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DISSERTATION ABSTRACT

Eryn C. Cook

Doctor of Philosophy

Department of Physics

December 2017

Title: Laser Cooling and Trapping of Neutral Strontium for Spectroscopic
Measurements of Casimir-Polder Potentials

Casimir and Casimir-Polder effects are forces between electrically neutral bodies

and particles in vacuum, arising entirely from quantum fluctuations. The modification

to the vacuum electromagnetic-field modes imposed by the presence of any particle or

surface can result in these mechanical forces, which are often the dominant interaction

at small separations. These effects play an increasingly critical role in the operation of

micro- and nano-mechanical systems as well as miniaturized atomic traps for precision

sensors and quantum-information devices. Despite their fundamental importance,

calculations present theoretical and numeric challenges, and precise atom-surface

potential measurements are lacking in many geometric and distance regimes.

The spectroscopic measurement of Casimir-Polder-induced energy level shifts in

optical-lattice trapped atoms offers a new experimental method to probe atom-surface

interactions. Strontium, the current front-runner among optical frequency metrology

systems, has demonstrated characteristics ideal for such precision measurements. An

alkaline earth atom possessing ultra-narrow intercombination transitions, strontium

can be loaded into an optical lattice at the “magic” wavelength where the probe
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transition is unperturbed by the trap light. Translation of the lattice will permit

controlled transport of tightly-confined atomic samples to well-calibrated atom-

surface separations, while optical transition shifts serve as a direct probe of the

Casimir-Polder potential.

We have constructed a strontium magneto-optical trap (MOT) for future

Casimir-Polder experiments. This thesis will describe the strontium apparatus, initial

trap performance, and some details of the proposed measurement procedure.
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CHAPTER I

INTRODUCTION

Laser cooled and trapped neutral atoms can act as precision probes of subtle

environmental effects. One such effect is the Casimir-Polder (CP) interaction [1]:

the interaction between two neutral atoms or an atom and a neutral surface arising

from quantum fluctuations of the vacuum electromagnetic field. The effect can be

interpreted as a spatially-varying Lamb shift [2] — an ac-Stark shift resulting from

the atomic interaction with the vacuum field modes. The macroscopic equivalent,

the attractive force between two neutral bodies, is known as the Casimir effect [3],

but arises from the same principles: the presence of surfaces modifies the the allowed

vacuum field modes and hence the total vacuum field zero-point energy density relative

to the energy density in the absence of the bodies. The Casimir effect thus joins

superconductivity and superfluidity as one of the few macroscopic manifestations of

a fundamentally quantum phenomenon [4].

In the near field the CP effect is equivalent to the van der Waals interaction:

the potential between an atom and a perfect planar conductor can be found from

the interaction energy of a fluctuating dipole and its surface image, but far-field

retardation effects change the length-scaling of the interaction. A full quantum-

electrodynamic (QED) treatment is required to calculate the functional form of the

interaction over all atom-surface distances [5]. Regularization and renormalization

challenges arise from the infinite electromagnetic field-mode-sums involved; the

material response must be characterized over a broad frequency spectrum; and the

effect is non-additive since the inclusion of additional atoms or surfaces fundamentally

alters the spatial modes. As a result, analytic approximations or numeric methods are
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required for all but the most trivial surface geometries, as well as when including other

real-surface properties such as finite conductivity, surface roughness, or birefringence.

Experimental tests of numeric predictions are essential for further development

of the field, but despite the fact that the force is the dominant interaction at small

length-scales, precision measurements of Casimir and CP effects have often lagged

far behind theoretic developments. Although predicted in 1948, the retarded atom-

surface CP effect was first definitively observed in 1993 [6], and the Casimir force

between two conductive surfaces in 1997 [7]. These experiments sparked renewed

interest in the phenomenon, but several open questions remain, and many predicted

effects are yet to be detected. A thorough understanding of Casimir and CP

forces is essential in the future development and operation of micro- and nano-

electromechanical systems (MEMS and NEMS) and the continued miniaturization of

neutral atom and ion traps (atom-chip devices) for quantum information and atomic

sensor applications. Cavity quantum-electrodynamics (cavity QED) experiments and

searches for predicted novel short-range forces (non-Newtonian gravitational forces)

also require careful CP-interaction characterization. New experiments probing CP

effects via as-yet-unexplored methods will support future theory developments and

experiments in both basic and applied physics.

Strontium, a two-valence-electron alkaline earth atom with extremely narrow

intercombination transitions (dipole-forbidden ∆S = 1 singlet-triplet lines), is a

strong candidate for a precision CP sensor. With a strong dipole-allowed cycling

transition, strontium is amenable to laser cooling and trapping in a magneto-optical

trap (MOT), and the narrow intercombination 1S0 − 3P1 transition allows further

cooling in a second-stage MOT. Subsequent loading into an optical lattice allows

tight spatial confinement, and the the trap potential leaves the frequency of an
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intercombination transition nearly unperturbed when the lattice beams are tuned to

the transition’s “magic wavelength” where the first-order ac-Stark shifts of the ground

and excited states are equal. The doubly-forbidden 1S0 − 3P0 transition at 698 nm in

87Sr, weakly allowed by hyperfine mixing, has a 1 mHz linewidth [8, 9]; such a high-

Q oscillator cycling at optical frequencies is ideal for a precision optical frequency

standard, and the strontium optical lattice clock developed at the National Institute of

Standards and Technology (NIST) has demonstrated a fractional frequency instability

δν/ν0 = 10−18 [10]. This system has become the leading optical frequency standard

candidate and has been adopted by several national labs [11–14].

The demonstrated elimination of systematic frequency shifts in strontium optical

lattice clocks implies that such systems are ideal for the spectroscopic measurement

of subtle effects like the Casimir-Polder interaction [15]. The differential CP shift of

the ground and excited states leads to a measurable shift in the intercombination-

transition frequencies: atoms loaded into a one-dimensional magic-wavelength optical

lattice can be translated towards a surface to measure the change in this shift relative

to the unshifted frequency far from the surface. The lattice ensures tight localization,

collisional shifts subtract off, and the properties of strontium are favorable for

minimization of important atom-surface systematics. Discrimination against static

magnetic and electric field interactions is critical for Casimir and CP experiments, but

the zero-total-angular-momentum ground state of the even isotopes limits spurious

shifts due to surface currents or magnetic fields. The polarizability of strontium

surface adsorbates is predicted to be significantly weaker than that for alkalis [16],

reducing the surface-contamination electric-field patch effects which have proven a

significant systematic in alkali surface-potential experiments [17]. The atom-surface

distance can be measured to the 30 nm transverse localization of the lattice wells using
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adiabatic transfer to a surface-reflection lattice, and the total distance uncertainty

then depends only on the 50 nm repeatability of lattice translation.

The differential shift of the ground and excited states of the 7.4 kHz-linewidth

1S0 − 3P1 transition in 88Sr is calculated to be 1 kHz at an atom-conductor distance

of 1 µm and over 10 kHz at 200 nm, the closest approach feasible without a higher-

power lattice laser. The shift is thus resolvable throughout much of the theoretically

interesting intermediate region where the surface-potential length-scaling crosses

over from the near-field 1/z3 to far-field 1/z4 behavior. Thus far, only one

experiment (using an evanescent-wave atomic mirror) has demonstrated quantitative

measurements in this distance regime [18]. Unlike evanescent-wave schemes, this

approach is amenable to the use of any surface partially transparent to the optical

lattice beams, which will allow exploration of surface roughness contributions and the

orientation and power-scaling effects predicted for birefringent materials, diffraction

gratings, and thin-film surfaces. Initial experiments detecting the shift resulting from

the Pyrex science cell wall will serve as a proof-of-principle for this novel spectroscopic

Casimir-Polder measurement technique, and characterization of surface adsorbate and

electric field effects will benefit strontium atom-chip devices under development.

This work describes the strontium apparatus we have developed for future

precision CP measurements. Chapter 2 provides more detail about the CP effect

and the advantages strontium offers as a precision surface-potential probe. The

strontium lattice measurement procedure and calculated CP shifts are presented, and

experimental systematics are evaluated. The experiment requires sample preparation

via multiple stages of laser cooling and trapping; Chapter 3 covers the background

physics of laser cooling and discusses the theory of the cold-atom traps involved.
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Any cold-atom experiment involves a substantial initial investment in apparatus

development, particularly with respected to laser systems and the vacuum chamber.

The Sr project in required four distinct home-built laser systems, three with external

amplification stages and two with resonant-cavity second-harmonic-generation. These

systems, and the base external-cavity diode-laser (ECDL) design developed as the

master (and subsequently adopted by many external atomic physics groups), are

covered in Chapter 4. Chapter 5 describes the Sr vacuum system, including the

Sr oven and collimated atomic beam, a permanent-magnet Zeeman slower, and two

MOT trapping regions.

We have succeeded in achieving a blue 461 nm MOT and transferring cold atoms

between the top and the bottom blue MOT regions, as well as 689 nm red MOT optical

molasses. Chapter 6 describes the computer control and the experimental sequences

for blue MOT loading, characterization, and transfer and the loading procedure for

the second-stage red MOT. The optical lattice laser system, described in Chapter

4, is complete; the next steps are outlined for the future strontium CP experiment.

Although the experiment presents many challenges, the demonstration of a new purely

spectroscopic technique for CP-interaction measurements in the intermediate distance

regime will be of great value to practical and theoretical progress in this field. Precise

measurements of Casimir and CP interactions will be critical to future technological

developments of nanoscale devices and miniaturized atomic traps, as well as further

tests of QED predictions.

5



CHAPTER II

STRONTIUM AND THE CASIMIR-POLDER INTERACTION

2.1. Background and Motivation

The advent of laser cooling and trapping of atoms opened the door to a new

era of control and manipulation of quantum systems, as well as the observation

of predicted but previously unobserved quantum effects. From early experiments

observing “quantum jumps” of single ions [19] and the long-sought achievement of

Bose-Einstein condensation [20, 21] to the exquisite state-preparation, entanglement,

and individual qubit read-out capabilities demonstrated today by groups pursuing

quantum computation and quantum simulation applications, cold atoms and ions

have allowed exploration of quantum regimes inaccessible with other systems.

Every atom of a given isotope is identical: while this may seem like an obvious

statement, it is key to the possibilities cold atoms offer in the field of precision

measurement. This is perhaps best exemplified by the measurement of time itself:

the power of using an atomic transition “ticking” at the same rate for every atom

of that element anywhere on Earth was recognized from the early days of atomic

physics, and the SI second was officially defined to be equal to the 9,192,631,770 cycles

of the cesium-133 ground-state hyperfine transition in the 1960’s, long before laser

cooling. Reaching a fractional frequency instability of 8× 10−15, the precision of the

early cesium atom-beam clocks far exceeded any preceeding timekeeping device, yet

limitations imposed by interatomic collisions, Doppler shifts, and finite observation

times left room for improvement [22]. The use of laser-cooled atoms significantly

reduces many systematics, and subsequent cold-atom atomic-fountain Cs clocks have
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reached instabilities of ∼ 4 × 10−16 [23]. Frequency standards based on narrow

dipole-forbidden optical transitions in continuously probed cold samples, offering

long interrogation times and higher quality factors resulting from much faster cycling

frequencies (100’s of THz as opposed to cesium’s GHz rf-transition), have reached

even higher levels of precision and accuracy: the current leader is the strontium

optical lattice frequency standard, with a fractional instability of 2.2 × 10−16 which

averages down to 2× 10−18 within about 15 minutes [10].1

Of course, elimination of systematic effects is critical for optical frequency

standards reaching such absurd levels of precision and stability. The intrinsic

frequency of one atom may be the same as any other of the same element, but the

measured frequency will depend upon shifts imparted by the atom’s environment.

Such perturbations must be eliminated (e.g., first-order light shifts for optical-

lattice-trapped atoms, as described in Sec. 2.2) or well-characterized and subtracted

(e.g., blackbody radiation light shifts, through measurement of the background

temperature). The flip side of this coin is to exploit the sensitivity of such accurate

and well-characterized systems to measure extremely tiny interactions. Many

modern communication and navigation systems, especially the Global Positioning

System (GPS), rely upon the accuracy of cesium or rubidium radiofrequency atomic

clocks and will see further enhancements with the future use of optical clocks, but

fundamental physics precision measurement goals were another driving force behind

the development of current state-of-the-art optical frequency standards.

Among the tiny or as-yet-unobserved effects measured or constrained by

atomic clocks, one area of active research is the possibility of position- or time-

1Ytterbium optical lattice clocks reach similar levels of stability [24], and despite the lower signal-
to-noise ratio offered by trapped ion systems the previous frontrunners Hg+ and Al+ remain close
behind [25].
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variation of fundamental constants [26–28]. Although non-constant “constants”

would appear to violate Einstein’s equivalence principle, they are required by some

unification theories [29]. Potential time-variation of the fine-structure constant

α = 1/4πε0(e2/~c) ≈ 1
137

, which governs the strength of electromagnetic interactions,

is particularly intriguing in light of astronomical evidence indicating the value may

in fact have been smaller in the distant past [30], but comparisons of optical

frequency standards [31–33] have ultimately constrained the current rate of change

to α̇/α < 10−17/yr [25]. Naturally, clocks are ideal for other tests of general and

special relativity: the gravitational redshift resulting from an elevation change of just

33 cm was detected by comparing the frequency of two Al+ clocks [34], and there are

several proposals for space-based clocks to probe relativistic effects [35]. Compact

strontium and ytterbium optical lattice clocks are under development for installation

at the International Space Station (ISS) in 2023 for the Space Optical Clocks (SOC)

project [36] (a follow-up to the 2018 Atomic Clock Ensemble in Space (ACES) project,

consisting of Cs fountain and hydrogen maser frequency standards [37]). Comparisons

of ISS and terrestrial atomic clocks will test Lorentz invariance and search for fine-

structure-constant variations; other potential applications for space-based clocks

include geophysics (precision mapping of the Earth’s gravitational potential) and

astronomy (very-long-baseline interferometry).

The field of precision Casimir-Polder (CP) measurements is another area which

would benefit from the exquisite sensitivity offered by atomic-clock-like systems. The

CP effect, the interaction between two atoms or an atom and a surface generated

by the modification of the vacuum electromagnetic field modes, becomes minuscule

at large distances but can be the dominant force at distances on the order of

1 µm. Between neutral molecules, the effect is more familiar in the near-field as
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London/van-der-Waals(vDW) or dispersion forces, which can be derived from the

interaction of correlated fluctuating dipole moments. In fact, London’s 1930 fourth-

order perturbation-theory calculation of the effect [38] was “considered a major

accomplishment of the new quantum mechanics” [39]: invocation of “zero-point

energy” arising from the uncertainty principle was critical to explain the temperature-

independent component of the dipole interaction energy, which would not be predicted

by classical mechanics. London/vdW interactions are ubiquitous in chemistry and are

important for the understanding of everything from the boiling points of the noble

gases to the mechanism by which geckos walk up walls [40].

Despite the success of London’s work, investigations of the interactions between

neutral molecules separated by a distance z in colloidal suspensions later showed

deviation from the expected z−6 scaling behavior at large separations [41]. Casimir

and Polder demonstrated that the observed z−7 scaling is explained by including

the influence of retardation effects: the finite electromagnetic field propagation time

reduces the correlation of the two dipoles such that the potential energy falls off

faster in the far field [1]. Similarly, the interaction potential between an atom and a

perfectly conducting planar surface scales as z−3 in the near field (z � λ0, where λ0

is the dominant transition wavelength), which can be derived semi-classically from

the interaction between a fluctuating dipole and its instantaneous image [42], but in

the far field, retardation effects lead to decorrelation of the dipole and image, and the

interaction scales as z−4 for z � λ0.

While London had focused on fluctuating dipole moments, the quantized

electromagnetic field was necessarily central to Casimir and Polder’s approach. The

two viewpoints are in a sense equivalent, since coupling to the background vacuum

field generates dipole fluctuations (just as spontaneous emission can be viewed as
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stimulated emission resulting from coupling to the vacuum field [43]). The elegance

of Casimir and Polder’s approach, however, allows derivation of the interaction

over all distances from near- to far-field. The calculation can be simplified further

by assigning each electromagnetic-field mode the zero-point energy of a quantum

harmonic oscillator and summing over field-mode interactions [44], as outlined in

Sec. 2.3.

A further extension by Casimir considering the interaction of two perfectly

conducting planar surfaces led to another surprising result: the two (uncharged)

plates feel an attractive force, even in a perfect vacuum and at zero temperature [3].

Naturally, if an atom is attracted to a surface, the force must also come into play

between two surfaces composed of atoms, but Casimir demonstrated that the force

can be derived without reference to the microscopic surface components. Again,

the quantized vacuum-field approach quickly explains the phenomenon: between the

plates, the field modes are limited by the boundary conditions such that the only

allowed wavevectors are half-integer multiples of the distance z between the plates,

while outside the plates an infinite continuous spectrum of field-mode frequencies is

permitted. The energy density both between the two plates and outside is infinite,

since both arise from divergent sums over an infinity of vacuum field modes, but

subtraction of the energy density in the absence of the plates (when the distance

between them goes to infinity) leads to a finite solution, and the derivative of the

resulting energy gives a force2 ∝ z−4. Alternatively, the total radiation pressure

exerted by the field modes between the two plates is less than that exerted on the

outside surfaces, resulting in the attractive force [39].

2Like the CP force, for real metals there is a power scaling crossover such that the force is ∝ z−3
in the near field, when z is much less than the plasma wavelength of the metal.
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The Casimir effect is intriguing as a macroscopic manifestation of quantum

vacuum effects, but Casimir himself perhaps downplayed the result, concluding

his analysis with the comment, “Although the effect is small, an experimental

confirmation seems not unfeasable and might be of a certain interest” [3]. A

quantitative “experimental confirmation” would wait nearly fifty years, but today

Casimir and Casimir-Polder interactions3 generate considerable theoretical and

experimental interest. Lifshitz, Dzyaloshiinsky, and Pitaevski extended the analysis

to account for finite surface conductivity and temperature effects [45, 46], but

quantization of the electromagnetic field in dielectric media and broadband modeling

of a material’s optical response remain theoretical challenges. Calculation of Casimir

and CP effects in non-trivial geometries or when accounting for real surface effects

like structure, surface roughness, or birefringence presents additional analytic and

numerical challenges.

A full understanding of the properties of Casimir and Casimir-Polder interactions

is increasingly critical in today’s era of miniaturized devices and atom traps. Micro-

and nano-electromechanical systems (MEMS and NEMS) encounter Casimir forces

primarily as a nuisance, playing an important role in the irreversible “stiction” that

renders devices inoperable when membranes or lever arms are sucked into nearby

surfaces [47–49], altering nano-oscillator behavior [50, 51], and potentially limiting

the ultimate density of device features [52]. However, considering the strength of the

force at small separations, many groups are intrigued by the possibilities of exploiting

3Within the field, the terminology “Casimir” is generally reserved for interactions between
macroscopic objects and “Casimir-Polder” for interactions involving a microscopic particle (molecule-
molecule or molecule-surface interactions). Casimir-Polder effects are assumed here to encompass
London / van-der-Waals interactions, although some prefer to distinguish between the two and
reference different distance regimes as the van-der-Waals (near-field), Casimir-Polder (far-field
retarded regime), and Lifshitz or thermal regime (very far-field, when temperature effects must
be included).
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the properties of the force in system design [52–54]. The potential for repulsive

Casimir forces has received considerable attention but appears realistic (and has

been demonstrated [55]) only in the regime in which the permittivity of the material

between the two surfaces is intermediate between the surface permittivities [46].

Geometric repulsion is ruled out for symmetric objects in vacuum [56],4 and

metamaterial engineering to generate repulsion between highly magnetic and highly

dielectric materials is tantalizing but challenging due to the broadband nature of

the Casimir effect [59, 60]. Reduction of the force via thin film or surface structure

engineering remains a topic of great experimental and theoretical interest [61–63].

The miniaturization of atomic traps is another technological arena where

Casimir-Polder effects come into play. The “atom-chip” architecture makes use of

the same microfabrication techniques used for MEMS and NEMS to create surface

structures with embedded current conductors which magnetically trap neutral atoms

within tens of microns of the surface [64, 65]. The atom-chip is a critical component in

the quest for scalable quantum information processing with neutral-atom qubits [66],

but the steep trap potentials and overall miniaturization are also advantageous for

portable atomic clocks [67] and atom interferometers [68]. Atom interferometers have

demonstrated extreme sensitivity as inertial sensors [69], and miniaturized precision

sensors [70, 71] are another driving force between the development of atom-chip and

chip-scale devices. However, any time atoms are brought close to surfaces the effects

of the CP interaction must be considered. The loss rate from magnetic traps increases

dramatically for distances less than∼5 µm, in part a result of spin-flips due to thermal

noise [72] but a full explanation of the lifetime reduction (particularly near dielectric

surfaces) must include the reduced effective trap potential resulting from the CP

4Repulsion has been shown to be possible, however, for an oblong particle near a hole in a
plate [57], but the particle is not stably levitated [58].
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attraction [73]. Quantum information applications must also consider level shifts and

decoherence effects near surfaces [74–77], and the CP interaction resulting from novel

microstructure geometries needs further exploration; calculations and experiments

in limited regimes so far reveal interesting effects [78–81]. Analogously to MEMS

and NEMS, although CP effects might normally be considered an obstacle to further

miniaturization, novel microtrap designs may incorporate the CP interaction into the

atom trap potential [82–84].

Casimir and Casimir-Polder interactions affect many other fundamental physics

experiments. Cavity quantum electrodynamics (CQED) experiments pursue strong-

coupling of atoms to cavity modes by decreasing the cavity-mode volume and bringing

atoms closer to the cavity surfaces [85], but in this regime atomic trajectories and

energy levels are significantly altered by the CP interaction [86–88]. Proposed

short-range modifications to the gravitational force [89] are constrained in the

sub-millimeter regime by Casimir experiments [4, 90]; Casimir-Polder atom-surface

experiment proposals also hope to explore non-Newtonian gravitation [91, 92].

However, any search for new physics must distinguish between new effects and

supposedly well-understood forces; some short-range gravitation experiments attempt

to shield [93] or subtract [94] Casimir effects, but such procedures rely upon their own

assumptions about the nature of the interaction.

Although some Casimir experiments have reached a measurement precision of

< 1%, some question whether it is reasonable to claim an equivalent accuracy

or agreement with theory, given both experimental systematics and the fact that

theoretical calculations can vary by 5% or more depending particularly upon the

surface model used [54, 95, 96]. For the most part, CP experiments have yet to

reach the level of precision where such distinctions become important, but the same
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numeric and theoretic challenges affect both fields. Technological developments and

the search for new physics at the sub-millimeter regime motivate the need for better

understanding of these interactions; probes of unexplored geometries and distance

scales are important, and novel experiments reproducing previously measured results

in new ways will also be critical to solidify our confidence in the numeric methods

and material models behind theory calculations.

Adapting a strontium optical lattice clock experiment to CP measurements

promises a new method to directly probe Casimir potentials spectroscopically with

potentially high precision [15]. This method will be adaptable to a variety of

surfaces, and shows promise for measurements through much of the as-yet little-

explored intermediate regime where the length scaling crosses over from near- to

far-field. The following sections will cover the properties of strontium that have made

it a prime candidate for optical frequency standards and precision measurements

(Sec. 2.2), outline the mathematical framework needed to understand the Casimir-

Polder interaction (Sec. 2.3), and detail the proposed measurement scheme, with

an emphasis on comparison of the systematics affecting this procedure vs. previous

experimental work (Sec. 2.4.2).

2.2. Properties of Strontium

An element must meet a few key requirements to be easily laser-cooled and

trapped: it must be possible to obtain a sufficient vapor pressure; it must offer a

strong “cycling” transition with a high photon scattering rate (and if this transition

is not closed, it must be easily “repumped” with the addition of as few extra lasers

as possible); and the required laser systems must be at accessible wavelengths. Early

cold-atom experiments were dominated by the alkali atoms, particularly sodium and
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rubidium. With a single valence electron, these elements have a hydrogen-like basic

atomic-energy-level structure. While sodium initially dominated the field due to a

strong cycling transition at 589 nm, easily accessed with dye lasers, rubidium has

since become the workhorse of atomic physics, with simple Rb MOT’s built even

for undergraduate teaching lab experiments [97]. Rubidium is an attractive element

due to a high vapor pressure at room temperature (allowing direct magneto-optical

trapping without the need for an oven and pre-cooling [98, 99]) and due to the fact

that the primary cycling transition is at 780 nm, a convenient diode-laser wavelength

(in fact, near enough to the wavelength used in commercial CD-ROM drives that

diodes have been particularly cheap and easy to obtain).

The alkaline earths, on the other hand, have two valence electrons; as a result,

the energy-level structure is split into states in which the two electron spins are either

anti-aligned (total spin S = 0) or aligned (S = 1). These “singlet” and “triplet”

states are generally plotted on energy-level diagrams with a horizontal offset because

single-photon transitions between the two manifolds ought to be “forbidden”: the

electric dipole operator cannot drive a magnetic spin-flip. However, in heavier atoms

spin-orbit interactions can be significant, such that the states we derive using the L−S

coupling scheme and label in spectroscopic notation as 2S+1LJ (where L = S, P, D...

for angular momentum L = 0, 1, 2..., and total angular momentum J = |L−S|...|L+

S|) are not actually pure. In atoms with non-zero nuclear momentum I, hyperfine

interactions can further mix the states. As a result, the so-called “intercombination”

transitions between the singlet and triplet manifolds sometimes have non-zero electric-

dipole matrix elements and can be accessed optically, but weak coupling leads to

extremely narrow linewidths compared to dipole-allowed transitions [100, 101].
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FIGURE 2.1. Strontium energy-level diagram for the low-lying states (not to scale),
with electric-dipole transitions relevant to this experiment in bold and some additional
transitions of interest marked with dashed lines. The optical lattice laser at 914 nm
is far-detuned from any resonance but imparts an equal ac Stark shift on the ground
and excited states of the CP-probe transition 1S0 − 3P1.
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The level structure for 88Sr is shown in Fig. 2.1; other alkaline earths (and related

two-valence-electron atoms like Yb and Hg) show similar structures. Strontium offers

a strong cycling transition between the singlet states 1S0 − 1P1 with a linewidth of

32 MHz, corresponding to a maximum scattering rate of 100 million photons/s, ideal

for laser cooling. This transition is not fully closed; a small percentage of atoms (1 in

50,000) can decay from the 1P1 to the 1D2 state. Angular momentum selection rules

prevent decay from this state (L = 2) back to the ground state (L = 0), so atoms in

the 1D2 state decay into the 3P2 or 3P1 states. The 3P1 state has a small but nonzero

coupling to 1S0, so these atoms eventually decay back to the ground state, but in even

isotopes the 3P2 state is metastable: atoms which fall into this state are effectively

lost from the laser-cooling process. As a result, for larger MOT populations and

lifetimes a “repump” laser is required. Several repump transitions are in use or have

been proposed (see Sec. 6.2.1); we use a weak 497 nm beam to cycle atoms out of the

3P2 state up to the 3D2 state, from which they will eventually find their way to 3P1

and then 1S0 to continue interacting with the trap light.

It is worth noting that the wavelengths for the main cooling beam at 461 nm and

the repump beam at 497 nm are somewhat inconvenient: diode lasers at 461 nm have

only just become available, and most strontium groups have historically relied upon

second-harmonic-generation (SHG) to create the blue light. Since typical strontium

experiments use ∼ 80 mW or more for laser-cooling and trapping on the 1S0 − 1P1

transition, this requires a relatively high-power 922 nm source and high-efficiency

resonant-cavity frequency doubling to achieve the needed 461 nm power. (We also

use resonant-cavity SHG for the 497 nm repump, but the power requirements are

considerably more relaxed.) This blue laser-cooling transition, in combination with

the fact that all repump schemes also require dedicated lasers at a very different
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wavelength from the main cooling laser, significantly complicates the laser system

requirements for alkaline-earth cold-atom experiments compared to most alkalis.5

Another factor affecting the simplicity of a cold-atom experiment is the ease of

generating sufficient atoms in the gaseous state, but the alkaline earths generally have

much lower vapor pressures than the alkalis (for a given temperature typically two

orders of magnitude lower than the corresponding alkali). While a heated vapor-cell

MOT has been used for strontium [102, 103], most Sr experiments start with a hot

oven and an additional slowing stage before the MOT capture region (see Sec. 5.2).

Vacuum chamber designs must also guard against the reactivity of strontium, so

the usual copper vacuum gaskets are replaced with nickel, and glass viewports with

sapphire, in locations where Sr exposure is likely; these considerations also affect

reference vapor-cell designs (see Sec. 4.5.1).

The popularity of the alkaline earths for cold-atom experiments was delayed

relative to the alkalis in part due to these experimental challenges, but they

are becoming increasingly attractive systems today, largely as a result of the

narrow intercombination transitions. The decay rate of strontium’s 3P1 level is

Γ/2π = 7.4 kHz; in the even isotopes the 3P0,2 states are essentially metastable (they

cannot decay via emission of a single photon), but hyperfine mixing allows weak

optical-dipole coupling of 1S0 − 3P0 in the odd isotope 87Sr. This transition has

an incredible theoretical linewidth of ∼1 mHz [8, 9] and has been spectroscopically

resolved to better than 1 Hz [104, 105]. Since the minimum temperature reached

by Doppler laser cooling is proportional to the linewidth of the transition (see

Sec. 3.2.1.1), the 689 nm 1S0 − 3P1 transition can be used for a secondary stage

5Although the alkalis also require a repump laser, it is used to depopulate optically dark hyperfine
sublevels of the ground state of the cycling transition and as such is only a small frequency shift
from the main trap laser.
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of laser cooling to reach temperatures ∼ 1 µK, much lower than the ∼ 1 mK offered

by cooling on the 32 MHz 1S0 − 1P1 transition. Cooling on the ultranarrow 698 nm

1S0 − 3P0 transition would be impractical given the low scattering rate (even for the

broader 1S0 − 3P1 transition, novel cooling dynamics arise from the fact that the

Doppler shift from a single photon recoil is on the order of the natural linewidth, and

the scattering force is barely greater than the gravitational force [100] — see Sec. 6.5).

However, the 1S0 − 3P0 transition, with an achievable quality factor Q = ν/∆ν ∼ 1015

or greater, is an obvious candidate for an optical frequency standard or precision

measurement probe.

The existence of ultranarrow transitions, however, is useless without a means of

confining the atoms in a way that leaves the transition frequency unperturbed. The

use of an optical lattice tuned to the “magic wavelength” is a critical component for

the success of neutral-atom clocks. In a magneto-optical trap, magnetic-field shifts

and the constant scattering of near-resonant photons prevent precision frequency

metrology, but far-detuned dipole traps act as conservative potentials with minimal

photon scattering. In the red-detuned optical lattice dipole trap, atoms are trapped

at the antinodes of the standing-wave pattern from two counter-propagating Gaussian

beams (see Sec. 3.3); when cooled to the ground vibrational state of the effectively

harmonic wells, the atoms are tightly confined to a distance scale less than the clock

transition wavelength, such that first-order Doppler shifts are also suppressed (the

Lamb-Dicke effect [106]). However, any light field imparts an ac Stark shift to

every atomic energy level, as described in Sec. 3.3. For most transitions, the ground

and excited states experience opposite energy-level shifts so ac Stark cancellation is

impossible. The intensity dependence of these shifts leads to spatially inhomogenous

frequency shifts in the intensity gradients required for optical dipole trapping.
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The realization that alkaline earth intercombination transitions possess certain

wavelengths for which the first-order ground and excited level shifts are exactly

the same opened the door to neutral atom confinement without intensity-dependent

frequency shifts [107]. The existence of these “magic” wavelengths is again a result

of the 2-electron energy level structure and the largely uncoupled singlet/triplet

manifolds. Because the intercombination lines are so weak, the ac Stark shift imparted

by the dipole trap laser on the ground 1S0 state is a result primarily of coupling to

other higher-lying singlet S = 0 states (the dipole matrix elements of these dipole-

allowed transitions are far greater than those of the intercombination transitions in

the sum in Eq. 3.55). Likewise, the shift for a 3PJ level is determined primarily

by coupling to higher-lying triplet S = 1 states, rather than the coupling to the

lower-energy 1S0. As a result, the 1S0 and 3PJ states shift in the same direction,

and because the frequency tuning of the shift is different for the two levels, there

are certain special wavelengths where both shift exactly the same amount for a given

light intensity.

Before the development of the magic-wavelength optical lattice clock, trapped

ion optical frequency standards far exceeded the stability of neutral atom candidates,

but the achievable signal-to-noise ratio of these systems may limit their ultimate

performance. Optical lattice clocks, on the other hand, offer a huge improvement on

the number of interrogated oscillators, and magic-wavelength trapping creates systems

with extremely low sensitivity to trap or background perturbations. Many national

labs have now developed optical lattice clocks, particularly using strontium [11–14],

and ultra-stable transportable strontium lattice clocks are also under development [36,

108].
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The alkaline earths have other properties which are appealing for various

experiments. The 1S0 and 3P0 states lack electronic angular momentum and therefore

offer high magnetic-field insensitivity. On the other hand, this renders the ground

state unsuitable for magnetic trapping, but without a repump laser the leak from

the 1S0 − 1P1 transition allows accumulation of atoms in the metastable 3P2 state,

which can be magnetically trapped [109]. In general, the magnetic-field tuning for

the cooling transitions 1S0 − 1P1 and 1S0 − 3P1 is also much smaller than that for the

alkalis cooling transitions, requiring large field gradients for magneto-optical trapping,

but these have proven achievable.

Many of the alkaline-earths have several isotopes; for strontium, the four that

occur naturally are listed in Table 2.1. An abundance of isotopes allows experimenters

to choose the atom with the most appealing properties for a given measurement.

For example, strontium’s even isotopes are bosonic; the pairing of nucleons leaves

these isotopes with zero nuclear spin, a simplified level structure lacking hyperfine

sublevels, and a completely angular-momentum-free ground state and hence a high

insensitivity to magnetic field shifts. However, the ultra-narrow, doubly-forbidden

1S0 − 3P0 transition can only be accessed in 87Sr, so this is the isotope used for

strontium optical-lattice clocks. For our initial experiments, we are working with

88Sr, but the fact that the isotope shifts are greater than the trap-transition natural

linewidth means that we can easily tune our MOT lasers to trap other isotopes.

The variation in isotopic properties proved useful for experimenters pursuing a

strontium Bose-Einstein condensate (BEC). The first attempts focused on the most

abundant isotope, 88Sr [110], with high phase-space densities reached by second stage

3P1 cooling in a magic-wavelength dipole trap. (Dipole traps are conservative, and

combining Doppler cooling with dipole trapping would generally not be efficient
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isotope abundance
blue MOT: 461nm red MOT: 689nm repump: 497nm

5s2 1S0 − 5s5p 1P1 5s2 1S0 − 5s5p 3P1 5s5p 3P2 − 5s5d 3D2

84Sr 0.56% -270.8 -351.49 -91.8

86Sr 9.86% -124.8 -163.81 -47.5

87Sr 7.00% -46.5 -62.15 –

88Sr 82.58% 0 0 0

TABLE 2.1. Strontium isotopes: natural abundances and isotope shifts (in MHz,
relative to 88Sr) for transitions relevant to this experiment. (Note that the hyperfine
structure for 87Sr can be larger than the isotope shift; see Ref. [100].)

due to the differential ac Stark shifts of the ground and excited states; the ability

to cool within the dipole trap was another important consequence of the magic-

wavelength traps [107]). However, evaporative cooling was still necessary (normally

this step is carried out in a magnetic trap, but lowering of an optical dipole trap

potential also works); the ground-state scattering properties of the least-abundant

isotope 84Sr proved much more favorable to the formation of a BEC, and this

became the first condensed isotope [111, 112]. (A BEC of 86Sr was eventually

reached by using additional forced evaporative cooling tricks in extremely low-density

dipole traps [113], but the 88Sr BEC was only achieved by sympathetic cooling with

87Sr [114]. Fermi degeneracy of 87Sr has also been demonstrated [115].) Subsequently,

the first BEC generated from laser cooling alone was demonstrated in Sr, taking

advantage of a nearly-degenerate 3P1-cooled reservoir to continuously feed into a

dark-spot central condensation zone [116]; this development holds promise for the

future creation of a nearly continuous-wave “atom-laser” [117].

Strontium has become an important laser-cooled atom in many other

experiments. The sensitivity of optical-lattice clock-like systems have been used for

22



precision measurements of fundamental constants [118] and gravitation [119]. Cold

strontium molecules also hold promise for precision measurements [120, 121] and have

been created from laser-cooled strontium atoms in two labs [122, 123]. Strontium

atom-cavity QED experiments have reached the strong-coupling regime [124] and

explore the prospects for inherently ultranarrow lasers based on coherent excitation

of the intercombination transitions in cavity-coupled lattice-trapped strontium [125,

126]. Quantum simulation of solid-state systems using optical-lattice-trapped neutral

atoms has become an exciting field [127–129], and several schemes for quantum

computation using lattice-trapped strontium have also been proposed [130–133].

There have been a few proposals for Casimir-Polder measurements using lattice-

trapped strontium. One envisions controlled atomic interferometry between adjacent

lattice-well sites to measure the the surface-interaction-generated potential difference

between adjacent wells as a phase shift [16]. This proposal has been adopted into

the FORCA-G (“Force de Casimir et Gravitation à courte distance”) experiment

under development at SYRTE [134], but Rb was chosen as the probe atom for the

ease of generating the needed phase-coherent splitting pulses (simpler with hyperfine

transition Raman pulses as opposed to optical transitions) [16]. Other proposals

hope to directly measure the change in transport behavior of atoms in vertical optical

lattices brought close to surfaces. The Bloch oscillation frequency [135] should shift as

a result of the added CP-potential [92, 136], but the sensitivity of initial experiments

directly monitoring atomic momentum oscillations was an order of magnitude too

small to detect Casimir-Polder effects [137]. Other proposals aim for better resolution

by measuring the shift in the driven tunnelling resonance frequency [138–140], but to

the best of our knowledge this technique has not yet been demonstrated as a CP probe.

Our measurement plan, as described in Sec. 2.4.2, is more akin to that proposed
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by Derevianko et al. [15], which offers finer atom-surface distance resolution and

the precision of direct optical measurement of the narrow-linewidth intercombination

transition shifts resulting from the atom-surface interactions. This proposal best

takes advantage of strontium’s unique properties and the precise characterization

and control demonstrated by strontium optical lattice clocks.

2.3. The Casimir-Polder Effect

The Casimir-Polder interaction is often described as an inherently quantum-

mechanical effect, but the asymptotic behavior in the near- and far-field regimes

can be calculated semi-classically from the interaction energy of a fluctuating atomic

dipole and its surface image (with the inclusion of time-retardation in the far-field).

However, this approach cannot accurately describe the form of the interaction in the

cross-over intermediate regime. This section outlines one approach to a full QED

treatment: with the interaction arising from atomic coupling to the non-zero ground-

state energy of the surface-modified vacuum electromagnetic field modes, the Casimir

potential is expressed as a sum over atomic dipole matrix elements and vacuum field

modes. The infinite mode-sum is renormalized by subtracting off the equivalent

expression for an atom far from the surface, and the sum over dipole-matrix-elements

is dominated by the low-lying energy levels.

Several texts offer good introductions to QED [39, 141]; in this chapter I follow

the formalism of Ref. [43]. Sec. 2.3.1 introduces the concepts and notation needed

for quantized electromagnetic-field-mode expressions, Sec. 2.3.2 introduces atom-field

dipole coupling in the absence of the rotating-wave-approximation, and Sec. 2.3.3

outlines the analytic calculation for the ground-state shift of a spherical atom near

an infinite conducting plane. This is necessarily a simplified model; Sec. 2.3.4 briefly
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considers the additional complications introduced by excited level shifts, polarization

effects, the inclusion of finite temperature effects, and the challenges raised by the

inclusion of real-surface effects like finite conductivity, surface roughness, and non-

planar geometry.

2.3.1. The Quantized Electromagnetic Field

Canonical quantization identifies the electromagnetic field modes as mathemati-

cally equivalent to the normal modes of a quantum harmonic oscillator, such that

each mode of frequency ωk = c|k| and polarization ζ (ζ = 1 or 2, corresponding to

two vectors normal to the propagation direction k̂) is populated/depopulated by the

creation and annihilation operators a†k,ζ(t) and ak,ζ(t). Linearity allows separation of

the time-dependence as ak,ζ(t) = ak,ζe
−iωkt, and the bosonic commutation relation

[
ak,ζ , a

†
k′,ζ′

]
= δ3

k,k′δζ,ζ′ , (2.1)

applies. The total electromagnetic field Hamiltonian is simply the analogous harmonic

oscillator Hamiltonian, summed over all field modes:

HF =
∑
k,ζ

~ωk

(
a†k,ζak,ζ +

1

2

)
. (2.2)

As expected, the Hamiltonian is equivalent to the total field energy (identifying a†a

— which has eigenvalues 0, 1, 2, ... — as the number of “photons” in a given mode),

and, like the harmonic oscillator, the ground-state energy of every mode is offset

from zero by ~ωk/2: the “zero-point energy.” All quantum fields possess a non-zero

ground state; fluctuation is fundamental to quantum mechanics, a consequence of the

Heisenberg uncertainty principle.
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The electromagnetic field mode polarization ε̂k,ζ and all spatial dependence are

wholly contained in the spatial mode functions fk,ζ(r), so that the field operators

become

A(r, t) = i

√
~

2ωε0
fk,ζ(r)ak,ζ(t) + h.c.

E(r, t) = −
√

~ω
2ε0

fk,ζ(r)ak,ζ(t) + h.c.

B(r, t) = i

√
~

2ωε0
[∇× fk,ζ(r)]ak,ζ(t) + h.c.,

(2.3)

where h.c. stands for Hermitian conjugate. The spatial mode functions do not

contribute to the uncoupled field Hamiltonian, but they will come into play when

considering the Hamiltonian for the interaction between the atom and the field.

They are completely independent (as required by the superposition principle) and

normalized (so that the field energy is dependent only on the photon occupation

number a†a as seen in Eq. 2.2), satisfying the orthonormality condition

∫
V

d3r fk,ζ(r) · f∗k,ζ(r) = δ3
k,k′δζ,ζ′ , (2.4)

where the integration volume V depends on the geometry of the situation under

consideration, so must be taken to infinity (i.e., convert any sum over k to an integral;

see below) for free-space.

The spatial mode functions observe the boundary conditions of the geometry

such that, for example, the modes for a conducting box of wall lengths Lx, Ly, and

Lz must obey the condition that the parallel component of the electric field vanishes
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at the planes,

fk,ζ(r) =

√
8

π

[
x̂(ε̂k,ζ · x̂) cos(kxx) sin(kyy) sin(kzz)

+ ŷ(ε̂k,ζ · ŷ) sin(kxx) cos(kyy) sin(kzz)

+ ẑ(ε̂k,ζ · ẑ) sin(kxx) sin(kyy) cos(kzz)
]
,

(2.5)

with the wave-vectors kx, ky, and kz quantized by nonnegative integers ni:

kx =
πnx
Lx

, ky =
πny
Ly

, kz =
πnz
Lz

. (2.6)

The field modes in free space, on the other hand, are as expected simply

fk,ζ(r) =
1√
V
ε̂k,ζe

ik·r, (2.7)

with V →∞ in any final calculation.

To understand this step, note that the free-space field modes can be derived

from imagining a series of boxes of volume V = L3 which impose periodic rather

than conducting boundary conditions [the field at r = (x, y, z) is the same as the

field at r = (x + L, y + L, z + L)] [39]. The quantization condition is then ki =

2πni/V
1/3, and as V → ∞ the spacing between the wave-vectors ∆ki = 2π/V 1/3

becomes infinitesimally small (in free space, any frequency is allowed). The sum over

frequencies in the interaction Hamiltonian becomes an integral,

∑
k

→ V

(2π)3

∫ ∞
−∞

d3k, (2.8)
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and the factor 1/V in |fk,ζ(r)|2 will cancel out of the calculation. Another identity

that will be useful in calculations involving mode-functions is

∑
ζ

(ε̂k,ζ · r̂α)(ε̂k,ζ · r̂β) = δαβ −
kαkβ
k2

, (2.9)

which exploits the fact that polarization components are related to wave-vector

components to eliminate the sum over polarization.

Finally, the mode functions that will be of interest for the simplest Casimir-Polder

calculation, that of an atom near an infinite conducting plane located at z = 0, must

again obey the boundary condition that the parallel electric field component vanishes

at the interface,

fk,ζ(r) =

√
2

V
(ε̂k,ζ,|| sin kzz − iε̂k,ζ,z cos kzz)eik||·r, (2.10)

where again the factor of V 1/2 will cancel as V → ∞ in any calculation. The

subscript || is used to identify the component parallel to the surface, as opposed to

the component in the z-direction perpendicular to the surface; note that these “half-

space” mode-functions contain both the input wave and the reflected component,

and while the wave-vector and polarization components in the parallel direction are

unchanged upon reflection, kz and ε̂k,ζ,z receive a sign change.

2.3.2. Atom-Field Interaction

The Hamiltonian for a free atom (taking the energy E0 of the ground state to

be zero) is simply:

HA =
∑
j

~ωj0|ej〉〈ej|, (2.11)

28



where the frequency for a transition from the ground |g〉 to the excited state |ej〉

is ωj = (Ej − E0)/~. In the long-wavelength or dipole approximation (assuming

variations of the optical field on the scale of the atom size can be neglected), the

interaction between a two-level atom and the electromagnetic field is

HAF = −d · E, (2.12)

where the dipole operator can be considered classically as the atom’s induced dipole

moment in response to the field, or quantum mechanically,

d = 〈g|d|e〉
(
|g〉 〈e|+ |e〉 〈g|

)
= dge(σ + σ†). (2.13)

The dipole matrix element dge := 〈g|d |e〉 with dipole moment d = e r (where e

is the electron charge) is a measure of the strength of the coupling between the

transition and the electromagnetic field; σ† := |e〉 〈g| and σ := |g〉 〈e| are the atomic

raising and lowering operators. Extending to multiple transitions, and incorporating

the expression for the quantized electromagnetic field (Eq. 2.3), the full atom-field

Hamiltonian becomes

HAF = −
∑
j

∑
k,ζ

√
~ωk

2ε0
〈g|d |ej〉 (σj + σ†j) ·

[
fk,ζ(r)ak,ζ + f∗k,ζ(r)a†k,ζ

]
. (2.14)

We can write the coupled atomic and field states as |ej, αk,ζ〉, where αk,ζ denotes the

occupation number for the mode with wavevector k and polarization ζ. Note that

the atom-field interaction will contain four terms which could act upon such a state:

a) σjak,ζ b) σja
†
k,ζ c) σ†jak,ζ d) σ†ja

†
k,ζ . (2.15)
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The second and third terms correspond to familiar, energy-conserving atom-field

events: emission of a photon from an atom in an excited state (adding a photon to a

field mode and dropping the atom down from an excited state), and absorption of a

photon plus promotion of the atom to an excited state. These interactions correspond

to (in a two-level atom with resonance ω0 interacting with a single resonant field mode,

for simplicity)

b) σ a† |e, α〉 = |g, α + 1〉 ∆EA = −~ω0, ∆EF = +~ω0

c) σ†a |g, α〉 = |e, α− 1〉 ∆EA = +~ω0, ∆EF = −~ω0.

(2.16)

Here, ∆EA is the energy gained or lost by the atom, which is compensated by equal

energy transfer ∆EF to or from the light field for these terms. However, terms a) and

d) appear to violate energy conservation:

a) σ a |e, α〉 = |g, α− 1〉 ∆EA = −~ω0, ∆EF = −~ω0

d) σ†a† |g, α〉 = |e, α + 1〉 ∆EA = +~ω0, ∆EF = +~ω0.

(2.17)

Term a) leads to a net change in energy of −2~ω0, while term d) leads to +2~ω0!

In most treatments of atom-field interactions, these terms are ignored with the

justification of the rotating-wave approximation (RWA): recall that a(t) = ae−iωt

while a†(t) = ae+iωt, corresponding to the two components of the complex

electromagnetic field. Similarly, the dipole operator will have positive and negatively-

rotating components, such that σ(t) ∝ e−iωt and σ†(t) ∝ e+iωt. Terms a) and d) will

then oscillate rapidly in time as e±(ω0j+ωk)t, while terms b) and c) evolve more slowly

as e±(ω0j−ωk)t. For a two-level atom interacting with a near-resonant field, applying

the RWA and throwing out the rapidly changing components is justified; for the more
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general situation of a multi-level atom interacting with a potentially broad range of

frequencies, it is not.

Preservation of non-energy-conserving terms may still seem disturbing, but one

way to justify their presence is the time-energy uncertainty principle: if the time

the system spends in the apparently energy-violating configuration is small, the

actual spread in energy may be large enough to encompass the energy-conserving

configuration; this is one justification sometimes used for “virtual states” or “virtual

particles,” and indeed processes a) and d) taken together can be considered as the

emission and re-absorption of a virtual photon, as depicted in Fig. 2.2. This point

is another important consideration regarding these terms: a) and d) always occur

together, and in that context there is no energy violation at all.

|g, 0〉

|g, 0〉

|e, 1〉

γ

FIGURE 2.2. Feynman diagram of atom-field events usually neglected in the rotating-
wave approximation.

It is the contribution from these non-energy-conserving terms that can be shown

to be responsible for the quantum vacuum effects of both the Lamb shift and the

Casimir-Polder interaction. For an atom in the ground state interacting with the

vacuum field, in which the population of all modes is zero such that |ej, αk,ζ〉 = |g, 0k,ζ〉

for all k, ζ, the interaction arises as a second-order perturbation to the ground-state

energy: with the full Hamiltonian given as

H = HA +HF +HAF = H0 +HAF, (2.18)
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the shift to the ground state is

VCP = 〈g, 0k,ζ |H0 |g, 0k,ζ〉+ 〈g, 0k,ζ |HAF |g, 0k,ζ〉+
∑
j

∑
k,ζ

| 〈g, 0k,ζ |HAF |ej, 1k,ζ〉 |2

Eg,0k,ζ − Eej ,1k,ζ
.

(2.19)

It is easy to show that the first two terms go to zero, leaving

VCP = −
∑
j

∑
k,ζ

| 〈g, 0k,ζ |HAF |ej, 1k,ζ〉 |2

~(ωj0 + ωk)
, (2.20)

where we have used Eg,0 = ~ωk/2 and Eej ,1 = ~ω0+3~ωk/2 in the denominator for the

coupled atom-field energies. Inserting the full HAF (Eq. 2.14), the terms normally

responsible for energy-conserving absorption and emission go to zero, leaving the

terms usually discarded in the RWA:

VCP = −
∑
j

∑
k,ζ

ωk

2ε0

| 〈g|d |ej〉 · fk,ζ(r)|2

(ωj0 + ωk)

× 〈g, 0k,ζ |σjak,ζ |ej, 1k,ζ〉 〈ej, 1k,ζ |σ†ja† |g, 0k,ζ〉 .

(2.21)

As the last two terms evaluate to 1, the end result for the ground-state Casimir-Polder

shift looks deceptively simple:

VCP = −
∑
j

∑
k,ζ

ωk

2ε0

| 〈g|d |ej〉 · fk,ζ(r)|2

(ωj0 + ωk)
. (2.22)

However, everything depends upon the mode-functions fk,ζ ; even for simple

geometries, evaluating VCP is non-trivial, as outlined in the next section, and for

more complicated boundary conditions the mode functions themselves can become

quite complex.

32



Without further elaboration, it is worth noting here that the simplest case would

appear to be the interaction of the atom with the free-space vacuum field modes of

Eq. 2.7, and in fact this is the interaction that leads to the Lamb shift. However,

even in this case the result is nontrivial: the sum over frequencies in equation 2.22

(which becomes an integral — see Eq. 2.8) is divergent! Renormalization requires

both subtraction of the electron’s own self-energy and imposing a maximum k-value

above which contributions to the integral are considered negligible [43, 142]; a full

discussion of these issues is outside the scope of this work, as renormalization of the

Casimir-Polder potential is much simpler, but the development of these techniques

was an important advance in theoretical QED. It is also interesting to consider that

both the intrinsic Lamb shift and the mechanical force arising from the CP interaction

can be attributed to the same quantum-vacuum-fluctuation phenomenon depicted in

Fig. 2.2: in the case of the Lamb shift, the emission and absorption of virtual photons

imposes a sort of ac Stark shift upon the bare atomic energy levels, and in the CP

case, the interaction of these virtual photons with a nearby surface (or another atom)

effects a change in that ac Stark shift as a function of atom-surface (atom-atom)

separation, resulting in a mechanical force [39].

2.3.3. Atom-Plane Casimir-Polder Potential

To evaluate the ground-state Casimir-Polder shift for an atom near a perfectly

conducting plane at z = 0, we must evaluate the dot product of d = er in Eq. 2.22

with the half-space mode-functions (Eq. 2.10), which have transverse electric and

transverse magnetic polarization components ε̂k,ζ,|| and ε̂k,ζ,z:

VCP = −
∑
j

∑
k,ζ

ωk

ε0V

| 〈g|d · ε̂k,ζ,|| |ej〉 |2 sin2 kzz + | 〈g|d · ε̂k,ζ,z |ej〉 |2 cos2 kzz

(ωj0 + ωk)
. (2.23)
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The parallel and perpendicular vector components can be rewritten using

v|| = [(v · x̂)x̂+ (v · ŷ)ŷ] and vz = (v · ẑ)ẑ, such that the numerator becomes

[(ε̂k,ζ · x̂)2 + (ε̂k,ζ · ŷ)2]d2
j,|| sin

2 kzz + (ε̂k,ζ · ẑ)2d2
j,z cos2 kzz, (2.24)

with the components of the atomic dipole operator defined as

d2
j,|| = d2

j,x + d2
j,y = | 〈g| x̂ · d |ej〉 |2 + | 〈g| ŷ · d |ej〉 |2,

d2
j,z = | 〈g| ẑ · d |ej〉 |2.

(2.25)

The problem simplifies a bit at this point if we assume a spherically symmetric ground-

state atom, a valid assumption for S-orbital (angular momentum L = 0) ground states

like strontium’s. In this case, x̂ · d = ŷ · d = ẑ · d, so that dj,|| = 2dj,z. We can also

eliminate the sum over polarizations in Eq. 2.23 using Eq. 2.9 and simplify to find

VCP = − 1

ε0V

∑
j

∑
k

ωk

(ωj0 + ωk)

[
d2
j,z

(
1− k2

z

k2
cos(2kzz)

)]
. (2.26)

Note that the mode sum is currently divergent, but this is a good time to renormalize:

for the Casimir-Polder effect, this amounts to simply taking the difference between

this sum for finite z vs the sum for z → ∞, which amounts to subtracting off the

energy when the atom is infinitely far from the plane. The z-independent term then

cancels, leaving

VCP =
1

ε0V

∑
j

∑
k

ωk

(ωj0 + ωk)
d2
j,z

(
k2
z

k2
cos(2kzz)

)
. (2.27)

We also need to take V →∞; as described in Sec. 2.3.1, this is equivalent to taking the

sum over k to an integral, but in this case we would need to modify expression 2.8
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slightly: for the half-space field modes, the periodic quantization conditions on kx

and ky are the same as for the free-space field modes (so the separation ∆kx =

∆ky = 2π/V 1/3), but the conducting-plane limits the kz components to z > 0 and

the quantization condition is ∆kz = π/V 1/3, so the conversion becomes

∑
k

→ V

π(2π)2

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
0

dkz. (2.28)

However, the kz integral in this case is symmetric about 0, and easier to evaluate over

all kz, so the end result is equivalent to using expression 2.8:

VCP =
1

16π3ε0

∑
j

d2
j,z

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz
k2
z

(kj0 + k)k
cos(2kzz). (2.29)

The evaluation of the integral in spherical coordinates is described in Ref. [43]; the

result is

VCP = − 1

(4πε0)4π

∑
j

d2
j,z

(
∂2
z

1

z
f(2kj0z)

)
, (2.30)

where f(x) is one of the auxiliary functions to the sine and cosine integrals,

f(x) = Ci(x) sinx+

[
π

2
− Si(x)

]
cosx

g(x) = −Ci(x) cosx+

[
π

2
− Si(x)

]
sinx = −∂xf(x),

(2.31)

with

Si(x) =

∫ ∞
0

sin t

t+ x
dt =

∫ x

0

sin t

t
dt =

π

2
− f(x) cosx− g(x) sin(x)

Ci(x) =

∫ ∞
0

cos t

t+ x
dt =

∫ ∞
x

cos t

t
dt = f(x) sin(x)− g(x) cos(x).

(2.32)
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These functions determine the length scaling of the Casimir-Polder potential, in

particular the surprising crossover behavior from near-field to far-field scaling: f(0) =

π/2, while for large z′ = 2kj0z, f(z′) ∼ 1/z′. The asymptotic behavior of the plane

CP potential is then

near field : VCP ≈ −
1

4πε0

(
1

4z3

)∑
j

d2
j,z

far field : VCP ≈ −
1

4πε0

(
3

4πz4

)∑
j

d2
j,z

kj0
.

(2.33)

(2.34)

Figure 2.3 shows the full QED expression for the atom-plane CP potential (including

contributions from the lowest 20 energy levels - see Refs. [143] and [144] for tabulated

Sr transition data) versus the asymptotic approximations for 88Sr.

The near-field Casimir-Polder result is exactly equivalent to the result for a

fluctuating dipole interacting with its mirror-image dipole field, obtained semi-

classically without reference to vacuum field modes [42, 145]. The interaction energy

for two dipoles p1 and p2 separated by a distance r1,2 is

Vdip =
p1 · p2 − 3(r̂1,2 · p1)(r̂1,2 · p2)

4πε0|r1,2|3
. (2.35)

Rather than the full interaction energy, we want the energy to bring only one dipole

in from ∞, which is one-half of Vdip. For our geometry of a “mirror” at z = 0,

r1,2 = 2z ẑ, and the dot products with the separation unit vector become the

perpendicular components of the dipole moments. In the near-field, the dipoles are

perfectly correlated in magnitude and direction, but as mirror images the parallel

components are opposite: |p1| = |p2| = |p|, but p1 ·p2 = −p2
||+p2

z. Finally, assuming

symmetry such that the magnitude of oscillations in the two parallel directions are
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FIGURE 2.3. Casimir-Polder atom-plane potential for 88Sr (ground state). VQED
(blue curve) is the full expression from Eq. 2.30, while VvdW (orange) and VCP (green)
are the near- and far-field approximations, respectively, of Eq. 2.33. The inset is the
potential over the atom-plane separation from 200–400 nm, a region of particular
interest for the proposed experiment.

equal to that in the perpendicular z-direction, we have

Vdip = − 1

4πε0

p2
z

4z3
, (2.36)

which is exactly equivalent to Eq. 2.33 if we interpret the classical dipole moment pz

as equivalent to the sum of the quantum dipole moments over all transitions. This is

the classic atom-plane van der Waals result.

In the far field, the CP interaction can still be considered to be the result of

the atom interacting with the field from its own fluctuating image dipole, but the

atomic and image dipoles are no longer correlated. Equation 3.49 is the instantaneous
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interaction energy; in the far-field, retardation effects must be taken into account. It

may seem that the problem can still be treated classically as V = −1
2
(patom · Eimage)

and indeed it can if the full expression, complete with derivatives evaluated at the

retarded time t − 2z/c, is used for the electric field Eimage due to the image dipole.

However, the correct final result is only obtained if the electric field is decomposed into

its positive- and negative-frequency components and “normal ordering” for operator

products is obeyed [145], for which there is no classical justification; one quantum

interpretation is although the total uncoupled dipole and field operators commute,

their induced components do not [96]. Furthermore, the very fact that a symmetric

atom whose time-averaged dipole moment 〈p〉 = 0 has a nonzero 〈p2〉, even at

T = 0 and in the absence of a light field or any other energy source, implies the

quantum origin of the effect. Atomic coupling to the nonzero vacuum field explains

the dipole flucuations, and the fact that the full quantum treatment leading to Eq. 2.30

reproduces both the near- and far-field behavior is further support for the quantum

approach.

In the full QED expression for VCP (Eq. 2.30), the change in length scaling

from near-field 1/z3 (vdW regime) to far-field 1/z4 (CP regime) is governed by

the behavior of the auxiliary sine integral function f(2kj,0z). Therefore, we might

expect the argument of this function to determine the cross-over distance. Indeed,

z = 1/2k0 = λ0/4π, where λ0 is the wavelength of the dominant transition, is often

taken to be the approximate transition distance. A physical argument for the

transition location can be based upon a correlation criterion for dipole / image-dipole

interactions: when the retarded time delay 2z/c is greater than the dipole oscillation

period for a given frequency 1/ω0j the dipoles are no longer correlated [146]. This

argument leads to a cross-over location of z ∼ λ0j. As kj0 increases, f(2kj0z) decreases
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for all z 6= 0 (and the dipole matrix element is typically smaller): as a result, the

lowest-frequency transition with a large dipole matrix element dj,z will dominate the

sum in Eq. 2.30, and this will be the “dominant” λ0 transition that determines the

cross-over distance. However, this is obviously not an abrupt change, and in fact the

full expression Eq. 2.30 is not well-characterized by either the near-field or far-field

expressions throughout the intermediate regime [18, 96].

Finally, it is worth noting here that both the near- and far-field expressions for

the ground-state shift due to a perfect planar conductor are often written in terms of

the atomic polarizability α(ω) in place of the sum over dipole matrix elements (in a

form more similar to that originally calculated by Casimir and Polder [1]):

near field : VCP = − 1

4πε0

(
~

4πz3

)∫ ∞
0

α(iξ)dξ

far field : VCP = − 1

4πε0

(
3~c
8πz4

)
α0.

(2.37)

(2.38)

In the near-field expression, α(ω) is the dynamic polarizability of the ground state

(Eq. 3.57), evaluated as a contour integral over imaginary frequencies ω → iξ (in this

form, the perfect-conductor CP potential is written in a manner analogous to the

expression for the potential near a dielectric surface, which will have additional terms

under the integral related to the permittivity ε(ω) which characterizes the material’s

linear electric polarizability); in the far-field expression, α0 is the static polarizability.

The equivalence between Eq. 2.33 and Eq. 2.37 can be seen by the relation

between the atomic polarizability and the dipole matrix element: the classical

polarizability times the electric field gives the classical atomic dipole moment, and

from the Lorentz model of the atom (as a damped harmonic oscillator consisting of
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an electron bound to a charged nucleus – see Ref. [43]), α(ω) can be written as

α(ω) =
∑
j

e2

m

f0j

(ω2
j0 − ω2 − iγjω)

, (2.39)

where m and e are the mass and charge of the electron, γj is the damping rate for

the excited state (which can be shown equivalent to the decay rate Γj), and f0j is the

absorption oscillator strength, which is related to the dipole matrix element by

d2
jz =

e2~f0j

2mω0

. (2.40)

The static polarizability α0 = α(0) is then

α0 =
∑
j

2d2
jz

~ωj0
, (2.41)

which when inserted into Eq. 2.37 (with ωj0 = kj0/c) reproduces the far-field form of

Eq. 2.33; a similar expression for the imaginary-frequency polarizability (with ω → iξ)

can be shown to reproduce the near-field result. The results of a more complex

calculation for alkaline earth dynamic polarizabilities can be found in Ref. [147].

2.3.4. Further Considerations

When evaluating the ground-state CP potential, we found that only the non-

energy-conserving terms proportional to σa and σ†a† in the atom-field Hamiltonian

HAF gave a non-zero contribution. For an arbitrary excited state |en〉, however, the

equivalent expression to Eq. 2.20 becomes

VCP = −
∑
j 6=n

∑
k,ζ

| 〈en, 0k,ζ |HAF |ej, 1k,ζ〉 |2

~(ωjn + ωk)
, (2.42)
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where ωjn = (Ej0 − En0)/~. In this case, when the state |ej〉 is lower in energy than

|en〉, the contribution from the usual energy-conserving HAF terms σa† and σ†a that

drive real absorption and emission events are not zero. In general, excited states

will often have non-zero angular momentum, so we cannot make the spherical-atom

assumption used throughout the derivation of the ground-state shift.

The result for the excited-state potential is [43]:

VCP = −
∑
j

sgn(ωjn)

(4πε0)8π

[(
d2
j,||/2− d2

j,z

)(1

z
∂2
z

)
+
(
d2
j,||/2 + d2

j,z

)(
∂2
z

1

z

)]
×
[
f(2|kjn|z)−Θ(ωnj)π cos(2|kjn|z)

]
.

(2.43)

This function may appear to be much more complicated than the ground-state shift,

but the form is the same as what would be found for anon-spherically-symmetric

ground state other than the addition of the sign function sgn(ωjn) and the Heaviside

step function Θ(ωnj), both of which come into play only when the state |ej〉 is

lower in energy than |en〉. In this case, sgn(ωjn) = −1 and Θ(ωnj) = 1; otherwise

sgn(ωjn) = 1 and Θ(ωnj) = 0 and the form is identical to the ground-state shift.

These terms can thus be understood to arise from the contribution of real absorption

and emission events driven by σa† and σ†a; their effect can decrease the shift and

adds an oscillatory component to the overall expression.

Another interesting result of Eq. 2.43 applies equally to ground and excited states

lacking spherical symmetry, and that is the tensor nature of the shift. The term

proportional to d2
j,||/2 − d2

j,z, which disappears upon the identification of d2
j,|| = 2dj,z

for the spherical atom, represents the anisotropic response of the atom to dipole

excitation. In the near-field, dominated by the 1/z3 terms, the contribution to the

total shift from each energy level Vj ∝ sgn(ωjn)(d2
j,||/2+dj,z)/z

3, such that orientation
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perpendicular to the surface generates twice the shift of parallel orientation, in keeping

with the expectation from a classical dipole’s anisotropic electric field. In the far field,

however, this orientation dependence surprisingly cancels out [5]; the shift becomes

Vj ∝ sgn(ωjn)d2
j/z

4 where d2
j = d2

j,|| + d2
j,z is the total dipole moment [148]. This

is particularly surprising given the fact that classically we might expect the far-field

behavior to be governed by the radiation pattern of an oscillating dipole antenna,

which is maximum perpendicular to the dipole axis and zero on-axis; this classical

picture would lead us to expect the shift to disappear for a dipole perpendicular to the

surface. This deviation from classical behavior demonstrates again that the far-field

CP interaction requires a quantum treatment.

Note that we have made several simplifying assumptions in the discussion of the

CP potential so far. All of the above assumed an atom interacting with the quantum

vacuum, with on average a photon occupation number per mode of nk = 0. More

generally we should expect the photon occupation number to scale with temperature

T according to boson statistics,

nk =
1

e~ωk/kBT − 1
, (2.44)

an effect which might be expected to significantly alter the Casimir-Polder force at

finite temperature. Indeed, the full temperature-dependent model worked out by

Lifshitz et al. [45, 46] finds that nonzero temperature significantly increases the far-

field CP shift, amounting to another length-scaling transition from the z−4 CP-regime

to a very-far-field regime where the length scaling returns to z−3 [96]. However,

temperature considerations should not be important for our proposed intermediate-

range CP measurements: the number of photons in the field modes contributing

most to the CP potential, those for which ωk ∼ c/d, only becomes significant when
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T ≥ ~c/kBd [39], or equivalently d ≥ ~c/kBT = 7.6 µm at room temperature, far

outside our proposed measurement range.

An approximation made throughout the discussion so far which will impact our

proposed experiments regards the perfect conductivity and infinite-plane nature of

the surface with which the atom interacts. These assumptions allowed the use of the

half-space mode functions (Eq. 2.10), which simplified the sum over electromagnetic

field modes in Eq. 2.22. In general, very few geometries offer such a relatively clean

analytic solution; definition of the mode-functions themselves can be nontrivial, since

any additional surface imposes new boundary conditions affecting all field modes, and

clearly the CP potential does not obey the superposition principle [149, 150].

The perfect-conductivity assumption is a major simplification: all metals become

transparent for very short wavelengths, and finite conductivity corrections on the

order of 10-20% are needed for CP experiments with real metallic surfaces [4, 151].

The presence of absorption considerably complicates the problem of expressing the

electric field in simple mode functions; several approaches to the calculation of Casimir

forces have been developed to encompass dielectric media [4, 45, 46, 96]. One method

appropriate for linear dispersive materials uses the Green tensor to characterize the

material’s electromagnetic response, with the renormalized CP shift resulting from the

atom-field interaction expressed as a contour integral over imaginary (Wick-rotated)

frequencies of the trace of the dot product of the atomic polarizability (tensor, in

the case of a non-spherically-symmetric atom) and the scattering part of the Green

tensor [43, 152]; Eq. 2.37 is the perfect-conductor limit of such an expression for a

spherically-symmetric atom interacting with an infinite plane. Modeling the material

permittivity ε(ω) over all frequencies remains a challenge in any formalism; on the

43



other hand, Casimir and Casimir-Polder measurements can act as probes of material

characteristics.

These theoretical challenges have led to the development of a variety of different

analytic approximation methods and numeric approaches to calculate real-world

Casimir and CP interactions for arbitrary geometries. The pairwise summation

(PWS) approach tackles non-trivial geometries by summing over the microscopic

atom-atom CP contributions of the surface particles [42, 153], but requires known

solutions from very similar geometries for a special normalization procedure [154];

otherwise, this approach can lead to errors as Casimir and CP effects are non-

additive and bulk material properties cannot necessarily be inferred from the

atomic constituents [59, 155]. The proximity-force approximation (PFA) assumes

the CP effect for near-planar geometries can be found from the average planar

equivalent [156], but is valid only in regimes of limited curvature, and when applied

piecewise to approximate other geometries as planar elements it can also run into the

erroneous additivity assumption [155, 157, 158]. Taking advantage of established

classical electromagnetic computational techniques, direct numeric evaluation of

Green’s functions (generally defined for imaginary frequencies, where integrands

are better-behaved) is an accurate but inefficient approach [152, 159–161]. The

dominant numeric method takes a path-integral boundary-element approach, using

the interaction of effective material surface-current elements to handle arbitrary

geometries and dielectric materials, but again this becomes computationally expensive

for small-scale structures [162].

The quest for computationally efficient numeric approaches has motivated

members of our group to explore the possibility of extending a scalar “worldline”

method [158, 163, 164] to electromagnetic fields [165]. This approach, involving
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Monte Carlo integration of the action over a swarm of closed-loop paths, potentially

offers a method that would scale well with increasing geometric complexity, but

currently the formalism is limited to geometries in which the transverse-electric (TE)

and transverse-magnetic (TM) field polarizations decouple. Given the theoretical

challenges, there is a need for experiments capable of measuring the CP interaction

over a broad range of length scales, particularly the effects resulting from real surfaces

with finite conductivity and surface roughness or structure, to test current predictions.

2.4. Probing Casimir-Polder Potentials

2.4.1. Prior Casimir and Casimir-Polder Experiments

Despite the challenges involved in calculation of Casimir and CP potentials,

theory has often far out-paced experimental measurement of these effects. Van

der Waals experiments have a long history, but the retarded atom-plane interaction

predicted by Casimir and Polder in 1948 [3] was only measured in 1993 [6], and the

classic plane-plane interaction [1] was not conclusively demonstrated until 1997 (and

even then a sphere-plane configuration approximated the plane-plane equivalent). Far

field thermal corrections, calculated by Lifshitz in 1956 [45], waited until 2007 [166]

for atom-plane detection and 2011 [167] for the macroscopic analog. Precision Casimir

and CP experiments must not only detect extremely tiny effects and calibrate sub-

micron-scale separations, but also discriminate against competing electrostatic surface

forces and rely upon careful surface characterization for comparison with theory.

An early Casimir experiment [168] demonstrated qualitative agreement (with

near-100% error) with the expected parallel-plate Casimir force, but the challenge

of aligning two plates with zero relative tilt has led most experiments to use the
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sphere-plane geometry, where the only distance factor is that of closest approach.6

Lamoreaux’s landmark 1997 Casimir force detection [7] involved a spherical lens

and an optical flat mounted to a precision torsion pendulum: the Casimir force is

proportional to the restoring force required to keep the pendulum angle fixed as

the lens surface is translated toward the flat, and the relative sphere-plane distance is

measured by the change in the lens-flat capacitance. Mohideen and Roy demonstrated

the use of conventional atomic force microscopy (AFM) to measure Casimir forces,

with a metallic sphere mounted to the AFM cantilever tip and the reflection of light

from the top of the tip monitoring the relative tip deflection as the sphere is brought

near a flat surface [170]. This arrangement has proven a useful configuration in many

later experiments, including those investigating surface-structure effects [171], thin-

film reduction of the Casimir force [61], and the repulsive Casimir effect [55]. Micro-

electromechanical devices (MEMS) have also proven a useful platform for Casimir

measurements, via measurements of the plate tilt of a micro-torsional balance [172]

or the frequency shift of similar structures used as micro-torsional oscillators [50, 62],

both capacitively measured, in response to the presence of a microsphere brought near

one side. (The MEMS torsional oscillator, in particular, has provided some of the

most sensitive Casimir measurements thus far [173].) Note that in all configurations,

the absolute separation distance requires calibration, generally by the application of

a known voltage and characterization of the electrostatic force over the measured

distance regime. However, several systematic effects must be accounted for in this

procedure (particularly residual electrostatic interactions between the two surfaces),

as discussed in Ref. [96].

6The flat plate configuration was finally definitely measured in 2002 [169], but with relatively low
precision compared to sphere-plane experiments.
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Despite the experimental challenges, Casimir experiments have achieved

impressive precision, often well below the 1% error level. Atom-surface CP

experiments have yet to approach this sensitivity, with only the more recent

experiments reaching a precision below 10%. Progress in CP measurements initially

outpaced Casimir experimental results, with near-field atom-surface interactions

measured via the deflection of hot atomic beams into the geometrical shadow of

cylindrical surfaces [174–176]. The results showed qualitative agreement with the

predicted van der Waals potential, but lacked the precision to detect the far-field

crossover. The atomic beam transmission measurements of the Boshier/Hinds group

at Yale brought greater precision: the intensity of hot Rydberg atomic beams passing

through a fixed planar channel of width 5.4 µm decreased as a function of principal

quantum number n, in reasonably close agreement with theory [177], but again only

in the vdW regime. 7 The first experimental observation of the far-field retarded

CP interaction arrived with the Hinds group’s landmark 1993 experiment [6], which

measured the transmission of ground-state Cs atoms passing through a gold wedge-

shaped cavity. The effective cavity length was tuned from 0.7 to 8 µm by changing

the wedge angle, and the resultant transmission curve clearly favored the full retarded

QED expression over the 1/z3 vdW interaction. The experiment could not, however,

resolve the near-field transition to the vdW regime.

Laser-cooled atoms with well-defined kinetic energies brought new precision

and several breakthroughs to the field of CP measurement. The new classes of

measurement techniques which arose included classical and quantum surface reflection

measurements. The first measurement of the interaction between a ground state atom

7The use of Rydberg atoms increases the interaction strength since the electric dipole moment
scales as n4, but it also pushes the vdW/CP crossover to greater distances since dominant Rydberg
wavelengths are in the microwave range.
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and a dielectric wall was demonstrated by Aspect et al. in the mid-1990’s [178, 179]

using a classical “atom-mirror” reflection technique, in which the combination of

the repulsive dipole potential of a blue-detuned evanescent beam combines with the

attractive surface interaction to create a potential barrier for cold atoms impinging

upon a surface. Classically, all atoms with a velocity below the threshold where the

kinetic energy is equal to the barrier maximum are reflected; measurement of this

threshold as a function of evanescent-wave intensity gives insight into the underlying

surface potential. As an evanescent wave decays exponentially perpendicular to the

surface over a length on the order of the optical wavelength, this approach is feasible

primarily for characterization of the near-to-intermediate regime; the threshold

measurement of Aspect et al. hinted at the need to include the retarded interaction

but could not distinguish between theories at the 10% measurement accuracy level

(limited by the required careful characterization of the evanescent-beam properties).

In 2010, Slama et al. used the evanescent-wave-mirror technique to map the atom-

surface interaction over a ∼75 nm distance window in the intermediate regime using

∼100 nK Rb atoms launched toward the surface with controllable velocities from an

accelerated magnetic trap [18]. One of the few experiments to probe this intermediate

distance regime, the data clearly favor the full QED potential over either the near-

field 1/z3 or the far-field 1/z4 asymptotic forms, although a slight overall deviation

from the theoretical QED curve remains unexplained [96].

The step-function threshold for classical reflection is smoothed out by quantum-

mechanical considerations, showing a finite probability for reflection of above-barrier

atomic velocities as well as transmission (tunnelling) of atoms with velocities slightly

below the threshold. Unlike classical reflection, dependent only on the maximum

barrier height, quantum reflection probabilities depend upon the entire potential
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curve, but the ability to observe quantum signatures in evanescent-wave atom-mirror

experiments is limited by averaging over the transverse Gaussian evanescent-beam

profile [180, 181]. However, unlike the classical situation, quantum reflection can

result from purely attractive potentials, when the potential varies rapidly over a

length scale comparable to the atom’s de Broglie wavelength [182], and except for

very light particles atom-surface reflection is dominated by the retarded 1/z4 far-

field CP potential [183]. Shimizu demonstrated the first surface reflection from the

attractive CP potential using a cold beam of metastable Ne atoms grazing silicon and

glass plates such that the plate angle tuned the normal incident velocity, and observed

reflections as high as 40% (the specular nature of the reflection ruled out reflection

from extreme-near-field Coulomb repulsion, which would result in random scatter

from the relatively rough surface) [184]; despite > 20% measurement uncertainty, the

results showed reasonable agreement with theory [183]. The reflectivity is increased by

added surface structure [185]; normal-incident reflection has been demonstrated using

a BEC, and a microstructured pillared surface significantly increased the reflection

probability [186, 187]. While these experiments primarily probe the far-field regime,

reflections of low-mass particles (cold excited He atoms) have also explored the 1/z3

vdW potential [188, 189]. Despite relatively low demonstrated precisions, quantum-

reflection experiments remain interesting as possible probes of the full QED potential.

Laser-cooled atoms were also used in one of the most impressive series of CP

experiments, the first to detect the very-far-field crossover to the thermal or Lifshitz

regime. The Cornell group monitored the center-of-mass oscillation frequency of a

magnetically-trapped Rb BEC near a dielectric, with the change in frequency resulting

from the CP perturbation to the harmonic potential detectable out to almost 12 µm

atom-surface separations [190, 191]. These experiments allowed verification of a
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nonequilibrium temperature model of the Lifshitz-CP effect (with only the surface

at an elevated temperature, heated by a laser from behind) [166, 192, 193]. However,

measurements were limited to the far-field regime (distances greater than ∼6 µm) by

the challenge of magnetic confinement at shorter distances (particularly problematic

over metallic surfaces). Patch effects resulting from Rb surface contamination were

also a serious systematic [17].

At the other end of the distance scale, thermal atomic beams have still played

a role in CP measurements: the Cronin and Vigué groups have explored separation

scales on the order of 10 nm via the measurement of atomic diffraction [194, 195]

and phase shifts [196, 197] imparted on thermal sodium and lithium beams by

nano-structured gratings. Using an interferometric approach, these measurements

have reached agreement with theoretical van-der-Waals models to an experimental

accuracy of a few percent [198, 199]. Other interferometric techniques have been

proposed for CP measurements, including combining interferometry with evanescent-

wave atom-mirrors [200, 201] and the lattice-trapped strontium proposals mentioned

at the end of Sec. 2.2. BEC interferometers have demonstrated great sensitivity to

precision measurement of other (e.g. gravitational) effects and may offer a new method

of probing CP potentials [91, 202], but to the best of our knowledge this technique

has not yet been applied as a CP sensor.

There have been a handful of direct spectroscopic measurements of CP energy-

level shifts, but only in the near-field van der Waals regime, and primarily using

excited atoms. One of the most precise early experiments, again from the Hinds

group at Yale, probed excited Cs atoms passing through a planar cavity; the observed

spectral shifts were consistent with van der Waals theory within 10% [203]. Similar

experimental setups measured radiative shifts in Rydberg energy levels, but resonant
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photon-cavity coupling can complicate interpretation of results when using such

excited atoms [204, 205]. Vapor cell spectroscopic experiments have also played a role:

the spectral dependence of the coefficient of reflection at a vapor-dielectric interface

can be used to probe atomic resonances (“selective reflection spectroscopy”), revealing

shifts and line-shape changes in the reflected vs transmitted beams attributed to

vdW interactions [206, 207]. With careful lineshape analyses these experiments have

detected the contribution of resonant surface polariton effects (resulting in a respulsive

interaction for excited Cs near sapphire cell walls [208]) and have reached the 5-10%

relative error level [209, 210].

Although cold atoms continue to offer great potential for increased precision in

CP measurements, the challenge of trapping atoms near a surface, with a well-defined,

measurable atom-surface separation, remains an obstacle. Hot-atom methods have

best covered the near field, with the vapor cell reflectance measurements averaging

over shifts from atoms within ∼ 100 nm and diffraction grating results likewise best

interpreted as an average dominated by the contribution from atom-surface distances

∼ 10 nm. As found by the Cornell group, magnetic traps for BECs may be limited

to distances greater than ∼ 5 µm. The intermediate regime is potentially explorable

by quantum-reflection measurements, but the only precision experiment we know of

so far is the evanescent-wave-barrier reflection measurements of Slama et al. [18],

which showed a slight discrepancy with theory and which might be difficult to adapt

to distances much greater than the maximum ∼ 225 nm separation, given the rapid

decay of evanescent beams. There remains a great need for further experiments in

the intermediate regime. Furthermore, most cold-atom experiments and proposals

thus far have measured the CP effect indirectly, as a modification to the atomic trap

potential (in the Cornell and proposed lattice oscillation experiments) or the repulsive
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potential (in the evanescent-wave experiments). We are optimistic that direct

spectroscopic detection of CP energy-level shifts in lattice-trapped cold strontium

will eliminate many of the systematics encountered in cold-atom CP experiments

thus far, and will provide a high-precision measurement method applicable to a range

of well-characterized separations in the intermediate regime.

2.4.2. The Strontium Casimir-Polder Experiment

Frequency can be measured more precisely than any other physical observable: in

general, increased averaging leads to increased precision, and the higher the frequency

the more quickly one can obtain a precise result. It is no surprise that many of the

most precise Casimir and CP measurements thus far rely upon the measurement of

a frequency signature: i.e. the resonance of a micromechanical torsional oscillator

(ω0/2π ∼ 1 kHz [173]), the oscillation frequency of a BEC in a magnetic trap

(∼ 230Hz [211]), and spectroscopic measurements in atomic vapor cells. The first

two examples, however, rely upon frequencies derived from the nature of the object

interrogating the shift: the materials and geometry of the MEMS device, the magnetic

trap characteristics. Direct spectroscopic probes of atomic energy level shifts, on

optical transitions cycling at THz frequencies, will remove many of the intermediate

systematics that must be considered in the evaluation of the base frequency. The

ultimate precision of the measurement will depend upon the magnitude of the change

in frequency imparted by the interaction, but the high precision with which optical

frequencies can now be measured implies that there is great promise for optical

spectroscopy in this field.

A direct spectroscopic probe of strontium’s energy level shifts will offer a

straightforward test of our understanding of the CP interaction, and the demonstrated
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high precision of strontium optical lattice clocks implies that these systems are ideal

for the precision measurement of this sensitive effect. Cold strontium atoms loaded

into an optical lattice at the magic wavelength and translated towards a test surface

will experience differential CP shifts of the ground and excited states, detectable

by spectroscopy on the narrow intercombination transitions. The use of the magic

wavelength will avoid trap shifts of the transition, and many of the systematics

affecting other CP measurements are minimized by this experimental approach and

the properties of strontium as the probe-atom choice, including magnetic sensitivity,

interatomic interactions (density/collisional shifts), and surface contamination. The

details of the proposed experimental procedure are described below, along with a

discussion of these systematics and the potential for this experiment to probe novel

distance regimes and atom-surface interaction effects.

The experiment requires initial generation of a laser-cooled strontium sample,

produced by magneto-optical trapping on the strong cycling 1S0 − 1P1, 461 nm

transition. For a large starting sample, we load a “top MOT” directly from a Zeeman-

slowed atomic beam, then transfer to a “bottom” 461 nm MOT in a pyrex cell with

better optical access (see Ch. 4-5). Subsequent transfer into the 689 nm red MOT

will further cool the atoms, allowing greater transfer efficiencies into an optical lattice.

The lattice, formed by a standing wave at the intercombination transition’s “magic”

wavelength λL, could be formed by retroreflection from a test surface, but this would

fix the trap well locations at z = λL/4 + nλ/2 (n an integer). A better option to

allow mapping of the atom-surface potential over a range of distances is mounting

both the lattice fiber launcher and a retroreflecting mirror on an external translation

stage. The test surface must then be at least partially transmissive at the lattice

wavelength, but the atoms can be loaded into the lattice far from the test surface
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and translated toward the surface to map the atom-surface potential as a function of

distance. With an initial bottom 461 nm MOT of ∼ 105 atoms and a conservative

50% transfer efficiency into the 689 nm MOT, we can still expect to end with ∼103

lattice-trapped atoms.

The first generation of experiments will explore the CP shift of the 689 nm

1S0 − 3P1 transition of the most abundant isotope, 88Sr, using a probe beam derived

from the same laser used to create the red MOT. The measured “magic” wavelength

for this transition is 914(1) nm [212], resulting in a lattice well-spacing of 457 nm. For

close atom-wall approaches, the shift between adjacent lattice sites may be resolvable,

but with a reasonable trap depth of 22 µK, achievable with a 380 mW lattice with

a 50 µm beam waist, the dipole potential is overwhelmed by the CP interaction for

distances closer than ∼200 nm (see Fig. 2.4), so it may be preferable to eliminate

all but one lattice site by selective heating of adjacent wells with a resonant TEM0,1

461 nm beam. After loading into the optical lattice, the atoms can be prepared in

the ground motional state by resolved sideband cooling, or (at the cost of more atom

loss) simply by lowering the lattice beam power until only the atoms in the ground

state remain trapped, then increasing the power again for tight confinement. The

trap oscillation frequencies in the longitudinal and radial directions at a 22 µK well

depth are 70 kHz and 300 Hz, respectively, resulting in “pancakes” of atoms trapped

in the one-dimensional wells with a 450 nm radial extent but a width of only 30 nm

in the longitudinal direction. The optical lattice technique thus provides a probe of

excellent spatial resolution compared to prior CP experiments.

Precision translation of the lattice could be accomplished by phase-modulation of

the opposing lattice beams [137, 213, 214], but this introduces additional experimental

complexity (phase modulators also add unwanted structure to Gaussian beams). The
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FIGURE 2.4. Optical lattice (Vlattice) and Casimir-Polder (VCP ) potentials
experienced by ground-state 88Sr atoms near a conductive surface, expressed as a
ground-state frequency shift (∆ν = ∆E/h - left axis) or temperature (∆T = ∆E/kB
- right axis). For atom-surface separations less than ∼ 200 nm, the CP potential
overwhelms the lattice trap potential, as shown by the total potential curve (lattice
phase arbitrarily chosen to illustrate trap distortion).
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linear air-bearing translation stage planned for use in this experiment, an Aerotech

ABL10100-LT used in previous Rb experiments in this lab [215, 216], offers 5 nm

resolution and 50 nm repeatability, more than sufficient for initial experiments.

Calibration of the atom-surface can be accomplished by direct imaging of the

image and reflection at a very shallow angle (∼ 2◦), as used for the Cornell BEC

experiments [191], but this approach limits the distance resolution to ∼ 200 nm

with our f/3.5 lens (numerical aperture NA = 1.75). For more precise distance

calibration, adiabatic transfer into a lattice formed by reflection from the test surface

by gradual decrease of the counter-propagating lattice beam power will fix the well

sites at λ/4 + nλ/2, and the CP shift between adjacent well sites is resolvable,

giving an absolute atom-surface distance measurement. Calibration for subsequent

CP measurements is then limited only by the 50 nm repeatability of the translation

stage.

As the lattice-trapped atoms are brought towards the surface, the ground and

excited states of the intercombination transitions experience differential shifts as a

result of the CP interaction, leading an overall spectroscopic shift of the measured

transition frequency, as plotted in Fig. 2.5 for the 689 nm 1S0 − 3P1 transition in

the perfect conductor limit. Although the shift is greater for the doubly-forbidden

∆J = 0, 2 transitions, and future generations of this experiment could achieve much

greater precision using these probe transitions, the 1S0 − 3P1 transition shift for the

mJ = ±1 excited-state sublevels is easily resolvable over an accessible distance range

of ∼200 – 1µm atom-surface separation, and that of the mJ = 0 sublevel for 200 –

400 nm, given the narrow 7.4 kHz natural linewidth.

The vdW/CP regime crossover length scale for strontium is set by the dominant

transition, 1S0 − 1P1 at 461 nm, so measurements in the ∼50–500 nm region are
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FIGURE 2.5. Casimir-Polder induced 1S0 − 3P1 transition shift vs. atom-surface
separation for excited state sublevels mJ = 0,±1 in the perfect-conductor limit.
The inset expands the same data over the 200–400 nm region, the region of closest
approach for the current available optical lattice power.
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within the theoretically interesting intermediate regime where neither the 1/z3 or

1/z4 asymptotic limits (Eq. 2.33) are good approximations to the full QED expression

for the atomic energy level shifts (Eq. 2.43). To the best of our knowledge, only one

experiment so far has mapped the Casimir-Polder interaction with precision in this

regime: the evanescent-wave reflection experiment of Slama et al. [18], described in the

previous section, which indirectly measured the potential between Rb and glass over

∼ 150−225 nm separations. A direct spectroscopic probe of the 1S0 − 3P1 transition

shift in the 200–400 nm region will be a useful proof-of-principle experiment in a little-

explored distance regime, and future measurements on the ultranarrow 1S0 −3 P0,2

transitions will provide precision tests of theory over an even wider separation window.

However, probing even the 7.5-kHz-linewidth 1S0 − 3P1 transition is not as simple

as sweeping a 689 nm beam across the atoms and watching for fluorescence. A

single saturated atom will scatter on average only 23,000 photons per second (vs

108 photons/s on the strong cycling 1S0 − 1P1 transition); even with 103 atoms per

lattice site, this will be far too low a count rate for detection with our CCD camera.

Narrow-linewidth transitions that cannot be easily probed by fluorescence detection

are often detected by shelving: we can monitor the 461 nm 1S0 − 1P1 fluorescence as

a measure of the ground state population after applying a 689 nm π- pulse. When

resonant, this pulse will transfer population to the relatively long-lived 1P1 state and

cause a dip in the 461 nm signal. The current equipment is sufficient for this detection

scheme: the duration of the π pulse is chosen such that the atoms complete one-half

of the Rabi-flopping |g〉 ↔ |e〉 cycle, or

tπ =
π

Ω
=

π

Γ
√

2(I/Isat)
, (2.45)
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where the Rabi frequency Ω2 = 2Γ2(I/Isat) can be made relatively small by choosing

an intensity I on the order of the saturation intensity Isat (also desirable to limit

saturation broadening) so that tπ ≈ 50 µs, a long enough time-scale that an acousto-

optic modulator (with a typical rise-time of 10-100 ns) can be used for switching. The

< 1 µs resolution of our analog output and analog input computer control system,

described in Sec. 6.1, can easily control the π-pulse amplitude and duration, and

record the 461 nm fluorescence decrease within the 21.5 µs 3P1 excited state lifetime.

The resonance would then be mapped out (so that the center frequency is resolved

to an accuracy much better than either the linewidths of the 689 nm laser or atomic

transition) stepwise, by repeating this cycle for many detunings of the 689 nm probe.

This experiment, although taking advantage of many of the techniques developed

for strontium optical frequency standards, is much simpler than the creation of a full

optical-lattice clock: we are not interested in measuring the absolute frequency of the

1S0 − 3P1 transition, but rather the change in frequency for atoms close to the surface

vs. those far away, where the Casimir-Polder shift is negligible. This means we do

not need a femtosecond frequency comb and associated electronics, merely a means

of measuring the frequency shift of the resonant 689 nm probe. The 689 nm master

laser is locked to the 1S0 − 3P1 transition via saturated-absorption spectroscopy in

a heat-pipe vapor cell, as described in Sec. 4.5.1; subsequent frequency offsets are

controlled by an AOM whose frequency is set by a direct digital synthesizer (DDS)

(see Sec. 6.1) with 1-ps phase stability. The DDS frequency offset required to probe

the transition near the surface vs. far away is thus a direct measure of the transition

shift.

Many systematics affecting other Casimir-Polder measurements are eliminated

or minimized by this proposed measurement scheme and the choice of strontium as

59



the probe atom. The first-order Stark shift of the lattice trap light is removed by

use of the “magic wavelength”, and spectroscopy of ground-vibration-state lattice-

trapped atoms in the Lamb-Dicke regime ensures elimination of first-order Doppler

effects. Strontium offers a low susceptibility to background magnetic field shifts:

unlike the alkalis, strontium’s 1S0 ground state is completely angular momentum free,

and the even isotopes also lack nuclear spin and hence hyperfine structure. (While the

m′F = ±1 sublevels of the excited state do experience a Zeeman shift of 2.1 MHz/G,

the ground state CP shift dominates the overall transition shift, and this magnetic

field tuning factor is much smaller than that of the alkalis due to strontium’s smaller

Landé g-factor gJ — see Sec. 3.2.2.) The magnetic-field insensitivity is important

not only for stray background fields but also minimization of effects due to thermal

surface currents when probing the CP-effect near conductive surfaces; these effects

prevent magnetic confinement of BEC’s near metallic surfaces [72, 73], but strontium

will not only remain trapped in the optical lattice but can measure CP shifts into

nearly the near-field regime with low magnetic field systematics.

The 88Sr isotope also possesses a remarkably small collisional cross-section [217]

(and that of fermionic 87Sr is of course smaller yet). This was a challenge for

groups seeking to form a strontium BEC, as efficient thermalization is required

for evaporative cooling, but it is an advantage for optical frequency standards

and spectroscopic measurements, where collisional broadening and shifts must be

minimized. Our measurement method will be particularly insensitive to collisional

shifts, as any remaining collisional shift affects the atoms both near and far from the

surface and so subtracts out of the CP shift. However, a small value for the collisional

shift will limit systematics due to discrepancies between shot-to-shot atom numbers

during lattice loading. Even if the subtraction is incomplete, the collisional shift

60



(see Sec. 4.5.1) for our expected number density will be trivial at our current level of

precision compared to the atom-surface shift [218, 219]. Note that one might question

whether results like those found in Sec. 2.3, derived for the interaction between a

single particle and surface, even apply in measurements using a large number of

atoms, given the known non-additivity of the interaction. One might assume, for

example, that a BEC is a good approximation of one macroscopic probe particle in a

CP experiment, but some quantum reflection experiments have found that inclusion

of the mean-field energy is required to explain results [187], and the theory behind the

Cornell group’s experiments also included interparticle interactions [190]. The use of

an ultracold, but not degenerate, and relatively diffuse gas of atoms with a very low

collisional cross-section better approximates the situation of non-interacting particles

and should simplify the comparison of measurement to theory.

Finally, a significant systematic in many CP experiments is the effect of atomic

deposits on the test surfaces. Adsorbed atoms (adatoms) potentially modify the

optical properties of the surface, and are known to create local electric fields

(“patch” effects); the effects are particularly insidious to systematic error elimination

because the adsorbed layer coverage may change with temperature, light exposure,

and time [96]. Many experiments requiring close grazing angles for atom-surface

interaction measurements, like the early atomic-beam and current diffraction-grating

experiments, will inevitably create large atom-surface deposits, as will of course

atomic beam transmission and classical- and quantum-reflection measurements. The

implication of these deposits has often been ignored, but as CP experiments approach

the 1% precision level they will become important considerations. The landmark 1993

detection of the retarded CP interaction by Sukenik et al. noted a measurable surface

electric field attributed to sodium atom deposits on the gold-coated transmission
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cavity, and a later analysis suggested adatom patch potentials could create electric

forces mimicking CP forces [6, 220]. A careful study by the Cornell group on

the effect of Rb atom deposition on silicon and titanium surfaces found that the

resultant electric-field-gradient forces would overwhelm the CP effect, concluding that

precision CP measurements using alkali atoms would likely be limited to dielectric

test surfaces [17].

The strontium optical lattice measurement technique should minimize many

of the problems associated with adatom electric-field systematics. By loading the

atoms into the lattice far from the surface, then translating toward the surface

in a controlled manner, we can minimize surface contamination compared to CP

transmission or reflection measurements. Avoiding the use of a BEC significantly

decreases the atom number required for each measurement (such that fewer atoms

can potentially deposit onto the surface) and could lessen the stringent background

vacuum requirements [221], allowing heating of the test surface to remove or diffuse

adatom patches (as demonstrated by Ref. [222]). Finally, the electric fields generated

by adsorbed strontium atoms are predicted to be much smaller than those generated

by the alkalis [16]. Adatoms create electric dipole potentials as a result of effective

fractional charge transfer from the atom to the substrate, and the ionic character of

the bond is a function of the ionization energy of the atom vs. the work function of

the surface. Strontium’s 5.7 eV ionization energy is greater than the work functions

of many substrates of interest (most common metals and semiconductors have work

functions in the 4-5 eV range), so the effective charge transfer should be lower and

the adsorbed bond less ionic, as compared to an alkali like rubidium with a 4.2 eV

ionization energy [17]. This will, however, be an important systematic to investigate in

early experiments. Careful characterization of Sr adatom effects will benefit not only
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future Sr CP experiments, but also Sr atom-chip applications, since adatom patch

potentials can also become problematic in the miniturization of these devices [223].

Initial experiments on this project will attempt to measure the CP shift to

the 1S0 − 3P1 transition induced by the Pyrex wall of the science cell and explore

the effect of strontium surface contamination, by controlled deposition of adatom

layers and application of electric fields (as done for Rb by the Cornell group [211]).

Future measurement of the 1S0 −3 P0,2 transition shifts will bring greater precision

and expansion of the measurable separation, and the experimental technique can

be adapted to measurement of CP effects from many interesting surfaces in the

future. Any material that is at least partially transmissive at the 914 nm lattice-

beam wavelength should be amenable to measurement (given sufficient lattice-beam

power), allowing exploration of birefringence effects, surface roughness, and metallic

and dielectric thin film layers. These materials would be difficult to explore using

the evanescent-wave reflection technique, where the inferred CP potential depends

critically upon careful characterization of the evanescent-wave barrier properties. This

method also links measured CP shifts directly to measured atom-surface distances,

where again the location of the barrier maximum in evanescent-wave experiments

depends upon the barrier beam parameters (and hence surface characterization).

Furthermore, the < 50 nm distance resolution is far finer than that offered by

either the evanescent-wave or the proposed optical lattice interferometric transport

experiments, which will necessarily average measured CP shifts over several wells.

The optical lattice measurement technique thus has great potential to become a new

method for CP measurements in the intermediate distance regime.
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CHAPTER III

LASER COOLING AND TRAPPING: AN OVERVIEW

A thorough understanding of the structure and properties of individual atoms

is naturally an appealing goal in physics: atoms are the fundamental constituents of

the majority of the states of matter we interact with, but aspects of their nature

can only be fully explained through quantum mechanics. Throughout the 20th-

century, experiments probing atomic energy-level structure offered tests of quantum-

mechanical predictions, and the advent of the laser as an intense, coherent, narrow-

band light source led to new levels of spectroscopic precision. The ability to

manipulate and interrogate isolated, non-interacting particles, however, remained a

holy grail but non-trivial in practice: atoms in the gaseous state are typically moving

far too rapidly, and under normal circumstances cooling a sample leads to a phase

transition to the liquid or solid state.

The ability to control the motional states of neutral atoms experienced an

unprecedented leap forward with the development of laser cooling and trapping

techniques, opening new horizons for precision measurement and the exploration

of predicted quantum-mechanical phenomena. This chapter will give a conceptual

and historical introduction to the principles of laser cooling and trapping (Sec. 3.1),

followed by a more mathematical description of the mechanical forces light exerts on

atoms. Unlike Casimir-Polder interactions, most of the physics behind laser cooling

is easily understood from a semi-classical approach, treating the atom quantum-

mechanically but the light field classically. This is a valid approximation when the

number of photons governing the interaction is large, which is true for the mechanical

forces considered in this section. Another very useful approximation is to treat the
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atom as a two-level system: obviously no atom is truly two-level, and as we shall see

there is only so far we can push this assumption (e.g., it is not a valid approach to

the calculation of Casimir-Polder energy-level shifts as shown in Sec. 2.3.2), but it is

a useful starting point. Radiative scattering forces, fundamental for slowing, cooling,

and confinement at extraordinarily low temperatures in the magneto-optical trap

(MOT), are covered in Sec. 3.2; Sec. 3.3 covers the induced dipole forces responsible

for dipole and optical lattice traps. Useful references for thorough discussions of the

interaction of atoms and light are Metcalf and van der Straten’s classic Laser Cooling

and Trapping [224] as well as Refs. [43] and [225].

3.1. Introduction

The understanding that light, which carries momentum, can exert mechanical

forces on matter has a long history. As early as 1619, Johannes Kepler posited

that a comet’s tail points away from the sun as a result of some “solar breeze,” and

long before the photon theory of light Maxwell calculated the radiation pressure that

results from a beam reflecting perfectly off a surface.

The scattering force, arising from the absorption and spontaneous reemission

of resonant photons, can be particularly strong for fast cycling (broad-linewidth)

atomic transitions. Long before the development of the laser, deflection of a beam

of sodium atoms by D2-line resonant scattering was observed [226]. The effective

cross-section for absorption on a strong transition is much greater than the geometric

size of the atom [227], resulting in a scattering force in the propagation direction of

the light beam that can be much greater than the force of gravity. The induced dipole

force, associated with stimulated emission and energy level shifts from non-resonant

light, can also be significant for atoms in light-wave geometries with large intensity
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gradients. Before the first Doppler laser-cooling proposals, dipole force velocity-

distribution modification was proposed through the action of an intense standing-

wave “dragging” atoms towards or away from regions of high intensity [228], and

dipole-force trapping of transparent µm-diameter dielectric spheres by 1969 [227]

demonstrated further potential for the technique.

However, proposed neutral atom optical traps, with potential depths on the order

of 10−1− 10−2 K, were far too weak for direct trapping from hot atomic vapors [229].

Ion traps, on the other hand, were becoming an established tool by the 1960’s [230–

232]: taking advantage of much stronger forces, traps with depths ∼ 1 V already

confined electrons and clouds of ionized atoms to stable orbits inside combinations

of static electric and magnetic fields (the Penning trap) or radiofrequency (RF)

fields (the Paul trap). However, the drive for tighter localization and more precise

spectroscopic measurements also motivated interest in colder samples among ion-

trappers [233]. In 1978, independent proposals by Hänsch and Schawlow [234] and

Wineland and Dehmelt [235] recognized the fact that spontaneous scattering of red-

detuned (below the resonant frequency) laser light can remove energy and cool atomic

samples. The latter pair, both famous ion trappers, couched their argument in the

language of sideband cooling (or a Raman process: transitions from higher to lower

kinetic energy states are more probable than the reverse) as relevant for tightly bound

ions, while Hänsch and Schawlow approached the problem in terms of the velocity-

dependent apparent frequency (and hence apparent detuning) of the light field in

a moving atom’s frame of reference. The two points of view can be shown to be

equivalent [236, 237], but the latter approach is more intuitive when considering free

neutral atoms.

66



Hänsch and Schawlow’s approach to laser cooling depends upon the Doppler

effect (and as a result, cooling of neutral atoms using the scattering force is often

referred to as “Doppler cooling”): in the rest-frame of a moving atom, the apparent

frequency of a laser beam is shifted up or down depending on whether the atom is

moving towards or away from the beam. For red-detuned light, this implies that the

atom will absorb photons preferentially when moving towards the laser beam. With

each absorption, the atom experiences a momentum kick in the direction of the light

field, opposing the atom’s motion. The atom will then spontaneously emit a photon

as it drops from the excited back to the ground state, and get another momentum

kick opposite the direction of emission, but this direction is random, such that over

many scattering events the momentum change from the spontaneous-emission recoils

averages to zero. The atom thus experiences a net cooling force, with the kinetic

energy lost by the atom carried away by the re-emitted photons (the entropy decrease

associated with the cooling of the atom is also offset by the entropy increase of the

light field due to the random nature of spontaneous emission).

For ions tightly bound in electromagnetic traps, the addition of a single red-

detuned laser beam can be enough to achieve Doppler cooling: preferential absorption

occurs when the ions move toward the beam (alternatively, from the point of view of

the tightly-bound-particle spectrum consisting of resonance plus sidebands separated

by the trap harmonic frequency, photons are absorbed on the red sideband), and

stable orbits and long trap lifetimes allow repeated absorptions and low temperatures

to be reached quite quickly. The first, practically simultaneous, demonstrations were

realized in 1978 [238, 239], and within a few years ion trappers were storing single

Ba+ and Mg+ ions cooled to < 50 mK for hours [240–242].
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For a hot atomic beam, on the other hand, the situation is more complicated. The

initial velocity distribution is significantly altered by exposure to an intense counter-

propagating beam with a fixed red detuning: a subset of atoms are cooled, collapsing

into a peak centered at a lower velocity with a much narrower velocity width than

the original distribution [243, 244]. However, the broad spread of atomic velocities

in a hot beam (characterized by the Maxwell-Boltzmann distribution) implies that

only a small fraction of atoms will have an initial velocity within the range for which

the force is appreciable. More importantly, the atoms that are initially resonant will

only decelerate until their changing Doppler shift takes them out of resonance with

the counter-propagating beam.

An obvious solution to these problems is to sweep the laser frequency from the red

toward resonance at a rate that matches the changing Doppler shift of the decelerating

atoms [245]. The initially-resonant atoms will then remain resonant throughout the

interaction, and atoms with lower initial velocities will become resonant over the

course of the sweep. This method is known as “chirp cooling,” and was first explored

by Balykin et al. [246]. The Phillips group also experimented with chirp cooling [247],

using a bias magnetic field to prevent the hyperfine optical-pumping effects in sodium

that had complicated the Russian group’s results. However, the Phillips group only

succeeded in demonstrating chirped slowing from 1000 m/s to ∼ 600 m/s; nearly

simultaneously, Ertmer et al. [248] demonstrated “stopping” and even reversing the

velocity of an initially 620 m/s beam, using a sweep rate 3× slower. (As discussed

further in Sec. 3.2.2, using the maximum possible deceleration is not always the best

option for beam slowing.)

The Phillips group was also exploring a different method of beam slowing, one

that would come to be known as the “Zeeman slower” [249, 250]. The principle

68



is simple: rather than tuning the laser frequency to match the changing Doppler

shift of the decelerating atoms, the Zeeman shift of the atomic sublevels can be

tuned directly by the application of a changing magnetic field. Like chirp cooling,

Zeeman slowing is a very effective technique to not only slow a portion of the atomic

beam but in fact to compress much of the velocity distribution (achieving phase-space

compression – which is the true measure of cooling [224]): at the start of the slower,

the slowing-beam detuning and initial magnetic-field level set the resonant velocity

class (the maximum-speed atoms that can be captured by the slower), but atoms with

initially lower velocities become resonant over the length of the slower as the magnetic

field changes strength. Unlike chirp cooling, this method does not require rapid and

broadband laser frequency tuning, and Zeeman slowing provides a continuous flux of

cold atoms rather than discrete bunches. For these reasons, it is often the preferred

beam-slowing technique and the one used in our strontium apparatus; as such it will

be explored in some depth in Sections 3.2.2.1 and 5.3.

By 1984, both chirp cooling and Zeeman slowing had proven that Doppler

cooling could produce neutral atom samples with temperatures well below 100 mK

(or even “stopped” – in the sense of velocity reversal [248, 251]), and the stage

was set for testing proposed neutral atom traps. Magnetic trapping of low-field-

seeking paramagnetic atoms required these extremely cold samples [252], and the

first neutral atom trap relied upon both Zeeman cooling and a final Doppler-

cooling pulse to load sodium atoms into a quadrupole trap with a depth of only

17 mK [253]. Magnetic traps avoid the heating pitfalls of optical traps, and can

offer trap lifetimes limited only by background gas pressure. The development of

magnetic-trap configurations and techniques would become an important field (and

magnetic trapping plus evaporative cooling was key to the achievement of the first
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Bose-Einstein condensates [20, 21]), but their use is outside the scope of the current

strontium experiment and will not be considered further here.

Magnetic trapping is impossible for atoms lacking a magnetic moment, and

the energy-level shifts involved make magnetic traps incompatible with precision

spectroscopy, so laser trapping remained an important goal. However, scattering-force

traps did not seem the most promising option: the Optical Earnshaw Theorem [254]

argued that there could be no stable trapping point relying only upon the scattering

force from static light fields because the force is proportional to beam intensity. In

analogy to the Earnshaw Theorem of electrostatics, which proves that stable charged-

particle traps cannot be created from stationary electric fields alone because the

divergence of the electric field must be zero in free space (Gauss’s Law), the Optical

Earnshaw Theorem argues that the net flux of intensity in must equal the flux of

intensity out so the divergence of the scattering force (if proportional to intensity

alone) will always be zero: no arrangement of beams can achieve force lines all pointing

inward to a stable trapping point. Ion traps circumvent the Earnshaw Theorem by the

creation of a “pseudo-potential” from oscillating electric fields (the Paul trap), and

proposals for scattering-force traps imagined similar periodically-reversing light-field

configurations [255], but there were concerns that scattering-force damping could

destroy the micromotion that such pseudo-potentials depend upon for stable trap

orbits [256].

If the scattering force alone could not create an actual trap, however, it could

be used to create neutral atom samples with diffusion times far longer than ever

previously realized, through the Doppler-cooling action of three orthogonal pairs of

red-detuned laser beams [256, 257]. This configuration, coined “optical molasses,”

presents the atoms with three-dimensional viscous confinement of a sort: in any
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direction the atom moves, the damping force opposes the atom’s velocity.1 Optical

molasses is not a trap, since there is no restoring force (the atoms are free to diffuse

out of the molasses region defined by the beam-overlap volume), and in the first

demonstration in 1985 chirp pre-cooling was required to slow hot sodium-beam atoms

to velocities less than 3 m/s before loading into optical molasses [257]. Subsequent

cooling in the molasses, however, reached temperatures on the order of 240 µK,

far below anything yet observed in neutral atoms or even ions and consistent with

the predicted minimum Doppler-cooling temperature expected from the balance of

cooling and spontaneous-emission heating effects. The ∼0.2 cm3 molasses volume led

to visibly dense sodium samples (∼106 atoms/cm3) with a lifetime of ∼0.1 s.

With the remarkably cold atoms produced by optical molasses, the first optical

atomic trap was quickly realized: a sodium dipole trap consisting of a single tightly-

focused far-red-detuned laser beam [229]. The trap conception dated from a 1978

proposal [260], but the realization was challenging before optical molasses: the trap

depth of only 5 mK and volume ∼ 10−7 cm3 required dense, cold samples to load,

and even then captured only about 500 atoms. The small trapping potential and

trap volume demonstrate the challenge of dipole-force traps. Unlike the dissipative

scattering force, the dipole force (also known as the gradient force) is conservative,

and cannot be used for cooling. As such, it can be written as the negative gradient

of the interaction energy of the induced atomic dipole moment and the electric field.

Classically, the induced dipole moment is the atomic polarizability times the electric

field [261], so the dipole force is proportional to the intensity gradient: for the single-

beam trap, a fairly high power and a tight beam waist (220 mW and 10 µm in the

1This can also be achieved with just four laser beams, arranged normal to the faces of an imaginary
tetrahedron [258, 259].
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first demonstration) are needed to achieve reasonable trap depths even when capturing

pre-cooled optical-molasses atoms.

However, the atomic polarizability has both a real and imaginary part: the real

part, responsible for oscillations of the dipole in-phase with the electric field, gives

rise to the dipole force, but the imaginary part is responsible for absorption and

heating [262]. Early dipole trap proposals and experiments recognized the need for

relatively large beam detunings to ensure that the dipole force dominated over the

resonant scattering force along the axial trap direction, (such that the net force is

aligned with the gradient of the intensity – for red-detuning, capturing atoms at the

focus – rather than the propagation vector of the beam). However, heating effects

remained problematic because elastic spontaneous scattering is not eliminated by

large detunings: the first demonstrated dipole trap used a detuning of −650 GHz

from the sodium D2 line, but without cooling trap lifetimes were limited to ∼ 4 ms

due to these heating effects [229]. It was apparently believed impossible to achieve true

stability (trapping potential greater than the thermal energy of the atoms) in a single-

beam dipole trap alone [256, 263], so the first demonstrations relied upon alternating

dipole-trapping and Doppler-cooling cycles to achieve longer trap lifetimes [229, 264,

265], and avoided the use of higher-power trap beams as the increased trap depth

would be offset by the increased thermal heating effects [256].

Dipole-force traps using much greater beam detunings would soon demonstrate

that the heating effects were not nearly as dire as initially expected, but in the

meantime, scattering-force traps, potentially 100× deeper and 1015× larger than

the first dipole trap, became a possibility once again. As Pritchard et al. argued

in 1986 [266], the Optical Earnshaw Theorem relies upon the assumption that the

scattering force is proportional to intensity. This is true for the two-level-atom (up to
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the saturation intensity), but real atoms possess internal degrees of freedom: even the

simplest J = 0 to J = 1 transition is three-fold degenerate in the excited state, and

the alkalis used for the early laser cooling experiments possess hyperfine structure

in the ground state as well. Pritchard et al. suggested several ways to use these

extra degrees of freedom to add a spatial dependence to the scattering force, for

example through the addition of magnetic field gradients or changing magnetic field

orientation, or through the use of optical pumping schemes.

The magneto-optical trap (MOT) followed shortly after [267]: combining optical

molasses with a quadrupole magnetic field provides the required spatial tuning of the

scattering force through the Zeeman shift of magnetic sublevels. The first and most

common MOT arrangement uses the six red-detuned beams of optical molasses as well

as two coils with opposing currents in the anti-Helmholtz (AH) configuration to create

the magnetic field, which goes to zero at the intersection of the molasses beams (see

Fig. 3.3 and Fig. 3.4). Each counter-propagating beam pair is orthogonally circular-

polarized, such that each beam interacts with a particular non-zero m′F excited-state

sublevel. This level is spatially tuned by the Zeeman shift into resonance with the

beam pointing toward the center of the trap (and further out of resonance with the

beam pointing away from the center) as the atom moves outward from the center of

the trap. The MOT cools to the same low temperatures as optical molasses alone,

but also adds a restoring force to create a true trap. Even the first demonstration

was wildly successful, capturing 107 atoms in a 0.4-K-deep trap (10× deeper than the

magnetic trap of Migdall et al. [253] and nearly 100× deeper than the first optical-

dipole trap [229], with many orders of magnitude more trapped atoms) and observing

an incredible 1/e lifetime of 2 min (at the lowest 10−11 Torr chamber pressures) [267].
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The strength of the MOT lies in the combination of true spatial confinement

with simultaneous integrated cooling, which is not possible with conservative-force

magnetic or optical-dipole traps. In comparison with optical molasses, which relies

upon the Doppler shift alone to regulate the strength of the light-atom interaction,

the magnetic-field tuning allows the MOT to capture a larger range of velocity classes

which are Zeeman-tuned into resonance over a broad spatial extent. (This allows the

MOT to capture atoms even without pre-cooling, trapping directly from the low-

velocity tail of a thermal distribution in a “vapor cell” MOT [98, 99].) The MOT

also offers a larger damping coefficient (which determines the rate of energy removal)

to rapidly cool captured atoms into a cloud that can be made quite dense (up to

a limit) by increasing the magnetic field. The configuration is extremely robust to

small deviations (e.g. beam misalignments or imperfect circular polarization), and

although there are optimal parameters the MOT can capture and cool atoms over a

wide range of magnetic-field gradients, beam intensities, and beam detunings (when

operating on a strong cycling transition).

The robust trapping and cooling capabilities of the MOT would quickly lead it

to become a “workhorse” of atomic physics, but this did not hinder the continued

development of magnetic and optical-dipole traps. (In fact, it probably helped,

providing a means to rapidly collect large numbers of atoms into very cold, dense

samples before loading into secondary traps.) In a MOT, the constant spontaneous

scattering of photons limits the ability to achieve extremely high densities (desired

for Bose-Einstein condensation) or preserve polarization or coherence (for quantum

measurements); transferring atoms to conservative optical traps remained appealing.

While early dipole traps were in a sense far-detuned (100’s of MHz) from

the nearest atomic resonance, the next step for practical stand-alone optical-dipole
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trapping was the use of much greater trap-beam detunings. The key realization

was the fact that although the trap depth decreases with increased detuning, the

scattering rate decreases even more quickly, allowing greater beam powers to be used

with minimal increased heating. Based on a proposal by the Phillips group [268],

Miller et al. demonstrated a stable optical dipole trap with no additional cooling

beams using a 67-nm-detuned dipole beam [269]. At such a large detuning, trap

powers up to 0.9 W could be used while keeping the photon scattering rate near-

negligible, such that the trap approached a true conservative potential with a

predicted heating-limited trap lifetime of 47 s. Loading from a vapor-cell MOT,

the trap collected 104 Rb atoms with a background-gas-limited 200 ms lifetime,

demonstrating the practicality of the single-beam trap for future experiments.

In keeping with the nomenclature of the Phillips group proposal, such far-detuned

single-beam dipole traps are often known as FORT’s (Far Off-Resonance Traps).

Later experiments would carry the detuning trend even further, using an 8 W Nd:YAG

laser at 1064 nm to trap sodium (nearest resonance: 589 nm) for 0.8 s [270] and

even a 25 W CO2 laser at 10.6 µm to trap cesium (nearest resonance: 852 nm) for

∼ 150 s [271] (at such long wavelengths, these traps rely on an interaction potential

characterized essentially by the static polarizability of the atom, and as such are

known as Quasi-Electrostatic Traps (QUESTs) [272, 273]). With long storage times,

optical-dipole traps can allow creation of much colder, denser samples than possible

in a MOT via evaporative cooling [271], and various trap geometries can be realized

by overlapping multiple focused trap beams [270, 271].

The optical-dipole trap geometry of most interest to this experiment is of course

the optical lattice. The interference pattern of a standing light wave creates multiple

potential wells spaced by one-half the lattice beam wavelength. These periodic arrays
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of dipole traps, which can be created in one- to three-dimensions (a three-dimensional

lattice “crystal” when three standing light waves intersect), can provide extremely

tight confinement in individual wells, allowing localization of atoms trapped in the

wells to length scales on par with those achieved in ion traps. The motional states

of lattice-trapped atoms, like those of trapped ions, are characterized by quantized

vibrational energy levels, such that fluorescence and absorption spectroscopy reveal

elastic resonance plus Raman-sideband features [274].

Optical lattices are a realization of an early laser-cooling proposal by

Letokhov [228], who predicted sub-Doppler spectroscopic features in cold atoms

interacting with a standing light wave. The interaction of non-zero-ground-

state atoms with periodic ac-Stark potentials resulting from optical-molasses beam

interference was central to the explanations of observed sub-Doppler cooling in

early alkali optical molasses experiments [275, 276], and the first observations of

lattice-trapped atoms were a surprise byproduct of explorations of these effects [277],

with MOT fluorescence and absorption spectroscopy revealing surprisingly narrow

features [278, 279]. As predicted by Dicke in 1952 [106] and observed in trapped

ions [280] and optical-lattice trapped atoms [212], Doppler broadening of the resonant

peak is suppressed in particles confined to a length scale less than than the wavelength

of the interrogated transition. In this “Lamb-Dicke” regime, the recoil energy that

leads to Doppler broadening is absorbed instead by the confining potential, and the

suppression and asymmetry of the Raman sidebands provides information about the

strength of confinement and the vibrational-level occupation (with cooling to majority

ground-state motional-energy-level occupation demonstrated again in both trapped

ions [281] and lattice-trapped atoms [212]).
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The narrow spectral features offered by Lamb-Dicke-regime localization

were naturally of great interest for precision spectroscopy and optical-frequency

metrology [11, 282], but optical-lattice-trapped neutral-atom ensembles soon proved

an ideal platform for a wide range of experiments. Periodic arrays of particles can

mimic solid-state systems, and the optical-lattice platform is flexible over a wide

range of parameters (e.g., geometry, particle confinement, and even interparticle

interactions), allowing exploration of many condensed matter phenomena [274, 283].

The configuration is also ideal for quantum chaos experiments [284–286], and neutral-

atom quantum computation proposals also rely upon optical lattice trapping [130,

287–290].

This work cannot begin to cover the range of experiments made possible by

laser cooling of neutral atoms, but hopefully this section has given an overview of

the basic concepts behind the creation of laser-cooled samples and the potential such

systems offer. It is worth keeping in mind the fact that many cold-atom experiments

rely upon multiple stages of laser cooling and trapping: our strontium experiment

begins with Zeeman slowing of a hot atomic beam to produce atoms cold enough

for direct capture in a strong cycling-transition MOT, then transfers the atoms to

a secondary MOT with a location offering better isolation and optical access. The

experiment will proceed to a second stage of cooling in a narrow-line MOT before

loading into an optical lattice for the Casimir-Polder measurement. Each stage offers

its own complexities; the following sections will outline the mathematical background

required for a basic understanding of the physics involved.
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3.2. Scattering Force

The scattering force for a two-level atom is easily understood as the photon

momentum ~k times the scattering rate Γρee. Here, Γ is the excited-state lifetime,

and the excited-state population ρee can be found from the solution of the optical

Bloch equations, or for low intensity simply from the rate equations of the ground

and excited populations, leading to

Rscatt = Γρee =
Γ

2

(
Ω2/2

∆2 + Ω2/2 + Γ2/4

)
, (3.1)

which leads to the scattering force

F = ~kRscatt =
Γ

2

(
Ω2/2

∆2 + Ω2/2 + Γ2/4

)
. (3.2)

Here, ∆ = ω − ω0 is the laser frequency detuning from the atomic resonance ω0 and

the Rabi frequency, given by the transition dipole matrix element times the electric

field divided by ~, characterizes the strength of the atom-laser interaction.

It is often convenient to express the scattering force in terms of the saturation

parameter, s:

F = ~k
Γ

2

(
s

1 + s

)
, (3.3)

where s is a measure of how hard the optical field drives the atomic transition for a

given laser detuning (or at resonance, in the case of the resonant saturation parameter

s0):

s :=
Ω2/2

∆2 + Γ2/4
=

s0

1 + (2∆/Γ)2
; (3.4)
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s0 :=
2Ω2

Γ2
=

I

Isat

. (3.5)

At high intensities (s�1, or the intensity I � Isat where Isat is the resonant saturation

intensity), the atomic populations in the ground and the excited states equalize,

such that the maximum excited state population ρee = 1/2, and the scattering force

saturates at the maximum value

Fmax = ~k
Γ

2
. (3.6)

Equivalently, and again using the relation I/Isat = 2Ω2/Γ2, we can recast the

expression for the scattering force as

F = ~k
Γ

2

I/Isat

1 + I/Isat + 4∆2/Γ2

= ~k
Γ

2

(
I

I + Isat

) (
Γ
2

√
1 + I/Isat

)2

∆2 +
(

Γ
2

√
1 + I/Isat

)2 .

(3.7)

In this form, it is clear that the scattering force as a function of laser detuning ∆ is

as expected a Lorentzian of width Γ
√

1 + I/Isat ≈ Γ for low intensities (I � Isat).

The scattering force as a function of laser detuning for three intensities is plotted in

Fig. 3.1. The increased width with increasing intensity is a result of power broadening

of the transition lineshape: at high intensities, the absorption exactly on resonance

cannot increase above the minimum necessary to equalize the populations in the

ground and excited states, but the absorption in the detuned wings of the Lorentzian

increases.

79



FIGURE 3.1. Scattering force (scaled by Fmax = ~k Γ/2) as a function of detuning
(scaled by Γ), for three resonant saturation parameters s0 = I/Isat, showing the effect
of power broadening at high intensities.

3.2.1. Doppler Effect

Equation 3.7 gives the force experienced by a stationary atom interacting with

a laser field of detuning ∆ = ω − ω0, but an atom moving at a velocity v will see

an additional detuning k · v due to the Doppler effect. The scattering force is then a

function of the atom’s velocity:

F = ~k
Γ

2

I/Isat

1 + I/Isat + 4(∆− k · v)2/Γ2
. (3.8)

We can again rewrite this as a Lorentzian function of velocity to show that,

for a beam propagating along the same direction as the atomic motion, the force

is maximized at k · v = ∆ and the range of velocities for which the force has an
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appreciable affect is Γ/k
√

1 + I/Isat ≈ Γ/k for I � Isat:

F = ~k
Γ

2

(
I

I + Isat

) (
Γ
2k

√
1 + I/Isat

)2

(∆
k
− v)2 +

(
Γ
2k

√
1 + I/Isat

)2 . (3.9)

When the laser field is red-detuned, ∆ < 0, the scattering force can be used to slow

and therefore cool atoms: an atom with a Doppler shift k ·v = ∆ will scatter strongly

from a counter-propagating beam, with the absorption of each photon of momentum

~k decreasing the atom’s velocity along the beam axis by an average vr = ~k/m, the

recoil velocity, until the velocity decrease brings the atom out of resonance or the

transverse velocity components (un-slowed by the counter-propagating beam) take

the atom outside the illumination area.

3.2.1.1. Optical Molasses

The configuration known as “optical molasses” takes advantage of the Doppler

shift to decrease an atom’s velocity along all three axes using three orthogonal pairs

of counter-propagating, red-detuned (∆ < 0) beams. Considering the problem first

along one axis: the beam opposing the component of the atom’s velocity along the

beam axis is shifted closer to resonance, while the co-propagating beam is shifted even

further to the red. As a result, the atom scatters more photons from the counter-

propagating beam and experiences a greater force from this beam, a force that opposes

the direction of motion. Within the range of effective velocities, it can be shown that

the differential force is proportional to a constant times the atom’s velocity: hence

the atom experiences a frictional force along the beam axis.

To better quantify the Doppler cooling effect in one dimension, we can write the

total force experienced by an atom moving with a velocity v along that axis as the
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sum of the two forces F± from the two beams. This is a valid approach only when the

interaction with each beam can be treated independently, which is true when each

beam is far below the saturation intensity, so we can first simplify the expression for

the force from each beam, Eq. 3.8, by making the assumption I � Isat:

F± ' ±~k
Γ

2

I/Isat

1 + 4(∆∓ kv)2/Γ2
. (3.10)

The net force is given by the sum of the forces from the two beams, which are two

Lorentzians of opposite sign, each with a width ∼ Γ/k for I � Isat and displaced

from v = 0 by the Doppler shift kv, as shown in Fig. 3.2. We can write the total force

as

Ftotal = F+ + F−

' ~k
Γ

2

I

Isat

kv

Γ

(
16∆/Γ

1 + 8(∆2 + k2v2)/Γ2 + 16(∆2 − k2v2)2/Γ4

)
.

(3.11)

In this form, it is clear that the magnitude of the net force is given by the maximum

scattering rate times an intensity factor, the ratio of the Doppler shift to the natural

linewidth, and a detuning factor [291]. Further simplification arises through the

assumption that the Doppler shift is small relative to both the linewidth and the

detuning (|kv| � Γ, |∆|):

Fmolasses ' 4~k2 I

Isat

2∆/Γ[
1 + (2∆/Γ)2

]2 v. (3.12)
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Note that the force is proportional to velocity; recognizing also that ∆ < 0 for cooling,

we can identify Fmolasses as a frictional force with a damping coefficient α:

Fmolasses = −α v, α = 4~k2 I

Isat

2|∆|/Γ[
1 + (2∆/Γ)2

]2 . (3.13)

FIGURE 3.2. One-dimensional optical molasses: scattering force as a function of
velocity for two counter-propagating, red-detuned beams (velocity scaled by Γ/k), for
∆ = −Γ/2 and s0 = I/Isat = 0.1. The dashed black curves are the scattering forces
from the right- and left-propagating beams (F+ and F−), and the blue solid curve
is the total force. The dotted black curve is the linear damping-force approximation
(Eq. 3.13), valid only in the regime |kv| � |∆|,Γ.

In three dimensions, the three orthogonal pairs of counter-propagating beams

lead to a frictional force in any direction of travel: the velocity will damp towards zero.

The original demonstrators of the technique, Steve Chu et al., likened the situation

to moving through “a viscous fluid of photons”[257] and coined the phrase “optical

molasses” to describe this configuration. The atom’s motion is heavily overdamped

for any velocity less than the molasses capture range (given by the effective width of
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the interaction, vc ≈ Γ/k). In fact, it appears that the velocity will damp towards

zero (although of course such a result would be unphysical, as discussed in the next

section) with a characteristic damping time of τ = α/m:

Fmolasses = mv̇ = −αv =⇒ v(t) = v0e
−αt/m. (3.14)

The damping rate (for a given intensity) is maximized at ∆ = −Γ/2
√

3, which

corresponds to the maximum slope of the Ftotal(v) curve for |v| � Γ/k, but as shown

in the next section this is not the detuning that gives the minimum temperature.

3.2.1.2. Temperature Limits

The treatment so far has ignored the intrinsic quantum statistical fluctuations

of the scattering force, which arise from two factors: the fluctuation of the photon

absorption rate, and the random direction of spontaneous photon emission. Fmolasses

as derived above is the average absorption force 〈Fabs〉, and the isotropic re-emission

direction implies that the force resulting from spontaneous emission events will

average to zero (〈Fspont〉 = 0), but the total force

F = Fabs + δFabs + Fspont + δFspont (3.15)

includes stochastic contributions δFabs and δFspont that will prevent the total energy

from damping to zero [225]. There are several ultimately equivalent methods

to arrive at the minimum temperature achievable through Doppler cooling alone.

Analogous to Brownian motion, the time-evolution of the energy can be analyzed via a

Langevin [292] or Fokker-Planck [293] equation to derive a velocity distribution which

narrows with cooling until balanced by the broadening effects of the diffusive heating,
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settling to a steady-state Maxwellian distribution with a characteristic temperature

T . Another approach recognizes that the heating effects result in a random walk in

velocity or momentum space [263]: while the average momentum 〈p〉 damps to zero,

the variance 〈p2〉 increases at a rate equal to the photon absorption rate times the

momentum step size ~k, allowing the identification of a diffusion constant 2D = 〈ṗ2〉.

Conservation of energy and application of the equipartition theorem ultimately leads

to the elegant result kBT = D/α [294].

A particularly intuitive approach also relies on conservation of energy to find the

steady-state energy by simply equating the heating rate to the cooling rate [224, 236].

For the one-dimensional two-beam cooling configuration, the average cooling rate is

〈Ėcool〉 = Fmolasses · v = −α〈v〉2, (3.16)

while each absorption/emission event corresponds to an energy gain of 2Erecoil, where

Erecoil = ~2k2/2m is the energy associated with absorbing or emitting a single photon

of momentum ~k. For low intensity, these events occur at a rate 2Γρee (twice the

scattering rate for a single beam), so that

〈Ėheat〉 =
~2k2Γ

m

I

Isat

1

(2∆/Γ)2 + 1
. (3.17)

Setting 〈Ėheat〉 = 〈Ėcool〉 leads to the steady state kinetic energy

〈KE〉 =
1

2
M〈v〉2 =

~Γ

8

(
Γ

2∆
+

2∆

Γ

)
, (3.18)

which is minimized for a detuning ∆ = Γ/2. Equating the minimum energy to 1
2
kBTD

for this one-dimensional cooling scheme leads to an effective “Doppler temperature”
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along the cooling axis of

kBTD = ~Γ/2. (3.19)

This derivation easily generalizes to 2D- and 3D-optical molasses: for N dimensions,

the scattering rate is 2NΓρ22 (assuming 2 beams per dimension, and I � Isat),

so 〈KE〉min ∝ N , but the dimensionality cancels out in the application of the

equipartition theorem, 〈KE〉min = N
2
kBTD, such that the Doppler temperature

remains the same. It is interesting but not surprising to note that TD ∝ Γ: the

heating rate is directly proportional to the rate at which the atom experiences recoil

events, so a larger cooling-transition linewidth leads to a higher Doppler temperature.

The minimum temperature achievable via Doppler cooling was assumed to be a

hard limit, so early experimenters were shocked to discover samples much colder than

TD [295], [296]. Other deviations from Doppler cooling theory had also been observed,

like insensitivity to beam misalignments and intensity imbalances, which would be

predicted to impart large drift velocities in optical molasses [297] (the MOT is much

less sensitive to these issues). These discrepancies were resolved by introducing

additional cooling mechanisms, broadly known as “polarization gradient cooling,”

which take over at low velocities in atoms with degenerate ground-state substructure

moving through a standing wave with a changing polarization profile [275, 276].

The scattering force derived above assumed a two-level atom, but early

experimenters worked primarily with sodium: with nuclear spin I = 3/2, sodium’s

1S1/2 ground state is split into two hyperfine F=1,2 sublevels, which in turn contain

3 and 5 mF sublevels, respectively. Optical pumping is a result of angular momentum

selection rules and variations in the coupling strength between each sublevel and the

electromagnetic field, and results in population orientations among the ground-state

sublevels (such that, for example, σ− polarization will preferentially populate the
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lowest mF = −F sublevel: each σ− photon absorption must drive a transition from

mF → m′F = mF − 1, and while the subsequent decay can take any ∆mF = −1, 0,

or +1 value, the net result of many scattering events will be population transfer to

the lowest mF sublevel). Optical pumping will thus redistribute the populations of

the mF sublevels of a sodium atom traveling through a field of changing polarization,

but the finite time necessary to pump the atoms into the preferred state prevents

the population orientation from following the field polarization adiabatically for non-

zero atomic velocity. This can result in situations where the atom continuously loses

potential energy as the ac-Stark shifts of the ground-state sublevels oscillate with the

field polarization (as in “Sisyphus” cooling, which occurs for optical molasses formed

from orthogonal linear polarizations) or where the ground-state population imbalance

leads to preferential scattering of the opposing beam beyond what the Doppler shift

kv alone would indicate (the form of polarization gradient cooling more relevant to the

molasses in the σ± MOT). Both cooling mechanisms result in a temperature T ∝ I

that minimizes for larger detunings ∆ than expected for Doppler cooling alone, and

otherwise matched the experimental observations of sub-Doppler cooling.

We work primarily with 88Sr, an even isotope with no hyperfine substructure;

without any ground-state degeneracy, there will be no sub-Doppler cooling in our

1S0 − 1P1 blue MOT (although we can also trap 87Sr which would show such effects).

However, another caveat to Doppler cooling theory will apply to the 1S0 − 3P1 red

MOT: note that the derivations above assumed that the Doppler shift |kv| � Γ.

This was a necessary assumption to derive the linearity of the damping force, but

it was also implicit in the overall semi-classical treatment of the force, and hence

atomic momentum, as a continuous function. For narrow-linewidth laser cooling,

these assumptions are no longer valid. In fact, the change in momentum resulting
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from a single photon absorption, which imparts a recoil velocity vr = ~k/m, can

Doppler-shift the resonance enough to significantly effect the photon scattering rate,

such that treating the momentum as a continuous function may not be valid [291].

The intricacies of narrow-linewidth laser cooling will be discussed further in

Sec. 6.5, but for now it is important to note that the consideration of the recoil

energy associated with the absorption of a single photon,

Er =
~2k2

2m
, (3.20)

sets a final fundamental limit on the temperatures attainable by any laser-cooling

method relying upon resonant scattering of photons. This is known as the recoil

temperature

kBTr =
~2k2

m
(3.21)

(assuming at minimum Er per degree of freedom [291]). Sub-Doppler cooling of

degenerate ground-state atoms results in colder samples as the laser intensity I

decreases, but the recoil temperature sets the final limit even for polarization gradient

cooling. For narrow-linewidth cooling, it can appear that TD < Tr, but of course TD

is derived under assumptions that no longer hold true when kvr > Γ, and the recoil

temperature is the relevant parameter.

3.2.2. Zeeman Effect

With the exception of the sub-Doppler cooling discussion, so far we have treated

the theory of the scattering force as if our atom were a two-level system. This is

never strictly true, although for a J = 0 to J ′ = 1 transition it is often a good

approximation. This applies to strontium’s strong 461 nm cooling transition 1S0 − 1P1
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(ignoring for now the 0.02% leak to 1D2), as well as the narrow-linewidth cooling

transition 1S0 − 3P1. Even isotopes lack nuclear spin and hence hyperfine structure,

and while the 1P1 and 3P1 levels are three-fold degenerate (J ′ = 1,m′J = −1, 0, 1)

the symmetry of the transition implies that the atom does not in a sense care about

the polarization of the laser field since the dipole matrix elements of the ground to

excited-state transitions are equal for all m′J sublevels.

The introduction of a magnetic field breaks the excited state degeneracy. To

review the Zeeman effect, the atomic magnetic moment µ = −µBL − gsµBS (with

Bohr magneton µB = ~qe/2me and electron-spin g-factor gs ' 2) couples to the

external magnetic field via HZE = −µ ·B to shift the mJ sublevels by

EZE = gJµBBmJ = ~κBmJ , (3.22)

where the Landé g-factor is

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (3.23)

The result of this interaction for the mJ 6= 0 sublevels is a linear energy shift with

magnetic field proportional to κ = gJµB/~. Strontium’s ground state 1S0 has J = 0

and hence no shift, but the m′J = ±1 sublevels of the excited states of the cooling

transitions experience a shift of magnitude

461 nm 1S0 − 1P1 : κb/2π = 1.4 MHz/G×B

689 nm 1S0 − 3P1 : κr/2π = 2.1 MHz/G×B
(3.24)
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for a magnetic field B measured in Gauss. The field thus acts as an additional

detuning that must be considered in the scattering force,

F = ~k
Γ

2

I/Isat
1 + I/Isat + 4(∆− k · v − κB)2/Γ2

, (3.25)

(absorbing the mJ = ±1 into the sign of κ), allowing a means of spatially tuning

the scattering force for transitions with a non-zero κ by the application of a spatially

varying magnetic field.

The magnetic field also imposes a quantization axis, removing the cooling

transition’s insensitivity to laser polarization. Angular momentum selection rules

require that π-polarization (linear, with polarization parallel to the external B-field)

drives only ∆mJ = m′J −mJ = 0 transitions, while the circular polarizations σ± have

angular momentum ±1 and so drive ∆mJ = ±1 transitions. One case to consider

that will be relevant to our particular choice of Zeeman slower design (Sec. 5.3) is the

situation of linear polarization, but with the electric field perpendicular to the applied

magnetic field: with respect to the quantization axis, this is an equal superposition

of σ+ and σ− and so will drive both ∆mJ = ±1 transitions.2

3.2.2.1. The Zeeman Slower

In the Zeeman slower, a hot atomic beam is slowed by a strongly scattering,

red-detuned, counter-propagating beam, with the changing Doppler shift of the

decelerating atoms compensated by the Zeeman shift from a changing magnetic

2Note that right-hand- and left-hand-circular-polarization (RHCP and LHCP) are equivalent to
σ+ and σ−, respectively, only when the light-field k-vector is aligned parallel to the B-field. The
handedness of the beam is defined relative to the propagation axis k, while the angular momentum is
relative to the quantization axis defined by B - so in fact, when k is anti-parallel to B, RHCP = σ−

and LHCP = σ+.
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field. In order to maximize the scattering force through the entire distance z over

which the atomic beam is slowed, we need the Zeeman shift κB(z) to cancel both

the Doppler shift kv(z) and the slowing laser detuning ∆Z = ω − ω0 such that

ω0 + κB(z) = ω + kv(z), to give an effective detuning

∆eff(z) = ∆Z + kv(z)− κB(z) (3.26)

equal to zero for all z. It is convenient to identify the maximum acceleration that can

be imparted by the maximum force in this case (∆eff = 0, I � Isat) as

amax =
Fmax

m
=

~kΓ

2m
. (3.27)

Then from basic kinematic equations we can find an expression for the velocity as a

function of distance,

v(z) = v0

(
1− z

L0

)1/2

, (3.28)

where the stopping distance L0 is the minimum interaction length required at this

maximum scattering rate to slow the atoms from v0 to vf = 0:

L0 =
v2

0

2amax

. (3.29)

The magnetic field profile needed to cancel the Doppler shift, such that

κB(z) = ∆Z + kv(z), is then given by

B(z) =
∆Z

κ
+
kv0

κ

√
v2

0 − 2amaxz

= Bbias +B0

(
1− z

L0

)1/2

,

(3.30)
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where the maximum magnetic field is

B0 =
kv0

κ
. (3.31)

The additional bias field

Bbias =
∆Z

κ
(3.32)

accommodates a non-zero laser detuning ∆Z, which is important to ensure that the

atoms cease interacting with the slowing beam as they exit the slowing region. The

slowing beam also passes through the top MOT region in our configuration, so a

non-zero slowing beam detuning is critical to avoid perturbing the MOT as much as

possible. A useful choice for Bbias is to set ∆Z ' kv0/2: this minimizes the maximum

B-field, so that B(z = 0) ' B0/2 ' −B(z = L0). This “zero-crossing” Zeeman slower

configuration is not a good option for atoms with ground-state hyperfine sublevels

which would be degenerate at B = 0, because the orientation can scramble in that

location and prevent the atoms from interacting further with the slowing light, but

this is not a problem for strontium.

The derivation above holds for both σ+ and σ− slowing, with the appropriate sign

choice for κ based on which excited state sublevel is addressed by the slowing beam.

Early demonstrations of Zeeman slowing exclusively used ∆mF = +1 transitions,

which require a σ+-polarized slowing beam and a magnetic field which decreases with

increasing z, but it is equally effective to drive a σ− transition with ∆mF = −1

using a magnetic field that increases with increasing z [298, 299]. In fact, the σ−

configuration can be preferable for creating very slow beams of atoms for which a

zero-crossing Zeeman-slower is not possible: because the magnetic field must decrease

in the case of a σ+ Zeeman slower, the slowing laser detuning matches the Doppler
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shift of the slower exit velocity, unless an inconveniently large positive bias field is

applied. The slowing laser then continues interacting with the atoms after the exit

of the slower, and will in fact turn many atoms around if the chosen exit velocity is

near zero. In the case of σ− slowing, the slowing beam can be red-detuned to match

the Doppler shift of the atoms at the entrance of the slower, where the magnetic field

can be set to zero. The magnetic field increases throughout the slower to maintain

the resonance condition then abruptly turns off at the end of the slower, such that

the atoms exiting even at extremely low velocities are no longer interacting with the

far-red-detuned slowing beam.

Despite the implication of the simple analysis given above, we don’t actually

want the atoms to come to a complete stop at the end of the Zeeman slower. The

limiting width of the final velocity distribution will be set by the effective width

∆v = Γ/k
√

1 + I/Isat of the scattering force, so if the center of the final velocity

distribution is chosen to be 0, half the atoms will in fact cross v = 0 and begin to

accelerate back towards the source of the beam just before the exit of the slower.

Furthermore, the slower should be separated from the main trapping region by a

distance great enough to prevent the slowing field from affecting the MOT fields, so

we need the atoms to exit with a non-zero velocity and continue into the MOT region

without too much gravitational droop.

The final velocity choice vf can be taken into account by adjusting the length of

the slower:

L =
v2

0 − v2
f

2a
. (3.33)

The atomic beam divergence increases significantly in the slower so it is best to choose

an exit velocity near (but not above) the capture velocity of the MOT, vf ' vc, to

maximize the flux of trappable atoms. The increased beam divergence is the result
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of two effects. Decreasing the longitudinal velocity vz from v0 to vf while leaving the

transverse components vx = vy ' θ0v0 (with θ0 as the hot atomic beam divergence

angle) unchanged automatically would imply that the divergence upon exiting the

slower would be

θf ' θ0
v0

vf
. (3.34)

This angular increase can be a very significant effect (sometimes referred to as

“beam explosion”), but focusing of the slowing beam to match the atomic beam

divergence avoids this problem [250]. The second cause of beam divergence is the

fact that even with a focused slowing beam the slowing process actually increases the

transverse velocity distribution through the action of randomly directed recoils from

spontaneously emitted photons. This effect can be estimated by assuming that the

mean square of a given transverse velocity component will increase as 1/3 (assuming

isotropic spontaneous emission) times the number of photons scattered times the

square of the recoil velocity vr [300]. The number of photons scattered by the fastest

captured atoms during the Zeeman slowing process will be N = (v0 − vf )/vr, so the

increase in the transverse velocity will be

〈v2
x〉 = 〈v2

y〉 ≈
1

3
Nv2

r =
1

3
(v0 − vf )vr. (3.35)

The angular increase resulting from this effect,

∆θf ≈
√

(v0 − vf )vr√
3vf

, (3.36)

is much smaller than the “beam explosion” caused by using a collimated slowing beam

but remains a nontrivial contribution to beam spreading.
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Another consideration which complicates the derivation of optimal Zeeman

slower parameters is more subtle: for practical and effective beam slowing, one should

not operate at the maximum scattering rate. Using a high saturation intensity and

perfectly tuning the Zeeman field such that ∆eff = 0 maximizes the deceleration

a = amax and minimizes the length of the slower. However, stable operation requires

the change in the Zeeman shift to be less than the change in the Doppler shift over

the entire length of the slower, or equivalently:

dB

dz
≤ k

κ

dv

dz
=
ka

κv
. (3.37)

Operating at amax is equivalent to operating at the equality limit of this “adiabatic

following condition,” or exactly at the peak of the Lorentzian scattering force Eq. 3.25.

However, any imperfection of the magnetic field profile leading to even a temporary

increased gradient violating the adiabatic condition will lead to loss of atoms from

the slowing process. In fact, the stochastic nature of photon absorption and emission

alone will lead to occasional violations when operating at amax. Equivalently, consider

the fact that operating at the peak of the Lorentzian scattering force leads to unstable

regulation of the velocity [301]: the peak force occurs at vmax = κB/k − ∆Z, so for

any v < vmax an acceleration leads to a greater scattering force opposing this increase

in velocity, but any v > vmax leads to a decrease in the scattering force, and further

acceleration leads to less force yet. In other words, any atom whose velocity crosses

vmax at any point can quickly be lost from the slowing process. In this sense, it is

better to operate at an acceleration less than amax in order to remain on the left-hand

slope of the scattering force, ideally where the slope is maximized and the force is

approximately linearly proportional to velocity.
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This consideration is often quantified by the Zeeman slower “design parameter”

η, defined by a = η amax. Since it is impossible to analytically solve the equation

of motion for an atom acted upon by a force that depends upon both the atom’s

velocity and a magnetic field which is itself an optimized function of the velocity,

Bagnato et al. derived an equation of motion for the atom in a frame R decelerating

at a constant rate a = η amax relative to the lab frame, with the assumption that

the Doppler shift in this frame would exactly cancel the Zeeman shift (kvR(z) =

κB(z)) [302, 303]. The scattering force experienced by the atom in this frame then

depends only on the laser detuning and the velocity of the atom v′(z) relative to

frame R, such that the evolution of the relative velocity follows the relation

M
dv′

dt
= −~kΓ

2

s′

1 + s′
+Mη amax = −Fmax

(
s′

1 + s′
− η
)
, (3.38)

where the saturation parameter (Eq. 3.4) in this case includes the Doppler shift due

to the atom’s relative velocity:

s′ =
s0

1 + 4(∆Z + kv′)2/Γ2
. (3.39)

Stable deceleration requires dv′/dt = 0, so the steady-state solutions v′ss are found by

solving s′/(1 + s′) = η, or equivalently s′ = η/(1− η), leading to:

v′ss = −∆Z

k
± Γ

2

√
1− η
η

s0 − 1. (3.40)

Only the negative root is a stable equilibrium point (one way to see this is by plotting

dv′/dt vs v′ [304]: at the smaller zero-crossing the slope is negative so the acceleration

due to any deviation from v′ = v′ss will push v′ back towards the v′ss; vice-versa is
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true at the larger zero-crossing), so the velocity in the lab frame is then given by

kv(z) = kvR + kv′ss = κB(z)−∆Z −
Γ

2

√
1− η
η

s0 − 1, (3.41)

which is offset from the equilibrium condition that would give amax, ∆eff = ∆Z +kv−

κB(z) = 0, by the final term.

Further examination of the cooling process in the decelerating frame can be used

to show that the optimal design parameter η = 0.5, and the ideal slowing beam

intensity is I = 2Isat. Linear expansion of Eq. 3.38 around the stable equilibrium

point v′ss leads to

dv′

dt
= − 1

τD
(v′ − v′ss), (3.42)

with

1

τD
=

2~k2

Ms0

η2

√
1− η
η

s0 − 1; (3.43)

which shows that the velocity in the decelerating frame damps toward the equilibrium

condition at a rate given by τ−1
D . Cooling requires compression of the velocity

distribution [224], so maximizing this damping rate optimizes the cooling process.

The damping rate peaks at η = 0.5 and s0 = 2 to give τ−1
D = ~k2/4M (corresponding

to a damping time τD = 30 µs for strontium). While this results in optimal damping

for a perfect magnetic field profile, it is common to choose η ≈ 0.4 to account for any

deviation in the actual magnetic field.

The choice of η affects both the length of the slower and the magnetic field profile,

modifying equations 3.33 and 3.30 to be

L =
v2

0 − v2
f

2 η amax

Zeeman slower length

B(z) =
∆

κ
+
k

κ

√
v2

0 − 2η amaxz B−field profile.

(3.44)
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Note that the Zeeman slower can be quite effective at capturing a substantial fraction

of the initial thermal velocity distribution and slowing all of these atoms to the low

final velocity vf : if the slowing beam detuning ∆ and magnetic field B(0) at the start

of the slowing region are chosen such that atoms with a velocity v0 are resonant, any

atoms faster than v0 are very little affected by the slower, but all atoms with a speed

v such that v0 ≤ v ≤ vf will come into resonance at some point along the length

of the slower as the magnetic field changes (as demonstrated in Fig. 5.7 of Sec. 5.3,

which simulates the velocity evolution for several velocity classes passing through the

Sr experiment Zeeman slower). A Zeeman slower can thus compress a majority of

the thermal distribution, with the maximum v0 limited primarily by practical length

and maximum B-field considerations.

The Zeeman slower magnetic field gradient is traditionally generated by a tapered

solenoid, but permanent magnet designs can simplify construction and operation [122,

300, 305–308], as will be discussed further in Sec. 3.2.2.1. The magnetic field given

in Eq. 3.30 or Eq. 3.44 is assumed to fall abruptly to zero outside the slowing region,

which is of course an idealization; calculations of the optimal field configuration when

taking into account inevitable fringe fields and/or shielding materials can be quite

involved [304, 309, 310]. The scattering force is also dependent upon the relative

intensity s0 of the slowing beam, which we have assumed here to be a constant, but

absorption (which could be significant, as the beam density becomes large near the

exit of the slower) and focusing of the slowing beam (useful for limiting the increase

of transverse velocity components) lead to a saturation parameter that is a function

of position [306]. These subtleties will be explored further in the discussion of the

Zeeman design used for our Sr experiment in Sec. 5.3

98



3.2.3. The Magneto-Optical Trap (MOT)

Optical molasses alone is not a trap: the random walk of an atom scattering

red-detuned photons from every direction leads to a mean free path much less than

width of the beams, such that many recoil events occur before the atom can wander

out of the molasses region,but there is no restoring force to confine atoms inside this

region. The MOT combines σ± optical molasses with the quadrupole field created by

a set of current coils in the anti-Helmholtz (AH) configuration (equal and opposing

currents, with the distance d between coils equal to the coil radius R) to create the

necessary conditions for both the rapid cooling achieved by optical molasses and the

restoring force required to create a confining potential.

FIGURE 3.3. Magneto-optical trap (MOT) diagram: coil configuration and required
trap beam polarizations for the magnetic field orientation used in both the top and
bottom Sr MOTs.
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Figure 3.3 depicts the traditional 6-beam MOT geometry; the optical molasses

region overlaps the zero-field center of the quadrupole magnetic field. The resultant

atomic energy-level shifts in one-dimension are shown in Fig. 3.4: the trap

configuration requires the correct relative orientation of the σ± beams and the

magnetic field such that each trap beam comes into resonance with atoms moving

toward the beam as the atoms move away from the center. The Zeeman effect shifts

the excited-state m′J 6= 0 sublevels as the atoms move away from the center to bring

the atoms into resonance with the opposing MOT beams, providing the spatial tuning

of the scattering force.

In one dimension, we can write the total scattering force on an atom moving

along the axis as the sum of the forces from the left- and right-propagating beams, as

we did for optical molasses in Sec. 3.2.1.1. Again taking the assumption that I � Isat,

the force from each beam becomes

Fσ± = ±~k
Γ

2

I/Isat

1 + 4(∆MOT ∓ kv ∓ κAz)2/Γ2
, (3.45)

where in the configuration depicted in Fig. 3.4, Fσ+ and Fσ− arise from the rightward-

and leftward-propagating beams, respectively. Here, as in Sec. 3.2.2, κ = gJµB/~,

and we have taken A = dB/dz as the gradient of the magnetic field. The total

one-dimensional MOT scattering force is then FMOT = Fσ+ + Fσ− .

Similar to Sec. 3.2.1.1, the full expression simplifies considerably in the limit

|kv| � |∆|,Γ [224, 225]. The total force can then be written as

FMOT = −α v − ktrap z, (3.46)
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FIGURE 3.4. MOT Zeeman shift and scattering force: for the axial field of
Fig. 3.3, the upward-propagating beam must have σ− polarization, and the downward-
propagating beam σ+, for a total scattering force with the correct sign for confinement.
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where the damping coefficient α is given by 3.13. The second term corresponds to

a restoring force with spring-constant ktrap = ακA/k. The MOT thus retains the

powerful cooling properties of optical molasses, rapidly damping atomic motion on

the same characteristic timescale τMOT = α/m, and the confined motion corresponds

to that of heavily overdamped harmonic oscillation at a frequency ωMOT =
√
ktrap/m.

In three dimensions, Gauss’s law (∇ · B = 0) implies that the direction of the

field relative to the trap center will be opposite in the axial and radial directions

(with the axial direction defined by the AH-coil-pair axis). The axial field gradient

must be twice as large as the radial field gradient, so MOT confinement is typically

tighter in the axial vs. radial directions: the axial ktrap is twice as large as the radial

ktrap, and the oscillation frequencies will also differ by a factor of two.

The configuration depicted in Fig. 3.3 corresponds to the orientation of our coils

for both the bottom and top Sr MOTs: the axial magnetic field points in towards

the center of the trap, but the field points outward from the center in the radial

directions. (The opposite configuration is easy to achieve by reversing the current

in the AH coils, but the polarization of all beams must then switch as well.) The

level shifts depicted in Fig. 3.4 are along the axial direction (vertical for our top

MOT); the radial direction level shifts will be the mirror image to those shown, and

the molasses beams must also be the opposite polarization from the axial beams to

result in the same force diagram and achieve stable trapping in all three dimensions

(although in general calculation of MOT dynamics in three dimensions is nontrivial

— particularly when considering the effective lattice potentials that arise from MOT

beam interference).

Note that if we keep the same magnetic field along the axial direction, but

reverse the polarization of the two molasses beams, we will switch from a trapping
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configuration to a configuration where the two axial beams will push atoms away

from the center of the trap. This is an important concept in the operation of the 2D

top MOT that we use to load our science cell MOT, and will be discussed further in

Sec. 6.2. Chapters 5 and 6 provide further discussion of practical MOT considerations

like field gradient, MOT size, and MOT capture and loss dynamics, with specific

reference to our top and bottom Sr MOT realizations.

3.3. Optical Dipole Force

The atomic interaction with the electromagnetic field can be treated classically

as a dipole oscillating in response to the field excitation, with the strength of the

response characterized by the atomic polarizability α(ω). As in the quantum atom-

field Hamiltonian 2.12, the energy of the interaction (with a factor of 1/2 to account

for the fact that the dipole moment is induced by coupling to the electromagnetic

field) is

Vdipole = −1

2
d · E, (3.47)

where the atomic dipole moment is given by

d± = −e r± = α(ω)E±. (3.48)

Here, the electron of charge e is assumed displaced by a distance r from the nucleus.

The complex electric field positive- and negative-rotating components are denoted by

E+ and E−, which induce similar oscillating components in the electron position and

hence the dipole moment.

A damped-harmonic-oscillator model for the electron equation of motion (the

Lorentz model [43]) leads to a complex solution for α(ω), which can be interpreted

103



as the phase lag in the electron’s response to the light field. This lag is related

to the electron’s radiation reaction force (and the damping term works out to be

equivalent to Γ); as such the imaginary component Im[α] is associated with the

scattering force arising from absorption and spontaneous emission, while Re[α] is

associated with oscillation in phase with the driving field and the optical dipole

force. The coherent, in-phase component can be interpreted as a stimulated emission

response, a picture which explains the dependence of the dipole force on the existence

of intensity gradients: for a plane wave, the net effect of absorption followed by

stimulated emission involves no redistribution of momentum from the field to the

atom, and there is no optical dipole force.

The classical picture also gives an intuitive approach to understanding the

detuning dependence of the dipole force. The phase of any driven harmonic oscillator

far from resonance matches that of the driving force when the drive frequency is far

below resonance (∆ < 0, or red-detuned), but is opposite when the drive frequency

is far above resonance (∆ > 0, or blue-detuned). As a result, an atom is attracted

to / repelled from regions of high intensity for a dipole trap beam far detuned to the

red / blue, respectively [311].

Under the approximation of one dominant resonance and large detuning, the

classical approach to the dipole potential leads to

Vdip =
~Γ2

8∆

I(r)

Isat

. (3.49)

This is equivalent to the result found semiclassically under the two-level-atom and

rotating-wave approximations: when the detuning is large, the atom remains almost

entirely in the ground state, so the excited-state population is eliminated from the
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problem, and the effective center-of-mass Hamiltonian becomes:

Heff =
p2

2m
+ Veff(r), (3.50)

where the first term is simply the kinetic energy of the atom and the second term,

Veff(r) =
~|Ω(r)|2

4∆
=

~Γ2

8∆

I(r)

Isat

, (3.51)

is equivalent to the ac-Stark shift of the ground state. An elegant approach

to this result is the ”dressed-atom” model introduced by Dalibard and Cohen-

Tannoudji [312], which demonstrates that the eigenlevels of the atom-plus-photon

Hamiltonian are shifted from the uncoupled system energy levels by the ac-Stark

effect.

As a conservative potential, the dipole force is given by the negative gradient of

the potential (Fdip = −∇Vdip) and so goes to zero unless ∇I(r) 6= 0. Note that the

potential is proportional to the trap intensity and inversely proportional to detuning;

this is in contrast to the scattering rate (Eq. 3.1), which in the limit of large detuning

(|∆| � Ω,Γ) becomes

Rscatt =
Γ2Ω2

4∆2
. (3.52)

Residual photon scattering is responsible for dipole trap heating, so the fact that

the scattering rate is inversely proportional to the square of the detuning is key to

the success of the far-off-resonant dipole trap (FORT [268, 269]): with increased

dipole-trap beam detuning, the scattering rate falls off more quickly than the dipole

potential, such that larger beam intensities can be used to increase the trap depth

with minimal photon scattering.
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For accurate ac-Stark and dipole-potential calculations, the simple expression 3.51

is valid only to first order in Ω/∆, since both the two-level-atom and rotating-wave

assumptions are crude approximations when considering atomic interaction with far-

detuned fields. The field couples the ground state to all higher-lying energy levels

with a nontrivial dipole coupling rate, as given by the Rabi frequency Ω = −dgeE0/~,

where E0 is the electric field amplitude and dge = 〈g| ε̂ · d |e〉 is the dipole matrix

element which determines the strength of the ground to excited level coupling for a

given electric field polarization ε̂. The full expression becomes a sum over all excited

states |ej〉 with the energy difference between |g〉 and |e〉 given by ~ωj0:

Vdip(r) = −~
4
|E0(r)|2

∑
j

| 〈g| ε̂ · d |ej〉 |2
(

1

ω + ωj0
− 1

ω − ωj0

)
. (3.53)

For practical calculations, the sum can often be truncated after the first ∼10 excited

state levels as the higher-lying terms give negligible contributions, but we need the

dipole matrix elements for those lower transitions.

Dipole matrix elements are related to measured transition rates through

Γik =
1

4πε0

4ω3
ik

3~c3
| 〈ei| ε̂ · d |ek〉 |2, (3.54)

but experimentalists often report measured excited state lifetimes 1/ΓT or the total

transition rate ΓT from the excited state to all states, in which case the branching

ratios of possible decay paths must be taken into account to derive Γik. The ratio

Γik/ΓT is determined by a geometric factor that depends upon the laser polarization

and the ground and excited state spin and angular momentum quantum numbers, as

discussed (and tabulated for relevant Sr transitions) in Refs. [143] and [144].
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In terms of transition rates, the ac-Stark shift of the ground state becomes

Vdip(r) = −3πε0c
3

4
|E0(r)|2

∑
j

Γj0
ω2
j0

(
1

ω + ωj0
− 1

ω − ωj0

)
, (3.55)

which with further simplification can be written as

Vdip(r) = −1

2
αg(ω)|E0(r)|2 = −αg(ω)I(r)

ε0c
, (3.56)

where αg(ω) is the dynamic polarizability of the ground state. More generally, the

dynamic polarizability for a given state |ei〉 is

αi(ω) = 6πε0c
3
∑
k

Γik
ω2
ik(ω

2
ik − ω2)

. (3.57)

In the end, the quantum (semiclassical) calculation thus brings us back to the classical

result for the dipole potential energy, with the quantum dependence hidden in the

calculation of αi(ω).

In general, the ground and excited states of a strong optical transition will

shift in opposite directions when exposed to a red-detuned dipole trap beam, such

that loading into a dipole trap leads to shifts of the resonance transition with trap

intensity, but at certain “magic” wavelengths the narrow intercombination transitions

of the alkaline earth atoms experience no transition shift, as described in Sec. 2.2.

This can be understood by considering the form of the dynamic polarizability: the

dominant terms in the sum over dipole matrix elements for singlet (total spin S = 0)

states are dipole-allowed transitions to other singlet levels, and likewise the dominant

contributions to the dynamic polarizability of the triplet (S=1) states are from other

triplets. As a result, the ground 1S0 and excited 3PJ states can shift in the same
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direction, and at certain wavelengths the shift is exactly the same. These wavelengths

can be found by plotting α1S0(ω) and α3PJ(ω) to find the frequencies where the curves

intersect [11], and experimentally verified by measuring the transition frequency

dependence on trap beam intensity to find the wavelength at which the dependence

is minimized [212].

3.3.1. Optical Dipole Trap

The simplest optical dipole trap is a single tightly focused Gaussian beam [313],

with an intensity profile (for propagation along the z-axis)

I(r, z) =
P

πw2(z)
e−2r2/w2(z) (3.58)

where P is the total beam power, w(z) is the 1/e2 beam radius at a given point z as

measured from the location of the tightest waist w0,

w(z) = w0

√
1 +

(
z

zR

)2

, (3.59)

and zR = πw2
0/λ (the Rayleigh length) is the distance from the focus at which the

beam has expanded to
√

2w0. For a red-detuned beam, atoms colder than the the

trap depth collect at the beam waist, with the trap depth defined as the magnitude

of the maximum potential

U0 = −Vdip(0) = αg(ω)
P

ε0 c πw2
0

. (3.60)

Dipole traps cannot cool, but if the pre-cooled atomic thermal energy kBT � Udip,

the atoms are tightly localized at the focus, and the potential can be approximated
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as harmonic,

Uharmonic =
1

2
mω2x2, (3.61)

with characteristic motional frequencies ω in the radial and axial trap directions found

by equating the second-order term of a Taylor expansion of Udip to Uharmonic [215],

leading to:

ωr =

√
4U0

mw2
0

, ωz =

√
2U0

mz2
R

. (3.62)

3.3.2. Optical Lattice

Two focused counter-propagating Gaussian beams of equal intensities and beam

waists produce an interference pattern with an intensity profile [313]

I(r, z) =
4P

πw2(z)
e−2r2/w2(z) cos2(kz). (3.63)

This is identical to a single-beam dipole trap in the radial dependence but with four

times the maximum intensity for the same power in each beam, and hence four times

the trap depth,

U0 = αg(ω)
4P

ε0 c πw2
0

, (3.64)

and the atoms are much more tightly localized in the axial direction in a periodic

series of wells separated by λL/2, where λL = 2π/k is the lattice wavelength. The

radial trap frequency is identical to that of the dipole trap (Eq. 3.62), but the tight

axial localization is evident in considering the new axial trap frequency, which can be

found in the same way as above [100] to be

ωz =

√
2U0

mλ2
L

. (3.65)
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This result is exactly parallel to the dipole trap axial frequency, with the axial

localization scale zR replaced with λL. The equilibrium width of an atomic cloud

trapped in a single lattice well can then be found from equating the one-dimensional

thermal and harmonic energies:

1

2
kBT =

1

2
mω2. (3.66)

Alternatively, if the temperature of the atom cloud upon lattice loading is not known,

lattice spectroscopy [100] can determine the mean vibrational level population.
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CHAPTER IV

EXPERIMENTAL APPARATUS I: LASER SYSTEMS

FIGURE 4.1. Strontium experiment optical table: view from master ECDL corner.

4.1. Laser Systems Overview

The strontium Casimir-Polder experiment requires four distinct laser systems,

diagrammed schematically in Fig. 6.1; see Fig. 2.1 for a diagram of the relevant

strontium energy levels and transition linewidths. The main cooling and blue MOT

laser at 461 nm interacts with the strong cycling 1S0 − 1P1 transition, while the

repump laser at 497 nm prevents blue MOT losses due to shelving in the metastable

3P2 state. The 689 nm system will generate even colder atomic samples in the narrow-

linewdith 1S0− 3P1 red MOT, and will also serve as the probe laser to monitor shifts in

the energy levels of this transition due to the Casimir Polder effect. The optical lattice

laser at 914 nm will be tuned to the 1S0 − 3P1 transition’s “magic wavelength,” to hold
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the atoms in standing-wave dipole-potential wells without perturbing the frequency

of this transition.

FIGURE 4.2. Strontium experiment laser systems: schematic diagram.
.

As many components are common to several laser systems, this chapter will

introduce the principles of these subsystems. All four laser systems begin with

a master external-cavity diode laser (ECDL), so we invested considerable effort in

the development and characterization of an ultra-stable homebuilt design that was

easily adaptable to all four wavelengths, described in Sec. 4.2. Three systems require

external amplification to generate more power than that available directly out of the

ECDL, a simple slave laser in the case of the 689 nm system and higher-powered

tapered amplifiers for the 914 nm and 461 nm systems, described in Sec. 4.3. Due

to the lack of reasonably-priced high-power diode lasers at the required blue and

turquoise wavelengths at the time of construction, we use second-harmonic generation

(SHG) in linear resonant build-up cavities for the 461 nm and 497 nm systems, as

described in Sec. 4.4. Finally, the lasers interacting directly with specific atomic

transitions should be stabilized to prevent slow frequency drifts off resonance. We use

“heat pipe” strontium vapor-cell references for the 461 nm and 689 nm systems, and
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have a Sr discharge tube that could be used to lock the 497 nm system. Section 4.5

describes the strontium references and the frequency-modulation (FM) saturated-

absorption spectroscopy setup used to generate the feedback signals for locking these

laser systems to the heat pipe signals, and briefly discusses other laser stabilization

options.

4.2. Stable External-Cavity Diode Laser (ECDL) Design

External-cavity diode lasers (ECDLs) have become an ubiquitous tool in atomic

physics labs as a tunable, low-cost, energy-efficient, and compact light source available

in an increasingly wide range of wavelengths [314]. Typical Fabry-Perot-style diode

lasers, in which the front and back diode facets act as the lasing cavity mirrors, can

offer a wide gain range (depending on operating temperature and current, often tens of

nanometers). However the inherent linewidth is broad: the Schawlow-Townes-limited

linewidth [315] alone would be at least 1–2 MHz, narrow enough for many cold-atom

experiments, but significant contributions from other noise factors typically increase

the width to several 10’s of megahertz. The ECDL narrows the linewidth and allows

tuning within the gain range by using a frequency-selective element as an external

cavity mirror [316, 317].

A common ECDL configuration is the Littrow design, in which the rear diode

facet acts as one cavity mirror and a diffraction grating acts as the second: the

first-order reflection off the diffraction grating is fed back into the diode, and the

zeroth-order reflection is coupled out of the cavity. The lasing frequency is thus

tuned by changing the diffraction-grating angle, which changes both the length of the

cavity and the frequency of the first-order beam (at the cost of a slight angle change

on the output beam), and the linewidth is narrowed by both the diffraction-grating
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resolution and the extended length of the lasing cavity; linewidths ∼ 1 MHz are

easy to achieve. This simple configuration is the basis for many commercial precision

diode laser systems, but for atomic-physics experiments requiring many very different

wavelengths the cost of purchasing a commercial system for every source can become

prohibitive; as a result there is considerable interest in the atomic-physics community

in home-built ECDL designs.

We developed an ECDL design optimized for high stability, with a universal

cavity block easily adapted to many wavelengths by selection of internal diode and

optics and easily extended for an even-narrower-linewidth long-cavity version. The

total cost for the parts and components (but excluding assembly labor) totaled

∼$6,000 (with a wide spread depending on cost of the diode itself), yet the

measured linewidths and noise-susceptibility characteristics proved competitive with

the published specifications of existing commercial systems (which at the time cost

$20,000-$30,000). The design is freely available and has been replicated by many

atomic physics groups. As this project is well-documented in our publication [318],

an accompanying webpage which aids other groups in reproducing the design [319],

and Ref. [144], this section is a brief summary of the project.

4.2.1. Development

Any Littrow ECDL design must incorporate both grating-angle tunability and

some form of vertical cavity alignment mechanism; as such designs can be as simple

as a kinematic mirror mount modified to hold the diode plus a collimation lens in

one plate and the diffraction grating on the other [320]. However, any movable parts

can lead to frequency instability: the tunable grating is thus the Achilles heel of the

Littrow diode laser. An appealing alternative is the interference-filter-tuned “cat-

114



O-ring
seal

Protection
circuit

Diode
collimation
tube

Diffraction
grating

Grating
adjustment screw

Sapphire
discs

Brewster
window

Vacuum
seal-off
valve

Fiber coupler

Optical isolator

Anamorphic
prism pair

Temp
sensors

Tilt
adjust
screw
holes

Wire feed
through

D-sub 15
connector

Thermoelectric coolers

Low-voltage
piezo

FIGURE 4.3. Stable external cavity diode laser (ECDL) design, top (lid off) and
front view, with labeled peripherals.

115



eye” laser [321, 322], but we chose to use the Littrow configuration, optimizing our

design to prevent the coupling of external noise into the cavity. The main cavity

body is machined on a computer-numerical-controlled (CNC) milling machine from a

single block of aluminum, and although the diffraction-grating arm is adjustable, it is

machined from the same block and cut to be as stiff and light as possible to push its

resonance frequency above the typical acoustic noise background. Further vibrational

isolation is provided by mounting each laser on a damping baseplate and enclosing

the entire body in a molded silicone cover. The design incorporates beam-shaping,

optical isolation, and direct fiber-coupling, and can be vacuum/hermetically sealed

to avoid long-term drifts from changes in atmospheric pressure and humidity [323].

Figure 4.3 is a diagram of the final ECDL design, for a 2.4-cm cavity-length

laser. Our design utilizes a ∼45 degree angle of incidence on the diffraction grating,

such that the same cavity can be used with different optics and diodes for different

wavelength lasers, and the cavity body can be lengthened to narrow the linewidth. We

constructed seven ECDLs with the 2.4-cm cavity-length, two prototypes at 780 nm

and five of the final design, one at 780 nm and one each at the Sr experiment

wavelengths. We also constructed one extra-long-cavity version of the design,

stretching the entire cavity block between the diffraction grating and the diode can

for a 10-cm cavity length. We use this laser as our 689 nm red MOT laser, since it

has the narrowest linewidth.

4.2.2. Characterization

We characterized the short-term stability first by performing resonance

spectroscopy on the diffraction-grating arm and found that the lowest resonance

occurs at 12 kHz; by comparison, an older homebuilt Littrow-cavity laser (based on
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a modification of the popular Ricci design [324]) in use in our lab displays multiple

resonances below 10 kHz, with the lowest at 1.8 kHz. We also examined the frequency-

noise power-spectral-density of both new- and old-model lasers by monitoring the

transmission of 780 nm versions through a rubidium vapor cell, which demonstrated

both that grating-arm resonances are significant noise factors and that the new design

is much less sensitive to external acoustic noise sources. Finally, we used delayed

self-heterodyne spectroscopy [325] to characterize the short-term spectral widths of

the old model and several new ECDL versions. While linewidths vary considerably

depending on the diode used, for a 100 µs observation time we found linewidths of

32 kHz for the short-cavity 922 nm version (main Sr trapping laser, before frequency

doubling) and an impressive 11.7 kHz for the long-cavity 689 nm model (red MOT

laser / CP probe). These results demonstrate that our new ECDL design compares

favorably with available commercial precision diode lasers.

4.3. ECDL Amplification

One limitation of external-cavity single-mode diode lasers is the low power

output. For the red 689 nm MOT, we require at least 15 mW; the 689 nm extended-

cavity version of our ECDL design can almost provide this much power, but taking

into account losses in the beam path the situation would be borderline at best. For

the blue 461 nm MOTs, we need at least 80 mW; since this light is produced by

nonlinear SHG, several hundred milliwatts of 922 nm input light is required, far above

the ∼ 14 mW we see directly out of the 922 nm ECDL. The depth of the 994 nm

optical lattice dipole trap will be proportional to lattice beam power, so again several

hundred milliwatts or more would be ideal. For all of these systems, amplification of

the ECDL output is required.
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An amplifier is an external laser gain medium (usually of the same material as

the original laser), pumped to population inversion (usually in the same way) [326].

When seeded by the original “master” laser, the stimulated photons amplify the

original beam. Without seeding, the medium can appear to lase on its own due

to amplified spontaneous emission (ASE), in which spontaneously emitted photons

stimulate emission of identical photons. However, amplifiers lack a resonant cavity

(other than undesirable partial reflections at the end facets), and ASE light is

essentially amplified noise, so the spectral content of an ASE beam will generally

be quite broad. On the other hand, the presence of a narrow-linewidth, stabilized

seed beam above a certain power threshold leads quickly to overwhelming dominance

of phase-coherent stimulated photons, such that the output amplified beam retains

the spectral purity of the input seed. This configuration is sometimes referred to as

a master oscillator power amplifier (MOPA).

The tapered amplifiers (TAs) used for our 922 nm and 914 nm systems are

examples of diode chips designed to allow single-mode high-power amplification. The

input seed is mode-matched into a narrow gain region which expands for high gain,

while maintaining single-mode operation by matching the expansion angle to the

diffraction angle at the design wavelength. With an input seed of typically 10 –14 mW

from the master ECDLs, the TAs are capable of producing ∼ 300 − 350 mW with

1 A drive current. Some precautions are in order when using the tapered amplifiers:

they should not be pumped to saturation, corresponding to a measured seed beam

intensity of ∼ 15 mW [144]. They also must never be operated without a seed, to

prevent ASE light coupling backwards from the broad gain region into the narrow

input, which could cause power damage. We use a photodiodes monitoring a small

seed-beam pickoff to disable the TA current in the absence of a seed. For more details
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on the Sr project TAs, see Matthias Fuchs thesis [327] for the initial design and Paul

Martin’s thesis [144] for final design refinements and construction details.

Another method to boost the power of a spectrally pure source is not technically

an amplifier but a separate oscillator entirely, a “slave” laser, injection locked to the

master oscillator. The slave laser can be identical to the master, or more commonly

(as in our case) a less-tunable, broader spectrum, potentially noisy laser. If the

slave laser output overlaps the desired frequency range, injection of a seed beam

of spectrally narrow, stabilized light pulls the stimulated emission process towards

the seed beam frequency and phase until the population overwhelmingly reproduces

the input light characteristics. Injection locking was first demonstrated as early as

1966 [328] in He-Ne gas lasers, and in diode lasers by 1981 [329]. Early experiments

showed successful locking by proving that the heterodyne beatnote of the master and

slave beams disappeared with upon injection locking, and spatial interference fringes

demonstrated phase coherence as well as frequency locking. The laser spectra also

remained overlapped in a Fabry-Perot analyzer as the (untuned) seed laser followed

the master laser frequency tuning over a range known as the “injection bandwidth.”

The external-cavity diode laser for the 689 nm system does not provide enough

power for operation of the red MOT, but the extended cavity version has an

impressively narrow linewidth as described in section 4.2. Injection locking of

a 689 nm slave laser boosts the power while maintaining the master’s spectral

characteristics (as we confirmed by self-heterodyne measurements on the slave

output). The slave is a simple Fabry-Perot diode laser in an acrylic housing, identical

to the slave lasers constructed for the Rb experiment (see Refs. [215, 216, 311]). We

seed the slave through the rejection port of an optical isolator at the slave output,
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again in the same manner as the Rb experiment, and the resulting output is typically

∼15 mW.

4.4. Second Harmonic Generation

Diode lasers are popular in atomic physics as a light source that is compact,

low-cost, and tunable, but unfortunately there are still few diodes available at certain

wavelengths. Blue diode lasers at strontium’s 461 nm main trapping transition are

now becoming available and are beginning to be used by Sr groups [330], but many

of the commercially available systems are either low power or multimode and large

bandwidth [331]; the cost of buying several low-power blue diode lasers was prohibitive

at the time we were constructing our laser systems. To the best of our knowledge,

there are no diodes offered at the repump transition wavelength of 497 nm. For both

of these systems, we have built ECDLs at twice the required wavelength and use

second harmonic generation (SHG) to reach the blue (or blue-green, in the case of

497 nm) wavelengths.

Second harmonic generation relies on the fact that a strong electric field in a

crystal with a non-vanishing second-order electric susceptibility χ(2) will generate

a polarization field at twice the frequency of a fundamental input beam under the

appropriate conditions. For the simplest case, treating both the fundamental and the

second order polarization fields as plane waves and assuming negligible absorption,

an expression for the expected second harmonic power P2 can be derived from the

inhomogenous Maxwell equations [332, 333]:

P2 = 2

(
µ0

ε0

)3/2
(2ω)2d2

effL
2

n1n2
2

P 2
1

A
sinc2(∆kL/2 ). (4.1)
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Here, ω is the frequency of the fundamental and 2ω that of the second harmonic, P1

is the power and A is the cross-sectional beam area of the fundamental field, L is the

crystal length, n1 and n2 are the indices of refraction for the fundamental and second

harmonic, respectively, and ∆k = k2 − 2k1 is the phase mismatch between the wave

vectors k1 = n1ω/c of the fundamental and k2 = n22ω/c of the second harmonic. The

effective nonlinear coefficient deff is a property of the material and the propagation

direction of the beam. For efficient SHG, a crystal must offer a high deff and good

transparency at both the fundamental and second harmonic wavelengths, as well as

accessible phase-matching conditions.

The phase mismatch is a result of dispersion, and must be compensated,

otherwise the fields are out of phase after propagating a distance lc = ∆k/π

(the “coherence length”) and the instantaneously generated second-harmonic field

interferes destructively with the second-harmonic field generated one coherence

length earlier. Adjusting the propagation angle until the fundamental and second-

harmonic beams experience the same index of refraction (taking advantage of crystal

birefringence) is a common phase-matching solution. However, this technique

constrains deff and has narrow temperature- and angle-tuning bandwidths. An

increasingly popular alternative is “quasi-phase-matching” (QPM), in which the

crystal is periodically-poled to reverse the sign of the nonlinear interaction every

lc such that the fundamental and second-harmonic beams walk out-of-phase and

then back in-phase over the course of two coherence lengths [334]. Compared

to birefriengent phase-matching, which achieves ∆k = 0 throughout the crystal

length, QPM appears to be a less efficient process since the second harmonic power

grows linearly rather than quadratically with crystal length. However, QPM allows

the propagation direction to be chosen to maximize the initial deff , offers broader
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temperature and angular bandwidths, and is intrinsically free of walk-off. For our

461 nm SHG system, we considered birefringent phase-matching in potassium niobate

(KNbO3) as the option offering the highest deff (16.4 pm/V), but crystals were hard

to find and expensive, so we ended up choosing QPM in periodically-poled potassium

titanyl phosphate (“PPKTP”) as an option with a relatively high deff=14.8 pm/V at

461 nm [335].

The Sr MOT requires at least 80 mW of 461 nm light (taking into account

the diffraction efficiencies of the MOT and Zeeman AOMs), but the 922 nm ECDL

only puts out 15 mW, which would only give us 0.3 mW of blue light at the single-

pass conversion efficiency of η = P2ω/P
2
ω = 1.5 mW/W2 measured for our 1-cm

long crystal. The 922 nm tapered amplifier provides about 300 mW at typical

operating currents, but this is still not enough power to provide the necessary blue

light, so a resonant build-up cavity is required. Many groups use a bow-tie ring-

cavity configuration for SHG, but we opted for a standing-wave linear cavity as a

compact option offering greater mechanical stability and potentially higher conversion

efficiency [336].
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in 

mode-
matching 

lens
photodiode

servosilicone housing

oven

M1:
input/output

coupler

461 nm
out

M2:
dual

high reflector
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FIGURE 4.4. SHG cavity for 922 → 461 nm frequency doubling (not to scale).
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Figure 4.4 depicts the cavity design for the 461 nm SHG system. The cavity

consists of two 25-mm radius-of-curvature concave mirrors surrounding the crystal,

the front mirror (M1) anti-reflection (AR) coated for 461 nm and partially high-

reflecting (HR) for 922 nm (transmission T∼7% to impedance match other cavity

losses) and the rear mirror (M2) HR-coated for both wavelengths: as such the cavity

is a resonator for 922 nm and double-pass through the crystal, effectively doubling

the crystal length. To achieve constructive interference of the first- and second-pass

generated 461 nm beams, the crystal face is angled to allow phase correction via

translation perpendicular to the cavity axis [337]. The blue light exits through the

input coupler and is picked off by a dichroic in front of the cavity. The cavity is locked

to the 922 nm resonance by monitoring the transmission and feeding back to a ring

piezo behind M2. The crystal is mounted on a three-axis tip-tilt stage in a homebuilt

oven at typically 29.7 ◦C.

We have seen up to 150 mW of steady-state blue light output for 300 mW of

922 nm at the input, but several factors affect cavity stability and the conversion

efficiency. We opted for a relatively large beam waist inside the crystal to try to

avoid thermal effects [335], but we have still observed thermal bistability [338], which

manifests as a cavity resonance asymmetry with respect to the piezo sweep direction.

As the piezo decreases the cavity length and and approaches the 922 nm resonance

condition, the increase in circulating cavity power heats the crystal and increases the

index of refraction, effectively increasing the optical path length in the crystal and

working against the piezo length change, leading to a broader cavity resonance. On

the opposite side of the piezo ramp, on the other hand, the peak is much narrower.

When this effect is too severe, it is impossible to lock the cavity. Our original crystal

oven was an aluminum copper block with a channel for crystal alignment jigs and a
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lid which clamped a roll of copper mesh against the top of the crystal to hold it in

place; we replaced this assembly with a copper oven with a mirror-polished surface for

better thermal contact with the base of the crystal. We still see slightly asymmetric

peaks when ramping the cavity, and the broadening seems to be much worse in some

parts of the crystal, but at “good” crystal locations the asymmetry does not prevent

locking.

We also had issues with the cavity unlocking in response to loud noises and optical

table vibrations (e.g., from the main MOT camera shutter — see Sec. 6.3.2.2). The

cavity platform is machined from a solid 2.5′′×2.5′′ aluminum block, with an inset for

the tip/tilt stage and separate plates for each cavity mirror (the modularity eases the

cavity alignment process), which allowed us to use the shortest possible optical mounts

for stability, but the kinematic mirror mounts still display ∼ 1 kHz resonances which

couple to other table vibrations. Rather than eliminate every source of vibration, we

found that the simplest solution was the installation of a small cavity-relock circuit,

adapted from a design by the Killian group [339], which uses a four-way switch to

simply bypass the proportional and integral stages of the lock circuit and re-engage

the cavity ramp any time the cavity power falls below a certain threshold. The lock

stages are reenabled as soon as the threshold condition is met. This circuit prevents

cavity unlocking events from being a serious headache, but it does not prevent all

issues with cavity power fluctuations and occasional unlocking events at inconvenient

times during experimental cycles.

The efficiency requirements of the 497 nm SHG system are much less stringent

than the 461 nm system: the 497 nm laser repumps on the 3P2 − 3D2 transition,

which has a saturation intensity of only 2.4 mW/cm2. We purchased a commercial

PPLN (periodically-poled LiNbO3) crystal from Covesion, Inc., which offers five poled
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tracks of different poling periods, three of which work for our wavelengths (although

at relatively high temperatures — 211–240◦C — but reachable with the standard

crystal oven). We opted for a 2-cm long crystal, hoping that if we eventually build

a 994 nm tapered amplifier or slave laser we may get enough 497 nm power out of a

single-pass through the crystal, but for now a build-up cavity is still required. The

conversion efficiency does not need to be very high, however, so we used the same

mirrors and the same linear design as the 461 nm cavity. These mirrors are fairly

lossy at 994 nm, and a bow-tie design would be preferable: since this crystal is not

wedged, only temperature tuning and crystal tilt can be used to phase-match the

first- and second-pass 497 nm beams. As a result of this issue (or competing etalon

effects from reflections off the normal crystal facets), the cavity is extremely finicky

to align well; the peak height fluctuates wildly with small adjustments, which we

attribute to interference effects. However, this crude cavity still puts out as much as

5 mW at 497 nm when carefully aligned, pumped only by our standard ECDL with a

high-power 994 nm diode (no external amplification), and usually gives ∼ 1 mW on

a day-to-day basis, so it is more than sufficient for our needs.

A disadvantage of linear resonant cavities is the problem of optical feedback

destabilizing the input laser: when the cavity is not tuned to resonance, essentially

all the input light is rejected and back-reflected, and even when locked on resonance

any light that is not mode-matched will not couple into the cavity and likewise can

back-reflect into the input laser. Diode lasers are notoriously susceptible to optical

feedback, and tapered amplifiers can be damaged by small back-reflected seeds, so

the 922nm system already had one 30 dB isolator installed between the master

ECDL and the tapered amplifier as well as two 40 dB isolators after the tapered

amplifier. However, after constructing the 461 nm SHG cavity we observed frequency
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and amplitude jitter on the Fabry-Perot monitoring the 922 nm TA seed, jitter that

would disappear when the SHG cavity was blocked. It seemed surprising that a back-

reflection from the cavity could propagate all the way through three optical isolators,

the tapered amplifier chip itself, and the single-mode fiber porting the 922 nm seed

light to the tapered amplifier, but installing a second isolator after the master laser

fixed the problem: somehow the frequency and amplitude jitter were a result of SHG

cavity feedback de-stabilizing the ECDL. We later found that Marquardt et al. [340]

mention a similar issue in an ECDL-MOPA setup driving a sum-frequency-generation

cavity; they also needed two isolators between their ECDL and the TA to prevent

instabilities caused by optical feedback from the build-up cavity after the TA. Our

994 nm system also uses two optical isolators between the ECDL and the resonant

build-up cavity to prevent similar issues.

4.5. Laser Stabilization

Our diode laser design demonstrates impressive passive stability: the free-

running 922 nm master ECDL used to produce the 461 nm trap light will often stay

within one linewidth (32 MHz) of the center of the main cooling transition for several

minutes, and we are not currently actively stabilizing our repump laser. However,

in atomic physics we are asking our free-running lasers, operating at frequencies of

several hundred terahertz, to hit a frequency target the width of an atomic transition,

typical a few to tens of megahertz: in other words we are requiring a frequency

stability of one part in 109 from our laser systems.1 For most applications, some form

of frequency stabilization is required to lock the master laser systems to the atomic

transition.

1For the 689 nm laser interrogating the 7.5 kHz transition, the requirement is even more strict
at a part in 1011.
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A simple solution monitors the transmission of the laser through a separate

atomic vapor source and feeds back to the laser frequency control to keep the laser

centered on the absorption dip. However, as discussed in Section 2.2, strontium has a

low vapor pressure and a hot oven is required to generate a sufficient optically-dense

vapor. Hot strontium will react corrosively with glass viewports and the copper

gaskets typically used in UHV flanges, however, so the vapor must be contained in

a manner that avoids these problems. One solution is known as a “heat pipe” [341],

[342], [343]: a long vacuum chamber with axial viewports contains solid strontium

in a central region, heated to produce the optically-dense vapor. The chamber also

contains an inert gas throughout the volume. As the hot strontium atoms leave

the central heated region, momentum losses via collisions with this “buffer” gas

prevent the atoms from reaching the chamber gaskets and windows. As long as

the Sr mean-free-path in the cold buffer gas region is much shorter than the distance

to the windows, the windows will not be contaminated.2

Our heat-pipe design is described in Sec. 4.5.1. The Doppler-broadened

lineshape of a hot atomic vapor can be GHz-wide, so we use the technique

of saturated absorption spectroscopy to obtain a nearly-Doppler-free absorption

feature; this technique and the broadening and shifting mechanisms present in our

measurements are discussed in Sec. 4.5.2. Sec. 4.5.3 describes frequency-modulation

(FM) spectroscopy, a technique to obtain a dispersive, background-free “error signal”

from the Lorentzian saturated-absorption lineshape.Finally, Sec. 4.5.4 describes other

2Although many atomic physics groups have adopted the nomenclature “heat pipe” to describe
this apparatus, the mechanism at work is not identical to the original heat pipe design [341], in
which the atomic sample is heated above the boiling point to produce a vapor that condenses to a
liquid upon collisions with the buffer gas. These heat pipes are recirculating, since the liquid drops
are wicked back to the center by capillary action along the thermal gradient, and produce a pure
vapor in the central region. We would prefer not to operate our heat pipes above strontium’s 777◦C
melting point.
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atomic vapor references and locking techniques which we have considered and which

may be useful for laser stabilization in future renovations of the Sr apparatus.

4.5.1. Heat Pipe

Our heat-pipe design contains solid strontium pellets in a 10-cm-long nickel

crucible with 5-mm diameter axial holes to pass the spectroscopy beams. This

crucible slides into a 0.75” OD stainless steel pipe with a viewport on one end and

the other mated to a 4-way cross. A right-angle valve (MKS CV16-C1C1-MKKCV)

and a thermocouple vacuum gauge (Duniway DST-531) are also mated to the cross;

the final port meets a stainless steel nipple to a final viewport. On both ends, the

viewports are attached to flanges welded at a 3◦ angle to prevent etalon effects. A

1/8” stainless-steel rod spot-welded to the inside of the long pipe section near the

4-way-cross secures the position of the Ni crucible containing the strontium midway

between the two glass viewports. Ceramic clamshell heaters (Thermcraft RL106-S-

L / VIP-2.5-8-0.75-2) with 4”-long non-inductively-wound resistive-heating elements

and 2” thick insulation packages heat the outside of the long pipe at the location of

the nickel crucible, and a J-Type thermocouple inside the insulation package near the

heating element monitors the temperature.

The heat pipe does not require ultrahigh vacuum (UHV), but strontium rapidly

oxidizes when exposed to air. To avoid contamination, we followed the vacuum-

cleanliness precautions described in Sec. 5.5 throughout assembly and pumped down

to a rough vacuum before loading the strontium. We then backfilled the chamber with

argon by bringing the system back up to atmosphere with the turbopump leak valve

connected to an argon canister. We enclosed the entire chamber in a glove bag (Sigma

Aldrich AtmosBag) suffused with a steady flow of argon to load the nickel canister
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with ∼3 g of solid strontium (from Sigma Aldrich, dendritic pieces ≥99.9% purity

packed in argon; we found we had to cut the pieces into smaller chunks using a clean

wire cutter to fit into our canister) then pumped down again. Finally, we backfilled

with argon again, monitoring the thermocouple gauge to close-off the right-angle valve

to the pumpdown station when we attained the desired argon pressure.

The length between the heated section containing the strontium vapor and the

viewports is L = 30 cm. To estimate the buffer gas pressure required to prevent

window contamination, we can assume that we want a maximum mean-free-path l on

the order of one-tenth this distance, or

l ≈ 1

nAr
√

2πd2
=

kBT

PAr
√

2πd2
≤ 3 cm (4.2)

where nAr is the argon number density, T is taken to be room temperature outside

the heated region, and we assume that d is the average of the ground-state atomic

radii, dSr = 219 pm and dAr = 71 pm. This estimate leads to PAr ≈ 11 mTorr. In

practice, the thermocouple gauge and manually-actuated rotary valve do not allow

precise control of the argon backfill pressure. The gauge has a ∼3 s response time

and can only read down to 1 mTorr; our procedure was to tighten the valve nearly

closed before backfill, crack it one-eighth turn open, begin backfill and shut the valve

as soon as we began to see the thermocouple gauge monitor begin to rise. We aimed

for ∼10 mTorr but erred on the high side, reasoning that pressure-broadening effects

(discussed in Sec. 4.5.2) would not affect our error-signal zero-crossing, and if they

proved to be a problem at a later date we could then pump out a little more argon.3

3Ideally, one would begin with too much argon in the pipe and monitor the probe laser
transmission, decreasing the argon pressure slowly until pressure-broadening of the saturated-
absorption resonance is minimized [343]. It may be difficult to do this with our turbo station
since the pumpdown rate is rapid and the valve does not allow very fine control.
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The clamshell heaters are rated to 1010◦C but we shouldn’t need to run this

hot for a sufficient strontium number density. Using the known vapor pressure

curve and Beer’s law, we can estimate the temperature required for a given atomic

transition [343]. Beer’s law states simply that the intensity of light through an atomic

vapor of density n decays exponentially (assuming we are operating below saturation

intensity, I � Isat) with length [225]:

I(ω, z) = I(ω, 0)e−nσ(ω)z, (4.3)

where the absorption cross-section as a function of laser frequency

σ(ω) =
σ0

1 + 4(ω−ω0−k·v)2

Γ2

(4.4)

is a Lorentzian of width Γ centered at the atomic transition frequency ω0 minus any

Doppler shift k · v, weighted by the resonant cross-section σ0 = 3λ2
0/(2π). The cross-

section depends strongly on the velocity v of the atoms, so we can recast Beer’s law

as a function of temperature by considering that the number density is a function of

velocity (Maxwell-Boltzmann distribution),

n(v) = n0fMB(v) =
n0√
2πvT

e−v
2/2v2

T , where vT =

√
kBT

m
and n0 = P/kT, (4.5)

and the total transmission intensity I/I0 through a vapor of length L (assuming the

number density is constant over the laser path, which is an idealization) is then found

by integrating over all velocity classes:

I/I0 = exp

[
−n0σ0L√

2πvT

∫
e−v

2/v2
T

1 + 4(ω−ω0−kv)2

Γ2

dv

]
. (4.6)
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To simplify the integral, we can show that the absorption cross-section as a function of

velocity is a Lorentzian of width Γ/k, while the number density is a Gaussian of width

vT . For thermal atoms we can expect a Doppler width kvT/2π ≈ 1 GHz while the

natural linewidth Γ/2π is 32 MHz for the 461 nm transition and only 7.5 kHz for the

689 nm transition, so the Lorentzian absorption cross-section (properly normalized)

can be approximated as a delta-function under the integral:

σ(v) = σ0
π

2

Γ

k

(
1

π

1
2

Γ
k

(v − ω−ω0

k
)2 +

(
1
2

Γ
k

)2

)
≈ σ0

π

2

Γ

k
δ(v − ω − ω0

k
), (4.7)

leaving

I/I0 = exp

[
− n0σ0L

√
π

8

Γ

kvT
e−(ω−ω0)2/2(kvT )2

]
. (4.8)

The expected transmisison as a function of T is plotted for the 461 nm (1S0 − 1P1)

and 689 nm (1S0 − 3P1) transitions, with resonant cross-sections σ0 = 0.10 and 0.23

µm2 respectively, in Fig. 4.5. A transmission of ∼50% might be a good goal, but

anything in the range of 10%-90% should work. As expected the narrow linewidth

and low scattering rate of the 689 nm transition necessitates a hotter oven but the

required temperatures are still easily achievable.

In practice we find that we need to run the 689 nm heat pipe a little hotter than

expected, and we also do not see nearly as much absorption of the 461 nm light as

this simple model would lead us to expect. The discrepancy could be explained by

the placement of the thermocouple along the outside of the pipe failing to accurately

reflect the true temperature of the atoms in the center of the oven. We eventually

settled on steady-state operating temperatures of 420◦C for the 461 nm heatpipe and

450◦C for the 689 nm heatpipe for reliable absorption dips that could be used to lock

our lasers. However, over time much of the strontium has migrated away from the
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FIGURE 4.5. Heat pipe resonant probe transmission vs. temperature, as predicted
by Eq. 4.5.1, for the 461 nm 1S0 − 1P1 and 689 nm 1S0 − 3P1 transitions.

center of the crucible; we now find that shifting the heaters from day to day is the

best method to ensure a strong signal, and the heat pipes will need to be refilled in

the near future.

The heaters were originally powered by Variacs switched by a simple on/off

temperature controller (Love Controls TCS-4011), but one of the controllers failed

(in the on position, allowing the temperature to rise to the maximum allowed by

the Variac set point) after about a week. Some troubleshooting eventually revealed

that the mechanical relays in the temperature controllers were not designed to switch

high-current loads over the number of cycles required for continuous operation. The

controllers now switch a 5 V signal powering a solid-state relay (Omron G3NA-220B)
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to switch the Variac voltage on and off; this control scheme has worked for several

years.

4.5.2. Saturated Absorption Spectroscopy

The heat pipes provide an optically-dense vapor samples sufficient to monitor

probe absorption, but the necessary temperature results in a severely Doppler-

broadened lineshape of width

∆ωD = 2
√

ln2
vmp
c
ω0, where vmp =

√
2kBT

m
. (4.9)

For the 461 nm heat pipe at T = 420◦C we can expect ∆ωD/2π = 1.3 GHz, and for

the 689 nm heat pipe at T = 450◦C, ∆ωD/2π = 0.9 GHz.

Saturated absorption spectroscopy [344, 345] uses two counter-propagating

beams to obtain atomic spectra free from first-order Doppler broadening. The Doppler

shift of an atom moving toward the pump beam is opposite the shift observed by

the probe beam, such that the beams interact with different velocity classes when

their detuning from resonance is nonzero. As the frequency of both beams is swept

across the resonance the two beams interact simultaneously only with the atoms at

zero velocity (if the two beams have zero frequency offset from one another). When

the pump beam is well above the saturation intensity but the probe beam is well

below, the probe transmission displays a narrow feature (the Lamb dip) at the center

of a Doppler-broadened absorption lineshape, resulting from the decrease in probe

absorption on the part of the zero-velocity-class atoms that are already saturated by

the pump beam interaction. (If the pump and probe beams are detuned relative to
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one another by ∆p = ∆pump −∆probe, this feature will shift by ∆p/2 from the center

of the atomic transition.)

The Lamb dip recorded by saturation spectroscopy can have a linewidth on the

order of the natural width of the transition, but a number of broadening mechanisms

still come into play. Collisional broadening can come into play for dense atomic

vapors, but power-broadening (see Fig. 3.1) is often the strongest effect: although

the probe should be weak, maximum depopulation of the ground state and hence the

strongest saturation signal will occur when the pump beam is at or above saturation

intensity Isat, leading to a power-broadened linewidth of

∆ωP = Γ

(
1 +

I

Isat

)1/2

. (4.10)

The extremely low saturation intensity of the red transition makes operation right

at this level impractical: we use a pump beam of area ∼1 mm2 so to be below the

saturation intensity of Isat = 3 µW/cm2 would require using less than 30 nW, a beam

that would be very difficult to align. A typical operating power of Ipump = 0.5 mW

for the 461 nm saturated absorption system implies a power broadened linewidth of

47 MHz, which is not a huge increase over the natural Γ/2π = 32 MHz, but for the

689 nm system we see a linewidth of almost 1 MHz for the same pump power, a

drastic increase over the 7.4 kHz natural linewidth.

Power broadening likely dominates our observed saturated absorption-linewidths,

but it is worth considering other broadening mechanisms that would not normally be

significant for typical ∼MHz-linewidths atomic transitions but that may come into

play for our narrow 689 nm error signal. One example is transit-time broadening: if

an atom is moving quickly enough that it crosses the probe beam in a shorter time

than the natural lifetime of the excited state, the frequency of the transition cannot
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be resolved to any accuracy greater than the inverse of this transit time. For a probe

beam 1/e waist of w0, this means that we expect a linewidth on the order of vmp/w0.

A full derivation [346] finds that transit time effects lead to a lineshape of width

∆ωtt =
√

2
vmp
w0

(4.11)

for narrow transitions. For our 2 mm probe beams, this effect is not trivial: in our

heat pipe at 420◦C the atoms are moving at 360 m/s and and so can cross the beam

in 5.5 µs, which is far longer than the excited state lifetime τ = 1/Γ = 4.9 ns of the

461 nm transition but shorter than the 20 µs lifetime of the 689 nm excited state,

so transit time effects will be important. Indeed, the expected ∆ωtt/2π = 41 kHz is

not insignificant compared to the 7.6 kHz natural linewidth, but this effect remains

insignificant compared to the power-broadened linewidth.

Collisional broadening - and potentially lineshifts - could be a more significant

issue for our heat pipe saturated-absorption setup. Collisional broadening can be

easily understood as a modification of the excited state lifetime as a result of collisional

deexcitation, while collisional shifts – more commonly referred to as pressure shifts –

can be seen as energy shifts to the ground and excited states resulting from the near-

field Casimir-Polder (van-der-Waals / Lennard-Jones) interaction of two atoms in

close proximity. Collisional broadening adds a homogenous decay rate Γc = 2σb〈v〉n

to the natural transition decay rate Γ, and pressure shifts scale as ∆ωp = σp〈v〉n,

where 〈v〉 is the relative collisional velocity of the two colliding species and n is the

average number density. We rely upon measured collisional broadening and collisional

shift cross-sections, σb and σp respectively, from Chan et al. [347] for the 461 nm

transition and Crane et al. [218] for the 689 nm transition to estimate the collisional

effects, which must be considered both for Sr-Sr collisions (expected to be a very small
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σb Sr−Sr σb Sr−Ar σp Sr−Ar Ref.

1S0 − 1P1 – 2.97×10−14 cm2 -0.96×10−14 cm2 [347]

at T = 420◦C – Γc/2π = 289 kHz ∆ωp/2π = −47 kHz

1S0 − 3P1 6.55×10−14 cm2 1.52×10−14 cm2 – [218]

at T = 450◦C Γc/2π = 11.4 kHz Γc/2π = 145 kHz –

TABLE 4.1. Reported 88Sr collisional broadening and pressure shift cross-sections
for Sr-Sr and Sr-Ar collisions, and the effective linewidth increase Γc/2π or transition
shift ∆ω/2π expected at our heat pipe operating temperatures and an Ar buffer gas
pressure of 30 mTorr.)

effect, given 88Sr’s small scattering length [217]) and Sr-Ar collisions, but reported

values are not available for all cross-sections; see Table 4.1. While Sr-Ar collisional

broadening is significant for the 1S0 − 3P1 transition, these effects remain well below

the power-broadening systematics, and should not affect our laser servo lock points.

4.5.3. Frequency Modulation (FM) Spectroscopy

Saturated absorption spectroscopy gives us a sub-Doppler spectral feature

centered at the atomic resonance (or, as in our case, one-half of the pump-probe

detuning ∆p). To lock our laser to this feature we need to convert this approximately

Lorentzian lineshape into an “error signal”, or an asymmetric function proportional

to detuning from the line center.4 We also need to subtract off or cancel the Doppler-

broadened background absorption to prevent shifts in the error-signal zero-crossing

due to amplitude fluctuations in the pump and probe beams. We use frequency-

modulation spectroscopy combined with lock-in detection to generate the background-

free error signal that is fed back to the laser piezo to stabilize the output frequency.

4It is possible to side-lock to a Lorentzian feature, but the side-locking technique is sensitive to
long-term drifts due to changes in alignment, pump/probe beam intensities, and feature linewidth.
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Frequency-modulation (FM) spectroscopy [348] uses phase-modulated light to

probe spectral features, taking advantage of the high sensitivity afforded by the

heterodyning of probe sidebands to generate either absorptive or dispersive signals

depending upon the phase of the demodulated transmission signal. The probe beam

is generally phase-modulated using an electro-optic modulator (EOM), which consists

of a crystal whose dielectric tensor is rapidly modulated by the application of a strong

radiofrequency (RF) drive voltage. EOM’s allow near-perfect phase modulation at

frequencies in the MHz-GHz range.5 For an input field E0(t) = Re[E0e
iωct] aligned

with the extraordinary axis of the crystal, an RF drive at ωm will result in a

transmitted field E1(t) = Re[E0e
i(ωct+Mcosωmt)], where M is the modulation index

(also known as the modulation depth, since magnitude of M sets the maximum

instantaneous angular frequency deviation from the original optical frequency ωc).

Expanding in a power series and collecting frequency terms, it can be shown that the

field after the EOM is given by

E1(t) = Re[E0

∞∑
n=−∞

Jn(M)ei(ωc+nωm)t], (4.12)

where Jn(M) are Bessel functions of the first order. The resultant field thus consists

of a carrier at the input optical frequency and a series of sidebands, spaced by the

RF-modulation frequency, all weighted by their respective Bessel function values at

the chosen modulation depth.

In FM spectroscopy, the modulation index is kept small such that the probe

spectrum after the EOM consists of a strong carrier and two relatively weak sidebands:

5Frequency modulation can also be achieved by modulation of the laser current or the
radio-frequency drive of an acousto-optic modulator (AOM), but both add significant amplitude
modulation that would destroy the perfect cancellation of the sideband beats and shift the error-
signal zero-crossing.
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M � 1, J0 = 1, J±1 = ±1/2, and all other terms of equation 4.12 become zero.

Upon transmission through an atomic vapor of length L, each frequency component

experiences absorption and a phase shift such that the transmitted probe field

becomes

Ep(t) = E0[T0e
iωct + T1

M

2
ei(ωc+ωm)t − T−1

M

2
ei(ωc−ωm)t], (4.13)

where Tn = e−δn−iφn is a function of the amplitude attenuation δn = anL and phase

shift φn = ηnL(ωc + nωm)/c induced in each field component due to the effective

absorption an and index ηn at that frequency.

The transmitted intensity of the probe beam beam Ip(t) = 1/2ε0c|Ep(t)|2 then

contains not only the slowly varying intensity envelope but heterodyne beat signals

at the RF-modulation frequency due to the interaction of the carrier and the two

sidebands. Discarding the higher order terms ∝ M2, and simplifying the result

considerably by assuming that the differential attenuation and phase shift for the

carrier versus the sidebands will be quite small (|δ0− δ±1|, |φ0−φ±1| � 1, easily valid

for diffuse atomic vapors or small ωm relative to the Doppler-broadened linewidth),

leaves:

Ip(t) = ε0c|Ep(t)|2e−2δ0 [1 + (δ−1 − δ1)Mcosωmt+ (φ1 + φ−1 − 2φ0)Msinωmt]. (4.14)

Phase-sensitive detection (demodulation of the photodiode signal at the EOM’s RF-

drive frequency, with a variable phase-shifter between the RF local oscillator and the

mixer) then allows isolation of the in-phase component, which is proportional to the

difference in absorption between the upper and lower sidebands, and the quadrature

component, proportional to the differential phase shift. If the phase modulation is

achieved without any residual amplitude modulation, there is perfect cancellation
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between the upper- and lower-sideband beats when the carrier is either very far from

the atomic resonance or at the center of a symmetric absorption line, but as the probe

is swept across the feature the demodulated signals map out the phase or amplitude

changes experienced by the sidebands with extremely high sensitivity: the original

demonstration of the technique showed that extremely weak absorption lines (as low

as 0.005% absorption) could be detected using FM spectroscopy [348].6

In the limit where the modulation frequency is larger than the linewidth of

the absorption feature of interest, the feature can be probed by a single sideband

and information about the absolute values of the absorption and effective index

of refraction can be derived from the FM spectroscopy signals. As the carrier is

swept across the spectral feature, the in-phase component reproduces the Lorentzian

lineshape when either sideband is resonant, and the quadrature component displays

sharp dispersive features at the resonance of the carrier and each sideband. The

in-phase component is flat at the center and so would be useless as an error-signal,

but the quadrature component could be used for feedback: the steep zero-crossing

at the carrier resonance would provide a tight lock in this region, but the lock range

is not broad. On the other hand, when ωm � Γ, it can be shown that the in-phase

component approaches an exact derivative of the Lorentzian absorption lineshape,

which would in theory make for a decent error signal. However, the amplitude of the

beats and hence the signal-to-noise of the error signal becomes quite small.

For these reasons, we operate instead in the regime where the ωm < Γ, where the

lineshape of the in-phase component still resembles the derivative of the absorption

6The FM spectroscopy technique is closely related to the Pound-Drever-Hall technique used to
stabilize lasers to high-finesse optical cavities: the reflection of phase-modulated light incident on an
optical cavity also contains beat signals due to the differential phase-shifts of the upper and lower
sidebands. If the cavity linewidth is substantially narrower than the linewidth of the incident probe
laser, these signals contain information about the laser’s instantaneous phase noise, and can be fed
back to the laser current to narrow the laser spectrum.
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lineshape but the signal-to-noise ratio is reasonably large. FM spectroscopy with

a phase-modulated probe and the correct demodulation phase thus gives us an

error-signal at the atomic resonance, which is on the order of the natural linewidth

when the resonance is the Lamb dip produced by saturated absorption spectroscopy.

However, this signal is still superimposed on the Doppler-broadened probe absorption,

a background that fluctuates with probe intensity. To turn the signal into a reliable

lock signal with a zero-crossing that will not shift, we subtract off the background

Doppler-broadened absorption dip by chopping the pump beam with an AOM. The

pump modulation chops the Lamb dip recorded by the probe off and on, but does

not affect the Doppler broadened background, so after lock-in detection on the probe

transmission, we are left with an error signal that can be fed back to the laser piezo

to keep the laser locked to the atomic resonance.

4.5.4. Alternative Laser Stabilization Techniques

The heat pipe is an effective method for containing an optically dense atomic

vapor, but it does require assembling an argon-backfilled vacuum chamber with an

associated vacuum gauge, and the use of hot ovens which contribute to the overall

background temperature in the lab, so it is worth mentioning the benefits and pitfalls

of some Sr vapor sources used by other groups. Several other vapor cell designs are

in use [349, 350], but most also require vacuum components, heating elements, and

often sapphire windows when a buffer gas is not used (one potentially compact option

does not use heaters or sapphire windows but instead requires a 20A current source to

eject strontium from a commercial dispenser, but the dispenser would need replacing

on perhaps a yearly basis [351]). Another method of accessing nearly Doppler-free

spectra is transverse spectroscopy on a Sr atomic beam [309]; clearly this requires an
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ultrahigh vacuum system but can be a good option when a beam is already available,

as in our system at the small spherical octagon location. However atomic beam signals

are broadened by imperfect beam collimation, and misalignments of the probe laser

off perpendicular will cause Doppler shifts offset the lock center from the unshifted

resonance.

A potentially attractive (if expensive) option is the see-through hollow-cathode

lamp [124, 330, 352]. In a hollow-cathode lamp an electric discharge ionizes

background buffer gas atoms (typically neon for Sr lamps) which then strike a Sr

cathode to generate a contained Sr vapor; in the see-through version the cathode is

a ring through which pump and probe lasers can pass in a saturation spectroscopy

configuration. The ∼5 Torr buffer gas leads to additional pressure broadening beyond

what we see in our heat pipes but the error signal is tight enough for locking the

461 nm blue MOT laser. We have not seen reports of locking the 689 nm red

MOT laser using a hollow-cathode lamp, but one source stresses the importance

of independently calibrating the lock point of a Ca see-through hollow-cathode

feature using another source due to the large pressure shift associated with the buffer

gas [353]; this would be a concern attempting to use a hollow-cathode lamp for the

narrow 689 nm transition.

One of the advantages of hollow-cathode lamps is the fact that sputtered Sr

atoms are collisionally excited to a variety of energy levels, unlike in the heat pipe

where the population of any non-ground-state energy level is near zero even at

high temperatures. This makes hollow cathode lamp spectroscopy attractive for

stabilizing Sr repump lasers that interact with the metastable 3P2 state. A saturated

absorption/FM spectroscopy setup with a see-through hollow cathode lamp would be

ideal for stabilizing our 497 nm repump system, but a much cheaper option would
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utilize the optogalvanic effect in a standard hollow-cathode lamp of the type used

in spectrometers. These lamps are not “see-through”: the cathode is a solid cup

that does not permit the passage of a probe laser through excited vapor and onto

a photodiode on the other side. However, shining a resonant probe laser into the

cathode changes the lamp current slightly by altering the distribution of Sr atoms in

excited states. Some excited energy levels have a higher probability of ionization by

further electron collisions than others, so the presence of the resonant light alters the

Sr+ current at the cathode. The optogalvanic effect is weak but observable with lock-

in detection. We purchased a very cheap used Sr hollow-cathode lamp and detected

the signal for both the 461nm and 497nm beams, so it may be worth exploring this

497 nm stabilization technique in the future.
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CHAPTER V

EXPERIMENTAL APPARATUS II: VACUUM CHAMBER,

STRONTIUM BEAM, AND TRAP REGIONS

FIGURE 5.1. Strontium vacuum chamber fully assembled, before optics installation.

5.1. Overview

For MOTs of average density (and adequate repumping), background gas

pressure can be a limiting factor affecting MOT lifetime [267, 354]: cold atoms are

easily ejected from the MOT by any collision with room-temperature background gas

molecules. For long interrogation times and good transfer rates between different

traps, our MOT regions require ultra-high vacuum (UHV: P < 10−8 torr, but for

the science cell region we would prefer pressures in the 10−10 torr range). However,

strontium’s low vapor pressure means that a hot oven is required to deliver a sufficient
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flux of atoms to the experiment regions, and these atoms must be cooled to speeds

less than the capture velocity of the blue MOT before they reach the capture zone.

In effect our chamber is divided into two regions: a high-pressure side containing the

strontium oven source and a low-pressure side containing the MOT capture areas,

with the two areas separated by the Zeeman slowing region in a long and narrow pipe

which maintains the pressure differential.1

A schematic of the vacuum chamber is given in Fig. 5.2. The high-pressure side

contains not only the hot strontium oven, discussed in more detail in Sec. 5.2, but also

the small spherical octagon (Kimball Physics MCF450-SphOct-E2A8). The atomic

beam from the hot oven passes through two of the spherical octagon’s eight equatorial

ports; the other six have AR-coated viewports (1-1/3′′ CF-flange viewports, Larson

VP-075-F1). There is also a viewport on the bottom of the spherical octagon; the top

is connected via a 4.5′′ CF tee to a 55 L/s ion pump (Duniway RVIP-55-ST-M) and

(through another tee) a right-angle valve (VAT 54032-GE02) allowing access to the

turbo-pumping station during initial evacuation, but the top of the second tee also

allows optical access (2-3/4′′ CF viewports, Larson VP-150-F2). Many strontium

groups requiring high MOT densities use transverse cooling schemes to limit the

divergence of the atomic beam [355–357], and the optical access in this area gives us

that option. We could also use a single probe beam perpendicular to the atomic beam

at this location to lock one of our laser systems to a nearly-Doppler-free (linewidth

limited by atomic beam divergence) resonance. For the current experiment we do not

need a particularly dense MOT, and we have already locked the required lasers to

the heat pipes discussed in 4.5.1, but the optical access in this region is still useful:

1Here, “high-pressure” simply means “high” as compared to the low-pressure side of the chamber;
the vacuum in most of the high-pressure region is still ∼10−8 torr and so qualifies as UHV. Of course
the pressure inside the strontium oven itself, however, is not UHV (∼4 mTorr at 500◦C).

144



1 
in

ch
 s

ca
le

H
ea

te
rs

In
su

la
ti

on

R
ot

ar
y 

fe
ed

th
ro

ug
h 

w
it

h 
m

ou
nt

ed
 s

hu
tt

er

In
lin

e 
va

lv
e

55
 L

/s
 

io
n 

pu
m

p

75
 L

/s
 

io
n 

pu
m

p

T
it

an
iu

m
 

su
bl

im
at

io
n 

pu
m

p

4.
5”

 s
ph

er
ic

al
 o

ct
ag

on
(f

or
 o

pt
ic

al
 a

cc
es

s 
to

 
at

om
ic

 b
ea

m
)

6”
 s

ph
er

ic
al

 o
ct

ag
on

(p
ri

m
ar

y 
M

O
T

 r
eg

io
n)

Sc
ie

nc
e 

ce
ll

(s
ec

on
da

ry
 

M
O

T
 r

eg
io

n)

O
pt

ic
al

 l
at

ti
ce

T
ra

ns
la

ti
on

st
ag

e

N
oz

zl
e/

co
lli

m
at

or
St

ro
nt

iu
m

 
cr

uc
ib

le

Z
ee

m
an

 s
lo

w
er

A
nt

i-
H

el
m

ho
lt

z 
C

oi
ls

w
it

h 
w

at
er

 c
oo

ol
in

g

Sl
ow

in
g 

be
am

M
O

T
 B

ea
m

s

H
ig

h-
pr

es
su

re
 s

id
e:

 P
  

10
-6
  

to
rr

Lo
w

-p
re

ss
ur

e 
si

de
: 
P

<
10

-9
 t

or
r

T
ur

bo
 p

um
p

ac
ce

ss

T
ur

bo
 p

um
p

ac
ce

ss

Sr
 O

ve
n

Sa
pp

hi
re

 
w

in
do

w

~ F
IG

U
R

E
5.

2.
S
r

va
cu

u
m

sy
st

em
sc

h
em

at
ic

145



a CCTV camera (Marshall Electronics Video Runner 1020) positioned in one of the

45◦ windows aids alignment of the Zeeman-slower-beam by providing a view of the

beam/oven overlap on a small LCD monitor (Pyle PLHR76) mounted to vacuum

chamber frame.

The low-pressure side of the chamber contains the 6′′ spherical octagon and glass

cell for the top and bottom MOT regions, discussed in more detail in Sec. 5.4. Above

the MOT regions, a 6′′ CF 4-way cross connects on one side to a 75 L/s ion pump

(Duniway RVIP-75-ST-M) and on the other to a 6′′ CF elbow and a 6′′ CF nipple

containing a titanium sublimation pump (Duniway TSP-275-003). On top of the

4-way cross, a 2-3/4′′ CF tee connects to another right-angle valve for access to the

turbopump and provides vertical-MOT-beam access via an AR-coated window on

top. This low-pressure region is separated from the high-pressure side by the inline

valve and the Zeeman slower. The all-metal inline valve (Varian 9515052) should

allow future refill of the strontium oven without the need for a complete bakeout by

sealing off the low-pressure side of the chamber. The Zeeman-slower magnetic-field

assembly, discussed in more detail in Sec. 5.3, was constructed separately to fit around

the long nipple (CF-flange-fitted pipe) separating the inline valve and the 6′′ spherical

octagon containing the top MOT region. Since most designs we considered needed to

be constructed directly onto the vacuum chamber we will discuss the Zeeman slower

in this chapter. Likewise, optical access and magnetic-field coil positioning for MOT

regions should be considered in the overall chamber design, so we also choose to

discuss these aspects of the top and bottom MOT in this chapter, although more

MOT experimental details will be covered in Chapter 5.

The distance between the hot strontium oven and the top MOT region is just

over 1 m; this length leads to a large chamber, occupying in total (with mounting
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frame) a 6′ × 2.25′ rectangular area of the optical table (and at 3′ tall at the highest

point, the assembly nearly reaches the optical table ceiling). However, the resulting

separation of low- and high-pressure areas is quite effective. In particular, the custom

17′′-long, 0.62′′-ID nipple in the Zeeman slower region acts as a differential pumping

tube [215]. The conductance of such a long and narrow tube is less than 1 L/s,

capable of maintaining a pressure differential between the two regions of almost 2

orders of magnitude [358]. Our system does not have any dedicated vacuum gauges,

but the pressure of the two regions can be monitored as a function of ion pump

current. Ion pumps contain magnetically confined electron discharges; residual gas

molecules are ionized by the discharge and then accelerate into a cathode made from

a gettering material like titanium to be buried or chemically adsorbed. The cathode

current is therefore a measure of residual gas density and hence the chamber pressure

(although pressure measurements may not be exact due to the different speeds at

which different gases — e.g. hydrocarbons vs. noble gases — are pumped). Typical

currents on the high-pressure side are 8-11 µA, corresponding to 1− 1.2× 10−8 torr

(at the low end with the Sr oven off, but even with the oven at its current operating

temperature of 500◦C the pressure does not rise as much as might be expected in

part because strontium itself is an effective gettering material.On the low pressure

side, the ion pump current is nearly off-scale at 0.5-1 µA and so indicates a pressure

less than 10−9 torr; extrapolation of the given pressure-vs-current relationship gives

an expected pressure of ∼6× 10−10 torr.

The purchased ion pumps were originally chosen as overkill since the cost of an

ion pump does not scale linearly with pumping speed, but a subsequent molecular-

flow conductance calculation later verified their adequacy [144].2 In particular, the

2The outgassing rate of the interior walls is reduced by the bakeout procedures described in
Sec. 5.5 but cannot be brought to zero, and helium can diffuse through glass viewports and the
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addition of the titanium sublimation pump (TSP) should ensure sufficient background

gas removal: a TSP pumps by sputtering titanium from the filaments onto the

surrounding chamber, which in our case is a 4′′−OD, 10.62′′-long cylinder (the 6”CF

nipple). Titanium acts as a strong getter for most gases (although less effective for

the noble gases), particularly at the low pressures where ion pumps can become less

effective (< 10−8 torr) [359, 360], so the pumping speed is proportional to the coated

surface area and should be on the order of 1,000 L/s for our system, much higher

than the 55 and 75 L/s speeds of the ion pumps. (For their part, the ion pumps,

which are rebuilt Varian StarCells, should be better at pumping inert gases.) The

TSP filaments can be periodically activated (“flashed”) to restore the gettering layer

and bring the pressure in the MOT regions down, but we have rarely seen occassion

to do so since we have not seen significant increases in system pressure.

All parts except those discussed specifically in the sections below were commercial

CF-flange vacuum components made from 304 or 316 stainless-steal . Optimal UHV

chamber designs [359] limit the number of joints, maximize conductance to the

vacuum pumps, and minimize internal surface area.3 We attempted to adhere to

these principles, although in the end we have identified some changes that would help

to minimize the overall size of the chamber while maintaining the pressure differential

between the low and high regions. The ion pumps are mounted on the large four-

way crosses to maximize conductance but avoid direct line-of-sight between the pump

input and the atomic beam or MOT regions; the TSP is mounted on an additional

elbow to prevent any sputtering of titanium into the rest of the chamber. The entire

stainless steel walls of the chamber itself, so UHV systems require continuous pumping sufficient to
offset these effects.

3The “spherical octagons” are an example of the last principle: with eight external ports they
provide excellent optical access, but they are machined from a hollow sphere to minimize internal
surface area.
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vacuum chamber was assembled on a T-slotted aluminum frame (80/20 Inc.) which

supports the ion pumps, prevents stresses on chamber joints, and allows for transfer

of the entire chamber from the floor (assembly and bakeout location) to the optical

table.

5.2. Strontium Oven and Beam

The strontium oven must deliver a sufficient flux of atoms to the main trapping

region while containing enough strontium to run for several years without requiring

a refill (which would necessitate breaking vacuum in the high-pressure side of the

chamber). Some oven designs allow partial recirculation of atoms lost from the main

atomic beam [361, 362], but the slight reservoir lifetime increase comes at the cost

of significant complication to the overall design and would require operation above

strontium’s 777◦C melting point. Likewise, there are many methods for resistively

heating a reservoir and limiting heat transfer to the rest of vacuum chamber and

lab environment [363, 364] using electrical vacuum feedthroughs and thermal shields

or even water-cooled housings, but these designs are also more complex than this

experiment requires. For simplicity and ease of use, we chose the same external

clamshell heater design used in the heat pipes( 4.5.1), with a simple strontium crucible

inside a stainless steel pipe serving as the oven reservoir and a bundle of capillary

tubes clamped in a secondary cylinder acting as a collimation nozzle.

The overall oven design is diagrammed schematically in Figure 5.2. The

strontium reservoir is a stainless-steel cylinder containing 3.21 g of solid Sr (from

the same Sigma Aldrich source as the heat pipes), loaded through an end cap at

the front of the cylinder. This cap has an axial 0.25′′-diameter hole, which butts up

against the cylinder containing the collimation assembly. The collimation nozzle itself
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consists of 184 capillary tubes of 203-µm-ID (Small Parts B000FN0TL2 hypodermic

tubing), cut to 1-cm long and clamped in a secondary axial 0.25′′ hole using a plate

screwed into a flat in the cylinder top (see Fig. 5.3). Both cylinders are contained

in a 0.75′′-diameter, 12′′-long stainless-steel pipe with 1 1/3′′ CF flanges welded to

either end. Two side-by-side 2′′-long clamshell style heaters (Thermcraft RH-206-

S-L custom part, with VIP-2.5-8-0.75-2 insulation package), controlled by the same

LOVE temperature controller/solid-state-relay combinations described in Sec. 4.5.1,

heat the reservoir and nozzle cylinders, with the nozzle kept 50◦C hotter than the

reservoir to prevent clogging.

FIGURE 5.3. Strontium oven collimation nozzle

A bundle of tubes can produce an intense atomic beam with a high degree of

collimation while limiting depletion of the reservoir source. One might assume that an

equally collimated atomic beam could be produced by two apertures with areas equal

to the sum of the capillary tube cross-sectional areas and separated by the length of

the tubes, or by a single tube with these dimensions, but while the flux of our nozzle
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will indeed be proportional to the total nozzle area, the collimation angle is instead a

function of the length L and diameter a of an individual capillary tube. The effective

conductance of the nozzle is also much lower than that of a single tube of equal total

nozzle area, and the conductance of two apertures alone would be higher yet [358]:

the conductance of a thin-walled aperture is proportional to the aperture area, while

that of a tube is proportional to the tube diameter cubed divided by the tube length,

so a tube of radius a� L will have a lower conductance than two apertures of equal

radius, and a bundle of much smaller-radius tubes will have a lower conductance yet.

This low conductance allows greater oven pressures and hence an equivalent peak

(on-axis) beam intensity with less source depletion or beam divergence.

To fully understand the expected beam intensity and angular profile, it is

important to identify whether we are operating in the molecular- or continuum-flow

regime [358, 363]. Molecular flow requires number densities low enough that collisions

between molecules are rare compared to those between molecules and walls: the gas

can be treated as non-interacting, and the flow is diffusive in nature. Continuum flow,

on the other hand, implies that gas behavior is dominated by interactions between

molecules and forces resulting from pressure differentials. The transition between the

two regimes is characterized by the Knudsen number Kn = l/a, the ratio between the

mean free path l and the smallest chamber dimension (in this case the tube radius a).

For molecular flow, l > a and so Kn > 1 and the oven acts as an effusive source; when

it also holds that l > L (the “transparent” regime) atom-atom collisions along the

length L of the capillary can be ignored and the beam divergence is a function only of

the aspect ratio a/L of a tube, with no dependence on the reservoir number density.

Continuum flow, on the other hand, implies that Kn � 1 and atom-atom collisions

are more frequent than atom-wall collisions. For atomic beam sources, continuum
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flow implies that interactions between atoms broaden the beam and decrease the

relative peak intensity, and the angular divergence is no longer a simple function of

the collimator geometry.

The mean free path for strontium-strontium collisions changes rapidly over

our typical oven-temperature operating range: l = 1/(
√

2πnd2) = 12.6 cm at 450◦C,

2.5 cm at our current setpoint T = 500◦C, but only 6.0 mm at 550◦C (here,

n = P/kBT is the atomic number density and d ≈ 4.4 Å). We are in the transparent

regime for low oven temperatures but the intermediate regime (l > a but l < L) when

we run hotter, with the crossover point at T = 530◦C. However, one advantage of the

multiple-tube collimator design is the fact that the beam divergence remains small

well into this intermediate regime [365]. Even when the oven pressure implies a mean

free path somewhat less than the collimator length L (but still greater than a), the

low conductance of a tube with L � a implies that the number density falls, and

the mean free path increases, as the atoms pass through the tube: there will still

be some point along the tube where the mean free path becomes greater than the

remaining tube length and the transparent condition is once again satisfied. Many

atomic beam systems are in fact run in this intermediate regime to provide higher

peak intensities, and measured beam divergences are indeed close to those expected

for the transparent regime [366, 367].

While the divergence half-angle of the atomic beam is simplified by assuming

we are in the transparent regime, it cannot be calculated directly from assuming

that θ1/2 = tan−1(2a/L) ≈ 2a/L, as we might have expected if we assumed that any

atom in the resultant beam must have traversed the capillary with no wall collisions.

These atoms will make up the majority of the beam, and their contribution to the

angular spread of the beam is weighted towards the center. On the other hand, atoms
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that do hit the wall can contribute as well, broadening the angular distribution. To

understand the additional effect of the wall atoms, it is important to realize that atom-

surface interactions are not modeled as momentum-conserving elastic collisions but

are governed instead by the Knudsen Cosine Law: atomic trajectories are completely

randomized by scattering events to an angular distribution proportional to cosα,

where α is measured relative to the surface normal. Any atom that experiences a

wall collision can still contribute to the atomic beam if this angle is greater than

tan−1(L′/2a) in the forward direction, where L′ is the distance from the tube exit

where the wall collision occurred; an atom could also experience several wall events

and still eventually find its way into the final beam. The full calculation for even the

simple transparent regime thus involves finding an expression for the beam intensity

as a function of angle by adding the expected intensity distribution for atoms that

pass directly through the tube to the distribution that results from integrating over

the tube walls (and decreasing number density) down the length of the tube [368].

For effusion from a simple aperture the flux density Φ(θ, v) (atoms per second

per unit velocity and solid angle) is found by assuming that the probability of crossing

the aperture is given by the number density per unit velocity n(v) times v cos θ (only

atoms with velocity components towards the aperture exit will cross) times the area

of the aperture πa2 [358, 369]. This can be re-written in terms of the normalized

Maxwell Boltzmann distribution f(v) as

Φ(θ, v) =
πa2

4π
v̄ cos θ n0f(v) =

n0v̄ πa
2

4π
j(θ)f(v), (5.1)

where v̄ =
√

8kBT/πM is the mean velocity, n0 = P/kBT is the oven number density,

and the angular distribution function j(θ) = cos θ for the simple aperture. For the

capillary array, j(θ) becomes a complicated function dependent on a and L (but still
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normalized to j(0) = 1), but Eq. 5.1 remains valid. This implies that the peak flux or

beam intensity [atoms per second per steradian, on axis (θ = 0)] is exactly the same

as that for an array of apertures:

Jpeak =

∫ ∞
0

Φ(0, v) dv =
n0v̄ πa

2

4π
Ncap, (5.2)

where Ncap is the number of capillary tubes. The angle at which the intensity

distribution falls to 1/2 this peak value is given by [368]4

θ1/2 = 1.68
a

L
, (5.3)

versus θ1/2 = π/3 for the simple aperture. These results demonstrate the effective

“beaming” power of the capillary tube array: the peak intensity remains equal to

that of a simple aperture of the same radius, times the number of capillary tubes,

but the angular width is substantially decreased. As a result the total flux is a factor

of 8/3(a/L) smaller than that of an array of equivalent apertures [368, 369]. The

low conductance of the capillary tube nozzle thus conserves the reservoir source while

delivering an equally intense atomic beam.

For our capillary array, we would expect a divergence angle θ1/2 = 17 mrad; while

this is good collimation, it would still result in a 4-cm-diameter atomic beam in the

MOT trapping region 1 m downstream. The beam could be even larger: other groups

using capillary arrays have measured divergence angles larger than predicted [364] and

attributed the discrepancy to imperfect alignment of the capillary tubes. A design

which enforces hexagonal close-packing of the tube array [367] might help to mitigate

4A separate group using a Monte Carlo simulation approach also finds this equation for θ1/2 is a
good approximation in the molecular regime for the collimation of any tube with L/a > 10 [366].
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this problem, but our clamp design probably does allow individual tubes to have

small axial misalignments which would increase the overall beam divergence angle.

To further collimate the beam, we use two additional 6.35-mm diameter apertures cut

from nickel gaskets on either side of the inline valve, just before the Zeeman slower

tube. The second gasket, which is 46.5 cm from the exit of the oven nozzle, thus

limits the beam divergence to θap2 = 6.8 mrad through the majority of the vacuum

chamber. The beam still clips slightly in the tube of the long 1.2cm-ID Zeeman nipple,

so the tube exit acts as the final limiting aperture. The final divergence half-angle is

then θf = 6.6 mrad. We expect a hot beam diameter of 1.3 cm in the MOT region,

consistent with observed unslowed atom fluorescense in this region and the size of the

strontium deposits on the final sapphire window.

FIGURE 5.4. Atomic beam diameter as a function of distance from the collimation
nozzle. The orange curves show the hot beam direct out of the nozzle (dashed)
and after aperture by the first and second nickel gaskets (solid). The blue dashed
curve shows worst-case calculated cooled beam expansion as a result of transverse
heating in the Zeeman slower, ignoring losses to clipping in the Zeeman pipe. The
MOT capture zone is determined by the extent of the MOT optical molasses, and as
shown is slightly above the main beam axis: this is a result of the ∼ 5 mrad atomic
beam-pointing misalignment relative to the main chamber axis.

The total flux of hot atoms delivered to the MOT region can be estimated from

the peak axial intensity per steradian (Eq. 5.2) multiplied by the solid angle defined
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by the end of the Zeeman pipe, assuming that the apertured angular distribution

function j(θ) is well approximated by j(0):

Qhot ≈ JpeakΩf

≈
(
9.6× 1015 atoms/s · sr

)π(0.006m)2

(0.96m)2

≈ 1.3× 1012 atoms/s

(5.4)

for a 500◦C oven. The peak intensity Jpeak may be an underestimate since it assumes a

sum over capillary tube fluxes and ignores the contribution due to the gaps between

the tubes; on the other hand, possible mutual misalignments of the tubes would

reduce the intensity. Schioppo et al. [364] noted that the measured flux from a

similar strontium capillary tube collimator was consistently ∼ 3.5× lower than the

theoretical prediction over a wide range of oven temperatures, a result consistent with

a a larger initial beam divergence angle resulting from capillary tube misalignments.

Without careful measurements of our atomic beam, the best we can say is the flux

should be on the order of 1012 atoms/s.

The total flux of cold atoms that will be delivered to the MOT region is of

course the more important parameter; this flux will be dependent on the Zeeman

slower parameters and will be discussed in Sec. 5.3. However, it is worth mentioning

here the fact that the Zeeman slowing process leads to a significant increase in the

cooled beam divergence angle, as discussed in Sec. 3.2.2.1. Using a converging slowing

beam prevents the “beam explosion” that would result from slowing the longitudinal

velocity component while leaving the transverse component unchanged, but inevitable

transverse heating from spontaneous recoil events still leads to beam spreading, with

the angular increase given by Eq. 3.36. This effect would lead to a final beam
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divergence of 45 mrad exiting the slowing region, or a beam diameter of almost

4 cm in the MOT region. For the cooled atoms, the Zeeman tube itself acts as a

final aperture, but the percent of cooled atoms lost to this effect is more difficult

to calculate. The beam diameter as a function of distance from the oven nozzle is

plotted in Fig. 5.4, showing the effect of the apertures and the Zeeman slower tube

on the hot versus cooled atomic beam.

To estimate the duration between oven refills, the total flow rate through the

nozzle is given by integrating the flux per steradian per unit velocity (Eq. 5.1) over

the full 2π solid angle and all velocities. Equivalently, since we are in the molecular

flow regime, we can use the flow rate of a single long tube of length L and radius a

multiplied by the number of capillaries Ncap [364, 369], or

Qtotal =
2π

3

n0v̄ a
3

L
Ncap = 8.1× 1014 atoms/s (5.5)

for a 500◦C operating temperature. With 3.21g loaded, we can anticipate that the

source reservoir will be depleted in ∼2.5 years when the oven is in use for 8 hours a

day; the lifetime may be even shorter due to the contribution from gaps between the

capillaries. In retrospect, our oven pipe would accommodate a much longer reservoir

cylinder containing more strontium (while we preferred to keep the heated region

near the center of the pipe to avoid stressing the final CF flange, stainless steel’s

low coefficient of thermal conductivity means that the flange is currently almost at

room temperature when the oven is running; a longer heater would probably be fine).

We would also benefit from using smaller inner diameter capillary tubes: decreasing

the radius by 1/2 would double the reservoir lifetime (assuming we could fit roughly

4×Ncap in the same total nozzle area) but would leave the peak on-axis flux unchanged

while increasing the total flux delivered to the MOT region by halving the divergence
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angle (such that fewer atoms would be lost at the first and second apertures). The

overall nozzle area is also larger than necessary; decreasing this area would increase

the reservoir lifetime while decreasing Ncap and the peak flux proportionally, but fewer

atoms would be lost at the first aperture, and our planned experiments do not require

large MOTs.

Two final atomic beam considerations were important in the chamber design.

First, we needed a method to shutter the atomic beam when not continuously loading

a top MOT. Any beam atoms not trapped by the MOT are deposited on the final

sapphire window, and for MOT characterization and any future experiments in the

top MOT region we prefer to have the atomic beam shuttered after loading so that the

cold MOT atoms are not continuously bombarded with the atoms from the atomic

beam. We installed a 2-3/4′′ CF-flange-mounted viewport shutter (Kurt J. Lesker

DS275VPS) before the inline valve and keep this shutter closed at all times other

than when continuously loading the top MOT to prevent strontium contamination of

the low pressure side of the vacuum. The shutter is actuated by a rotary magnetic

feedthrough designed for manual operation, but we have attached a timing belt

pulley to rotate the shaft using a stepper motor (SparkFun ROB-09238 with “Easy

Driver” ROB-12779) that is computer controlled using the digital output boards to

link the timing of shutter opening/closing events with other experimental sequences;

see Ref. [144] for more information on atomic beam shutter control.

Finally, the atomic beam terminates on a viewport that admits the counter-

propagating Zeeman-slower beam. We use Kovar-sealed borosilicate glass viewports

for optical access in other locations, but this viewport is sapphire (Larson VSZ-

150-F2) to prevent the semi-permanent reflective coatings that can form when hot

strontium reacts with glass. Strontium deposits still build up on the window to create
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a slight film, so we extended the window away from the MOT spherical octagon

chamber on a 6′′-long nipple and heat it to 200◦C using a silicone rubber heater

(Omega SRFG-108/10) wrapped around the CF-flange joint with a thermocouple,

controlled by an inherited temperature controller assembly (from a previous UO cold

atom experiment, already equipped with a solid-state relay) switching a Variac set

to 70V. We still observed substantial strontium build-up when the oven was left

running without the shutter closed for an extended period, but the deposit gradually

diminished over a few days. In normal operation, a very faint film is barely visible, and

although this may attenuate the Zeeman-slower beam very slightly we have actually

found it to be a useful diagnostic feature. Despite our alignment attempts during

assembly, the deposit is about half a centimeter low and to the left of the viewport

center, indicating that our atomic beam pointing angle is off by ∼5 mrad. This

could be a result of nozzle clamp misalignment or a slight torque along the axis of the

whole chamber causing creep after initial assembly. If perfect alignment of the atomic

beam were required future designs could add flexible bellows between the oven pipe

and the rest of the chamber [123] or incorporate pointing alignment into a new oven

design [343], but as it is we simply use the deposit to center the input alignment of

the Zeeman-slower beam and load the MOT from the cold atoms above the main hot

beam axis.

5.3. Zeeman Slower

The strontium oven produces a beam of hot strontium atoms with a longitudinal

speed distribution given by

fbeam(v) =
v3

2v4
T

e−v
2/2v2

T , with vT =

√
kT

m
. (5.6)
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This distribution is found by multiplying the usual Maxwell-Boltzmann velocity

distribution (Eq. 4.5) by an extra factor of velocity v (a result of the fact that the

probability of effusing through an aperture is proportional to velocity), converting

to a speed distribution by integrating out the polar coordinates θ and φ, and

renormalizing. The extra factor of v shifts the most probable, average, and root-

mean-square velocities to slightly higher values than the usual:

gas beam Sr beam at 500◦C

vmp :
√

2vT →
√

3vT = 468 m/s

v̄ :
√

8
π
vT →

√
9π
8
vT = 508 m/s

vrms :
√

3vT → 2vT = 541 m/s

(5.7)

The full beam distribution is plotted in Figure 5.5, versus the usual Maxwell-

Boltzmann speed distribution (dashed), for T = 500◦C. Given the MOT capture

velocity vc ∼50 m/s, only 0.14% of the beam distribution could be loaded into

the MOT without further pre-cooling. The atoms can be slowed by a counter-

propagating beam detuned to be resonant with the Doppler-shifted peak of the

velocity distribution, but as described in Sec. 3.2.1 this beam will only be resonant

with a velocity class of width ∆v = Γ/k
√

1 + I/Isat ' 20 m/s for I = 2Isat. The

range of affected velocities can be increased by increasing the beam intensity, but

even then any atoms that interact with the cooling beam and decelerate will rapidly

Doppler-shift out of resonance.

There are two methods that allow a counter-propagating beam to interact with a

much larger percentage of the velocity distribution and slow the atoms to less than the

MOT capture velocity: chirp cooling (sweeping the laser detuning at a rate matching

the changing Doppler shift) and Zeeman slowing (using a changing magnetic field
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FIGURE 5.5. Normalized Maxwell-Boltzmann speed distributions at 500◦C for a gas
of strontium atoms (dashed) vs the atomic beam (solid). The shaded region indicates
the approximate capture range of the Zeeman slower.

to equalize the Doppler shift and Zeeman shift for a fixed laser detuning). Chirp

cooling requires the ability to scan the detuning of the slowing beam ∆ = ω − ω0

from ∆ = kv0, where v0 is the speed of the fasted atoms we hope to catch, down

to ∆ ≤ kvc. If we hoped to capture the majority of the distribution a broadband

electro-optic modulator capable of rapidly sweeping over ∼1 GHz would be required.

Furthermore, chirp cooling can only deliver one pulse of slow atoms per frequency

sweep period. For a continuous source of slow atoms, Zeeman slowing is clearly the

best option.

Traditionally, the magnetic field gradient required for a Zeeman slower is supplied

by a tapered solenoid. However, the process of winding a bakeable solenoid is labor

intensive, and coil operation requires a high power current supply and water-cooling.

It is also difficult to modify the field profile after the solenoid is created (the use

of multiple current supplies controlling adjacent coil sections can allow some fine-

tuning [343] but at the cost of further apparatus complication). For these reasons,
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many groups are exploring permanent-magnet Zeeman-slower designs [122, 300, 306–

308].

5.3.1. Transverse-Field Permanent-Magnet Design

We chose to duplicate the permanent-magnet transverse-magnetic-field Zeeman-

slower design developed by Y. B. Ovchinnikov of the UK National Physical

Laboratory [300, 306, 370]. The magnetic field in this design is created by small

neodymium magnets positioned in the x − z plane (atomic beam axis along ẑ )

with dipole moments oriented parallel to the x̂ axis. Ovchinnikov demonstrates that

24 such magnets provide a relatively smooth magnetic field gradient that is well-

approximated by modeling each magnet as a point dipole. Each pair of magnets is

positioned symmetrically about the z-axis with aligned dipole moments, such that the

resultant magnetic field components Bx and By are zero at the beam axis, but the

Bz field increases with decreasing magnet distance from the z-axis. The field profile

is then easily adjusted at any time by tuning the x-position of the magnets (another

adaptor of this design demonstrated real-time field optimization by connecting each

magnet to a servo-motor controlled by a program monitoring the MOT fluorescence

downstream [122]).

Ovchinnikov models the optimal required magnetic field by taking the analysis

described in Sec. 3.2.2.1 one step further: a consideration often neglected is the fact

that the slowing beam intensity is not constant throughout the slower. This can be a

result of beam focusing [309], which is useful to both maximize overlap between the

slowing beam profile and the diverging atomic beam and to provide a small transverse

cooling effect to offset the “beam explosion” that would otherwise occur during the

slowing process. However, even with no slowing beam focusing, atomic absorption
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may be a factor, particularly at the end of the slowing region where velocity phase-

space compression results in a very dense cold beam. With a spatially-varying light

field, the scattering force (Eq. 3.25) becomes

F (v, z) = ~k
Γ

2

s0(z)

1 + s0(z) + 4
(
∆ + kv(z)− κB(z)

)2
/Γ2

, (5.8)

where the on-resonance saturation parameter s0(z) = I(z)/Isat is now a function of

position along the slower. Instead of assuming that I�Isat, the maximum acceleration

for a given location is now defined as:

amax(z) =
~kΓ

2M

s0(z)

1 + s0(z)
(5.9)

which still occurs when the effective detuning ∆eff = ∆ + kv(z)− κB(z) = 0.

As described in Sec. 3.2.2, operation at this amax is in fact not optimal, since

any slight increase in atomic velocity resulting from magnetic field imperfections or

random scattering events will then lead to a decrease in the scattering force and loss

of atoms from the slowing process, so the actual acceleration used is a(z)=ε amax(z),

where the coefficient ε is a constant related to the usual Zeeman slower design

parameter η = a/amax (used when assuming constant acceleration) by

ε = η
1 + s0(z)

s0(z)
. (5.10)

Analogous to the stability analysis in Sec. 3.2.2, it can be shown that optimal cooling

occurs for ε = 0.75 (for a safety margin ε = 0.6 is a reasonable parameter, which

corresponds to the commonly used η = .4 for a constant s0 = 2). The equilibrium

velocity for the decelerating atoms will then be offset from the resonant velocity
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kvres = κB(z)−∆,

kv(z) = kvres(z)− Γ

2

√(
1 + s0(z)

)1− ε
ε

, (5.11)

which corresponds to the velocity for which the derivative of the scattering force is

maximized.

As the deceleration rate is no longer a constant, calculation of the optimal

magnetic field profile is non-trivial. Ovchinnikov develops a procedure to numerically

calculate the equilibrium velocity v(z) that would result from ε amax(z), using an

expression for the density of atoms as function of distance from the end of the

slower z∗ that depends in turn upon v(z∗) at that location (assuming all atoms

with velocities between the equilibrium velocity at that point and the Zeeman slower

capture velocity v0 have been slowed by that point) to find an expression for s0(z∗).

Once v(z) is known, vres(z) for the chosen efficiency parameter is given by Eq. 5.11,

and the resonance condition kvres(z) = κB(z)−∆ then gives the optimal the magnetic

field profile. Luckily for us, we did not have to repeat this procedure: Ovchinnikov

calculates the optimal field for the same slowing parameters used in an existing high-

flux Sr MOT experiment [309], which are appropriate for our experiment as well (see

Table 5.1).

The slowing beam is assumed to be converging such that the diameter at the

output and input of the slower are 0.3 cm and 1 cm, respectively, which sets the

beam waist ω0 = 10.5 µm at 10.7 cm behind the start of the slower. The absorbed

power can be estimated by assuming the fastest atoms captured by the slower require

(v0 − vf )/vr = 40, 600 scattering events, and the beam flux found in section 5.2 is

1.4 × 1012 atoms/s, so at an energy of E ≈ ~ω0 per photon we would assume the

absorbed power is Pabs = 24.5 mW. Of course, not all atoms will need this many
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Zeeman shift (1P1, mF = ±1) κ/2π = 1.4 MHz/G

efficiency parameter ε = 0.6

capture velocity v0 = 425 m/s

final velocity vf = 25 m/s

slower length L ≈ 25 cm

Zeeman beam detuning ∆ = -500 MHz

starting B-field B0 ≈ -300 G

ending B-field Bf ≈ +300 G

slowing beam σ− power Pσ−=22.5 mW

slowing beam focusing angle θ = 28 mrad

TABLE 5.1. Zeeman slower design parameters

scattering events, so Ovchinnikov’s slightly lower Pabs = 22.5 mW is reasonable. This

power is equivalent to a saturation parameter s0(25 cm) = 0.7 at the end of the

slowing region.

The resulting optimal field, as realized by appropriate positioning of 24 magnetic

dipoles, is plotted in Fig. 5.6, along with the field that would result from the constant

deceleration assumption (Eq. 3.44) with design parameter η = 0.4 and a constant

slowing beam intensity s0 = 2. The constant acceleration field is of course idealized,

as the abrupt transition from 300 G to 0 is impossible to achieve in any solenoid or

permanent magnet realization, but both fields have similar same peak values (as these

are determined by the starting and finishing velocity). Also shown are the measured

values for the field of our completed transverse-field permanent magnet slower.

Calculated velocity profiles for atoms entering the slower at a variety of different

starting longitudinal velocities are shown in Fig. 5.7, as well as the curve representing

the resonant velocity that would give ∆eff = 0. The z-axis extends to the MOT
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FIGURE 5.6. Zeeman slower magnetic field profiles calculated for a converging
slowing beam of varying intensity (solid) and the constant acceleration, constant
intensity idealization (dashed). Also shown are the magnetic field values for our
completed transverse-field magnetic dipole slower, measured by a Hall probe along
the slower axis with magnetic shields in place.

capture location, 32 cm beyond the start of the Zeeman slower: the resonant velocity

curve demonstrates that the slowing beam is far detuned from both the slowed atoms

and remaining hot atomic beam atoms in the MOT region. The velocities for the other

curves are numerically evolved under the assumption that the atoms experience the

scattering force given by Eq. 5.8, with B(z) given by the optimal magnetic field profile

of Fig. 5.6. The variable intensity parameter s0(z) corresponds to the design profile

of the converging slowing beam, but the power P = 22.5 mW is taken to be constant,

ignoring the effects of absorption. This model indicates that v0 max'425 m/s is the

indeed the approximate capture velocity (atoms with slightly greater initial speeds are

affected by the scattering beam but cannot slow enough to come fully into resonance),

and the final velocity is vf ' 25 m/s. Further examination shows the average

v̄f = 25.3 m/s, and the capture range of starting velocities is 140 – 430 m/s (atoms
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with v0 < 140 m/s will be turned around before the end of the slower, as indicated by

the negative final velocities for the trajectories with v0 = 100 and v0 = 50; but since

there are fewer atoms at these velocities in the initial distribution this loss is trivial).

FIGURE 5.7. Atom velocity versus distance from start of Zeeman slower for varying
initial velocities v0. The blue curves show successful slowing, the red curves show the
evolution for initial velocities too fast or slow for successful capture, and the dashed
blue curve indicates the resonant velocity that would give a Doppler shift exactly
canceling the local magnetic field for the slowing laser detuning ∆/2π = −500 MHz.

This simple model does not include transverse velocity effects or the off-axis

components of the full magnetic field distribution. While this model should be

sufficient to estimate capture range dynamics, Hill et al. completed a full Monte-

Carlo simulation of atomic trajectories in the transverse-field magnetic-dipole Zeeman

slower after we had completed construction of our slower [300]. While the model of

Fig. 5.7 implies that all atoms above the Zeeman slower capture velocity are relatively

unaffected by the the slowing region while the majority of atoms below the capture

velocity are collapsed into a final narrow distribution centered at vf ' 25 m/s, the

full simulation reveals an interesting additional feature at vf ' 200 m/s. Hill et al.
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attribute this additional peak to cooling of atoms lost from the slowing process in

the exit region of the Zeeman slower. This may be an explanation for an interesting

fluorescence phenomenon we observe in our MOT region, which will be discussed

further in Sec. 6.2.

5.3.2. Calculated Cold Atom Flux

It may seem that a greater maximum capture velocity would be preferred,

since the most-probable velocity of our atomic beam is vmp = 468 m/s at an oven

temperature of 500◦C. However, increasing v0 max increases both the length of the

slower and the maximum magnetic field required, so many strontium groups operate

in the range 400 < v0 max < 450m/s. Furthermore, the percent of atoms captured

is already more than sufficient: ∼ 35% of the hot beam distribution entering the

Zeeman slowing region is cooled. Ignoring the aperture effect of the Zeeman tube

on the transversely-spreading cooled beam, integration of the initial thermal beam

distribution over the final beam solid angle and the capture velocity range of the

Zeeman slower would give a cold flux of

Qcold =

∫ v0 max

v0 min

∫ θz

0

Φ(θ, v) 2π sin θ dθ dv

≈ πθ2
f Jpeak

∫ v0 max

v0 min

fbeam(v) dv

≈ 4.5× 1011.

(5.12)

Here, as in Eq. 5.4, we have made the assumption that after several apertures the

integral over the angular distribution can be approximated by the peak axial intensity

Jpeak multiplied by the cold beam solid angle.
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However, a less reasonable assumption is the neglect of losses due to the fact that

the cooling transition 1S0 − 1P1 is not closed [300, 343]. Most atoms that decay from

the excited 1P1 state to 1D2 will be lost from the slowing process: given the 1D2 state

lifetime τ = 0.3 ms, an atom moving at 300 m/s will travel on average 9 cm during

the time it is shelved in this state, experiencing no velocity reduction and falling out

of step with the resonance condition. As discussed in Sec. 6.2.1, in the absence of a

repump laser the probability of returning directly to the 1S0 ground state decreases

exponentially with the number of 1S0 − 1P1 photons scattered due to these losses to

the 1D2 state. 5 The number of photons scattered depends in turn upon the velocity,

so the expression for the cold flux must be modified:

Qcold = πθ2
f Jpeak

∫ v0 max

v0 min

fbeam(v)e
−Γd

Γb

(
v−vf
vr

)
dv, (5.13)

where Γd and Γb are the transition rates for the 1P1−1 D2 and 1S0 − 1P1 transitions,

respectively, and the number of photons scattered is (v− vf )/vr, where vr = ~k/M is

the recoil velocity. With this modification, we would ideally expect the flux of cold

atoms delivered to the MOT trapping region to be Qcold = 2.5× 1011 atoms/s for our

current parameters.

Including the losses due to cooled beam clipping on the Zeeman tube as a result

of the transverse-heating angular increase is more challenging: the beam spreading

depicted in Fig. 5.4 is calculated from the average angular increase for atoms entering

the slower at v0 max, but atoms entering with lower velocities will scatter fewer photons

and gain less transverse energy. A complete analysis of the cooled atom losses would

demand integration over the initial beam velocity distribution, but as a rough estimate

5Note that the addition of our 497 nm repump laser to the slowing path would not prevent these
losses: this repump depopulates the metastable 3P2 level, not the intermediate 1D2 state.
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we can assume that we may lose as much as an order of magnitude due to this effect.

In the end, we can expect a cold flux on the order of

Qcold ≈ 1010 atoms/s. final cold atom flux (5.14)

This flux is consistent with predictions by other strontium groups and more than

sufficient to achieve fast MOT loading rates.

5.3.3. Zeeman Slower Realization

Construction of the transverse-field magnetic-dipole Zeeman slower is quite

simple compared to the traditional tapered-solenoid approach. A 0.5′′-thick

aluminum-plated cast-iron frame serves both as the magnet mounting structure and a

magnetic shield.6 The 5/8′′-diameter neodynmium magnets are glued into aluminum

cylinders, which are in turn attached to bronze screws threaded through the top

and bottom of the iron box. The height of the magnets is thus easily adjusted, and

the ẑ-axis spacing duplicates the Ovchinnikov design with 12 sections equally spaced

2.083-cm apart (with no magnets needed at the zero-crossing field location) and the

spacing of the final dipole pair increased to 2.7 cm to better mimic the steep optimal

field gradient at the slower exit [370].

Our aluminum cylinders are anodized red/blue to mimic traditional north/south

magnetic field polarity, but the spacing from the slower axis is not a direct indicator

of field strength at a given location: decreasing magnet stack thicknesses are used in

the central areas in order to fit the magnets inside the frame. The magnet stacks are

6Any ferromagnetic material would serve equally well as a magnetic shield, and certain steels are
easier to machine than cast iron, but we did not realize this at the time of construction and simply
duplicated the original design.
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well-approximated by point dipoles with magnetic moments M = BiV/µ0 where Bi is

the intrinsic induction of the material and V is the volume of the stack. The resultant

total field at a given location along the slower is the sum of the individual dipole fields,

plus those of the aligned image dipoles generated by the top and bottom plates of

the cast iron box at x = ±16.1 cm. The inclusion of the image dipoles from the

end plates of the box (2 cm from the first and last magnet pairs) is also important

to meet the abrupt field gradient at the start and end of the slower; these image

dipole pairs are anti-parallel to their nearest real neighbors. The optimal field on-axis

was calculated using Ovchinnikov’s positions and heights for 15-mm-diameter magnet

stacks with Bi = 1.1 T surrounded by ideal magnetic shields [370]. The x-positions of

our magnet stacks (composed of K&J Magnetics N42 magnets DA1, DA2, and DAH1

with thicknesses 1/16′′, 1/10′′, and 1/8′′ and residual induction Br = 1.3T ≈ 1.1×Bi)

were adjusted to match the measured on-axis field to the ideal field (see Fig. 5.6).

Our Zeeman slowing beam profile differs from Ovchinnikov’s parameters: to

better match the divergence angle of our apertured atomic beam, we set the focus

approximately 1 cm behind the oven nozzle, 63 cm behind the start of the slower.

We expand the Zeeman slowing beam using a telescope with f=50.8 mm and 300 mm

lenses before the periscope that brings the beam up from the optical table to the

sapphire window terminating the atomic beam path. We initially adjusted the lens

separation with the periscope beside the vacuum chamber, to set the waist position

and check the beam size at the aperture locations (to avoid clipping), and then moved

the periscope into place. The resultant beam profile gives a waist of 1.5 cm at the

sapphire window, converging at an angle roughly equivalent to the apertured hot beam

angle θf = 6.6 mrad. The saturation parameter s0(z) for Pσ− = 22.5 mW is then 2.2

at the start of the slower and 1.1 at the end, versus Ovchinnikov’s s0(z) ≈ 5.5 at the
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start and 0.7 at the end. A simulation similar to that shown in Fig. 5.7 indicates that

our beam profile may result in a higher vf ≈ 80 m/s and a shift of the slower capture

range to lower initial velocities, v0 min − v0 max → 90− 400 m/s. The final velocity is

apparently still less than the capture velocity of the top MOT, but the shift would

limit the percent of atoms slowed to 30%. Given the uncertainty in beam-clipping

losses, the estimated final cold flux is not dramatically affected.

One disadvantage of the transverse-field Zeeman slower is half of the slowing-

beam power is wasted. This design is an increasing-magnetic-field σ− slowing

configuration; the relevant scattering transition is mF = 0 to m′F = −1. However,

the quantization axis imposed by the transverse field (B ‖ ±x̂) is perpendicular to

the slowing-beam propagation vector (k ‖ −ẑ), so the best we can do to match the

required polarization is to use a linearly polarized slowing beam, with polarization

along ŷ. Recall from Sec. 3.2.2 that this polarization is then an equal superposition

of σ+ and σ−; the σ+ transition mF = 0 to m′F = +1 is far-detuned except at the

zero-crossing of the magnetic field and so half of our light has very little effect on

the atomic beam. The total power of our slowing beam is typically set to ∼45 mW,

which corresponds to the design power of 22.5 mW available for the σ− transition.

The Zeeman slower works as advertised to load large top MOTs with the

design detuning of ∆ = −500 MHz, and has proven robust to small slowing beam

misalignments and power fluctuations. We have observed MOT loading with slowing-

beam powers as low as ∼20 mW, and although we check the beam alignment

periodically (centering on the atomic-beam deposit on the sapphire window and

checking the alignment at the oven exit using the camera at the small spherical

octagon), this is not critical to MOT operation. Given the observed top MOT

sizes, more than sufficient for planned experiments, no effort was taken to further
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optimize the Zeeman slower. We have noticed that increasing the slowing beam

detuning appears to lead to brighter MOTs, but because full optimization of beam

detuning and alignment is not trivial in our single-pass cascaded AOM setup (Fig.)

this was not further explored. If larger strontium MOTs are required for future

experiments, optimization of the detuning and beam-focusing parameters would be

worth investigating. Given the length of the Zeeman-slower pipe, it would also be

relatively simple to redesign the field for a longer slowing region, which would allow

a significantly higher v0max and hence cooled beam flux. Finally, there are several

designs for permanent-magnet longitudinal Zeeman slowers [300, 307, 371]; switching

to a longitudinal-field configuration would allow us to match the σ− polarization and

save over 20 mW of currently wasted 461 nm light.

5.4. MOT Regions

Our chamber design and experimental plans require two separate MOT regions,

one for direct loading and cooling from the Zeeman-slowed atomic beam, and a second

region with better isolation and optical access for future cold-atom experiments. A

double-MOT configuration like ours is often used to allow large collection rates in the

first MOT and better control in the second, but there are clever schemes that combine

the advantages of both regions in one final MOT area, for example by implementation

of a cold-atom deflection stage directly after the Zeeman-slower exit (essentially a

2D-MOT, angled relative to the atomic-beam axis) [357]. However, our double-

MOT setup is a robust and flexible configuration that should allow adaptation of

the strontium apparatus to a variety of future cold-atom experiments.
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5.4.1. Top MOT

The goal of the top MOT is to maximize the capture of cold atoms from the

Zeeman-slowed beam. To maximize the capture rate, the top MOT capture radius

should match the cold beam radius at the MOT location. The hot atomic beam

diameter will be ' 1.3 cm, but the extent of the cold flux emerging from the slower is

more difficult to predict: transverse heating effects would increase the beam diameter

to as much as almost 4 cm by the MOT region, but many of these cooled atoms will

clip inside of the slower pipe. Since the MOT capture radius is proportional to the

MOT beam diameter, our approach is to use the largest MOT beams within reason

to capture as many slow atoms as possible.

We chose the 6′′ spherical octagon (Kimball Physics MCF600-SphOct-F2C8) for

the top MOT chamber in part for the optical access offered by the eight 2-3/4′′

CF-flange equatorial ports. One port attaches to the Zeeman slower nipple, and

the opposite port meets the 6′′-long nipple with the heated sapphire viewport which

terminates the atomic beam and serves as the entrance for the Zeeman-slowing beam.

The other 6 equatorial ports are covered by 1.4′′-clear-aperture viewports (Larson

VP-150-F2), AR-coated for both 461 and 689 nm. We expand the horizontal MOT

beams to nearly fill the viewports using telescopes comprised of f = 50.2 mm and 500

mm lenses; periscopes bring the beams up from the optical table to a breadboard

assembly mounted on the 80-20 frame around the spherical octagon. The front

horizontal MOT beams intersect the atomic beam at a 135◦-angle to the atomic beam

axis; retro-reflecting mirrors outside the opposing spherical octagon ports create the

rear horizontal MOT beams which then intersect at 45◦ to the atomic beam axis.

Quarter-wave (λ/4) plates in front of each MOT beam port enforce the required σ−

polarization. The remaining two viewports, perpendicular to the atomic beam axis,
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allow real-time monitoring by camera and by eye. The σ+ vertical MOT beam enters

through the science cell located below the spherical octagon, intersects the atomic

beam at 90◦ degrees, then travels all the way through the 6′′ CF four-way cross

(connecting to the TSP and ion pump) and 2-3/4′′ CF tee (access to turbopump

station) to another AR-coated viewport at the top of the tee, near the optical table

ceiling. Another retro-reflecting mirror at this location (plus λ/4 plate) creates the

opposing vertical MOT beam. (The 497 nm repump beam is overlapped with the

vertical MOT beam to double-pass through the MOT.) The vertical MOT beam

diameter is limited to 1 cm by the diameter (nominally 0.573′′) of the science-cell

glass-to-metal seal.

Given an appropriate magnetic-field gradient, the capture volume of our top

MOT would be proportional to the overlap volume of the MOT beams. For our

configuration, this is approximately a spheroid horizontal and vertical diameters 0.5

mm and 2.5 cm; the solid angle this volume presents to the cold atomic beam would

define the captured flux. However, as described in Sec. 5.2, the strontium deposits on

the final sapphire window indicate that our atomic beam is slightly misaligned off-

center and low in the MOT chamber. Rather than attempting to realign the MOT

beams and tweak the magnetic field to match this deviation, we align the beams to

the center of each viewport pair (or the center of the vertical axis, in the case of the

vertical beam) and often shift the magnetic fields to load the top MOT higher yet, so

that the typical top MOT loading zone is 0.5−1 cm above the background hot atomic

beam fluorescence. This shift does not appear to affect the loading rate, confirming

the prediction that the cold beam flux is substantially broadened by transverse heating

effects in the Zeeman slower. Loading the MOT above the atomic-beam axis should

reduce disturbances due to the effects of the Zeeman-slowing beam and constant
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bombardment by hot unslowed atoms, but the offset makes it difficult to estimate the

cold flux delivered to the actual MOT capture region.

Of course, defining the MOT capture region to be proportional to the MOT beam

overlap volume assumes that the Zeeman shift of the excited state sublevels matches

the MOT beam detuning at the boundary of this volume, which is not true for our

top-MOT coil configuration. The background theory of the magneto-optical trap is

discussed in Sec. 3.2.3, but for the purposes of understanding the vacuum chamber

design recall that the MOT magnetic-field gradient spatially tunes the scattering

force to provide the required trap restoring force. The alkaline earths, with their

small magnetic moments, typically need much higher magnetic field gradients than

the alkalis for tight MOTs: the κ/2π = 1.4 MHz/G Zeeman shift of strontium’s

1S0 − 1P1 transition means a field gradient of 40 G/cm would be required to match

the ∆/2π = 40 MHz MOT beam detuning over a reasonable trap radius of 0.7 cm.

The magnetic field is typically provided by a pair of coils in the anti-Helmholtz

(AH) configuration (equal and opposing currents, ideally with coil separation d

equal to coil radius r to maximize the gradient at the center point) which creates

a quadrupole field: zero on axis at the center of the coils, increasing approximately

linearly outward from the center for distances less than ∼ d/4. The magnetic field

on-axis for a pair of AH-coils with N loops carrying a current I is simply the sum of

the fields generated by each loop,

B(z) =
µ0INr

2

2

((
r2 + (z − d/2)2

)3/2 −
(
r2 + (z + d/2)2

)3/2
) , (5.15)

where z is the axial distance from the center point between the coils (more generally

the field at any point can be calculated from the Biot-Savart Law). One disadvantage
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of the 6′′-spherical octagon chosen for the top MOT region is the limitation imposed

on the placement of our AH coils (assuming we want to avoid placing them inside

the chamber itself): the closest possible coil separation d = 11.25 cm is given by

placing the coils above and below the spherical octagon, which requires coils that are

built into the vacuum chamber upon assembly and hence bakeable. Even with this

coil separation, we require many coil turns and relatively high currents to achieve the

required field gradient.

Our AH coil forms are machined from 8′′-OD aluminum rings with two channels

cut into the outer circumference: one (1/2′′ wide x 3/4′′ deep) to hold the coil

wires and a separate channel (1/8′′ wide x 3/4′′ deep) for water cooling. A second

outer ring welded around the coil circumference seals the water-cooling channel,

with a Swagelok-fitted adapter for the circulation ports. We wrapped the coils with

20 AWG polyimide-insulated magnet wire (MWS 404666), using a motor to slowly

spin the coil form while feeding the tensioned wire into place and painting each layer

with high-temperature epoxy (Epo-Tek 353ND). The large 6′′-CF 4-way cross above

the spherical octagon runs through the center of the upper coil, so the coils were

installed during chamber assembly, mounted to the aluminum plates that secure the

6′′ spherical octagon to the 80-20 frame.

In the end, we had 308 turns per coil with an average coil radius of r = 9.15 cm;

wired in series, the coils present a 12 Ω total resistance that rises with temperature

to ∼ 13.5 Ω when running at high currents, even with water cooling. Powered by a

100 V, 10 A current supply (Kepco ATE 100-10M), this resistance increase limits the

maximum possible current to Imax = Vmax/R ' 7.5 A. At this current the dissipated

power is 760 W, more than enough to cause a coil meltdown without cooling, so we

use two separate chillers (Neslab RTE-8 and RTE-4DD, cooling capacity ' 500 W
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at 20◦C) set to typically 15− 20◦C to individually cool the coils. Current-controller

operation is dependent upon the outputs of flow monitors (McMaster-Carr 2371K4)

installed inline with both circulators, but the Kepco supply’s automatic current-

overload shutoff in response to the resistance increase with temperature is a foolproof

failsafe (we originally included temperature switches as well, but the epoxy securing

the temperature sensor to the coil forms failed over time; the flow switches and the

current controller’s own limitations are the only safeguards at this point). Vibrations

from the circulators initially transmitted through the circulator tubing to the coils

and chamber; potting several loops of the supply-line tubing in concrete eliminated

this problem. We also observed high-frequency vibrations of the coil forms that we

eventually tracked down to current-supply oscillations; operating the current supply

in “slow” mode fixed the problem but we subsequently shifted back to “fast” mode

for faster switching times, installing an extra 1.0 µF, 100V capacitor in parallel with

the coils to prevent ringing.

The 7.5-A maximum current limits our maximum top MOT magnetic-field

gradient to dB/dz = 28 G/cm at the center along the coil axis; by symmetry the

gradient in the radial direction (in the plane of the optical table) is half this value.

(Despite the possibility of confusion, we follow convention and designate the AH-coil

axis as the top-MOT z-axis, although this is perpendicular to the atomic beam z-axis

referred to in the previous section.) To avoid operating near the current controller

shutdown point we typically use 6.8 A when loading the top MOT, resulting in the

axial and radial field profiles plotted in Fig. 5.8. The resultant Zeeman shifts near

the MOT center for the 1P1 sublevels are plotted in Fig. 5.9: for small displacements

from the MOT center, we are indeed operating in the region of approximately constant

magnetic field gradient.
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FIGURE 5.8. Top MOT axial and radial magnetic fields for anti-Helmholtz coil
current I = 6.8 A.

In Figure 5.9, the MOT laser detuning (∆MOT/2π = −40 MHz) is marked by

the dashed blue horizontal line; when the detuning is equal to the Zeeman shift, the

scattering force is maximum for zero-velocity-class atoms. This location is marked by

the dashed line, and would be approximately equal to the trap radius. Note that the

difference in Zeeman shifts for the radial and axial fields would lead us to expect a very

large, oblate MOT, ∼4 cm in diameter in the radial direction by ∼2 cm in the axial

direction. The actual MOT size is much smaller, particularly in the radial direction,

as a result of the beam waists used: although the scattering forces from the radial x

and y MOT beams are maximized ∼2 cm away from the trap center, the extent of

optical molasses is limited by the z-beam diameter to 1 cm in the radial direction;

for our MOT, this defines the maximum possible radial trap diameter. The 2.5-cm x-

and y-beam diameters do overlap with the z-beam scattering force maximum, so we
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FIGURE 5.9. Top MOT 1P1-sublevel Zeeman shifts in the axial and radial directions.
Orange curves: actual shifts due to the magnetic field of Fig. 5.8; dashed gray curves:
linear approximation for axial and radial gradients dB/dz = −26 G/cm and dB/dr =
13 G/cm. Also shown is the MOT beam detuning ∆MOT/2π = 40 MHz (blue, dashed):
when the detuning is equal to the Zeeman shift the scattering force from the respective
MOT beam is maximized for zero-velocity atoms (location marked by grey, dotted
lines).

end up with a trap elongated along the z-axis, “prolate” (football-shaped) instead of

oblate (pancake-shaped).

5.4.2. Bottom MOT

The bottom MOT is formed in the glass cell that extends below of the 6′′ spherical

octagon; this is where future strontium experiments will take place, so we often refer

to it as the “science cell.” This region offers the highest vacuum of our chamber, being

isolated from the constant bombardment of hot and cold atoms from the main atomic

beam. The glass cell offers the greatest possible optical access for the multiple MOT

beams, optical lattice beams, and cameras required in future experiments, although

in practice bringing all the required components into place beneath the main vacuum

chamber (and working around the 80-20 frame) occasionally presents a challenge.

We opted for ColdQuanta’s standard Pyrex cell (CQMC0006), a 0.879′′ square by

4.5′′ long cell (with no anti-reflection coatings, to save cost). The cell is mounted on a
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1-1/3′′ CF flange that meets the 6′′ adapter CF at the spherical octagon’s bottom port;

the ∼ 0.5′′-diameter bore at the glass-to-metal seal location is a major disadvantage

of the cell design (or our choice of cell placement), limiting the diameter of the top

MOT vertical beam (which passes through the axis of the cell) as discussed above.

The cell extends below the spherical octagon, offering a vertical clear aperture of

almost 3.5′′: we take advantage of this area and bring the retro-reflected bottom

MOT radial beams in from below at 45◦ to the cell normal.The retro-reflected axial

bottom MOT beam is normal to the opposite two cell walls, in the plane of the optical

table, running through the center of the bottom MOT AH coils. The red (689nm)

and blue (461nm) bottom MOT beams are collinear and expanded by telescopes

comprised of f = 24.5mm and 100mm achromats to fill as much of the cell wall area

as possible without clipping, to final beam diameters of ∼1.5 cm.

Large magnetic field gradients are much easier to achieve at the bottom MOT

location because the only limit on the distance between the anti-Helmholtz coils is the

width of the cell itself. We repurposed coils built for a previous Rb MOT experiment

in our lab [216, 311], consisting of 40mm-diameter Delrin frames wrapped with 216

turns of 23 AWG magnet wire to provide an axial field gradient of 24 G/cm per

amp when separated by 50 mm. Our cell is narrower than the Rb science cell so we

reoriented the Delrin coil mounts to position the coils closer to the cell walls, ending

with an average coil separation d ' 40 mm. At this separation, the axial and radial

field-gradient components are dB/dz = 36 and dB/dr = 14 G/cm per amp. As the

bottom blue and red MOT loading sequences require various magnetic field gradients,

a full discussion of the expected bottom MOT parameters will be given in Sec. 6.3 and

Sec. 6.5, but for reference the magnetic field profile in Fig. 5.10 is plotted for a current

of 1 A. (As indicated by Eq. 5.15, the field and gradient scale linearly with current.)
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Because the coils are far from the optimal d ≈ r condition, the peak magnitudes of

the radial and axial fields are very different and the field gradient is smaller than the

maximum, but more than sufficient for our needs.

FIGURE 5.10. Bottom MOT axial and radial magnetic fields for I = 1 A AH-coil
current: field gradients near the MOT center are dB/dz = 36 and dB/dr = 14 G/cm.

Delrin (polyoxymethylene or polyacetal) was chosen for the coil forms as an easily

machinable, non-conductive material to allow fast coil-switching times by avoiding

eddy currents. However, the melting point is 175◦C: these coils are not bakeable,

and were installed with the associated bottom MOT optics after chamber assembly

and bakeout. The coils are powered by homebuilt current supplies capable of 5-A

output [216]; the circuits offer the option to include over-temperature shutdowns but

this section was not originally installed because we did not expect to be running

the coils at high currents. However, a series of unfortunate events illustrated the

importance of temperature safeguards. As described in Sec. 6.3, we occasionally
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run the coils briefly at 2.3 A to form a tight MOT when setting the background

magnetic field offset, and on one occasion an incorrectly exited script left the coils at

this high current long enough to cause melting of a portion of the coil form. The coil

was salvageable but further mishaps left it in usable but ugly condition; we ultimately

chose to build a replacement coil. The new coil form has an AD590 temperature sensor

embedded in the form, and the current supply temperature shutdown is enabled.

5.5. Chamber Assembly and “Bakeout”

Achieving UHV is a challenge and every cold-atom group seems to follow a unique

cleaning, assembly, and “bakeout” regimen with almost superstitious zeal [372].

A useful reference for detailed procedures is Appendix B of Kevin Birnbaum’s

thesis [359], and our practice mostly aligns with his recommendations. A key principle

is of course extreme cleanliness: the enemy of ultra-high vacuum is outgassing, or

the gradual emission of molecules over time from a surface under vacuum. Surface

contaminants will naturally contribute a high outgassing rate, so cleaning of all

parts is critical, but to reach UHV two additional slow outgassing sources must

be addressed: hydrogen dissolved in the bulk material and water vapor and other

atmospheric gases adsorbed to the surface. The “pre-bake” and “bakeout” procedures

described below address these sources.

Vacuum parts direct from suppliers were generally considered clean enough

to go straight to pre-bake7 but we thoroughly cleaned any homebuilt or modified

components by sonicating in a series of Alconox (alkaline detergent), deionized water,

and isopropyl alcohol baths. Throughout the cleaning process and onwards we

handled the parts only when wearing powder-free nitrile gloves and used oil-free UHV

7A few parts from Kurt J. Lesker company had visible interior deposits and required the full
cleaning treatment.
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aluminum foil (from All-Foils) for part storage. After cleaning, we “pre-baked” all

components in air at 450◦C for at least 24 hours.8 Without baking, stainless steel

outgasses at a rate of 10−11 torr L/cm2s, and atomic hydrogen dissolved in the bulk

of the material during manufacture accounts for 99% of the gas emitted [372]. A pre-

bake at temperatures above 350◦C speeds the process of desorption of this hydrogen,

and (when done in air) promotes the formation of a layer of chromium oxide at the

surface which has been claimed to act as a barrier to further hydrogen migration

into the bulk. The air pre-bake can reduce hydrogen outgassing rates by a factor of

500 [373] and results in a dramatic color change of the stainless-steel pieces; as an

example the two spherical octagons after pre-bake are shown in Fig. 5.12.

FIGURE 5.11. Vacuum chamber 4.5′′ and 6′′ spherical octagons, after air pre-bake
.

After pre-bake all parts were rinsed with acetone and then methanol, both

spectroscopic grade (ultrapure), dried with compressed air, and wrapped in UHV

8Most parts were baked in an oven at the UO Technical Services Administration shop, but the
6′′-CF 4-way-cross was too large to fit in this oven and was baked in a ceramics kiln at the UO Craft
Center. To commemorate the experience, a tiny blue ceramic pig was constructed while the kiln
temperature was monitored; this pig now guards the top of the vacuum chamber for good luck.
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aluminum foil until assembly. We assembled the chamber in stages, keeping exposed

ports capped with UHV aluminum foil. We rinsed the copper (or nickel) gasket for

each CF joint with ultrapure methanol immediately prior to insertion and positioned

them with care to avoid touching either the gasket sealing surface or the “knife-edge”

flange ring that bites into the gasket; each flange was joined with silver-plated screws

to avoid seizing and tightened according to the usual CF-flange procedure [359]. We

assembled the chamber on the floor beside the optical table because the “bakeout”

oven, which was eventually built around the chamber, would not fit in the space

between the table surface and table ceiling. The 80/20 aluminum frame which allowed

us in the end to lift the entire chamber onto the optical table was critical for structural

support during the assembly process. It is important to avoid exerting any torque

or shear stress on chamber joints during or after assembly, but the overall length

of the chamber (and the top-heavy design with ion pumps, valves, and other heavy

components above and often to the side of the main beam axis) would have made

excessive torque difficult to avoid without the support of an adjustable frame. The

frame also allowed us to assemble the front and back halves of the chamber separately,

slide them together to meet at the inline valve, and then fine-tune the alignment while

sighting through the final sapphire window backwards along the atomic-beam path,

through the two nickel apertures and out the rear of the strontium oven pipe before

the oven and nozzle were installed. (After the oven was installed we repeated this

procedure with the oven on: with our eye centered in the final sapphire window we

attempted to fine-tune the chamber alignment by centering the glowing oven nozzle

in the nickel aperture rings.)

We initially assembled the chamber with blanks on all viewport locations and

the port that would hold the science cell, and no strontium oven, for the first
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“bakeout.” Baking an assembled vacuum chamber while continuously pumping to

remove residual gases is the final step in acheiving UHV: just as the pre-bake helped

to speed the process of driving adsorbed hydrogen out from the bulk of the stainless

steel, the bakeout speeds outgassing of atmospheric gases (particularly water vapor)

adsorbed onto the interior walls of the chamber. Glass-to-metal seals can be a

point of failure, and anti-reflection coatings may have lower maximum temperature

ratings than other vacuum components (although our bakeout temperature was

limited by the anti-Helmholtz coil epoxy, rated to 225◦C), so it is a common practice

to perform one bakeout with no glass elements and a second bakeout after final

assembly. The bakeout temperature should be above 180-190◦C to drive off thin-

film surface water[359], and typically lasts about a week. Large ovens or heater

tape tented in aluminum foil are common solutions to reach the required uniform

temperature. Our chamber required a combination of approaches: we constructed an

oven from aluminum-foil-wrapped fire bricks and aluminum sheet metal around the

low-pressure side of the chamber and wrapped the oven side of the chamber in heater

tape. We also laid heater tape along the floor of the fire-brick oven; in the end we

needed 13 strips of heater tape controlled by 8 Variacs (we also used the strontium

oven heaters themselves). We measured the chamber temperature (particularly at

sensitive locations like the anti-Helmholtz coil forms and eventually the Pyrex science

cell) using 16 thermocouples read out by home-built ethernut-enabled thermocouple

monitors, and individually adjusted the Variacs to avoid sudden temperature changes

or temperature gradients that could stress joints and glass-to-metal seals.

We used a turbopump (BOC Edwards EXT-70H-24V) backed by a rotary-vane

pump (BOC Edwards RV5) to evacuate the system during bakeout, with the ion

pumps turned on and the TSP activated during cooldown. The station also contains
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FIGURE 5.12. Vacuum chamber during bakeout: view from high-pressure side of
chamber, showing fire-brick oven around low-pressure side of chamber, turbopump
station upper left, foil-wrapped temporary bellows connecting both sides of chamber
to turbopump station,16 thermocouples plugged into ethernut-enabled thermocouple
monitor boxes, and a few of the 8 Variacs used to power the heater tape inside the
oven and under the aluminum foil.

vacuum gauges and a residual gas analyzer (RGA). We attached the flexible bellows

from the turbopump station to a temporary 2-3/4′′ CF tee connecting on one side

to the right-angle valve above the low-pressure side of the chamber and on the other

(via a second flexible bellows plus 2-3/4′′ CF nipple extender) to the valve above the

high-pressure side of the chamber. We began each pump-down / bakeout cycle with

the heat off and the valves to the chamber closed and began pumping to evacuate

any contaminants from the two bellows, then slowly cracked open the two chamber

valves and evacuated the entire chamber with the oven off, reaching typical pre-

bakeout pressures of 10−8 torr. We then slowly ramped up the Variac setpoints until

reaching the goal temperature of 200-225◦C (limited by the coil epoxy maximum

T = 225◦C), adjusting the setpoints and often oven itself (i.e., swapping out failed
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heater tapes and changing the foil tenting) to avoid temperature gradients. We held

at the maximum temperature for at least a week during each bakeout. During this

period we also “degassed” the TSP filaments by applying a current of 40 A (just

below the 45-A sputter activation current) to remove any contaminants, and then

kept them hot with 32 A, rotating through each of the three filaments. The pressure

measured at the turbostation wide-range gauge (WRG) naturally rises during the

initial temperature increase, up to 10−6 torr during the first bakeout (less with each

subsequent bake), then gradually falls; we began cooldown when the pressure reading

more or less leveled out again in the 10−9 torr range. During cooldown, the ion pumps

were activated at their maximum operating temperature of 150◦C, with the rest of

the chamber at a slightly higher temperature to prevent migration of any outgassing

contaminants.

We expected our system to require two bakeouts: one with the viewports and

science cell port capped by blank flanges, and no strontium oven, and a second

with these parts installed. The first bakeout appeared to go smoothly, other than

a malfunction on the part of the 55 L/s ion pump (sent back to Duniway for

inspection),9 and reached a final P = 8.5×10−9. We flushed the chamber continuously

with argon (from the top of the tee above the low-pressure side of the chamber out

through the oven nipple) while installing the final parts and re-installing the returned

ion pump. During the second bakeout, we tested the strontium oven, which caused

some pressure spikes (the walls of the collimator tubes present a large outgassing

surface area, and the oven design leaves the possibility for trapped gases behind the

9The finicky behavior of this pump has continued after repair, sometimes requiring use of the
overload button to force on and showing continual current fluctuations, but appears to work fine
otherwise.
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crucible cylinder), but otherwise all appeared well, and the final pressure at the WRG

was P = 7.1× 10−9 after cooldown.

However, helium leak-checking revealed problems, and slight torques applied to

the chamber, particularly at the inline valve behind the Zeeman pipe, caused large

pressure spikes. The initial Zeeman pipe was a 15′′ long, 1-1/3′′ CF nipple with a

reducing nipple and reducing flange on either end to mate with the inline valve and

large spherical octagon; we replaced this assembly with a 17′′-long pipe with welded

2-3/4′′ CF flanges to eliminate two joints.10 However, a third bakeout still revealed

insidious slow leaks, by which point it was clear that the culprits were the nickel

gaskets that also serve as atomic-beam apertures on either side of the inline valve.

We had used 1-1/3′′ Ni gaskets (MDC 191060) in other components without issue,

but the apertures were machined from apparently bead-blasted, 2-3/4′′ blank gaskets

from Grass Manufacturing. We eventually realized that work-hardening can reduced

the ability of nickel to flow under pressure: where the knife-edge of the CF flange

bit into the Ni gasket, the patterns from scratches or bead-blasting were pressed

into the gasket and could form pinhole leaks. We machined new gaskets from custom

cold-rolled blanks (Metal Technology, Ni-200) and then annealed the gaskets in a high-

temperature oven at 1500◦C; these gaskets worked fine [144]. We later discovered that

another group had published an entire paper documenting similar challenges with Ni

gaskets in UHV systems [374].

After the fourth and final bakeout and cooldown, the pressure reading at the

turbopump station was P = 8.1× 10−9 torr, and the ion pump currents were offscale

and ∼ 13 µA for the 75 L/s and 55 L/s pumps at the low- and high-pressure sides

of the chamber. Five people were needed to lift the evacuated chamber off the floor

10We could have used a much shorter pipe and reduced the overall length of the chamber, but we
did not want to re-adjust the 80-20 frame at that point.
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and onto the optical table. Over time, the 55 L/s pump current has continued to fall

slightly (perhaps as a result of strontium acting as a getter), and the 75 L/s current

has risen to 0.5 µA, indicating pressures at the low- and high-pressure sides of < 10−9

and ∼1×10−8 torr, respectively. This level of vacuum is more than sufficient for cold-

atom experiments, but the TSP could be activated more frequently if lower pressures

were desired.

190



CHAPTER VI

THE STRONTIUM MOT: COOLING AND TRAPPING

ON THE 1S0 − 1P1 TRANSITION

FIGURE 6.1. Science-cell 461 nm MOT.

This chapter describes our progress so far cooling and trapping strontium. We

have achieved large blue magneto-optical trap (MOT) populations on the strong

1S0 − 1P1 cycling transition in both the top and bottom MOTs; by tuning our

461 nm and 497 nm trap and repump lasers, we have observed trapping of all three of

the most abundant naturally occuring isotopes, although unless otherwise specified

the work described here was carried out with 88Sr. Sec. 6.1 begins by describing

the computer control system, adapted from that developed for the Steck lab Rb

experiment, which allows precise timing of experimental events and data acquisition.
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Sections 6.2 and 6.3 describe details of the top and bottom MOTs and the 2D-

MOT population transfer scheme we developed for loading the science cell bottom

MOT. MOT populations are estimated from capture and loss rates (Sec. 6.2.1) and

collected fluorescence intensity (Sec. 6.3.2.1); these sections also elaborate on some

of the experimental issues unique to our setup, including magnetic field interactions

and the limitations imposed by our imaging system. We attempted bottom MOT

temperature measurements (Sec. 6.4.1) but our camera is too slow to precisely capture

the 461 nm MOT-release ballistic expansion (although it should be sufficient for future

red MOT and optical lattice experiments at colder trapped-atom temperatures); the

size of the trapped distribution, however, indicates that our 461 nm MOT is at the

expected temperature.

Finally, our current progress toward a red 689 nm MOT is covered at the end

of this chapter. Narrow-line cooling on the 7.4 kHz 1S0 − 3P1 transition differs from

the usual semiclassical regime of laser-atom mechanical interactions involving strong

scattering transitions; we describe the experimental sequence we have been using to

attempt to load a red MOT (Sec. 6.5). We have yet to observe trapped atoms in the

red MOT, although we have seen evidence of 689 nm optical molasses. Some possible

red MOT loading or detection complications are presented, and potential solutions

are briefly explored

6.1. Computer Control, Data Acquisition, and Timing

We can load the top MOT from the Zeeman slower continuously without any

special timing sequences, but most subsequent MOT transfer and data acquisition

procedures require precise timing of several subsystem operations: changing the

polarization of the vertical top-MOT capture/push beam, toggling or ramping
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magnetic field values, shuttering of various beams, and triggering the camera for

data acquisition. To avoid the use of any expensive proprietary software that would

limit flexibility and expansion of our computer control system, we use the “ZOINKS”

architecture (“Zee Open Interface Networked Kontrol System” [375, 376]), with

circuits developed by Todd Meyrath and Florian Schreck under Mark Raizen at

the University of Texas [377] linked to microprocessors to synchronistically execute

experimental sequences.

The basic idea of ZOINKS is to use one control computer communicating via

ethernet to program the microprocessors, which load the control sequences onto

interface boards (developed by Peter Gaskell of the Steck lab Rb experiment) which

sync instrument-circuit execution of events to a stable external clock. The control

computer sends the experimental commands in advance of the real-time sequence to

the ethernet-enabled microprocessors (Ethernut 2.1 by Egnite GmbH [378]), which

then load the first-in-first-out (FIFO) buffers of the interface boards. These boards

are synced to a 10 MHz clock signal from an inherited commercial Rb atomic clock

(shared with the Rb experiment), divided down to 250 kHz to match the data output

rate of the Ethernuts, giving a timing resolution of 4 µs. When all boards are ready,

a universal trigger unloads the FIFOs of each board to the instrument circuits, such

that the measured timing jitter is 0.02 µs. In this way, the system takes advantage

of the flexibility of ethernet communication but avoids the timing uncertainty that

would arise from attempting real-time experimental control directly over ethernet

links.

Each instrument box thus contains its own Ethernut and interface board in

addition to the instrument circuits, and the system is easily expanded with an

ethernet switch such that one computer can control many boxes. We currently use
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one 16-channel analog-output box, one digital-output box with two 16-channel digital

output boards, and two 3-channel direct digital synthesizers (DDSs). There is also an

analog-input box design, but we have fetched data directly from a digital oscilloscope

(Agilent DSO6034A) or Fluke multimeter (Fluke 8845A) via telnet when needed; our

primary imaging system, the Finger Lakes Instrumentation (FLI) camera (described

further in Sec. 6.4.1) is also connected directly to the computer but triggered by

a digital output. We ported a library of ZOINKS Perl modules and subroutines,

written largely by Jeremy Thorn for the Rb experiment, to the strontium system

(SrExperiment.pm). Using this library, in addition to a second module containing

parameters and subroutines specific to the strontium system (SrSetup.pm), we can

write fairly simple Perl scripts to execute synchronized chains of experimental events

like those depicted in the timing diagrams of Fig. 6.5 and 6.7.

The analog outputs are currently used to vary the top and bottom magnetic-field

coil currents, activate the bottom MOT 689 nm mechanical shutter, and adjust the

pulse-analyzer set-point (as described further in Sec. 6.4.1). The analog box also acts

as the “master box” for other boards: when all FIFOs are fully loaded, one channel

of this box is used as a trigger to tell the other boxes to begin the experimental

sequence. Digital outputs are used to inhibit the magnetic field coils, trigger the pulse

analyzer, and control the stepper motors that open and close the atomic beam shutter

and rotate the quarter-wave (λ/4) plate that changes the polarization of the vertical

top MOT beam. We also use digital outputs to trigger the camera, mechanically

shutter the Zeeman slowing beam, and to switch intensities of other beams by toggling

acousto-optic modulator (AOM) radiofrequency (RF) drive signals through TTL RF

switches.

194



A digital output is also used to control the timing of the timing of the red MOT

AOM modulation through a direct digital synthesizer (DDS). The DDS sources are

based on the AD9852 from Analog Devices and are capable of synthesizing a variety

of analog waveforms at frequencies from DC to 135 MHz with < 25 ps jitter from

the 10 MHz Rb clock input. The DDS’s receive via telnet a frequency tuning “word”

from the control computer in addition to the trigger from the analog box and a digital

output signal for ramped frequency generation.

For many of our RF applications, direct digital synthesis is overkill: most the

AOMs in this experiment are driven by RF signals produced by voltage-controlled

oscillator (VCO) chips packaged into function-generator boards, which provide the

option for manual or analog-input amplitude and frequency tuning. The typical

stability offered by the RF function-generators, ∼ 1 kHz, is much less than the

linewidth of the 32 MHz 1S0 − 1P1 transition and hence more than sufficient for

setting the frequency offsets of the AOMs used in the 461 nm saturated-absorption-

spectroscopy (SAS) heat-pipe laser servo, Zeeman slower beam, and top and bottom

MOT beams. However, the 7.4 kHz linewidth of the 689 nm 1S0 − 3P1 transition

demands greater frequency stability, as well as the ability to precisely modulate the

frequency during red MOT loading sequences (see Sec. 6.5), so we use DDS outputs

for the 689 nm SAS and red MOT AOMs. We use two more DDS’s to provide the

8.76 MHz and 3.16 MHz signals to precisely match the frequencies of the helical

resonators driving the electro-optic modulators in the SAS FM-spectroscopy setups

(see Sec. 4.5.1). Finally, the 914 nm optical lattice beams will require a high degree

of phase-stability, and future strontium experiments may require modulation of the

lattice, so we have also set up an AOM driven by a DDS signal in the 914 nm beam

path.
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The ZOINKS boxes are a small subset of the electronics built for this experiment

(see Ref. [144] for details on some of the elements not discussed here), but they

do allow automation of not only precision experimental sequences but day-to-day

operations like opening and closing of the atomic beam shutter. Initial tuning

and locking of the laser systems remains a manual procedure, as well as day-to-

day alignment of beam paths. Besides the FLI camera, a CCTV security camera

monitors the Zeeman-beam alignment as described in Sec. 5.1. The top and bottom

MOTs can be observed in real-time by eye and by the use of two additional CCTV

security cameras (EverFocus EQH5102 HD-SDI) mounted with close-focus 6x zoom

lenses (Edmund Optics P/N 58-240 and obsolete NT52-274), which feed to generic

7” TFT-LCD dual-input monitors positioned at the vacuum chamber and the control

computer.

6.2. Top 461 nm MOT

The top MOT loads directly from the Zeeman-slowed atomic beam - but slightly

above the beam axis, as described in Sec. 5.2 - at the intersection of the retro-reflected

1-cm-waist (1/e2 intensity radius) vertical beam and 2.2-cm-waist horizontal beams

in the center of the large spherical octagon. The top MOT population is maximized

by using the maximum magnetic field gradient our anti-Helmholtz (AH) coils can

provide, 26(13) G/cm in the axial(radial) directions, at a current of 6.8 A. We use a

MOT beam detuning of ∆/2π = −40 MHz and typical beam powers of 2(8) mW in

the axial(radial) beams. The resultant maximum MOT capture volume, discussed in

Sec. 5.4.1, is a prolate spheroid with axial and radial diameters of approximately 1 cm

and 2.2 cm, respectively. The repump beam, with a typical power of 0.5 mW, is co-

linear with the vertical MOT beam (in order to intersect both top and bottom MOTs
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and take advantage of the effective power doubling gained by retroreflection). To

maximize repump efficiency, we keep the beam small relative to the MOT area: this

increases the intensity, and the random walk of trapped atoms takes them through

the beam frequently enough to maintain the repump effectiveness.

We were initially surprised by two phenomena when first attempting to load the

top MOT. The first was the amount of fluorescence in the top MOT chamber from

the Zeeman slower beam. With a detuning ∆Z/2π = −500 MHz, we had expected

this beam to be far off resonance for both the slowed atoms and the very fast atoms

that were not captured by the Zeeman slower. For the slowed atoms, vf ' 25 m/s,

the Doppler shift kv/2π for this class is only ∼ 50 MHz and insufficient to bring them

into resonance, while the uncaptured fast atoms, at v & 400m/s leading to Doppler

shifts & 870 MHz, are shifted too far to the blue to be resonant. We reasoned that

the fluorescence must come from the atoms that are partially slowed but then fall out

of step with the resonant slowing condition — for example, we know that a significant

fraction (as much as 50%, by one estimate [343]) will be lost from the slowing process

due to 1P1 −1 D2 decays, as discussed in Sec 6.2.1.

However, we might expect the distribution of partially slowed atoms to mirror

the low-velocity wing of the initial thermal distribution (since the 1P1 −1 D2 decay

can happen at any point during the slowing process), so we were even more surprised

to note that the Zeeman beam fluorescence changed dramatically when we turned

on the top MOT anti-Helmholtz coils. The fluorescence increased at the edges of

a sort of “hole” in the middle of the chamber, seeming to indicate some sort of

magnetic-field shift causing increased or decreased fluorescence from a relatively

narrow velocity class. The analysis of the transverse permanent-magnet slower

performed by Hill et al. [300] may provide an explanation: they found (through
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Monte-Carlo simulation of the slowing process) that the remaining partially-slowed

thermal atoms continued to interact with the slowing beam at the exit of the slower,

resulting in compression of the partially slowed atom distribution into a second peak

centered at ∼ 200 m/s. The Doppler shift for atoms at this velocity, ∼430 MHz,

brings them near-enough into resonance with the Zeeman-slowing beam that some

fluorescence is expected, and the additional Zeeman shift imposed by the magnetic

field provided by the anti-Helmoltz coils at max current accomplishes the rest of the

tuning, create a bright oval ring in the fluorescing beam centered around the zero point

of the quadrupole field. As expected, we can shift the center of the ring using the top

MOT Helmholtz coils; as such, the ring is a a useful diagnostic for rough-centering

the MOT-beam overlap with the magnetic field zero.

The second surprise we encountered on first attempting to load the top MOT

has a more straightforward explanation, but has also proven extremely useful to

our subsequent experimental procedure. Our first attempts to observe a MOT were

unsuccessful: we noted a bright, flickering, vertical band at the intersection of our

trapping beams in the center of the large spherical octagon, but no clearly confined

ball of atoms. On the contrary, the atoms appeared to jet out from the MOT region

along the vertical axis; we could see weak fluorescence from ejected atoms along the

vertical beam path all the way down in the science cell. Of course, as it turned out,

we had the incorrect polarization for our vertical MOT beam: we had neglected to

take into account a final mirror bounce after the λ/4 plate such that the polarizations

of the upward/downward propagating axial beams were σ+/− instead of the required

σ−/+. In effect, we had made a 2D-MOT, with trapping in the radial directions, but

along the third (vertical) axis, the atoms were pushed away from the MOT center

instead of confined.
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This problem was easily remedied with a 90◦ rotation of the λ/4-plate, but the

mistake was fortuitous in demonstrating an efficient method for cold-atom transfer

between the top and bottom MOT regions. We had planned to load the top MOT,

then release and recapture the falling atoms in the bottom MOT. However, the atoms

expand ballistically after release from the MOT, as described in Sec. 6.4.1, such that

only a small fraction of the ∼ 1 − 5 mK cloud from the 461 nm MOT would pass

through the 1.4-cm-diameter glass-to-metal-seal aperture into the science cell. As

a result, we had planned to follow the 461 nm MOT with a 689 nm narrow-line

MOT (which would reach much lower temperatures, on the order of Tr = 1 µK,

allowing drop-and-recapture which much less loss) in the top MOT location, but after

observing the atoms in the science cell with the λ/4 plate in the 2D-MOT orientation,

we realized we could load from these atoms and skip the process of loading the red

MOT in the top chamber.

6.2.1. MOT Capture and Loss Dynamics

We have not made a careful measurements of the top MOT loading rate or

lifetime, since the bottom 461 nm MOT or ultimately the bottom 689 nm MOT

characteristics will be the critical factor in future cold-atom experiments; if the top

MOT is working well enough to quickly load sufficient atom numbers into the bottom

MOT, we are generally quite happy. However, it is worth noting a few estimated

properties here for future reference.

The MOT capture velocity vc defines the maximum speed of trappable atoms

entering the MOT capture region. The optical molasses capture velocity is often

given as vc ≈ Γ/k where Γ is the decay rate of the cooling transition at wavelength

λ = 2π/k, since this is the effective velocity width of the Doppler scattering force
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Eq. 3.8, or the range of velocities over which the force has an appreciable effect. For

the Γ/2π = 30.5-MHz-linewidth 1S0 − 1P1 transition at 461 nm, this would result

in vc = 14 m/s. However, the MOT capture velocity can be considerably higher:

the addition of the magnetic field allows a sort of Zeeman slowing effect where the

changing Doppler shift of atoms interacting with the MOT beams is compensated

by the Zeeman shift. The capture velocity cannot be determined directly from the

simplified expression for the 1D-MOT force equation 3.46 because this is derived in

the limit where the Doppler shift and Zeeman shifts are small. It is valid for the

already-captured, slow atoms near the center of the MOT but not for fast atoms

approaching from the boundaries [224].

One method to estimate the MOT capture velocity is to assume the Zeeman

shift exactly cancels the Doppler shift along the whole length of the trap (across the

trap beam diameter), and to equate the work done by the maximum scattering force

over that distance to the change in kinetic energy experienced by an atom that comes

to a complete stop (and is reversed back toward the center) at the far end of the

MOT [224]:

Fscatt · d =
1

2
mv2

c −→ vc ≈
√

~kΓw0/m, (6.1)

(assuming the beam intensity I is well above the saturation intensity Isat to

approximate Fscatt ∼ Fmax = ~kΓ/2), which leads to an estimate for strontium

of vc ≈ 140 m/s for w0 = 1 cm beam waists. Full calculation of the capture

velocity numerically integrates the exact expression for the 1D-MOT scattering

force to calculate the threshold velocity where atomic trajectories escape the MOT

boundary [379]. These calculations generally find a capture velocity much higher

than that estimated by vc ≈ Γ/k, and also show that although the fastest damping

times are achieved by the use of a MOT beam detuning ∆MOT = Γ/2, the capture
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velocity generally peaks at a larger detuning. Calculations by strontium groups using

similar parameters to our blue MOT (chosen for that reason) find capture velocities

vc ≈ 50− 80 m/s.

Assuming the MOT capture velocity is indeed well above the final velocity vf of

the slowed atoms exiting the Zeeman slower, the maximum flux that can be captured

can be estimated by the cold atom flux times the ratio of the MOT vs. cold-atom

beam cross-sectional areas. As discussed in Sec. 5.2, the slowing process results in

a substantial increase in the beam divergence angle and some atom losses to the

inside of the Zeeman slower pipe; the final cold beam intensity Qcold ≈ 1010 atoms/s

(Sec. 5.3.2) will be distributed across an expanding beam with a diameter ∼ 4 cm at

the MOT location. Again, as a rough estimate, we will assume the cold flux is evenly

distributed through the beam; the ellipse defined by the MOT capture zone with

semi-major × semi-minor axes of ∼ 2 × 1 cm then allows a maximum Qc ≈ 6 × 109

atoms/s to be captured from the Zeeman-slowed beam.

The steady-state trapped atom number will be a balance between the capture

rate and inevitable losses. Several loss factors come into play: collisions with

background gas molecules can be an important loss mechanism for closed-transition

or adequately repumped MOTs, but several strontium groups have found that light-

assisted Sr-Sr inelastic collisions contribute a significant loss rate as well. However,

in the absence of a repump laser, the dominant loss channel arises from decays to

untrapped states. Recall that repump lasers are useful when a cooling transition is

not fully closed; in our case, the excited state of the 461 nm 1S0 − 1P1 transition has

a small probability of decaying to 1D2 rather than back to the ground state (see the

level diagram in Fig. 2.1). From 1D2, an electron can either decay to the 3P1 state

and then return to 1S0 or become shelved via a decay to the metastable 3P2 state.
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In the first case, although both the 3P1 and particularly the 1D2 states are relatively

long-lived (21.5 µs and 3 ms, respectively), the atom will usually remain trapped:

at a typical maximum blue MOT temperature of 5 mK, the average atom will be

moving at ∼ 1 m/s and will travel only 0.3 mm and so will still be well within our

MOT capture zone when it returns to the 1S0 state. In the latter case, the extremely

long lifetime of the 3P2 energy level1 implies complete loss from the MOT; if cold

enough, these atoms may remain magnetically trapped in the weak quadrupole MOT

field, but they will no longer interact with the MOT light over the duration of our

experiments.

For the Zeeman slower, the subsequent decay paths after 1D2 are irrelevant: as

discussed in Sec. 5.3.2, the interruption of Doppler cooling imposed by even the 3 ms

lifetime of the 1D2 state will lead to losses from the slowing process. To further

examine this effect [300, 343], the branching ratio for the two decays from 1P1, or the

probability of a given decay path, is determined by the relative decay rates:

1P1 −1 S0 : Γb = 1.9× 108 s−1

1P1 −1 D2 : Γd = 3.9× 103 s−1.

(6.2)

Thus the probability of a 1P1 −1 D2 decay in a single photon event is

PD =
Γd

Γb + Γd
= 2× 10−5, (6.3)

vs. the 99.998% probability of returning directly to the ground state. While the

likelihood of a decay to 1D2 appears minuscule, over many scattering events the effect

is not trivial: after N photon exchanges, the probability of avoiding a 1D2 transition

1The calculated 3P2 total decay rate of ∼ 9 × 10−4 s−1 [8, 380] leads to a state lifetime on the
order of 103 s, or 15-20 minutes!
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decays exponentially:

PS =

(
Γb

Γb + Γd

)N
=

(
1 +

Γd
Γb

)−N
≈ 1−N Γd

Γb

≈ e
−Γd

Γb
N
.

(6.4)

The typical number of scattering events before a 1D2 decay is then Γb
Γd

= 5×104; while

again this sounds large, recall that (v0−vf )/vr ≈ 4×104 photons are required to slow

from our maximum Zeeman slower capture velocity v0 ∼ 430 m/s to vf ∼ 25 m/s

(where vr = 9.9 mm/s is the recoil velocity for a 461 nm photon exchange). A

significant fraction of the fastest atoms initially captured by the Zeeman slower will

thus be lost from the slowing process at some point due to these 1D2 decays, a

consideration included in the final calculated cold beam flux (Eq. 5.13).

The effect on the MOT is slightly trickier to calculate, since two thirds of the

atoms which decay into the 1D2 state will return to the ground state through the 3P1

decay path, given the ratio of the rates the two 1D2 possible decays:

1D2 −3 P1 : Γ1 = 2.2× 103 s−1

1D2 −3 P2 : Γ2 = 1.1× 103 s−1.

(6.5)

The total number of trapped atoms, NMOT, in steady state will be determined from

the stationary solution of a rate equation of the form

d

dt
NMOT = Qc − ΓPNMOT − ΓCNMOT, (6.6)
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where Qc is the MOT capture rate, ΓP is the loss rate due to decays into the

metastable 3P2 state, and ΓC is the loss rate due to collisions ejecting atoms from

the trap. Ignoring for now the effect of collisions, we can guess that the trap loss

rate should be proportional to Γ2 times the steady-state fraction of atoms in the 1D2

state. This can be confirmed by considering the rate equations for each level that

potentially remains trapped [343]. The total MOT population can be written as the

sum of the atom number in each state,

NMOT = N1S0 +N1P1 +N1D2 +N1P1

= Nt + N1D2 + N1P1,

(6.7)

where Ni is the population in the ith level and we have taken Nt = N1S0 + N1P1 as

the number of the atoms participating in the cycling transition 1S0 − 1P1 driven by

the MOT trapping lasers. Treating the decay to N1D2 as a small perturbation to the

coupling dynamics of this nearly two-level system, we can assume the fraction f of

Nt in the excited state 1P1 (such that N1P1 = fNt) is given by the usual solution to

the optical Bloch equations for the excited state population ρee,

f =
1

2

I/Isat
1 + I/Isat + 4∆2/Γ2

, (6.8)

where the laser intensity I is the sum of the six MOT beams and Isat = 40.5 mW/cm2.

Then the rate equations for the trapped levels are

d

dt
Nt = − ΓdfNt + ΓrN3P1 + Qc

d

dt
N1D2 = − (Γ1 + Γ2)N1D2 + ΓdfNt

d

dt
N3P1 = − ΓrN3P1 + Γ1N1D2

(6.9)
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(where the decay rate of the 689 nm 1S0 − 3P1 transition is Γr/2π = 7.4 kHz), and

the rate equation for the total trapped MOT number becomes

d

dt
NMOT =

d

dt
(Nt + N1D2 + N1P1)

= Qc − Γ2N1D2.

(6.10)

Comparing to Eq. 6.6, the atom loss rate due to decays into the metastable 3P2 state

is, as expected, ΓPNMOT = Γ2N1D2 if collisional losses are ignored. Solving for ΓP

from the steady-state solutions of Eq. 6.9 and Eq. 6.10, we find:

ΓP =
Γ2

1 +
Γ1

Γr
+

Γ1 + Γ2

Γdf

. (6.11)

The loss rate increases with increasing MOT beam power, saturating at the maximum

excited-state population fraction f = 1/2 to ΓP = 400 s−1, corresponding to

a 1/e-lifetime when not continuously loaded with cold atoms (Qc → 0 ) of

τMOT = 1/ΓP = 2.5 ms. For our MOT detuning ∆MOT/2π = −40 MHz and typical

total beam intensity I ≈ 20 mW/cm2, we would still expect the MOT lifetime to be

limited to 28 ms in the absence of a repump.

A repump beam coupling the 3P2 level to another state that can decay via an

electric dipole transition back to the ground state essentially eliminates this loss

channel. Several repump methods are in use or have been proposed. Many groups

use two beams, at 707 and 679 nm, to couple 3P2 −3 S1 (and then to pump back

out of the 3P0 state, since decays from 3S1 to this state are another loss channel

to a metastable state). These convenient near-IR transitions can be accessed with

simple diode lasers. Our repump method uses a single 497 nm beam to couple

3P2 − 5s5p 3D2; from 3D2, the atoms decay to either 3P2 or 3P1 and so over many
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cycles are pumped back to the ground state.2 This is an efficient repump method,

but since diode lasers are not currently available at 497 nm, the construction of a

second-harmonic-generation cavity to frequency-double a 994 nm diode laser adds

experimental complexity. However, the 2.3 MHz linewidth has a saturation intensity

of only 2.4 mW/cm2, so very little 497 nm power is needed [382, 383]. Finally,

an attractive new repump method uses a single 405 nm beam operating on the

3P2−5s6p 3D2 transition [381]. This is slightly less efficient than the 497 nm method,

but 405 nm diodes (used in Bluray systems) are commercially available so this method

avoids the need for second-harmonic-generation.

If the repump beam efficiently depopulates the metastable 3P2 level, MOT losses

to this channel are essentially eliminated. The lifetime of the blue MOT in the absence

of continuous loading is then limited by collision losses. Several potential collision

channels cause MOT losses. Collisions with the room-temperature background gas

atoms will eject atoms from the MOT; this loss rate is proportional to the chamber

pressure, and has been measured to be only ∼3 s−1 at our P ∼ 6 × 10−10 Torr

(estimated from the low-pressure-side ion pump current - see Sec. 5.1) [343]. Elastic

collisions between trapped Sr atoms cannot provide enough energy to either atom

to cause trap losses, since the velocity of each is less than the trap capture

velocity. Inelastic three-body Sr collisions are also negligible. Light-assisted inelastic

collisions [384], on the other hand, are an important factor for Sr MOTs: this factor

is dependent upon the MOT density and the trap light intensity, but we can expect

a loss rate on the order of 10 s−1 based on measurements by strontium groups using

similar MOT parameters [385].

2This discussion simplifies matters somewhat since the 5s5p 3D2 state can also decay to the
5s6p 3P1,2 states, but 99.7% of the decays are direct to 5s5p 3P1,2 states, and the 5s6p 3P1,2 states
also decay indirectly to 5s5p 3P1,2 through the 5s6s 3S1 and 5s4d 3Dj states [381].
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Given the estimated capture and loss rates, we can estimate the steady-state

trapped atom number from Eq. 6.6,

NMOT ≈
Qc

Γtotal

, (6.12)

with loading rate Qc ≈ 6×109 atoms/s. The loss rate Γtotal is the sum of the loss rates

described above: ΓP ≈ 35 s−1 for our MOT parameters in the absence of a repump

vs. ΓP ≈ 0 with the 497 nm repump (assuming repump beam intensity well above

saturation), and ΓC ≈ 13 s−1 as the sum of the background gas and light-assisted

inelastic collision loss rates. The approximate maximum steady-state trapped atom

number without/with the repump beam is then

NMOT ≈ 1.2× 108 atoms (no repump)

NMOT ≈ 4.6× 108 atoms (fully repumped).

(6.13)

As can be seen, the repump makes a dramatic difference, increasing the trapped atom

number by nearly a factor of 4 (when using higher MOT beam intensities, the effect

can be even greater).

6.3. Science Cell 461 nm MOT

We load the bottom MOT in the Pyrex science cell (described in Sec. 5.4.2)

below the large spherical octagon containing the top MOT directly from the 2D-

MOT-ejected cold atom beam that results from changing the polarization of the

axial (vertical) top MOT beam from σ−/+ to σ+/−. Rotation of the input λ/4 plate

before the final vertical-beam turning mirror by 90◦ effects the polarization change, a

procedure that is computer-automated by digital outputs controlling a small stepper
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motor attached to laser-cut gears connecting the stepper motor shaft to the λ/4

mount [144].

The axial bottom-MOT beams, 1-cm diameter, typically ∼ 2 mW, and parallel

to the optical table plane, pass through the center of the two anti-Helmholtz coils

mounted on either side of the Pyrex cell, which provide maximum axial(radial)

magnetic-field gradients of 36(13) G/cm per amp (see Sec. 5.4.2). The radial bottom

MOT beams, also 1-cm diameter but typically ∼ 8 mW each, enter at 45◦ degrees

to the science-cell walls from below to retroreflector–λ/4-waveplate assemblies near

the top of the cell, with the radial beam mirrors mounted periscope-like to posts

affixed to a bottom plate. This assembly allowed rough alignment external to the

cell prior to maneuvering the mirrors into place. The repump beam, approximately

collinear with the retroreflected vertical top MOT / push beam, passes through the

bottom MOT twice. While the top MOT performance is little affected by repump

beam alignment, the bottom MOT population is much more sensitive (perhaps as a

result of the repump’s interaction with the atoms ejected from the 2D MOT along

the push-beam path), and appears to be maximized when the repump is initially

aligned perfectly co-propagating with the vertical beam and then tweaked slightly

while monitoring the continuously-loaded bottom-MOT fluorescence.

6.3.1. Magnetic Field Considerations

6.3.1.1. Push Beam / Bottom MOT Interactions

The vertically-propagating top MOT / push beam passes directly through the

bottom MOT; while this is necessary for continuously loading, it is important the

magnetic field of the bottom MOT is oriented such that this beam does not also

act like a push beam for the atoms of the bottom MOT. This implies that the
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orientation of the magnetic field along the vertical axis in the two traps, relative

to the trap center, must be opposite. Our magnetic fields satisfy this requirement:

for the top MOT, the component along the vertical axis is the axial component,

which points towards the center of the top MOT while for the bottom MOT it is

the radial component, which points outward from the center of the bottom MOT.

When the vertical beam is in the “push” polarization, σ+ propagating upward and

σ− propagating downward, it interacts with the exited state m′f = +1 passing upward

and m′f = −1 on the downward pass, so the downward-propagating σ− beam is the

push beam that ejects atoms from the top MOT, but both the upward-propagating

and downward-propagating beams act like MOT capture beams for the bottom MOT.

While this is good, since it means the push beam does not eject atoms from the bottom

MOT and we can load continuously, it also implies that our bottom MOT employs 4

beam pairs rather than the usual 3 during continuous loading. For measurements and

transfer procedures, we shutter all the top MOT beams to stop continuously loading

the bottom MOT, which shutters the push beam as well, and we notice bottom-MOT

shape and position shifts upon execution of this event.

The magnetic fields for the top and bottom MOTs are plotted along the vertical

axis in Fig. 6.2, which illustrates another important point: the top MOT axial field

significantly affects the vertical zero-crossing of the bottom MOT field. The orange

and brown lines show the independent anti-Helmholtz fields for the top and bottom

MOTs, respectively, and the black lines are the sum of the fields. With the top MOT

coils set to the maximum current we use for optimal capture from the Zeeman-slowed

beam, 6.8 A, the axial top-MOT field introduces a background vertical bias field at

the bottom MOT location of over 30G. This offsets the bottom MOT radial-field

zero-crossing from the center of the optical molasses region by over a centimeter,
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FIGURE 6.2. Interaction of the top and bottom MOT AH magnetic fields along
the z−axis. The relative orientation of the two fields is critical for the 2D-MOT
push-beam transfer, and the total field zero-crossing at the bottom MOT location
(with a typical bottom-MOT AH-coil-current of 1.6 A) is significantly offset from the
intersection of the bottom MOT beams when the top MOT AH-coils are at a high
(6.8 A) current.

and the total field is far from linear near this zero-crossing point. This is a serious

disadvantage of our double-MOT setup: even at 6.8 A our top MOT magnetic field

gradient is much smaller than that used by many Sr groups, and to load a bottom

MOT we are forced to lower the field to 2.2 A, which results in a very diffuse top

MOT with a lower capture efficiency. Even then, the zero-crossing of the bottom

MOT magnetic field is still offset by 3 mm from the center of the bottom MOT AH

coils, so we use bias fields to make up the difference and bring the quadrupole-field-

center into alignment with the optical molasses zone.
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6.3.1.2. Background Magnetic Field Cancellation

Bias magnetic fields are used in most MOT experiments: while the MOT itself is

quite robust, any stray background magnetic field will affect the position of the trap

center, and atoms released from MOTs with insufficient background field cancellation

launch in the direction of the field.Optical molasses using σ+/− beams is very sensitive

to stray magnetic fields, which disturb the force balance between counter-propagating

beams and effectively shift the molasses rest frame into a frame which is moving with

respect to the lab (see Ref. [311] for a good discussion of this effect). Stray fields

include the Earth’s magnetic field, typically ∼0.5 G, and any fields from nearby ion

pumps or the Zeeman slower.

For full cancellation, we typically use 3 orthogonal sets of coils wound outside

the main chamber. The Helmholtz (HH) coil configuration, with the same current

in two coils of radius R separated by a distance d = R, is ideal for producing a

uniform magnetic field along the coil axis; since we only anticipated the need for small

magnetic-field adjustments we use rectangular coils separated by approximately the

average of the two side lengths whenever possible, but we still refer to them as the

X/Y/Z-HH coils. These coils are powered in series by homemade current supplies

capable of 5 A bidirectional output, with adjustable temperature and current limit

setpoints [311]. (We also use a master-slave version of this design for the bottom

MOT AH-coil current.)

For the top MOT, we adapted the Steck lab Rb-MOT HH-coil solution [216]

by forming coils from 6 turns of 10-conductor ribbon cable, wrapped directly at the

MOT around corner axes fastened to the 80/20 support frame. We found that a fairly

tight MOT formed for a range of Z-HH coil current values, allowing adjustment of

the top MOT position further above the atomic beam when desired; the X/Y values
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appeared slightly more sensitive (probably due to the limited 1-cm-diameter vertical

axial beam).3

For the bottom MOT, we use HH coil forms assembled from laser-cut acrylic

cutouts wrapped with ∼60 turns of polyimide-insulated wire [144], but the space

constraints imposed by the optics and coil mounts around the Pyrex cell led to coil

parameters far from the ideal HH configuration. This was particularly true for the

original bottom MOT Z-HH coils, ∼ 2.5′′ × 3.5′′ rectangles separated by ∼ 6′′. A

significant non-zero Z-coil current is needed to cancel the top MOT axial field at

the bottom MOT location, but the resultant magnetic field from these coils was far

from uniform along the z-direction. Replacing this coil pair with a 10-conductor × 6-

turn ribbon-cable pair by appropriating the lower top-MOT Z-HH coil and winding a

second coil the appropriate distance below the bottom MOT results in a more uniform

Z-bias field, but the maximum field available at the current our drivers can provide

is barely sufficient (the ribbon cable coil pairs, with greater effective coil diameters

and separation, cannot provide as strong a field as the tighter wire-wound HH pairs).

A switch was eventually installed to allow use of the appropriated coil as a top- or

bottom-MOT Z-coil, but we currently cannot use a Z-bias field in both MOTs at the

same time. We remain concerned about imperfect magnetic-field cancellation in the

science cell, as described further in Sec. 6.5.

6.3.2. MOT Imaging

Our primary imaging system is a charge-coupled device (CCD) camera from

Finger Lakes Instrumentation (we refer to it as the FLI camera), inherited from a

3Despite the possibility of confusion, we have adopted the convention of referring to the X/Y/Z-
HH coils for both the top and bottom MOTs by a laboratory x/y/z frame that corresponds to vertical
along the +z-axis, +y along Zeeman-slower beam axis, and +x toward the imaging cameras.
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previous Steck lab Rb experiment [216, 311], with a Micro-Nikkor 55 mm f/3.5 macro

lens from Nikon. While not a high-end scientific camera, the FLI does have a full-

frame 512×768 pixel (px) air-cooled microlens sensor (Kodak KAF-0402ME) with a

quantum-efficiency (QE) of 48% at 461 nm. We add a color filter (Schott BG40),

which transmits ∼89% at 461 nm, reducing the efficiency at 461 nm to ∼43%.

6.3.2.1. MOT Size

We use fluorescence imaging, collecting the light scattered by the atoms

interacting with the 461 nm MOT beams. Knowing the scattering rate per atom

and the collection efficiency of our camera system thus allows conversion of integrated

image pixel counts into MOT atom number NMOT . Ref. [311] describes the calibration

procedures used by the Rb experiment to extract this and other information from

the FLI camera. We repeated the procedure to calibrate the image size with our

filter [144], finding 23.75 µm per pixel, but assume the measured 6.4 photons per

pixel “count” will roughly hold for our parameters as well when we operate far below

saturation, if multiplied by the ratio of the total efficiencies at 461 nm vs. 780 nm

(and at ∼ 43% vs. ∼ 40%, this is a negligible correction at our level of accuracy).

We are typically most interested in imaging our atoms just after release from

the MOT, as described further in Sec. 6.4.1, by pulsing the MOT beams to “freeze”

the atoms in optical molasses with the MOT AH-field off. The scattering rate at our

MOT beam detuning ∆MOT/2π = −40 MHz is then ∼ 10× 106 photons/s per atom

for a total MOT beam intensity I ≈ Isat (Eq. 3.7). However, the number of photons

collected per atom depends on the solid angle ratio (assuming isotropic spontaneous

emission)

Ω

4π
≈ 1

2

(
1− d√

d2 +R2

)
, (6.14)
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where d is the distance from the camera lens to the MOT and R is the radius of

the effective lens aperture. At f/3.5, our apertured lens diameter is 55 mm/3.5,

or R = 7.85 mm, and the camera is set at the closest possible focus, d = 24.1 cm.

The solid angle ratio is then 0.027%, so we can expect ∼ 2, 500 photons/s per atom

to reach the camera. Over a typical 2 ms exposure time, this corresponds to only

∼ 5 photons/atom.

A typical false-color bottom-MOT-release image for a 2 ms exposure, 0.025 ms

after release, is given in Fig. 6.3. We sum over the row and column pixel counts to

examine the position distribution; imaging at a slight angle to the lab y−z plane, the

column-sum plot corresponds to the MOT distribution roughly along the y-axis (axial

MOT-field direction) and the row-sum distribution corresponds to the z-axis (vertical

- radial MOT field). Gaussian fits to the row and column sums for this image give

widths of 14 and 16 pixels, respectively; given the 23.75 µm/px size conversion factor,

this is a full-width-half-max (FWHM) 0.8 mm × 0.9 mm cold-atom cloud (the cloud

has already begun to expand from a typical trapped MOT FWHM of ∼ 0.6 mm).

As expected the cloud is tighter along the axial-field direction, but we do not have

a good explanation for the slight tilt, which is present in most of our bottom MOT

images.

The science cell is not AR-coated, so there is considerable background MOT-

beam and MOT-reflection scatter which we attempt to subtract off (still visible at

the bottom and top edges of the frame), and expansion exposures also include the

pre-release MOT. We subtract this off as well, and average over typically 100 cycles,

but the subtraction procedure is plagued by issues described further in Sec. 6.4.1.

The subtraction is probably sufficient for rough atom number estimates, however:

the integrated sum of the pixel counts, minus the integrated background, is 1.3×105,
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FIGURE 6.3. Example MOT image, with integrated position distributions along the
axial (Column Sum) and radial (Row Sum) directions.

leading to an estimated cold-atom number of

1.3× 105 counts× (6.4 photons/count)

5 photons/atom
= 1.6× 105 atoms. (6.15)

However, this estimate can be assumed accurate to only about an order of magnitude,

since we have treated the atoms as independent scatterers interacting with an

un-attenuated traveling-wave light field. The scattering rate (Eq. 3.7) is only

approximate for the 6-beam standing-wave light field, and as mentioned in Sec. 6.2.1
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a small percentage of photons participate in light-assisted two-atom recombination

events (the main contributor to collision losses). Dense MOTs may also attenuate the

light field (with atoms on the outer fringes shadowing those inside), and spontaneously

emitted photons likewise can be reabsorbed by adjacent MOT atoms [386, 387].

However, the most significant source of uncertainty in Eq. 6.15 is shot-to-shot

variation in our attempts at background subtraction, imposed by the limitations of

our camera shutter system and discussed further in the following two sections.

6.3.2.2. Camera Limitations

Although this camera is capable of the resolution and light collecting abilities

required thus far, and is relatively easily programmed with the assistance of the

camserver library developed by Jeremy Thorn, the biggest obstacle has proven to be

the shuttering system. The mechanical shutter blades have a long history of repair

and modification [311] and tend to need regular cleaning to prevent sticking (although

we have only needed to replace one blade so far on the strontium experiment). The

shutter is also quite noisy, and mechanical vibrations transmit through the camera

mount to the rest of the optical table. This is particularly problematic for our

frequency-doubling cavities, which experience amplitude fluctuations and can even

come unlocked in response to these vibrations.

The camera mount inherited from the Rb experiment consists of a solid 1.5′′ post

attached to a 5′′ × 10′′ × 1′′-thick cast-iron block. This block is fixed indirectly to an

aluminum plate clamped to the optical table by screws threaded through two other

cast-iron blocks (5′′ × 1.5′′ × 1′′ thick); sandwiched between the blocks and between

the lower block and the aluminum plate are layers of Sorbothane, a viscoelastic

damping material. This should already be a stable and effective vibration-isolating
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configuration, avoiding metal-to-metal contact that would transmit mechanical

vibrations directly to the optical table [359], but an informal communication from

a visiting speaker (Luis Orozco) led to a significant improvement. His cavity QED

group found that many small pieces of Sorbothane are much more effective for

vibration isolation a than single layer, a fact known by Sorbothane manufacturers

and documented in the technical literature and design guides [388]. The principle

is quite simple: to prevent transmission of noise through the layer to the table, the

mechanical energy must dissipate as thermal energy (deformations) through the sides

of the sheet, therefore a net circumference surface area greater than or equal to the

contact area is optimal. Slicing the Sorbothane layer between the plate and the plate

into many pieces of 1/4′′ “confetti” had a dramatic impact on doubling-cavity stability

when the camera shutter fires. We subsequently used the same technique to better

isolate other mechanical beam shutters.

Another serious limitation of the FLI camera is more difficult to mitigate or work

around. The camera shutter begins to open ∼ 10 ms after triggering, a delay which we

can program into our experimental sequences. Unlike an electronic shutter system,

however, the mechanical shutter requires another ∼ 10 ms to fully open. Equally

problematic is the fact that the time to final full opening can vary by as much as a

few ms shot-to-shot. This means that we cannot rely upon a programmed camera

exposure time to give well-calibrated physical exposures at the millisecond precision

level, which is required for certain experimental sequences.

When we require precise exposures, rather than rely upon the variable camera

shutter we would ideally open the shutter “in the dark,” ahead of the desired image

time. We can then trigger an AOM, used as a beam shutter, to flash the MOT beams

for a set duration. This procedure is still insufficient for well-calibrated intensity
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exposures shot-to-shot as a result of amplitude fluctuations from the 461 nm doubling

cavity (particularly when the cavity is overreacting to mechanical shutter vibrations).

Even without finicky SHG cavities, the Rb experiment found that although AOMs are

quite reliable for fast response rise/fall times, they can drift in diffraction efficiency,

particularly in response to temperature variations [311]. As a result, they developed

a pulse-area analyzer to switch an AOM off after a laser pulse has reached a set

integrated intensity [389]. The integrated signal from a photodiode monitoring a

small pick-off from the laser beam is compared to a voltage setpoint; when the

integrated signal is equal to the setpoint, the comparator output inhibits the AOM

drive frequency through the RF switch. Using this method, the timing of a given

laser pulse may vary by as much as 5% max (usually less) shot-to-shot, but the light

exposure level is constant for each pulse. Use of this module is helpful, but the the

overall system still poses serious challenges to acquiring some of the images we would

like to take for full characterization of our blue MOT, as discussed further in the next

section.

6.4. MOT Temperature Characterization

The minimum temperature we could hope to reach in our 461 nm 88Sr MOT is

the Doppler temperature (see Sec. 3.2.1.2),

TD =
~Γb
2kB

= 730 µK, Doppler limit, 461 nm MOT (6.16)

since the even isotopes possess no nuclear spin and hence lack the hyperfine ground-

state substructure required for sub-Doppler cooling mechanisms. However, most
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strontium groups observe temperatures consistently higher than this minimum,

∼ 2− 5 mK, attributed to the heating effects of light-assisted collisions. Lower MOT

temperatures are associated with higher transfer efficiencies from the 461 nm blue to

689 nm red MOTs, so we would like a simple method to check our MOT temperature

and potentially optimize various parameters to achieve the coldest possible starting

samples. However, the limitations of our experimental setup have proven challenging

for characterization of the 461 nm MOT, and future parameter optimization can rely

equally well upon maximizing MOT population transfers directly. We have attempted

some temperature measurements, and the procedure outlined below will work well for

future measurements of 689 nm MOT or lattice-trapped atoms, but in the end we

rely upon a temperature estimate derived from the trapped spatial distribution for

the 461 nm MOT.

6.4.1. Ballistic-Expansion Imaging

A simple method to measure trapped-atom temperatures employs direct imaging

of the expanding cloud upon release of the trap over variable time delays [221, 311].

Each atom, assumed independent in the thermal cloud, experiences ballistic flight

from its initial position r0 to final position r = r0 + v tdelay, where v is the initial

velocity and tdelay is the time between trap release and imaging. Assuming a Maxwell-

Boltzmann thermal distribution and isotropic expansion, imaging the entire cloud

with a variable time delay maps the variance of the initial momentum distribution to

that of the final position distribution as a function of tdelay:

σ2
y(td) = σ2

y0
+ (σp tdelay/m)2. (6.17)
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Here σy0 is the variance of the initial position distribution (assumed Gaussian:

FWHM0 = 2
√

2ln2σ0), which has very little effect on the final distribution for long

delay times.4 The simplicity of the ballistic-expansion method is the lack of sensitivity

to this initial spread, unlike release-and-recapture methods (which determine the

temperature from the fraction of atoms remaining for variable trap shutoff times [257])

or time-of-flight methods that measure the percentage of atoms crossing a probe beam

below the released MOT as a function of time [295].5

Gaussian fits to ballistic-expansion images over numerous delay times thus allow

derivation of the initial velocity distribution, related to the MOT temperature T by

σ2
p = m2〈v2〉 = mkBT. (6.18)

Of course, this description assumes instantaneous imaging, while for a sufficient

signal we need a finite exposure. As described in the previous section, we use

fluorescence of the MOT beams themselves for our imaging pulse, so the atoms

are somewhat “frozen” in optical molasses during the exposure but still experience

some diffusion; any spread during exposure would in principle act as an overall offset

that wouldn’t affect the slope of Eq. 6.17, but should still be avoided in case the

diffusion rate increases as the cold-atom cloud fills more of the non-uniform-intensity

optical molasses region. To avoid these artifacts, a short imaging time is preferred,

and the derived temperature can be verified by repeating the measurement with

different exposure times. Note also that we can only image the cloud over the region

encompassed by our MOT beams.

4Eq. 6.17 relies upon the assumption of Gaussian initial position and momentum distributions,
and uses the fact that the convolution of two Gaussians is also Gaussian [311].

5The ballistic-expansion technique is also often referred to as “time-of-flight” imaging, since the
cloud size is in effect a function of the time the atoms fly away from their initial position.

220



0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

t (ms)

F
W
H
M

(c
m
)

1000

3000

5000

7000

9000

R
ow

S
um

(p
ea
k
co
un
ts
)

FIGURE 6.4. Simulated 461 nm MOT-release ballistic expansion over td = 0 to 5 ms
from initial 5 mK and 1 mK MOTs (solid and dashed curves, respectively). The blue
curves show the expected FWHM = 2

√
2ln2σy from Eq. 6.18 and Eq. 6.17, and the

orange curves are the peak image pixel count (1D-sum). The dashed black line is our
current camera noise floor.

The challenge for ballistic-expansion imaging of the 461 nm MOT is the high

initial temperature of the trapped atoms: at typical 2-5 mK 88Sr MOT temperatures,

the cold atoms are still moving ∼ 1 m/s! The expansion upon release from an initial

0.6-mm-FWHM MOT at 5 mK is plotted in Fig. 6.4 (blue solid curve); by a delay

time of 5 ms, the expanded cloud already has a FWHM of nearly 1 cm, reaching

the edge of our optical molasses zone. More problematic is the decay in the peak

fluorescence that would be recorded by the camera (orange solid curve). For typical

1D distributions (obtained by summing over the rows or columns) we see a maximum

peak pixel count of ∼ 10, 000, and a background noise floor of ∼ 3000 counts (dashed

black line). The peak value decays as the cold-atom cloud expands by 1/FWHM,

such that the cloud will be barely visible by the time it is ∼ 2 mm in diameter, at
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tdelay = 1.2 ms. The 5 mK starting temperature may be a bit of a worst-case scenario,

so the ballistic expansion FWHM increase and peak count decay are also plotted for

an initial 1 mK MOT (dashed blue and orange curves); the lower temperature leads

to slower expansion, but even in this scenario the cold atom cloud is indistinguishable

from the background by tdelay = 2.6 ms.

These time scales are challenging for our camera system: with the shutter

requiring ∼ 10 ms to fully open, we cannot image the expanding cloud without also

capturing the initial MOT prior to release. We nevertheless attempted a ballistic-

expansion temperature measurement of the blue MOT, hoping to subtract off the

background initial MOT to obtain images capturing the cold-atom cloud expansion.

The experimental procedure is depicted in Fig. 6.5, with the timing referenced to the

sequence of events programmed through the ZOINKS computer control interface.

We begin and end each data cycle with a continuously loaded bottom MOT,

with the top MOT AH-coils set to ∼2 A and the bottom MOT coils set to 1.6 A for

a relatively large bottom MOT (useful for diagnostic purposes — checking repump

frequency, etc). The first step in each sequence is to start fresh by throwing away

all previously loaded atoms (shuttering all beams and switching off the AH coils ),

waiting 50 ms, then reloading the large bottom MOT. We wait 100 ms to ensure

maximum bottom MOT capture, then we switch all top MOT coils and beams off

and wait 50 ms more for the transient magnetic field to die away. (The SHIFT

event: as described in Sec. 6.3.1, the equilibrium position of the bottom MOT shifts

upward when the top MOT fields are switched off, and the optimal bottom MOT

HH-field values — in particular along the verticle z-axis — also require adjustment.)

Simultaneously, we increase the bottom-MOT AH-coil current from 1.6 (gradient 37

G/Cm) to 2.3 A (54 G/cm) for a tighter initial cold-atom cloud. We release the
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FIGURE 6.5. Ballistic-expansion-measurement timing diagram, showing the
sequence of AH-field, MOT beam, and camera events per camera shot as described
in the text (not shown: HH-field adjustments). The typical imaging pulse duration is
2 ms, and we vary the time delay between release and imaging from 0.25 to 2.00 ms
to attempt to measure the cloud expansion as function of time. For each shot, we
take a background image with the image pulse off and average 100 background and
image shots per time delay.

atoms from the MOT (the DROP event) by turning off the bottom MOT AH-field

and MOT beams and then image the expanding cloud by pulsing on the bottom

MOT beams for ∼ 2 ms after a variable time delay of 0.25 to 2.00 ms. The camera is

triggered 20 ms before the DROP event to ensure that the shutter is fully open when

the atoms are released, but the exposure captures the bottom MOT prior to release

during the ∼ 10 ms the shutter requires to open. In order to subtract off the MOT,

every expansion image sequence is accompanied by a background exposure sequence

in which we repeat exactly the same events but keep the image pulse off after MOT

release.

For each time delay, we average 100 signal and 100 background images and

subtract off the background, but background subtraction is problematic for several
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reasons. The shutter opening time is variable, so different exposures of pre-release-

MOT can be recorded in the signal and background images. The MOT intensity itself

is also variable, primarily as a result of MOT and repump beam intensity fluctuations.

As described in Sec. 6.3.2.2, we can use the pulse-analyzer circuit to set controlled

integrated-intensity exposures. However, we do not have a means to use this circuit

more than once in the experimental sequence (the ZOINKS system cannot incorporate

feedback into a single programmed timing sequence), so we use the pulse analyzer

to ensure shot-to-shot consistency of the ballistic-expansion imaging pulse. To verify

uniform MOT intensity during the shutter opening sequence, we could separately

monitor the MOT and repump intensities and post-filter the data, discarding all

runs with a variation larger than a chosen criterion, but this would not resolve the

variable shutter-opening-time issue. Finally, the MOT position also jitters shot-to-

shot, sometimes by as much as half the MOT FWHM. We do not have a satisfactory

explanation for this position shift. Some jitter is expected due to interference fringes in

the retro-reflected MOT beams, but not at this level, and the magnetic-field current

control is accurate to better than this shift. We expect the issue is MOT beam

frequency or pointing jitter due to mechanical vibrations.

The end result is often incomplete or over-compensated subtraction of the MOT

itself, even with 100 background/signal averages, such that we cannot trust Gaussian

fits to our expansion images to give reliable measures of the variance of the expanding

cold-atom cloud. Example averaged ballistic-expansion images from a single data run

are shown in Fig. 6.6, along with the 1D-integrated projections along the y− and

z−axes (row- and column-sum data). The expanding cloud is clearly visible out to

at least 1.5 ms, and the widths of the 1.75 ms and 2.00 ms images also indicate the

continued detection of an expanding cloud, but incomplete MOT subtraction makes it
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FIGURE 6.6. Ballistic-expansion images for tdelay = 0.25 to 2.00 ms, averaging
100 signal and background shots per time delay but with incomplete background
subtraction. Some expansion is clearly visible, but the presence of the background
MOT makes accurate characterization of the expanding cloud width challenging, and
background-scatter artifacts become more problematic at longer time delays.

challenging to reliably fit the expanding wings. The incompletely subtracted scattered

background light also becomes more of an issue at long time delays with low signal

to noise. This was a fairly consistent data run showing the expected gradual signal

decay, but the 0.25 ms delay images are noticeably weaker than the rest, likely due

to sagging MOT or repump beam power, or repump frequency drifts (we currently

rely upon a grad-student twiddle-lock to keep the repump on resonance by tweaking

up the MOT brightness in the interims between imaging sequences).
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6.4.2. MOT Temperature Estimate

We are encouraged by the fact that we can image the expanding cold-atom cloud

out to nearly 2 ms when the system is working well, since this indicates that the atoms

are not escaping more quickly than a reasonable 88Sr blue-MOT temperature would

predict. In comparison to the predicted intensity decay (Fig. 6.4), this indicates we

are closer to a MOT temperature of 1 mK than 5 mK.

Another rough estimate of the MOT temperature is derived from direct imaging

of the trapped atom-cloud spatial extent and equating the one-dimensional kinetic

(thermal) energy to the trap potential energy at the boundary [224],

1

2
kBT =

1

2
ktrapz

2
rms, (6.19)

where the trap “spring constant” ktrap is a function of the trap parameters (Eq. 3.46)

along the imaged axis. The typical axial beam intensity is 2 mW/cm2, and for

the tight bottom MOT obtained after the SHIFT event (top MOT fields off, no

longer continuously loading), the axial magnetic field gradient is 54 G/cm, leading

to ktrap = 8.9× 10−20 J/m2. The typical MOT FWHM is ∼ 25 – 30 pixels along

the axial direction, or 0.6 – 0.7 mm; assuming a Gaussian position distribution, this

corresponds to yrms =
√

3(FWHM)/2
√

2ln2 = 0.4−0.5 mm. This leads to a reassuring

estimate of T = 1 - 2 mK, with uncertainty dominated by the shot-to-shot FWHM

variation. This temperature is low compared to that measured by many Sr groups,

which could be a result of the fact that we are using MOT beams well below saturation

(the minimum achievable Doppler cooling temperature scales with intensity, and the

additional heating above the Doppler model observed in strontium is often attributed

to light-assisted collision effects, which also increase with increasing intensity).
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For the future 689 nm red MOT, a temperature estimate from Eq. 6.19 would not

be valid, since many of the semiclassical assumptions governing the derivation of the

MOT force used to define ktrap are not valid for narrow-line cooling, as described in

the next section. However, the experimental ballistic-expansion sequences developed

in our attempts to measure the blue MOT temperature will transfer well to red MOT

measurements: the ∼ 1 µK red MOT temperature leads to much slower expansion,

and the shutter opening time will not be a serious impediment.

6.5. Loading the Red MOT

The Doppler limit is a result of the balance between the cooling achieved by

red-detuned photon absorption and the heating inherent in the random nature of

these absorption and emission events, as discussed in Sec. 3.2.1.2. As such, this

temperature limit is directly proportional to the linewidth of the cooling transition

because the uncertainty in the emission time of the scattered photons (along with

the uncertainty in the emission direction) leads to the force fluctuations. Cooling

on narrow-line transitions like strontium’s 7.4 kHz 1S0 − 3P1 transition allows much

lower MOT temperatures, which will be critical for efficient transfer into an optical

lattice (depth ∼ 20 µK) in future stages of this experiment.

The Doppler cooling limit generally sets the lower bound on laser-cooling

temperatures achievable without sub-Doppler cooling mechanisms, while the colder

recoil temperature is in a sense the fundamental quantum atom-photon limit

associated with the momentum exchange of one photon. However, perhaps the first

indication that semiclassical laser-cooling theory fails when it comes to strontium’s

1S0 − 3P1 transition is the fact that the Doppler and recoil temperatures are reversed:
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TD =
~Γr
2kB

= 180 nK, Doppler limit, 689 nm MOT

Tr =
~2k2

689

mkB
= 460 nK. Recoil limit, 689 nm MOT

(6.20)

Clearly, something is wrong here: it makes no sense for the Doppler temperature to

be lower than the quantum limit! Indeed, several of the approximations that led to

the derivation of the Doppler temperature no longer hold for narrow-line cooling.

Semiclassical treatments of the light-atom interaction treat the atom quantum-

mechanically but the light field classically. The crossover between regimes requiring

a quantum treatment of the light field vs. a classical approach is generally considered

dependent upon field photon number; with narrow-line cooling, we still use milliwatt

beams, bombarding the atoms with over 1015 photons/s. While the number of

photons in the field is large, however, the interaction rate is much smaller: with

an excited-state lifetime 1/Γr = 21 µs, each atom can only scatter a maximum

Γr/2 = 23, 000 photons/s (the saturation intensity is only 3 µW/cm2). This is in

sharp contrast to the 461 nm transition, with a 5 ns excited-state lifetime and a

maximum scattering rate of 96 million photons/s per atom. The discrete nature

of photon absorption and emission on such a fast cycling transition can be largely

ignored, allowing a classical treatment of the laser fields and the approximation of the

scattering force as a continuous function, but this no longer holds true for narrow-

linewidth transitions.

Besides the rate of scattering events, an even more fundamental consideration

in narrow-line cooling is the impact of a single event. For the 689 nm transition, the

recoil velocity imparted by the absorption of a single photon, vr = ~k/M = 6.6 mm/s,

implies a Doppler shift of ∆νD = kvr/2π = 9.6 kHz, which is greater than the 7.4 kHz

transition linewidth! In laser cooling it is common to use a laser linewidth on the same
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order as or narrower than the transition linewidth (although this is challenging when

interacting with such a narrow transition), but in this case the momentum transfer

from a single scattering event is enough to significantly affect the atom’s coupling to

the cooling field: for our ∼ 11 kHz 689nm ECDL, the atom is shifted out of resonance

after scattering only 2 photons if the laser is well below resonance.

As a result of these considerations, the theory of cooling on narrow-linewidth

transitions requires a full quantum treatment of the atomic momentum coupling to

the cooling field, via Monte Carlo simulation [291] or numerical integration of the

coupled quantum equations of motion [390]. These calculations reveal interesting

dynamics in narrow-line MOTs, also observed in experiments. One result that is

not so surprising (and can be observed in the large intensity limit, where power

broadening of the transition allows a return to the semiclassical treatment) is the fact

that gravity plays a significant role. In typical MOTs, the scattering force is much

greater than the gravitational force, but for Sr’s 1S0 − 3P1 transition, the ratio of the

maximum scattering force to the gravitational force is relatively small (~kΓ/2mg =

16), and the MOT “sags” to the bottom of the trap. Somewhat more surprising is the

coldest observed temperatures, which approach the recoil limit divided by 2 at small

MOT beam intensities [391], as predicted by theory [390]. Finally, momentum-space

crystals are observed in MOT ballistic-expansion images when the MOT beams are

slightly blue-detuned [392], fully confirming the discretized nature of the atom-photon

interaction.

The first challenge of narrow-line cooling, however, is simply transferring from

the relatively hot 461 nm MOT to the narrow-line MOT. For a blue MOT at 2 mK,

the typical atom speed is vrms = 75 cm/s. The Doppler shift for an atom moving

towards/away from a red MOT beam is then ±1 MHz: the vast majority of the
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blue MOT atoms are Doppler shifted out of resonance with the red MOT beams.

Power broadening in this case is our friend: by using beams well above the saturation

intensity, we increase the effective linewidth to Γr
√

1 + I/Isat = 500 kHz for a total

MOT beam power of ∼ 15 mW, but this still does not cover the Doppler width of

the blue MOT distribution. The first trick to loading the red MOT is to broaden

the interaction range by modulating the trap beams over the Doppler-broadened blue

MOT distribution to capture as many atoms as possible.

The red MOT capture zone must also encompass the blue MOT volume. The

MOT capture radius is roughly defined by the boundary where the Zeeman shift is

equal to the MOT beam detuning (κdB
dz
z = ∆MOT ), but not only is the red MOT

beam detuning (typical final value: ∆r2 = −500 kHz) much smaller than the blue

MOT detuning (∆b = −40 MHz), the Zeeman shift is larger (κr/2π = 2.1 MHz/G,

vs. κb/2π = 1.4 MHz/G). This means a much smaller magnetic field gradient is

required, along with the modulation of the red MOT detuning, to match the blue

and red MOT boundaries.

The typical loading sequence, using roughly the parameters derived as optimal

by Monte Carlo simulation of the capture dynamics by Katori et al. [107], is shown

in the timing diagram of Fig. 6.7. The start of the sequence begins under the same

conditions as those just prior to the DROP event in our ballistic-expansion imaging

experiments: the top MOT beams and fields are off, and the bottom blue MOT is at

the high 54 G/cm magnetic field gradient for a tight initial atom cloud. (For every

red MOT loading sequence, we thus begin with the events depicted in Fig. 6.5 for 0

– 200 ms to load a large bottom MOT; these events occur before t = 0 in Fig. 6.7.)

We then simultaneously switch the blue MOT beams off and the red MOT beams

on, but the 689 nm light is frequency-modulated using an AOM driven by a DDS to

230



sweep back and forth across the Doppler-broadened resonance from ∆r1 = −2 MHz

to ∆r2 = −500 kHz. We also decrease the bottom MOT magnetic field gradient to

3 G/cm; the red MOT capture radius should then be ∼ ∆r1/(κr
dB
dz

) = 3 mm.
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FIGURE 6.7. Timing diagram for red MOT loading and ballistic-expansion imaging.

Note that this red MOT capture range seems large, since it is more than

sufficient to encompasses the initial ∼ 0.6 mm blue MOT. However, it also ensures

that the red MOT beams have enough time to interact with the atoms as they fly

away from the blue MOT center. Cooling from the initial blue MOT temperature

to a final temperature on the order of a typical red MOT requires scattering

only (v0 − vf )/vr = 112 photons (with v0 = 75 cm/s from the 2 mK blue MOT,

vf = 17 mm/s for the typical speed of an atom at 1 µK, and vr = 6.6 mm/s as the

red MOT recoil velocity), but this takes a minimum of 5 ms even at the maximum

scattering rate. In this time, a typical blue MOT atom that is not cooled could

travel almost 4 mm, so the large red MOT capture volume is reasonable to ensure a

sufficient distance for the cooling to occur.
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For similar reasons, the red MOT field gradient is held at 3 G/cm for 10 ms,

but over the next 50 ms, the field is ramped up to a final value of 10 G/cm. By this

point, any atoms that would have been captured by the red MOT should be cooled,

so the red MOT beam modulation is disabled and the MOT beams are set to the

final detuning of ∆r2, which should result in a tight red MOT of 0.2 mm FWHM.

Given the low scattering rate, however, the camera will not detect the red MOT,

so the final step to verify loading is to flash the atoms with the blue MOT beams

for a camera image. The sequence shown in Fig. 6.7 depicts a blue MOT imaging

pulse some delay after red MOT release, which would be the sequence for ballistic

imaging, but actually the imaging pulse can be set to occur at any point after t = 0,

to destructively check the red MOT loading sequence at different stages.

However, so far we have not observed any evidence of red MOT loading. We

have found that we can reload a very weak blue MOT at time delays much greater

than expected given the ballistic-expansion loss rate (up to 50 ms), so we believe

the red beams are interacting with the atoms to create optical molasses conditions

and lengthen the time scale at which the atoms remain in the bottom MOT region.

We have also noticed evidence of the red MOT beams interacting with the atoms

trapped in the blue MOT: exposing a continuously loaded blue MOT to chopped red

MOT beams results in a slight modulation of the blue MOT fluorescence, which we

attribute to temporary shelving of the atoms in the 3P1 state and reduction of the

number of atoms interacting with the blue MOT beams.

Both of these observations seem to indicate that our 689 nm laser is set to

the correct frequency, which was one of our concerns: the diminishing heat pipe

absorption signal (see Sec. 4.5.1) has made locking the laser challenging on some

days, but a more serious issue has been the instability of the long-cavity 689 nm
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ECDL. Frequent mode-hops, we suspect due to insufficient temperature stabilization,

led to many occasions when red MOT experimental runs were attempted only to

eventually discover that our laser had been off-frequency or multi-mode during much

of the data set. We have been using the 10-cm cavity-length design of our ECDL

because we ultimately want a narrow-linewidth laser to interact with the narrow 1S0 −
3P1 transition, but for MOT transfer some degree of frequency broadening could be

advantangeous (although most strontium groups we know of are actually using much

narrower 689 nm lasers, stabilized to high-finesse external cavities). Temporarily

switching to the short-cavity version of the 689 nm ECDL may be useful during this

stage of the experiment, but ultimately the long-cavity instability issues must be

resolved.

Other concerns are borderline red MOT beam power and the modulation

parameters used during transfer (particularly our modulation rate, currently limited

to 25 kHz by DDS parameters, vs. 50 kHz used by other groups, which gives a

modulation period about equal to the 3P1 lifetime). The use of a single-pass AOM

for modulation will also add red MOT beam pointing modulation, and the geometry

of our setup, with no vertical MOT beam, further reduces the MOT vs. gravitational

force ratio. Another serious concern has been magnetic field cancellation in the

bottom MOT region. As described in Sec. 6.3.1.2, our bottom MOT Helmholtz coils

are far from the ideal separation; this leads to inhomogeneities and coupling between

different coil axes. We found it challenging to cancel the field sufficiently to observe

the ballistic-expansion of the blue MOT out to 2 ms — in many early images, the

atoms would streak to one side or the other upon release from the blue MOT, and we

do not have a good way to verify that the atoms are not still streaking orthogonal to
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the plane imaged by the camera. Given the tiny field gradient required for the initial

red MOT loading stage, any small background field would be very problematic.

The best approach in the near term may be attempting the red MOT loading

sequence in the top MOT. This will require some beam realignment, and repositioning

of the FLI camera, but the optics ordered for the top MOT are good for both 461 nm

and 689 nm (the beam-expanding telescope lenses may need to be replaced with

achromats, however). This would allow us to load in a region where the background

fields can be canceled to better accuracy, and would also give us the advantage of

using larger red MOT beams to provide a larger interaction region during cooling. The

geometry of this setup, with the axial beam along the vertical axis, is also identical to

that used by other red MOT groups: with the maximum scattering force on the same

order of magnitude as the gravitational force in the red MOT, the vertical scattering

force is much more important in the final cooling stages than the forces resulting from

the radial beams, so our lack of a vertical beam in the bottom MOT geometry could

exacerbate any other trap instabilities.
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CHAPTER VII

CONCLUSION

This dissertation has summarized the development of a strontium magneto-

optical trap (MOT) for future measurements of the Casimir-Polder (CP) interaction.

A cold-atom spectroscopic measurement of CP-induced transition shifts will be a

new experimental technique capable of probing atom-surface separation regimes little

explored in other measurements thus far. Distance scales of particular interest for

exploring the cross-over in length-scaling between the near-field (van der Waals)

V ∝ r−3 effects and the far-field (CP) V ∝ r−4 regime will also be critical to

understand for the future development of miniaturized cold-atom systems for atomic

sensors and quantum information experiments.

Strontium is an ideal candidate for this future measurement: Sr offers

extremely narrow, well-characterized intercombination transitions that would be ideal

spectroscopic CP probes, and confinement in a “magic wavelength” optical lattice will

minimize first-order ac-Stark systematics and allow a method of reliably positioning

tightly-confined atomic samples a well-calibrated distance from a test surface of

interest. The ground-state magnetic insensitivity and low collisional shifts of 88Sr,

and the anticipated low polarizability of surface adsorbates, minimize important

systematic shifts. Optical lattice translation to within 200 nm of the test surface will

allow measurement of CP transition shifts of over 10 kHz for the 1S0 − 3P1 transition,

and future generations of the experiment could also utilize the ultranarrow 1S0 − 3P0

transition in 87Sr to explore far-field effects to high precision.

The strontium CP experiment requires an ultra-high vacuum chamber and four

distinct laser systems; Chapters 4 and 5 summarize the (often home-built) solutions
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we have developed for these systems. We have succeeded in trapping 88Sr in a 1S0 −
1P1 “top MOT” directly from a Zeeman-slowed atomic beam, and we can reliably

transfer from this region into a science-cell “bottom MOT” with an atom population

∼ 105, sufficient for future experiments. The next steps require transfer into a 689 nm

1S0 − 3P1 science-cell MOT, and subsequently into the optical lattice at the 1S0 − 3P1

transition’s 914 nm “magic wavelength”.

The 689 and 914 nm laser systems are complete, and we have observed 1S0 − 3P1

optical molasses effects, but our initial attempts at transfer into the 689 nm MOT

have proven unsuccessful. Further characterization of the red MOT transfer process

in the top MOT region should prove helpful in overcoming this obstacle. Computer

control and data acquisition systems are largely complete, and initial experiments to

test atom translations in the optical lattice and the effect of Sr surface adsorbates

will be useful for not only the future CP measurement, but also for the development

of other Sr precision sensors and miniaturized atomic traps.
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S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, U. Sterr, C. Lisdat, R. Le
Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill,
I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, and
W. Kaenders, “Development of a strontium optical lattice clock for the SOC
mission on the ISS,” Comptes Rendus Physique 16, 553–564 (2015).

[37] S. G. Turyshev, N. Yu, and V. T. Toth, “General relativistic observables for the
ACES experiment,” Physical Review D 93, 045027 (2016).

[38] F. London, “The general theory of molecular forces,” Transactions of the
Faraday Society 33, 8b (1937).

[39] P. Milonni, The quantum vacuum: An introduction to quantum electrodynamics
(Academic Press, 1994).

[40] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny,
R. Fearing, and R. J. Full, “Adhesive force of a single gecko foot-hair,” Nature
405, 681–685 (2000).

[41] E. J. W. Verwey, “Theory of the stability of lyophobic colloids.” The Journal of
Physical and Colloid Chemistry 51, 631–636 (1947).

[42] J. E. Lennard-Jones, “Processes of adsorption and diffusion on solid surfaces,”
Transactions of the Faraday Society 28, 333 (1932).

[43] D. A. Steck, “Quantum and atom optics,” course notes available online at
http://steck.us/teaching (2015).

[44] H. B. G. Casimir, “Sur les forces Van der Waals-London,” Journal de Chimie
Physique 46, 407–410 (1949).

[45] E. Lifshitz, “The theory of molecular attractive forces between solids,” Soviet
Physics 2, 73–83 (1956).

[46] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, “General theory of van
der Waals forces,” Physics-Uspekhi 4, 153–176 (1961).

[47] F. M. Serry, D. Walliser, and G. J. Maclay, “The role of the Casimir effect in
the static deflection and stiction of membrane strips in microelectromechanical
systems (MEMS),” Journal of Applied Physics 84, 2501–2506 (1998).

[48] E. Buks and M. L. Roukes, “Metastability and the Casimir effect in
micromechanical systems,” Europhysics Letters (EPL) 54, 220–226 (2001).

[49] F. W. DelRio, M. P. de Boer, J. A. Knapp, E. David Reedy, P. J. Clews, and
M. L. Dunn, “The role of van der Waals forces in adhesion of micromachined
surfaces,” Nature Materials 4, 629–634 (2005).

240

http://dx.doi.org/10.1016/j.crhy.2015.03.009
http://dx.doi.org/10.1103/PhysRevD.93.045027
http://dx.doi.org/10.1039/tf937330008b
http://dx.doi.org/10.1039/tf937330008b
http://dx.doi.org/10.1038/35015073
http://dx.doi.org/10.1038/35015073
http://dx.doi.org/ 10.1021/j150453a001
http://dx.doi.org/ 10.1021/j150453a001
http://dx.doi.org/10.1039/tf9322800333
http://steck.us/teaching
http://dx.doi.org/ 10.1051/jcp/1949460407
http://dx.doi.org/ 10.1051/jcp/1949460407
http://dx.doi.org/ 10.1103/PhysRevA.70.052117
http://dx.doi.org/10.1063/1.368410
http://dx.doi.org/ 10.1209/epl/i2001-00298-x
http://dx.doi.org/10.1038/nmat1431


[50] H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso,
“Quantum mechanical actuation of microelectromechanical systems by the
Casimir force.” Science 291, 1941–4 (2001).

[51] A. A. Chumak, P. W. Milonni, and G. P. Berman, “Effects of electrostatic fields
and Casimir force on cantilever vibrations,” Physical Review B 70, 085407
(2004).

[52] H. D. L. Santos, “Nanoelectromechanical quantum circuits and systems,”
Proceedings of the IEEE 91, 1907–1921 (2003).

[53] H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso,
“Nonlinear micromechanical Casimir oscillator,” Physical Review Letters 87,
211801 (2001).

[54] F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir forces and
quantum electrodynamical torques: Physics and nanomechanics,” IEEE
Journal on Selected Topics in Quantum Electronics 13, 400–414 (2007).

[55] J. N. Munday, F. Capasso, and V. A. Parsegian, “Measured long-range
repulsive Casimir-Lifshitz forces,” Nature 457, 170–173 (2009).

[56] O. Kenneth and I. Klich, “Opposites attract: A theorem about the Casimir
force,” Physical Review Letters 97, 160401 (2006).

[57] M. Levin, A. P. McCauley, A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson,
“Casimir repulsion between metallic objects in vacuum,” Physical Review
Letters 105, 090403 (2010).

[58] S. J. Rahi, M. Kardar, and T. Emig, “Constraints on stable equilibria with
fluctuation-induced (Casimir) forces,” Physical Review Letters 105, 070404
(2010).

[59] O. Kenneth, I. Klich, a. Mann, and M. Revzen, “Repulsive Casimir forces.”
Physical review letters 89, 033001 (2002).

[60] F. S. S. Rosa, D. A. R. Dalvit, and P. W. Milonni, “Casimir interactions for
anisotropic magnetodielectric metamaterials,” Physical Review A 78, 032117
(2008).

[61] S. de Man, K. Heeck, R. J. Wijngaarden, and D. Iannuzzi, “Halving the Casimir
force with conductive oxides,” Physical Review Letters 103, 040402 (2009).

[62] H. B. Chan, Y. Bao, J. Zou, R. A. Cirelli, F. Klemens, W. M. Mansfield, and
C. S. Pai, “Measurement of the Casimir force between a gold sphere and a
silicon surface with nanoscale trench arrays,” Physical Review Letters 101,
030401 (2008).

241

http://dx.doi.org/ 10.1103/PhysRevB.70.085407
http://dx.doi.org/ 10.1103/PhysRevB.70.085407
http://dx.doi.org/ 10.1109/JPROC.2003.818321
http://dx.doi.org/10.1103/PhysRevLett.87.211801
http://dx.doi.org/10.1103/PhysRevLett.87.211801
http://dx.doi.org/ 10.1109/JSTQE.2007.893082
http://dx.doi.org/ 10.1109/JSTQE.2007.893082
http://dx.doi.org/10.1038/nature07610
http://dx.doi.org/ 10.1103/PhysRevLett.97.160401
http://dx.doi.org/10.1103/PhysRevLett.105.090403
http://dx.doi.org/10.1103/PhysRevLett.105.090403
http://dx.doi.org/ 10.1103/PhysRevLett.105.070404
http://dx.doi.org/ 10.1103/PhysRevLett.105.070404
http://dx.doi.org/ 10.1103/PhysRevLett.89.033001
http://dx.doi.org/10.1103/PhysRevA.78.032117
http://dx.doi.org/10.1103/PhysRevA.78.032117
http://dx.doi.org/10.1103/PhysRevLett.103.040402
http://dx.doi.org/ 10.1103/PhysRevLett.101.030401
http://dx.doi.org/ 10.1103/PhysRevLett.101.030401


[63] F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. A.
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and J. Vigué, “Atom interferometry measurement of the atom-surface van der
Waals interaction,” The European Physical Journal D 62, 309–325 (2011).

252

http://dx.doi.org/10.1103/PhysRevLett.97.093201
http://dx.doi.org/ 10.1103/PhysRevLett.91.193202
http://dx.doi.org/10.1103/PhysRevA.71.052901
http://dx.doi.org/10.1103/PhysRevA.70.053619
http://dx.doi.org/10.1103/PhysRevA.72.033610
http://dx.doi.org/10.1103/PhysRevLett.95.113202
http://dx.doi.org/10.1103/PhysRevLett.95.113202
http://dx.doi.org/ 10.1103/PhysRevA.77.022901
http://dx.doi.org/ 10.1103/PhysRevA.77.022901
http://dx.doi.org/10.1103/PhysRevA.70.043607
http://dx.doi.org/10.1103/PhysRevA.71.053612
http://dx.doi.org/10.1103/PhysRevA.71.053612
http://dx.doi.org/ 10.1209/0295-5075/88/20002
http://dx.doi.org/ 10.1140/epjd/e2011-10584-7


[200] M. Gorlicki, S. Feron, V. Lorent, and M. Ducloy, “Interferometric approaches
to atom-surface van der Waals interactions in atomic mirrors,” Physical Review
A 61, 013603 (1999).

[201] R. Marani, L. Cognet, V. Savalli, N. Westbrook, C. I. Westbrook, and
A. Aspect, “Using atomic interference to probe atom-surface interactions,”
Physical Review A 61, 053402 (2000).
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