyst 

raters for inter-rater reliability. Then, the author evaluated the agreement between the two 

raters. The author divided the contrasts into three categories: (a) contrasts with overlap 

according to both raters, (b) contrasts without overlap according to both raters, and (c) 

contrasts for which there was no agreement regarding overlap. Then, the author counted 

the number of contrasts in each category and calculated the percentage of agreements 

versus disagreements by adding the agreements for overlap and non-overlap categories 

together, independently dividing each of the two categories (i.e., agreements and 

disagreements) by the total number of contrasts (n = 272) and multiplying by 100 to 

obtain percentage scores. 

  Once reliability was established, the author used all 924 contrasts to analyze the 

relationship between overlap and agreement between visual analysis and the three non-

overlap methods. A cutoff score was selected for each non-overlap method. The author 

selected the cutoff score with the highest Kappa score identified in the analysis of 

research question 2 (Tau-U = 0.61; IRD = 0.65; Baseline Corrected Tau = 0.41). All the 

scores at the cutoff or above were considered to show effect. All the scores below the 

cutoff were considered to show no effect. Regarding visual analysis, all the contrasts that 
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scored 3, 4 and 5 were considered to show effect. All the contrasts that scored 0, 1 and 2 

were considered not to show effect. Next, the author counted the number of contrasts 

showing effect and no effect that were in agreement with visual analysis. This step was 

completed for each non-overlap method. Finally, the author calculated the overall 

percentage of agreements for each non-overlap method. To accomplish this step, the 

author divided the number of total agreements by the number of contrasts with overlap 

and multiplied the result by 100. One category was not considered relevant in the analysis 

(i.e., contrasts without overlap that were considered not effective by both visual analysts) 

because the category contained only one contrast and none of the non-overlap methods 

identified as not effective.  

To see how the presence of trend in the baseline affected the agreement between 

visual analysis judgements and the scores of Tau-U, IRD, and Baseline Corrected Tau, 

the author used the same cutoff scores that were used to answer the previous analysis 

(Tau-U = 0.61; IRD = 0.65; Baseline Corrected Tau = 0.41). Once the scores of the three 

methods were converted into dichotomous outcomes (i.e., effect, no effect), the author 

counted the number of contrasts identified as effective and not effective by visual 

analysts raters and by each of the three methods. A simple percentage was calculated to 

find the agreement between visual analysis and the methods on the number of effective 

and non-effective contrasts. Finally, the author calculated the overall percentage of 

agreements for each non-overlap method. To accomplish this step, the author divided the 

number of total agreements by the number of contrasts with trend and multiplied the 

result by 100. 

 Microsoft Excel was used to identify the contrasts with autocorrelation (i.e. 
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positive and negative). Lag 1 autocorrelation coefficients for the baseline and treatment 

phases were calculated. The author analyzed the relationship between autocorrelation and 

number of data points, trend, visual analysis rater judgements, and the three non-overlap 

methods scores. The author looked for any patterns related to these relationships present 

in the data. The data was analyzed at two different levels: positive vs negative 

autocorrelation and different magnitudes of autocorrelation. The author first divided all of 

the phase contrasts into three categories: contrasts with positive autocorrelation, contrasts 

with negative autocorrelation, and contrasts without autocorrelation. Then, the 

relationships between autocorrelation and average of data points, presence of trend in the 

baseline, outcomes of visual analysis, and outcomes of non-overlap methods were 

analyzed for each category. The same procedure was employed for both autocorrelation 

in the baseline and the intervention phases. 

Each of the previous categories were further divided into large, medium, and 

small magnitude of autocorrelation based on commonly used guidelines for the 

interpretation of correlation outcomes. See Table 5 for a summary of these guidelines. 

The same procedures used for comparing positive vs negative autocorrelation were used 

to compare each level of autocorrelation magnitude. 

Range of Effective Interventions 

Finally, the author identified the typical range of non-overlap estimates for IRD, 

Tau-U, and Baseline-Corrected Tau that are considered effective according to the visual 

analyst raters in this study. In order to identify the typical range of non-overlap estimates 

from interventions deemed effective by visual analysis, the author used only the phase 
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Table 5 

Guidelines to Interpreting Pearson's Correlation Coefficient 

                                                 Coefficient, r 

Strength of association Positive Negative 

Small 0.10 to 0.30 -0.10 to -0.30 

Medium 0.30 to 0.50 -0.30 to -0.50 

Large 0.50 to 1.00 -0.50 to -1.00 

 

 

contrasts that were rated by two visual analysis raters (i.e., the 272 contrasts included in 

IRR). Also, only the phase contrasts that were scored by the two raters with a 5 were 

included (contrasts without confounding factors). The author decided to use only this 

limited set of contrasts because it was determined that factors such as trend, overlap, and 

immediacy of effect had a strong effect on the non-overlap estimates to the point that 

there was no clear pattern. All non-overlap methods showed a range between 0.00 and 

1.00 for the contrasts with confounding factors. 

Inter-rater Reliability 

Inter-rater reliability (IRR) was calculated for inclusion, coding, rigor of the 

studies, effect size computation, and visual analysis using the same procedure. See Table 

6 for a description. IRR was calculated by dividing the total number of agreements by the 

total number of agreements plus disagreements and multiplying by 100 (Cohen & 
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Swerdlik, 2005). In case of disagreement, the primary rater outcome was used for 

consistency. 

Inclusion 

The primary author independently reviewed the titles, abstracts and method 

section of each study identified for inclusion against the exclusion criteria. From the 

initial finding of 9,140 articles yielded by electronic searches, a total of 132 were 

included for this review. A sample of 46 (35%) articles was randomly selected for IRR. A 

faculty member reviewed each of the 46 articles to confirm that they met the inclusion 

criteria. Participants agreed on 44 of 46 studies. The process yielded an IRR of 96% 

agreement.  

Coding 

A master’s student randomly coded 35% of the studies (46 out of 132) using the 

same coding procedures as the author. Then, the author used the same formula used in the 

inclusion inter-rater reliability to calculate coding inter-rater reliability. The master’s 

student reached agreement on 40 of the 46 studies and the agreement coefficient was 

0.89%.  

Rigor of the Studies 

A second-year doctoral student reevaluated 35% of the studies (46 out of 132). 

The 46 studies were randomly selected to compute IRR on the rigor of the studies. The 

doctorate student reached agreement on 38 of the 46 studies and the agreement 

coefficient was 0.84%. 

Effect Size Computation 



48 

The author randomly selected 36% of the studies (48 studies) to compute IRR on 

the calculation of Tau-U, IRD, and Corrected-Baseline Tau. Three doctoral students were 

randomly assigned to each of the non-overlap methods and independently made the 

calculations. The students reached agreement on 43 of 48 studies and the agreement 

coefficient was 0.90%. The author recalculated the effect sizes of the five studies for 

which there was no agreement and corrected them prior to using them in the analysis.  

Visual Analysis 

One master’s student and two doctoral students independently analyzed 30% of 

the studies and phase contrasts to determine the reliability of the visual analysis ratings. 

The author randomly selected 48 studies and almost equally distributed 272 phase 

contrasts among the participants to compute IRR on visual analysis. Each participant was 

provided with a booklet that contained phases, graphs and their rubrics. Participants 

agreed on visual analysis results for 216 out of the 272 independently analyzed phase 

contrasts (IRR = 79%). 

Table 6 

Description of Inter-Rater Reliability for Inclusion, Coding, Rigor of Studies, Effect 

Size Computation, and Visual Analysis 

Inter-rater reliability N of studies Rater position    N of raters Percentage 

Inclusion  46 (35%) Faculty 

member 

1 96% 

Coding 46 (35%) Master’s 

student 

1 89% 

Rigor of studies 46 (35%) Doctoral 

student 

1 84% 
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Effect size computation 48 (36%) Doctoral 

students 

3 90% 

Visual analysis 48 (36%)  Master’s and 

Doctoral 

students 

3 79% 

Note. N = number; a total of 132 studies were included for this review. 
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CHAPTER III 

 

RESULTS 

Visual Analysis and Non-Overlap Methods 

There were four questions in this study: (a) to what extent are IRD, Tau-U, and 

Baseline Corrected Tau sensitive and specific in detecting intervention effects in SCD 

studies? (b) to what extent do IRD, Tau-U and Corrected-Baseline Tau outcomes agree 

with interpretations based on visual analysis? (c) to what degree does autocorrelation, 

number of data points, presence of undesired trend in baseline or intervention, and degree 

of overlap affect interpretation in visual analysis and statistical analysis? (d) what is the 

typical range of non-overlap estimates from interventions deemed effective by visual 

analysts? 

In order to answer the previous study questions, two approaches were first used to 

measure the effectiveness of the interventions included in all the studies of this review. 

The first approach was visual analysis in which participants examined 924 graphs and 

decided whether an effect existed or did not exist. Following What Works Clearinghouse 

standards for evaluating SCD, ten trained visual analyst raters evaluated changes in level, 

trend, variability, immediacy of change between the baseline and treatment phase and 

overlapping between the two phases. The second approach was calculating effect size 

using Tau-U, IRD, and Baseline Corrected Tau metrics. After calculating the 

effectiveness of the interventions using visual analysis, Tau-U, IRD, and Baseline 

Corrected Tau, additional methods were used to answer each question of this review. 
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Sensitivity and Specificity  

To answer question one, “To what extent are IRD, Tau-U, and Baseline Corrected 

Tau sensitive and specific in detecting intervention effects in SCD studies?", Receiver 

Operating Characteristic (ROC) analysis was used to assess the extent to which Tau-U, 

IRD, and Baseline Corrected Tau can find the same dichotomous outcome of visual 

analysis. The author used ROC analysis and the area under the curve (AUC) to examine 

the sensitivity and specificity of each metric to predict group membership (i.e., effect or 

no effect) established by visual analysis. A ROC curve shows the sensitivity and 

specificity for each possible cutoff score.  

After visually analyzing all 924 phase contrasts, visual analyst raters identified 

788 contrasts as being positive for change (effect) and 136 contrasts as being negative for 

change (no effect). Table 7 shows the results of visual analysis.  

Table 7 

Visual Analysis Judgement on the Effectiveness of the 924 Phase Contrasts 

Visual Analysis Number of Phases 

Positive 788 

Negative 136 

 

 

In Figure 3, sensitivity and specificity of Tau-U, IRD and Baseline Corrected Tau 

are graphically plotted. The Y-axis represents sensitivity (true positive rate) which is the 

probability that the phase contrast would be identified as effective when it is truly 
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effective according to visual analysis. X-axis represents specificity (true negative rate) 

which is the probability that the phase contrast would be identified as not effective when 

it is truly not effective according to visual analysis. Each metric was represented with a 

curve and was compared to the reference line that represents zero sensitivity and zero 

specificity. When a classifier cannot distinguish between the two groups, the area under 

the curve (AUC) is .50. However, when there is a perfect separation of the two groups, 

the area under the ROC curve is 1.00tud. Most importantly, the AUC of each metric was 

reported to understand how accurate the metric was to correctly classify the contrasts 

graphs as effective or not effective at each possible cutoff score. 

 

Figure 3. Sensitivity and specificity of Tau-U, IRD and Baseline Corrected Tau. 

 



53 

 The AUC for Tau-U was found to be 0.97. The AUC for IRD was 0.95. The AUC 

for Baseline Corrected Tau was 0.93. Each of the three metrics can be considered an 

excellent metric based on this analysis. However, Tau-U had the largest AUC with 0.97 

and IRD was close behind. Baseline Corrected Tau had the smallest AUC. These 

differences between metrics turned out to be statistically significant. Each of the three 

metrics showed a p-value of less than .05 so they are statistically significant ROC curves. 

See Table 8 for a summary of the AUC values. A test with a 0.90 AUC or higher is 

considered an excellent test. A test between 0.80 and 0.90 is a good test. A test between 

0.70 and 0.80 is a fair test. A test between 0.60 and 0.70 is considered a poor test (Zweig 

& Campbell, 1993). Less than that is an unpredictable test and is not recommended for 

use.  

Table 8 

AUC for Tau-U, IRD and Baseline Corrected Tau 

 Area Std. Error Sig. 95% CI 

    LL UL 

Tau-U 0.97 0.05 0.05 0.96 0.98 

IRD 0.95 0.07 0.05 0.94 0.97 

Baseline Corrected Tau 0.93 0.12 0.05 0.91 0.95 

Note. CI= Confidence interval; Sig.= Significance level; Std. Error= Standard error; 

LL= lower limits; UL= upper limits. 
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The author selected three different cutoff scores to report the degree of sensitivity 

and specificity of each non-overlap method. The three cutoff scores for Tau-U were: 

0.61, 0.70, and 0.79. The three cutoff scores for IRD were: 0.65, 0.72, and 0.79. The three 

cutoff scores for Baseline Corrected Tau were: 0.41, 0.50, and 0.59.  

The author calculated sensitivity and specificity for each of the three cutoff scores 

for each metric. Regarding sensitivity, Tau-U identified 719 (91%), 696 (88%), and 634 

(80%) of true positives; IRD identified 715 (91%), 667 (85%), and 617 (78%) of true 

positives; and Baseline Corrected Tau identified 712 (90%), 648 (82%), and 547 (69%) 

of true positives. Regarding specificity, Tau-U identified 119 (88%), 135 (99%), and 135 

(99%) of true negatives; IRD identified 116 (85%), 128 (94%), and 133 (98%) of true 

negatives; and Baseline Corrected Tau identified 105 (77%), 122 (90%), and 127 (93%) 

of true negatives.   

Regarding the incidence of type I errors, the three non-overlap methods found the 

following contrasts to be positive when visual analysis determined them to be negative 

(the percentage of errors related to the total number of non-effective contrasts according 

to visual analysis is also reported): Tau-U = 17 (13%), IRD = 20 (15%), Baseline 

Corrected Tau = 31 (23%). Regarding the incidence of type II errors, the three non-

overlap methods found the following contrasts to be negative when visual analysis 

determined them to be positive (the percentage of errors related to the total number of 

effective contrasts according to visual analysis is also reported): Tau-U = 69 (8%), IRD = 

73 (9%), Baseline Corrected Tau = 76 (10%). 
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Kappa Coefficients  

To answer question two, “to what extent do IRD, Tau-U and Corrected-Baseline 

Tau outcomes agree with interpretations based on visual analysis?”, Kappa coefficients 

were calculated. Based on judgement of the ten visual analyst raters, 788 phase contrasts 

were found to be effective and only 136 were not effective. Kappa coefficients were 

calculated for the three cutoff scores selected earlier for each non-overlap method. Cutoff 

scores and Kappa coefficients for Tau-U were: 0.61 (Kappa = 0.68), 0.70 (Kappa = 0.69), 

and 0.79 (Kappa = 0.54). The three cutoff scores and Kappa coefficients for IRD were: 

0.65 (Kappa = 0.66), 0.72 (Kappa = 0.59), and 0.79 (Kappa = 0.50). The three cutoff 

scores and Kappa coefficients for Baseline Corrected Tau were: 0.41 (Kappa = 0.59), 

0.50 (Kappa = 0.52), and 0.59 (Kappa = 0.37). The author selected the highest Kappa 

coefficient for each method. This coefficient was always the one obtained using the 

lowest cutoff score. 

The selected Kappa coefficients for the three non-overlap methods were all above 

0.41 and ranged from 0.59 - 0.68. In other words, Baseline Corrected Tau fell within a 

moderate agreement level compared to visual analysis. Tau-U and IRD showed a 

substantial agreement with visual analysis. Baseline Corrected Tau effect size had the 

lowest number of agreements with a Kappa coefficient score of 0.59. The highest was 

Tau-U effect size with a Kappa coefficient score of 0.68. Last, IRD effect size had a 

Kappa coefficient score of 0.66. All of the three Kappa scores were associated with p 

values less than 0.05. Therefore, all the three non-overlap methods were statistically 

significant and had moderate to substantial level of agreement. See Table 9 for Kappa 

coefficient values. 
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Table 9 

Kappa Coefficient for Tau-U, IRD and Baseline Corrected Tau  

Effect size 
Kappa value 

N of cases Std. Error Sig. 

Tau-U 0.68 924 0.03 0.05 

IRD 0.66 924 0.03 0.05 

Baseline Corrected Tau 0.59 924 0.04 0.05 

Note. N= Number of phase contrasts; Sig.= Significance level; Std. Error= Standard 

error. 

 

Table 10 shows the crosstabulation of the relationship between Tau-U and visual 

analysis. It demonstrated the sensitivity and specificity of Tau-U. Visual analysis found 

788 phase contrasts to be effective, 719 phase contrasts were also found by Tau-U to be 

effective with a sensitivity of 91%. Of the 136 phase contrasts that visual analysts found 

not effective, 119 of these phase contrasts were determined by Tau-U to be not effective 

with a specificity of 88%.  

Table 10 

Crosstabulation Between Visual Analysis and Tau-U 

   Visual analysis  

   No effect Effect Total 

  N 119 69 188 
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Tau-U 

No effect % 88% 08% 20% 

 N 17 719 736 

 Effect % 13% 91% 80% 

Note. N= Number of phase contrasts. 

 

Table 11 displays the crosstabulation of the relationship between IRD and visual 

analysis. Furthermore, it showed the sensitivity and specificity of IRD compared to the 

standard measurement in this study of visual analyst rater judgements. Of 788 phase 

contrasts that were found to be effective by visual analysis, 715 were also found by IRD 

to be effective with a sensitivity of 91%. Of 136 phase contrasts that were found not 

effective by visual analysis, 116 were determined by IRD to be not effective with a 

specificity of 85%. 

Table 11 

Crosstabulation Between Visual Analysis and IRD 

   Visual analysis  

   No effect Effect Total 

  N 116 73 189 

 

IRD 

No effect % 85% 09% 20% 

 N 20 715 735 

 Effect % 15% 91% 80% 
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Note. N= Number of phase contrasts. 

 

Table 12 presented the crosstabulation of the relationship between Baseline 

Corrected Tau and visual analysis. From this table, sensitivity and specificity of Baseline 

Corrected Tau were identified. Of 788 phase contrasts that were found to be effective by 

visual analysis, 712 were also found by Baseline Corrected Tau to be effective with a 

sensitivity of 90%. Of 136 phase contrasts that were found not to be effective by visual 

analysis, 105 were determined by Baseline Corrected Tau to be not effective with a 

specificity of 77%. 

Table 12 

Crosstabulation Between Visual Analysis and Baseline Corrected Tau 

   Visual analysis  

   No effect Effect Total 

  N 105 76 181 

Baseline 

Corrected Tau 

No effect % 77% 10% 20% 

 N 31 712 743 

 Effect % 23% 90% 80% 

Note. N= Number of phase contrasts. 

 

Sample Characteristics 

 A Shapiro-Wilk’s test (p < .05) showed that the scores of visual analyses and 

three non-overlap metrics were not normally distributed. Visual analysis had a skewness 
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of -2.07 (ES = 0.08) and a kurtosis of 2.03 (ES = 0.16). Tau-U had a skewness of -1.50 

(ES = 0.08) and a kurtosis of 1.22 (ES = 0.16). IRD had a skewness of -1.60 (ES = 0.08) 

and a kurtosis of 1.85 (ES = 0.16). Baseline Corrected Tau had a skewness of -0.80 (ES = 

0.08) and a kurtosis of 0.17 (ES = 0.16). In conclusion, skewness and kurtosis for all four 

variables were skewed and kurtoic, and differed significantly from normality. So, the null 

hypothesis for this test of normality is that the scores were not normally distributed. 

Table 13 summarizes the results of the normality test of visual analysis and the three non-

overlap metrics. 

Table 13 

Normality Test of Visual Analysis and Three Non-Overlap Metrics 

 Shapiro-Wilk Test of Normality 

Variables  Statistic df Sig. 

Tau-U 0.73 924 0.05 

IRD 0.75 924 0.05 

Baseline Corrected Tau 0.94 924 0.05 

Visual Analysis 0.42 924 0.05 

 

 

Pearson Correlation  

A Pearson’s correlation was computed to assess the relationship between visual 

analysis and three non-overlap metrics (i.e., Tau-U, IRD, and Baseline Corrected Tau). 

Overall, there was a strong, positive correlation between visual analysis and three non-
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overlap metrics. Also, there was a strong, positive correlation between the three non-

overlap metrics themselves.  

 There was a positive correlation between visual analysis and Tau-U, r = 0.74, n = 

924, p = 0.05. Also, there was a positive correlation between visual analysis and IRD, r = 

0.67, n = 924, p = 0.05. Last, there was a positive correlation between visual analysis and 

Baseline Corrected Tau, r = 0.63, n = 924, p = 0.05. Table 14 summarizes the results of 

the bivariate correlations between the four single-case design measurements.  

Table 14 

Bivariate Correlations Between Four Single-Case Design Measurements  

Measure 1 2 3 4 

1.Visual Analysis ____ 0.74 0.67 0.63 

2.Tau-U 0.74 ____ 0.90 0.83 

3.IRD 0.63 0.90 ____ 0.79 

4.Baseline Corrected 

Tau 

0.63 0.83 0.79 ____ 

 

 

Factors Affecting Analysis  

To answer question three “to what degree does autocorrelation, number of data 

points, presence of undesired trend in baseline or intervention, and degree of overlap 

affect interpretation in visual analysis and statistical analysis?", the author analyzed the 

relationship between the number of data points and visual and statistical analysis. This 
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analysis showed that the contrast effect sizes were weaker when the phases were longer. 

In other words, the more data points, the weaker the effect shown for the contrast. The 

pattern was the same for both the baseline and intervention phases.  

The relationship between two variables (i.e., number of data points in the baseline 

and methods) was analyzed first. See table 15 for a summary. After counting how many 

contrasts had short and long baselines that either showed strong or weak effect, data for 

short baselines were the following: 346 strong effect and 73 weak effect (Tau-U), 349 

strong effect and 71 weak effect (IRD), 339 strong effect and 82 weak effect (Baseline 

Corrected Tau), 351 strong effect and 69 weak effect (visual analysis). Data for long 

baselines were the following: 390 strong effect and 114 weak effect (Tau-U), 383 strong 

effect and 121 weak effect (IRD), 404 strong effect and 100 weak effect (Baseline 

Corrected Tau), 384 strong effect and 121 weak effect (visual analysis). 

Table 15 

Relationship Between Number of Data Points in the Baseline, Metrics and Visual 

Analysis 

 Short baseline Long baseline 

 Strong effect Weak effect Strong effect Weak effect 

Tau-U 346 73 390 114 

IRD 349 71 383 121 

Baseline Corrected Tau 339 82 404 100 

Visual analysis 351 69 384 121 
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The relationship between the number of data points in the intervention phases and 

effect sizes was analyzed next. See table 16 for a summary.  After counting how many 

contrasts had short and long interventions that either showed strong or weak effect, data 

for short interventions were the following: 119 strong effect and 23 weak effect (Tau-U), 

123 strong effect and 19 weak effect (IRD), 128 strong effect and 14 weak effect 

(Baseline Corrected Tau), 117 strong effect and 25 weak effect (visual analysis). Data for 

long interventions were the following: 617 strong effect and 165 weak effect (Tau-U), 

612 strong effect and 170 weak effect (IRD), 615 strong effect and 167 weak effect 

(Baseline Corrected Tau), 618 strong effect and 164 weak effect (visual analysis). 

Table 16 

Relationship Between Number of Data Points in the Intervention, Metrics and Visual 

Analysis 

 Short intervention Long intervention 

 Strong effect Weak effect Strong effect Weak effect 

Tau-U 119 23 617 165 

IRD 123 19 612 170 

Baseline Corrected Tau 128 14 615 167 

Visual analysis 117 25 618 164 
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The relationship between the number of data points, the mean and the median 

scores for each method and length of phase were then calculated. See tables 17 and 18 for 

a summary of baseline data and intervention data. Mean scores for baselines were the 

following: 0.82 short baseline and 0.77 long baseline (Tau-U), 0.84 short baseline and 

0.76 long baseline (IRD), 0.58 short baseline and 0.60 long baseline (Baseline Corrected 

Tau). Median scores for baselines were the following: 1.00 short baseline and 0.91 long 

baseline (Tau-U), 1.00 short baseline and 0.88 long baseline (IRD), 0.62 short baseline 

and 0.66 long baseline (Baseline Corrected Tau). 

Table 17 

Metrics’ Mean and Median Scores for Short and Long Baselines  

 Short baseline Long baseline 

 Mean Median Mean Median 

Tau-U 0.82 1.00 0.77 0.91 

IRD 0.84 1.00 0.76 0.88 

Baseline Corrected Tau 0.58 0.62 0.60 0.66 

 

 

Mean scores for interventions were the following: 0.82 short intervention and 

0.79 long intervention (Tau-U), 0.87 short intervention and 0.80 long intervention (IRD), 

0.69 short intervention and 0.59 long intervention (Baseline Corrected Tau). Median 

scores for interventions were the following: 1.00 short intervention and 0.90 long 
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intervention (Tau-U), 1.00 short intervention and 0.88 long intervention (IRD), 0.75 short 

intervention and 0.57 long intervention (Baseline Corrected Tau). 

Table 18 

Metrics’ Mean and Median Scores for Short and Long Interventions 

 Short intervention Long intervention 

 Mean Median Mean Median 

Tau-U 0.82 1.00 0.79 0.90 

IRD 0.87 1.00 0.80 0.88 

Baseline Corrected Tau 0.69 0.75 0.59 0.57 

 

 

 The author evaluated the reliability of visual analysis concerning the detection of 

data overlap in phase contrast graphs. See table 19 for a summary. A total of 272 contrast 

graphs were analyzed by three additional raters for inter-rater agreement. Consequently, 

each graph was rated by a total of two raters. In 253 (93%) graphs, the two raters agreed 

in their judgement of whether overlap was present or was not present. They disagreed on 

19 (7%) graphs. This outcome indicated that visual analysis judgements were reliable 

when trying to detect data overlap in the graphs. Regarding the effect of data overlap on 

the ability of Tau-U, IRD, and Baseline Corrected Tau to agree with visual analysis effect 

judgements, the results were similar for the three non-overlap methods.  

Table 19 
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Agreement Between Two Visual Analysis Raters Identifying Overlap or Lack of Overlap 

on 272 Phase Contrasts 

 Overlap Non-overlap Overall Agreement 

Agreement 148  105  93% 

Disagreement 19  7% 

 

 

The author found 530 contrasts with data overlap and 394 contrasts without 

overlap. See table 20 for a summary. The contrasts were divided into four categories: no 

overlap and effect, no overlap and no effect, overlap and effect, and overlap and no 

effect. When scoring contrast graphs without data overlap, all methods were able to 

identify 98% of the 393 contrast graphs showing effect. There was only one graph 

without data overlap and showing no effect according to visual analysis. All the methods 

scored this graph incorrectly because the three methods identify it as effective. However, 

when the graphs had some degree of overlap, the ability of the methods to agree with the 

visual analysis was much lower. Visual analysis determined that there were 530 graphs 

with data overlap. Of these graphs, 342 showed effect and 188 showed no effect. Tau-U 

successfully identified 260 (76%) graphs showing effect and 135 (71%) graphs showing 

no effect (overall agreement = 75%). IRD successfully identified 242 (70%) graphs 

showing effect and 140 (74%) graphs showing no effect (overall agreement = 72%). 

Baseline Corrected Tau agreement with visual analysis regarding effect/no effect was 

somewhat different. The method successfully identified 278 (81%) graphs showing effect 

and 109 (58%) graphs showing no effect. The overall agreement was 73%. See table 21 
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and table 22 for a summary of agreement between visual analysis and the three non-

overlap methods on contrasts with overlap and without overlap, respectively. The three 

methods had exactly the same agreement with visual analysis when the contrasts had no 

overlap. 

Table 20 

Visual Analysis Judgements on the Overlap Between Baseline and Intervention Phases 

for 924 Phase Contrasts 

Phase contrast N 

With overlap 530 

Without overlap 394 

Note. N= Number; Within the overlap, 342 showed effect and 188 showed no effect  

 

Overall, visual analysis identified 252 phase contrasts with trend and 672 

contrasts without trend. Among the contrasts with baseline trend, there were 117 

contrasts showing effect and 135 contrasts showing no effect. Among the contrasts 

without baseline trend, 618 contrasts were effective and 54 were not effective. In general, 

Tau-U, IRD, and Baseline Corrected Tau showed a high level of agreement with visual 

analysis when identifying effective contrasts showing baseline trend. Tau-U agreed on 

112 contrasts (96%), Baseline Corrected Tau agreed on 110 contrasts (94%), and IRD 

agreed on 109 contrasts (93%). The percentage of agreement when identifying non-

effective contrasts was much lower. Tau-U agreed on 91 contrasts (67%), IRD agreed on 

90 contrasts (67%) and Baseline Corrected Tau agreed on 84 contrasts (62%). The overall  
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Table 21 

Agreement Between Visual Analysis and the Three Non-Overlap Methods on Contrasts 

with Overlap 

Overlap methods Effect No effect Overall Agreement 

Tau-U 260 (76%) 135 (71%) 75% 

IRD 242 (71%) 140 (74%) 72% 

Baseline Corrected Tau 278 (81%) 109 (58%) 73% 

Note. Visual analyses found 530 phases with overlap. 342 contrasts were effective and 

188 were not effective according to visual analysis. 

 

 

Table 22 

Agreement Between Visual Analysis and the Three Non-Overlap Methods on Contrasts 

without Overlap   

Overlap methods Effect No effect Overall Agreement 

Tau-U 385 (98%) 0 (0%) 98% 

IRD 384 (98%) 0 (0%) 98% 

Baseline Corrected Tau 385 (98%) 0 (0%) 98% 

Note. Visual analysis found 394 phases without overlap. 393 contrasts were effective 

and 1 was not effective according to visual analysis. 
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agreement was the following: Tau-U = 203/252 (81%), IRD = 199/252 (79%), 

and Baseline Corrected Tau = 194/252 (77%). See table 23 for a summary. When 

Baseline Corrected Tau was compared to Tau-U, the agreement was higher: They agreed 

on 112 (96%) contrasts considered effective by visual analysis and 117 (87%) contrasts 

considered non-effective by visual analysis. The overall agreement was 229/252 (91%). 

In general, Tau-U, IRD, and Baseline Corrected Tau showed a higher level of 

agreement with visual analysis when identifying effective contrasts without baseline 

trend. Tau-U agreed on 555 contrasts (90%), Baseline Corrected Tau agreed on 553 

contrasts (89%), and IRD agreed on 556 contrasts (90%). The percentage of agreement 

when identifying non-effective contrasts was much lower. Tau-U agreed on 29 contrasts 

(54%), IRD agreed on 28 contrasts (52%) and Baseline Corrected Tau agreed on 25 

contrasts (46%). The overall agreement was the following: Tau-U = 584/672 (87%), IRD 

= 584/672 (87%), and Baseline Corrected Tau = 578/672 (86%). See table 24 for a 

summary of visual analysis judgements for 672 phase contrasts without trend. 

Table 23 

Visual Analysis Judgements for 252 Phase Contrasts with Trend 

Overlap methods N Effect No effect Overall Agreement 

Tau-U 252 112 (96%) 91(67%) 81% 

IRD 252 109 (93%) 90 (67%) 79% 

Baseline Corrected Tau 252 110 (94%) 84 (62%) 77% 

Note. N= number of phases; visual analyses found 252 phases with trend. 117 contrasts 

were effective and 135 were not effective according to visual analysis. 
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Table 24 

Visual Analysis Judgements for 672 Phase Contrasts without Trend 

Overlap methods N Effect No effect Overall Agreement 

Tau-U 672 555 (90%) 29 (54%) 87% 

IRD 672 556 (90%) 28 (52%) 87% 

Baseline Corrected Tau 672 553 (89%) 25 (46%) 86% 

Note. N= number of phases; visual analyses found 672 phases with no trend. 618 

contrasts were effective and 54 were not effective according to visual analysis 

 

Among the 924 phase contrasts included in the review, the author identified a 

large number of contrasts with autocorrelation either in the baseline or intervention 

phases. Overall, there were 887 (96%) contrasts with autocorrelation either in the 

baseline, the intervention or both. There were 5 (0.5%) contrasts without autocorrelation. 

Thirty-two (3.5%) contrasts were not included in this analysis because they presented 

errors in the calculation of autocorrelation. There was a tendency to get an error message 

in the Excel sheet when the values in either baseline or intervention phase were the same 

(e.g., 5, 5, 5). See table 25 for a summary. 

Table 25 

Autocorrelation in the Baseline and Intervention for 924 Phase Contrasts 

Phase contrast N 

With autocorrelation 887 (96%) 
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Without autocorrelation       5 (0.5%) 

Note. N= Number; Thirty-two (3.5%) contrasts were not included in this analysis 

because they presented errors in the calculation of autocorrelation. 

 

The author identified 552 contrasts with autocorrelation in the baseline. In the 

baseline, 213 (38%) phase contrasts had positive autocorrelation and 339 (61%) phase 

contrasts had negative autocorrelation. Four contrasts (1%) did not show any 

autocorrelation. The author found 844 contrasts with autocorrelation in the intervention. 

Among all, 604 (71%) phase contrasts had positive autocorrelation and 240 (28%) 

contrasts had negative autocorrelation. Five (1%) contrasts did not show autocorrelation. 

The contrasts without any correlation were not included in the following analyses 

because of the limited number. See table 26 for a summary. 

Table 26 

Positive and Negative Autocorrelation in Baseline and Intervention  

Phase contrast Baseline Intervention 

Positive autocorrelation 213 (38%) 604 (71%) 

Negative autocorrelation 339 (61%) 240 (28%) 

No autocorrelation     4 (1%)        5 (1%)     

Note. 552 contrasts with autocorrelation in the baseline and 844 contrasts with 

autocorrelation in the intervention. 

 

The author first analyzed the relationship between the number of data points and 

the presence of autocorrelation (i.e., positive and negative autocorrelation, no 



71 

autocorrelation). In the baseline, it was determined that the contrasts with positive 

autocorrelation had an average of 8.4 data points per contrast. The average for the 

contrasts with negative autocorrelation was 6.8 data points. The average number of data 

points for contrasts without autocorrelation was 9.5. Regarding the intervention phases, it 

was determined that the contrasts with positive autocorrelation had an average of 18 data 

points per contrast. The average for the contrasts with negative autocorrelation was 10 

data points. The average number of data points for contrasts without autocorrelation was 

7.2. See table 27 for a summary. 

Table 27 

Relationship Between Number of Data Points and Autocorrelation  

Phase contrast Baseline Intervention 

Positive autocorrelation 8.4 18 

Negative autocorrelation 6.8 10 

No autocorrelation 9.5 7.2     

Note. Numbers are the average of data points. 

 

The author noticed that, in general, contrasts with a small number of data points 

tended to concentrate around the large autocorrelation values (i.e., 1.00). When the 

average number of data points was calculated for each of the three autocorrelation values 

(i.e., large, medium, small), this fact was confirmed. The author calculated the averages 

for baseline positive and negative autocorrelation, as well as intervention positive and 

negative autocorrelation. These four averages are the following: (a) small autocorrelation: 
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baseline positive = 10, baseline negative = 10, intervention positive = 17, intervention 

negative = 13; (b) medium autocorrelation: baseline positive = 9, baseline negative = 7, 

intervention positive = 17, intervention negative = 10; (c) large autocorrelation: baseline 

positive = 6.7, baseline negative = 4, intervention positive = 19, intervention negative = 

5. See table 28 for a summary. 

Table 28 

Relationship Between Number of Data Points and Three Autocorrelation Values  

 Autocorrelation 

Autocorrelation Small Medium Large 

Positive baseline  10 9 6.7 

Negative baseline  10 7 4 

Positive intervention 17 17 19 

Negative intervention 13 10 5 

Note. Numbers are the average of data points per phase. 

 

The relationship between baseline trend and autocorrelation in either the baseline 

or the intervention was then analyzed for all the contrasts. A total of 653 (74%) 

autocorrelated contrasts had also baselines trend. Trend was present in 339 (68%) of the 

556 contrasts with autocorrelation in the baseline. Positive and negative autocorrelation 

had a similar percentage of trend in the baseline (69%, 67%). Trend was present in 179 

(74%) of the 849 contrasts with autocorrelation in the intervention phase. In this case, the 
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percentages had a wider range, with 81% of contrasts with positive autocorrelation and 

56% of contrasts with negative autocorrelation in the intervention. The analysis of the 

relationship between small, medium and large autocorrelation and trend shows that 47% 

of contrasts with positive autocorrelation and trend have a large autocorrelation. This 

tendency is present with both baseline and intervention correlations.  

The relationship between visual analysis judgements and the presence of 

autocorrelation was also analyzed. Phase contrasts with autocorrelation in the baseline or 

intervention phases had a similar amount of effective judgements for positive and 

negative autocorrelation. Of the 213 positively autocorrelated baselines, 169 (79%) of the 

contrasts were considered effective by visual analysis. Of the 339 negatively 

autocorrelated baselines, 281 (83%) of the contrasts were considered effective by visual 

analysis. Of the 604 positively autocorrelated intervention phases, 536 (89%) of the 

contrasts were considered effective by visual analysis. Of the 240 negatively 

autocorrelated intervention, 192 (80%) of the contrasts were considered effective by 

visual analysis. When adding the analysis of the three autocorrelation values (large, 

medium, small), a pattern emerges. Overall, the larger the magnitude of the 

autocorrelation, the higher the number of effective judgements by visual analyst raters. 

The only exception to this tendency were the contrasts that had negative autocorrelation 

in the baseline. Regardless of the magnitude of the autocorrelation, the percentage of 

effective judgements was the same (83%). The proportion of effective vs not effective 

contrasts was the same for the three magnitudes (large, medium, small). See table 29 for a 

summary. 
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Table 29 

Relationship Between Visual Analysis and the Presence of Autocorrelation 

Phase contrast Effective Not effective 

Positive autocorrelation baseline 169 (79%) 44 (21%) 

Negative autocorrelation baseline 281 (83%) 58 (17%) 

Positive autocorrelation intervention 536 (89%) 68 (11%) 

Negative autocorrelation intervention 192 (80%) 48 (20%) 

Note. 556 contrasts with autocorrelation in the baseline and 849 contrasts with 

autocorrelation in the intervention. 

 

The relationship between autocorrelation and the scores produced by the three 

non-overlap methods (i.e., Tau-U, IRD, and Baseline Corrected Tau) was analyzed. The 

outcomes were consistent for the three metrics. When the contrasts had a positive 

baseline autocorrelation, the average of the metrics scores were consistent with medium 

to large effect size for the contrast (Tau-U = 0.75, IRD = 0.76, Baseline Corrected Tau = 

0.54). When a negative baseline autocorrelation was present, the average contrast scores 

were also consistent with medium to large effect size (Tau-U = 0.79, IRD = 0.80, 

Baseline Corrected Tau = 0.56). When the contrasts had a positive intervention 

autocorrelation, the metrics average contrast scores were consistent with medium to large 

effect size (Tau-U = 0.81, IRD = 0.80, Baseline Corrected Tau = 0.58). When a negative 

intervention autocorrelation was present, the average contrast scores were similar (Tau-U 

= 0.78, IRD = 0.78, Baseline Corrected Tau = 0.61). See table 30 for a summary. 
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Table 30 

Relationship Between Autocorrelation and the Scores of Non-Overlap Methods 

 Non-overlap methods 

Autocorrelation Tau-U IRD Baseline Corrected 

Tau 

Positive baseline  0.75 0.76 0.54 

Negative baseline  0.79 0.80 0.56 

Positive intervention 0.81 0.80 0.58 

Negative intervention 0.78 0.78 0.61 

Note. Scores are medium to large for the three metrics whit the presence of 

autocorrelation. 

 

Range of Effective Interventions  

To answer question four, "what is the typical range of non-overlap estimates from 

interventions deemed effective by visual analysts?" the author identified the contrasts 

considered effective by visual analysis. Then, calculated the equivalent range of scores 

for the three metrics. Regarding the typical range of non-overlap estimates from 

interventions deemed effective by visual analysis, the following ranges were identified: 

Tau-U ranged between 0.65 and 1.00; IRD ranged between 0.65 and 1.00; and Baseline 

Corrected Tau ranged between 0.45 and 1.00. See table 31 for a summary. 
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Table 31 

Typical Range of Non-Overlap Methods Compared to Visual Analysis 

 From To 

Tau-U 0.65 1.00 

IRD 0.65 1.00 

Baseline Corrected Tau 0.45 1.00 

Note. The cutoff scores selected were 0.61 for Tau-U, 0.65 for IRD, and 0.41 for 

Baseline Corrected Tau 
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CHAPTER IV 

DISCUSSION 

 This study utilized the outcomes of 132 single-case studies evaluating the 

effectiveness of interventions for students with ASD in school settings to compare the 

performance of visual analysis and three effect size metrics (Tau-U, IRD, and Baseline 

Corrected Tau). The author examined a total of 924 phase contrasts from the sample of 

132 studies. First, several aspects of the metrics and visual analysis performance are 

discussed. Then, the implications for research are discussed. Finally, the author 

summarizes the limitations and suggestions for future research. 

Sensitivity and Specificity 

 The first question of this review concerns the sensitivity and specificity of the 

three selected non-overlap methods. Although the area under the curve (AUC) of these 

methods showed them to be good at distinguishing between effective and non-effective 

interventions, Tau-U performed better than IRD and Baseline Corrected Tau. One might 

wonder how a method like Tau-U is so closely related to visual analysis when raters do 

not always agree on their visual analysis judgements. One possible reason is publication 

bias. Most published studies have found the interventions to be effective (Kittelman, 

Gion, Horner, Levin, & Kratochwill, 2017). This fact has been confirmed in this study 

where 788 out of 924 studies showed effective interventions. It is easy for different 

analytical methods to agree when the interventions are clearly effective. On the other 

hand, it should be mentioned that the agreement between the non-overlap methods and 

visual analysis is probably lower than indicated by the AUC because visual analysis is 

not 100% reliable. 
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The outcomes of this study showed the three non-overlap metrics performed well 

identifying effective interventions (high sensitivity) but tended to incorrectly classify 

some interventions as effective when they were not effective according to visual analysis. 

The metrics caught many true positives but mistakenly caught many false positives in the 

process. To incorrectly classify an intervention as effective when it is not effective is 

normally referred to as "type I error" or a "false positive". 

Type I and Type II Errors 

The findings of this study showed that the three non-overlap methods and visual 

analysis made both type I and type II errors. The three statistical methods had a tendency 

to make type I errors as opposed to type II errors. This can be explained by the fact that 

the methods had a high level of sensitivity and they reported some false positives in the 

process. On the other hand, visual analysis has shown to be less sensitive and make more 

type II errors but made less type I errors. The high sensitivity of the methods can be 

beneficial to identify interventions that show small effect visual analysis might not be 

able to detect. Kazdin (1982) warns that visual analysis should be complemented with 

statistical analysis because small effects may be important and trend and variability in the 

data can prevent visual analysts from seeing the effects. The current study confirms 

Kazdin statement regarding the difficulty of detecting small effects. The author analyzed 

the agreement between the two visual analysis raters who scored the 272 contrasts 

included in the inter-rater reliability. The outcomes showed that the two raters had a 

higher degree of agreements when scoring very effective contrasts or contrasts that were 

not effective at all. They did not agree as much when scoring contrasts showing a small 

effect. These outcomes also confirm the findings of Ximenes, Manolov, Solanas, & 
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Quera (2009). These authors concluded that human judges are fairly good at detecting 

graphs that show no treatment effect. 

Considering that it can be challenging for visual analysis to detect a small effect 

when a graph has several confounding factors, the author concluded that it is an 

advantage to use a statistical metric that has a high degree of sensitivity detecting 

treatment effects. Because of this, the author selected the cutoff score for each non-

overlap method that proved to have a high degree of sensitivity but an acceptable degree 

of specificity. This cutoff score was later used to answer the second question of this 

review. The cutoff scores selected were: 0.61 for Tau-U, 0.65 for IRD, and 0.41 for 

Baseline Corrected Tau. Any intervention receiving these scores or above would be 

considered effective. Tau-U, IRD and Baseline Corrected Tau had a similar level of 

performance in terms of detecting true positives (sensitivity) using these cutoff scores, 

with a range of 90% to 91% of effective interventions detected. The metrics were less 

consistent when ruling out true negatives (specificity). The three metrics showed a lower 

level of success and the percentages of true negatives ranged from 78% to 88% of non-

effective contrasts detected. Tau-U was the metric with the highest sensitivity and 

specificity. Overall, Baseline Corrected Tau showed the lowest sensitivity and specificity, 

but differences were small. 

Until this point, the author has advocated for sensitive statistical methods to 

compensate visual analysis difficulty detecting small effect. However, the author also 

realized that sensitive statistical methods make type I errors which is the tendency to 

identify false positives. Consequently, the author asked the following question: Which 

type of error is most important to minimize when evaluating interventions for students 
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with disabilities? In general, researchers agree that minimizing type I errors is more 

important. In most fields, type II errors are considered less serious. For example, failing 

to report an effective intervention can be less damaging than reporting an ineffective 

intervention as effective. Therefore, most research designs will focus their attention on 

minimizing type I errors. The use of ineffective interventions can cost money and even be 

harmful to children. Missing effective interventions, on the other hand, will simply leave 

things the way they are and will not make things worse. According to the proponents of 

visual analysis and the findings of this study, visual analysis seems to be a more 

conservative approach to the evaluation of intervention effects reducing the possibility of 

making type I errors (Allison et al., 1992; Kazdin, 2011). Considering these facts, the 

author recommends the use of visual analysis as the primary method of evaluation of 

intervention effects in order to avoid type I errors. However, because of the relatively low 

reliability of visual analysis, the author also recommends the use of statistical methods as 

adjunctive methods. Incorporation of statistical analysis will assist in identifying 

interventions with small yet clinically significant effects that might go undetected with 

visual analysis alone as well as assist in identifying no effect when confounding factors 

are present. 

Kappa Coefficients 

To calculate the agreement between visual analysis outcomes and the outcomes of 

Tau-U, IRD and Baseline Corrected Tau, a cutoff score had to be selected for each metric 

to separate effective from non-effective interventions. Three cutoff scores for each metric 

had been selected to answer question one so Kappa coefficients were calculated for each 

of these three cutoff scores. It was noticed that the value of the cutoff scores and the level 
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of agreement was negatively correlated. The lower the cutoff score, the higher the 

agreement. It was also noticed that the value of the cutoff score and the sensitivity were 

also negatively correlated. The lower the cutoff score, the higher the sensitivity. This 

indicated that sensitivity of the methods and agreement with visual analysis were related. 

More sensitivity meant more agreement with visual analysis. Furthermore, because 

sensitivity and specificity are negatively correlated, more specificity meant less 

agreement with visual analysis. With the intention to make the three metrics as sensitive 

as possible, the author decided to use the lowest cutoff scores because they have the 

highest level of sensitivity. After calculating Kappa using the lowest cutoff score, it was 

found that the three non-overlap methods had a moderate to substantial level of 

agreement with visual analysis. Tau-U had the highest agreement and Baseline Corrected 

Tau had the lowest.  

Although the three tested metrics in this study showed to be promising methods 

based on their high sensitivity and specificity, they should not be used as the only method 

of analysis. The present study confirms previous research regarding the high level of 

agreement between visual analysis and Tau-U and IRD. However, no matter how much 

the metrics agree with visual analysis, they must be used only as a complement to visual 

analysis. For example, non-overlap methods usually account for two or three elements of 

visual analysis (i.e., level, trend, variability, overlap, immediacy of effect, and 

consistency across similar phases) but not all the elements at the same time. Even a 

parametric method such as Standardized Mean Difference cannot account for all the 

features of a single-case design. Only visual analysis can do that. Single-case researchers 

should use visual analysis as a primary method examining the effect of interventions until 
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a new statistical method that will fit all single-case design requirements is developed 

(Kennedy, 2005).  

A clear advantage of using both visual and statistical analysis at the same time is 

to have more confidence on the results. Researchers can trust their outcomes when both 

visual and statistical analysis agree on the results. On the other hand, disagreement leads 

to a lack of confidence and requires further investigation on the effectiveness of the 

intervention. The outcomes of this study show that there was sometimes a lack of 

agreement between visual analysis and the three non-overlap metrics, especially when 

confounding factors were present in the graphs. These findings prompted the author to 

suggest the use of both visual analysis as a primary method of analysis for single-case 

research and one or two statistical methods, either parametric or non-parametric methods 

to support the findings. Moreover, the author suggests to request a second visual analysis 

judgement by a third expert rater in case of disagreement between visual and statistical 

analysis. In the current study, the author conducted this second visual investigation and 

discovered that, in some cases, visual analysis raters had been too conservative in their 

judgement regarding effect. Taking this step before reporting research findings will 

increase the confidence on the outcomes of published studies. 

Factors Affecting Analysis 

Type II errors originally found in this review were of particular interest to the 

author. After visually reviewing the judgements of the contrasts selected for interrater 

reliability, the author realized that 32 contrasts have been rated as "not effective" by the 

visual analysis raters but showed effect by the non-overlap methods. The author 

concluded that the contrasts showed effect and that the raters had not detected this effect. 
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The author analyzed the possible causes. Two possible reasons for the errors of 

judgement were considered: (a) visual analysts were wrong in their judgement; (b) there 

were some confounding factors that made visual analysis difficult (i.e., overlap, trend, 

small number of data points, variability, more than one variable line in the graph). 

Consistent with Ninci and colleagues (2015) findings, visual analysts in this review have 

shown to have a moderate degree of interrater reliability (79%) and the graphs included a 

variety of confounding factors. Consequently, the author considered both reasons to be 

true. Furthermore, it was hypothesized that the confounding factors might be causing the 

low percentage of inter-rater reliability. The author, then, analyzed the incidence of the 

confounding factors in each of the 32 contrasts mistakenly rated as not effective by the 

visual analysts. It was found that all 32 contrasts had at least one confounding factor. The 

author found a total of 85 factors distributed among the 32 contrasts, including 1 contrast 

that exhibited five factors and three contrasts that exhibited four factors at the same time. 

All the 32 contrasts had some degree of overlap. Variability seemed to be the second 

most common confounding factor (20 contrasts) especially variability combined with 

trend (9 contrasts). In addition, the effect shown on the contrasts was often small and 

difficult to see. The following sections will analyze the impact of some of the 

confounding factors seen in the contrasts included in this review. 

Number of Data Points 

 Regarding the number of data points and their effect on visual judgement or 

statistical scores, it was found that contrasts with longer phases consistently showed 

lower scores and contrasts with shorter phases showed higher scores. This was true for 

visual analysis judgements, as well as Tau-U, IRD, and Baseline Corrected Tau 
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calculations. The author hypothesized on the reasons for this pattern. The author 

hypothesized that longer baselines might allow the participants to show their true skills 

and the internal validity threats might appear in the baseline so that any patterns that will 

show in the intervention will first appear in the baseline. For example, maturation, other 

treatments, and uncontrolled events during a long occurring baseline phase will make the 

scores in the baseline higher. Consequently, the intervention will show a weaker effect. 

Furthermore, a longer intervention phase might have the effect of lowering the 

performance of the participants because there will be more opportunities for uncontrolled 

events to happen that might lower the scores (e.g., loss of interest, getting tired). The 

author concluded that a longer baseline was much impactful than a longer intervention 

when it came to controlling internal validity threats. Any decisions regarding the length 

of the data series ultimately must be made by the researcher considering a variety of 

factors. Some of these factors include: the severity and the topography of the participants’ 

behaviors and the variability in the data. However, this pattern suggests the need for 

further research on the impact of number of data points on visual analysis judgements and 

scores from non-overlap methods. 

Overlap 

 Regarding the presence of overlap and its effect on visual analysis judgement, it 

was found that agreement between raters was high. The two raters judging each graph 

agreed on 93% of their judgements. This outcome suggests that overlap is a fairly easy 

feature to detect by visual analysis compared to other features such as trend. Regarding 

the effect of overlap on the performance of statistical methods for all contrasts, it was 

found that the agreement between the three non-overlap methods and visual analysis 
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decreased over 20% when the contrasts had some degree of overlap. When the graphs 

had some degree of overlap, Tau-U and IRD made a similar amount of type I (false 

positives) and type II (false negatives) errors, while Baseline Corrected Tau ability to 

discriminate between graphs showing effect and not showing effect was characterized by 

a stronger ability to detect effect but a higher level of mistakes (Type I errors) as 

well. Despite the larger number of mistakes, Baseline Corrected Tau showed to be more 

effective than Tau-U and IRD identifying effective interventions  

Trend 

 The author analyzed the agreement between visual analysis judgements and Tau-

U, IRD and Baseline Corrected Tau scores regarding effectiveness or lack of 

effectiveness of the treatments. In general, it was noticed that there was good agreement 

between visual analysis outcomes and the scores of the three methods in identifying 

effective contrasts with baseline trend. However, the agreement was much lower when 

the methods had to identify non-effective contrasts. Baseline Corrected Tau, however, 

showed the highest agreement in both cases. It was expected that Baseline Corrected Tau 

and Tau-U should perform better than IRD when trend is present in the baseline. Both 

methods were developed to account for trend in the baseline. The author documented that 

Tau-U and Baseline Corrected Tau agreed on 91% of their judgements regarding effect or 

lack of effect. On the other hand, the agreement between visual analysis and the three 

non-overlap methods was higher when the contrasts lacked a baseline trend, which was 

an expected outcome.  

Although two non-overlap indices (i.e., Tau-U, Baseline Corrected Tau) are 

supposed to be very similar in form detecting and correcting trend in the baseline, they 
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often performed differently when applied to the same set of data containing baseline 

trend. The author found that almost half the graphs that were corrected for trend by 

Baseline Corrected Tau did not agree in the final outcomes with the outcomes of Tau-U. 

So, it is encouraged to use more than one effect size measure when reporting 

effectiveness of a study’s outcomes besides visual analysis. Another reason to suggest the 

use of a second effect size measure is the fact that baseline trends are not always apparent 

to the visual analyst (Chiu & Roberts, 2018). 

Autocorrelation 

Most statistical methods used in single-case designs do no account for 

autocorrelation and this might increase the number of type I or type II errors. For 

example, Brossart and colleagues (2006) compared five methods commonly used in 

single-case studies using the same data. They found that all methods were highly affected 

by autocorrelation.    

 The author found more autocorrelation in the intervention phases (849) than in the 

baselines (556) of the 924 contrasts. The reason for this difference was the fact that 369 

contrasts were removed from the analysis of baseline autocorrelation due to errors in the 

Excel software. Only 76 were removed from the intervention phases. The software 

produced errors because of an excessive number of data points with the same value. 

Negative autocorrelation tended to be more concentrated in the baseline phases (61%) as 

opposed to the intervention phases (28%). However, positive autocorrelation was much 

more concentrated in the intervention phases (71%) as opposed to the baseline phases 

(38%). Also, it was established that contrasts with positive autocorrelation had a higher 

number of data points in both the baseline and the intervention phases than the contrasts 
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with negative autocorrelation. The analysis of the number of data points per phase related 

to large, medium, and small autocorrelation indicates that a lower number of data points 

were related to a large autocorrelation. The contrasts with large positive autocorrelation 

in the interventions were the only exception. Forty-nine (8%) of these contrasts had an 

unusually large number of data points (i.e., between 30 and 90). Similarly, the contrasts 

with medium positive autocorrelation in the interventions had a contrast with 108 data 

points, an unusually large number. These outliers affected category averages. Overall, 

longer phases seemed to be correlated with positive and small autocorrelation. 

 Outcomes show that the presence of both baseline trend and positive 

autocorrelation in the intervention phase was more frequent than the combination of trend 

and negative autocorrelation or autocorrelation in the baseline. Furthermore, more than 

half (51%) of contrasts showed a large autocorrelation. These outcomes suggest that a 

relationship between baseline trend and autocorrelation in the intervention might exist. 

No other strong pattern was identified. However, slight differences seemed to indicate 

that more effect was identified when the baseline had negative correlation and when the 

intervention had positive correlation. Overall, the larger the magnitude of the 

autocorrelation, the higher the number of effective judgements. Overall, Tau-U and IRD 

showed a similar pattern. They both produced lower average scores when the 

autocorrelation was positive in the baseline but produced higher average scores when the 

autocorrelation was positive in the intervention phases. On the other hand, Baseline 

Corrected Tau produced higher average scores when the autocorrelation was negative 

regardless of baseline or intervention autocorrelation. Regarding the effect of 

autocorrelation magnitude, a clear pattern emerged. The stronger the magnitude, the 
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higher the average scores produced by Tau-U, IRD, and Baseline Corrected Tau. The 

only exception was found on contrasts with a negative baseline autocorrelation. Baseline 

Corrected Tau was not affected by the differences in magnitude since it produced the 

same average score for the contrasts with small, medium, and large autocorrelation. 

Range of Effective Interventions 

 The typical range of Tau-U identified by the investigator from interventions 

deemed effective by visual analysis seemed consistent with Tau-U criteria determined by 

Parker and Vannest (2009). The typical range for an effective intervention found by the 

author of the current review was 0.65 to 1.00. Parker and Vannest considered any scores 

above 0.65 to be effective. Regarding IRD, the author’s results (0.65 to 1.00) were less 

consistent. IRD benchmarks (Parker et al., 2009) indicate that any effect rated 

as moderate had scores of around .50 to 0.70. Large and very large effects generally 

received scores of .70 or higher. Consistent with Tarlow’s (2016) findings, the author 

found that Baseline Corrected Tau gave smaller results than Tau-U on 200 (99%) time 

series and equal results on 2 (1%) time series. The author found that a Baseline Corrected 

Tau of 0.45 or higher indicated an effective intervention. Considering that the current 

review included 924 data sets produced by real research studies, the author considers 

these meaningful outcomes. Comparing the performance of the three non-overlap 

metrics, the author concluded that Baseline Corrected Tau showed the best overall 

performance due to its ability to avoid the effects of autocorrelation, trend, and overlap. 

Baseline Corrected Tau has been developed as an improved extension of Tau index 

(Parker, Vannest, Davis, & Sauber, 2011). 
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Limitations of the Study 

 There were four limitations to this study worth mentioning. One of the limitations 

is that only lag 1 autocorrelation coefficients for the baseline and treatment phases were 

calculated and reported. The investigator decided not to detrend the baseline and 

intervention phases, correct the autocorrelation values for bias, and test the significance 

of the autocorrelation. Performing these tasks would have required lengthening the study 

timeline, but performing all the steps would have improved the accuracy of the outcomes. 

Second, visual analysis IRR was 79% which was a moderate percentage. This was true 

despite the fact the participants had previously completed graduate level single-case 

design methodology classes (i.e., between 4 and 16 credits), successfully completed the 

online training, and attended a workshop delivered by the author. Third, this review of 

single-case designs excluded alternating treatment designs and combined designs. This 

decision was made because a number of alternating treatment designs did not include 

baselines; they were few in number and tended to produce different results than the 

results obtained using the other designs (Chen et al., 2016). Most of the studies included 

in this review used multiple-baseline designs or multiple-probe designs. This is not 

surprising given that school-based interventions often target the acquisition of skills. The 

acquisition of skills cannot be successfully measured using withdrawal designs that 

require returning to baseline when the intervention is removed. Finally, the author would 

have liked to include more effect-size metrics. Including more statistical methods would 

have benefited the research literature. 
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Future Directions 

 The outcomes of this review highlighted some important needs for future 

research. Matching the outcomes of Ninci and colleagues (2015), visual analysts have 

been shown to have a moderate degree of interrater reliability (79%) when the graphs 

included a variety of confounding factors. In this study, visual analysts had difficulty 

identifying small effects when the graphs had a combination of confounding factors (e.g., 

trend, variability, small number of data points).  Because of this, many of the phase 

contrasts analyzed by the raters were judged to be ineffective when they effective 

according to non-overlap estimates. Considering the number of type II errors made by 

visual analysis, the author recommends the use of non-overlap metrics with a high degree 

of sensitivity that can detect small effects to complement visual analysis. Research has 

shown that human judges are not always effective even with contextual information to 

interpret the graphs (Brossart, Parker, Olson, & Mahadevan, 2006) so most researchers 

advocate the use of both visual and statistical analysis to inform each other (Brossart et 

al., 2006; Franklin, Allison, & Gorman, 2014). Furthermore, the investigator 

recommends using a sensitive metric because higher levels of sensitivity are related to 

higher levels of agreement with visual analysis.  

The author also recommends the use of visual aids or contextual information to 

make visual judgements more accurate. Examples of visual aids are the dual-criteria (DC) 

method developed by Fisher, Kelley, & Lomas, (2003) and the SMIQR developed by 

Manolov, Jamieson, Evans, & Sierra (2015). Finally, the investigator agrees with the 

recommendation provided by Ninci and colleagues (2015) regarding the advantages of 

operationally defining the characteristics to be analyzed visually. According to the 
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researchers, when characteristics are operationally defined, visual analysis reports higher 

rates of inter-rater agreement (citation). Unfortunately, raters are not often provided with 

such definitions (citation). One method worth to examine is the use of alternative forms 

of graphical display. Always, SCDs graphs are displayed with connected line graphs or 

occasionally with bar graphs. Morales, Domínguez, and Jurado (2001) examined 3000 

AB graphs using three different graphical displays, 1000 graphs for each display (i.e., 

line graphs, bar graphs and Tukey box plots). Interestingly, Tukey box plots was the 

graphical type that participants made less errors when data were presented. It is worth to 

test and compare again these mentioned three graphical types and other graphical types 

for future studies. 

 Third, the author recommends the use of visual analysis as the primary method of 

evaluation of intervention effects in order to avoid type I errors. However, it must be kept 

in mind that visual analysis is not a method without reliability issues. Considering this, 

the author recommends the adjunctive use of statistical methods following visual analysis 

suggesting a functional relation. This gated approach of visual analysis followed by 

statistical analysis is outlined in the pilot What Works Clearinghouse standards for 

Single-Case Research (Kratochwill et al., 2010). Furthermore, Baseline Corrected Tau 

and Tau-U did not agree in the final outcomes even though they are supposed to account 

for baseline trend. So, it is encouraged to use more than one effect size measure when 

reporting effectiveness of a study’s outcomes besides visual analysis. In conclusion, 

visual analysis should be the primary method of analysis for single-case research and one 

or two statistical methods, either parametric or non-parametric, should be used to support 

the findings. Although non-overlap analysis showed to be efficient, simple to calculate, 
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and agree with visual analysis, more investigation is needed on parametric methods such 

as Dynamic Multilevel Analysis. 

 A fourth recommendation relates to factors affecting the outcomes of visual and 

statistical analysis. Researchers would benefit from investing in further research 

concerning the impact of features like number of data points, variability, autocorrelation, 

and trend. The impact of overlap might not need the same investment due to the fact that 

overlap is easily detected by visual analysis, like the findings of this review supports. The 

current review concludes that the other confounding factors, such as baseline trend, 

number of data points, and autocorrelation, do have an impact in both visual and 

statistical analysis. The author used 924 real data sets. Although this is one of the 

strengths of the study, future researchers should use artificial sets in order to manipulate 

the data and better identify any patterns related to the number of data points or the other 

important factors affecting outcomes. As mentioned in the limitations, further 

autocorrelation testing is recommended to know the impact of this factor on the statistical 

analysis outcomes. Regarding the issue of further research on autocorrelation and its 

impact on analysis, the author recommends to investigate any possible relationships 

between autocorrelation, the length of the intervention, and both the intervention 

(independent variable) and the behaviors observed (dependent variables).  

Fifth, the author suggests to request another visual analysis judgement by a third 

expert rater in case of disagreement between visual and statistical analysis. Taking this 

step before reporting research findings will increase the confidence on the outcomes of 

published studies. 
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 Sixth, the author recommends investigating and testing a variety of effect size 

metrics especially those that account for trend, as well as investigate their agreement with 

visual analysis. The proper way to analyze data from SCDs remains a topic under 

investigation, with no single approach proving to be superior in every instance (Brossart 

et al 2014). The metrics suggested are: Extended Celeration Line (ECL; White and 

Haring, 1980), Percentage of Non-Overlap Corrected Data (PNCD; Manolov & Solanas, 

2009), and Percent Exceeding the Median (PEM; Wolery et al, 2010), Ratio of Distance 

(RD; Carlin & Costello, 2108) and Tau-U (Parker et al., 2011). Most statistical methods 

used in single-case designs do no account for autocorrelation and this might increase the 

number of type I or type II errors. Two advanced methods might be a solution to this 

problem. One is Interrupted Time-Series Analysis (ITSA) but required between 50 and 

100 observations per phase and to apply this procedure in SCDs most of the time will 

might be impossible. The second method is Dynamic Multilevel Analysis (DMA) and 

can be used with applies to small datasets (Machalicek, & Horner, 2018). Although the 

three metrics used in this review performed well, the author found Baseline Corrected 

Tau (Tarlow, 2016), to have better general performance with real data involving 

confounding factors such as trend and autocorrelation so it is suggested that future 

research continues to work on testing this effect size metric.  

 Finally, the author is proposing a new package for visual analysis training. The 

package includes five important steps all visual analysis raters should follow in order to 

guarantee a more accurate and reliable judgement. The five steps are the following: 

Although there is no need for statistical knowledge to conduct visual analysis, raters 

should first acquire some basic knowledge in statistics (e.g., multilevel analysis, time-



94 

series analysis) before conducting visual analysis. Second, learning about confounding 

factors (e.g., trend, autocorrelation) that affect the interpretation of visual analysis before 

conducting visual analysis will contribute to improve inspection of the graphs. Third, 

raters should acquire knowledge on visual analysis variables (i.e., level, trend, variability, 

overlap, immediacy of effect, and consistency across similar phases) their definitions, and 

the rationale of each variable. Fourth, knowledge of visual aids that can help detect effect 

when confounding factors are present will increase reliability and minimize type I and II 

errors. Fifth, completing the Visual Analysis Training Program using singlecase.org 

website before conducting visual analysis will improve visual analysis judgment. 

Conclusion 

 This study utilized the outcomes of 132 single-case studies evaluating the 

effectiveness of interventions for students with ASD in school settings to compare the 

performance of visual analysis and three effect size metrics (Tau-U, IRD, and Baseline 

Corrected Tau). The investigator examined a total of 924 phase contrasts from the sample 

of 132 studies. The findings of this study showed that the three non-overlap methods and 

visual analysis made both type I and type II errors. The three statistical methods had a 

high degree of sensitivity, agreement with visual analysis and performed well detecting 

effective interventions but had a tendency to make type I errors. On the other hand, visual 

analysis has shown to be less sensitive and make more type II errors than type I. 

The high sensitivity of the methods can be beneficial to identify interventions that 

show small effect visual analysis might not be able to detect. With the intention to make 

the three metrics as sensitive as possible, the investigator decided to use the lowest cutoff 

scores to answer the study questions because they have the highest level of sensitivity. 



95 

After calculating Kappa using the lowest cutoff score, it was found that the three non-

overlap methods had a moderate to substantial level of agreement with visual analysis. 

In general, researchers agree that minimizing type I errors is more important in the field 

of education. For example, failing to report an effective intervention can be less 

damaging than reporting an ineffective intervention as effective. Considering these facts, 

the author recommended the use of visual analysis as the primary method of evaluation of 

intervention effects and a minimum of two statistical methods as secondary methods in 

order to help identify interventions that might be difficult to be detected by a more 

conservative visual analysis. These procedures can increase confidence on the outcomes 

of published studies.  

 After finding that visual analysts struggle to detect effects on the graphs, a 

possible reason for the conservative judgements were confounding factors present in all 

graphs which made visual analysis difficult (i.e., overlap, trend, small number of data 

points, variability, more than one variable line in the graph). In addition, the effect shown 

on the contrasts was often small and difficult to see. Regarding the number of data points 

and their effect on visual judgement or statistical scores, it was found that contrasts with 

longer phases consistently showed lower scores and contrasts with shorter phases showed 

higher scores. This was true for visual analysis judgements, as well as Tau-U, IRD, and 

Baseline Corrected Tau calculations. Regarding the effect of overlap on the performance 

of statistical methods for all contrasts, it was found that the agreement between the three 

non-overlap methods and visual analysis decreased over 20% when the contrasts had 

some degree of overlap. In general, it was noticed that there was good agreement between 

visual analysis outcomes and the scores of the three methods in identifying effective 



96 

contrasts with baseline trend. However, the agreement was much lower when the 

methods had to identify non-effective contrasts. These outcomes suggest that a 

relationship between baseline trend and autocorrelation in the intervention might exist. 

No other strong pattern was identified. However, slight differences seemed to indicate 

that more effect was identified when the baseline had negative correlation and when the 

intervention had positive correlation. Overall, the larger the magnitude of the 

autocorrelation, the higher the number of effective judgements. 

 Considering that the current review included 924 data sets produced by real 

research studies, the author considered these outcomes to be very meaningful so he 

mentioned six important implications for future research.   

 

 

 

 

  



97 

REFERENCES CITED 

 

Allison, D. B., Franklin, R. D., & Heshka, S. (1992). Reflections on visual inspection, 

response guided experimentation, and Type I error rate in single-case designs. 

The Journal of Experimental Education, 61(1), 45-51. 

 

Allison, D. B., & Gorman, B. S. (1993). Calculating effect sizes for meta-analysis: The 

case of the single case∗. Behaviour Research and Therapy, 31(6), 621-631. 

 

Alresheed, F., Machalicek, W., Sanford, A., & Bano, C. (2018). Academic and related 

skills interventions for autism: A 20-year systematic review of single-case 

research. Review Journal of Autism and Developmental Disorders, 1-16. 

 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental 

disorders (5th ed.). Washington, DC: Author. 

 

Angermeier, K., Schlosser, R. W., Luiselli, J. K., Harrington, C. & Carter, B. (2008). 

Effects of iconicity on requesting with the Picture Exchange Communication 

System in children with autism spectrum disorder. Research in Autism Spectrum 

Disorders, 2(3), 430-446. 

 

Armstrong, T. K. & Hughes, M. T. (2012). Exploring computer and storybook 

interventions for children with high functioning autism. International Journal of 

Special Education, 27(3), 88-99. 

 

Ayres, K. M., Mechling, L. & Sansosti, F. J. (2013). The use of mobile technologies to 

assist with life skills/independence of students with moderate/severe intellectual 

disability and/or autism spectrum disorders: Considerations for the future of 

school psychology. Psychology in the Schools, 50(3), 259-271. 

 

Bagatell, N., Mirigliani, G., Patterson, C., Reyes, Y. & Test, L. (2010). Effectiveness of 

therapy ball chairs on classroom participation in children with autism spectrum 

disorders. American Journal of Occupational Therapy, 64(6), 895-903. 

 

Borenstein, M., Cooper, H., Hedges, L. & Valentine, J. (2009). Effect sizes for 

continuous data. The handbook of research synthesis and meta-analysis, 2, 221-

235. 

 

Brossart, D. F., Parker, R. I., Olson, E. A., & Mahadevan, L. (2006). The relationship 

between visual analysis and five statistical analyses in a simple AB single-case 

research design. Behavior Modification, 30(5), 531-563. 

 

 

 



98 

Brossart, D. F., Vannest, K. J., Davis, J. L. & Patience, M. A. (2014). Incorporating non-

overlap indices with visual analysis for quantifying intervention effectiveness in 

single-case experimental designs. Neuropsychological Rehabilitation, 24(3-4), 

464-491. 

 

Callahan, K., Henson, R. K. & Cowan, A. K. (2008). Social validation of evidence-based 

practices in autism by parents, teachers, and administrators. Journal of Autism and 

Developmental Disorders, 38(4), 678-692. 

 

Carlin, M. T., & Costello, M. S. (2018). Development of a Distance-Based Effect Size 

Metric for Single-Case Research: Ratio of Distances. Behavior Therapy. 

 

Carnahan, C. A. & Williamson, P. S. (2013). Does compare-contrast text structure help 

students with autism spectrum disorder comprehend science text? Exceptional 

Children, 79(3), 347-363.  

 

Carter, E. W., Sisco, L. G., Chung, Y. & Stanton-Chapman, T. L. (2010). Peer 

interactions of students with intellectual disabilities and/or autism: A map of the 

intervention literature. Research & Practice for Persons with Severe Disabilities, 

35, 36–79. 

 

Centers for Disease Control and Prevention. (2010). Nutrition. Retrieved from 

http://www.cdc.gov/nutrition/ 

 

Centers for Disease Control and Prevention. (2014). Prevalence of Autism Spectrum 

Disorder among children aged 8 years. Morbidity and Mortality Weekly Report. 

Retrieved from http://www.cdc.gov/mmwr/ 

 

Chen, M., Hyppa-Martin, J. K., Reichle, J. E. & Symons, F. J. (2016). Comparing single 

case design overlap-based effect size metrics from studies examining speech 

generating device interventions. American Journal on Intellectual and 

Developmental Disabilities, 121(3), 169-193. 

 

Cicero, F. R. & Pfadt, A. (2002). Investigation of a reinforcement-based toilet training 

procedure for children with autism. Research in Developmental Disabilities, 

23(5), 319-331. 

 

Cihak, D. F. & Foust, J. L. (2008). Comparing number lines and touch points to teach 

addition facts to students with autism. Focus on Autism and Other Developmental 

Disabilities, 23, 131-137. 

 

Cihak, D. F., Kildare, L. K., Smith, C. C., McMahon, D. D. & Quinn-Brown, L. (2012). 

Using video social stories™ to increase task engagement for middle school 

students with autism spectrum disorders. Behavior Modification, 36(3), 399-425 

 

http://www.cdc.gov/nutrition/
http://www.cdc.gov/mmwr/


99 

Cihak, D. F. & Schrader, L. (2008). Does the model matter? Comparing video self-

modeling and video adult modeling for task acquisition and maintenance by 

adolescents with autism spectrum disorders. Journal of Special Education 

Technology, 23(3), 9-20. 

 

Cihak, D. F., Smith, C. C., Cornett, A. & Coleman, M. B. (2012). The use of video 

modeling with the picture exchange communication system to increase 

independent communicative initiations in preschoolers with autism and 

developmental delays. Focus on Autism and Other Developmental Disabilities, 

27(1), 3-11. 

 

Cihak, D. F., Wright, R. & Ayres, K. M. (2010). Use of self-modeling static-picture 

prompts via a handheld computer to facilitate self-monitoring in the general 

education classroom. Education and Training in Autism and Developmental 

Disabilities, 136-149. 

 

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and 

psychological measurement, 20(1), 37-46. 

 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd. Hillsdale, 

NJ: Lawrence Erlbaum Associates. 

 

Cohen, R. J. & Swerdlik, M. E. (2005). Psychological testing and assessment: An 

introduction to tests and measurement. New York, NY: McGraw-Hill. 

 

Couper, L., Van der Meer, L., Schäfer, M. C., McKenzie, E., McLay, L., O'Reilly, M. F. 

& Sutherland, D. (2014). Comparing acquisition of and preference for manual 

signs, picture exchange, and speech-generating devices in nine children with 

autism spectrum disorder. Developmental Neurorehabilitation, 17(2), 99-109. 

 

Coleman-Martin, M. B., Heller, K. W., Cihak, D. F. & Irvine, K. L. (2005). Using 

computer-assisted instruction and the nonverbal reading approach to teach word 

identification. Focus on Autism and Other Developmental Disabilities, 20(2), 80-

90 

 

Council for Exceptional Children Working Group. (2014). Council for Exceptional 

Children: Standards for evidence-based practices in special education. 

TEACHING Exceptional Children, 46(6), 206–212. 

http://doi.org/10.1177/0040059914531389  

 

Crombie, I. K. (1996). The pocket guide to critical appraisal. London, United Kingdom: 

BMJ Publishing Group.  

 

Delano, M. E. (2007). Use of strategy instruction to improve the story writing skills of a 

student with Asperger syndrome. Focus on Autism and Other Developmental 

Disabilities, 22(4), 252-258. 

http://doi.org/10.1177/0040059914531389


100 

Franklin, R. D., Allison, D. B., & Gorman, B. S. (Eds.). (2014). Design and analysis of 

single-case research. Psychology Press. 

 

Fentress, G. M. & Lerman, D. C. (2012). A comparison of two prompting procedures for 

teaching basic skills to children with autism. Research in Autism Spectrum 

Disorders, 6(3), 1083-1090. 

 

Fisher, W. W., Kelley, M. E., & Lomas, J. E. (2003). Visual aids and structured criteria 

for improving visual inspection and interpretation of single‐case designs. Journal 

of Applied Behavior Analysis, 36(3), 387-406. 

 

Fletcher, D., Boon, R. T. & Cihak, D. F. (2010). Effects of the TouchMath program 

compared to a number line strategy to teach addition facts to middle school 

students with moderate intellectual disabilities. Education and Training in Autism 

and Developmental Disabilities, 45, 449-458. 

 

Ganz, J. B., Boles, M. B., Goodwyn, F. D. & Flores, M. M. (2014). Efficacy of handheld 

electronic visual supports to enhance vocabulary in children with ASD. Focus on 

Autism and Other Developmental Disabilities, 29(1), 3-12. 

 

Ghaziuddin, M., Ghaziuddin, N., & Greden, J. (2002). Depression in persons with 

autism: Implications for research and clinical care. Journal of Autism and 

Developmental Disorders, 32(4), 299-306 

 

Gunby, K. V., Carr, J. E. & LeBlanc, L. A. (2010). Teaching abduction‐prevention skills 

to children with autism. Journal of Applied Behavior Analysis, 43(1), 107-112. 

 

Hartley, S. L., Sikora, D. M., & McCoy, R. (2008). Prevalence and risk factors of 

maladaptive behaviour in young children with autistic disorder. Journal of 

Intellectual Disability Research, 52(10), 819-829. 

 

Harvey, S. T., Boer, D., Meyer, L. H., & Evans, I. M. (2009). Updating a meta-analysis 

of intervention research with challenging behaviour: Treatment validity and 

standards of practice. Journal of Intellectual and Developmental Disability, 34(1), 

67-80. 

 

Hedges, L. V., Pustejovsky, J. E. & Shadish, W. R. (2012). A standardized mean 

difference effect size for single case designs. Research Synthesis Methods, 3(3), 

224-239. 

 

Hedges, L. V., Pustejovsky, J. E. & Shadish, W. R. (2013). A standardized mean 

difference effect size for multiple baseline designs across individuals. Research 

Synthesis Methods, 4(4), 324-341 

 



101 

Hetzroni, O. E. & Ne'eman, A. (2013). Influence of colour on acquisition and 

generalisation of graphic symbols. Journal of Intellectual Disability Research, 

57(7), 669-680. 

 

Horner, R. H., Carr, E. G., Halle, J., McGee, G., Odom, S. & Wolery, M. (2005). The use 

of single-subject research to identify evidence-based practice in special education. 

Exceptional Children, 71(2), 165-179. 

 

Horner, R. H., Carr, E. G., Strain, P. S., Todd, A. W., & Reed, H. K. (2002). Problem 

behavior interventions for young children with autism: A research synthesis. 

Journal of Autism and Developmental Disorders, 32, 423–446. 

 

Individuals with Disabilities Education Act, 20 U.S.C. § 1400 (2004). 

 

Jang, J. & Matson, J. L. (2015). Autism severity as a predictor of comorbid conditions. 

Journal of Developmental and Physical Disabilities, 27(3), 405-415. 

 

Johnston, S. S., Buchanan, S. & Davenport, L. (2009). Comparison of fixed and gradual 

array when teaching sound-letter correspondence to two children with autism who 

use AAC. Augmentative and Alternative Communication, 25(2), 136-144. 

 

Kagohara, D., van der Meer, L., Achmadi, D., Green, V., O'Reilly, M., Lancioni, G. & 

Sigafoos, J. (2012). Teaching picture naming to two adolescents with autism 

spectrum disorders using systematic instruction and speech-generating devices. 

Research in Autism Spectrum Disorders, 6, 1224–1233. 

 

Kazdin, A. E. (2011). Single-case research designs: Methods for clinical and applied 

settings. Oxford University Press. 

 

Kazdin A.E. Single case research designs: Methods for clinical and applied settings. New 

York: Oxford; 1982. 

 

Kendall, M. G. (1962). Rank correlation methods (3rd ed.). New York, NY: Hafner. 

 

Kennedy, C. H. (2005). Single-case designs for educational research. Pearson/Allyn & 

Bacon. 

 

Kinnealey, M., Pfeiffer, B., Miller, J., Roan, C., Shoener, R. & Ellner, M. L. (2012). 

Effect of classroom modification on attention and engagement of students with 

autism or dyspraxia. American Journal of Occupational Therapy, 66(5), 511-519. 
 

Kittelman, A., Gion, C., Horner, R. H., Levin, J. R., & Kratochwill, T. R. (2018). 

Establishing Journalistic Standards for the Publication of Negative 

Results. Remedial and Special Education, 39(3), 171-176. 

 



102 

Koegel, L., Matos-Freden, R., Lang, R. & Koegel, R. (2012). Interventions for children 

with autism spectrum disorders in inclusive school settings. Cognitive and 

Behavioral Practice, 19(3), 401-412. 

 

Kratochwill, T. R., Hitchcock, J. H., Horner, R. H., Levin, J. R., Odom, S. L., Rindskopf, 

D. M. & Shadish, W. R. (2013). Single-case intervention research design 

standards. Remedial and Special Education, 34(1), 26-38. 

 

Kratochwill, T. R., Hitchcock, J., Horner, R. H., Levin, J. R., Odom, S. L., Rindskopf, D. 

M. & Shadish, W. R. (2010). Single-case designs technical documentation. What 

works clearinghouse. 

 

Kurt, O. & Tekin-Iftar, E. (2008). A comparison of constant time delay and simultaneous 

prompting within embedded instruction on teaching leisure skills to children with 

autism. Topics in Early Childhood Special Education, 28(1), 53-64. 

 

Lane, J. D. & Gast, D. L. (2014). Visual analysis in single case experimental design 

studies: Brief review and guidelines. Neuropsychological Rehabilitation, 24(3-4), 

445-463. 

 

Lenroot RK, Yeung PK (2013): Heterogeneity within autism spectrum disorders: what 

have we learned from neuroimaging studies? Frontiers in Human Neuroscience. 

7. 

 

Levitt, P. & Campbell, D. B. (2009). The genetic and neurobiologic compass points 

toward common signaling dysfunctions in autism spectrum disorders. The Journal 

of Clinical Investigation, 119(4), 747-754. 

 

Logan, L. R., Hickman, R. R., Harris, S. R., & Heriza, C. B. (2008). Single-subject 

research design: Recommendations for levels of evidence and quality rating. 

Developmental Medicine & Child Neurology, 50, 99-103. 

 

Lorah, E. R., Tincani, M., Dodge, J., Gilroy, S., Hickey, A. & Hantula, D. (2013). 

Evaluating picture exchange and the iPad™ as a speech generating device to 

teach communication to young children with autism. Journal of Developmental 

and Physical Disabilities, 25(6), 637-649. 

 

Ma, H. H. (2006). An alternative method for quantitative synthesis of single-subject 

research: Percentage of data points exceeding the median. Behavior Modification, 

30, 598–617. 

 

Machalicek, W., & Horner, R. H., (2018) Special issue on advances in single-case 

research design and analysis, Developmental Neurorehabilitation, 21:4, 209-211, 

DOI: 10.1080/17518423.2018.1468600 

 

 



103 

Maggin, D. M., & Chafouleas, S. M. (2010). PASS-RQ: Protocol for assessing single-

subject research quality. Unpublished research instrument. 

 

Mannion, A., Leader, G. & Healy, O. (2013). An investigation of comorbid psychological 

disorders, sleep problems, gastrointestinal symptoms and epilepsy in children and 

adolescents with autism spectrum disorder. Research in Autism Spectrum 

Disorders, 7, 35–42. 

 

Manolov, R., Jamieson, M., Evans, J. J., & Sierra, V. (2015). Probability and visual aids 

for assessing intervention effectiveness in single-case designs: A field test. 

Behavior Modification, 39(5), 691-720. 

 

Manolov, R., & Solanas, A. (2009). Percentage of non-overlapping corrected data. 

Behavior Research Methods, 41, 1262-1271. 

 

Marcus, A. & Wilder, D. A. (2009). A comparison of peer video modeling and self-video 

modeling to teach textual responses in children with autism. Journal of Applied 

Behavior Analysis, 42(2), 335-341. 

 

Mason, R. A., Ganz, J. B., Parker, R. I., Burke, M. D. & Camargo, S. P. (2012). 

Moderating factors of video-modeling with other as model: A meta-analysis of 

single-case studies. Research in Developmental Disabilities, 33(4), 1076-1086. 

 

Matson, J. L., Rieske, R. D. & Williams, L. W. (2013). The relationship between autism 

spectrum disorders and attention-deficit/hyperactivity disorder: an overview. 

Research in Developmental Disabilities, 34(9), 2475-2484 

 

Matson, J. L., & Williams, L. W. (2013). Differential diagnosis and comorbidity: 

Distinguishing autism from other mental health issues. Neuropsychiatry, 3(2), 

233-243. 

 

Mazurek, M. O., Kanne, S. M. & Wodka, E. L. (2013). Physical aggression in children 

and adolescents with autism spectrum disorders. Research in Autism Spectrum 

Disorders, 455–465. 

 

Morales, M., Domínguez, M. L., & Jurado, T. (2001). The influence of graphic 

techniques in the evaluation of the effectiveness of treatment in time-series 

design. Quality and Quantity, 35(3), 277-290. 

 

Mucchetti, C. A. (2013). Adapted shared reading at school for minimally verbal students 

with autism. Autism, 17(3), 358-372. 

 

Muller, M. P., Tomlinson, G., Marrie, T. J., Tang, P., McGeer, A., Low, D. E., ... & Gold, 

W. L. (2005). Can routine laboratory tests discriminate between severe acute 

respiratory syndrome and other causes of community-acquired 

pneumonia? Clinical infectious diseases, 40(8), 1079-1086. 



104 

National Professional Development Center on Autism Spectrum Disorders. (2009). 

Evidence-based practices for children and youth with ASD. Retrieved June 14, 

2011 from 

http://autismpdc.fpg.unc.edu/sites/autismpdc.fpg.unc.edu/files/EBP_Update_Revi

ewer_Training_printversion.pdf. 

 

Nakagawa, S. Cuthill, I. C. (2007). Effect size, confidence interval and statistical 

significance: a practical guide for biologists. Biological Reviews 82, 591–605.  

 

Ninci, J., Vannest, K. J., Willson, V., & Zhang, N. (2015). Interrater agreement between 

visual analysts of single-case data: A meta-analysis. Behavior Modification, 

39(4), 510-541. 

 

Odom, S. L. (2009). The tie that binds: Evidence-based practice, implementation science, 

and outcomes for children. Topics in Early Childhood Special Education, 29(1), 

53-61. 

 

Ottenbacher, K. J. (1993). Interrater agreement of visual analysis in single-subject 

decisions: Quantitative review and analysis. American Journal on Mental 

Retardation. 

 

Parker, R. I. & Hagan-Burke, S. (2007). Median-based overlap analysis for single case 

data. Behavior Modification, 31(6), 919–936.  

 

Parker, R. I., Hagan-Burke, S., & Vannest, K. (2007). Percent of all non-overlapping data 

(PAND): An alternative to PND. The Journal of Special Education, 40, 194–204. 

  

Parker, R. I. & Vannest, K. (2009). An improved effect size for single-case research: 

Non-overlap of all pairs. Behavior Therapy, 40(4), 357-367. 

 

Parker, R. I., & Vannest, S., (2007). Pairwise data overlap for single case research. 

Unpublished manuscript. 

 

Parker, R. I., Vannest, K. J. & Brown, L. (2009). The improvement rate difference for 

single-case research. Exceptional Children, 75(2), 135-150. 

 

Parker, R. I., Vannest, K. J. & Davis, J. L. (2011). Effect size in single-case research: A 

review of nine non-overlap techniques. Behavior Modification, 35(4), 303–322. 

  

Parker, R. I., Vannest, K. J., Davis, J. L. & Sauber, S. B. (2011). Combining non-overlap 

and trend for single-case research: Tau-U. Behavior Therapy, 42(2), 284-299. 

 

Palmen, A., Didden, R. & Arts, M. (2008). Improving question asking in high-

functioning adolescents with autism spectrum disorders: Effectiveness of small-

group training. Autism, 12(1), 83-98. 

http://autismpdc.fpg.unc.edu/sites/autismpdc.fpg.unc.edu/files/EBP_Update_Reviewer_Training_printversion.pdf
http://autismpdc.fpg.unc.edu/sites/autismpdc.fpg.unc.edu/files/EBP_Update_Reviewer_Training_printversion.pdf


105 

Paterson, C. R. & Arco, L. (2007). Using video modeling for generalizing toy play in 

children with autism. Behavior Modification, 31(5), 660-681. 

 

Pennington, R. C. (2010). Computer-assisted instruction for teaching academic skills to 

students with autism spectrum disorders: A review of literature. Focus on Autism 

and Other Developmental Disabilities, 25, 239–248. 

 

Petersen-Brown, S., Karich, A. C. & Symons, F. J. (2012). Examining estimates of effect 

using non-overlap of all pairs in multiple baseline studies of academic 

intervention. Journal of Behavioral Education, 21(3), 203-216. 

 

Pierucci, J. M., Barber, A. B., Gilpin, A. T., Crisler, M. E. & Klinger, L. G. (2015). Play 

assessments and developmental skills in young children with autism spectrum 

disorders. Focus on Autism and Other Developmental Disabilities, 30(1), 35-43. 

 

Polychronis, S., McDonnell, J., Johnson, J., Riesen, T. & Jameson, M. (2004). A 

comparison of two trial distribution schedules in embedded instruction. Focus on 

Autism and Other Developmental Disabilities, 19(3), 140-151. 

 

Rakap, S. (2015). Effect sizes as result interpretation aids in single‐subject experimental 

research: Description and application of four non-overlap methods. British 

Journal of Special Education, 42(1), 11-33. 

 

Rakap, S., Snyder, P. & Pasia, C. (2014). Comparison of non-overlap methods for 

identifying treatment effect in single-subject experimental research. Behavioral 

Disorders, 39(3), 128-145. 

 

Ray, D. C. (2015). Single-case research design and analysis: Counseling applications. 

Journal of Counseling & Development, 93, 394–402. 

 

Reagon, K. A., Higbee, T. S. & Endicott, K. (2006). Teaching pretend play skills to a 

student with autism using video modeling with a sibling as model and play 

partner. Education and Treatment of Children, 517-528. 

 

Reichow, B. (2011). Development, procedures, and application of the evaluative method 

for determining evidence-based practices in autism. In Reichow et al. (Eds), 

Evidence-based practices and treatments for children with autism (pp. 25-39). 

Springer US. 

 

Reichow, B., Doehring, P., Cicchetti, D. V. & Volkmar, F. R. (Eds.). (2010). Evidence-

based practices and treatments for children with autism. Springer Science & 

Business Media. 

 

 

 

 



106 

Reichow, B., Volkmar, F., & Cicchetti, D. (2008). Development of the evaluative method 

for evaluating and determining evidence-based practices in autism. Journal of 

Autism and Developmental Disorders, 38, 1311–1319. doi:10.1007/ s10803-007-

0517-7 

 

Reisener, C. D., Lancaster, A. L., McMullin, W. A. & Ho, T. (2014). A preliminary 

investigation of evidence-based interventions to increase oral reading fluency in 

children with autism. Journal of Applied School Psychology, 30(1), 50-67. 

 

Riesen, T., McDonnell, J., Johnson, J., Polychronis, S. & Jameson, M. (2003). A 

comparison of constant time delay and simultaneous prompting within embedded 

instruction in general education classes with students with moderate to severe 

disabilities. Journal of Behavioral Education, 12(4), 241-259 

 

Riley-Tillman, T.C. & Burns, M.K. (2009). Evaluating educational interventions: Single 

case design for measuring response to intervention. New York: Guilford. 

 

Sancho, K., Sidener, T. M., Reeve, S. A. & Sidener, D. W. (2010). Two variations of video 

modeling interventions for teaching play skills to children with autism. Education 

and Treatment of Children, 33(3), 421-442. 

 

Schlosser, R. W. (2011). EVIDAAC Single-Subject Scale. Retrieved from 

http://www.evidaac.com/ratings/Single_Sub_ Scale.pdf 

 

Schlosser, R. W., Raghavendra, P., Sigafoos, J., Eysenbach, G., Blackstone, S., & 

Dowden, P. (2008). EVIDAAC Systematic Review Scale. Unpublished 

manuscript, Northeastern University, Boston, MA. 

 

Schlosser, R. W., Sigafoos, J., & Belfiore, P. (2009). EVIDAAC Comparative Single-

Subject Experimental Design Scale (CSSEDARS). Retrieved from 

http://www.evidaac.com/rat- ings/CSSEDARS.pdf 

 

Schneider, N., Goldstein, H., & Parker, R. (2008). Social skills interventions for children 

with autism: A meta-analytic application of percentage of all non-overlapping 

data (PAND). Evidence-Based Communication Assessment and Intervention, 2(3), 

152-162. 

 

Scruggs, T. E., Mastropieri, M. A., & Casto, G. (1987). The quantitative synthesis of 

single-subject research: Methodology and validation. Remedial and Special 

Education, 8, 24–33  

 

 Shadish, W. R. (2014). Statistical analyses of single-case designs: The shape of things to 

come. Current Directions in Psychological Science, 23(2), 139–146.  

 

 

http://www.evidaac.com/rat-%252520ings/CSSEDARS.pdf


107 

Shadish, W. R., Hedges, L. V., Horner, R. H. & Odom, S. L. (2015). The role of 

between-case effect size in conducting, interpreting, and summarizing single-case 

research (NCER 2015-002). Washington, DC: National Center for Education 

Research, Institute of Education Sciences, U.S. Department of Education. 

  

Shillingsburg, M. A., Powell, N. M. & Bowen, C. N. (2013). Teaching children with 

autism spectrum disorders to mand for the removal of stimuli that prevent access 

to preferred items. The Analysis of Verbal Behavior, 29(1), 51. 

 

Sigafoos, J., Arthur-Kelly, M. & Butterfield, N. (2006). Enhancing everyday 

communication for children with disabilities. Baltimore, MD: Paul H Brookes 

Publishing Co. 

 

Silk, J. (1992). Silk Scientific [UN-SCAN-IT]. Utah: Orem 

 

Simeonsson, R. J., & Bailey Jr, D. B. (1991). Evaluating programme impact: Levels of 

certainty. In Early intervention studies for young children with special needs (pp. 

280-296). Springer US. 

 

Smith, J. D. (2012). Single-case experimental designs: A systematic review of published 

research and current standards. Psychological Methods, 17, 510–550. 

 

Smith, T., Scahill, L., Dawson, G., Guthrie, D., Lord, C., Odom, S., . . .Wagner, A. 

(2007). Designing research studies on psychosocial interventions in autism. 

Journal of Autism and Developmental Disorders, 37, 354–366. 

 

Smith, V., Jelen, M., & Patterson, S. (2009). Video modeling to improve play skills in a 

child with autism: A procedure to examine single-subject experimental research. 

Evidence- Based Practice Briefs, 4, 1–13. 

 

Spencer, V. G., Evmenova, A. S., Boon, R. T. & Hayes-Harris, L. (2014). Review of 

research-based interventions for students with autism spectrum disorders in 

content area instruction: Implications and considerations for classroom practice. 

Education and Training in Autism and Developmental Disabilities, 49, 331–353. 

 

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 

1285-1293. 

 

Tarlow, K. R. (2016). An Improved Rank Correlation Effect Size Statistic for Single-

Case Designs: Baseline Corrected Tau. Behavior Modification, 

0145445516676750. 

 

Task Force on Evidence-Based Interventions in School Psychology. (2003). Procedural 

and coding manual for review of evidence-based interventions. Retrieved from 

http://www.indiana.edu/~ebi/documents/_workingfiles/ EBImanual1.pdf 

 



108 

Tate, R. L., McDonald, S., Perdices, M., Togher, L., Schultz, R., & Savage, S. (2008). 

Rating the methodological quality of single- subject designs and n-of-1 trials: 

Introducing the single-case experimental design (SCED) scale. 

Neuropsychological Rehabilitation, 18, 385-401. 

 

Taylor, B. A., Hughes, C. E., Richard, E., Hoch, H. & Coello, A. R. (2004). Teaching 

teenagers with autism to seek assistance when lost. Journal of Applied Behavior 

Analysis, 37(1), 79-82. 

 

Tekin-Iftar, E. & Birkan, B. (2010). Small group instruction for students with autism 

general case training and observational learning. The Journal of Special 

Education, 44(1), 50-63. 

 

Thiemann, K. S., & Goldstein, H. (2001). Social stories, written text cues, and video 

feedback: Effects on social communication of children with autism. Journal of 

Applied Behavior Analysis, 34(4), 425-446. 

 

Tincani, M. (2004). Comparing the picture exchange communication system and sign 

language training for children with autism. Focus on Autism and other 

Developmental Disabilities, 19(3), 152-163. 

 

U.S. Department of Education, National Center for Education Statistics. (2012). Digest of 

education statistics, 2011 (NCES 2012-001), Chapter 2. 

 

Valentine, J. C., Tanner-Smith, E. E., Pustejovsky, J. E. & Lau, T. S. (2016). Between-

case standardized mean difference effect sizes for single-case designs: a primer 

 

Van der Meer, L., Kagohara, D., Roche, L., Sutherland, D., Balandin, S., Green, V. A. &. 

Sigafoos, J. (2013). Teaching multi-step requesting and social communication to 

two children with autism spectrum disorders with three AAC options. AAC: 

Augmentative and Alternative Communication, 29(3), 222-234.  

 

Van Steensel, F. J., Bögels, S. M. & Perrin, S. (2011). Anxiety disorders in children and 

adolescents with autistic spectrum disorders: A meta-analysis. Clinical Child and 

Family Psychology Review, 14(3), 302-317. 

 

VanMeter, L., Fein, D., Morris, R., Waterhouse, L., & Allen, D. (1997). Delay versus 

deviance in autistic social behavior. Journal of Autism and Developmental 

Disorders, 27, 557–569. 

  

Vannest, K. J. & Ninci, J. (2015). Evaluating Intervention Effects in Single‐Case 

Research Designs. Journal of Counseling & Development, 93(4), 403-411. 

 

Volkmar, F., Carter, A., Grossman, J., & Klin, A. (1997). Social development in autism. 

In D. Co- hen & F. Volkmar (Eds.), Handbook of autism and pervasive 

developmental disorders (pp. 173–194). New York: Wiley.  



109 

Wang, S.-Y., & Parrila, R. (2008). Quality indicators for single-case research on social 

skill interventions for children with autistic spectrum disorder. Developmental 

Disabilities Bulletin, 36, 81–105. 

 

Wendt, O. (2009, May). Calculating effect sizes for single-subject experimental designs. 

Paper presented at the Ninth Annual International Campbell Collaboration 

Colloquium, Oslo, Norway. 

 

White, O. R., & Haring, N. G. (1980). Exceptional teaching: A multimedia training 

package. Columbus, OH: Merrill. 

 

Wilson, K. P. (2013). Teaching social-communication skills to preschoolers with autism: 

Efficacy of video versus in vivo modeling in the classroom. Journal of Autism 

and Developmental Disorders, 43(8), 1819-1831. 

 

Wolery, M., Busick, M., Reichow, B. & Barton, E. E. (2010). Comparison of overlap 

methods for quantitatively synthesizing single-subject data. The Journal of 

Special Education, 44(1), 18-28. 

 

Wolfe, K., Seaman, M. A., & Drasgow, E. (2016). Interrater agreement on the visual 

analysis of individual tiers and functional relations in multiple baseline designs. 

Behavior Modification, 40(6), 852-873. 

 

Wong, C., Odom, S. L., Hume, K. A., Cox, A. W., Fettig, A., Kucharczyk, S., … Schultz, 

T. R. (2015). Evidence-based practices for children, youth, and young adults with 

autism spectrum disorder: A comprehensive review. Journal of Autism and 

Developmental Disorders, 45(7), 1951-1966. 

 

Ximenes, V. M., Manolov, R., Solanas, A., & Quera, V. (2009). Factors affecting visual 

inference in single-case designs. The Spanish Journal of Psychology, 12(2), 823-

832. 

 

Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A 

fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39, 561–

577. 

 


