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ABSTRACT 

Observations made with the Hubble Space Telescope in September 2013 revealed that 
the asteroid known as P/2013 P5 appeared to have six comet-like tails. Jewitt et al. 
(2013) concluded that this extraordinary structure and activity could not be explained 
by traditional near-surface ice sublimation or collision events ejecting particles from the 
asteroid's surface. Instead, the most likely explanation is that this unusual object has 
been spun-up by solar radiation forces to a critical limit which has resulted in the 
rotational disruption of the asteroid causing the unique six-tail structure. This 
interpretation predicts that the nucleus of this comet-like asteroid should be in rapid 
rotation. In November 2013, broadband photometry of P/2013 P5 was obtained with 
Lowell Observatory's 4.3-meter Discovery Channel Telescope using the Large Monolithic 
Imager to investigate the possibility of rapid rotation. While the variation in the 
rotational light curve from these data was too small to be justifiable, morphological 

changes in the nucleus-coma system were observed.  

 

1. INTRODUCTION 

To date, there are twelve known celestial bodies in the Solar System, labeled Main Belt Comets 

(e.g. Hsieh & Jewitt, 2006) or Active Asteroids (Jewitt, 2012). These are objects that exhibit both 

asteroid and comet-like properties, typically with a circular, asteroid-like orbit and a comet-like 

dust tail. Among them is P/2013 P5, a comet-asteroid transition object discovered by the PAN-

STARRS telescope in August 2013. Jewitt et al. (2013) further investigated this object in 

September 2013 with the Hubble Space Telescope (HST). The high-resolution camera revealed 

the unique six comet-like dust tails of asteroid P/2013 P5 (Figure 1). Jewitt et al. (2013) observed 

the object on both September 10, 2013 and September 23, 2013. In this two-week time span 

between observations, P/2013 P5 displayed many differences in the appearance of its six tails. Tail 

A changed the least in length and brightness, while Tail F increased in both length and brightness. 

By performing a comet tail modeling technique called synchrone modeling, Jewitt et al. (2013) 

used a range of particle sizes and positions to conclude that each tail of P/2013 P5 was the result 

of an individual event. From the synchrone modeling, they determined that the first tail (Tail A) 

originated April 15 ± 2 days and the sixth tail (Tail F) originated on September 4 just days before 

Jewitt et al. (2013) observed the asteroid on September 10, 2013. With tail activity evident over a 
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five-month period between April and September, the object has sustained consistent mass loss, 

and therefore, exhibits a comet-like appearance. The unique six-tail feature makes asteroid 

P/2013 P5 of particular interest to the study of asteroid-comet transition objects. 

 

Figure 1: Hubble Space Telescope Image of P/2013 P5 taken on September 10, 2013 

(top) and September 23, 2013 (bottom). The appearance of the object changes between the 

images with its six unique tails (A-F) growing both in length and brightness from the top 

image to the bottom image. The width of the image is 23,000 km, equivalent to 28 

arcseconds (28'') in astronomical units, with the tails extending approximately 25'' (Jewitt 

et al., 2013). 

2. PURPOSE 

The purpose of this research is to study the unique comet-like properties of asteroid P/2013 

P5 and to search for a mechanism to explain such activity for an object that is traditionally 

inactive. Data were taken by Dr. Stephen Levine at the Discovery Channel Telescope (DCT) in 

November 2013 using the Large Monolithic Imager (LMI). The findings will contribute to the field 

of active-asteroid research by furthering the understanding of the evolution and possible 

disruption mechanisms of asteroids. As a result, this research will also ultimately advance our 

understanding of the formation and evolution of the Solar System because asteroids are direct 

remnants of the formation.  
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3. BACKGROUND 

3.1 PLANET FORMATION 

Current hypotheses about the origins of the Solar System suggest that our sun formed from 

an over-dense molecular cloud which collapsed approximately 4.56 billion years ago. Once a 

molecular cloud collapses, it becomes the birthplace for stars. Through conservation of angular 

momentum, the cloud of gas and dust surrounding the new star flattens and becomes an accreting 

disk called a protoplanetary disk. Over time, the protoplanetary disk loses its gas cloud and 

becomes a debris disk composed of dust grains that may combine to form small celestial bodies 

called planetesimals. Some of these planetesimals merge and continue to accrete material to form 

planets, while other planetesimals that do not accrete enough dust or do not fuse together with 

another planetesimal, form asteroids and other small bodies in the Solar System. These 

planetesimals now occupy the Asteroid Belt, Kuiper Belt, and Oort Cloud (Figure 2).  

 

 

Figure 2: The Asteroid Belt (left) resides between Mars and Jupiter in the inner solar 

system. The Kuiper Belt (center), which lies just beyond Neptune, is home to many short period 

comets. The Oort Cloud (right) is mysterious in that it is predicted to be a giant cloud outside 

of the planets surrounding the sun. It houses icy objects with less regular orbits, longer periods, 

and higher eccentricity, or ellipticity, than objects in the Asteroid Belt and Kuiper Belt. 
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3.2 SMALL BODIES 

Small bodies consist of asteroids, comets, Oort Cloud objects, Kuiper Belt objects, and small 

planetary satellites in the Solar System. These bodies are classified as outer and inner small Solar 

System bodies based on their distance from the Sun. Objects beyond Neptune are referred to as 

outer small Solar System bodies and consist of comets, Kuiper Belt objects, and Oort Cloud 

objects. The inner small Solar System bodies, falling within the orbit of Neptune, consist of Main 

Belt asteroids and Jupiter Trojans.  

Comets and asteroids are identified based on both their physical and dynamical properties. 

Physically, comets are icy bodies that reside in the outer solar system, typically in the Kuiper Belt 

and Oort Cloud. Comets are often icy because they were formed beyond the “snow-line”, an 

imaginary line in the solar system that separates the terrestrial planets from the gas and ice giants. 

As a result, comets contain a large amount of volatile material. Hsieh et al. (2004) states that 

observationally, comets have a gravitationally unbound atmosphere called a coma and an 

accompanying tail, while asteroids do not. This is usually the result of near-surface ice 

sublimation where the comet is turned on and off as it goes through perihelion and aphelion, 

closest approach to the sun and furthest approach from the sun. As volatiles sublimate from the 

surface, gas and dust from the comet's interior are excavated and ejected due to the very low 

surface gravity of a typical cometary nucleus. Because asteroids contain much less volatile 

material, these physical properties are not usually observed. Asteroids and comets also have very 

different orbital properties. While comets have highly elliptical orbits, asteroids have much more 

circular orbits (Figure 3). This distinction is quantified using a parameter called the Tisserand 

parameter (TJ)  
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Figure 3: Comets and asteroids have very different dynamical properties. Comets 

have highly elliptical orbits quantified by a TJ<3 while asteroids have more circular orbits 

with a TJ>3. 

The Tisserand parameter is a measure of small body orbital elements including semi-major 

axis (a), inclination (i), and eccentricity (e) of a small body and a larger perturbing body (aJ), 

which, for comets and asteroids, is Jupiter (Eq.1). Most comets have a TJ<3, while asteroids have 

a TJ>3. P/2013 P5 has a TJ of 3.66 (Jewitt et al., 2013), placing it in the category of asteroids (TJ>3) 

due to its asteroid-like orbit.  

Below, Figure 4 shows nine of the eleven active asteroids that have been discovered as of 

March 2012 (Jewitt, 2012). All of these objects, including P/2013 P5, resemble comets in their 

appearance, making the asteroid-comet categorization more complex.  
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Figure 4: Eleven active asteroids have been discovered since 2004 including the nine 

shown above where the tail can be spatially resolved (Jewitt 2012). 

3.3 ACTIVE ASTEROIDS 

It was not until after the discovery of 133P/Elst Pizarro (Figure 5) in 1996 that astronomers 

began focusing on the comet-asteroid transition and studying objects that fell into a categorical 

grey area. Elst Pizarro was the first asteroid discovered with comet-like activity. When it was 

initially studied in 1996, the tail was deemed the result of a chance impact, and thereby predicted 

to extinguish. However, this conclusion was disproved when the comet-like activity was observed 

again by Hsieh et al. in 2004. Hsieh et al. (2004) studied the asteroid for several months and 

observed changes in the structure and brightness of the dust tail. As a result, they concluded that 

the tail was not the product of a one-time impact, but instead that it was actively generated over 

long periods of time revealing that the asteroid was in fact losing mass. The cause of the mass loss, 

however, was unclear. 



Oregon Undergraduate Research Journal  Gustafsson 

 

Volume 8 Issue 1 Spring 2015  33 

 

Figure 5: Elst Pizarro (upper left corner) was the first active asteroid discovered in 1996. 

The activity was eventually deemed the cause of near-surface ice sublimation by Hsieh et al. 

(2004). 

3.4 REASONS FOR MASS LOSS 

Mass-losing asteroids are now referred to as Main Belt Comets or Active Asteroids. 

Historically, near-Earth asteroids (NEAs) were studied as possible extinct or dormant comets. 

Hartmann, Tholen, and Cruikshank (1987) described the different stages of a comet: active, 

dormant, and extinct. They discussed the possibility that some comets may be misidentified as 

asteroids in appearance due to a very faint tail or coma that is not observable from earth. This 

ambiguity became a popular area of research because astronomers were interested in determining 

if any NEAs were at risk of becoming active again. On the other hand, the concept of asteroids 

having a comet-like appearance was puzzling to astronomers who were unsure of how an asteroid, 

with a limited amount of volatile material, would begin to generate mass loss. 

Jewitt (2012) describes the eleven current explanations for how asteroids can lose mass.  

These explanations fall under three main processes related to collisional events, near-surface ice 

sublimation, and rotational fission. While collision events and near-surface ice sublimation are 

conceptually simple explanations, rotational fission is more complicated and less understood. 

The Classical Model for asteroids describes their evolution based on collisions and 

gravitational effects, but is unable to explain the origin of NEAs (Bottke, 2006). Non-gravitational 

forces, first discussed by Yarkovsky in the early 1900s, can help to reconcile this issue (Bottke, 

2006). These non-gravitational forces are referred to as the Yarkovsky and YORP Effects (Figure 

6).  
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Figure 6: Solar radiation forces, known as the Yarkovsky and YORP Effects, heat up the 

sunward side of small bodies and alter both the orbit and rotation rate of the objects (Figure 

from NRAO). 

As the object orbits around the sun, the sunward side of the object warms up and the heat is 

ultimately re-radiated into space. Since photons carry momentum, the asteroid feels a net force 

opposite in direction to that in which thermal photons are emitted from the hottest point on the 

surface. Since the object has thermal inertia, resulting in a temperature distribution delay, the 

object also feels a force along the direction of its orbit. This force results in an increase or decrease 

in the semi-major axis of the object's orbit depending on the direction of rotation- prograde or 

retrograde motion. This is referred to as the Yarkovsky Effect. While the Yarkovsky Effect alters 

the orbit, the YORP effect alters the spin rate. The reflection and re-emission of sunlight creates 

a net thermal torque on the object as a result of the non-uniformity of its shape, causing the object 

to either spin up or spin down. The Yarkovsky Effect is the result of rotation, whereas the YORP 

Effect is due to both rotation and shape. An object that is perfectly spherical will not undergo the 

YORP torque. Most small bodies, however, are very irregularly shaped. Because of this, they 

experience the Yarkovsky and YORP Effects simultaneously. Once an asteroid has been spun up 

by the YORP Effect, it is susceptible to rotational fission, or breakup.  

There are two leading theories to explain the process of rotational fission. Scheeres (2007) 

looks at the different outcomes for a contact binary system that has been spun up by the YORP 

effect (Figure 7). Scheeres (2007) describes a macroscopic process where rotational fission occurs 

when the angular momentum of the object has been increased to the point where centripetal 

acceleration overcomes gravitational binding so that the bodies are no longer in contact. 
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Figure 7: Contact binary asteroids will fission once spun up to the critical spin rate as a 

result of Yarkovsky and YORP effects (Scheeres 2007). 

Walsh (2008) instead looks at how a small binary asteroid system is formed when a rubble 

pile asteroid is spun up to the critical spin limit by YORP torques. As the rotation of the asteroid 

increases, self-gravity and centrifugal forces due to the rotation cause stress, allowing mass to 

leave the poles and accumulate near the equator. The object bulges and mass is shed from the 

equator, which allows the asteroid to reach a minimum energy state (Figure 8). The shed material 

can then accrete to form satellites. 

 

Figure 8: With enough angular momentum, rubble pile asteroids will rotationally fission 

by shedding mass in the equatorial plane to form satellites (Walsh 2008).  

 

4. HYPOTHESIS 

P/2013 P5 is an inner belt asteroid with a semi-major axis of 2.189 Astronomical Units (AU). 

Jewitt et al. (2013) predicted P/2013 P5 to be a member of the Flora asteroid family based on its 

location in the inner belt. Due to the history of the Flora family and the small size of the P/2013 

P5, which is just under 0.5 km in diameter, P/2013 P5 is thought to have likely undergone many 

collisions in its lifetime. As a result, the asteroid probably contains little to no volatile material, 
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making it highly unlikely that the cause of activity is a product of near-surface ice sublimation. As 

noted previously, Jewitt et al. (2013) took data of P/2013 P5 on both September 10 and September 

23. A summary of their results is shown below in Table 1. On each night, a multi-tailed structure 

was observed extending further than 25''. While the nucleus remained in tact, the brightness and 

position of the tails changed between the nights, leading Jewitt et al. (2013) to conclude that each 

tail is the result of a separate event. It is extremely unlikely that this asteroid has undergone six 

separate collision events in a five-month period. As a result, collision is an unlikely cause of 

activity. Jewitt et al. (2013) claimed that the most likely explanation for the cause of the six unique 

tails in P/2013 P5 is spin-up and rapid rotation of the asteroid by the solar radiation forces and 

torques of the YORP Effects. My research plan is to further investigate Jewitt’s hypothesis that 

the cause of activity is due to rapid rotation of the nucleus of P/2013 P5.  

 

5. OBSERVATIONS 

P/2013 P5 was observed on Universal Time (UT) 2013 November 18 using the Large 

Monolithic Imager instrument on the 4-meter Discovery Channel Telescope. A summary of the 

observations is detailed in Table 2 located at the end of this paper. The Large Monolithic Imager 

is an all-purpose charged coupled device (CCD) camera that images a large 12.5x12.5 arcminute 

field of view. The data images were binned 2x2 pixels providing a higher spatial resolution of 

0.24''/pixel instead of 0.12''/pixel, allowing for the tails of P/2013 P5 to be resolved in the images. 

At the time of the observations, P/2013 P5 was at a heliocentric distance of 2.028 AU, a geocentric 

distance of 1.553 AU, and a predicted magnitude of 21.0. The direct scale comparison of my 

Discovery Channel Telescope data to Jewitt et al.’s Hubble Space Telescope data is shown in 

Figure 9 below. 
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Figure 9: Scale comparison of HST image versus DCT image of P/2013 P5 (Jewitt et al. 

2013). DCT image of P/2013 P5 created from composite of asteroid-rate tracked images. The 

tail extends >20''. The width of the image is 2' (135,000 km). 

6. METHODS 

6.1 DATA REDUCTION 

The programming languages Interactive Data Language (IDL) and Image Reduction and 

Analysis Facility (IRAF) were used to reduce and analyze the data to arrive at the proposed 

conclusions about the rapid rotational period of the nucleus of P/2013 P5. The reduction is a 

multi-step process that includes three different types of data files: biases, flat fields, and science 

data.  

The bias images and overscan regions are used to calculate the zero noise level of the charged 

coupled device (CCD) camera. The zero noise level is a pixel intensity offset that is inherent to the 

CCD, so that once calculated, the offset is subtracted off of all of the asteroid data images. This 

bias offset is used to avoid negative intensities in the CCD readout when taking data. There are 

two ways to evaluate the bias offset- through bias images or an overscan region. Bias images are 

zero second exposures taken with the shutter closed to have data on the readout of unexposed 

pixels. The overscan region is a set of rows and columns that are added to each data image. These 

are not physical rows or columns, but instead pseudo rows and pseudo columns created by 

scanning additional cycles to the readout. The bias frames are usually more useful than the 

overscan regions because they represent a 2D bias image where the bias offset can be subtracted 

pixel by pixel from each image, while the overscan is only a 1D vector.  
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The second type of CCD data file, flat field, is used in a correction process of the CCD detector. 

CCDs are not perfect imaging devices. Within the CCD, each pixel responds differently to the light 

coming in. Therefore, it has a different Quantum Efficiency value when compared to its 

neighboring pixels. The purpose of a flat field image is to correct for this inconsistency. The goal 

is to have a flat field that consists of uniform illumination of every pixel by a light source that has 

an identical response to that of the science data. By dividing by a normalized flat field, the pixel-

to-pixel variations are removed. There are two types of flat fields: dome flats and twilight flats. 

Dome flats are taken using a uniformly illuminated screen on the inside wall of the dome whereas 

twilight flats are taken on a blank piece of sky. While flat fields are primarily used to correct for 

the pixel-to-pixel variations, they are also used to correct for dust donuts that appear on the image 

frames as a result of dust on the filters or primary mirror. Flat fields at the Discovery Channel 

Telescope were created using Twilight Flats. 

The third type of CCD data file, science data, is unique to each research goal. For this project, 

the science data consists of about forty images taken over the course of four hours using the LMI 

detector at the DCT in Flagstaff, Arizona. All data frames were taken using the Sloan Digital Sky 

Survey (SDSS) r' filter. The first four images were tracked on the stars using sidereal tracking, 

while the remaining images were non-sidereal tracked, and instead, tracked on the asteroid.  

All of the data files described above were used together to reduce the science data using both 

IDL and IRAF software. The method for reducing data in IDL is a much more interactive process, 

while IRAF has many procedures pre-written for convenience. Both software programs require 

the same reduction steps. The major steps include accounting for instrument effects by 

subtracting off the bias file and removal of atmospheric effects by applying a flat field correction. 

These standard reduction steps were performed on all asteroid data files in both IRAF and IDL 

languages.  

After reducing the data, the stacked image shown in Figure 9 above was created as a composite 

of all asteroid-rate tracked images that were combined to increase the signal-to-noise ratio of 

P/2013 P5. The increased resolution of the stacked image shows an extended tail from the nucleus 

greater than 20'', slightly less than the size of the tail Jewitt et al. (2013) observed using HST. 

6.2 PHOTOMETRY 

To prove that the cause of activity on P/2013 P5 is rotational fission resulting from the YORP 

Effect, we investigated the rotational period of the nucleus using photometry. Astronomical 

photometry is a technique involving the calculation of total flux of the target object. Once the flux 

is calculated, the measurement can be converted to an absolute magnitude and plotted with time 

as a light curve. Here, the rotational period can be calculated. If the object is in fact undergoing a 

rapid rotation, we would expect to see a light curve with a period of 2.2 hours.  

To begin the photometry process, differential photometry and magnitude calibration were 

performed at the same time for each image. Differential photometry observes both the target 

object (P/2013 P5) and the comparison objects (solar analog field stars) at the same time in the 

same image. Solar analog field stars have the same colors as that of our Sun. The sunlight that is 
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reflected off of objects like comets and asteroids is the light that is collected by the telescope, so 

comets and asteroids appear solar colored. 

Photometric calibration was executed on the magnitude of five solar analog field stars in both 

the sidereal and non-sidereal rate tracked images. The solar colors are defined as the difference 

in magnitude between two consecutive filters. The DCT data were taken using the Sloan Digital 

Sky Survey (SDSS) r' filter. In the Sloan field, the filters used are ugriz. Solar colors are therefore 

defined as the difference in magnitude for u-g, g-r, r-i, and i-z magnitudes. The Aladin interactive 

sky atlas from Strasbourg Astronomical Data Center was used with the SDSS-DR9 (Release 8 

2012) catalog to search for solar analog field stars that were also in my field of view. Once solar 

analogs with a range of magnitudes were found, the Aladin software was used to determine the 

absolute magnitude of the solar analog field stars. Because we are looking at only solar-colored 

objects, the standard photometric equation can be reduced and simplified (Eq. 2 – Eq. 4). 

 

 

 

The standard photometric equation calculates the absolute magnitude of the object (Vabs) by 

applying an offset to the instrumental magnitude (Vins). This offset is composed of a zero point 

correction (Z), an extinction correction (χ), and a color correction (V-R). Because the data were 

only taken using one filter (r'), the absolute magnitude of the object can be calculated by using 

information from the solar analog field stars. By subtracting the photometric equation for P/2013 

P5 (Eq. 2) from the photometric equation for a solar analog field star (Eq. 2), the offsets are 

cancelled out, leaving only the instrumental and absolute magnitudes (Eq. 3). This process allows 

for the direct calculation of the absolute magnitude of the asteroid by subtracting the magnitude 

difference of the solar analog field star, “delta-mag”, from the instrumental magnitude of the 

asteroid that is computed by the IRAF PHOT package (Eq. 4). 

The guidelines explained in A User's Guide to Stellar CCD Photometry by Phil Massey were 

followed to set the photometry parameter values. The basic idea is to place an aperture over the 

target object and calculate the total flux in the aperture. Initial photometry involving a range of 

different circular aperture radii and curve-of-growth analysis was used to determine the 

appropriate aperture radius to use in the photometry of the field stars. From curve-of-growth 

analysis, a process involving creating plots to maximize the signal-to-noise ratio and maintain 

95% of the total flux, an aperture radius of three was selected for the solar analog field stars in the 

sidereal rate tracked images and an aperture radius of ten was selected for the non-sidereal rate 

tracked images. Absolute magnitudes specified by the Sloan catalog were used to calculate the 

calibration offset (“delta-mag”) for the transformation from instrumental to absolute magnitude 

of the asteroid.  
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Conversely, an aperture radius of ten was selected for the sidereal tracked images and three 

for the non-sidereal rate tracked images for photometry on the asteroid- reversed apertures from 

those used for photometry on the field stars. Figure 10 shows the resulting light curve for the 

asteroid using the stated aperture radii of 10 and 3.  The light curve shows both a positive linear 

trend and some variability. In order to ensure that this variability was unique to the rotation 

properties of P/2013 P5, photometry using the same procedure was performed on field asteroid 

2006 BZ253 that was traveling at a rate of 17''/min, while P/2013 P5 was traveling at 41''/min. 

Figure 11 shows the light curves of both the 2006 BZ253 and P/2013 P5, revealing similarity 

between the two. As a result, other sources of variability need to be removed from the data. 

Because 2006 BZ253 is an asteroid and does not display evidence for mass loss, we would expect 

that it is rotating with a more standard rotation speed and therefore a shorter period than that of 

P/2013 P5. Thus, the light curves for these two objects should not look the same.  

 

Figure 10: P/2013 P5 Light Curve created using on-chip differential photometry and an 

aperture radius of 3 pixels.  
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Figure 11: Light curves of P/2013 P5 (black) and 2006 BZ253 (red). Both light curves were 

created using the same photometric procedures and an aperture radius of 3 pixels.  

6.3 CHARACTERIZING VARIABILITY 

In order to isolate the rotational properties in the light curve, all sources of variability should 

be characterized and removed from the data. The first goal was to characterize the effects of 

seeing. Astronomical seeing describes the blurring and twinkling of astronomical objects caused 

by the Earth’s atmosphere. The easiest way to quantify seeing effects is by calculating the full 

width at half maximum (FWHM) of the objects.  To do this, a cut was taken on the trailed field 

stars of the asteroid-rate tracked images perpendicular to the direction of the star trails. A 

Gaussian profile was fit to each cut and the FWHM was plotted with time to quantify the seeing 

changes throughout the night (Figure 12). This plot illustrates a positive linear trend that is 

consistent with the linear trend seen in the light curve of P/2013 P5, revealing that the seeing 

effects had a significant impact on the data. 
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Figure 12: The FWHM was plotted for a Gaussian profile that was fit to field stars in the 

direction perpendicular to the star trails. The variation in FWHM quantifies the seeing and 

focus conditions at the time of each image.  

The FWHM vector was normalized to an aperture radius of three.  This gave a vector of aperture 

radii that were optimized for the seeing conditions at the time of each image. Scaled aperture 

photometry was performed on the target asteroid P/2013 P5 using the vector of unique aperture 

radii specific to each image. Figure 13 shows the resulting light curve for P/2013 P5 using 

optimized aperture photometry with a variable aperture radius. The plot reveals that the linear 

trend disappeared with the aperture radius optimization, and there is still some variability in the 

light curve. The errors are on the level of 0.07 magnitude, while there is no significant variability 

in the data on the level of 0.15 magnitude.  

 

 

Figure 13: Light Curve of P/2013 P5 created using optimal aperture photometry. Aperture 

radii were optimized by taking into account the seeing and focus conditions at the time of the 

image. This was done using the FWHM.  

Table 3 located at the end of the paper shows the seeing quantified as a function of both time 

and airmass. Unfortunately, continuing to characterize the sources of variability would not 

increase the sensitivity of the variations enough to conclude anything significant about the 

rotational properties of P/2013 P5. Instead, we chose to proceed forward by analyzing 

morphological changes in the nucleus-coma of P/2013 P5 instead of through light curves.  

6.4 MORPHOLOGY OF P/2013 P5 

Looking at changes in the nucleus-coma system in both time and space across the coma 

relative to the comet's center of brightness could lead to insight in P/2013 P5's rotational 

properties. We focused on changes in brightness and structure of the coma. The brightness 
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changes can be observed by looking at how the brightness changes as a function of rotation angle, 

while the changes in coma are observed by subtracting off the constant nucleus and looking at the 

changes in the residual. Six stacks of five images were created of asteroid-rate tracked images. 

These mini stacks were used to track changes in the nucleus-coma system in both time and space. 

6.4.1. GENERAL MORPHOLOGY CHANGES 

To make an initial inspection of changes occurring in the asteroid, the total flux in the first 

90° wedge (the upper left quadrant of the data array) was calculated for each stack and plotted 

versus time (Figure 14). Figure 14 reveals that there is variation in the flux and the change appears 

to follow a regular pattern. The variation in the flux is at the level of 10% deviation from the mean. 

The variation does not fit the trend of seeing throughout the night, which followed a positive linear 

trend seen in Figure 12, giving us reason to further investigate this variability by looking at both 

brightness and structure changes in the coma as described above. 

 

Figure 14: The total flux in a 90° wedge for each of the five mini stacks. The errors are at 

the level of 0.21% of the mean, while the variance is at the level of 10% of the mean. 

6.4.2 BRIGHTNESS CHANGES IN THE NUCLEUS 

A 7.68''x7.68'' box was extracted from each stacked asteroid image, with the nucleus-coma 

system located at the center. The box was rotated clockwise in increments of 5°. At each 5° 

rotation, a 5° wedge was extracted from the box (Figure 15). Larger wedges of 15°, 45°, and 90° 

were created by summing together the 5° wedges to look for morphological changes (Figure 15).  
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Figure 15: 5° wedges were extracted at every rotation increments of 5° clockwise for each 

stack. 5° wedges were averaged together to form larger wedges of 15°, 45°, 90°, and 180°.} 

Radial profiles of the four 90° wedges for each of the five mini stacked images were plotted, 

as seen in Figure 16. The brightness of each 90° wedge was tracked between the stacks by taking 

the total flux of each wedge and ranking its brightness from 1:4 with respect to the other three 90° 

wedges in the stack. These rankings are displayed in Figure 17 and the values of total flux in each 

wedge can be seen in Table 4. Each grid in Figure 17 represents an image stack where the colored 

square symbolizes a 90° wedge in its correct location in the image box. The colors of the squares 

correspond to the colors in the plots, while the numbers in each square represent the brightness 

ranking of that 90° wedge. The purpose of Figure 17 was to track wedges as P/2013 P5 rotates 

throughout the night and determine if there was any pattern to the motion of material in the 

nucleus-coma system. Based on Figure 17, while there was variation, there were no obvious 

regular patterns of a peak and trough that were expected if the data gave any insight into the 

rotational period of P/2013 P5.  
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Figure 16: Radial profiles for each 90° wedge for each mini stack. The radial profile goes 

from the center of P/2013 P5 to the edge of the array, 3.34''. 

 

 

Figure 17: Brightness ranked from 1:4 using total flux in the 90° wedge. (Brightest=1, Least 

Bright=4.)  
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6.4.3 CHANGES IN THE COMA 

While the brightness changes in the nucleus revealed variations, again, no clear pattern was 

observed over time. The next place to search for regular variability is in the structure of the coma. 

The nucleus-coma system is extremely complex and it is difficult to extract the coma from the 

nucleus. Ideally, the nucleus acts like a point source that is fuzzed out by seeing conditions, the 

focus of the telescope, and effects of differential refraction. The coma, which consists of gas and 

dust surrounding the nucleus, is expected to fall off as ρ-2, where ρ is the apparent distance from 

the center of the nucleus. The density of the gas and dust in the coma follow the standard   r-2. 

However, because the object is observed in two dimensions, the projected column density goes as 

r-1. Comets typically reveal behavior that falls off steeper than ρ-1, but because so little is known 

and understood about the properties of active asteroids, the ρ-1 functional fit is assumed. 

A Gaussian profile was created using field stars in the sidereal images. The Gaussian profiles 

for each of the field stars were normalized to the area under the curve and averaged together to 

form an ideal Gaussian profile to represent the seeing and focus conditions at that time. The 

FWHM seeing vector that was created in Section 5.3 was normalized to the FWHM of the ideal 

Gaussian profile created from the sidereal images. The vector was then applied to the Gaussian 

profile for each mini stacked image to account for seeing and focus conditions. 

The idealized Gaussian profiles were subtracted from the 90° wedges in each of the mini 

stacks, where the radial wedge was mirrored to create a full profile. With the Gaussian profile 

removed, the remaining information should represent the coma of P/2013 P5 (Figure 18). The 
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residual, or coma, of each wedge was plotted for all five mini stacks (Figure 19). A similar 

procedure was conducted here to track the deviation of the coma as with the flux in the radial 

profiles (Table 5). Figure 20 shows the same five grids, each representing a stacked image. The 

different colored squares represent the different 90° wedges within a stack. Instead of tracking 

flux, the standard deviation was calculated for the absolute value of each coma profile and ranked 

1:4 from largest to smallest. The resulting rankings are shows in the figure. Again, while there is 

variation in the structure of the coma with time and position, there is no observable pattern to the 

variability.  

 

Figure 18: 90° wedges from Stack 1 (black). The ideal Gaussian profile (green) and the 

residual (red) are also shown. 
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Figure 19: Residual profiles for each 90° wedge for each mini stack. The residual profile 

goes from the center of P/2013 P5 to the edge of the array, 3.34''. 
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Figure 20: Change ranked from 1:4 using standard deviation in the 90° wedge. Largest 

Deviation=1, Smallest Deviation=4.  

7. CONCLUSIONS 

Photometry and morphological changes in structure and brightness of the coma-nucleus 

system of P/2013 P5 were investigated to search for signs of rapid rotation. Conclusions regarding 

the rotational properties of P/2013 P5 determined from DCT observations are as follows: 

1. At an apparent magnitude of V=22.5 magnitude, we found no significant variability in the 

light curve at the level of 0.15 magnitudes. 

2. The total flux in the coma-nucleus system is seen to vary at the level of 10% that is 

qualitatively inconsistent with seeing changes throughout the night.  

3. Radial profiles of the 90° wedges for each mini stack further support the observed changes 

in total flux within the coma-nucleus system of P/2013 P5. The variation of each wedge 

from the mean flux per wedge is at the level of 11%.  
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4. Plots of the coma also reveal changes with time. The level in variation of the coma for each 

wedge from the mean deviation per wedge is at the level of 44%. 

8. FUTURE WORK 

We reached a null result with the data analysis that we have performed thus far. However, 

there are still future directions to pursue. The procedure used above only altered the time variable 

and did not account for the location of features within the nucleus-coma system. The following 

things can be done to further investigate morphology changes: 

1. Break mini stack into individual images and plot total flux versus time for first 90° wedge. 

(What is the scale of the variance? How does this fit with variance in the flux versus time 

plot of stacks?) 

2. Look at smaller wedges. (45°, 15°) 

3. Look at smaller stacks. (10 mini stacks of 3 images) 

4. Look at different wedge positions. (90° wedge starting at 15° instead of 0°) 

5. Characterize the extinction. (For each image calculate total flux in the field stars and apply 

correction factor to account for extinction changes in flux of asteroid.) 

6. Perform wedge procedure on 2006 BZ253. (These objects should not have a coma, so I 

could also use the data to form my idealized Gaussian profile.) 

7. Use a well-written program to search for faint coma, tail, and any morphological changes 

(Sonnett et al., 2013). 

If these methods still yield a null result, we can return to photometry and work to fine tune 

the aperture radii for our optimal aperture photometry procedure by changing aperture size by 

10% or 20% and investigating the effects of these changes on the sensitivity of the light curve. We 

can also use elliptical apertures for trailed field stars in the asteroid-rate tracked images to 

improve accuracy. If this still does not result in a conclusion, we could re-observe P/2013 P5 the 

next time it is available to look for any signs of ongoing activity.  
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