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DISSERTATION ABSTRACT

Alexander J. Trevelyan

Doctor of Philosophy

Department of Physics

March 2018

Title: Nonequilibrium Statistical Models: Guided Network Growth Under Localized Information
and Perspectives on Electron Diffusion in Conductors

The ability to probe many-particle systems on a microscopic level has revolutionized the

way we do statistical physics. As computational capabilities continue to grow exponentially, larger

and more complex systems come within reach of microscopic analysis. In the field of network

growth, the classical model has given way to competitive processes, in which networks are guided

by some criteria at every step of their formation. We develop and analyze a new competitive

growth process that permits intervention on growing networks using only local properties of the

network when evaluating how to add new connections. We establish the critical behavior of this

new method and explore potential uses in guiding the development of real-world networks.

The classical system of electrons diffusing within a conductor similarly permits a

microscopic analysis where, to date, studies of the macroscopic properties have dominated the

literature. In order to extend our understanding of the theory that governs this diffusion—the

fluctuation-dissipation theorem—we construct a physical model of the Johnson-Nyquist system

of electrons embedded in the bulk of a conductor. Constructing the model involves deriving how

the motion of each individual electron comes about via scattering processes in the conductor,

then connecting this collective motion to the macroscopic observables that define Johnson-Nyquist

noise. Once the equilibrium properties have been fully realized, an external perturbation can

be applied in order to probe the behavior of the model as it deviates away from equilibrium. In

much the same way that competitive network growth revolutionized classical network theory, we

establish a model which can guide future research into nonequilibrium fluctuation-dissipation by

providing a method for interacting with the system in a precise and well-controlled manner as it

evolves over time.
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Chapter II has been published in Physical Review E as a Rapid Communication [1]. The

writing and analysis were performed by me as the primary author. Eric Corwin and Georgios

Tsekenis are listed as co-authors for their contribution to the analysis and for advisement on the

work.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

We live in the age of computation. For my generation, our parents multiplied large numbers

by sliding a marked piece of wood, averaging an operation per second, perhaps two for the deft

of hand. Meanwhile, the invention of the solid-state transistor set in motion what surely has

become the greatest increase in raw technological capability to this point in history, propelling

our computational abilities from the order of one per second in the 1940s to a staggering 1013

operations per second in a single consumer brand GPU this year. It strains the mind to think

of anything else that has even approached a similar scale of improvement in such a short period

of time (and yet, even a moderate slowdown of our personal computer is now cause for major

headache). The impact of this abrupt and dramatic proliferation in computing power has been

felt across nearly all facets of modern society, and statistical physics is no exception. Prior to

the transistor, statistical physicists relied on averaging the expected behavior of a system’s

constituents and working with the resulting distributions—one cannot expect to make much

headway calculating one trajectory per second for billions of particles, or forming a network

containing millions of nodes one connection at a time. However, we now suddenly find ourselves

with the power to do exactly that, and with it the ability to explore systems that resist the type

of coarse-grained approach necessitated by classical equilibrium statistical mechanics.

Perhaps the first thing that jumps to mind for statistical physicists excited by this

newfound computing power is the ability to enumerate large swaths of configurational space. In

this sense, computation won a symbolic victory in 1996, when Deep Blue scored its first win over

reigning chess world champion Garry Kasparov by brute-force analyzing 100 million positions per

second, making it abundantly clear that the human brain’s finesse with pattern recognition and

approximately 100 billion neurons each firing once per second, on average, could no longer keep

up with the burgeoning microprocessor. Ironically, in the intermediating time, further increases in

computing power have led us right back to the human brain, with AlphaZero attaining the highest

chess Elo rating (the most common chess rating system, developed by Arpad Elo) ever by using

reinforcement learning on deep convolutional neural networks [2].
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If the deep exploration of configurational space can be thought of as the unpacking of

ensemble averages in statistical mechanics, then the other natural frontier is to unpack the

time averages. What exactly does this mean? In equilibrium, it might mean nothing at all. For

example, holding the relevant state variables constant, measuring the properties of one container

of an ideal gas at many different snapshots in time will produce identical results to measuring

many separate containers, each holding an identical ideal gas, all at the exact same moment.

These are the time averages and ensemble averages, respectively. The time average is obtained by

observing a single system at different points in time, assuming variables such as volume, pressure,

and temperature have all remained constant across the observations. Conversely, the ensemble

average is obtained by observing many identical copies of a system, with the same state variables

held constant across every system. Now imagine separate rooms with either one container (time

average), or a collection of identical containers (ensemble average) spread throughout, have

heating vents to keep the poor graduate student warm, producing a steady temperature gradient

from one end of each room to the other. The first case with a single container might not notice

this at all, having simply equilibrated to the temperature wherever it sits in the room. The

second case with many containers, however, will produce a more complicated result that takes

into account the distance of each container from the heater and its corresponding temperature.

Apply the same logic to a separate situation with perfectly uniform temperature throughout each

room but faulty, fluctuating thermostats and we can see how unpacking the two types of averaging

give us unique insights into nonequilibrium systems.

The work that follows focuses on systems driven out of equilibrium in the time domain,

in the sense that a statistical system is prepared at some initial time, then is continuously

interacted with in some way while it evolves. In other words, rather than existing within a

static environment, the system is subject to perturbations that drive its evolution over time. For

example, imagine the look of shock on Deep Blue’s face if you decided at some point in the middle

of a chess game that the functionality of the chess pieces was to change—that a rook now moved

like a queen. Kasparov might initially be befuddled as well, but there is no doubt he would adapt

to the new rules and march forward with more than a semblance of strategy. Alternatively, its

wealth of chess tables and all the computational power in the world to search them would not help

Deep Blue make use of the rook’s newfound power. This type of dexterity is an inspiration for
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modelling physical systems driven out equilibrium in the time domain, affording us the power to

deftly interact and keep up with complex systems as they evolve within our modern civilization,

marching us forward with some semblance of strategy. Toward this end, the following chapters

first introduce a new scheme for intervening on growing networks, using an edge evaluation

method we call the degree product rule process. Next, we develop a time-dependent ground-up

model of one of the most fundamental results in statistical mechanics, Johnson-Nyquist noise [3].

As the modern world continues to become ever more interconnected, understanding how

statistical systems evolve in time is more consequential than ever. The financial crisis that began

in 2007 exposed the fragility of the interbank loan networks that went into upheaval and quickly

spread a cascade of default across the entire financial system. The relatively fast pace of the

growth of the internet in the 1990s became dwarfed even more quickly by social networks in the

2000s, as data floods servers faster than it can be parsed and analyzed. Air travel networks now

transport more people in a year than lived on Earth fifty years ago, and sudden disruptions at

large airports can be catastrophic to the movement of passengers in a timely manner. Each of

these examples have at their core a statistical framework that dictated the system’s evolution over

time, which to varying degrees we could exert control over as each one came to fruition, and most

of which were prone to forces that drove them far from any notion of equilibrium. A more guided

and nimble approach to our treatment of these systems in the future could prove instrumental

in improving their capability to help modern civilization function in the manner we’ve come to

expect.

In Chapter II, we explore a new process of competitive network growth, demonstrating

that interventions during the formation of networks can have far-reaching effects on the critical

properties of the percolation phase transition. The ability to continually intervene on large

networks as they grow requires immense computational power, as the evaluation criteria must

be computed at each step, and the number of steps grows with network size as N2, where N

is the size of the network. Chapter II has been published in Physical Review E [1] as a Rapid

Communication. The writing, experimental design, and analysis were performed by me as the

primary author. Eric Corwin and Georgios Tsekenis are listed as co-authors for this work and

aided in the analysis of the critical properties of the networks. Chapter III tackles the intricacies

of recreating a famous experimental result from first principles by modelling electron diffusion
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in a conductor. In order to test the resiliency of the fluctuation-dissipation theorem [4, 5] in

nonequilibrium systems, we design a foundational model for Johnson-Nyquist noise that allows

fine control over how the system is driven out of equilibrium. Constructing this simulation

requires tracking the movement of many particles, and can only approximate the behavior of a

physical conductor for increasing number of electrons. The work in Chapter III is unpublished at

this time.

Both chapters share the principle of exploring the time evolution of statistical systems

driven away from equilibrium. Each is a model of a physical process with well-understood

macroscopic, equilibrium properties that layed the groundwork for major advances in statistical

mechanics during the 20th century. In both cases, we rebuild the model from the ground up,

providing the experimenter the ability to precisely control how the system is driven away from

equilibrium and measure the response of the system to perturbations of varying form and

magnitude. We hope that both models can serve as a launching point for similar types of studies

in the future.
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CHAPTER II

DEGREE PRODUCT RULE TEMPERS EXPLOSIVE PERCOLATION IN THE ABSENCE OF

GLOBAL INFORMATION

This chapter has been published in Physical Review E as a Rapid Communication [1]. The

writing and analysis were performed by me as the primary author. Eric Corwin and Georgios

Tsekenis are listed as co-authors for their contribution to the analysis and for advisement on the

work.

Abstract

We introduce a guided network growth model, which we call the degree product rule

process, that uses solely local information when adding new edges. For small numbers of

candidate edges our process gives rise to a second-order phase transition, but becomes first-order

in the limit of global choice. We provide the set of critical exponents required to characterize the

nature of this percolation transition. Such a process permits interventions which can delay the

onset of percolation while tempering the explosiveness caused by cluster product rule processes.

Background

Network-based approaches continue to see growing applications in a wide array of fields,

from epidemiology [6, 7] to finance [8, 9], neuroscience [10, 11], and machine learning [12]. As we

increasingly rely on networks, understanding how they form out of complex conditions becomes

all the more consequential [13–17]. Many of the networks we entrust to support our modernized

society—transportation, financial, social, etc.—are formed with some amount of agency, meaning

that potential new members have control over how they connect and interact with the network.

This agency can lead to markedly different behavior compared to the classical case of purely

random network growth [18]. In particular, networks subject to competitive edge addition break

time-reversal symmetry, as there is no well-defined method for running the process in reverse that

achieves a statistically identical growth curve [19]. Furthermore, edge competition can be used

as a means of control over cluster growth and connectivity within a growing network. Depending

on the desired outcome (delayed connectivity for contagion spreading, increased connectivity
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for communication networks, etc.), intervening on growing networks can help produce more

specialized and responsive networks.

Pioneering work by Erdős and Rényi [20] characterized the most straightforward process of

random network growth: edges are added to the network uniformly at random until connectivity

percolates through the entire network. The Achlioptas growth process (AP) [21] adds a layer of

competition to the classical percolation process, whereby edges are ranked based on the sizes of

the clusters they join and then added to the network in such a way as to suppress large cluster

growth. This competition results in a significant delay in the onset of percolation, but comes at

the cost of a much more abrupt transition—it produces what is commonly referred to as “powder

keg” conditions [22, 23], where clusters in a narrow band of size become widespread and primed

for sudden connectivity. The powder keg formation can be mitigated by continuously adding new

nodes to the network [24, 25], inducing an infinite-order transition; however, in many real-world

cases such an intervention is impractical.

Variations in competitive edge addition, such as the minimal cluster rule [23], the triangle

rule [26], and a handful of others covered in the review article in reference [27], achieve results

similar to the AP. Together, these growth processes are referred to as explosive percolation due

to the abruptness with which the largest cluster grows from microscopic to system-spanning.

Each of these processes shares a common thread: edge competition involves comparing the sizes

of the clusters to which each edge belongs, which necessitates gathering information about the

connectivity of a large portion of the network as it nears the percolation threshold. Although

generally second-order [19], under certain circumstances these transitions can become first-order

[28], typically when either the number of edges competing for addition at each timestep grows

quickly enough with system size [29], or the competition process is designed to build up smaller

clusters that eventually merge together and overtake the largest component [30]. Approaches

focused on local measures of connectivity [31, 32] have reproduced some aspects of explosive

percolation, yet remain relatively unexplored compared to global product rules. Additional

novel phenomena that have been observed in explosive percolation including crackling noise and

“fractional percolation” [33], unexpected double-peaked distributions of the order parameter in

small systems [34], and finite-size hysteresis [35].
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Here, we introduce and characterize the behavior of a third type of random growth process,

the degree product rule (DPR) process. Mechanistically, the DPR is analogous to the Achlioptas

process, the difference being that the criteria used to evaluate edges is the product of node degrees

(the number of edges attached to a node) rather than cluster sizes. The impetus for studying such

a subtle but fundamental modification is twofold. First, the degree of a node is local information

in the sense that for any given node, determining its degree requires only knowledge of its set

of nearest neighbors. Unlike average cluster size, information about the average degree of each

node does not become extensive within the system near the percolation threshold. Second,

the problem of classical percolation has long involved using a stable probability distribution

to choose an edge at each timestep. Explosive percolation upended this notion by allowing the

distribution to shift unpredictably depending on which edge is chosen, a characteristic potentially

more in line with how certain types of real networks take shape [36]. The DPR similarly produces

unpredictable changes when updating edge selection probabilities, but does so under a set of local

rules, broadening our understanding of how networks coalesce under various formational pressures.

The Degree Product Rule Model

We begin with a fully disconnected set of N nodes and successively add edges one at a

time, such that at time t the network contains exactly t edges, with a resulting edge density p =

t/N . The growth process is as follows: 1) A specified number of candidate edges m are chosen

uniformly at random. 2) The weight of each candidate edge is calculated as the product of the

degrees d of the two nodes to be connected by that edge as (d1 + 1)(d2 + 1), where one is added

to the degree of each node in order to avoid the degenerate case of zero-degree nodes. 3) The

edge with the smallest weight is added to the network or, in the case of a tie, an edge is chosen at

random from the set of edges with the smallest weight. The remaining edges are discarded back

into the pool of unfilled edges. The process is illustrated diagrammatically in the inset of Figure 1.

During any random growth process clusters will form, grow, and eventually merge together.

The relative size of the largest cluster C/N is computed at every timestep and serves as the order

parameter of the percolation transition. The order parameter begins vanishingly small, then

becomes macroscopic as the system crosses the critical point pc, the precise value of which is

determined by the details of the growth process. Figure 1 shows the ensemble-averaged evolution
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FIGURE 1. Degree product rule scheme and evolution of the largest cluster.

Relative size of the largest cluster, C/N , at scaled time p = t/N . Ensemble averages for Erdős-
Rényi (dashed red), DPR process (solid blue), and AP (dotted green) at N = 3.6 × 105 nodes and
m = 2 choices for the DPR process and AP. Inset: Example of the DPR selection scheme for m =
2 choices. E1 and E2 compete for addition. The selection criteria A = (d1 + 1)(d2 + 1) is computed
for each edge. Since AE1 = 9 and AE2 = 4, E2 is added to the network.

of the order parameter for the Erdős-Rényi, Achlioptas, and DPR processes, with m = 2 for

the latter two. In principle, the critical point of each transition can be predicted by analyzing

the combinatorics of the system, however in practice this becomes prohibitively difficult when

the underlying distribution used to add edges changes unpredictably as in the AP and DPR.

Thus, numerical simulations are necessary to tackle the details of these systems and obtain precise

approximations of their critical behavior.

The percolation transitions presented in Figure 1 are notably different in both the location

of the critical point and the abruptness of each transition. To better quantify the abruptness of

the DPR transition, we measure the size of the largest jump in the order parameter ∆Cmax/N

during each realization, then average over many realizations. This type of convergence criterion is

common among explosive percolation studies [37–40], as it gives insight into how the transition
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behaves in the thermodynamic limit and indicates whether the transition is first- or second-

order. For increasing system size, the largest jump will decay as a power law when the transition

is second-order, ∆Cmax/N ∼ N−ω, whereas if there is a discontinuity that survives in the

thermodynamic limit then ∆Cmax/N will approach a constant value, signaling that the transition

is first-order. The decay exponent ω communicates the level of the abruptness in second-order

transitions, with smaller values indicating a sharper transition. In the AP, the decay exponent

is unusually small: ω = 0.065 for m = 2 choices. The DPR, however, produces decay

exponents similar to Erdős-Rényi, as shown in Figure 2. In fact, despite the appearance of a faster

transition, the DPR is actually seen to have a decay exponent only slightly larger than Erdős-

Rényi, recorded in Table I. In addition, finite-size effects show up at small system sizes for the

DPR between N = 102 up to N = 104 in Figure 2, depending on the number of choices, whereas

in both Erdős-Rényi and explosive percolation no such effects appear at comparable system sizes.

Increasing the number of choices does not appear to change the decay exponent in the DPR

process, unlike in the AP [37], which suggests that the locality of the information used in the

DPR suppresses its ability to achieve the buildup of multiple large clusters that inevitably leads to

bigger jumps in the order parameter. This is even more striking given that the value of the critical

point increases from pc ≈ 0.76 for m = 2 choices to pc ≈ 0.93 for m = 10 choices and pc ≈ 0.97

for m = 50 choices, eventually asymptoting to pc ≈ 1 for global choice, implying that increasing

the number of choices works to suppress the transition without actually building up the so-called

powder keg conditions necessary to achieve explosiveness. Rather, the DPR works to constrict the

degree distribution, as shown in Figure 3, which leads to something of a powder keg in the node

degrees instead of cluster sizes. However, in contrast to explosive percolation, this degree-oriented

powder keg does not “ignite” near the critical point.

Despite the lack of a powder keg, global choice in the DPR process nevertheless produces a

first-order phase transition. We simulated global choice using the following process, as increasing

the number of choices becomes computationally intensive at large system sizes. Initially, every

node is randomly paired with another unpaired node, at which point the node pairs begin to

join together and form chains. Only the two ends of each chain are candidates for edge addition,

as they have degree d = 1 while internal nodes in the chain have degree d = 2. Eventually

these chains will tend to form large, closed loops whenever the two ends of a single chain are

9
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FIGURE 2. Maximum jump in the order parameter.

The average maximum jump in the order parameter as a function of system size for the DPR
process with two choices (blue upward triangles), ten choices (red squares), fifty choices (green
downward triangles), and global choice (black circles). Erdős-Rényi (lower dashed line), as well
as the AP with two choices (lower dotted line) and global choice (upper dotted line) are shown
for comparison. Fits to the data (gray lines) for the three non-global DPR processes have decay
exponents of ω = 0.316, ω = 0.328, and ω = 0.319, respectively.
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FIGURE 3. Degree distributions.

The degree distributions at p = 5 for Erdős-Rényi (dashed red), degree product rule process (solid
blue), and Achlioptas process (dotted green) at N = 1.7 × 104 nodes and m = 2 choices for the
DPR process and AP.

randomly chosen to join together. The loops then merge together very close to p = 1, shortly

after every node has degree d = 2, resulting in a critical point of pc ≈ 1 since the largest jump

in the order parameter will tend to occur when two large loops merge. The result is a first-order

phase transition with exclusively short-range information dictating its development. Similar to

the AP with global choice, the largest jump for the DPR with global choice remains constant,

with an approximate value of ∆Cmax/N = 0.33 for all N , shown in Figure 2. However, in the

DPR process, the crossover from second-order to first-order appears to happen via the extension

of a shoulder at increasing system sizes as the number of choices increases, rather than the typical

rise in the slope of the power law seen in explosive percolation. Essentially, what appears to be

finite-size effects observed with increasing number of choices could in fact be a signifier of a slow

crossover to a discontinuous transition.
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TABLE 1. Summary of critical exponents.

Critical point pc, and summary of critical exponents for the three growth processes discussed in
this paper with m = 2 for the AP and DPR processes.

Growth process pc β/ν γ/ν τ ω
Erdős-Rényi 0.5 0.33 0.34 2.5 0.3
DPR 0.763 0.33 0.37 2.45 0.32
Achlioptas 0.888 0.02 0.48 2.08 0.065

Criticality and Universality

Second-order phase transitions are characterized by critical behavior, which permits

the use of scaling theory in determining universal behavior near the critical point [41, 42].

These functional forms are a result of the fact that all state variables associated with the phase

transition behave as power laws near the critical point due to scale independence within the

system. Using this process, one finds a rescaling of the order parameter for system size that has

the following general form:

C = N−β/νF [(p− pc)N1/ν ] (2.1)

The value of β is associated with the behavior of the order parameter with system size,

while ν scales the correlation length (mean distance between nodes in a cluster) with the distance

to the critical point. The function F is a universal function that allows collapse onto a single

master curve. The average cluster size S should rescale in a similar manner, although with a

different critical exponent affecting the system size and a separate universal function H:

S = Nγ/νH[(p− pc)N1/ν ] (2.2)

Here, the exponent γ scales the average cluster size (excluding the giant component) with

system size N . Together, equations (1) and (2) contain the set of critical exponents and scaling

functions required to characterize the DPR phase transition and allow universal collapse onto

master curves. Measuring the critical exponents necessitates finding both the largest cluster size

and the average size of clusters (excluding the largest) at the critical point for varying system

sizes. The critical point serves as a separatrix for the largest cluster size—at the critical point

it will follow a power law with growing system size, while above and below the critical point

12



10 2 10 3 10 4 10 5 10 6 10 7

N

10 0

10 1

10 2

10 3
S

10 2 10 3 10 4 10 5 10 6 10 7

N

10 -3

10 -2

10 -1

10 0

C
/N

(a) (b)

FIGURE 4. Finite-size scaling.

Finite-size scaling for the critical exponents β/ν and γ/ν of the DPR process. (a) Mean cluster
size S is plotted versus system size N . The fit at p = pc = 0.763 (red squares) gives the value
γ/ν = 0.37. (b) Relative size of the largest cluster C/N is plotted versus system size N . The fit
at p = pc = 0.763 (red squares) gives the value β/ν = 0.33. Breakdown of the power law scaling
away from the critical point is shown in both (a) and (b) for p = 0.75 (blue upward triangles) and
p = 0.77 (green downward triangles).

it will increasingly curve away from the separating line due to the excess (or deficit) of edges

interrupting the scale-free nature of the system. The average size of the remaining clusters,

however, will decay with growing system size both above and below the critical point due to

the largest cluster absorbing an increasing portion of the nodes above the critical point. Figure

4 illustrates this behavior, which provides an additional check on the approximate value of the

critical point, pc = 0.763. The fits in Figure 4a and 4b provide values of β/ν = 0.33 and

γ/ν = 0.37, respectively, for the scaling exponents of the DPR process. Again, these values

draw comparisons to the classical Erdős-Rényi process despite the fundamental differences in

reversibility and information loss between the two growth processes.

Along with the set of critical exponents, the Fisher exponent τ , which describes the power

law decay of the cluster size distribution at the critical point, completes the picture of how the

network percolates. By revealing the structure of cluster sizes beyond the largest component, the

Fisher exponent provides details about how susceptible the network is to forming larger clusters

near the critical point. Shown in Figure 5, the cluster size distribution at the critical point follows

the form G(s) ∼ s1−τ . The decay in cluster size for the DPR process is well-fit by a power law

with τ = 2.45, which may be consistent with Erdős-Rényi (τ = 2.5). The cluster size distributions
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FIGURE 5. Cluster size distributions.

Cumulative distribution of cluster sizes at the critical point (solid blue) and at points above
(green dotted) and below (red dot-dashed) the critical point for N = 1.3 × 105 nodes. Thicker
lines are nearer to the critical point. The solid black line is a guide for Erdős-Rényi (τ = 2.5). The
Fisher exponent, τ = 2.45, is found by fitting a power law to the distribution at the critical point.
Red dot-dashed curves are for p = 0.38, 0.46, 0.54, 0.62, green dotted curves are for p = 0.92, 1,
1.08, 1.15.
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of the DPR process above the critical point show a mixture of explosive and classical behavior—

plateaus form as in explosive percolation, however the distributions above the critical point remain

entirely below the distribution at the critical point, as is the case in Erdős-Rényi growth [19]. This

seems to suggest that the DPR process preferentially builds a few large clusters after the critical

point, though it substantially delays building up the remaining smaller clusters as compared to

explosive percolation. A comparison of the three growth processes considered in this paper is

presented in Table 1.

Conclusions

Prescriptive processes for network growth, such as the one we presented, that tune

percolation while circumventing the formation of a powder keg are useful in cases where

connectivity is a liability. Here, we have described a way in which networks can be designed

and grown that delays the onset of percolation without the risk of sudden connectivity, allowing

for more manageable failure modes in cases where connectivity is undesirable. This growth

scheme provides a set of tools for researchers in a wide array of fields to use when intervening

on growing networks, requiring a great deal less information when making decisions about how to

guide networks towards more desirable topologies. In cases where acting quickly on a developing

network is crucial, the DPR can be enacted with ease whereas enacting cluster-oriented growth

schemes may be impractical.

Our work establishes that in order to turn a percolation transition from second-order to

first-order one need not necessarily have access to global information, as in explosive percolation.

In addition, the use of local information extends the lower bound for explosive percolation to even

lower critical connectivities than previously accessible with global information.

The selection criteria in DPR grown networks could be further altered in order to use the

product of degrees of second-nearest, or third-nearest neighbors, etc., methodically extending the

distance with which information about connectivity is communicated within a network. Such a

tool could allow for improved modeling of networks where interactions extend to a finite distance.

Degree rule processes may also be of interest within the context of core percolation [43], as they

naturally produce networks with larger cores due to the narrow width of the degree distribution

compared to traditional and explosive percolation.
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CHAPTER III

MODELING NONEQUILIBRIUM FLUCTUATION-DISSIPATION THEOREM IN AN

ELECTRON GAS

Abstract

The observation of equilibrium fluctuations of voltage and electrical current in a conductor

provided a path to the very first formulation of the fluctuation-dissipation theorem, which states

that for small perturbations to equilibrium, a statistical system cannot tell the difference between

the perturbation and a random fluctuation. Here we attempt to build a foundational model of

the Johnson-Nyquist system of charge carries diffusing in a conductor, first aiming to recreate

this seminal result, then providing a course to a more detailed analysis of nonequilibrium states

and deviations from equilibrium fluctuation-dissipation theorem in driven systems. By accounting

for the relevant physical phenomena, an agent-based statistical model could allow simultaneous

measurement of the two fundamental quantities in the fluctuation-dissipation relation, providing

insight into how thermodynamic systems experience nonequilibrium states continuously over a

single period of time.

Background

For over 250 years the state of the art in statistical mechanics involved calculating the

properties of distributions created by a system’s constituent particles, then predicting the

macroscopic behavior of the system from the moments of these distributions. The development

of the kinetic theory of gases [44] refined our understanding of how macroscopic quantities such

as pressure and temperature are connected to the molecular underpinnings of a system, while

simultaneously underlining the relative impossibility of tracking the evolution of the system on a

microscopic level. In equilibrium, when there is no active exchange of energy with the surrounding

environment—or equivalently, when the entropy is a concave function of the state variables [45]—

the classical approach of working with distributions works exceedingly well. However, the further

a system moves from equilibrium, the more difficult it becomes to extract meaningful results as

the distributions of state variables evolve in complex ways over time and the entropy no longer

resides in a global minimum.
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Over the course of the 20th century physicists steadily incorporated nonequilibrium

dynamics into equilibrium models, extending our understanding of statistical thermodynamics

to near-equilibrium systems. Einstein’s famous paper on Brownian motion [46] helped build the

framework for investigating near-equilibrium systems by describing the mathematical process of

diffusion and the resulting average particle density in fluids. This involved quantifying particle

distributions for systems in dynamical equilibrium (e.g. in equilibrium but with a spatially

uniform potential) and accounting for dissipation of energy through drag. One of the most

impactful observations about near-equilibrium statistical systems is the idea, formulated by Harry

Nyquist in 1928 [3], that small external perturbations are experienced by a system identically to

a random thermal fluctuation originating within the system itself. This idea is known broadly as

the fluctuation-dissipation theorem, and successfully describes a wide variety of equilibrium noise

processes [47, 48].

More recently, apparent violations of the fluctuation-dissipation theorem in nonequilibrium

systems [49, 50] have spurred interest in the development of a more generalized theorem for

treating perturbations that drive a system far from equilibrium. Efforts to extend the fluctuation-

dissipation relation to nonequilibrium systems include adjusting the Langevin dynamics for a

particle in a periodic potential [51], defining an effective temperature for a sheared fluid [52], or

expanding around small variations in a system’s control parameters for nonequilibrium steady

states [53]. The work that follows complements these approaches by building a model system from

the ground up, rather than perturbing an existing equilibrium system and attempting to correct

for its deviations from equilibrium. The primary advantage of building a foundational model is

to allow for finer control over how perturbations are introduced, tracking the response of systems

as they deviate further from equilibrium by using the strength of the perturbing potential as an

experimental parameter.

Developing the Model

The model system we have chosen to use in order to probe nonequilibrium fluctuation-

dissipation is the Johnson-Nyquist noise produced by a conductor. Within a conductive material

at finite temperature, some fraction of charge-carrying particles are unbound and free to diffuse

within the bulk of the conductor. Although energy conservation requires that the time-averaged

17



flow of current from these free particles must be zero, at any given time a nonzero current will

be measured when two electrodes are connected across the conductive material, regardless of any

applied voltage. This phenomenon was observed in solid-state resistors by J.B. Johnson in 1928

[54] and accounted for theoretically by Harry Nyquist [3] in the same year. Thus, when averaged

over long times, a piece of conductive material with finite resistance and at finite temperature

will produce a fluctuating voltage (and, necessarily, current) that obeys a Gaussian distribution

with zero mean. The variance of the Gaussian distribution of voltages, however, depends on the

temperature and resistance of the conductor in the following way:

V 2 = 4kBTR (3.1)

This is the primary result of Johnson’s and Nyquist’s analysis of fluctuations in an

equilibrium conductor. Larger resistance, or a higher ambient temperature, will generate stronger

voltage fluctuations, with the associated variance in electrical current via Ohm’s Law:

I2 = 4kBT/R (3.2)

The fluctuating voltage and electrical current are each assumed uncorrelated in time,

meaning that any observation is unaffected by previous measurements, and so for sufficiently

low frequencies the fluctuations are well-modeled by Gaussian distributed white noise. Any model

we develop in order to explore fluctuation-dissipation must first be capable of reproducing these

established voltage and current fluctuations described by Johnson and Nyquist. Towards this end,

we must be able to simulate our system of diffusing electrons and from it extract measurements

of voltage and current over long periods of time, building distributions for each that match

the properties defined above. We accomplish this by considering the microscopic properties of

the conductor and building up a picture of how they contribute to the macroscopic properties

observed in Johnson-Nyquist noise. Following Kittel [55], we begin by connecting the total voltage

across the conductor to the contribution of each individual charge carrier:

V = IR = ρAeuR (3.3)
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Where A is the cross-sectional area of the resistor, ρ the number of charge carriers N per

unit volume, e the charge of an electron, and u the average drift velocity of the particles, such

that the current flowing in the resistor I = ρAeu is the average drift velocity of the N particles

multiplied by the electron charge and the cross-sectional area of the conductor. The voltage is

measured across opposite ends of the conductor, which we idealize as a cylinder. From here we

note that ρAlu =
∑
i ui, where l is the length of the conductor, and each ui is a random variable

that assigns a drift velocity to each particle. This suggests that the voltage at any given time is

the summation of the random voltages contributed by each charge carrier,

V = (eR/l)
∑
i

ui =
∑
i

Vi (3.4)

This simple but powerful observation is the crux of the model. If the fluctuating voltage

has as its source the random motion of the charge carriers, then the macroscopic behavior

should be recoverable from the ensemble average of the particles’ motion. At a snapshot in time,

assuming an idealized cylindrical conductor with length l � r, where r is the radius of the cross-

sectional area A, the voltage is well-approximated by the summation of every particle’s difference

in location from the left and right side of the cylinder. The contribution to the total voltage from

each particle is then the difference in potential felt by the left and right surface of the conductor:

V = e/4πε0
∑
i

(
1

xi
− 1

l − xi

)
(3.5)

The model of the conductor, along with the quantities required in order to calculate the

voltage, are illustrated in Figure 6. In order to implement this model, we need to know how the

particles diffuse within the conductor. Solid-state theory suggests that for a pure conductor at a

finite temperature, at any given time a portion of electrons will contain sufficient energy to reside

in the conduction band. These electrons can be well-approximated as a gas of free particles freely

diffusing in the bulk of the conductor, described in detail by Sommerfeld and Bethe [56] as the

free electron model. What remains at this point is to determine the mechanisms by which these

free electrons scatter as they diffuse within the conductor.
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FIGURE 6. Diagram of the model conductor

A diagram of the conductor showing embedded electrons (red circles) with charge e. The length
of the conductor l is indicated, as well as the cross-sectional radius r and distance x from the left
surface (positive) electrode.

Scattering Mechanisms in the Electron Gas

In low-resistivity conductors, electrons will tend to move in ballistic trajectories through

free space until they encounter a scattering mechanism. Depending on the details of the system,

scattering mechanisms can include other electrons, lattice impurities and defects, and phonons,

to name a few of the most common processes in conductors. The contribution to the overall

scattering cross-section can be calculated from Matthiessen’s Rule [57], which states that the

drift mobility of the free electrons is,

1/µ =
∑
i

1/µi (3.6)

Where µ is the total average mobility of electrons in the gas and each µi is the mobility

contributed by each scattering mechanism. More appropriate in this case is to discuss the

contribution of each scattering element to the mean free path of the electrons, which is the

average distance traveled before encountering a scattering mechanism. As the mean free path
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is proportional to the mobility, it too obeys Matthiessen’s Rule, 1/λ =
∑
i 1/λi, where λi is the

mean free path afforded by each scattering mechanism.

The primary scattering mechanism in conductors depends on the ambient temperature

as well as the material properties of the conductor. For most conductors, however, the phonon-

electron interaction begins to dominate above the Debye temperature, which for many common

metals is below room temperature [58]. As such, we choose the temperature regime for our

simulations well into the Debye phase, and consider electron-phonon scattering as the sole

scattering process. Consequently, the mean free path of the electrons can be derived from the

probability per unit time of a collision with a phonon, which depends directly on the phonon

density in the conductor.

Between collisions, the electrons reside on a Fermi surface in three-dimensional momentum

space [59], and each collision with a phonon shifts the electron to a new point on the Fermi

surface. In an idealized conductor, the Fermi surface is simply a sphere, such that the electrons

maintain a constant momentum at all times. When an electron is scattered, it moves to a new

location on the Fermi surface chosen uniformly at random.

The simulation proceeds according to the following steps: 1) A specified number of

electrons are deposited uniformly at random inside the conductor, with velocity vectors of

equivalent magnitude but random direction in three-dimensional space. 2) Each electron moves

ballistically for a distance specified by a single realization of an exponentially distributed random

number with mean equal to the mean free path of the electrons in the conductor. 3) When

an electron has moved the distance afforded to it by its free path, it scatters off of a phonon,

drawing a new direction uniformly at random and a new free path from the specified exponential

distribution.

Defining an Electrical Current

In the simulation, we impose periodic boundary conditions on the electrons. The conductor,

then, has a defined length, and the electrons which move beyond this length are assumed to

travel through the abstracted current measurement device with no resistance before immediately

re-entering the conductor on the opposite side. In our initial design, each electron that passes

through the boundary contributes one unit of current—positive if the electron moves through from
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the right side of the boundary and negative if it moves through from the left. Summing the total

contributions from every electron that passed through the boundary in a specified period of time

gives the electrical current measurement at each point in time as,

It = ∆Q/∆t (3.7)

Where each electron passing the boundary contributes either +Q or −Q to ∆Q, the total

count. A curiosity arises from this definition: the electrical current, which is simply proportional

to voltage via Ohm’s Law, depends on a measurement over a time interval, whereas the voltage

is an instantaneous measurement. In other words, the voltage contains no information about how

the system evolved between measurements, while the current is entirely defined by that evolution.

When measuring electron flow from an applied voltage, this nuance is easily attributed to shot

noise, as the applied voltage typically dwarfs the contribution from any particular electron to the

overall voltage, and the fluctuations from the discrete nature of the electrons is negligible when

comparing the flow of current to the applied voltage. However, in the Johnson-Nyquist system

with zero applied voltage, effects typically attributed to shot noise become prominent.

The time series of voltage and current measurements should behave like a Markov process,

which is a memoryless evolution between states in the sense that future measurements are

independent of all past measurement, or, more specifically, that the transition probability between

states depends only on the current state of the system. If this property holds, then the time series

of measured voltage and current will follow the experimentally observed Gaussian white noise.

Gaussian white noise is uncorrelated, resulting in a constant power across all frequencies (up to

a critical frequency), and follows a Gaussian distribution in the limit of many measurements.

Measurements of the current under the counting scheme introduced above, however, appear to

contain a memory element under the conditions of the simulation.

The reason that a memory appears to form in the electrical current measurements is

due to the relative timescales of scattering and electron mobility compared to the length of the

conductor. For a sufficiently long conductor, the measurement of a crossing in one direction

carries with it an increasing probability that a crossing in the opposite direction will occur within

a short time, based on how long it takes for the electron to move within range of crossing again in

the same direction. In other words, there is a decay time after measuring a crossing for which the
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electron cannot move quickly enough to cross again in that direction, while staying within range

of crossing backwards if it scatters in the opposite direction soon after crossing the boundary.

Thus, a memory of the electrical current is formed, with a decay time that depends on electron

mobility, scattering rate, and length of the conductor. Each electron carries with it the memory

of its last crossing for a time defined by these three factors, indicating a decaying likelihood of

contributing the opposite value in future measurements. This manifests itself by allowing the

observer to predict more probable measurements of the opposite sign (positive versus negative)

based on how large the current previously fluctuated in one direction and how long the observer

waited between measurements. The process is no longer uncorrelated, and instead produces peaks

in the power spectrum of fluctuations.

If the model is to reproduce the current fluctuations observed in physical observations of

the Johnson-Nyquist system, the memory problem must be addressed. Although there are likely a

variety of potential resolutions, one straightforward method for making the process memoryless is

to make the measurement continuous rather than a discrete counting process. To accomplish this,

the electrical current would be determined according to,

It =
∑
i

∆xi/∆t (3.8)

Where each electron contributes to the current based on the distance traveled in a

particular direction along the length of the conductor. When measuring current this way,

information about how the electron moved in any previous timestep is discarded once the

measurement is made, and its displacement is tracked anew starting from the point it occupied

at the time of the last measurement.

In equilibrium, the mean free path of each electron depends only on the temperature of the

system. For increasing temperature, a higher phonon density results in an increased probability

per unit time that an electron will scatter to a new point in momentum space, thus reducing the

mean free path of the electrons. Figure 7 illustrates how the current fluctuations depend on the

mean free path, demonstrating that an increase in temperature—which correlates with a decrease

in mean free path—will cause larger fluctuations. The relationship between temperature and

mean free path can be extracted by tracking the variance of the Gaussian fits. Figure 8 shows

23



-50 0 50
ΔQ/Δt 

0

500

1000

1500

2000

2500

C
ou

nt
s

FIGURE 7. Equilibrium fluctuations of the electrical current

Electrical current fluctuations in the model conductor fit to a Gaussian for λ = 1. Blue dots
are data, while the red line is a Gaussian fit with µ = −0.64 as the mean and σ = 24.3 as the
standard deviation.
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FIGURE 8. Temperature dependence of current fluctuations in equilibrium

Electrical current fluctuations in the model conductor fit to Gaussians for varying temperature.
The mean free path of electrons is varied in each curve, with blue λ = 0.01, green λ = 0.1, and red
λ = 1.

the variance of electrical current fluctuations as a function of mean free path, which is closely

approximated as a linear relationship for mean free path below λ ≈ 1.

The dependence of the variance of fluctuations on temperature shown in Figure 8 is

unexpected given our understanding of the underlying physics and construction of the model.

For increasing temperature, the variance of current fluctuations increase via the Johnson-Nyquist

relation I2 = 4kBT/R. Higher temperature also means an increase in the phonon density, causing

more scattering events per unit time and decreasing the mean free path of the electrons. Thus,

we would expect a shorter mean free path to result in larger current fluctuations, which is not

the case. Instead, Figure 8 demonstrates that the current fluctuations increase for larger value

of the mean free path. Clearly, there are additional physical phenomena that must be taken into

account, otherwise the underlying physics of the model must be reevaluated.
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FIGURE 9. Current fluctuations as a function of mean free path

The variance of electrical current fluctuations, σ2, is plotted against mean free path, λ. The fit
is approximately linear. As the mean free path becomes large compared to the time between
measurements, fluctuations asymptote to a constant value.
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Probing Nonequilibrium States

Up to this point, the procedure for simulating Johnson-Nyquist noise has focused on

recreating the results from the equilibrium system. However, we are primarily interested in using

our model to probe nonequilibrium states in a precise and systematic manner, in particular by

applying a driving force that shifts the system out of equilibrium. Subjecting the electrons to an

external potential entails an input of energy into the system, disrupting the static properties of

the state variables that gives rise to the equilibrium properties measured in the classical Johnson-

Nyquist system.

The most straightforward way to drive the electrons out of equilibrium is to apply an

external voltage, either static or time-dependent, to which the electrons will couple as they diffuse

within the conductor. The electrons are coupled to the applied voltage via the Fermi surface,

rather than being directly prone to the applied potential as in a vacuum. Applying a voltage shifts

the Fermi surface in the direction of the applied field [59], meaning that the electrons themselves

do not feel the presence of the applied voltage until they encounter a phonon and scatter to a new

point on the Fermi surface dictated by the magnitude and direction of the applied voltage at that

point in time. If, for example, a constant voltage is applied along the length of the conductor, the

distribution of velocities in the electron gas will display a shift along the direction of the applied

voltage, causing the mean velocity in that direction to be positive rather than zero, and resulting

in a net flow of electrons in that direction. If the voltage is switched on at a particular time, there

will be a lag between the equilibrium distribution and the new velocity distribution dictated by

the mean free path of the electrons, which sets the timescale between electron interactions with

the shifted Fermi surface.

In order to quantify deviations from equilibrium fluctuation-dissipation theorem in these

driven states, we must define a method for extracting the values that link the perturbation to

the response of the system. Turning back to the classical Johnson-Nyquist expression of the

fluctuation dissipation theorem, we see that the voltage and current are random variables with a

variance determined by the dissipative part of the impedance, V 2 = I2R2 = 4kBTR. Casting this

in terms of a spectral density for the random variables allows for more thorough quantification

of potential violations in the equilibrium theory. Following Kubo [4], we can define the power

spectral density of fluctuations as follows:
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G(ω) = (1/2π)

∫ ∞
−∞
〈X(to)X(to + t)〉e−iωtdt (3.9)

Where X(t) is the autocorrelation function of the fluctuating variable (in this case, voltage

or electrical current). linear response theory dictates that for small perturbations, the admittance

χ(ω) can be written as:

χ(ω) = (ω/2kBT )

∫ ∞
−∞
〈A(0)A(t)〉e−iωtdt (3.10)

Where 〈A(0)A(t)〉 is the autocorrelation function of the observable A, in this case the

voltage or current. Combining these two sides of the fluctuation-dissipation theorem gives the

following:

G(ω) = (2kBT/ω)χ(ω) (3.11)

With this formulation, violations of the equilibrium fluctuation-dissipation theorem are

commonly expressed as a frequency-dependent effective temperature that the nonequilibrium

system experiences, T → Teff (ω), with Teff (ω) = T indicating that the system experiences

small perturbations as if it were in an equilibrium state [52]. Figure 10 shows a peak in the power

spectral density that arises from a sinusoidal applied voltage, which is localized around the driving

frequency in a signal which otherwise looks close to equilibrium. An effective temperature may

form in this region of frequency space if the linear response function does not track the peak

shown in the power spectral density.

Compared to recent experiments that probe fluctuation-dissipation in an out-of-equilibrium

Johnson-Nyquist system [60], the model we have developed has the advantage of allowing the

determination of both sides of the fluctuation-dissipation measurement simultaneously. Once a

perturbation is applied to the system, the response function can be measured in tandem with

the power spectrum of the signal as it relaxes back to equilibrium, or to a nonequilibrium state if

an external potential is being applied. This simultaneous measurement can potentially unlock

correlations that are obfuscated by taking measurements separately and provide insight into

how a system experiences deviations from equilibrium in a controlled and continuous manner.

If, for example, the linear response function tracks perturbations as they happen and follows
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FIGURE 10. Power spectral density for driven system

Power spectral density for systems driven by a sinusoidal applied voltage. Each sinusoid has a
frequency of ω = 1Hz, with amplitudes A = 0.001 for the blue data, A = 0.01 for the red data,
and A = 0.1 for the black data. The inset shows the relationship between the driving amplitude
and the amplitude of the peak in the power spectral density. The first data point in the inset
(A = 0.00001) shows the smallest value where no peak is detected in the PSD.
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FIGURE 11. Temperature quench and effective temperature

The effect of quenching the temperature over the course of a run. (a) The fluctuating current as a
function of time, showing the degree and speed of the quench. (b) The power spectral density
(blue) and response function (red) of the fluctuating current, with the effective temperature
(green) as a function of frequency. No deviation of the effective temperature from the equilibrium
prediction is observed over the course of the run.

the power spectral density of fluctuations over time, then potential deviations that appear in

both sides of the measurement may in fact not lead to an effective temperature as defined by

traditional studies in nonequilibrium fluctuation-dissipation. There are also questions about how

a system experiences driving forces, whether through a general increase in temperature across all

frequencies, or a localized increase in only certain frequency bands. Figure 10 gives an insight into

this question, as we can see that the power spectral density of fluctuations is localized around the

driving frequency, while the rest of the spectrum is unaffected.

Figures 11-13 show the response of the power spectral density and response function

to various types of nonequilibrium inputs. Figure 11 evaluates the system’s response to a

temperature quench, where the mean free path is decreased continuously over the course of the

run. This involves removing energy from the system continuously over time, breaking the notion

of zero energy flow between the system and environment that holds in equilibrium. Surprisingly,

the temperature quench explored in Figure 11 shows no deviation from equilibrium. This is felt by

the system as if it were in equilibrium, giving rise to temperature that agrees with the equilibrium

prediction across all frequencies. Figures 12 and 13 show the system’s response to a constant

applied voltage and a sinusoidal driving voltage, respectively, each of which break equilibrium by

imparting energy from the externally applied field to the system. They show deviations in the
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FIGURE 12. Effective temperature with constant applied voltage

The power spectral density (blue) and response function (red) of the fluctuating current, with the
effective temperature (green) as a function of frequency, noise filtered for clarity. A constant
voltage is applied across the conductor, resulting in a continuous average flow of current in
one direction. Deviations from the equilibrium temperature are observed at low frequency but
approach the equilibrium prediction at high frequency.
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FIGURE 13. Effective temperature with sinusoidal applied voltage

The power spectral density (blue) and response function (red) of the fluctuating current, with
the effective temperature (green) as a function of frequency, noise filtered for clarity. A sinusoidal
voltage is applied across the conductor. Deviations from the equilibrium temperature are more
complex in this case, with a spike near the driving frequency and a constant deviation at low
frequency that approaches the equilibrium prediction beyond the driving frequency.
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effective temperature at certain regions of frequency space, though both approach the equilibrium

prediction at high frequencies.

Conclusion

We feel that it is an important first step towards better understanding the microscopic

dynamics of how statistical systems behave away from equilibrium. There remains a plethora of

important work to be done utilizing modern computational power in order to model statistical

systems microscopically. Furthermore, establishing a working model for a system such as Johnson-

Nyquist noise could help guide future experimental investigations into nonequilibrium properties

of materials, as well as either corroborating or modifying the underlying theory of how the

macroscopic material properties arise out of the microscopic physics. In this model, for example,

we encountered an apparent inconsistency in the relationship between current fluctuations and

system temperature that was unexpected at the outset. Resolving this inconsistency could lead to

insights into what microscopic mechanisms drive the temperature dependence of fluctuations in

the conductor, guiding future research towards a more complete picture of the electronic theory of

metals.
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CHAPTER IV

CONCLUSION

The work presented here has leveraged modern computational power in order to build a

pair of statistical models that lend fresh insights into fundamental physical systems. Johnson-

Nyquist noise and Erdős-Rényi network growth each represent momentous breakthroughs in

statistical physics. In both cases, microscopic processes—electron diffusion in the case of Johnson-

Nyquist noise and step-by-step connection of networks in the Erdős-Rényi case—were initially

distilled down into macroscopic variables that captured the evolution of the system’s state

variables as observed by experiments. The explosion of computational capabilities, however,

has made more thorough investigations of these processes practical and facilitated a better

understanding of the underlying physics involved.

Chapter II explored a brand new model of network growth that we developed, analyzed,

and published as a Rapid Communication in Physical Review E. In classical network growth, the

high level of symmetry permits analysis of the network at any given point during its growth by

simply filling a specified number of edges uniformly at random. This approach leads to state

variables which evolve over time according to well-defined functions of the number of edges

in the network, and thus the critical behavior of the classical percolation transition is fairly

straightforward and predictable. The model developed in Chapter II follows a lineage of new

growth models that exploit modern computational power by inserting evaluation algorithms into

each step of the growth process. The ability to implement these evaluation algorithms requires

immense computational resources as the system size grows, and our work in Chapter II makes use

of the excellent resources available to us in order to simulate large systems that until recently were

beyond reach.

One salient feature of the network growth process we designed in Chapter II is the ease

of its implementation in real-world systems. Compared to similar processes, ours requires a

minimal amount of information about the network as a whole in order to implement. In theory,

the class of transitions produced by our process could be used to fluidly guide network growth

in situations where delaying connectivity is desirable, and doing so would only entail collecting

information about small portions of the network as any given time. There is still much to learn
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and understand about these types of interventions on growing networks, and we believe that our

contribution to the literature will help guide future work on designing more specialized and robust

networks.

In Chapter III, the Johnson-Nyquist system of electron diffusion in a conductor was

modeled using an agent-based approach to electron motion. This model treats the electrons

as independent and uncorrelated from one another, scattering solely off of phonons that are

generated by thermal kicks within the conductor. This model attempted to incorporate the

relevant physics by distilling the factors that affect electron diffusion down into random variables

pulled from the associated distributions. This entailed modeling electron scattering as a Poisson

process that modifies the path of the electron according to a uniform distribution on the surface

of a sphere. Surprisingly, this straightforward model does not produce the expected results,

displaying an inverse relationship between temperature and the variance of current fluctuations.

There are a number of possible modifications that could be made to the simulation which

may restore the proper relationship between temperature and variance of the current fluctuations.

For one, the particle number is conserved across temperature for our simulations, when in fact it

is possible that larger temperatures produce an increased number of free electrons. Furthermore,

the resistivity of conductors is temperature dependent, and this property is not accounted for in

the equilibrium Johnson-Nyquist relation, as R is static in the equation at all temperatures. It

is also possible that assumptions about the probability distribution of new trajectories after a

scattering event is oversimplified, and that higher temperatures lead to stronger correlations in the

electron trajectory before and after scattering, which would lead to larger fluctuations for higher

temperatures.

The work presented in this dissertation would not have been possible without the incredible

leaps in computational power that we have experienced over the last few decades. Simulating

the actions of millions of particles or choosing from among trillions of possible connections on a

network feels almost trivial using modern machines. And yet, we still push up against the limit of

our computing power, hoping that we can squeeze another order of magnitude into our analyses.

The chasm between the macroscopic world we experience and the constituents that give rise to it

is shrinking quickly, but there is still an unfathomable distance left to go. With this research, we
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have taken another step towards bridging that gap, and we excitedly await the steps that will be

taken in the time to come.
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[25] Vikram S. Vijayaraghavan, Pierre-André Nol, Alex Waagen, and Raissa M. D’Souza. Growth
dominates choice in network percolation. Physical Review E, 88(3), sep 2013. doi:
10.1103/physreve.88.032141. URL https://doi.org/10.1103/physreve.88.032141.

[26] Raissa M. D’Souza and Michael Mitzenmacher. Local cluster aggregation models of explosive
percolation. Physical Review Letters, 104(19), may 2010. doi:
10.1103/physrevlett.104.195702. URL
https://doi.org/10.1103/physrevlett.104.195702.

38



[27] Raissa M. D’Souza and Jan Nagler. Anomalous critical and supercritical phenomena in
explosive percolation. Nature Physics, 11(7):531–538, jul 2015. doi: 10.1038/nphys3378.
URL https://doi.org/10.1038/nphys3378.

[28] Y. S. Cho, B. Kahng, and D. Kim. Cluster aggregation model for discontinuous percolation
transitions. Physical Review E, 81(3), mar 2010. doi: 10.1103/physreve.81.030103. URL
https://doi.org/10.1103/physreve.81.030103.

[29] Oliver Riordan and Lutz Warnke. Explosive percolation is continuous. Science, 333(6040):
322–324, jul 2011. doi: 10.1126/science.1206241. URL
https://doi.org/10.1126/science.1206241.

[30] Jan Nagler, Tyge Tiessen, and Harold W. Gutch. Continuous percolation with discontinuities.
Physical Review X, 2(3), aug 2012. doi: 10.1103/physrevx.2.031009. URL
https://doi.org/10.1103/physrevx.2.031009.

[31] Hans Hooyberghs, Bert Van Schaeybroeck, and Joseph O. Indekeu. Degree-dependent network
growth: From preferential attachment to explosive percolation. Physical Review E, 89(4),
apr 2014. doi: 10.1103/physreve.89.042815. URL
https://doi.org/10.1103/physreve.89.042815.

[32] Alex Waagen and Raissa M. D’Souza. Given enough choice, simple local rules percolate
discontinuously. The European Physical Journal B, 87(12), dec 2014. doi:
10.1140/epjb/e2014-50278-x. URL https://doi.org/10.1140/epjb/e2014-50278-x.

[33] Malte Schröder, S. H. Ebrahimnazhad Rahbari, and Jan Nagler. Crackling noise in fractional
percolation. Nature Communications, 4, jul 2013. doi: 10.1038/ncomms3222. URL
https://doi.org/10.1038/ncomms3222.

[34] Peter Grassberger, Claire Christensen, Golnoosh Bizhani, Seung-Woo Son, and Maya Paczuski.
Explosive percolation is continuous, but with unusual finite size behavior. Physical Review
Letters, 106(22), may 2011. doi: 10.1103/physrevlett.106.225701. URL
https://doi.org/10.1103/physrevlett.106.225701.

[35] Nikolaos Bastas, Kosmas Kosmidis, and Panos Argyrakis. Explosive site percolation and
finite-size hysteresis. Physical Review E, 84(6), dec 2011. doi: 10.1103/physreve.84.066112.
URL https://doi.org/10.1103/physreve.84.066112.
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