
 
 

 

 
 

BARBITURATES AND MODIFIED HAMILTON RECEPTORS FOR 

SUPRAMOLECULAR CATALYSIS, SENSING, AND MATERIALS APPLICATIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 

by 
 

DANIEL THOMAS SEIDENKRANZ 
 
 
 
 
 
 
 
 
 
 
 
 

 
A DISSERTATION 

 
Presented to the Department of Chemistry and Biochemistry 

and the Graduate School of the University of Oregon 
in partial fulfillment of the requirements 

for the degree of 
Doctor of Philosophy  

 
September 2018 



ii 

DISSERTATION APPROVAL PAGE 

Student: Daniel Thomas Seidenkranz 

Title: Barbiturates and Modified Hamilton Receptors for Supramolecular Catalysis, 
Sensing, and Materials Applications 

This dissertation has been accepted and approved in partial fulfillment of the 
requirements for the Doctor of Philosophy degree in the Department of Chemistry and 
Biochemistry by: 

Michael M. Haley Chairperson 
Michael D. Pluth Advisor 
Victoria J. DeRose Core Member 
John S. Conery Institutional Representative 

and 

Janet Woodruff-Borden Vice Provost and Dean of the Graduate School  

Original approval signatures are on file with the University of Oregon Graduate School. 

Degree awarded September 2018 



 

iii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2018 Daniel Thomas Seidenkranz



 

iv 

 

DISSERTATION ABSTRACT 
 
Daniel Thomas Seidenkranz 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
September 2018 
 
Title: Barbiturates and Modified Hamilton Receptors for Supramolecular Catalysis, 

Sensing, and Materials Applications 
 
 

Supramolecular chemistry (chemistry beyond the molecule) is the study and 

synthesis of complex molecular architectures from simple subunits using non-covalent 

interactions. The types of non-covalent interactions that are used for the self-assembly of 

these complex molecular architectures include electrostatic interactions (e.g. ionic, halogen, 

and hydrogen bonding), π-effects, van der Waals interactions, metal coordination, and 

hydrophobic effects. While these interactions are often used in concert, some of the most 

successful and ubiquitous approaches for the design and construction of new host–guest 

architectures are the incorporation of hydrogen bonding motifs. A popular class of 

molecules capable of making strong, highly directional hydrogen bonds is barbiturates. 

Barbiturates have a well-known reputation as potent hypnotics, anticonvulsants, 

and anxiolytics but recent years have seen a renewed interest in these molecules due to 

their unique, symmetric acceptor-donor-acceptor hydrogen bonding motif. In addition, 

receptors with complementary hydrogen bonding motifs capable of binding barbiturates 

have also been reported, namely those based on the work of Hamilton et al. Collectively, 

barbiturates and their receptors have seen widespread use in a variety of applications 

including sensing, optoelectronics, catalysis, and the design of soft materials.  
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The work presented in this dissertation describes the development of novel 

Hamilton receptors for supramolecular catalysis and barbiturate sensing, as well as the 

design of new synthetic barbiturates. Together this body of research aims to extend the 

utility of these types of host–guest systems as well as continue to develop and refine the 

supramolecular design principles that govern the binding interactions between barbiturates 

and a variety of Hamilton-type receptors.  

This dissertation includes both previously published/unpublished and co-authored 

material. 
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CHAPTER I 

SUPRAMOLECULAR APPLICATIONS OF MODIFIED 

HAMILTON RECEPTORS 

Chapter I is an overview of the field of supramolecular chemistry as it pertains to 

Hamilton receptors and their applications. This chapter contains co-authored unpublished 

work. The content of this chapter was researched and written by me. Michael D. Pluth 

provided editorial assistance. 

1.1 Introduction to Supramolecular Chemistry and Molecular Recognition 

Supramolecular chemistry is the study of molecular recognition events that 

exploit the use of non-covalent interactions to assemble complex molecular architectures 

from simple subunits.1, 2 Often inspired by the efficiency and complexity of self-

assembled biological systems, supramolecular chemists are continually developing new 

supramolecular assemblies to better understand the subtle, yet powerful, non-covalent 

interactions responsible for the self-assembly of these intricate systems. Using 

supramolecular approaches, chemists have developed a vast array of programmed 

molecular assemblies for applications including small molecule sensing, drug delivery, 

and the design of molecular machines, which was awarded the 2016 Nobel prize in 

chemistry.1   
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In contrast to covalent linkages, non-covalent interactions used in supramolecular 

chemistry are highly reversible and often weak (1-5 kcal/mol).3 The inventory of non-

covalent interactions available include electrostatic interactions (e.g. ionic, halogen, and 

hydrogen bonding), π-effects, van der Waals interactions, metal coordination, and 

hydrophobic effects.4 While these interactions are often used in concert, some of the most 

successful and ubiquitous approaches for the design and construction of new host–guest 

architectures are the incorporation of hydrogen bonding motifs.5 In contrast to other non-

covalent interactions, hydrogen bonds are highly directional and often exhibit high 

cooperativity leading to strong association of guest molecules.  

1.2 An Introduction to the Hamilton Receptor 

Some of the most prominent hydrogen bonding host–guest scaffolds are those 

based on synthetic receptors pioneered by Hamilton et al. (Figure 1.1), commonly 

referred to as  Hamilton receptors, wedges, or clefts.6 Originally devised as a platform for 

studying the molecular recognition of barbiturates, a widely used class of 

pharmaceuticals known for their sedative and anticonvulsant properties,7 these types of 

receptors are characterized by the two-fold symmetric hydrogen-bonding arrays formed 

between the complementary donor-acceptor-donor (DAD) units of Hamilton receptor and 

the acceptor-donor-acceptor (ADA) units of the barbiturate guest. Initial reports on these 

receptors showed large association constants between the host and a variety of barbiturate 

guests in non-polar solvents (e.g. CDCl3 and CD2Cl2) ranging from 104-106 M–1
.
6, 8

 The 

binding strength of these systems is dependent on several factors including the identity of 
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the macrocyclizing group (Figure 1 red), number of hydrogen bonding groups available 

in the barbiturate guest, and the orientation of these hydrogen bonding groups in the 

guest. A more detailed discussion of these factors is presented in the following section.  
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Figure 1.1. Equilibrium of the original Hamilton receptor and the binding of a common 
barbiturate, barbital. The group in blue is often referred to as the linker between the 2,6-
diamidopyridine groups. The red subunit is referred to as the macrocyclizing group. 
 

In addition to molecular recognition, early reports of these systems demonstrated 

their application as catalysts for acyl transfer reactions and synthetic analogues for 

understanding protease enzymes (Figure 1.2).9 Model reactions between an ester-

functionalized barbiturate and thiol-functionalized Hamilton receptor showed more than a 

104 fold rate enhancement for the acyl transfer reaction compared to the control reaction 

in the absence of the receptor  
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Figure 1.2. Modified acyclic Hamilton receptor used for acyl transfer catalysis. 

.  

Additionally, a structural analogue of the barbiturate guest incorporating only three 

hydrogen bonds showed an eight-fold increase in rate, demonstrating the cooperativity 

observed in the hydrogen bonding network between the host and guest. 

 

1.3. Understanding the Supramolecular Design Principles of Hamilton Receptors 

 

Since the first report of the Hamilton receptor, efforts continue to be made toward 

understanding the physical organic chemistry principles that govern the molecular 

recognition of these systems with the intent of developing design strategies that allow for 

the evolution of more efficient and versatile systems. Initial studies concerned with 

understanding the structural elements that significantly impact the binding affinity of 

these systems towards barbiturates showed over a 100-fold difference in the association 

of barbital between the macrocyclic (Figure 1.3, 1) and acyclic forms (Figure 1.3, 2).6, 8 

Furthermore, changing the number of available hydrogen bonds in the barbiturate guest 

by simple methyl substitution of one of the imide N-H moieties lowers the binding 

affinity by more than 1000-fold.8 In addition, substitution of the carbonyl oxygen of 
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barbital with a weaker hydrogen bond accepting sulfur atom leads to a dramatic 1800-

fold decrease in affinity. 
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Figure 1.3. Modified Hamilton receptors showing various levels of pre-organization and 
the corresponding association constants for the binding of barbital in CDCl3. *Ka values 
are in M–1 and were measured in CD2Cl2. 
 

Recent work by our group has shown that a dramatic effect on binding is observed 

upon changing the flexibility of the 2,6-diamidopyridine linker.10 By reducing the 

preorganization of the host system via replacement of the isophthaloyl group with a more 

flexible alkyl linker, attenuation of guest binding is observed (Figure 1.3, 3). Complete 

bifurcation of the receptor leads to almost complete attenuation of binding, but 

interestingly maintains a 1:1 binding stoichiometry, suggesting that the entropic penalty 

for the formation of a three-component system is more unfavorable than the formation of 

three additional hydrogen bonds.  

The identity of the peripheral groups in the acyclic forms of the Hamilton receptor 

play a large role in guest binding. Our group has also shown that increasing the steric size 

of these groups leads to weaker association of barbiturate guest due to the steric 
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congestion around the hydrogen bonding groups and the negative steric interactions with 

the 5,5’ substituents of the guest (Figure 1.4a).10 In addition to the steric influence of the 

R groups, the bifurcated system also show a linear free energy relationship when 

substituted by electron withdrawing and electron donating groups (Figure 1.4b).11 

Notably, a break is observed in the Hammett plot for these systems. Through 

computational studies, our group showed that while the proximal N-H···O(barbital) 

exhibits a linear change upon increasing the electron donating character in these groups, 

changes in the pyridyl N···H-N(barbital) were not linear thus leading the observable 

break. 
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Figure 1.4. a) Effect of steric size on the binding of barbital. b) structure of bifurcated 
Hamilton receptor used to measure electronic influence of R group on barbital binding. 
 

1.4. Applications of the Hamilton Receptor Beyond Barbiturate Binding 

 

Using the established design principles that effect guest binding researchers have 

developed a variety of acyclic Hamilton receptors to enhance the application of these 

systems beyond simple barbiturate binding. The following sections provide a brief 

overview of selected classes of chemical applications where these types of receptors have 
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seen success. For a more extensive review on the applications of the Hamilton receptor, 

the authors recommend the work of Tron et al.12  

 

1.4.2 Catalysis, Metal Coordination, and Sensing Applications 

 

As noted previously, the first reports utilizing the Hamilton receptor as a catalyst 

focused primarily on acyl transfer reactions. Since these initial reports, much work has 

been done to incorporate these types of receptors into metal coordination complexes in an 

effort to influence the geometry and reactivity of the metal centers, as well as, the 

geometry of the receptor itself. Early efforts towards these goals demonstrated that 

through incorporation of pendent bipyridyl groups to an acyclic Hamilton receptor, 

barbiturate binding could be allosterically controlled through the addition of ZnII (Figure 

1.5).13 Upon the addition of ZnII to the receptor, a conformational change of the host 

binding pocket is observed due to coordination of the bipyridyl groups to the zinc cation 

resulting in complete attenuation of binding 
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Figure 1.5. Bipyridine modified Hamilton receptor showing allosteric inhibition of 
barbiturate binding through ZnII coordination. 
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Phosphine modification of the Hamilton receptor is another approach used for the 

construction of new supramolecular catalytic systems. Appendage of diphenylphosphine 

moieties to acyclic receptors has produced new ligands systems capable of forming 

supramolecular metallocycles with palladium.14 Additionally, these ligands systems in 

some cases show enhanced reactivity towards Heck couplings compared to their PPh3 

analogues. Furthermore, these types of phosphine ligands exhibit unique oxidative 

addition reactivity in the presence of palladium and aryliodo-functionalized 

barbiturates.15 Inverse regioselectivity of the oxidative addition is observed when 

compared to a simple aryliodide, highlighting the capacity of such functionalized 

Hamilton receptors to influence the coordination geometry about a metal center.  

  Further derivatization of the receptor has expanded the potential of these receptors 

for use as enantioselective catalysts. Chiral phosphite-functionalized dendritic Hamilton 

receptors have been used as ligands for the Rh-catalyzed asymmetric hydrogenation of 

enamides and α-dehydroamino acid derivatives with enantioselectivities between 80-

90%.16 In addition to the good enantioselectivity, this system exhibited high recyclability 

with maintained levels of activity. The catalysts could be recovered via precipitation 

through the addition of hexanes and subsequently reused up to five times before any loss 

in selectivity or activity was observed. Other chiral BINOL derivatives of the Hamilton 

receptor have been used for nitrile oxide cyclizations of functionalized barbiturates. 

While effective, these systems were not shown to be catalytic.17  

In addition to barbiturates, Hamilton receptors have been used to bind a variety of 

other small molecule analytes including nucleotides, carboxylic acids, sulfoxides, and 

cyanurates. Some of the most noteworthy applications of these receptors for non-
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barbiturate binding are use as chiral recognition reagents. Examples of chiral resolution 

of carboxylic acid, oxazolidinone, lactone, alcohol, sulfoxide, sulfoximine, isocyanate, or 

epoxide moieties have been reported18. In some cases as little as 5 mol% receptor is 

required to achieve sufficient resolution.19 More recently, similar BINOL functionalized 

Hamilton receptors have been used for linear discriminant analysis (LDA) of chiral 

anions demonstrating its potential for use in microsensor arrays.20 

 

1.4.3. Surface Functionalization and Optoelectronic Materials Applications 

 

 Precise spatial control over the binding of small molecules to surfaces is a 

continual challenge for material scientists. Achieving molecular level control over the 

positioning of ligands on surfaces is critical for the successful development of 

nano(bio)technology. Currently, there exist many methods in which researches have 

attempted to achieve this control, much of which is through covalent modification of 

surfaces. In contrast to typical covalent modifications, supramolecular approaches aimed 

at addressing this issue allow for greater tunability and modularity of scaffolds used to 

study the surface interactions, while maintaining high degrees of spatial control through 

the use of complementary recognition units. Hamilton receptors have been utilized in this 

manner to evaluate the self-assembly of thio-functionalized barbiturate Au nanoparticles 

onto a planar Au surface bearing a modified Hamilton receptor (Figure 1.6).21 Through 

control of the receptor concentration, tunable surface coverage up to 100% area coverage 

was achieved.  
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Application of this method to thin films of statistical block copolymers was also 

demonstrated and shown to have concentration dependent coverage at receptor 

concentrations less than 1 mol %.22 A similar design strategy was used for the addition of 

CdSe nanoparticles and nanorods to polymer thin films. The addition could be mediated 

by the addition of methanol, thereby eroding the hydrogen bonding network between the 

host and receptor.23 Extension of these types of systems to include conjugated linkers for 

potential nanowire electronic applications has also been reported.24  Further modification 

of these types of systems to include other inorganic-organic hybrid nanostructures such as 

ZnO nanorods25 and TiO2 nanoparticles26 have been reported demonstrating the 

generality of this approach for ligand immobilization.  
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Figure 1.6. Hamilton receptor modified Au surfaces for Au nanoparticle attachment via 
barbiturate modification. 
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Hamilton receptors have also been used to study electron transfer and energy 

transfer events for applications in optoelectronic materials design. Effective transport of 

energy and electrons in molecular electronics requires precise tailoring of both the 

intermolecular spacing and angular relationship between the donor and acceptor units. 

One of the most common donor-acceptor pairs used for these applications are porphyrins 

and fullerenes, respectively. This utility is largely due to the small reorganizational 

energy of fullerene and accessible redox-chemistry of metalloporphyrins. While many 

traditional approaches have utilized covalently linked systems, a supramolecular 

approach pioneered by Hirsch utilizes functionalized Hamilton:cyanurate/barbiturate 

systems to control the assembly of these donor-acceptor systems (Figure 1.7).27 
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Figure 1.7. Hamilton receptor modified metalloporphyrin, cyanurate functionalized 
fullerene donor-acceptor system developed by Hirsch.  

Using transient absorption spectroscopy, Wessendor et al. demonstrated 

unprecedented electronic communication through multiple σ and H-bonds via 
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complexation of metalloporphyrin functionalized Hamilton receptors and cyanurate 

functionalized fullerenes.28 Building upon these results, the substitution of the alkyl 

linkers for conjugated systems including p-phenylene-vinylene29, 

oligophenylenevinylene30, 31, and fluorene29 linkers has produced systems with even 

better electron transfer between the donor and acceptor units akin to that of a molecular 

wire (Figure 1.8). 
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Figure 1.8. Supramolecular metalloporphyrinoid:fullerene donor-acceptor molecular 
wires with various conjugated linkers. 

Further use of this architecture by Grimm et al. demonstrated that an energy-

transfer:electron-transfer cascade could be achieved through a three-component system 

consisting of a perylenedimide-functionalized Hamilton receptor, and a cyanurate-

functionalized metallophorophyrin with an axial fullerene ligand.32 In addition to 

fullerenes, these types of systems have been used for the dissolution and separation of 
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Hamilton receptor-functionalized single-walled carbon nanotubes for similar 

optoelectronic and solar applications.33  

 

1.4.4. Macromolecular Applications: Poly(oligo)meric scaffolds and mechanically 

interlocked molecules 

 

Hamilton-type receptors have been widely incorporated into numerous 

macromolecular systems including polymers,34-37
 oligomers,30, 38, 39 and dendrimers.16, 27, 

33 The earliest reports of oligomeric Hamilton-type receptors reported by Lehn 

investigated the propensity of these systems to adopt helical confirmations in the 

presence of cyanurate guests.39 Furthermore, the homoditopic Hamilton receptors and 

homoditopic cyanurate analogues have been shown to self-assemble into supramolecular 

polymers that display tunable polymer properties such as viscosity, dispersity, and even 

reversible polymerization by changing simple external stimuli such as temperature, 

solvent, concentration and stoichiometry.40 Building upon these initial reports, the Binder 

laboratory has produced a plethora of self-assembling polymers containing Hamilton-

type recognition units. Most notable are the Hamilton receptor functionalized telechelic 

polyisobutylenes  for the development of composite materials,41 functional gel 

materials,
42,43

 and self-healing polymers (Figure 1.9).44, 45 Other examples of block 

copolymers that exhibit unique phase separation have also been reported.34,35 Importantly, 

use of these types of systems has allowed polymer chemists to better understand single-

chain folding dynamics46,47 and entropic effects48
 on the self-assembly of 

macromolecules. The self-assembly of macromolecular structures functionalized with 
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Hamilton receptors has also been utilized to create complex helix-helix block 

copolymers.49 
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Figure 1.9. a) polymeric subunits of supramolecular polymers pioneered by Binder. b) 
Hamilton modified monomers for the construction of supramolecular polymers via RAFT 
polymerization.  
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In addition to polymeric applications, the use of the Hamilton receptor has also 

seen successful application to the generation of mechanically interlocked molecules 

(MIMs). Largely pioneered by the work of the McClenaghan group, the first reports of a 

[2]rotaxane incorporating a Hamilton receptor utilizes an azide functionalized barbiturate 

thread, followed by a 1,3-dipolar cycloaddition to append the corresponding stopper 

moieties.50 Further derivatization of this type of scaffold to include photoactivatable 

anthracene groups along the Hamilton receptor resulted in the formation of a 

photoactivated and thermally reversible [2]rotaxane.51 Most recently, this photoactivated 

system has been used as a molecular effector for the photoregulated ring gliding of an 

orthogonal [2]rotaxane with multiple docking cites.52, 53  

 

1.5. Conclusions and Outlook 

 

Supramolecular chemistry and molecular recognition have become central themes 

in the design and implementation of new molecular architectures and materials design. 

While there have been many host–guest systems developed over the last century, one of 

the most ubiquitous host–guest scaffolds based primarily on hydrogen bonding is the 

Hamilton receptor. Since its inception over 30 years ago, much work has been done to 

develop design principles to aid in the construction of tailored Hamilton receptor 

analogues for use in a diverse range of applications including polymers, optoelectronics, 

and catalysis. Future work in this field will likely continue to improve on our 

understanding of the physical organic principles that govern guest recognition events, in 

addition to the continued adaptation of this scaffold for the design of new materials and 
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supramolecular applications. Currently, some of the most underexplored applications of 

the Hamilton receptor are in the new area of molecular machines and use in aqueous 

media. Overcoming the associated challenges with utilizing hydrogen bonding motifs 

with controlled molecular motion and the attenuated binding in aqueous environments 

would be a tremendous advancements for the implementation of the Hamilton receptor 

and its continued use as a prominent host architecture.  

 

1.6 Bridge 

 

Using the known design principles for construction of new Hamilton receptors and 

building upon their existing applications, the research discussed in this dissertation aims 

to extend the utility of these types of host–guest systems. These applications include 

supramolecular catalysts for the hydroformylation of alkenes, the development of new 

barbiturate based organogelators, and the design of new fluorescent receptors for 

barbiturates detection. 
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CHAPTER II 

SUPRAMOLECULAR BIDENTATE PHOSPHINE LIGAND 

SCAFFOLDS FROM DECONSTRUCTED HAMILTON 

RECEPTORS 

 

Chapter II of this dissertation is a modified form of a previously published 

manuscript. I performed a majority of the analytical and synthetic chemistry and wrote 

the manuscript. Coauthors include Jacqueline M. McGrath, Lev N. Zakharov, and 

Michael D. Pluth. The citation for this article is as follows: Seidenkranz, D. T.; McGrath, 

J. M.; Zakharov, L.N.; Pluth, M.D. Supramolecular bidentate phosphine ligand scaffolds 

from deconstructed Hamilton receptors. Chem Commun. 2017, 53, 561–564. 

 

2.1. Introduction 

 

 New ligand architectures provide valuable platforms on which inorganic and 

organometallic chemistry can be supported, controlled, and leveraged for applications 

including bioinorganic chemistry, materials science, and catalysis. Of the numerous 

ligand platforms available, phosphine ligands are among the most ubiquitous not only in 

chemical catalysis,1 but also the construction of metal organic hybrid systems including 

metal-organic frameworks,2-4 supramolecular coordination complexes,5, 6 and molecular 

capsules.7-9 Yet the design and diversity of self-assembling architectures based on 
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phosphine ligands is frequently limited by challenging phosphine derivatization. This 

drawback is particularly acute for the design and derivatization of bidentate phosphine 

ligands. To combat these obstacles, researchers have begun to employ supramolecular 

techniques in ligand design.10-14 In addition to creating large, meaningful ligand libraries 

from fewer components,15, 16 supramolecular ligand libraries are more amenable to the 

implementation of high throughput screening methodologies for identifying unique 

chemical structures, reactivity, and materials with novel properties. 

 Supramolecular approaches to the construction of functional bidentate ligands 

employ principles of molecular recognition to develop ligands with compatible donor-

acceptor sites inherent in the ligand framework. Pioneering work by Breit,16-18 as well as 

van Leeuwen and Reek,19, 20 demonstrated that functional bidentate ligands can be created 

through incorporation of non-covalent interactions in the ligand scaffold, such as 

hydrogen bonding and metal ligation. However, few supramolecular approaches to 

bidentate ligand construction are based on self-assembling host-guest systems. Moreover, 

a self-assembling ligand system that uses host-guest interactions to control the magnitude 

of bidentate character of monodentate ligands would enable precise tuning of the shape 

and size of new metal-organic hybrid systems based on host-guest binding affinities and 

guest characteristics. Furthermore, control over typical bidentate ligand parameters, such 

as bite angle, can be achieved through the use of different host-guest combinations 

making this approach amenable to combinatorial screening techniques. 

 Of the many host-guest architectures, the synthetic barbiturate receptor first 

synthesized by Hamilton21 lends itself well to phosphine modification.22, 23 The receptor 

is characterized by six hydrogen bonds formed between the two complimentary donor-
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acceptor-donor (DAD) and acceptor-donor-acceptor (ADA) faces of the host and guest, 

respectively. We envisioned that bifurcation of the ligand scaffold would create a more 

flexible and accommodating host pocket upon metal ligation, as well as allow for precise 

control over the “bidentate” nature of the ligand through the use of derivatized barbiturate 

guests. Additionally, coordination of the ligands to the metal would provide the necessary 

pre-organization required for guest binding, thus favoring complete assembly of the 

supramolecular ligand structure (Figure 2.1). This design strategy would generate a new 

class of multicomponent self-assembled phosphine ligands that mimic bidentate 

structures upon guest binding. Herein, we report the design, synthesis, characterization, 

metal coordination, and binding affinities of such self-assembled ligand scaffolds and 

demonstrate that host-guest chemistry can be used to access bidentate coordination motifs 

from simple, modular, monodentate ligand components. 
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Figure 2.1 Metal-assisted self-assembling of a bifurcated, phosphine modified Hamilton 
receptor. 
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2.2. Results and Discussion 

 

The effects of Hamilton receptor bifurcation and backbone rigidity on guest 

binding have been previously reported and indicate that substitution at the distal amide 

and the rigidity of the backbone have significant effects on guest binding and host 

aggregation.24 To encourage guest inclusion, while limiting host aggregation, we 

hypothesized that neopentyl substitution at the host distal amide would result in optimal 

binding affinities. Moreover, we envisioned that the regioisomerism of the appended 

phosphorus group in the bifurcated receptor system would play a critical role in the 

geometry and size of the host binding pocket. Specifically, we hypothesized that the -

meta- substituted ligand would provide the most pre-organized host pocket but may be 

sterically congested upon metal complexation. Therefore, the para- substituted isomer 

could alleviate the steric congestion and have minor effects on host pocket pre-

organization. To investigate these postulates, a suite of regioisomers containing neopentyl 

substituted distal amides was synthesized according to Scheme 2.1. 
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Scheme 2.1 Synthesis of phosphine ligands 3a-c. 
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 2,6-Diaminopyridine was subjected to mono-amidation conditions using 3,3-

dimethylbutyryl chloride to give the mono-substituted pyridine (1), which was then used 

for subsequent amidation of the ortho-, meta-, and para-substituted iodobenzoyl 

chlorides to afford compounds 2a-c, respectively. Palladium-mediated couplings of 

HPPh2 and 2a-c in the presence of base resulted in the desired phosphine ligands 3a-c in 

moderate to good yields. This highly modular, three-step synthesis allows for fine control 

over the electronic and steric parameters of the ligand scaffold through substitution at 

both the phosphorus and diaminopyridine backbone.  

 Single crystals suitable for X-ray diffraction of all three isomers were grown from 

THF/pentane vapor diffusion under an inert atmosphere (Appendix A, Figure A.1). 

Notably, all regioisomers co-crystallized with one molecule of THF, which was hydrogen 

bonded to the proximal amide N-H and THF oxygen. The preference for the hydrogen 

bond at the proximal amide is likely due to the potential negative steric interactions 

between the neopentyl group and the THF molecule. This observation is in agreement 

with our hypothesis that bulky substituents discourage host aggregation, but allow for 

guest inclusion. 

 To generate a host scaffold with two properly oriented DAD faces to bind the 

incoming barbiturate guest, the ligands must adopt a cis-geometry about the metal center. 

A common method for determining ligand geometry is to use Pt(II) salts that form square 

planar complexes upon the addition of two equivalents of ligand. These square planar, d8 

Pt complexes display distinct 1J(Pt-P) couplings constants for their cis- (>3000 Hz) or 

trans- (< 3000 Hz) isomers.25 To investigate the coordination properties of our ligand 
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scaffold, Pt(II) complexes 4b-c were prepared using one equivalent of [Cl2Pt(COD)] with 

two equivalents of the desired ligand in CH2Cl2 (Figure 2.2a). Following the 

complexation via 31P{1H} NMR spectroscopy shows clean conversion upon the addition 

of ligand to the Pt(COD)Cl2 (Figure 2.2b–c). Analysis of the 1J(Pt-P) coupling constants 

confirms a cis-geometry of both complexes with coupling constants of 3666 Hz and 3647 

Hz for 4b and 4c, respectively. Attempts to synthesize Pt complexes with ligand 3a, 

however, resulted in the complete disappearance of a phosphorus resonance, suggesting 

decomposition or possible formation of polymeric species causing significant peak 

broadening. The inability to form discrete species with 3a is likely due to the steric 

crowding about the metal center that would occur in a cis- arrangement of the ligands. 

 

 
Figure 2.2 a) Synthesis of cis-PtL2Cl2 complexes 4b-c. b) 31P{1H} NMR (202 MHz) of 
free 3b c) 31P{1H} NMR (202 MHz) of cis-PtL2Cl2, 4b. 
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To further study the ligand isomerism and host pocket geometry, single crystals of 

4b were grown from THF/MeCN:pentane via vapor diffusion and analyzed by X-ray 

diffraction. Analysis of the structure confirms the cis-orientation about the Pt center 

(Figure 2.3). Interestingly, the complex co-crystallizes with two molecules of THF, each 

bound to a different phosphine ligand and amide. Consequently, the structure adopts a 

dimeric motif with both intra- and intermolecular hydrogen bonds. The intramolecular 

hydrogen bonds occur between the proximal amide N-H of one phosphine and the distal 

amide oxygen of the other phosphine, with a calculated distance of 2.922 Å, to 

effectively encapsulate the THF guests. The intermolecular hydrogen bonds between the 

THF molecules and the upper and lower amides have calculated distances of 2.947 Å and 

2.811 Å, respectively. The positioning of the host pocket cis to the chloride ligands may 

help to explain the low association constants (vida infra) as potential negative steric 

interactions would occur between the chloride ligands and incoming guest.  

Previous work in our lab has shown that deconstructed Hamilton receptors display 

1:1 binding motifs, similar to the original Hamilton receptor.24 The free rotation around 

the host P-C bond, however, could allow for a 2:1 binding motif if the enthalpic gain 

from hydrogen bond formation is greater than the entropic cost of creating a three 

component system. To confirm which binding motif was present, a Job plot for 4b and 5a 

was constructed using 1H NMR spectroscopy. Following the chemical shift of the guest 

N-H resonance, the data support a 1:1 binding motif as evidenced by a maximum in the 

Job plot at 0.5 in H2O sat. CDCl3 and 1% DMSO in CDCl3 (Appendix A, Figures A.4 

and A.6). 
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Figure 2.3. ORTEP representations of 4b with thermal ellipsoids drawn at 50% 
probability. Dimeric form of structure showing intra- and inter-molecular hydrogen 
bonds with non-hydrogen bonding hydrogens omitted for clarity. 
  

 To assess the efficacy of our self-assembling ligand system, 1H NMR titrations of 

host complex 4b and a synthetic barbiturate 5a were performed and fit to a 1:1 model 

using the Thordarson method.26 Due to solubility constraints of the guest, inverse 

titrations (excess host with constant guest) were required to generate adequate signal in 

the 1H NMR experiments to accurately determine small chemical shift changes. 

Following the N-H resonance of the guest in a H2O saturated CDCl3 solvent system, a 

significant downfield shift is observed with a measured association constant of 800 ± 100 

M-1 (Figure 2.4). Switching to a more competitive solvent such as MeCN resulted in 

attenuated, but measurable, binding constant of 19 ± 5 M-1 demonstrating the propensity 
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of this system to self-assemble even in a competitive hydrogen bonding environment. 

Comparison between hosts 4b and 4c revealed that para-substitution of the phosphorus 

group leads to a less pre-organized host pocket, indicated by the lower association 

constant of 260 ± 20 M-1. Taken together, these binding data demonstrate that ligand 

coordination facilitates barbiturate guest binding and that the geometry of the ligand 

architecture can be used to tune guest binding fidelities. 

 

 
Figure 2.4. Sample 1H NMR titration of 4b and 5a in H2O sat. CDCl3. 
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2.3. Conclusions 

 

In summary, we have developed a new supramolecular, self-assembling ligand 

scaffold motif based on a deconstructed Hamilton receptor. Cis-PtL2Cl2 host complexes 

that bind synthetic barbiturate guests were synthesized and characterized both in solution 

and the solid state. This supramolecular system displays a 1:1 binding mode consistent 

with a deconstructed Hamilton receptor, and guest binding was observed in both 

competitive and non-competitive solvents. The ease and high modularity of the host 

synthesis as well as the guest tunability make this scaffold poised for diverse applications 

ranging from acting as a building block for larger self-assembled structures and materials 

as well as applications in high-throughput and combinatorial screenings of catalytic 

reactions.  

 

2.4. Bridge 

 

 The contents of this chapter outline the initial design strategy, synthesis, and basic 

self-assembly properties of a new supramolecular bidentate phosphine ligand scaffold. 

These new ligands act as host components for potential supramolecular bidentate catalyst 

libraries. However, these ligands alone can only act as monodentate ligands. Chapter III 

of this dissertation will describe the development of a small library of new synthetic 

barbiturate guest molecules that act as the second component in the supramolecular 

catalyst system. 
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CHAPTER III 

DIRECT SYNTHESIS OF 5,5’-DISUBSTITUTED 

BARBITURIC ACIDS FROM BENZYL AND ALLYL 

HALIDES 

 

 Chapter III of this dissertation contains co-authored unpublished work that 

was written by me. The synthesis and photophysical experiments were performed by me 

and the results were also interpreted by me. Zakharov, L. collected and interpreted the x-

ray diffraction data. Pluth, M. provided editorial assistance. 

 

3.1. Introduction 

 

Substituted barbituric acids have long held a privileged role as potent hypnotics, 

anticonvulsants, and anxiolytics.1 More recently, their use as functional materials (e.g. 

organo-gelators,2 non-linear optics materials,3, 4 metal-ion sensors5, 6) and components in 

supramolecular coordination assemblies7 has renewed interest in this molecular scaffold. 

During our development of supramolecular bidentate phosphine ligands based on the 

Hamilton receptor,8 we became interested in easily accessible 5,5′-disubstituted 

barbiturates. Although there have been a multitude of barbiturates synthesized since their 

initial discovery by von Baeyer in 1863,9 straightforward synthetic routes to these 

molecules remain under-reported. This dearth is particularly true when considering the 

direct synthesis of 5,5′-disubstituted barbiturates from commercially available barbituric 
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acid. Building from this need, we report here the direct synthesis of diverse 5,5′-

disubstituted barbituric acids from benzyl and allyl halides and barbituric acid for 

potential use in materials applications and construction of supramolecular assemblies. 

Traditional syntheses of substituted barbiturates involve condensation of 

substituted malonates with urea under basic conditions.7, 10 Notably, these procedures 

involve prior functionalization of the malonates, and the subsequent condensations with 

urea to form the desired barbiturate remains challenging.11 Alternatively, the relatively 

acidic methylene hydrogens of barbituric acid (BA) (pKa = 4.00, H2O)12 allows for simple 

substitution reactions via deprotonation using a weak base. The numerous tautomers 

present in the anionic form of barbituric acid, however, make both N- and O-alkylation 

possible (Figure 3.1), thus often complicating the preparation of the target molecules. 

Additionally, under most reaction conditions, the resulting anion from deprotonation is 

insoluble in the organic solvents typically used to solubilize the subsequent electrophile. 

More recent approaches that utilize commercially available barbituric acid require the use 

phase transfer conditions.13 In our hands, however, this methodology proved unreliable 

with different electrophiles, and we found that the presence of a phase transfer catalyst 

(PTC) significantly complicated purification. Therefore, we sought to develop a simple 

protocol for the synthesis of 5,5′-disubstituted barbiturates from barbituric acid in the 

absence of a phase transfer catalyst that could be used to provide access to commonly-

used, as well as new more difficult to access, derivatives.    
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Figure 3.1. Various tautomers of the barbituric acid anion showing O, N, and C 
nucleophilic centers, respectively. 
 

3.2. Results and Discussion 

 

As a test system, we began by investigating the solvent effects on the reaction 

between benzyl bromide and barbituric acid in the presence of N,N-

diisopropylethylamine (DIPEA) (Table 3.1). In all cases, pure product was isolated 

without the need for column chromatography by simple trituration in a DCM:hexanes 

mixture (see Appendix B, Figure B.1). As expected, polar solvents gave higher yields, 

with DMSO, MeOH, and DMF providing the highest yields, which we attributed the 

increased solubility of both the anion and electrophile.  

 

Table 3.1. Solvent screening study using benzyl bromide. All reactions conducted with 
barbituric acid concentrations of 390 mM. The reported yields are from isolated yields 
based on barbituric acid. 

NHHN

O O

O

Ph Ph

HN NH
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OO
DIPEA (2.3 equiv.)

Solvent
50 °C
22 hrs

BnBr (2 equiv.)

Solvent Yield

MeOH

iPrOH 31%

62%

nBuOH 33%

DMSO 79%

DMF 51%

THF 22%

MeCN 19%

Toluene 11%

Pyridine 0%

Solvent Yield
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Using the best conditions from our solvent screening, we then screened different 

electrophiles to determine the tolerance to different electrophiles of this method (Table 

3.2). Gratifyingly, clean alkylation at the C5 position was observed for all benzyl halides 

and allyl bromides, with reactions using benzyl iodide complete in an hour at room 

temperature. Alkyl halides, however, failed to provide any of the desired alkylated 

products. In addition to the halide substrates shown in Table 3.2, use of pseudo halides, 

alkyl tosylates, also failed to generate the desired product, which is likely due to the 

multiple reactive sites of the resultant barbituric anion, thus resulting in complex N- and 

O-alkylation mixtures.  

 

Table 3.2. Electrophile screening using DMSO as the solvent. Reported yields are 
isolated yields based on barbituric acid. a 100 °C for 22 hours, b room temperature for 1 
hour. 

R R

NHHN

O O

O

HN NH

O

OO
DIPEA (2.3 equiv.)

DMSO
50 °C, 22 h

R-X (2 equiv.)

R-X Yield

Cl

Br

I

70%a

78%

76%b

Cl

Br

I

0%

0%

0%

Br

I

0%

0%

R-X Yield

Br 51%

F5
Br 57%

Entry

1

2

3

4

5

Entry

6

7

8

9

10
 

 

Having elucidated the scope of this method to access simple 5,5′-disubstituted 

barbituric acid derivatives, we next focused on preparing novel barbiturates that could 
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have utility in potential materials and supramolecular applications, particularly scaffolds 

with metal coordination and fluorescent properties. To this end, reacting 2-

bromomethylpyridine hydrogen bromide, 1-bromomethylpyrene, and 9-

chloromethylanthracene with barbituric acid under similar reaction conditions to those 

described in Table 3.2, yielded compounds 1-3 respectively (Scheme 3.1). The 

absorbance spectra of 2 and 3 exhibit the characteristic fine structure of acene-type 

aromatics with λmax = 346 nm and 393 nm for 2 and 3, respectively. Additionally, the 

emission maxima at 379 nm and 425 nm for compounds 2 and 3 make them good 

candidates for reporter molecules for supramolecular assembly and recognition.14-16  

HN NH

O

OO

N

•HBr

f luorescent
barbiturates

metal-coordinating 
barbiturate

Ar X
DIPEA

DMSO

HN NH

O

OO

Ar Ar

Ar =

1, 46% 2, 40% 3, 19%

Scheme 3.1. Synthesis of new metal-coordinating and fluorescent barbiturates. 

In addition to barbiturates with well-defined optical properties, we were also 

interested accessing chiral barbiturates. Typically, such molecules involve 

desymmetrization of barbituric acid by asymmetric substitution at the N1/N3 position and 

C5 position. Alternatively, barbiturate functionalization with point chiral precursors can 

yield chiral barbiturates, but this approach is underutilized because of the limited 
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accessibility to the required chiral precursors.17 To overcome these obstacles, we 

hypothesized that simple prefunctionalization of commercially available, enantiopure 

BINOL would provide simple access to a rare example of an axially chiral barbiturate. 

Starting with BINOL, triflation with PhN(Tf)2, followed by a Kumada cross coupling 

with MeMgI, and bromination with NBS afforded the desired bis(methylbromide), which 

was subsequently coupled to barbituric acid in DMSO to afford 4a (R) and 4b (S), as 

shown in Scheme 3.2. Under these standard reaction conditions, 4a and 4b could be 

isolated in pure form after column chromatography and recrystallization from ethanol. 

 

 

Figure 3.2. (a) Absorbance and fluorescence (λex = 346 nm) spectra of compound 2 in 
degassed THF at 14 µM and 28 µM, respectively. (b) Absorbance and fluorescence (λex = 
393 nm) spectra of 3 in THF at 15 µM and 30 µM, respectively. 
  

Having prepared a variety of substituted barbiturates with different substitution in 

the 5-position, we next sought to investigate the solid-state interactions of 1-3 and 4. In 

addition to applications in materials science, barbiturates are used extensively in crystal 

engineering,18 pharmaceutical co-crystallization,19, 20 and crystal polymorphism.21-25 For 

the prepared barbiturates, suitable single crystals for X-ray diffraction were grown from 
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THF:pentane vapor diffusion (Figure 3.3). All new barbiturates crystalized as the tri-keto 

tautomer with C-N and C-O bond lengths ranging from 1.35-1.38 Å and 1.21-1.22 Å, 

respectively. Compound 4a displays two N−H∙∙∙O=C hydrogen bonding motifs between 

adjacent barbiturates in the crystal lattice, with N−H∙∙∙O=C bond distances of 2.905 and 

2.726 Å, which is common in many barbiturates.18, 24 For compound 1, introduction of a 

competitive hydrogen bond acceptor like pyridine perturbs the hydrogen bonding 

network and provides an alternative packing motif. 

OH
OH

OTf
OTf

Me
Me

Br

Br
NH

NH
O

O

O

(R)-BINABARB (4a, 33%)
(S)-BINABARB (4b, 23%)

PhN(Tf)2

DIPEA
DMF
85%

NiCl2(dppp)
MeMgI
Et2O
84%

NBS, AIBN, 
C6H6
45%

DIPEA
DMSO

HN NH

OO

O

Scheme 3.2. Synthesis of (R) and (S)-BINABARB with (R)-stereochemistry shown. 

In 1, a N−H∙∙∙N(pyridine) hydrogen bond is formed with a distance of 2.907 Å, with the 

second N−H from the barbiturate hydrogen bonding to the THF solvent molecule in the 

crystal lattice. Further changes in the crystal lattice are observed upon increasing the size 

of the planar π surface as in 2 and 3. For both compounds, the N−H∙∙∙O=C hydrogen 

bonding network is completely eroded and instead only N−H∙∙∙O(THF) motifs are 

observed. In these systems, the π-π interactions dominate the packing structure with an 
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interplanar distances of 3.449 Å and 3.419 Å between the two offset pyrenes in 2 and 

3.365 Å in 3. 

 

 
Figure 3.3. ORTEP representations of compounds 1-3 and 4a with thermal ellipsoids 
drawn at 50% probability. All non-hydrogen bonding hydrogens omitted for clarity. a) 
Dimer of compound 4a ; b) dimer of compound 2; c) profile and portrait view of 
compound 1 with the THF molecules omitted for clarity; d) solid state structure of 
compound 3 showing profile view of hydrogen bonding motif and view showing π-π 
interactions with THF molecules omitted for clarity. 
 

To further examine the extent that the π-π interactions could affect the solid-state 

structure, we synthesized an unsymmetrical barbiturate, 5, which has one perfluorinated 

phenyl ring, with the goal of evaluating how the arene-perfluoroarene interactions would 

affect the typical N−H∙∙∙O=C hydrogen bonding networks (Figure 3.4). In this case, X-

ray quality crystals of 5 were obtained from a slow evaporation from acetone. 

Interestingly, the solid state structure contains both an extensive arene-perfluoroarene 

network as well as a hydrogen bonding network. The centroid to centroid distance 

between the arene-pefluorarene moitites is 3.644 Å, while the distance between the 

centroid of the arene ring to the plane of perfluorarene ring is 3.444 Å. The hydrogen 

bonding network is characterized by a traditional N−H∙∙∙O=C hydrogen bond of 2.751 Å 

with the other imide N−H bound to adventitious water.  Lastly, the conformations of the 
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new barbiturates range from highly planar (0.16° for compound 2) to highly enveloped 

(32.6° for compound 3), however, no trend is immediately apparent (Appendix B, Table 

B.1). Altogether, the solid-state structures of this new suite of barbiturates confirms that 

substitution at the 5-position of the barbiturate greatly impacts the crystal packing of 

these molecules and can be tuned by modifying the type non-covalent interactions 

present.   

 

 
Figure 3.4. Synthesis of unsymmetrical barbiturate 5 and ORTEP representations with 
thermal ellipsoids drawn at 50% probability. Both the profile view of the hydrogen 
bonding motif and view showing the π-π interactions have the non-hydrogen bonding 
hydrogens and water molecule omitted for clarity. 
 

3.3 Conclusions 

 

In conclusion, we have shown that 5,5′-disubstituted barbiturates can be 

synthesized directly from barbituric acid without the use of phase transfer catalysts to 

provide moderate to good yields for benzyl and allyl electrophiles. Using this 

methodology, we prepared new fluorescent and chiral barbiturates with properties that 
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make them potentially useful for materials and supramolecular applications. Additionally, 

the solid-state analysis shows that varying the substitution at the 5-position has a 

dramatic impact on the observed hydrogen-bonding motifs. 

 

3.4 Bridge 

 In Chapter II of this dissertation we reported the design and synthesis of a new 

supramolecular phosphine ligands as the host component of our new supramolecular 

ligand scaffold. In this chapter, we reported the design and synthesis of new and 

previously reported barbiturates as the guest components of our new supramolecular 

ligand scaffold. Chapter IV will discuss the applications of this combined supramolecular 

ligand platform for the hydroformylation of 1-octene. This model reaction will serve as a 

method for evaluating the efficacy of this new ligand design strategy and its application 

towards allosteric control of catalysis.  
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 CHAPTER IV  

PROGRESS TOWARDS THE HYDROFORMYLATION OF 1-

OCTENE USING SUPRAMOLECULAR PHOSPHINE 

LIGANDS BASED ON THE HAMILTON RECEPTOR  

 

This chapter contains co-authored unpublished work that was written by me. The 

majority of the experiments were performed by me and the results were also interpreted 

by me. Barker, J. performed the synthesis for compounds 8-10 in this chapter. Zakharov, 

L. collected and interpreted the x-ray diffraction data. Pluth, M. provided editorial 

assistance. 

 

4.1. Introduction 

 Hydroformylation is one of the most important catalytic processes of both 

academic interest and industrial relevance. By volume, it is the largest industrial process 

in homogenous catalysis.1 Since its original discovery in 1938 by Roelen, 

hydroformylation has been the subject of numerous academic reports, including the 

subject of many recent reviews.1-8  Formally, the hydroformylation reaction involves the 

addition of CO and H2 to an alkene to generate aldehyde products (Scheme 4.1). Most 

often, this process is mediated by Rh-phosphine complexes however, many other metals6 

(e.g. Ru, Ir, Pd, Pt, Fe, etc) and ligands9-11 have been reported. Asymmetric 

hydroformylation, although much less developed, continues to be a blossoming area of 

research.12-18 Additionally, because many of the substrates used in these processes 
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contain unsaturated units, in addition to the production of reactive aldehyde products, 

hydroformylation has been a ubiquitous component in tandem reactions.19-22  

R
catalyst
CO/H2 R H

O

R

OH
+

linear branched

Scheme 4.1. General scheme for the hydroformylation reaction. 

The mechanism of hydroformylation proposed by Heck and Breslow remains the 

most widely accepted and well-established (Scheme 4.2). While there continue to be 

mechanistic improvements, the current general reaction scheme provides a clear 

understanding of the production of branched and linear aldehyde products. Importantly, 

the reversibility of almost all of the steps in the mechanism has the potential to result in 

many unwanted and isomerized by-products such as internal olefins, branched alcohols, 

and alkanes from over reduction. Moreover, the reversible hydride-migration is the 

primary step in determining the regioisomerism of the final aldehyde products. The 

resulting aldehydes are important precursors for the synthesis of bulk chemicals such as 

alcohols, amines, and esters with the linear aldehydes often being the preferred 

regioisomer. Additionally, the aldehyde products have wide applications in the fragrance 

industry.4 Therefore, understanding the factors that control this selectivity has been a 

major focus of hydroformylation research. Currently, one of the most effective ways to 

control the regioselectivity is through the use of bidentate phosphine ligands, as the bite 

angle of the phosphine has been well-correlated with the linear to branched aldehyde 

ratio (l:b).23, 24 However, bidentate ligands often achieve this enhanced selectivity at the 

cost of decreased activity. Moreover, the synthesis of large libraries of bidentate ligands 
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is typically much more tedious and difficult compared to their monodentate analogues. 

These synthetic drawbacks make combinatorial approaches to ligand screening more 

difficult and less amenable to high-throughput screenings. Thus, there is a continual 

demand to find new, readily accessible ligand platforms for applications in 

hydroformylation and beyond. 

Rh
PPh3

CO
PPh3

OC

H

Rh
Ph3P CO

PPh3H
+ CO

- CO
Rh

PPh3

CO
PPh3

H
+

-
R

R

R

Rh
Ph3P

OC PPh3

R

Rh
Ph3P

OC PPh3

R

Rh
PPh3

CO
PPh3

OC Rh
PPh3

CO
PPh3

OC

R
R

H- insertion H- insertion

pre-iso pre-linear

+ CO

Rh
Ph3P

OC PPh3Rh
Ph3P

OC PPh3

O O RR

+
+

CO insertion

Rh
PPh3

CO
PPh3

OC Rh
PPh3

CO
PPh3

OC

O

+

R

O

R

Rh
PPh3

CO
Ph3P

H

O
R

H
Rh

PPh3

CO
Ph3P

H

O

H

R +

H

O

R H

O
R+

linear
iso- or branched

reductive elim
ination

+

+ CO- CO

+ H2

- CO

- H2

Scheme 4.2. General mechanism of Rh-catalyzed hydroformylation. 

A relatively new area of ligand design is that of supramolecular bidentate 

ligands.1, 25-27 Using supramolecular design principles, formation of functional bidentate 

ligands can be achieved through the self-assembly of two monodentate ligand subunits. 

This activity is often achieved through the incorporation of non-covalent interactions and 

complementary recognition motifs inherent in the ligand architecture. This new class of 

ligands benefits from the simplified synthetic design strategies for monodentate ligands 
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while exploiting the chelation abilities of bidentate ligands. Pioneering work by the 

independent groups of Breit and Reek have popularized this strategy and developed new, 

highly efficacious ligand platforms based on different types of non-covalent interactions 

(Figure 4.1). The work of Breit has primarily focused on the construction of 

supramolecular bidentate ligands assemblies using hydrogen bond forming tautomers.28-32 

The most popular and efficacious scaffolds are those based on the phosphine 

functionalized-2-pyridone/2-hydroxypyridine tautomer. When in the presence of a metal 

ion, these monodentate ligands selectively form heterodimeric metal-ligand complexes. 

Conversely, work by Reek utilizes secondary metal ligation of pyridyl-functionalized 

phosphines to direct coordination of bis-Zn-porphyrin scaffolds.33-40 Importantly, both 

approaches show high efficiency towards the hydroformylation of alkenes showing 

selectivity for linear aldehydes over branched similar to traditional bidentates. 

Additionally, because of the synthetic accessibility of these subunits, combinatorial 

approaches to catalytic screenings are not only possible, but can generate more 

meaningful structure-function studies.32 

 

N OHPh2P

N
H

OPh2P

M
M

N OPh2P

Ph2P ON
H

H

Breit

Reek  
Figure 4.1. Supramolecular bidentate phosphine ligand scaffolds popularized by Breit 
and Reek.  
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In an effort to expand the types of supramolecular ligand platforms capable of 

self-assembly to give functional bidentate ligands, we recently reported a new host–guest 

approach to supramolecular ligand designed based on bifurcated Hamilton receptors and 

barbiturate guests.41 Initial results showed that model cis-PtL2Cl2 (L = phosphine 

functionalized bifurcated Hamilton receptor) systems do undergo self-assembly in the 

presence a barbiturate guest with the binding affinities controlled by the regioisomerism 

of the appended phosphine. To evaluate the efficacy of our new supramolecular ligand 

system, we chose to perform the Rh-catalyzed hydroformylation of 1-octene as a model 

reaction. We hypothesized that through evaluation of the linear:branched aldehyde ratio, 

we could gain a better understanding of the structural features of our new ligand platform 

that controlled the tunable bidentate character. Herein, we report our initial results 

towards these aims as well as the synthesis, coordination properties, binding affinities, 

and catalytic efficiencies of new benzyl and fluorinated structural analogues to our 

original bifurcated receptors.  

 4.2. Results and Discussion 

 

 The synthesis of the phosphine functionalized bifurcated Hamilton receptors has 

been reported by us previously41 and is shown in Scheme 4.3. Using the currently 

accepted mechanism of hydroformylation, we knew that to achieve effective bidentate 

type behavior, a cis geometry of these ligands about the metal center was required. 

Therefore, we elected to exclude the ortho-isomer 3a from our catalytic screenings due to 

its inability to form cis-PtL2Cl2 model complexes. 
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Scheme 4.3 Synthesis of phosphine functionalized bifurcated Hamilton receptor ligands 
3a–c and structures of barbiturate guests used for initial screenings. 

To begin our studies, we elected to use hydroformylation conditions similar to 

those reported by Reek37 and Breit28 to investigate the efficacy of  our new ligand 

platform towards the hydroformylation of 1-octene (Scheme 4.4). Initial screenings 

focused on ligand 3b with increasing equivalents of a dibenzylbarbiturate guest (4a). 

Compound 3b was chosen as the primary screening ligand as it was shown to have the 

largest binding affinity for a synthetic barbiturate guest during our previous studies.41 The 

Rh catalysts were prepared in-situ by mixing a Rh(acac)(CO)2 precursor with 200 

equivalents of ligand, 1–1000 equivalents of guest, and charged with 1000 equivalents of 

1-octene in THF under an inert atmosphere. The reaction vessel was then pressurized

(150 PSI) with H2/CO (1:1). The catalyst was allowed to form with an initial heating at 

50 °C for 90 minutes at which point the headspace was recharged with H2/CO (1:1, 150 

PSI) and stirred at 50 °C overnight (12-24 hours). The ratio of linear to branched 
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aldehyde products was then determined using GC-MS, the results of which are given in 

Table 4.1. From the initial results we were able to determine that while the presence of 

barbiturate guest has little effect on the l:b ratio when using traditional monodentate 

ligands (PPh3), no increase in selectivity observed when using 3b with up to 100 

equivalents of guest.  

C6H13

Rh(acac)(CO)2

CO/H2
 
(1:1)

   C6H13 H

O

C6H13

OH
+

linear branched
ligand
guest

Scheme 4.4. Generalized reaction scheme for the hydroformylation of 1-octene using the 
new bifurcated Hamilton receptor supramolecular ligand scaffold. 

Table 4.1. Linear to branched (l:b) aldehyde ratio from the hydroformylation of 1-octene 
at 50 °C using classic monondentate and supramolecular bidendentate phosphine ligand 
assemblies. Conditions: [Rh] = 100 µM, [ligand] = 2.0 mM, [1-octene] = 100 mM, 
[decane] = 50 mM. 

Ligand Guest (Equiv.) l:b
PPh3 -- 2.82 
PPh3 4a (1) 2.70 
3b 4a (1) 2.66 
3b 4a (5) 2.72 
3b 4a (10) 2.73 
3b 4a (100) 2.67 

We hypothesized this lack of selectivity could be caused by the attenuation of 

hydrogen bond formation between the ligand host and barbiturate guest due to the 

elevated reaction temperatures at which the reactions were run. In an attempt to increase 

the observed selectivity, the reactions were allowed to stir overnight at room temperature 

after pre-activation of the catalyst at 50 °C for 90 min. The results are shown in Table 

4.2. Again, no increase in selectivity of linear over branched aldehyde product was 

observed using ligand 3b with up to 100 equivalents of 4a.  



44 
 

Table 4.2. Results from the hydroformylation of 1-octene at rt using classic 
monondentate and supramolecular bidendentate phosphine ligand assemblies. Conditions: 
[Rh] = 100 µM, [ligand] = 2.0 mM, [1-octene] = 100 mM, [decane] = 50 mM.  
 

Ligand Guest (Equiv.) l:b 

PPh3 -- 3.4 
PPh3 4a (6) 3.3 
3b 4a (5) 3.1 
3b 4a (56) 2.9 
3b 4a (108) 3.0 

 

Further attempts to improve the selectivity were made by revisiting our initial 

ligand design. After looking closely at the crystal structure of the cis-PtL2Cl2 (L = 3b), 

we hypothesized that the direct aryl linkage of the phosphorus donor atom could be too 

rigid and therefore impose an unfavorable binding pocket for the incoming barbiturate 

guest. To improve the flexibility of this scaffold, we synthesized the methylene spaced, 

benzyl analogues 6a–b (Scheme 4.5). Using similar methods for the synthesis of 2a–c, 

we were able to construct the benzyl halide isomers 5a–b. Attempts to synthesis the ortho 

isomer resulted in isolation of the oxindole (cyclized) byproducts and was therefore not 

pursued further. Using a CuI mediated substitution reaction with diphenylphosphine in 

the presence of a mild base (NaOSiMe3), benzyl-modified ligands 5a–b were isolated 

after column chromatography.  

With these new receptors in hand, we then subjected ligands 3c and 6a–b to 

similar hydroformylation condition as those used for 3b to evaluate the effects of 

regioisomerism and host flexibility on selectivity (Table 4.3). The results again show no 

increase in selectivity for these new ligands compared to PPh3 and 3b confirming that 

binding pocket flexibility and regioisomerism are not responsible for the poor selectivity. 
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Scheme 4.5. Synthesis of benzyl-modified bifurcated Hamilton receptor ligands. 

Table 4.3. Effect of methylene spacer and regioisomerism of phosphorus donor atom on 
the linear to branched (l:b) aldehyde ratio from the hydroformylation of 1-octene at rt for 
four days. Conditions: [Rh] = 100 µM, [ligand] = 2.0 mM, [1-octene] = 100 mM, 
[decane] = 50 mM. 

Ligand Guest (Equiv.) l:b
PPh3 -- 3.07 
3b 4a (55) 3.06 
3c 4a (55) 3.23 
6a 4a (55) 2.49 
6b 4a (55) 2.56 

In an attempt to investigate the root cause of the poor selectivity of the benzyl-

modified ligands, cis-PtL2Cl2 model complexes were constructed and 1H NMR titrations 

were performed to measure the binding affinity towards guest 4b (Figure 4.2). Fitting the 

resultant binding isotherm to a 1:1 binding model resulted in a drastically attenuated 

binding affinity (Ka = 66 M–1) compared to that of 3b ∪ 4b (Ka = 800 M–1). Further 

insight into the cause of this attenuation was provided by single crystal x-ray diffraction 

(Figure 4.3). The structure of cis-PtL2Cl2 (L = 6a) (7a) clearly shows a distorted binding 

pocket with the two recognition units of the host arms trans to the phosphorus donor 

atom. This erosion of preorganization likely explains the attenuated binding affinity and 

similar hydroformylation activity compared to 3b.  
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Figure 4.2. a) Synthesis of cis-PtL2Cl2 (L = 6a). b) 1H NMR titration of 4b and 7a in 
H2O sat. CDCl3 at 25 °C.  
 

 
Figure 4.3. ORTEP representations of 7a with thermal ellipsoids drawn at 50% 
probability. Hydrogen bonds have been eliminated for clarity. Left) side-on view. Right) 
straight-on view showing the lack of pre-organization of the host binding pocket. 
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 In a final attempt to increase the binding affinity and improve the efficacy of this 

new ligand platform, an alterative approach to hydrogen-bonding was taken. Typically, 

the distal substitution of the receptor arms is chosen such that the steric bulk of the 

appended groups prevents self-aggregation. We hypothesized that instead of neo-pentyl 

substitution, using perfluorinated arene rings would result in positive secondary non-

covalent interactions (arene-perfluoroarene) between the host and guest resulting in 

increased binding affinities (Figure 4.4). Synthesis of these types of ligands and the 

proto-analogues was achieved using similar amide couplings and phosphination 

conditions as previously reported (Scheme 4. 6).  

These new ligands were then subjected to similar hydroformylation conditions as 

before and compared directly to a traditional bidentate ligand (Xantphos). Additionally, 

other types of synthetic barbiturates (4a–d) were screened to evaluate the effect of guest 

on the l:b ratio. Unfortunately, these ligands again showed no increase in selectivity 

when compared to ligands 3b–c, 6a–b, or PPh3. 
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Figure 4.4. Generic metal-ligand complex with perfluorinated aryl groups showing 
secondary interactions with a barbiturate guest.  
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Scheme 4.6. Synthesis of benzyl and perfluorobenzyl substituted phosphine modified 
Hamilton receptors.  
 

Both ligands 10a and 10b showed similar selectivity when used with their 

complementary guest (4d and 4a, respectively). Additionally, barbiturates of different 

sizes also had little to no effect on aldehyde selectivity indicating that negative steric 

interactions between the host and guest are either minimal or prohibiting binding 

altogether.  

 

Table 4.4. Results from the hydroformylation of 1-octene with supramolecular bidentate 
ligands capable of secondary interactions and different guest molecules at 50 °C. 
Conditions: [Rh] = 100 µM, [ligand] = 2.0 mM, [1-octene] = 100 mM, [decane] = 50 
mM. 
 

Ligand Guest (Equiv.) l:b 

PPh3 -- 2.82 
PPh3 4a (27) 2.57 

Xantphos -- > 99:1 
10a 4a (27) 2.63 
10a 4d (27) 2.84 
10b 4a (27) 2.64 
10b 4d (27) 2.78 
3b 4c (27) 2.73 
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4.3. Conclusions 

 

 In conclusion we report the synthesis and binding affinities of new phosphine 

modified Hamilton receptors as an additional supramolecular phosphine ligand platform. 

Hydroformylation of 1-octene with these ligands in the presence of a variety of 

barbiturate guests showed no enhanced selectivity over traditional monodentate ligands. 

Numerous design methods were employed and tested in an attempt to improve this lack 

of selectivity, but were unsuccessful. These results are likely due to the suboptimal 

preorganization of the host-binding pocket preventing strong association of the 

barbiturate guest resulting in little effective chelation of the phosphorous donor atoms. 

Future attempts at improving the efficacy of this scaffold should focus on alternative 

secondary interaction between barbiturate guest and ligand receptor to improve the 

binding affinity. Additionally, substitution of the 4-position on the pyridyl ring with 

electron rich moieties could increase the binding affinity of the guest by increasing the 

basicity of the pyridyl lone pair. 

 

4.4. Bridge 

 

 After understanding the limitations of our current supramolecular ligand platform, 

we switched our attention to understanding the potential supramolecular interactions 

between individual barbiturate guest molecules. Many barbiturates are known to dimerize 

in the solid-state and we were interested in understanding their self-association in 

solution as well. In Chapter II we reported the synthesis of new chiral barbiturates. A 
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unique observation was made that these molecules form gels when dissolved in 

chlorinated solvents. The contents of Chapter V elaborate on this observation and provide 

initial insights into the molecular/physical parameters that cause this unique gelation 

behavior. Additionally, we investigate the types of microstructures formed from the self-

association of these new barbiturates. 
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CHAPTER V 

SINGLE-COMPONENT, LOW MOLECULAR WEIGHT 

ORGANIC SUPERGELATORS BASED ON CHIRAL 

BARBITURATE SCAFFOLDS 

 

This chapter contains co-authored unpublished work that was written by me. The 

majority of the experiments were performed by me and the results were also interpreted 

by me. SEM imaging experiments were performed with the assistance of Langworthy, K.  

Zakharov, L. collected and interpreted the x-ray diffraction data. Pluth, M. provided 

editorial assistance. 

 

5.1. Introduction 

 

Supramolecular gels are an emerging class of soft materials with unique and 

tunable rheological and thermal properties. Due to their viscoelastic properties, 

supramolecular gels capable of gelating organic solvents (organogels) have found 

widespread application in sensing and stimuli responsive materials,1-10 optoelectronics,11-

20 drug delivery,21, 22 and as templates for nanoparticles and other inorganic structures.23, 

24 Structurally, organogelators range from polymeric to single small molecules or low 

molecular-weight organic gelators (LMOGs). In addition, multicomponent gel systems 

have also been reported.25-28 In LMOGs and multicomponent systems, gel formation 
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typically occurs through the self-assembly of individual units to produce one-dimensional 

fibers that become three-dimensionally entangled or crosslinked. The delicate balance 

required to favor gelation over crystallization or dissolution is typically achieved through 

careful tailoring of the non-covalent interactions, H-bonding, π-π stacking, metal-

coordination, and van der Waals interaction, to guide self-assembly. Here, we report a 

simple approach to accessing chiral, single-component, supergelators using simple and 

readily-accessible starting materials. 

Among the most popular strategies for creating new organogelators is 

incorporation of long, single chain alkyl groups or cholesteryl moieties to a specific 

scaffold of interest.25, 29 Application of these strategies has produced organogelators 

capable of gelating an array of organic liquids but has limited the potential for further 

understanding of the physical processes that drive gelation. Another popular motif for the 

construction of supramolecular gels is the melamine·barbiturate/cyanurate binary system 

(Figure 5.1).30-34 Such systems are characterized by the complementary donor-acceptor-

donor hydrogen bonding motif of the melamine unit, and the acceptor-donor-acceptor 

motif of the barbiturate/cyanurate. Although these systems show promising gelation 

behavior, functionalization with long alkyl chains or large cholesteryl groups is required 

for efficient gelation.33 A rare example of a strategically modified, self-complementary 

barbiturate/receptor has been reported, but the gelation ability of this system was poor 

and limited to specific solvent conditions and required a high weight percent (8 wt %) of 

gelator.35 
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Figure 5.1. Previously reported organogelators based on the melamine·barbiturate/ 
cyanurate motifs (left) and a new chiral, single-component LMOG based on a barbiturate 
scaffold (right). 

Adding to the inherent gelation properties, the inclusion of chirality is also a 

common feature of organogelators.36 Unfortunately, the useful properties of chiral 

gelators are often eroded when used as racemic mixtures with most racemates showing 

no gelation behavior. Additionally, by studying the self-assembly of these chiral building 

blocks, researchers can begin to understand the mechanisms of chirality transfer from 

single molecules to self-assembled, chiral nanostructures.37-41 Therefore, there is 

significant interest in developing new chiral organogelators that do not require large alkyl 

and steroidal groups to induce gelation behavior. Aligned with this need, we report a 

chiral barbiturate that functions as a single component LMOG in various organic solvents 

with low loading requirements for gelation (0.3 wt%), which classify it as a supergelator. 

Notably, this construct lacks the large alkyl chains or cholesteryl groups commonly 

employed to induce gelation, and instead utilizes a simple, planar chiral, aromatic 

backbone with a polar H-bonding head group to induce gelation thus providing a versatile 

platform for future expansion and application.  
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5.2. Results and Discussion 

 

Because barbiturates are capable of forming large hydrogen bonding networks, 

we reasoned that incorporation of chiral groups could provide access to homochiral self-

assembled networks. To provide contrasting molecular interactions to the hydrogen 

bonding barbiturate core, we chose to incorporate aromatic subunits to provide the 

potential for additional long-range order through π-stacking interactions. Combining 

these design principles, we reasoned that use of axially-chiral binaphthyl (BINAP) groups 

could be used to increase molecular complexity. To prepare the target barbiturate, we 

treated barbituric acid with the bis(methylbromide) of BINAP to prepare enantiopure 

BINABarb (Figure 5.2a).  
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Figure 5.2. a) Synthesis of (S)/(R)-BINABarb from barbituric acid with (S)-
stereochemistry shown. b) Structures of control compounds that are not organogelators. 
 

Upon preparation of 1, we observed that dilute CH2Cl2 solutions formed gels, 

whereas similar solutions of benzyl barbiturate (3) failed to gelate. Building from these 

initial observations, we sought to determine the gelation ability of 1 towards other 
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organic solvents and compare this to structural analogues of 1 (Figure 5.2b). The results 

from the screening show that 1 forms organogels in different chlorinated solvents (Table 

5.1, Entries 1-4) and substituted aromatic solvents (Table 5.1, entries 8-11). Solvents 

such as tetrachloroethane, CCl4, and benzene showed no gelation behavior suggesting a 

fine balance between solubility, crystallization, and gelation. The apparent trend that 

requires at least one substituent on the aromatic ring for gelation is unusual and is 

currently under further investigation in our laboratory. Solvents containing either 

hydrogen bond accepting or donating groups eroded the gelation behavior, which is 

consistent with the requirement of a barbiturate hydrogen bonding network for successful 

gelation. In addition, we probed the potential gelation behavior of structurally-similar 

compounds 2, which contains the BINAP moiety but lacks the barbiturate, and in 3, 

which contains the barbiturate but lacks the BINAP moiety, and failed to observe gelation 

behavior of either of these compounds in any of the solvents investigated. 

To investigate the self-assembly of BINABarb on the molecular level we 

performed diffusion-ordered NMR spectroscopy (DOSY) on compounds 1-3 in CDCl3. 

We hypothesized that if significant self-assembly was occurring, then a significant 

change in the diffusion coefficient could be measured. Using this technique also provided 

another opportunity to elucidate some of the structural requirements for gelation by 

comparing the diffusion coefficients of 1 to structural analogues 2 and 3. The effects of 

gelator concentration on diffusion coefficient for 1a and control compounds 2 and 3 are 

shown in Figure 5.3. The sharp break in the measured diffusion coefficient of 1a is 

indicative of significant self-assembly and the formation of higher order 

nanostructures.42, 43 The minimum gelation concentration was observed to be 10 mM or 



56 
 

0.3 wt%, which classifies 1a as a supergelator.44 Increasing the concentration beyond the 

minimum gelation concentration (15-25 mM) showed no significant change in diffusion 

coefficient. Gelation was also confirmed for all samples > 10 mM by a simple inversion 

test. The critical gelation temperature (Tgel) for 1a was also measured using VT-DOSY 

and found to be ~50 °C. In addition, VT-DOSY confirmed the thermal reversibility of the 

self-assembly (Figure D.10). In contrast, neither 2 nor 3 show any significant change in 

diffusion coefficient within a similar concentration regime. These results support the 

necessity of both a polar head and an aromatic tail for self-assembly to occur. 

Additionally, the biphenyl derivative of BINABarb shows no gelation properties and 

could not be further studied due to poor solubility in the required concentration regime. 

Therefore, we attribute the unique gelation behavior observed by 1a and 1b over other 

barbiturates to the inherent chirality of the binaphthyl backbone, which allows for 

extension of the individual molecular units into an extended nanostructure. Attempts to 

measure racemic mixtures of the barbiturate at concentrations above 10 mM resulted in 

precipitation rather than gel formation, further suggesting that the chiral backbone is 

critical to gelation. 

In an effort to understand key interactions at the molecular level that could be 

responsible for the gel formation of 1, we turned to x-ray crystallography. Attempts to 

grow single crystals from dilute solutions of chloroform or other solvents that induced 

gelation were unsuccessful, highlighting the propensity of these systems to gelate rather 

than crystallize. We were, however, able to grow crystals of 1b from THF/pentane vapor 

diffusion. Although these were not the gelation conditions, we surmised that analysis of 
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the crystallographic details could provide additional information on the types of 

intramolecular interactions present in these systems. 

 

Table 5.1. Gelation properties of compounds 1-3 at r.t. G = gel, S = soluble, ppt = 
precipitate formed, SS = slightly soluble, I = insoluble. 
 

entry solvent 1a 2 3 
1 chloroform G S S 
2 chlorobenzene G S ppt 
3 dichloromethane G S SS 
4 dichloroethane G S S 
5 tetrachloromethane I S ppt 
6 tetrachloroethane S S S 
7 benzene I S ppt 
8 toluene G S ppt 
9 o-xylene G S ppt 
10 m-xylene G S ppt 
11 p-xylene G S ppt 
12 nitrobenzene S S S 
13 pyridine S S S 
14 tetrahydrofuran S S S 
15 ethyl acetate S S S 
16 acetone S S S 
17 acetonitrile S S S 
18 ethanol ppt S S 
19 methanol ppt S S 
20 water I I ppt 

 

Analysis of the crystal structure shows clear dimerization between the two 

pyrimidine heads with the other hydrogen bonds satisfied by a THF co-solvent (Figure 

D.11). Expansion of the asymmetric unit shows long range order, driven by hydrogen 

bonding and π-stacking, that could result in the fiber formation that could occur upon 

gelation (Figure 5.4). From these representations, correlations to the helicity of the fibers 

observed in the VP-SEM can be made. The barbiturate polar head groups are held 

together by H-bonding interactions between a neighboring barbiturate and the THF co-
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solvent, while there is a short, T-shaped contact (3.451 Å) between the aromatic π-faces 

of the binaphthyl backbone in neighboring columns. This arrangement leads to the 

formation of two intertwining chains that could explain the helicity of the fibers formed 

in solution. It can also then be rationalized why polar solvents inhibit gel formation. 

Erosion of the hydrogen bonding motif by strong H-bond donors and acceptors interrupts 

dimerization of the barbiturate and thus prevents the growth of one-dimensional fibers.  

 

 
Figure 5.3. Plot of diffusion coefficient vs barbiturate concentration in CDCl3 at 25 °C. 
Values reported are an average of at least 3 independent trials (± σ).  
 

To further investigate the supramolecular ordering at the microscale level, we 

used a variable pressure scanning electron microscopy (VP-SEM) to visualize the type of 

microstructures (tapes, ribbons, sheets, fibers, coils, etc.) that were formed. Figure 5.5 

shows the difference between the microcrystalline material before dissolution in CHCl3 

and the supramolecular fibers formed from either (S)-BINABarb or (R)-BINABarb. 

These fibers showed a diverse size range from 3-15 µm in diameter with various levels of 

entanglement. Notably, the images clearly show microstructures with helical twists, 
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demonstrating that the axial molecular chirality of the individual subunits is translated 

into to microstructures. 

 

 
Figure 5.4. a) Space-filling representation of tetrameric columnar stack from single 
crystal x-ray diffraction data with H-bonds omitted for clarity b) ORTEP of tetrameric 
columnar stack with molecules colored by symmetry equivalence showing the helical 
nature of the column. Thermal ellipsoids shown at 50% probability with hydrogen atoms 
omitted for clarity. 
 

 
Figure 5.5. VP-SEM images of a) 1a (S)-BINABarb CHCl3 gel with inset of an inverted 
vial containing the gel, b) 1b (R)-BINABarb CHCl3 gel, c) crystalline solid of 1b. 
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5.3. Conclusions 

 

In conclusion, we report the first chiral barbiturate to act as a single-component 

LMOG. This new LMOG can be classified as a super gelator and is capable of gelating a 

variety of chlorinated and aromatic solvents. The structural requirements for gelation 

when compared to other non-gelating analogs appear to be both a polar H-bonding head 

group and chiral aromatic backbone. VP-SEM and XRD experiments show the self-

assembly of 1 results in the production of fiber type microstructures likely promoted by 

the dimerization of individual barbiturate units. Potential applications of this new LMOG 

include use as chiral dopants for liquid crystals and use as chiral shift/transfer reagents. 

These, as well as other potential applications, are currently being investigated by our 

laboratory. 

 

5.4. Bridge 

 

 After investigating the structure and properties of new, chiral barbiturate based 

organogels, we moved our attention back to the developing the supramolecular design 

principles for acyclic Hamilton receptors. Specifically, Chapter VI focuses on the 

development of new fluorescent Hamilton receptors whose photophysical properties can 

be modulated by varying the electronic properties of the appended arylethynyl 

fluorophores. 
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CHAPTER VI 

SUBSTITUENT EFFECTS OF FLUORESCENT 

ARYLETHYNYL HAMILTON RECEPTORS FOR 

BARBITURATE SENSING 

 

This chapter contains co-authored unpublished work that was written by me. All 

of the experiments were performed by me and the results were also interpreted by me. 

Pluth, M. provided editorial assistance. 

 

6.1. Introduction 

Hydrogen bonding is a ubiquitous theme in the fields of self-assembly and 

molecular recognition. Owing to the high directionality of H-bonds, host–guest systems 

incorporating these types of non-covalent interactions often exhibit significant 

cooperativity leading to strong association constants. Of the numerous host–guest 

architectures that incorporate hydrogen bonding as the primary recognition motif,1 one of 

the most ubiquitous scaffolds is that based on the synthetic barbiturate receptor developed 

by Hamilton (Figure 6.1).2 

This highly-utilized class of macrocyclic 2,6-diamidopyridine receptors is 

characterized by the two symmetric donor-acceptor-donor H-bonding schemes of the host 

that align with the two, symmetric acceptor-donor-acceptor H-bonding scheme of 

barbiturates. These types of systems exhibit large associations constants (Ka) for 
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barbituric acid derivatives ranging from 105-106 M–1 in aprotic solvents such as CHCl3 

and CH2Cl2.2, 3 Although the preorganization imposed by the macrocyclizing component 

is required for the largest binding affinities, non-macrocyclic forms of the receptor also 

display relatively large binding affinities (~104 M–1).3 Our group has previously 

investigated the impacts of steric4 and electronic5 effects on non-macrocyclic Hamilton 

receptors. Similarly, other groups have also utilized different acyclic derivatives for a 

variety of applications including the construction of supramolecular dendrimers6, 7 and 

polymeric materials,8-10 applications as optoelectronic materials,11-14 and sensing.15-17  
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Figure 6.1. Structures of original and selected modified Hamilton receptors. 
 

Although many of these receptors exhibit high selectivity and affinity for 

barbiturate guests, relatively few of these systems have desirable photophysical 
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properties for sensing applications (e.g. low energy absorbances, strong emission profiles, 

etc). Therefore, derivatized Hamilton receptors are needed that contain fluorogenic and 

other chromophoric groups. Towards these aims, prior work by Izuo et al. demonstrated 

that appending pyrene moieties to an acyclic Hamilton receptor results in a strong 

fluorescence turn-on that can be monitored by fluorescence spectroscopy.18 The efficacy 

of this system is largely due to solvent effects that cause disaggregation of the host 

molecule in the presence of barbiturates. Chambers et al. have shown that cholesteryl 

modified Hamilton receptors can be incorporated into liquid crystal display technologies 

that respond with relatively large changes in maximum reflectance wavelengths in the 

presence of barbital.19 Other approaches for barbiturate detection include electrochemical 

methods20 and Fe spin-crossover complexes that in the presence of barbiturates produce a 

visible colorimetric response that is selective for barbiturates over structural analogues.21  

More recently, the Kondo group demonstrated that appendage of a phenylethynyl 

group on the 4-position of the isophthalimide backbone results in a turn-on fluorescent 

probe for barbiturates.22 While simultaneously working on a similar design strategy, we 

hypothesized that appending arylethynyl groups to the 4-position of the diamidopyridine 

backbone would have two positive effects over the isophthalyl linkage. First, the turn-on 

response could be easily tuned through the identity of the R-group due to the inherent 

“push-pull” nature of the fluorophore and greater differences in the ground and excited 

electronic state between the bound and unbound receptor. Secondly, the binding affinities 

of the receptor could be tuned through the incorporation of electron-donating groups or 

electron-withdrawing groups in the 4-position of the arylethynyl moiety thereby changing 

the basicity of the pyridyl nitrogen lone pair. Herein, we report the synthesis, 
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optoelectronic properties, and binding affinities of a suite of arylethynyl Hamilton 

receptors that function as fluorescent barbiturate sensors and provide insights into the 

design principles required for efficient fluorogenic properties in Hamilton-based 

receptors. 

6.2. Results and Discussion 

 

The synthesis of the new arylethynyl-containing Hamilton receptors is relatively 

straightforward. We envisioned that a variety of aryl-ethynyl groups could be appended 

using typical Sonogashira cross-coupling conditions using the corresponding 4-

bromopyridyl precursor (2). Using methods similar to those reported previo usly,4, 23 we 

were able to prepare the brominated analogue of a typical acyclic Hamilton receptor, 2. 

This precursor was then subjected to standard Sonogashira cross-coupling conditions to 

yield the final products in moderate yields from commercially available materials 

(Scheme 6.1). Purification of these molecules could be obtained through column 

chromatography or in some cases recycling GPC to remove any unreacted starting 

material or mono-substituted products. Using this methodology, we prepared a variety of 

4-substituded arylethynyl Hamilton receptors that included strongly electron-donating 

and strongly electron-withdrawing groups, 3a–e.  

With these new receptors in hand, we first examined their optical properties 

(Table 6.1). The absorption maxima of 3a–e range from 321–368 nm with receptor 3e 

showing the most red-shifted absorption. As we hypothesized, the emission spectra 

exhibit notable differences upon substitution of the arylethynyl moiety (Figure 6.3a). 

Receptors 3a–d exhibited very weak emission profiles in the absence of guest. In 
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contrast, 3e shows a strong emission maximum at 451 nm in the absence of guest. This 

change in emission behavior is likely due to the charge transfer between the strongly 

electron donating dimethyl amino group and electron poor pyridine ring, which has been 

observed in other push-pull pyridine-containing systems.24, 25 
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Scheme 6.1. Synthesis of substituted arylethynyl Hamilton receptors. 

Table 6.1. Photophysical Properties of Hosts 3a-3e in the presence and absence of 
barbital guest. λmax measured with [H] = 5 µM in H2O sat. CHCl3. ε were measured in 
H2O sat. CHCl3. λem in the presence of barbital measured with [H] = 1 µM in H2O sat. 
CHCl3 and 200 equivalents of barbital. 

without barbital 

Host λmax
 (nm) ε 

(x 104 M–1 cm–1) λem (nm) 

3a 321 7.68 ±  0.03 - 
3b 303 7.36 ± 0.02 - 
3c 306 9.04 ± 0.05 - 
3d 324 8.27 ± 0.06 - 
3e 368 7.6 ±  0.1 451 

with barbital 
3a 321 n/a - 
3b 305 n/a 380 
3c 306 n/a 372 
3d 327 n/a 449 
3e 374 n/a 454 
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Further supporting the charge-transfer behavior, we also observed that receptors 

3a-d displayed solvatochromic properties common to other charge transfer systems in 

both the absorbance (Figure E.2) and fluorescence spectra (Figure 6.2) In addition to the 

absorbance and emission bathochromic shifts, the fluorescence intensity decreases as the 

solvent polarity increases (Figure E.3). This behavior has been exhibited in other 

fluorogenic charge transfer systems and is caused by the increase in non-radiative 

pathways available in the excited state that is stabilized by the polar solvent molecules.26 

 
Figure 6.2. Emission spectra of 3e in different solvents ([3e] = 5 µM, λex = absorbance 
λmax for the given solvent).  

 

With the photophysical properties of new hosts 3a–e measured, we sought to 

probe the changes of these photophysical properties to the addition of guest molecules. 

Previously reported systems based on unsubstituted-arylethynyl systems show a turn-on 

fluorescent response to the addition of barbiturate guests, in addition to small changes in 

the absorption spectra.22 We observed similar spectral changes for our substituted-

arylethynyl hosts upon the addition of barbital (Figure 6.3b). The absorption spectra show 

small red shifts ranging from 3-6 nm upon the addition of barbital (Figure E.4), while the 

changes in the emission spectra are much more dynamic. Unsurprisingly the fluorescence 
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of 3a remains quenched due to the presence of the nitro group. However, other electron 

withdrawing substituents such as the CF3 moiety of 3b show a moderate fluorescent turn-

on (6.7 fold) at 380 nm upon the addition of barbital. Similar behavior is exhibit for the 

H-substituted receptor, 3c (4.9 fold turn-on). Upon increasing to more electron donating 

substituents, a dramatic red-shifting in the emission profile occurs with receptor 3d 

exhibiting an λem at 449 nm in addition to a much stronger fluorescence turn-on (17 fold). 

In contrast, the even more electron rich NMe2 substituted receptor 3e shows a turn-off 

response to the addition of barbital. 

  

 
Figure 6.3. a) Emission spectra of hosts 3b–e (1 µM) in H2O sat. CHCl3.  b) Emission 
spectra of hosts 3b–e (1 µM) in the presence of 200 equivalents 4b in H2O sat. CHCl3. 
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To explain the quenching effect observed for 3e in the presence of barbital, we 

reasoned that protonation of the dimethylamino group by the barbiturate N-H could be 

responsible. Using 1H NMR spectroscopy, we performed a titration experiment with 

barbital and 3e in H2O sat. CDCl3. However, upon increasing the equivalence of guest, 

there was no observable change in the dimethylamino resonance indicating that 

protonation of the group was not occurring. Instead, typical down-field shifts are 

observed for the two amide N-H groups (Figure 6.4). 

 
Figure 6.4. 1H NMR (500 MHz) titration of 3e with barbital (4b) in H2O sat. CDCl3 at 25 
°C. 
 

To further probe the differences between the emission profiles of our receptors we 

hypothesized that protonation of the pyridyl nitrogen could be responsible for the 

emission feature at 445 nm. Therefore, the emission profiles of electron poor receptors, 

such as 3b, could be caused by weak proton transfer between the barbiturate N-H and the 
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pyridine. To determine the effect of protonation at the pyridyl nitrogen we preformed a 

fluorescence titration between receptor 3b and dibenzylbarbital (4d), followed by acetic 

acid. Upon addition of barbital we observe a fluorescence turn-on at 380 nm. 

Interestingly, the subsequent addition of acetic acid to the same solution containing 3b 

and 4d, yields a ratiometric response with an increasing emission band at 453 nm and a 

decrease in the band at 380 nm. (Figure 6.5). An isobestic point is observed at 425 nm 

confirming a direct conversion of the H:G complex to the protonated host complex.  

 
Figure 6.5. Emission spectra of 3b in the presence of 4d showing a ratiometric response 
to the addition of AcOH. 
 

After determining the photophysical properties of our new receptor library, we 

wanted to determine the effect of R group on the binding of barbital. Fluorescence 

titrations were performed and the total integrated fluorescence data were fit to a 1:1 

binding model. The results are summarized in Table 6.2. The measured binding constants 

are similar to those reported previously for similar systems.22 As we hypothesized, the 
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binding affinities could be tuned through substitution of the R group on the arylethynyl 

moiety. EDGs effectively increase the basicity of the nitrogen lone pair, making the 

system a better H-bond acceptor, while EWGs decrease the pyridyl lone pair basicity 

leading to a lower binding affinity.  

We next constructed a Hammett plot from the titration data to determine whether 

this system exhibits a linear free energy relationship. The data show a moderately 

correlated linear trend (Figure E.5). The negative slope (ρ = -0.10) is indicative of an 

increase in positive charge upon barbiturate binding, corroborating the partial proton 

transfer between the barbiturate N-H and pyridyl nitrogen. The magnitude of the slope 

indicates that the R groups have a weak influence on the binding affinity of the guests 

and is likely due to the relatively large distance between the R group and the pyridyl 

nitrogen.  

 

Table 6.2. Binding affinities of hosts 3b-e with barbital at 25 °C in H2O sat. CHCl3. The 
error shown is ± σ. 

Host Ka (x 104 M-1) 
3b 3.04 ± 0.04 
3c 3.3 ± 0.2 
3d 3.80 ± 0.06 
3e 4.0 ± 0.03 

 

In addition, we also investigated whether barbiturate substitution impacted 

binding to the receptor motifs. We chose receptor 3b as the model host and measured the 

change in fluorescence upon titration with guests 4a–d (Figure 6.6). Although the size of 

these barbiturates changed significantly, there were not large changes or correlations 

between the size of the barbiturate and binding affinity. We did observe, however, that 

guest 4a exhibited a 2-fold stronger binding compared to other guests, which we attribute 
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to the locked confirmation of the 5,5’ groups on the barbiturate which help preorganize 

the guest to have minimal negative steric interactions with the distal neopental groups of 

the host.  

Guest Ka (x 104 M-1), 25 °C

4a 5.4 ± 0.1

4b 3.04 ± 0.04

4c 2.11 ± 0.06

4d 2.01 ± 0.03

OO

O

HN NH

Ph Ph

OO

O

HN NH

OO

O

HN NH

OO

O

HN NH

4a 4d4c4b

Figure 6.6. Binding affinities of guests 4a–e and receptor 3b at 25 °C in H2O sat. CHCl3. 
Binding isotherms fit to a 1:1 binding model. The error shown is ± σ. 

6.3. Conclusion 

In summary we have prepared small library of substituted arylethynyl Hamilton 

receptors via simple Sonogashira couplings in moderate yields. These new receptors 

exhibit tunable photophysical properties dependent on the identity of arylethynyl 

substituents. Electron withdrawing substituents show a moderate fluorescent turn-on in 

the presences of barbiturate guests with λem between 372-380 nm. Electron donating 

substituents exhibit bimodal behavior. In the case of the OMe substituted host, (3d) a 

stronger, red shifted fluorescence turn-on at 449 nm is observed. In contrast the most 

electron donating NMe2 host (3e) shows a turn-off fluorescence response in the presence 

of guest. Additionally, the fluorescence of this compound exhibits mild solvatochromic 
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behavior. The binding affinity of these new receptors towards barbiturates can be 

modulate by the electron donating/withdrawing nature of the arylethynyl substituents and 

exhibits a moderately correlated linear free energy relationship. Overall, these findings 

demonstrate the fine control of photophysical and binding properties that can be achieved 

through careful tailoring of the electronics of appended fluorophores to acyclic Hamilton 

receptors. Specifically, the electron density at the pyridyl nitrogen plays an important role 

in both the optical properties as well as guest binding. 

 

6.4. Concluding Remarks 

 In this dissertation, I have described work aimed at expanding the utility of the 

Hamilton receptor and barbiturates for a variety of applications. While the initial goal 

was to develop a new supramolecular bidentate ligand scaffold for catalytic applications, 

we were able to investigate alternative applications for new barbiturates and receptors 

that were synthesized along the way. Additionally, our continual interested in the transfer 

of chirality in supramolecular systems, while not discussed in this dissertation, led use to 

pursue a variety of chromophoric and fluorogenic derivatives of acyclic Hamilton 

receptors. These receptors further developed our understanding of the design principles 

that govern barbiturate binding to these receptors.  Future work on these projects should 

focus on understanding the physical organic chemistry behind the assembly of the chiral 

barbiturate gels, specifically the differences in gelation and rheological properties 

between different solvents. Moreover, the new fluorescent probes developed for 

barbiturate sensing will also provide a unique opportunity to study chirality transfer using 

circularly polarized luminescence spectroscopy, among other sensing applications. 
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER II 

 

 Appendix A is the supporting information for Chapter II of this dissertation. It 

includes the experimental details and additional spectra relevant to the content of Chapter 

II. 

 

Experimental Details 

General. All commercially-available reagents were used as received. Anhydrous, 

deoxygenated solvents were collected from a Pure Process Technologies solvent 

purification system. Triethylamine was dried and distilled over CaH2 under nitrogen. 

Reactions were monitored using Merck F254 silica gel 60 TLC plates and visualized using 

UV light or a KMnO4 stain. Reactions conducted under an inert atmosphere were 

performed by either using standard Schlenk techniques or a N2-filled glove box. 

Chromatographic purification was performed using a Biotage automated flash 

chromatography purification system. 1H and 13C{1H} NMR spectra were recorded at the 

reported frequencies, and chemical shifts are reported in ppm (δ) and referenced to the 

residual solvent resonance. 31P{1H} chemical shifts are referenced to H3PO4. The 

following naming conventions were used to describe NMR couplings: (s) singlet, (d) 

doublet, (t) triplet, (q) quartet, (dd) doublet of doublets, (m) multiplet, (b) broad.   

General Procedure Binding Constant Determination. Binding studies were 

performed in CDCl3 in duplicate or CD3CN in triplicate for host molecules 4b-c and were 
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monitored by 1H NMR spectroscopy at 25 °C. In a typical H2O sat. CDCl3 titration, 10.00 

mL of a 1.0 mM barbiturate guest solution was prepared. The guest solution was then 

divided such that 600 µL was placed into an NMR tube and 1.50 mL was used to create a 

second solution containing 16 mM host. An initial spectrum of the guest was recorded 

using the following parameters: nt=16 and d1=1s, after which aliquots (5-250 µL) of the 

host solution were added until the N-H resonance of barbiturate no longer shifted. The 

resultant curves were fit using a 1:1 model and the Kassoc obtained. In a typical CD3CN 

titration, 3.0 mL of a 1.0 mM Pt host complex solution was prepared. The host solution 

was then divided such that 600 µL was placed into an NMR tube and the remaining 2.4 

mL was used to create a second solution containing 30-60 mM synthetic barbiturate 

guest. An initial spectrum of the host was recorded using the following parameters: nt=16 

and d1=1s, after which aliquots (5-250 µL) of the guest solution were added until the N-H 

resonance of the host no longer shifted. The resultant curves were fit using a 1:1 model 

and the Kassoc obtained.  

General Procedure for Job Plot Analysis. Stoichiometric binding analysis was 

performed in H2O-saturated CDCl3 or 1% DMSO-d6:CDCl3 and was monitored by 1H 

NMR spectroscopy at 25 °C. Total (host + guest) concentrations of 4.0 mM were used for 

all Job plots. For a typical Job plot, 2.0 mM stock solutions of guest 5a and host 4b were 

divided amongst 10 NMR tubes in 10 mol% increments to a total volume of 600 µL. A 

pure guest sample was also prepared. A d1 of 2.0 s and nt=8 were during NMR data 

collection. Both the shift in host proximal N-H peak and guest N-H peaks were recorded. 

Syntheses 
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 N-(6-Aminopyridin-2-yl)-3,3-dimethylbutanamide (1). An oven dried flask 

containing 2,6-diaminopyridine (10.0 g, 91.6 mmol) was charged with anhydrous THF 

(300 mL) and cooled to 0 °C. A separate solution of 3,3-dimethylbutyryl chloride (6.0 

mL, 43 mmol) in anhydrous THF (50 mL) was then added dropwise over 2.5 hours via 

addition funnel. The reaction mixture was warmed to room temperature and allowed to 

stir overnight. The crude reaction mixture was then filtered, concentrated via rotary 

evaporation, and purified via column chromatography (SiO2, 1:1 EtOAc:Hex, Rf= 0.33) 

to yield a white solid (6.13 g, 69%) 1H NMR (500 MHz, CDCl3) δ: 7.55 (d, J = 7.3 Hz, 

2H), 7.44 (t, J = 7.9 Hz, 1H), 6.23 (d, J = 7.9 Hz, 1H), 4.28 (s, 2H), 2.19 (d, J = 2.0 Hz, 

2H), 1.08 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ: 170.29, 157.16, 149.93, 140.24, 

104.31, 103.37, 51.89, 31.43, 29.94.  

N-(6-(3,3-Dimethylbutanamido)pyridin-2-yl)-2-iodobenzamide (2a). Excess 

thionyl chloride (3.0 mL, 41 mmol) was added to a scintillation vial containing 2-

iodobenzoic acid (1.01 g, 4.05 mmol). Three drops of anhydrous DMF was added to the 

reaction mixture, and the reaction was heated to 65 °C, vented through a bubbler 

containing 1 M KOH, and stirred for 1.5 hours. The excess thionyl chloride was removed 

under vacuum. The resultant residue was dissolved in anhydrous THF (10 mL) and 

slowly added to a solution of 1 (0.763 g, 3.68 mmol) and anhydrous triethylamine (770 

µL, 5.50 mmol) in THF (150 mL) at 0 °C. The resulting turbid mixture was warmed to 

room temperature and stirred overnight. The mixture was filtered, diluted with EtOAc, 

and washed with saturated NaHCO3 (4 x 50 mL) and then with brine (2 x 50 mL). The 

organic layer was separated, dried over MgSO4, filtered, and concentrated under reduced 

pressure. The crude product was purified via column chromatography (SiO2, 1:3 



76 
 

EtOAc:Hex, Rf = 0.18) to yield a white solid (0.987 g, 62%).1H NMR (500 MHz, CDCl3) 

δ: 8.21 (s, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H), 7.84 – 7.80 (m, 2H), 

7.73 (t, J = 8.1 Hz, 1H), 7.60 – 7.57 (m, 3H), 2.23 (s, 2H), 1.10 (s, 9H). 13C NMR (126 

MHz, CDCl3) δ: 170.42, 167.26, 149.76, 149.19, 141.53, 141.02, 140.33, 131.88, 128.45, 

110.19, 109.81, 92.34, 51.76, 31.46, 29.90. 

N-(6-(3,3-Dimethylbutanamido)pyridin-2-yl)-3-iodobenzamide (2b). Excess 

thionyl chloride (3.0 mL, 41 mmol) was added to an oven-dried flask containing 3-

iodobenzoic acid (0.503 g, 2.03 mmol). A drop of anhydrous DMF was added to the 

reaction mixture, and the mixture was heated to 65 °C, vented through a bubbler 

containing 1 M KOH, and stirred for 3 hours. The excess thionyl chloride was removed 

under vacuum. The resultant residue was dissolved in THF (10 mL) and slowly added to 

a solution of 1 (0.380 g, 1.83 mmol) and anhydrous triethylamine (380 µL, 2.72 mmol) in 

THF (50 mL) at 0 °C. The resulting turbid mixture was warmed to room temperature and 

stirred overnight. The mixture was filtered, concentrated under reduced pressure, and 

purified via column chromatography (SiO2, 1:2 EtOAc:Hex, Rf = 0.46) to yield a white 

solid (0.670 g, 84%). 1H NMR (500 MHz, CDCl3) δ: 8.22 (s, 1H), 8.15 (s, 1H), 8.03 (d, J 

= 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 

7.76 (t, J = 8.0 Hz, 1H), 7.52 (s, 1H), 7.25 (t, J = 8.5 Hz, 1H), 2.25 (s, 2H), 1.12 (s, 9H). 

13C{1H} NMR (126 MHz, CDCl3) δ: 170.35, 163.90, 149.70, 149.37, 141.29, 141.14, 

136.33, 136.25, 130.65, 126.44, 110.05, 109.74, 94.61, 52.00, 31.53, 29.96. 

N-(6-(3,3-Dimethylbutanamido)pyridin-2-yl)-4-iodobenzamide (2c). Excess 

thionyl chloride (3.0 mL, 41.3 mmol) was added to scintillation vial containing 3-

iodobenzoic acid (0.50 g, 2.0 mmol).  A drop of anhydrous DMF was added to the 
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reaction mixture, and the mixture was heated to 65 °C, vented through a bubbler 

containing 1 M KOH, and stirred for 4 hours. The excess thionyl chloride was removed 

under vacuum. The resultant residue was dissolved in anhydrous THF (10 mL) and 

slowly added to solution of 1 (0.381 g, 1.84 mmol) and anhydrous triethylamine (380 µL, 

2.72 mmol) in THF (100 mL) at 0 °C. The resulting turbid mixture was warmed to room 

temperature and stirred overnight. The mixture was filtered, concentrated and purified via 

column chromatography (SiO2, 1:3 EtOAc:Hex, Rf = 0.42) to yield a white solid (0.668 

g, 83%).1H NMR (500 MHz, CDCl3) δ: 8.21 (s, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.97 (d, J 

= 8.1 Hz, 1H), 7.84 – 7.80 (m, 2H), 7.73 (t, J = 8.1 Hz, 1H), 7.60 – 7.57 (m, 3H), 2.23 (s, 

2H), 1.10 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ: 170.37, 164.74, 149.68, 149.41, 

141.02, 138.20, 133.66, 128.74, 109.98, 109.73, 99.66, 51.85, 31.47, 29.92. 

N-(6-(3,3-Dimethylbutanamido)pyridin-2-yl)-2-(diphenylphosphino)benzamide 

(3a). Reactants 2a (0.152 g, 0.348 mmol), diphenylphosphine (0.081 g, 0.43 mmol), 

Pd(OAc)2 (4.8 mg, 21 µmol), triethylamine (70 µL, 0.50 mmol, and CH3CN (20 mL) 

were combined in a dry flask under N2. The resulting dark red solution was heated to 

reflux and stirred overnight. The crude solution was loaded onto dry silica, in air, and 

purified via column chromatography (dry SiO2, 1:3 EtOAc:Hex, Rf = 0.29) to yield an off 

white solid (0.095 g, 55%). 1H NMR (500 MHz, CDCl3) δ: 8.18 (bs, 1H), 7.91 (d, J = 8.1 

Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.72 (bm, 1H), 7.66 (t, J = 8.1 Hz, 1H), 7.43 (t, J = 7.4 

Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.31 (m, 9H), 7.05 (dd, J = 7.7, 4.1 Hz, 1H), 2.25 (s, 

2H), 1.11 (s, 9H). 31P{1H} NMR (202 MHz, CDCl3) δ: -9.32. 13C{1H} NMR (126 MHz, 

CDCl3) δ: 166.95, 136.57, 136.49, 134.32, 134.09, 133.93, 130.89, 128.95, 128.86, 
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128.63, 128.57, 127.92, 127.89, 109.59, 109.51, 51.73, 31.38, 29.81.. HRMS (ESI-TOF) 

m/z: [M + Na]+ Calcd for C30H30N3O2PNa, 518.1973; found 518.1972. 

N-(6-(3,3-Dimethylbutanamido)pyridin-2-yl)-3-(diphenylphosphino)benzamide 

(3b).  Reactants 2b (0.750 g, 1.72 mmol), diphenylphosphine (0.382 g, 2.05 mmol), 

Pd(OAc)2 (22.7 mg, 101 µmol), triethylamine (340 µL, 2.44 mmol), and CH3CN (35 mL) 

were combined in a dry flask under N2. The resulting dark red solution was heated to 

reflux and stirred overnight. The crude solution was loaded onto dry silica, in air, and 

purified via column chromatography (dry SiO2, 1:3 EtOAc:Hex, Rf = 0.41) to yield a 

white solid (0.690 g, 81%). 1H NMR (500 MHz, CDCl3) δ: 8.17 (s, 1H), 8.01 (d, J = 8.0 

Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.73 

(t, J = 8.1 Hz, 1H), 7.54 (s, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 6.8 Hz, 1H), 7.39 – 

7.28 (m, 10H), 2.24 (s, 2H), 1.11 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ: 170.24, 

165.14, 149.47 (d, J = 12.9 Hz), 140.87, 139.07 (d, J = 13.9 Hz), 137.06 (d, J = 13.9 Hz), 

136.22 (d, J = 10.5 Hz), 134.44 (d, J = 7.7 Hz), 133.79 (d, J = 19.8 Hz), 132.23 (d, J = 

25.8 Hz), 129.15, 129.11, 129.07, 128.75 (d, J = 7.2 Hz), 127.58, 109.65 (d, J = 14.5 Hz), 

51.80, 31.37, 29.82.31P{1H} NMR (202 MHz, CDCl3) δ: -5.23. HRMS (ESI-TOF) m/z: 

[M + Na]+ Calcd for C30H30N3O2PNa, 518.1973; found 518.1964. 

N-(6-(3,3-Dimethylbutanamido)pyridin-2-yl)-4-(diphenylphosphino)benzamide 

(3c). Reactants 2c (0.495 g, 1.13 mmol), diphenylphosphine (0.241 g, 1.30 mmol), 

Pd(OAc)2 (15.7 mg, 69.9 µmol), triethylamine (230 µL, 1.65 mmol), and CH3CN (30 

mL) were combined in a dry flask under N2. The resulting dark red solution was heated to 

reflux and stirred overnight. The crude solution was loaded onto dry silica, in air, and 

purified via column chromatography (dry SiO2, 1:3 EtOAc:Hex, Rf = 0.32) to yield a 
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white solid (0.437 g, 78%). 1H NMR (500 MHz, CDCl3) δ: 8.20 (s, 1H), 8.05 (d, J = 8.0 

Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.84 – 7.80 (m, 2H), 7.77 (s, 1H), 7.42 – 7.29 (m, 

12H), 2.25 (s, 2H), 1.11 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ: 170.33, 165.20, 

149.63 (d, J = 6.8 Hz), 143.63 (d, J = 14.6 Hz), 141.05, 136.20 (d, J = 10.6 Hz), 134.17, 

134.01, 133.88, 133.73, 129.36, 128.87 (d, J = 7.3 Hz), 127.05 (d, J = 6.4 Hz), 109.79 (d, 

J = 13.2 Hz), 51.95, 31.50, 29.94. 31P{1H} NMR (202 MHz, CDCl3) δ: -5.26. HRMS 

(ESI-TOF) m/ z: [M + Na]+ Calcd for C30H30N3O2PNa, 518.1973; found 518.1957. 

5,7-dihydro-1'H-Spiro[dibenzo[a,c][7]annulene-6,5'-pyrimidine]-2',4',6'(3'H)-

trione (5a). Barbituric acid (76.9 mg, 6.00 mmol), 2,2'-bis(bromomethyl)-1,1'-biphenyl 

(198 mg, 5.83 mmol), triethylamine (170 µL , 1.23 mmol), and DMF (3 mL) were added 

to a scintillation vial. The reaction mixture was stirred overnight at room temperature. 

The reaction mixture changed from a clear and colorless solution to cloudy and white and 

then finally to clear and yellow solution upon completion of the reaction with some 

precipitate present. The DMF was removed under vacuum with gentle heating. The 

resultant residue was purified using column chromatography (SiO2, 3:1 EtOAc:hexanes, 

Rf = 0.58) to afford an white solid (123 mg, 69%). 1H NMR (500 MHz, DMSO-d6) δ: 

11.12 (s, 2H), 7.42 – 7.35 (m, 4H), 7.29 (ddd, J = 7.5, 5.6, 3.1 Hz, 2H), 7.21 (d, J = 7.4 

Hz, 2H), 2.93 (bd, J = 5.5 Hz, 4H). 13C{1H} NMR (126 MHz, DMSO-d6) δ: 172.24, 

150.38, 139.60, 134.95, 131.09, 127.87, 127.55, 127.25, 61.71. 

General Procedure for the synthesis of cis-PtL2Cl2 complexes. In an inert 

atmosphere, a solution of 3b (66.2 mg, 134 µmol) in CH2Cl2 (2 mL) was added dropwise 

to a stirring solution of Pt(COD)Cl2 (25.3 mg, 67.6 µmol) in CH2Cl2 (1 mL). The reaction 

was stirred at room temperature for one hour, after which the solvent was removed under 
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vacuum. The resulting solids were triturated three times with hexanes, in air, and filtered 

to obtain 4b as an off white solid (63 mg, 75%). 1H NMR (500 MHz, CDCl3) δ: 8.39 (s, 

2H), 8.03 (d, J = 11.0 Hz, 2H), 7.99 (d, J = 8.1 Hz, 2H), 7.95 (d, J = 8.0 Hz, 2H), 7.89 (s, 

2H), 7.79 (d, J = 7.8 Hz, 2H), 7.73 (t, J = 8.1 Hz, 2H), 7.60 – 7.46 (m, 8H), 7.43 – 7.31 

(m, 6H), 7.30 – 7.23 (m, 2H), 7.21 (td, J = 7.9, 2.1 Hz, 8H), 2.26 (s, 4H), 1.10 (s, 18H). 

31P{1H} NMR (202 MHz, CDCl3) δ: 14.55.  

Compound 4c.  (white solid, 85 mg, 85%) 1H NMR (500 MHz, CDCl3) δ 8.40 (s, 

2H), 7.99 (t, J = 7.5 Hz, 4H), 7.75 (t, J = 8.1 Hz, 3H), 7.62 (d, J = 8.1 Hz, 5H), 7.55 (dd, 

J = 11.4, 7.7 Hz, 8H), 7.48 – 7.35 (m, 8H), 7.25 – 7.18 (m, 8H), 2.23 (s, 4H), 1.09 (s, 

18H). 31P{1H} NMR (202 MHz, CDCl3) δ: 14.32 

Additional Crystal Structure Figures and NMR Figures 

 
Figure A.1. ORTEP representation of a) o- isomer, 3a, b) m-isomer, 3b, c) p-isomer, 3c, 
co-crystallized with a molecule of THF. Thermal ellipsoids drawn at 50% probability 
with non-hydrogen bonding hydrogens omitted for clarity. 
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Figure A.2. ORTEP representations of 4b with thermal ellipsoids drawn at 50% 
probability. a) Structure viewed face-on with one molecule of THF shown and non-
hydrogen bonding hydrogens omitted for clarity. b) Dimeric form of structure showing 
intra- and inter-molecular hydrogen bonds with non-hydrogen bonding hydrogens 
omitted for clarity. 
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Figure A.3. 1H NMR data for Job Plot of 4b and 5a in CDCl3. 
 

 
Figure A.4. Job Plot of 4b and 5a in CDCl3.  
 



83 
 

0.00.51.01.52.02.53.03.54.07.08.09.010.0
f1 (ppm)

1

2

3

4

5

6

7

8

9

10

 
Figure A.5. 1H NMR data for Job Plot of 4b and 5a in 1% DMSO-d6:CDCl3.  
 

 
Figure A.6. Job Plot of 4b and 5a in 1% DMSO-d6:CDCl3. 
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NMR Spectra 
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Figure A.7. 1H (500 MHz) NMR spectrum of 1 in CDCl3. 
 

 
Figure A.8. 13C{1H} (126 MHz) NMR spectrum of 1 in CDCl3. 
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Figure A.9. 1H (500 MHz) NMR spectrum of 2a in CDCl3. 
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Figure A.10. 13C{1H} (126 MHz) NMR spectrum of 2a in CDCl3. 
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Figure A.11. 1H (500 MHz) NMR spectrum of 2b in CDCl3. 

 

 
Figure A.12. 13C{1H} (126 MHz) NMR spectrum of 2b in CDCl3. 
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Figure A.13. 1H (500 MHz) NMR spectrum of 2c in CDCl3. 
 

 
Figure A.14. 13C{1H} (126 MHz) NMR spectrum of 2c in CDCl3. 
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Figure A.15. 1H (500 MHz), NMR spectrum of 3a in CDCl3. 
 

 
Figure A.16. 13C{1H} NMR (126 MHz NMR spectrum of 3a in CDCl3. 
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Figure A.17. 31P{1H} (202 MHz) NMR spectrum of 3a in CDCl3. 
 

 
Figure A.18. 1H (500 MHz) NMR spectrum of 3b in CDCl3. 
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Figure A.19. 13C{1H} NMR (126 MHz) NMR spectrum of 3b in CDCl3. 
 

 
Figure A.20. 31P{1H} (202 MHz) NMR spectrum of 3b in CDCl3. 
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Figure A.21. 1H (500 MHz) NMR spectrum of 3c in CDCl3. 
 

 
Figure A.22. 13C{1H} (126 MHz) NMR spectrum of 3c in CDCl3. 
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Figure A.23. 31P{1H} (202 MHz) NMR spectrum of 3c in CDCl3. 
 

 
Figure A.24. 1H (500 MHz) NMR spectrum of 4b in CDCl3.  
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Figure A.25. 13C{1H} (126 MHz) NMR spectrum of 4b in CDCl3.  
 

 
Figure A.26. 31P{1H} (202 MHz) NMR spectra of 4b in CDCl3.  
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Figure A.27. 1H (500 MHz) NMR spectrum of 4c in CDCl3.  
 

 
Figure A.28. 13C{1H} (126 MHz) NMR spectrum of 4c in CDCl3.  
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Figure A.29. 31P{1H} (202 MHz) NMR spectrum of 4c in CDCl3.  
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Figure A.30. 1H (500 MHz) NMR spectra of 5a in DMSO-d6. 
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Figure A.31. 13C{1H} (126 MHz) NMR spectra of 5a in DMSO-d6. 
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Figure A.32. Binding isotherm from NMR titration of 4b and 5a in H2O sat. CDCl3 at 25 
°C 
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Figure A.33. Binding isotherm from NMR titration of 4b and 5a in MeCN-d6 at 25 °C. 

 

 
Figure A.34. Binding isotherm from NMR titration of 4c and 5a in H2O sat. CDCl3 at 25. 
°C 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER III 

 

 Appendix B is the supporting information for Chapter III of this dissertation. It 

includes the experimental details and additional spectra relevant to the content of Chapter 

III. 

 

Experimental Details 

General. All commercially-available reagents were used as received. Anhydrous, 

deoxygenated solvents were collected from a Pure Process Technologies solvent 

purification system. Reactions were monitored using Merck F254 silica gel 60 TLC plates 

and visualized using UV light or a KMnO4 stain. Chromatographic purification was 

performed using a Biotage automated flash chromatography purification system. 1H and 

13C{1H} NMR spectra were recorded at the reported frequencies, and chemical shifts are 

reported in ppm (δ) and referenced to the residual solvent resonance. All 19F spectra were 

indirectly referenced via the Bruker TopSpin 3.5 software suite to CFCl3. The following 

naming conventions were used to describe NMR couplings: (s) singlet, (d) doublet, (t) 

triplet, (q) quartet, (dd) doublet of doublets, (m) multiplet, (b) broad. HPLC analysis was 

performed using an Agilent 1260 Infinity II instrument equipped with an Infinitylab 

poroshell 120 EC-C18 column (4.6 x 100 mm, 2.7 µm inner diameter) using a 

MeOH:H2O gradient for elution. 



99 
 

Procedure for the solvent screening study. To a solution of 250 mg (1.95 mmol) 

barbituric acid in 5 mL solvent was added 780 µL (4.48 mmol, 2.3 equiv.) 

diisopropylethylamine (DIPEA). The mixture was stirred at room temperature for 10 min, 

after which time a precipitate formed. 470 µL (3.90 mmol, 2.0 equiv.) of benzyl bromide 

was then added to the mixture. The mixture was heated to 50 °C and stirred overnight (22 

h). The crude, clear orange reaction mixture was diluted with H2O and extracted 3x with 

EtOAc. The combinded organic extracts were washed 3x with brine, dried over MgSO4, 

filtered and concentrated. The residue was triturated with hexanes and the resulting solids 

collected via vacuum filtration. The final products ranged from white to off white/tan 

solids.  

 

Syntheses 

Synthesis of dibromomethylbinapthalene precursors: A modified procedure as 

reported by Ooi et al. was used.26 2,2′-bis(trifluoromethanesulfonyloxy)-1,1′-binaphthyl, 

[(R)-I]. (R)-BINOL (2.01 g, 7.02 mmol), N-phenylbistrifluormethanesulfonamide (5.02 

g, 14.1 mmol), DIPEA (3.60 mL, 21.7 mmol) were combined in 10 mL dry DMF and 

stirred at r.t. for 24 hours. The reaction was diluted with Et2O, washed 3x with H2O and 

then with brine. The organic layer was dried over MgSO, filtered and concentrated under 

vacuum. The crude product was purified by column chromotography using 

hexanes:EtOAc gradiant (0% - 20%) as the eluent (Rf = 0.12, Hex; Rf = 0.45, 20% 

EtOAc) to yield the final product as an oil that solidifies to a white solid upon standing 

(3.27 g, 85%) 1H NMR (500 MHz, CDCl3) δ: 8.15 (d, J = 9.1 Hz, 2H), 8.02 (d, J = 8.3 

Hz, 2H), 7.66 – 7.57 (m, 4H), 7.43 (t, J = 7.6 Hz, 2H), 7.32 – 7.19 (m, 2H). 13C{1H} 
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NMR (126 MHz,  CDCl3) δ: 145.51, 133.27, 132.48, 132.12, 128.48, 128.11, 127.45, 

126.88, 123.57, 119.46, 118.26 (q, J = 320.7 Hz). 19F NMR (471 MHz, CDCl3) δ: -74.56. 

2,2′-bis(trifluoromethanesulfonyloxy)-1,1′-binaphthyl, [(S)-I]. Was prepared 

similar to (R)-I using the following amounts: (S)-BINOL (996 mg, 3.48 mmol), N-

phenylbistrifluormethanesulfonamide (2.50 g, 7.00 mmol), DIPEA (1.8 mL, 10 mmol) in 

5 mL DMF. The product was isolated as a white solid (1.35 g, 71%). 1H NMR (500 MHz, 

CDCl3) δ: 8.15 (d, J = 9.1 Hz, 2H), 8.01 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 9.1 Hz, 2H), 

7.59 (ddd, J = 8.1, 6.7, 1.0 Hz, 2H), 7.42 (ddd, J = 8.2, 6.8, 1.2 Hz, 2H), 7.32 – 7.19 (m, 

2H). 13C{1H} NMR (126 MHz, CDCl3) δ: 145.51, 133.28, 132.48, 132.12, 128.48, 

128.11, 127.45, 126.89, 123.57, 119.53, 118.26 (q, J = 320.7). 19F NMR (471 MHz, 

CDCl3) δ: -74.57. 

(R)-2,2′-Dimethyl-1,1′-binaphthyl, [(R)-II].  (R)-I (2.502 g, 4.54 mmol) and 

NiCl2(dppp) (82.0 mg, 0.139 mmol) were combined in a Schlenk and evacuated/refilled 

3x with and atmosphere of N2. Dry and degassed Et2O (25 mL) was added via cannula 

and cooled to 0 °C. MeMgI (2 M in Et2O, 6.8 mL, 14 mmol) was added slowly. The 

reaction mixture was then heated to reflux and stirred for 19 hours. The reaction was then 

cooled to 0 °C and quenched with 2 mL of 1 M HCl (aq), diluted with Et2O, and filtered 

through celite. The organic layer was then washed 3x with H2O and brine, dried over 

MgSO4, filtered, and concentrated under vacuum. The crude mixture was dissolved in 

hexanes and the risdual salts removed via filtration. The product was purified using 

column chromotograpny using hexanes as the eluent (Rf = 0.23) to yield the final product 

as a colorless oil that solidifies upon standing (1.08 g, 84%). 1H NMR (500 MHz, CDCl3) 

δ: 7.89 (t, J = 8.0 Hz, 4H), 7.51 (d, J = 8.4 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 
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7.6 Hz, 2H), 7.05 (d, J = 8.5 Hz, 2H), 2.04 (s, 6H). 13C NMR (126 MHz, CDCl3) δ: 

135.26, 134.42, 132.89, 132.35, 128.86, 128.06, 127.56, 126.21, 125.78, 125.02, 20.18. 

(S)-2,2′-Dimethyl-1,1′-binaphthyl, [(S)-II]. Was prepared similar to (R)-II using 

the following amounts: (S)-I (4.86 g, 8.83 mmol), NiCl2(dppp) (157 mg, 0.265 mmol), 

degassed Et2O (40 mL),  MeMgI (2 M in Et2O, 13 mL, 26 mmol). The final product was 

isolated as an oil that solidified upon standing (2.185 g, 88%) 1H NMR (500 MHz, 

CDCl3) δ: 7.89 (t, J = 8.0 Hz, 4H), 7.51 (d, J = 8.4 Hz, 2H), 7.39 (ddd, J = 8.1, 6.6, 1.1 

Hz, 2H), 7.21 (ddd, J = 8.2, 6.8, 1.3 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 2.04 (s, 6H). 

13C{1H} NMR (126 MHz, CDCl3) δ: 135.27, 134.43, 132.90, 132.36, 128.86, 128.06, 

127.57, 126.22, 125.78, 125.03, 20.18. 

(R)-2,2′-Bis(bromomethyl)-1,1′-binaphthyl, [(R)-III]. (R)-II (428 mg, 1.52 

mmol), N-bromosuccinimide (594 mg, 3.34 mmol), and AIBN (24.3 mg , 0.148 mmol, 

10%) were dissolved in benzene (15 mL) and heated to reflux for 3 hours. The reaction 

was cooled to room temperature and diluted with Et2O. The organic layer was washed 3x 

with H2O, 3x brine, dried over MgSO4 and filtered. The crude product was purified using 

column chromotography (Rf = 0.23, Hex). The combined fractions were concentrated and 

the product was triturated in hexanes and then filtered to yield the final product as a white 

solid (302 mg, 45%) 1H NMR (500 MHz, CDCl3) δ: 8.02 (d, J = 8.6 Hz, 2H), 7.93 (d, J = 

8.2 Hz, 2H), 7.75 (d, J = 8.6 Hz, 2H), 7.49 (ddd, J = 8.2, 6.7, 1.0 Hz, 2H), 7.32 – 7.18 (m, 

2H), 7.08 (d, J = 8.5 Hz, 2H), 4.26 (s, 4H). 13C{1H} NMR (126 MHz, CDCl3) δ: 134.33, 

134.23, 133.41, 132.66, 129.52, 128.17, 127.89, 126.99, 126.97, 126.94, 32.78. 

(S)-2,2′-Bis(bromomethyl)-1,1′-binaphthyl, [(S)-III]. Was prepared similar to (R)- 

III using the following amounts: (S)-II (501 mg, 1.77 mmol), N-bromosuccinimide (668 
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mg, 3.75 mmol), and AIBN (32.0 mg , 0.195 mmol), and benzene(15 mL). After 3 hours 

125 mg (0.702 mmol) NBS and 5.0 mg (3.0 µmol) AIBN were added and heated to reflux 

for an additional hour. The final product was isolated as a white solid (294 mg, 38%). 1H 

NMR (500 MHz, CDCl3) δ: 8.02 (d, J = 8.6 Hz, 2H), 7.93 (d, J = 8.2 Hz, 2H), 7.75 (d, J 

= 8.6 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.28 (t, J = 7.9 Hz, 2H), 7.08 (d, J = 8.5 Hz, 2H), 

4.26 (s, 4H). 13C NMR (126 MHz, CDCl3) δ: 134.33, 134.23, 133.40, 132.65, 129.51, 

128.17, 127.89, 126.99, 126.96, 126.94, 32.78. 

 General Synthesis of 5,5′- disubstituted barbituric acids: To a solution of 

barbituric acid (1 equiv.) in DMSO was added diisopropylethylamine (DIPEA, 2.3 

equiv.) The mixture was stirred at room temperature for 10 min, after which time a 

precipitate formed (depending on the concentration of barbituric acid). The 

corresponding benzyl bromide (2 equiv.) was then added to the mixture, which was then 

heated to 50 °C and stirred overnight (~22 h). The crude, clear orange reaction mixture 

was diluted with H2O and extracted 3x with EtOAc. The combinded organic extracts 

were washed 3x with brine, dried over MgSO4, filtered and concentrated. The residue 

was triturated with a DCM:hexanes mixture and the resulting solids collected via vacuum 

filtration to yield the final product. In general, this gave acceptably pure product. Further 

purification could be achieved via recrystallization from EtOH or column 

chromotography. 

5,5′-dibenzylbarbituric acid (Figure 3.2, Entry 2). This compound was prepared 

as described in the general procedure using the following quantities: barbituric acid (253 

mg, 1.95 mmol) in 5 mL DMSO, DIPEA (780 uL, 4.45 mmol), and benzyl bromide (470 

µL, 3.95 mmol). The product was isolated as a white solid (474 mg, 78%). 1H NMR (500 
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MHz, DMSO-d6) δ: 11.19 (s, 2H), 7.35 – 7.17 (m,6), 7.11 – 7.01 (m, 4H), 3.28 (s, 4H). 

13C{1H} NMR (126 MHz, DMSO-d6) δ: 171.99, 148.85, 135.13, 129.26, 128.47, 127.33, 

58.99, 43.78. 

5,5′-bis((perfluorophenyl)methyl)barbituric acid (Figure 3.2, Entry 4). This 

compound was prepared as described in the general procedure using the following 

quantities: barbituric acid (100 mg, 0.781 mmol) in 5 mL DMSO, DIPEA (310 µL, 1.8 

mmol), and 2,3,4,5,6-pentafluorobenzyl bromide (240 µL, 1.58mmol). This compound 

was purified by column chromatography (Rf= 0.3, 1:3 EtOAc:Hex, SiO2) to give the 

desired product as a white solid (219 mg, 57%). 1H NMR (500 MHz, DMSO-d6) δ: 11.60 

(s, 2H), 3.44 (s, 4H). 13C{1H} NMR (126 MHz, DMSO-d6) δ: 170.17, 149.38, 145.19 (d, 

J = 245.5 Hz), 139.84 (d, J = 257.1 Hz), 138.16 – 134.98 (m), 109.59 (td, J = 19.4, 19.0, 

3.4 Hz), 53.12, 29.68. 19F NMR (471 MHz, DMSO-d6) δ: -138.81 (dd, J = 23.9, 7.4 Hz, 

4F), -154.97 (t, J = 22.3 Hz. 2F), -162.69 (td, J = 23.2, 7.2 Hz, 4F). HRMS (EI-TOF) m/ 

z: [M-H]+ Calcd for C18H5N2O3F10, 487.01403; found 487.01331. 

5,5′-diallylbarbituric acid (Figure 3.2, Entry 5). This compound was prepared as 

described in the general procedure using the following quantities: barbituric acid (0.502 

g, 3.92 mmol) in 10 mL DMSO, DIPEA (1.56 mL, 8.96 mmol), and allyl bromide (680 

µL, 7.87 mmol). The compound was isolated as an off white solid (416 mg, 51%). 1H 

NMR (500 MHz, DMSO-d6) δ: 11.50 (s, 2H), 5.56 (ddt, J = 17.4, 10.2, 7.3 Hz, 2H), 5.20 

– 4.83 (m, 4H), 2.55 (d, J = 7.4 Hz, 4H). 13C{1H} NMR (126 MHz, DMSO-d6) δ: 172.38, 

150.16, 131.78, 120.53, 55.44, 41.92.  

5,5′-bis(pyridin-2-ylmethyl)barbituric acid (1). This compound was prepared as 

described in the general procedure using the following quantities: barbituric acid (102 
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mg, 7.77 mmol) in 5 mL DMSO, DIPEA (580 µL, 3.3 mmol), and 2-

(bromomethyl)pyridine hydrobromide (405 mg, 1.60 mmol). The compound was isolated 

as a tan solid (111 mg, 46%). 1H NMR (500 MHz, DMSO-d6) δ: 10.93 (s, 2H), 8.35 (d, J 

= 4.7 Hz, 2H), 7.70 (td, J = 7.7, 1.8 Hz, 2H), 7.21 (m, 4H), 3.47 (s, 4H). 13C{1H} NMR 

(126 MHz, DMSO-d6) δ: 172.73, 155.91, 150.27, 148.46, 136.59, 123.59, 122.00, 53.32, 

44.72. HRMS (ESI-TOF) m/ z: [M + H]+ Calcd for C16H15N4O3, 311.1144;  found 

311.1139. 

5,5′-bis(pyren-1-ylmethyl)barbituric acid (2). This compound was prepared as 

described in the general procedure using the following quantities: barbituric acid 

(50.7mg, 0.396 mmol) in 3 mL DMSO, DIPEA (160 µL, 0.92 mmol), and 1-

(bromomethyl)pyrene  (231 mg, 0.783 mmol). The compound was purified via column 

chromatography (Rf = 0.56, 1:1 EtOAc:Hex) followed by recrystallization from a 

CHCl3:EtOH mixture to yield the final product as a white solid (88 mg, 40%). 1H NMR 

(500 MHz, DMSO-d6) δ: 11.08 (s, 2H), 8.62 (d, J = 9.4 Hz, 2H), 8.32 (d, J = 8.0 Hz, 2H), 

8.30 (d, J = 7.7 Hz, 2H), 8.27 (d, J = 9.4 Hz, 2H), 8.23 (d, J = 8.0 Hz, 2H), 8.18 (d, J = 

8.9 Hz, 2H), 8.13 (d, J = 8.9 Hz, 2H), 8.09 (t, J = 7.7 Hz, 2H), 7.86 (d, J = 8.0 Hz, 2H), 

4.40 (s, 4H). 13C{1H} NMR (126 MHz, DMSO) δ: 172.38, 148.72, 130.82, 130.30, 

130.05, 129.83, 129.16, 127.45, 127.37, 127.25, 127.23, 126.35, 125.26, 124.96, 124.76, 

124.12, 124.03, 123.77, 58.59. HRMS (ESI-TOF) m/ z: [M + H]+ Calcd for C38H25N2O3, 

557.1865;  found 557.1874. 

5,5′-bis(anthracen-9-ylmethyl)barbituric acid (3). This compound was prepared as 

described in the general procedure except the reaction was stopped after 2 hours. The 

following quantities were used: barbituric acid (28.3 mg, 0.221 mmol) in 2 mL DMSO, 
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DIPEA (90 µL, 0.52 mmol), and 9-(chloromethyl)anthracene  (100 mg, 0.441 mmol). 

The compound was recrystallized from THF:EtOH to give the final compound as a 

yellow solid (21 mg, 19%). 1H NMR (500 MHz, DMSO-d6) δ: 10.67 (s, 2H), 8.53 (s, 

2H), 8.43 (dd, J = 6.5, 3.4 Hz, 4H), 8.03 (dd, J = 6.3, 3.4 Hz, 4H), 7.47 (dd, J = 6.7, 3.2 

Hz, 8H), 4.69 (s, 4H). 13C{1H} NMR (126 MHz, DMSO-d6) δ: 172.30, 148.67, 130.98, 

130.92, 128.68, 128.55, 127.63, 125.54, 125.39, 124.88, 56.66, 35.35. HRMS (ESI-TOF) 

m/ z: [M + H]+ Calcd for C34H25N2O3, 509.1865;  found 509.1858. 

5,5′-(R)-1,1′-binaphthylbarbituric acid [(R)-BINABARB, (4a)]. This compound 

was prepared as described in the general procedure using the following quantities: 

barbituric acid (57.9 mg, 0.452 mmol) in 3 mL DMSO, DIPEA (180 µL, 1.0 mmol), and 

(R)-III (199 mg µL, 0.452 mmol). The compound was purified by column 

chromatography (Rf = 0.33, 1:1 EtOAc:Hex) followed by recrystallization from ethanol 

to yield the final product as a white solid (62 mg, 33%) HRMS (ESI-TOF) m/ z: [M + 

Na]+ Calcd for C26H19N2O3, 407.1396;  found 407.1385. 

5,5′-(S)-1,1′-binaphthylbarbituric acid [(S)-BINABARB, (4b)]. This compound 

was prepared as described in the general procedure using the following quantities 

barbituric acid (49.7 mg, 0.388 mmol) in 5 mL DMSO, DIPEA (160 µL, 0.92 mmol), and 

(S)-III (172 mg, 0.391 mmol). The compound was purified by column chromatography 

(Rf = 0.33, 1:1 EtOAc:Hex) followed by recrystallization from ethanol to yield the final 

product as a white solid (36 mg, 23%). HRMS (ESI-TOF) m/ z: [M + Na]+ Calcd for 

C26H19N2O3, 407.1396;  found 407.1396. 

5-benzyl-5-((perfluorophenyl)methyl)barbituric acid (5). This compound was 

using modified procedure as described in the general procedure using the following 
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quantities: DIPEA (310 µL, 1.80 mmol) was added to barbituric acid (98.8 mg, 0.771 

mmol) in 5 mL DMSO and stirred at room temperature for 10 minutes. A separate 

premixed solution of 2,3,4,5,6-pentafluorobenzyl bromide (120 µL, 0.795 mmol) and 

benzyl bromide (95 µL, 0.80 mmol) and 1 mL DMSO was then added slowly. The 

reaction mixture was stirred for 7 hours at room temperature. The reaction mixture was 

pour into water and extracted 3x with EtOAc. The combined organic layers washed 3x 

with brine, dried over MgSO4, and filtered. Multiple attempts to purify the product via 

column chromatography and recrystallization from toluene or ethanol were unsuccessful. 

19F and 1H NMR analysis of the impure product indicated a ~ 3:1:1 ratio of 

product:diCH2C6H5:diCH2C6F5. Potential purification of the product could be achieved 

via preparatory HPLC, however, this was not attempted. 

 

NMR Spectra. 

 
Figure B.1. 1H NMR spectrum of isolated 5,5′-diphenylbarbituric acid from solvent 
screening. 
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Figure B.2. 1H (500 MHz) NMR spectrum of (R)-I in CDCl3. 

 

 
Figure B.3. 19F (471 MHz) NMR spectrum of (R)-I in CDCl3. 
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Figure B.4. 13C{1H} (126 MHz) NMR spectrum of (R)-I in CDCl3. 
 

 
Figure B.5. 1H (500 MHz) NMR spectrum of (S)-I in CDCl3. 
 

010203040506070809010011012013014015016017018090
f1 (ppm)

11
4.

44
11

6.
98

11
9.

46
11

9.
53

12
2.

07
12

3.
57

12
6.

88
12

7.
45

12
8.

11
12

8.
48

13
2.

12
13

2.
48

13
3.

27
14

5.
51

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1 (ppm)

2.
36

1.
99

1.
95

1.
80

1.
98

2.
00

7.
25

7.
26

7.
27

7.
40

7.
40

7.
41

7.
42

7.
42

7.
43

7.
43

7.
57

7.
58

7.
59

7.
59

7.
59

7.
60

7.
61

7.
62

7.
63

8.
00

8.
02

8.
14

8.
15

OTf
OTf

DCM 



109 
 

 
Figure B.6. 19F ((471 MHz) NMR spectrum of (S)-I in CDCl3. 
 

 
Figure B.7. 13C{1H} (126 MHz) NMR spectrum of (S)-I in CDCl3. 
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Figure B.8. 1H (500 MHz) NMR spectrum of (R)-II in CDCl3.  
 

 
Figure B.9. 13C (126 MHz) NMR spectrum of (R)-II in CDCl3.  
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Figure B.10. 1H (500 MHz) NMR spectrum of (S)-II in CDCl3.  
 

 
Figure B.11. 13C (126 MHz) NMR spectrum of (S)-II in CDCl3.  
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Figure B.12. 1H (500 MHz) NMR spectrum of (R)-III in CDCl3. 
 

 
Figure B.13. 13C{1H} (126 MHz) NMR spectrum of (R)-III in CDCl3. 
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Figure B.14. 1H (500 MHz) NMR spectrum of (S)-III in CDCl3. 
 

 
Figure B.15. 13C{1H} (126 MHz) NMR spectrum of (S)-III in CDCl3. 
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Figure B.16. 1H (500 MHz) NMR spectrum of 5,5′-diphenyl barbituric acid in d6-DMSO. 
 

 
Figure B.17. 13C{1H} (126 MHz) NMR spectrum of 5,5′-diphenyl barbituric acid in d6-
DMSO. 

 

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1 (ppm)

4.
00

4.
02

6.
09

1.
97

3.
28

7.
04

7.
06

7.
21

7.
22

7.
22

7.
22

7.
23

7.
24

7.
24

7.
25

7.
25

7.
26

7.
27

7.
27

7.
28

7.
28

7.
29

11
.1

9

010203040506070809010011012013014015016017080
f1 (ppm)

43
.7

8

58
.9

9

12
7.

33
12

8.
47

12
9.

26
13

5.
13

14
8.

85

17
1.

99

NHHN

O O

O

Ph Ph

NHHN

O O

O

Ph Ph



115 
 

 
Figure B.18. 1H (500 MHz) NMR spectrum of 5,5′-bis((perfluorophenyl)methyl) 
barbituric acid in d6-DMSO. 
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Figure B.19. 19F (471 MHz) NMR spectrum of 5,5′-bis((perfluorophenyl)methyl) 
barbituric acid in d6-DMSO. 
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Figure B.20. 13C{1H} (126 MHz) NMR spectrum of 5,5′-bis((perfluorophenyl)methyl) 
barbituric acid in d6-DMSO. 
 

 
Figure B.21. 1H (500 MHz) NMR spectrum of 5,5′-diallylbarbituric acid in d6-DMSO. 
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Figure B.22. 13C{1H} (126 MHz) NMR spectrum of 5,5′-diallylbarbituric acid in d6-
DMSO. 
 

 
Figure B.23. 1H (500 MHz) NMR spectrum of 1 in d6-DMSO. 
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Figure B.24. 13C{1H} (126 MHz) NMR spectrum of 1 in d6-DMSO. 
 

 
Figure B.25. 1H (500 MHz) NMR spectrum of 3 in d6-DMSO. 
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Figure B.26. 13C{1H} (126 MHz) NMR spectrum of 3 in d6-DMSO. 
 

 
Figure B.27. 1H (500 MHz) NMR spectrum of 3 in d6-DMSO. 
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Figure B.28. 13C{1H} (126 MHz) NMR spectrum of 3 in d6-DMSO. 
 

 
Figure B.29. 1H (500 MHz) NMR spectrum of 4a in d6-DMSO. 
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Figure B.30. 13C{1H} (126 MHz) NMR spectrum of 4a in d6-DMSO. 
 

 
Figure B.31. 1H (500 MHz) NMR spectrum of 4b in d6-DMSO. 
 

010203040506070809010011012013014015016017080
f1 (ppm)

38
.0

9

62
.0

4

12
5.

24
12

5.
69

12
6.

28
12

7.
35

12
8.

23
12

9.
78

13
0.

92
13

2.
63

13
2.

76
13

4.
23

15
0.

37

17
2.

22

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)

2.
00

1.
96

1.
88

1.
83

1.
73

1.
65

1.
73

1.
74

3.
09

2.
96

2.
99

3.
07

3.
10

7.
07

7.
09

7.
24

7.
25

7.
27

7.
45

7.
47

7.
48

7.
49

7.
51

7.
94

7.
96

8.
00

8.
01

11
.1

4

 

NH

NH
O

O

O

 

NH

NH
O

O

O



122 
 

 
Figure B.32. 13C{1H} (126 MHz) NMR spectrum of 4b in d6-DMSO. 
 

 
Figure B.33. 1H (500 MHz) NMR spectrum of compound 5 crude reaction mixture in d6-
DMSO. 
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Figure B.34. 19F ((471 MHz) NMR spectrum of compound 5 crude reaction mixture in 
d6-DMSO. 
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Figure B.35. HPLC trace and integration table of compound 5 crude reaction mixture. 
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Table B.1. Quantitative structural parameters for X-ray structures of compounds 1-5. 
Envelope angle calculated from angle between C(6)N(1)C(2)N(3)C(4) and C(6)C(5)C(4) 
planes. 
 

Compound Envelop angle (°) C-N bond lengths (Å) C-O bond lengths (Å) 
1 16.90 1.365, 1.376, 1.378, 1.368 1.215, 1.210, 1.212 
2 0.16 1.367, 1.356, 1.356, 1.367 1.215, 1.223, 1.215 
3 32.63 1.366, 1.377, 1.376, 1.378 1.216, 1.212, 1.211 
4a 30.52 1.383, 1.365, 1.368, 1.373 1.208, 1.222, 1.211 
5 10.11 1.363, 1.377, 1.371, 1.369 1.205, 1.206, 1.210 
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APPENDIX C 

SUPPORTING INFORMATION FOR CHAPTER IV 

 

 Appendix C is the supporting information for Chapter IV of this dissertation. It 

includes the experimental details and additional spectra relevant to the content of Chapter 

IV. 

 

Experimental Details 

General. All commercially-available reagents were used as received. Compounds 

1–3 were synthesized as described previously.1 Compounds 4a–d were synthesized as 

described in Chapter III of this dissertation. Anhydrous, deoxygenated solvents were 

collected from a Pure Process Technologies solvent purification system. Triethylamine 

was dried and distilled over CaH2 under nitrogen. CO:H2 (1:1 v/v) was supplied from 

Praxair. Reactions were monitored using Merck F254 silica gel 60 TLC plates and 

visualized using UV light or a KMnO4 stain. Reactions conducted under an inert 

atmosphere were performed by either using standard Schlenk techniques or a N2-filled 

glove box. Chromatographic purification was performed using a Biotage automated flash 

chromatography purification system or as described. 1H and 13C{1H} NMR spectra were 

recorded at the reported frequencies, and chemical shifts are reported in ppm (δ) and 

referenced to the residual solvent resonance. 31P{1H} chemical shifts are referenced to 

H3PO4. All 19F spectra were indirectly referenced via the Bruker TopSpin 3.5 software 

suite to CFCl3.  The following naming conventions were used to describe NMR 



126 
 

couplings: (s) singlet, (d) doublet, (t) triplet, (q) quartet, (dd) doublet of doublets, (m) 

multiplet, (b) broad.  GC-MS analysis was done using a Shimadzu QP2010 SE 

spectrometer equipped with a SH-RXi-5Sil column. 

General Procedure for Hydroformylation of 1-octene. To individual 1-dram vials 

equipped with stir bars was added Rh(acac)(CO)2 (0.15 µmol, 100 µM), 20 equivalents of 

ligand, barbiturate guest (see table XX), and 1-octene (150 µmol , 100 mM). Decane was 

added (75 µmol, 50 mM ) as an internal standard. The individual vials were then loosely 

capped (this was critical to ensure that evaporation of the solvent was kept to a minimum) 

and placed inside a Parr reactor. This process was done inside a glovebox to avoid 

oxygen contamination. The reactor was then removed from the glovebox and 

pressurized/vented with CO:H2 (1:1) to 150 PSI (3x). The reactor was pressurized to a 

final pressure of 150 PSI and added to a preheated oil bath. The catalysts were preformed 

by stirring at 50 °C for 90 minutes. The reactor was then allowed to cool to the desired 

temperature and stirred overnight (12-24 hours). Subsequently, the reactions were then 

allowed to cool to room temperature, the reactor vented, and 100 µL aliquots were taken 

from the individual trials and analyzed by GC-MS. 

Binding Constant Determination. Binding studies were performed in CDCl3 and 

were monitored by 1H NMR spectroscopy at 25 °C. In a typical titration, 10.00 mL of a 

1.0 mM barbiturate guest solution was prepared. The guest solution was then divided 

such that 600 µL was placed into an NMR tube and 1.00 mL was used to create a second 

solution containing 24 mM host. An initial spectrum of the guest was recorded using the 

following parameters: nt=16 and d1=1s, after which aliquots (5-250 µL) of the host 
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solution were added until minimal changes in the N-H resonance of barbiturate was 

observed. The resultant curve was fit using a 1:1 model and the Kassoc obtained. 

 

Synthesis of Compounds 5–10 

3-(Chloromethyl)-N-(6-(3,3-dimethylbutanamido)pyridin-2-yl)benzamide (5a). 

Excess thionyl chloride (5.0 mL, 69 mmol) was added to a scintillation vial containing 3-

(Chloromethyl)benzoic acid (1.00 g, 5.87 mmol). Two drops of anhydrous DMF was 

added to the reaction mixture, heated to 55 °C, and stirred for 1.5 hours. The excess 

thionyl chloride was removed under vacuum. The resultant residue was dissolved in 

anhydrous THF (10 mL) and slowly added to a solution of 1 (1.16 g, 5.60 mmol) and 

anhydrous triethylamine (940 µL, 6.74 mmol) in THF (50 mL) at 0 °C. The resulting 

turbid mixture was warmed to room temperature and stirred overnight. The mixture was 

filtered and the filtrate concentrated onto silica gel. The crude product was purified via 

column chromatography (SiO2, 1:3 EtOAc:Hex, Rf = 0.31) to yield a white solid (1.847 

g, 92%). 1H NMR (500 MHz, Chloroform-d) δ: 8.22 (s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 

7.98 (d, J = 8.0 Hz, 1H), 7.92 (s, 1H), 7.84 (dt, J = 7.7, 1.5 Hz, 1H), 7.77 (t, J = 8.1 Hz, 

1H), 7.60 (dt, J = 7.7, 1.4 Hz, 1H), 7.53 (s, 1H), 7.51 (t, J = 7.7 Hz, 2H), 4.65 (s, 2H), 

2.25 (s, 2H), 1.12 (s, 9H). 13C NMR (126 MHz, CDCl3) δ: 170.35, 164.95, 149.69, 

149.54, 141.11, 138.59, 134.98, 132.46, 129.52, 127.45, 127.12, 109.93, 109.75, 51.99, 

45.58, 31.52, 29.96. 

4-(Chloromethyl)-N-(6-(3,3-dimethylbutanamido)pyridin-2-yl)benzamide (5b). 

Excess thionyl chloride (5.0 mL, 69 mmol) was added to a scintillation vial containing 4-

(Chloromethyl)benzoic acid (1.00 g, 5.87 mmol). Two drops of anhydrous DMF was 
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added to the reaction mixture, heated to 55 °C, and stirred for 1.5 hours. The excess 

thionyl chloride was removed under vacuum. The resultant residue was dissolved in 

anhydrous THF (10 mL) and slowly added to a solution of 1 (1.16 g, 5.60 mmol) and 

anhydrous triethylamine (935 µL, 6.70 mmol) in THF (50 mL) at 0 °C. The resulting 

turbid mixture was warmed to room temperature and stirred overnight. The mixture was 

filtered and the filtrate concentrated onto silica gel. The crude product was purified via 

column chromatography (SiO2, 1:3 EtOAc:Hex, Rf = 0.29) to yield a white solid (1.825 

g, 91%). 1H NMR (500 MHz, Chloroform-d) δ: 8.21 (s, 1H), 8.05 (d, J = 8.1 Hz, 1H), 

7.98 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.76 (t, J = 8.1 Hz, 1H), 7.53 (d, J = 

8.1 Hz, 3H), 4.64 (s, 2H), 2.25 (s, 2H), 1.12 (s, 9H). 13C NMR (126 MHz, CDCl3) δ: 

170.34, 164.89, 149.68, 149.57, 141.85, 141.09, 134.28, 129.12, 127.72, 109.90, 109.74, 

51.98, 45.36, 31.52, 29.96. 

N-(6-(3,3-Dimethylbutanamido)pyridin-2-yl)-3-

((diphenylphosphino)methyl)benzamide (6a). The following compound was prepared 

inside a N2-filled glovebox. 5a (0.998 g, 1.13 mmol) and CuCl (27.1 mg, 2.74 mmol) 

were dissolved in 5 mL anhydrous, deoxygenated THF (25 mL). Diphenylphosphine 

(0.519 g, 2.77 mmol) in anhydrous, deoxygenated THF (5 mL) was then added to the 

solution of 6a followed by NaOSiMe (2.8 mL, 2.8 mmol, 1M in THF) to produce a 

yellow solution with some precipitate present. The mixture was allowed to stir overnight 

at room temperature. The solvent was then removed via vacuum followed by the addition 

of DCM (25 mL). The insoluble NaCl was then filtered and the filtrate concentrated. The 

crude product was purified using a plug of silica eluting with DCM to yield the final 

product as a white solid (0.725 g, 51%). 1H NMR (500 MHz, Chloroform-d) δ: 8.01 (d, J 
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= 8.1 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.72 (t, J = 8.1 Hz, 1H), 7.65 (s, 1H), 7.47 (s, 

0H), 7.42 – 7.21 (m, 10H), 7.28–7.24 (m, 1H),  7.17 (d, J = 6.9 Hz, 1H), 3.45 (s, 2H), 

2.26 (s, 2H), 1.10 (s, 9H). 13C NMR (126 MHz, Chloroform-d) δ: 138.52 (d, J = 8.1 Hz), 

137.71 (d, J = 14.8 Hz), 133.38, 133.06 (d, J = 18.5 Hz), 129.16, 128.94, 128.63 (d, J = 

6.5 Hz), 127.96, 125.19. 31P NMR (202 MHz, Chloroform-d) δ: -9.00. 

N-(6-(3,3-Dimethylbutanamido)pyridin-2-yl)-4-

((diphenylphosphino)methyl)benzamide (6b). The following compound was prepared 

inside a N2-filled glovebox. 5a (01.00 g, 2.78 mmol) and CuCl (27.1 mg, 2.74 mmol) 

were dissolved in 5 mL anhydrous, deoxygenated THF (25 mL). Diphenylphosphine 

(0.5223 g, 2.80 mmol) in anhydrous, deoxygenated THF (5 mL) was then added to the 

solution of 6a followed by NaOSiMe (2.8 mL, 2.8 mmol, 1M in THF) to produce a 

yellow solution with some precipitate present. The mixture was allowed to stir overnight 

at room temperature. The solvent was then removed via vacuum followed by the addition 

of DCM (25 mL). The insoluble NaCl was then filtered and the filtrate concentrated. The 

crude product was purified using a plug of silica eluting with DCM to yield the final 

product as a white solid (0.723 g, 51%). 1H NMR (500 MHz, Chloroform-d) δ: 8.17 (s, 

1H), 8.05 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 8.6 Hz, 1H), 7.75 (q, J = 8.1 Hz, 1H), 7.75 (s, 

1H), 7.42 – 7.30 (m, 10H), 7.13 (d, J = 7.0 Hz, 2H), 3.47 (s, 2H), 2.27 (s, 2H), 1.11 (s, 

9H). 13C NMR (126 MHz, Chloroform-d) δ: 137.68 (d, J = 15.2 Hz), 133.03 (d, J = 18.7 

Hz), 129.92 (d, J = 6.4 Hz), 129.13, 128.64 (d, J = 6.7 Hz), 127.36. 31P NMR (202 MHz, 

Chloroform-d) δ: -8.67. 

cis-PtL2Cl2 (L = 6a) (7a). In an inert atmosphere, a solution of 6a (104 mg, 204 

µmol) in CH2Cl2 (2 mL) was added dropwise to a stirring solution of Pt(COD)Cl2 (38.2 
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mg, 102 µmol) in CH2Cl2 (3 mL). The reaction was stirred at room temperature for two 

hours, after which the solvent was removed under vacuum (outside of the glovebox). The 

resulting solids were triturated three times with hexanes, in air, and filtered to obtain 7a 

as an off white solid (107 mg, 85%). 31P NMR (202 MHz, Chloroform-d) δ: 1H NMR 

(500 MHz, Chloroform-d) δ: 8.32 (s, 2H), 8.02 (s, 2H), 7.99 (d, J = 8.0 Hz, 2H), 7.96 (d, 

J = 8.0 Hz, 2H), 7.92 (d, J = 7.6 Hz, 2H), 7.78 (s, 2H), 7.73 (t, J = 8.1 Hz, 2H), 7.31 – 

7.16 (m, 10H), 7.07 (t, J = 9.0 Hz, 8H), 6.97 (t, J = 6.8 Hz, 8H), 4.15 (d, J = 11.5 Hz, 

4H), 2.25 (s, 4H), 1.08 (s, 18H). 11.09 (d, J = 3729.5 Hz). 13C NMR (126 MHz, 

Chloroform-d) δ: 170.78, 164.69, 149.95, 149.55, 140.83, 134.91, 134.18, 134.03 – 

133.62 (m), 131.52, 129.15, 128.98, 128.30 – 128.04 (m), 109.90, 109.54, 51.64, 31.50, 

29.96. 

 N-(6-Aminopyridin-2-yl)-2-phenylacetamide (8a). To a flame-dried flask 

containing 2,6-diaminopyridine (0.776 g, 7.10 mmol) in THF (50 mL, anhydrous) at 0 °C 

was added phenylacetyl chloride (1.0 mL, 7.6 mmol). The reaction mixture was allowed 

to warm to room temperature and stirred overnight. The reaction was then diluted with 

ethyl acetate and washed with sat. NaHCO3 (aq) (3x). The organic layer was then washed 

with brine (3x), dried over MgSO4, filtered, and the filtrate concentrated. The crude 

product was purified using column chromatography eluting with 7:1 DCM:EtOAc to 

yield the final product as a white solid (0.540 g, 33%). 1H NMR (500 MHz, Chloroform-

d) δ: 7.81 (s, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.38 – 7.32 (m, 2H), 

7.32 – 7.27 (m, 3H), 6.20 (d, J = 8.0 Hz, 1H), 4.28 (s, 2H), 3.68 (s, 2H). 

N-(6-Aminopyridin-2-yl)-2-(perfluorophenyl)acetamide (8b). Thionyl chloride 

(180 µL, 2.45 mmol) was added to flame-dried flask containing 2,3,4,5,6-
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pentafluorophenylacetic acid (500 mg, 2.04 mmol) in DCM (anhydrous, 4 mL). One drop 

of anhydrous DMF was added to the reaction mixture, heated to reflux, and stirred for 3 

hours. The solvent was removed under vacuum. The resultant residue was dissolved in 

anhydrous THF (3 mL) and slowly added to a solution of 2,6-diaminopyridine (223 mg, 

2.04 mmol) and anhydrous triethylamine (650 µL, 4.69 mmol) in THF (20 mL) at 0 °C. 

The resulting mixture was warmed to room temperature and stirred for 1 hour. The 

reaction was then diluted with ethyl acetate and washed with sat. NaHCO3 (aq) (3x). The 

organic layer was then washed with brine (3x), dried over MgSO4, filtered, and the 

filtrate concentrated. The crude product was purified via column chromatography (SiO2, 

1:1 EtOAc:Hex) to yield a white solid (0.193 g, 30%). 1H NMR (500 MHz, Chloroform-

d) δ: 8.62 (s, 1H), 7.50 – 7.36 (m, 2H), 6.29 – 6.23 (m, 1H), 4.46 (s, 2H), 3.77 (s, 2H). 19F 

NMR (282 MHz, Chloroform-d) δ: -141.99, -154.95 (t, J = 16.3 Hz), -162.04 (t, J = 20.3 

Hz). 

 3-Iodo-N-(6-(2-phenylacetamido)pyridin-2-yl)benzamide (9a). Excess thionyl 

chloride (3.0 mL, 41 mmol) was added to flame-dried flask containing 3-iodobenzoic 

acid (526 mg, 2.12 mmol). One drop of anhydrous DMF was added to the reaction 

mixture, heated to 65 °C, and stirred for 3 hours. The excess thionyl chloride was 

removed under vacuum. The resultant residue was dissolved in anhydrous THF (2 mL) 

and slowly added to a solution of 8a (400 mg, 1.76 mmol) and anhydrous triethylamine 

(320 µL, 2.30 mmol) in THF (10 mL) at 0 °C. The resulting mixture was warmed to 

room temperature and stirred for 1 hour. The reaction was then filtered and adsorbed onto 

silica gel. The crude product was purified via column chromatography (SiO2, 3:1 

DCM:EtOAc) to yield a white solid (0.652 g, 81%). 1H NMR (500 MHz, Chloroform-d) 
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δ: 8.19 (t, J = 1.8 Hz, 1H), 8.15 (s, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 

7.88 (dt, J = 8.0, 1.3 Hz, 1H), 7.81 (dt, J = 7.8, 1.3 Hz, 1H), 7.75 (t, J = 8.1 Hz, 1H), 7.56 

(s, 1H), 7.45 – 7.40 (m, 2H), 7.39 – 7.32 (m, 3H), 7.22 (t, J = 7.8 Hz, 1H), 3.77 (s, 2H). 

3-Iodo-N-(6-(2-(perfluorophenyl)acetamido)pyridin-2-yl)benzamide (9b). Excess 

thionyl chloride (3.0 mL, 41 mmol) was added to flame-dried flask containing 3-

iodobenzoic acid (130 mg, 0.522 mmol). One drop of anhydrous DMF was added to the 

reaction mixture, heated to 65 °C, and stirred for 3 hours. The excess thionyl chloride 

was removed under vacuum. The resultant residue was dissolved in anhydrous THF (2 

mL) and slowly added to a solution of 8b (140 mg, 0.474 mmol) and anhydrous 

triethylamine (100 µL, 0.617 mmol) in THF (10 mL) at 0 °C. The resulting mixture was 

warmed to room temperature and stirred for 1 hour. The reaction was then filtered and 

adsorbed onto silica gel. The crude product was purified via column chromatography 

(SiO2, 1:1 DCM:EtOAc) to yield a white solid (0.166 g, 64%). 1H NMR (500 MHz, 

Chloroform-d) δ: 8.25 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.87 (d, 

J = 7.7 Hz, 1H), 7.86 (s, 1H), 7.79 (t, J = 8.0 Hz, 1H), 7.29 – 7.22 (m, 3H), 3.85 (s, 

2H).19F NMR (282 MHz, Chloroform-d) δ: -141.78 (d, J = 15.1 Hz), -154.18 (t, J = 21.7 

Hz), -161.01 – -162.08 (m). 

 3-(Diphenylphosphino)-N-(6-(2-phenylacetamido)pyridin-2-yl)benzamide 

(10a). Reactants 9a (0.400 g, 0.875 mmol), diphenylphosphine (0.194 g, 1.04 mmol), 

Pd(OAc)2 (12 mg, 53 µmol), triethylamine (180 µL, 1.26 mmol), and CH3CN (60 mL) 

were combined in a dry flask under N2. The resulting dark red solution was heated to 

reflux and stirred overnight. The crude solution was loaded onto dry silica, in air, and 

purified via column chromatography (dry SiO2, 3:1 EtOAc:Hex, Rf = 0.41) to yield a 
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white solid (0.290 g, 64%). 1H NMR (500 MHz, Chloroform-d) δ: 8.06 (s, 1H), 8.00 (d, J 

= 8.1 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.87 – 7.79 (m, 2H), 7.72 (t, J = 8.1 Hz, 1H), 

7.50 – 7.41 (m, 4H), 7.38 – 7.33 (m, 7H), 7.34 – 7.27 (m, 4H), 3.76 (s, 2H). 31P NMR 

(202 MHz, Chloroform-d) δ: -5.27.  

3-(Diphenylphosphino)-N-(6-(2-(perfluorophenyl)acetamido)pyridin-2-

yl)benzamide (10b). Reactants 9b (0.500 g, 0.914 mmol), diphenylphosphine (0.205 g, 

1.10 mmol), Pd(OAc)2 (12 mg, 53 µmol), triethylamine (200 µL, 1.38 mmol), and 

CH3CN (60 mL) were combined in a dry flask under N2. The resulting dark red solution 

was heated to reflux and stirred overnight. The crude solution was loaded onto dry silica, 

in air, and purified via column chromatography (dry SiO2, 4:1 DCM:EtOAc) to yield a 

white solid (0.474 g, 86%). 1H NMR (500 MHz, Chloroform-d) δ: 8.18 (s, 1H), 8.05 (d, J 

= 8.1 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.88 – 7.84 (m, 2H), 7.74 (t, J = 8.0 Hz, 2H), 

7.47 (t, J = 7.2 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.39 – 7.35 (m, 6H), 7.35 – 7.29 (m, 4H), 

3.82 (s, 2H). 19F NMR (471 MHz, Chloroform-d) δ: -141.80 (dd, J = 22.2, 8.6 Hz), -

154.28 (t, J = 21.4 Hz), -161.22 – -161.80 (m). 31P NMR (202 MHz, Chloroform-d) δ: -

5.18. 
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NMR Spectra 

 
Figure C.1. 1H (500 MHz) NMR spectrum of 5a in CDCl3. 
 

 
Figure C.2. 13C{1H} (126 MHz) NMR spectrum of 5a in CDCl3. 
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Figure C.3. 1H (500 MHz) NMR spectrum of 5b in CDCl3. 
 

 
Figure C.4. 13C{1H} (126 MHz) NMR spectrum of 5b in CDCl3. 
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Figure C.5. 1H (500 MHz) NMR spectrum of 6a in CDCl3. 
 

 
Figure C.6. 13C{1H} (126 MHz) NMR spectrum of 6a in CDCl3. 
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Figure C.7. 31P{1H} (202 MHz) NMR spectrum of 6a in CDCl3. 
 

 
Figure C.8. 1H (500 MHz) NMR spectrum of 6b in CDCl3. 
 

-90-80-70-60-50-40-30-20-100102030405060708090
f1 (ppm)

DTS.2.071A.31P.v3.32scans.Product — STANDARD PHOSPHORUS PARAMETERS — 

-9
.0

0

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1 (ppm)

DTS.2.076A.1H.Product — UO Inova-500 standard 1H — 

8.
99

1.
89

2.
00

2.
29

9.
87

0.
86

3.
25

1.
09

1.
15

0.
69

1.
11

5

2.
26

9

3.
47

3

7.
12

7
7.

14
1

7.
32

7
7.

33
7

7.
36

9
7.

37
9

7.
38

4
7.

38
9

7.
39

9
7.

46
2

7.
47

8
7.

51
0

7.
52

3
7.

54
2

7.
71

8
7.

73
0

7.
74

6
7.

76
2

7.
92

9
7.

94
6

8.
04

1
8.

05
7

8.
17

3
N
H

O

NN
H

O
tBu

Ph2P

N
H

O

NN
H

O
tBu

PPh2



138 
 

 
Figure C.9. 13C{1H} NMR (126 MHz) NMR spectrum of 6b in CDCl3. 
 

 

 
Figure C.10. 31P{1H} (202 MHz) NMR spectrum of 6b in CDCl3. 
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Figure C.11. 1H (500 MHz) NMR spectrum of 7a in CDCl3. 
 

 

 
Figure C.12. 13C{1H} NMR (126 MHz), NMR spectrum of 7a in CDCl3. 
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Figure C.13. 31P{1H} (202 MHz) NMR spectra of 7a in CDCl3. 
 

  
Figure C.14. 1H (500 MHz) NMR spectrum of 8a in CDCl3. 
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Figure C.15. 1H (500 MHz) NMR spectrum of 8b in CDCl3. 
 

 
Figure C.16. 19F (282 MHz) NMR spectrum of 8b in CDCl3. 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1 (ppm)

JB1007.1.fid —  

2.
15

1.
96

1.
03

1.
97

1.
00

3.
77

4.
46

6.
25

6.
26

6.
27

7.
42

7.
43

7.
44

8.
62

EtOAc

EtOAc

EtOAc

-167-165-163-161-159-157-155-153-151-149-147-145-143-141-139-137-13533
f1 (ppm)

JB01007 — UO Inova-300 Fluorine-19 —  

2.
01

1.
00

2.
26

-1
62

.1
2

-1
62

.0
5

-1
61

.9
7

-1
55

.0
1

-1
54

.9
5

-1
54

.9
0

-1
42

.0
6

-1
41

.9
9

NH2NN
H

O
C6F5

NH2NN
H

O
C6F5



142 
 

 
Figure C.17. 1H (500 MHz) NMR spectrum of 9a in CDCl3. 
 

 
Figure C.18. 1H (500 MHz) NMR spectrum of 9b in CDCl3. 
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Figure C.19. 19F (282 MHz) NMR spectrum of 9b in CDCl3. 
 

 
Figure C.20. 1H (500 MHz) NMR spectrum of 10a in CDCl3. 
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Figure C.21. 31P{1H} (202 MHz) NMR spectra of 10a in CDCl3. 
 

 
Figure C.22. 1H (500 MHz) NMR spectrum of 10b in CDCl3. 
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Figure C.23. 19F (282 MHz) NMR spectrum of 10b in CDCl3. 
 

 

 
Figure C.24. 31P{1H} (202 MHz) NMR spectra of 10b in CDCl3. 
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Binding Isotherm and Fitting for Titration of 4b with 7a 

 
Figure C.25. Binding isotherm fit with a 1:1 binding stoichiometry in H2O sat. CDCl3 at 
25 °C. 
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APPENDIX D 

SUPPORTING INFORMATION FOR CHAPTER V 

 

 Appendix D is the supporting information for Chapter V of this dissertation. It 

includes the experimental details and additional spectra relevant to the content of Chapter 

V. 

 

Experimental Details  

 

General. All commercially-available reagents were used as received. Anhydrous, 

deoxygenated solvents were collected from a Pure Process Technologies solvent 

purification system. Reactions were monitored using Merck F254 silica gel 60 TLC plates 

and visualized using UV light or a KMnO4 stain. Chromatographic purification was 

performed using a Biotage automated flash chromatography purification system. 1H and 

13C{1H} NMR spectra were recorded at the reported frequencies, and chemical shifts are 

reported in ppm (δ) and referenced to the residual solvent resonance. All 19F spectra were 

indirectly referenced via the Bruker TopSpin 3.5 software suite to CFCl3. The following 

naming conventions were used to describe NMR couplings: (s) singlet, (d) doublet, (t) 

triplet, (q) quartet, (dd) doublet of doublets, (m) multiplet, (b) broad. 
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Syntheses 

Synthesis of dibromomethylbinapthalene precursors were prepared according to 

Scheme D.1 using a modified procedure as reported previously (Ooi et al., 2003) and 

matched the reported spectroscopic signals.  

OH
OH

OTf
OTf

Me
Me

Br

Br
PhN(Tf)2

DIPEA
DMF
85%

NiCl2(dppp)
MeMgI
Et2O
84%

C6H6
45%

NBS, AIBN

I II III  
Scheme D.1. Synthesis of dibromomethylbinapthalene with (R)-stereochemistry shown. 
 

2,2′-bis(trifluoromethanesulfonyloxy)-1,1′-binaphthyl, [(R)-I]. (R)-BINOL (2.01 

g, 7.02 mmol), N-phenylbistrifluormethanesulfonamide (5.02 g, 14.1 mmol), DIPEA 

(3.60 mL, 21.7 mmol) were combined in 10 mL dry DMF and stirred at r.t. for 24 hours. 

The reaction was diluted with Et2O, washed 3x with H2O and then with brine. The 

organic layer was dried over MgSO, filtered and concentrated under vacuum. The crude 

product was purified by column chromotography using hexanes:EtOAc gradiant (0% - 

20%) as the eluent (Rf = 0.12, Hex; Rf = 0.45, 20% EtOAc) to yield the final product as 

an oil that solidifies to a white solid upon standing (3.27 g, 85%) 1H NMR (500 MHz, 

CDCl3) δ: 8.15 (d, J = 9.1 Hz, 2H), 8.02 (d, J = 8.3 Hz, 2H), 7.66 – 7.57 (m, 4H), 7.43 (t, 

J = 7.6 Hz, 2H), 7.32 – 7.19 (m, 2H). 13C{1H} NMR (126 MHz, CDCl3) δ: 145.51, 

133.27, 132.48, 132.12, 128.48, 128.11, 127.45, 126.88, 123.57, 119.46, 118.26 (q, J = 

320.7 Hz). 19F NMR (471 MHz, CDCl3) δ: -74.56. 

2,2′-bis(trifluoromethanesulfonyloxy)-1,1′-binaphthyl, [(S)-I]. Was prepared 

similar to (R)-I using the following amounts: (S)-BINOL (996 mg, 3.48 mmol), N-

phenylbistrifluormethanesulfonamide (2.50 g, 7.00 mmol), DIPEA (1.8 mL, 10 mmol) in 
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5 mL DMF. The product was isolated as a white solid (1.35 g, 71%). 1H NMR (500 MHz, 

CDCl3) δ: 8.15 (d, J = 9.1 Hz, 2H), 8.01 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 9.1 Hz, 2H), 

7.59 (ddd, J = 8.1, 6.7, 1.0 Hz, 2H), 7.42 (ddd, J = 8.2, 6.8, 1.2 Hz, 2H), 7.32 – 7.19 (m, 

2H). 13C{1H} NMR (126 MHz, CDCl3) δ: 145.51, 133.28, 132.48, 132.12, 128.48, 

128.11, 127.45, 126.89, 123.57, 119.53, 118.26 (q, J = 320.7). 19F NMR (471 MHz, 

CDCl3) δ: -74.57. 

(R)-2,2′-Dimethyl-1,1′-binaphthyl, [(R)-II].  (R)-I (2.502 g, 4.54 mmol) and 

NiCl2(dppp) (82.0 mg, 0.139 mmol) were combined in a Schlenk and evacuated/refilled 

3x with and atmosphere of N2. Dry and degassed Et2O (25 mL) was added via cannula 

and cooled to 0 °C. MeMgI (2 M in Et2O, 6.8 mL, 14 mmol) was added slowly. The 

reaction mixture was then heated to reflux and stirred for 19 hours. The reaction was then 

cooled to 0 °C and quenched with 2 mL of 1 M HCl (aq), diluted with Et2O, and filtered 

through celite. The organic layer was then washed 3x with H2O and brine, dried over 

MgSO4, filtered, and concentrated under vacuum. The crude mixture was dissolved in 

hexanes and the risdual salts removed via filtration. The product was purified using 

column chromotograpny using hexanes as the eluent (Rf = 0.23) to yield the final product 

as a colorless oil that solidifies upon standing (1.08 g, 84%). 1H NMR (500 MHz, CDCl3) 

δ: 7.89 (t, J = 8.0 Hz, 4H), 7.51 (d, J = 8.4 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 

7.6 Hz, 2H), 7.05 (d, J = 8.5 Hz, 2H), 2.04 (s, 6H). 13C NMR (126 MHz, CDCl3) δ: 

135.26, 134.42, 132.89, 132.35, 128.86, 128.06, 127.56, 126.21, 125.78, 125.02, 20.18. 

(S)-2,2′-Dimethyl-1,1′-binaphthyl, [(S)-II]. Was prepared similar to (R)-II using 

the following amounts: (S)-I (4.86 g, 8.83 mmol), NiCl2(dppp) (157 mg, 0.265 mmol), 

degassed Et2O (40 mL),  MeMgI (2 M in Et2O, 13 mL, 26 mmol). The final product was 
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isolated as an oil that solidified upon standing (2.185 g, 88%) 1H NMR (500 MHz, 

CDCl3) δ: 7.89 (t, J = 8.0 Hz, 4H), 7.51 (d, J = 8.4 Hz, 2H), 7.39 (ddd, J = 8.1, 6.6, 1.1 

Hz, 2H), 7.21 (ddd, J = 8.2, 6.8, 1.3 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 2.04 (s, 6H). 

13C{1H} NMR (126 MHz, CDCl3) δ: 135.27, 134.43, 132.90, 132.36, 128.86, 128.06, 

127.57, 126.22, 125.78, 125.03, 20.18. 

(R)-2,2′-Bis(bromomethyl)-1,1′-binaphthyl, [(R)-III]. (R)-II (428 mg, 1.52 

mmol), N-bromosuccinimide (594 mg, 3.34 mmol), and AIBN (24.3 mg , 0.148 mmol, 

10%) were dissolved in benzene (15 mL) and heated to reflux for 3 hours. The reaction 

was cooled to room temperature and diluted with Et2O. The organic layer was washed 3x 

with H2O, 3x brine, dried over MgSO4 and filtered. The crude product was purified using 

column chromotography (Rf = 0.23, Hex). The combined fractions were concentrated and 

the product was triturated in hexanes and then filtered to yield the final product as a white 

solid (302 mg, 45%) 1H NMR (500 MHz, CDCl3) δ: 8.02 (d, J = 8.6 Hz, 2H), 7.93 (d, J = 

8.2 Hz, 2H), 7.75 (d, J = 8.6 Hz, 2H), 7.49 (ddd, J = 8.2, 6.7, 1.0 Hz, 2H), 7.32 – 7.18 (m, 

2H), 7.08 (d, J = 8.5 Hz, 2H), 4.26 (s, 4H). 13C{1H} NMR (126 MHz, CDCl3) δ: 134.33, 

134.23, 133.41, 132.66, 129.52, 128.17, 127.89, 126.99, 126.97, 126.94, 32.78. 

(S)-2,2′-Bis(bromomethyl)-1,1′-binaphthyl, [(S)-III]. Was prepared similar to (R)- 

III using the following amounts: (S)-II (501 mg, 1.77 mmol), N-bromosuccinimide (668 

mg, 3.75 mmol), and AIBN (32.0 mg , 0.195 mmol), and benzene(15 mL). After 3 hours 

125 mg (0.702 mmol) NBS and 5.0 mg (3.0 µmol) AIBN were added and heated to reflux 

for an additional hour. The final product was isolated as a white solid (294 mg, 38%). 1H 

NMR (500 MHz, CDCl3) δ: 8.02 (d, J = 8.6 Hz, 2H), 7.93 (d, J = 8.2 Hz, 2H), 7.75 (d, J 

= 8.6 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.28 (t, J = 7.9 Hz, 2H), 7.08 (d, J = 8.5 Hz, 2H), 
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4.26 (s, 4H). 13C NMR (126 MHz, CDCl3) δ: 134.33, 134.23, 133.40, 132.65, 129.51, 

128.17, 127.89, 126.99, 126.96, 126.94, 32.78. 

General synthesis of barbituric acid derivatives 1-3. To a solution of barbituric 

acid (1 equiv.) in DMSO was added diisopropylethylamine (DIPEA, 2.3 equiv.) The 

mixture was stirred at room temperature for 10 min, after which time a precipitate formed 

(depending on the concentration of barbituric acid). The corresponding benzyl bromide (2 

equiv.) was then added to the mixture, which was then heated to 50 °C and stirred 

overnight (~22 h). The crude, clear orange reaction mixture was diluted with H2O and 

extracted 3x with EtOAc. The combinded organic extracts were washed 3x with brine, 

dried over MgSO4, filtered and concentrated. The residue was triturated with a 

DCM:hexanes mixture and the resulting solids collected via vacuum filtration to yield the 

final product. In general, this gave acceptably pure product. Further purification could be 

achieved via recrystallization from EtOH or column chromatography. 

5,5′-(S)-1,1′-binaphthylbarbituric acid [(S)-BINABARB, (1a)]. This compound 

was prepared as described in the general procedure using the following quantities 

barbituric acid (49.7 mg, 0.388 mmol) in 5 mL DMSO, DIPEA (160 µL, 0.92 mmol), and 

(S)-III (172 mg, 0.391 mmol). The compound was purified by column chromatography 

(Rf = 0.33, 1:1 EtOAc:Hex) followed by recrystallization from ethanol to yield the final 

product as a white solid (36 mg, 23%). 1H NMR (500 MHz, DMSO-d6) δ: 11.14 (s, 2H), 

8.01 (d, J = 8.2 Hz, 2H), 7.95 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.47 (t, J = 

7.5 Hz, 2H), 7.25 (t, J = 7.6 Hz, 2H), 7.08 (d, J = 8.6 Hz, 2H), 3.09 (d, J = 13.6 Hz, 2H), 

2.97 (d, J = 13.5 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ: 172.22, 150.36, 134.23, 
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132.77, 132.63, 130.93, 129.78, 128.23, 127.35, 126.29, 125.69, 125.24, 62.05. HRMS 

(ESI-TOF) m/ z: [M + Na]+ Calcd for C26H19N2O3, 407.1396;  found 407.1396. 

5,5′-(R)-1,1′-binaphthylbarbituric acid [(R)-BINABARB, (1b)]. This compound 

was prepared as described in the general procedure using the following quantities: 

barbituric acid (57.9 mg, 0.452 mmol) in 3 mL DMSO, DIPEA (180 µL, 1.0 mmol), and 

(R)-III (199 mg µL, 0.452 mmol). The compound was purified by column 

chromatography (Rf = 0.33, 1:1 EtOAc:Hex) followed by recrystallization from ethanol 

to yield the final product as a white solid (62 mg, 33%) 1H NMR (500 MHz, DMSO-d6) 

δ: 11.14 (s, 2H), 8.01 (d, J = 8.2 Hz, 2H), 7.95 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 

2H), 7.47 (t, J = 7.5 Hz, 2H), 7.25 (t, J = 7.6 Hz, 2H), 7.08 (d, J = 8.5 Hz, 2H), 3.09 (d, J 

= 13.5 Hz, 2H), 2.97 (d, J = 13.5 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ: 172.22, 

150.37, 134.23, 132.76, 132.63, 130.92, 129.78, 128.23, 127.35, 126.28, 125.69, 125.24, 

62.04, 38.09. HRMS (ESI-TOF) m/ z: [M + Na]+ Calcd for C26H19N2O3, 407.1396;  found 

407.1385. 

5,5′-dibenzylbarbituric acid (3). This compound was prepared as described in the 

general procedure using the following quantities: barbituric acid (253 mg, 1.95 mmol) in 

5 mL DMSO, DIPEA (780 uL, 4.45 mmol), and benzyl bromide (470 µL, 3.95 mmol). 

The product was isolated as a white solid (474 mg, 78%). 1H NMR (500 MHz, DMSO-

d6) δ: 11.19 (s, 2H), 7.35 – 7.17 (m,6), 7.11 – 7.01 (m, 4H), 3.28 (s, 4H). 13C{1H}c NMR 

(126 MHz, DMSO-d6) δ: 171.99, 148.85, 135.13, 129.26, 128.47, 127.33, 58.99, 43.78. 
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NMR Spectra of Compounds 1-3 

 

 
Figure D.1. 1H (500 MHz) NMR spectrum of 1a in d6-DMSO. 
 

 
Figure D.2. 13C{1H} (126 MHz) NMR spectrum of 1a in d6-DMSO. 
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Figure D.3. 1H (500 MHz) NMR spectrum of 1b in d6-DMSO. 
 

 
Figure D.4. 13C{1H} (126 MHz) NMR spectrum of 1b in d6-DMSO. 
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Figure D.5. 1H (500 MHz) NMR spectrum of 3 in d6-DMSO. 
 

 
Figure D.6. 13C{1H} (126 MHz) NMR spectrum of 2 in CDCl3. 
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Figure D.7. 1H (500 MHz) NMR spectrum of 3 in d6-DMSO. 
 

 
Figure D.8. 13C{1H} (126 MHz) NMR spectrum of 3 in d6-DMSO. 
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Determining gelation behavior 

 

A 25 mM sample of the numbered compound was prepared in the desired solvent. 

The sample was sonicated and heated in a GC-vial to reflux or until all visible solids were 

dissolved. The sample was then allowed to cool and stand for at least 10 minutes before 

being inverted. If the sample appeared homogenous and no flow was observed, then the 

solvent and compound combination was marked as a gel. 

 

Sample preparation for DOSY NMR.  

 

For control compounds 2 and 3, a corresponding amount of a concentrated stock 

solution was diluted with CDCl3 to a total volume of 600 µL to achieve the desired 

concentrations. For the (S)-BINABarb samples ≤ 10 mM, a similar procedure to that of 2 

and 3 was used. For the more concentrated samples of (S)-BINABarb, a corresponding 

amount of solid was added to an NMR tube and dissolved in CDCl3 to achieve the 

desired concentration with a total volume of 600 L. Heating and sonication was 

necessary to achieve complete dissolution of the more concentrated samples. The samples 

were then allowed to cool to room temperature and stand for at least 15 minutes prior 

analysis. 
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Determination of diffusion coefficients 

 

Diffusion-ordered spectroscopy (DOSY) was performed on a 600 MHz Bruker 

spectrometer with a prodigy cryoprobe using the ledbpgp2s pulse sequence. The 90° 

pulse widths were optimized individually for each sample. A typical experiment has a Δ 

(d20) = 0.060 s, δ (p30*2) = 3.0 ms with a varying gradient strength between 35-45% 

with data taken in 25 increments. All data was processed in MestReNova using the max 

peak height method for the doublet centered at 3.40 ppm (Bn H) with the following 

values: γ = 42.58 (MHz T-1), k = 6.57 (DAC to G), Δ = 0.060 s, δ = 3.0 ms. The 

exponential decays were then fit using the three parameter exponential fit function in the 

MestReNova data analysis package. The data reported represents the average of at least 3 

or more trials, and the reported uncertainty is the standard deviation.  

 

Representative DOSY Plots and Fitting 

 

 
Figure D.9. Representative exponential decay plots from DOSY experiments of 1a at 5 
mM (left) and 15 mM (right) showing doublet at 3.40 ppm and the corresponding 
exponential decay fits. 
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Determination of diffusion coefficients for VT DOSY 

 

Variable temperature diffusion-ordered spectroscopy (VT DOSY) was performed 

on a 500 MHz Varian spectrometer using the DONESHOT pulse sequence. A 20 mM 

sample in CDCl3 was prepared similarly to the room temperature samples. A typical 

experiment has a Δ = 0.050 s, δ = 2.0 ms with the low and high pulse gradients set to 

2,000 and 22,000, respectively. The temperature was incrementally increased up to 50 °C 

and allowed to equilibrate for at least 10 minutes before each acquisition (black squares). 

After the acquisition at 50 °C, the sample was then re-cooled inside the spectrometer to 

25 °C and the diffusion coefficient was remeasured (red circle). All data was processed in 

MestReNova using the max peak height method for the doublet centered at 3.40 ppm (Bn 

Hs) with the following values: γ = 26752.2205 (G-1s-1), k = 0.00222, Δ = 0.05 s, δ = 2.0 

ms. The exponential decays were then fit using the three parameter exponential fit 

function in the MestReNova data analysis package. 

 
Figure D.10. Variable temperature DOSY of a 20 mM gel sample of 1a in CDCl3. The 
black squares represent a sequential increase in temperature until the Tgel was reached. 
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The red circle represents the diffusion coefficient after cooling the sample back to 25 °C 
from 50 °C. 
Variable Pressure- Scanning electron microscopy details 

 

To image the gels, an FEI Quanta 200 ESEM was used in variable-pressure mode. 

The best image quality was obtained operating at 100pa pressure, while actively cooling 

the gel to 4 °C (resulting in 12% relative humidity). Images were captured at 15kV, using 

spot size 4, with a GSED (gaseous-state electron detector.) Samples were prepared for 

SEM imaging by placing several micro-liters of fully hydrated/solvated gel onto cooled 

aluminum pucks, which were placed onto an FEI Peltier-cooled stage. 

 

 
Figure D.11. ORTEP representation of smallest repeat unit of 1b. Thermal ellipsoids 
shown at 50% probability. Non-H bonding hydrogens omitted for clarity. 
 

 
Figure D.12. Space-filling representation of columnar stack of 1b viewed down screw 
axis with (left) and without (right) THF co-solvent. H bonds omitted for clarity. 
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APPENDIX E 

SUPPORTING INFORMATION FOR CHAPTER VI 

 

Appendix E is the supporting information for Chapter VI of this dissertation. It 

includes the experimental details and additional spectra relevant to the content of Chapter 

VI. 

 

Experimental Details 

General. All commercially-available reagents were used as received. Anhydrous, 

deoxygenated solvents were collected from a Pure Process Technologies solvent 

purification system. Triethylamine was dried and distilled over CaH2 under nitrogen. 

Barbiturates were synthesized according to the procedures outline in Chapter II of this 

dissertation. Reactions were monitored using Merck F254 silica gel 60 TLC plates and 

visualized using UV light or a KMnO4 stain. Reactions conducted under an inert 

atmosphere were performed by either using standard Schlenk techniques. 

Chromatographic purification was performed using a Biotage automated flash 

chromatography purification system. Preparative HPLC chromatography was performed 

using a JAI Recycling Preparative HPLC (Model LC‐9101) with a JAIGEL‐ 1H 

preparative column.  1H and 13C{1H} NMR spectra were recorded at the reported 

frequencies, and chemical shifts are reported in ppm (δ) and referenced to the residual 

solvent resonance. 31P{1H} chemical shifts are referenced to H3PO4. The following 

naming conventions were used to describe NMR couplings: (s) singlet, (d) doublet, (t) 
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triplet, (q) quartet, (dd) doublet of doublets, (m) multiplet, (b) broad. Absorbance 

measurements were made using an Agilent Technologies Cary 60 spectrometer. 

Fluorescent measurements were made using a Quanta Master 40 spectrofluorometer 

(Photon Technology International) equipped with a Quantum Northwest TLC-50 

temperature controller at 25.0 ± 0.05 °C. 

Fluorescence Titrations of Barbiturates 4a–d with CF3 Host (3b). Stock solutions of 

3b (1.1 µM) and barbiturate (2.0 mM) in H2O sat. CHCl3 were prepared separately. 1.8 

mL of the host stock solution was combined with 200 µL of the guest stock solution to 

give a final guest:host solution containing 200 µM guest and 1 µM host, respectively. To 

a blank cuvette was added 1.5 mL of host stock and diluted with H2O sat. CHCl3 to 

achieve a final concentration that matched that of the guest:host solution (1 µM). 

Aliquots of the guest:host solution were then added to the cuvette containing host until 

minimal changes in the emission spectra were observed. Plots of Fobs/F0 vs [Guest] were 

then fit to equation 1 using Origin® to determine the association constant. This procedure 

was performed in triplicate and the average Ka values and their standard deviation are 

reported.  

(1) 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜
𝐹𝐹0

=  1+ �𝑘𝑘𝐻𝐻𝐻𝐻 𝑘𝑘𝐻𝐻
0⁄ �𝐾𝐾𝑎𝑎[𝐺𝐺]

1+ 𝐾𝐾𝑎𝑎[𝐺𝐺]
 

 

Fluorescence Titrations of Host (3b–e) with barbital. Stock solutions of 3a–e (2 

µM) and barbital (2.0 mM) in H2O sat. CHCl3 were prepared separately. 1.0 mL of the 

host stock solution was combined with 1 mL of the guest stock solution to give a final 

guest:host solution containing 1.0 mM guest and 1 µM host, respectively. To a blank 

cuvette was added 1.0 mL of host stock and diluted with H2O sat. CHCl3 to achieve a 
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final concentration that matched that of the guest:host solution (1 µM). Aliquots of the 

guest:host solution were then added to the cuvette containing host until minimal changes 

in the emission spectra were observed. Plots of Fobs/F0 vs [Guest] were then fit to 

equation 1 using Origin® to determine the association constant. This procedure was 

performed in triplicate and the average Ka values and their standard deviation are 

reported.  

Fluorescence Titration of 3b in the Presence of 4d with Acetic Acid. To a solution 

of 5 µM 3b in H2O sat. CDCl3 was added 100 equivalents of 4d (500 µM). Then aliquots 

of a dilute solution of acetic acid (10mM) was added followed by the addition of aliquots 

of concentrated acetic acid and followed using the following acquisition parameters 

Acquisition parameters: λex: 325 nm; λem: 330-600 nm; excitation slits = 5.0 nm; 

integration time: 0.1 sec; step size: 1 nm. The ratiometric response curve between 0-0.3 

M is shown below. 

 

 
Figure E.1. Ratiometric response of 3b:4d to the addition of AcOH in CHCl3. 

y = 5.6143x + 0.1132
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1H NMR Titration of 3e with 4b. A 1.0 mM solution of host 3e in H2O sat. CDCl3 

was prepared. The host solution was then divided such that 560 µL was placed into an 

NMR tube and 2.0 mL was used to create a second solution containing 50 mM guest. An 

initial spectrum of the host was recorded using the following parameters: nt=16 and 

d1=1s, after which aliquots (1-25 µL total) of the guest solution were added until the N-H 

resonance of host no longer shifted. 

Syntheses 

N-(6-Amino-4-bromopyridin-2-yl)-3,3-dimethylbutanamide (1).  A flame dried 

flask containing 4-bromo-2,6-diaminopyridine (753 mg, 4.00 mmol) and anhydrous 

triethylamine (670 µL, 4.80 mmol) was charged with anhydrous THF (50 mL) and cooled 

to 0 °C. 3,3-dimethylbutyryl chloride (560 µL, 4.03 mmol) was then added dropwise. The 

reaction mixture was warmed to room temperature and allowed to stir for 3 hours. The 

crude reaction mixture was diluted with EtOAc (50 mL) and washed with water (3x) 

followed by brine (3x). The organic layer was then dried with MgSO4, filtered, and 

concentrated via rotary evaporation. The crude product was purified via column 

chromatography (SiO2, 1:1 EtOAc:Hex, Rf= 0.48) to yield a white solid (777 mg, 68%) 

1H NMR (500 MHz, CDCl3) δ: 7.81 (s, 1H), 7.43 (s, 1H), 6.42 (s, 1H), 4.31 (s, 2H), 2.20 

(s, 2H), 1.09 (s, 9H).13C{1H} NMR (126 MHz, CDCl3) δ: 170.30, 157.47, 150.43, 

135.42, 107.14, 106.66, 51.87, 31.49, 29.92. 

N1,N3-bis(4-Bromo-6-(3,3-dimethylbutanamido)pyridin-2-yl)isophthalamide (2). 

A flame dried flask containing 1 (900 mg, 3.14 mmol) and anhydrous triethylamine (500 

µL, 3.58 mmol) was charged with anhydrous THF (40 mL) and cooled to 0 °C. 



165 
 

Isophthaloyl chloride (325 mg, 1.60 mmol) in 5 mL anhydrous THF (5 mL) was then 

added slowly. The reaction mixture was warmed to room temperature and allowed to stir 

for 23 hours. The crude reaction mixture was diluted with EtOAc and washed with water 

(3x) followed by brine (3x). The organic layer was then dried with MgSO4, filtered, and 

concentrated via rotary evaporation. The crude product was purified via column 

chromatography (SiO2, 1:1 EtOAc:Hex, Rf= 0.57) to yield a white solid (784 mg, 72%) 

1H NMR (500 MHz, CDCl3) δ: 8.41 (s, 1H), 8.33 (s, 2H), 8.29 (s, 2H), 8.26 (s, 2H), 8.09 

(d, J = 7.7 Hz, 2H), 7.66 (t, J = 7.7 Hz, 1H), 7.60 (s, 2H), 2.27 (s, 4H), 1.12 (s, 18H). 

13C{1H} NMR (126 MHz, CDCl3) δ: 170.51, 164.18, 150.14, 149.72, 136.59, 134.69, 

131.04, 129.92, 126.07, 113.34, 112.95, 51.88, 31.58, 29.93. 

N1,N3-bis(6-(3,3-Dimethylbutanamido)-4-((4-nitrophenyl)ethynyl)pyridin-2-

yl)isophthalamide (3a). A flame dried flask containing 2 (96.9 mg, 0.138 mmol), 

Pd(PPh3)4 (7.6 mg, 6.6 µmol), CuI (2.7 mg, 14 µmol) was equipped with a reflux 

condenser and evacuated/refilled with N2 3x. 4-trifluormethylphenylacetylene (63.6 mg 

0.43 mmol) was then added followed by a mixture of degassed, anhydrous THF:DIPA 

(10:1 mL). The solution was heated to reflux and monitored via 1H NMR by observing 

the disappearance of the starting N-H protons. After 16 hours there was still a small 

amount of unreacted starting material, therefore an additional aliquot of 4-

nitrophenylacetyle (66 mg, 0.45 mmol) were added and the reaction continued to reflux 

for an additional 58 hrs. After this time no further conversion was observed. The crude 

reaction mixture was cooled to room temperature diluted with EtOAc and filtered through 

celite. The crude product was then dry-loaded onto silica and purified via column 

chromatography (SiO2, 1:1 EtOAc:Hex) to yield an off white solid (69 mg, 60%) 
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containing a small amount of starting material impurity. Further purification was 

achieved using a recycling GPC with a flow rate of 3.5 min. The crude material was 

collected on the 3rd cycle to yield the final product as a white solid (35 mg, 30%). 1H 

NMR (500 MHz, DMSO-d6) δ: 10.73 (s, 2H), 10.26 (s, 2), 8.54 (s, 1H), 8.30 (d, J = 7.9 

Hz, 4H), 8.19 (d, J = 7.7 Hz, 2H), 8.07 (s, 2H), 8.01 (s, 2H), 7.97 (d, J = 8.0 Hz, 4H), 

7.71 (t, J = 7.8 Hz, 1H), 2.35 (s, 4H), 1.03 (s, 18H). 13C NMR (126 MHz, DMSO) δ: 

171.37, 165.61, 151.00, 150.75, 147.50, 134.02, 133.22, 132.50, 131.53, 128.87, 127.88, 

127.74, 123.94, 112.08, 111.52, 91.43, 90.66, 48.99, 30.96, 29.55. 

N1,N3-bis(6-(3,3-Dimethylbutanamido)-4-((4-

(trifluoromethyl)phenyl)ethynyl)pyridin-2-yl)isophthalamide (3b). A flame dried flask 

containing 2 (98.9 mg, 0.140 mmol), Pd(PPh3)4 (8.3 mg, 7.2 µmol), CuI (4.0mg, 21 

µmol) was equipped with a reflux condenser and evacuated/refilled with N2 3x. 4-

trifluormethylphenylacetylene (70 µL 0.43 mmol) was then added followed by a mixture 

of degassed, anhydrous THF:DIPA (10:1 mL). The solution was heated to reflux and 

monitored via 1H NMR by observing the disappearance of the starting N-H protons. After 

21 hours there was still a small amount of unreacted starting material, therefore additional 

aliquots (2 total) of 4-trifluormethylphenylacetyle (25 µL, 0.14 mmol) were added and 

the reaction continued to reflux for an additional 12 hrs. After this time no further 

conversion was observed. The crude reaction mixture was cooled to room temperature 

diluted with EtOAc and filtered through celite. The crude product was then dry-loaded 

onto silica and purified via column chromatography (SiO2, 1:1 EtOAc:Hex) to yield an 

off white solid (88 mg, 79%) containing a small amount of starting material impurity. 

Further purification was achieved using a recycling GPC with a flow rate of 3.5 min. The 
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crude material was collected on the 3rd cycle to yield the final product as a white solid (59 

mg, 52%). 1H NMR (500 MHz, DMSO-d6) δ: 10.72 (s, 2H), 10.25 (s, 2H), 8.54 (s, 1H), 

8.18 (d, J = 7.7 Hz, 2H), 8.05 (s, 2H), 7.99 (s, 2H), 7.91 (d, J = 8.0 Hz, 4H), 7.84 (d, J = 

7.9 Hz, 4H), 7.71 (t, J = 7.7 Hz, 1H), 2.34 (s, 4H), 1.03 (s, 18H). 19F NMR (471 MHz, 

DMSO) δ: -61.40. 

N1,N3-bis(6-(3,3-Dimethylbutanamido)-4-(phenylethynyl)pyridin-2-

yl)isophthalamide (3c). A flame dried flask containing 2 (98.0mg, 0.140 mmol), 

Pd(PPh3)4 (8.0 mg, 6.9 µmol), and CuI (3.2 mg, 17 µmol) was equipped with a reflux 

condenser and evacuated/refilled with N2 3x. Phenylacetylene (50 µL, 0.455 mmol) was 

then added followed by a mixture of degassed, anhydrous THF:DIPA (10:1 mL). The 

solution was heated to reflux and monitored until completion (6 hrs) via 1H NMR by 

observing the disappearance of the starting N-H protons. The crude reaction mixture was 

cooled to room temperature diluted with EtOAc and filtered through celite. The crude 

product was then dry-loaded onto silica and purified via column chromatography (SiO2, 

1:1 EtOAc:Hex) to yield an off white solid. Futher purification was achieved by 

recrystallization from a CHCl3:Hex layering to yield the final product as a white solid (58 

mg, 55%). 1H NMR (500 MHz, DMSO-d6) δ: 10.68 (s, 2H), 10.21 (s, 2H), 8.53 (s, 1H), 

8.18 (d, J = 7.7 Hz, 2H), 8.01 (s, 2H), 7.95 (s, 2H), 7.71 (t, J = 7.8 Hz, 1H), 7.68 (d, J = 

7.6 Hz, 4H), 7.54 – 7.43 (m, 6H), 2.34 (s, 4H), 1.03 (s, 18H). 13C NMR (126 MHz, 

DMSO) δ: 171.31, 165.57, 150.92, 150.65, 134.06, 133.44, 131.89, 131.50, 129.76, 

128.92, 128.87, 127.68, 121.15, 111.94, 111.37, 92.86, 87.24, 49.02, 30.95, 29.56. 

N1,N3-bis(6-(3,3-Dimethylbutanamido)-4-((4-methoxyphenyl)ethynyl)pyridin-2-

yl)isophthalamide (3d). A flame dried flask containing 2 (98.9 mg, 0.140 mmol), 
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Pd(PPh3)4 (8.6 mg, 7.4 µmol), CuI (3.8 mg, 20 µmol) and 4-methoxyphenylacetylene 

(40.0 mg, 0.30 mmol) was equipped with a reflux condenser and evacuated/refilled with 

N2 3x. Then a mixture of degassed, anhydrous THF:DIPA (10:1 mL) was added. The 

solution was heated to reflux and monitored until completion (7.5 hrs) via 1H NMR by 

observing the disappearance of the starting N-H protons. The crude reaction mixture was 

cooled to room temperature diluted with EtOAc and filtered through celite. The crude 

product was then dry-loaded onto silica and purified via column chromatography (SiO2, 

1:1 EtOAc:Hex) to yield an off white solid (88 mg, 79%) containing a small amount of 

starting material impurity. Further purification was achieved using a recycling GPC with 

a flow rate of 3.5 min. The crude material was collected on the 3rd cycle to yield the final 

product as a white solid (59 mg, 52%). 1H NMR (500 MHz, DMSO-d6) δ: 10.64 (s, 2H), 

10.17 (s, 2H), 8.53 (s, 1H), 8.23 – 8.13 (m, 2H), 7.97 (s, 2H), 7.91 (s, 2H), 7.66 – 7.56 

(m, 4H), 7.03 (d, J = 8.1 Hz, 4H), 3.82 (s, 6H), 2.33 (s, 4H), 1.03 (s, 18H). 13C NMR 

(126 MHz, DMSO) δ: 208.92, 203.17, 197.94, 188.51, 188.23, 171.72, 171.53, 171.27, 

169.11, 166.51, 165.29, 152.22, 150.64, 149.40, 148.83, 131.03, 123.84, 93.03, 86.66, 

68.59, 67.20. 

N1,N3-bis(4-((4-(Dimethylamino)phenyl)ethynyl)-6-(3,3-

dimethylbutanamido)pyridin-2-yl)isophthalamide (3e). A flame dried flask containing 2 

(98.4 mg, 0.140 mmol), Pd(PPh3)4 (9.2 mg, 8.0 µmol), CuI (3.1 mg, 16 µmol) and 4-

Dimethylaminophenylacetylene (61.0 mg, 0.42 mmol) was equipped with a reflux 

condenser and evacuated/refilled with N2 3x. Then a mixture of degassed, anhydrous 

THF:DIPA (10:1 mL) was added. The solution was heated to reflux and monitored until 

completion (5 hrs) via 1H NMR by observing the disappearance of the starting N-H 
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protons. The crude reaction mixture was cooled to room temperature diluted with EtOAc 

and filtered through celite. The crude product was then dry-loaded onto silica and 

purified via column chromatography (SiO2, 1:1 EtOAc:Hex) to yield a yellow solid (78 

mg, 67%). 1H NMR (500 MHz, DMSO-d6) δ: 10.60 (s, 2H), 10.13 (s, 2H), 8.52 (s, 1H), 

8.17 (d, J = 7.7 Hz, 2H), 7.93 (s, 2H), 7.86 (s, 2H), 7.70 (t, J = 7.7 Hz, 1H), 7.46 (d, J = 

8.0 Hz, 4H), 6.74 (d, J = 8.1 Hz, 4H), 2.98 (s, 12H), 2.33 (s, 4H), 1.03 (s, 18H). 13C NMR 

(126 MHz, DMSO-d6) δ: 171.22, 165.48, 150.79, 150.73, 150.49, 134.51, 134.10, 

133.12, 131.43, 128.86, 127.60, 111.85, 111.45, 110.87, 106.90, 95.40, 85.84, 49.03, 

30.94, 29.56. 

Additional Fluorescence and Absorption Spectra 

 
Figure E.2. Normalized absorbance spectra of 3e showing solvatomchromic behavior. 
[3e] =  5.0 µM.  
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Figure E.3. Raw absorbance spectra of 3e showing decreasing emission intensity as a 
function of solvent polarity. [3e] =  5.0 µM.  
 

 
Figure E.4. Absorption spectra of 3a-e in the absence and presence of barbital (100 
equiv.) in H2O sat. CHCl3. [H] = 5 µM.  
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Figure E.5. Hammett Plot of binding affinities of 3b-e with barbital in H2O sat. CHCl3 
@ 25 °C. 
  

Table E.1. Solvent dependent absorption and emission properties of 3e ([H] = 5 µM).  

solvent absorption λmax (nm) emission λmax (nm) 
toluene 368 418 

chloroform 368 447 
chlorobenzene 369 440 
tetrahydrofuran 359 451 
dichloromethane 366 459 

acetonitrile 358 479 
dimethylformamide 361 438 
dimethylsulfoxide 365 464 

 

Representative Binding Isotherms and Raw Fluorescence Data 
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Figure E.6. Raw fluorescence data from 3e with barbital titration.  
 

 
Figure E.7. Representative binding isotherm of 3e with barbital.  
 

 
Figure E.8.  Residuals plot from 1:1 binding model of 3e with barbital titration. 
 

 
Figure E.9. Raw fluorescence data from 3d with barbital titration.  
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Figure E.10. Representative binding isotherm of 3d with barbital.  
 

 
Figure E.11.  Residuals plot from 1:1 binding model of 3d with barbital titration. 
 

 
Figure E.12 Raw fluorescence data from 3c with barbital titration. 
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Figure E.13. Representative binding isotherm of 3c with barbital. 
  

 
Figure E.14.  Residuals plot from 1:1 binding model of 3c with barbital titration. 
 

 
Figure E.15. Raw fluorescence data from 3b with barbital titration 
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Figure E.16. Representative binding isotherm of 3b with barbital.  
 

 
Figure E.17.  Residuals plot from 1:1 binding model of 3c with barbital titration. 
 
NMR Spectra. 

 
Figure E.18. 1H (500 MHz), NMR spectrum of 1. 
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Figure E.19. 13C{1H} (126 MHz) NMR spectrum of 1. 
 

 
Figure E.20. 1H (500 MHz), NMR spectrum of 2. 
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Figure E.21. 13C{1H} (126 MHz) NMR spectrum of 2. 
 

 
Figure E.22. 1H (500 MHz) NMR spectrum of 3a. 
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Figure E.23. 13C{1H} (126 MHz) NMR spectrum of 3a. 
 

 
Figure E.24. 1H (500 MHz) NMR spectrum of 3b. 
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Figure E.25. 19F (471 MHz) NMR spectrum of 3b.  
 

 
Figure E.26. 1H (500 MHz) NMR spectrum of 3c. 
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Figure E.27. 13C{1H} (126 MHz) NMR spectrum of 3c. 
 

 
Figure E.28. 1H (500 MHz) NMR spectrum of 3d. 
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Figure E.29. 13C{1H} (126 MHz) NMR spectrum of 3d. 
 

 
Figure E.30. 1H (500 MHz) NMR spectrum of 3e. 
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Figure E.31. 13C{1H} (126 MHz) NMR spectrum of 3e. 
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