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 Earth’s hydrology is made up of complex systems which are spatially varied and 

influence a number of ecosystem processes. Complex ecosystems, in this case, are 

defined as those involving multiple bodies of water and land masses which are seasonally 

connected to one another through various processes, resulting in an intricate aquatic and 

terrestrial relationship in a single area. There have been advances in how we study these 

environments, yet it remains important to determine the most efficient tools in order to 

accurately monitor ecosystem health in these regions. Monitoring water quality in 

freshwater-dominated, wetland systems is costly and often impractical due to the remote 

locations of areas of interest. By exploring the methods of analysis in which remotely 

sensed data can be used to monitor changes in the spatial patterns of water quality, it is 

possible to study these complex ecosystems in a more frequent and effective manner. 
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CHAPTER I 

 

INTRODUCTION 

 

 Earth’s hydrology is made up of spatially varied, complex systems which 

influence a number of ecosystem processes. Complex ecosystems, in this case, are 

defined here as those involving multiple bodies of water and land masses which are 

seasonally connected to one another, resulting in an intricate aquatic-terrestrial 

relationship in a single area. There have been advances in the ways in which we study 

these environments, yet it remains important to determine the most efficient tools in order 

to accurately monitor ecosystem health in these regions. The process of monitoring water 

quality in freshwater-dominated, wetland systems is costly and often impractical due to 

the generally isolated locations of these areas of interest. By exploring the methods of 

analysis in which remotely sensed data such as satellite imagery can be used to monitor 

changes in the spatial patterns of water quality, it is possible to study these complex 

ecosystems in a more frequent and cost effective manner (Liu et al., 2003). 

Understanding how recent advances can aid in the monitoring of water resources in 

complex ecosystems will allow for a more comprehensive and systematic methodology 

which can be used to analyze water quality. 

 Monitoring water quality of water resources in complex ecosystems is paramount 

to the understanding of the natural dynamics of these systems. As aquatic ecosystems and 

water in general continues to be highly influenced by both human and environmental 

factors, methods for monitoring the quality of these resources have continued to develop. 

In remote and complex environments it is both “insufficient” and “impractical” to rely 

solely on in situ (or field collected) data when studying subjects such as water quality 
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(Long & Pavelsky, 2009). Limitations can arise from ground-based data collection 

surveys due to the isolated nature of some complex ecosystems. These limitations can in 

turn impact the overall data accuracy due to the inability of field measurements to capture 

heterogeneity of water quality measures throughout the extent of the study area as a 

whole (Liu et al., 2003). Satellite remote sensing can aid in the spatially unbiased 

approach to collecting water quality measures across broad regions as it can sample entire 

areas at once (Li & Li, 2004).  

 More recent interest in developing long term environmental monitoring projects 

has furthered the development of new techniques for remote sensing primarily because of 

its ability to provide a perspective not available through any other avenue (Liu et al., 

2003). The shift towards the use of remotely sensed data for aquatic ecosystem 

monitoring has taken many forms including: analysis of hydrologic recharge, volumetric 

storage fluctuation rates, hydrologic connectivity, flow velocity of river systems and 

more (Long & Pavelsky, 2013; Pavelsky & Smith, 2008; Pavelsky & Smith, 2009; Smith 

& Pavelsky, 2008). The use of remotely sensed data has allowed for studies previously 

not feasible or practical due to inaccessibility of study areas. 

 Development of new, more advanced multi-spectral and hyper-spectral sensors 

has opened the door for more accurate and precise analysis of satellite imagery. As the 

demand for long-term monitoring of environmental change, the implementation of 

remotely sensed data into scientific research has continued to grow due to the ability of 

sensors to capture data for the same area over multiple time periods (Liu et al., 2003).  

 Although the field of remote sensing has continued to develop methods for 

monitoring various aspects of aquatic ecosystem health there is still a sizable gap in the 
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literature related to the application of remote sensing techniques for studying water 

quality. A majority of previously published work focuses on single parameters in a single 

study area which was readily accessed through multiple field campaigns. While this 

approach is necessary for developing a new and innovative methodology, there has been 

limited application of these processes in complex ecosystems. It is necessary to apply 

these techniques to a variety of environments in order to understand how effective they 

are in monitoring water quality. 

 This research will work to determine the extent to which three specific water 

quality parameters can be measured through a coupling of in situ and satellite imagery. 

Landsat 4-5 TM data will be analyzed alongside in situ data collected during two field 

campaigns by researchers Colleen Long and Tamlin Pavelsky in 2010 and 2011 (results 

of their research published in 2013). Based on regression analysis of the field data and the 

results of the models, this study will identify how well current methods can accurately 

quantify various water quality parameters within the Peace-Athabasca Delta (PAD), 

Canada. The Peace-Athabasca Delta covers an area of about 5,600 km
2
 and is a mixture 

of lakes, rivers, shallow marshes, and terrestrial ecosystems (Timoney 2013). This study 

aims to analyze the ways in which water quality can be monitored using remotely sensed 

imagery, specifically in complex wetland ecosystems such as the PAD. The results of this 

study will address how well current methods for quantifying colored dissolved organic 

matter (CDOM), chlorophyll-a and suspended sediment concentration (SSC) in Landsat 

imagery are for monitoring water quality in a complex, aquatic ecosystem. Additionally, 

it will seek to understand the distribution of these parameters throughout the spatial 

extent of the study area of the PAD. This thesis will present an evaluation of current 
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methodological approaches to monitoring water quality in complex ecosystems by 

addressing the following research question:  

 

How well can Landsat imagery be utilized to detect dissolved organic carbon, 

chlorophyll-a concentrations and suspended sediment content from high latitude lakes 

and rivers? 

 

 Ultimately, this study will work to contribute to the body of literature by applying 

previously developed methods to a unique and complex system with the intent of 

producing a methodology which can be applied to other complex ecosystems. If, for 

example, CDOM is able to be predicted from Landsat imagery in the PAD it might be 

possible to monitor in many other regions, and with historical imagery.  
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CHAPTER II 

 

BACKGROUND 

 

Monitoring Water Quality in Freshwater Systems 

 Traditional methods for monitoring and measuring water quality parameters 

typically require researchers to travel to the field location for water samples and other 

observations for analysis. This process can be not only be time consuming but also 

expensive and logistically challenging. Not only can the equipment be costly but the 

transportation can be as well. In complex wetland systems like the PAD, it is extremely 

difficult to navigate the entire study are due to the nature of the area. While the area is 

hydraulically linked through a series of smaller streams and lakes connecting the larger 

rivers and lake systems to one another, transporting researchers as well as the necessary 

equipment can be almost impossible in many portions of the PAD. In regions where 

water quality can be monitored and water can be sampled it is extremely costly to 

logistically travel to those locations. The expansion of technology such as remote sensing 

has allowed for changes in how water quality is monitored in freshwater ecosystems. Not 

only does remote sensing change the spatial and temporal scales which can be monitored, 

but it also elucidates the relationship between the hydrology, landscape and organisms 

within the ecosystem (Mertes, 2002). Integration of satellite-based monitoring of water 

bodies, coupled with traditional sampling methods, offers the most efficient way to 

analyze and monitor water quality data (Liu et al., 2010). Additionally, remote sensing 

allows for more effective analysis of the immense amount of variability throughout a 

landscape because of the spatial resolution of satellite based sensors. One of the 

advantages of utilizing this technology is that it can be used to apply similar methods to 
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any imagery across the globe which might not otherwise be able to be monitored 

frequently or at all for one reason or another. These technologies can also potentially 

allow for the estimation of historical water quality values in regions where ground 

measurements were not recorded due to the extensive collection of archived Landsat data 

(Kulkarni, 2011). The implementation of remote sensing technology, coupled with 

traditional field measurements has the potential to improve not only the quality of water 

quality measurements but also the spatial extent and frequency of such monitoring 

activities. 

Water Quality Parameters 

 Water quality is a measure of the biological, chemical and physical properties of 

water (Liu et al., 2003). To study these aspects of water, research is primarily conducted 

by collecting samples in the field and performing analysis in a laboratory setting. There 

are a number of parameters that describe freshwater quality including: suspended 

sediment, pH, microorganism composition, minerals, chlorophyll content, water 

temperature, salinity, and bathymetric properties. Dissolved elements are also of great 

importance when determining the overall quality of water. While the acceptable 

concentrations of these elements may vary depending on the intended use of the water, 

even small changes in their respective concentrations can have a significant negative 

impact on the health of both humans and aquatic organisms. CDOM, chlorophyll-a and 

SSC were selected as the water quality parameters in this study not only because of the 

role they play in determining general aquatic ecosystem health, but also because of their 

applicability to a variety of other regions.  
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 The carbon cycle is based primarily on carbon dioxide which is fixed by plants 

through photosynthesis. For aquatic systems, carbon is important to monitor because of 

its role in photosynthesis and primary productivity (Spellman & Drinan, 2001). Studying 

Dissolved organic carbon (DOC) in aquatic ecosystems is significant in that wetlands and 

lakes act as sinks for atmospheric carbon and play a large role in carbon cycling at a 

global level (Cardille et al., 2013; Kutser et al., 2014). CDOM can be used as a proxy for 

monitoring DOC. Griffin et al. (2011) developed a simple algorithm for converting 

CDOM to DOC. Chlorophyll content is an indicator of primary productivity (particularly 

in regards to phytoplankton in aquatic ecosystems) and can be informative when 

monitoring eutrophication and algal blooms (Huang et al., 2014). Chlorophyll-a is a 

pigment that is found in almost all plants and is critical for photosynthesis to occur. 

Generally, concentrations of chlorophyll-a are used to determine the trophic status and 

water quality (Kulkarni, 2011; Huang et al., 2014). Water clarity is an important factor in 

ecosystem health in terms of light penetration and availability for both plant and animal 

species. This element of ecosystem health can be influenced by SSC which can block 

sunlight or limit the depth at which the light is able to penetrate a body of water. In the 

case of inland deltas like the PAD, sediment transport and deposition plays a large role in 

shaping the landscape and nutrient dynamics (Long & Pavelsky, 2013). These three water 

quality parameters are important in all freshwater systems, therefore analyzing these in 

particular will allow for the results of this study to be more widely applied. 
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Study Area 

General 

 The PAD is composed of a mix of terrestrial and aquatic ecosystems which has a 

watershed spanning about 595,000 km
2
 (Timoney, 2013). Within the extent of the PAD, 

there are numerous active deltas, rivers, and lakes which are connected to one another 

through a variety of small channels. This study will explore the ways in which remotely 

sensed data in combination with data collected in situ can be used to monitor changes in 

water quality. The Peace-Athabasca Delta is an ideal study area for this work because of 

the direct interaction between its terrestrial and aquatic ecosystems. This region displays 

a highly spatially heterogeneous pattern between its terrestrial and aquatic ecosystem 

processes, but has proven difficult to monitor using traditional field methods due to the 

heterogeneous and remote nature of the landscape. These characteristics make the PAD it 

an ideal study site for developing remote sensing methodologies because of the amount 

of variation in water bodies within a single area.  

 Located in the northeastern corner of Alberta, Canada, the Peace-Athabasca Delta 

is found within the Wood Buffalo National Park and is a UNESCO World Heritage Site. 

It was deemed a UNESCO World Heritage Site in 1983 based on its outstanding 

ecological and biological diversity. The PAD, which is located within the Wood Buffalo 

National Park, contains high concentrations of migratory wildlife and is one of the largest 

inland deltas in the world. In addition, it is the largest examples of the Great Plains-

Boreal grassland ecosystem within North America (UNESCO World Heritage Centre, 

2018). With a watershed of about 595,200 km
2
, the Peace-Athabasca Delta (PAD) is the 

combination of two river deltas as the name suggests, the Peace and the Athabasca, that 
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have formed in Lake Athabasca. The Peace Delta is considered inactive because the 

Peace River and the sediment it transports generally bypass the delta under present-day 

conditions. Currently, the Peace Delta is composed of a combination of marshes and 

mudflats which experience occasional flooding. In contrast, the Athabasca Delta is active 

as the Athabasca River drains through the delta and flows into Lake Athabasca (Timoney, 

2013).  

 The largest lake connected with the PAD is Lake Athabasca, however only the 

western-most end where the Athabasca Delta is located is considered to be within the 

PAD for this study (Figure 1). The Athabasca Delta receives water from the Athabasca 

River. Lake Claire, located on the western edge of the PAD study area, is the second 

largest lake within this inland delta (Figure 1). Between Lake Claire and Lake Athabasca 

are a number of smaller lakes including Baril and Mamawi Lake. Within the wetland area 

between Lake Claire and Lake Athabasca are hundreds of channels, ponds and shallow 

lakes (defined as those that are less than 2m deep) which are not directly connected to 

surrounding rivers. These smaller hydrologic features are recharged at various times by 

other features and in some cases groundwater (Timoney, 2013). The PAD has high water 

tables which sometimes discharge groundwater at the surface. In areas where surface 

groundwater discharge occurs, it is either lost to evapotranspiration or diffused within 

surface waters. 
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Figure 1: Landsat image of the PAD’S location within Canada (from Pavelsky & Smith, 2009). 
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Hydrology and Flow Patterns  

  

 About 90% of the PAD is composed of deltaic landforms with the other 10% 

being made up of nondeltaic features. Some key deltaic landforms include: active deltas, 

distributary channels, lakes, ponds, and mudflats. Nondeltaic features include: alluvial 

terraces, raised beaches, bedrock outcrops, and peatlands.  

 There are currently three main active deltas in the PAD, including the Athabasca 

River Delta, the Birch River Delta and the Cree/Mamawi Creek Delta (Figure 2). Despite 

being formed primarily by deltaic sediments, only about 5% of the total area of the PAD 

is currently experiencing active deltaic deposition. Since the PAD is made up of hundreds 

of interconnecting channels, shallow lakes and wetlands, the ecosystem is very dependent 

on hydrologic recharge (Pavelsky & Smith, 2008). The main source of water (represented 

as primary flow in Figure 2) and sediment input for the PAD is the Athabasca River. The 

Athabasca River flows north, entering the PAD from the south, where it ultimately 

reaches the Athabasca Delta and inputs water and sediment into Lake Athabasca (Figure 

2). Mamawi Lake receives water through a variety of sources. Some water from the 

Athabasca River moves into the Embarras River which then flows into Mamawi Lake 

through the Cree/Mamawi Creek Delta (Figure 2). Lake Claire once received inputs from 

what are now inactive portions of the Peace and Athabasca Deltas, the only currently 

active delta which drains into Lake Claire is the Birch Delta (Figure 2). The complexity 

of this system speaks to the interconnectedness of a variety of hydrologic features within 

the PAD since water from one river can be transported across the rest of the region during 

certain flood conditions. 
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Primary Flow Direction 

Intermittent,  

Small Channel Flow Direction 

Potential Flow Direction 

Figure 2: Map of flow patterns throughout the PAD including the three active deltas using Sentinel 2 imagery 

from 09/07/2017 using a RGB color scheme. In this image the green regions represent vegetation cover, blue 

illustrates bodies of water and the brown/pink tone shows bare earth. (Souces: PADEMP, USGS and Timoney, 

2013) 

 

Legend 
 

A & B – Athabasca Delta 

C – Cree/ Mamawi Delta 

D – Birch Creek Delta 

1 – Peace River 

2 – Rivere des Rochers 

3 – Chenal Des Quatre Fourches 

4 – Mamawi Creek 

5 – Embarras River 

6 – Athabasca River 

7 – Birch River 
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 Occasionally the Peace River will experience ice-jams which will lead to flow 

reversal of the river (Pavelsky & Smith, 2008). Due to the relatively flat nature of the 

PAD, many channels experience backflooding or even flow reversal (represented by 

potential flow in Figure 2) depending on the levels of Lakes Claire and Athabasca, as 

well as the Peace, Athabasca and Birch Rivers (Timoney, 2013). Smaller, closed drainage 

basins within the wetland areas rely on flooding events caused by ice-jams in the Peace 

River to recharge their water levels (Timoney, 2013). These closed-drainage basins are 

only connected to the major rivers during times of flooding and are too small to be 

included in Figure 2 (Timoney, 2013). Ice jams occur when ice blocks create a barrier 

somewhere along the Peace River and block the regular flow of water. These jams can 

last anywhere from a few minutes to multiple days and can be anywhere from a few 

hundred feet long to a few miles long (Beltaos et al., 2006). Major flooding events in the 

PAD occurred in 1972, 1974, 1996 and 1997, and have been attributed to ice jams that 

occurred along the Peace River (Beltaos et al., 2006). (The reach of the Peace Delta refers 

to the stretch of the Peace River which is displayed as intermittent, small channel flow in 

Figure 2). Some researchers came to the conclusion that there are a few particular 

conditions which must be met in order for ice-jam flooding to occur, including that the 

jam “must form within the delta reach of the Peace” (Beltaos et al., 2006). Additionally, 

during flooding events, flow reversal can occur, connecting a variety of features to one 

another which are generally separated (represented by the double-sided arrows in Figure 

2). Sometimes the Peace River can flow south into Lake Claire, Baril Lake and Mamawi 

Lake due to ice-jams; other times simply due to high discharges represented as potential 

flow in Figure 2 by dashed lines (Timoney, 2013).  
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Geology and Formation 

 The PAD in its contemporary form began to develop around 10,000 years ago 

toward the end of the last glaciation; this exposed much of the modern delta’s area, which 

was filled primarily with meltwater after the retreat of the Laurentide Ice Sheet (Bayrock 

& Root, 1972). Bedrock below the PAD is composed of gypsum, Athabasca Sandstone, 

Devonian limestone, gneisses and Canadian Shield granites (Bayrock & Root, 1972). 

 When the delta began to form it did not resemble the current complexity. The 

PAD was mostly formed during the Pleistocene and early Holocene when sediment was 

primarily transported by the Peace River through sandy braided deltas into Lake Claire 

and Mamawi Lake (Figure 3). Later in the Holocene, both the Peace River and Athabasca 

River began transporting silt-clay sediment into the PAD. Additionally, when this change 

occurred, silt-clay sediment began to enter the PAD from the Birch River. Today, there is 

only occasional sediment input from the Peace River during times of ice-jam flooding 

and less sediment transport from the Athabasca River than in the past. There are currently 

only three primary active distributary mouths (A & B, C, D in Figure 2) which input sand 

dominated sediment into Lake Athabasca, Lake Claire and occasionally Mamawi Lake 

(which is located between Lake Claire and Lake Athabasca as shown in Figure 2) 

(Timoney, 2013).  
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Figure 3: Model showing the evolution of the PAD throughout the Holocene from Timoney (2013). 
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Soil Composition  

 The surficial deposits of the PAD are described as “deltaic alluvium composed of 

bedded calcareous silt, sand and clay” (Timoney, 2013). The soil orders found in the 

PAD include poorly drained Regosolic, Gleysolic and Organic soils according to 

National Soil Database of Canada. 

Regosols are rather immature soils with minimal profile development. Regosolic 

soils are also common in river floodplains with alluvial (fluvial) sediments as the parent 

material (Soils of Canada, 2016). In regions like the PAD, soils often experience 

prolonged water saturation within the upper horizons of the soil profile due the high 

water table in this area. This high degree of saturation results in gleysolic soils which 

often lack oxygen due to their high water content.  Gleysols in the PAD are generally 

formed from regosols that have experienced prolonged waterlogging. The diagnostic 

characteristic of gleysols is the presence of gleyed features within the upper 50cm of the 

soil profile. The saturated condition of this soil order slows the process of organic matter 

transformation within gleysols. As a result, organic matter will not infiltrate gleysolic 

soils as quickly, leading to the formation of a layer of organic matter at the top of the 

profile. In landscapes where decomposition rates decrease, the organic matter input from 

plant life builds up around the surface of the soil profile. This layer of organic matter at 

the top of the gleysolic soils often leads to the formation of organic soils (Soils of 

Canada, 2016). The most dominant soils found within Canadian wetland landscapes are 

categorized within the organic soil order (Soils of Canada, 2016). Some areas within the 

PAD have a water table within 50cm of the land surface, and prolonged flooding events. 

As a result of the high water table, the soil profile is saturated for most of the year. This 
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stagnant water becomes deoxygenated over time and is responsible for the soil becoming 

anaerobic which slows decomposition of organic material. The build-up of this organic 

material at the surface of the profile over time leads to the formation of organic soils 

(Soils of Canada, 2016). 
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CHAPTER III 

 

METHODS 

 

 There are two main goals for the methods of this thesis. The first is to test existing 

models that relate the imaged intensity of reflectance from Landsat 5TM imagery to in 

situ measurements of water quality parameters. The second goal is to develop improved 

models that relate Landsat imagery to water quality parameters. While there are some 

similarities between the methods and data sources utilized in this study and those used in 

the work of Long and Pavelsky in 2013 as well as other researchers, this study will not be 

restricted by the model forms and Landsat bands used by previous researchers. 

Data Acquisition 

 

 MODIS Aqua imagery would be ideal for monitoring water quality as it was 

developed to collect wavelength ranges most suitable for the analysis of water. However, 

it has a resolution which is too coarse (30m x 30m) and also is not available in scenes 

small enough to capture the Peace-Athabasca Delta. Landsat imagery is used because of 

its finer spatial resolution (15m x 15m), allowing for analysis of the relatively small area 

which the Peace-Athabasca Delta covers. The imagery for this study focuses on two 

Landsat 5 TM images obtained through USGS. Level-2 Landsat 5 TM surface reflectance 

imagery was available, therefore no additional preprocessing or atmospheric correction is 

necessary (USGS, 2015).  

 The in situ data used in this study was collected by researchers Colleen Long and 

Tamlin Pavelsky of the University of North Carolina at Chapel Hill in the summers of 

2010 and 2011 (Figure 4). The data include a variety of parameters: temperature, 

turbidity, chlorophyll content, color dissolved organic matter (CDOM), suspended 
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sediment concentration (SSC) secchi disc depth, surface flow velocity, and water depth. 

The 2010 dataset collected on June 23
rd

 and July 5
th

, 2010 included a total of 177 data 

points, 72 collected from lakes and 105 collected from rivers. The 2011 dataset was 

collected on June 30
th

 and July 3
rd

, 2011 included a total of 176 data points, 92 collected 

from lakes and 84 collected from rivers.  

 The first approach is using existing models to compare Landsat 5TM intensity to 

water quality using the aforementioned field data measurements and evaluating the 

existing models using indicators of fit. This approach will be detailed in the section 

“Application of Published Models” on page 23. 

The second approach is creating new regression models to better fit the field data 

to the Landsat 5TM data. These new models will not be limited by the approaches and 

bands used by authors in previous studies, for example those used by Griffin et al., 2011, 

Topliss et al., 1990 and Huang et al., 2014.  
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Figure 4: Map of in situ data points collected in 2010 & 2011 by Long & Pavelsky using the same background 

image as Figure 2. (Sources: USGS and Long & Pavelsky, 2013) 
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Models and Image Processing  

 

Model Workflow 

 In order to test the accuracy of existing, published models for predicting CDOM, 

SSC and Chl-a, as well as produce new models to best fit the data, the in situ water 

quality data collected by Long & Pavelsky was split into a calibration set and a validation 

set. The first step in this process is to test the published models. To do so, the published 

models were applied to the 2010 Landsat imagery (collected on July 22, 2010) and 

compared to the 2010 in situ measurements. New models were created and calibrated 

using the 2010 imagery and in situ data based on the performance of the published 

models. Once created, the new models were applied to the 2011 imagery (collected on 

July 25, 2011) and, in order to determine how accurately the new models were able to 

predict CDOM, SSC and Chl-a, the results were compared with the 2011 in situ data 

(Figure 5). 
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1. Initial Image Processing 

a. Stack individual bands to create multiband raster images for 2010 and 2011 

b. Subset multiband raster images to include only the study area for the 2010 and 

2011 imagery 

2. Application of Published Models 

a. Apply the formulas for each of the water quality parameters to the 2010 imagery 

using ERDAS Imagine Model Maker 

3. Extracting Values from Output Rasters – Published Models 

a. Extract raster values for each of the 2010 water quality raster outputs at the 

location of each of the 2010 in situ data points  

b. Compile all 2010 predicted values in a table to be compared with the 2010 in situ 

measurements 

4. Statistical Analysis – Published Models 

a. Run regression analysis in R to determine the relationship between the in situ 

measurements and the remotely sensed measurements for each of the three water 

quality parameters for the 2010 in situ data and 2010 imagery 

5. Model Revisions - Creation of New Models 

a. Based on the results of the regression analyses for each of the three water quality 

parameters, create new formulas for each parameter.  

6. Application of New Models 

a. Apply the new formulas for each of the water quality parameters to the 2011 

image only using ERDAS Imagine Model Maker 

7. Extracting Values from Output Rasters – New Models 

a. Extract raster values for each of the water quality raster outputs at the location of 

each of the in situ data points 

b. Compile all raster values in a table to be compared with the in situ measurements 

8. Statistical Analysis – New Models 

a. Run regression analysis in R to determine the relationship between the 2011 in 

situ measurements and the 2011 remotely sensed measurements each of the three 

water quality parameters 

 
Figure 5: General workflow used in this study. 
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Application of Published Models 

 

 This study applies the methods outlined in Cardille et al. (2013) and Smith & 

Pavelsky (2009) to monitor water quality in the PAD. The three main indicators used for 

water quality measurement in this study are CDOM, chlorophyll and SSC. To quantify 

these factors, previously published models were first applied to the 2010 imagery. 

Although the published models used in this study were not created or tested specifically 

in the PAD, they were developed in highly turbid, hydraulically complex landscapes 

similar to the hydrology of the study area.  

 A model created by Griffin et al. in 2011 in East Siberia was utilized in order to 

quantify CDOM. When monitoring SSC variations generally the greatest distinction is 

found in the red portion of the electromagnetic spectrum (Smith & Pavelsky, 2009). In 

order to quantify SSC, an algorithm developed by Topliss et al. in 1990 developed in Bay 

of Fundy and Beaufort Sea was used. To monitor chlorophyll content this study employs 

methods from Huang et al. (2014), developed in “inland lakes in China”, which utilizes a 

NIR-red two-band algorithm. (See Table 1 for formulas).  Each of these authors used 

different measures of statistical significance and therefore it is difficult to directly 

compare the results of these models. The output of the published models were plotted 

against the 2010 in situ data values for each water quality parameter, once they were 

applied to the 2010 imagery.  
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Water 

Quality 

Parameter 

Units Published Models Source 

CDOM ug/L 
CDOM = ln(-1.145 + 26.529(TM3) + 

0.603(TM2/TM1) 

Griffin et al. 

2011 

SSC cm/275mL 
ln(SSC) = -6.2 * (TM1/TM2) + 1.4 * 

(TM1/TM2)^2 + 10.8 

Topliss et al. 

1990 

Chl-a ug/L Chl-a = (1/TM1) * TM3 
Huang et al. 

2014 
 

Table 1: Published models used to quantify CDOM, SSC and Chl-a using 2010 Landsat 5TM imagery. (Bands used in 

each formula are denoted by TM1 representing band 1 of Landsat 5TM, TM2 representing band 2 etc.) 

 

 Using the Model Maker tool in ERDAS IMAGINE 2016 the published models 

were applied to the 2010 Landsat imagery. The output of these model output raster 

datasets quantifying the amount of CDOM, SSC and Chl-a within the 2010 imagery. For 

each of the output raster datasets, the pixel values which correspond with the 2010 field 

sample points collected by Long and Pavelsky were extracted and compiled into a table 

containing both the field measurements for each water quality parameter and the model 

output for each point. Rather than using an average of surrounding pixels, the pixel 

values which were collected were assigned based on the pixel located closest to the point. 

To determine how well the published models statistically fit with the in situ data from 

2010, regression analysis was conducted in the program R. These results helped to inform 

revisions to the published model in the next step of the process.   

Creation of New Models 

 As a part of the new model creation portion of the study the performance of the 

published models was evaluated in order to ultimately answer the question of how 

effective they are for estimating chlorophyll-a, CDOM and SSC. New models were 

created due to the high p-values and low R
2 

values resulting from the regression analysis 
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of the published models and the in situ data. Ultimately the published models were 

reworked and new models were created based on these results. 

 The first step in creating the new models in this study is to create histograms to 

better understand the distribution of the 2010 in situ data for each of the three water 

quality parameters. Additionally, the in situ data points were reclassified based on the 

type of water body the sample was collected from, either lake or river. This allowed for 

three area distinctions to be made among the data including all samples taken, samples 

taken exclusively from rivers, and samples taken exclusively from lakes (these categories 

will be referred to as the “three spatial units” from here on). This led to the creation of a 

total of nine histograms: CDOM, Chl-a and SSC for all in situ collection points in the 

study area, CDOM, Chl-a and SSC for in situ collection points taken from rivers-only and 

CDOM, Chl-a and SSC for in situ collection points taken from lakes-only. By separating 

the in situ data points, it allows for a better understanding of how the data is statistically 

distributed throughout the study area and if there is any difference in the statistical 

distribution from data in all-water areas of the PAD versus those collected in lakes and 

rivers. 

 The frequency distributions of the field data were far from normal when all the 

data points were together, making regression problematic. As none of the histograms 

displayed normal distribution it is clear that the data need to be normalized before the 

new models were created. For each variable for each of the three spatial units, the Box-

Cox Power Transformations was applied to normalize the in situ data (Box & Cox, 1964). 

To transform the value of the in situ data variable, the Box-Cox Power Transformation 

produces a value for lambda (λ) according to the following equation:  
      

 
.  For each of 
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the water quality parameters for each of the three spatial units this process of normalizing 

the data was conducted (Table 2). In order to normalize the histograms, the 

transformation equations were determined and are applied to each of the water quality 

parameters for each of the spatial unit datasets (Appendix: Histograms: Original & 

Normalized). In the Box-Cox Power Transformation, the lambda coefficient is a 

representation of transformation to normality, and Table 2 shows that the lakes and rivers 

have very different lambda values. Why might these be so different? The only reasonable 

answer is that there are different optical processing occurring in each of these 

environments, such as different water components or different mixing processes. 
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All Collection Points 
 

Water Quality 

Parameter 
Lamda (λ) 

Transformation 

Equation 

CDOM 1.2323 
          

      
 

SSC 0.2222 
          

      
 

Chl-a 0.7070 
          

      
 

 

 

River Collection Points 
 

Water Quality 

Parameter 
Lamda (λ) 

Transformation 

Equation 

CDOM 1.3131 
          

      
 

SSC 1.0707 
          

      
 

Chl-a 0.3434 
          

      
 

 

 

Lake Collection Points 
 

Water Quality 

Parameter 
Lamda (λ) 

Transformation 

Equation 

CDOM 0.7474 
          

      
 

SSC 0.1010 
          

      
 

Chl-a -0.0606 
           

       
 

 

Table 2: Box-Cox Power Transformation equations for each of the water quality parameters for the three spatial 

units(including lamda values) which were used to normalize the datasets. 
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 After the data were normalized, the next step in creating the new models was 

running a regression analysis in R to determine the equations for each water quality 

parameter within each of the spatial units. The normalized 2010 in situ data was plotted 

against the 2010 reflectance values from the 2010 Landsat 5TM imagery. It was 

necessary to determine the spectral bands (according to the Landsat 5TM sensor band 

distinctions) to be used in determining the relationship between the remotely sensed 

imagery and the water quality parameters in terms of R-squared and p-values once the 

linear equations were determined. 

 It is not explicitly known why certain model forms and bands were used in 

previously produced models, although it is likely they used some combination of 

theoretical and empirical reasoning. In this study, we may use different bands and band 

combinations compared to the previously published models. Based on research which 

found that the greatest amount of CDOM can be quantified based on wavelength ranges 

of 400-450 nm, Band 1 is used as it was decided to be the best for determining CDOM 

concentrations (Shi et al., 2017).  It is suggested that for SSC the range of 700-750 nm 

demonstrates the most obvious relationship between reflectance and this water quality 

parameter, but the Landsat 5TM sensor does not collect this range. Based on this 

limitation, Band 3 is to be used for quantifying SSC because this band illustrates the most 

variation in reflectance as it corresponds with increasing SSC values and is in a 

wavelength range collected by the sensor used in this study (Qu, 2014). Finally, based on 

the absorption properties of chlorophyll-a the combination of Band 2/Band 1 is used to 

calculate Chl-a. This type of chlorophyll absorbs  blue light around the 430-450 nm range 

corresponding to Landsat 5TM band 1 and displays the greatest reflectance around the 
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550 nm wavelength which corresponds with band 2 (Yu et al., 2010). In the use of a ratio 

of Band 2/Band 1, reflectance from band 2 should highlight chlorophyll-a while the 

reflectance in band 1 should normalize band 2 from the effects of atmospheric scattering. 

 For each of the water quality parameters the same spectral bands are used for each 

of the three spatial units (all water points, river points only and lake points only).  The 

slope and intercept terms in the equations vary depending on the regression analysis 

conducted between the selected band value for each water quality parameter and the 

corresponding in situ water quality measurements. 

Validation of New Models 

 Once the new equations were developed, they were validated using the 2011 

imagery and 2011 in situ data. To ensure that the validation process of these new models 

is robust and accurate these data were not used in the calibration process. A masked 

version of the imagery that includes all bodies of water (both rivers and lakes) was 

applied to the equations for all collection points whereas masked images that include only 

the river or only the lakes were applied to the river and lake collection point formulas 

respectively. Once the equations were applied to the 2011 masked images, the pixel 

values which corresponded with the 2011 Long and Pavelsky field samples are extracted, 

leading to three sets of water quality parameter measurements (CDOM, SSC and Chl-a 

for each spatial unit). These values were then compiled into three tables for each of the 

spatial units and compared with the in situ data measurements within the same unit. 

 To determine the statistical strength of the relationship, the results for the 

predicted values (new model values) are plotted against the observed (in situ values). 

Since the histograms were normalized as part of the calibration process in order to 
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determine the ultimate goodness of fit of each of the nine new models, the R-squared 

values are used validate the models. 
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CHAPTER IV 

 

RESULTS 

 

 This chapter will illustrate the results of the published models as well as the new 

models to show the spatial distribution of CDOM, SSC and Chl-a throughout the study 

area of the PAD. In addition, it will explore the goodness of fit and validation of the new 

models to demonstrate how well the models performed.  

Published Models Performance 

 

 In order to evaluate how well current methods are able to predict and quantify 

water quality parameters in complex environments such as the PAD the published models 

were applied to the 2010 imagery. R-squared and p-values are used to determine the 

statistical significance and goodness of fit of the published models (Table 3). Simply by 

looking at the graphs in Figure 6, it is clear that there is little to no relationship between 

the 2010 in situ data and the published model outputs from the 2010 imagery. The R-

squared and p-values also show low correlation between the two datasets, suggesting that 

the published models do not accurately quantify CDOM, SSC and Chl-a from the Landsat 

imagery used in this study. Unfortunately it is not possible to directly compare these 

results with the values from the original study areas because they did not use the same 

measures of statistical fit. For instance, Griffin et al., 2011 used R-squared and p-values, 

Topliss et al., 1990 used Spearman’s p and Huang et al., 2014 used RMSE. 

 

Water Quality Parameter R-Squared Value p-value 

CDOM 0.0014 0.265 

SSC -0.0023 0.4348 

Chl-a -0.0024 0.4504 
 

Table 3: Statistical results of the published models based on the 2010 data. 
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Figure 6: Graphs of results of the published models. (Red 1:1 line representing perfect model performance). 
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New Model Production 

 Once the various components are compiled, including the spectral bands as well 

as the slope and intercept terms for each water quality parameter for each of the spatial 

units, the equations can be formulated (Table 4). One immediately noticeable result of 

these models is in the case of the model predicting Chl-a in rivers and in lakes, the slopes 

of the equations are opposite for Chl-a. In the lake-only equation for Chl-a there is a 

negative relationship between green (band 2) and Chl-a; from an optical perspective, this 

is very unexpected. Chl-a should be strongly, positively related to green. The only 

reasonable hypothesis for why this inverse relationship exists is that there is some other 

material present in the water which covaries with Chl-a and has and inverse relationship 

with green. Unfortunately, it is unclear what is causing this relationship. 

Equations for All Water Points Units 

CDOM_All = -1.6943(Band 1) + 1704.0828 ug/L 

SSC_All = 0.012863(Band 3) – 0.334191 cm/275mL 

Chl-a_All = 3.2371(Band 2/Band 1) + 0.4726 ug/L 

  

Equations for River Points Only Units 

CDOM_Rivers = -1.2319(Band 1) + 1612.6339 ug/L 

SSC_Rivers = 0.021325(Band 3) - 2.016857 cm/275mL 

Chl-a_Rivers = 3.165(Band 2/Band 1) + 7.127 ug/L 

  

Equations for Lake Points Only Units 

CDOM_Lakes = -0.25967(Band 1) + 173.36537 ug/L 

SSC_Lakes = 0.0027862(Band 3) + 1.7630498 cm/275mL 

Chl-a_Lakes = -0.1844(Band 2/Band 1) + 2.2562 ug/L 
 

Table 4: New model equations for CDOM, SSC and Chl-a for each spatial unit. 

New Model Performance 

 

 In order to understand the relationship between the output of the new models and 

the associated in situ data measurements the R-square and p-values were analyzed. 
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Additionally, the results of the statistical analysis conducted in R were graphed with a red 

1:1 line representing perfect model performance where the outputs are equal to the 

measured in situ data (Figures 7-9).  
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Figure 7: Results of the new models for predicting each of the three water quality parameters throughout all the water 

points within the study area. (Red 1:1 line representing perfect model performance). 
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Figure 8: Results of the new models for predicting each of the three water quality parameters in the rivers within the 

study area. (Red 1:1 line representing perfect model performance). 
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Figure 9: Results of the new models for predicting each of the three water quality parameters in the lakes within the 

study area. (Red 1:1 line representing perfect model performance). 
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 Significant results for this study are considered to be R-squared values of greater 

than 0.2 and p-values of less than 0.05 (Table 5). The graphs as well as the R-squared and 

p-values strongly suggest that the new models performed better than the published 

models. All p-values for each of the nine new models suggested that the new models are 

more accurately able to quantify CDOM, SSC and Chl-a in all three of the spatial units. 

The models used for monitoring CDOM performed best, with R-squared values ranging 

from 0.2-0.3 which are quite a bit higher than any of the other models. The p-values 

associated with the CDOM models are also better than the other models which suggests 

that this water quality parameter can be quantified from remotely sensed imagery, such as 

Landsat 5TM, compared to other parameters. SSC performed second best with R-squared 

values ranging from 0.07-0.119 with p-values much less than 0.05. However, it is clear 

by looking at the graphs, the R-squared is not effectively representing the model 

performances. R-squared is mixing the offset and slope errors and clearly Figure 8 (SSC 

– Rivers Only – 2011) has a large slope error making the model actually perform worse 

than the R-squared suggests. The Chl-models did not perform very well. With R-squared 

values of less than 0.04 and p-values which are not all significant, the new models do not 

appear to quantify Chl-a very well, though the new models predicted Chl-a better than the 

published models.  
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All Water Points R-Squared Value p-value 

CDOM_All 0.3132 6.009e-16 

SSC_All 0.09033 2.851e-5 

Chl-a_All 0.00513 0.1737 

   

River Points Only R-Squared Value p-value 

CDOM_Rivers 0.2034 1.118e-5 

SSC_Rivers 0.119 0.0007177 

Chl-a_Rivers 0.04005 0.0415 

   

Lake Points Only R-Squared Value p-value 

CDOM_Lakes 0.38 3.66e-11 

SSC_Lakes 0.07553 0.004631 

Chl-a_Lakes -0.004713 -0.4456 
 

Table 5: Statistical results from the 2011 validation analysis of the new models. 

 Overall, the new models performed better at quantifying the three water quality 

parameters compared to the published models although they are still not ideal for 

accurately predicting water quality from remotely sensed imagery. 

Mapped Results of New Models 

 In order to validate the quality of each of the nine models which were developed 

in this portion of the study the new models were applied to the 2011 imagery. Depending 

on whether they were developed for all water within the study area, or only rivers or 

lakes each of the formulas were applied to the entirety of the 2011 imagery and masked 

accordingly. To compare the distribution of the particular water quality parameter 

quantified in each map, the results of the masked images were given the same color ramp; 

even though in some of the river-only images it does not appear to be much variation 

(Figures 10-18).  
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Figure 10: CDOM distribution for all water bodies in 2011 based on new model. 
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Figure 11: SSC distribution for all water bodies in 2011 based on new model. 
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Figure 12: Chl-a distribution for all water bodies in 2011 based on new model. 

 

 

  

  

Chl-a – New Model – 2011 – All Water 
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Figure 13: CDOM distribution for only river water bodies in 2011 based on new model. 
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Figure 14: SSC distribution for only river water bodies in 2011 based on new model. 
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Figure 15: Chl-a distribution for only river water bodies in 2011 based on new model. 
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Figure 16: CDOM distribution for only lake water bodies in 2011 based on new model.  

CDOM – New Model – 2011 – Lakes Only 
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Figure 17: SSC distribution for only lake water bodies in 2011 based on new model. 
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Figure 18: Chl-a distribution for only lake water bodies in 2011 based on new model. 
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CHAPTER V 

 

DISCUSSION 

 

 This chapter explores the results examined in the previous chapter and includes an 

interpretation of these results. Additionally, this section discusses possible reasoning for 

why certain patterns are displayed and the overall accuracy of each of the twelve models 

used throughout this study. The original research question associated with this research 

will be analyzed along with methodological limitations and other considerations that 

were taken. 

 

Data Acquisition 

 One significant difficulty with pursuing research in a study area as remote and 

complex as the PAD is the ability to conduct field work that directly coincides with 

satellite imagery collection. Ideally, in situ data measurements for each of the water 

quality parameters should be collected on the same day the Landsat sensor passed over 

the study area, however this is extremely hard to achieve logistically. Additionally, 

Landsat sensors (primarily those developed before Landsat 8) do not collect the 

wavelength ranges that are best for water quality monitoring.  For these reasons, MODIS 

Aqua data is ideal for this type of remote sensing because it collects the smaller ranges of 

reflectance that are have been documented as being the primary wavelength for extracting 

water quality data. However, in this small study area MODIS imagery could not be used 

because of coarse resolution of the imagery (30 meters x 30 meters). Even the resolution 

of the Landsat 5TM imagery that was used is insufficiently fine at 15 meter x 15 meters 

and therefore there were cases of pixel mixing where there is both land and water in a  
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number of pixels. There were no obvious cases of this mixing of pixels within the 

imagery, though mixing could have altered the results simply due to the limitations of the 

spatial resolution of the imagery. 

 The collection of in situ data may have also led to some possible errors in the 

overall results of this study. Since the PAD is such a complex environment it is extremely 

difficult to navigate, and was not necessarily possible for field measurements to be taken 

throughout the entirety of the study area. For instance, there were no water quality 

measurements collected in Lake Claire in 2010 or 2011 even though it is a major feature 

within the PAD. Additionally, not all sample locations that were sampled in 2010 were 

sampled again in 2011 which would have been ideal for this type of water quality study 

which divided the data by year for model calibration and validation. It is also possible 

there were errors with the actual water samples collected not being an accurate 

representation of the CDOM, SSC or Chl-a within a body of water because of the 

interconnectedness of this area. Since this methodology is being developed in hopes of 

applying the process to monitor water quality more frequently than a single month once a 

year, the ability of the models to predict these parameters accurately from a single image 

is of high importance. Although this type of inaccuracy is likely to occur mainly in the 

river systems, it is possible that it also impacts the lake samples as well. While this is no 

fault of the water sample collectors in the field, it is another difficulty which can arise 

when studying complex wetland ecosystems like the PAD.  

Published Models 

 The use of previously published models to measure water quality parameters in a 

study area different from where the models were originally developed can be problematic 
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and is often unsuccessful. Part of this study was to determine how well previously 

published models would perform in such situations, however precautions were taken 

when selecting the models. These precautions included the finding models which were 

created in environments similar to the PAD and using imagery from Landsat sensors. 

After applying the published models to the Landsat 5TM data and running a regression 

analysis between the output and the in situ water quality measurements, it became 

apparent that they did not accurately quantify CDOM, SSC and Chl-a within the study 

area. Both the R-squared and p-values for all the parameters suggest that the results were 

not significant. This shows that existing methods for monitoring water quality in complex 

wetland ecosystems are not sufficient and more research needs to be conducted in order 

to determine if there are models that can be applied to a variety of landscapes. 

Model Development 

 The process used in this study to create the new models was empirically based 

and involved the splitting of the total in situ data so the 2010 in situ data and imagery was 

only used in the model calibration phase and the 2011 data was only used for validation 

of the models. The first step was to plot the in situ data in the form of a histogram, this 

proved to be informative because it showed that the raw data were not statistically 

normal. Without normal data, measuring the goodness of fit of the new models would 

have been inaccurate. Additionally, by analyzing the histograms, it became apparent that 

there were different patterns in the data based on what type of body of water the samples 

were collected from. This proved to be beneficial because the models performed 

differently depending on the spatial unit (all-water, river-only and lake-only). Ultimately 

the models developed for river-only points performed best, having the lowest p-values 



 

52 

 

and highest R-squared values, followed by the all-water points and then lastly the lake-

only points.  

Model Performance 

 It is of interest that the river models are best at predicting the water quality 

parameters because of the coarse spatial resolution of the imagery, which makes it 

difficult to mask the small river features. The in situ data collection for river points was 

distributed throughout the entirety of the study area whereas the lake points were focused 

more on the eastern portion of the PAD. Therefore, it was not surprising to find that the 

lake models did not accurately predict the water quality parameters. The models created 

to quantify CDOM, SSC and Chl-a based on all the in situ data points (rivers and lakes) 

performed better than expected. It is clear that it is beneficial to create separate models 

for each water body type when monitoring water quality parameters. For instance, the 

SSC and Chl-a river models produced better p-values and R-squared values than the 

models which were created using all water features. Although as previously discussed in 

the results chapter, R-squared is not ideal in some cases as a performance measure. The 

only case where it did not appear beneficial to separate the in situ data points based on 

these spatial units was CDOM. All models predicting CDOM, including all water 

features, rivers and lakes performed best out of all of the other new models. By 

separating the data and creating these empirical models based on a variety of spatial units 

it was possible to see that some water quality parameters should have separate models 

depending on the body of water they are being measured in, while others do not. 
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Spatial Patterns of the Parameters 

 The spatial distribution of the water quality parameters shows the greatest 

variation at the mouths of the three active deltas where there are greater concentrations of 

CDOM, SSC and Chl-a entering the lakes and dispersing. In all of the imagery, there is a 

group of pixels limited to the northeastern portion of Lake Athabasca which appears to be 

caused by cloud cover in the original 2011 Landsat imagery. 

 CDOM displays a very similar spatial pattern between each of the three models. 

There are the highest values within the southern portion of Lake Claire and Lake 

Athabasca as well as generally high values within Mamawi Lake, although the values 

associated with CDOM do vary greatly between the models. The river model used to 

quantify CDOM displays the most variation throughout the systems of rivers compared to 

the other parameters, however the predicted CDOM within the rivers differs quite a bit 

between the all water and river-only models. Overall, CDOM displays the most 

consistent patterns between each of the three models suggesting that it is not necessary to 

create separate models for water body types when modeling this particular parameter. 

 Similar to the distribution of CDOM, SSC displays similar patterns in the outputs 

of the all water and lake-only models, however, SSC appears to disperse into the larger 

lakes shortly after passing through the mouths of the deltas. Additionally there is less 

variation in SSC throughout the larger water bodies with the main differences around 

river inputs and the banks. In general though the SSC values are very low, especially in 

the rivers-only model where they are almost at zero. These findings suggest that maybe 

Landsat 5TM band 3 might not be ideal for predicting SSC values. 
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 The parameter which displays the greatest amount of variation in the results of the 

three models is Chl-a. The predicted values of Chl-a are extremely different between the 

all water and lakes-only models and in some cases the results seem to be opposite. For 

instance, at the mouth of the Birch Creek Delta in Lake Claire, the all-water model 

displays moderate to low Chl-a values while in the lakes-only model, the value is 

somewhat high. The rivers also display very different patterns between the all-water 

model and the rivers-only model. The rivers in the output of the all-water model for Chl-a 

shows moderate to high concentrations of Chl-a, whereas the rivers-only model displays 

very low values. It is unclear why this is the case but it may be attributed to the band 

combination used in these models (Landsat 5TM band 2/band 1), or there could be other 

unknown materials which could be effecting the optical properties of the water. Most 

models predicting Chl-a concentrations utilize NIR and red bands, however, there were 

studies that suggested using the blue band which is why it was used here. Overall, these 

results show that there is a great deal of error with the Chl-a models, something that can 

also be seen when analyzing the results of the regression analysis.  

 In order to improve upon these methods, a few developments need to be made. 

First, it would be necessary to develop sensors with higher resolution (less than 15m x 

15m) and with a spectral resolution more similar that of MODIS Aqua. Additionally, 

there would need to be an extensive process for creating the models similar to this study 

but focused on a specific area of interest. Second, more intense surveying of the optical 

properties of the water to better understand the empirical relationships between the water 

quality parameters and apparent optical signatures. Finally, our models are primarily 

empirical and more physically-based modelling may be useful for better explaining and 
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predicting these relationships. The results of this study do suggest, that it will be difficult 

to create models which can predict water quality parameters in any region without a great 

deal more investigation. 
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CHAPTER VI 

 

CONCLUSION 

 

 This study discusses the effectiveness of current methods for quantifying and 

monitoring water quality in complex wetland ecosystems such as the PAD. The results of 

this research show that the current, published models do not accurately predict CDOM, 

SSC and Chl-a in rivers and lakes at the scale of the PAD. Applying models developed in 

other locations were found to not be able to properly quantify these water quality 

parameters, however, models created specifically for this study area were much more 

effective. Additionally, models developed for particular water bodies, such as rivers and 

lakes, yielded some interesting results which suggest it may be beneficial to develop 

individual models for rivers and lakes even within the same study area to more accurately 

predict water quality. 

 Throughout this research, it has become apparent there is a growing importance of 

developing models to extract water quality parameters from satellite imagery such as 

Landsat. Due to the increased difficulty of travel in complex wetland ecosystems like the 

PAD it is extremely challenging to rely solely on field measurements of water quality to 

monitor aquatic ecosystem health in these regions. The results of this study suggest a 

greater need for the development of models for estimating water quality parameters like 

CDOM, SSC and Chl-a which can be applied to a wider variety of locations. This might 

be done through more empirical modeling in different locations, use of different sensors, 

or better physics-based model development. In doing so, it would allow for more frequent 

monitoring of aquatic ecosystems with less need for field measurements and better, more 

informed management practices of complex ecosystems around the world.                       
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APPENDIX 

HISTOGRAMS: ORIGINAL & NORMALIZED  
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HISTOGRAMS FOR 2010:  ALL POINTS 

 

Original Histograms  

(Side A) 

Histograms after Box-Cox Transformation  

(Side B) 
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HISTOGRAMS FOR 2010:  RIVER POINTS ONLY 

 

Original Histograms  

(Side A) 

Histograms after Box-Cox Transformation  

(Side B) 
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HISTOGRAMS FOR 2010:  LAKE POINTS ONLY 

 

Original Histograms  

(Side A) 

Histograms after Box-Cox Transformation  

(Side B) 
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