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DISSERTATION ABSTRACT 

 
Belal Abboushi 
 
Doctor of Philosophy 
 
Department of Architecture 
 
June 2018 
 
Title: Investigating Occupant’s Visual Comfort and Visual Interest towards Sunlight Patterns in 

Daylit Offices 
 
 

Sunlight is a multidimensional phenomenon that influences occupant’s comfort and 

well-being through its dynamic visual and thermal attributes. Previous studies suggested that 

the presence of sunlight patterns in space was cheering and visually interesting, which could 

improve visual comfort and space quality. However, it remains unclear what the attributes of 

visually interesting sunlight patterns are, and whether their visual interest influences visual 

comfort. This dissertation aims to answer three main questions: (1) is there a difference in visual 

interest and mood response among different projected light patterns? (2) How do sunlight 

patterns of different geometries influence visual interest and visual comfort in offices? And (3) 

what are the geometrical attributes of sunlight patterns that should be implemented in office 

spaces? 

To address these questions, a series of four studies were conducted. The first two 

studies extended empirical findings on visual interest and mood responses elicited by varying 

complexities of fractal and non-fractal light patterns projected on walls and floors of an interior 

space. These two studies determined which patterns to be further examined in Studies 3 and 4, 

which investigated the visual comfort, visual interest of sunlight patterns, and view quality 

under three different window conditions in office spaces. 

The results of studies 1 and 2 suggested that fractal light patterns of medium to 

medium-high complexity, quantified by the fractal dimension in the range (D=1.5-1.7), were 

significantly more visually interesting than other patterns. Both studies found that fractal 

compared to non-fractal light patterns provided a better balance between relaxation and 

excitement. Study 3 found that the fractal pattern was associated with a significant increase in 

visual comfort, compared to the striped pattern, though the difference in visual interest 
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between the two patterns was not statistically significant. Study 4 found that the effect of the 

fractal pattern on visual comfort, visual interest of sunlight patterns, and view quality was 

dependent on occupant’s view direction and façade orientation. These findings can have 

implications for the design and control of facade systems to improve occupant’s visual comfort, 

interest, and view quality in work environments. 

This dissertation includes both previously published/unpublished and co-authored 

material. 
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1. CHAPTER I 

INTRODUCTION 

Sunlight has been one of the most influential form drivers in architecture for millennia. 

In addition to its importance for illumination and passive heating, sunlight can help create 

stimulating interior spaces that enhance occupants’ connection to the outside environment 

through its dynamic luminous and thermal variations. These variations influence occupant’s 

visual and thermal comfort as well as their well-being. Previous studies found that sunlight can 

regulate melatonin suppression and phase shifts (Duffy & Czeisler, 2009), expedite recovery for 

depression patients (Beauchemin & Hays, 1996; Benedetti, Colombo, Barbini, Campori, & 

Smeraldi, 2001), boost the body’s vitamin D supply, regulate melatonin production (Mead, 

2008), and increase brain serotonin levels (Lambert, Reid, Kaye, Jennings, & Esler, 2002). 

Excessive exposure to sunlight, however, can cause negative effects on the skin (Mead, 2008), 

eye, and immune system (WHO, 2016). Given that people spend about 87% of their time in 

enclosed buildings (Klepeis et al., 2001), it is essential to effectively manage sunlight exposure in 

buildings to enhance occupant’s comfort, satisfaction with indoor environments, and well-being. 

1.1. Research Problem 

Unlike diffuse daylight, direct sunlight creates sharp-edged shadows with higher 

contrast levels, exhibits directionality over the course of the day, and conveys a sense of time. 

Hence, direct sunlight and diffuse daylight can create and promote different perceptual and 

behavioral experiences in space (Khanie et al., 2013; S. Rockcastle, Amundadottir, & Andersen, 

2017; Na Wang & Boubekri, 2010). Focusing on the visual experiences, there have been several 

studies suggesting that the presence of sunlight in space (hereafter sunlight patterns) can 

contribute to improving occupant’s visual comfort and visual interest through cheering effects 

(Boubekri & Boyer, 1992; Ne’Eman, 1974; Van den Wymelenberg, Inanici, & Johnson, 2010).  

However, the attributes that distinguish visually interesting and cheering sunlight 

patterns are not well understood, e.g. luminance, geometry, size, location, and duration. 

Further, it remains unclear how combinations of these attributes influence visual interest and 

visual comfort. This gap has contributed to the common practice of blocking or greatly limiting 

sunlight exposure in buildings to eliminate potential visual discomfort. While this practice might 
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reduce visual discomfort, space quality is likely to be dull (Reinhart 2015) with reduced sunlight 

benefits. To address this issue, a more comprehensive approach for managing sunlight exposure 

should address the visual interest of sunlight patterns and potential effects on visual comfort. 

One of the main sunlight pattern attributes that might influence visual interest is 

geometry. The geometry of sunlight patterns is typically shaped by external and/or internal 

obstructions such as shading systems, aperture, furniture, and trees. Expectedly, there is a wide 

range of possible sunlight pattern geometries that might exhibit different levels of visual 

interest. Currently, there are not enough studies to determine whether different sunlight 

pattern geometries elicit different levels of visual interest and visual comfort. Addressing this 

gap is particularly beneficial to office workers who typically spend prolonged times in fixed view 

directions. 

1.2. Research Questions 

This dissertation aims to answer three main questions: (1) is there a difference in visual 

interest and mood response among different projected light patterns? (2) Do sunlight pattern 

geometries influence visual interest and visual comfort in offices? And (3) what are the 

geometrical attributes of sunlight patterns that enhance visual comfort and visual interest in 

office spaces? 

Previous studies in Psychology concluded that fractal patterns were more visually 

preferred over non-fractal patterns (Spehar, Clifford, Newell, & Taylor, 2003; Taylor & Spehar, 

2016). However, in these studies, patterns were typically viewed on a computer screen with no 

relationship to spatial and environmental variables like distance, lighting, room surfaces, 

outdoor views, and glare. This restricts the applicability of their findings to sunlight patterns in 

an architectural setting. This dissertation utilizes an interdisciplinary approach by building upon 

studies and methods in both Psychology and Architecture to examine the visual interest of 

sunlight pattern geometry, and to investigate whether visual interest influences occupant’s 

visual comfort ratings. Further, it examines outdoor view quality to determine the extent to 

which patterns applied to window influence view quality ratings. Implications of this research 

can inform the design of future shading and daylight systems to improve occupant’s visual 

comfort and interest in work environments. 

This dissertation conceptualizes interactions among the visual interest of sunlight 

patterns, view quality, and visual comfort to influence and shape occupant’s visual preferences 
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towards sunlight patterns. The proposed conceptual model illustrates this idea and aims to 

incorporate qualitative aspects of sunlight patterns to assess occupant’s visual comfort and 

interest in daylit office spaces (Boubekri, Hull, & Boyer, 1991; Ne’Eman, 1974; Van Den 

Wymelenberg et al., 2010). 

1.3. Research Goals and Objectives 

Overall, this dissertation intends to advance the understanding of the effects of sunlight 

pattern geometry on occupant’s visual interest and visual comfort in daylit office spaces. 

Therefore, there are two objectives for this dissertation: first, to assess the visual interest and 

mood response to projected light patterns with the focus on identifying light patterns of high 

and low visual interests; second; to examine differences in visual comfort, visual interest, and 

view quality under different sunlight pattern geometries and window conditions. The following 

sections describe each objective and outline specific research questions. 

1.3.1. Assessing the visual interest and mood response to projected light 

patterns 

There are currently not enough studies to delineate the influence of projected light 

pattern geometry on visual interest and mood response. Therefore, the first goal was to assess 

the visual interest and mood response to projected light patterns of different geometries. This 

assessment is essential to inform the selection of patterns that can be used to examine 

differences in visual comfort in following phases of the dissertation. 

Regarding patterns of high visual interest, previous psychological studies suggested that 

viewing mid-complexity fractal patterns on a computer screen resulted in positive perceptual 

and physiological responses (Taylor et al., 2005; Hagerhall et al., 2015; Spehar et al., 2003). It is 

unclear, however, if similar responses would be elicited if the fractal patterns were projected as 

light patterns on room surfaces, e.g. walls and floor. In contrast to fractal patterns, striped 

patterns were considered more likely to cause visual discomfort because they have Fourier 

amplitude spectra that depart maximally from those of natural scenes (Wilkins, 2016). 

Given the potential difference in visual interest between fractal patterns and striped or 

Euclidean patterns, these two pattern types were included to examine their visual interest when 

spatially projected in space. The main questions to be answered are: would mid-complexity 

fractal patterns be considered more visually interesting than non-fractal patterns even when 
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spatially projected in space? And how do different projected light patterns influence reported 

mood response in terms of relaxation and excitement? 

1.3.2. Investigating differences in visual comfort, visual interest, and 

view quality under different sunlight patterns and window 

conditions. 

Currently, there is a gap in addressing and identifying the geometrical attributes for 

visually interesting sunlight patterns. Further, it remains unclear whether visually interesting 

sunlight patterns influence occupant’s subjective visual comfort ratings. Thus, the goal is to 

examine differences in visual comfort, visual interest of sunlight patterns, and outdoor view 

quality under different sunlight patterns and window conditions.  

The main questions to be answered are: is there a difference in subjective visual 

comfort, view quality, and visual interest of sunlight patterns under different sunlight and 

window conditions? and what are the positive geometrical attributes of sunlight patterns that 

are preferred by occupants, and should be implemented in daylit office spaces? 

1.4. Dissertation Overview 

This dissertation is structured as a series of chapters that explored different topics 

related to the research goals. Committee members have contributed to these papers; hence, 

listed as co-authors. The following outlines the main topics and research questions addressed in 

each chapter. 

Chapter 1 and 2 provide an introduction and summarize existing literature related to 

visual comfort, positive attributes of sunlight patterns, and view quality with a focus on light 

pattern geometry. A conceptual model is proposed to describe occupant’s visual preferences 

towards sunlight patterns in daylit offices, and to highlight the relationships between various 

study variables. Lastly, an overview of the different studies is discussed. 

Chapter 3 reports on the results of Studies 1,2, and 3, which extend empirical findings of 

fractal visual preference and human impacts by examining the visual interest and mood 

response elicited by Euclidean patterns and various complexities of fractal light patterns. This 

was the first step to transition from displaying patterns on a computer screen to being projected 

on a wall as light patterns. The two papers included in this Chapter were co-authored with 

Professors Ihab Elzeyadi, Richard Taylor, and Margaret Sereno; and will be published. 
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Chapter 4 reports on the results of a quasi-experiment (Study 4) conducted in an office 

building in Portland, OR where three experimental settings were created at the office with 

different window treatments to create three sunlight geometries. These three window 

treatments are: fractal Pattern, striped Pattern, and clear, which were tested and compared for 

their impact on the visual interest of sunlight patterns, visual comfort, and view quality. The 

paper titled “The Relationship between Sunlight Pattern Geometry and Visual Comfort in Daylit 

Offices” was co-authored with Professor Ihab Elzeyadi and was published at the ARCC–EAAE 

2018 Conference, 2018. The other paper titled “A Study of Visual Comfort, Visual Interest of 

Sunlight Patterns, and View Quality under Different Window Conditions in Offices” was co-

authored with Professors Ihab Elzeyadi, Richard Taylor, and Margaret Sereno; and will be 

published. 

Chapter 5 reports on the results of a five-week field study (Study 5) where 33 office 

workers were subjected to three sunlight patterns and window conditions: fractal pattern, 

striped pattern, and clear at an office building in San Francisco, CA. Differences in visual comfort, 

visual interest of sunlight patterns, and view quality are examined across the three conditions. 

The paper titled “Do Visually Interesting Sunlight Patterns Impact Occupants’ Perceived Glare in 

Daylit Offices?” has been published at the IES Research Symposium 2018: Light + Human Health. 

The other paper titled “Investigating Visual Comfort, Views, and Visual Interest of Sunlight 

Patterns under Fractal and Striped Window Conditions” was co-authored with Professors Ihab 

Elzeyadi, Kevin Van Den Wymelenberg, Grant Jacobsen, Richard Taylor, and Margaret Sereno; 

and will be published. 

Lastly, Chapter 6 summarizes main conclusions and outlines future warranted studies. 

 

 

 

 

 

 

 

 

 



6 
 

2. CHAPTER II  

LITERATURE REVIEW AND CONCEPTUAL MODEL 

Chapter I highlighted the significance of effectively controlling sunlight exposure in 

buildings, and identified the need to address the visual interest of sunlight patterns. While 

previous studies suggested that sunlight patterns were associated with visual interest or 

cheering effects, it remains unclear what geometrical attributes elicit these effects. This chapter 

discusses in further detail the variables influencing visual comfort, visual interest of sunlight 

patterns, view quality, and light pattern geometry. 

In Section 2.1 of this chapter, previous studies that investigated visual comfort towards 

sunlight are summarized, and the limitations of current approaches are discussed. In Section 2.2, 

positive sunlight attributes are discussed in relation to their effects on various perceptual and 

behavioral outcomes. Studies related to view quality and its effect on visual comfort are 

reviewed in Section 2.3, focusing on two main variables: view type, e.g. views of nature and 

urban views, and view direction in relation to views and glare sources. Section 2.4 summarizes 

the results of previous studies that examined fractal and striped patterns, and highlights 

variables that might influence visual interest if these patterns are projected as light patterns on 

room surfaces. Section 2.5 shows a conceptual model on occupant’s preferences towards 

sunlight patterns and highlights main relationships and variables. Lastly, Section 2.6 provides an 

overview of the studies and Chapters in this dissertation. 

2.1. Visual Comfort 

Sunlight admission and control in buildings has been examined to delineate occupant’s 

ranges of acceptance and comfort under different sunlight conditions. For instance, Elzeyadi & 

Lockyear [2010] surveyed occupants in a LEED Platinum building and found that those in East 

and West facades reported extreme glare discomfort, compared to occupants in North and 

South facades that received less sunlight exposure and less variation in luminance patterns. 

Therefore, it is essential to effectively manage occupant’s sunlight exposure in buildings to 

improve their visual and thermal comfort, well-being, and the quality of indoor spaces. 

Previous studies focusing on evaluating discomfort glare have not been able to reliably 

predict occupants’ visual comfort when direct sunlight is present in space. Metrics like Daylight 
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Glare Index (DGI), CIE Glare Index, and CIE Unified Glare Rating System (UGR) are only valid for 

conditions when direct sunlight does not enter the space (Jakubiec and Reinhart 2012; Nazzal 

1998; Iwata, Tokura, and Shukuya 1992). Daylight Glare Probability (DGP) was found to be a 

better predictor of visual comfort than DGI despite some limitations (Konstantzos & 

Tzempelikos, 2017b; Mcneil & Burrell, 2016; Van Den Wymelenberg & Inanici, 2014).  

Other approaches include using ‘the presence of sunlight on work plane’ which could 

identify 34.8% of visual discomfort; ‘direct visibility of the sun’ which predicted 20.4%; and the 

combined use of vertical illuminance and direct vertical illuminance when the sun can be seen 

through roller shades (Konstantzos & Tzempelikos, 2017b). The inconsistency in used metrics 

and their predictability suggests that there might be aspects of sunlight exposure not currently 

addressed in these metrics such as the visual interest of sunlight patterns, interactional effects 

between glare and view quality, and related psychological effects. This paper defines ‘sunlight 

patterns’ as direct sunlight projected onto different surfaces of an interior space. This term will 

help distinguish between the solar disc and sunlight projections in space. 

In a previous study that utilized questionnaires and daylight simulations to investigate 

the relationship between solar penetration levels and visual comfort (HMG, 2012), It was found 

that less than 300-350 hours of sunlight exposure per year resulted in positive visual comfort 

assessments. The resulting annual solar exposure metric (ASE1000,250h) recommended that sunlit 

areas (>1000 lux) should not exceed 10% of floor area for 250 hours per year (IES, 2013). Some 

researchers may argue that the generalizability of the ASE metric is questionable, particularly 

because it does not consider shading system type, orientation, view direction of occupants, and 

shape of sunlight patterns. Indeed, this metric has been critiqued as a strict metric that limits 

solar exposure and promotes dull spaces (Reinhart 2015). A recent study found no correlation 

between annual daylight glare probability (DGP) and ASE (Dutra de Vasconcellos, 2017). 

Recently, the area requirement of the ASE metrics has been recently extended for up to 20% of 

floor area (USGBC, 2017). Various discussions and commentary in scientific conferences and 

meetings suggest that the ASE metric, though useful in some cases, warrants further studies and 

explorations to critique its limitations (Heschong, 2017).  From the above, it is suggested that 

the current ASE metric warrants further investigation and refinement. 

Previous studies examined the relationship between sunlight and visual comfort in 

various settings. When occupants reported their long term evaluations of visual comfort, they 

tended to be most sensitive to direct sunlight (Jakubiec and Reinhart 2013). Particularly, sunlight 
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is likely to cause visual discomfort if it falls directly on the work plane or the eye, (Jakubiec, 

Reinhart, and Wymelenberg 2014). Yet, in several studies, participants preferred to allow 

sunlight on their desks when asked to adjust blinds to a preferred setting (Kent, Altomonte, 

Wilson, & Tregenza, 2017; Van Den Wymelenberg & Inanici, 2014). Overall, sunlight can 

influence visual discomfort by increasing the luminance of work surfaces and/or by increasing 

the contrast between task and surroundings within occupant’s field of vision (Suk, Schiler, & 

Kensek, 2016). 

Despite an increased interest in evaluating daylight glare metrics, most existing studies 

did not use specific sunlight pattern characteristics such as size, location, and luminance to test 

visual discomfort, instead, sunlight patterns were assessed using glare calculations such as DGP 

that do not provide information regarding specific preferred characteristics. While few studies 

have included planar measurements of the sunlit area by means of its size, illuminance, and 

distance from occupants (HMG, 2012; N. Wang & Boubekri, 2010), more studies are warranted 

to identify the patterns and geometries of visually comfortable sunlight patterns. 

2.2. Sunlight Patterns 

In a study conducted on office buildings in and around London, 73% of participants 

considered sunlight a pleasure while 61% preferred a good view over indoor sunlight (Longmore 

& Ne’Eman, 1974). Interestingly, this study reported that one of the liked effects of sunlight is 

the ‘improved appearance of interiors’. Ne’Eman (1974) created a qualitative scale for 

occupant’s reactions to sunlight, and stated that sparkle, brightness, and mental stimulus are 

characteristics that make sunlight patterns pleasant. These results are in line with results of 

another study where Boubekri, Hull, & Boyer (1991) found that optimal sunlight penetration 

levels that create maximum degrees of relaxation are from 15%-25% of floor area. They 

concluded that sunlight “sparkles” are preferred over large areas of sunlight patches. It was also 

found that sunlight as manipulated by size, season, time of the day has significant impacts on 

the affective state of occupants, which influences their indoor satisfaction. Boubekri et. al. 

stated that horizontal Illuminance under sunlight is higher than recommended light levels for 

any task; so visual perception of sunlight is mainly associated with the quality not the quantity of 

sunlight. In another study, the presence of sunlight was thought to have caused cheering and 

pleasant effects that could have increased glare tolerance (Boubekri & Boyer, 1992). Table 2.1 
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shows positive sunlight pattern attributes that were found to influence different perceptual and 

behavioral responses. 

 

Study Dependent Variable Sunlight Pattern Attributes 

(Van den Wymelenberg & Inanici, 2009) Preference ratings • Adequate luminance variations 

(Van den Wymelenberg et al., 2010) Satisfaction • Carefully located sunlight patterns 

(Ne’Eman, 1974) Pleasantness • Brightness and sparkle 

(Boubekri et al., 1991) Mood • Size of sunlit area= 20-25% of total floor area. 

• View direction. 

• Small sun patterns (sparkles) are preferred 
over large floods. 

(Boubekri & Boyer, 1992) Glare tolerance • Possible cheering and pleasant effects 

(Phil Leather, Pyrgas, Beale, & Lawrence, 1998) Job satisfaction • Area of sunlight patterns 

(Siobhan Rockcastle, Ámundadóttir, Andersen, Res, 
& Smarchs, 2016) 

Perceptual response • Modified spatial contrast. 

(Na Wang & Boubekri, 2010) Seating preference • Location of sunlight patterns 

(Reinhart, 2015) Space quality • Presence of sunlight patterns 

Table 2.1: Studies that highlighted factors influencing preferences towards sunlight patterns. 

Wang and Boubekri (2011) examined subjects’ seating preferences while doing a paper-

based task in an experimental sunlit space and found that most subjects chose to sit close to or 

within the sunlight pattern even though average horizontal illuminance for chosen locations 

ranged from (527-14052) lux. In a controlled experiment, Wymelenberg, Inanici, and Johnson 

(2010) found that 11 out of 12 participants preferred to allow sunlight patterns into space when 

it was available. It was argued that adequate luminance variations create a stimulating and 

interesting environment that improved occupants’ preference ratings. These results are in line 

with results of another study (Kim 1997) which found that sunlight improved positive emotions 

more than daylight, in both winter and summer seasons in classrooms. 

2.3. View Quality 

2.3.1. View type 

In addition to the importance of windows for illumination, windows were found to 

provide many psychological benefits such as providing access to environmental information and 

sensory change, connection to the outside world, and restoration (Wener & Heerwagen, 1990). 

It is well established that access to outdoor views, specifically scenes of nature, can contribute 

to a higher satisfaction and positive physiological benefits. For instance, one study found that an 

unobstructed view of natural surroundings was associated with improvements in self-reported 



10 
 

physical and mental health during a residential rehabilitation program (Raanaas, Patil, & Hartig, 

2011). Ulrich (1981) concluded that scenes of nature had a more positive influence on the 

psychophysiological states than urban scenes. In a subsequent study, Ulrich (1984) found that 

patients in rooms with windows looking out on a natural scene had shorter postoperative 

hospital stays and took fewer potent analgesics than those in similar rooms with windows facing 

a brick wall. Another study (Leather, Pyrgas, Beale, & Lawrence, 1998) found that a view of 

natural elements buffered the negative impact of job stress on intention to quit. Chang & Chen 

(2005) found that participants were less nervous when watching a view of nature and/or indoor 

plants were present. 

Scenes of nature were also found to improve performance (Tennessen & Cimprich, 

1995), less sick leave rates in an office building (Elzeyadi, 2012), and a more consistent 

responding to the task and less omission errors, compared to viewing a concrete roof (Lee, 

Williams, Sargent, Williams, & Johnson, 2015). The question to be asked is why viewing nature is 

more restorative and more preferred than viewing urban scenes? A recent study (Van den Berg, 

Joye, & Koole, 2016) investigated this question and concluded that differences in restorative 

quality were mediated by the complexity of natural scenes. This study suggested that fractal-like 

patterns are an important cue underlying the restorative potential of natural and built 

environments. 

Regarding visual comfort, significant differences in subjective evaluations of visual 

discomfort were found for different views at the same luminance (Shin, Yun, & Kim, 2012). This 

study found that distant views received lower visual discomfort ratings than close views, which 

could be due to the sense of extent provided by distant views compared to close views (Kaplan, 

1995). In another study, visual interest of view was found to have a marginally significant 

relationship with visual comfort (Aries, Veitch, & Newsham, 2010; Hirning, Isoardi, & Cowling, 

2014). These results are in line with results of another study (Tuaycharoen & Tregenza, 2007) 

which found that glare discomfort decreased as interest in view increased at the same mean 

luminance value. Tuaycharoen and Tregenza concluded that the four factors typically used in 

glare formulae – source luminance, source size, surround luminance and a position index – are 

not enough to predict visual comfort. 

In addition to view type and interest, two important concepts related to views are the 

effective outside view and view clarity. The effective outside view is the portion of the 

occupant’s visual field that is covered by a window (Konstantzos & Tzempelikos, 2017a) whereas 
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view clarity refers to the ability of occupants to see and distinguish outdoor environmental 

details. A recent study (Konstantzos et al., 2015) proposed and developed the view clarity index, 

which addresses view clarity through roller shades. This index was calculated as the mean of 

responses related to clarity of outside view and sky condition, the vividness of colors, 

distinguishing outside objects and colors, and visual acuity. These various aspects were equally 

weighted but further research might suggest different weights for different aspects or show the 

need to add additional aspects. The developed view clarity index was based on shade openness 

factor and normal visible transmittance. Other variables that significantly influenced view clarity 

are sky condition, viewing distance, and fabric type. This study highlights the need to examine 

view clarity through shades and window patterns. 

2.3.2. View direction 

An important concept related to visual comfort towards sunlight patterns is whether 

these patterns can typically be seen by occupants. Most studies that examined sunlight size, did 

so using planar measurements in relation to floorplan area, which might not represent the 

actual pattern size seen by occupants. For instance, in the New York Times building, automated 

shades were controlled to limit sunlight penetration to a few feet from the façade (E. Lee, 

Fernandes, Coffey, Mcneil, & Clear, 2013). Yet, questionnaire results showed that 42% of users, 

who manually overrode shade position, chose to reduce the amount of sunlight in the space. 

View direction is particularly important in offices with fixed desk layouts with limited ability to 

alter the location of computer screens. 

In offices that utilize flexible workstations, occupants can more easily adjust their view 

direction to avoid or mitigate glare. This concept is referred to as the adaptive zone (Jakubiec & 

Reinhart, 2012), which showed that when sunlight patterns are present in space, a relatively 

small change in view angle could considerably influence the probability of visual discomfort 

(Figure 2.1). Even under overcast sky conditions, a study found differences of up to 36% in glare 

source luminance values when measured at different view angles (Fan, Painter, & Mardaljevic, 

2009). Another study showed that occupant’s view direction, e.g. perpendicular or parallel to 

the window, influenced perceived glare from sunlight patterns and window size (Boubekri & 

Boyer, 1992). Lastly, Day & Creed (1996) examined occupants’ assessments of the sunlight 

received in dwellings by relating them to objectively calculated number of hours during which a 

direct unobstructed view of the sun can be expected to be seen from a defined reference point. 
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The use of reference points from which sunlight can be seen is an essential component to 

effectively quantify and control sunlight patterns in space. 

2.4. Light Pattern Geometry 

Previous studies that examined visual preference and psychological response to pattern 

geometry are mainly within the domain of environmental psychology, however, there have 

been attempts to extend the applicability of these studies to architectural settings. For example, 

a recent study that examined visual comfort in schools suggested that venetian blinds can cause 

pattern glare because of the spatial frequency of the striped sunlight patterns (Winterbottom & 

Wilkins, 2009). Such striped patterns are more likely to cause visual discomfort because they 

have Fourier amplitude spectra that depart maximally from those of natural scenes (Wilkins, 

2016). Even checkerboard patterns (which have contrast energy in several orientations) are less 

uncomfortable than stripes in which the energy varies only in one orientation (Wilkins et al. 

1984). 

On the other hand, existing literature shows that natural scenes are more preferred 

than urban scenes, (Purcell, Peron, & Berto, 2001) and are believed to elicit many physiological 

and psychological responses such as higher alpha activity (higher relaxation effects), and 

positive emotional states (R. S. Ulrich, 1981). Several theories and hypotheses were proposed to 

explain people’s fascination with nature. For instance, Kellert (2005) stated that people attach 

meaning or derive benefit from nature through its naturalistic and aesthetic values. The 

naturalistic value reflects the perception of nature as a source of stimulation, diversity, and 

detail; whereas the aesthetic value reveals the natural world as a source of beauty and 

Figure 2.1: Discomfort glare predictions as a function of view direction. Following (Jakubiec & 
Reinhart, 2012).  
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attraction. Kaplan (1995) proposed the attention restoration theory which implies that natural 

environments are particularly rich in characteristics necessary for restorative experiences. The 

question, therefore, is what are these characteristics? And what are the mechanisms that link 

these characteristics to positive psychophysiological responses? 

One theory suggested that these effects can be explained by fractal patterns, which are 

prevalent in nature (Purcell, Peron, and Berto, 2001; Joye and van den Berg, 2011; Hagerhall et 

al., 2015) such as trees and clouds. Fractal patterns can be defined as shapes that display a 

cascade of never-ending, self-similar, meandering detail as observed at various levels of scales 

(Bovill 1996; Harris 2012). While fractal patterns vary in complexity, the prevalence of mid-

complexity fractals has caused the human visual system to adapt to easily process and 

comprehend them. This adaptation is known as the fractal fluency theory (Taylor & Spehar, 

2016). Studies suggested that adaptations exist at multiple stages of the visual system (Taylor 

and Spehar 2016), such as aesthetic appreciation (Aks & Sprott, 1996; Taylor, 1998; Spehar, 

Clifford, Newell, & Taylor, 2003), pupillary oscillations (Moon et al., 2014), restorative effects 

(Hagerhall et al. 2008), as well as stress recovery benefits (Taylor, 2006). Additionally, 

adaptations are also evident in heart beat rates (Goldberger et al., 2002), motor hand activity 

(Aybek et al., 2012), and retinal circulation (Masters, 2004). These studies suggest a deep 

resonance and interaction between fractal patterns and observers (Taylor and Spehar 2016). 

The mechanism that relates fractal patterns to visual preference is shown in Figure 2.2. 

Fractal patterns are typically characterized by a variable called the fractal dimension (D). 

This parameter quantifies the fractal scaling relationship between the patterns at different 

magnifications. Behavioral studies have confirmed that the rise in D is accompanied by an 

increase in perceived visual complexity (Taylor & Spehar, 2016). Based on the D value, fractals 

can be categorized into low (D=1.1-1.3), medium (D=1.3-1.5), and high complexity (D=1.5-1.9). 

Fractal patterns are classified into two categories based on the manner in which the patterns 

repeat at different scales (Hagerhall et al. 2015); these two categories are statistical, and exact 

fractals. Statistical fractals are found in nature and exhibit randomness and variety in sizes at 

Fractal patterns are 
prevalent in nature.

The visual system has 
adapted to easily 

process and 
comprehend them.

Visual preference and 
positive 

Psychophysiological 
response.

Figure 2.2: The mechanism underlying the fractal fluency theory. 
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different scales such that only the pattern’s statistical qualities repeat (Taylor and Spehar 2016). 

In contrast to exact fractals, the natural form of statistical fractals was found to be an important 

factor for inducing alpha responses, an indicator for a wakefully relaxed state (C M Hagerhall et 

al., 2015). Figure 2.3 shows an example of fractal patterns with different levels of complexity. 

2.4.1. Perceptual and physiological response to fractals 

Previous studies showed that fractal patterns are more preferred than non-fractals. For 

instance, Taylor (1998) found that 95% of participants preferred fractals to non-fractal patterns. 

Because fractal patterns vary in complexity, researchers investigated the relationship between 

visual preference and D (Hagerhall, Purcell, and Taylor 2004). Aks and Sprott (1996) found that 

all participants preferred patterns with a fractal dimension between 1.17-1.38. Aks and Sprott 

found slight differences in preferences based on personality traits, e.g. creative people prefer 

less detailed patterns. Another study (Spehar et al., 2003) concluded that preferences 

congregate within the range D=1.3-1.5. Spehar and Taylor (2013) found that the visual 

preference peaked at D=1.25-1.5. Generally, these studies suggest that fractals with a D=1.3-1.5 

are more preferred than other fractal patterns. 

Taylor (2006) investigated effects of viewing fractals on human physiological response 

to stress. In this study, each participant was seated in a room facing one of three images: a 

fractal image of savannah landscape with D value of 1.4, a fractal image of a forest with D value 

of 1.6, a non-fractal pattern; and a white panel as a control. The results showed that only fractal 

patterns, the savannah landscape and the forest, were associated with 44% and 13% stress 

reduction compared to the white control panel, respectively. On the other hand, the non-fractal 

pattern increased stress response by 13% compared to the control panel. The researcher stated 

that the image of the savannah (D=1.4) falls into the ‘aesthetically pleasing’ range” and 

Figure 2.3: Fractal patterns with increasing D value and complexity (left to right). Courtesy 
of Cooper Boydston, Richard Taylor, and Margaret Sereno. 
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concluded that the magnitude of the change in the mean conductance between work and rest 

periods was dependent on which pattern participants viewed. 

It is well-documented in existing literature that people prefer fractal patterns over non-

fractals (Taylor 2006; Spehar et al. 2003). To explore whether there are any underlying 

physiological mechanisms to these preferences, researchers have examined brain activity while 

viewing fractals. For example, Hagerhall et al. (2008) examined effects of fractal patterns on 

brain activity while participants viewed four computer-generated fractal horizons with different 

fractal dimensions ranging from D=1.14-1.7. While viewing, electroencephalography (EEG) was 

continuously measured to assess the brain’s cerebral cortical activity. The results show that 

fractal dimension of D=1.3 elicited the highest alpha in the frontal region which suggests that 

these fractals elicited restorative and relaxing effects (a wakefully relaxed state). Further, these 

fractals generated the highest beta in parietal area, which means that they generated most 

activation in the processing of the pattern’s spatial properties (an alert state). It should be 

mentioned that delta is an indication of a state of sleepiness and drowsiness, which was lowest 

for fractals of 1.3 fractal dimension. 

2.4.2. Projected fractal patterns in space 

Most previous studies that examined the visual preference of fractal patterns were 

conducted using a computer screen to display the patterns (Spehar et al., 2003; Spehar & Taylor, 

2013; Taylor, Spehar, Hagerhall, & Van Donkelaar, 2011). Since building occupant’s reaction to 

brightness patterns and stimuli might be influenced by spatial and environmental variables, 

these preferences might differ based on the viewing method and experimental setting. 

Particularly, because of the interest in examining sunlight patterns in architectural spaces, it is 

important to investigate visual preference to spatially projected fractal light patterns. 

When a fractal pattern is projected on room surfaces, there are many variables that 

come into play that might influence visual preference and interest. These variables can be 

categorized into spatial, complexity, illumination, and interaction variables. Spatial variables 

include projection surfaces, the distance between observer and patterns, view direction, 

material properties, viewing angle, and size of the pattern. Complexity refers to that of fractal 

patterns in terms of the D value. Illumination variables include luminance variability, contrast, 

glare, as well as psychological effects of light. Third, interaction variables are related to the 

presence of other environmental stimuli, such as outdoor views, and the overall combined 



16 
 

effect on the visual preference of a certain pattern. These variables might influence perceptual 

and/or psychological responses, hence influencing the applicability of utilizing the fractal fluency 

theory in architecture (Spehar et al., 2003; Taylor et al., 2005; Taylor and Sprott, 2008; Taylor & 

Spehar, 2016). 

2.5. The Conceptual Model 

This dissertation conceptualizes the relationship among visual interest, visual comfort, 

and view quality from a systemic epistemological perspective (Elzeyadi, 2002). The proposed 

model (Figure 2.4) hypothesizes that occupant’s visual preference towards sunlight patterns is a 

result of interactions between three main constructs: visual interest of sunlight patterns, visual 

comfort, and view quality. This means that when sunlight enters a space, occupant’s visual 

reaction is a response to various aspects including its visual, cheering, and psychological 

attributes as well as view quality. Particularly, because sunlight patterns are likely to be shaped 

by window shading or exterior obstructions, which also influence view quality. 

Figure 2.4: Occupant’s preferences towards sunlight patterns in office spaces. These 
preferences are a result of visual comfort mediated by the visual interest of sunlight patterns 
and view quality. The arrows highlight some of the main variables examined by each study in 
this dissertation. The number placed on the arrows refers to study number. 
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It should be mentioned that the visual preference and visual interest are related yet 

different constructs. In this model, it is hypothesized that visual preference is a result of multiple 

factors including visual interest. Generally, visual interest in space can be influenced by several 

factors such as scene contrast (S. Rockcastle et al., 2017) and luminance variations (Van den 

Wymelenberg et al., 2010). Based on previous studies reviewed in Sections 2.1 through 2.4, it is 

hypothesized that sunlight pattern geometry can influence visual interest for these patterns. 

Further, it is hypothesized that the visual interest of sunlight patterns, visual comfort, and view 

quality interact and influence each other. The interaction among these three variables 

influences and defines overall scene visual satisfaction. 

2.6. Overview of Studies and Methods 

To investigate the visual interest of sunlight patterns, view quality, and visual comfort 

under different window conditions and sunlight pattern geometries, four sequential studies 

were conducted. These four studies were structured to build upon existing literature in 

Psychology and Architecture. The overall process can be summarized using the following points, 

which are shown in Figure 2.5. 

• Assessed the visual interest of two-dimensional light patterns projected on a room surface, 

such as walls. This step examined spatial variables and their potential effect on visual 

interest, compared to previous studies outlined in Section 2.4. 

• Assessed the visual interest of renderings of an interior space that included simulations of 

light patterns projected on multiple room surfaces. This step introduced distortion in light 

projections and potential association with daylight in an office setting. 

• Investigated whether visual interest is influenced by the distance between an observer and 

pattern. And examined differences between visual preference and visual interest. 

• Results of the previous steps informed the selection of patterns that were applied to 

windows in an office space to Investigate occupant’s visual comfort, visual interest of 

sunlight patterns, and view quality under three different window conditions. This study 

focused on short exposure durations under relatively low glare levels. 

• Investigated visual comfort, visual interest of sunlight patterns, and view quality under three 

window conditions with a focus on longer exposure durations, a wider range of daylight 

conditions, and while conducting typical office tasks. 
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Figure 2.5: A diagram of the process and relationships between the five studies included in this 
dissertation. The first Phase guided the selection of two patterns that were further investigated 
in the second Phase. 

2.6.1. Summary of methods 

The methods used in this dissertation were based on previous studies in two disciplines: 

Architecture and Psychology. The following sections discuss the selection of research settings 

and the use of research instruments. 

2.6.1.1. Research settings 

The research setting for the first three studies is a lecture room where a remote polling 

system was leveraged to collect responses from all participants at the same time. Compared to 

viewing patterns on a computer screen, projecting light patterns on a wall allowed for 

incorporating spatial and environmental variables as discussed in Section 1.1.1. The selected 

room was equipped with lighting control which was used to adjust lighting such that light 

pattern projections and room surfaces can be clearly seen by participants. Such lighting 

conditions, however, did not cause glare levels comparable to those in daylit office spaces. 

Therefore, for studies 3 and 4, there was a need to transition from light projections in a 

windowless room to sunlight patterns in office spaces. The research settings selected ensured 

Phase 1: Assessing the visual 
interest of four fractal and two 

Euclidean projected light patterns

Study 1 focused on two 
dimensional projected light 

patterns.

Study 2 focused on simulated 
sunlight patterns in renderings.

Study 3 examined differences 
between visual interest and 

preference, and assessed the 
influence of distance on these 

two measures.

Phase 2: Investigating occupant's visual 
comfort, visual interest of sunlight 

patterns, and view quality in daylit office 
spaces.

Study 4 was an initial 
investigation that included 

relatively low glare levels and 
short exposure time. 

Study 5 was conducted over five-
weeks and included a wide range 

of daylight conditions during 
typical work days.
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that sunlight can access the spaces, and that occupants were in perimeter building zones within 

10 feet from windows. Figure 2.6 shows differences in luminance distribution in the studies. 

2.6.1.2. Assessment procedures 

Previous studies that assessed visual preference of patterns utilized a forced-choice 

paired comparisons, which is often regarded as the most adequate procedure for estimating 

value judgements (Spehar et al., 2003). This required each pattern to be paired with each other 

patterns to create all possible combinations. This procedure was used in Studies 1, 2, and 3. For 

the field studies 4 and 5, there was a need to pair subjective occupant’s responses with 

objective physical measurements of illumination and thermal environment. Previous studies 

utilized brief questionnaires and data collection stations to collect longitudinal data over periods 

ranging from days to months (Kelly, Painter, Mardaljevic, & Irvine, 2012; Konis, 2013; Painter, 

Mardaljevic, & Fan, 2010; Van Den Wymelenberg & Inanici, 2014). Hence, data collection 

stations were assembled and utilized for capturing a wide range of daylight conditions without 

the presence of the experimenter, particularly in Study 5. 

Figure 2.6: The lecture room used for studies 1, 2, and 3; and a false color of luminance 
distribution in the room (top). Images of sunlight patterns and luminance distribution in 
studies 4 and 5 (bottom). 
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3. CHAPTER III  

FRACTALS IN ARCHITECTURE: THE VISUAL INTEREST, PREFERENCE, 

AND MOOD RESPONSE TO PROJECTED FRACTAL LIGHT PATTERNS 

IN INTERIOR SPACES 

Professors Ihab Elzeyadi, Richard Taylor, and Margaret Sereno contributed to this paper 

by guiding study design, analyses, and interpretations. The fractal patterns were developed by 

Professors Taylor and Sereno. I was the primary contributor to the studies, conducted data 

collection and analyses, and wrote the manuscript. 

The visual patterns of fractal objects and the brightness patterns of light projected onto 

surfaces have independently been shown to influence human perceptual response. For instance, 

previous studies suggested that viewing mid-complexity statistical fractal patterns on a 

computer screen was associated with a higher visual preference and a wakefully-relaxed state. It 

is not clear, however, if similar responses would be elicited if the same fractal patterns were 

projected as light patterns on room surfaces, like walls. Since building occupant’s visual 

perception and reaction to stimuli might be influenced by brightness patterns and spatial 

dimensions, it is important to investigate human responses to spatially projected fractal light 

patterns. 

This chapter reports on the results of three studies that extend empirical findings on 

visual interest, visual preference, and mood responses elicited by varying complexities of fractal 

light patterns projected on walls and floors of an interior space. The patterns examined include 

four fractal light patterns of varying complexities and two non-fractal light patterns. The visual 

interest and mood response to light patterns that were directly projected on a wall, or simulated 

in renderings of an interior space were assessed in Studies 1 and 2, respectively. Study 3 

examined the effect of distance, between observer and projection wall, on visual interest and 

visual preference. 
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3.1. Introduction 

People’s appreciation for nature has been investigated by many researchers who 

proposed several hypotheses and theories to explain this phenomenon. For instance, Kellert 

(2005) stated that people attach meaning or derive benefit from nature through its variability 

and aesthetic values. This notion was based on Edward Wilson’s hypothesis of Biophilia (Wilson, 

1984). Another theory proposed by Kaplan is the attention restoration theory which he outlined 

in his seminal article “The restorative benefits of nature: Toward an integrative framework” 

(Kaplan, 1995). Kaplan implied that natural environments are particularly rich in characteristics 

necessary for restorative experiences. Ulrich’s (1981) work on the influence of scene type, e.g. 

urban vs. nature, revealed a positive psychophysiological influence associated with scenes of 

vegetation, as compared to urban scenes. His consequent study showed that people with access 

to views of nature were able to reduce their hospitalization recovery time and requested fewer 

pain medications (Ulrich, 1984).  For all these hypotheses and theories, a logical question to ask 

is ‘What are the characteristics in natural scenes that elicit such positive responses?’. 

In an attempt to identify these characteristics, one approach suggested that effects of 

natural scenes on attention restoration can be explained by fractal patterns, which are prevalent 

in natural scenes  (Purcell, Peron, and Berto, 2001; Joye and van den Berg, 2011; Hagerhall et al., 

2015). Examples include trees, mountains, rivers, clouds and lightning. Fractal objects display a 

cascade of self-similar patterns over a range of magnification scales (Mandelbrot, 1983), 

building visual stimuli that are inherently complex. The degree of complexity varies between the 

different fractal objects based on the relative contributions of the coarse and fine scale patterns. 

The prevalence of mid-complexity fractals in nature has caused the human visual system to 

adapt to efficiently process them. This adaptation is known as the fractal fluency theory (Taylor 

& Spehar, 2016). This theory was selected as a basis for the two studies presented in this paper 

because of its relation to the attention restoration theory and the Biophilia hypothesis. Further, 

the ability to accurately generate fractal patterns of specific complexities and densities was 

advantageous to control for certain study variables, such as light. The term ‘density’ hereafter 

refers to the ratio between black-colored regions and white-colored regions of the fractal 

pattern. 

Previous studies suggested that fractal patterns induce relaxing and restorative effects 

(Hagerhall et al. 2008), aesthetic appreciation (Aks & Sprott, 1996; Taylor, 1998; Spehar, Clifford, 
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Newell, & Taylor, 2003), as well as stress recovery benefits (Taylor, 2006). These effects might 

be mediated by the positive visual preference, which Taylor (2002) refers to as the aesthetic pull 

of fractals. For example, in one of his experiments, Taylor (1998) found that 95% of participants 

preferred fractal over non-fractal patterns. Thus, it is important to examine the applicability of 

utilizing fractal patterns where people spend most of their time, in interior spaces (Klepeis et al., 

2001). 

Most previous studies, however, examined perceptual responses to fractals using two-

dimensional visualizations on a computer screen (Taylor et al., 2005; Hagerhall et al., 2015; 

Spehar et al., 2003). Thus, the applicability of findings to actual environmental stimuli and 

indoor brightness patterns remains limited. This is mainly because the impacts of spatial 

projection, lighting, projection surfaces, material properties, light reflectance value, viewing 

angle, size of pattern, contrast, brightness variability, and distance between pattern and 

subjects were not considered. Understanding the effects of these variables is essential to 

maintain perceptual and physiological benefits that were found when fractals were viewed on a 

computer screen. To address this gap. The studies presented in this paper investigate the visual 

interest to projected light patterns in space. 

3.1.1. Perceptual and physiological response to fractal patterns 

Fractals are typically characterized by a variable called the fractal dimension (D). This 

parameter quantifies the fractal scaling relationship between the patterns at different 

magnifications. As the contribution of the fine scale patterns grows, the D value rises from 1 to 

2. Behavioral studies have confirmed that this rise in D is accompanied by an increase in 

perceived visual complexity (Taylor & Spehar, 2016). Based on the D value, fractals can be 

categorized into low (D=1.1-1.3), medium (D=1.3-1.5), and high complexity (D=1.5-1.9). Fractal 

patterns can also be categorized into statistical and exact fractals. This paper focuses on 

statistical fractals, which are found in nature and exhibit randomness such that the statistical 

qualities of the pattern repeat at different scales, unlike exact fractals which appear exactly the 

same at different magnifications (Hagerhall et al., 2015). Exact fractals also exhibit a different 

aesthetic dependence on D (Bies, Blanc-Goldhammer, Boydston, Taylor, & Sereno, 2016) that is 

not discussed in this paper. 
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Regarding visual preference, it is important to note that not all fractal patterns are 

equal. For statistical fractals, previous studies have consistently found that people’s preferences 

congregate within fractal dimension ranges of 1.3-1.5 (Spehar et al., 2003; Spehar and Taylor, 

2013; Taylor et al., 2005). Aks and Sprott (1996) found that participants preferred patterns with 

a D value between 1.17-1.38, and suggested that aesthetic preference may reflect stable 

individual differences and traits, such as creativity. In another study, Spehar et al. (2003) 

examined visual preferences for three types of fractals that were generated with different 

methods: natural, computer-generated, and human-produced fractals. The results show that 

preferences congregate within the range D=1.3-1.5, regardless of the generation method. Figure 

3.1 shows examples of fractals generated with different methods. It is important to mention 

that in these studies; fractal patterns were viewed on a computer screen located directly in 

front of each participant, and that the two alternative forced-choice procedure was successfully 

used in previous studies of visual preference (Spehar et al., 2015). 

In addition to visual appeal, the D=1.3-1.5 range was also found to significantly reduce 

stress by 40% (Taylor, 2006). This was a unique study because fractal patterns were mounted, 

each measuring 3.2 x 6.5 feet (1 x 2 m), on a wall in front of participants. In a subsequent study 

that examined brain activity using electroencephalogram, the natural form of fractal patterns 

was found to induce an alpha response (Hagerhall et al., 2008), which is an indicator of a 

wakefully-relaxed state. Further, these fractals generated the highest beta response in parietal 

cortex, which means that they generated most activation in the processing of the pattern’s 

spatial properties and contribute to a state of alertness. Delta activity, which is an indication of a 

state of sleepiness and drowsiness, was lowest for fractals of D=1.32. Because these studies 

indicated a difference in stress recovery and brain response, Studies 1 and 2 in this paper 

Figure 3.1: (left to right) Natural, computer-generated, and human-produced fractals. Sources: 
GeoEye/Space Imaging (left); Boydston, Taylor, and Sereno (middle); and the Pollock Krasner 
Foundation (right). 
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examine mood response to determine whether similar differences are reflected in mood 

response. 

Participants’ profiles and sampling criteria varied across previous studies. Some studies 

included undergraduate students at the University of New South Wales  as volunteers or in 

exchange for a credit (Spehar et al., 2003; Spehar & Taylor, 2013), whereas others included 

members of a University community with age range between 17-31 (Aks & Sprott, 1996). Large-

scale studies such as (Draves & Al, 2008) included 20,000 people who voted while a computer 

screen saver was active. 

3.1.2. Environmental perception 

A previous study showed that natural environments were more likely to be considered 

restorative, and received positive evaluations of recovery, which appeared to explain the higher 

preference for forest slides over the city slides (Staats, Kieviet, & Hartig, 2003). Another study 

(Hartig, Evans, Jamner, Davis, & Gärling, 2003) found that positive affect increased after walking 

at a nature reserve and decreased after walking in an urban environment. This later study also 

found that sitting in a room with tree views promoted a more rapid decline in diastolic blood 

pressure than sitting in a viewless room. These results are in line with another study (Brooks, 

Ottley, Arbuthnott, & Sevigny, 2017), which concluded that both actual and pictorial nature 

contact benefits mood, though actual nature is more effective. 

In addition to views of nature, light is one of the main environmental factors that can 

influence people’s perception and mood in interior spaces. A previous study found that light 

correlated color temperature significantly affected spatial brightness perception, visual comfort, 

satisfaction, and self-reported productivity (Wei et al., 2014). Another study found that the 

perceiver’s emotions can affect the perception of brightness (Zhang, Zuo, Erskine, & Hu, 2016). 

A pioneer lighting designer, Richard Kelly, utilized lighting to influence sensation, and 

categorized lighting as an element of spatial design into three types: ambient luminescence, e.g. 

twilight haze; focal glow, e.g. a pool of light; and play of brilliants, e.g. sunlight on a fountain 

(Cialdella & D. Powerll, 1993). He associated each type with certain behaviors and sensations. 

For example, he argued that play of brilliants had potential to excite the optic nerves and 

stimulate the body (Figure 3.2). 
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Research studies by John Flynn examined effects of 

lighting conditions on impressions and behavior, and suggested 

that light can be used as a vehicle that alters the information 

content of the visual field, which has some effect on 

impressions and behavior (Flynn, Spencer, Martyniuk, & 

Hendrick, 1973). For instance, Flynn examined impressions of 

visual clarity, spatial complexity, contrast, spaciousness, and 

relaxing vs. tense space. A recent study found a link between 

contrast and visual interest in architectural renderings (Siobhan 

Rockcastle et al., 2016). While such studies are helpful, the field 

of lighting and perceptual response is rich and complex and 

requires further studies to separate effects of architectural 

composition from those of light and brightness patterns. 

While arguably related, visual interest and visual preference are different concepts. 

Generally, visual preference is more commonly assessed in psychological studies that examined 

fractal patterns (Section 1.1), while visual interest appears more prominently in architectural 

studies perhaps for the desire to create visually interesting spaces and avoid dull spaces. Hence, 

the current study examines visual interest to establish a reference for future studies in 

architecture, and investigates differences in visual preference between patterns projected on a 

wall compared to those viewed on a computer screen. 

3.2. Hypotheses 

The projection of light patterns on room surfaces and other spatial variables might 

impact perceived pattern detail and, hence, visual interest and preference. Therefore, we 

propose the following hypotheses: first, we expect mid-complexity fractal patterns to be more 

visually interesting than other fractal and non-fractal patterns; second, it is expected that fractal 

compared to non-fractal patterns would provide a better enhancement for both relaxation and 

excitement; third, it is expected that the distance, between observers and pattern, influences 

visual interest and preference, hence, the relationship between these two measures and fractal 

dimension for projected light patterns is expected to be different from those viewed on a 

computer screen. 

Figure 3.2: Dappled sunlight 
patterns through trees is an 
example of play of brilliants. 
Source: Steven Holl Architects 
/courtesy of Susan Wides. 
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3.3. Study 1: Visual Interest and Mood Response to Projected Light Patterns 

3.3.1. Methods 

3.3.1.1. Participants 

Participants were recruited from a pool of students enrolled in a human-factors course 

in the department of architecture at the University of Oregon. Recruitment was conducted using 

two methods: first, the course instructor posted a recruitment script on the course learning 

management system one week before the experiment; second, in-person recruitment was 

conducted at the beginning of the experiment. The experiment took place after a brief lecture 

by the instructor on a topic unrelated to the experiment. After this, students uninterested in 

partaking in the experiment were given five minutes to leave the lecture room. A total of 92 

participants of varied gender (51 females, 35 males, and 6 declined to answer) and age (18-29 

years of age) who studied architecture or interior architecture participated in this experiment. 

Responses from participants who required vision correction but did not wear spectacles during 

the experiment were excluded. The total number of participant responses was 89. This study 

was carried out in accordance with an Institutional Review Board (IRB) protocol, which was 

approved by the Research Compliance Services office of the University of Oregon. All 

participants signed a consent form and, upon completion, received an extra participation credit 

in that course. 

3.3.1.2. Study setting 

The experiment was conducted in a lecture hall at the University of Oregon, Eugene, OR 

at noon during winter term of 2017 (Figure 3.3). The dimensions of the room were 49.66 x 52.83 

x 18 feet (15.1 x 16 x 5.4 m). An overhead projector was used to project different patterns on a 

white wall located in front of participants. The projection area of each light pattern was 8 x 8 

feet (2.4x2.4m). Participants were seated in front of the projection wall such that each 

participant had a clear unobstructed view. The nearest person to the projection wall was 17 feet 

(5.1m) away, and the farthest person was 46 feet (14m) away. The projector (Panasonic PT-

DZ6700U) had a resolution of 1920 x 1200 pixels, and a brightness of 6,000 lumens. Lighting in 

the room was set to allow for a clear view of both the light pattern projections and room 

surfaces, and remained constant for the duration of the experiment. The luminance of the white 

and black regions of the pattern were 45 cd/m2 and 9 cd/m2, respectively. Horizontal 
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illuminance varied across the room from 4 lux in the back of the room to 225 lux in the front. 

Mean horizontal illuminance was 49 lux, and vertical illuminance at the projection wall, 

excluding the lighting contribution from the projector, was 23 lux. 

3.3.1.3. Visual stimuli 

Black and white fractal and non-fractal patterns were used in this experiment. The 

selected fractal patterns included 4 statistical fractal patterns (D = 1.1, 1.3, 1.5, and 1.7) and two 

non-fractal patterns, a rectangular and a striped pattern (Figure 3.4). All the patterns were 

generated with an identical black-to-white ratio of 50% to control for lighting distribution across 

different projected light patterns. This set of patterns was used to create 30 combinations such 

that each pattern is paired with every other pattern in the set, and presented twice, once on 

each side of the projection wall (for visual interest assessment). Stimulus order was randomized. 

To evaluate the impact of the projected light patterns on mood, projected light patterns were 

presented one at a time and rated using a Likert-type scale of four identified mood categories. 

Participants completed their selections using wireless polling remotes (iClicker) and each 

participant was identified with a unique identifier. 

 

Figure 3.4: The four fractal patterns were selected to convey various levels of fractal complexity, 
whereas non-fractals were selected to mimic light patterns of a venetian blind (Stripes) and a 
roller shade (Rectangular). Fractal patterns are courtesy of Cooper Boydston, Richard Taylor, and 
Margaret Sereno. 

Figure 3.3: A section drawing (left) and a picture (right) of the lecture room used in this study. 
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3.3.1.4. Assessment procedure 

For assessing the visual interest of light patterns, a two-alternative forced-choice (2AFC) 

procedure was used in which pairs of images were presented simultaneously. The 2AFC 

procedure has been successfully used in previous studies of visual interest and preference 

(Spehar et al., 2015). For assessing mood, a rating procedure was used on individual items. This 

procedure involved 24 item presentations (six patterns x four mood parameters). The six 

patterns were presented in random order and rated for one mood at a time using a 5-point 

Likert-type scale (see Figure 3.5 for an example stimulus). Feelings provoked by light patterns 

were assessed using two main indices: relaxation and excitement. Relaxation was based on two 

feelings: calm and peaceful; whereas excitement was based on feelings of stimulation and 

excitement. These four parameters were selected based on previous studies (Russell & Pratt, 

1980; Boubekri, Hull, & Boyer, 1991). Only four parameters were selected to reduce participant 

fatigue. The two indices were utilized following Russel and Pratt’s conceptualization of affective 

meaning as a two-dimensional bipolar space. 

Figure 3.5: Example stimuli as presented: visual interest assessment (top), and mood 
assessment (bottom). 
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Participants were given 17 seconds to make their assessment and were instructed to 

follow an impulsive first-impression selection. This duration was based on pilot testing 

conducted by the experimenter which suggested that a response period from 10-20 seconds 

would ensure that responses are received from all participants and recorded by the polling 

station receiver. After each assessment, a neutral gray color was shown for five seconds. 

Responses were collected from all participants at the same time. The time required to complete 

viewing and assessments was 40 minutes. Prior to the start of the experiment, practice 

questions were presented to ensure the clarity of question and experimental procedure. Each 

participant selected a letter A/B of the pattern that is more visually interesting (“Which light 

pattern is more visually interesting?”), and the level to which a pattern makes him/her feel. For 

example, “Does this light pattern make you feel PEACEFUL?”, and the scale used was “Not at 

all”, “a little”, “moderately”, “quite a bit”, and “extremely”. 

3.3.2. Results 

Data were analyzed to determine visual interest ratings of the various light patterns. The 

total number of times a certain pattern was selected was divided by the total possible times to 

calculate the percentage of times a certain pattern was selected (Figure 3.6). To examine 

differences in visual interest among the different patterns, the Wilcoxon Signed-rank test was 

used, as a Shapiro-Wilk test confirmed a violation of the T-test normality assumption. Wilcoxon 

signed rank test is a nonparametric alternative to the paired T-test (Berman & Wang, 2012), 

which does not require variables to be normally distributed. 

Figure 3.6: Mean percentage chosen for each light pattern (left), error bars represent 
standard error; and boxplot shows corresponding distribution. * represents p<0.05, ** 
represents p<0.01. 
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Results showed that visual interest ratings peaked for mid-complexity fractals of D=1.5, 

(Mean=69.7%, SD=18.27). Further, the visual interest for the projected fractal light pattern of 

D=1.7 (Mean=68.2%, SD=27.3) and D=1.3 (Mean=65%, SD=17.5) was not significantly different. 

Generally, the two non-fractal patterns, rectangular and the stripes, were significantly less 

visually interesting than all fractal patterns. In addition, there was a significant difference 

(Z=3.056, p<0.01) between visual interest ratings for the rectangular and striped light patterns. 

The four mood indices (calm, peaceful, excited, and stimulated) were measured on a 

linear 5-point Likert-type scale that ranged from “Not at all”, “a little”, “moderately”, “quite a 

bit”, and “extremely”. These 5 levels were converted to a numerical scale 0-4, respectively, for 

statistical analyses. Ratings for excited and stimulated feelings were highest at 2.25 and 2.96 for 

fractal patterns D=1.5 and D=1.7, respectively. The only pattern at which the four mood 

responses are relatively similar is D=1.3. The lowest excited and stimulated ratings were for the 

rectangular pattern; while the lowest calm and peaceful ratings were for the striped pattern. 

Calm and peaceful ratings gradually dropped as fractal dimension increased. Interestingly, the 

‘Excited’ line resembled the visual interest curve that previous studies found. 

The four mood variables for each light pattern were factor-analyzed to confirm the two 

main indices proposed by Russell & Pratt (1980). The data indicated the existence of two 

underlying factors with eigenvalues generally higher than 1 as recommended by Berman & 

Wang (2012). These values confirmed the use of two reliable scales to measure each factor, 

relaxation (1) and excitement (2). Table 3.1 shows load bearings of the mood variables on each 

index. These load bearings were used to calculate each index as a weighted average. Overall, 

Calm and Peaceful had high load bearings on the Relaxation index ranging from 0.79-0.93, while 

the Excited and Stimulated variables had high load bearings on the Excitement index ranging 

from 0.77-0.93. Mean mood ratings are shown in Figure 3.7. 

Pattern: D=1.1 D=1.3 D=1.5 D=1.7 Rec. Stripes 

Factor: 1 2 1 2 1 2 1 2 1 2 1 2 

Calm 0.82  0.88  0.91  0.92  0.93  0.92  

Peaceful 0.88  0.79  0.90  0.93  0.92  0.91  

Excited  0.85  0.84  0.92  0.82  0.93  0.92 
Stimulated  0.77  0.85  0.91  0.84  0.93  0.91 

Table 3.1: Factor loadings after Varimax with Kaiser Normalization for Relaxation (1) and 
Excitement (2). 
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Generally, it was found that as D increased, excitement increased and feelings of 

relaxation slightly decreased. Fractal light patterns with D=1.5 and D=1.7 were rated highest in 

excitement (Mean=2.5, SD=0.9). Unlike the striped pattern, which ranked lowest in relaxation 

(Mean=0.6, SD=0.9), and the rectangular pattern which ranked lowest in excitement 

(Mean=0.49, SD=0.81), fractal patterns have maintained more balance between relaxation and 

excitement. Table 3.2 summarizes Wilcoxon signed-rank test results in terms of the Z statistic 

and significance level (2-tailed). 

 

    Visual Interest (Z) Relaxation (Z) Excitement (Z) 

1.1 1.3 -6.73** -1.87 -7.11** 

1.5 -6.04** -2.63** -7.71** 

1.7 -4.66** -3.19** -7.69** 

Rec -6.40** -1.16 -4.79** 

Stripes -3.33** -6.79** -6.04** 

1.3 1.5 -2.15* -1.69 -6.11** 

1.7 -0.69 -2.47* -6.07** 

Rec -7.54** -2.07* -6.96** 

Stripes -6.12** -6.11** -2.08* 

1.5 1.7 -0.73 -1.22 -1.32 

Rec -7.37** -2.40* -7.57** 

Stripes -6.37** -4.66** -1.85 

1.7 Rec -6.98** -2.97** -7.73** 

Stripes -6.13** -3.67** -2.65** 

Stripes Rec -3.06** -6.65** -7.11** 

 Table 3.2: Wilcoxon signed-rank test results for Visual Interest, Relaxation, and Excitement. * 
represents p<0.05, ** represents p<0.01. 
 
 

Figure 3.7: Means of the four mood responses. The Y axis shows level to which participants felt that a 
certain pattern made him/her feel such that 0=Not at all,1= A little, 2= Moderately, 3= Quite a bit, 
4=Extremely. 
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3.3.3. Discussion 

Study 1 found that as D value increases from D=1.1 to D=1.5, visual interest increases, 

after that visual interest slightly decreases for D=1.7. The two Euclidean patterns were 

significantly less visually interesting than all fractal patterns. These results are in line with results 

of previous studies which suggested that fractals, particularly mid-complexity fractal patterns, 

are more preferred than non-fractals. Further, it seems that there is a range of fractal 

complexity that is ideal for enhancing visual interest. 

Regarding mood response, the results showed that fractal light patterns of D=1.3,1.5, 

and 1.7 not only received the highest visual interest ratings but also maintained a better balance 

between relaxation and excitement, as compared to D=1.1 and non-fractal patterns. The finding 

that relaxation was highest for the rectangular pattern and for D=1.1 aligns with results of a 

recent study (Hagerhall et al., 2015) that found highest alpha for D=1.1 in the parietal and 

temporal electrode positions. In frontal brain regions, however, the highest alpha responses 

were for fractal patterns of 1.3-1.32 (Hagerhall et al., 2008; Hagerhall et al., 2015). 

While the use of a linear scale to assess mood limited the comparison to circumplex 

models of affect, like the one presented by Boubekri, Hull, and Boyer (1991), it can be inferred 

that fractal light patterns of D=1.5 and D=1.7 were particularly more arousing. It can also be 

inferred that the striped light pattern was less relaxing because it was rated low in relaxation 

and moderate in excitement. The rectangular light pattern was rather dull because it was rated 

low in excitement and moderate in relaxation. The use of a differential scale would help 

examine these inferences. 

One of the limitations of this study is not including a fractal pattern with D=1.9 due to 

concerns about participant fatigue and duration of the experiment. In retrospect, one possible 

approach would have been to increase the D increment between fractal patterns to 0.3, e.g. 

D=1.1, D=1.4, etc. However, to compare results to previous studies, the 0.2 increment between 

D values was utilized. Another difference is that the mean of the light pattern luminance was 27 

cd/m2 which is less than 58 cd/m2 when displayed on a computer screen (Spehar, Walker, & 

Taylor, 2016). While this study suggests that certain fractal light patterns are more visually 

interesting than others, the results cannot yet be extended to daylight patterns through 

windows. Hence, Study 2 looked specifically at simulated sunlight patterns in renderings of an 

interior space. 
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3.3.4. Conclusion 

We summarize the results of Study 1 using the following conclusions: 

• The mid-complexity fractal light pattern with D=1.5 was significantly more visually 

interesting than those of D=1.1, D=1.3, and the two non-fractal light patterns. 

• The fractal light pattern of D=1.7 was slightly less visually interesting than that of D=1.5, 

though not significantly different. This more complex pattern (D= 1.7) received higher visual 

interest ratings than it did in previous studies when patterns were viewed on a computer 

screen. 

• Results suggest that spatial variables may have influenced visual interest ratings and 

warrant further investigation. 

• The rectangular light pattern was rated lowest in excitement, whereas the striped pattern 

was rated lowest in relaxation. Fractal light patterns, on the other hand, receive more 

moderate assessments in both categories. 

• Further studies are needed to determine levels of excitement and relaxation desired for 

different tasks, and to examine variability in mood response. 

3.4. Study 2: Visual Interest and Mood Response to Simulated Light Patterns 

Study 2 examined the visual interest of light 

patterns when projected on multiple surfaces (e.g. floor 

and wall) and depict sunlight coming through a side 

window. Introducing these two variables, spatial 

projection on multiple surfaces and depiction of sunlight 

through a window, aims to expand empirical evidence 

toward actual architectural spaces with sunlight patterns 

penetrating through façade systems. With that said, 

Study 2 focused on assessing visual interest and mood 

response to renderings of an office space that included 

sunlight patterns coming through a side window (Figure 

3.8). One might argue that viewing a rendering of a space containing a fractal pattern is not as 

experiential as being in the space itself. While this is true, the use of rendered images allowed 

for the control of several variables that may influence participants’ perceptual responses such as 

lighting, visual comfort, task, and view direction. 

Figure 3.8: An example of the 
rendered space showing fractal 
pattern D=1.7 projected on room 
surfaces. 
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3.4.1. Methods 

This study followed the same participant recruitment and seating, presentation 

procedure, assessment, and timing as in Study 1. The main difference between this study and 

Study 1 is the stimuli. The stimuli were rendered images of an interior space with sunlight 

patterns cast on room surfaces. Although the window itself is not shown in the renderings, its 

presence is depicted. For mood assessment, the 6 images were presented one at a time while 

participants assessed four mood parameters for each. Study 2 was conducted in the spring term 

of 2017 in the afternoon. These renderings were generated by placing the 6 black and white 

patterns, used in study 1, over a squared window such that black regions were opaque and 

white regions were clear. The renderings were generated, using Autodesk Revit modelling 

software (version 2016), of an office space with a side window through which sunlight patterns 

penetrated and were cast on the room’s floor and opposite wall. Figure 3.9 shows the six 

renderings of which four are fractal light patterns and two are non-fractals. 

Study 2 involved 68 participants, of which 94.1% were architecture or interior 

architecture students. From the 68 participants (27 male and 41 female), 77.9% were 18-29 and 

17.6% were 30-39 years of age. All participants filled out a consent form and received an extra 

participation point. Out of the 68 participants, 24 also participated in Study 1. 

3.4.2. Results 

Like the results of Study 1, Study 2 found that visual interest increases as fractal 

dimension increases (Figure 3.10). The fractal light pattern with D=1.7 was the most preferred 

(Mean=70.2%, SD=29.4), and was significantly more preferred than all other patterns. The 

fractal with D=1.5 received the second highest ratings for visual interest (Mean=64.2%, 

SD=19.3). The rectangular pattern was significantly the least preferred light pattern 

(Mean=15.8%, SD=18.6), which is in line with results of Study 1. However, a contrasting finding 

Figure 3.9: The view is selected so that only sunlight pattern projections are visible and not the 
pattern on the window. The same patterns from study 1 were used to create these renderings. 
Fractal patterns are courtesy of Cooper Boydston, Richard Taylor, and Margaret Sereno. 
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was that the striped light pattern (Mean=54.1, SD=33.4) was found to be significantly more 

visually interesting than the low-complexity fractal with D=1.1 (Mean=38.3, SD=21.6). 

The four mood responses were assessed on a scale ranging from ‘Not at all’, ‘A little’, 

‘Moderately’, ‘Quite a bit’, and ‘Extremely’. These five levels were converted to a numerical 

scale 0-4 for statistical purposes (Figure 3.11). Regarding mood response, the lowest mean for 

stimulation and excitement was for the rectangular pattern at 0.65 and 0.36, respectively. 

Generally, ‘Excited’ and ‘Stimulated’ ratings increased as D increased. Furthermore, none of the 

means of the mood responses exceeded moderate levels. This suggests that the renderings 

were less likely to elicit a mood response, as compared to a fractal pattern directly projected as 

in Study 1. By conducting a factor reduction (Table 3.3), ‘Calm’ and ‘Peaceful’ were used to 

calculate a ‘Relaxation’ index, whereas ‘Excited’ and ‘Stimulated’ were used to calculate an 

‘Excitement’ index. 

Pattern: D=1.1 D=1.3 D=1.5 D=1.7 Rec. Stripes 

 Factor: 1 2 1 2 1 2 1 2 1 2 1 2 

Calm 0.83  0.94  0.96  0.94  0.93  0.89  

Peaceful 0.88  0.88  0.92  0.93  0.93  0.94  

Excited  0.93  0.87  0.88  0.77  0.73  0.80 

Stimulated  0.84  0.87  0.83  0.92  0.95  0.87 

Table 3.3: Factor loadings after Varimax with Kaiser Normalization for each mood variable on 
the two indices Relaxation (1) and Excitement (2). 

Figure 3.10: Visual interest ratings: mean percentage chosen as a function of pattern type 
(left); whiskers represent standard error. Box plots of visual interest ratings (right). * 
represents p<0.05, ** represents p<0.01. 
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In comparison to the results of Study 1, mean excitement levels for all light patterns 

were notably lower. The fractal light pattern with D=1.5 provided the highest levels of relaxation 

and excitement (Mean =1.86 and 1.72, respectively). Similar to the results of Study 1, the 

rectangular light pattern resulted in an excitement level (Mean=0.51) significantly lower than all 

of the other patterns. In contrast, the striped light patterns resulted in a relaxation Mean of 

1.24, which is significantly lower than all the other patterns (p<0.05) except for D=1.7. A 

dimension reduction analysis showed that load bearings ranged from 0.73 to 0.96 with a Mean 

of 0.89. Table 3.4 summarizes Wilcoxon signed-rank test results in terms of the Z statistic and 

significance value (2-tailed). 

  Visual Interest (Z) Relaxation (Z) Excitement (Z) 

1.1 

1.3 5.924** 0.013 1.595 
1.5 5.087** 0.369 3.464** 
1.7 4.525** -1.821 3.284** 
Rec -5.154** -0.239 -4.526** 
Stripes 2.729** -3.199** 2.547* 

1.3 

1.5 2.623** 0.709 3.135** 
1.7 2.861** -1.298 2.776** 
Rec -6.639** -0.586 -4.65** 
Stripes -0.472 -2.638** 1.52 

1.5 
1.7 1.977* -1.704 .000 
Rec -6.723** -0.5 -5.498** 
Stripes -1.807 -2.687** -0.24 

1.7 
Rec -6.524** 0.818 -5.134** 
Stripes -2.469* -1.245 -0.506 

Rec Stripes 6.016** -2.325* 6.401** 

Table 3.4 shows results of Wilcoxon signed rank test for visual interest, relaxation, and 
excitement. * represents p<0.05, ** represents p<0.01. 

Figure 3.11: Means of the four mood responses. The Y axis shows the level to which a certain 
pattern made him/her feel, such that 0=Not at all,1= A little, 2= Moderately, 3= Quite a bit, 4= 
Extremely. 
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3.4.3. Discussion 

Results showed that visual interest 

increased gradually as D increased and 

peaking at D=1.7. One of the key 

differences between the stimuli in Study 2 

and those in Study 1 is the size and 

projection of the fractal patterns. The 

rendered sunlight patterns in Study 2 were 

distorted because of the orientation of 

projection surfaces in the rendered room, 

e.g. the wall and floor. Additionally, the 

farther the projection surface from the 

window the greater the edge blurriness 

(Figure 3.12). This suggests that the resulting shadows feature a reduced amount of fine 

structure compared to the fractal pattern used to cast the shadows. Therefore, Study 2 adds 

another source of complexity reduction to that hypothesized for the patterns used in Study 1 

(Section 2.3). The blurriness caused by the shadow effect and the reduction in resolution caused 

by viewing distance (between subjects and screen) both contributed to lowering the perceived 

complexity. Thus, a higher D value might be needed to generate the same level of complexity as 

observed in Study 1. This increased the D value at which visual interest peaked to a value of 1.7. 

As compared to the results of Study 1, mood responses for Study 2 congregated in low 

excitement. We hypothesize that this muting effect is due to the change in medium, renderings 

vs. direct projection. Therefore, the relative difference not the absolute value is what should be 

examined. This experiment expands empirical evidence regarding projected fractal light patterns 

and their applicability in architecture. Future studies should examine spatial variables, light 

intensity, glare and views, and their effects on visual interest and mood response. Implications 

of such studies would inform the design of future façade systems and glare control mechanisms, 

such as internal and external shades not only to enhance occupant’s mood but also to improve 

the quality of interior spaces. 

The two studies presented have highlighted an important research pathway, which 

focuses on the effects and application of fractal patterns in interior spaces. Further studies are 

Figure 3.12: The two highlighted regions are 
different in terms of blurriness for the fractal 
shadow of D=1.7. The region marked with the 
continuous line looks blurrier than the region 
marked with dashed lines. 



38 
 

warranted to examine occupants’ perceptual response and visual comfort towards spatially 

projected fractal light patterns in real settings such as office spaces. A forthcoming paper 

examines the relationship between visual comfort and visual interest in daylit spaces. The 

implications of such studies can inform the design of future daylighting and shading systems to 

enhance occupants’ visual comfort and satisfaction with their indoor environment. 

3.4.4. Conclusion 

The results of Study 2 are summarized in the following points: 

• This study shows that the fractal pattern with D=1.7 is significantly more visually interesting 

than all other patterns. 

• The striped pattern was significantly more visually interesting than the fractal with D=1.1. 

The rectangular pattern was significantly less visually interesting than all other patterns. 

• The fractal pattern with D=1.5 provided more balance between relaxation and excitement, 

as compared to the other light patterns. 

• The use of wireless polling to collect responses from all participants at the same time—in 

both experiments--helped ensure that all participants were subject to the same 

experimental settings and procedures and would help future studies testing similar 

hypotheses. 

3.5. Study 3: Visual Preference of Projected Light Patterns 

While the previous two studies focused on visual interest and mood responses, this 

study examined visual interest and visual preference assessments, and the effect of distance 

between observers and pattern on these assessments. The same stimuli and 2AFC assessment 

procedure from Study 1 were used. Visual interest assessments for all patterns were collected, 

followed by visual preference. Patterns were randomized in order. At the beginning of this 

study, participants (n=39) were randomly divided into two groups, a group whose participants 

sat in the first two rows of the room (n=14), and another whose participants sat in the last two 

rows (n=18). Responses from participants who required vision correction but did not wear 

spectacles during the experiment were excluded. Responses from 32 participants were included 

in the analyses (19 females, 12 males, and one no answer). The age group of 26 participants was 

18-29 years. 
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A three-way analysis of variance (ANOVA) revealed that the fractal dimension affected 

visual interest and visual preference differently (p<0.05). While visual preference peaked at 

D=1.5 (mean=59.3, SD=21.1), visual interest peaked at D=1.5 (mean=64.5, SD=22.3) to D=1.7 

(mean=65.1, SD=34.2), as can be seen in Figure 3.13. Consistently, means of visual interest and 

preference were lower for those in the back of the room for fractals of D=1.7 and D=1.3. On the 

other hand, both means were higher for those at the back of the room for fractals of D=1.1 and 

D=1.5. Although there were variations in mean percentage chosen for visual interest and visual 

preference between the two groups, there was no significant interaction effect of the group on 

these assessments (Table 3.5). 

 

 DF Mean Square F Sig. 

Assessment type 1.00 15.50 3.90 <0.1 
Assessment type x Groups 1.00 2.48 0.62 0.435 
D 1.48 24565.00 5.93 <0.05 
D x Group 1.48 565.75 0.13 0.809 
D x Assessment type 2.30 2037.17 3.60 <0.05 
D x Assessment type x Group 2.30 82.05 0.14 0.891 

Table 3.5: ANOVA results. Assessment type refers to either visual preference or visual interest, 
and Group refers to the seating group, i.e. front or back.  

3.6. General Discussion 

Generally, the results suggested that visual interest is dependent on the amount of fine-

scale detail perceived by an observer. Overall, the three studies found that visual interest 

peaked for fractals of D=1.5-1.7, which partially supports the first hypothesis expecting a higher 

visual interest for mid-complexity fractals. These results of these studies might have been 

influenced by several factors. First, the use of light as a medium to project the patterns might 

Figure 3.13: Mean percentage chosen for visual interest and preference by fractal 
dimension (left); mean visual interest by seating group (middle); and mean visual 
preference (right). 
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have influenced visual interest ratings. The possibility of participants associating light patterns 

with dappled sunlight through trees, particularly in Study 2, was not tested. Examining these 

associations in future studies can reveal important factors that might influence visual interest of 

fractal light patterns in interior spaces. 

Second, the projection of relatively large-scale fractal light patterns in a lighted space 

might have affected perceived contrast and complexity. To demonstrate the difference in color 

brightness between patterns projected on a wall and those viewed on a computer screen, Figure 

3.14 shows the differences in color tone for black and white regions when projected on a wall 

compared to when viewed on a computer screen. This graph suggests that there was a higher 

contrast between black and white regions of a pattern when viewed on a computer screen. 

Third, previous studies that examined visual preference and the three studies reported 

were conducted in windowless rooms. The provision of view and/or daylight might present 

competing factors that might influence visual interest. A view of nature through windows might 

reduce the relative significance of computer-generated fractals. Thus, it would be important to 

assess whether the presence of windows affects human perceptual response towards fractal 

patterns. Figure 3.15 shows visual interest results from the three studies. 

Figure 3.14: Black and white color tones as displayed on screen and as projected on 
the wall (Study 1) plotted on a gradient scale from black to white. 
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As for visual preference, the results of Study 3 showed a different trend than that 

reported in previous studies outlined in Section 1.1. While visual preference typically peaked at 

D=1.3-1.5 with a higher preference for D=1.1 than D=1.7 for the previous studies, Study 3 

showed that visual preference peaked at D=1.5 but with a higher preference for D=1.7 than 

D=1.1. As can be seen in Figure 3.16, the preference curve for previous studies (gray lines) 

seems to plunge for D higher than 1.3-1.5, in contrast, visual preference results from Study 3 

shows a gradual increase up to D=1.5 and then a slight decrease for D=1.7. There were no 

significant differences in visual preference or interest when examined by seating distance from 

the projection wall. These results support the third hypothesis regarding a difference in the 

relationship between fractal dimension and visual preference, but do not support our 

hypothesis regarding the effect of distance on these preferences. 

Figure 3.15: Visual interest results from the three studies. 
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Regarding mood response, Study 1 showed that fractals maintained a better balance 

between relaxation and excitement compared to the Striped and Rectangular patterns. On the 

other hand, Study 2 showed less variability in mood response, which could be due to the use of 

rendered images instead of directly projecting the patterns in space. Overall, results from Study 

1 support the second hypothesis regarding a better maintained balance between relaxation and 

excitement by fractals compared to Euclidean patterns. 

 

The fractal pattern D=1.7 and the Striped patterns were consistently significantly 

different in terms of visual interest, hence were selected for further investigation in the next 

Chapter by projecting them as sunlight patterns in daylit offices. Particularly, the effect of 

window and sunlight patterns on visual interest, comfort, and view quality is examined in a pilot 

study that involved 22 participants. 

 

 

 

 

 

 

 

 Figure 3.16: Visual preference by D value for previous studies and Study 3. 
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4. CHAPTER IV  

A PILOT STUDY EXAMINING VISUAL COMFORT, VISUAL INTEREST 

OF SUNLIGHT PATTERNS, AND VIEW QUALITY  

Parts of this Chapter were published in the 2018 ARCC-EAAE International Conference May 16-

19, 2018 in Philadelphia, Pennsylvania. Professor Ihab Elzeyadi contributed to this chapter by 

guiding study design and analyses. The fractal patterns used were developed by Professors 

Richard Taylor and Margaret Sereno. I was the primary contributor to the studies, conducted 

data collection and analyses, and wrote the manuscript. 

This Chapter reports on the results of a quasi-experiment conducted in an office building 

in Portland, OR. Three experimental settings (hereafter test stations) were created at the office 

using different window treatments to create three sunlight geometries Fractal Pattern, Striped 

Pattern, and ‘No-Pattern’ which were tested and compared for their impact on visual interest, 

visual comfort, and view quality. The study followed a within-subjects design (same group 

experienced three different sunlight conditions) where 22 office employees completed a brief 

questionnaire at each test station, while quantitative environmental data were collected. 

Participants’ responses were paired with physical measurements to examine correlations and 

visual comfort across the three stations. 

Previous studies suggested that sunlight presence in space can improve space quality, 

occupant’s visual and thermal comfort, mood, and health. Current dynamic daylighting metrics 

and design guidelines, however, limit sunlight penetration in work environments, reducing both 

its negative and positive effects on visual comfort and space quality. Furthermore, incorporating 

sunlight in daylighting design has not been comprehensively examined, hence, lacks consensus 

among researchers and practitioners to embrace its effects in architectural design. Some 

researchers suggested that sunlight should be greatly limited to avoid potential visual 

discomfort in offices. While this approach may help limit glare, resultant spaces are likely to be 

dull with reduced health benefits and visual interest. One gap in existing literature on sunlight 

exposure is the lack of addressing the effect of visual interest for both sunlight pattern and its 

play of sparkle on visual comfort. The questions to be answered by this paper are: (1) is there a 



44 
 

difference in subjective visual comfort assessments under different sunlight pattern geometries? 

and (2) what are the positive geometric attributes of sunlight that are preferred by occupants, 

and should be implemented in daylit office spaces? 

4.1. Introduction 

Sunlight admission and control in buildings has been examined to delineate occupant’s 

ranges of acceptance and comfort under different sunlight conditions. Studies on occupant’s 

health found that sunlight exposure can expedite recovery for depression patients [Benedetti et 

al. 2001; Beauchemin and Hays 1996], boost the body’s vitamin D supply, and regulate 

melatonin production (Mead, 2008). Regarding visual comfort, previous studies have highlighted 

the importance of sunlight control at different building facades. For instance, Elzeyadi & 

Lockyear [2010] surveyed occupants in a LEED platinum glazed building and found that those in 

East and West facades reported extreme glare discomfort, compared to occupants in North and 

South facades that received less sunlight penetration and variations in brightness patterns. 

Therefore, it is essential to effectively manage occupant’s sunlight exposure in buildings to 

improve their visual and thermal comfort, well-being, and the quality of indoor spaces. 

Previous studies focusing on evaluating discomfort glare in offices have not been able to 

effectively predict occupants’ visual comfort when direct sunlight is present in space. Metrics 

like Daylight Glare Index (DGI), CIE Glare Index, and CIE Unified Glare Rating System (UGR) are 

only valid for conditions when direct sunlight does not enter the space [Jakubiec and Reinhart 

2012; Nazzal 1998; Iwata, Tokura, and Shukuya 1992]. Daylight Glare Probability (DGP) was only 

able to explain 3 out of 201 scenes that subjects rated as ‘just uncomfortable’ (Van den 

Wymelenberg, 2012). This suggests that there might be aspects of sunlight exposure not 

currently addressed in these metrics such as the visual interest of sunlight patterns, 

interactional effects between glare and view quality, and related psychological effects. To 

distinguish between the solar disc and sunlight projections in space, this study defines ‘sunlight 

patterns’ as direct sunlight projected onto different surfaces of an interior space. 

In a previous study that utilized questionnaires and daylight simulations to investigate 

the relationship between solar penetration levels and visual comfort (HMG, 2012), it was found 

that less than 300-350 hours of sunlight exposure per year resulted in positive visual comfort 

assessments. The resulting annual solar exposure metric (ASE1000,250h) recommended that sunlit 

areas (>1000 lux) should not exceed 10% of floor area for 250 hours per year (IES, 2013). Some 
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researchers may argue that the generalizability of the ASE metric is questionable, particularly 

because it does not consider shading system type, orientation, view direction of occupants, and 

shape of sunlight patterns. Indeed, this metric has been critiqued as a strict metric that limits 

solar exposure and promotes dull spaces [Reinhart 2015]. A recent study found no correlation 

between annual DGP and ASE (Dutra de Vasconcellos, 2017). Recently, the area requirement of 

the ASE metrics has been extended for up to 20% of floor area (USGBC, 2017). Various 

discussions and commentary in scientific conferences and meetings suggest that the ASE metric, 

though useful in some cases, warrants further studies and explorations to critique its limitations 

(Heschong, 2017).  When sunlight enters a space, occupants react to its various aspects 

including its thermal, visual, aesthetic, and psychological attributes. Systemically, each one of 

these aspects influences overall comfort towards sunlight (Elzeyadi, 2002). Therefore, to 

enhance the usability of current glare and sunlight exposure metrics, it is necessary to 

investigate not only direct but also the interactional effect of sunlight pattern geometry, glare 

perception, and their impact on occupant’s visual comfort. From the above, it is suggested that 

the current ASE metric warrants further investigation and refinement. 

4.1.1. Visual comfort and glare from sunlight 

Previous studies examined the relationship between sunlight and visual comfort in 

various settings. When occupants composed their long term evaluations of visual comfort, they 

tended to be most sensitive to direct sunlight [Jakubiec and Reinhart 2013]. Particularly, sunlight 

is likely to cause visual discomfort if it falls directly on the work plane or the eye, [Jakubiec, 

Reinhart, and Wymelenberg 2014]. Yet, in several studies, participants preferred to allow 

sunlight on their desks when asked to adjust blinds to a preferred setting (Kent et al., 2017; Van 

Den Wymelenberg & Inanici, 2014). Sunlight can contribute to enhancing luminance variability 

in the field of view, which was found to be associated with perceptions of pleasantness and 

cheerfulness in libraries (Parpairi, Baker, Steemers, & Compagnon, 2002). Overall, sunlight can 

influence visual discomfort by increasing the luminance of work surfaces and/or by increasing 

the contrast between task and surroundings within occupant’s field of vision (Suk et al., 2016). 

Despite an increased interest in evaluating daylight glare metrics, most existing studies 

did not use specific sunlight pattern characteristics such as size, shape, geometry, location, and 

luminance to test visual discomfort, instead, sunlight patterns were assessed using glare indexes 

such as DGP and DGI that do not provide information regarding sunlight pattern attributes. 
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Among the few studies that examined sunlight pattern attributes are the large-scale study 

discussed in the previous section (HMG, 2012), and that conducted by Wang & Boubekri [2010]. 

Although the later did not find a significant influence of the distance between participants and 

sunlight pattern on cognitive performance, it concluded that the location of sunlight patterns, 

window, and activity type affected appreciation and use of the sunlit room. 

4.1.2. Aesthetics of sunlight in spaces 

In his seminal study, Ne’Eman [1974] found that 73% of occupants considered sunlight a 

pleasure while 61% preferred a good view over indoor sunlight. Boubekri, Hull, and Boyer [1991] 

found that optimal sunlight penetration levels that create maximum degrees of relaxation are 

from 15%-25% of floor area, when positioned sideways to the window. They concluded that 

sunlight “sparkles” are preferred over large areas of sunlight patches. It was also found that 

sunlight as manipulated by size, season, time of the day has significant impacts on the affective 

state of occupants, which influences occupant’s satisfaction. In another study, the presence of 

sunlight was thought to have created cheering and pleasant effects that could have increased 

glare tolerance (Boubekri & Boyer, 1992). These findings are in line with results of another study 

which found that façade pattern characteristics influenced perceived spatial ambiance 

(Chamilothori, Wienold, & Andersen, 2016). 

In a controlled experiment following a repeated measures approach, Wymelenberg, 

Inanici, and Johnson [2010] found that 11 out of 12 participants preferred to allow sunlight 

patterns into space when it was available. It was argued that adequate luminance variations 

create a stimulating and interesting environment that improved occupants’ preference ratings. 

These results are in line with another study by Kim [1997], which found that sunlight improved 

positive emotions more than daylight, in both winter and summer seasons. In a study that 

examined preference assessments of six façade designs and resulting sunlight patterns 

(Omidfar, Niermann, & Groat, 2015), it was found that a façade design of low complexity and 

high order was more preferred than another of high complexity and low order. Overall, such 

qualitative attributes and environmental aesthetic measures should be used to augment 

quantitative illumination measurements. 

4.1.3. Outdoor views and glare  

View type and content have been examined by several researchers to assess their 

effects on subjective ratings of glare. For instance, significant differences in subjective 
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evaluations of visual discomfort were found for different views at the same luminance (Shin et 

al., 2012). The same study also found that distant views received lower visual discomfort ratings 

than close views, which could be due to the sense of extent provided by distant views. These 

results are in line with results of another study by Tuaycharoen & Tregenza [2007], which found 

that glare discomfort decreased as interest in view increased at the same mean luminance 

value. They concluded that the four factors typically used in glare formulae – source luminance, 

source size, surround luminance and a position index – are not enough to predict visual comfort. 

4.1.4. Fractal patterns and visual interest 

People’s fascination with nature has been investigated by many researchers who 

proposed several hypotheses and theories to explain this phenomenon. Some of the most 

prominent of those are Edward Wilson’s hypothesis of Biophilia (Wilson, 1984), Kaplan’s 

Attention Restoration Theory [Kaplan, 1995], and Ulrich’s work on scene type and 

psychophysiological responses (R. S. Ulrich, 1981). Most of these hypotheses and theories 

implied that there are certain characteristics in nature scenes that trigger positive aesthetic and 

psychophysiological responses. 

One approach suggested that these theories can be explained by fractal patterns, which 

are prevalent in nature [Purcell, Peron, and Berto, 2001; Joye and van den Berg, 2011; Hagerhall 

et al., 2015]. Fractal patterns can be defined as shapes that display a cascade of never-ending, 

self-similar, meandering detail as observed at various levels of scales [Bovill 1996; Harris 2012]. 

Many elements in nature, such as trees and clouds, embody fractal patterns. The prevalence of 

mid-complexity fractals in scenes of nature has caused the human visual system to adapt to 

efficiently process them. This adaptation is known as the fractal fluency theory (Taylor & Spehar, 

2016). Previous studies suggested that fractal patterns induce relaxing and restorative effects 

[Hagerhall et al. 2008], aesthetic appreciation [Aks & Sprott, 1996; Taylor, 1998; Spehar, Clifford, 

Newell, & Taylor, 2003], as well as stress recovery benefits [Taylor, 2006]. While these studies 

were conducted using mathematically generated fractal patterns, the aesthetic preference to 

fractals was not dependent on their generation process, e.g. mathematically, painted, or 

generated by nature (Spehar et al., 2003). 

Fractals are typically characterized by a variable called the fractal dimension (D), which 

ranges between 1-2. This parameter quantifies the fractal scaling relationship between the 

patterns at different magnifications. Behavioral studies confirmed that a rise in D values 
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accompanied by an increase in perceived visual complexity (Taylor & Spehar, 2016). Based on 

this, fractals can be categorized into low (D=1.1-1.3), medium (D=1.3-1.5), and high complexity 

(D=1.5-1.9). These thresholds are based on previous studies that consistently refereed to the 

range D=1.3-1.5 as mid-complexity (Street, Forsythe, Reilly, Taylor, & Helmy, 2016; Taylor et al., 

2011). The authors of the current study have accordingly extrapolated thresholds for low and 

high complexity categories. 

In two previous studies by the authors (under review), the fractal fluency theory has 

been expanded to investigate perceptual response visual interest and mood to projected 

fractal light patterns. Results of these studies suggested that projected fractal light patterns of 

mid to mid-high complexity were more visually interesting than those in Euclidean shapes such 

as striped and rectangular patterns. Further, unlike Euclidean shaped light patterns, projected 

fractal light patterns maintained a better balance between relaxation and excitement (Figure 

4.1). These findings formed the basis of this study. 

4.2. The Conceptual Model and Hypotheses 

This study conceptualizes the relationship between visual interest and visual comfort 

from a systemic epistemological perspective. This model hypothesizes that occupant’s visual 

preference towards sunlight is a result of interactions between two main factors: visual interest 

and visual comfort (Figure 4.2). The visual preference of sunlight patterns can be thought of as 

visual comfort mediated by the visual interest of sunlight patterns. 

Figure 4.1: The six projected light patterns tested in the previous two studies, with selected 
patterns highlighted. The D value of fractal patterns is indicated below each pattern. 
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This study examined the effect of sunlight pattern geometry –Fractal, Striped, and No 

Pattern on visual comfort, view quality, and visual interest of sunlight patterns. Based on 

previous studies discussed in sections 1.1 through 1.4, we hypothesized that: 1) the fractal 

pattern is expected to be associated with a significant increase in visual comfort and visual 

interest ratings, compared to the striped pattern. 2) View quality ratings through the Fractal 

pattern are expected to be significantly higher than that for the striped pattern. 3) View quality 

ratings for the No-Pattern station are expected to be significantly higher than both patterns, 

assuming tolerable glare levels. 4) Because objective illumination measures including glare 

metrics do not address the visual interest of glare source, sunlight pattern geometry, or view 

quality, the relationship between these metrics and subjective visual comfort ratings is expected 

to differ across the three conditions. 

 

 

 

 

 

 

 

 

Figure 4.2: The visual preference towards sunlight patterns in work environments. These 
preferences are a result of visual comfort mediated by the visual interest of sunlight patterns. 
The list of variables influencing visual comfort or interest is not exhaustive but is meant to 
highlight main variables involved in the current study (with an asterisk). 
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4.3. Methods 

4.3.1. The experimental setting 

This study employed a 3x1 within-subjects quasi-experimental research design. It is 

referred to as such because it takes advantage of naturally-occurring daylight conditions in an 

office building, and without a randomized assignment of participant’s start time over the course 

of the study. Three test stations were created in an open-plan office space on the 8th floor of a 

multi-story LEED Platinum building in Portland, OR. The three stations faced the North-east 

orientation, which controlled for view direction and solar orientation across the three stations. 

The stations exhibited different sunlight pattern geometries which included: (1) a statistical 

fractal pattern with a D=1.7 (Fractal), (2) a striped pattern (Stripes), and (3) a typical clear view 

window with no patterns (No-Pattern), as can be seen in Figure 4.3. 

The different sunlight patterns were produced by panels of clear Mylar with black ink 

that represented either a fractal or a striped pattern. The size of these patterns was 0.91x1.98 

m. (3.0x6.5 feet), which were mounted on the upper half of a 1.8x1.98 m (6.0 x 6.5 feet) 

window, as can be seen in Figure 4.4. The roller shades were lowered to create this window size 

to control for excessive glare conditions without obstructing the view, and for avoiding direct 

sunlight on participant’s body at the beginning of the experiment. For the No-Pattern station, 

the roller shade was adjusted to a height of 1.371 m. (4.5 feet) to ensure that the area of clear 

regions is consistent across the stations. The three stations had a view of nature composed of a 

river and mountain ranges in the background and paved roads in the foreground. The space had 

floor-to-ceiling windows and roller shades, which allowed for controlling view areas within each 

Figure 4.3: Pictures of the view and building zone where the experiment took place (left); and 
the three window conditions (right). White areas were transparent, black areas were opaque, 
and gray represents the roller shade. 
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one of the three windows, and for blocking light from other windows. Visible transmittance (Tvis) 

of the window glazing is 28% and the solar heat gain coefficient (SHGC) is 0.19 as provided by 

the manufacturer. 

The dependent variables tested include visual comfort, the visual interest of sunlight 

pattern, and satisfaction with view quality. The interest in conducting the study at the north-

eastern façade meant that the study had to be conducted in the morning from 8 to 11 am on 

June 22nd. This allowed for the inclusion of sunlight patterns with different sizes as well as 

different daylight conditions. 

4.3.2. Data collection 

A total of 22 office workers (13 male and 9 female) whose ages ranged between 30-60 

volunteered to participate in this study. The experimental protocol and instruments were 

approved by an Internal Review Board (IRB) for the protection of human subjects involved in the 

study. Participants were given specific instructions and description of the study procedures and 

asked to sign a consent form prior to starting their participation. Subjective and objective 

indicators of comfort were collected during the experiment as outlined in the following sections. 

4.3.3. Research instruments 

Subjective comfort data was collected using an offline questionnaire on a tablet. Table 1 shows 

the questions and scales used in the questionnaire. Participants interacted with the tablet by 

pressing on their answer to each question. These questions were selected based on previous 

studies that examined visual comfort and view quality (HMG, 2012; Van den Wymelenberg, 

2012). The questions appeared in the same order as shown in Table 4.1. 

Table 4.1: The questionnaire and scales used. 

 

Item 
number 

Question Scale 

Q1 This is a visually comfortable 
environment for office work 

7-point Likert scale (Strongly Agree-Agree-Somewhat agree-
Neither agree nor disagree-Somewhat Disagree-Disagree-Strongly 
disagree). Q2 Sunlight patterns look visually 

interesting 

Q3 I like the view I have from the 
window 

Q4 Air temperature feels: 7-point semantic differential (Too Warm-Neutral-Too Cold). 
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Figure 4.4: A floor plan of the three experimental stations (top); pictures and false color images 
of the three stations: Fractal (left), Striped (middle), and No-Pattern (right). The dashed line in 
the No-Pattern image shows shade height at the other two stations. This adjustment was made 
to ensure that the area of clear areas is consistent across all stations. 
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Objective environmental data included 

vertical illuminance (Ev), high dynamic range 

images (HDRIs), air temperature (TA), relative 

humidity (RH%), and globe temperature (TG). 

The HDR images were manually captured using 

a Canon G11 camera equipped with a fisheye 

lens (Opteka 52mm 0.2x HD Professional Super 

AF Fisheye) attached to a tripod and located at 

142.2 cm (56 inches) to match a typical 

employee seated eye-level position. The lens 

projection was angular with a 150° field of view 

as verified by the researchers. Low dynamic 

images were captured at ISO 80, white balance was set to daylight, F-stop f/4, and EV=1. Figure 

4.5 shows a scatter plot of vertical illuminance as measured and as calculated from HDRIs. 

All other measurements were logged at 5-minute intervals using a series of sensors 

connected to a U-12 Onset HOBO data-logger. The environmental sensors included; a Li-Cor-210 

photometric sensor with a custom voltage amplifier to measure Ev, a calibrated NTC Thermistor 

(10k ohm ±0.1°C) suspended at the center of a black painted ping pong ball to measure TG, in 

addition to TA and RH that were both measured using internal sensors of the U-12 Onset Hobo 

data logger. Figure 4.6 shows the instruments used for data collection. 

 

 

 

 

Figure 4.5: Measured vertical 
illuminance (lux) compared to that 
calculated from HDRIs. R2=0.85 

Figure 4.6: Left to right, globe temperature sensor, Canon G11 camera with photometric 
sensor attached, the signal amplifier used to connect a light sensor to a HOBO data logger, and 
tablet used for the questionnaire. 
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4.3.4. Calibration 

All light sensors were calibrated prior to start of the experiment. The calibration process 

was conducted by placing all light sensors (each connected to a U-12 Onset-HOBO data logger) 

along with a reference light sensor (connected to Li-Cor LI-1400 multi-data logger) next to each 

other on a desk next to a window. Light measurements were collected from all sensors at a one-

minute interval for approximately six hours so that different daylight and electric lighting 

conditions were included. Regression coefficients were calculated for each one of the three 

sensors. The error margins were typically within +-5% of the reference sensor as can be seen in 

Figure 4.7. The calibration procedure and the amplifier used were similar to those employed in 

previous field studies, e.g. [Konis, 2011]. 

To calibrate HDR images, each camera was used to capture a series of low dynamic 

range images of a daylit room with sunlight patterns present. The response curve for each 

camera was then generated using Photosphere software, and used for all subsequent images. 

Vignetting correction for each camera was determined by taking an HDRI at five degree 

increments and examining luminance reduction of a gray card across different angles, as 

described by (Mehlika Inanici & Galvin, 2004). The globe temperature sensor was computed by 

calculating thermistor resistance, which was then used in the Steinhart-Hart equation to 

calculate globe temperature. 

Figure 4.7: The percentage margin of error in Ev measurements for the three light sensors 
E1, E2, and E3 (left), and the calibration setup (right). 

T

ime 

Error Margin (%) 
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4.3.5. Experimental procedure 

After signing the consent form, each participant was asked to sit at a chair located in 

each station for approximately two minutes and then answer the questionnaire using the tablet. 

Each participant was assigned an identification number to allow for questionnaire responses to 

be paired with recorded environmental conditions and tagged to relate between recorded 

conditions and questionnaire responses for each participant. The order by which participants 

experienced the three test stations was randomized across subjects. Generally, each participant 

started and completed his/her participation at the three stations before another participant 

began. In other words, the three stations were experienced by each participant within few 

minutes of each other. HDRIs were captured immediately after a participant completed the 

questionnaire to prevent interference with their perception of the environment. Figure 4.8 

shows Ev as recorded at the end of each questionnaire response. 

4.3.6. Analysis methods 

To facilitate statistical analysis, questionnaire responses were recoded into a numerical 

scale 1-7 such that 7 was ‘Strongly agree’ for questions 1 through 3, and ‘Too warm’ for question 

4. Regarding HDRIs, each HDRI comprised of six low dynamic range images combined using 

‘hdrgen’ command-line software (Anyhere Software) using predetermined response functions 

generated by the authors. Each HDRI was then cropped, resized to 800x800 pixels, masked, 

vignetting corrected, calibrated using the corresponding measured Ev, and evaluated for glare 

Figure 4.8: Ev at the three stations during the experiment. Each marker represents when 
a response was recorded at that station. The two dashed lines show that the three 
assessments were all completed within few minutes for participants number 4 and 9. 



56 
 

using the ‘evalglare’ command. The angular lens projection type information was specified in 

evalglare. This process was automated using a batch file that executed these commands in 

order. Lastly, questionnaire responses were compiled with physical measurements Ev, TA, TG, 

RH%, and HDRIs using data time-stamps for each participant. 

4.4. Results 

Questionnaire and objective data from the 22 participants was analyzed to investigate 

two main points: first, differences in visual comfort, visual interest of sunlight patterns, and view 

quality among the three stations; and second, the relationship between objective 

measurements and questionnaire responses. The differences were investigated using 

descriptive statistics, box plots, the Wilcoxon Signed Ranks test, and multiple regression 

analyses; whereas the relationships were examined using Spearman’s rho correlation 

coefficients. 

Regarding sample size, we examined whether the number of participants (n=22) was 

sufficient to show the differences reported in this study. Considering that this study utilized a 

repeated-measures approach for the same group of participants, the GLIMMPSE online tool 

(Kreidler et al., 2013) was used to calculate the ideal sample size as well as the power of the 

current sample size (Guo, Logan, Glueck, & Muller, 2013). Using a power value of 0.9 and type I 

error rate of 0.05, the Hotelling-Lawley Trace test showed that a sample of 17 participants 

would be sufficient. With 22 participants, the same test calculated a power of 0.987, which is 

higher than the commonly used thresholds of 0.8 and 0.9. 

4.4.1. Differences among the three stations 

4.4.1.1. Descriptive statistics 

The boxplots in Figure 4.9 show that the distribution and means of responses to visual 

comfort (Q1), visual interest (Q2), and view quality (Q3) varied by station. Means of Q1, Q2, and 

Q3 for the No-Pattern station were higher than those for the Striped and Fractal stations. 

Further, means of these questions for the fractal pattern were slightly higher than those for the 

Striped pattern. There was more variability in visual interest responses for the fractal (SD=2.2) 

compared to the striped station (SD=1.7). Regarding view quality, both patterns received low 

view ratings compared to the No-Pattern condition. Table 4.2 shows the means and standard 

deviations for questionnaire responses. 
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 Fractal No-Pattern Stripes All Responses 

Q1. Visual Comfort 4.64 (1.761) 5.82 (1.181) 4.00 (2.024) 4.82 (1.831) 

Q2. Visual Interest 4.00 (2.225) 5.05 (1.397) 3.91 (1.743) 4.32 (1.866) 

Q3. View Quality 3.59 (1.764) 6.59 (.590) 3.55 (1.765) 4.58 (2.046) 

Table 4.2: Mean and standard deviation for questionnaire responses at each station and for all 
combined responses. Standard deviation values are in parentheses. 

4.4.1.2. Significance of differences in questionnaire responses 

Questionnaire responses were analyzed to examine the significance of differences 

among the three stations. For examining differences, Wilcoxon signed ranks test was used 

because Shapiro-Wilk test showed that variables violate the normality assumption that is 

required for the typically utilized paired T-test. For this test, the 0.05 significance level was 

adjusted to 0.016 using Bonferroni correction to account for the multiple tests conducted using 

the same data set. As shown in Table 4.3, visual comfort ratings for the No-Pattern station were 

significantly higher than those for the Fractal (Z= -2.48, p<0.016) and the Striped patterns (Z= -

3.281, p<0.016). The difference in visual comfort ratings between the Fractal and the Striped 

patterns was not statistically significant. 

Figure 4.9: Boxplots and means of visual comfort, visual interest, and view quality. The error 
bars in mean graphs represent the 95% confidence interval. 

 

Q1: Visual Comfort Q2: Visual Interest Q3: View Quality 
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Regarding the visual interest of sunlight patterns, visual interest ratings for the No-

pattern were significantly higher than that for the striped pattern (Z= -2.188, p<0.05), but not at 

the adjusted significance threshold. While view area size was consistent across the three 

stations, the distribution of these areas differed across stations. For instance, in the No-Pattern 

station, the view area was uninterrupted, unlike the Striped and Fractal patterns which included 

viewing areas within the pattern itself. Participant responses showed that view ratings for the 

No-Pattern station were significantly higher than those for Fractal (Z= -3.753, p<0.016) and 

Striped patterns (Z= -3.742, p<0.016). 

 

 

 

 

Table 4.3: Wilcoxon Signed Ranks test results with significant coefficients highlighted. * 
represents a significant level <0.05, ** represents a significance according to Bonferroni 
corrected threshold <0.016. Significance p values are in parentheses. 

As for thermal comfort (Q4), differences in subjective responses were not statistically 

significant. This question was included as a control variable to ensure that no thermal 

discomfort perceptions arise from sunlight patterns, which may influence overall comfort at any 

of the three stations. Mean responses were 4.59, 4.82, and 4.77 for fractal, No-Pattern, and 

Stripes, respectively. Questionnaire responses and the average predicted mean vote (PMV) of 

0.11 indicated a slightly warm and near-neutral thermal sensation. The PMV refers to a scale 

from -3 (cold) to hot (+3) with zero being the neutral thermal state. This is expected as the 

experimental space is air-conditioned with uniform indoor climate with mean air temperature at 

77°F, relative humidity of 41.6%, and radiant temperature of 78.1°F. 

Given that there was a difference in vertical illuminance among the three stations, we 

conducted multiple regression analyses to control for vertical illuminance and examine whether 

significant differences in visual comfort exist between the two patterns. This was examined by 

creating a dummy variable for each station and inputting two stations into the regression model 

while leaving one out as a reference condition. As Table 4.4 shows, when controlling for DGP, 

the Fractal pattern was associated with a significant increase in visual comfort responses, 

compared to the Striped pattern station (p<0.1). As shown previously by Wilcoxon Signed Tanks 

test, the Fractal and Striped patterns were associated with a significant decrease in visual 

  Fractal –  
No Pattern 

Stripes –  
No Pattern 

Fractal –  
Stripes 

Q1. Visual Comfort -2.480** (0.013) -3.281** (0.001) -1.300 (0.194) 
Q2. Visual Interest -1.595 (0.111) -2.188* (0.029) -.202 (0.840) 
Q3. View -3.753** (0.000) -3.742** (0.000) -.263 (0.793) 
Q4. Thermal Comfort -.906 (0.365) -.432 (0.666) -1.000 (0.317) 
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comfort ratings (p<0.05) (p<0.01), respectively. Other regression models examined differences 

in the visual interest of sunlight patterns and view quality while controlling for glare level in 

terms of DGP. The results of these models confirmed results from the Wilcoxon Signed Ranks 

tests reported in the previous Table 4.3. 

 
Unstandardized Coefficients 

Sig. 
B Std. Error 

(Constant) 8.121 2.742 .004 
DGP -14.712 9.705 .135 
Fractal .912† .537 .094 
No Pattern 2.021** .522 .000 

Table 4.4: Dependent variable is Q1. Visual Comfort. † represents a significant level <0.1; * 

represents significant level <0.05, ** represents a significance <0.01. 

6.1. Relationships between Subjective and Objective Measurements 

Spearman’s rho correlation coefficients between visual comfort ratings and glare 

metrics were examined to investigate differences in this relationship across the three stations 

(Table 4.5). Generally, subjective visual comfort ratings (Q1) significantly correlated with these 

metrics for the Striped and No-pattern stations, but not at the Fractal station. Visual comfort 

ratings for the Fractal and Striped stations significantly correlated with sunlight visual interest 

ratings. When responses for the three stations were collectively examined, the visual comfort 

ratings were significantly associated with view quality (Spearman’s rho coefficient = 0.43, 

p<0.01) and the visual interest of sunlight patterns (Spearman’s rho coefficient = 0.50, p<0.01). 

Similarly, visual interest of sunlight patterns significantly correlated with view quality 

(Spearman’s rho coefficient = 0.37, p<0.01). 

 Q1. Visual Comfort 

 Fractal No-Pattern Stripes 

Visual Interest of Sunlight Pattern (Q2) .588** 0.029 .660** 

View ratings (Q3) 0.359 .485* -0.026 

40° Band Mean Luminance 0.069 -0.410 -.525* 

40° Band Luminance Max 0.086 -.557** -.479* 

DGP 0.094 -0.395 -.487* 

Mean luminance 0.081 -0.395 -.507* 

Ev 0.012 -.450* -.494* 

Background Luminance 0.071 -.435* -.488* 

Source Luminance 0.073 -0.395 -.474* 

Omega of Sources 0.022 .452* 0.389 

Ratio (95th percentile to Mean) -0.004 -0.370 0.295 

Coefficient of variation for the 40° Band 0.009 -.487* 0.394 

Table 4.5: Spearman’s rho correlation coefficients between Q1 (visual comfort) and visual 
comfort metrics. The significance of the relationship is represented by * for p<0.05 or ** for 
p<0.01. 
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6.1.1. Glare and Visual Comfort Ratings 

While DGP values ranged between 0.25-0.35 indicating imperceptible glare levels, DGI 

values ranged between 16.67-23.9 indicating glare levels ranging from imperceptible glare to 

intolerable glare. However, because DGI did not correlate with visual comfort ratings at any of 

the stations, this metric was not used for further investigation in this study. Overall, 28.8% of 

responses indicated visual discomfort, and 68.2% indicated that they were visually comfortable, 

which aligns with the DGP results. Therefore, the DGP metric was used to examine relationships 

with visual comfort ratings. 

It is important to note that DGP was developed using a four-point semantic differential 

scale: imperceptible, perceptible, disturbing, and intolerable (Wienold & Christoffersen, 2006), 

which is different and does not relate directly to the seven-point Likert scale used in the current 

study. Although it can be argued that ‘imperceptible’ represents comfort while the other three 

levels represent different degrees of visual discomfort, this study does not aim to relate the two 

scales, but instead, it takes advantage of the fact that both scales exhibit a linear transition from 

visual comfort to discomfort. This linearity allows for relationships between DGP and visual 

comfort responses to be investigated even with a seven-point Likert scale, as shown in a 

previous study (Van Den Wymelenberg & Inanici, 2016). 

Interestingly, there was a variation in the relationship between DGP and visual comfort 

ratings across the three stations, as illustrated by Figure 4.10. This shows that participants 

reported visual comfort ratings of ‘Somewhat disagree’ or ‘Somewhat agree’ at DGP values 

lower than anticipated. Particularly, when compared to the No-Pattern and Striped stations that 

show a gradual decrease in DGP value ranges as visual comfort rating increases. These results 

are not specific to DGP, examining visual comfort ratings by vertical illuminance showed similar 

results. This suggests that visual comfort ratings close to neutral (with no strong preference) at 

the Fractal station were influenced by other factors such as visual interest and overall 

preference for the fractal pattern. 
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Different window patterns might influence the size of glare sources, thus, we examined 

glare source size across the three stations. Mean glare source size for the Fractal and Striped 

stations were 0.34 and 0.32, respectively, whereas mean glare source for the No-Pattern station 

was 0.23. The luminance of the 95th percentile within the 40° band for the No-pattern station 

was 3686.8 cd/m2, which was higher than that for the Fractal (3289.2 cd/m2) and the striped 

statins (2609.6 cd/m2). Overall, the two patterns were similar in terms of glare source size and 

95th percentile, which suggests that the discriminating factor between the two is the geometry 

of glare sources and sunlight patterns.  Figure 4.11 shows false-color images of the three 

stations at four different times during the experiment. 

Figure 4.10: Differences in the relationship between DGP and visual comfort ratings (Q1) for 
Fractal (left), No-Pattern (middle), and Stripes (right). 

Fractal No Pattern 
Stripes 
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4.5. Discussion 

Visual comfort and view quality ratings for the Fractal and Striped stations were 

significantly lower than those of the No-Pattern station. This suggests that view quality might 

have influenced visual comfort assessments; particularly because of the imperceptible glare 

levels indicated by DGP values below 0.38, questionnaire responses showing that 68.2% were 

satisfied with visual comfort, and the panoramic outdoor views. The combination of these three 

factors suggests that participants maybe were willing to tolerate these glare levels in favor of 

Figure 4.11: False colored images representing luminance distribution over part of the 
study duration. Mean window luminance in bold, mean sunlight pattern luminance in 
parentheses, and DGP in italic are included for each scene. 
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having uninterrupted views, thus neither pattern was deemed important. The preference for 

unobstructed views was indicated by some participants who mentioned that they preferred to 

see through the patterns. On the other hand, the two patterns received similar ratings for view 

quality and visual interest of sunlight patterns. These findings support our hypothesis regarding 

a higher rating for clear views over the two patterns, but do not support our hypothesis that 

view quality at the Fractal station is higher than that at the Striped station. 

Multiple regression analyses allowed for controlling glare level in terms of DGP. 

Although only at the 10% level, the results showed that visual comfort ratings at the Fractal 

station were higher than those at the Striped station (Table 4.4). While the difference in visual 

interest of sunlight patterns between the Fractal and Striped stations was not significant, 

responses showed different distributions as shown by Figure 4.9. Therefore, it is possible that 

the visual interest of sunlight patterns or that of the patterns mounted on windows have 

contributed to the difference in visual comfort ratings. Because the importance of sunlight 

pattern geometry seems to be influenced by outdoor views and window patterns, future studies 

should explore the visual interest of sunlight patterns in scenes without a visual access to 

patterns on windows or outdoor views. 

Interestingly, the visual interest of the rectangular sunlight pattern at the No-Pattern 

station was significantly higher than that for the Striped pattern. This finding contradicts the 

result of a study by the authors (under review), which showed that the visual interest of the 

Striped sunlight pattern was higher than that of the rectangular in renderings. This suggests that 

outdoor view quality might influence visual interest ratings of sunlight patterns. 

When shade perforations are uniformly distributed, which is the case for typical 

commercial roller shades, view clarity was found to be dependent on perforation size and shade 

visible transmittance (Konstantzos et al., 2015). In addition to view clarity, a preliminary study 

using virtual reality found that perforation pattern stripes, regularly spaced rectangles, and 

irregularly spaced rectangles to have significantly influenced perceived pleasantness, 

complexity, and excitement (Chamilothori et al., 2016). It is expected that view clarity scores to 

be influenced by view content and the ability of occupants to reconstruct outdoor views as seen 

through perforations. Future studies should examine view clarity scores and mood response for 

shades with an irregular distribution of perforations, such as the fractal patterns. Particularly, to 

examine whether the distribution of perforations, e.g. uniform or irregular, influences view 

clarity. 
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While a previous study by the authors (under review) suggested that projected fractal 

light patterns are significantly more visually interesting than rectangular or striped patterns, this 

experiment found that visual interest ratings for the No-Pattern station were significantly higher 

than those for the Striped pattern station. This could be due to variables in this study that were 

not considered in the previous one such as glare and outdoor views, whose interactive effects 

with each pattern might have influenced visual interest ratings. The results of this study do not 

support our hypothesis regarding a higher visual interest for Fractal sunlight patterns, compared 

to Striped sunlight patterns. 

Assuming that the view quality and the visual interest of sunlight patterns have both 

influenced visual comfort ratings, the questions to be asked are: 1) what are the relative 

importance of these two factors for visual comfort; 2) how would the relationships observed in 

this study be influenced by higher glare levels. These questions warrant further studies that 

expand the levels of glare experienced to include perceptible, disturbing, and intolerable levels. 

This step is important to delineate the extent to which visual interest and view quality can offset 

and reduce perceived glare. 

4.6. Conclusions 

We summarize the conclusions of this study using the following points: 

• The visual interest ratings of Striped sunlight patterns were significantly less than those for 

the No-Pattern station (p<0.05). The difference in visual interest between the Fractal and 

No-pattern stations was not statistically significant. 

• While controlling for vertical illuminance, the Fractal pattern was associated with a 

significant increase in visual comfort, compared to the Striped station (p<0.1). 

• The No-Pattern station received the highest mean ratings for visual comfort and view quality 

and the differences were statistically significant compared to the two patterns (p<0.016). 

• The relationship between glare level and visual comfort ratings varied across the three 

stations. 

• Occupants might be willing to tolerate low glare levels in an office setting when an 

interesting outdoor view of nature is present. 

• The visual interest of sunlight patterns in space was well perceived by the participants and 

merits further discussion, metrics, and studies. Results showed that ratings of visual interest 

of sunlight patterns were associated with significant increases in visual comfort ratings. 
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4.7. Limitations and Future Work 

This study took place at an office space where volunteers were recruited for 

participation; thus, self-selection bias might be present. Order bias might also be present 

because questionnaire questions were not randomized across participants. The timing of the 

experiment was limited to when sunlight could be present in the space (summer morning). 

Regional and seasonal variability in occupant’s visual reaction were not within the scope of this 

study but might have influenced occupant’s responses. Investigating such variability can inform 

how daylighting design guidelines in general, and sunlight exposure guidelines specifically can be 

tailored to different regions and seasons. 

Although sunlight patterns were admitted into space, DGP values remained below 0.38 

throughout the study, this could be due to window tint and low Tvis. Another limitation was that 

participants were not involved in an office task at the test stations. It is expected that interacting 

with the questionnaire on the tablet for two minutes did not require a level of visual 

concentration nor generated potential visual fatigue as much as typing or reading on a 

computer screen for prolonged periods of time. It would be beneficial to investigate the 

possibility of incorporating the duration of exposure and the visual load of different tasks into 

visual comfort indexes as mediators of visual comfort. Overall this approach might strengthen 

and facilitate comparisons between results of field studies and those from controlled 

experiments. 

The presence of a panoramic view of a river from the 8th floor might have influenced the 

relationship between visual comfort and sunlight pattern visual interest ratings. Based on the 

results of this paper, it is hypothesized that the two patterns covered part of the view and their 

aesthetics did not outweigh that of the view. This hypothesis, however, requires further testing 

utilizing views of different aesthetic qualities and ratings. 

Given these limitations, the study outlined in the next Chapter explores occupant’s 

visual comfort, visual interest of sunlight patterns, and view quality during typical work days at 

an office building. The study included different façade orientations, different view directions/ 

office layouts, and longer exposure time. 
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5. CHAPTER V  

INVESTIGATING OCCUPANT’S VISUAL COMFORT, VISUAL INTEREST 

OF SUNLIGHT PATTERNS, AND VIEW QUALITY IN A DAYLIT OFFICE 

SPACE 

A portion of this Chapter was published in the IES Research Symposium 2018: Light + 

Human Health Symposium held April 8-10 in Atlanta, GA. Professors Ihab Elzeyadi and Kevin Van 

Den Wymelenberg contributed to this work by guiding study design and analyses. Professor 

Grant Jacobsen aided with statistical analyses. The fractal patterns used were developed by 

Professors Richard Taylor and Margaret Sereno. I was the primary contributor to the studies, 

conducted data collection and analyses, and wrote the manuscript. 

Sunlight is a multisensory phenomenon that can enhance occupant’s comfort, health, 

and connection with the outside environment through its dynamic luminous and thermal 

attributes. Current daylighting metrics (IES-LM-83-12) and practice guidelines (IES RP-5-13) limit 

sunlight penetration in work environments, reducing both its negative and positive effects on 

visual comfort and spatial quality. One gap in existing literature on sunlight exposure is in 

addressing effects of the visual interest for sunlight patterns and their play of brilliants on visual 

comfort. The term ‘sunlight patterns’ refers to direct sunlight projections in interior spaces. The 

questions to be answered are: is there a difference in subjective visual comfort assessments 

under sunlight conditions of different visual interests? And if proved, what are the positive 

geometrical attributes of sunlight that should be implemented in daylit office spaces to reduce 

occupant’s perceived glare? 

To address this gap, this Chapter employed a within-subjects design where 33 office 

workers were subjected to three sunlight patterns: Fractal Pattern, Striped Pattern, and Clear at 

an office building in San Francisco, CA over a five-week period. Occupant’s perceived visual and 

thermal comfort responses and physical environmental measurements in terms of vertical 

illuminance, high dynamic range images, air temperature, relative humidity, and globe 

temperature were collected and paired with each other. 
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5.1. Introduction 

Sunlight in buildings influences occupant’s visual and thermal comfort as well as their 

psychophysiological response. Previous studies found that sunlight causes melatonin rhythm 

phase advancement which can be effective against seasonal affective disorder and insomnia 

(Mead, 2008). Further, the exposure to daytime bright light was found to improve psychomotor 

vigilance performance and sleep quality (Phipps-Nelson, Redman, Dijk, & Rajaratnam, 2003; 

Figueiro & Rea, 2014). Studies on visual comfort found that sunlight exhibits cheering and 

pleasant attributes that influenced occupants visual comfort (Boubekri et al., 1991). When 

sunlight is admitted into space, it creates projections of sunlight patterns on different surfaces in 

space that can improve the appearance of that space (Ne’Eman, 1974). The qualitative 

attributes of these patterns such as geometry and visual interest have not been examined for 

their impact on visual comfort. Examining the effect of these variables and incorporating it into 

daylighting design can help in creating visually interesting and comfortable environments. 

Current daylighting practices limit sunlight patterns to reduce the possibility of glare for 

occupants. While this approach might help in limiting glare, it promotes dull and visually 

monotonous environments with reduced sunlight benefits (Reinhart, 2015). Such practices, to 

some extent, reflect challenges that have inhibited the incorporation of sunlight in daylighting 

design. One of these challenges is the lack of a glare metric that can reliably predict occupant’s 

visual comfort when sunlight patterns are present in space. For instance, the daylight glare index 

(DGI), CIE unified glare rating System (UGR) are only valid for conditions when direct sunlight 

does not enter the space (Jakubiec and Reinhart 2012; Nazzal 1998; Iwata, Tokura, and Shukuya 

1992). The daylight glare probability (DGP) was developed under stable and clear sky conditions 

(Wienold & Christoffersen, 2006) and was found to be a better predictor than DGI, however, it 

exhibits several limitations (Hirning et al., 2014; Van Den Wymelenberg & Inanici, 2014). Other 

aspects like thermal comfort, views, and privacy may influence visual comfort ratings (E. Lee et 

al., 2005; N. Wang & Boubekri, 2010) but their direct and interactive effects have not been 

comprehensively assessed. 

Another challenge is manifested by the lack of studies that examined qualitative aspects 

of sunlight and effects on occupant’s visual comfort. This is particularly important because of 

the established psychophysiological effects associated with sunlight. Incorporating these aspects 



68 
 

into daylighting design can help in creating visually comfortable and interesting environments 

(S. Rockcastle et al., 2017). 

Among different space types, offices are visually critical spaces where occupants 

typically spend a considerable amount of their time performing computer-based tasks in fixed 

view directions. Nonetheless, they experience a wide and dynamic range of daylight conditions 

throughout the day (Elzeyadi & Lockyear, 2010). The current annual sunlight exposure metric, 

ASE1000,250h, requires that sunlit area not to exceed 10% of floor area for 250 hours a year 

before operable shades or blinds are deployed to block sunlight (IES 2013). Supporting research 

(HMG, 2012) did not include enough variety in sunlight penetration patterns by different façade 

orientations, shading systems, and climates (IES, 2013). This metric was found to overpredict the 

occurrence of glare and warrants further refinement (Dutra de Vasconcellos, 2017). Therefore, 

there is a need for studies that examine various aspects that influence occupant’s preferences 

towards sunlight patterns. 

5.1.1. Cheering effects of sunlight 

Boubekri et al., (1991) found that a sunlit area of 15%-25% of floor area created 

maximum levels of relaxation when occupants were parallel to the window. They concluded that 

sunlight sparkles are preferred to large floods for enhancing emotional well-being. It was also 

found that sunlight, as manipulated by size, season, time of the day, has significant impacts on 

the affective state of occupants, which influences their satisfaction. This study suggests that the 

illuminance of sun patterns exceeds that needed for visibility in offices, so, other qualitative 

aspects of sunlight patterns and view quality should also be considered to understand how 

occupants form overall preferences towards sunlight patterns. These results are in line with 

another study (Kim (1997), which found that sunlight improved positive emotions more than 

daylight, both in winter and summer seasons in classrooms. This finding might be partially 

explained by the enhanced connection to nature promoted by direct sunlight. 

Results of a study in England (Ne’Eman, 1974) showed that 73% of office occupants 

considered sunlight a pleasure while 24% considered it a nuisance. When asked to choose 

between a good view or sunlight patterns with an unpleasant view, 61% preferred a good view, 

and 36% preferred sunlight patterns with unpleasant views. Ne’Eman developed a qualitative 

scale for occupant’s reaction to sunlight patterns, and included sunlight sparkle and improved 

appearance of interiors as pleasant and liked effects. 
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Wang & Boubekri, (2010) examined subjects’ seating preferences in a sunlit space and 

found that most subjects chose to sit close to or within the sunlight patterns where average 

horizontal illuminance ranged from 527-14052 lux, which is relatively a high range for paper-

based tasks. Other factors, i.e. sense of control, privacy and views, were identified to have had 

influenced seating preferences. Another study suggested that 11 out of 12 participants chose to 

let sunlight patterns into space, which suggests that carefully positioned sunlight patterns can 

enhance occupant’s satisfaction (Van den Wymelenberg et al., 2010). 

5.1.2. View quality 

Previous studies found that views of nature were associated with higher satisfaction and 

positive physiological benefits. For example, an unobstructed view of natural surroundings was 

associated with improvements in self-reported physical and mental health during a residential 

rehabilitation program (Raanaas et al., 2011). Although the desire for views is well established, 

the characteristics that make it more or less desirable are not as well understood (Collins, 1975). 

Ulrich (1981) concluded that scenes of nature had a more positive influence on the 

psychophysiological states than urban scenes. In a subsequent study, Ulrich (1984) found that 

patients in rooms with windows looking out on a natural scene had shorter postoperative 

hospital stays and took fewer potent analgesics than those in similar rooms with windows facing 

a brick wall. Another study (P. Leather et al., 1998) found that a view of natural elements 

buffered the negative impact of job stress on intention to quit. 

A study that compared simulated views of a green roof to views of a concrete slab found 

that viewing a green roof was associated with a more consistent responding to the task and 

fewer omission errors, compared to viewing a concrete roof (Lee, Williams, Sargent, Williams, & 

Johnson, 2015). In addition to view content, previous studies showed that the distance of view 

elements influences visual comfort ratings (Shin et al., 2012). Some researchers suggested that 

an interesting view is associated with a less visual discomfort rating compared to a less 

interesting view (Tuaycharoen & Tregenza, 2005, 2007). However, another study (Aries et al., 

2010) found that nature views increased discomfort directly. Aries et. al. suggested that the 

visual interest evoked by view might have influenced these ratings. Overall, these studies 

showed that satisfaction with views influences visual comfort, therefore, creating a balance 

between maintaining views while mitigating glare would help improve visual comfort. 
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5.1.3. Fractal patterns 

Existing literature shows that natural scenes are more preferred, than urban scenes, 

(Purcell, Peron, and Berto 2001) and are believed be associated with many positive 

psychophysiological responses such as a higher alpha activity (higher relaxation effects), a 

positive emotional state (Ulrich 1981), and less sick leaves in offices (Elzeyadi 2012). Kaplan 

(1995) proposed the attention restoration theory which implies that natural environments are 

particularly rich in the characteristics necessary for restorative experiences. The question, 

therefore, is what are these characteristics that exist in natural environments? Many 

researchers suggested that the effects of natural scenes on attention restoration can be 

explained by the geometrical characteristics of fractal patterns which are prevalent in nature  

(Purcell, Peron, and Berto 2001; Joye and van den Berg 2011; Hagerhall et al. 2015; 

(Mandelbrot, 1983).  

Fractal geometry can be defined as shapes that display a cascade of never-ending, self-

similar, meandering detail as observed at various levels of scales (Bovill 1996; Harris 2012). 

These patterns are often characterized by their roughness and irregularity (Spehar et al., 2003) 

and can be found in trees, clouds, rivers, and other natural elements. The prevalence of fractal 

patterns in nature might have caused the visual system to adapt to efficiently process them, 

hereafter the fractal fluency theory (Taylor & Spehar, 2016). 

Fractal patterns are quantified and characterized based on a variable called the fractal 

dimension (D). This parameter quantifies the fractal scaling relationship between the patterns 

observed at different magnifications (Spehar et al., 2003). For fractal patterns, this value lies 

between 1 and 2 and determines the complexity of the pattern. Fractal patterns are mainly 

classified into two categories based on the manner in which the patterns repeat at different 

scales (Hagerhall et al. 2015); these two categories are statistical, and exact fractals. Statistical 

fractals are found in nature and exhibit randomness and variety in sizes at different scales, 

therefore, they look similar at different scales so that only the pattern’s statistical qualities 

repeat (Taylor and Spehar 2016). On the other hand, exact fractals look exactly the same as 

observed at different magnifications (Fairbanks & Taylor, 2011). 

Fractal patterns were found to elicit a positive perceptual response. For instance, Taylor 

(1998) conducted an experiment where participants were shown pictures of fractal and non-

fractal patterns and found that 95% of participants preferred fractals to non-fractal patterns. 
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Fractal patterns were also found to enhance stress recovery compared to a non-fractal pattern, 

which increased stress levels by 13%. These results suggest that fractal patterns elicit a positive 

perceptual and physiological response compared to non-fractals. On the other hand, striped 

patterns were more likely to cause visual discomfort because they have Fourier amplitude 

spectra that depart maximally from those of natural scenes (A. J. Wilkins, 2016). A study that 

examined visual comfort in schools suggested that Venetian blinds can cause pattern glare 

because of the spatial frequency of sunlight patterns projected through them (Winterbottom & 

Wilkins, 2009). Despite the prevalence of Venetian blinds and subsequently striped light pattern, 

there has been a lack of studies that investigated differences in visual comfort between fractal 

and non-fractal light patterns. 

Previous studies showed that visual interest ratings typically peaked for mid-complexity 

fractals when the pattern was viewed on a computer screen. In two previous studies by the 

authors (Abboushi et al., 2017) the fractal fluency theory has been expanded to investigate 

perceptual response visual interest and mood to spatially projected fractal light patterns. 

Results of these studies suggested that projected fractal light patterns of mid to mid-high 

complexity (D=1.5-1.7) were more visually interesting than those in Euclidean shapes such as 

striped and rectangular patterns. Further, unlike Euclidean shaped light patterns, projected 

fractal light patterns maintained a better balance between relaxation and excitement. These 

findings formed the basis of this study. Figure 5.1 shows the patterns examined in these two 

previous studies and the selected patterns that were used in the current study. 

 

 

Figure 5.1: The six projected light patterns tested in the previous two studies, with 
selected patterns highlighted. 
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5.2. The Conceptual Model and Hypotheses 

Based on the literature reviewed in sections 1.1 through 1.3, this study hypothesizes 

that the visual interest of sunlight patterns and visual comfort would have an influence on visual 

preferences towards sunlight patterns (Figure 5.2), following the idea that occupants perceive 

and react to their environments in a systemic manner (Elzeyadi, 2002). We hypothesize that: 1) 

the Fractal pattern to be associated with a significant increase in visual comfort ratings, 

compared to the Striped pattern and clear conditions; 2) the Clear condition to be associated 

with significantly lower visual comfort ratings compared to the two patterns; 3) the Fractal 

pattern to be associated with a significant increase in visual interest, compared to Striped and 

Clear conditions; 4) mean view quality ratings for the Clear condition to be higher than that for 

the Fractal and Striped conditions. In addition to direct effects, this study aims to explore 

indirect and interactive effects, such as those between views and different window conditions. 

 

 

 

 

 

Figure 5.2: A conceptual model shows the relationship between visual interest, visual comfort, 
and visual preferences towards sunlight in office environments. Visual preference towards 
sunlight patterns is visual comfort moderated by the visual interest of sunlight patterns. 
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5.3. Methods 

5.3.1. Research setting 

The study was conducted at an office building in San Francisco, CA over a period of five 

weeks (June.27-July.27) during the summer of 2017. The building is a 20-story Class A office 

building with a LEED Platinum certification (Figure 5.3). Within this building, cubicles located on 

floors 13-18 on the South-East (SE) or South-West (SW) facades constituted the sample frame 

from which participants were recruited and selected. This allowed for different sunlight 

conditions to be examined and increased the number of potential participants (Figure 5.4). Prior 

to the start of this study, overshadowing by nearby buildings was examined using SunEye 210 

Shade Tool (of Solmetric Inc.) to ensure that all windows of selected cubicles have an 

unobstructed sunlight access. The office is based on an open-plan layout with 152.4cm (5 feet) 

high partitions. The selected cubicles were adjacent to exterior windows, which had light gray 

roller shades (manufacturer) with an openness ratio of 3%. The windows varied slightly in size, 

however generally each window measured 1.98 x 1.98 m (6.5 x 6.5 feet). Figure 5.5 shows 

images of the cubicle layouts. 

Figure 5.3: A picture of the SW main façade (Left); southern corner (Middle); and an aerial 
view showing surrounding buildings and urban context (Right). 
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5.3.2. Window conditions 

Three window conditions were created by mounting a plastic film on participant’s 

window: a Fractal pattern, Striped pattern, and Clear conditions. The two patterns which were 

printed on a clear plastic film. Each pattern measured 198x91 cm (6.5x3 feet) and was mounted 

on the lower part of participants’ windows. The fractal pattern is a medium-high complexity 

with (D=1.7), which was shown in a previous study (under review) to be significantly more 

visually interesting than the striped pattern. On the other hand, the striped pattern consisted of 

clear and black horizontal stripes (Figure 5.6). 

Window shades were adjusted at a height of 91 cm (3 feet) to reduce the possibility of 

intolerable glare being experienced for a long duration by participants. This was implemented to 

Figure 5.5: Representative workstation layouts: perpendicular to the window (left and 
middle), and parallel to the window (right). 

 

Figure 5.4: Building location and surroundings (left), and a typical floor plan of the 
offices (right). Workstations on SE and SW facades are circumscribed. 
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ensure that glare levels do not impede the ability of participants to conduct their work, which 

may lead to their withdrawal from the study. Further, the resultant pattern size made it more 

convenient for the researcher to swap the patterns. None of the participants stopped their 

participation amid the study. 

5.3.3. Participants 

Participation in this study was voluntary. The recruitment process started by sending an 

email to occupants in workstations directly next to a window on the SE or SW facades to explain 

the study and to identify potential participants. Those that expressed interest in participating 

were sent a consent form that outlined different aspects of the study. A total of 33 participants 

whose ages ranged from 30-70 years completed the study. Most participants (51.5%) were 50-

59 years of age. As for gender, 48.5% were male and 51.5% were female. Workstations were 

either perpendicular to the window (15 on SE, 3 on SW) or parallel to the window (5 on SE, 10 

on SW). Figure 5.7 shows the number of responses received each week (left) and percentage of 

participants within each age group (right). 

Figure 5.7: Questionnaire responses collected each week (left); and participants’ age 
percentages (right). 

Figure 5.6: The three-sunlight condition at a participant’s workstation. 
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To explain study procedure, showcase the sensors, and demonstrate interaction with 

the questionnaire, a 1-hour orientation session was scheduled with participants prior to the 

start of the study. This session helped answer questions about participant’s role and 

participation times they are required to take the questionnaire. In this session, participants 

chose the weeks in which they would be available to participate. This helped coordinate with 

participants for different study weeks such that a maximum of ten participants were scheduled 

for a given week. The decision to schedule a maximum of 10 participants per week was 

determined based on the available 10 data collection stations. This also helped ensure that 

there is enough time for the researcher to retrieve data and relaunch data loggers and cameras. 

5.3.4. Data collection 

Physical measurements, as well as visual and thermal comfort assessments by 

occupants, were collected throughout the study. These two datasets were then paired with each 

other using the time stamps. 

5.3.4.1. The questionnaire 

The questionnaire was displayed and answered on a tablet that utilized an offline 

application to collect responses at three times a day: 9 am, 11 am, and 3 pm. The participants 

were notified of these three times by a quiet alarm that would stop when a questionnaire was 

completed, or can be snoozed for 10 minutes. These three times were selected to examine 

different sunlight exposure conditions. In addition to these times, participants were encouraged 

to take the questionnaire at any other time. Participants were informed that in case he/she is 

away for a meeting or not at his/her desk at these times, they can take the questionnaires 

before leaving or after arrival. The questionnaire comprises of 4 questions (Table 5.1). Each 

participant was assigned a unique identifier which he/she selected prior to answering each 

questionnaire. The same identifier was used to identify the tablet as well as the camera and all 

other sensors. A total of 289 responses were collected, 126 of which were taken when sunlight 

was present in space. 
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Table 5.1: The questionnaire instrument and scales used. 

5.3.4.2. Physical measurements 

Physical measurements included vertical illuminance (Ev), high dynamic range images 

(HDRIs), air temperature, globe temperature, and relative humidity. All measurements were 

logged at a 5-minute interval except for the HDRIs, which were automatically captured every 10 

minutes. The cameras used were 5 Canon PowerShot G11 and 5 Canon PowerShot G15 

equipped with a 150° fisheye lens (Opteka 0.2x HD Professional Super AF Fisheye). The HDRI 

capturing process was automated using a script (Ultimate Intervalometer CHDK script) that took 

9 images at different shutter speeds typically ranging 1/60 – 1/4000 at F-stop=2.8 from 8 am to 

5 pm. 

To generate a reliable luminance response curve, each camera was used to capture a 

series of low dynamic range imagers of a daylit room that included sunlight patterns. The 

response curve for each camera was then derived using ‘Photosphere software’ (Anyhere 

software), and then used for all subsequent HDRIs captured by that camera. The Hdrgen 

Radiance command line (Anyhere software) was used to automate the HDRI creation process. 

Lens vignetting correction for each camera was determined by taking an HDRI at 5° increments 

and examining luminance reduction of a gray card across different angles compared to the HDRI 

taken at 0°, as described by Inanici (2006). The resultant values were plotted as a function of the 

angle to extract the fit line polynomial equations. These equations were then used to create a 

grayscale (.TIF) image that was used for vignetting correction. 

The photometric sensors were of Licor-210 type connected to a HOBO data logger via a 

custom amplifier. The amplifier was used to amplify the small signal of the sensor (30 μA per 

100 klux) to a voltage 0-2.5v that can be recorded by the HOBO data logger via its external 

channel. All light sensors were calibrated prior to the start of the experiment. The calibration 

process was conducted by placing all light sensors (each connected to a HOBO data logger) 

along with a reference light sensor (connected to LI-1400 logger) next to each other on a desk 

Item 
number 

Question Scale 

Q1 This is a visually comfortable 
environment for office work 

7-point Likert scale (Strongly Agree-Agree-Somewhat agree-
Neither agree nor disagree-Somewhat Disagree-Disagree-Strongly 
disagree). Q2 Sunlight patterns look visually 

interesting 

Q3 I like the view I have from the 
window 

Q4 Air temperature feels: 7-point semantic differential (Too Warm-Neutral-Too Cold). 
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next to a window. Light measurements were collected from all sensors at a 1-minute interval for 

approximately 6 hours so that different daylight and electric lighting conditions were included. 

Regression coefficients were calculated for each one of the 10 sensors. The error margins were 

typically within +-5% of the reference sensor. The calibration procedure and the amplifier used 

were similar in design to those used by Konis (2011). 

Lastly, the globe temperature was collected using thermistors (NTC Thermistor 10k ohm 

±0.1°C) suspended at the center of a black painted ping pong balls. The fabricated sensor was 

connected to a HOBO data logger via its external channel. Measurements were recorded as volts 

(0-2.5 v) which were used to calculate globe temperature using Steinhart’s equation. Figure 5.8 

shows equipment setup. 

5.3.5. Study schedule 

The study was conducted over a five-week period. Each week, a maximum of 10 

participants were recruited. Each participant experienced the three different sunlight conditions 

over three consecutive days (one condition/day). The two patterns were randomized across 

participants for Days 1 and 2. For example, some participants started with the Fractal pattern 

while others started with the Striped pattern. The third day was consistently for the Clear 

condition. Swapping between these three window conditions was typically conducted at the end 

of work day after which no questionnaire responses were recorded in that day. Table 5.2 shows 

study weekly schedule and tasks performed on each day. 

 

 

 

 

Figure 5.8: Typical equipment setup. 
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Day Description Notes 

0 Equipment setup Pattern 1 is mounted on the window in preparation for day 1. 

1 Pattern 1 (Fractal or 
Stripes) 

Pattern 2 is mounted at end of the workday in preparation for day 2. 

2 Pattern 2 (Fractal or 
Stripes) 

All patterns are removed at the end of the workday in preparation for day 3. 

3 Clear  
4 Equipment retrieval All data were downloaded prior to relocating equipment to a new 

participant. 

Table 5.2: Schedule of data collection procedures followed each week. Data collection was 
conducted on days 1, 2, and 3. The two patterns were randomly counterbalanced across all 
participants. 

5.3.6. Data cleaning and analysis 

Data were initially collected from 35 participants, however, the HDR cameras were 

accidentally unplugged for two participants, hence were excluded from analyses. Extensive spot 

checking was conducted to verify the accuracy of dataset merging processes. Responses 

collected on equipment setup day, those collected after 5 pm, as well as additional responses 

provided outside the three experimental days were excluded from analyses. Data analyses were 

conducted with a focus on sunlight patterns and view direction. 

5.4. Results 

Three statistical analyses were utilized in this study: first, descriptive statistics were used 

to examine general differences and similarities in physical measurements and questionnaire 

responses among the three window conditions; second, Spearman’s rho correlation coefficients 

were utilized to examine correlations between subjective visual comfort ratings and illumination 

measurements; third, multiple regression analyses were conducted to examine associations 

between window condition, visual comfort, visual interest of sunlight patterns, and view quality 

ratings. Specifically, multiple regression analyses allowed for statistically controlling certain 

variables such as glare level while examining differences among different window conditions. 

In multiple regression analyses, two window conditions, Fractal and Clear, were entered 

as dummy variables whereas the third window condition, Stripes, served as a reference group. 

The selection of the reference group was due to the interest in assessing whether there were 

differences between the Fractal and the Striped patterns. The DGP metric was entered in 

multiple regressions to control for variability in daylighting conditions across all study days. A 

total of 289 responses were included in the analyses, 114 of which were completed with 

sunlight patterns present in space. 
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5.4.1. Descriptive statistics 

Participants located in workstations at the SE and SW facades experienced a wide range 

of daylight conditions exemplified by variations in vertical illuminance (Ev) and DGP over the 

course of the day. Given solar orientation, Ev values were typically higher in the morning for SE 

participants and lower in the afternoon, compared to those on the SW façade. Overall, Ev ranged 

from 104.6 to 9589.9 lux, with a Mean of 1710.1 lux and a standard deviation (SD) =1584.1 lux. 

As can be seen in Figure 5.9(left), Ev range was higher at the Clear condition, compared to the 

two patterns, which exhibited similar Ev ranges. Generally, Ev values were higher at the SE 

façade (Mean= 1987.2 lux) than at the SW façade (Mean= 1265.7 lux), particularly under the 

two patterns. As for glare levels, DGP exhibited more variation under the Clear condition 

(SD=0.12) compared to the Striped and Fractal conditions (SD=0.06). Mean DGP values were 

0.26, 0.32, and 0.26 for the Fractal, Clear, and Striped conditions, respectively. Figure 5.9/ 

middle shows a boxplot of DGP values by window condition. 

Regarding thermal comfort during the study, air temperature generally ranged from 68° 

F to 82° F with a Mean of 74.5° F. Relative humidity ranged from 32.2% to 62.2% with a mean of 

50.5%. The two patterns had similar air temperature distributions and means (74.2°F for the 

Fractal, and 74.1°F for the Striped pattern), whereas it was slightly higher for the Clear condition 

at 75.3°F. 

Questionnaire responses varied across the three window conditions. Visual comfort 

responses were slightly lower when sunlight patterns were present in space (mean=4.19, 

SD=1.85), compared to responses without sunlight pattern (mean=4.79, SD=1.72). Expectedly, 

Figure 5.9: A boxplot of vertical illuminance for all participants by façade orientation and window 
condition (left); a boxplot of DGP (middle) and air temperature in Fahrenheit (right) across the three 
window conditions.  
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view ratings (Q3) for the clear condition (mean=6.01, SD=1.13) were notably higher than those 

for the two patterns (mean=3.55, SD= 2.10; mean=3.78, SD=1.98 for the Fractal and Striped 

patterns respectively). Further, median view rating for the striped condition was higher than 

that for the Fractal pattern condition (Figure 5.10). Because illumination and thermal conditions 

varied across participants and across the three test days for each participant, these box plots 

were only utilized to infer general trends like that of the higher ratings for Clear views compared 

to the two patterns. To examine differences among the three window conditions in questions 1-

3, there is a need to control for glare, which is addressed by multiple regression analyses. Table 

5.3 shows a summary of descriptive statistics for questionnaire responses and physical 

measurements across the three window conditions. 

 

 
  

Fractal Clear Stripes 

Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD 

Questionnaire             

Q1. Visual 
Comfort 

1.0 7.0 4.5 1.6 1.0 7.0 4.5 1.9 1.0 7.0 4.6 1.9 

Q2. Visual interest 1.0 7.0 4.1 1.6 1.0 7.0 4.1 1.6 1.0 7.0 4.2 1.9 
Q3. Views 1.0 7.0 3.6 2.1 2.0 7.0 6.0 1.1 1.0 7.0 3.8 2.0 
Q4. Air temp. 1.0 6.0 3.9 0.9 1.0 7.0 4.1 1.0 1.0 7.0 3.9 1.0 
Physical Measures             

Air Temp. 68.7 87.6 74.2 2.8 70.2 90.9 75.3 3.6 68.1 80.7 74.1 2.4 
Relative Humidity 32.3 60.3 51.2 4.6 32.5 62.3 49.4 4.7 41.4 59.5 51.0 4.1 
MRT 63.7 83.2 73.0 3.3 59.6 99.6 74.4 5.7 67.8 86.9 73.6 3.6 
Ev 243 8195 1336 1130 105 9590 2438 2053 247 5498 1314 1059 
Mean luminance 79 2454 361 322 24 2788 645 546 70 1625 349 288 
DGP 0.15 0.64 0.26 0.07 0.03 0.73 0.32 0.12 0.16 0.50 0.26 0.07 

Table 5.3: Descriptive statistics for questionnaire responses and physical measurements across 
the three window conditions. 

Figure 5.10: Box plots for visual comfort, visual interest, views, and air temperature by 
window condition and presence of sunlight patterns. For Q1, Q2, and Q3: 1=Strongly 
disagree, 7=Strongly agree. For Q4, 1= Too cold, 7= Too warm, and 4= neutral. 

Q1. Visual Comfort 

Q2. Visual Interest of 
Sunlight Patterns Q3. View Quality Q4. Air Temp. 
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5.4.2. Visual comfort 

Overall, visual comfort ratings varied by façade orientation, view direction, sunlight 

presence, and window condition. To examine differences in visual comfort across the three 

window conditions, two multiple regression analyses were conducted. The first model divided 

responses by ‘presence of sunlight patterns’ and view direction to examine general differences 

in visual comfort that are common to all participants on both façade orientations. The second 

model delved into examining differences by façade orientation to account for differences in 

daylight conditions between the SE and SW façades.  

Results from the first model (Table 5.4) showed no significant differences in visual 

comfort ratings when sunlight patterns were present in space. Significant differences were only 

observed in scenes without sunlight patterns and for those perpendicular to window, where the 

Clear and Fractal conditions were associated with a significant increase in visual comfort (p<0.05 

and p<0.1, respectively). Interestingly, the relationship between DGP and visual comfort ratings 

was only significant for those parallel to the window regardless of the presence of sunlight 

patterns. 

To account for differences in daylight conditions on each façade, multiple regression 

analyses were conducted including façade orientation in the second model (Table 5.5). The 

results showed that on the SE façade, and in scenes without sunlight patterns, the Fractal 

pattern was associated with a significant increase in visual comfort for those perpendicular to 

window (p<0.01). The Striped pattern, on the other hand, was associated with a significant 

increase in visual comfort, compared to the Fractal condition, for those parallel to window in 

scenes with or without sunlight patterns (p<0.1). 

For participants on the SW façade, there were no significant differences among the 

three window conditions under either view direction, hence results for the SW façade were not 

included in Table 5.5. Overall, these results suggest that view direction and façade orientation 

influenced visual comfort ratings under the different window conditions. Figure 5.11 shows 

mean visual comfort ratings for participants on the SE façade for both view directions. 
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 Unstandardized Coefficients 

B Std. Error 

W
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h
o
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Perpendicular to 
window 

(Constant) 4.055 .743 
DGP .880 2.705 
Fractal .790* .418 
Clear 1.049** .432 

Parallel to 
window 

(Constant) 7.782 1.166 
DGP -12.964** 5.067 
Fractal -.519 .485 
Clear .097 .538 

W
it

h
 s

u
n

lig
h

t 
p

at
te

rn
s Perpendicular to 

window 
(Constant) 5.086 .727 

DGP -2.391 1.861 

Fractal .186 .569 

Clear -.244 .522 

Parallel to 
window 

(Constant) 7.566 .935 

DGP -11.182** 3.310 

Fractal -.729 .590 

Clear -.166 .609 

Table 5.4: The dependent variables is the Visual Comfort (Q1). The reference window condition 
is the Striped pattern condition. All models are estimated through ordinary least squares. One, 
two, and three stars indicate 10 percent, 5 percent, and 1 percent significance, respectively. 

 

 
Unstandardized Coefficients 
B Std. Error 
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Without 
Sunlight 
Patterns 

Perpendicular to 
Window 

(Constant) 3.262 .798 
DGP 2.360 2.825 
Fractal Pattern 1.218*** .453 
Clear 1.526*** .460 

Parallel to 
Window 

(Constant) 7.479 2.450 
DGP -5.773 10.489 
Fractal Pattern -1.514* .861 
Clear -.679 .851 

With 
Sunlight 
Patterns 

Perpendicular to 
Window 

(Constant) 4.566 .781 
DGP -1.501 1.960 
Fractal Pattern .246 .595 
Clear .284 .572 

Parallel to 
Window 

(Constant) 9.236 1.008 
DGP -14.014*** 3.527 
Fractal Pattern -1.190* .658 
Clear -.228 .652 

Table 5.5: The dependent variables is the Visual Comfort (Q1). The reference window condition 
is the Striped pattern condition. All models are estimated through ordinary least squares. One, 
two, and three stars indicate 10 percent, 5 percent, and 1 percent significance, respectively. 
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5.4.3. Correlations 

Spearman’s rho correlation coefficients were examined between subjective visual 

comfort ratings (Q1) and objective illumination metrics. These correlations showed that there 

wasn’t one metric that consistently showed significant correlations across different window and 

sunlight conditions. Further, when sunlight patterns were present in space, no significant 

correlations were found under the Fractal or Striped conditions, whereas there were several 

significant correlations under Clear condition. Among the metrics that significantly correlated 

with the Clear condition in sunny scenes are vertical illuminance, mean luminance, and DGP. 

Responses were examined by view direction to investigate differences. For those perpendicular 

to the window, DGP showed a significant correlation (-0.16, p<0.05) but vertical illuminance and 

DGI did not. On the other hand, for those parallel to the window, vertical illuminance, DGI, and 

DGP showed significant correlations with visual comfort ratings (-0.34, -0.36, -0.42, p<0.01), 

respectively. 

When all responses were collectively examined, most objective measures showed 

significant correlations with visual comfort ratings. Specifically, the DGP and Discomfort Glare 

Rating (DGR) metrics, which showed highest correlations coefficients (0.26, p<0.01). Because the 

DGP metric incorporates vertical illuminance, a component that may explain discomfort for 

occupants seated close to windows (Hirning et al., 2017), it was chosen to control for glare level 

in multiple regression analyses in the previous visual comfort analyses and those in next 

sections. 

Figure 5.11: mean visual comfort rating for participants on the SE façade divided by the 
presence of sunlight patterns and view direction. The error bars represent 95% confidence 
intervals. 
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 Q1. This is a visually comfortable environment for office work 

Without Sunlight Pattern With Sunlight Patterns 
All 

Fractal Clear Stripes Fractal Clear Stripes 

Vertical Illuminance -0.26 .37** -.36** -0.14 -.34* -0.27 -.22** 
Mean luminance -0.22 .38** -.27* -0.10 -.38** -0.23 -.21** 
Mean Luminance weighted by position index -.30* .33* -.36** -0.16 -.33* -0.297 -.24** 
Median luminance -0.04 .44** -0.03 -0.08 -.33* -0.09 -.12* 
Median luminance weighted by position index -0.08 .45** -0.04 -0.02 -.32* -0.19 -.14* 
Omega of sources -0.15 -.44** -.34* -0.16 -0.05 -0.05 -.19** 

4
0

° 
B

an
d

 

Mean luminance -.29* .34* -0.23 -0.15 -.32* -0.22 -.19** 
Max. luminance -0.06 0.09 0.10 -0.12 -.32* 0.09 -0.10 
Median luminance -0.24 .46** 0.13 -0.10 -.32* -0.24 -0.11 
75th percentile -0.19 .35* -0.20 -0.08 -0.27 -0.27 -.15** 
95th percentile -0.22 0.20 -0.19 -0.13 -.34* -0.14 -.21** 
Standard deviation -0.18 0.17 -0.11 -0.17 -.33* -0.10 -.18** 

CIE Glare Index (CGI) -0.26 -.35* -0.26 -0.18 -0.24 -0.08 -.24** 
Discomfort Glare Index (DGI) -0.20 -.41** -0.25 -0.04 -0.25 0.03 -.22** 
Discomfort Glare Probability (DGP) -.33* 0.21 -.37** -0.18 -.34* -0.28 -.26** 
Unified Glare Probability (UGP) -0.24 -.40** -0.24 -0.18 -0.23 -0.07 -.23** 
Unified Glare Rating (UGR) -0.24 -.40** -0.24 -0.18 -0.23 -0.07 -.23** 
Visual Comfort Probability (VCP) .28* .36* .30* 0.25 0.23 0.09 .25** 
Discomfort Glare Rating (DGR) -.28* -.36* -.30* -0.25 -0.23 -0.09 -.26** 

Table 5.6: Spearman’s rho correlation coefficients between visual comfort (Q1) and objective 
illumination measurements and metrics. In addition to correlations with all responses, 
responses are divided by presence of sunlight and window condition. One, two and three stars 
indicate 10 percent, 5 percent, and 1 percent significance, respectively. 

5.5. Discussion 

The analyses described in the results section showed that differences in visual comfort 

ratings varied by window condition, view direction, and presence of sunlight patterns. 

Consistently, both models 1 and 2 showed a significant reduction in visual comfort for the 

Fractal pattern, compared to the Striped pattern, for those parallel to the window. Further, the 

results showed that the Fractal pattern was associated with a significant increase in visual 

comfort for those perpendicular to the window and in scenes without sunlight patterns. These 

differences between the Striped and Fractal patterns could be due to differences in luminance 

distributions, reflections on computer screen for those parallel to window, the visual interest of 

the window patterns, the duration of time spent looking outdoor through the window, and/or 

view quality. Particularly, qualitative differences in daylight conditions could be the 

discriminating factor because glare level, as measured and represented using DGP, was 

controlled for in these comparisons. Overall, these results suggest that the Fractal pattern might 

contribute to improving visual comfort for large-sized and relatively uniform glare sources when 

looking perpendicular to window, e.g. under overcast sky conditions. However, this hypothesis 

requires further studies to verify it. The following sections examine differences in visual interest 
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and view ratings to help understand how visual interest and views might have influenced visual 

comfort ratings. 

5.5.1. Visual interest of sunlight patterns 

Visual interest ratings varied by view direction such that mean visual interest for the 

Fractal sunlight patterns was higher for participants perpendicular to the window, compared to 

those parallel to the window. To investigate the significance of differences in visual interest 

ratings (Q2), multiple regression analyses were utilized. The results showed that, compared to 

the Striped pattern, the Fractal pattern was associated with a significant increase for those 

perpendicular to the window and a significant decrease for those parallel to the window (Table 

5.7). There were no significant relationships between the Clear condition and visual interest 

ratings for both view directions. 

 Unstandardized Coefficients 

B Std. Error 

Perpendicular to Window (Constant) 4.988 .737 

DGP -2.699 1.961 

Fractal 1.020* .525 

Clear .436 .506 

Parallel to Window (Constant) 5.265 .922 

DGP -3.754 3.308 

Fractal -1.067* .547 

Clear -.440 .612 

Table 5.7: The dependent variable is the Visual Interest of Sunlight Patterns (Q2). Reference 
window conditions is the Striped pattern. All models are estimated through ordinary least 
squares. One star indicates 10 percent significance. 

When visual interest ratings were examined by façade orientation, the Fractal pattern 

condition was associated with a significant increase (p<0.1) for those parallel to the window, 

and a significant decrease for those parallel to the window (p<0.05) on the SE façade. No 

significant differences were found on the SW façade (Table 5.8). This could be due to differences 

in sunlight pattern size and geometry in workstations on the SW compared to those on the SE 

façade. In this study, one set of the three daily responses was collected when sunlight patterns 

can access the SW workstations (at 3:00 pm), which resulted in relatively shorter sunlight 

penetration and smaller sunlight patterns compared to the SE façade, as can be seen in Figure 

5.12. 
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 Unstandardized Coefficients 
B Std. Error 

So
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Perpendicular to 
Window 

(Constant) 4.685 .795 
DGP -2.024 2.083 
Fractal Pattern 1.006* .539 
Clear .642 .568 

Parallel to 
Window 

(Constant) 7.517 1.114 
DGP -9.444** 4.001 
Fractal Pattern -1.682** .640 
Clear -.187 .759 

Table 5.8: The dependent variable is the Visual Interest of Sunlight Patterns (Q2). Reference 
window conditions is the Striped pattern. All models are estimated through ordinary least 
squares. One or two stars indicate 10 percent, 5 percent significance, respectively. 

Figure 5.13 shows mean visual interest ratings on the SE façade by window condition 

and view direction. While the visual interest for Fractal sunlight patterns was significantly higher 

than that for the Striped ones, this was not associated with a significant increase in visual 

comfort as discussed in Section 3.2. On the other hand, the visual interest for the Striped 

pattern outperformed the Fractal for those parallel to window, which is like the relationships 

found in visual comfort analyses. This suggests that visual interest ratings from those parallel to 

Figure 5.13: Mean visual interest rating for the three window conditions by view 
direction on the SE facade. The error bars represent 95% confidence intervals. 

Figure 5.12: Sunlight patterns on the SW façade at 3:00 pm (A, B); and on the SE façade at 9-
9:30 am (C, D). 
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window could be associated with their visual comfort assessments. It is unclear, however, 

whether the visual interest influenced visual comfort or vice versa, and the extent of this 

interaction. 

5.5.2. View quality 

Generally, view quality ratings were higher for participants perpendicular to the window 

compared those parallel to the window, as can be seen in Figure 5.14. This suggests that view 

quality ratings could be influenced by occupant’s view direction. Means of view quality for those 

perpendicular to the window were 4.18, 6.18, and 3.8 which are consistently higher than for 

those parallel to the window with means of 2.84, 5.75, and 3.76 for the Fractal, Clear, and 

Striped condition, respectively. Because of the differences in view quality by view direction and 

presence of sunlight, these two factors were considered in the analyses. 

To investigate the significance of differences in view quality ratings, multiple regression 

analyses were used. First, view quality was examined only by view direction. The results showed 

that, expectedly, compared to the Clear condition, both patterns were associated with a 

significant decrease in view ratings (p<0.01). Further, compared to the Striped pattern, the 

Fractal pattern was associated with a significant decrease in view quality for those parallel to the 

window (p<0.05). Second, when responses were broken down by the presence of sunlight 

patterns (Figure 5.15), this negative association between the Fractal pattern and view quality 

was specific to responses when sunlight patterns were present in space (Table 5.9). No 

significant differences in view quality were found between the Fractal and Striped patterns 

when sunlight patterns were not present. 

 

Figure 5.14: A boxplot of view quality ratings by occupant’s view direction. 



89 
 

 

 Unstandardized Coefficients 
B Std. Error 

W
it

h
o

u
t 

Su
n

lig
h

t 

P
at
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rn
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Perpendicular to 
window 

(Constant) 3.448 .834 
DGP 2.062 3.035 
Fractal .261 .469 
Clear 2.161*** .484 

Parallel to 
window 

(Constant) 5.608 1.184 
DGP -8.643* 5.143 
Fractal -.699 .493 
Clear 2.264*** .547 

W
it

h
 S

u
n

lig
h

t 
P

at
te

rn
s 

Perpendicular to 
window 

(Constant) 3.292 .704 
DGP .785 1.804 
Fractal .566 .551 
Clear 2.583*** .506 

Parallel to 
window 

(Constant) 4.796 .870 
DGP -3.769 3.078 
Fractal -1.172** .549 
Clear 2.175*** .566 

Table 5.9: The dependent variable is View quality (Q3). All models are estimated through 
ordinary least squares. One, two, and three stars indicate 10 percent, 5 percent, and 1 percent 
significance, respectively. 

When view quality was examined by façade orientation (Table 5.10), the Fractal pattern 

on the SE façade was associated with a significant increase in view quality for those 

perpendicular to the window (p<0.1), whereas it was associated with a significant decrease in 

view quality for those parallel to the window (p<0.1). No significant differences in view quality 

were found between the Fractal and the Striped conditions on the SW façade. On the SE façade 

and for those perpendicular to the window, mean view quality ratings were 4.21, 6.21, and 3.55 

Figure 5.15: Mean view ratings by desk layout and sunlight condition: without sunlight 
patterns (top), and with sunlight patterns (bottom). * denotes a significant difference at the 
p<0.05 level. The error bars represent 95% confidence intervals. 
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compared to 2.67, 5.88, and 3.76 for those parallel to the window at the fractal, Clear, and 

Striped conditions, respectively. When the results of the two models are collectively examined, 

they suggest that the Fractal pattern reduces view quality ratings for those parallel to window 

on the SE façade or with sunlight patterns in space. 

The relationship between view direction and view quality through the two patterns 

could have been influenced by the duration of time spent looking outdoors through the window 

pattern. For example, those seated parallel to the window were more likely to spend less time 

looking towards the window. This hypothesis, however, requires further testing to verify it. 

  Unstandardized Coefficients 

 B Std. Error 

So
u

th
-E

as
t 

Fa
ça

d
e

 

Perpendicular to 
Window 

(Constant) 3.224 .517 

DGP 1.117 1.488 

Fractal Pattern .674* .393 

Clear 2.607*** .390 

Parallel to 
Window 

(Constant) 4.336 1.022 

DGP -2.316 3.775 

Fractal Pattern -1.119* .619 

Clear 2.196*** .612 

Table 5.10: The dependent variable is View quality (Q3). All models are estimated through 
ordinary least squares. One, two, and three stars indicate 10 percent, 5 percent, and 1 percent 
significance, respectively. 

Unlike the Striped pattern, the fractal pattern exhibits an irregular distribution of clear 

and opaque areas. Although clear areas were consistent across the two patterns, it can be 

argued that the Striped pattern allowed for more uniform and consistent viewing compared to 

the Fractal pattern. These results highlight an important process in psychological research called 

‘masking’ which relates to the reduction in visibility of the one stimulus (views) by another 

stimulus or mask (window pattern) (Bachmann, 1984). Particularly, the Fractal pattern relates to 

noise masking, a random dot pattern, whereas the Striped pattern relates to structure masking, 

shapes similar to view content (Agaoglu, Agaoglu, Breitmeyer, & Ogmen, 2015). Overall, it is 

possible that the ability of occupants to reconstruct obstructed view regions under the Fractal 

pattern was lower, compared to the Striped pattern for those seated parallel to the window 

(Figure 5.16). This effect can be referred to as ‘outdoor view reconstructability’, which is 

different from the view clarity index (Konstantzos et al., 2015) in that the former is concerned 

with overall view quality whereas view clarity assessed the ability to distinguish individual 

elements such as sky condition or color of cars. 
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A key difference between the clear condition and the two patterns is that each pattern 

was another stimulus that framed the outdoor views. This poses an important question of 

whether the pattern becomes part of the view and the extent to which the pattern influences 

view quality ratings. In this study, we did not collect visual interest ratings of the window 

pattern itself. Nonetheless, it is expected that view interest ratings would differ from those 

discussed in section 1.3, mainly because the visual interest of outdoor views would compete 

with that of the pattern that is occluding it. For example, when patterns are viewed on a white 

background, the pattern is the sole potential source of visual interest, however, when outdoor 

views are present, the pattern might be viewed as a distraction that reduces the visual interest 

of the views. Therefore, when multiple stimuli are present, it is important to consider the visual 

interest of the overall composite view and not of each stimulus separately. 

5.5.3. The Borderline between comfort and discomfort 

To explore whether the borderline threshold between comfort and discomfort (BCD) 

differs among the three window conditions, visual comfort responses were categorized into 

comfortable (strongly agree, agree, and somewhat agree) or uncomfortable (strongly disagree, 

disagree, and somewhat disagree). Figure 5.17 shows a boxplot of vertical illuminance by visual 

comfort response and view direction. Overall, occupants seated parallel to window were visually 

uncomfortable at lower vertical illuminance ranges compared to those perpendicular to the 

window. This also lowers the borderline threshold for those parallel to the window in terms of 

vertical illuminance and DGP. 

The BCD values, in terms of vertical illuminance and DGP, were calculated using the 

midpoint method which calculates the mean of (strongly agree, agree, and somewhat agree) 

and the mean of (strongly disagree, disagree, and somewhat disagree), then calculates the mean 

of these two values. The results show only slight differences in BCD between the Fractal and 

Striped patterns, with notably higher BCD values for the Clear condition, as shown in Table 5.11. 

Figure 5.16: Participant’s views through the Clear (left), Fractal (middle), and Striped (right) 
window conditions. 
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The BCD values for vertical illuminance under the two patterns in the parallel view direction are 

in line with results of a previous study that identified BCD to be 1250 lux (Van Den Wymelenberg 

& Inanici, 2014). 

Table 5.11 showed that BCD in terms of vertical illuminance and DGP for under the two 

patterns were consistently lower those under the Clear condition. This could be due to 

occupant’s adapting to a wider range of daylight conditions under the Clear condition, which 

might have influenced their visual comfort assessments. In other words, the range of daylight 

conditions experienced by occupants might have influenced what they considered a visually 

uncomfortable condition. Examining this hypothesis further can inform the methodological 

approaches used in future studies. Another potential explanation for the difference is that the 

relatively higher view quality under the Clear condition might have increased tolerance to glare. 

This suggests that view quality should be incorporated into glare prediction models. 

  Fractal Stripes Clear 

Perpendicular 1726.4 (0.28) 1829.4 (0.29) 3105.3 (0.35) 

Parallel 1028.1 (0.24) 977.6 (0.24) 1760.2 (0.28) 

Table 5.11: Vertical illuminance in lux and (DGP) borderline values between comfort and 
discomfort for each window condition and in two view directions. These values were calculated 
using the midpoint method as described above. 

Figure 5.17: Vertical illuminance (lux) Log base 10 ordered by value for each window condition. 
The x axis represents response number. The dashed line shows the borderline threshold 
between comfort and discomfort of 1250 lux identified by (Van Den Wymelenberg & Inanici, 
2014). 
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To examine the influence of visual comfort on visual interest, visual comfort responses 

were transformed into a binary rating: comfortable and uncomfortable. Figure 5.18 shows mean 

visual interest ratings by visual comfort. Generally, visual interest ratings were less under 

visually uncomfortable conditions, compared to visually comfortable ones. Focusing on visually 

uncomfortable scenes, it can be noticed that mean visual interest of fractal sunlight patterns 

was higher than that of the Striped pattern for those perpendicular to window. Although the 

number of responses is reduced, a multiple regression model showed that this difference was 

significant at the 10% level. On the other hand, the visual interest of fractal and striped sunlight 

patterns were similar and relatively lower for those parallel to window. These results suggest 

that fractal patterns might be particularly effective in reducing perceived glare for those 

perpendicular to window. Further studies are warranted to explore the interdependencies 

between visual interest, visual comfort, and view quality. 

In addition to the difference in sunlight pattern size, there were several differences in 

daylight conditions between the two facades. For instance, in the mornings, sun disc was 

typically visible through the roller shades on the SE façade but not on the SW façade (Figure 

5.19). Particularly because the sun only accessed the SW façade in the afternoon and 

participants were asked to respond to questionnaire at 3 pm. This might have contributed to the 

absence of significant differences between the two patterns on the SW façade. 

Figure 5.18: Mean visual interest by visual comfort, view direction, and window condition. 
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5.6. Conclusions 

We summarize the conclusions of this study with the following points: 

• The Striped window condition was associated with a significant increase in visual comfort 

(p<0.1) over the Fractal pattern condition for those parallel to window on the SE façade and 

in scenes with sunlight patterns. 

• The Fractal pattern was associated with a significant increase in visual comfort (p<0.01), 

compared to Striped condition, for those perpendicular to the window on the SE façade and 

without sunlight patterns in space. 

• Visual interest of sunlight patterns varied by desk layout and façade orientation such that on 

the SE façade the Fractal pattern was associated with a significant increase in visual interest 

(p<0.1) for those perpendicular to the window, and a significant decrease in visual interest 

(p<0.01) for those parallel to the window. 

• Both patterns were associated with a significant decrease in view quality ratings (p<0.01). 

• Compared to the Striped pattern, the Fractal pattern was associated with a significant 

decrease in view quality ratings for those parallel to the window (p<0.1), whereas it was 

associated with a significant increase in view quality for those perpendicular to window 

(p<0.1). 

• There were no significant differences in visual comfort, view quality, or visual interest of 

sunlight patterns on the SW façade. 

Figure 5.19: Daylight conditions at the south east in the morning and at the south west façade 
in the afternoon. 
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5.7. Limitations 

There are several limitations that should be considered when interpreting the results of 

this study. First, this study was conducted during the summer in San Francisco, CA. and did not 

include winter sunlight conditions, which might create higher glare levels particularly during 

early morning and late afternoon periods. Another limitation was the naturally occurring 

variations in sky conditions, which reduced the possibility of a paired comparison within each 

subject. 

Each window condition was only experienced by each subject for one day. Further, the 

number of times that each participant completed the questionnaire each day was limited to 

three times to avoid interrupting their work. Further, the shades were fixed at three feet high to 

reduce the possibility of participants stopping their participation before completing the study. 

While none of the participants stopped their participation, the position of the shades mitigated 

glare levels. Because this is an inherited limitation in field studies, higher glare levels might be 

more easily explored in controlled experiments. 

Most participants (51.5%) in this study were 50-59 years of age, hence their sensitivity 

to brightness might be different than those in other age groups. Lastly, in this study, we did not 

apply luminous overflow correction to adjust for peak luminance limitations because the 

procedures to correct for this are evolving and have not been validated. 
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6. CHAPTER VI  

SUMMARY OF CONTRIBUTIONS AND FUTURE WORK 

This dissertation identified two main goals: first, to examine the perceptual response of 

projected light patterns; and second, to investigate differences in visual comfort, visual interest 

of sunlight patterns, and view quality under different window conditions. These two goals were 

investigated through a series of four studies that addressed different topics related to these 

goals. When the results of these studies are collectively examined, the results provide insights 

on the effects of sunlight pattern geometry on occupant’s visual interest, comfort, and 

satisfaction with view quality. The following sections summarize main contributions related to 

each goal. 

6.1. Examining the Perceptual Response of Projected Light Patterns 

This goal was examined in Studies 1, 2, and 3 (Chapter 3 and 4) by assessing visual 

interest and mood response to four fractal light patterns of varying complexities and two non-

fractal light patterns. In Study 1, light patterns were directly projected on a wall whereas in 

Study 2, renderings of an interior space that included simulations of light patterns on the wall 

and floor of a room were projected. Study 3 examined the effect of distance, between observer 

and projection wall, on visual interest and visual preference. Overall, results showed that fractal 

light patterns of medium to medium-high complexity were significantly more visually 

interesting, as compared to other light patterns. It is possible that visual interest ratings were 

influenced by spatial variables such as room surfaces and lighting. Study 3 showed that distance 

did not significantly influence visual interest or visual preference. Regarding mood response, it 

was found that fractal light patterns provided a better balance between relaxation and 

excitement compared to Striped and Rectangular patterns. 

Results of study 1 suggested that the mid-complexity fractal light pattern D=1.5 was 

significantly more visually interesting compared to fractal light patterns of D=1.1, D=1.3, D=1.7, 

and the two Euclidean patterns. The fractal light pattern of D=1.7 was slightly less visually 

interesting than D=1.5. In Study 2 when light patterns were shown as light patterns in 

renderings, the fractal pattern with D=1.7 was significantly more visually interesting than all 

other patterns. Interestingly, the striped pattern was significantly more visually interesting than 
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the fractal with D=1.1. Lastly, the rectangular pattern was significantly less visually interesting 

than all other patterns. 

Results of Study 3 suggest a shift in visual interest compared to results of previous 

studies. As can be seen in Figure 6.1, there is a difference in the relationship between visual 

interest and the fractal dimension. This difference was hypothesized to had been influenced by 

spatial and environmental variables, this hypothesis, however, requires further testing. 

 

6.2. Investigating Differences in Visual Comfort, Visual Interest of Sunlight 

Patterns, and View Quality under Different Window Conditions 

This goal was investigated through two studies described in Chapter 5 and Chapter 6. 

Generally, the results suggest that regardless of the visual interest of the pattern mounted on 

windows, view quality ratings were significantly reduced under Fractal or Striped patterns 

compared to the Clear condition. When sunlight patterns were present in space, no significant 

differences in visual comfort were found between the Fractal and Striped patterns. There were 

some differences in the visual interest of sunlight patterns when compared to the Clear 

condition and when examined by view direction. 

Study 3 illustrated that the visual interest ratings of the Striped pattern were 

significantly less than those for Clear condition. It was also suggested that occupants might be 

 Figure 6.1: Visual preference by D value for previous studies and Study 3. 
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able to tolerate low levels of glare in an office setting when an interesting outdoor view of 

nature is present. The Clear condition received the highest mean ratings for visual comfort and 

view quality and the differences were statistically significant compared to the two patterns. 

Overall, this study showed that the visual interest of sunlight patterns was associated with 

significant increases in visual comfort ratings. 

Study 4 concluded that compared to the Striped pattern, the fractal pattern was 

associated with a significant increase in visual comfort for participants perpendicular to the 

window and without sunlight patterns in space. It was also found that the visual interest of 

sunlight patterns was influenced by view direction such that the Fractal pattern was associated 

with a significant increase in visual interest for those perpendicular to the window, whereas the 

Fractal pattern was associated with a significant decrease in visual interest for those parallel to 

the window. While both patterns were associated with a significant decrease in view quality, the 

Fractal pattern was associated with a significant decrease in view quality for those parallel to the 

window and when sunlight patterns were present in space. 

6.3. Applications 

The findings of this dissertation might have implications for improving visual comfort 

and interest in different fields and industries. The following sections discuss the application of 

fractal patterns in build environments, the automotive industry, and  

6.3.1. The built environment 

Fractal patterns can be utilized in shading and daylight systems, e.g. blinds, screens, 

glazing, etc.; to manipulate the geometry of sunlight patterns and improve occupant’s visual 

comfort, visual interest of sunlight patterns, and view quality. Altering sunlight pattern 

geometry might be possible with emerging dynamic glazing systems such as electrochromic or 

thermochromic glazing. With further studies on human perceptual response, it is possible that 

the visual interest of sunlight patterns or mood response to become additional criteria for the 

design and control of these systems. 

In addition to perimeter building zones that have direct access to sunlight and outdoor 

views, the findings may have implications for windowless rooms where sunlight patterns can be 

transferred using various technologies and projected on interior surfaces. For instance, the 

geometry of sunlight from a light tube can be manipulated, as still projections or dynamic ones 
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that vary based on sky condition, for example. This can enhance the sense of connection to 

outside environments in these spaces. 

While fractal patterns and sunlight in space can independently enhance a sense of 

connection to nature, fractal sunlight patterns mimic sunlight dappled through trees, hence they 

might provide a higher sense of connection to nature and be associated with biophilic effects 

(Browning et al., 2012). Particularly, as found in Studies 1, 2, and 3 mid to mid-high complexity 

fractals were more visually preferred and interesting than other complexities. This might have 

implications for occupant’s well-being and indoor comfort. 

6.3.2. The automotive industry 

Maintaining visibility and reducing eye fatigue are some of the main requirements for 

car glazing systems, particularly windshields. The use of patterned tint stripes in the upper area 

of windshields might help reduce visual discomfort, maintaining interest, and enhancing stress 

recovery (Taylor, 2006). This might have implications on the safety and well-being of drivers and 

passengers, particularly long commuters and shipping truck drivers. 

6.4. General Limitations 

There are several limitations to the approach, methods, and findings that should be 

considered when interpreting the studies reported. First, while the use of remote polling proved 

helpful for efficiently collecting responses from all participants at the same time, there were 

variations among participants in terms of seating location, distance, and view direction. 

Although Study 3 showed that distance did no significantly influence visual preference and 

interest, it remains unclear how the combination of distance, luminance distribution, contrast, 

and seating location might have influenced preference and interest. 

Second, the patterns examined in Studies 4 and 5 were printed on a clear transparency 

to simulate fractal and striped patterns. The visual response to these patterns might be different 

than that to actual objects being simulated. For instance, although trees include fractal patterns, 

the visual response to printed fractal patterns might be different from that to trees adjacent to 

building. Similarly, the visual response to printed stripes might be different than that of venetian 

blinds. Other properties like color, texture, and material might have influenced these responses. 

Third, the ability to gain access to office buildings to conduct field studies is inherently 

challenging. This limited the location and number of potential buildings available for 
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investigation. As a result of this limitation, Studies 4 and 5 were conducted in two different 

climate zones where occupants might have had different preferences and prejudgments related 

to the presence of sunlight patterns in space. Further, the desire for continuous and 

uninterrupted data collection during sunny and clear sky conditions has limited Study 4 to 

summer months. Therefore, occupant’s visual reaction during winter or spring months was not 

investigated. 

Fourth, the selection of window pattern size (3x6 feet) was driven by cost, ease of 

mounting in an office space, and by the desire to limit intolerable glare occasions. The later was 

based on concerns over workers being able to perform their daily tasks, which could lead to the 

possibility of participants stopping their participation. While none of the participants stopped 

their participation, the size of patterns might have reduced the impact of occupant’s visual 

response compared to covering the whole window. 

6.5. Future Work 

6.5.1. Visual interest and view clarity 

Previous studies that examined perceptual responses to fractal patterns were mainly 

conducted in windowless rooms, including the first two studies in this dissertation. The 

provision of view and daylight in the room might present competing factors that might influence 

visual interest. Specifically, a view of nature through windows might reduce the relative 

significance of computer-generated fractals. Thus, future studies should examine whether the 

visual interest of projected light patterns is influenced by the presence of these two variables. 

Another research area that warrants further exploration is related to investigating view 

clarity through different patterns. It is hypothesized that the adequacy of window patterns for 

improving view clarity depends on the relationship between view type and pattern geometry. 

For instance, it might be possible that fractal patterns reduce visibility the most while looking at 

a scene of nature. The results of such efforts can help inform the selection of window patterns 

to improve visual interest and view quality. 

6.5.2. Visual interest of sunlight patterns 

In studies 3 and 4, view quality was consistently higher for the clear condition, 

therefore, to isolate the effects of views, future studies should examine visual comfort and 

visual interest of sunlight patterns when parallel to the window without access to outdoor 
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views. This would help determine whether sunlight pattern geometry can be potentially used to 

enhance visual interest and visual comfort in windowless rooms. 

Future studies should examine tradeoffs and interactions between views, visual interest 

of sunlight patterns, and visual comfort to examine whether the visual interest of sunlight 

patterns increases tolerance to glare as suggested by previous studies (Tuaycharoen & Tregenza, 

2005). Further, to explore the extent to which outdoor view is maintained despite glare. These 

research areas can be investigated by examining occupant’s behavioral responses, e.g. shade 

control, under different sunlight conditions. 
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