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DISSERTATION ABSTRACT

Ian Snyder

Doctor of Philosophy

Department of Physics

June 2018

Title: Search for a Scalar Partner of the Top Quark in the Jets+Emiss
T Final State in

Proton-Proton Collisions at
√
s =13 TeV with the ATLAS Detector

This dissertation presents a search for pair production of a scalar partner to the

top quark in proton-proton collisions at the ATLAS detector at the Large Hadron

Collider (LHC). The LHC is a particle accelerator located in Geneva, Switzerland that

collides two beams of protons. ATLAS is a general purpose detector and is one of four

detectors at the LHC. The data used in this analysis was recorded during Run 2 with

a total of 36.1 fb−1 at a center-of-mass energy of
√
s = 13 TeV. In supersymmetry, the

scalar partner to the top quark is the stop, which decays to a top quark and neutralino

or to a bottom quark and chargino. The experimental signature considered is four or

more jets plus missing transverse momentum. The data yielded no significant excess

over the Standard Model background expectation, and exclusion limits are reported

in terms of the stop and neutralino masses. Assuming a branching fraction of 100%

to a top quark and neutralino, stop masses in the range 450-1000 GeV are excluded

for neutralino masses below 160 GeV. In the case where the stop mass is close to the

top mass plus the neutralino mass, masses between 235-590 GeV are excluded. The

results are also interpreted in terms of the phenomenological Minimal Supersymmetric

iv



Standard Model.

Additionally, work on an upgrade to the ATLAS trigger system, the Global

Feature Extractor (gFEX), is presented. This upgrade will have the unique ability to

scan over the entire calorimeter to trigger on global variables and large radius jets.

A scheme was developed to calibrate the gFEX that also reduces pileup noise.

This dissertation includes previously published coauthored material.
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CHAPTER I

INTRODUCTION

Ever since the ancient Greeks philosophized on the smallest bit of materials,

people have wondered what are the basic building blocks of matter. With the

development of science, the search for answers changed from philosophizing to

experimentation and in the last several centuries atoms were discovered. Of course,

the atom is not the most fundamental building block of matter; its nucleus is made

up of protons and neutrons, with electrons orbiting it. Protons and neutrons are in

turn made up of quarks, and whether these are fundamental and point-like is still

being investigated.

Additional quarks and leptons that do not exist in ordinary matter have also

been discovered, along with other fundamental particles. These particles and the

forces that determine their interactions make up the Standard Model of Particle

Physics (SM) and are shown in Table 1.1. These particles are heavier than those

found in ordinary matter and are highly unstable. In order to create these particles

experimentally physicists need to reach higher and higher energies. To achieve these

energies, colliders accelerate particles such as protons to a very high momentum and

then impact them with other particles. Experimental particle physicists develop and

use these colliders, which are among the largest experiments in history.

Particle physics is not just useful for the very small; while particle physicists were

probing the building blocks of matter, astronomers and cosmologists were looking

to the skies to understand the origin and fate of our universe. The particles and

1



interactions in the SM also govern the life cycle of stars and the creation of heavy

elements. Dark matter, which is known to exist but not predicted by the SM,

determines the large-scale structure of the universe. Thus particle physics attempts

to describe both the very small and very large.

This chapter will introduce the Standard Model and discuss SM processes

relevant to the topic of this thesis, as well as present physics that the SM fails to

explain, and Chapter II discusses a possible solution to a few of the most glaring issues.

Chapter III presents the experimental apparatus used in this search, and Chapter

IV discusses one of the upgrades to the detector, the Global Feature Extractor.

Chapter V gives an overview of the stop search and Chapter VI describes how events

are reconstructed. Chapter VII describes the analysis in detail and Chapter VIII

concludes the dissertation and presents the outlooks for the future of the analysis.

Chapters V and VII include material coauthored with the ATLAS Collaboration.

1.1. The Standard Model

The Standard Model of Particle Physics has been developed and tested by many

experiments and stands as our most accurate theory describing the microscopic world.

In the SM all matter is made up of fermions (spin-1
2

particles). Fermions are composed

of quarks and leptons.

Ordinary matter is made up of the first generation; protons (uud), neutrons

(udd), and electrons make up atoms. The remaining quarks make up more exotic and

short-lived hadrons we see in collider experiments and in cosmic radiation. The
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remaining leptons, with the exception of neutrinos, can be thought of as heavy

versions of the electron and are unstable. A summary of all particles in the SM

can be found in Table 1.1.

TABLE 1.1. Particles of the Standard Model[2].

Particle Spin Charge Mass

Quarks
u family u 1

2
2
3

2.2+0.6
−0.4 MeV

c 1.28± 0.03 GeV
t 173.1± 0.6 GeV

d family d 1
2

−1
3

4.7+0.5
−0.4 MeV

s 96+8
−4 MeV

b 4.18+0.04
−0.03 GeV

Leptons
e family e 1

2
-1 0.5109989461± 0.000000003 MeV

ve 0 < 2 eV
µ family µ 1

2
-1 105.6583745± 0.0000024 MeV

vµ 0 < 2 eV
τ family τ 1

2
-1 1776.86± 0.12 GeV

vτ 0 < 2 eV
Bosons
Vector γ 1 0 < 10−18 eV

g 1 0 0
W 1 ±1 80.385± 0.015 GeV
Z 1 0 91.1876± 0.0021 GeV

Scalar Higgs 0 0 125.09± 0.21± 0.11 GeV

1.1.1. Force Carriers

Vector bosons (integer spin) act as force carriers in the SM. Force carriers are

quanta of energy of a particular field and transfer forces between particles.
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1.1.1.1. Photons

Photons (γ) are massless, chargeless, and are the force-carriers in Quantum

Electrodynamics (QED). QED governs the interactions of charged matter and

describes how photons and matter interact. The coupling constant, which indicates

coupling strength, is of order 10-2.

In addition to being important in production and decays of particles, QED

interactions are used in detectors. For example, calorimeters take advantage of the

following processes:

– Photoelectric effect: photons are absorbed by a material and charge carriers,

usually electrons, are emitted by the material

– Compton scattering: a particle absorbs a photon, recoils and emits a photon

with less energy

– Pair production: a photon of sufficient energy decays into an electron and

positron

– Bremsstrahlung: a charged particle loses energy by emitting a photon when

deflected by an electric or magnetic field

These interactions cause a cascade, or shower, of particles whose energy can be

measured. This is further discussed in Section 3.2.4.
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1.1.1.2. Gluons

Gluons are also massless and chargeless and are the force-carriers in Quantum

Chromodynamics (QCD), which describes strong interactions between quarks in the

SM. Gluons carry color, the analog to electric charge in the strong force (although

photons do not carry charge while gluons carry color). The coupling constant is for

the strong force is of order 1 but is limited to short distances.

Gluons also play a main role in particle production in hadron colliders. Since

both beams of particles in the collision at the LHC are protons, compared to protons

and antiprotons at the Tevatron, there are very few antiquarks to annihilate with

quarks to produce particles. Instead, most production is from gluon fusion, in which

two gluons fuse into a single high energy gluon which in turn can decay into other

particles.

Unlike the other forces, the strong force increases as two quarks are pulled apart,

and a quark-antiquark pair will be created from input energy before quarks can be

free. Quarks therefore exist in bound states, hadrons, with either a quark-antiquark

pair, called mesons, or sets of three quarks (antiquarks) called baryons (antibaryons).

In a collision a highly energetic quark or gluon can fragment into a collimated

spray of hadrons, called jets. Production of two back-to-back jets, called a dijet event,

are very common at the LHC, as are multijet events. By measuring the energy and

direction of a jet, one can measure properties of the original parton. Jets are discussed

more in Section 6.2.
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It is possible for a particle to emit radiation prior to annihilating with the

oncoming beam of particles; this is called initial-state radiation (ISR). When a final

state particle emits radiation it is referred to as final-state radiation (FSR). ISR can

change the momentum of the particles produced as the interacting particles recoil

against the ISR particles.

1.1.1.3. W and Z Bosons

The W and Z bosons are the force carriers for the weak force. Unlike the other

force carriers, these are very massive and the W bosons are also charged. Because

the the vector bosons have a large mass, they are short-lived with a lifetime under

10-24s and a coupling constant on the order of 10-6 at low energies, although at high

energy colliders this coupling can be similar to that of the strong force. The weak

force is the only force that affects every fermion in the SM and weak interactions are

the only interactions that allow for a particle to change its flavor.

The vector bosons are primarily produced at the LHC in Drell-Yan processes,

where the vector boson is a product of quark-antiquark annihilation. Processes that

can produce a Z boson can also occur with heavy flavor jets, such as b-jets as shown in

Figure 1.1. Z bosons can also be emitted from an off-shell quark, as shown in Figure

1.5 where a Z is emitted from an off-shell top quark. Z bosons decay to leptons

or quarks about ∼80% of the time and to a neutrino-antineutrino pair ∼20% of the

time[2].
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FIGURE 1.1. One possible mechanism for creation of Z with jets.

Similarly W bosons can be produced in association with heavy flavor quarks.

W bosons decay leptonically, to a lepton and lepton neutrino, ∼33% of the time and

decay hadronically, to a quark-antiquark pair, the remainder of the time. It is possible

for a pair of W bosons to be produced as well; these are called diboson events and

are shown in Figure 1.2.

FIGURE 1.2. Examples of bosons produced in pairs in an event.

1.1.2. Quarks and Leptons

The quarks and leptons are comprised of three generations as shown in Table 1.2.

The first generation of fermions include up (u) quarks, down (d) quarks, electrons

(e−) and electron neutrinos (νe). The second and third families, with exception of
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the neutrinos, are heavier and will decay to stable particles. There also exists for

each matter particle an antimatter particle having that same masses and quantum

numbers as the corresponding matter particle except with opposite charge.

TABLE 1.2. Generations of the Standard Model.

First Second Third

up-type quarks u c t
down-type quarks d s b
charged leptons e µ τ
neutral leptons νe νµ ντ

1.1.2.1. The Top Quark

The top quark was discovered in 1995 at the Tevatron[3]. Its distinguishing

feature is its extremely heavy mass at 173.1 GeV, compared to the next heaviest

quark, the bottom quark, with a mass of 4.5 GeV or the proton with a mass of

about 1 GeV. The lightest quark is the up quark and has a mass of 2.4 MeV which

is 0.0001% the mass of the top quark.. Due to its heavy mass, the top quark is

extremely unstable and have a lifetime of 5 × 10-25 seconds. This is shorter than the

time to hadronize and so there are no top hadrons. Because they couple strongly to

bottom quarks, they nearly always decay immediately to a bottom quark and a W

boson1. Bottom quarks in turn have a longer lifetime because of the small decay rates

to up and charm quarks, and so we can detect bottom quarks in detectors by finding

a secondary vertex which is displaced from the primary vertex. See Section 6.2.4 for

more details.

1 The theoretical rate of top to bottom is 0.999 and the experimentally measured rate is
1.021±0.032[2].

8



FIGURE 1.3. Branching fractions of the decay channels of the top quark (figure from
[4]).

Top quarks can be produced either in pairs, as in Figure 1.4 or as a single top

with another quark, such as a bottom quark. After production top quarks decay to

a bottom quark and a W boson. W bosons decay to either a lepton and neutrino

or a quark-antiquark pair the conserves charge (such as a ud̄). In the case of the

quark-antiquark pair, each of these quarks will hadronize and the final result of the

top decay is three jets including a bottom jet.

FIGURE 1.4. Top-antitop pair production with one W boson decaying leptonically
and one decaying hadronically.
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Top quarks, if off their mass shell, can also emit a Z boson, as shown in Figure 1.5.

FIGURE 1.5. Two possible production modes for a top-antitop pair and a Z boson.

1.1.3. Electroweak Physics and Higgs Boson

Above about 1015 GeV the weak and electromagnetic forces are unified to a

single force. At this scale the massless gauge bosons are the W1, W2, W3, and the B

bosons. After electroweak symmetry breaking the W1 and W2 mix to form the W±

bosons and the B and W3 mix to form the Z boson and the photon. Therefore the

electromagnetic and weak forces can be thought of as two aspects of one unified force.

The process by which the vector bosons gain mass is called the Higgs mechanism.

The Higgs mechanism occurs whenever a field has a nonzero vacuum expectation value

(vev). In the SM this only occurs with the field of the Higgs boson since the Higgs

field has a nonzero value everywhere. This breaks the symmetry of the electroweak

interaction and gives mass to the gauge bosons.

Fermions and vector bosons acquire mass by interacting with the Higgs boson,

and the coupling to the Higgs is proportional to the mass of the particle. This coupling

is referred to as Yukawa coupling and the top quark, being the most massive particle
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in the SM, also has the largest Yukawa coupling with a value of about 1.

The Higgs boson was discovered in 2012 at ATLAS[5] (and CMS[6]) with a

mass of 126.0 ± 0.4(stat) ± 0.4(sys) GeV[5]. This was the results of four decades

of searches at the Tevatron, LEP, and finally the LHC, and is the first and only

fundamental scalar that has discovered. Figure 1.6 shows the branching fractions

of the Higgs boson. The Higgs was discovered by a combination of searches in the

H → ZZ(∗) → 4l, H → γγ, H → WW (∗) → eνeν, H → bb̄, and H → τ+τ−

channels.

1.2. Beyond the Standard Model

The Standard Model is an astoundingly accurate theory describing nature.

However it is still an incomplete theory; for example it is unable to account for

massive neutrinos.

Neutrinos are unique in that they are composed of combinations of mass states.

Because of this fact neutrinos will oscillate from one flavor to another[7], for example

electron neutrino to muon neutrino. This also means that there are mass differences

between the neutrino families, and thus that neutrinos have mass, and the sum of

the masses are currently constrained to less than 0.17 eV.[2]. This is not predicted

by the SM, which predicts massless neutrinos.
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FIGURE 1.6. Decay modes for the Higgs boson as a function of its mass (figure from
the ATLAS Collaboration).

Major flaws of the SM include the failure to account for dark matter, lack of

gauge unification, and the hierarchy problem.

1.2.1. Dark Matter

The SM also only accurately describes the 4.8% of the energy density of the

universe as baryonic matter makes up that small fraction; dark energy makes up

69.4% and dark matter makes up 25.8%[8], neither of which are explained by the SM.
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The evidence for the existence of dark energy is in the increasingly rapid expansion

of the universe.

Dark matter was proposed in the 20th century, beginning in 1922 when Jacobus

Kapteyn suggested it after observing stellar velocities[9] and again by Fritz Zwicky

in 1933 who applied the virial theorem to galaxy rotation and found that most

matter in galaxies must be made up of dark matter[10]. It was observed that the

stellar velocity was inconsistent with the amount of matter as measured by the

brightness of the galaxies and that much more matter was needed to hold the galaxies

together. Therefore, there must be some unseen matter. Evidence from galaxy

rotation curves came in 1939[11] and again with more accurate measurements in

1980[12]. It was found that the rotation velocity becomes approximately constant as

the radius increases, which implies a halo of dark matter with the amount of matter

proportional to the radius from the center of the galaxy. Dark matter also has a large

effect on the large-scale structure of the universe; by clumping together in the early

universe it also gravitationally attracted ordinary matter and is therefore responsible

for galaxy formation.

One of the largest pieces of evidence comes from the Bullet Cluster[13], two

colliding galaxy clusters. The stars in the clusters passed through the collisions and

slightly slowed while gasses, which make up most of the matter of the galaxies,

interacted electromagnetically and was slowed much more. Measurements from

gravitational lensing showed that most of the matter in the clusters were separated

from the baryonic matter, where dark matter had passed through without being
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slowed.

While the issue of dark energy is mostly relegated to the realm of cosmology,

the issue of dark matter is a problem of particle physics with several approaches,

either producing dark matter in colliders, observing possible dark matter decays in

cosmic ray detectors, and detecting interactions of dark matter with baryonic matter

- sometimes referred to in the field as “make it, break it, shake it” approaches to

detecting dark matter, as shown in Figure 1.7. “Making it” means to collide SM

particles in an accelerator to produce DM particles; “breaking it” means to observe

DM particles annihilating to produce SM particles; and “shake it” refers to direct

detection where a DM particle scatters off a SM particle. Since we should be able

to create dark matter particles in colliders, searching for dark matter particles and

having a viable model to explain it is a high priority.
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FIGURE 1.7. Three options for detecting dark matter: collider production, where
SM particles annihilate to dark matter; direct detection, where dark matter particles
scatter off SM particles; and indirect detection, where dark matter particles annihilate
to SM particles.
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1.2.2. Gauge Unification

Since observing that the electromagnetic and weak forces are unified at high

energies, a goal of theoretical physics is for all three gauge forces to be unified at

some energy. Unfortunately the in the SM this fails, as shown in Figure 1.8, and so

there is much work to develop a grand unified theory (GUT) that fixes this.

FIGURE 1.8. Evolution of the inverse of the three couplings with increasing energy
(figure from [14]). Any two of the three forces unify at sufficient energy but a
modification to the SM is needed so that the three couplings unify at the same energy.
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1.2.3. Hierarchy Problem

The Higgs boson couples to every particle with mass and large quantum

corrections should make its mass enormous compared to its measured mass of 125.09

GeV. As a scalar, the correction to m2
H from a fermion loop goes as:

h0

f

= −
λ2
f

8π2
Λ2

UV (1.1)

where ΛUV is the ultraviolet cutoff and can be interpreted as the energy scale

where new physics comes in to alter the theory. The mass is therefore quadratically

sensitive2 to the cutoff scale; if the value of ΛUV is on the order of the Planck mass

(1018-1019 GeV) then corrections to the Higgs mass is 30 orders of magnitude above

the required value. This means that the mass without any corrections, the bare mass,

must have a mass that precisely cancels these divergences. This is called fine-tuning

and the problem is referred to as the hierarchy problem.

Too much fine-tuning is not considered to be natural. To maintain ∼1% fine-

tuning new physics must come in at the electroweak scale, so this new physics should

be accessible at the LHC and is therefore right around the corner.

These flaws motivate Beyond the SM (BSM) theories, which propose new

particles and forces, and experiments to test them. One theory that offers a possible

solution to these issues with the SM is discussed in Chapter II.

2 While the Higgs is the only particle that has this quadratic dependence in the SM, the other
massive particles get their mass from the Higgs and therefore are indirectly affected.
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CHAPTER II

MOTIVATION FOR TOP PARTNER SEARCHES

Supersymmetry (SUSY)[15–19] is a proposed extension of the SM. It was first

proposed as a feature of an early version of string theory, but then developed as a

solution to the hierarchy problem. In SUSY there is a boson partner to each fermion

in the SM and vice-versa. This means that there is a scalar partner to the top quark,

called the stop quark (t̃)1 that cancels the large correction from the top quark. The

naming conventions for the SUSY particles are described in Section 2.4. There are

similar partners for the other quarks.

With this symmetry there is a transformation that turns a bosonic state to a

fermionic one and vice versa; an operator, Q, that generates such a transformation

with:

Q|Fermion〉 =|Boson〉, Q|Boson〉 =|Fermion〉 (2.1)

The fermion and boson states that are transformed to one another by Q come in

pairs (called supermultiplets) where the boson and fermion states are superpartners of

each other have the same mass, as well as the same electric charge, weak isospin, and

color degrees of freedom. Additionally, the number of fermionic and bosonic degrees

1 Just as there are left- and right-handed quarks in the SM, there are left- and right-handed SUSY
partners, t̃L and t̃R respectively. These mix to form stop eigenstates, the lightest being t̃1 and the
heavier t̃2. The lighter t̃1 is referred to as the t̃.
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of freedom in a supermultiplet must be equal.

The first three sections of this chapter will describe how SUSY is a solution to

the major problems discussed in Chapter I. Then additional considerations of SUSY

will be discussed, including more details about the particles it introduces and how it

is broken, and then introduce a specific SUSY theory and how it is searched for at

ATLAS.

2.1. Hierarchy Problem

As discussed in Section 1.2.3, one-loop corrections to the Higgs mass results in

large divergences. One solution is to introduce additional physics that adds diagrams

to cancel the troublesome diagrams, as:

t̃

= +
λ2
f

8π2
Λ2

UV (2.2)

This is because the sign difference between the fermion and scalar loops leads to

the cancellation of the fermion loops and also persists to higher order loop corrections.

The existence of such scalars arises naturally if there exists a symmetry relating bosons

to fermions, as in SUSY.

2.2. Dark Matter

In some SUSY models lepton and baryon numbers can be violated, which results

in the lifetime of a proton being shorter than observed[20]. It is not desirable to simply
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take baryon and lepton conservation as a postulate because it is a consequence of the

SM. However a new symmetry, called “matter parity” can be introduced, defined as:

PM = (−1)3(B−L) (2.3)

where B and L are the baryon and lepton numbers respectively, for each particle

in the theory. Quark and lepton supermultiplets have PM = −1 while the Higgs

supermultiplets have PM = +1. Gauge bosons and gauginos, which do not have

baryon or lepton number, are assigned PM = +1. A candidate term in the Lagrangian

is only allowed if the product of all PM terms is +1. This is a more exact and

fundamental theory than baryon and lepton number conservation. A new symmetry,

“R-parity,”[21] can be introduced to also account for conservation of spin as:

PR = (−1)3(B−L)+2s (2.4)

where s is the spin of the particle. All the particles in the SM have positive,

or even, R-parity, while all SUSY particles have negative, or odd, R-parity. If R-

parity is exactly conserved then there is no mixing between SM and SUSY particles.

Additionally, the lightest supersymmetric particle must be stable since it cannot decay

to SM particles.

The upshot of R-party is that SUSY naturally provides a viable dark matter

candidate[22], giving a solution to the second major problem in the SM. In the early

universe when the temperature cooled, dark matter particles no longer had the energy

to annihilate with each other to produce SM particles and also could not decay directly

into SM particles, leaving a relic density of dark matter particles.
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2.3. Gauge Coupling Unification

The third major problem in the SM, that the SM the gauge couplings unify at

some energy scale, also has a solution in SUSY. In some SUSY models the three gauge

coupling constants are unified at an energy scale of 1015 or 1016 GeV. This is referred

to as the grand unified theory (GUT) scale. The unification is not exact but very

close, as seen in Figure 2.3 and adjustments can be made approaching the GUT scale.

FIGURE 2.1. Renormalization group evolution of inverse gauge couplings in the
Standard Model (dashed) and with a SUSY theory (solid) with varying SUSY particle
mass thresholds and couplings. The SM couplings do not unify at any point while
the MSSM couplings nearly unify at an energy scale of 1016 GeV (figure from [23]).

2.4. Particle Contents

Only chiral supermultiplets can contain fermions whose left- and right-handed

parts transform differently under the gauge group; since all the SM fermions have

this property they must be members of the chiral multiplet and therefore the bosonic
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partners must be scalar particles, called sfermions, named by adding an s (for

“scalar”) in front of the standard model particle name, and not spin-1 vector particles.

All supersymmetric particles are noted by a tilde (∼) over its letter symbolizing it.

The squarks in the first and second families are nearly degenerate (due to smaller

Yukawa couplings compared to the third generation) and are much heavier than

the sleptons. The stop quark is expected to be the lightest squark as the large

Yukawa couplings tend to drive down the masses of the third generation squarks in

the renormalization group equations faster than the first two generations[23]. As the

masses of the third generation families increase, SUSY becomes less natural and the

motivation for SUSY as a solution to the hierarchy problem diminishes.

Alternately, there must be at least two chiral supermultiplet for the Higgs, one

to couple to up-type quarks (H+
u , H

0
u) and one to couple to down-type quarks and

charged leptons (H0
d , H

−
d ). Each of these have a spin-1/2 partner, named by adding

“-ino” to the end of the standard model partner, so are named higgsinos.

Finally, the gauge bosons have gauge supermultiplets with spin-1/2 superpartners.

Similarly to the Higgs, the naming convention is to add “-ino” to the end of the

standard model partner, so are named gauginos. The partner for the gluon is the

gluino and the partners for the W and B bosons are the winos and bino. Because

of electroweak symmetry breaking, the winos and binos mix to make the zino and

photino. The higgsinos and electroweak gauginos mix with each other similarly to the

W and B bosons mixing in the SM. Also the neutral higgsinos (H̃0
u, H̃

0
d) mix with the

neutral gauginos (W̃ 0, B̃) to create four neutral mass eigenstates called neutralinos,

χ̃0
1− χ̃0

4, while the charged higgsinos and winos mix to form four charginos, χ̃±1 − χ̃±4 .
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The lightest neutralino, χ̃0
1, is the lightest supersymmetric particle (LSP) and is a

candidate for dark matter.

The decay of a squark to a quark and gluino will dominate if kinematically

allowed. Otherwise squarks can decay to a quark and neutralino or chargino, and

the decay to a quark and LSP is kinematically favored and can dominate for right-

handed squarks if the LSP is mostly bino. Left-handed squarks may prefer decaying

to heavier neutralinos and charginos depending on the coupling to winos compared

to binos.

Table 2.1 shows the superpartners of the SM particles.

SM SUSY partners

Spin-1/2 quarks and spin-0 squarks(
uL dL

) (
ũL d̃L

)
u†R ũ∗R

d†R d̃∗R

Spin-1/2 leptons and spin-0 sleptons(
νL eL

) (
ν̃L ẽL

)
e†R ẽ∗R

Spin-0 Higgs and spin-1/2 Higgsinos(
H+
u H0

u

) (
H̃+
u H̃0

u

)
(
H0
d H−d

) (
H̃0
d H̃−d

)
Spin-1 gauge bosons and spin-1/2 gauginos

g g̃(
W± W 0

) (
W̃± W̃ 0

)
B0 B̃0

TABLE 2.1. Standard Model particles and their associated superpartners.
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2.5. Supersymmetry Breaking

Particles in mutiplets will have the same mass in an unbroken supersymmetry;

because this is not the case, as sparticles would have been easily discovered,

supersymmetry is a broken symmetry in the vacuum state. Specifically, it must

be broken spontaneously, meaning that the underlying model is invariant under

supersymmetry but the vacuum state is not. This way supersymmetry is hidden

at low energies. Since the relationship between the dimensionless couplings of the SM

and supersymmetry has to be maintained in order for supersymmetry to be a solution

to the hierarchy problem, the idea of “soft” supersymmetry breaking in introduced.

The soft terms introduce new Higgs mass corrections as[23]:

∆m2
H = m2

soft

[
λ

16π2
ln(ΛUV/msoft) + . . .

]
(2.5)

where λ is a dimensionless coupling term and msoft is the mass scale associated

with the soft terms. Since the masses of the fermion and their superpartners are

not equal the additional diagrams do not perfectly cancel the divergent diagrams. In

order to be a viable solution to the hierarchy problem the soft mass term, and thus

the lightest supersymmetric particles, should be on the order of the TeV scale.

There are two primary competing proposals for what the mediating interactions

may be. The first is new physics that enter at the Planck scale, including

gravity, called the Planck-scale-mediated supersymmetry breaking (PMSB). The

second proposal is that the interactions for SUSY breaking are the electroweak and

QCD gauge interactions in the SM, called gauge-mediated supersymmetry breaking
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(GMSB).2

2.6. Minimal Supersymmetric Standard Model

As previously discussed, the number of fermionic and bosonic degrees of freedom

in a supermultiplet must be equal. This means that for the simplest theory with

one SUSY transformation (Q), called the Minimal Supersymmetric Standard Model

(MSSM)[24], the following combinations of supermultiplets are possible, from most

to least simple: the chiral/matter/scalar multiplet consisting of a Weyl fermion

(two spin helicity states) and two real scalars (each with one degree of freedom);

the gauge/vector multiplet with two degrees of freedom consisting of a massless

gauge boson (two helicity states) and a Weyl spin-1/2 fermion; and a gravatino

supermultiplet, consisting of a spin-2 graviton (two helicity states) and a massless

spin-3/2 gravatino (two helicity states). Any other combination will reduce to these

for the MSSM. Other “extended” supersymmetric theories do not reduce to these

supermultiplets.

After SUSY breaking, the MSSM adds 105 masses, phases and mixing angles

that do not have a counterpart in the ordinary SM, so SUSY breaking introduces

an arbitrariness to the theory. One way to handle this is called phenomenological

MSSM, or pMSSM.

2 There is also a possibility that the sectors are geographical; in this proposal there are extra spatial
dimensions that are of the Kaluza-Klein type or warped type so that there is a physical distance
that separates the visible and hidden sectors. This can fit with string theory which suggests six
extra spatial dimensions.
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pMSSM

FIGURE 2.2. An illustration of the pMSSM as a subset of the larger MSSM, both
under the larger umbrella of SUSY theories (figure based off of [26]).

2.7. Phenomenological MSSM

These parameters are reduced in the pMSSM[25] by applying experimental

and theoretical constraints to narrow the number to 19. These constraints include

assuming R-parity is conserved, that the LSP is the lightest neutralino, that there

is no new CP-violation in the SUSY sector, and no extra flavor changing neutral

currents. In addition to these experimental results from electroweak and flavor

measurements and searched at LEP and the Tevatron are imposed. Figure 2.2

illustrates how the MSSM and pMSSM fit together in the larger SUSY theory.

This chapter described the theoretical motivations for the analysis described in

Chapters V and VII.
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CHAPTER III

EXPERIMENTAL SETUP

This chapter describes the experimental apparatus that was used in the search:

the machine that produces high energy collisions, the Large Hadron Collider (LHC),

and the detector used to measure particle properties, ATLAS.

3.1. Proton-proton Collisions at the Large Hadron Collider

The LHC is the world’s largest particle accelerator. The tunnel, originally used

for the CERN Large Electron-Positron Collider (LEP) and reused for the existing

structure to avoid building a new tunnel, is 26.7 km in circumference and lies between

45-170 m underground in order to reduce cosmic radiation backgrounds. The LHC

accelerates protons clockwise and counterclockwise around the ring, currently with

each beam having an energy of 6.5 TeV, which corresponds to more than 99.9999%

of the speed of light. The advantage of a collider over, for instance, a fixed target

accelerator, is that the center of mass energy scales as ECM = 2EL, where EL is the

energy of each beam, as opposed to a fixed target accelerator where the center of

mass energy scales as ECM =
√
EL due to the necessary contribution to the kinetic

energy of the target. Therefore the center of mass energy of the LHC is currently 13

TeV.

The LHC was constructed from 1998-2008. However during testing a faulty

electrical connection caused a magnet quench which broke nearby magnets and caused

a delay in operations to late 2009 with an original center of mass energy of 7 and

8 TeV during Run 1. Upgrades and repairs from 2012-2015 increased the center of
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mass energy to 13 TeV.

While a lepton accelerator would produce cleaner collisions, protons are used

to reduce the energy loss from synchrotron radiation, which decreases as the fourth

power of the particle mass. Also proton-proton collisions are used instead of proton-

antiproton, as was the case of the Tevatron at Fermilab, due to the fact that the time

required to produce antiprotons would limit luminosity. This has the effect that nearly

all the produced particles stem from gluon-gluon fusion instead of quark-antiquark

annihilation. The LHC also produces heavy ion collisions.

It takes several separate machines to accelerate protons to this energy and

superconducting magnets are used to focus, steer, and accelerate the protons around

the ring. Four main detectors study the collisions; two general purpose detectors,

ATLAS and CMS, and two specialty detectors, ALICE (primarily studying heavy ion

physics) and LHCb (primarily studying b-quark physics).

3.1.1. Accelerator Complex

Several steps are required to accelerate protons to the energy of the LHC. The

protons begin as hydrogen gas (which is composed of a proton with an electron)

from bottled hydrogen and is placed into an electric field to strip away the electrons,

leaving the positively charged protons. From here the protons are injected into the

Linac2, a linear accelerator where they are accelerated to 50 MeV and injected into the

Proton Synchotron Booster and accelerated to 1.4 GeV. The Proton Synchrotron then

accelerates the protons to 25 GeV, then the Super Proton Synchrotron accelerates
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them to 450 GeV. The beam is finally injected into the LHC, where it is accelerated

to its final momenta. This is performed using 16 radiofrequency (RF) cavity systems

which operate at 400 MHz. The components of the accelerator complex can be seen

in Figure 3.1.

FIGURE 16. The accelerator complex at CERN [36]

purple) accelerates the protons to 50 MeV. They are then injected into the Proton

Synchrotron Booster (shown in lilac), and accelerated to 1.4 GeV. Next, they go

into the Proton Synchrotron (shown in magenta), and further accelerated to 25

GeV. The protons are then injected into the Super Proton Synchrotron (shown in

light blue), where they are accelerated to 450 GeV. Finally, the protons arrive at

the LHC (shown in dark blue), where they will be accelerated to collision energy.

The first proton-proton collisions in the LHC in 2008 occurred at the injection

energy of
p

s = 900 GeV (450 GeV per beam). Then, after a few years of machine

development and improvements, LHC Run I began. In 2010, the then-world-record

collision energy of
p

s = 7 TeV was achieved. While there was only a small amount

30

FIGURE 3.1. The LHC accelerator complex (figure from [27]).

The RF cavities generate an oscillating voltage such that the particles are

accelerated at the gap, and since the particle must always be accelerated at the gap the

RF frequency must be an integer multiple of the revolution frequency. The segments of

the circumference of the beam centered on this point are called buckets. Particles that

are synchronized with the RF frequency are called synchronous particles and other

particles will oscillate around these particles. Therefore particles get clumped around

synchronous particles (rather than a uniform spread) in a bunch that is contained

in an RF bucket. Because of this the LHC can accelerate a beam made up of 35640
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bunches. This is complicated because the PS and SPS are also synchrotrons, and the

PS is actually responsible for providing the 25ns spacing that the LHC uses. Also,

the buckets can be full of protons or be empty; the empty buckets accommodate the

time required to dump the beam. The configuration also determines where the beams

cross and collide, which corresponds to different detectors.

The quality of the beam is important, which is expressed in part by beam

emittance and beta. Beam emittance refers to the distance a beam is confined to

and how similar the particles are in momenta (a small beam emittance corresponds

to a closer grouping with the same momentum). A small emittance increases the

luminosity by increasing the likelihood of interaction. Beta is determined by the cross

section of the bunch and the emittance, so a low beta indicates a more squeezed beam.

3.1.2. LHC Magnets

The protons in the beam are steered using 1,232 dipole magnets, each of which

are 14.3 meters in length, producing up to 8.4 Tesla magnetic fields. This is achieved

using superconducting niobium-titanium (NbTi) Rutherford cables operating at 1.9K

with about 11,800 amperes of current.

Because the beams are charged, they will diverge if not focused. Additionally, 392

quadrupole magnets, each between 5-7 meters in length, and each with two apertures,

one for each direction, are used to focus the beam. One set of quadrupole magnets

squeezes the beam horizontally (QF), another set vertically (QD).
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3.1.3. Luminosity

Luminosity is defined by the number of collisions produced in a detector per

square centimeter per second. This can be determined by the square of the number

of particles in a bunch (since each can collide with any in another bunch), the time

between bunches, and the cross section of a bunch. This can also be expressed as

a function of the beam emittance and beta, as described above. The integrated

luminosity, which is the total delivered luminosity, is shown in Figure 3.2 for 2012-

2017.
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FIGURE 3.2. Integrated luminosity for individual years of running (figure from the
ATLAS Collaboration).
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3.1.4. Pileup

While increasing luminosity is necessary and beneficial for data collection, it

corresponds to a major challenge as well; an increase in the number of interactions

per bunch crossing, or pileup (〈µ〉). Most interactions are not the hard-scatter events

that create potentially interesting physics events, but softer collisions that are not of

interest and create noise while raising trigger rates. It’s important to reduce pileup

as much as possible. Figure 3.3 shows the mean number of interactions per crossing

for the years 2015-2017 and can be seen that the number has increased each year.
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FIGURE 3.3. Pileup during data taking in 2015-2017 (figure from the ATLAS
Collaboration).
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3.2. Overview of the ATLAS Detector

The ATLAS detector, as shown in Figure 3.5, is a general-purpose detector and

is the largest detector ever built at 46 meters in length and weighing in at 7000 tons.

Its muon system magnets are toroidal in shape, and is perhaps best described as a

toroidal LHC apparatus. It’s nominally forward-backward symmetric with regards to

the interaction point, covering nearly the complete solid angle. It is a general purpose

detector that can detect a variety of new physics while also improving Standard Model

measurements, and, along with CMS, discovered the Higgs Boson in 2012.

ATLAS uses a variety of technologies to provide accurate and precise

measurements of particle trajectories and momenta and consists of three primary

subdetectors: the Inner Detector, which measures the paths of charged particles,

calorimeters, which measures momenta of charged and neutral particles, and the

muon system, which measures the paths of high energy muons. Figure 3.4 shows in

what subsystem particles deposit energy or leave tracks. Additionally, the trigger

system reduces the event rate from 40 MHz to an order of a kHz to make data

collection feasible. A network of computer systems, both on site and off site, allows

for data handling and storage as well as supporting analyses.

3.2.1. Coordinate System and Common Variables

ATLAS uses a right-handed coordinate system where the interaction point is the

origin of the coordinate system. The beam direction defines the z-axis and the x-y

plane is transverse to the z-axis. Positive x points toward the center of the LHC ring

and positive y points upwards. Side-A of the detector is defined as positive z and
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FIGURE 3.4. Cut-away view of ATLAS showing where particles deposit tracks and
energy (figure from the ATLAS Collaboration).

side-C as negative. Azimuthal angle φ is measured around the beam axis, and the

polar angle θ defined as the angle from the beam axis. Pseudorapidity, η, is defined

as η = −ln[tan(θ/2)] and rapidity, y, as y = 1
2
ln(E+pz

E−pz ) in the case of massive objects.

The transverse momentum, pT the transverse energy, ET, and the missing transverse

momentum (denoted as energy), Emiss
T , are defined in the x-y plane. The Emiss

T is

limited to the x-y axis because momenta of colliding particles (such as gluons) in the

z direction is unknown. Finally, the distance ∆R is defined as ∆R =
√

∆η2 + ∆φ2.

3.2.2. Magnet System

ATLAS has two magnet systems of note, the solenoid magnet and toroid magnets.
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Figure 1.1: Cut-away view of the ATLAS detector. The dimensions of the detector are 25 m in
height and 44 m in length. The overall weight of the detector is approximately 7000 tonnes.

The ATLAS detector is nominally forward-backward symmetric with respect to the interac-
tion point. The magnet configuration comprises a thin superconducting solenoid surrounding the
inner-detector cavity, and three large superconducting toroids (one barrel and two end-caps) ar-
ranged with an eight-fold azimuthal symmetry around the calorimeters. This fundamental choice
has driven the design of the rest of the detector.

The inner detector is immersed in a 2 T solenoidal field. Pattern recognition, momentum
and vertex measurements, and electron identification are achieved with a combination of discrete,
high-resolution semiconductor pixel and strip detectors in the inner part of the tracking volume,
and straw-tube tracking detectors with the capability to generate and detect transition radiation in
its outer part.

High granularity liquid-argon (LAr) electromagnetic sampling calorimeters, with excellent
performance in terms of energy and position resolution, cover the pseudorapidity range |h | < 3.2.
The hadronic calorimetry in the range |h | < 1.7 is provided by a scintillator-tile calorimeter, which
is separated into a large barrel and two smaller extended barrel cylinders, one on either side of
the central barrel. In the end-caps (|h | > 1.5), LAr technology is also used for the hadronic
calorimeters, matching the outer |h | limits of end-cap electromagnetic calorimeters. The LAr
forward calorimeters provide both electromagnetic and hadronic energy measurements, and extend
the pseudorapidity coverage to |h | = 4.9.

The calorimeter is surrounded by the muon spectrometer. The air-core toroid system, with a
long barrel and two inserted end-cap magnets, generates strong bending power in a large volume
within a light and open structure. Multiple-scattering effects are thereby minimised, and excellent
muon momentum resolution is achieved with three layers of high precision tracking chambers.

– 4 –

FIGURE 3.5. Cut-away view of the ATLAS detector and its subsystems. Illustrations
of people are included to provide a sense of scale (figure from [28]).

A thin superconducting solenoid magnet surrounds the inner detector and creates

a 2T field that makes the tracking of charged particles possible.

The toroid system consists of two parts, the endcap and barrel magnets as shown

in Figure 3.6. The magnets consists of eight coils, symmetrically arranged around

the beam axis and radially assembled, weighing 830 tons. The peak field is of the

barrel magnets is 3.9T and 4.1T for the endcap magnets. This strong magnetic field

permits tracking high energy muons to determine momentum.

3.2.3. Inner Detector

The inner detector, which sits inside the 2T solenoid magnet, is used to

reconstruct tracks that charged particles make as they bend in the magnetic field.
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FIGURE 3.6. Layout of the ATLAS toroid magnets (figure from [28]).

It provides hermetic coverage and pattern recognition, extending to η = 2.5, and also

provides momentum resolution and both primary and secondary vertex measurement.

Secondary vertices are important to identify and measure particles with delayed

decays, such as bottom quarks, charm quarks, and tau leptons.

The inner detector consists of several subsystems. Going from innermost to

outermost of the beam, they are the Pixel Detector (with the newest addition, the

insertable b-layer (IBL), added during Long Shutdown I), Semiconductor Tracker

(SCT), and the Transition Radiation Tracker(TRT). This can be seen in Figure 3.7.

The IBL was added to be closer to the IP and thus improve vertexing, and

involved adding a smaller beam pipe. It uses a combination of planar technology, the

same as the silicon pixel layers, and 3D technology, where the electronics pass through
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the bulk of the sensors in addition to lying on the surface. The 3D technology covers

the outermost 25% of the IBL to improve resolution in the forward regions.

The Pixel Detector consists of four layers. The pixel sensor is made by implanting

high positive and negative dose regions on each side of a wafer, so when a charged

particle passes through the wafer an electric current passes through it. The design

also ensures single pixel isolation and minimizes leakage current. The SCT is a silicon

microstrip tracker and can provide up to 4 additional measurement points, so these

layers provide good tracking information.

The transition radiation tracker (TRT) consists of 73 straw planes in the barrel

and 160 in the endcap, extending to |η| = 2.0. The detector exploits the fact that

charged particles emit electromagnetic radiation with moving from one medium to

another, in this case carbon dioxide and polypropylene. The energy loss depends

on the mass of the particle, so lighter particles emit more of their energy. Emitted

EM radiation interacts with the gases inside a tube to increase the current when a

charged particle passes though. This can distinguish between, for instance, electrons

and pions. While the resolution of the TRT is less than the silicon wafers, extending

silicon wafers out to the endpoint of the TRT is cost prohibitive.

3.2.4. Calorimeters

Unlike the ID, which changes the path of charged particles to provide tracking

information, the calorimeters absorb both charged and neutral particles to measure

their energy. The exception to this is muons, which pass through the calorimeters, as
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FIGURE 3.7. Cut-away view of the ATLAS inner detector (figure from [29]).

well as neutrinos which pass through the entire detector without detection. This can

be done with a homogeneous material, like a scintillator, or with separate layers of

absorber and detector material, called a sampling calorimeter. This is the case with

the ATLAS liquid argon (LAr) calorimeter, in which lead (absorber) and liquid argon

(detector) is arranged in an accordion shape with copper-tungsten sensors as can

be seen in Figure 3.11. Lead is chosen because its density increases the probability

of interaction with the particles, and argon is chosen because it is radiation hard,

stable, and affordable. The particle interacts with the absorber material to generate

secondary particles. This in turn creates cascades of particles, the energy of which

is measured from ionizations in the detector regions. This aids in measuring neutral

particles, the energy of which is measured by the secondary particles they create. The

absorptive power is also statistical as a Poisson distribution so precision depends on

∆E
E

and varies like
√
E while spectrometers vary as E2. There is also a fast response,

which aides in triggering. However, the measured energy is limited to a few tens of
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percents of the signal, so statistics has a large effect. The radiation length (χ0) of a

description of a material where, by passing through it, 1/e of a particle’s energy is

lost to bremsstrahlung (also 7/9 of the mean free path for photon pair production).

There are at least 25 radiation lengths through any path in the calorimeter. The

number of radiation lengths through different portions of the calorimeter is shown

in Figure 3.9. The LAr calorimeter primarily measures the energy of electrons and

photons.

2008 JINST 3 S08003

Figure 1.3: Cut-away view of the ATLAS calorimeter system.

Calorimeters must provide good containment for electromagnetic and hadronic showers, and
must also limit punch-through into the muon system. Hence, calorimeter depth is an important
design consideration. The total thickness of the EM calorimeter is > 22 radiation lengths (X0)
in the barrel and > 24 X0 in the end-caps. The approximate 9.7 interaction lengths (l ) of active
calorimeter in the barrel (10 l in the end-caps) are adequate to provide good resolution for high-
energy jets (see table 1.1). The total thickness, including 1.3 l from the outer support, is 11 l
at h = 0 and has been shown both by measurements and simulations to be sufficient to reduce
punch-through well below the irreducible level of prompt or decay muons. Together with the large
h-coverage, this thickness will also ensure a good Emiss

T measurement, which is important for many
physics signatures and in particular for SUSY particle searches.

1.3.1 LAr electromagnetic calorimeter

The EM calorimeter is divided into a barrel part (|h | < 1.475) and two end-cap components
(1.375 < |h | < 3.2), each housed in their own cryostat. The position of the central solenoid in
front of the EM calorimeter demands optimisation of the material in order to achieve the de-
sired calorimeter performance. As a consequence, the central solenoid and the LAr calorimeter
share a common vacuum vessel, thereby eliminating two vacuum walls. The barrel calorimeter
consists of two identical half-barrels, separated by a small gap (4 mm) at z = 0. Each end-cap
calorimeter is mechanically divided into two coaxial wheels: an outer wheel covering the region
1.375 < |h | < 2.5, and an inner wheel covering the region 2.5 < |h | < 3.2. The EM calorimeter is
a lead-LAr detector with accordion-shaped kapton electrodes and lead absorber plates over its full
coverage. The accordion geometry provides complete f symmetry without azimuthal cracks. The

– 8 –

FIGURE 3.8. Cut-away view of the ATLAS calorimeters (figure from [28]).

Hadrons can only be measured by hadron-nucleon interactions, which is

characterized by the mean free path of the hadron, its nuclear interaction length.

While the EM calorimeter is adequate for absorbing electrons and photons, it is only

about 2 nuclear interaction lengths to measure the energy of hadrons. Beyond the
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Figure 5.1: Cumulative amounts of material, in units of radiation length X0 and as a function
of |h |, in front of and in the electromagnetic calorimeters. The top left-hand plot shows separately
the total amount of material in front of the presampler layer and in front of the accordion itself
over the full h-coverage. The top right-hand plot shows the details of the crack region between the
barrel and end-cap cryostats, both in terms of material in front of the active layers (including the
crack scintillator) and of the total thickness of the active calorimeter. The two bottom figures show,
in contrast, separately for the barrel (left) and end-cap (right), the thicknesses of each accordion
layer as well as the amount of material in front of the accordion.

The numbers of radiation and interaction lengths in front of and in the electromagnetic and
hadronic calorimeters are shown in figures 5.1 and 5.2.

Sections 5.2 and 5.3 are devoted to the description of the electromagnetic and hadronic
calorimetry, respectively. Section 5.4 describes the LAr cryostats and feed-throughs. The in-
strumentation in the gaps between the cryostats is described in section 5.5. The front-end read-
out electronics, back-end electronics and services are described in section 5.6. Finally, test-beam
measurements obtained with production modules of the different calorimeters are presented in sec-
tion 5.7.
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FIGURE 3.9. Number of radiation lengths (χ0) as a function of η (figure from [28]).

liquid argon calorimeter is the hadronic calorimeter, which adds 9 intreraction lengths.

The number of interaction lengths through different parts of the hadronic calorimeters

is shown in Figure 3.10. The hadronic calorimeter is another sampling calorimeter

in which steel is used as absorber and scintillating tiles sandwiched between the steel

layers measure the deposited energy. This choice in technology was partly for cost

savings as this is a large subdetector, providing coverage up to |η| < 1.7 and radially

extending from 2.28 m to 4.25 m.

3.3. Liquid Argon Calorimetry at ATLAS

As discussed previously, the Liquid Argon calorimeter is a sampling calorimeter

capable of absorbing and measuring the energy of charged and neutral particles. The

LAr calorimeter covers the pseudorapidity range |η| < 3.2. The hadronic calorimeter

is comprised of a scintillator-tile calorimeter, separated into a large barrel and two

smaller extended barrel cylinders on each side of the central barrel and covers the

pseudorapidity range |η| < 1.7. The endcaps, with |η| > 1.5 also use LAr calorimetry

and extend to η = 3.2. The LAr forward calorimeters provide EM and hadronic
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FIGURE 2.9. Tile module showing scintillating tile structure.
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FIGURE 2.10. Material as a function of η in interaction lengths.
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FIGURE 3.10. Number of interaction lengths as a function of η (figure from [28]).

measurements and extend to η = 4.9. Because of the complexity of the arrangement,

there are some gaps in the coverage; otherwise, coverage is nearly hermetic.

An aspect to the LAr calorimeter is that it must be kept very cold to operate, so

is housed in a cryostat operated at 89K, which contributes to dead material. In order

to reduce the total amount of dead material the LAr calorimeter shares the cryostat

and vacuum vessel with the solenoid magnet.

The LAr calorimeter typically operates at a 2000V, with some variance, to create

a particle avalanche when a charged particle ionizes the liquid argon. There is

a presampler layer in the barrel region, which corrects for energy loss in material

upstream of the calorimeter, followed by three additional layers, which sum together

to form a Trigger Tower, which are analog sums of energy deposits contained in an
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area of ∆η ×∆φ = 0.1× 0.1 across longitudinal layers of the calorimeters.
2008 JINST 3 S08003
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Figure 5.4: Sketch of a barrel module where the different layers are clearly visible with the ganging
of electrodes in f . The granularity in h and f of the cells of each of the three layers and of the
trigger towers is also shown.

5.2.2 Barrel geometry

The barrel electromagnetic calorimeter [107] is made of two half-barrels, centred around the z-
axis. One half-barrel covers the region with z > 0 (0 < h < 1.475) and the other one the region
with z < 0 (�1.475 < h < 0). The length of each half-barrel is 3.2 m, their inner and outer
diameters are 2.8 m and 4 m respectively, and each half-barrel weighs 57 tonnes. As mentioned
above, the barrel calorimeter is complemented with a liquid-argon presampler detector, placed in
front of its inner surface, over the full h-range.

A half-barrel is made of 1024 accordion-shaped absorbers, interleaved with readout elec-
trodes. The electrodes are positioned in the middle of the gap by honeycomb spacers. The size
of the drift gap on each side of the electrode is 2.1 mm, which corresponds to a total drift time
of about 450 ns for an operating voltage of 2000 V. Once assembled, a half-barrel presents no
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FIGURE 3.11. An illustration of a LAr calorimeter module in the barrel region which
shows the accordion structure of the absorbers and the geometry of each section and
a Trigger Tower (figure from [30]).

3.3.1. Signal Propagation

The drift time in the LAr calorimeter is 400-600 ns, compared to the 25 ns

bunch-crossing time. To prevent signal overlapping, an RC-CR2 shaping with a time

constant of 20 ns is applied to analog signals, which minimizes sensitivity to pileup

and electronic noise and results in a 100 ns positive pulse and 400 ns negative lobe as

shown in Figure 3.12. This pulse shape gives an integral of 0, although it is unlikely

that any sampled value is exactly 0. The most likely measured value is called the
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pedestal. The most significant quantity for the scale of the signal is the peak current

in a readout cell corresponding to an energy deposit. Both the pileup and the mean

energy of a calorimeter cell depend on how signals are treated.

FIGURE 3.12. Signal shape before shaping (triangle) and after shaping (curved with
dots). The dots are positions of successive bunch crossings (figure from [28]).

Since the calorimeters use warm preamplifiers (with exception to the HEC) for

long term reliability, the shaping stage is designed to handle both pileup and thermal

noise. It also must cover a dynamic range in excess of 17 bits, so the range is split by

three linear output ranges with gains of 1, 10, and 100. This means that necessary

range can be covered by the 12 bit system downstream of the shaper. The shaped

signals are sampled and stored in analog form by switched-capacitor array (SCA)

analog pipeline chips.

42



After the front-end board (FEB), off-detector boards perform digital filtering

used to extract information from four samples around the peak of the pulse shape.

Analog sums are performed in steps due to the large number of channels on the shaper

chip, the FEB, and on designated boards in front-end crates and used to form trigger

towers. Figure 3.13 shows the signal path in the LAr electronics.

FIGURE 3.13. Signal propagation through the LAr electronics (figure from [31]).

3.3.2. Calibration

In order to properly measure the energy deposited in a cell, the calorimeters

must be properly calibrated. The conversion of signal Analog to Digital Converter

(ADC) samples to raw energy depends on the conversion of ADC to Digital Analog

Converter (DAC), called the Ramps, the Optimal Filtering Coefficients, which use

a noise autocorrelation function of the samples (the ratio of thermal to pileup noise

amplitudes) to maximize the signal/noise ratio and determine the time origin and

amplitude of the signal, and the Pedestals as described previously.
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In order to calibrate these items:

– Pedestal, noise, and noise autocorrelation: FEBs are read with no input signal

and performed separately for each gain

– Ramp: Scan input current and fit DAC vs. ADC curve

– Delay: All cells pulsed with a known current signal and a delay between

calibration pulses and DAQ introduced - this allows for full calibration curve to

be reconstructed

Once these values are properly set one can go find the energy in a cell with:

E = ΣFj(Σai(ADCi − P ))j (3.1)

where E is the energy, Fj are the ramps, ai are the OFCs, ADCi are the raw

samples and P are the pedestals.

In order to detect the Higgs boson, the uncertainty must be small, especially

in channels that led to the Higgs discovery, H → γγ and and H → 4l. The low

uncertainty for electron pT can be seen in Figure 3.14 and the uncertainty in the four

lepton channel is 0.7% of the overall 8.0%[5].

Calibration is also important for the missing energy trigger. Missing energy,

an imbalance of momentum of detected particles, is an indication of new physics as

there could be new particles that pass through the detector without interacting with

it. Mis-measured energy can give a false positive for a new particle, so any uncertainty

pushes up the quantity of missing energy that can be triggered on with reasonable
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FIGURE 3.14. Electron uncertainty as a function of pT (left) and η (right)(figure
from [32]). The low uncertainty leads to more precise measurements on important
quantities, such as the Higgs mass.

rates. Therefore the uncertainty on measured momentum must be minimized. This

is discussed further in Section 6.7.

3.3.3. Forward Detectors

There are additional calorimeters in the forward region that deal with high

particle flux: two for EM showers, the electromagnetic end-cap calorimeter (EMEC)

and the forward calorimeter (FCal), and one for hadronic showers, the hadronic end-

cap calorimeter (HEC). All these use liquid argon as the active material, including

the HEC as scintillating tiles would degrade in the high particle flux. The absorber

material used have shorter radiation lengths and nuclear interaction lengths; lead is

used for the EMEC and FCal and copper-tungsten is used in the HEC.

There are two forward detectors that measure luminosity, LUCID (LUminosity

measurement using Cerenkov Integrating Detector), ALFA (Absolute Luminosity

For ATLAS), and ZDC (Zero-Degree Calorimeter). LUCID detects inelastic p-p

scattering in the forward region and is the main luminosity monitor for ATLAS. ALFA
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is located ±240m down the beam line and contains fiber trackers inside Roman pots,

designed to be as close as 1mm to the beam. ZDC is used with heavy-ion collisions and

is located ±140m down the beam pipe, just before the single beam pipe separates into

two, and consists of alternating quartz rods and tungsten plates to measure neutral

particles to measure centrality of heavy-ion collisions.

3.3.4. Muon System

The outermost layer of the detector is the muon spectrometer, which measures

the momentum of muons whose path bends in the strong magnetic field from the

toroid magnets it is emerged in. The central region, |η| < 2.7 has three layers of

Monitored Drift Tubes (MDTs), for tracking, and Resistive Plate Chambers (RPCs),

for the trigger system. In forward regions, Cathode Strip Chambers (CSCs) are

multiwire proportional chambers and can handle high rates and harsh conditions.

Thin Gap Chambers (TGCs) are used in the end-cap regions. Muons will usually hit

three layers to provide tracking and momentum information. Figure 3.15 shows the

ATLAS muon system.

3.4. The ATLAS Trigger System

The ATLAS trigger system has the job of reducing the enormous quantity of

data collected by the detector and reducing the rate to a reasonable one. The LHC

machine has a crossing rate of 40 MHz and data on the order of a kHz can be read

out. To do this the trigger uses a hardware trigger (Level 1, or L1) followed by
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Figure 1.4: Cut-away view of the ATLAS muon system.

1.4 Muon system

The conceptual layout of the muon spectrometer is shown in figure 1.4 and the main parameters
of the muon chambers are listed in table 1.4 (see also chapter 6). It is based on the magnetic
deflection of muon tracks in the large superconducting air-core toroid magnets, instrumented with
separate trigger and high-precision tracking chambers. Over the range |h | < 1.4, magnetic bending
is provided by the large barrel toroid. For 1.6 < |h | < 2.7, muon tracks are bent by two smaller
end-cap magnets inserted into both ends of the barrel toroid. Over 1.4 < |h | < 1.6, usually referred
to as the transition region, magnetic deflection is provided by a combination of barrel and end-cap
fields. This magnet configuration provides a field which is mostly orthogonal to the muon trajec-
tories, while minimising the degradation of resolution due to multiple scattering. The anticipated
high level of particle flux has had a major impact on the choice and design of the spectrome-
ter instrumentation, affecting performance parameters such as rate capability, granularity, ageing
properties, and radiation hardness.

In the barrel region, tracks are measured in chambers arranged in three cylindrical layers
around the beam axis; in the transition and end-cap regions, the chambers are installed in planes
perpendicular to the beam, also in three layers.

– 11 –

FIGURE 3.15. Cut-away view of ATLAS Muon System (figure from [28]).

software-level triggers (the High Level Trigger, or HLT).

The hardware trigger uses fast algorithms with subsets of detector information

to reduce the rate to 100 kHz. The L1Calo trigger uses the calorimeter systems

for electrons, photons, hadrons, jets, and Emiss
T . The L1Muon trigger uses muon

information from the muon system. The results from the L1 systems are passed to

the central trigger processor, which implements a trigger menu made of combinations

of trigger selections. The L1 systems identify regions of interest (RoI) defined by

detector geometry and criteria passed, which are passed to the HLT. The decision

time is 25 µs.

The Level 2 (L2) trigger, part of the HLT, uses RoIs from the L1 trigger along

with full detector granularity to make selections and are designed to reduce the rate
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to about 3.5kHz in 40 ms. Finally, the Event Filter reduces the rate to about 1-2 kHz

using offline analysis procedures in about 4 seconds.

3.5. Calorimeter Trigger Phase I Upgrades

At the end of Run 2 the LHC will have delivered an impressive 150 fb-1 of data.

However, if the LHC continues to run with the same luminosity as in Run 2 the

statical gain would be marginal. Therefore, an increase in instantaneous luminosity

is planned during Long-Shutdown 2 (LS2), scheduled for the end of 2019 and taking

24 months. During this time the Phase-I upgrade will take place. This includes

major upgrades; at the accelerator complex, Linac2 will be replaced by Linac4, which

is expected to double the brightness of the beam from the PSB, reducing the beam

emittance with smaller β functions. This will increase the luminosity from the current

1.37× 1034cm-2s-1 to 2− 3× 1034cm-2s-1. During the Run 3 an estimated 300 fb-1 will

be delivered.

The instantaneous luminosity planned for Run 3 corresponds to 55-80

interactions per bunch crossing (pileup) with a 25 ns bunch spacing. Maintaining

an optimal trigger system in these conditions requires a trigger electronics upgrade,

including improvements in object energy resolution and more advanced algorithms to

maintain a high trigger acceptance and rate for L1Calo objects, while also triggering

on events with boosted hadronically decaying bosons. The LAr calorimeter will

increase in granularity by an order of magnitude to accomplish this.
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The current calorimeter trigger information consists of Trigger Towers; during

the Phase-I upgrade the granularity will be increased by using Super Cells, which

include information from each layer as well as providing finer segmentation within

the middle layers as shown in Figure 3.16. The presampler and the last layer will

keep the ∆η×∆φ = 0.1×0.1 geometry while the front and middle layers will increase

in granularity to ∆η × ∆φ = 0.025×0.1. This means an increase in granularity by

a factor of 10 depending on the part of the barrel and improves energy resolution

and efficiency for selecting electrons, photons, τ leptons, jets, and Emiss
T while also

improving discrimination against backgrounds and fakes in high pileup conditions.

Additionally, new LAr Trigger Digitizer Boards (LTDB) will be installed on the

Front-End crates. These will both digitize high-granularity information from the

calorimeters and also create analog sums to maintain a functional legacy system.

After digitization the LTDB transfers calorimeter signals to the LATOME (LAr

Trigger prOcessing MEzzanine) cards in the off-detector LAr Digital Processing

System (LDPS), each of which uses a filtering algorithm on an FPGA to reconstruct

the transverse energy of the Super Cells every 25 ns and identifies the related bunch-

crossing (BCID). The LATOME then transmits information to the new feature

extraction processors (FEXs) that will implement sophisticated object identification

algorithms. These include the eFEX (electron), jFEX (jet), and gFEX (global). The

eFEX receives full super cell information, and the jFEX receives ∆η×∆φ = 0.1×0.1

super cell energy sums. Figure 4.1 shows the updated L1Calo system.
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(a)

(b)

Figure 1. An electron (with 70 GeV of transverse energy) as seen by the existing Level-1 Calorimeter trigger
electronics (a) and by the proposed upgraded trigger electronics (b).

• Long Shutdown 3 (LS3): 2022�2023. The LHC will undergo a major upgrade of its compo-
nents (e.g. low-� quadrupole triplets, crab cavities at the interaction regions).

• High-Luminosity LHC (HL-LHC): 2024� 2030 and beyond. The LHC complex will deliver
levelled instantaneous luminosity L = 5⇥1034 cm�2 s�1 (Phase-II operation) and an annual
integrated luminosity of 250 fb�1, i.e. up to 3ab�1 after 12 years of running.

1.2 ATLAS upgrade plans up to 2030 and beyond

To optimize the physics reach at each phase of the accelerator complex upgrades, ATLAS has
devised a staged program in three phases, corresponding to the three long shutdowns.

The upgrades during LS1 consist of consolidation of the existing sub-detectors including the
installation of a fourth (inner) layer for the pixel detector requiring a new, smaller radius central (Be)
beam pipe, additional chambers in the muon spectrometer to improve the geometrical coverage,
and more neutron shielding in the muon endcap toroids.

After LS2, instantaneous luminosities of L ⇠ 2.2⇥1034 cm�2 s�1 are expected with 25 ns bunch
spacing and the average number of interactions per crossing will be hµi ⇠ 60. If ATLAS is to exploit
this increase in luminosity and maintain a low-pT lepton threshold (⇠ 25 GeV) in the Level-1 trigger

2 Chapter 1: Overview of the Phase-I LAr upgrade project

FIGURE 3.16. A sample event of a 70 GeV electron as seen by the current L1Calo
Trigger, with all cells summed into a Trigger Tower (a) and after the Phase I upgrade
with Super Cells (b) (figure from [33]).

In addition to the eFEX and jFEX, the gFEX is new and unique in the fact that it

can scan the entire calorimeter with a single module and thus use full-scan algorithms

and trigger on boosted topologies. In order to accommodate the calorimeter on one

board the granularity is reduced so the gFEX receives ∆η×∆φ = 0.2×0.2 super cell

energy sums, called gTowers. gTowers can be summed into 3×3 contiguous towers to

form gBlocks also and summed into R=1.0 jets called gJets. Large R jets are typical
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FIGURE 3.17. Schematic diagram of the LAr trigger readout architecture after the
Phase I upgrade with new components indicated by red outlines and arrows (figure
from [33]).

of boosted objects, which can be the results of interesting physics processes, and the

gFEX will provide the capability to trigger on them and also study their substructure.

Additionally, since the entire calorimeter is on one board it can calculate Emiss
T as well.

The gFEX will be discussed more in the Chapter IV.

The Phase-I upgrade also includes consolidation of the existing sub-detectors and

an installation of the New Small Wheel (NSW) and additional chambers in the muon

spectrometer to improve geometrical coverage, and additional neutron shielding for

the muon endcap toroids.
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FIGURE 3.18. L1Calo system after the Phase I upgrade with new elements including
the FEXs (figure from [34]).

3.6. Calorimeter Trigger Phase II Upgrades

After Run 3 a longer shutdown, LS3, is planned to upgrade the LHC to the High

Luminosity LHC (HL-LHC)[35]. This upgrade, the Phase II upgrade is scheduled

for 2024-2026 and will upgrade various detector systems to handle the increase in

luminosity. The HL-LHC will see an increase in peak luminosity during Run 4 of up

to 5×1034 cm-2s-1 in order to deliver 250 fb-1 per year, or 3000 fb-1 (possible as high

as 4000 fb−1) by the end of Run 4. This enormous quantity of data will allow for

precision measurements of the Higgs boson with all production processes and decay

modes, improved SM measurements, and beyond the SM searches. This will also

increase pileup to ∼200.

The following upgrades are scheduled in order to support the physics goals of

the HL-LHC:

– Inner Tracker: New strip and pixel detectors with an increase in acceptance up

to |η| = 4.0.
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– Calorimeters: The readout electronics for the LAr and Tile calorimeters will

be upgraded to accommodate the radiation tolerance and to allow the front-

end electronics to operate under the trigger rates and latencies needed for

the increased luminosity. The LAr Signal Processor (LASP) will provide the

ability to run more sophisticated algorithms to suppress pileup and improve cell

resolution.

– Muon Spectrometer: An upgrade to the L0 trigger electronics of the RPC and

TGC chambers will improve the performance of the muon trigger chambers,

and new RPC detectors will increase coverage to |η| < 1. The MDT front-end

readout will also be replaced to improve muon resolution.

– TDAQ: There are three main upgrades to the TDAQ system:

∗ Level-0 (L0) Trigger: In addition to the Phase I FEXs, there will be

the addition of the forward Feature EXtractor (fFEX) to reconstruct

forward jets and electrons. The global trigger will be added to extend

the functionalities and resources’ limits for the FEXs, especially by

implementing algorithms to refine calculations, apply tighter isolation

criteria, and integrate topological functionality of ∆R between objects.

∗ Data Acquisition: Results from the L0 trigger decision is transmitted to

all detectors with a readout rate of 1 MHz.

∗ Event Filter (EF): The EF system uses a CPU-based processing farm,

assisted by a Hardware-based Tracking for the Trigger (HTT) system, to

select events with a maximum rate of 10 kHz to save to permanent storage.
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FIGURE 3.19. Schematic diagram of the LAr trigger readout architecture after the
Phase II upgrade (figure from [36]).
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CHAPTER IV

OVERVIEW OF THE GLOBAL FEATURE EXTRACTOR

This chapter gives more details about the gFEX upgrade to the ATLAS trigger

and the calibration scheme developed for it.

4.1. Global Feature Extractor Phase I Upgrade

The Phase I upgrade to the ATLAS detector will be performed during Long

Shutdown 2, scheduled for 2019-2020. This is in preparation of Run 3, which will

see a maximum instantaneous luminosity of 2-3×1034cm−2s−1 and 55-80 interactions

per bunch crossing with 25ns spacing. The trigger electronics must be upgraded to

maintain an optimal trigger system. This includes improvement in object energy

resolution and more advanced algorithms to maintain trigger acceptance and rate.

The Liquid Argon (LAr) calorimeter will also be upgraded to have an increase in

granularity of an order of magnitude. This will be done by implementing super cells,

as shown in Figure 3.16, which increase the granularity in the front and middle layers

from (∆η ×∆φ) = (0.1 × 0.1) to (0.025 × 0.1). New modules in the trigger system,

Feature EXtractors (FEXs) will use this increased granularity for object identification

algorithms.

For transmitting this information to the FEXs, LAr Trigger Digitizer Boards

(LTDBs) will be installed in available slots of the LAr front-end crates. These

digitize and transmit calorimeter signals to the LAr Trigger prOcessing MEzzanine

(LATOME) cards in the off-detector LAr Digital Processing System (LDPS). A Field

Programmable Gate Array (FPGA) chip on the LATOME reconstructs the transverse
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energy of each super cell and the bunch-crossing identification (BCID). The LATOME

then transmits the super cell information to the FEXs in appropriate granularities; full

granularity to the electron Feature EXtractor (eFEX), (∆η×∆φ) = (0.1×0.1) to the

jet Feature EXtractor (jFEX), (∆η×∆φ) = (0.2×0.2) to the global Feature EXtractor

(gFEX). The LDPS processes, buffers, and transmits data to the ATLAS Trigger and

Data Acquisition System (TDAQ) readout chain and monitoring processes to Level

1 Trigger Acceptance (L1A). After L1A data from the FEXs and LDPS are routed

to the Front End Link EXchange (FELIX) which interfaces sub-detectors with data

acquisition. The LDPS also recreates analog sums with the current granularity and

sends the information to the current systems for commissioning of the new systems.

The L1Calo system after Phase I is shown in Figure 4.1.

gFEX Intro
• Phase-I trigger processor with the

entire calorimeter on one board
• Input: gCaloTowers with

(generally) �⌘ ⇥�� = 0.2 ⇥ 0.2
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and large scale quantities: energy
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FIGURE 4.1. L1Calo system after the Phase I upgrade with new elements including
the FEXs (figure from [34]).

While the eFEX and jFEX will provide improved but similar functionality as the

CPMs and JEMs, the gFEX is a new technological addition. Unlike any other part

of the trigger system the gFEX will have the entire calorimeter available on a single

module and so can scan the full η range of the calorimeter. This allows the gFEX

to trigger on large-radius jets, typical of Lorentz-boosted objects, as well as calculate
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missing energy, Emiss
T , and centrality-related variables for heavy ion events.

In order to scan the entire calorimeter, the gFEX will use three Virtex

Ultrascale+ processor FPGAs (pFPGA) to run algorithms and one hybrid Zynq

Ultrascale+ FPGA (zFPGA) for control and readout[34]. The central region of

the calorimeter is split between two pFPGAs and the forward regions one the third

pFPGA, but pFPGAs will be able to communicate with each other.

The input data from the calorimeters are organized into gTowers, which are

summed electromagnetic and hadronic towers typically (∆η × ∆φ) = (0.2 × 0.2)

in size. Groups of gTowers, called gBlocks, are constructed with a sliding window

algorithm and are usually 3×3 gTowers, with (∆η×∆φ) = (0.6×0.6). These are used

to seed large-radius jets and determining jet substructure, as well as for calibration.

Large-radius (R=1.0) jets constructed from gTowers, gJets, are constructed with a

simple-cone jet algorithm seeded by gBlocks. gBlocks and gJets are permitted to

overlap. The layout of the gFEX, showing the gTowers in a black grid, colored

rectangular gBlocks, and lighter colored round gJets are shown in Figure 4.2.

Boosted hadronic topologies are characteristics in many new physics scenarios as

the decay products of high momenta boson and top quark decay products are highly

energetic and are usually very collimated. Because of this they can merge into a large

radius jet which can be detected by the gFEX. The current trigger system, which

looks at relatively small regions of interest, may not trigger on these sort of objects.
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FIGURE 4.2. Layout of the gFEX. The black squares are gTowers, groups of gTowers
are gBlocks, and circular groups of gTowers are gJets, seeded by gBlocks. Note that
gBlocks and gTowers can overlap (figure from [34]).

Most interactions in a bunch crossing are not hard-scatter events that can create

interesting physics events, but are soft collisions that are not of interest to physics

searches. The number of interactions per bunch crossing will increase after the Phase

I and Phase II upgrades as the luminosity in the LHC increases. Pileup increases

the uncertainty of energy of a jet, worsening the jet energy resolution (JER). As

the uncertainty of the energy of a jet increases, the likelihood of fake missing energy

increases. This increases the rate of the missing energy trigger, so the threshold must

be increased to accommodate this.

Momentum imbalances are also signatures of many new physics scenarios that

predict stable invisible particles, such as supersymmetry and dark matter. Since

the missing energy trigger is also very sensitive to pileup, and as the missing energy

trigger is often the most efficient trigger to use in searches for new physics, reducing
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pileup effects in the gFEX is very important.

In addition to improving the JER and reducing pileup effects, the gFEX must

also be calibrated to determine the jet energy scale (JES). In the case of dijet events,

the gBlock area covers ≥ 90% of an anti-kt R=0.4 jet. Therefore truth R=0.4 jets can

be used to calibrate gBlocks and the JES constant the ratio of R=
EgBlock

T

Etruth
T

(not to be

confused with the jet radius parameter R). With enough statistics the distribution of

the ratio can be built with the JES equal to the mean of the distribution and the JER

equal to the RMS of the distribution. A lookup table (LUT) with correction factors as

function of energy and η can be constructed and implemented in the gFEX firmware.

This calibration is performed using the official JetETmiss calibration software with a

few modifications described below.

4.2. Pileup Suppression

The small energy deviations in a gTower are mostly due to electronic and pileup

noise and since the average pileup over all events is 0 if the proper OFCs are applied,

a noise cut on the gTowers is applied as a function of the standard deviation of the

noise (a pileup distribution is shown in Figure 4.3); all gTowers whose absolute energy

is less than the noise cut have their energy set to zero.

After this noise cut the JES is determined similarly to typical approach with the

exception that in addition to matching to a truth jet a gTower must also match to

an offline jet as that is what is reconstructed offline.
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FIGURE 4.3. Distribution of pileup (energy density per unit area) across all events
with 〈µ〉 = 80 for dijet events (JZ0W) with

√
s = 13 TeV. The distribution is centered

around 0 with proper OFCs. The standard deviation of this distribution is 18.22
GeV/area, so a 1σ noise cut is 18.22× (0.2× 0.2) = 0.73 GeV, or 2.92 GeV for a 4σ
noise cut (3 GeV used).

4.3. Calibration

The JetETmiss software is designed to match truth jets to reconstructed HLT

jets and determine the JES by the mean of the distribution of the ratio R=
EgBlock

T

Etruth
T

in

bins of energy and η. The values of the JES are checked by calculating the closure.

A noise cut of 4σ on the energy is shown, though other choices may be optimal

for other pileup conditions. After making this noise cut on the gTowers they are

binned as Etrue × EgTower,central

EgBlock
since most of the energy of a dijet lies in the central

gTower. Figure 4.6 shows the energy response of a slice in η and pT.

This response is repeated over all η and pT to obtain a complete set of calibration

constants. Figure 4.5 shows the response over the calorimeters with various values of
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FIGURE 4.4. Energy response of gTowers after a 4σ noise cut prior to calibration
for a slice in η and various pT slices. The mean of the gaussian fit gives the JES used
for calibration and the RMS of the fit gives the JER.

pT.

FIGURE 4.5. Energy response of the gTowers after a noise cut as a function of η for
various energies of truth jets.

After determining and applying the calibration to the gTowers, the gBlocks are

constructed from the calibrated gTowers. Figure 4.6 shows the energy response of
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the gBlocks compared to truth jets after this calibration. If the calibration is perfect

then one would expect a straight line at 1.0. For higher pT truth jets this is close to

the result. Lower pT truth jets have a worse response, but this is to be expected as

a sampling calorimeter only detects a fraction of the energy of a jet and low pT jets

are generally hard to calibrate. This is a hardware trigger, so perfect calibration isn’t

necessary.

FIGURE 4.6. Energy response of gBlocks after being constructed from calibrated
gTowers over η for several values of pT.

4.4. Effects of Calibration on pT and Emiss
T

The distribution of the leading gBlock pT both without any noise cuts or

calibration and with a 4σ noise cut and calibration are shown in Figure 4.7. The

primary purpose is to check that the distributions are as expected and that the noise

cut and calibration does not alter the distribution in a physically unrealistic way.
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FIGURE 4.7. Distributions of leading gBlock pT (a)prior to a noise cut and calibration
and (b)after a noise cut of 4σ and calibration. The stacked histograms show the
breakdown of JZW slices. The primary purpose of this distribution is a check on the
distributions.

The Emiss
T distributions, broken down in the x and y directions to show any bias

in the calorimeter or calibration, calculated from gTowers before and after a noise

cut and calibration are shown in Figure 4.8. As this is a dijet sample no real Emiss
T is

expected, so ideally the distributions would have a single peak at 0, but this is not

the case due to jet energy resolution uncertainty.

4.5. Trigger Efficiencies and Rate

The turn-on curve represents the efficiency of the trigger and the steepness of the

plot demonstrates the resolution for a jet at a certain energy. After a 4σ noise cut, the

turn-ons for a calibrated (120 GeV) and uncalibrated (85 GeV) gBlocks in the central

region are shown in Figure 4.9. The efficiency curve is constructed by determining if

the leading truth jet is in the central region of the calorimeter. If it is then the pT is

added to a “denominator” histogram. Then, if the leading gBlock is also located in
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(d)

FIGURE 4.8. Distributions of Emiss
T calculated from gTowers before calibration in

the (a)x direction and (b)y direction and after a noise cut of 4σ and calibration in
the (c)x direction and (d)y direction. The stacked histograms show the breakdown
of JZW slices. As this is a dijet sample no real Emiss

T is expected.

the central region of the calorimeter and if its pT passes a cut (e.g. 120 GeV) then the

leading truth jet pT is added to a “numerator” histogram. After all events are checked

in a sample the numerator histogram is divided by the denominator histogram. This

shows the likelihood of a truth jet pT passing the gBlock trigger.

The rate plot helps determine the jet energy that can be triggered on, since

there is limited bandwidth. In order to compare calibrated and uncalibrated pTs,
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the uncalibrated gBlocks were scaled by a factor of 1
0.6

to approximate a calibration

constant. The rate is shown in Figure 4.10.
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FIGURE 4.9. Trigger efficiency for a calibrated gBlock threshold of pT =120 GeV
and uncalibrated threshold of 85 GeV for the central region, |η| < 0.5, with a noise
cut of 4σ for 〈µ〉 = 80 for dijet events (JZ0W-JZ5W) with

√
s = 13 TeV.

4.6. Outlook

A new pileup suppression and calibration scheme was presented here for the

gFEX upgrade to the ATLAS trigger system. Further studies are still needed, such

as optimizing the noise cut value and studies with the Phase II levels of pileup, but

the scheme looks promising for the future.

65



0 50 100 150 200
 [GeV]

T
gBlock p

410

510

610

R
at

e 
[H

z]

Simulation
gTower Rate

 = 80µ = 13 TeV, s

 noice cut, calibratedσ4

 noise cut, uncalibratedσ4

FIGURE 4.10. Trigger rates for a range of gBlock pT with a noise cut of 4σ with and
without calibration with 〈µ〉 = 80 for dijet events (JZ0W and JZ1W) with

√
s = 13

TeV.
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CHAPTER V

ANALYSIS OVERVIEW

This chapter provides an overview of the analysis described in Chapter VII and

published in 2017 in JHEP [1]. This chapter contains material coauthored with the

ATLAS Collaboration. I was the primary contributor to the tt̄ background estimation.

Other members of the analysis group, part of the ATLAS Collaboration, estimated

other backgrounds, and the background estimates were used by the analysis group

to produce the results, including exclusion plots. As described in Chapter II, the

search for the stop is well-motivated since the stop should be lighter than other

squarks. As it has the highest impact on naturalness, and could be the lightest

squark, the stop is an important particle for which to perform a search. Additionally,

the lightest supersymmetric particle, e.g. the neutralino, is a viable dark matter

candidate and is produced in conjunction with the stop in R-parity conserving SUSY

models. This dissertation describes a search for direct stop pair production (in

contrast to top squarks produced through gluino cascade decays). Figure 5.1 shows

the direct production cross section of the stop quark as a function of its mass with

several SM processes shown for comparison.

Three different decay scenarios are considered in this search: (a) both top

squarks decay via t̃1 → t(∗)χ̃
0
1, (b) at least one of the top squarks decays via

t̃1 → bχ̃
±
1 → bW (∗)χ̃0

1, with various hypotheses for mχ̃0
1

and mχ̃±1
, and (c) where mχ̃0

2

is small enough for at least one top squark to decay via t̃1 → tχ̃
0
2 → h/Zχ̃

0
1, where h is

the SM-like Higgs boson with a mass of 125 GeV, as illustrated in Figure 5.2(a)−(c),

respectively. In addition to direct pair production, top squarks can be produced
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FIGURE 5.1. Cross section for direct stop pair production as a function of stop mass
at a center-of-mass energy of 13 TeV. Several SM cross sections, tt̄, Z+jets[37], and
tt + Z[37], are shown as well for reference. Note that for heavier stop quarks SM
processes have cross sections that are orders of magnitude larger.

indirectly through gluino decays, as shown in Figure 5.2(d). In all cases, the all-

hadronic decay of the top quark (or of the W in the b+W (∗) + χ̃
0
1 mode) is considered.

Orthogonal searches also exist that focus on the lepton+jets[38] and dilepton[39] decay

modes of the top quark.

The all-hadronic top decay mode nominally has six jets in the final state, but

events with at least four reconstructed jets are considered. However, this channel has

the feature that there are no neutrinos in the final state, so the only intrinsic Emiss
T is

from the χ̃
0
s except possibly from semi-leptonic b decays. Therefore the experimental

signature is multiple jets and high Emiss
T .

A common feature of all analyses studying a specific phenomenon is defining a

region of phase space designed to have a significant excess of signal events compared

to background events. This is done by applying selections to sets of kinematic

observables and is called a signal region (SR). Several signal regions have been
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FIGURE 5.2. The decay topologies of the signal models considered with experimental
signatures of four or more jets plus missing transverse momentum. Decay products
that have transverse momenta below detector thresholds are designated by the term
“soft”.

developed to optimize sensitivity to different stop-neutralino mass combinations, as

illustrated in Figure 5.3, and different final states, as illustrated in Figure 5.2.

More details on the SRs are presented in Section 7.1. Signal regions A (SRA)

and B (SRB) are optimized for high stop masses in the decay channel shown in

Figure 5.2(a). SRA is optimized to be sensitive to decays of heavy stops into a

top quark and a light χ̃
0
1. Events are divided into three categories based on the

reconstructed top candidate mass (nominally 175 GeV), which was not done in the

Run 1 analysis[40]. The Run 1 analysis was performed on 20.1 fb−1 at a center-of-

mass energy of 8 TeV. The TT category includes events with two well-reconstructed
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Signal region aims

FIGURE 5.3. Multiple signal regions have been developed to increase sensitivity in
different stop and neutralino mass combinations: SRC in blue, SRB in red, and SRA
in orange.

top candidates, the TW category contains events with a well-reconstructed leading pT

top candidate and a well-reconstructed subleading W candidate (from the subleading

R = 1.2 reclustered mass), and the T0 category represents events with only a leading

top candidate. This is shown in Figure 5.4, where the horizontal axis is the mass of

the leading R = 1.2 reclustered mass and the vertical axis is that of the second-leading

R = 1.2 reclustered mass. Optimizing the significance1 in the categories showed an

improvement in discovery significance compared to the combined optimization.

In SRC the signature of stop decays when ∆m(t̃1, χ̃
0
1) ∼ mt is significantly softer

with low Emiss
T for the decay channel shown in Figure 5.2(a). This decay topology is

very similar to non-resonant tt̄ production making signal and background separation

challenging. However, several kinematic properties can be exploited to separate stop

1 Significance is defined as S√
B

where S is the number of signal events and B is the number of

background events
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1
) = (1000, 1) GeV after the loose preselection requirement
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jet masses.

decays from tt̄ when an ISR jet is present in the final state. These variables are

described in Section 7.1.2.

The selections for SRD are optimized for the decay of both pair-produced top

squarks into a b quark and a χ̃±1 as shown in Figure 5.2(b). SRE is designed for a

model for which the tops are highly boosted. Such signatures can either come from

direct stop pair production with a very high stop mass, or in the gluino-mediated

compressed-stop scenario with large mg̃- mt̃1 as shown in Figure 5.2(d).

Background processes that contaminate SRs must also be estimated. Control

regions (CRs) are designed for each dominant background to be pure in that

background and have as little signal contamination as possible. Appendix B shows the
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signal contamination in each of the CRs and VRs. These are compared to data and

therefore must be orthogonal to the SRs, but still as close as possible kinematically

in order to reduce uncertainties when extrapolating. The CRs are defined for the

major backgrounds in each SR to normalize the simulation to data and ensure the

shapes of the simulated backgrounds match those of the data. However, enough data

is required in order to minimize the uncertainties in the normalization factors.

The dominant background sources are:

– Z → νν̄ plus additional b-jets, typically produced in a Drell-Yan process.

– Semileptonic tt̄ events, which contain W → e/µ/τν decays where the lepton is

either lost or mis-identified as a jet (and have high Emiss
T due to the escaping

neutrino).

– W → `ν̄ plus additional b-jets,

– tt̄+ Z, where both tops decay hadronically and Z → νν̄, and

– Wt-channel single top decays, where one W decays hadronically and one

leptonically.

Figure 5.5 summarizes theory predictions and ATLAS measurements for various

SM production cross-sections and shows both total and fiducial cross sections2.

It can be seen in Figure 5.6, which shows the backgrounds in SRB, that Z → νν̄

and tt̄ are major contributors to the background processes.

2 A fiducial cross section is a cross section for the subset of a process which is visible in the
detector.
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FIGURE 5.6. Breakdown of the backgrounds in SRB-TT, -TW, and -T0 from left to
right.

The strategy for the CRs are:
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– 1-lepton: Requires exactly one well-identified lepton in order to be orthogonal

to the SRs and treat it as a jet. This CR is used for leptonically-decaying

W bosons, as in the tt̄, W+jets, and single top backgrounds. The CRs are

orthogonal to 1-lepton searches.

– 2-lepton: Requires exactly two well-defined leptons in order to be orthogonal

to the SRs. This is used to model Z → νν̄ events, so the invariant mass of the

leptons must be that of the Z boson. These leptons are thus treated as invisible

particles and their pT added to the Emiss
T .

– The tt̄+ Z background uses a photon to model the Z pT.

– The QCD multijet background occurs when jets are mis-modeled to produce

fake Emiss
T . To estimate this background jet smearing[42] is used, where the

pT and jet response function of well-measured jets with low Emiss
T in data are

smeared to simulate jet mis-modeling.

More details on the CRs are shown in Section 7.2. The observed numbers

of events in the various control regions are included in a binned profile likelihood

fit[43] to determine the SM background estimates for Z, tt̄, W , single top, and

tt̄+Z in each signal region. The normalizations of these backgrounds are determined

simultaneously to best match the observed data in each control region taking

contributions from all backgrounds into account. A likelihood function is built as

the product of Poisson probability functions, describing the observed and expected

number of events in the control regions[44]. This procedure takes common systematic

uncertainties (discussed in Section 7.3) between the control and signal regions and

their correlations into account as they are treated as nuisance parameters in the fit and

are modeled by Gaussian probability density functions. The contributions from all
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other background processes (dibosons and multijets) are fixed at the values expected

from the simulation, using the most accurate theoretical cross sections available, while

their uncertainties are used as nuisance parameters in the fit.

Validation Regions (VRs) are designed to validate the factors determined in the

CRs and are a region orthogonal to both the SR and the CR while between the two

kinematically, e.g. 0-lepton validation regions are closer kinematically than a 1- or

2-lepton CR.

The validation regions for Z+jets avoids overlap with the signal region by

reversing the ∆R (b, b) and/or the m0
jet,R=1.2/m0

jet,R=0.8 requirement. The validation

regions for tt̄ avoids overlap with the signal regions by reversing themb,min
T requirement.

More details on the VRs are shown in Section 7.2.

There are also important checks on the data and simulation that must be

performed in order to be confident in the results. For this analysis the following

checks were performed:

– Checking the dependence of discriminating variables on pileup to ensure that

different pileup conditions do not affect the analysis.

– Checking for problems with specific runs by making sure that the data yields

normalized by luminosity are consistent.

– Checking for any missing data by comparing processed data to reference

numbers.
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– Checking for duplicate events in simulation as previous productions contained

a bug that caused this. This can cause regions to be mis-modeled.

– Checking the debug stream for any events in CRs and SRs. The debug stream

catches events in which the trigger was unable to make a decision due to some

failure in the online system.

– Checking the pileup reweighting to make sure that the pileup weight for

simulation matches data after applying the weight.

The checks helped to validate the data and simulation and the data is stable and

have high quality. Figure 5.7 show the dependence on pileup for m0
jet,R=1.2, Emiss

T , and

jet multiplicity. The full results for several of these checks are shown in Appendix A.
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FIGURE 5.7. Checks on the dependence of pileup of m0
jet,R=1.2, Emiss

T , and jet
multiplicity. Ideally there is no dependence and the distributions are flat.

After the normalization factors have been validated, the background predictions

are extrapolated to the SRs and then the data is “unblinded,” and the SRs are

compared to observed data. For discovery a p-value is calculated in each SR and

subregion independently.

As no excess is observed in any of the signal regions, new limits are placed on

SUSY masses in the mt̃1-m, as shown in Figure 7.7 as well as in terms of mg̃−mt̃1 . For
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the exclusion fits, the orthogonal subregions of SRA, SRB, and SRC are statistically

combined. For the overlapping signal regions defined for SRD (SRD-low and SRD-

high), the signal region with the smallest expected CLs[45, 46] value is chosen for each

signal model. Once the signal subregions are combined or chosen, the signal region

with the smallest expected CLs is chosen for each signal model in the t̃1–χ̃
0
1 signal

grid. Additionally, results are interpreted in terms of the pMSSM and several models

have new exclusion limits. There are more details on the exclusion limits in Section

7.5.

77



 [GeV]
1

t~
m

200 400 600 800 1000 1200

 [G
eV

]
0 1χ∼

m

0

100

200

300

400

500

600

700

800

900

SRA+SRB+SRC+SRD+SRE

0
1χ∼

 +
 m

t

 <
 m

1t~m

0
1χ∼

 +
 m

b

 +
 m

W

 <
 m

1t~m

) = 100%
0

1
χ∼ (*)

 t→ 1t
~

Top squark pair production, B(

-1=13 TeV, 36.1 fbs

ATLAS )
theory
SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

=8 TeVs, -1ATLAS 20 fb

Limits at 95% CL

FIGURE 5.8. Observed (red solid line) and expected (blue solid line) exlusion

contours at 95% CL as a function of t̃1 and χ̃
0
1 masses in the scenario where both top

squarks decay via t̃1 → t(∗)χ̃
0
1. Masses that are lower than the masses along the lines

are excluded. Uncertainty bands corresponding to the ±1σ variation on the expected
limit (yellow band) and the sensitivity of the observed limit to ±1σ variations of the
signal theoretical uncertainties (red dotted lines) are also indicated. Observed limits
from all third-generation Run-1 searches [47] at

√
s = 8 TeV centre-of-mass energy

are overlaid for comparison in blue.

78



CHAPTER VI

EVENT RECONSTRUCTION

6.1. Particle Identification

The ATLAS detector tracks the path of final state particles and records their

energy deposits. In order to determine what happened in the interaction point these

particles must be identified and traced back in time to the interaction, reconstructing

the event. This chapter discusses the process by which this is performed, including

starting with tracks and topoclusters and constructing jets, leptons and photons, as

well as the role that modeling has.

6.1.1. Tracks

As a charged particle travels through the inner detector (ID) its path is curved

by the 2T magnetic field created by the ATLAS solenoid magnet and it leaves “hits”

in the ID layers. The hits are converted from raw data in the layers into three-

dimensional measurements called space-points. Specialized algorithms reconstruct

the charged particle trajectories from the space-points, and these trajectories can

be used to determine the transverse and longitudinal impact parameters, the angles

of the trajectory, and the ratio of charge to momenta[48]. Tracks are also used to

reconstruct vertices, including secondary vertices which are important for identifying

b−jets, and in jet calibration to reduce flavor dependence[49].
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6.1.2. Topoclusters

Topological clusters (topoclusters) are groups of connected calorimeter cells

defined by the 4-2-0 algorithm[50]. The 4-2-0 algorithm begins with seed cells which

have an absolute value of signal energy greater than four times the noise energy

(electronic and pileup). Then all adjacent cells with at least twice the noise energy

are added to it, and then finally all adjacent cells with energy greater than 0 are added.

The topoclusters can have a local calibration applied, referred to as “local

hadronic cell weighting” (LCW) calibration. These values are determined with MC

simulations and is called “local” because it calibrates small and local topoclusters. If

this weight is applied the topoclusters are referred to as LCTopo jets, otherwise they

are EMTopo jets.

6.2. Jets

6.2.1. Jet-finding

The topoclusters are used as inputs to a jet finding algorithm. A jet finding

algorithm must satisfy two requirements; first, that adding or removing a soft jet will

not change the jet collections (infrared safe) and second that splitting or merging high

pT particles will not change the jet collections (collinear safe). Jet finding algorithms

that are not safe are infrared or collinear sensitive; this is illustrated in Figure 6.1.

The jet finding algorithm currently most commonly used at ATLAS is the anti-kt

algorithm, which is one of several kt algorithms. These algorithms start by calculating
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FIGURE 6.1. Illustration of a) infrared sensitivity and b)collinear sensitivity (figure
from [51]). Adding a soft jet merges the jets when infrared sensitive and splitting the
high pT jet separates the jets when collinear sensitive.

the distances between an entity i and all possible pseudojets j, dij, and between i

and the beam B, diB as:

dij = min(k2p
ti , k

2p
tj )

(∆R)2
ij

R
, (6.1)

diB = k2p
ti (6.2)

where R =
√

(∆η)2 + (∆φ)2 is the distance parameter (most commonly in

ATLAS is R = 0.4), kt = pT, and p is an integer whose value depends on the specific

algorithm. The inclusive kt algorithm has a p value of 1, the anti-kt algorithm has a

p value of -1, and the inclusive Cambridge/Aachen algorithm has a p value of 0. If

dij is smaller than diB then i and j are merged, otherwise i is labeled as a jet and

removed from the list of entities. This is repeated for all possible entities.

The kt family of algorithms are both infrared safe and collinear safe. Figure 6.2

shows how the anti-kt algorithm performs compared to other jet finding algorithms.

Note that for the anti-kt algorithm hard jets have a circular, more physical shape that

gives good position resolution, with a radius equal to the distance parameter R while
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softer jets are crescent moon-shaped when bordering a hard jet, which takes some of

the area of the softer jet. Compare this to, for instance, the kt algorithm where the

jets have irregular shapes and lighter jets can steal some of the area of the harder jets.

FIGURE 6.2. Results from several jet finder algorithms (figure from [52]). Note the
shape differences in different algorithms and what jet pTs can steal away from other
jets.

6.2.2. Jet calibration

After the jets are constructed they must be calibrated. The steps are shown in

Figure 6.3. First, a pileup correction is made by subtracting the average energy of

the η × φ plane as well as corrections based on the number of primary vertices and
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the average number of interactions per bunch crossing.

FIGURE 6.3. Jet calibration steps at ATLAS (diagram from [53]).

Next the jet energy scale (JES) correction is applied. The scale factors are

determined from truth particles in simulation and are a function of η and pT of the

jet. An origin correction is also applied to correct for bias in the η direction, which

shows up especially in the gap and transition regions.

There is also dependence of the JES on longitudinal and transverse features of the

jet. These dependencies are corrected sequentially as they are mostly uncorrelated.

These dependencies include the fraction of energy deposited in the tile calorimeter

and in the third layer of the EM calorimeter, the number of tracks associated to the

jet, the pT-weighted width of the tracks, and the number of muon segments associated

to the jet. These corrections are referred to as global sequential corrections.

Finally in situ corrections correct differences between data and MC. This is

performed with well-measured and understood objects like γ/Z+jets and multijet

processes.
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6.2.3. Jet cleaning

There can be several backgrounds for jets coming from hard collisions,

including[54]:

– Beam induced background (BIB), coming from proton interactions upstream of

the interaction point

– Cosmic-ray showers, produced in the atmosphere and mostly made up of

muons as most other particles will not penetrate to the depth of the detector

underground

– Calorimeter noise from large scale coherent noise or isolated pathological cells

The process to reject these ”fake” jets is called ”jet cleaning” and uses the

following variables:

– QLAr
cell : The quadratic difference between actual and expected pulse shapes

– 〈Q〉: The average jet quality, defined as the energy-squared weighted average of

pulse quality of the calorimeter cells in the jet

– fLArQ : Fraction of the energy in the LAr calorimeter cells of a jet with poor

signal shape quality

– fHECQ : Fraction of energy in the HEC calorimeter cells of a jet with poor signal

shape quality

– Eneg: Sum of the energy of all cells with negative energy as negative energy in

a good jet is due to electronic and pileup noise
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– fch: Ratio of the scalar sum of the pT of the tracks from the primary vertex

associated with the jet to the jet pT

– fmax: The fraction of the jet energy in the layer with maximum deposit.

A jet is considered fake if it satisfies at least one of the requirements listed above.

The first two identify jets due to sporadic noise bursts in HEC, the third identifies

jets due to large coherent noise or isolated pathological cells in LAr, and the last

three are more general and identify hardware issues, BIB or cosmic muon showers:

– fHEC > 0.5 and |fHECQ | > 0.5 and 〈Q〉 > 0.8

– |Eneg| > 60

– fEM > 0.95 and fLArQ > 0.8 and 〈Q〉 > 0.8 and |η| < 2.8

– fmax > 0.99 and |η| < 2

– fEM < 0.05 and fch < 0.05 and |η| < 2

– fEM < 0.05 and |η| ≥ 2

6.2.4. b-tagging

Since bottom quarks have a delayed decay due to the small decay rates to up

and charm quarks, B mesons live long enough to travel a significant distance, on

the order of hundreds of µm from the primary vertex before decaying to lighter

hadrons. The tracks that these lighter hadrons produce trace to a secondary vertex

instead of the primary vertex and this can be used to discriminate b-jets from other

jets. Unfortunately charm quarks as well as tau leptons also can have delayed

decays so it can be difficult to distinguish between the two. Therefore multivariate
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algorithms have been developed[55] that use information such as the impact parameter

significance, presence of a secondary vertex, and reconstruction of B meson decay

chains to tag b-jets. The algorithm used in this search has an efficiency of 77%, with

rejection factors for charm quarks, light-flavor and tau leptons rejection factors, which

are the opposite of efficiency, of 5, 10, and 140 respectively.

6.3. Electrons

Electrons leave a track in the ID as well as producing an electromagnetic (EM)

shower in the calorimeter. Electrons are reconstructed by[56]:

– A sliding window of size 3 × 5 in η × φ corresponding to the granularity of

the middle layer of the LAr calorimeter search for electron cluster “seeds” with

cluster energy greater than 2.5 GeV. Clusters are formed around the seeds that

allow for duplicates to be removed.

– Pattern recognition for the track fit uses the electron hypothesis, which allows

for more energy to be lost by bremsstrahlung.

– Seed clusters and tracks are matched to give electron candidates.

However an electron can be not-prompt, meaning that it is a product of a

delayed decay and is not a signal object. An electron can also be produced from

a background jet or a photon conversion. In order to reject background electrons to

signal electrons a number of discriminating variables are used in addition to track-

cluster matching, including hadronic leakage, EM layer information, track conditions,

and TRT radiation. A likelihood-based method is used to reject background photons

with Loose, Medium, Tight, with each a subset of previous criteria, and the VeryLoose
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criteria which is used in this analysis to reject electrons. Electrons falling into the

gap region, from 1.37 < |η| < 1.52, are also considered electrons in the analysis. For

this search electrons are also required to be isolated in a cone of ∆R =0.2 divided

by the electron pT to reduce background from hadrons imitating a lepton and from

leptons from hadron decays or photon conversion.

For signal electrons, used in the control regions, the electron must have a pT

greater than 20 GeV, have |η| < 2.47 and is rejected of 0.2 < ∆R(e, jet) < 0.4.

6.4. Photons

While photons produce an EM shower in the calorimeter, unlike electrons they

are not charged and therefore should not leave a track in the ID. This is complicated

by the possibility of pair production from a photon in the tracker. In this case the

cluster is matched to two oppositely-charged tracks. If there are no tracks associated

to a cluster then it is considered an unconverted photon. Similar to Section 6.3,

shower shape variables from hadronic leakage and EM layer information is used[57]

to create two criteria, loose and tight. Photons are used in this analysis for the control

region for tt̄+ V background.

6.5. Muons

Since muons act as minimum-ionizing particles (MIPS) through the calorimeter,

the outermost part of the ATLAS detector, the muon spectrometer (MS) is used

to detect and measure properties of muons. Several criteria are used to identify

muons[58]: q/p significance, the difference in the ratio of charge and momenta
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measured in the ID and MS; ρ′, the difference between the transverse momenta

measured in the ID and MS; and the normalized χ2 of the combined track fit. There

are also requirements on the numbers of hits in the ID and MS.

There are four muon types depending on the subdetectors used in the

reconstruction. Combined muons use hits in the MS to trace back to hits in the

ID to reconstruct the muon track, though the opposite approach can complement

this. Segment-tagged muons are formed when a track in the ID is matched to one

layer in the MS because of low pT or because it crosses a region in the MS with

reduced acceptance. Calorimeter-tagged muons identifies a muon consistent with a

MIP in the calorimeters and is used to find muons that cross the ID and MS in regions

where cabling prevents particle detection. Extrapolated muons require only tracks in

the MS for regions beyond the coverage of the ID.

After identifying and classifying the muons there are four selections based on the

type of muon with additional criteria, Loose, Medium, Tight, and High-pT in order of

rejecting background. Loose (Medium) criteria with pT> 6 GeV (pT> 20 GeV) with

∆R(µ, jet) > 0.4 are used to identify muons for the signal regions (control regions).

Additionally, bad or fake muons can be identified by high hit multiplicities in the

MS. This is due to very energetic punch-through jets, which survive the calorimeters

and enter the MS, or badly mis-measured ID tracks in jets wrongly matched to MS

segments. These fake muons are a potential source of fake Emiss
T .
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6.6. Taus

The tau lepton is the only lepton heavy enough to decay hadronically, which

results in a final state of a tau neutrino and jets from the W decay in tt̄ or W+jets

events. The decay can have either 1 or 3 charged hadrons; therefore a jet is

identified as a tau candidate if it has four or fewer tracks, is close to the Emiss
T vector

(∆φ(Emiss
T , jet) < π/5) from the neutrino, as well as not b-tagged. In this analysis

these are not fully reconstructed in order to have efficient rejection of τ candidates

from the W bosons, and leptonic decays are rejected from the lepton veto.

6.7. Missing Transverse Momentum

Missing transverse momentum, Emiss
T , is the vector sum of transverse momenta

of all final state particles. This sum must be equal to zero or there are some final

state particles that are invisible to the detector, such as neutrinos or new physics.

Only transverse momenta can be calculated from a hadron collider like the LHC since

momenta of the colliding protons is non-uniformly distributed across its constituent

partons (thus the missing z-momenta cannot be calculated). As a function of its x

and y components, Emiss
T and its azimuthal angle φmiss is:

pmiss
T =

√
(Emiss

x )2 + (Emiss
y )2 (6.3)

φmiss = arctan(
Emiss
y

Emiss
x

) (6.4)
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The missing energy vector is therefore defined as:

pmiss
T = −Σ(pT(e) + pT(γ) + pT(jets) + pT(µ) + pT(soft)), (6.5)

where pT(e), pT(γ), pT(jets), pT(µ) are the the momenta of electrons, photons,

jets, and muons. Low-pT objects not associated with hard pT objects and unassociated

topoclusters are grouped into the pT(soft) term. There are several methods of

calculating Emiss
T that differ in important ways, several of which are compared[59].

The first includes a calorimeter-based soft term, CSC Emiss
T . This is constructed

from energy deposits in the calorimeter not associated with hard objects that come

from underlying event activity and soft radiation. This is vulnerable to pileup

interactions, both in-time and out-of-time. The second, Track Emiss
T uses tracks from

the inner detector and is therefore resilient to pileup. However, used purely it misses

neutral particles that don’t leave tracks. The third includes a track-based soft term,

TST Emiss
T , and is combined with the calorimeter-based measurements for the hard

terms. This is a good compromise between the first two methods and is the primary

method for Run 2, including for this analysis, while CST Emiss
T was the primary

method for Run 1. Pure track Emiss
T is also used to reject Emiss

T from mis-modeled

jets.

6.8. Monte Carlo Simulations

The complexities of collisions and decays, along with detector effects, make

full calculations unmanageable. Therefore in order to test predictions from theory,
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observables in data must be compared to those in computer simulations. This is

performed with event generators and detector simulations.

6.8.1. Event Generators

To simulate particle interactions and productions Monte Carlo generators are

used as the number of observables and uncertainties in theory predictions and

experimental effects and uncertainties make calculations unmanageable.

Figure 6.4 shows a simplified diagram of an event. Quarks and gluons, which

carry color, can emit QCD radiation either as initial state radiation (ISR) or final

state radiation (FSR). Parton shower (PS) generators simulate these processes, the

precision of which are leading logarithm (LL), next-to-leading logarithm (NLL), etc,

classified by the number of logarithms arriving from loop calculations.

To begin with, the momentum of an individual proton is non-uniformly spread

out over its components. The fraction of momenta each parton carries is controlled

by the parton distribution function (PDF) which is determined experimentally. Then

hard scattering and following possible decays are called matrix elements (ME) and

are computed to some approximation as it is too laborious to calculate beyond a few

orders in perturbation theory. The precision of the approximation is leading order

(LO), next-to-leading order (NLO), etc.

There are various Monte Carlo generators that are used to simulate events that

can be chosen depends on the physics needs:

– SHERPA[60]: (Simulation of High-Energy Reactions of PArticles) A general-

purpose tool that contains a flexible tree-level matrix-element generator for
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FIGURE 6.4. Pictorial representation of a tth event produced by an event generator
(figure from [60]). The large red blob is the hard interaction followed by decays of
the top quarks and Higgs as smaller red blobs. Hard QCD scattering is produced in
red and a secondary interaction takes place in the purple blob, then the final-state
partons hadronize, light green, and hadrons decay, dark green. Additional photon
radiation can occur at any stage and is in yellow.

calculating hard scattering processes with both SM and new physics models.

This generator is used for Z+jets and W+jets in the analysis.

– PYTHIA[61]: A standard tool for modeling the evolution from a few-body hard

process to a complex multihadronic final state, including modeling ISR and FSR

parton showers.

– POWHEG[62]: (Positive Weight Hardest Emission Generator) A NLO

generator. For this analysis leptonic top decay and single-top production

background processes use this generator interfaced to PYTHIA for parton

scattering and hadronization.

92



– MadGraph aMC@NLO[63]: A leading order and NLO amplitude and event

generator. For this analysis tt+V , where V is a W or Z, and tt+γ background

processes use this generator interfaced to PYTHIA for parton scattering and

hadronization.

– EvtGen[64]: A generator for b physics including underlying events, used for

b-hadron decays in this analysis.

Table 6.1 shows an overview of the generators used for the signal samples and

each of the backgrounds.

TABLE 6.1. Overview of the nominal simulated samples.

Process Generator fragm./hadron. PDF set UE Tune Cross section order

SUSY Signal MadGraph5 aMC@NLO Pythia 8 NNPDF2.3 A14 LO
tt̄ Powheg-Box v2 Pythia 6 CT10 Perugia 2012 NLO

Single top Powheg-Box v2 Pythia 6 CT10 Perugia 2012 NLO
W/Z+jets Sherpa 2.2.1 Sherpa NNPDF3.0NNLO Default NLO
Diboson Sherpa 2.2 Sherpa CT10 Default LO
tt̄ + V MadGraph5 aMC@NLO Pythia 8 NNPDF3.0NNLO A14 NLO

6.8.2. Detector Simulation

The toolkit GEANT[65] was developed to simulate all aspects particles passing

through the detector, including tracking, geometry, physics models, and particle

showers in calorimeters and covers a comprehensive range of physics processes. In

a full simulation particles’ interactions with every part of ATLAS is simulated with

all details, and in fast simulation showers in the EM and hadronic calorimeters are

simulated. Energy deposits are processed in the digitizer to simulated the readout

system and then turned into the raw data format identical to real data. Figure 6.5

puts the simulations together visually.
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FIGURE 6.5. Visual representation of different stages of simulation (figure from [66]).

This chapter described the way in which events are reconstructed and modeled,

which is essential to performing the analysis described in Chapter VII.
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CHAPTER VII

ANALYSIS

This chapter describes the analysis in depth, beginning with the signal regions

and continuing with background estimation and finally presenting the results,

interpretations, and outlook. This work was published in 2017 in JHEP [1]. This

chapter contains material coauthored with the ATLAS Collaboration. I was the

primary contributor to the tt̄ background estimation. Other members of the analysis

group, part of the ATLAS Collaboration, estimated other backgrounds, and the

background estimates were used by the analysis group to produce the results,

including exclusion plots. The lightest supersymmetric partner to the top quark1

being produced in direct pair production is the main focus of the analysis, while

other scenarios are also discussed.

7.1. Signal Region Definitions

Leading order stop pair-production at the LHC is expected to be dominated by

gluon fusion, then by the subprocess qq̄ annihilation. The stops are pair produced,

conserving R−parity, and are produced directly, so there are no intermediate particles

in the simplified model.

As discussed in Chapter V there are five distinct signal regions developed to

optimize discovery significance for different topologies, SRA-E. All of the searches

share the following preselection requirements:

1 There is a SUSY partner to the helicity states of the top quark in the SM, t̃L and t̃R, which mix
to form the t̃1 and t̃2 where the t̃1 is the lightest of the two.
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– For data samples, events must be in the Good Runs List (GRL), which are runs

that pass certain data quality requirements.

– For data samples, Must pass cleaning selection which removes events with

incomplete data or with calorimeter noise bursts.

– The event must pass the lowest unprescaled Emiss
T trigger as well as have offline

Emiss
T > 250 GeV.

– The event must have a reconstructed primary vertex.

– The event must not contain any “bad jets” from the jet definition described in

section 6.2.3 with pT > 20 GeV.

– The event must not contain any cosmic muons as discussed in section 6.2.3

– The event must not contain any bad muons as described in section 6.5.

– The event must contain no baseline electron candidates with pT > 7 GeV and

no baseline muons with pT > 6 GeV.

– The event must contain at least four jets.

– The ∆φ between the leading two (three) jets and the Emiss
T ,

∣∣∆φ (jet0,1,pmiss
T

)∣∣,
(
∣∣∆φ (jet0,1,2,pmiss

T

)∣∣), must be greater than 0.4 for ISR based regions (non-ISR

based regions).

– The Emiss,track
T must be greater than 30 GeV.

– The ∆φ, between the calo Emiss
T and the Emiss,track

T ,
∣∣∣∆φ(pmiss

T ,pmiss,track
T

)∣∣∣, must

be smaller than π/3.

– At least one b-tagged jet at the 77% working point is required.
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The analysis relies heavily on reconstruction top quark candidates, which is done

using jet “reclustering.” Jet reclustering is performed using the anti-kt algorithm with

a larger distance parameter (i.e. R = 1.2) over the calibrated anti-kt R = 0.4 jet

collection. The highest (second-highest) pT reclustered jet is designated as the first

(second) top candidate. Various optimization studies have found that this method

using R = 1.2 (top candidate) and R = 0.8 (W candidate) results in the best signal

sensitivity. The mass distribution is shown in Figure 7.1. The masses are indicated

by m0
jet,R=1.2, m1

jet,R=1.2, m0
jet,R=0.8, m1

jet,R=0.8.

A suite of discriminating variables based on anti-kt R = 0.4 jets will be considered

in the analysis optimization:

–
∣∣∆φ (jet0,1,pmiss

T

)∣∣: The difference in φ between the jet and Emiss
T for the two

leading jets in the event. This variable rejects events with fake Emiss
T from QCD,

hadronic tt̄, and detector effects.

– HT: The scalar sum of the pT of all signal anti-kt R = 0.4 jets (pT > 20 GeV,

|η| < 2.8, after overlap removal).

– mi
T: The transverse mass (mT) between the ith jet and the Emiss

T in the event.

The massless approximation is used for this and all following mT variables:

mi
T =

√
2pjet,i

T Emiss
T

(
1− cos ∆φ

(
jeti, Emiss

T

))
, where pjet,i

T is the transverse

momentum of the ith jet.

– mb,min
T : Transverse mass between closest b-jet to Emiss

T and Emiss
T . This variable

provides the most powerful discrimination between signal and semileptonic tt̄

background.
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FIGURE 7.1. Distributions of the discriminating variables (a) m0
jet,R=1.2 and

(b) mb,min
T after the common preselection and an additional mb,min

T > 50 GeV
requirement. The stacked histograms show the SM prediction before being normalized
using scale factors derived from the simultaneous fit to all dominant backgrounds.
The “Data/SM” plots show the ratio of data events to the total SM prediction. The
hatched uncertainty band around the SM prediction and in the ratio plots illustrates
the combination of statistical and detector-related systematic uncertainties. The
rightmost bin includes overflow events.

– mb,max
T : Transverse mass between furthest b-jet to Emiss

T and Emiss
T . This

variable provides very good discrimination between signal and semileptonic tt̄

background.

– ∆R (b, b): The angular separation between the two jets with the highest b

weights. This variable is useful in discriminating against the Z(νν) + bb + jets

background.

A common preselection used for all five sets of signal regions is defined in

Table 7.1.

Distributions of (a) m0
jet,R=1.2 and (b) mb,min

T are shown in Figure 7.1.
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TABLE 7.1. Selection criteria common to all signal regions. Different triggers were
used for different data periods in 2016.

Trigger Data 2015: HLT_xe70_mht_L1XE50
Data 2016: HLT_xe90_mht_L1XE50,

HLT_xe100_mht_L1XE50,
HLT_xe110_mht_L1XE50

Emiss
T > 250 GeV

Nlep 0
anti-kt R = 0.4 jets ≥ 4, pT > 80, 80, 40, 40 GeV
b-tagged jets ≥ 1∣∣∆φ (jet0,1,pmiss

T

)∣∣ or
∣∣∆φ (jet0,1,2,pmiss

T

)∣∣ > 0.4

Emiss,track
T > 30 GeV∣∣∣∆φ(pmiss

T ,pmiss,track
T

)∣∣∣ < π/3

7.1.1. SRA and SRB

SRA and SRB are optimized for high stop masses. In addition to the preselection,

SRA and SRB have common requirements of mb,min
T > 200 GeV, which reduces tt̄

background, two b-tagged jets, and a τ -veto.

SRA is optimized to be sensitive to decays of heavy stops into a top quark and

a light χ̃
0
1. The main discriminating variables are the reclustered top masses, with

R = 1.2 and R = 0.8, mb,min
T , ∆R (b, b), and Emiss

T . Events are divided into three

categories based on the reconstructed top candidate mass (R = 1.2 reclustered jet

mass). The TT category includes events with two well-reconstructed top candidates,

the TW category contains events with a well-reconstructed leading pT top candidate

and a well-reconstructed subleading W candidate (from the subleading R = 1.2

reclustered mass), and the T0 category represents events with only a leading top
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candidate.

The categorization showed an improvement in discovery significance, assuming

the shape of the mt̃1 = 800 GeV,mχ̃0
1

= 1 GeV benchmark, from 2σ to 3σ, yielding

comparable results to a boosted decision tree (BDT). For the benchmark point with

mt̃1 = 1000 GeV,mχ̃0
1

= 1 GeV, after the SRA-B preselection, ∼91% (TT=38%,

TW=22%, and T0=31%) of events fall into one of these three categories.

Additionally, requirements on the stransverse mass (mχ2

T2) [67, 68] are made which

are especially powerful in the T0 category where a χ2 method is applied to reconstruct

top quarks with lower momenta where reclustering was suboptimal. The mχ2

T2 variable

is constructed from the direction and magnitude of the pmiss
T vector in the transverse

plane as well as the direction of two top-quark candidates reconstructed using a χ2

method. The minimization in this method is done in terms of a χ2-like penalty

function, χ2 = (mcand−mtrue)
2/mtrue, where mcand is the candidate mass and mtrue is

set to 80.4 GeV for W candidates and 173.2 GeV for top candidates. Initially, single

or pairs of R = 0.4 jets form W candidates which are then combined with additional

b-tagged jets in the event to construct top candidates. The top candidates selected by

the χ2 method are only used for the momenta in mχ2

T2 while the mass hypotheses for

the top quarks and the invisible particles are set to 173.2 GeV and 0 GeV, respectively.

A similar strategy was taken for the optimization of SRB which is aimed at being

sensitive to mt̃1 = 600 GeV,mχ̃0
1

= 300 GeV. In addition to the Emiss
T and reclustered

masses, mb,max
T , mb,min

T , and ∆R (b, b) were used in the optimization. The fraction

of events in each category is after the SRA-B preselection: TT=14%, TW=20%,
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T0=35%. All three categories are used in the optimization resulting in the signal

regions defined in Table 7.2.

TABLE 7.2. Selection criteria for SRA and SRB, in addition to the common
preselection requirements as shown in Table 7.1. The signal regions are separated
into topological categories based on reconstructed top-candidate masses.

Signal Region TT TW T0

m0
jet,R=1.2 > 120 GeV

m1
jet,R=1.2 > 120 GeV [60, 120] GeV < 60 GeV

mb,min
T > 200 GeV

Nb−jet ≥ 2

τ -veto yes∣∣∆φ (jet0,1,2,pmiss
T

)∣∣ > 0.4

A

m0
jet,R=0.8 > 60 GeV

∆R (b, b) > 1 -

mχ2

T2 > 400 GeV > 400 GeV > 500 GeV

Emiss
T > 400 GeV > 500 GeV > 550 GeV

B
mb,max

T > 200 GeV

∆R (b, b) > 1.2

7.1.2. SRC

The signature of stop decays when ∆m(t̃1, χ̃
0
1) ∼ mt is significantly softer with

low Emiss
T . This decay topology is very similar to non-resonant tt̄ production making

signal and background separation challenging. However, several kinematic properties

can be exploited to separate stop decays from tt̄ when an ISR jet is present in the
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final state.

An additional set of discriminating variables is defined for signal regions using

ISR to gain sensitivity the compressed (mt̃1 −mχ̃0
1
∼ mt) signal grid region. These

variables are all defined in the transverse center-of-mass (CM) of the sparticle plus ISR

frame. Visible objects are grouped into being either a part of the ISR or the sparticle

system. This is performed using a recursive jigsaw reconstruction technique[69], which

looks for a “thrust axis” where the pT-projection of all jets and Emiss
T in the center

of mass frame in the event are maximized. This axis then divides the space into

the sparticle or ISR system. This association with the ISR or sparticle system is

indicated by an ISR or S superscript, respectively. The “V” subscript denotes the

visible part of system. For example, mV denotes the transverse mass of only the

visible (jets+leptons) part of the sparticle system without the Emiss
T . The variables

considered are:

– NS
b−jet: number of b-tagged jets associated with the sparticle hemisphere.

– NS
jet: number of jets associated with the sparticle hemisphere.

– p0,S
T,b: pT of the leading b-jet in the sparticle hemisphere.

– p4,S
T : pT of the fourth jet ordered in pT in the sparticle hemisphere.

– ∆φ(ISR,pmiss
T ): angular separation in φ of the ISR and the Emiss

T in the CM

frame.

– pISR
T : pT of the ISR system, evaluated in the CM frame.

– mS: transverse mass between the whole sparticle system and Emiss
T .

102



– mV/mS: ratio of the transverse mass of the only the visible part of the sparticle

system without Emiss
T and the whole sparticle system including Emiss

T .

– RISR: Ratio between invisible system (Emiss
T in CM frame) and pISR

T

After the preselection, defined in Table 7.1, additional requirements are

made resulting in five signal regions, SRC-1 through SRC-5, for which the exact

requirements are listed in Table 7.3.

TABLE 7.3. Selection criteria for SRC, in addition to the common preselection
requirements as shown in Table 7.1. The signal regions are separated into windows
based on ranges of RISR.

Variable SRC1 SRC2 SRC3 SRC4 SRC5

Nb−jet ≥ 1

NS
b−jet ≥ 1

NS
jet ≥ 5

p0,S
T,b > 40 GeV

mS > 300 GeV

∆φ(ISR,pmiss
T ) > 3.0

pISR
T > 400 GeV

p4,S
T > 50 GeV

RISR 0.30–0.40 0.40–0.50 0.50–0.60 0.60–0.70 0.70–0.80

7.1.3. SRD

The selections for SRD are optimized for the decay of both pair-produced

top squarks into a b quark and a χ̃±1 . In this case no top-quark candidates are

reconstructed, so the sum of the transverse momenta of the two jets with the highest

b−tagging weight, as well as that of the second, fourth, and fifth highest, are used for
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additional background rejection. The models considered for the optimization have

the chargino mass fixed to two times the neutralino mass, m(χ̃
±
1 ) = 2 ·m(χ̃

0
1).

The best selections for the signal samples with m(t̃1) = 400 GeV, m(χ̃
0
1) = 50

GeV (SRD-low), m(t̃1) = 700 GeV, m(χ̃
0
1) = 100 GeV (SRD-high) are reported in

Table 7.4. The two regions are not combined, individual p-values are quoted for

discovery while the region with the best expected sensitivity is chosen during the

exclusion fit.

TABLE 7.4. Selection criteria for SRD, in addition to the common preselection
requirements as shown in Table 7.1.

Variable SRD-low SRD-high∣∣∆φ (jet0,1,2,pmiss
T

)∣∣ > 0.4

Nb−jet ≥2

∆R (b, b) > 0.8

p0,b
T +p1,b

T > 300 GeV > 400 GeV

τ -veto yes

p1
T > 150 GeV

p3
T > 100 GeV > 80 GeV

p4
T > 60 GeV

mb,min
T > 250 GeV > 350 GeV

mb,max
T > 300 GeV > 450 GeV

7.1.4. SRE

SRE is designed for a model for which the tops are highly boosted. Such

signatures can either come from direct stop pair production with a very high
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stop mass, or in the gluino-mediated compressed-stop scenario with large mg̃ −

mt̃1 . The benchmark for this signal region is a model where (mg̃,mt̃1 ,mχ̃0
1
) =

(1700, 400, 395) GeV. Due to the large boost, the top daughters are more collimated

compared to typical topology expected in Signal Region A. Compared to direct stop

pair production with mt̃1 = 800 GeV and mχ̃0
1

= 1 GeV, the ∆R separation between

the W and the bottom quark tends to be smaller. This is shown in Figure 7.2.

Therefore, anti-kt R = 0.8 reclustered jet collection will be considered as the top

candidates instead of R = 1.2 masses in other signal region. Table 7.5 shows the

selection criteria for SRE.

TABLE 7.5. Selection criteria for SRE in addition to the common preselection
requirements as shown in Table 7.1.

Variable SRE∣∣∆φ (jet0,1,2,pmiss
T

)∣∣ > 0.4

Nb−jet ≥2

m0
jet,R=0.8 > 120 GeV

m1
jet,R=0.8 > 80 GeV

mb,min
T > 200 GeV

Emiss
T > 550 GeV

HT > 800 GeV

Emiss
T /
√
HT > 18

√
GeV
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FIGURE 7.2. The true ∆R between the W and the b-quark vs. the truth top pT

for (a) SRA and (b) SRE. The common preselection criteria are applied with the
exception of the b-jet requirement.

7.2. Background Estimation

7.2.1. Z+jets

The Z → νν+jets background becomes more relevant as the Emiss
T requirement

is tightened. A possible way to estimate the Z → νν background is by using a

Z → ``+jets control sample. The latter channel has the advantage of an easier

selection of pure samples in terms of non-Z background, but it is characterized by

a lower branching fraction than the background that it is trying to estimate due to

the axial-vector couplings of the charged leptons to the Z. This becomes particularly

problematic when estimating the background for events with large Z pT where the

number of expected events becomes very small. In the current analysis the number

of Z+jets events is reduced by the Emiss
T selection, the high jet multiplicity and the

requirement for 2 b−tagged jets.
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7.2.1.1. Control Region

A control region is designed for TT and TW in SRA and SRB and for T0 in SRA

and SRB, as well as for SRD and SRE. A CR for SRC was not developed since there

is negligible background from Z+jets. A summary of the CR selections can be found

in Table 7.6 and the lepton triggers used in the analysis are shown in Table 7.7.

TABLE 7.6. Selection criteria for the Z + jets control regions used to estimate the
Z + jets background contributions in the signal regions.

Selection CRZAB-TT-TW CRZAB-T0 CRZD CRZE

Trigger electron or muon

N` 2, opposite charge, same flavour

p`T > 28 GeV

m`` [86,96] GeV

Njet ≥ 4

p0
T, p1

T, p2
T, p3

T 80, 80, 40, 40 GeV

Emiss
T < 50 GeV

Emiss′
T > 100 GeV

Nb−jet ≥ 2

m0
jet,R=1.2 > 120 GeV -

m1
jet,R=1.2 > 60 GeV < 60 GeV -

mb,min′

T - > 200 GeV

mb,max′

T - > 200 GeV -

HT - > 500 GeV
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TABLE 7.7. Lepton triggers

Channel Trigger

Data 2015

Electron HLT_e24_lhmedium_L1EM20VH OR HLT_e60_lhmedium OR HLT_e120_lhloose

Muon HLT_mu20_iloose_L1MU15 OR HLT_mu50

Data 2016

Electron HLT_e26_lhtight_nod0_ivarloose OR HLT_e60_lhmedium_nod0

OR HLT_e140_lhloose_nod0

Muon HLT_mu26_ivarmedium OR HLT_mu50

7.2.1.2. Validation Region

Zero-lepton validation regions for Z+jets dedicated to the various SRs have been

designed, except for SRC as the contribution of Z+jets background to that particular

SR is negligible. The various selections are summarized in Table 7.8. To avoid overlap

with the signal region the ∆R (b, b) and/or the m0
jet,R=1.2/m0

jet,R=0.8 requirement is

reversed. These reversals also help in reducing tt̄ and signal contamination. The

signal contamination can be seen in Appendix B.

7.2.2. tt̄, W+jets, and single-top

The tt̄ (CRTX),W + jets (CRW), and single-top (CRST) backgrounds contribute

to the signal region selections because one lepton from the decay of a W boson is out

of acceptance, is mis-identified as a jet, or is an hadronically decaying τ -lepton. The

control regions to estimate the normalization to these backgrounds are thus defined

by exploiting a one-lepton (electron or muon) selection, making them orthogonal to

the SRs. For consistency with the signal regions, the same Emiss
T triggers are used

as in the SR (Table 7.1). In these regions the lepton is counted as a jet for the pT

108



TABLE 7.8. Selection criteria for the Z validation regions used to validate the Z
background estimates in the signal regions.

Selection VRZAB VRZD VRZE

Jet p0
T, p1

T > 80, > 80 GeV > 150, > 80 GeV > 80, > 80 GeV

Njet ≥ 4 ≥ 5 ≥ 4

Nb−jet ≥ 2

τ -veto yes no

mb,min
T > 200 GeV

m0
jet,R=1.2 < 120 GeV -

∆R (b, b) < 1.0 < 0.8 < 1.0

mb,max
T - > 200 GeV -

HT - > 500 GeV

Emiss
T /
√
HT - > 14

√
GeV

m0
jet,R=0.8 - < 120 GeV
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requirements and the jet reclustering but not for the QCD cleaning selections. The

top control region is further divided to match the various signal regions. A specially

designed top control region is used for SRC using similar ISR and recursive jigsaw

methods.

The three sets of CRs (with multiple CRTs) are mutually exclusive. The

requirements on the number of b-jets and onm0
jet,R=1.2 ensures that CRW is orthogonal

with CRT and CRST. The selection on ∆R(b0,1, `)min, defined as the minimum ∆R

between the two jets with the highest b-tag weight and the selected lepton, ensures

the orthogonality of CRT and CRST. In CRST the requirement on the ∆R of the two

leading-weight b-jets is necessary to reject a large part of the remaining tt̄ background.

The selections for CRW and CRST are shown in Table 7.13.

7.2.2.1. tt̄ Control Region

Table 7.9 show the definitions of the various top control regions. SRA and SRB

each have a set of three orthogonal control regions defined by the top candidate

categories. Additionally, control regions are designed for SRC, SRD and SRE. Figure

7.3 shows the distributions of some of the discriminating variables in the top control

regions.

The control region for SRC is designed using the same sensitive variables as the

SRC definition to mimic the signal regions as close as possible while maintaining a high

purity of the dominant background semi-leptonic tt̄. A cut of mT

(
`, Emiss

T

)
< 80 GeV
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is added to remove signal contamination and a ∆R(b0,1, `)min < 2.0 cut is added to

increase purity and ensure orthogonality to CRW. Requirements for CRTC are shown

in Table 7.10.
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TABLE 7.9. Selection criteria for the tt̄ control regions used to estimate the tt̄ background contributions in the signal
regions.

Selection CRTA-TT CRTA-TW CRTA-T0 CRTB-TT CRTB-TW CRTB-T0 CRTC CRTD CRTE

Trigger Emiss
T

N` 1

p`T > 20 GeV

Njet ≥ 4 (including electron or muon)

p0
T, p1

T, p2
T, p3

T 80, 80, 40, 40 GeV

Nb−jet ≥ 2∣∣∆φ (
jet0,1,pmiss

T

)∣∣ > 0.4∣∣∆φ (
jet0,1,2,pmiss

T

)∣∣ > 0.4 - > 0.4

mT(`, Emiss
T ) [30, 100] GeV < 100 GeV [30, 100] GeV

mb,min
T > 100 GeV - > 100 GeV

∆R (b, `)min < 1.5 < 2.0 < 1.5

m0
jet,R=1.2 > 120 GeV -

m1
jet,R=1.2 > 120 GeV [60, 120] GeV < 60 GeV > 120 GeV [60, 120] GeV < 60 GeV -

m0
jet,R=0.8 > 60 GeV - > 120 GeV

m1
jet,R=0.8 - > 80 GeV

Emiss
T > 250 GeV > 300 GeV > 350 GeV > 250 GeV

∆R (b, b) > 1.0 - > 1.2 - > 0.8 -

mb,max
T - > 200 GeV - > 100 GeV -

p1
T - > 150 GeV -

p3
T - > 80 GeV -

p0,b
T + p1,b

T - > 300 GeV -

NS
jet - ≥ 5 -

NS
b-tag - ≥ 1 -

pISR
T - > 400 GeV -

p4,S
T - > 40 GeV -

HT - > 500 GeV

112



E
v
e
n
ts

 /
 5

0
 G

e
V

1

10

210

Data

SM Total

tt

Single Top

+Vtt

W

Z

ATLAS Work in Progress
­1=13 TeV, 36.1 fbs

CRTA­TT

 [GeV]miss
TE

200 400 600

D
a
ta

 /
 S

M

0.0

0.5

1.0

1.5

2.0

E
v
e
n
ts

 /
 5

0
 G

e
V

1

10

210

3
10

Data

SM Total

tt

Single Top

+Vtt

W

Z

Diboson

ATLAS Work in Progress
­1=13 TeV, 36.1 fbs

CRTA­TW

 [GeV],minb

Tm

100 200 300 400

D
a
ta

 /
 S

M

0.0

0.5

1.0

1.5

2.0

E
v
e
n
ts

 /
 5

0
 G

e
V

1

10

210

Data

SM Total

tt

Single Top

+Vtt

W

Z

ATLAS Work in Progress
­1=13 TeV, 36.1 fbs

CRTA­T0

 [GeV]
2χ

T2m

200 300 400 500 600

D
a
ta

 /
 S

M

0.0

0.5

1.0

1.5

2.0

E
v
e
n
ts

 /
 5

0
 G

e
V

1

10

210

3
10 Data

SM Total

tt

Single Top

+Vtt

W

Z

ATLAS Work in Progress
­1=13 TeV, 36.5 fbs

CRTopBTT

 [GeV],maxb

Tm

0 500 1000

D
a
ta

 /
 S

M

0.0

0.5

1.0

1.5

2.0

E
v
e
n
ts

 /
 2

0
0
 G

e
V

1

10

210

Data

SM Total

tt

Single Top

+Vtt

W

Z

Diboson

ATLAS Work in Progress
­1=13 TeV, 36.1 fbs

CRTE

 [GeV]
T

H

500 1000 1500 2000 2500

D
a
ta

 /
 S

M

0.0

0.5

1.0

1.5

2.0

E
v
e
n
ts

 /
 2

0
 G

e
V

1

10

210

Data

SM Total

tt

Single Top

+Vtt

W

Z

Diboson

ATLAS Work in Progress
­1=13 TeV, 36.1 fbs

CRTD

 [GeV]4

T
p

0 50 100 150 200

D
a
ta

 /
 S

M

0.0

0.5

1.0

1.5

2.0

FIGURE 7.3. Postfit distributions for 36.1 fb−1 of data for various discriminating
variables in CRTA, CRTB, CRTD, and CRTE. The ratio between data and MC is
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the uncertainty due to MC statistics and detector systematic uncertainties.
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TABLE 7.10. One-lepton tt̄+ISR control region definitions. The same Emiss
T triggers

as mentions in Table 7.1 are used.

Variable 1L 1b tt̄+ISR CR

Number of leptons 1

Number of b-jets ≥ 1

mT

(
`, Emiss

T

)
< 80 GeV

∆R(b0,1, `)min < 2.0

NS
jet ≥ 5

NS
b-tag ≥ 1

p4,S
T > 40 GeV

pISR
T ≥ 400

7.2.2.2. tt̄ Validation Region

The selections for the tt̄ validation regions in the 0-lepton, two b-jets channel for

the tt̄ background are summarized in Tables 7.11 and 7.12. The same preselection

as discussed in Table 7.1 are used.

7.2.3. tt̄+ Z by tt̄+ γ

The tt̄+Z background, where the Z boson decays into neutrinos, is an irreducible

background and is increased with respect to the Run 1 analysis. Designing a CR to

estimate the tt̄+Z background by using the charged leptonic Z boson decays would

be favorable. However, such CR is difficult to design due to low statistics and the

small branching fraction to leptons. In particular a 2-lepton CR suffers from a large

contamination of tt̄ and Z + jets processes. For this reason, another data driven

approach is followed by building a one-lepton CR for tt̄γ which is a similar process.
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TABLE 7.11. Validation region definitions, in addition to the requirements presented
in Table 7.1 for VRTA and VRTB.

VRT TT TW T0

m0
jet,R=1.2 > 120 GeV

m1
jet,R=1.2 > 120 GeV 60− 120 GeV < 60 GeV

mb,min
T > 100, < 200 GeV > 140, < 200 GeV > 160, < 200 GeV

Number of b-jets ≥ 2

A

m0
jet,R=0.8 > 60 GeV

∆R (b, b) > 1 -

Emiss
T > 300 GeV > 400 GeV > 450 GeV

B
∆R (b, b) > 1.2

mb,max
T > 200 GeV

A zero-lepton region was considered as a validation region but it was found to have

a too low tt̄γ contribution, with γ+jets being the main contaminant.

The tt̄+ γ CR is designed to minimize the differences between the two processes

and keep the theoretical uncertainties from the extrapolation of the γ to the Z low.

It requires exactly one photon, exactly one signal lepton (electron or muon, and at

least four jets of which at least two are required to be b-tagged. Moreover, due to the

difference in mass between the Z and the γ, to mimic the Z → νν decay, the highest

pT photon is required to have pT > 150 GeV.

Unlike the CRTs, CRW, and CRST one-lepton control regions the lepton is not

treated as a jet and unlike the CRZs the leptons are not removed from the Emiss
T
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TABLE 7.12. Summary of the selection for the 0-lepton top validation region for
VRTC, VRTD and VRTE, in addition to the requirements presented in Table 7.1.

VRTC VRTD VRTE

mb,min
T - > 100, < 200 GeV

Number of jets ≥ 4 ≥ 5 ≥ 4

Number of b-jets ≥ 1 ≥ 2

NS
jet ≥ 4 -

NS
b−jet ≥ 1 -

p0,S
T,b ≥ 40 GeV -

p4,S
T > 40 GeV -
pISR

T ≥ 400 GeV -
mS > 100 GeV -
mV/mS < 0.6 -
∆φ(ISR,pmiss

T ) < 3.00 -

∆R (b, b) - > 0.8 -

mb,max
T - > 300 GeV -

jet p1
T - > 150 GeV -

jet p3
T - > 80 GeV -

b-jet p0
T+p1

T - > 300 GeV -
Jet multiplicity ≥ 4 ≥ 5 ≥ 4
τ -veto - yes -

m0
jet,R=0.8 - > 120 GeV

m1
jet,R=0.8 - > 80 GeV
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calculation. Instead, the photon is used to model the Emiss
T since the Emiss

T from

tt̄+ Z in the SR originates mostly from the neutrino decay of the Z.

TABLE 7.13. Selection criteria for the common W + jets, single-top, and tt̄ + γ
control-region definitions.

Selection CRW CRST CRTTGamma

Trigger Emiss
T electron or muon

N` 1

p`T > 20 GeV > 28 GeV

Nγ - 1

pγT - > 150 GeV

Njet ≥ 4 (including electron or muon) ≥ 4

p0
T, p1

T,p2
T,p3

T 80, 80, 40, 40 GeV

Nb−jet 1 ≥ 2∣∣∆φ (jet0,1,pmiss
T

)∣∣ > 0.4 -

mT(`, Emiss
T ) [30, 100] GeV -

∆R (b, `)min > 2.0 -

Emiss
T > 250 GeV -

∆R (b, b) - > 1.5 -

m0
jet,R=1.2 < 60 GeV > 120 GeV -

mb,min
T - > 200 GeV -

7.2.4. QCD multi-jet and all-hadronic tt̄

The background from the production of multijet events and all-hadronic tt̄

events is estimated with the jet smearing method. The main assumption of the jet

smearing method is that the QCD background is dominated by the mis-measurement

of multiple jets. The term mis-measurement refers to cases in which the hadronization
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of partons is not fully reconstructed by ATLAS and cases in which the hadronization

(particularly for heavy-flavor quarks) produces real Emiss
T in the form of neutrinos.

The attributed sources of mis-measurement which are taken into account by the

method are the following:

– Hadronic calorimeters are not perfect; there is some limit to granularity of

calorimeters therefore they are not able to perfectly measure the energy of all

particles.

– Since jets are clusters of showering particles it is possible that not all of these

particles can be contained within the jet radius. Some of the showering particles

may be lost due to interacting with non-detector material. Additionally

background particles from various different sources may enter into a jet cone,

although this effect is reduced by cosmic background vetos and the overlap

removal of other jets, photons, electrons and muons.

– Not all jets are fully contained within the calorimeter systems, if a jet has large

amounts of energy it can punch through to the muon system and potentially

large amounts of the energy can be lost. This is one such source of the non-

Gaussian part of the jet response; this effect always gives lost energy rather

than an overestimation of the energy.

– Jets that are close to areas of large amounts of dead material are vetoed,

however there are still regions with small amounts of dead material in the

calorimeters which can cause particles to deposit their energy. The sources

of dead material include damaged or inactive parts of the detector, services for
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running electronics to the detector and various non-instrumented region from

the support structure of ATLAS.

– In decays of heavy flavor quarks, particularly those of b-quarks, real missing

energy can be present from neutrinos. Typically: ∼76% of b-quark decays will

be hadronic (including hadronic tau decays); leaving 12% of decays with muons

and muon neutrinos; and 12% of decays with electrons and electron neutrinos.

The decays involving neutrinos will carry a fraction of the jet energy with them,

this gives a larger non-Gaussian tail in the case of b-tagged jets.

The recommended procedure is followed and both control regions and validation

regions were designed.

7.3. Systematic Uncertainties

Systematic uncertainties are associated with the predictions of all background

components and the expected signal yields. The systematic uncertainties can be

categorized into two sources: experimental and theoretical uncertainties. These

systematic uncertainties can impact the expected event yields in the control and

signal region as well as the transfer factors used when extrapolating the background

expectation from the control to the signal region.

Jet Energy Scale (JES) and Jet Energy Resolution (JER): The two main

uncertainties for jets are uncertainties affecting the JES calibration and the

JER. The final jet energy calibration generally referred as JES is a correction

relating the calorimeter’s response to the true jet energy. The effect of the JES
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FIGURE 7.4. Distributions of (a) mχ2′

T2 in CRZAB-T0, (b) Emiss′
T in CRZE, (c) RISR

in CRTC, (d) mb,max
T in CRW, (e) the transverse momentum of the second-leading-

pT jet in CRST, and (f) the photon pT in CRTTGamma. The stacked histograms
show the SM prediction, normalized using scale factors derived from the simultaneous
fit to all backgrounds. The “Data/SM” plots show the ratio of data events to the
total SM prediction. The hatched uncertainty band around the SM prediction and
in the ratio plot illustrates the combination of MC statistical and detector-related
systematic uncertainties. The rightmost bin includes overflow events.
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and JER uncertainties on the background estimates in the signal regions can

reach 17%. In signal the JER uncertainty ranges from 3% to 6%, and the JES

uncertainty ranges from 2% to 5.7%.

b-tagging: The b-tagging uncertainty has large contribution to both signal and

backgrounds because of the two b-tagged jets requirement. The uncertainty in

the b-tagging efficiency is not more than 9%.

Emiss
T Soft-term Resolution and Scale: The uncertainty in the soft term of the Emiss

T

is most significant in SRC5 at 15%.

Lepton efficiencies: Lepton reconstruction and identification efficiencies have

contributions to the backgrounds. For electrons, the uncertainties originate

from the e/gamma resolution and scale and from the electron reconstruction

efficiency. Similarly, for muons the uncertainties originate from the muon

resolution and reconstruction efficiency, the isolation and the momentum scale.

The lepton trigger scale factors are also taken into consideration. These have a

small impact.

Pileup: The uncertainty due to pileup re-weighting is considered as two-sided

variation in the event weights. This contributes up to 14%.

Luminosity: The uncertainty in the combined 2015+2016 integrated luminosity is

3.2%.

Theory uncertainties affecting the background normalization and kinematic

distribution shapes largely impact the background prediction in the signal regions, as

they directly affect the background normalization and acceptance times efficiency. If

a background normalization is determined by making use of dedicated control regions,
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then only systematics affecting the analysis acceptance are relevant. Statistical

uncertainties in the evaluation of systematics are neglected in general; where

necessary, selection cuts are loosened to make the systematic comparison statistically

meaningful.

The theoretical uncertainty in each signal region is evaluated by considering

variations with respect to the default settings and choices for the event generation.

For each of the variations considered, the systematic uncertainty is estimated as an

uncertainty on the so-called transfer factor, that is, the ratio of the predicted yields

between the signal region and the tt̄ control region(s).

Theoretical uncertainties in the modeling of the SM background are estimated.

For the W/Z + jets background processes, the modeling uncertainties are estimated

using SHERPA samples by varying the renormalization and factorization scales, and

the merging and resummation scales (each varied up and down by a factor of two).

PDF uncertainties were found to have a negligible impact. The resulting impact on

the total background yields from the Z + jets theoretical uncertainties is up to 3%

while the uncertainties from the W + jets sample variations are less than 3%.

Theoretical uncertainties in the modeling of the SM background are estimated.

For the W/Z + jets background processes, the modeling uncertainties are estimated

using SHERPA samples by varying the renormalization and factorization scales, and

the merging and resummation scales (each varied up and down by a factor of two).

PDF uncertainties were found to have a negligible impact. The resulting impact

on the total background yields from the Z + jets theoretical uncertainties is up to
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3% while the uncertainties from the W + jets sample variations are less than 3%.

For the tt̄ background, uncertainties are estimated from the comparison of different

matrix-element calculations, the choice of parton-showering model and the emission

of additional partons in the initial and final states. The largest impact of the tt̄ theory

systematic uncertainties on the total background yields arises for SRC and it varies

from 11% to 71% by tightening the RISR requirement. For the tt̄+W/Z background,

the theoretical uncertainty is estimated through variations, in both tt̄+W/Z and

tt̄γ MC simulation, including the choice of renormalization and factorization scales,

the choice of PDF, as well as a comparison between generators, resulting in a

maximum uncertainty of 2% in SRA-TT. The single-top background is dominated

by the Wt subprocess. Uncertainties are estimated for the choice of parton-showering

model (PYTHIA vs HERWIG++) and for the emission of additional partons in the

initial- and final-state radiation. A 30% uncertainty is assigned to the single-top

background estimate to account for the effect of interference between single-top-quark

and tt̄ production. This uncertainty is estimated by comparing yields in the signal

and control regions for a sample that includes resonant and non-resonant WW+bb

production with the sum of the yields of resonant tt̄ and single-top+b production.

The final single-top uncertainty relative to the total background estimate is up to

12%.

7.4. Fitting Procedure

The SM backgrounds in each SR are estimated with a profile likelihood fit using

the observed number of events in the CRs. The correlations in the systematic

uncertainties that are common between SRs and CRs are treated as nuisance

parameters in the fit and are modeled by Gaussian probability density functions. A
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MC sample Fitted scale factor

tt̄ (SRA TT) 1.173± 0.146
tt̄ (SRA TW) 1.138± 0.112
tt̄ (SRA T0) 0.898± 0.121

tt̄ (SRB TT) 1.202± 0.156
tt̄ (SRB TW) 0.969± 0.0681
tt̄ (SRB T0) 0.924± 0.0525

tt̄ (SRC) 0.707± 0.0498
tt̄ (SRD) 0.945± 0.103
tt̄ (SRE) 1.012± 0.180

W+jets 1.267± 0.146

Z+jets (SRA,B TT and TW) 1.170± 0.238
Z+jets (SRA,B T0) 1.131± 0.144
Z+jets (SRD) 1.035± 0.146
Z+jets (SRE) 1.185± 0.152

Single top 1.166± 0.390
tt̄γ 1.290± 0.204

TABLE 7.14. Fitted scale factors for the MC background samples based on 36.07
fb−1of data.

normalization factor is then derived from the fit. For backgrounds without a defined

CR, contributions are estimated using the cross section.

The fitted scale factors for the backgrounds are summarized in Table 7.14. Tables

7.15, 7.16, and 7.17 show the background and signal yields in simulation before and

after the scale factors are applied for SRA, B, C, D, and E.
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TABLE 7.15. Observed and expected yields, before and after the fit, for SRA
and SRB. The uncertainties include MC statistical uncertainties, detector-related
systematic uncertainties, and theoretical uncertainties in the extrapolation from CR
to SR.

SRA-TT SRA-TW SRA-T0 SRB-TT SRB-TW SRB-T0

Observed 11 9 18 38 53 206

Fitted background events

Total SM 8.6 ± 2.1 9.3 ± 2.2 18.7 ± 2.7 39.3 ± 7.6 52.4 ± 7.4 179 ± 26

tt̄ 0.71 + 0.91
− 0.71 0.51 + 0.55

− 0.51 1.31± 0.64 7.3 ± 4.3 12.4 ± 5.9 43 ± 22

W + jets 0.82± 0.15 0.89± 0.56 2.00± 0.83 7.8 ± 2.8 4.8 ± 1.2 25.8 ± 8.8

Z + jets 2.5 ± 1.3 4.9 ± 1.9 9.8 ± 1.6 9.0 ± 2.8 16.8 ± 4.1 60.7 ± 9.6

tt̄+W/Z 3.16± 0.66 1.84± 0.39 2.60± 0.53 9.3 ± 1.7 10.8 ± 1.6 20.5 ± 3.2

Single top 1.20± 0.81 0.70± 0.42 2.9 ± 1.5 4.2 ± 2.2 5.9 ± 2.8 26 ± 13

Dibosons −− 0.35± 0.26 −− 0.13± 0.07 0.60± 0.43 1.04± 0.73

Multijets 0.21± 0.10 0.14± 0.09 0.12± 0.07 1.54± 0.64 1.01± 0.88 1.8 ± 1.5

Expected events before fit

Total SM 7.1 7.9 16.3 32.4 46.1 162

tt̄ 0.60 0.45 1.45 6.1 12.8 47

W + jets 0.65 0.70 1.58 6.1 3.83 20.4

Z + jets 2.15 4.2 8.63 7.7 14.4 53.6

tt̄+W/Z 2.46 1.43 2.02 7.3 8.4 15.9

Single top 1.03 0.60 2.5 3.6 5.1 22.4

Dibosons −− 0.35 −− 0.13 0.60 1.03

Multijets 0.21 0.14 0.12 1.54 1.01 1.8
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TABLE 7.16. Observed and expected yields, before and after the fit, for SRC.
The uncertainties include MC statistical uncertainties, detector-related systematic
uncertainties, and theoretical uncertainties in the extrapolation from CR to SR.

SRC1 SRC2 SRC3 SRC4 SRC5

Observed 20 22 22 1 0

Fitted background events

Total SM 20.6 ± 6.5 27.6 ± 4.9 18.9 ± 3.4 7.7 ± 1.2 0.91± 0.73

tt̄ 12.9 ± 5.9 22.1 ± 4.3 14.6 ± 3.2 4.91± 0.97 0.63 + 0.70
− 0.63

W + jets 0.80± 0.37 1.93± 0.49 1.91± 0.62 1.93± 0.46 0.21± 0.12

Z + jets −− −− −− −− −−
tt̄+W/Z 0.29± 0.16 0.59± 0.38 0.56± 0.31 0.08± 0.08 0.06± 0.02

Single top 1.7 ± 1.3 1.2 + 1.4
− 1.2 1.22± 0.69 0.72± 0.37 −−

Dibosons 0.39± 0.33 0.21 + 0.23
− 0.21 0.28± 0.18 −− −−

Multijets 4.6 ± 2.4 1.58± 0.77 0.32± 0.17 0.04± 0.02 −−
Expected events before fit

Total SM 25.4 36.0 24.2 9.2 1.1

tt̄ 18.2 31.2 20.6 7.0 0.89

W + jets 0.64 1.53 1.51 1.53 0.17

Z + jets −− −− −− −− −−
tt̄+W/Z 0.22 0.46 0.44 0.07 0.05

Single top 1.44 1.0 1.04 0.62 −−
Dibosons 0.39 0.21 0.28 −− −−
Multijets 4.6 1.58 0.32 0.04 −−
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TABLE 7.17. Observed and expected yields, before and after the fit, for SRD
and SRE. The uncertainties include MC statistical uncertainties, detector-related
systematic uncetainties, and theoretical uncertainties in the extrapolation from CR
to SR.

SRD-low SRD-high SRE

Observed 27 11 3

Fitted background events

Total SM 25.1 ± 6.2 8.5 ± 1.5 3.64± 0.79

tt̄ 3.3 ± 3.3 0.98± 0.88 0.21 + 0.39
− 0.21

W + jets 6.1 ± 2.9 1.06± 0.34 0.52± 0.27

Z + jets 6.9 ± 1.5 3.21± 0.62 1.36± 0.25

tt̄+W/Z 3.94± 0.85 1.37± 0.32 0.89± 0.19

Single top 3.8 ± 2.1 1.51± 0.74 0.66± 0.49

Dibosons −− −− −−
Multijets 1.12± 0.37 0.40± 0.15 −−
Expected events before fit

Total SM 22.4 7.7 3.02

tt̄ 3.4 1.04 0.21

W + jets 4.8 0.84 0.42

Z + jets 6.7 3.10 1.15

tt̄+W/Z 3.06 1.07 0.69

Single top 3.3 1.30 0.56

Dibosons −− −− −−
Multijets 1.12 0.40 −−
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For discovery a p-value is calculated in each SR and subregion independently. For

the exclusion fits, the orthogonal subregions of SRA, SRB, and SRC are statistically

combined. Then SRA, B, C, D, and E are combined by taking the result with the

best expected confidence level. In the case of overlapping signal regions the smallest

95% confidence level is chosen for each model.

7.5. Results

The observed yields compared to the background estimates (after applying the

scale factors) for all SRs are shown in Tables 7.15, 7.16, and 7.17. No significant

excess above the SM expectation is observed in any of the signal regions. As can be

seen in Figure 7.5 the yields in the VRs and SRs match the background estimation

well. Figures 7.6 shows the postfit, unblinded distribution of some of the most

discriminating variables of SRA, SRB, SRC, SRD, and SRE at 36.07 fb−1. For SRA

and SRB the distributions for individual categories are shown. Additionally, the error

bands include both MC statistical and all detector systematical uncertainties.
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When no statistical excess is observed the cause may be the absence of signal,

but can also be due to a downward fluctuation in the background. In the case of

a downward fluctuation the limit may be much better than the actual experimental

sensitivity. To account for this the CLS method[45, 46] along with the asymptotic

formulae[43] can be employed, where the probability is normalized to background-

only probability. In this case the limits are more conservative.

There are two types of limits that are evaluated:

– Expected limits: obtained by setting the nominal event yield in each SR to

the background expectation The ±1σ contours are evaluated using the ±1σ

uncertainties of the background estimates.

– Observed limits: obtained by using the actual event yield and the ±1σ contours

are evaluated by varying the signal cross section by the ±1σ of the theory

uncertainties. If the actual event yield is larger than the expected yield then

the limit is weaker.

The results of the discovery fit for 36.07 fb−1 are summarized by the model-

independent upper limits, as evaluated with asymptotics and shown in Table 7.18.

In the asymptotic case, the calculator does not return a p0 value when the number

of observed events is less than expected. The table shows the 95% confidence level

upper limits on the visible cross section (〈εσ〉, the detector acceptance multiplied by

the efficiency), the number of signal events, the confidence level for the background-

only hypothesis, and the discover p-values. The smaller the p-value the more likely

for the background-only hypothesis to be incorrect. When the number of observed

events are smaller than predicted a p-value of 0.50 is assigned. The smallest p-values
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are 0.19, 0.24, 0.27, and 0.29 for SRB-T0, SRD-high, SRA-TT, and SRC3. These

values are too large to reject the background-only theory2.

TABLE 7.18. Left to right: 95% CL upper limits on the average visible cross section
(〈σAε〉95

obs) where the average comes from possibly multiple production channels and
on the number of signal events (S95

obs ). The third column (S95
exp) shows the 95% CL

upper limit on the number of signal events, given the expected number (and ±1σ
excursions of the expected number) of background events. The two last columns
indicate the CLB value, i.e. the confidence level observed for the background-only
hypothesis, and the discovery p-value (p) and the corresponding significance (z).

Signal channel 〈σAε〉95
obs [fb] S95

obs S95
exp CLB p (z)

SRA-TT 0.30 11.0 8.7+3.0
−1.4 0.78 0.23 (0.74)

SRA-TW 0.27 9.6 9.6+2.8
−2.1 0.50 0.50 (0.00)

SRA-T0 0.31 11.2 11.5+3.8
−2.0 0.46 0.50 (0.00)

SRB-TT 0.54 19.6 20.0+6.5
−4.9 0.46 0.50 (0.00)

SRB-TW 0.60 21.7 21.0+7.3
−4.3 0.54 0.37 (0.33)

SRB-T0 2.19 80 58+23
−17 0.83 0.13 (1.15)

SRC1 0.42 15.1 15.8+4.8
−3.5 0.48 0.50 (0.00)

SRC2 0.31 11.2 13.9+5.9
−3.6 0.24 0.50 (0.00)

SRC3 0.42 15.3 12.3+4.7
−3.4 0.73 0.27 (0.62)

SRC4 0.10 3.5 6.7+2.8
−1.8 0.00 0.50 (0.00)

SRC5 0.09 3.2 3.0+1.1
−0.1 0.23 0.23 (0.74)

SRD-low 0.50 17.9 16.4+6.3
−4.0 0.62 0.36 (0.35)

SRD-high 0.30 10.9 8.0+3.4
−1.3 0.79 0.21 (0.79)

SRE 0.17 6.1 6.4+1.4
−2.4 0.42 0.50 (0.00)

2 For excluding a signal hypothesis a p-value greater than 0.05, which corresponds to a 95%
confidence level, is used. The standard of a 5σ excess for a discovery has a p-value of 2.87× 10−7.
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7.6. Interpretations

The results have been interpreted in terms of a simplified model and for several

pMSSM interpretations.

7.6.1. Simplified Model

The exclusion curves for the 100% t̃1→ tχ̃
0
1 br is shown in Figure 7.7. Included

in blue are the results from the 8 TeV analysis. The observed and expected limits

are shown in red and blue respectively. Assuming a branching fraction of 100% to a

top quark and neutralino, stop masses in the range 450-1000 GeV are excluded for

neutralino masses below 160 GeV. In the case where the stop mass is close to the

top mass plus the neutralino mass, masses between 235-590 GeV are excluded. For

a Natural-SUSY inspired mixed grid scenario, where the t̃1 decays to a tχ̃
0
1 or bχ̃

±
1

with different branching ratios is shown in Figure 7.8. Finally the SRE results are

interpreted for indirect top-squark production through gluino decays in terms of the

t̃1 vs. g̃ mass plane with ∆m(t̃1, χ̃
0
1) = 5 GeV. Gluino masses up to mg̃ = 1800 GeV

with mt̃1 < 800 GeV are excluded as shown in Fig. 7.9.
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7.6.2. pMSSM

The results have also been interpreted in the context of pMSSM, which is

described in 2.7. There are three specific models within pMSSM for which the results

have been interpreted:

– Non-asymptotic higgsino: A simplified model motivated by naturalness with

a higgsino LSP, mχ̃±1
= mχ̃0

1
+ 5 GeV, and mχ̃0

2
= mχ̃0

1
+ 10 GeV, assumes three

sets of branching ratios for the considered decays of t̃1 → tχ̃
0
2, t̃1 → tχ̃

0
1, t̃1 →

bχ̃
±
1 [73]. A set of branching ratios with BR(t̃1 → tχ̃

0
2, t̃1 → tχ̃

0
1, t̃1 → bχ̃

±
1 )

= 33%, 33%, 33% is considered which is equivalent to a pMSSM model with

a mostly left-handed top squark and tanβ = 60 (ratio of vacuum expectation

values of the two Higgs doublets). Additionally, BR(t̃1 → tχ̃
0
2, t̃1 → tχ̃

0
1, t̃1 →

bχ̃
±
1 ) = 45%, 10%, 45% and BR(t̃1 → tχ̃

0
2, t̃1 → tχ̃

0
1, t̃1 → bχ̃

±
1 ) = 25%, 50%,

25% are assumed.

– Wino NLSP pMSSM: This model is motivated by models with gauge unification

at the GUT scale. The LSP is bino-like and has mass M1 and where the NLSP

is wino-like with mass M2, while M2 = 2M1 and mt̃1 > M1 [73]. Limits are set

for both positive and negative µ (the higgsino mass parameter) as a function

of the t̃1 and χ̃0
1 masses which can be translated to different M1 and mq̃L3, and

are shown in Fig. 7.11. Only bottom and top-squark production are considered

in this interpretation. Allowed decays in the top-squark production scenario

are t̃1 → tχ̃
0
2 → h/Zχ̃

0
1, at a maximum branching ratio of 33%, and t̃1 → bχ̃

±
1 .

Whether the χ̃
0
2 dominantly decays to a h or Z is determined by the sign of µ.

Along the diagonal region, the t̃1 → tχ̃
0
1 decay with 100% BR is also considered.

The equivalent decays in bottom-squark production are b̃→ tχ̃
±
1 and b̃→ bχ̃

0
2.
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– Well-tempered neutralino pMSSM: A model that provides a viable dark matter

candidate in which three light neutralinos and a light chargino, which are

composed as a mixture of bino and higgsino states, are considered with masses

within 50 GeV of the lightest state [74, 75]. The model is designed to satisfy the

SM Higgs-boson mass and the dark matter relic density (0.10 < Ωh2 < 0.12,

where Ω is density parameter and h is the Planck constant [76]).
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FIGURE 7.10. Observed (solid line) and expected (dashed line) exclusion contours
at 95% CL as a function of mt̃1 and mχ̃0

1
for the pMSSM-inspired non-asymptotic

higgsino simplified model for a small tanβ with BR(t̃1 → tχ̃
0
2, t̃1 → tχ̃

0
1, t̃1 → bχ̃

±
1 )

= 45%, 10%, 45% (blue), a large tanβ with BR(t̃1 → tχ̃
0
2, t̃1 → tχ̃

0
1, t̃1 → bχ̃

±
1 )

= 33%, 33%, 33% (red), and a small right-handed top-squark mass parameter with

BR(t̃1 → tχ̃
0
2, t̃1 → tχ̃

0
1, t̃1 → bχ̃

±
1 ) = 25%, 50%, 25% (green) assumption. Uncertainty

bands correspond to the ±1σ variation on the expected limit.
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7.7. Outlook

The amount of data that the LHC has produced in Run 2 has exceeded

expectations. However, as can be seen in Section 7.13, the rate at which increasing

luminosity increases the discovery potential slows with more data. This is due to

the increase in background, and as the mass of the stop increases the cross section

decreases. There is a need for much more data and the High-Luminosity LHC, as

discussed in Section 3.6, will be invaluable for searches in the future and improvements

to the trigger system, such as triggering on large-radius jets as the gFEX is designed

to do, will also improve chances of discovery.

The CMS experiment also has conducted a search for the all-hadronic decay

of the stop, though with some different approaches. For instance the method of

139



 [GeV]
1t

~m
500 600 700 800 900 1000

 [G
eV

]
0 1χ∼

m

100

200

300

400

500

600

700
) = 20-50 GeV

0

1
χ∼, 

0

2
χ∼m(∆  production,1b

~
1b

~
 + 1t

~
1t

~
Bino/Higgsino Mix Model:  

ATLAS
-1=13 TeV, 36.1 fbs

Limits at 95% CL
Observed limit

)expσ1±Expected limit (

Lt
~
 ≈1t

~
Rt

~
 ≈1t

~

SRA+SRB+SRC+SRD

t~ → 0

1,2,3
χ∼, t ±

1
χ∼b 

b
~ → 0

1,2,3
χ∼, b ±

1
χ∼t 

0

1,2
χ∼ W* → ±

1
χ∼

0

1,2
χ∼, Z*/h* ±

1
χ∼ W* → 0

3
χ∼

0

1
χ∼ Z*/h* → 0

2
χ∼

FIGURE 7.12. Observed (solid line) and expected (dashed line) exclusion contours

at 95% CL as a function of t̃1 and χ̃0
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identifying top quarks; instead of using mass categories the approach is to identify

based on pT. For high pT top, jets are reclustered with the anti-kt algorithm with

a distance parameter of R=0.8. Substructure is also required and the tops, and

kinematic variables are used for two separate BDTs, one for top quarks and one

for W bosons, which discriminate between signal and background. Intermediate pT

candidates use the two highest b−tagged jets and then find a W boson candidate to

form resolved top candidates. Various kinematic varables from these top-tagged jets

are then input to a BDT to discriminate signal from background. Stop masses up to

1040 GeV and neutralino masses up to 500 GeV are excluded with this search. The

multiple uses of BDTs improved the exclusion, but adds complications to the analysis.

There is also a need to find ways to remove background and improve the analysis,

and there is ongoing R&D for the analysis. For example, at the time of this writing
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FIGURE 7.13. Signal significant as a function of integrated luminosity for simplified
model with (mt̃1 ,mχ̃0

1
) = (1000, 1) GeV and 100% t̃1→ tχ̃

0
1 br for SRA subregions.

The color lines represent different levels of background estimate uncertainty.

work to improve b−jet efficiency as well as calibrating smaller-radius jets, which

can help resolve structure in larger radius jets, is being carried out. In addition,

it’s worthwhile to determine if some new machine learning algorithms can help in

the search. For example, jets in the calorimeter can be thought of as an image,

so Convolutional Neural Networks (CNNS), which are designed to, for example,
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discriminate between specific images and similar ones, which can be useful to optimize

signal regions. In this analysis, the cuts used for SRA and SRB were compared to a

BDT, and it was found that the BDT used the top masses to improve performance.

After the top mass subcategories were employed the cuts matched the performance of

the BDT. More advanced algorithms can be used, but can be much more difficult or

impossible to decipher what the algorithm is doing. This means that there is a risk of

losing the physical interpretation of what the algorithms are doing, and reinterpreting

the analysis is more difficult. However, it can at the least provide a metric to compare

analysis cuts to what is possible.
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CHAPTER VIII

CONCLUSIONS

Results from a search for stop production based on integrated luminosity of

36.1 fb−1 data of
√
s = 13 TeV pp collisions recorded by the ATLAS experiment at

the LHC in 2015 and 2016 are presented. Top squarks are searched for in final states

with high-pT jets and large missing transverse momentum. In this dissertation, the

top squark is assumed to decay via t̃1 → t(∗)χ̃
0
1 with large or small mass differences

between the top squark and the neutralino ∆m(t̃1, χ̃
0
1) and via t̃1 → bχ̃

±
1 , where

mχ̃±1
= mχ̃0

1
+ 1 GeV. Gluino-mediated t̃1 production is studied, in which gluinos

decay via g̃ → tt̃1, with a small ∆m(t̃1, χ̃
0
1).

No significant excess above the expected SM background prediction is observed.

Exclusion limits at 95% confidence level on the combination of top-squark and LSP

mass are derived resulting in the exclusion of top-squark masses in the range 450-950

GeV for χ̃
0
1 masses below 160 GeV. For the case where mt̃1 ∼ mt + mχ̃0

1
, top-squark

masses between 235-590 GeV are excluded. In addition, model-independent limits

and p-values for each signal region are reported. Limits that take into account

an additional decay of t̃1 → bχ̃
±
1 are also set with an exclusion of top-squark

masses between 450 and 850 GeV for mχ̃0
1
< 240 GeV and BR(t̃1 → tχ̃

0
1)=50% for

mχ̃±1
= mχ̃0

1
+ 1 GeV. Limits are also derived in several pMSSM models, where one

model assumes a wino-like NLSP, one assumes a higgsino-like LSP, and the other

model is constrained by the dark-matter relic density. Finally, exclusion contours are

reported for gluino production where mt̃1 = mχ̃0
1

+ 5 GeV resulting in gluino masses
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being constraint to be above 1800 GeV for t̃1 masses below 800 GeV.

By the end of Run 2 the LHC will have delivered ∼150 fb−1of data. This is

nearly five times the amount of data used in this analysis, which will increase the

sensitivity to higher mass stops. There is also ongoing R&D to improve the analysis.

Although supersymmetry has not yet been detected, there is still a lot of phase space

that will be opened with more data. Discovering supersymmetry would start a new

era of particle physics, and if it is not discovered, explanations for the failings of the

Standard Model will continue to be investigated.
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APPENDIX A

STANDARD MC AND DATA CHECKS

The following sections describes basic checks on the MC and data.

A.0.1. Dependence of variables on pileup

The purpose of this is to check the analysis dependence on pileup. Ideally there

is no dependence. The preselection is the same as in Section 7.1.

These plots demonstrate that the variables used in the analysis do not have a

dependence on pileup.
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A.0.2. Lumi-normalized yields
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FIGURE A.2. Lumi-normalized distribution of run numbers in 2015 and 2016 in tt̄
control regions.
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FIGURE A.4. Lumi-normalized distribution of run numbers in 2015 and 2016 in Z
and tt̄+ γ control regions.
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FIGURE A.5. Lumi-normalized distribution of run numbers in 2015 and 2016 in
validation regions.
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Run Number, VRTopC      
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FIGURE A.6. Lumi-normalized distribution of run numbers in 2015 and 2016 in
validation regions.
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A.0.3. nvtx distribution before and after pileup reweighting

The purpose of this check is to check the pileup reweighting. Ideally the Monte

Carlo will match the data after reweighting. The preselection is the same as in Section

7.1.
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FIGURE A.7. Distribution of nvtx before reweighting (blue) and after reweighting
(red) compared to data (black).
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APPENDIX B

SIGNAL CONTAMINATION

The following section provides the signal contamination for control and validation

regions.
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FIGURE B.1. Signal contamination for stop production as a function of stop and
neutralino masses for CRTop.
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FIGURE B.2. Signal contamination for stop production as a function of stop and
neutralino masses for CRZ, CRST, and CRW.
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FIGURE B.3. Signal contamination for SRD for CRTop.
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FIGURE B.4. Signal contamination for SRD for CRZ, CRST, and CRW.
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FIGURE B.5. Signal contamination for SRE for CRTop.
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FIGURE B.6. Signal contamination for SRE for CRZ, CRST, and CRW.
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FIGURE B.7. Signal contamination for stop production as a function of stop and
neutralino masses for VRTop.
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FIGURE B.8. Signal contamination for stop production as a function of stop and
neutralino masses for VRZ, and VRW.

157



P
e

rc
e

n
t

0

10

20

30

40

5 1 6 2 2 2 4 1 1

4 2 2 2 1 1 2

22 12 8 5 4 2 3 2

1

Stop Mass

400 600 800

C
h
a
rg

in
o
 M

a
s
s

0

100

200

300

400
 SimulationATLAS

=13TeVs

VRTopATT P
e

rc
e

n
t

0

10

20

30

40

2 2 1 3 1 1 1 1

3 1 1 1

29 6 4 3 3 1 1 1

Stop Mass

400 600 800

C
h
a
rg

in
o
 M

a
s
s

0

100

200

300

400
 SimulationATLAS

=13TeVs

VRTopATW P
e

rc
e

n
t

0

10

20

30

40

1 1 1 1 1 1 1

1 1 1

18 4 1 1 1 1 1 1

Stop Mass

400 600 800

C
h
a
rg

in
o
 M

a
s
s

0

100

200

300

400
 SimulationATLAS

=13TeVs

VRTopAT0

P
e

rc
e

n
t

0

10

20

30

40

12 5 8 4 2 3 3 1 1

6 4 4 3 2 1 1

30 12 9 7 4 2 3 2

1

Stop Mass

400 600 800

C
h
a
rg

in
o
 M

a
s
s

0

100

200

300

400
 SimulationATLAS

=13TeVs

VRTopBTT P
e

rc
e

n
t

0

10

20

30

40

7 5 4 2 1 1 1 1

3 2 2 2 1 1

31 12 7 6 4 2 1 1

2

Stop Mass

400 600 800

C
h
a
rg

in
o
 M

a
s
s

0

100

200

300

400
 SimulationATLAS

=13TeVs

VRTopBTW P
e

rc
e

n
t

0

10

20

30

40

9 2 4 2 2 1 1

1 2 1 1

29 7 4 3 2 1 1

Stop Mass

400 600 800

C
h
a
rg

in
o
 M

a
s
s

0

100

200

300

400
 SimulationATLAS

=13TeVs

VRTopBT0

P
e

rc
e

n
t

0

10

20

30

40

6 7 4 3 3 2 1 1 1

5 4 4 2 2 2 1

13 9 6 5 4 3 2 2

5

Stop Mass

400 600 800

C
h
a
rg

in
o
 M

a
s
s

0

100

200

300

400
 SimulationATLAS

=13TeVs

VRTopC P
e

rc
e

n
t

0

10

20

30

40

11 7 8 6 5 3 3 2 2

5 5 4 3 3 2 1

12 9 8 6 5 3 3 2

Stop Mass

400 600 800

C
h
a
rg

in
o
 M

a
s
s

0

100

200

300

400
 SimulationATLAS

=13TeVs

VRTopD P
e

rc
e

n
t

0

10

20

30

40

8 1 3 1 1 1 1

3 3 2 1 1 1

18 8 5 3 3 1 1 1

3

Stop Mass

400 600 800

C
h
a
rg

in
o
 M

a
s
s

0

100

200

300

400
 SimulationATLAS

=13TeVs

VRTopE

FIGURE B.9. Signal contamination for stop production as a function of stop and
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FIGURE B.10. Signal contamination for stop production as a function of stop and
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FIGURE B.11. Signal contamination for stop production as a function of stop and
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FIGURE B.12. Signal contamination for stop production as a function of stop and
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