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DISSERTATION ABSTRACT

Tristan J. Nighswander

Doctor of Philosophy

Department of Economics

June 2018

Title: Behavioral Biases in General Equilibrium: Implications for Wealth Inequality
and Human Capital Formation

My research focuses on the integration of behavioral economics into well

understood general equilibrium macroeconomic models populated by overlapping

generations of heterogeneous agents. Specifically, I analyze the implications

of populating model economies with present-biased agents who are finitely

lived, subject to idiosyncratic labor income shocks, and heterogeneous in both

exponential and present-biased discount factors. My primary goal is characterizing

the contribution of behavioral biases towards resolving several issues in the

literature pertaining to human capital investment and aggregate wealth inequality.

Further, the inclusion of present bias in carefully calibrated model economies allows

me to rationalize empirical differences in consumption, wealth, and education that

arise between observationally similar households that models of homogeneous,

exponential discounters are unable to match.
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CHAPTER I

INTRODUCTION

Present bias was first brought into the field of economics by David Laibson

(1997) after he reintroduced the preference paradigm outlined by Strotz (1956) and

Phelps and Pollak (1968). Present-biased agents, or quasi-hyperbolic (geometric)

discounters, display time inconsistent preferences characterized by an additional

discount factor applied between the current period and all future periods. This

additional discount factor is different than the discount factor applied to trade-

offs between any two dates further in the future. Present bias leads agents to a)

make decisions that they systematically regret and b) create consumption-savings

plans for themselves that they systematically ignore. Without the availability of

commitment devices, even in the absence of earnings uncertainty or borrowing

constraints, a present-biased agent is unable to construct a consumption-savings

plan that she will follow through with in future periods.

In the second chapter, I embed agents in a three period overlapping

generations model. I then ask rational and present-biased agents to allocate their

time between earning a wage in the unskilled labor market and accumulating

human capital when young. Their human capital decision maps directly into

a deterministic wage that each agent receives for inelastically supplying labor

when middle-aged and agents retire and consume out of their savings when old.
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I consider three different allocations of tax revenue; completely wasteful government

spending, funding a social security system, and splitting funding between social

security and providing education incentives. Under each spending regime, I find

that present-biased agents develop less human capital, consume more when young,

and save less for retirement than exponential discounters. Dedicating tax revenue

to education incentive programs increases human capital and consumption in all

periods of life for both rational and present-biased agents. Further, the human

capital attainment gap between present-biased and rational agents is decreasing

in the degree to which education incentive programs are funded in lieu of social

security funding.

The third chapter is dedicated to understanding the role of present bias and

preference heterogeneity in an overlapping generations economy modeled after the

well known Huggett (1996) model. A hallmark shortcoming of this class of models

is the inability of the equilibrium wealth distribution to match the empirical wealth

distribution of US households, measured using PSID or SCF data. Specifically,

these models predict lower inequality, a lower concentration of wealth in the hands

of the richest 1% of households, and a higher concentration of wealth for the

poorest 40% of households than empirical studies support. I find that a society

populated by present-biased agents displays nearly identical wealth inequality when

compared to a society of homogeneous exponential discounters. This result depends

crucially on embedding agents in a general equilibrium framework in which the
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interest rate responds to the aggregate savings decisions of households. Further,

I find that if a mixture of present-biased and exponential discounters occupy the

same model economy, wealth in equality in the model is increased significantly.

This increase in inequality occurs as exponential discounters benefit greatly from

the increased market interest rate they have available due to their mis-optimizing

peers.

The fourth chapter embeds an education/ low wage labor trade-off for

young agents (as in my second chapter) into a carefully calibrated multi period

overlapping generations model (as in my third chapter). Agents are tasked

with making a formal education investments in the first 6 periods of life. They

will then receive a stochastic income profile based on their level highest degree

completed, calibrated to match the income process of college educated and non

college educated workers in PSID data. This model will be populated with both

exponentially discounting and present-biased agents and policy interventions aimed

at reducing drop-out rates and wealth inequality will be considered.
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CHAPTER II

HUMAN CAPITAL FORMATION AND QUASI-HYPERBOLIC DISCOUNTING

Introduction

In the United States and many other developed countries, the decision to

attend school beyond the state (or nationally) mandated age rests in the hands

of young individuals. The level of investment in education chosen by these young

individuals will play a large role in determining their lifetime human capital and,

consequently, labor earnings. I aim to contribute to the literature examining the

implications of choosing non-mandatory education when young, particularly when

young agents may suffer from behavioral biases. Thus, I study non-mandatory

schooling choices in societies populated by rational exponential discounters (RE)

and for societies populated by quasi-hyperbolic discounters (QH). Results of this

simplified three period overlapping generations (OLG) model are compared to

features of U.S. data in order to evaluate the likelihood that optimizing agents

are discounting quasi-hyperbolically. Several policy interventions are explored

and their effectiveness for improving the welfare of both RE and QH optimizers is

evaluated. Policy interventions that improve welfare for both RE and QH societies

are targeted so as to provide guidance for a policy maker who is unsure if agents in

her society are RE discounters or QH discounters.
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I find that present-biased individuals invest less time in schooling when young

than rational individuals. This leads to a reduction in lifetime earnings and a

steep drop off in retirement consumption for QH optimizers relative to their RE

peers. If the government provides social security in an attempt to increase old age

consumption, there is a reduction in schooling for both RE and QH optimizers as

well as a decrease in consumption at every age for both types of optimizing agent.

However, if tax revenue is dedicated to funding an education incentives program

(outlined in Section 4-c), I find that both RE and QH discounters invest more

time in schooling when young and are able to increase consumption in every period

relative to a regime in which no taxes are levied.

This chapter is the first attempt to address the education investment decision

of present-biased individuals in an overlapping generations framework. Further, I

am the first author to establish equilibrium distinctions in schooling between QH

and RE discounters, both analytically and numerically. Outside of an empirical

result established in Cadena and Keys (2015), I am the first author to comment

on the role of present bias for human capital accumulation in any setting. I also

consider a unique education incentive program not analyzed elsewhere in the

literature as a means of increasing societal human capital and consumption for

both RE and QH agents in every period of life. To the best of my knowledge, this

paper marks the first attempt to analyze the direct trade-off between dedicating
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tax revenue to social security and dedicating tax revenue towards funding education

incentive pay.

Review of the Literature

Human capital accumulation has been integrated into a number of

macroeconomic models in order to better understand the role of skill upgrading

on economic activity (see Lucas (1988)). Early contributions to this literature

typically speak to the optimizing decisions made by parents for their children

instead of focusing on young agents who must decide how much to consume and

save while simultaneously deciding to invest time in furthering their education

(clear exceptions being Ben-Porath (1967)). There is a vast empirical literature

that focuses on the long run financial (Mincer (1974), Katz and Autor (1999)),

professional (Bates 1990), and even health (Case and Deaton (2015)) benefits of

increasing one’s education beyond the mandatory level.

I contribute to the literature examining the role of human capital in a model

of overlapping generations of agents in two distinct ways. First, by focusing on an

investment in non-mandatory education, I am able to model the decision to attend

school from the perspective of a young optimizing agent. As noted above, this focus

is not shared by the majority of the literature in which emphasis is placed on the

investment decision of outside agents (parents and government) in the human

capital of the young (See Glomm and Ravikumar (1992) and Zhang (1995)) .

Second, in the spirit of taking the Lucas Critique seriously and truly microfounding
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models of household behavior, I integrate insights from the behavioral economics

literature into the model. Although there is a growing literature focusing on

behavioral macroeconomics, there remains a considerable gap in the literature that

we hope to fill. Namely, understanding the impact of present bias on investments in

human capital.

Galor and Zeira (1993) investigated the role played by the societal

distribution of wealth in determining human capital investment, growth and

long run income inequality. They find that in the presence of imperfect credit

markets, a society’s initial distribution of wealth has large long run implications for

human capital accumulation and growth. Glomm and Ravikumar (1992) used an

overlapping generations model to explore the long run growth implications of public

vs private funding for education via human capital accumulation. They focus on

the existence and uniqueness of equilibria under a variety of assumptions regarding

the law of motion for human capital accumulation. Both papers model investment

in education as a choice made by parents and not young agents. Unlike these

papers, I focus on the investment decision of young agents in order to understand

how disutility from education crowds out human capital investments. This tension

between current utility and future labor market returns is particularly interesting in

the presence of present-biased agents who inherently overweight immediate returns

over future payoffs.
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A more recent literature focuses on the trade off between government outlays

dedicated to funding social security and public education. Pecchenino and Pollard

(2002) and Kaganovich and Zilcha (1999) analyze this trade off utilizing a 2

period OLG model in which all educational investment is made by parents and the

government. Kaganovich and Zilcha find funding for social security is welfare and

growth reducing relative to equivalent funding allocated to education. Pecchenino

and Pollard corroborate this finding even in a model that does not assume crowding

out in spending and allows for societal aging. My policy analysis leads to the

same conclusions regarding the negative impact of social security for both RE

and QH societies. Annabi et al. (2011) also find that higher education incentives

can increase human capital and offset the effects of declining labor force growth.

Glomm and Kaganovich (2008) analyze the trade off between funding social

security and public education in a model with heterogeneous agents. They find that

social security funding reduces income inequality and, under certain circumstances,

does not decrease growth.

My work is perhaps most closely related to that of Krueger and Ludwig

(2016) and Cadena and Keys (2015). Krueger and Ludwig compute the optimal

degree of income tax progressivity and optimal education policies in a quantitative

life-cycle framework. They find that generous tuition subsidies are optimal across

a myriad of modeling assumptions. This result is mirrored in my work for both RE

and QH discounters when optimal tax allocation is considered in section 3. Cadena
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and Keys examine the role of impatience in human capital formation. Using NLSY

data, they find impatient individuals are more likely to drop out of college, earn

less than their more patient peers, and express more regret when middle-aged.

My model provides a clear, simple avenue through which these results can be

contextualized; present-biased optimization leads to lower educational attainment,

lower lifetime earnings, and a gap between desired and actual middle-aged human

capital.

I also contribute to the the literature examining the theoretical and

empirical effect of quasi-hyperbolic discounting in economics. Quasi-hyperbolic

discounting has a long history of integration in the scientific literature. First

introduced by Strotz (1956) and Phelps and Pollak (1968) in the middle of the 20th

century, quasi-hyperbolic discounting gained significant traction in the economics

literature with its reintroduction by Laibson (1997). Laibson found that QH

discounters would overspend and under-save if given the opportunity. He found

that commitment devices designed to constrain liquidity could help to offset the

undesired aspects of QH optimization.

In the model outlined in the next section, optimizing agents are forced to

commit to a level of human capital investment in the first period of their lives

conditional on their expected savings and consumption profile in the second

period of their lives. However, QH optimizers will choose to re-allocate savings

to consumption when the second period arrives leaving themselves with much

9



lower savings to consume out of when old and less human capital (and thus middle

aged wages) than RE agents. Banks et al. (1998) find significant evidence that

consumption falls when households retire and they conclude “the systematic

arrival of unexpected adverse information” is the most likely culprit for this

observation. However, our simple 3-period model in which agents face no aggregate

or idiosyncratic uncertainty generates this same qualitative prediction. That is,

when agents are present-biased, under-saving for retirement is a natural result

of optimizing behavior. We therefore turn to the empirical literature in order to

justify the use of present bias and quantify the degree to which individuals are

present-biased.

There is a vast empirical literature outlining the impact of present-biasedness

in a microeconomic setting. Dellavigna and Malmendier (2006) found that QH

discounters lose hundreds of dollars per year in unused gym memberships and

Milkman et al. (2009) find that quasi-hyperbolic discounting leads subscribers to a

video rental service to request (and hold) movies they perceive to have intellectual

merit (but do not enjoy) longer than mainstream movies that have little intellectual

value but are more enjoyable.

Meier and Sprenger (2015) estimate the value of the present bias discount

factor using a series of survey questions with a sample of poor, primarily minority

women in Boston. They find the average degree of present bias to be between 0.69

and 0.82 depending upon their model specification. They also find a significant
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degree of present bias heterogeneity, with poorer women displaying a higher degree

of present bias than wealthier women. Tanaka et al. (2010) perform a similar

survey based experiment on 181 rural Vietnamese households. They find an average

degree of present bias of 0.644. However, unlike Meier and Sprenger they do not

find any correlation between household characteristics and the degree of present

bias. Tanaka et al. do find that the exponential discount factor is higher for lower

income households. A value of the present bias parameter that is in line with

each of these studies will be used throughout the following sections. However,

due to the conflicting evidence provided by these authors regarding present bias

heterogeneity, the impact of heterogeneous present bias on schooling decisions

will not be explored in this paper. See Chapter 2 of this prospectus proposal for

an exposition of the role of present bias and preference heterogeneity in a general

equilibrium framework.

In the macroeconomic literature, the impact of QH optimizers has been

analyzed in a number of settings. Karp (2005) integrates QH discounting into

a model of environmental preferences, finding QH discounting to be a realistic

description of reality that alleviates some modeling difficulties inherent to using

a constant discount rate to model long-lived environmental issues. İmrohoroğlu

et al. (2003) integrate QH discounters into an overlapping generations model in

order to examine the role of social security in a world populated by non-traditional

optimizers. They include a number of frictions in their model that I do not
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consider, but their results are consistent with my findings; social security reduces

output and consumption for both RE and QH agents and the effect of government

intervention on welfare depends on the degree of time-inconsistency. Schwarz and

Sheshinski (2007) further examine the impact of quasi-hyperbolic discounting on

social security, finding the presence of QH agents breaks the equivalence between

pay-as-you-go and fully-funded social security established in Sheshinksi and Weiss

(1981).

The remainder of this paper is laid out in the following way: in the next

section I outline some general features of the model and the corresponding

equilibrium. I then delineate three different model specifications and the

equilibrium differences that arise between QH and RE agents in these specifications

where each model examines a different government policy regarding the

disbursement of tax revenue. The final section concludes.

Modeling Overview

In each of the following models, I assume that there are an infinite number

of periods populated by overlapping generations of three-period-lived agents. The

subscript t denotes a period in time and a superscript t denotes the generation born

at time t (e.g. the period t + 2 consumption of an agent born in period t will be

written as ctt+2). Each generation consists of a continuum of agents and the size of

each generation is normalized to unity. There is a single good (c) that is produced,

consumed, and saved at the rate r. We assume that agents live in a small, open

12



economy so that r is exogenously determined and fixed. There is no population

growth in the model economy, thus r > n = 01. Credit access is limited only by the

present discounted value of one’s lifetime income.

Young agents are endowed with one unit of time and are faced with a trade-

off between spending time working and receiving a wage wtt and attending non-

mandatory schooling (stt ∈ [0, 1]) to increase their human capital when middle

aged (htt+1). I assume that agents receive disutility from their schooling investment.

Without this assumption, agents in both RE and QH societies would chose the

same level of schooling; that which maximizes their lifetime income2. Therefore, I

proceed as in Cowan (2016) by imposing disutility from education. When young,

agents can consume out of their exogenous endowment (x), using their wage

earnings, or by financing their consumption through borrowing at the rate r.

If they do not consume their entire income (the sum of wage earnings and the

exogenous endowment), agents can store their savings (att) at the rate r. Middle

age agents are endowed with one unit of time that they spend working for a wage

of wtt+1, which is an increasing function of their human capital. When old, agents

do not work, and consume whatever they have saved in the previous period as well

as the interest accrued on their savings, (1 + r)att+1.

The schooling variable has the following interpretation: s = 0 corresponds

to the education of an individual who drops out after 10th grade and s = 1

1As the economy is dynamically efficient, r > n leads to Social Security being welfare reducing.

2See Becker 1967 and Fuchs 1982 for further exposition on this topic.
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corresponds to an individual who receives 4 years of education beyond a Bachelor’s

degree. Every one tenth increase in s maps to a 1 year increase in education

beyond 10th grade. Although the true wage premium is certainly kinked at

values of s corresponding to the completion of certain grade levels (i.e. high-

school, Bachelor’s degree, etc.), I abstract from this distinction in the simplified

representation of this complex choice and instead focus on continuous, differentiable

functions of human capital accumulation.

Members of generation t derive utility V t
t from consumption in all three

periods of life and experience disutility from schooling (stt) when young. That is:

Vt = U(ctt, c
t
t+1, c

t
t+2, 1− stt)

U(·, ·, ·, ·) is strictly concave and increasing in all of its arguments. This utility

function holds for all agents in all generations. A rational exponential (RE)

discounter is distinguished from a quasi-hyperbolic (QH) discounter in the following

way:

RE discounting of future utility:

Vt = U(ct) + v(1− st) +
2∑
i=1

βiU(ct+i)

14



QH discounting of future utility:

Vt = U(ct) + v(1− st) + δ

2∑
i=1

βiU(ct+i)

where δ ∈ (0, 1)3. A QH agent applies an additional discount factor δ to all future

utility that an RE agent does not apply to future utility.

In the following section, the baseline model is calibrated using specific

functional forms in order to explicate partial equilibrium distinctions that arise

between the two types of agents. The role of the government is the only distinction

between the following three models, therefore the discussion of the government is

left for each subsection. An equilibrium is defined by prices, w and r, a collection

of consumption and education decisions in which each generation solves their

consumption and education profile according to the first order conditions implied

by utility maximization, taking prices as given, and a government allocation of tax

revenue that results in a balanced budget in each period.

Equilibrium Analysis: No Government Spending

The model in this section is distinguished by the assumed behavior of the

government. In this section, all government revenue that is collected via taxes

3We have reversed the meaning of the β and δ parameters from Laibson’s exposition of quasi-
hyperbolic discounting so that the discount factor β retains its standard interpretation found
throughout the macroeconomic literature.
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on labor income is assumed to be immediately discarded so that the government

budget is trivially balanced in each period.

Rational Solution

Consider the following optimization problem solved by an agent born in period “t”.

max
{ci}3i=1,s

Ut = ln(ctt) + γ ln(1− stt) + β ln(ctt+1) + β2 ln(ctt+2)

s.t.

ctt + att = x+ (1− τ)wtt(1− stt) (2.1)

ctt+1 + att+1 = (1− τ)wtt+1 + (1 + r)att (2.2)

ctt+2 = (1 + r)att+1 (2.3)

Where stt ∈ [0, 1] is the amount of schooling obtained by a young agent of

generation t, x ≥ 0 is the exogenous initial endowment received by young agents

of each generation, wt is the wage paid to young, unskilled workers, γ > 0 is the

weight applied to disutility from schooling, τ ∈ [0, 1) is the exogenous tax rate, and

β ∈ (0, 1) is the discount factor applied to future utility. Human capital evolves

according to htt+1 = (1 + φstt) where φ > 0. The production technology owned by

young and middle age agents is of the form f(htt) = Wuh
t
t. Wu can be thought of

as the unskilled wage and Wuφ can be thought of as the skill premium. An agent

16



born in period t produces Wu(1 − stt) units of the consumption good when young

and Wu(1 + φstt) units of the consumption good when middle-aged. Agents face no

uncertainty regarding their life span or their lifetime earnings and asset holdings.

I assume att−i ∈ R ∀ i ∈ Z. Thus, I can combine the three budget constraints

listed above into one budget constraint via the agent’s asset holdings. This makes it

possible to express the agent’s optimization problem as a Lagrangian:

L = ln(ctt) + γ ln(1− stt) + β ln(ctt+1) + β2 ln(ctt+2)

+ λtt

(
x+ (1− τ)Wu(1− stt) +

(1− τ)Wu(1 + φstt)

1 + r
− ctt −

ctt+1

1 + r
−

ctt+2

(1 + r)2

)

Optimization yields the following first order conditions:

L1 = 0 =⇒ 1

ctt
= λtt (2.4)

L2 = 0 =⇒ β

ctt+1

=
λtt

1 + r
(2.5)

L3 = 0 =⇒ β2

ctt+2

=
λtt

(1 + r)2
(2.6)

L4 = 0 =⇒ − γ

1− stt
− λtt(1− τ)Wu + λtt

(1− τ)Wuφ

1 + r
= 0 (2.7)

L5 = 0 =⇒ Budget Constraint (2.8)

Combining (2.4)-(2.8) leads to the unique equilibrium for education and

consumption in each period. As agents are identical, each generation will solve this

problem in the same way. Therefore, I express rational equilibrium consumption
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with subscripts y, m and o for young, middle aged, and old and the superscript

R∗. That is, the equilibrium consumption of an RE agent in the first, second, or

third period of her life is denoted by cR
∗

y , cR
∗

m , and cR
∗

o respectively. The equilibrium

schooling decision of an RE agent is denoted by sR
∗
.

cR
∗

y =
1

1 + β + β2 + γ

[
x+

(1− τ)Wu(1 + φ)

1 + r

]
(2.9)

cR
∗

m = β(1 + r)cR
∗

y (2.10)

cR
∗

o = β2(1 + r)2cR
∗

y (2.11)

sR
∗

= 1− γ(1 + r)

(1− τ)Wu[φ− (1 + r)]
cR
∗

y (2.12)

Table 1 outlines the partial derivatives associated with the equilibrium consumption

and education profile of an optimizing rational agent. It is clear that the optimal

schooling

TABLE 1. Baseline Model Partial Derivatives

γ x β r Wu φ τ

cR
∗

y - + - - + + -

sR
∗

- - + - + + -

cR
∗

m - + + + + + -

cR
∗

o - + + + + + -
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decision is decreasing in initial wealth, the interest rate, and the tax rate. Higher

initial wealth decreases educational attainment as agents receive disutility from

education. As there is no direct cost associated with college attendance, initial

wealth acts as a means of avoiding a form of disutility (from education) while

gaining higher utility from consumption (resulting from both higher initial wealth

and increased earnings while young). A higher interest rate and higher taxes

both reduce the relative return of investing in education relative to investing in

capital. Thus, an increase in either of these variables, holding all else equal, reduces

equilibrium schooling.4.

Quasi-Hyperbolic Solution

I now set up the same model but rather than assuming rational behavior, the

model is populated with identical quasi-hyperbolic discounters (QH agents). The

corresponding model, with utility denoted by Ũ , is:

Max Ũt = ln(c̃tt) + γ ln(1− s̃tt) + δβ ln(c̃tt+1) + δβ2 ln(c̃tt+2)

s.t.

c̃tt +
c̃tt+1

1 + r
+

c̃tt+2

(1 + r)2
= x+ (1− τ)Wu(1− s̃tt) +

(1− τ)Wu(1 + φs̃tt)

1 + r

4This analysis holds true only when wages do not adjust following changes in the interest rate,
as schooling is increasing in Wu. In future versions of this model, I intend to embed this problem
in a general equilibrium setting in which prices respond to aggregate savings decisions.
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Note, this is the same budget constraint faced by rational agents. Therefore, I

proceed with optimization as shown above. The resulting expected consumption

profile for a QH agent (delineated by a Q∗ superscript for actual equilibrium

behavior and a Q′ superscript for expected equilibrium behavior) who optimizes

for her lifetime is:

cQ
∗

y =
1

1 + δβ + δβ2 + γ

[
x+

(1− τ)Wu(1 + φ)

1 + r

]
(2.13)

cQ
′

m = δβ(1 + r)cQ
∗

y (2.14)

cQ
′

o = δβ2(1 + r)2cQ
∗

y (2.15)

sQ
∗

= 1− γ(1 + r)

(1− τ)Wu[φ− (1 + r)]
cQ
∗

y (2.16)

The above equilibrium for QH optimizers yields two immediate takeaways.

First, QH agents consume more and invest less time to schooling when young than

RE agents. Second, the planned middle aged and old age consumption profile for

QH agents does not equal the actual consumption of middle aged and old QH

agents. When optimizing agents are rational, the path of consumption solved for

by a young agent, the collection (cR
∗

y , cR
∗

m , and cR
∗

o ), is the same as the actual

consumption of young, middle-aged and old agents. But now with QH optimizers,

cQ
′

m and cQ
′

o are no longer the true consumption profiles for middle-aged and old

agents. That is, young agents incorrectly optimize for their future selves. To see

why this is, I consider the utility of a QH agent from the perspective of being
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young, middle-aged and old:

Ũy = ln(c̃ty) + γ ln(1− s̃t) + δβ ln(c̃tm) + δβ2 ln(c̃to) (2.17)

Ũm = β−1 ln(c̃ty) + β−1γ ln(1− s̃t) + ln(c̃tm) + δβ ln(c̃to) (2.18)

Ũo = β−2 ln(c̃ty) + β−2γ ln(1− s̃t) + β−1 ln(c̃tm) + ln(c̃to) (2.19)

When agents are middle-aged, they use a different discount rate to look back

at decisions made when young (β) than they did when they were young looking

forward to being middle-aged (βδ). Thus, middle-aged agents must re-optimize and

solve for their new optimal consumption and savings plan subject to the remainder

of their lifetime budget constraint, taking the decisions of their young selves as

given.

Re-optimizing in (t+1)

Max Ũt+1 = ln(c̃tt+1) + δβ ln(c̃tt+2)

s.t.

c̃tt+1 + ãtt+1 = (1− τ)Wu(1 + φsQ
∗
) + ãty(1 + r) (2.20)

c̃tt+2 = (1 + r)ãtt+1 (2.21)
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(2.21) can be thought of as the constrained analogue to (2.2) in which a middle-

aged agent re-optimizes taking the choice of their younger self as given. With

this interpretation in mind, ãty is defined as the savings of a generation t agent

made in the first period of her life. Solving the agent’s optimization problem and

substituting in the optimal first period consumption, education and savings yields

the following equilibrium consumption profile for middle-aged and old agents:

cQ
∗

m =
1

1 + βδ

[
(1 + r)aQ

∗

y + (1− τ)Wu(1 + φsQ
∗
)

]
(2.22)

cQ
∗

o = βδ(1 + r)cQ
∗

m (2.23)

Where aQ
∗

y = x + (1 − τ)Wu(1 − sQ
∗
) − cQ∗y . For QH agents, realized equilibrium

consumption does not equal planned equilibrium consumption when middle-aged

(or old). That is cQ
′

m 6= cQ
∗

m and cQ
′

o 6= cQ
∗

o . Unlike their RE counterparts, QH agents

do not follow through with their planned lifetime consumption profile.

As our agent’s utility is represented using a natural log function, I am able

to analytically compare the equilibrium consumption and schooling profile of

rational exponential discounting agents relative to quasi-hyperbolic discounting

agents. It is important to note that these differences are not unique to a log

specification. Numerical analysis confirms these results for a general CRRA utility

function. Table 2 contains the analytical equilibrium differences in schooling and

consumption in each period of life between rational and quasi-hyperbolic agents.
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These differences hold for all values of τ between 0 and 1, all values of β and

δ ∈ (0, 1), all positive values of γ, and all non-negative values of x and Wu.

As shown in Table 2 below, for the parameter space outlined above, RE

agents consume less when young, consume more when old, and dedicate more

time to schooling when young than QH agents. Middle-aged rational agents will

consume more than middle-aged QH agents in equilibrium so long as 1 + γ >

δ(β3 + β2). For any calibration of β and δ in line with estimates provided by

previous literature, γ > 0 guarantees QH agents will consume less than RE agents

in equilibrium when middle-aged. That is, as long as agents receive disutility from

schooling, QH agents acquire less human capital than RE agents.

TABLE 2. Baseline 1 Equilibrium Differences for RE and QHD Agents

RE vs QHD Analytical Difference (RE - QHD)

cR
∗

y < cQ
∗

y
1

1+β+β2+γ

(
x+ (1−τ)Wu(1+φ)

1+r

)
− 1

1+δβ+δβ2+γ

(
x+ (1−τ)Wu(1+φ)

1+r

)
sR
∗

> sQ
∗ γ(1−δ)(β+β2)[(1−τ)Wu(1+φ)+(1+r)x]

(1−τ)Wu[φ−(1+r)](1+β+β2+γ)(1+δβ+δβ2+γ)

cR
∗

m > cQ
∗

m
(1−δ)β[(1−τ)Wu(1+φ)+(1+r)x][(γ+1)−δ(β3+β2)]

(βδ+1)(δβ2+δβ+γ+1)(β2+β+γ+1)

cR
∗

o > cQ
∗

o
β2(1−δ)(1+r)[(1−τ)Wu(1+φ)+x(1+r)](δ+γ+2βδ+δγ+β2δ+βδγ+1)

(βδ+1)(δβ2+δβ+γ+1)(β2+β+γ+1)

Table 3 contains the analytical distinctions between expected (E) and actual

(A) equilibrium consumption for quasi-hyperbolic discounting optimizers. As

discussed above, agent re-optimization leads to an inequality between the planned
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consumption path and the realized equilibrium consumption path for optimizing

QH agents . For all specifications of the parameters in the range outlined above,

QH agents expect to consume more when old and less when middle-aged than

they actually consume in equilibrium. This distinction creates a wedge between

expected lifetime utility when young and realized lifetime utility. This wedge will

be discussed further in the following section when we consider a slightly more

complex model analytically.

TABLE 3. Baseline 1 Expected vs Realized Consumption for QHD Agents

QHD(E) vs QHD(A) Analytical Difference)

cQ
′

m < cQ
∗

m

(δ − 1)β2δ((1− τ)Wu(1 + φ) + (1 + r)x)

(βδ + 1)(δβ2 + δβ + γ + 1)

cQ
′

o > cQ
∗

o

(1− δ)(1 + r)β2δ((1− τ)Wu(1 + φ) + (1 + r)x)

(βδ + 1)(δβ2 + δβ + γ + 1)

This section is concluded with a brief analysis of the relationship between

equilibrium consumption and schooling for rational exponential discounters with

a high discount rate (RH), quasi-hyperbolic discounters, and rational exponential

discounters that discount future utility at the rate β. An RH agent is an individual

that discounts utility from consumption i periods into the future at the rate (βδ)i.

Recall, a QH agent and an RE agent discount consumption utility i periods into

the future at the rate δβi and βi, respectively.Populating the model with RH

agents and optimizing leads to the following equilibrium orderings for schooling

and consumption in each stage of life:
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cRH
∗

y > cQ
∗

y > cR
∗

y (2.24)

sRH
∗
< sQ

∗
< sR

∗
(2.25)

cRH
∗

m < cQ
∗

m < cR
∗

m (2.26)

cRH
∗

o < cQ
∗

o < cR
∗

o
5 (2.27)

This analysis leads to the conclusion that populating a model with high

discounting rational agents and typical RE agents (as outlined above) acts as

a bound on the equilibrium behavior of QH agents. However, the desire to re-

optimize when middle-aged remains a unique feature associated with QH agents.

In the following section, I proceed by adding pay-as-you-go social security (PAYG)

to the baseline model as a proposed first step for a policy maker who is unsure

whether agents are rational or present-biased, and therefore aims to reduce the old

age consumption gap that arises between QH and RE agents.

Equilibrium Analysis: Social Security

The set-up outlined in the previous section remains the same, but instead

of assuming that all tax revenue is discarded, it is assumed that the government

redistributes tax revenue via PAYG social security. The government balances

5When βδ → 1, cQ
∗

o < cRH∗

o < cR
∗

o . However, discount rates of this magnitude are not
empirically feasible and are therefore not considered.
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its budget each period by distributing all taxes levied on young and middle-aged

workers to old agents via a lump sum social security transfer.

Rational Solution

A rational agent is now faced with the following optimization problem:

Max Ut = ln(ctt) + γ ln(1− stt) + β ln(ctt+1) + β2 ln(ctt+2)

s.t.

ctt + att = x+ (1− τ)Wu(1− stt) (2.28)

ctt+1 + att+1 = (1− τ)Wu(1 + φstt) + (1 + r)att (2.29)

ctt+2 = (1 + r)att+1 + btt+2 (2.30)

The government collects labor income taxes from both young and middle aged

workers and distributes tax revenue to old agents in the following way: btt+2 =

τWu(1− st+2
t+2) + τWu(1 +φst+1

t+1) is the transfer received in period t+ 2 by generation

t agents from generation t + 1 agents (middle aged when generation t agents are

old) and generation t + 2 agents (young agents when generation t agents are old).

As in the previous section, I express an optimizing agent’s problem as a Lagrangian

by combining (2.28)-(2.30) into a single constraint. This leaves our agent with the
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following optimization problem:

L = ln(ctt) + γ ln(1− stt) + β ln(ctt+1) + β2 ln(ctt+1)

+ λtt

(
x+ (1− τ)Wu(1− stt) +

(1− τ)Wu(1 + φstt)

1 + r
+

btt+2

(1 + r)2
− ctt−

ctt+1

1 + r
−

ctt+2

(1 + r)2

)

Combining the first order conditions implied by the above optimization problem

leads to the following consumption and education profile for agent t:

ctt =
1

1 + β + β2 + γ

[
x+

(1− τ)Wu(1 + φ)

1 + r
+

btt+2

(1 + r)2

]
(2.31)

ctt+1 = β(1 + r)ctt (2.32)

ctt+2 = β2(1 + r)2ctt (2.33)

stt = 1− γ(1 + r)

(1− τ)Wu[φ− (1 + r)]
ctt (2.34)

Unlike the baseline model outlined in the previous section, our equilibrium is not

yet pinned down due to the inclusion of st+1
t+1 and st+2

t+2 in btt+2. However, as all

agents behave symmetrically in equilibrium, we know st+2
t+2 = st+1

t+1 = stt = sR
∗
. Thus,

we replace the social security transfer received by old agents with its equilibrium

value: bR
∗

= τWu(1− sR
∗
) + τWu(1 +φsR

∗
). We then substitute in for ctt in equation
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(2.34). This leads to the following solution for equilibrium schooling:

sR
∗

=

(
1 + ξ

(
(φ− 1)

τWu

(1 + r)2

))−1
×
(

1− ξ
(
x+

(1− τ)Wu(1 + φ)

1 + r
+

2τWu

(1 + r)2

))
(2.35)

where ξ = γ(1+r)
(1−τ)Wu[φ−(1+r)]

(
1

1+β+β2+γ

)
. Our equilibrium is given by sR

∗
and:

bR
∗

= τWu(1− sR
∗
) + τWu(1 + φsR

∗
) (2.36)

cR
∗

y =
1

1 + β + β2 + γ

(
x+

(1− τ)Wu(1 + φ)

1 + r
+

bR
∗

(1 + r)2

)
(2.37)

cR
∗

m = β(1 + r)cR
∗

y (2.38)

cR
∗

o = β2(1 + r)2cR
∗

y (2.39)

Consumption in every period is an increasing function of the social security

transfer btt+2, however schooling is a decreasing function of the social security

transfer btt+2. Thus, in equilibrium social security plays a dual role in the

determination of equilibrium consumption. By raising lifetime income for a

given schooling decision relative to the model in previous section in which tax

revenue is discarded, at first glance social security appears to increase equilibrium

consumption. However, by disincentivizing investment in schooling, middle aged

income is lower when taxes are levied and used to fund social security. We will

discuss the net effect of social security on consumption and lifetime utility in a

calibration exercise following our delineation of the QH solution below.
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Quasi-Hyperbolic Solution

I now set up the same model but rather than assuming rational behavior, the

model is populated with quasi-hyperbolic discounters. The corresponding model,

with utility denoted by Ũ , is:

Max Ũt = ln(c̃tt) + γ ln(1− s̃tt) + δβ ln(c̃tt+1) + δβ2 ln(c̃tt+2)

s.t.

c̃tt +
c̃tt+1

1 + r
+

c̃tt+2

(1 + r)2
= x+ (1− τ)Wu(1− s̃tt) +

(1− τ)Wu(1 + φs̃tt)

1 + r
+

b̃tt+2

(1 + r)2

The expected consumption profile for a QH agent is:

c̃tt =
1

1 + δβ + δβ2 + γ

[
x+

(1− τ)Wu(1 + φ)

1 + r
+

b̃tt+2

(1 + r)2

]
(2.40)

c̃t
′

t+1 = δβ(1 + r)c̃tt (2.41)

c̃t
′

t+2 = δβ2(1 + r)2c̃tt (2.42)

s̃t = 1− γ(1 + r)

1− τWu[φ− (1 + r)]
c̃tt (2.43)

We solve for sQ
∗

by replacing b̃tt+2 with bQ
∗

= τWu(1 − sQ
∗
) + τWu(1 + φsQ

∗
) in

equation (2.40) and substituting (2.40) into (2.43):

sQ
∗

=

(
1 + ξ̃

(
(φ− 1)

τWu

(1 + r)2

))−1
×
(

1− ξ̃
(
x+

(1− τ)Wu(1 + φ)

1 + r
+

2τWu

(1 + r)2

))
(2.44)
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Where ξ̃ = γ(1+r)
(1−τ)Wu[φ−(1+r)]

(
1

1+δβ+δβ2+γ

)
. This leads to the following equilibrium

social security transfer and expected consumption profile for QH optimizers:

bQ
∗

= τWu(1− sQ
∗
) + τWu(1 + φsQ

∗
) (2.45)

cQ
∗

y =
1

1 + δβ + δβ2 + γ

[
x+

(1− τ)Wu(1 + φ)

1 + r
+

b̃Q
∗

(1 + r)2

]
(2.46)

cQ
′

m = δβ(1 + r)cQ
∗

y (2.47)

cQ
′

o = δβ2(1 + r)2cQ
∗

y (2.48)

As in the previous section, QH agents will not follow through with their expected

consumption profile when middle-aged. Thus, the re-optimization of QH agents

must be accounted for.

Re-optimizing in t+1

Max Ũt+1 = ln(c̃tt+1) + δβ ln(c̃tt+2)

s.t.

c̃tt+1 + ãtt+1 = (1− τ)wt+1(1 + φsQ
∗
) + ãty(1 + r) (2.49)

c̃tt+2 = (1 + r)ãtt+1 + b̃t+2 (2.50)
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This yields the following equilibrium consumption profile for middle-aged and

old agents:

cQ
∗

m =
1

1 + βδ

[
(1 + r)aQ

∗

y + (1− τ)Wu(1 + φsQ
∗
) +

bQ
∗

1 + r

]
(2.51)

cQ
∗

o = βδ(1 + r)cQ
∗

m (2.52)

Where aQ
∗

y = x + (1 − τ)Wu(1 − sQ
∗
) − cQ∗y . The realized QH equilibrium is given

by (2.44)-(2.46), (2.51), & (2.52). An analytical approach aimed at comparing this

collection and the equilibrium consumption, education, and government transfers

associated with RE optimization is no longer simple enough to illuminate the

distinctions that arise between the two types of agents. Therefore, I proceed by

calibrating the model in order to characterize the equilibrium distinctions that arise

between RE and QH optimizers.

The return to education parameter, φ = 2.6, was calculated by imposing a

linear human capital production function, ht+1 = (1 + φst), and estimating the

implied return to schooling using 2015 BLS data on median weekly earnings for

high school dropouts (s = 0), high school graduates (s = 0.2), associate degree

holders (s = 0.4), bachelor degree holders (s = 0.6), masters degree holders

(s = 0.8) and professional degree holders (s = 1). As stated previously, I abstract

from the kinked nature of this human capital production function and instead

chose to average over the implied values of φ. Unskilled wage Wu = $235, 000

as this represent the income a full time low-skill worker (no high school diploma)
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would earn over 10 years according to the same 2015 BLS data used to calculate

φ. I chose β = 0.66 which corresponds to an annual β = 0.96 raised to the 10th,

r = 0.515 so that β(1 + r) = 1, and γ = 0.5. We set our agents’ inheritance x = 0 in

our baseline specification.

Table 4 outlines the differences in equilibrium behavior for RE and QH

societies. Differences in expected utility for QH optimizers are also included at

the bottom of Table 4. The preferred value of δ, the present bias parameter, is 0.7

corresponding to the findings of Laibson, Repetto, and Tobaman (2007). However,

I choose to use values of δ = 0.8 and δ = 0.6 for our model 2 parameterization.

I do so in order to explicate the impact of a high degree of present bias as well as

a low degree of present bias that are conveniently centered around the preferred

parameterization. Further, as outlined in the introduction, these values are in line

with the lower and upper bound of δ consistent with the empirical literature on

quasi-hyperbolic discounting. I will implement δ = 0.7 in our analysis of education

incentive pay. The calibrated results reported in Table 4 for δ = 0.8 and δ = 0.6

are complimented by Columns 2, 4, and 10 of Table 5 which outlines Model 2

equilibrium calibrations for the preferred specification of δ = 0.7.

The measure of expected utility, the variables E(UQ′
y ) and E(UQ∗

y ), represent

the utility associated with the expected consumption profile solved for by a young

QH agent and the utility associated with the actual consumption profile that a

QH agent will choose after re-optimizing when middle aged, respectively. These
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measures of utility are both calculated from the perspective of a young agent, so as

to provide a measure of the utility loss associated with re-optimization performed

by a QH agent.

I focus on changes in consumption and percent differences between

consumption profiles for RE and QH agents. When τ = 0, the results in table 4 are

merely a calibrated version of the analytical equilibrium outlined previously. For

each tax rate τ and QH discount rate δ considered, the analytical results outlined

in Table 2 hold even with the inclusion of PAYG social security. I vary over several

tax rates (and thus transfer amounts) in order to understand the differences in

optimizing behavior that arise between RE and QH societies. I find that the gap

between optimal rational and optimal QH behavior is decreasing in the discount

factor δ. That is, the more present-biased a society is, the larger the gap between

its equilibrium behavior and equilibrium behavior in a rational society6.

For a given δ, increasing the role of social security (via increasing τ) leads to

lower education for both RE and QH agents and a larger education gap between

RE and QH societies. This comes from the inherent overweighting of current utility

relative to future utility that distinguishes QH agents from RE agents. When RE

and QH agents receive an increase to their old age income via a social security

transfer, they immediately disinvest in education while young and reduce their

planned savings when middle aged. However, QH agents do so at a much higher

6Although table 4 only highlights the use of two parameterizations of δ, numerical analysis
corroborates these findings (the higher δ, the smaller the gap between RE and QH optimization)
∀ δ ∈ (0, 1)
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rate than RE agents, which leads to lower relative human capital and lifetime

earnings.

Increasing social security decreases consumption in each period of life for RE

and QH agents. This finding is in line with the majority of the literature regarding

the welfare reducing effects of social security in overlapping generations models

with human capital. When population growth is zero the economy is dynamically

efficient and returns from other investments (education and savings) exceed the

returns from social security. Thus, PAYG social security is a less effective means

of saving than alternative investment options. Further, the utility gap between

expected equilibrium consumption and actual equilibrium consumption of a young

agent is increasing in the tax rate. This is outlined by the variables E(UQ′
y ) and

E(UQ∗
y ) reported in the bottom two rows of Table 4. These variables are calculated

by evaluating utility from consumption in the final two periods of life (from the

perspective of a young agent) using actual equilibrium consumption (cQ
∗

m and

cQ
∗

o ) to calculate E(UQ∗
y ) and planned equilibrium consumption (cQ

′
m and cQ

′
o ) to

calculate E(UQ′
y ).

Both realized and planned consumption utility are decreasing in the tax rate

for a given value of δ when social security is the only government outlay. From

the perspective of a policy maker who is unsure whether agents in her society are

rational or present-biased, social security proves to be an unequivocally poor policy

intervention. It is both welfare reducing for RE and QH agents, it increases the old
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age consumption gap between these two theoretical societies, and it increases the

utility gap between expected and realized consumption for a QH agent.

Thus far I have outlined distinctions that arise between RE and QH societies

without discussing the likelihood that members of a society belong to one group

or the other. The lifetime consumption profile of QH agents provides evidence

that QH optimization may help to explain some features of observed consumption

behavior that RE optimization cannot explain. The drop in old age consumption

observed in time-series of U.S. data cannot be remedied with a model of RE

optimization without the inclusion of several constraints, but it arises naturally

in a simple 3-period model when optimizers are present-biased. Although this is

not resounding evidence that societies behave in a systematically present-biased

way, it is a feature of QH optimization that provides merit to the analysis of QH

societies. In the next section, I proceed with an alternative policy intervention

in which government outlays are split between funding an education incentives

program and PAYG social security.

Equilibrium Analysis: Social Security & Education Incentives

In the following section, I augment the previous model by considering a

second channel for the distribution of tax revenue. As social security unequivocally

lowered household human capital and utility relative to a baseline in which the

government does not levy taxes, I consider an alternative avenue for government

spending.
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Rational Solution

Agents are faced with the same optimization problem outlined in the previous

section, but the budget constraint of young agents (previously 2.28) is now given

by:

ctt + att = x+ itts
t
t + (1− τ)Wu(1− stt) (2.53)

where itt is the incentive pay provided to students by the government. As before,

the government taxes agents’ labor income at the rate τ . Total tax revenue

collected in period t remains the same. However, instead of directly transferring

said revenue to old agents, the government splits its receipts between funding social

security and education incentive pay. To maintain a balanced budget in every

period, the government divides tax revenue in the following way:

itt = α[τWu(1− stt) + τWu(1 + φst−1t−1)] (2.54)

bt−2t = (1− α)[τWu(1− stt) + τWu(1 + φst−1t−1)] + α(1− stt)itt (2.55)

where α ∈ [0, 1]. The government collects sufficient taxes to pay every agent her

education incentive pay for her entire schooling decision, even if all agents chooses

stt = 1. If agents chooses stt < 1, then the excess revenue the government collects,

(1 − stt)itt, is added to the social security transferred to old agents. It is important

to note that although I have referred to the education of the representative agent
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of generation t as stt, this agent is actually an atomistic member of their generation.

Thus, a young agent does not internalize the impact of their schooling decision on

the gross education incentive pay, it.

Optimization leads to the following consumption and education profile for an

agent born in period t:

ctt =
1

1 + β + β2 + γ

[
x+ it +

(1− τ)Wu(1 + φ)

1 + r
+

bt+2

(1 + r)2

]
(2.56)

ctt+1 = β(1 + r)cit (2.57)

ctt+2 = β2(1 + r)2cit (2.58)

stt = 1− γ(1 + r)

(1− τ)Wu[φ− (1 + r)] + (1 + r)it
ctt (2.59)

I must now account for the inclusion of s in both it and bt+2. In equilibrium,

iR
∗

will be given by α[τWu(1 − sR
∗
) + τWu(1 + φsR

∗
)] and bR

∗
will be given by

(1− α)[τWu(1− sR
∗
) + τWu(1 + φsR

∗
)] + (1− sR∗)iR∗ . Thus, the equilibrium profile

is not yet completely solved as sR
∗

has not been pinned down. We substitute in for

ctt in equation (2.59) and sub in iR
∗

and bR
∗

according to the above definition. This

leads to the equilibrium solution for schooling:

sR
∗

= 1− Ξ

(
x+ iR

∗
+

(1− τ)Wu(1 + φ)

1 + r
+

bR
∗

(1 + r)2

)
(2.60)

where Ξ =
γ(1 + r)

((1− τ)Wu[φ− (1 + r)] + (1 + r)iR∗)(1 + β + β2 + γ)
.
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Due to the non-linear nature of the above expression, I proceed numerically

for the remaining equilibrium calibrations. Once sR
∗

is obtained, the remaining

equilibrium conditions are given by:

iR
∗

= α[τWu(1− sR
∗
) + τWu(1 + φsR

∗
)] (2.61)

bR
∗

= (1− α)[τWu(1− sR
∗
) + τWu(1 + φsR

∗
)] + (1− sR∗)iR∗ (2.62)

cR
∗

y =
1

1 + β + β2 + γ

[
x+ iR

∗
+

(1− τ)Wu(1 + φ)

1 + r
+

bR
∗

(1 + r)2

]
(2.63)

cR
∗

m = β(1 + r)cR
∗

y (2.64)

cR
∗

o = β2(1 + r)2cR
∗

y (2.65)

Quasi-Hyperbolic Solution

Populating the model with QH agents leads to the same issue outlined

above in regards to analytically deriving equilibrium schooling. Again, I proceed

numerically to solve the following equation describing the nature of equilibrium

schooling:

sQ
∗

= 1− Ξ̃

(
x+ iQ

∗
+

(1− τ)Wu(1 + φ)

1 + r
+

bQ
∗

(1 + r)2

)
(2.66)

Where Ξ̃ =
γ(1 + r)

((1− τ)Wu[φ− (1 + r)] + (1 + r)iQ∗)(1 + δβ + δβ2 + γ)
.
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This yields the following equilibrium government transfers and consumption profile

for a QH agent:

iQ
∗

= α[τWu(1− sQ
∗
) + τWu(1 + φsQ

∗
)] (2.67)

bQ
∗

= (1− α)[τWu(1− sQ
∗
) + τWu(1 + φsR

∗
)] + (1− sQ∗)iQ∗ (2.68)

cQ
∗

y =
1

1 + δβ + δβ2 + γ

[
x+ iQ

∗
+

(1− τ)Wu(1 + φ)

1 + r
+

bQ
∗

(1 + r)2

]
(2.69)

cQ
∗

m =
1

1 + βδ

[
(1 + r)aQ

∗

y + (1− τ)Wu(1 + φsQ
∗
) +

bQ
∗

1 + r

]
(2.70)

cQ
∗

o = βδ(1 + r)cQ
∗

m (2.71)

where aQ
∗

y = x+ iQ
∗
sQ
∗

+ (1− τ)Wu(1− sQ
∗
)− cQ∗y .

Table 5 outlines the equilibrium consumption and education profiles for RE

and QH agents. Rather than varying the degree of present-biasedness (as in Table

4), I instead focus on the tax rate and the allocation of taxes between funding

education incentives and PAYG social security. I chose a value of δ = 0.7 for our

QH agents as this is the preferred value of δ 7. When α = 0, the calibrations in

Table 5 represent the equilibrium consumption and schooling profile of RE and

QH agents who only receive social security payments. Thus, columns 1,2 and 8 of

table 5 are simply calibrated equilibrium profiles for model 2 when δ = 0.7 and are

readily comparable to the calibrations outlined in table 4.

7See page 31 for further exposition.
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By analyzing Table 5, it is clear that if the government is going to levy taxes,

both consumption and schooling are higher for RE and QH agents in every period

of life when α = 1 relative to α < 1. Unlike the model in in which all taxes

fund PAYG social security, taxes no longer unequivocally lower consumption

and education for RE or QH agents. Rather, higher taxes in conjunction with

education incentive pay lead to higher equilibrium consumption and schooling

relative to no taxation. When α = 1, equilibrium schooling is over a year higher

for both RE and QH agents for τ = 0.1 and over two years higher for RE and QH

agents when τ = 0.2 relative to a regime with no taxation. Further, QH agents

respond more drastically to higher education incentive pay than RE agents. This

can be seen by comparing the schooling gap between RE and QH agents for a

respective tax rate when α = 0 and when α = 1. Although endogenous growth

and other positive spillovers from education aren’t explored in this paper, Table 5

provides preliminary evidence that dedicating revenue from labor income taxation

to education incentive pay leads to drastically higher schooling and consumption

than an equivalent income tax rate with all proceeds being directed to PAYG social

security.

As in Table 4, utility from expected consumption when middle aged and old

is compared to utility from actual consumption when middle aged and old from the

perspective of a young QH agent. When taxes are used for PAYG social security,

a higher tax rate corresponds to lower utility from both expected and realized
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middle age and old age consumption and a higher utility gap between expected and

realized consumption utility (see Table 4 rows 13 and 14). When the government

splits tax revenue between PAYG social security and education incentive pay, the

gap between expected and realized consumption utility is decreasing in α. That

is, the higher the percentage of tax revenue dedicated to education incentive pay,

the smaller the gap between utility associated with expected middle aged and old

consumption and utility associated with actual middle aged and old consumption

for a QH agent. Further,

when α = 1 , utility from expected consumption and realized consumption is

higher than when α < 1 and τ = 0. Thus, not only does government funded

education incentive pay increase consumption utility relative to a regime in which

the government only issues social security, it increases consumption utility relative

to an environment in which there is no taxation!

Numerical analysis confirms that equilibrium consumption utility is higher

under linear education pay with α = 1 for both QH and RE agents when

viewed from the perspective of being young, middle aged, or old relative to no

taxation. Thus, for a policy maker in either a QH or RE society, linear education

pay is a simple policy measure that can be enacted in order to increase lifetime

consumption and education of optimizing agents.8

8Note: we have assumed prices are exogenous. Changing this assumption could change the
impact of equilibrium government intervention on both QH and RE agent’s utility. We leave this
analysis for future work.
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Conclusion and Future Work

I build a unique model of human capital investment and analyze the

optimizing behavior of both traditional exponential discounters and quasi-

hyperbolic discounters. I find that agents in a quasi-hyperbolic society accumulate

less human capital, consumes more when young and save less for retirement than

agents in a rational, exponentially discounting society. The steep drop in retirement

consumption generated by a simple three period OLG model with no idiosyncratic

risk and perfect capital markets in the presence of QH agents provides further

evidence that present-biased behavior matches certain empirical regularities 9

I analyze several different arrangements for the disbursement of tax revenue.

I find that both RE and QH societies are made worse off when taxes are levied

and tax revenue is dedicated to funding PAYG social security relative to a regime

in which no taxes are levied. Agents have lower utility, lower consumption in

each period, and obtain less schooling relative to a tax free regime. Further, the

gap between expected future utility from consumption and realized utility from

consumption is increasing for QH agents in both the tax rate (τ) and the degree to

which agents are present-biased (δ). However, taxes can be welfare improving if tax

revenue is split between funding education incentive pay and social security. I show

that agents in both RE and QH societies obtain more schooling, consume more

in each period of life, and have higher lifetime utility when taxes are dedicated to

9See Angeletos et al. 2001 for further exposition on this topic.
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education incentive pay. Further, education incentive pay reduces the welfare gap

between expected and realized utility from consumption for QH agents.

In future iterations of this model I intend to add disutility from labor to

the household’s utility function. This additional complexity was omitted in this

Chapter to preserve analytical tractability. The inclusion of disutility from labor

will likely impact the magnitude of QH optimization on schooling investment as

agents are now forced to trade-off between leisure, school, and work. However,

the same mechanism leading present-biased agents to under-invest in education

relative to RE agents remains the same. QH optimizers undervalue the future

returns to education relative to RE discounters and will look to avoid within period

disutility from both schooling and work when young. Future work will also include

a normalized discount factor between RE and QH agents. Rather than assuming

β is the same for all QH and RE agents and adding an additional discount factor

δ for QH agents, I will normalize average discounting so that βRE=δβQH , where

βRE < βQH . This approach is similar to the equilibrium selection of βc outlined in

Results section of Chapter 4.
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CHAPTER III

PRESENT BIAS, PREFERENCE HETEROGENEITY, AND WEALTH

INEQUALITY

Introduction

According to a national survey commissioned by Experian in 2016, 54% of

Americans believe they will never fully pay off their debt, 46% of Americans have

less savings today than they expected to have five years ago, and 71% of Americans

aren’t saving enough for retirement. Although some of these shortcomings can be

explained by unexpected labor and capital earnings shocks or information frictions

in the marketplace, a growing literature characterizing the widespread nature of

present bias may provide an alternative viewpoint to help reconcile the observed

gap between intentions and actions.

Present bias1 refers to a preference anomaly wherein individuals discount

trade-offs between all future periods and the current period at a higher rate than

they discount tradeoffs between any two periods in the future. First outlined by

Phelps and Pollak (1968) and Strotz (1956) and later reintroduced to the economics

literature by Laibson (1997), present bias offers a convenient theoretical framework

for explaining savings phenomena like those outlined in the Experian survey.

Even in an environment in which individuals have perfect information regarding

1Also referred to as quasi-hyperbolic, quasi-geometric, or hyperbolic discounting.
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future earnings, present bias creates a time inconsistency in preference that leads

individuals to abandon their consumption savings plan in favor of re-optimizing

(and over consuming relative to their previous plan) each period. I aim to elicit the

avenues through which this consistent re-optimization impacts aggregate wealth

and the timing of wealth accumulation over the life-cycle.

There is a robust empirical literature outlining the degree to which

individuals are present-biased in both laboratory settings and over real world

trade-offs that lends further credence to the examination of these types of non-

standard preferences in a carefully calibrated general equilibrium framework2. I

embed both present-biased and exponential discounters into a quantitative life-cycle

model with uninsurable idiosyncratic risk in order to characterize the marginal

contribution of each agent type towards generating wealth dispersion in the model

economy. A consistent feature of this class of models is the gross under-prediction

of wealth inequality in the model economy relative to U.S. data. Therefore, I

am careful to characterize the contribution of each preference type to the overall

dispersion of wealth and the evolution of wealth inequality over the life-cycle. I

find the impact of present bias is largest when household planning horizons are

short and for households with low wealth. As older households have both shorter

planning horizons and lower wealth (on average) than working age households,

2See Della Vigna (2009) for a survey of the literature characterizing behavioral biases in
economics.
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special attention is paid to the role of preference heterogeneity and present bias

on the accumulation of assets of older households.

Three key results stand out from my analysis. First, if present-biased agents

are embedded in a partial equilibrium model, the impact of time inconsistency will

be drastically overstated. In a model economy examined in general equilibrium

(where prices adjust fully to the actions of agents) in which all agents are present-

biased, present bias does very little to augment the aggregate wealth distribution

relative to a model in which all agents behave rationally. This occurs as the

inclusion of present-biased agents drives up the market clearing interest rate and

changes the savings incentives of agents who would otherwise be tempted to over-

consume and under-save. This result may be of particular interest as a number

of previous studies examining the macroeconomic consequences of present-biased

optimization embed agents in a partial equilibrium framework.

Second, although the aggregate wealth distribution is not particularly

sensitive to the inclusion of present-biased agents3, I find present bias increases

wealth inequality as cohorts age and changes the timing of wealth accumulation

in the model economy relative to a baseline model in which all agents behave

rationally. Models that abstract from the richness of a life-cycle and instead place

agents in an infinite horizon context will understate the role of present bias in

the macroeconomy. This occurs as models with infinitely lived agents miss the

3When all agents are assumed to be present-biased.
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interaction of shortened planning horizons and low average wealth inherent to older

agents that amplifies the negative effects of present bias.

Third, the inclusion of discount rate and present bias heterogeneity improves

the fit of the model economy to U.S. data. Although a number of authors have

shown heterogeneous exponential discount factors lead to increased wealth

dispersion in a life-cycle model, to the best of my knowledge this paper marks

the first attempt to characterize the contribution of heterogeneous present bias

to aggregate economic outcomes in a life-cycle framework. When some agents

are present-biased and others are time-consistent, the time-consistent agents

benefit from the aggregate mis-optimization of their present-biased peers. Thus,

present bias heterogeneity leads to increased wealth dispersion and an increased

concentration of wealth in the hands of the richest 1% relative to a model in which

agents are only heterogeneous in the exponential discount factor. The remainder of

the paper is structured in the following way: the next section reviews the literature,

followed by sections describing my modeling environment, calibration approach,

and results. This chapter ends with a concluding section.

Review of the Literature

Research on Wealth Inequality

There is a vast empirical literature outlining the extent of wealth and income

inequality in the United States. The primary takeaways from this literature are:
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wealth is much more highly concentrated than earnings4, higher income households

save a higher percentage of their wealth5, and households with identical lifetime

earnings retire with significantly different values of wealth6. Aiyagari (1994) and

Huggett (1996) mark two of the first attempts to generate model economies for

which the equilibrium wealth distribution matches the observed distribution of

wealth in US data. Each author explores a model of idiosyncratic income risk

in the presence of incomplete markets, with Aiyagari focusing on infinitely lived

agents and Huggett focusing on finitely lived agents in a quantitative life-cycle

framework. Each author finds that after endowing agents with a realistic degree

of income risk and solving for optimal household, firm, and government decisions,

the resulting equilibrium wealth distribution falls well short of recreating the

concentration of wealth observed in the data. In particular, the richest 1%, 5% and

10% of households hold far too little wealth in equilibrium relative to the analogous

wealth holdings of these percentiles in the data. This result stems from the model’s

inability to induce high savings for wealthy agents, who prefer to disinvest and

prioritize consumption in model economies. Over the past 20 years, a literature

aimed at remedying this shortcoming has emerged.

Heer (2001), DeNardi (2004) and DeNardi and Yang (2014) explore the

role of intentional and unintentional bequests in cultivating wealth inequality

4See Piketty and Zucman (2014)

5See Dynan et al. (2004)

6See Hurst et al. (1998)
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across generations. A heterogeneous agent overlapping generations model is

augmented to accommodate lifetime uncertainty and the role of different bequest

motives on equilibrium wealth accumulation is described. These authors find

that modeling bequests, whether intentional or unintentional, does very little to

augment the equilibrium distribution of wealth in a model economy. However,

DeNardi and Yang find the introduction of non-linear bequest motives (only the

richest households leave intentional bequests) improves the concentration of wealth

in their model economy. Even in the presence of this assumption the proportion of

wealth held by the richest agents still falls well short of that observed in the data.

Quadrini (2000), Cagetti and DeNardi (2006), and Benhabib, Bisin, and Zhu

(2011) all consider models in which agents receive heterogeneous returns to capital

income. Quadrini and Cagetti and DeNardi imbed entrepreneurs and workers in

an overlapping generations framework and find the inclusion of entrepreneurs (who

receive higher rates of return on their investments) considerably improves the fit of

their models to U.S. data. Benhabib, Bisin, and Zhu find the inclusion of capital

risk leads to an equilibrium wealth distribution that is much closer to the U.S.

distribution of wealth than models with income risk alone. Although these authors

are able to generate realistic wealth distributions in their model economies, they do

so by making a significant departure from the benchmark models in the literature

in which agents face a common interest rate and are only subject to risk in their

labor endowments.
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A separate strand of the literature more in line with the original works of

Aiyagari and Huggett explores the role of preference heterogeneity in generating

equilibrium wealth dispersion. Krusell and Smith (1998) find the inclusion of a

small degree of heterogeneity in discount rates leads to a much more realistic

wealth distribution in the model economy. However, this result hinges on a

modeling environment in which agents are infinitely lived and receive frequent,

transitory shocks to their labor earnings. If earnings are instead represented by

a persistent process (as U.S. data indicates), then the Krusell Smith economy no

longer generates a realistic wealth distribution. This results as agents no longer

save high proportions of positive earnings shocks to protect against lower earnings

in the future. Rather, an increase in earnings today leads to an increase in expected

income tomorrow which induces agents to consume out of their new income at the

expense of accumulating savings.

Hendricks (2007) augments a model closely resembling that of Huggett

(1996) to accommodate heterogeneous discount factors. He exploits the fact

that preference heterogeneity affects the distribution of wealth within a cohort

as individuals age. Following this insight, the distribution of discount rates is

targeted in equilibrium to match a set of age specific Gini coefficients. Hendricks

finds a large degree of preference heterogeneity induces a modest increase in wealth

inequality. In his model, the equilibrium wealth distribution is far less sensitive to
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preference heterogeneity than in the Krusell Smith model, exactly because agents

face realistic earnings risk.

Present Bias and Preference Heterogeneity: Empirical Evidence

Following the re-introduction of present bias to economics by David Laibson

(1997), a strong literature has emerged outlining the impact of present bias on

consumer behavior. Meier and Sprenger (2009) find present-biased individuals are

more likely to have credit card debt and have significantly higher credit card debt

than their non present-biased peers. Recent work by Brown and Previtero (2017)

indicates that present bias plays a large role in the determination of financial

behaviors of households. They find that present-biased individuals are less likely

to participate in a supplemental savings plan and, conditional on participation,

they contribute less and are more likely to take a lump sum (vs an annuity) than

individuals who display less procrastination.

Huffman et al. (2017) explore the role of discount rate heterogeneity and

present bias among older households. Although they are unable to distinguish

between present bias and heterogeneity in exponential discount rates, they find that

individuals displaying less patience have lower retirement wealth and less planing

for end of life care than more patient households. As in Brown and Previtero,

Schreiber and Weber (2016) find individuals who answer time discounting questions

inconsistently have a stronger tendency to choose lump sum payments over fair

annuities. Further, they show the likelihood of an impatient household choosing a

53



lump sum is increasing in age. My results offer a specific channel through which

this result can be rationalized. In a general equilibrium framework, present-biased

households behave near rationally when young and are more tempted by their

biases as they reach retirement. The relationship between my work and the above

literature is discussed further the conclusion of this Chapter.

Present Bias in Macroeconomics

İmrohoroğlu et al. (2003) consider the role of social security in an economy

populated by overlapping generations of time-inconsistent optimizers. They find

that unfunded social security lowers the capital stock, output and consumption

for time-consistent and time-inconsistent individuals. However, time-inconsistent

individuals may have higher welfare under a system providing unfunded social

security, depending on the degree of their time inconsistency.

Angeletos et al. (2001) integrate hyperbolic discounting into a standard model

of life-cycle behavior and find the inclusion of hyperbolic discounting can help

rationalize observations in wealth holdings, debt accumulation and consumption

paths in response to predictable income changes. However, their analysis is

performed in a partial equilibrium setting in which prices are fixed and do not

respond to aggregate behavior. I extend their model environment to a setting in

which prices adjust to the savings decisions of households who are heterogeneous

both in terms of the present-biased discount factor and the exponential discount

factor.
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My work most closely resembles that of Harris and Laibson (2001), Krusell

et al. (2002) and Maliar and Maliar (2006). Harris and Laibson construct a partial

equilibrium model in which present-biased agents are subject to transitory labor

income shocks. Krusell et al. focus on a deterministic general equilibrium model

with present-biased optimizers. However, agents are homogeneous in their degree of

present bias and in their exponential discount factor. Mailar and Maliar introduce

persistent labor earnings shocks and preference heterogeneity to a neoclassical

growth model. However, they model infinitely lived agents and are unable to come

remotely close to the wealth distribution of the US economy. I extend the work

of Maliar and Maliar by embedding heterogeneous present-biased agents into a

life-cycle model (as in Harris and Laibson and Angeletos et al.) in which agents

are subject to persistent labor income shocks and preferences, earnings ability,

and wealth are all partially inherited. Further, I consider heterogeneity in both

the present bias discount factor (as in Maliar and Maliar) and in the exponential

discount factor (as in Hendricks). This exercise is particularly valuable, as my

results indicate present bias and discount rate heterogeneity have drastically

different implications for the accumulation of wealth over the life-cycle. This result

hinges on the interaction of preferences and age, and is therefore lost in infinite

horizon settings.
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The Model

The modeling environment is a stylized version of the stochastic incomplete

markets life-cycle model which is commonly used to examine the distribution

of wealth. I build off of the work of Hugget (1996) and Hendricks (2007) while

integrating insights from İmrohoroğlu et al. (2003) and Harris and Laibson (2001)

with regard to modeling present bias. The economy is comprised of a continuum of

agents of unit mass, a single representative firm, and a government. I restrict my

attention to examining the economy in steady state with competitive markets.

Households

An agent is born at model age 1, works for the first R periods of life, and dies

with certainty after N>R periods. The probability of an agent surviving to age

t conditional on surviving to age t − 1 is given by st. When an agent dies, they

are replaced by a child of age 1 who inherits the after tax value of their parents’

wealth and imperfectly inherits their parents preferences and labor endowments.

The population grows at a constant rate n with stable demographic patterns so

that age t ≤N agents make up a constant portion of the population.

Agents inelastically supply l = h(t)e units of labor to the market each

period from birth to retirement, where h(t) is a deterministic age-earnings profile

and e is a labor endowment shock. An agent’s initial labor endowments (e1) is

inherited stochastically from their parents and earnings evolve over the life-cycle
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according to Markov transition matrix, Pe. A new agent inherits their parents age

aIG labor endowment with probability ρIG. With probability 1 − ρIG an agent

draws an initial labor endowment from the distribution governing the economy wide

distribution of initial labor shocks. An agent’s draw of e1 depends on their parent’s

labor endowment in period aIG and not their parent’s labor endowment in their

terminal period7. Upon retirement, all agents receive a social security transfer, τR,

and consume out of their savings and annual social security allocation.

Agents share identical preferences over consumption and leisure with the

exception of their discount factors, β and δ. These heterogeneous preference

parameters are drawn at birth from a finite set of discrete values J and remain

constant over an agent’s life. Preferences are stochastically inherited with

probability ρj. With probability 1-ρj preferences are drawn randomly from

the stable distribution over agent types. Upon drawing preference parameters,

households maximize the expected discounted sum of lifetime utility in the

following way:

U = max

{
u(c1) + δj E

[ N∑
t=1

βtj

( t∏
i=1

si

)
u(ct+1)

]}
(3.1)

where ct represents age t consumption, s is the probability of surviving one

additional year conditional on being alive today, δj is the present-biased discount

7This assumption implies parents stochastically pass on their human capital to their children
during the their working lifetime, and not when old.
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factor of a type j agent and βj is the exponential discount factor of a type j agent8.

All bequests are assumed to be unintentional, as previous research finds intentional

bequests play a small role in generating realistic wealth dispersion in the absence of

nonlinear bequest motives9.

Firms

Output is produced using capital (K) and labor (L) by a representative firm

with production given by Y = F (K,L) = AKαL1−α. The representative firm seeks

to maximize profit in a competitive market, F (K,L)− qKK− qLL, where qK and qL

represent the rental rates for capital and labor, respectively. In each period, capital

depreciates at a constant rate δk.

Government

The government levies taxes on labor income (τw) and bequests (τB) and

provides state dependent lump sum transfers (τ(x)). Transfers can be broken down

into two categories; social security transfers to retired households (τR if t > R)

as well as unconditional lump sum transfers (τ̃) to all agents. The government

does not tax capital income. Therefore, the relevant household prices are given

by w = (1 − τw)qL and r = qK − δ. Aggregate transfer payments are given by

8I have reversed the meaning of the β and δ parameters from Laibson’s exposition of quasi-
hyperbolic discounting so that the discount factor β retains its standard interpretation found
throughout the macroeconomic literature.

9For further exposition on this topic, please see the literature review in which the results of
DeNardi (2004) and DeNardi and Yang (2014) are discussed.

58



T =
∫
x

Λ(x)τ(x)dx where x denotes a potential state and Λ(x) denotes the density

of households over states. All tax revenue beyond that needed to fund aggregate

transfers is assumed to be discarded so that the government balances its budget in

each period.

Dynamic Programming Problem

An agent of type j has a state vector x given by x = (k, e, t, j) where k is

wealth, e is the current period’s labor endowment shock, and t is agent age. The

agent’s optimization problem can be written as a dynamic program where the

Bellman equation is given by:

V (x) = max
(c, k′)

u(c) + δjβjs
′E
[
Ṽ (x′|x)

]
(3.2)

subject to

c+ k′ ≤ (1 + r)k + wl + τ̃ + τR, (3.3)

k′ ≥ k, c ≥ 0, k′ > 0 if t = N, V (x) = Ṽ (x) = 0 if t = N + 1. (3.4)
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Common transfers τ̃ and retirement transfers τR are independent of earnings

history and depend only on agent age.10 If δj=1, this is the well known value

function of an exponential discounter. When δj < 1, I must structure the beliefs

of agents with regard to their future selves.

The two primary cases studied in the behavioral literature are naive and

sophisticated present bias. A sophisticated agent will behave in a present-biased

way today, but will seek commitment devices to keep their future self from

violating their planned consumption, savings profile. I proceed by assuming that

agents behave in a naive manor. This assumption is convenient for several reasons.

First, there is not a strong consensus in the behavioral literature regarding the true

nature of agent sophistication, but recent work from Laibson (2015) concludes “a

demand for commitment is a special case rather than the general case”. Second,

my model does not offer agents any vehicle for commitment. Therefore, knowledge

regarding one’s own biases is not exploitable, as agents do not have savings vehicles

that can effectively constrain their decisions even if they are wary of their future

self’s inability to follow through with a plan of action. A naive agent solves their

dynamic programming problem under the belief that, although they have a history

of present bias and behave in a present-biased way today, they will act in a time-

consistent manner in the future. This assumption can be represented by defining

10I proceed with this assumption as this approach is shared by both Huggett (1996) and
Hendricks (2007). Whenever possible, I aim to reduce the distinctions between my model and
these previous models to limit the avenues through which my results may differ from their work.
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the continuation payoff Ṽ (x) as:

Ṽ (x) = max
(c, k′)

u(c) + βjs
′E
[
Ṽ (x′|x)

]
(3.5)

subject to constraints (3.3) and (3.4) outlined above.

The continuation payoff of a present-biased agent, which informs an

individuals’ consumption-savings decisions over all future periods, is identical to

the value function of an exponential discounter. The only distinction between an

agent with δj < 1 and an agent with δj = 1 is the additional discounting of future

utility made every period. It is exactly this additional discount factor that leads

present-biased agents to behave inconsistently.

Equilibrium

A stationary, competitive equilibrium consists of aggregate quantities

(K, L, C, T, B), prices (w, r, qL, qK), transfers (τ(x)), current and continuation

value functions (V (x) and Ṽ (x)), policy functions (c(x) and k(x)) and a

distribution over agent types (Λ(x)) such that:

• The policy functions (c(x) and k(x)) along with the value function V (x)

and the cont-

inuation value function Ṽ (x) solve the agent’s optimization problem.

• Firms maximize profits.

• The government balances its budget.
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• The distribution of households over states, Λ(x), is stationary.

• Prices are given by w = (1− τw)qL and r = qK − δ.

• Markets Clear:

(i) K =
∫

Λ(x)k(x)dx

(ii) L =
∫

Λ(x)l(x)dx

(iii) F (K,L) = C + δK where C =
∫
x

Λ(x)c(x)dx

Present Bias: The Euler Equation and Discounting the Future

When agents are not present-biased, δ = 1, the discount factor is equal to β in

every period. However, if individual’s do behave in a present-biased manor, δ < 1,

the discount factor is no longer constant. Rather, the discount factor becomes an

endogenous variable that depends on an agent’s current state. I denote the effective

discount factor as βx′ to highlight the new dependence of discounting on the state

next period, x′. Following from the optimization problem set up in the previous

section, the present-biased Euler equation can be written as:

u′(ct) ≥ βx′(1 + r)st+1Et(u
′(ct+1)) (3.6)

The effective discount factor is equal to11:

βx′ ≡ βx′(kt+1, et+1, t+ 1) = β

[
1− 1− δ

1 + r

Et[u
′(ct+1)ck(kt+1, et+1, t+ 1)]

Et[u′(ct+1)]

]
(3.7)

11For further exposition of this derivation, see Appendix B.
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Where ck(kt+1, et+1, t + 1) is the derivative of the optimal consumption function

with respect to capital selected in period t. When δ = 1, βx′ = β in each period.

However, when δ < 1, the effective discount factor is a function of the state in

period t + 112. This generates a direct relationship between the effective discount

factor and an agent’s wealth, k. As shown in Maliar and Maliar (2006), if the

consumption function is strictly concave, then the effective discount factor of

present-biased agents will be strictly increasing in wealth. Thus, if two agents have

the same degree of present bias but different levels of wealth, the richer of the two

agents will behave more patiently than the poorer agent.

This result is not particularly surprising as diminishing marginal returns

to consumption is a typical feature of an agent’s utility function. A present-

biased individual ends each day with a consumption savings plan laid out for

their future self only to wake up the next morning and violate this plan. However,

individuals who are very wealthy have less of an incentive to deviate from their

planned consumption profile as their marginal utility gains are much smaller than

those of a similarly biased individual with lower wealth (as wealthy agent’s are

at a flatter point on their utility curve with respect to consumption). It is this

exact relationship between effective discounting and wealth that leads to increased

dispersion in savings between rich and poor households. Thus, two present-biased

12For a full exposition regarding the effective discount factor under quasi-hyperbolic
discounting, see Harris and Laibson (2001).
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agents with identical lifetime earnings will display different savings behavior based

on the amount of wealth they have accumulated.

FIGURE 1. Discounting of Future Utility

(a) homogeneous δ, heterogeneous β (b) heterogeneous δ, homogeneous β

The second avenue through which present bias impacts the accumulation of

capital is the horizon over which decisions are being made. Consider Figure 1 which

shows the effective discount rate applied to utility n periods in the future. Panel

(a) shows the discount rate for exponential discounters (δ = 1) with β = 0.98

and 0.94, respectively. The impact of heterogeneity in the exponential discount

factor leads to small discrepancies in discounting over a short planning horizon

but large discrepancies in discounting over trade-offs further into the future. This

heterogeneity leads to the creation of savers and spenders in the model, as agents

all face the same interest rate but have different preferences regarding trade-offs

between now and any future period based on their discount factor. This intuition

is confirmed in the results section, where I find the inclusion of heterogeneity in the

exponential discount factor leads to a level shift in wealth inequality at each age
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in the model economy relative to a baseline model populated with homogeneous

exponential discounters.

Panel (b) shows the discount rate for present-biased discounters with the

same exponential discount factor (β = 0.96) and δ = 1.0 and 0.6, respectively.

Unlike heterogeneity in the exponential discount factor, which leads to large

differences across household discounting as horizons move further into the future,

present bias creates the largest disagreements regarding time discounting over short

planning horizons. Further, as individuals apply their present-biased discount

factor to every future period, this leads agents to continually re-evaluate their

desired trade-off between current and future utility as they get closer to an event.

This results in consistently higher discounting of a future event relative to an

exponential discounter as the planning horizon between now and said event is

shortened. It is this exact feature of present bias that leads agents in my model

to decumulate wealth more quickly in old age when they are present-biased relative

to exponential discounters.

To recap, if an individual is present-biased they behave in a more biased

way the less wealth they have. Thus, in an economy comprised of present-biased

individuals with identical preferences, there will still be a degree of effective

preference heterogeneity if individuals have accumulated different amounts of

wealth. This will serve to amplify wealth inequality, as it will generate savers and

spenders relative to the prevailing market interest rate, albeit to a lesser extend
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than heterogeneous exponential discount factors. Further, when individuals are

present-biased, the gap between their discounting of the future and the discounting

of an exponential discounter is largest when planning horizons are short. Therefore,

present bias will have it’s greatest impact on agent behavior when: (a) wealth

holdings are low and (b) planning horizons are short. This characterization of the

impact of present bias on agent behavior offers support for the findings of Schreiber

and Weber (2016). Younger agents are less tempted by their present bias than old

agents, thus older households are more likely to behave irrationally and choose a

lump sum over a fair annuity.

Calibrating Model Parameters

Demographics

Households are born at the age of 22 and live at most 69 periods (age 90).

Households retire and begin receiving social security transfers at a model age of 43

(age 65). The probability of survival from one period to the next (1 year) is given

by the mortality rates listed in the Social Security Life Tables 13.

Labor endowments

Agent’s labor endowments consist of a deterministic age efficiency profile,

h(a), and a stochastic labor productivity shock, e. The age efficiency profile is

13A weighted average of Male and Female survival probabilities is used for model calibration.
All values are taken from the 2015 Social Security Life Tables
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modeled after Huggett 1996, using 1990 PUMS data. The transition matrix for

labor endowment shocks, Pe, is the Markov transition matrix associated with the

Markov approximation of the following autoregressive process:

ln(et) = ρ ln(et−1) + εt (3.8)

where et−1 is the labor shock experienced in the previous period and εt ∼

N(0, σ2
ε ) ∀ t. I’ve selected values of ρ and σ2

ε that are consistent with the

persistence of annual earnings and the variance of log earnings for individuals over

their working lifetime. This provides a grid of potential labor shocks and a Markov

transition matrix describing the probability of moving from shock ei to any other

shock ej, j ∈ [1, 7].

The initial productivity shock of young agents, e1, is equal to their

parent’s shock at age aIG with probability 0.41 and is drawn from a normal

distribution governing initial labor endowments with probability 0.5914. Initial

labor endowments are distributed N ∼ (ē1, σ
2
1).

Although individuals in the model are not replaced by children until their

death, I choose a value of aIG < aD. That is, agents inherit their parent’s

labor endowment in the middle of their parent’s working life. This assumption

is both reasonable, as human capital is likely transmitted between generations

when parents are middle aged, and computationally convenient, as the observed

14I follow Hendricks (2007) in setting ρIG = 0.41 and setting aIG = 39.
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persistence of intergenerational earnings cannot be matched if endowments are

transferred late in life.

Preferences

Preferences over consumption utility are given by u(c) = c(1−σ)/(1 − σ). The

curvature parameter of the household utility function is set to σ = 1.5. This is the

value chosen in Hendricks (2007a), Huggett (1996), and DeNardi and Yang (2014),

among others.

In terms of the calibration of present bias, Laibson, Repetto and Tobacman

(2007) argue for a degree of present bias equal to 0.7, while Paserman (2008) finds

an average degree of present bias of 0.65. However, Paserman finds the degree to

which individuals are present-biased varies significantly with income. He finds

low income households display a degree of present bias as low as 0.40 whereas

high income households are significantly less time inconsistent (0.89). Meier and

Sprenger (2015) estimate the value of the present bias discount factor using a series

of survey questions and find average degree of present bias to be between 0.69 and

0.82 depending upon their model specification. They also find a significant degree

of present bias heterogeneity, with poorer women displaying a higher degree of

present bias than wealthier women. Tanaka et al. (2010) perform a similar survey

based experiment on 181 rural Vietnamese households. They find an average degree

of present bias of 0.644. However, unlike Meier and Sprenger or Paserman, they do

not find any correlation between household characteristics and the degree of present
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bias. Due to the disparate findings outlined above in the empirical literature, I

calibrate present bias as 0.7 in each experiment performed in this chapter.15

TABLE 6. Model Parameters

Demographics
aD = 69 Maximum lifetime (Physical age of 90)
aR = 43 Retirement age (Physical age of 64)

Ps
Matches Mortality rates of couples found in Social Security
Administration Period Life Tables 2015

Labor endowments
ηe = 7 Size of labor endowment grid
ρ = 0.96 Persistence of labor endowments
σe = 0.212 Standard deviation of transitory shocks
ρIG = 0.41 Intergenerational persistence of labor endowments
σe1 = 0.616 Standard deviation of age 1 endowment shock

aIG = 19
Age of intergenerational transmission (physical age 40) taken
from Hendricks (2007)

Preferences
σ = 1.5 Consistently used throughout the literature
ρj = 0.5 Intergenerational preference transmission is set to 0.5
Technology
α = 0.36 Capital income share
δk = 0.076 Jointly set with A to normalize qL = 1 when r = 0.04
A = 0.89 Jointly set with δk to normalize qL = 1 when r = 0.04
Government
τw = 0.40 Tax rate on labor income, Trostel(1993), Hendricks (2007a)
τR = 0.4 ∗ (AvgEarnings) Retirement transfer set to 40% of average household earnings
The parameters listed above are common to all model specifications. In the results section I

distinguish experiments by the proportion of agents endowed with each βj and δj .

Technology

The production function in the model economy is of the Cobb-Douglas form.

F (K,L) = AKαL(1−α). The capital share, α, is set equal to 0.36. A and δ are

15The results, while quantitatively sensitive to the selection of δ, do not change qualitatively
when alternate parameterizations are considered.
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chosen so that qL = 1 when the interest rate, r, equals 0.04 and the capital to

output ratio, K
Y

, equals 3.1.

Government

Wages are taxed at a rate of 0.40, following Huggett (1996)16. Bequests are

not taxed in the baseline case (τB = 0) following a convention in much of the

quantitative life-cycle literature. Preliminary analysis indicates my results are not

sensitive to assumptions regarding bequest taxation.

Results

In this section, I draw distinctions between several experiments regarding

the distribution of societal preferences over β and δ. As there is no consensus in

the literature regarding the true distribution of household preferences, I remain

agnostic with respect to which experiment corresponds to the “correct” model17.

Instead, I analyze the wealth distribution corresponding to each distinct model

economy and comment on the areas in which said distributions match wealth

targets in SCF and PSID wealth data, which are commonly used as benchmarks

in this literature. To impose discipline across modeling experiments, the aggregate

capital to output ratio is set so that K
Y

= 3.1 in each model economy and the

16Note, the results presented in the next section are robust to changes in the tax rate.

17See Frederick, Loewenstein and O’Donogue (2002) for a discussion of the empirical estimates
of β dispersion. Their results indicate that low end estimates of β can be close to 0 and high end
estimates can be greater than 1.
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interest rate is set so that r = 4%. Each experiment (and the subsequent

distribution of wealth associated with the experiment) is disciplined by the

selection of a common discount factor βc applied to every household in the economy

so that equilibrium r and K
Y

match the targets outlined above. In models without

exponential discount factor heterogeneity, βc is simply the exponential discount

factor used by each household when making trade-offs between utility in any two

future periods18. The term “Avg. β” refers to the average exponential discount

factor across households in the model economy.

It is important to note that rather than iterating over βc to match the

targeted interest rate (and capital to output ratio), one could just as easily iterate

over the interest rate for a given value of βc to find an equilibrium. I avoid this

approach for several reasons. First, changing the interest rate necessarily changes

the capital to output ratio across modeling experiments and a fixed capital stock

makes for more consistent graphical comparisons across models. Second, by

constraining the capital to output ratio to be constant across models I am fixing

an observable statistic in an economy (r) and varying an unobservable variable

(βc). Third, changing interest rates changes the price agents receive for renting

their capital holdings and creates savers and spenders in a model economy with

heterogeneous preferences. Changing the value of βc does the exact same thing in

the model economy.

18More detailed information regarding the solution algorithm can be found in Appendix B.
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Although prices are fixed across experiments, an agent’s response to prices is

not fixed. Thus, a change in βc can be interpreted as a change in the relative price

of capital when discussing distinctions across models in the following section. When

agents have heterogeneous preferences, a high value of βc and a fixed interest rate

of r=4% will generate individuals who view this interest rate as too high (relative

to the value of β that would lead to consumption smoothing in their consumption

Euler equation) and therefore become savers, and individuals who view this interest

rate as too low and therefore become spenders. This mechanism for generating

disparate savings decisions is equivalent to comparing model economies with a fixed

value of βc in which prices (r) respond to the distribution of households over types.

Outline of Experiments

The experiments outlined in the following section are characterized in Table 7

where the “Proportion of Households by Type” represents the stable distribution

of households over each potential discount factor in the model economy. The

experiment labeled “Base” corresponds to a baseline model in which all agents are

exponential discounters (δ = 1.0) and have the same β = 0.963 (0.98 × βc =

0.98 × 0.983) in equilibrium. “BasePB” refers to a model in which all agents are

present-biased (δ = 0.7) and have an exponential discount factor equal to 0.999

in equilibrium.“BaseHet” refers to a model in which all agents are exponential

discounters and half of all agents have an equilibrium discount factor of 0.977
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(0.98 × 0.997) and the other half have an equilibrium discount factor of 0.937

(0.94× 0.997).

TABLE 7. Outline of Experiments

Proportion of Households
by Type

β δ
Experiment (0.98 0.94 0.90) (1.0 0.7) βc Avg. β

Base 1.0 - - 1.0 - 0.983 0.963
BasePB 1.0 - - - 1.0 1.017 0.999
BaseHet 0.5 0.5 - 1.0 - 0.997 0.957

β δ
Experiment (0.98 0.96 0.90) (1.0 0.7) βc Avg. β

Full .44 .12 .44 1.0 - 1.003 0.945
FullPB .44 .12 .44 - 1.0 1.027 0.968
∗FullPBHetλ .44 .12 .44 λ 1− λ - -

All experiments labeled “Full” refer to a richer model in which agents are

heterogeneous in their exponential discount factor β. Calibration for preference

heterogeneity is modeled after Hendricks (2007) for a model with partial

intergenerational transmission of preference and ability and full inheritance of

wealth via accidental bequests. Hendricks backs out the distribution of households

over preference types by matching age specific Gini coefficients in the model

economy with their corresponding moments in PSID data. Although Hendricks

allows for five potential discount factors, his approach for preference calibration

results in meaningful weight being placed on just three potential β values.

Therefore, I allow for just three values of βj with weights close to those implied

by Hendrick’s calibration as opposed to selecting the degree of heterogeneity at

random.
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“Full” refers to a model in which agents are all exponential discounters

(δ = 1.0) with 44% of households endowed with β = 0.98 × 1.0032, 12% of

households endowed with β = 0.96 × 1.003, and 44% of households endowed with

β = 0.90 × 1.003 where 1.003 is equilibrium βc for the “Full” model. “FullPB”

refers to a model with the same breakdown of exponential discount factors in the

model economy and δ = 0.7 for all agents. That is, every agent in the “FullPB”

model economy is present-biased. Finally, the “FullPBHet” model refers to a set

of calibrations in which households preferences are distributed over β as described

in “Full”, but a proportion λ of agents endowed with each β are not present-biased

(δ = 1.0) and (1 − λ) are present-biased (δ = 0.7). I consider values of λ = 1,

0.75, 0.5, 0.25, and 0 where λ = 1 corresponds to the “Full” model and λ = 0

corresponds to the “FullPB” model.

Results- Building Intuition

In this section I present results from the “Base” experiments. This exercise is

useful as it provides a means of understanding the margins on which present bias

and discount rate heterogeneity differentially impact the accumulation of wealth in

model economies. Table 8 outlines the Gini coefficient and selected elements of the

Lorenz Curve for both US data (SCF and PSID data) and for the “Base” model

economies outlined above.

As shown in Huggett (1996), a model economy with homogeneous exponential

discounters generates a Gini coefficient that is lower than that found in the data.
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TABLE 8. Wealth Distribution in the U.S. and “Hugg” Model Economies

Gini 99-100 95-99 90-95 80-90 40-80 0-40
PSID (2003) 0.76 25.3 21.8 14.0 16.3 21.8 0.9
SCF (1998) 0.80 34.7 23.1 11.3 12.7 17.2 1.0
Base 0.70 12.0 21.8 16.8 21.8 25.9 1.6
BasePB 0.72 11.8 22.4 17.4 22.3 25.3 0.7
BaseHet 0.74 13.1 24.0 18.3 20.2 23.6 0.8

Further, the fraction of wealth held by the 99th percentile of households is just

12%, less than half of the wealth share of the top 1% of households reported in

the PSID. Relative to the baseline model, adding present bias increases the Gini

coefficient in the model economy to better match the data. However, this improved

fit in the Gini coefficient is generated by a distribution of households in which the

poorest 40% of households are too poor and the richest 1% of households are too

poor relative to the data and the baseline model of time-consistent discounters.

As shown in Krussell-Smith (1998) and Hendricks (2007a), the inclusion of

heterogeneity in the exponential discount factor leads to a marked improvement in

the Gini coefficient (0.74 compared to 0.70 in the baseline model) and the model’s

ability to match the wealth holdings of the top 1% of earners (13.1% compared

with 12%).

To better understand the distinct role of present bias relative to that of

preference heterogeneity in generating equilibrium wealth dispersion, consider

the graphs in Figure 2 representing the average wealth accumulated in the model

economy by age and the Gini coefficient in the model economy by age across

different assumptions regarding economy wide preferences.
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FIGURE 2. Evolution of Wealth over the Life-cycle

(a) Mean Wealth by Age (b) Gini Coefficient by Age

Average wealth in the “Base” model with homogeneous exponential

discounters is nearly indistinguishable from the average wealth accumulated in

the “BaseHet” model with heterogeneous exponential discounters. However,

in the “BasePB” model economy, in which all agents are homogeneous in their

exponential discount factor and present-biased, mean wealth peaks at a slightly

earlier age and a slightly higher value than in the non present-biased economies.

Further, wealth is depleted at a faster rate when all agents are present-biased

following peak earnings, particularly after households retire (age 65). As each

model is constrained to produce the same capital to output ratio and interest

rate for the given distribution of households over types, total capital across model

economies is also constrained to be identical. In spite of this fact, the inclusion

of present-biased discounters has a significant impact on the timing of wealth

accumulation.
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Panel (b) sheds further light on the distinct role played by present bias

relative to preference heterogeneity in generating wealth inequality over the life-

cycle. Heterogeneity in discount rates leads to a level shift in the wealth Gini at

every age over the life-cycle compared to a model with homogeneous discounters.

Present bias, on the other hand, does very little to impact wealth inequality over

the life-cycle until households near retirement. The Wealth Gini by Age in a

present-biased economy is nearly identical to that in an economy populated by

homogeneous exponential discounters until agents reach age 55. At this age, we see

average wealth holdings rapidly decrease in the present-biased model economy and

the Gini coefficient by age begins steadily increasing. At retirement, the “BaseHet”

economy and the homogeneous exponential discounter economy see a slight up-

tick in wealth inequality, but wealth inequality in the present-biased economy

increases at a much faster rate to a much higher level than either of the exponential

economies. Present bias is the most costly to consumers when planning horizons

are short and when agents have low wealth. We see wealth inequality drastically

increase upon retirement as a wedge is driven between households with sufficient

wealth to behave near rationally and households with low wealth who’s biases are

exacerbated by the short planning horizon over their remaining lifetime.

Early in the life-cycle, an economy comprised of present-biased optimizers

looks very similar to one comprised of homogeneous discounters, as general

equilibrium effects impose a higher βc in the present-biased society than the “Base”
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society. Thus, a high relative value of savings overwhelms present-biased agents’

desire to over consume while young, as they are extremely patient relative to the

market interest rate in the long run compared with agents in the “Base” model who

have a much lower βc. Models that do not place present-biased agents in a general

equilibrium framework will surely miss this fact. To this point, consider a version

of the “BasePB” model that is not in general equilibrium, called “BasePBpartial”.

Every agent is endowed with βc = 0.963 as in the “Base” economy and the interest

rate is still set to r = 4%.

FIGURE 3. Wealth Evolution: General vs Partial Equilibrium

(a) Mean Wealth by Age (b) Gini Coefficient by Age

The resulting economy has a Gini coefficient of 0.83 and the top 1% of

households hold over 19% of all wealth. These are both significant improvements

over the baseline model’s ability to match inequality in the data, and may lead one

to believe that homogeneous present bias plays a tremendous role in generating

wealth inequality. However, this increase in wealth dispersion is generated by

a much poorer society that has far greater wealth inequality at every age when
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compared with the the “Base” and “BasePB” societies. Figure 3 shows the mean

wealth by age and Gini coefficient by age for the “Base” and “BasePB” models

relative to the “BasePBpartial” economy. The above graphs shows a model analyzing

the role of present bias outside of general equilibrium will drastically misrepresent

the role played by present bias, particularly with regard to any measure that

depends on aggregate wealth or the interest rate. By allowing the relative price

of capital (the combination of βc and r) to vary across modeling assumptions,

model economies do not display increased wealth dispersion over an agent’s working

lifetime when all individuals are assumed to be present-biased.

In general equilibrium models, the largest deviation between present bias and

non-present-biased societies comes late in life as households with low wealth are far

more tempted by their shortened planning horizon than high wealth present-biased

households. As there is already some degree of wealth inequality at retirement

across all model economies due to heterogeneity in labor earnings, inequality is

amplified in a present-biased society when the shortened planning horizon of old

age is interacted with lower average wealth and increased wealth dispersion. Just

as partial equilibrium models will overstate the importance of present bias in

generating wealth inequality, infinite horizon models will understate the role of

present bias even in general equilibrium as the largest impact of present bias on

household outcomes occurs as households reach retirement. Thus, models missing
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the richness associated with life-cycle dynamics will understate the role of present

bias.

Adding Present Bias to a Model with Preference Heterogeneity

Having established the role of present bias and preference heterogeneity in

generating wealth inequality in the simple economy comprised of homogeneous

exponential discounters, I now turn to a set of experiments in which agents display

a large degree of exponential discount rate dispersion to better understand the

margins on which present bias (and present bias heterogeneity) can improve the

fit of my model to data. Results from the “Full” experiments (outlined in Table 7)

are presented in Table 9. Recall, each “Full” experiment is calibrated so that 44%

of the population has β = 0.98, 12% of the population has β = 0.96, and 44% of the

population has β = 0.90, where each β is multiplied by the relevant βc specific to

each calibration19. In each experiment, I vary the percentage of the population with

present-biased preferences, where a proportion λ of the agents in the model are not

present-biased (δ = 1.0) and (1 − λ) of the agents are present-biased (δ = 0.7). For

each experiment, the proportion of individuals in the model economy endowed with

each β is unaffected by the percentage of individuals that are present-biased. For

example, when λ = 0.5, 44% of individuals have β = 0.98, 12% have β = 0.96, and

19This follows from the calibration of the distribution of preferences over household types in
Hendricks (2007) for a model with accidental bequests.
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44% have β = 0.90 but half of the individuals endowed with each β are endowed

with δ = 1.0 and half are endowed with δ = 0.7.

The results from my calibration of the “Base” model as well as the wealth

moments in PSID and SCF data are reported in Table 9 for ease of comparison.

As shown in Hendricks (2007), the “Full” model in which there is a large degree of

discount rate heterogeneity and no individuals are present-biased offers a significant

improvement in fit relative to the baseline “Base” model. The Gini coefficient

on wealth is 0.77 (compared with 0.70 in the “Base” model and 0.76-0.80 in the

data) and the percentage of wealth held by 99th percentile of households is 13.9

(compared to 12.0 in the “Base” calibration). Augmenting the baseline “Full”

model so that every individual is present-biased (“FullPB”) results in a slightly

higher Gini coefficient of 0.79. As βc in the “FullPB” model is larger than βc in

any of the other model calibrations considered, agents in this experiment have an

incredibly high incentive to save. Thus, the percentage of wealth held by the top

1% of households is actually reduced by 0.2 relative to a model with no present

bias. Again, we see the powerful role played by general equilibrium as the negative

impact of agent’s biases are somewhat mitigated by the increased relative prices of

capital.

As I vary the proportion of individuals who are present-biased from 0 to 1,

there is a steady increase in both the Gini coefficient and the percentage of wealth

held by the 99th percentile of earners. The model in which 75% of households are
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TABLE 9. Wealth Distribution in the U.S. and “Full” Model Economies

Gini 99-100 95-99 90-95 80-90 40-80 0-40
PSID (2003) 0.76 25.3 21.8 14.0 16.3 21.8 0.9
SCF (1998) 0.80 34.7 23.1 11.3 12.7 17.2 1.0

λ βc
Base 1 0.983 0.70 12.0 21.8 16.8 21.8 25.9 1.6
Full 1 1.003 0.77 13.8 26.3 19.6 20.6 19.7 0.1
FullPBHet.75 3/4 1.008 0.78 14.0 27.2 19.6 20.7 18.5 0.0
FullPBHet.5 1/2 1.013 0.79 14.2 27.9 19.6 20.8 17.5 0.0
FullPBHet.25 1/4 1.020 0.80 14.4 27.9 19.9 20.7 17.1 0.0
FullPB 0 1.027 0.79 13.6 27.5 20.2 21.0 17.6 0.0

present-biased (“FullPB.25”) results in a wealth share for the top 1% of earners

of 14.4, which is 20% higher than the equivalent wealth share in the “Base”

calibration and 4.5% higher than the wealth share in the “Full” calibration in

which no agents are present-biased. The Gini coefficient in this experiment is equal

to 0.80, which matches the Gini reported in SCF data exactly. Thus, a model in

which there is a high degree of discount rate heterogeneity and heterogeneity in

whether households are present-biased generates an equilibrium wealth distribution

that better matches both the Gini coefficient and the wealth share of the top 1% of

households.

The rationale behind this finding is fairly straightforward. As shown in the

previous section, if we fail to embed present-biased agents in a general equilibrium

model in which prices respond to their actions, the resulting model economy will

overstate the role of present bias in generating wealth inequality. When agents

are heterogeneous with regard to their present bias, present-biased agents are
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essentially embedded in a partial equilibrium model, albeit one in which the price

(or in this case, the value of βc) is closer to their desired price than it would be if

every agent in the economy was not present-biased. In the following section, I show

the present-biased and non present-biased sub-economies when λ = 0.75, 0.50, and

0.25. As the percentage of agents in the model economy who are present-biased

increases, the gap in average wealth between present-biased and non-present-biased

individuals widens. This occurs as non present-biased individuals exploit an interest

rate that is quite high relative to their discount factor exactly because the behavior

of present-biased individuals has bid this value up in equilibrium. By examining

mean wealth and Gini coefficients by age for both present-biased and non present-

biased agents, I am able to show that the increased wealth dispersion reported in

Table 9 is the result of across group inequality. Within group inequality is reduced

as the percentage of individuals in the economy who are present-biased is increased.

The Present-Biased Sub-Economy

In this section I outline distinctions between two agent types in the

“FullPBHet” model experiments: non present-biased (non PB) and present-biased

(PB) individuals. Recall, each “FullPBHet” calibration includes a proportion λ of

non PB agents and a proportion (1− λ) of PB agents. In each of these calibrations,

I define the economic behavior of non PB agents as the exponential sub-economy

and the economic behavior of present-biased agents as the present-biased sub-

economy. In Table 9, I report the equilibrium value of βc for each experiment that
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TABLE 10. Wealth Inequality for PB vs non PB Agents

Gini Top 1% Top 5% Top 20%
PSID (2003) 0.76 25.3 47.1 77.4
SCF (1998) 0.80 34.7 47.8 81.8
Full 0.77 13.8 40.1 80.3
FullPBHet (λ = .75) 0.78 14.0 41.2 81.5
-Non PB Agents 0.76 12.9 38.8 79.1
-PB Agents 0.83 17.8 48.1 88.7

FullPBHet (λ = 0.50) 0.79 14.2 42.1 82.5
-Non PB Agents 0.75 11.9 37.3 77.8
-PB Agents 0.82 16.6 46.0 86.4

FullPBHet (λ = 0.25) 0.80 14.4 42.3 82.9
-Non PB Agents 0.74 10.7 36.0 76.7
-PB Agents 0.81 15.3 43.6 84.6

FullPB 0.79 13.6 41.1 82.3

normalizes the interest rate and capital-to-output ratio across models. The “Full”

model in which all agents are non PB results in a value of βc = 1.003 and the

“FullPB” model in which all agents are PB results in a value of βc = 1.027. As the

proportion of individuals endowed with δ = 0.7 increases, the value of equilibrium

βc increases as well. Thus, when some agents are present-biased, non PB agents

have access to an effective interest rate (βc × r) that is higher than what they

face in a model comprised entirely of exponential discounters, and PB agents face

an effective interest rate that is lower than what they face in a model economy

comprised entirely of present-biased agents. It is this discrepancy that places both

agents types in a partial equilibrium sub-economy in which prices have not fully

adjusted to the individual preferences of each respective type.

Table 10 highlights the Gini coefficient and the wealth holdings of the top 1%,

5% and 20% of households in each “Full” model economy as well as in SCF and
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PSID data. For each “FullPBHet” calibration, these same statistics are evaluated

for exponential and present-biased sub-economies. By evaluating the sub-economy

associated with each agent type, I am able to provide insight into the avenue

through which increased wealth dispersion is arising in the model economy. As

shown in Table 9, as the percentage of agents who are present-biased increases,

overall inequality increases. The Gini coefficient and wealth holdings of the top

1%, 5%, and 20% of households increase to levels much closer to that in the data

in response to the increased proportion of agents displaying time inconsistent

preferences. However, wealth inequality in each sub-economy is highest for both

PB and non PB agents when the percentage of agents endowed with present-biased

preferences is low!

When λ = 0.75, the present-biased sub-economy (25% of the total population)

has a Gini coefficient on wealth of 0.83 and the wealth ownership of the top 1%

of PB households is 17.8% of all wealth in the present-biased sub-economy. The

exponential sub-economy has a Gini coefficient of 0.76 and wealth ownership of

the top 1% of households is 12.9%. As λ increases, the Gini coefficient in each

sub-economy decreases and the wealth holdings of the top 1%, 5% and 20% of

households in each sub-economy decrease as well. However, in spite of the reduction

in inequality within each sub-economy, overall inequality is increased as the

proportion of present-biased agents increases.
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Again, we return to the importance of general equilibrium effects when agents

are endowed with time inconsistent preferences. As more present-biased individuals

are added to the model economy, the common discount factor βc is bid up by

the impatient behavior of these individuals. As demonstrated by the distinction

between the “FullPB” and “Full” model economies, if all agents are present-

biased wealth inequality is reduced relative to a world in which all agents are

exponential discounters. Thus, the higher the proportion of present-biased agents

in the economy, the greater the savings incentive for both present-biased and non

present-biased agents. As all agents face an increased savings motive when more

time inconsistent discounters are in the economy, within type inequality is reduced

because both present-biased and non present-biased agents accumulate more

wealth in the face of relatively inexpensive capital. Despite this fact, inequality

in the economy as a whole increases because wealth dispersion across agent types

increases with the percentage of present-biased agents in the model economy.

Figure 4 provides further insight into the evolution of wealth inequality in

each “FullPBHet” calibration. The dashed line represents the mean wealth by age

of present-biased agents and the wealth Gini by age across present-biased agents

for λ = 0.75, 0.50, and 0.25. The dash-dot line represents these same statistics for

the non present-biased agents in each experiment, and the solid line represents the

mean wealth by age and wealth Gini by age for all agents in the model economy.

Comparing panels (a), (c), and (e), it is apparent that as the proportion of
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individuals in the model economy endowed with present bias increases, the gap

in mean wealth holdings between PB and non PB agents increases. Although a

FIGURE 4. Evolution of Wealth over the Life-Cycle- Mixed Economy

(a) (b)

(c) (d)

(e) (f)

87



higher βc leads to an increase in the mean wealth holding by age for both the

present-biased and exponential sub-economies, as (1 − λ) increases, agents in the

exponential sub-economy take advantage of the increased effective interest rate

they face when coexisting in an economy with a large number of present-biased

individuals and amass much higher average wealth than their present-biased peers.

Thus, as the percentage of individuals in the economy endowed with present-biased

preferences increases, inequality between time-inconsistent and time-consistent

agents increases.

As cross group inequality increases in response to a higher proportion of

present-biased agents in the model economy, within group inequality is somewhat

reduced in both the exponential and present-biased sub-economies. Consider the

Gini coefficient on wealth by age displayed in panels (b), (d), and (f) of Figure 4.

As more present-biased agents are added to the model economy, the Gini coefficient

at every age is lowered (very slightly) for both present-biased and exponential

agents. As shown in Table 10, this decrease in within group inequality results from

an increased savings incentive for all agents as an increase in (1 − λ) drives up βc.

When all agents face an increased savings incentive, they accumulate more wealth

earlier in their lifetime and inequality is driven down by an economy comprised of

net savers. Further, the gap in wealth Gini by age between the present-biased and

exponential sub economies is largely unaffected by the percentage of individuals

endowed with PB preferences. That is, the distance between the dashed line
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(PB agents) and the dashdot line (non PB agents) is nearly identical for each

calibration. This gap is smallest when agents are young and begins widening at

a much faster rate when agents near retirement and the shortened planning horizon

of older households interacts with the natural inclination to under-save inherent to

present-biased optimizers.

A final note of interest from Figure 4 pertains to the exact shape of the

wealth Gini by age for all agents in the model economy (the solid line in all three

experiments). In panels (b), (d), and (f) this line reaches its minimum between age

55 and 60, but the rate at which inequality evolves following its trough depends

on the percentage of agents in the model economy who are present-biased. In

panel (b), when only 25% of agents are present-biased, the wealth Gini by age

increases at a much slower rate following age 60 to a lower overall level than it

does in panel (d) (50% of agents PB) or panel (f) (75% of agents PB). Thus, my

model offers a convenient means of backing out the percentage of households who

display present-biased preferences via the examination of the evolution of wealth

inequality as agents age. Exponential discounting will result in a low degree of

wealth dispersion following age 60, while present bias implies a rapid increase

in wealth dispersion after age 60. By measuring the actual dispersion of wealth

amongst older households, one could infer the percentage of households endowed

with each preference type.
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This result has the potential to resolve an issue discussed in Hendricks (2007).

Recall Hendricks’ insight that heterogeneous exponential discounting leads to

dispersion in wealth as households age. Thus, he calibrated the distribution of

households over exponential discount factors to minimize the distance between

model Gini coefficients on wealth by age and moments in U.S. data. Although it

may appear that this approach could be used to replicate the wealth distribution

perfectly, Hendricks notes “since preference heterogeneity increases inequality

among young and old households, it is not possible to match inequality among the

old without overstating inequality among the young”. As shown throughout this

section, present bias offers an avenue through which old age wealth inequality can

be increased without overstating inequality among younger households. A future

endeavor aimed at calibrating the distribution of households over exponential and

present-biased discount factors may offer a resolution to this issue proposed by

Hendricks. A calibration approach of this type could, at the very least, shed light

on the percentage of households endowed with present-biased preferences.

Conclusion

I embed present-biased agents into an overlapping generations, quantitative

life-cycle general equilibrium framework in which agents face uninsurable

idiosyncratic income shocks. If all agents are assumed to be present-biased, the

distribution of wealth is largely unaffected relative to a baseline economy in which

all agents are exponential discounters. However, stark differences arise between
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a present-biased society and a society of homogeneous, exponential discounters

when the accumulation of wealth over the life-cycle is analyzed. A present-biased

society is characterized by an earlier peak in mean wealth by age and by increased

dispersion in wealth as household reach retirement. I then consider a model

economy populated by agents who are heterogeneous across both their exponential

and present-biased discount factor. I find the inclusion of some present-biased

households improves the fit of the model economy to the data. The increase in

wealth dispersion resulting from an increase in the percentage of households that

are present-biased arises as time-consistent discounters amass higher wealth relative

to their present-biased peers due to the general equilibrium impact of present-

biased optimization on the effective interest rate.

The work outlined above highlights several avenues through which present

bias may help to rationalize gaps in the literature pertaining to the savings

decisions of retired households. As noted in Schreiber and Weber (2016) and

Huffman et al. (2017), some puzzling behaviors associated with retired households

appear to be correlated with present-biased preferences. Schreiber and Weber

highlight the fact that older households characterized as impatient are more likely

to choose a lump sum over a fair annuity relative to patient older households and

younger (age 30-50) impatient households. This result fits nicely with the general

equilibrium implications of present bias; older households are more tempted by

their behavioral biases than younger households due to their shortened planning
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horizon and lower average wealth. Huffman et al. find there is a large degree of

heterogeneity in time discounting of older households, but due to data restrictions

they are unable to distinguish between heterogeneity in the exponential discount

factor and heterogeneity in the present-biased discount factor. Thus, they conclude

that as less patient households have significantly lower net wealth in retirement,

this is “probably indicating that the least patient save less and therefore arrive at

old age with fewer assets.” My results imply that this may not be the entire story.

If agents are present-biased, then wealth dispersion in retirement will be a function

of both pre-retirement savings decisions and post-retirement savings decisions.

Thus, further work eliciting the proportion of individuals displaying present-biased

preferences could help to distinguish the role played by high discounting due to a

low draw of β versus a draw of δ < 1.

Although I have primarily focused on the interaction of present bias and old

age, it is important to note that the key interaction of shortened planning horizons

and low wealth that leads older populations to suffer most from their biases is not

an age dependent phenomenon. In the modeling environment utilized throughout

this paper, the only finite horizon for an agent is the entire life-cycle. However,

as post-secondary educational investment occurs early in life, a young agent is

effectively looking at a short finite horizon over which they must decide how much

schooling to attain. Previous work by Nighswander (2017) embeds present-biased

agents in a simple three period framework in which time in the first period of life
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is split between supplying low skill labor and acquiring human capital via costly

education. I find that present-biased individuals acquire less education leading

to lower lifetime earnings and lower retirement consumption than time-consistent

discounters. I intend to extend this simple model of educational choice to a life-

cycle framework in which agents must decide how much education to acquire while

young before entering the labor market. This endeavor may help to amplify lifetime

inequality in the model economy to levels closer to US data.
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CHAPTER IV

COLLEGE INVESTMENT & HETEROGENEOUS PATIENCE

Introduction

In the United States, the average college graduate earns over 80% more than

the average individual with only a high school degree1. Further, the returns to a

college degree have been consistently increasing since the early 1970s, which has

led to a large increase in the percentage of high school graduates enrolling in four-

year colleges. In spite of this increase in college attendance, there has been a very

modest increase in the percentage of individuals who actually complete a bachelor’s

degree. In 1970, 23% of high school graduates had obtained a bachelor’s degree

by age 23 (51% had attempted some college) and by 1999 67% of 23 year olds

had attempted some college, but only 24% had earned a college degree (Turner

2004). As the market returns to college enrollment are primarily captured upon the

completion of one’s degree (Carnevale et al. 2011) and tuition costs have increased

substantially over the last 30 years, the fact that over 40% of individuals who enroll

full time in four-year colleges fail to obtain a bachelor’s degree within 6 years is

truly puzzling (Velez 2014).

In this chapter, I utilize the skills and insights gained in the previous two

chapters to outline a model economy in which dropouts are induced via a novel

1See Carnevale et al. 2001.
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mechanism: present-biased optimization. Previous attempts to rationalize college

completion and dropout rates have focused primarily on ability uncertainty. The

typical explanation is that students begin college with very little information about

their schooling ability and, through the process of credit accumulation and noisy

signals received while attending college, students update their beliefs regarding

their ability to complete a degree. However, a growing empirical literature indicates

that behavioral biases, and present bias in particular, may shed light on previously

unexplained aspects of college enrollment and completion. As theoretical work on

this topic is extremely limited, I provide support for this empirical literature by

outlining the pathway through which present bias leads to college dropouts in a

model with no ability uncertainty.

As outlined in Chapters 2 and 3, a present-biased agent will continually

re-evaluate their planned consumption, savings, and time allocations in favor of

increased within period utility. Further, the degree to which present bias leads

agents to re-evaluate their plans is decreasing in their wealth. This leads present-

biased individuals with low initial assets to behave in a more biased fashion than

agents with identical preferences and higher initial wealth. This occurs as high

wealth individuals have high consumption and receive smaller gains in utility from

deviating from their previous plan than low wealth individuals who receive large

utility gains from small changes in their current consumption2.

2See Appendix A from Chapter 3 for more detail.

95



In the context of the education model outlined in this chapter, for certain

ranges of starting capital present-biased individuals will begin attending college

and accumulating credits at a slow rate that would not result in the completion

of a degree because they expect to accumulate credits more rapidly in the future.

However, unlike an impatient exponential discounter (low β) who might accumulate

credits too slowly to complete a degree in the allotted time frame and therefore

choose not to attend college, a present-biased agent will expect their future self

to behave in a more constrained way and increase the rate at which credits are

accumulated. In Section 5, I find when credit constraints bind and agents are

unable to borrow against their future earnings, the poorest present-biased agents

who enroll in college dropout and enter the labor market without completing their

college degree.

Although there is a growing empirical literature outlining the role that

behavioral biases (and present bias in particular) play in generating observed

college enrollment and completion, to the best of my knowledge this paper marks

the first attempt to generate college dropouts via present bias in a model of

optimizing consumer behavior. The next section reviews the literature on college

completion and human capital investment in life-cycle economies. I then set up

a model of optimizing consumer behavior in a life-cycle economy and outline

the calibration approach for this model. Next, I present results from a simplified

version of the model followed by a brief concluding section.

96



Literature Review

Although human capital investment and present bias have not been jointly

examined in a quantitative life-cycle model, each of these topics has been explored

independently in this modeling environment. As previous chapters have focused

on present bias in overlapping generations model economies, this literature review

will be focused on papers exploring investment in post-secondary education3.

Lochner and Monge (2011) explore the relationship between endogenous borrowing

constraints and schooling investment. They find when borrowing constraints

are endogenous, federal policies aimed at increasing schooling have both a first

order impact on college enrollment and a secondary impact on enrollment via the

expansion of private credit which increases credit access and schooling among

constrained households. Kruger and Ludwig (2016) examine the optimal degree

of tax progressivity and educational subsidies in a life-cycle economy. They find

the optimal mix includes large education subsidies and moderate tax progressivity

to avoid crowding out the returns to human capital investment. While neither of

these papers includes an avenue for college completion risk, each provides guidance

for modeling human capital investment when earnings are stochastic and related to

one’s education.

3See Chapter 3 for a discussion of present bias in quantitative life-cycle models, including
Imrohoroglu et al (2003), Maliar and Maliar (2006), Angeletos et al. (2001), Laibson et al. (1998)
and others.
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Arcidiacono et al. (2016) estimates a dynamic structural model of investment

in higher education to outline the role of imperfect information regarding one’s own

ability on schooling. They find that the elimination of informational frictions would

increase college completion rates by 9 percentage points, due almost entirely to a

reduction in college dropouts. Krivorotov (2016) uses a model of ability learning in

which agents choose to enroll in school after observing a noisy signal of their ability.

They then perform Bayesian updating to infer their true ability from the grades

they earn while enrolled in college.

Krivorotov finds an increase in the college wage premium in the model

economy that matches the increase observed in US data over the last 30 years

induces individuals with lower signals of their ability to enroll in college on the

off chance that they are more capable than they initially appear. Not only are

lower ability agents more likely to enroll in college when the wage premium

increases, these agents are more likely to stay enrolled in school after receiving

poor grades. These agents persist in school longer than they should “on the off-

chance that those low grades were due to bad luck” and not indicative of their

innate ability. Krivorotov’s model accommodates the fact that a rising college wage

premium leads to both longer time to degree and a longer time before dropping

out, explaining roughly half of the increase in time to degree from the early 1970s

to the late 1990s in the United States.
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Hendricks and Leukhina (2018) analyze the impact of graduating from

college on lifetime earnings utilizing transcript data to carefully model agents’

estimation of their ability. In their model, all individuals attempt the same number

of credits in each period and some combination of luck and ability generates a

completed subset of attempted credits. They use ability uncertainty to match

college completion and dropouts in the High School & Beyond data set and

conclude 54% of the difference in lifetime earnings between college graduates and

non-graduates is the result of ability differences.

A more recent empirical literature indicates that ability uncertainty may not

be the only channel through which college dropouts are generated. Cadena and

Keys (2015) use NLSY data to show that individuals labeled as impatient (which

is used as a proxy for present bias) are more likely to drop out of college with one

year of full time credits or less remaining than those who are not impatient. This

result holds even when a number of demographic factors are taken into account,

including measures of student ability and family wealth. Further, these impatient

individuals earn less and express more regret upon reaching middle age than

patient individuals. DePaola and Scoppa (2015) use data sampling a large number

of Italian undergraduates and show individuals who procrastinate more perform

worse in academic environments, even when controlling for cognitive abilities,

background characteristics, and family income. In subsequent work utilizing the

same data, DePaola and Gioia (2017) find a negative relationship between time
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preferences and academic performance. They find that impatient students are more

likely to drop out of college and take longer than they had expected to acquire a

college degree.

I utilize insights from this empirical literature in conjunction with the

modeling environment outlined above to highlight the role played by present-

biased optimization in the determination of college completion in a life-cycle model

economy.

The Model

I aim to characterize the role played by preference heterogeneity and present-

biased optimization on college enrollment, completion, and dropouts in quantitative

lifecycle model. As such, I build on the stochastic incomplete markets life-cycle

literature established by Bewley (1986), Huggett (1996), Aiyagari (1994) and others

in which overlapping generations of optimizing agents are subject to uninsurable,

idiosyncratic earnings risks. However, unlike the model utilized in my third

chapter in which all agents face the same earnings process, I allow for different

earnings processes calibrated to match the distribution of lifetime earnings for

workers of different skill types. My calibration of the model outlined in this section

follows closely from the approach established in Karahan and Ozkan (2012) and

utilized in Kruger and Ludwig (2016) for establishing unique earnings processes for

different skill levels. However, unlike Kruger and Ludwig who model a deterministic

education decision in which agents invest in their human capital before optimizing
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in the model economy, agents in my model must continually acquire credits to

graduate from college while splitting time between low skilled work, leisure, and

education in the first stage of life.

The College Investment Decision

Each agent i’s lifetime can be broken down into 3 distinct phases. Phase

one is the college education phase, lasting from period 1 to period C, where

C ∈ [1, C̄]. The college phase can end in three distinct ways. (1) Agents obtain

sufficient credits to graduate and enter the labor market as college graduates in

the next period. (2) Agents hit the maximum allotted time to complete a college

degree (C̄) with insufficient credits to graduate and enter the labor market as an

unskilled worker in the next period. (3) Agents with insufficient credits to graduate

decide to acquire 0 credits in any period prior to C̄ and enter the labor market as

an unskilled worker. Any agent that ends their education phase with a positive

number of credits but too few credits to graduate is labeled a college dropout,

whether they end college via (2) or (3).

Phase 2 is the working lifetime, lasting from time τ = (C + 1) to R, where

R is the exogenously imposed retirement age. If agents elect not to attend college

at all, then C = 0 and an agent’s working lifetime begins at model age 1. During

phase 2, agents select their hours worked (n), consumption (c), and savings (k′)

in each period. Total income in a given period is a function of a deterministic age
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earnings profile, a stochastic component calibrated to approximate earnings risk

corresponding to each worker type, and a skill premium for college graduates.

Phase 3 of life represents an agent’s retired years, lasting from R + 1 to

N where N is the exogenously imposed time of death for all agents. During this

phase, agents no longer work and consume out of their savings and social security

transfers.

In phase 1, an agent will decide to enroll in college if: (1) she can acquire

sufficient credits to graduate within 6 years of initial enrollment given her draw

of ability, time preferences, and initial financial resource, (2) the wage premium

associated with her college investment decision is sufficient to balance out the

disutility from education, the foregone unskilled wages she would receive if all non-

leisure time was spent working, and the explicit tuition costs of her college credits.

While enrolled in college, an agent has 1 unit of time in each period to dedicate to

acquiring college credits, earning a wage in the unskilled labor market, and enjoying

leisure time. In order to graduate, an agent must earn sufficient credit hours in a

6 year window to surpass the graduation threshold χg. Agents acquire credits by

investing time in schooling, sa, in each period. The notation sa is used to make

explicit the relationship between time in school and ability. The higher an agent’s

initial draw of a, the less time it will take them to earn a credit hour χ.

As disutility comes from time spent in school, higher ability agents will have

a lower per credit disutility and will leave themselves more time for leisure or work
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in the unskilled labor market during college. Agents pay for their credits according

to the market wide tuition cost d, where each college credit costs d regardless of

the time needed to acquire that credit. As the majority of financial returns to

education are captured only upon the completion of a college degree4, all workers

who have not acquired sufficient credits to earn a college degree will enter the

market as unskilled workers (type u), and all workers who have acquired sufficient

credits will enter the market as college graduates (type g).

The model of human capital accumulation presented in this chapter differs

from the model outlined in Chapter 2 in several ways. The first is that credit

accumulation is assumed to be continuous in Chapter 2 and discrete in Chapter 4.

The second is the returns to college depends on an indivisible education investment

in Chapter 2 whereas in Chapter 4, all time spent in school increased middle-aged

wages. The third is that human capital accumulation occurs in a single period in

Chapter 2 and accumulating sufficient human capital to receive a wage premium

requires a multi-period investment in Chapter 4. As shown in Chapter 2, present-

biased agents will invest less time in education than exponential discounters when

their education choice is made in a single period. In the model outlined in Chapter

4, I am now interested in exploring how the re-optimization inherent to present-

biased discounters leads agents to pursue different human capital investments than

they had initially intended. As I am focused on college dropouts and completion

4See Carnevale et al. 2011.
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rates in Chapter 4, a model of discrete credit accumulation is appropriate given the

current structure of post-secondary education in the United States.

The Household’s Problem

Agents are born into the model at age 18 (time 1) at which point they receive

a draw of unskilled labor productivity (eu,1), initial wealth (k1), initial college credit

hours (χ0 = 0), and a type (j) that governs an individual’s time invariant ability

(aj) and discount factors (βj, δj). Following this initial draw, agents are tasked

with deciding between taking their unskilled labor to the market and forgoing a

college education or enrolling in college and splitting their non-leisure time between

working in the unskilled labor market and obtaining college credits.

If an agent elects to work during college or skips college to work in the

unskilled labor market permanently, their labor productivity evolves according

to the Markov transition matrix Pu, governing the evolution of unskilled labor

productivity from the initial draw eu,1. If an agent attends college they will receive

a new initial draw of labor productivity upon entering the working stage of life in

period τ (eω,τ ) where ω ∈ {u, g}. If credits earned are above χg, then an agent

draws eg,τ which evolves according to the Markov transition matrix Pg for college

graduates. If credits earned are below χg, then an agents draws a new unskilled

labor shock eu,τ which evolves according to Pu for high school graduates.

In a typical life-cycle model, all agents receive labor endowment shocks

from the same Markov transition probability matrix governing labor endowment
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parameter draws. However, as unemployment risk and earnings volatility differ

across skilled and unskilled workers, I accommodate this fact by allowing for a

different idiosyncratic earnings process for each worker type.

The total compensation per unit of time worked (yt,ω) for an individual of age

t and skill type ω ∈ {u, g} is given by:

yt,ω = wt × h(t)× eω × pω (4.1)

where u corresponds to an individual who’s highest degree is a high school degree

and g corresponds to an individual who’s highest degree is a college degree. wt is

the market wage in period t, h(t) is a deterministic age earnings profile shared by

all workers of age t, eω is a labor endowment shock drawn from the corresponding

distribution of labor market outcomes for individuals with education level ω, and

pω represents the college wage premium, where pg > 1 and pu = 1.

The initial productivity draw eu,1 plays a dual role in the college investment

decision as a higher productivity draw both increases an agent’s ability to fund

consumption during college and increases the opportunity cost of time spent

in school and not working. Below, I outline first the optimization problem of a

household that has exited the college education phase of their life followed by

the optimization problem solved by a household deciding whether to obtain an

additional year of schooling.
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Not enrolled in college:

Recall the first period of an agent’s working life is denoted by τ = C + 1.

Once an individual stops attending college (either having completed some or all

of a college degree or having decided to forgo college entirely), their optimization

problem becomes:

UWL = max
c,n,k′

u(cτ , nτ ) + δjE

{ N∑
i=1

βiju(cτ+i, nτ+i)

}
(4.2)

where each period the budget constraint is given by:

ct + kt+1 = (1 + r)kt + ntyt,ω + τR(ω) (4.3)

k′ ≥ k, nt + lt = 1 (4.4)

UWL is discounted expected utility over one’s working life, δj and βj are the

present-biased and exponential discount factors of a type j agent, respectively.

τR(ω) is a social security payment made to type ω agents once they retire at age

65, and lt is leisure in period t. The restriction k′ ≥ k introduces a borrowing

constraint so that agents are unable to perfectly smooth their consumption in the

face of idiosyncratic earnings shocks.

An agent of type j has a state vector x which is given by x = (k, e, t, j, ω)

where k is wealth, e is the current period’s labor shock, t is the agent’s age, j
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governs the agent’s draw of β, δ, and a, and ω ∈ {u, g} determines whether a

worker is unskilled or college educated. Conditional on this state x, we can define

the agent’s optimization problem over their working lifetime by defining their

working life value function (VW ) in the following way:

VW (x) = max
c,k′,n

u(c, n) + δβE[ṼW (x′|x)] (4.5)

subject to:

c+ k′ = (1 + r)k + ny(x) + τR(x), n+ l = 1 (4.6)

k′ ≥ k, c ≥ 0, n ∈ [0, 1] & k′ ≥ 0 if t = N̄ , VW (x) = ṼW (x) = 0 if t = N̄ + 1(4.7)

As outlined above, compensation per unit of time worked depends on t, e, and ω

and retirement transfers depend on t and ω, thus both y and τR are expressed as

functions of the state variable x. If an agent draws a value of δj = 1, then they are

not present-biased and VW = ṼW . However, if an agent draws δj < 1, I assume that

agents are naive regarding their present bias and thus the appropriate continuation

value function for their working life Bellman equation is given by5:

ṼW (x) = max
c,k′,n

u(c, n) + βE[ṼW (x′|x)]

5For a discussion of naive vs sophisticated present bias, please see Chapter 3.
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That is, the continuation value function of a present-biased agent is simply

the value function of an exponential discounter, as a present-biased agent expects

to display higher patience in the future than they are willing to exercise today.

While enrolled in college:

In the first period an agent is enrolled in college, they solve the following

optimization problem:

U = max
c,k′,n,sa

u(c1, s
a
1, n1) + δjE

{[ C∑
i=1

βiju(c1+i, s
a
1+1, n1+i) + βC+1UWL

]}
(4.8)

and in each period the budget constraint is given by:

ct + kt+1 = (1 + r)kt − dtχt + ntyt,u (4.9)

nt + sat + lt = 1, k ≥ k + dtχt (4.10)

Where dt is the direct education cost paid per credit hour acquired and yt,u is the

compensation of an unskilled worker. Following the approach of Kruger and Ludwig

(2016) and Hendricks and Leukhina (2016), each agent’s borrowing constraint is

relaxed during the education phase of their life so that agents can borrow beyond

the fixed borrowing limit k in order to finance their higher education. However,

borrowing while enrolled in college cannot exceed the cost of tuition and therefore

is not a means of consumption smoothing for credit constrained agents.

108



Student ability augments the amount of s needed to accumulate credit hours.

Thus, when referring to credit accumulation below we use the notation χ(sa) to

denote that credits accumulated is a function of ability augmented time invested

in schooling. In each period an agent is enrolled in college, they begin with some

amount of credits χ and they end with χ′ = χ+ χ(sa). That is, accumulated credits

at the end of the period are the sum of initial credits and new credits earned via

schooling investment sa. Each period, agents can attempt 12, 24, or 36 credits (per

year) and the graduation threshold is set to χg = 125.

Again, we turn to representing our agent’s optimization problem as a value

function where the state is given by x = (k, e, t, j, χ) where χ is the acquired

college credits an agent has earned by the beginning of the current period. In the

specification of x during an agent’s working life, ω ∈ {u, g} was in the agent’s state

instead of χ. This substitution was made as ω is uniquely determined by χ, and

credits earned are fixed once an agent begins their working life. We can represent

an optimizing college agent’s Bellman equation (VC) in the following way:

VC(x) = max
c,k′,n,sa

u(c, n, sa) + δβE[ṼC/W (x′|x)] (4.11)

subject to:

c+ k′ = (1 + r)k + y(x)n− dχ(sa), n+ s+ l = 1 (4.12)

k′ ≥ k + dχ(sa), c ≥ 0, n, s ∈ [0, 1] & ṼC/W (x) = ṼW (x) if t = C̄ (4.13)
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where ṼC/W is the expected value function of working or continuing

school in the next period. This value function is given by ṼC/W (x′|x) =

Emax[ṼC(x′|x), ṼW (x′|x)]. As discussed above while defining the working life value

function, if δj = 1, then ṼC/W (x′|x) = VC/W (x′|x) = Emax[VC(x′|x), VW (x′|x)].

As the only uncertainty in the model economy comes from the employment shock

parameter e, exponential discounters will only drop out of college if the knife edge

case occurs in which they were just on the cusp of being able to afford college

attendance and they receive an unexpected negative shock to labor earnings that

pushes them below a feasible consumption stream while also accumulating college

credits.

If δ < 1, then the expected continuation value functions are given by:

ṼW (x) = max
c,k′,n

u(c, n) + βE[ṼW (x′|x)] (4.14)

ṼC(c) = max
c,k′,n,sa

u(c, n, sa) + βE[ṼC/W (x′|x)] (4.15)

As noted in the introduction, a present-biased individual has an additional pathway

through which they may begin investing in a college degree only to drop out and

enter the labor market as an unskilled worker: their mis-estimation of their future

value function ṼC/W . A present-biased agent calculates their optimal schooling

investment today based on maximizing their expected utility in the next period

from either entering the workforce or continuing to accumulate credits in school.

However, as the exposition of ṼW (x) and ṼC(c) make clear, a present-biased agent
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makes their schooling investment today with the expectation that they will behave

in an exponential fashion next period. Meaning the optimal decision of a present-

biased agent today is based on a continuation value function calculated using values

of future consumption, schooling, and labor choices that the agent will not select

when they arrive at that future period.

Firms

Output is produced using capital (K) and Labor (L) where total labor supply

is a function of both college educated workers (Lg) and workers without a college

degree (Lu). Thus, the labor supply in period t is given by Lt = (Lρt,u + Lρt,g)
1
ρ and

production is given by:

Yt = AKα
t L

1−α
t = AKα

t

[
(Lρt,N + Lρt,C)

1
ρ

]1−α

I assume ρ = 1 so that worker types are perfect substitutes in the production

process:

Yt = AKα
t [Lt,N + Lt,C ]1−α (4.16)
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Factor prices (determined in a competitive market by the marginal product of

capital and labor, respectively) are given by:

qK = αA

(
Kt

Lt

)α−1
(4.17)

qL = (1− α)A

(
Kt

Lt

)α
(4.18)

Note, both high and low skilled workers are compensated according to the same

marginal product qL. The differences in compensation per unit of time worked

across agent types will be determined by their effective units of labor, jointly

determined by skill specific earnings shocks (et,ω) and the skill premium (pω).

Equilibrium

A stationary competitive equilibrium consists of aggregate quantities

(K, Lu, Lg, C, T ), prices (w, r, qL, qK), value functions {VC , VW}, continuation

value functions {ṼC , ṼW}, policy functions {c(x), n(x), k(x), sa(x)}, and a

distribution over agent types (Λ(x)) such that:

• The policy functions c(x), n(x), sa(x), and k(x) along with the value

functions VC(x),

VW (x) and the continuation value functions ṼC(x) and ṼW (x) solve the

agent’s optimi-

zation problem.

• Firms maximize profits.
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• The distribution of households over states, Λ(x), is stationary.

• Prices are given by w = (1− τw)qL and r = qK − δ.

• Markets Clear:

(i) K =
∫

Λ(x)k(x)dx

(ii) L = Lu + Lg =
∫

Λ(x)lu(x)dx+
∫

Λ(x)lg(x)dx

(iii) F (K,L) = C + δK where C =
∫
x

Λ(x)c(x)dx

Calibrating Model Parameters

Demographics

Households are born at the age of 18 (model age 1) at which point they

receive their initial draw of preferences, ability, wealth, and unskilled labor

earnings. Agents may attend school for at most C̄ = 6 years, after which point

they must enter the working stage of life. All agents work in every period until

retirement at age 65 (model age 47) and live at most 90 years (model age 73).

Labor Endowments

An agent’s labor endowment consists of a deterministic age efficiency profile,

h(t), a stochastic labor productivity shock corresponding to their skill level, eω, and

a skill premium pω. The age efficiency profile is modeled using 1990 PUMS data

and is meant to recreate the hump-shaped lifetime earnings profile in the model

economy that we observe in US data. The transition matrix for labor endowment
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shocks, Pω, is the Markov transition matrix associated with the discretized Markov

approximation of the following autoregressive process for each skill type:

ln(et,ω) = ρω ln(et−1,ω) + εt,ω (4.19)

where et−1,ω is the labor shock experienced in the previous period by a worker of

type ω ∈ {u, g}and εt,ω ∼ N(0, σ2
ε,ω) ∀ t.

As both the persistence and variance of earnings shocks differ across college

educated (type g) and unskilled (type u) workers, ρω and σ2
ε,ω are calibrated to

match earnings volatility for workers of each skill type. Following the calibration

outlined in Krueger and Ludwig (2016) using PSID data, the selected parameters

are ρg = 0.969, ρu = 0.928, σ2
ε,g = 0.0100 and σ2

ε,u = 0.0192. The main takeaway

from this calibration is that earnings of college graduates display higher persistence

and lower variance than the earnings of unskilled workers, so a college education

affords workers both higher lifetime pay through the college wage premium (pg) and

less uncertainty regarding lifetime earnings.

Preferences

Preferences during the education phase of life are given by u(c, sa, n) = c1−σ

1−σ +

γ (1−(n+sa))1−φ
1−φ . During one’s working lifetime, households no longer dedicate time to

education (sa = 0 ∀ agents) and utility is given by u(c, n) = c1−σ

1−σ + γ (1−n)1−φ
1−φ . The
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curvature parameter governing utility from consumption is set to σ = 1.56 and the

parameters γ and φ governing the disutility from non-leisure endeavors are jointly

calibrated with the schooling ability parameter sa to match college enrollment,

completion, and time spent working during college as reported in the CPS 2015

Digest of Education Statistics.

A Simple Model

Using a tractable three period version of the problem described above, I

establish that dropouts occur when agents are present-biased. Earnings are no

longer assumed to be stochastic or age dependent and agents split time between

schooling and working in periods 1 and 2. Factor prices and the wage premium (w,

r, and pg) are exogenously determined, C̄ = 2, and agents are assumed to die at the

end of their working lifetime, so that aD = aR = 3. Earnings for an agent born in

period t are given by:

yt = w(1− st) (4.20)

yt+1 = w(1− st+1) (4.21)

yt+2 = wf(st + st+1) (4.22)

6This is the value chosen in Hendricks (2007a), Huggett (1996), and DeNardi and Yang (2014),
among others.
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where individuals can invest s ∈ {0, sL, sH} units of time in school in periods 1 and

2. The function f(st + st+1) = 1 if st + st+1 < sg and pg if st + st+1 ≥ sg. I calibrate

sL + sH = sg, meaning in order to accumulate sufficient schooling to be a college

graduate (st + st+1 ≥ sg) an individual must choose the high schooling investment

(sH) in either the first or second period in which they are enrolled in college.

Proposition 1: Agents who enroll in school will always select sL in period 1 and

expect to select sH in period 2 7.

Exercise 1: Perfect Capital Markets

Utility over consumption is given by u(ct) = ln(ct) and disutility from

schooling is given by γ ∗ (1 − st)
1−φ/(1 − φ). Unlike the preferences outlined in

the calibration section, I now drop the disutility from labor portion of the agent’s

optimization problem as agents are assumed to inelastically supply all time to the

labor market that is not spent acquiring education. Upon receiving an initial draw

of capital (kt ≥ 0) agents solve the following optimization problem:

Ut = max
c,s,k′

ln(ct) +
γ(1− st)1−φ

1− φ
+ βδ

[
ln(ct+1) +

γ(1− st+1)
1−φ

1− φ

]
+ β2δ ln(ct+2)(4.23)

7Proof of Proposition 1 in Appendix C.
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s.t.

ct + kt+1 = kt + yt (4.24)

ct+1 + kt+2 = (1 + r)kt+1 + yt+1 (4.25)

ct+2 = (1 + r)kt+2 + yt+2 (4.26)

When capital markets are perfect, agents can borrow freely against expected

future earnings in order to smooth consumption over their lifetime. Thus, for a

given selection of st and st+1, optimal consumption in period t (c?t ) and expected

consumption in period t+ 1 and t+ 2 (c?Et+1 and c?Et+2) are given by:

c?t =
kt + yt + yt+1

1+r
+ yt+2

(1+r)2

1 + δβ + δβ2
(4.27)

c?Et+1 = βδ(1 + r)c?t (4.28)

c?Et+2 = β2δ(1 + r)2c?t (4.29)

As schooling has both a direct utility cost via disutility from education and an

indirect utility cost through lowered income in periods t and t+1, an agent will only

select st > 0 if they expect to acquire sufficient credits to graduate and earn the

wage premium pg in period t + 2. Thus, agents must choose between st = st+1 = 0

and st + sEt+1 = sL + sH where sEt+1 is expected schooling in period t + 1. An agent
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will enroll in college if their expected utility from enrolling exceeds their expected

utility from not enrolling8.

We can now compare expected utility from enrolling in college (st = sL and

sEt+1 = sH) to expected utility from not enrolling by substituting in for yt, yt+1,

and yt+2 in equations (4.27)-(4.29). cNt is the optimal period 1 consumption for an

agent who does not enroll in college and cSt is the optimal period 1 consumption for

an agent who does enroll in college. If an agent elects to forgo a college education,

their income is equal to w in each period and their consumption is equal to:

cNt =
kt + w + w

1+r
+ w

(1+r)2

1 + δβ + δβ2
(4.30)

cNEt+1 = βδ(1 + r)cNt (4.31)

cNEt+2 = β2δ(1 + r)2cNt (4.32)

For agents who do enroll in college, their income in period t is given by (1 − sL)w

and their expected income in periods t + 1 and t + 2 (conditional on following

through with their education investment and selecting st+1 = sH) are given by

8Although their is no uncertainty in the model, if agents are present-biased then Ut is
calculated using values of cEt+1, sEt+1 and cEt+2 that an agent might not chose when they arrive
in periods t + 1 and t + 2. If an agent draws δ = 1, then they are able to perfectly forecast their
future consumption and schooling decisions and Ut is known with certainty.
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w(1− sH) and pgw respectively:

cSt =
kt + (1− sL)w + (1−sH)w

1+r
+ pgw

(1+r)2

1 + δβ + δβ2
(4.33)

cSEt+1 = βδ(1 + r)cSt (4.34)

cSEt+2 = β2δ(1 + r)2cSt (4.35)

Thus, agents will enroll in college if, for a given draw of kt:

UE
t (cNt , c

NE
t+1, c

NE
t+2, st = 0, st+1 = 0) < UE

t (cSt , c
SE
t+1, c

SE
t+2, st = sL, s

E
t+1 = sH), (4.36)

where UE
t is expected utility associated with time t optimal ct and st and expected

future schooling and consumption.

If δ = 1, then optimal c?t+1 = c?Et+1 and optimal c?t+2 = c?Et+2. Thus, no agent

will enroll in college in period t and then drop out in period t + 1 if they are not

present-biased, as non present-biased agents perfectly predict their future utility

from consumption and schooling. If δ < 1, then agents will re-optimize in period

t + 1 taking the value of k?t+1 = kt + (1 − st)w − c?t as given. In period t + 1,

present-biased agents solve the following optimization problem:

Ut+1 = max
c,s,k′

ln(ct+1) +
γ(1− st+1)

1−φ

1− φ
+ βδ ln(ct+2) (4.37)
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s.t.

ct+1 + kt+2 = (1 + r)k?t+1 + yt+1 (4.38)

ct+2 = (1 + r)kt+2 + yt+2 (4.39)

A college drop out is an individual that selects st = sL but chooses st+1 = 0

instead of following through with sEt+1 = sH . When deciding whether to drop out,

agents solve the above utility maximization problem outlined by equations (4.37)-

(4.39) where k?t+1 = kSt+1 = kt + (1− sL)w − cSt .

Optimal consumption in periods t + 1 and t + 2 for an individual choosing no

school in period t+ 1 is given by:

cNt+1 =
(1 + r)[kt + (1− sL)w − cSt ] + w + w

1+r

1 + δβ
(4.40)

cNt+2 = (1 + r)βδcNt+1 (4.41)

and optimal consumption for an agent who continues their education in period t+ 1

is given by:

cSt+1 =
(1 + r)[kt + (1− sL)w − cSt ] + w(1− sH) + pgw

1+r

1 + δβ
(4.42)

cSt+2 = (1 + r)βδcNt+1 (4.43)
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An individual who enrolled in college in period t (see (4.36)) will choose to drop

out of college in period t+ 1 if:

Ut+1(c
N
t+1, c

N
t+2, st+1 = 0) > Ut+1(c

S
t+1, c

S
t+2, st+1 = sH) (4.44)

When capital markets are perfect, agents who enroll in school in period t

are already consuming out of their expected future income from completing their

degree. Thus, dropping out of college will reduce consumption in periods t + 1 and

t + 29. Although dropping out will lower consumption utility in periods t + 1 and

t + 2, agents may still be induced to drop out of college if the utility gains from not

spending sH units of time in school are sufficient to balance out their reduction in

consumption.

Exercise 1: Results

Consider the following calibration: The schooling parameters are given

by {sL, sH} = {.1, .6}, preference parameters are given by {β, δ, φ, γ} =

{0.96, .6, 2.5, .15}, and prices and the wage premium are given by {w, r, pg} =

{1, .01, 3.5}. After selecting the schooling parameters, preferences, and prices in the

model economy, I search over values of initial capital for which equation (4.36) is

satisfied and agents enroll in school during period t and equation (4.44) is satisfied

9See proof in Appendix D.
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and agents choose not to complete their education. That is:

UE
t (cNt , c

NE
t+1, c

NE
t+2, st = 0, st+1 = 0) < UE

t (cSt , c
SE
t+1, c

SE
t+2, st = sL, s

E
t+1 = sH)

and:

Ut+1(c
N
t+1, c

N
t+2, st+1 = 0) > Ut+1(c

S
t+1, c

S
t+2, st+1 = sH)

For the parameterization outlined above, I find agents will choose st = sL

and then select st+1 = 0 for initial capital in the range of kt ∈ [15.77, 16.14]. This

constitutes values of initial capital between 3.34 and 3.41 times greater than the

discounted lifetime earnings of a college graduate10. Thus, even in a model with

no uncertainty regarding ability, earnings, or the credit accumulation process, if

agents are present-biased then some individuals who enroll in college will elect not

to complete their degree. This occurs even though college enrollment has both a

utility cost from time spent in school during period t and an uncompleted degree

leads to a reduction in lifetime income as agents earn only part time unskilled

wages in period t and do not earn the skill premium in period t+ 2.

When capital markets are perfect, present-biased individuals who enroll in

school and borrow against their future earnings (kt+1 < 0) will never drop out of

college, as they have already consumed against their future income stream. If these

10Discounted lifetime earnings from the perspective of an agent in period t, and are equal to
yt + yt+1/(1 + r) + yt+2/(1 + r)2.
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individuals decide to drop out in period t+1, then their consumption must decrease

considerably in both period t+ 1 and period t+ 2 relative to their previous plan, as

they now have to repay the debt they used to finance age t consumption out of an

unskilled worker’s salary. Depending on the value of their initial capital, they may

be unable to repay this debt without completing their degree or it may simply cost

too much in terms of consumption utility in period t+ 1 and t+ 2.

However, US data indicates that students from poor households are far more

likely to drop out of college than students from wealthier households. Only 32%

of the poorest 25% of college enrollees complete their degree within 6 years of

initial enrollment compared with a 68% completion rate for the richest 25% of

students (Shankie 2014). As the only agents to drop out of college in a model of

unconstrained borrowing are individuals with considerably higher starting wealth

than expected lifetime income, I now turn to a model in which agents face a

binding borrowing constraint to see if present bias can account for dropouts among

lower wealth households.

Exercise 2: No Borrowing

Consider the same optimization problem outlined in equations (4.23)-(4.26)

with the additional constraint that kt+i ≥ 0 ∀ i ∈ [1, 2]. When a no-borrowing

constraint is imposed, optimal consumption at time t is calculated for three distinct

cases. Case 1: kt+1 > 0 and kt+2 > 0, Case 2: kt+1 > 0 and kt+2 = 0, and Case 3:
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kt+1 = kt+2 = 0.11 Optimal consumption for an agent electing not to attend school

is outlined below for each distinct case.

Case 1: kt+1 > 0 and kt+2 > 0 (identical to the unconstrained values in

equations (4.30)-(4.32))

cNt =
kt + w + w

1+r
+ w

(1+r)2

1 + δβ + δβ2
(4.45)

cNEt+1 = βδ(1 + r)cNt (4.46)

cNEt+2 = β2δ(1 + r)2cNt (4.47)

Case 2: kt+1 > 0 and kt+2 = 0

cNt =
kt + w + w

1+r

1 + δβ
(4.48)

cNEt+1 = βδ(1 + r)cNt (4.49)

cNEt+2 = w (4.50)

Note, for Case 2 agents are smoothing their consumption across periods t and t + 1

as in the unconstrained solution, however in period t + 2 agents simply consume

their income.

11We do not need to consider the case in which kt+1 = 0 and kt+2 > 0 as income is never
expected to be higher in period t + 1 than in period t so an optimizing agent would never exhaust
their savings in period t only to save in period t+ 1.
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Case 3: kt+1 = kt+2 = 0

cNt = kt + w (4.51)

cNEt+1 = w (4.52)

cNEt+2 = w (4.53)

Where the solution for Case 3 highlights the fact that when borrowing constraints

bind in every period, optimizing agents simply consume all of their available

resources in each period.

These same three cases are relevant for determining optimal consumption

when agents select st = sL with the expectation that st+1 = sH . Consumption

for Case 1 is identical to the values outlined in equations (4.33)-(4.45) for the

unconstrained problem. Consumption for Case 2 is given by:

cSt =
kt + (1− sL)w + (1−sH)w

1+r

1 + δβ
(4.54)

cSEt+1 = βδ(1 + r)cSt (4.55)

cSEt+2 = pgw (4.56)
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Optimal consumption for Case 3 is given by:

cSt = kt + (1− sL)w (4.57)

cSEt+1 = (1− sH)w (4.58)

cSEt+2 = pgw (4.59)

As in the unconstrained case, agents will choose to enroll in school for a given draw

of kt if:

UE
t (cNt , c

NE
t+1, c

NE
t+2, st = 0, st+1 = 0) < UE

t (cSt , c
SE
t+1, c

SE
t+2, st = sL, s

E
t+1 = sH) (4.60)

That is, if the utility from their optimally selected cSt and expected cSEt+1 and cSEt+2

along with st = sL and expected st+1 = sH is greater than their utility from

consuming cNt , cNEt+1, and cNEt+2 with st = st+1 = 0.

As in Exercise 1 when capital markets are assumed to be perfect, if an agent

draws δ = 1, then their actual consumption in periods t + 1 and t + 2 is equal to

their expected future consumption in periods t+ 1 and t+ 2 and schooling in period

t + 1 equals expected schooling in period t + 1. If δ < 1, then agents must re-solve

their optimal consumption and schooling decision in period t + 1 taking optimal

savings from period t, kSt+1 = kt + (1− st)w − cSt , as given.

Agents solve the utility maximization problem outlined in equations (4.37)-

(4.39) with the additional constraint that kt+2 ≥ 0. This leaves us with two distinct
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cases for agents who elect to drop out (st+1 = 0) and 2 distinct cases for agents

who decide to complete their education (st+1 = sH). Case 1: kt+2 > 0 and Case

2: kt+2 = 012. For agents who elect to drop out of school, consumption in Case 1 is

given by:

cNt+1 =
(1 + r)[kt + (1− sL)w − cSt ] + w + w

1+r

1 + δβ
(4.61)

cNt+2 = (1 + r)βδcNt+1 (4.62)

and consumption in Case 2 is given by:

cNt+1 = (1 + r)[kt + (1− sL)w − cSt ] + w (4.63)

cNt+2 = w (4.64)

For agents who elect to continue school in period t+ 1, consumption in Case 1

is given by:

cSt+1 =
(1 + r)[kt + (1− sL)w − cSt ] + (1− sL)w + pgw

1+r

1 + δβ
(4.65)

cSt+2 = (1 + r)βδcSt+1 (4.66)

12Although agents never expect to select kt+1 = 0 and kt+2 > 0, present bias may lead some
agents to pursue this previously unexpected savings plan.
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and consumption in Case 2 is given by:

cSt+1 = (1 + r)[kt + (1− sL)w − cSt ] + (1− sL)w (4.67)

cSt+2 = w (4.68)

As before, an individual will elect to drop out of college in period t+ 1 if:

Ut+1(c
N
t+1, c

N
t+2, st+1 = 0) > Ut+1(c

S
t+1, c

S
t+2, st+1 = sH) (4.69)

Exercise 2: Results

When credit markets are perfect and agents can borrow and lend freely at the

market interest rate, present-biased agents will be induced to drop out for relatively

high values of initial capital. This range of capital is sufficiently high that it is only

agents who always select positive capital holding (i.e. non-borrowers) who drop

out of college. When credit markets are imperfect and agents are constrained to

select non-negative savings in every period, the capital range for agents who drop

out is lowered considerably and it is primarily credit constrained present-biased

individuals who drop out of college.

As in Exercise 1, the schooling parameters are given by {sL, sH} = {.1, .6},

preference parameters are given by {β, δ, φ, γ} = {0.96, .6, 2.5, .15}, and prices

and the wage premium are given by {w, r, pg} = {1, .01, 3.5}. Once schooling
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parameters, preferences, and prices are set I search over values of initial capital

for which equation (4.36) is satisfied and agents enroll in school during period t and

equation (4.44) is satisfied and agents choose not to complete their education.

When capital markets are not perfect and agents are unable to borrow against

their future earnings, wealthy present-biased agents with kt ∈ [15.77, 16.14]

will drop out, as in the unconstrained case. However, now agents with kt ∈

[.53, 1.76] will also enroll in school during period t only to drop out in period

t + 1. This range of initial capital corresponds to initial assets between 11.2%

and 37.2% of the discounted lifetime earnings of a college graduate. Not only is

this range significantly lower than the range of capital that induced dropouts in

the unconstrained model (agents with kt roughly 3.4 times greater than discounted

lifetime earnings were the only dropouts), it is also a much wider range of initial

asset holdings. Thus, dropouts are less of a knife edge case (as they were in the

unconstrained model) and more a general feature of the optimization of present-

biased households with low initial wealth.

When credit constraints bind, agents with lower initial wealth are induced to

drop out because deviating from their expected period t + 1 schooling decision no

longer comes with explicitly lower consumption in period t+1, as was the case when

capital markets were perfect (see Appendix D). If agents start with sufficiently low

capital that they cannot perfectly smooth consumption across all three periods,

then they cannot fully consume out of their expected college wage premium that
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they intend to receive in period t + 2. Thus, dropping out of college in period t + 1

now gives agents both an increase in within period utility due to the disutility of

education they avoid and also an increase in period t + 1 consumption, as agents

who drop out receive a higher wage in period t + 1. Present-biased agents now have

two avenues through which they are tempted to drop out, leading to the wide range

of initial capital that induces present-biased agents to dropout when borrowing

constraints bind.

Conclusion

In this Chapter, I outline a quantitative life-cycle model economy in which

agents are tasked with choosing between investing time in school in order to

complete a college degree and working for an unskilled wage. I propose a novel

mechanism that leads some agents to begin investing in a college education only to

abandon their investment and enter the labor pool as an unskilled worker: present-

biased optimization.

I show that for a simple three period version of the more complex quantitative

life-cycle model discussed in the modeling section, there is a range of initial capital

for which present-biased agents will begin school only to drop out in the following

period. When capital markets are perfect, this range of capital is very narrow and

constitutes high initial wealth relative to discounted lifetime earnings. When a no

borrowing constraint is imposed, a much larger range of initial capital will induce

present-biased agents to begin a college degree that they will never finish. This
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result is generated in a model economy in which there is no individual or aggregate

uncertainty in the earnings process or in an individual’s ability to complete their

college degree, a necessary feature in previous models attempting to rationalize

college dropouts as the result of optimizing consumer behavior.

After characterizing the role played by discount rate heterogeneity and

present bias in college completion and dropouts, in future projects I aim to extend

this model in order to outline the role of initial conditions in generating inequality

over the life-cycle. In a typical quantitative life-cycle model in which income is

assumed to be exogenously determined, the distribution of wealth in the model

economy displays significantly less inequality than what we observe in US data

(as outlined in Chapter 3). A primary culprit for this observation is the model

economy’s inability to account for the high savings propensities of earnings-rich

households.

Although not the focus of this fourth chapter, my model offers a new channel

through which earnings-rich households will continue accumulating wealth; the

same discount factor that leads agents to invest in obtaining a college education

also guides their consumption-savings decisions throughout their working lifetime.

As all earnings and wealth differences come from differences in either initial

conditions (initial wealth, ability, and time preferences) or shocks experienced over

the life-cycle, this model provides an excellent foundation for outlining the relative

importance of these different elements in generating inequality over the life-cycle.
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CHAPTER V

CONCLUSION

In my dissertation, I show that present-biased optimization can lead to

underinvestment in education, decreased wealth in retirement, and college dropouts.

Chapter 2 focuses on highlighting the role of present bias in a simple three period

model in order to clearly elicit the pathway through which present bias leads agents

to re-optimize and abandon their planned consumption and savings profile in

favor of within period utility. When prices are exogenous and all agents are either

present-biased or exponential discounters, I show that present-biased agents will

make schooling decisions that they regret later in life (backward looking present-

biased agents would select a higher time investment in schooling when young).

Government policies aimed at increasing educational attainment through education

incentive pay increase education and lifetime consumption utility for both present-

biased and exponential societies. These increases are relative to an environment in

which the government only funds social security and relative to a society in which

no taxes are levied.

In Chapter 3, I show that the impact of present-biased optimization on

consumption and savings depends on several factors. The first is whether agents

are embedded in a general or partial equilibrium framework. The second is whether

agents’ lifetimes are assumed to be finite or infinite. The third is that the role of
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present bias in generating inequality over the life-cycle depends on the proportion

of agents assumed to behave in a biased fashion. The more agents who are present-

biased, the more prices respond to their biased behavior and the more time-

consistent discounters benefit from the time-inconsistent optimization of their

present-biased peers.

In Chapter 4, I build a model in which agents with a realistic life-cycle (as in

Chapter 3) are forced to make an education/ low skill labor trade-off (as in Chapter

2). I outline the full specification of the modeling environment for this chapter

and proceed to show that present-biased optimization is sufficient to generate

college dropouts in a simplified version of the model economy. Further, I find credit

constraints are essential for generating dropouts among low wealth households

(individuals who are most likely to drop out according to data) in the simple model

economy.

The results presented in my dissertation have led to several policy-relevant

research questions that I intend to pursue using a quantitative life-cycle model

similar to the model outlined in Chapter 2. Building on my finding that present-

biased optimization has its largest impact on consumption and savings late in the

life-cycle, I intend to explore the role of present-biased optimization on the timing

of retirement and social security uptake. I believe that present bias can help to

rationalize the high number of retiring individuals who elect to draw social security

prior to age 65, which reduces their monthly benefits throughout retirement and
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is currently difficult to rationalize in a model economy populated with exponential

discounters. Other extensions will focus on the savings response of present-biased

households relative to exponential households in response to announced social

security reform. As such reform is very likely given the current state of social

security in the United States, a detailed understanding of how different agent types

respond to potential reforms could provide useful insights to policy makers.
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APPENDIX

SUPPLEMENTAL EQUATIONS

A: Outline of Equilibrium Solution Algorithm:

1. Propose a candidate interest rate, r, and common discount factor, βc.For a

given βc:

2. Solve the household problem (find c(x) and k(x)) given prices r and w that

solve the firm optimization problem for the capital stock implied by the

interest rate r.

3. Using the optimized capital decision rule, k(x), compute individual savings

decisions for the stable distribution of households.

4. Compute aggregate capital, K1, the capital stock in the model economy given

preferences βc and the interest rate r. Compute the implied capital to output

ratio, K1/Y1.

5. If K1/Y1 is sufficiently close to the target capital output ratio of 3.10, stop. If

not, propose a new βc and repeat steps (a)-(d) until convergence is achieved.
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B: Present-Biased Euler Equation:

If the Bellman Equation outlined by equations (3.2)-(3.4) has an interior

solution, such a solution satisfies the present-biased Euler Equation:

u′(ct) ≥ βst+1Et{u′(ct+1)[1 + r − (1− δ)ck(kt+1, et+1, t+ 1)]} (A.1)

where ck is the derivative of the optimal consumption function w.r.t assets.

Equation (A.1) can be re-written in the following way:

u′(ct) ≥ βst+1Et{u′(ct+1)[1 + r − (1− δ)ck(kt+1, et+1, t+ 1)]}

⇔ u′(ct) ≥ βst+1Et{u′(ct+1)}(1 + r)− βst+1Et{u′(ct+1)(1− δ)ck(kt+1, et+1, t+ 1)}

⇔ u′(ct) ≥ β(1 + r)st+1Et{u′(ct+1)}
[
1− 1− δ

1 + r
Et{ck(kt+1, et+1, t+ 1)}

]
⇔ u′(ct) ≥ β(1 + r)st+1Et{u′(ct+1)}

[
1− 1− δ

1 + r

Et{u′(ct+1)ck(kt+1, et+1, t+ 1)}
Et{u′(ct+1}

]
⇔ u′(ct) ≥ β

[
1− 1− δ

1 + r

Et{u′(ct+1)ck(kt+1, et+1, t+ 1)}
Et{u′(ct+1}

]
(1 + r)st+1Et{u′(ct+1)}

let βx′ = β

[
1− 1− δ

1 + r

Et{u′(ct+1)ck(kt+1, et+1, t+ 1)}
Et{u′(ct+1)}

]
, then the present-biased Euler

Equation can be written as:

u′(ct) ≥ βx′(1 + r)st+1Et{u′(ct+1)}

which is exactly equation (3.6) in the text.
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C: Proof of Proposition 1:

If an agent decides to attend college, in order to complete their degree they must

obtain sL + sH units of schooling (sL < sH) between their first period enrolled in

school (t) and their second period enrolled in school (t+ 1).

Claim: Agents who enroll in school will always select sL in period t and expect to

select sH in period t+ 2.

An agent will select sL in period t and sH in period t + 1 if the utility

from this choice is greater than the utility from from selecting sH in t and sL in

t + 1. As utility is additively separable in consumption and schooling, I begin by

showing agents always prefer to obtain the low level of schooling in period t based

on their disutility from education. I then show that agents always prefer the low

schooling investment in period t based on utility from consumption. As agents

prefer selecting sL in period t and sH in period t + 1 based on both components

of utility, individual’s will always select sL then sH if they enroll in school.

Recall that disutility from schooling in period t is given by γ(1 − st)1−φ/(1 −

φ) + βδγ(1− st+1)
1−φ/(1− φ)1. Thus:

1This equation corresponds to the schooling portion of utility, outlined in equation (4.23).

137



Schooling utility from (sL, sH) > Schooling utility from (sH , sL) (A.2)

γ(1− sL)1−φ

1− φ
+ βδ

γ(1− sH)1−φ

1− φ
>

γ(1− sH)1−φ

1− φ
+ βδ

γ(1− sL)1−φ

1− φ
(A.3)

(1− sL)1−φ + βδ(1− sH)1−φ > (1− sH)1−φ + βδ(1− sL)1−φ (A.4)

(1− sL)1−φ(1− βδ) > (1− sH)1−φ(1− βδ) (A.5)

1− sL > 1− sH (A.6)

As sL < sH by assumption, (A.6) is satisfied and therefore based on the disutility

from education, agents always prefer postponing their high schooling investment to

period t+ 1.

The second consideration for the timing of selecting sL and sH comes from

consumption utility. Optimal consumption in period t is given by equation (4.27)

and optimal expected consumption in periods t + 1 and t + 2 are given by (4.28)

and (4.29), respectively. As c?Et+1 and c?Et+2 are both increasing in c?t and utility is

strictly increasing in consumption, it is sufficient to show that optimal consumption

in period t for an agent who enrolls in school is maximized by selecting st = sL and

st+1 = sH . When st = sL and st+1 = sH , yt = (1 − sL)w and yt+1 = (1 − sH)w and

when st = sH and st+1 = sL, yt = (1− sH)w and yt+1 = (1− sL)w. Substituting for
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yt and yt+1 in equation (4.27) yields:

c∗t (st = sL, st+1 = sH) > c∗t (st = sH , st+1 = sL) (A.7)

kt + (1− sL)w + (1−sH)w
1+r

+ yt+2

(1+r)2

1 + δβ + δβ2
>

kt + (1− sH)w + (1−sL)w
1+r

+ yt+2

(1+r)2

1 + δβ + δβ2
(A.8)

(1− sL)w +
(1− sH)w

1 + r
> (1− sH)w +

(1− sL)w

1 + r
(A.9)

(1− sL)(1− 1/(1 + r)) > (1− sH)(1− 1/(1 + r)) (A.10)

1− sL > 1− sH (A.11)

As sL < sH by assumption, (A.11) is satisfied. Therefore, based on utility from

consumption agents always prefer postponing their high schooling investment to

period t + 1 as this provides them with higher consumption in all periods. As

agents always prefer st = sL and st+1 = sH from both a schooling disutility and

consumption utility perspective, proposition 1 holds.
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D: Consumption for Dropouts:

Claim: When credit markets are perfect and an individual has selected

st = sL, then consumption in periods t + 1 and t + 2 must decrease if that agent

drops out of college (chooses st+1 = 0). Note, consumption in period t + 1 for a

dropout is given by (4.40) and consumption for an individual who continues school

and graduates in period t+ 1 is given by (4.42).

Proof: Suppose consumption increases when an individual drops out of

college in period 2. That is, suppose cNt+1 > cSt+1:

cNt+1 =
(1 + r)kSt+1 + w + w

1+r

1 + δβ
>

(1 + r)kSt+1 + (1− sH)w + pgw

1+r

1 + δβ
= cSt+1(A.12)

w +
w

1 + r
> (1− sH)w +

pgw

1 + r
(A.13)

sH +
1

1 + r
>

pg
1 + r

(A.14)

(1 + r)sH + 1 > pg (A.15)

In order for consumption to increase when an agent drops out of college, equation

(A.15) must hold. However, in order for an individual to become a drop out, they

must first invest st = sL units of time in school during period t. As schooling has

a utility cost, it must be the case that an individual will only choose to enroll

in school if their consumption is increasing in the schooling decision. That is,

cSt > cNt or else optimizing agents would never accept the disutility associated

with schooling. Substituting in for cSt and cNt using equations (4.33) and (4.30),

140



respectively, and canceling common terms leaves:

cSt > cNt (A.16)

(1− sL)w +
(1− sH)w

1 + r
+

pgw

(1 + r)2
> w +

w

1 + r
+

w

(1 + r)2
(A.17)

(1− sL) +
(1− sH)

1 + r
+

pg
(1 + r)2

> 1 +
1

1 + r
+

1

(1 + r)2
(A.18)

pg
(1 + r)2

> sL +
sH

1 + r
+

1

(1 + r)2
(A.19)

pg > (1 + r)2sL + (1 + r)sH + 1 (A.20)

As (1 + r)2sL > 0, it is impossible for equation (A.15) and (A.20) to be

simultaneously satisfied. Thus, consumption must be strictly lower in periods t + 1

and t + 2 for an agent who drops out of college relative to the value of consumption

they would select if they selected st+1 = sH and graduated college.
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