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DISSERTATION ABSTRACT

Jordan J. Chess

Doctor of Philosophy

Department of Physics

December 2017

Title: Mapping Topological Magnetization and Magnetic Skyrmions

A 2014 study by the US Department of Energy conducted at Lawrence Berkeley

National Laboratory estimated that U.S. data centers consumed 70 billion kWh of

electricity[1]. This represents about 1.8% of the total U.S. electricity consumption.

Putting this in perspective 70 billion kWh of electricity is the equivalent of roughly 8

big nuclear reactors, or around double the nation’s solar panel output[2]. Developing

new memory technologies capable of reducing this power consumption would be

greatly beneficial as our demand for connectivity increases in the future. One

newly emerging candidate for an information carrier in low power memory devices

is the magnetic skyrmion. This magnetic texture is characterized by its specific

non-trivial topology, giving it particle-like characteristics. Recent experimental

work has shown that these skyrmions can be stabilized at room temperature and

moved with extremely low electrical current densities. This rapidly developing

field requires new measurement techniques capable of determining the topology of

these textures at greater speed than previous approaches. In this dissertation, I

give a brief introduction to the magnetic structures found in Fe/Gd multilayered

systems. I then present newly developed techniques that streamline the analysis of
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Lorentz Transmission Electron Microscopy (LTEM) data. These techniques are then

applied to further the understanding of the magnetic properties of these Fe/Gd based

multilayered systems.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

From Bubbles to Skyrmion Racetrack Memories

Magnetic bubbles, cylindrical domains in out-of-plane media, were investigated

in the 1960–70s as bits in solid state data storage media[3]. In the 80s they were

used in commercial devices that moved bubbles down a thin magnetic track with

magnetic field gradients, and had no moving parts. At the time, these devices had

memory densities similar to hard drives and performance on par with core memory;

because of this they were largely thought to be the memory of the future, as evidenced

by references to them found in multiple patent applications through the 1980s[4, 5].

As you might guess, bubble memory’s reign was short-lived as it was eclipsed by

improvements in the performance of rotating magnetic hard drives.

More recently, spurred by advancements in current controlled domain wall

motion, interest in a track-like memory with no moving parts has reemerged[6]. In

their original 2008 proposal Parkin et al. suggested a solid-state memory composed

of U-shaped vertical nanowire tracks on which domain walls could be moved back

and forth by a spin-polarized current. During this motion, the walls travel past

stationary read and write elements positioned at the bottom of the U[6]. Progress

on domain-wall based racetrack memories continues[7], but in a further echo of the

past, the magnetic skyrmion has emerged as the most promising information carrier

for racetrack memory[8].

Skyrmions, named after the British physicist Tony Skyrme, are topologically

stable solitons originally proposed as a model for nucleons[9]. The first experimental
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identifications of these particle-like topological defects in magnetic materials was

in 2009, when the mysterious A phase of MnSi was identified as a magnetic

skyrmion lattice[10, 11, 12]. In this material and other non-centrosymmetric systems,

antisymmetric exchange, also referred to as the Dzyaloshinskii-Moriya interaction

(DMI), acts to stabilize these structures. Later, Yu et al. imaged current-induced

skyrmion flow using Lorentz transmission electron microscopy (LTEM)[13]. They

estimated the minimum critical current density for skyrmion motion to be roughly

10 A cm-2, which is several orders of magnitude smaller than the value for domain

wall motion (∼107 A cm-2)[13]. This low critical current density, coupled with the

skyrmion’s ability to pass by structural defects in a nanowire[8], are what make them

attractive for low power memory and logic applications.

Topological Magnetic Textures

As topological defects, the whirling magnetization of skyrmions can be

characterized by a non-zero topological number (Sk), given by

Sk =
1

4π

∫
m · (∂xm× ∂ym) dx dy, (1.1)

where m is the normalized magnetization. This integral is also called the local

topological density, and counts the number of times and direction m wraps the

unit sphere. In cases with cylindrical symmetry, this equation is generally more

easily evaluated in spherical coordinates in which case we can express the normalized

magnetization as,

m = {cos Φ(φ) sin Θ(ρ), sin Φ(φ) sin Θ(ρ), cos Θ(ρ)}. (1.2)
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This parameterization also makes the mapping to the unit sphere more explicit.

Equation 1.1 then becomes[14],

Sk =
1

4π

∫ ∞
0

dρ

∫ 2π

0

dφ
dΘ(ρ)

dρ

dΦ(φ)

dφ
sin Θ(ρ) = cos Θ(ρ)|∞0 Φ(φ)|2π0 . (1.3)

Choosing the polarity of the skyrmion such that the magnetization points up at

ρ→∞ and down at the origin leads to,

cos Θ(ρ)|∞0 = 2. (1.4)

Of the several possibilities for the remaining term, a particularly convenient one is

Φ(φ) = nφ+ γ. (1.5)

Above γ is referred to as the helicity, and n determines the skyrmion number, because

Φ(φ)|2π0 = 2πn+ γ − 0− γ = 2πn. (1.6)

It is interesting to note that these topological considerations were known in the 70s

and applied to characterize magnetic bubbles at the time[3]. In that context it was

more common to use the winding number W to characterize the bubbles,

W =
Sk
p

(1.7)

where p is the polarity. The advantage of the winding number is that it can easily

be calculated visually by looking at the domain wall of a bubble or skyrmion. For a

closed loop, one simply counts the total rotation of the magnetization along the loop.
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Figure 1 shows various examples of skyrmions (or bubbles) with varying topology

and helicity, both the skyrmion number and winding number are noted in the Figure.

Topological defects with n=-1 are generally referred to as anti-skyrmions, while those

with n=1 as skyrmions. Skyrmions are generally categorized as either Néel (γ = 0, π)

or Bloch (γ = π
2
, 3π

2
).
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FIGURE 1. Topology of Various Field Configurations
The field configuration of various bubbles/skyrmions with different skyrmion

number and helicity. The black line indicates the closed loop around which the
winding number can be calculated.
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Bubbles vs Skyrmions

At this point the reader may be questioning what differences, if any, are there

between skyrmions and bubbles. There have been two competing camps: staunch

DMI advocates[15], and topology-plus-properties pragmatists. The DMI advocates

believe that a skyrmion requires two things: first it must have the proper topology,

and second it must have a fixed chirality that is controlled by DMI in the Hamiltonian

that both stabilizes the skyrmion topology making it a soliton and forces a specific

chirality[15]. The pragmatists rely on a functional definition; a Skyrmion is a small (<

100 nm), axisymmetric isolated state, with particle-like properties, has a topological

charge of 1, is easily moved by a current, and is stable (in the sense that if it is a

bit in a memory device it won’t change from a 1 to a 0). To me, the first definition

seems to have stronger support by individuals who care less about applications and

more about new magnetic phenomenon, where the converse is true for the pragmatists

definition (they just want the device to work).

In 2010 Ezawa[16] published an article claiming to have found ‘giant Skyrmion’

solutions, stabilized by dipole-dipole interactions. These states were around 1 µm in

size. This was followed by a comment from Kiselev et al. arguing that in fact all

Ezawa had found were well-known bubble domain solutions[15]. Kiselev et al. point

out that these domains are not stable solitons, and result only from a competition

between radial instability and elliptic instability. Further, Kiselev et al. lay out a

distinction, that seems useful, that a skyrmion can be distinguished from a bubble

with non-trivial topology by its radial profile. Skyrmions have a core size that

is proportional to |D|, the magnitude of the DM interaction, while bubbles have

extended cores with domain wall thickness x0 =
√
A/K where A is the exchange

stiffness and K the anisotropy. It is useful to note that Kiselev et al. are making
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claims based on materials with Q � 1, where Q = K/(2πMs) where Ms is the

saturation magnetization. Unfortunately, in my experience, at conferences, reading,

and during the review process, speakers/questioners, authors, and referees seem to

pick and choose which parts of the definitions they apply. This debate continues;

two reviews published this year take either side of the argument[17, 18]. Jiang et al.

make the point that because the most important factor is the topological class of the

magnetic texture[18], measuring the radial extent of a magnetic core is not sufficient

to identify a skyrmion.

There are indirect ways to deduce a domain’s topology based on its dynamics[19],

but the best way is to map the real space magnetization and directly determine the

topology or winding number. The most employed technique used to quantify the

topology of these magnetic feature is LTEM. The high resolution of this technique, the

capability of mapping magnetic textures with nanometer resolution and widespread

access to tools capable of performing LTEM, make this technique ideal for this rapidly

progressing field. The focus of this dissertation is on the development and application

of Lorentz TEM techniques specifically geared toward characterizing topological spin

textures. In this dissertation, I will use the terms ”skyrmions”, and ”topological

bubbles” interchangeably.

This dissertation is composed of five previously published papers and 3

manuscripts that are in progress. Results from papers of which I was not the primary

author are summarized and are mainly contained in chapter III. These chapters are

organized as follows: an overview of LTEM and presentation of our new algorithm

(SITIE) for interpreting LTEM images, a discussion of dipole-stabilized skyrmions

observed in Fe/Gd using a combination of LTEM and X-ray scattering, application

of the new LTEM algorithm to quasi-dynamic field sweep data and determination of
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domain wall chirality, and a combined approach to determine the full 3D structure

of dipole-skyrmions using LTEM, Scanning Electron Microscopy with Polarization

Analysis (SEMPA), and Landau Lifshitz Gilbert (LLG) simulations.

The following manuscripts are included in this work:

Chapter II. Lorentz Transmission Electron Microscopy

Jordan J Chess, Sergio A Montoya, Tyler R Harvey, Colin Ophus,

Simon Couture, Vitaliy Lomakin, Eric E Fullerton, Benjamin J McMorran.

“Streamlined approach to mapping the magnetic induction of skyrmionic materials.”

Ultramicroscopy 177, 7883 (2017).

LTEM is one of a very few techniques for direct real space imaging of magnetic

features at the nanoscale. For Fresnel-contrast LTEM, the transport of intensity

equation (TIE) is the tool of choice for quantitative reconstruction of the local

magnetic induction through the sample thickness. Typically this analysis requires

collection of at least three images. Here we show that for uniform thin magnetic

films which includes many skyrmionic samples, the magnetic induction can be

quantitatively determined from a single defocused image using a simplified TIE

approach.

Chapter III. Topological defects in Fe/Gd

Summary of results of three articles:

JC T Lee, JJ Chess, SA Montoya, X Shi, Nobumichi Tamura, SK Mishra, P

Fischer, BJ McMorran, SK Sinha, EE Fullerton, SD Kevan, S Roy “Synthesizing

skyrmion bound pairs in Fe-Gd thin films” Applied Physics Letters 109 022402 (2016)

SA Montoya, S Couture, JJ Chess, JCT Lee, N Kent, D Henze, SK Sinha, M-Y

Im, SD Kevan, P Fischer, BJ McMorran, V Lomakin, S Roy, EE Fullerton. “Tailoring
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magnetic energies to form dipole skyrmions and skyrmion lattices” Physical Review

B 95(2) 024415 (2017).

SA Montoya, S Couture, JJ Chess, JCT Lee, N Kent, D Henze, SK Sinha, M-Y

Im, SD Kevan, P Fischer, BJ McMorran, V Lomakin, S Roy, EE Fullerton. “Resonant

properties of dipole skyrmions in amorphous Fe/Gd multilayers.” Physical Review B

95(22) 224405 (2017).

The main material samples imaged in this dissertation are discussed in more

detail, including the synthesis, characterization techniques, phase space diagram,

resonance, and topological properties.

Chapter IV. Detecting chiral magnetic domains

Jordan J Chess, Sergio A Montoya, Eric E Fullerton, Benjamin J McMorran.

“Determination of domain wall chirality using in situ Lorentz transmission electron

microscopy.” AIP Advances 7, 056807 (2017).

Controlling domain wall chirality is increasingly seen in non-centrosymmetric

materials. Mapping chiral magnetic domains requires knowledge about all the vector

components of the magnetization, which poses a problem for conventional Lorentz

transmission electron microscopy (LTEM) that is only sensitive to magnetic fields

perpendicular to the electron beams direction of travel. The standard approach in

LTEM for determining the third component of the magnetization is to tilt the sample

to some angle and record a second image. This presents a problem for any domain

structures that are stabilized by an applied external magnetic field (e.g. skyrmions),

because the standard LTEM setup does not allow independent control of the angle

of an applied magnetic field, and sample tilt angle. Here we show that applying a

modified transport of intensity equation analysis to LTEM images collected during an
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applied field sweep, we can determine the domain wall chirality of labyrinth domains

in a perpendicularly magnetized material, avoiding the need to tilt the sample.

Chapter V. Improved domain wall detection

Jordan J Chess, Harjasleen Gulati, and Benjamin J McMorran. “Python tools

for domain wall detection” Manuscript in progress

The measurement technique presented in chapter IV is quite labor intensive

because of the need to segment the images. We present a supervised machine learning

algorithm that utilizes the labeled data used in chapter IV to detect edges and segment

new data.

Chapter VI. Quantitative analysis of chirality measurements

The algorithm developed in chapter V and the technique presented in chapter

IV are applied to a statistically significant number of images.

Jordan J Chess, Sergio A Montoya, Harjasleen Gulati, Eric E Fullerton, Benjamin

J McMorran. “Control of Bloch walls chirality using asymmetrical layer stacking in

Fe/Gd/Pt/Ir multilayer films” Manuscript in progress.

Asymmetrical layer stacking of ferromagnetic and heavy metal films, such as

Co/Pt, is known to produce interfacial DMI (iDMI) and explains the presence of Néel

domain walls with fixed chirality in these systems. The energy term describing iDMI

evaluates to zero for Bloch domain walls, so one would not expect asymmetrical layer

stacking to effect the chirality of Bloch walls. We demonstrate using both topological

hall effect measurements, and real space mapping of Bloch domain walls with a fixed

chirality. This result would only be expected for bulk DMI and not iDMI, indicating

a need for further theoretical investigations into these systems.

Chapter VII. 3D structure of dipole skyrmions
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JJ Chess, SA Montoya, SB Propp, I Gilbert, S Couture, JV Lomakin, JJ Razink,

J Unguris EE Fullerton, BJ McMorran. “Determination of the 3D structure of dipole-

skyrmions” Manuscript in progress

LTEM, and SEMPA are used to confirm the results of LLG simulations giving

the full 3-dimensional structure of diple-skyrmions in Fe/Gd. This three dimensional

object can be described as a stack or string of two dimensional skyrmions. The

helicity of each of these skyrmions rotates through the thickness of the film following

a hyperbolic tangent curve. A three dimensional mathematical model is fit to the

LLG data, and this model is used to calculate the Hopf index of the object.
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CHAPTER II

LORENTZ TRANSMISSION ELECTRON MICROSCOPY

Note on ‘Streamlined Approach to Mapping the Magnetic Induction of

Skyrmionic Materials’

From Jordan J Chess et al., Ultramicroscopy 177, 78-83 (2017).

I conceived of the idea, inspired by a suggestion from Vincenzo Grillo to try and

use only two images for TIE. The samples were produced by Sergio Montoya. The

LLG simulations used to simulate the LTEM images were done by Simon Couture.

Colin Ophus assisted in developing the ideas in the supplementary material, and

helped me find errors in my original TIE code. Colin Ophus and Tyler Harvey both

gave coding pointers. I performed the LTEM simulations, recorded experimental

data, analyzed the experimental and simulated data, produced all figures, and wrote

the manuscript with input from co-authors.

Classical Treatment of LTEM

Lorentz TEM is sensitive to components of the magnetic induction perpendicular

to the propagation direction of the electron beam. Classically this can be understood

as the Lorentz force acting on the electron as it passes through the magnetic field

produced by the material. This model is useful in estimating the magnitude of an

LTEM signal, typically characterized by the Lorentz deflection angle. If we first

consider a uniformly magnetized foil with magnetization pointing the in x-direction

and thickness t, the momentum transferred to an electron traveling down the z-axis

12



can be written as[20],

py = eB0t, (2.1)

where e is the electron charge, and B0 is the magnitude of the magnetic field. Dividing

this by the z momentum gives the Lorentz deflection angle (θL). If we make the

approximation that p ≈ pz we can substitute in the de Broglie relation (p = h/λ)

which yields[20],

θL =
eλ

h
B0t. (2.2)

In electron microscopy literature eλ/h is generally relabeled as CL(E), which including

relevant relativistic effects needed for energies of a TEM is given by[20],

CL(E) ≈ 9.37783√
E + 0.97485× 10−3E2

µrad/T/nm, (2.3)

here the accelerating potential E must be expressed in kilovolts. At 300 kV, the

energy used for all of our LTEM experiments, CL(300) = 0.476050. For a 100 nm

foil with magnetic induction of 1 T, this gives a deflection angle of θL = 47.6µrad.

One can compare this to typical Bragg angles, which are in the millirad range. This

is why orders of magnitude higher defocus must be used to observe magnetic-related

phase contrast, when compared to crystallographic information.

Quantum Treatment of LTEM

For a quantitative determination of the magnetic induction it is best to treat the

system quantum mechanically. In this case the interaction of the electron with the

magnetic field as it travels along a path L can be written in terms of the Aharonov-

13



Bohm phase shift,

φm(r⊥) = − e
~

∫
L

A(r⊥, z) · dr. (2.4)

The electron phase will also be affected by electrostatic interactions with the sample,

which can be expressed in terms of a potential V as,

φe(r⊥) =
π

λEt

∫
L

V (r⊥, z) dz, (2.5)

where Et is the total energy of the beam. Since I am only interested in magnetic

interaction here, I will avoid a detailed discussion of the electrostatic contribution to

the phase. To readers interested in this topic I would recommend the book by EJ

Kirkland[21]. In experiments there are several methods used to discern electrostatic

and magnetostatic contributions to the phase: flip the sample over and record a

second dataset, change the energy of the beam, saturate the magnetic sample, or

heat the magnetic sample above the Curie temperature. All of these rely on gaining

two equations for the allowing one to solve for the two unknowns (φm, φe). Figure 2

shows a schematic version of the LTEM image formation process.

Outside of a few special cases with high symmetry, it is quite difficult to evaluate

equation (2.4) analytically. This makes it necessary to have a numerical method of

evaluating equation (2.4) for a given magnetization configuration.

The method employed in the LTEM simulations in this dissertation closely follow

the paper by Walton et al. in which they present Matlab software for simulating

LTEM images[22]. Their work is an implementation of the Mansuripur algorithm[23],

which is a Fourier-based approach to easily calculate φm given a sample magnetization.

This calculation is particularly simple if we make three assumptions: (1) the electron

is traveling along the ẑ direction, (2) the magnetization is constant along ẑ (this

14



FIGURE 2. Schematic of LTEM image formation
Schematic showing how deflection of electrons transmitted through domain walls

(classical) can generate contrast in a defocused LTEM image (simulated-quantum).

can be relaxed by treating the sample as thin slices), (3) the sample has a uniform

thickness t. In this case the Fourier transform of the phase φ̃m is given by,

φ̃m(k⊥) =
iπµ0Mst

Φ0

(
m̃xky − m̃ykx

k2⊥

)
(2.6)

where m̃x is the Fourier transform of the x̂ vector component of M/Ms, here Ms is

the saturation magnetization, and Φ0 is the magnetic flux quantum. Note: In the

above equation the Fourier transform is defined with the 2π in the exponent, this is

consistent with the paper by Walton et al. and with most fft functions.

The following section will discuss how to take this phase and simulate Fresnel

contrast LTEM images, as well as the inverse, how to calculate this phase from Fresnel

contrast LTEM images.
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Streamlined Approach to Mapping the Magnetic

Induction of Skyrmionic Materials

Jordan J. Chess1, Sergio A. Montoya2,3, Tyler R. Harvey1, Colin Ophus4, Simon Couture2,3

Vitaliy Lomakin2,3, Eric E. Fullerton2,3 and Benjamin J. McMorran1

1 Department of Physics, University of Oregon, Eugene, OR

2 Center for Memory and Recording Research, University of California, San Diego, CA

3 Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA

4 National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California

30 June, 2017

Introduction to Streamlined Approach to Mapping the Magnetic

Induction of Skyrmionic Materials

Magnetic skyrmions are particle-like solitons or magnetic bubbles in a

magnetization texture that have topologically non-trivial spin textures[14]. The

stability of skyrmions and the low current density necessary to move them[24] has

inspired many suggested applications that employ skyrmions as bits in both memory

and logic devices which are predicted to be highly energy-efficient[25, 26, 27, 28, 29,

30]. These magnetic quasi-particles were initially identified only at low temperatures

in non-centrosymmetric crystals including MnSi[10, 31], FeCoSi[32] and FeGe[33],

but recent observations have shown that skyrmions can be stabilized in a more

diverse class of materials including films with perpendicular magnetic anisotropy

(PMA)[30, 34, 35, 36, 37, 38]. This larger swath of materials suggests the need

for more rapid characterization techniques to both facilitate the efficient search for

materials suitable for applications in skyrmionic devices and explore the basic physics

of these magnetic textures.
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Lorentz transmission electron microscopy (LTEM) is one of a very few techniques

for providing direct real space images of magnetic features at the nanoscale. Recent

improvements in aberration correction and instrument stability have led to a new

resolution benchmark of 1 nm for scanning LTEM[39]. Additionally, new tomographic

reconstruction algorithms have led to the demonstration of 3D vector field electron

tomography by Phatak et al. [40]

Most of the LTEM studies of skyrmion materials have employed analysis based

on the transport of intensity equation (TIE),[20, 41] an equation that relates the

z-derivative of the image intensity to the phase shift of an electron. This approach

yields quantitative maps of the local in-plane magnetic induction integrated through

the sample thickness, but requires multiple images (under-, in-, and over-focused)

be taken at a specific point of interest in the sample[20]. In a post-processing

step these images are first aligned and then used to approximate the z-derivative

of the image intensity. In order to maximize the final field of view, the microscopist

must carefully align the microscope to minimize image movement between images

recorded at different focus values. These alignments can be sensitive to changes in

other experimental parameters including magnetic field applied to the sample. This,

coupled with the need to properly align images which can be difficult to automate[42],

increases the total time needed to extract useful information from a magnetic

sample. This often makes certain experiments prohibitively time-consuming, such as

determining the in-plane magnetic induction during an in-situ applied field sweep

(although this type of study does exists in the LTEM literature[43, 44]). One

approach, differential phase imaging[45], developed by Pollard et al. maps the change

in magnetic state during a dynamic measurement, this approach can be applied to

non-uniform films. Alternatively, one can forego mapping the magnetic induction and
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instead answer questions that depend only on the location of domain walls, which

can in general be accomplished with a single defocused image. This method has been

used to determine the non-adiabatic spin torque parameter[46], image domain wall

nucleation[47], and record skyrmion motion[13]. Additionally, Phatak et al., showed

that both the polarity and chirality of a vortex magnetization pattern of a magnetic

disk can be determined from a single Fresnel contrast image of a tilted sample[48].

Similar to the work by Eastwood et al.[49] or Koch[50], in which they present

iterative algorithms for single image phase reconstruction, here we show that one

defocused image is sufficient to determine the magnetic portion of the electron phase

shift of a uniform film using a simplified TIE approach. This allows one to map

the magnetic induction without the trade-off of a slower, more involved focal series

experiment, making it ideal for in-situ experiments on suitable samples. Figure 3

shows an application of the single image TIE approach we are discussing here, applied

to an [Gd (0.4 nm)/Fe (0.36 nm)] × 80 multilayered film[37, 51], under quasi-dynamic

conditions. The data were taken as an applied perpendicular magnetic field was swept

from a field strong enough to saturate the sample to a slightly negative applied field.

The data show skyrmions (black/white circles), worm domains, and bubbles with zero

topological charge (elliptically shaped) nucleating as the field strength is reduced.

These features then evolve during the field sweep into a mixture of skyrmions and

labyrinth domains. The top two images (a,b) are the under-focus LTEM image and

reconstructed magnetic induction with ∆f=-300 µm, and applied field Hz= 180 mT,

while (c) and (d) are the under-focus and magnetic induction at Hz= 70 mT.

Additional algorithms for single-image phase retrieval or exit-wave reconstruction

exist but require specific sample geometries such as an isolated object[52], or specific

illumination conditions and a diffraction image[53, 54] which make them not suitable
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FIGURE 3. Example use of single image TIE
(a) and (c) Selected under-focused Lorentz TEM images from a field sweep

performed on a Fe/Gd multilayered thin film with (a, b) 180 mT and (c, d) 70 mT
field applied perpendicular to the film. Scale bar is 1 µm. (b), (d), The magnetic
induction calculated using our single image analysis on the image to the left (hue

and saturation of color indicate the direction and magnitude of the magnetic
induction). See supplemental material video for full field sweep.
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for this type of sample or difficult to implement in a TEM. It is worth emphasizing

that the general paradigm for these single image phase retrieval algorithms is to

use a priori knowledge to simplify the analysis, which in practice usually means

restricting oneself to a subset of samples. In this case we are choosing to restrict

our analysis to uniform thin magnetic films, which can be treated as pure magnetic

phase objects. Utilizing our new approach, the full in-plane magnetic induction

can be determined for each image in a quasi-dynamic measurement with no extra

experimental requirements and fewer post-processing steps. This fuller understanding

is often required to interpret the LTEM images of the complex magnetization textures

present in skyrmionic materials.

Theory

The phase imparted on an electron plane wave traveling along the z-axis after

transmission through a sample with electric potential V and vector potential A is

given by the Aharonov-Bohm phase shift[55]:

φ(r⊥) =CE

∫
L

V (r⊥, z) dz − π

Φ0

∫
L

A(r⊥, z) · dr

≡φe + φm

(2.7)

where L is a path parallel to the propagation direction of the electron beam, r⊥ is

the location in the sample plane, CE is the interaction constant[20], and Φ0 is the

magnetic flux quantum. If we assume a homogeneous foil of uniform thickness d and

constant mean inner potential (V0) the electrostatic term can be easily evaluated and

yields,

φe = CEV0d
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Additionally, the effects of inelastic scattering and high angle scattering of electrons

out of the optical system can be described by an exponential drop in the initial

amplitude of the electron wave function. Thus, assuming parallel illumination, the

complex amplitude exiting the foil is,

ψ0(r⊥) = Ae−αdeiCEV0deiφm(r⊥). (2.8)

The intensity of the wave at the image plane using the microscope transfer function

(T (q⊥)) is then given by,

I(r⊥,∆f) = |F−1 {F [ψ0(r⊥)]T (q⊥)}|2 (2.9)

where q⊥ are the in-plane spatial frequencies. A relevant transfer function that models

the effects of spherical aberration (Cs) and a damping envelope (Es(q⊥)) due to a

spread in illumination angles caused by lens instabilities is:

T (q⊥) = a(|q⊥|)e−iχ(q⊥)e−Es(q⊥) (2.10)

where a(q⊥) is an aperture function, the phase transfer function χ(q⊥) is described

by,

χ(q⊥) = πλ∆fq2⊥ +
1

2
πCsλ

3q⊥
4 (2.11)

and Es(q⊥) given in terms of the divergence angle Θc is[22],

Es(q⊥) =

(
πΘc

λ

)2(
Csλ

3q3⊥ + ∆fλq⊥
)2

(2.12)
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Above, λ is the relativistic electron wavelength, ∆f is the distance from the in-focus

plane, and we have used q⊥ ≡ |q⊥| for notational convenience. Before continuing

we stop to note that conventional TIE analysis presumes both of the blue terms in

equations (2.11) and (2.12) are negligible. This is generally a reasonable assumption

because of the large defocus values used in LTEM, for example see Figure 4. As will be

discussed, our method neglects one additional term (the last term in equation (2.12)).

For completeness and accuracy the full transfer function (eq. (2.10)) was used in all

image simulations.

Taylor expanding the transfer function for small q⊥, the “paraxial approximation”,

we arrive at an approximate form of equation (2.9)[56],

I(r⊥,∆f) ≈ I0 −
λ∆f

2π
∇⊥ · (I0∇⊥φm)

+
(πΘc∆f)2

2
[
√
I0∇2

⊥

√
I0 − I0(∇⊥φm)2]

(2.13)

here I0 = |ψ0(r⊥)|2. Examining equation (2.8) we see that if we are analyzing

homogeneous thin film specimens with a uniform thickness, which includes many

materials, then I0 becomes a constant, as shown, for example in Figure5.b. We

emphasize that this technique can only be applied to regions that have no amplitude

or diffraction contrast in the in-focus image. The amorphous material shown in

this paper meets this criterion, as do many magnetic thin film materials. And

equation (2.13) simplifies to,

I(r⊥,∆f) ≈ I0

(
1− λ∆f

2π
∇2
⊥φm

− (πΘc∆f)2

2
(∇⊥φm)2

) (2.14)

22



As shown by De Graef et al.[56] the transport of intensity equation can be obtained

from (2.14) by simply subtracting the value at I(r⊥,±∆f) yielding,

∇2
⊥φm =− 2π

I0λ

I(r⊥,∆f)− I(r⊥,−∆f)

2∆f

≈− 2π

I0λ

∂I

∂z
.

(2.15)

In this way, the Laplacian of the phase can be derived from two different images of the

specimen recorded under different focal conditions. Equation (2.15) is the standard

equation used in analyzing LTEM data. Note that a crucial step in standard use

of TIE analysis is the calculation of the difference between two images (Eq. (2.15)

RHS). Thus, the reconstructed magnetic phase is subject to errors introduced when

acquiring images under different conditions including: drift, rotations, and changes

in magnification.

Here we suggest that due to the high spatial coherence of modern field emission

microscopes (Θc in the range (0.01 − 0.08)mrad[20, 22, 50]), the effects of the last

term in equation (2.14) are negligible at the medium resolutions used for LTEM. We

present Figure 5 as evidence of the above statement. Additionally, the validity of

this approximation and its implications are discussed in detail in the supplementary

material as well as the effects of noise.

This simplification results in a Single Image Transport of Intensity Equation

(SITIE),

∇2
⊥φm ≈

2π

λ∆f

(
1− I(r⊥,∆f)

I0

)
. (2.16)

One then needs to determine a value for I0, which is given by the average of the

out-of-focus image due to the preservation of electron flux[50]. Alternatively, one can

arrive at equation (2.16) by simply starting with the TIE equation, assuming the
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object in question is a pure phase object, and using I(r⊥,∆f) − I0 as a first order

O(∆f) approximation to ∂I/∂z. Here we chose to present a more involved derivation

to make clear what was being neglected when making this first order approximation

of the derivative, when compared to the more traditional O(∆f 2) approach used in

equation (2.15).

Multiple techniques have been developed to solve the standard TIE equation

including a Fourier-based approach[57], a multigrid algorithm[58], a symmetrized

version of the Fourier method[59], and finite element method[60], all of which can

also be applied to the SITIE to determine the phase of the exit wave. From this

phase the local magnetic induction can easily be determine using the relation,

∇⊥φm(r⊥) = − e
~

[B(r⊥)× êz]d (2.17)

where êz is a vector parallel to the beam propagation direction.

Methods

Micromagnetic simulations

To validate SITIE and quantify the errors associated with this method, we

simulated through-focal series images of an exactly known, simulated magnetization

textures. These micromagnetic textures were obtained from Landau-Lifshitz-Gilbert

simulations calculated using the FastMag solver[61]. The micromagnetic simulation

is for a 2 µm × 2 µm × 80 nm ferromagnetic film, using experimentally measured

values for the saturation magnetization (Ms = 0.4 A µm−1), anisotropy constant

(K = 4× 104 J/m3), Gilbert damping (α = 0.05), and exchange stiffness (Aex =

5× 105 J/m). An applied perpendicular magnetic field of Hz = 0.2 T was used, and
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FIGURE 4. Numerical comparison of TIE and SITIE
Simulations (a) Plot of in-plane components of the local magnetic induction

calculated from output of a micromagnetic simulation (color indicates direction and
magnitude of the field). (b-e) Local magnetic induction of the region shown in the

red box in (a), calculated using conventional TIE with ∆f = 1 µm and ∆f = 300 µm
for (b) and (c) respectively. The red box has a 0.5 µm width. SITIE-calculated

magnetic induction for (d) ∆f = 1 µm and (e) ∆f = 300 µm. Notice that only slight
distortion errors are present in the ∆f = 300 µm cases, caused by using a focus
outside of the validity of the paraxial approximation. (f) y-component of the

magnetic induction along the colored lines in images (a-e), note the nearly perfect
agreement between the reference, TIE, and SITIE for the ∆f =1 µm. (g) Plot of the

total normalized root mean square error in the determination of B · t calculated
using equation (2.18) as function of defocus for TIE and SITIE showing there is no

practical difference between the methods for moderate defocus. For these
simulations Θc was set at 5× 10−5 rad. The inset shows that for any ∆f larger than

10 µm the effects of including a non-zero Cs are truly negligible.
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the system is allowed to relax to an equilibrium state in 10 ns. These parameters

result in the in-plane magnetic induction pattern shown in Figure 4.a.

Lorentz Image Simulations

Fresnel-contrast LTEM images were simulated using the Mansuripur algorithm:

the magnetic phase shift imparted on the electron wave by the results of the

micromagnetic simulation was calculated and then equation (2.10) was used to

propagate the wave to a given defocus plane[23]. The electrostatic phase shift was

neglected in the simulations, in line with the theory above, as it only contributes an

overall constant phase and doesn’t contribute to the image intensity. Prior to applying

the Mansuripur algorithm the output of the FastMag simulations were expanded

from 200×200 arrays to 2048×2048, and then padded with zeros to a total array size

of 4096×4096 to mitigate the introduction of any artifacts from the Fourier-based

approach used in both the Mansuripur algorithm and transfer function formalism.

The parameters used for image simulations were: accelerating voltage 300 kV, defocus

values ∆f = 1 µm − 300 µm, and spherical aberration Cs = 0 − 5 m. These values

more than cover the range encountered in both standard and aberration-corrected

microscopes during an LTEM experiment. The normalized root mean square error is

used as a metric to compare the reconstructed phase to the known phase calculated

as,

NRMSE =

∑i=1
i=0

√∑
m,n ((B̃t)n,m−(Bt)n,m)

2

nm

(Bt)max − (Bt)min

× 100% (2.18)

where B̃ is the TIE/SITIE reconstructed local magnetic induction, B is the known

magnetic induction, t the sample thickness, (m,n) the array indices, and (i = 0, 1)

the components of the vector.
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Evaluation of SITIE

Numerical evaluation

To quantitatively analyze the validity of SITIE compared to TIE, we numerically

simulated Fresnel-contrast images from simulated domain structures obtained from

the micromagnetic simulation. This allows us to compare the two phase retrieval

methods in the absence of noise or any misalignments in images that could cause

errors in standard TIE analysis. Additionally, it gives us a known reference to quantify

results that is not present when analyzing experimental data. The Fourier transform-

based method of solving the transport of intensity equation was utilized to reconstruct

the phase of both the experimental and simulated data[20, 62]. A comparison of the

two methods applied to experimental data is left to the next Subsection 2.7.

Figure 4.(b-e), show the calculated local magnetic induction from both TIE

(b,c) and SITIE (d,e) each under two different focal conditions; the first (b,d) from

a small defocus (1 µm) and the second from a large defocus value (c,e) (300 µm).

Notice the close agreement between the reference and both TIE and SITIE for small

defocus (FIG.4.a,b,d), which have a normalized root mean square error (NRMSE)

of 0.169 % and 0.170 % respectively. Interestingly, for the large defocus (300 µm)

examples (figure 4.e,f) the error associated with TIE (14.3 %) is larger than that

for SITIE (11.7 %). These results can be understood analytically from the right

hand side of equations (2.15) and (2.16). They are the central and forward difference

approximations for the z-derivative of the image intensity, and have associated errors

of order O(∆f 2) and O(∆f) respectively. This quadratic versus linear error is evident

in Figure 4.g. Also, evident in Figure 4.g is the well-known fact that for all but
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the smallest defocus values used in LTEM, the effects of spherical aberration are

negligible[20].

Experimental evaluation
To ensure the validity of SITIE on real data, we collected and analyzed through-

focal series images of magnetic bubble domains in a thin film sample. The images

were collected using an FEI Titan equipped with a Lorentz lens and integrated CEOS

objective lens aberration corrector. The standard objective lens was partially excited

to apply a magnetic field perpendicular to the sample plane. The sample is nominally

a [Gd (0.4 nm)/Fe (0.34 nm)] × 80 multilayered film deposited by DC magnetron

sputtering onto 50 nm Si3N4 membrane with 20 nm Ta seed and capping layers[37].

Prior to analysis all experimental images were filtered following the method

suggested by Tasdizen et al. to remove low-frequency artifacts caused by slightly

non-uniform illumination[63]. Figure 5 shows the focal series (a-c) for ∆f = (-

300,0,300 µm). The left column shows (d) the phase reconstructed using conventional

TIE analysis applied to (a-c), (e) the magnetic induction determined using the phase

in (d) represented with color indicating the magnitude and direction of the magnetic

induction and (f) giving a closer look at the region inside the red square in (e). The

right column shows the phase (g) and magnetic induction (h,i) all determined using

only image (a). Included in the images are skyrmions, four of which have helicity

γ = π/2 (white circles in phase images), and five with γ = −π/2 with γ defined the

same as equation B3 in reference ([14]). The remaining features are stripe domains

starting to break up into topologically trivial bubbles, and skyrmion bound pairs[37].

It is important to note that the slightly lower signal-to-noise present in Figure 5.g

is not an inherent difference between SITIE and TIE, but instead a consequence of

Figure 5.g having half the effective exposure time due to it being calculated from
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FIGURE 5. Experimental comparison of TIE and SITIE
(a-h) Experimental Lorentz TEM analysis of a Fe/Gd multilayered thin film over

the same 1.5 µm field of view. (a) Under-focused, (b) in-focus, and (c) over-focused
images showing Fresnel-contrast ((a,c) recorded at ∆f = ±300 µm). (d) Phase
calculated using the standard TIE applied to image (a-c). (g) Phase calculated

using only image (a). (e), (h), The magnetic induction calculated from phase above.
(f), (i) Enlarged area from boxed region in (e), (h) with magnetization represented

both by color and vector arrows.
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only one image. This could easily be overcome by increasing the exposure time

for images collected for SITIE, or by collecting multiple shorter exposures images

aligning and averaging them latter. We emphasize here that aligning images collected

at the same focus value can be accomplished using simple algorithms such as cross-

correlation and is significantly easier than aligning images at different foci, because of

the associated reversals in contrast, rotation, and distortions between images. Errors

in image alignment caused by pixel shift, magnification changes, and rotations can

cause significant errors in the reconstructed phase when performing TIE analysis. For

a detailed discussion of this subject we refer the reader to chapter 5.3.2 of De Graef

and Zhu [20]. SITIE is free of all these errors.

Conclusion

We have demonstrated, both numerically and experimentally, that a single

Lorentz TEM image can appropriately be used to map the magnetic phase of

uniform samples, specifically for thin films exhibiting skyrmionic phase. This

simplified TIE approach gives roughly equivalent results to conventional TIE analysis.

Using SITIE analysis on uniform samples simplifies both the computational load

and data collection involved in characterizing topological magnetization textures.

Furthermore, this simplification opens the door to exploring new phenomenon that

was previously impractical with the traditional TIE analysis by: removing the need

to align and collect multiple images, and reducing errors caused by distortions in

images. This simplified technique allows for phase reconstruction during quasi-

dynamic measurements (e.g. field and/or temperature sweeps), and gives a potential

route to ultra-fast LTEM studies.
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Practical considerations of SITIE

To understand the potential artifacts that can be present in the magnetic

induction when using the SITIE, when compared to TIE, we will examine

equation (2.14) of the main text in more detail. By substituting equation (2.14) into

equation (2.16) and applying an inverse Laplace operator to both sides we can relate

the reconstructed phase (φr) to the actual phase (φ0).

φr(r⊥) = φ0(r⊥) +
π3Θ2

c∆f

λ
∇−2⊥

[
(∇⊥φ0(r⊥))2

]
(2.19)

Equation (2.19) indicates that to maximize the accuracy of the reconstructed phase

one can increase the coherence, decrease the defocus, or increase the wavelength of

the illumination. In general ∆f is the most tunable parameter in an experiment.

Typical values for Θc used in the literature range from (0.01− 0.08)mrad[20, 22, 50].

Obviously, minimizing the prefactor of the second term will increase the accuracy of

the reconstructed phase, but how small it needs to be will depend on the functional

form of φ0(r⊥). In LTEM we are primarily interested in measuring the local

magnetic induction using equation (11), so here we actually care about the gradient

of equation (2.19),

∇⊥φr(r⊥) =∇⊥φ0(r⊥) +
π3Θ2

c∆f

λ
∇⊥

(
∇−2⊥

[
(∇⊥φ0(r⊥))2

])
=∇⊥φ0(r⊥)

(
1 +

π3Θ2
c∆f

λ

∇⊥
(
∇−2⊥

[
(∇⊥φ0(r⊥))2

])
∇⊥φ0(r⊥)

) (2.20)

The criterion for valid use of SITIE is that the value in the parenthesis to be as close

to 1 as possible. This final term is quite opaque, and is the main reason why multiple

authors have advocated for the use of over- and under-focused images equidistant

31



from the in-focus plane[64, 65]. To gain insight into this term we examine a simple

helical domain, with magnetization given by,

M(x) = Ms(cos(x/δ)ŷ + sin(x/δ)ẑ) (2.21)

with Ms the saturation magnetization and δ roughly corresponding to the

domain/domain wall width. The magnetic phase shift in this case for a sample of

uniform thickness d is then given by,

φ0(r⊥) = −2π3dMsµ0δ

Φ0

sin(x/δ) (2.22)

making,

∇⊥
(
∇−2⊥

[
(∇⊥φ0(r⊥))2

])
= −π

4d2M2
sµ

2
0δ

Φ2
0

sin(2x/δ). (2.23)

We can then determine the required defocus for this specific case from the following

relation,

1� π5Θ2
c∆fdMsµ0δ

λΦ0

sin(x/δ). (2.24)

From which we can conclude that the reconstructed magnetic induction will be most

accurate when the in-plane field is at its peak and, least accurate where the in-

plane field is weakest. For reference for the following parameters (Θc = 0.01 mrad,

d = 80 nm, ∆f = 100 µm, Ms = 0.4 A µm−1, δ = 10 nm, λ = 2 pm), the prefactor is

0.2976. It is interesting to note that the magnitude of this error is linear with the

domain wall width meaning it is more accurate for smaller features. This of course

should be applied with some caution for two reasons: first the global effect of Es(q⊥)

is to attenuate high spatial frequencies (see Figures 7, 8), second at sufficiently small

length scales a uniform form film can in no way be approximated with a constant
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electrostatic phase shift or zero intensity contrast because eventually you will run

into thickness fluctuations or the inherent atomic structure.

The preceding analysis indicates that in order to minimize the error in the

reconstructed phase one should employ the smallest possible defocus. Of course ∆f

cannot be decreased indefinitely, due to the presence of noise, as lower ∆f means

lower signal. A detailed analysis of the effects of noise on TIE analysis was done by

Paganin et al.[66] a similar approach applied to SITIE yields bounds on ∆f ,

2πσ

λI0〈∇2
⊥φ〉RMS

� ∆f �

√
λI0〈∇2

⊥φ〉RMS

2π
〈
∂I
∂z

〉
RMS

(2.25)

where σ is the standard deviation of the noise distribution and 〈f〉RMS indicates the

root-mean-square of f . This can be used to as a guide in applying SITIE.

For reference we have simulated images (FIG. 6) of a simple 40 nm sample with

Ms = 0.4 A µm−1, containing two Bloch walls. This fictitious sample has Bloch walls

that vary in width as a function of y such that at the bottom of the image the domain

wall width is 10 nm and at the top of the image it reaches 50 nm. This was done to

help show the effects of feature size on the performance of each algorithm. The images

were simulated assuming a fixed Θc = 0.01 mrad, with varying ∆f and signal-to-noise

(SNR). Here the SNR is defined as the signal mean divided by the standard deviation

of the noise. The results of the application of TIE and SITIE to the simulated images

in Figure 6 are show in Figure 7 and 8. These results show two effects caused by

non-zeros Θc first the attenuation of higher spatial frequencies which explains the

reduction in the magnitude of the reconstructed magnetic induction for the larger

defocus values. The second effect is only present in the results of Figure 8 where we

see the effects of the last term of equation (2.14). While all of the above analysis is a
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useful guide in assessing when SITIE and applied, the most pragmatic method is to

try in on a given sample and compare the results to a more established method.
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FIGURE 6. Visualization of varying defocus and noise in LTEM data
Simulations showing LTEM data with varying signal to noise ratio (SNR) and ∆f ,
for a fixed θc = 0.01 mrad. The intensity of each images is scaled individually to fit

the full range of pixel values. The field of view in each image is 1.5 µm.
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FIGURE 7. Effect of noise and defocus on TIE
Calculated magnetic induction from the data show in Figure 6 and the image on the
opposite side of focus (not shown) using standard TIE. The magnetic induction of

each image has been normalized by the theoretical value (B0), and the color scale is
clipped at ±1. The field of view in each image is 1.5 µm.
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FIGURE 8. Effect of noise and defocus on SITIE
Calculated magnetic induction from the data show in Figure 6 using SITIE. The

magnetic induction of each image has been normalized by the theoretical value (B0),
and the color scale is clipped at ±1. The field of view in each image is 1.5 µm.
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Chapter Conclusion

In this chapter the basics of LTEM were introduced. A numerical method

capable of calculating the phase shift imparted on an electron passing through a

magnetic sample was outlined. The transfer function formalism was then used to

derive an approximate equation relating the intensity in experimental LTEM images

to second order derivatives of the electron phase. An approximate solution to solve

for the electron phase was then given. Experimental and simulated data were used

to demonstrate the effectiveness of this approach compared to the standard approach

found in the literature. Finally, a specific simplified example was given to help guide

in the application of our simplified SITIE algorithm.
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CHAPTER III

TOPOLOGICAL DEFECTS IN FE/GD

Notes on Manuscripts

The results in this chapter are presented in three previously published articles:

S Montoya, S Couture, J Chess, J Lee, N Kent, M-Y Im, S Kevan, P Fischer,

B McMorran, and S Roy. Physical Review B 95 224405 (2017),

S Montoya, S Couture, J. Chess, J Lee, N Kent, D Henze, S Sinha, M-Y Im, S

Kevan, and P Fischer. Physical Review B 95 024415 (2017),

JT Lee, J Chess, S Montoya, X Shi, N Tamura, S Mishra, P Fischer, B

McMorran, S Sinha, and E Fullerton. Applied Physics Letters 109 022402 (2016),

For all of these articles Sergio Montoya and Eric Fullerton conceived of the

project. Sergio Montoya deposited all specimens, measured the bulk magnetic,

resonance, MFM, and transport properties. James Lee conducted the RSXS

measurements. Simon Couture the LLG simulations. For each article the first author

wrote up the initial manuscript with input from all co-authors. This is a large project

with multiple authors. I don’t want to give the perception of ownership of parts that

I didn’t play a major role in, so I will avoid telling the full story and will only

discuss details and results that I had a significant involvement in or that help with

understanding of later chapters. Figures and captions are reproduced verbatim from

the original articles.
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Skyrmion Phase Diagram

In this chapter we present an investigation into the conditions under which

various topological defects can be produced in Fe/Gd multilayers. Each layer in the

sample’s were deposited with thicknesses <0.4 nm. Fe and Gd antiferromagnetically

couple, resulting in a ferrimagnet. This allows us to tune the samples saturation

magnetization by varying the alloy composition. By carefully controlling the

layer thickness and deposition conditions we are able to induce perpendicular

magnetic anisotropy (PMA)[67, 68]. Normally, the requirement for PMA is that

the material’s Q factor defined as K/(2πM2
s ) be greater than unity, where K is

the uniaxial anisotropy. Here Q is less than one, but we were able to overcome

this requirement by increasing the total film thickness, as previously documented by

others[69, 70, 71, 72, 73]. We use this tunability of material parameters as a tool to

map out that parameter space for stable topological defects. LTEM and Resonant

Soft X-ray Scattering (RSXS) were then used to map the magnetic phase diagram.

The multilayer films were deposited by Sergio Montoya as UCSD, layer by layer

by alternating Fe and Gd using sputter deposition at room temperature in ultra

high vacuum under 3 mTorr Argon. Each sample had a 5 nm Ta seed/capping

layer, to protect against oxidation. The samples were deposited on multiple different

substrates, including 50 nm and 200 nm SiN membranes to allow for LTEM and

RSXS measurements respectively. LTEM measurements were done at the University

of Oregon using the Titan and procedure mentioned in the previous chapter. Analysis

of the LTEM images was done using standard TIE (this is because this analysis was

done before SITIE was fully developed). Figure 9 shows some of these results at

room temperature with varying applied field. RSXS measurements were done at Gd

M5 (1198 eV) and Fe L3 (708 eV) absorption edge at Beamline 12.0.2 Advanced
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FIGURE 9. Lorentz TEM of FeGd
Real space imaging of the field-dependent magnetic domain morphology of [Fe (0.34
nm)/Gd (0.4 nm)] × 80 Underfocused Lorentz TEM images (first column) measured

at room temperature and their corresponding magnetic induction color maps
(second column) are detailed. The images are captured as a perpendicular magnetic
field is applied from zero field to magnetic saturation. Four different magnetic states

are observed as the field is swept, including: disordered stripe domains (a, b),
stripe-to-skyrmion transition (d, e), skyrmion lattice (g, h), and disordered

skyrmions (j, k). Enclosed regions in the first two columns are enlarged to detail the
in-plane magnetic domain configuration using both color and vector magnetic

induction maps in the third column (c, f, i, l). The scale bar in (a) corresponds to
1µm.
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Light Source, Lawrence Berkeley National Laboratory by James Lee. Figure 10 has

examples of RSXS diffraction patterns showing the 4 magnetic phases measurable

using this technique. The phase diagram of two sample compositions, determined

using a combination of RSXS and LTEM is shown in Figure 11.

Further, micromagnetic numerical simulations were done using Landau Lifshitz

Gilbert (LLG) equation, utilizing FASTMAG[61]. These results are in good

agreement with both the real and reciprocal space measurements. They also show

that the presence of the topological defects in these films can be fully explained

without an appeal to DMI. These simulations also predict that the topological defects

present in our samples have a more complex structure than what can be observed in

LTEM or other transmission based imaging techniques. This is because the numerical

simulations predict the presence of Néel caps at the top and bottom of the skyrmions.

These caps have opposite magnetization on the top vs the bottom surface, this makes

them invisible to transmission based technique because the signal from one side will

cancel the signal from the opposite side. This structure can be seen in Figure 12.

Additional, resonance data was recorded and compared to LLG simulations that

indirectly suggest the presence of these Néel caps. Chapter VI is dedicated to directly

detecting this 3D structure.
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FIGURE 10. Reciprocal space imaging of the magnetic domain morphology
The scatter images obtained at room temperature of [Fe (0.34 nm)/Gd (0.4 nm)]×
80 detail the four magnetic phases observable using this technique: (a) disordered
stripe domains, (b) coexisting stripes and skyrmions, (c) skyrmion lattice and (d)

uniform magnetization. (a) The diffraction image is obtained along the Fe L3

(708eV) absorption edge at zero-field at 85K. (b, c) These diffraction images are
both obtained at room temperature along the Gd M5 (1180eV) absorption edge at
(b) Hz = 1500 Oe and (c) Hz = 1900 Oe. (d) The saturated state is obtained along

the Fe L3 (708eV) absorption edge at Hz = 5000 Oe at room temperature.
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FIGURE 11. Phase Diagram for Fe/Gd
Magnetic field and temperature dependence of the skyrmion phase. The magnetic

phase diagrams for two Fe/Gd film structures are shown: (a) [Fe (0.34 nm)/Gd (0.4
nm)] × 80 exhibits a broad skyrmion phase around room temperature, and (b) [Fe

(0.36 nm)/Gd (0.4 nm)] × 80 shows a similar skyrmion phase that is shifted to
lower temperatures. These magnetic phase maps were constructed using data from
four different imaging techniques: resonant soft x-ray scattering, Lorentz TEM, and
transmission x-ray microscopy (at room temperature only). The marker lines detail

the temperature and imaging technique used to scan the domain morphology.
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FIGURE 12. Micromagnetic modeling of domain morphology.
(a-r) [MS = 400 emu/cm3, K = 4 × 105 erg/cm3, and A = 5 × 107 erg/cm]. The

equilibrium states illustrate the field-dependent domain morphology at several
magnetic fields that capture the domain evolution from a stripe to a skyrmion

phase. These equilibrium states primarily depict the top side view of the
magnetization along the z axis (mz) at the top surface of the slab (z = 40 nm). The
magnetization (mz) is represented by regions in red (+mz) and blue (mz), whereas
the in-plane magnetization (mx, my) is represented by white regions surrounding
the blue features. (b, h) Panels illustrating the lateral magnetization components

(mx, my, mz) across the film thickness for the disordered stripe domains in (a) and
the skyrmion phase in (f, g) along the dashed line. Inspection along the lateral

magnetization reveals a Bloch-like wall configuration with closure domains in both
states. The chirality of the skyrmions is depicted in (g) along the top side view of
mx across the center of the slab. (i-m) Detail of the magnetization distribution at
different depths (z = 40, 20, 0, 20, 40 nm) for a skyrmion with chirality S = +1,
γ = π/2 that is enclosed in a box in (f, g). At each depth, the perpendicular

magnetization is represented by blue (mz) and red (+mz) regions and the in-plane
magnetization distribution (mx and my) is depicted by white arrows. The white
arrows illustrate how the magnetization of the closure domains and Bloch line
arrange at different depths of the slab. (n-r) Detail of the field evolution from

ordered skyrmions to disordered skyrmions.
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Other Topologically Non-Trivial Magnetization Textures in Fe/Gd

In addition to dipole skyrmions other topological defects are present in the

Fe/Gd system. Using RSXS a lattice with symmetry close to the skyrmion lattice

was found, but the peaks were slightly asymmetric suggesting a hexagonal lattice

with a basis. By using LTEM imaging this basis was determined to be a bound

pair of skyrmions, similar to what was seen in La1+2xSr2-2xMn2O7[38]. These bound

skyrmions or biskyrmions are formed by two Bloch skyrmions with like polarity but

opposite helicity each having a skyrmion number Sk = 1, which then gives the total

object Sk = 2. By recording LTEM data during a field sweep and applying SITIE to

each frame, we were able to develop a model for how to synthesize these bound pairs

in the Fe/Gd films. This model is shown schematically in Figure 13, while LTEM of

these magnetic textures is show in Figure 14.
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FIGURE 13. Schematic of transition from stripes to bound pairs
Schematic evolution from canted stripes to the skyrmion bound pairs. Color and
brightness denote direction and magnitude of spin in-plane component; green and
pink have opposite in-plane directions. Brown arrows denote the applied magnetic
field, the vertical arrow being the out-of-plane component and the horizontal arrow
being the in-plane component. (a) In low fields, up and down stripes are nearly of
equal width. The rotational sense of the magnetization switches at the center of

these regions. (b) Applied field causes dark green regions to widen, pink regions to
narrow, and tilts spins upward. (c) At a critical field, the stripes pinch off into short
patches. The dipole fields of these patches cause green spins in parts (a) and (b) to
form swirling (multi-hued) spin textures and out-of-plane (white) spins to form the

cores of nascent skyrmions.
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FIGURE 14. LTEM of skyrmion bound pair
In-plane component of magnetic induction (B) of skyrmion bound pairs obtained
using the TIE method from LTEM images. Obtained at room temperature and

µ0H=207mT. The color wheels relate the color to the in-plane orientation of B. (a)
Bound pairs are the majority of the objects in the image, with red lines running

through their centers. An isolated (circular) unit winding number skyrmion is seen.
(b) A vector map of the 0.5×0.5µm2 boxed region in part (a). The B-fields of the
top and bottom halves of the bound pair (above and below the red center) have

opposite circulations.

48



Conclusion

In this chapter we have outlined the various topological defects present in Fe/Gd.

Additionally, a description of the 3D structure of these dipole-stabilized skyrmions

was given. A question that remains to be answered is: is there a mechanism to

control the chirality of these magnetic structures? Additional confirmation of the 3D

structure of the micromagnetic predicted magnetization is also needed.

49



CHAPTER IV

DETECTING CHIRAL MAGNETIC DOMAINS

Notes on ‘Determination of Domain Wall Chirality Using in situ Lorentz

Transmission Electron Microscopy’

From Jordan J Chess et al. AIP Advances 7, 056807 (2017).

Ben McMorran and I conceived of the measurement technique. Sergio Montoya

supplied the samples. Sergio and Eric conceived of the idea to make a sample with

Bloch walls and asymmetric layer stacking. I recorded the data, did the analysis,

figure creation, and wrote up the initial manuscript with input from all co-authors.

Eric Fullerton came up with the explanation that the asymmetry we measured could

have arisen because the domains nucleate from a small number of bubbles and expand

to large domains.
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Determination of Domain Wall Chirality using in situ

Lorentz Transmission Electron Microscopy

Jordan J. Chess1, Sergio A. Montoya2,3, Eric E. Fullerton2,3 and Benjamin J. McMorran1

1 Department of Physics, University of Oregon, Eugene, OR

2 Center for Memory and Recording Research, University of California, San Diego, CA

3 Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA

February, 2017

Determination of Domain Wall Chirality using in situ Lorentz

Transmission Electron Microscopy

The Dzyaloshinskii-Moriya interaction (DMI) has been at the center of many

recent advances in our understanding of magnetic structures, including its ability

to stabilize the skyrmion phase in non-centrosymmetric crystals[10, 74, 75], and the

stabilization of chiral Néel walls with increased field and current induced mobility[76]

by interfacial DMI[77, 78]. Mapping the handedness of these chiral structures

requires information of all three vector components of the magnetization and as

such has largely relied on imaging techniques capable of directly measuring all

three components of the surface magnetization such as spin-polarized scanning

tunneling microscopy[79, 80], and spin-polarized low-energy electron microscopy

(SPLEEM)[78, 81, 82]. Using SPLEEM, Chen et al. demonstrated that this ability

to characterize asymmetries in domain wall structures can be a useful tool for

determining both the magnitude and sign of the interfacial DMI for multiple magnetic

non-magnetic interfaces. Here we show that the x and y components of the magnetic

induction determined using LTEM coupled with the additional information gained

during an in situ magnetic field sweep, can be used to map domain wall chirality.
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FIGURE 15. LTEM of chiral domain walls
Fresnel-contrast LTEM images of FeGdPtIr at 200 K in an applied field of Hz = 1
mT (a) and 20 mT (c), scale bar 2 µm. Insets show the results of single image TIE
analysis applied to the indicated sub-regions, color (see color scale wheel) and vector

arrows indicate the direction and magnitude of the local in-plane magnetic
induction. Inset (b) highlights a region where the Bloch domain wall changes

chirality, with a Néel wall bridging the gap between the two regions. Inset (d) gives
a detailed look at the magnetic texture of the skyrmion that appears during the

field sweep. (e), (f) (top) Schematics showing how deflection of electrons
transmitted through the walls can generate LTEM images (simulated) matching the

contrast seen in the experimental data. (e), (f) (bottom) Line profiles across
domains along the lines (A, B) in experimental image (a) match profiles from the

simulated LTEM images in the schematics above.
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We apply this approach to field series data taken of an Fe/Gd/Fe/Pt/Ir

multilayer film with 80 repeating layers with nominal thicknesses [Fe (3.4) / Gd (4) /

Fe (3.4) / Pt (0.25) / Ir (0.75)], produced by d.c. magnetron sputtering onto a 50-nm

Si3N4 membrane. The images were collected using an FEI Titan equipped with a

Lorentz lens and integrated CEOS objective lens aberration corrector, using a Gatan

cryo-holder for temperature control. The Fresnel-contrast images were recorded at

200 K with a defocus of 300 µm. An out-of-plane magnetic field was applied to

the sample by partially exciting the microscope’s standard objective lens from -1

to 0.9 % excitation, which results in an applied field varying from roughly Hz =

-28 to 33 mT. This field strength was strong enough to saturate the film in both

directions, allowing us to record the progression of the magnetization from the Mz-

down saturated state, domain nucleation, expansion of those domains, and finally

annihilation of the remaining Mz-down domains leaving the Mz-up saturated state.

Figure 15 shows selected images from this field sweep at 1 mT (top) and 20 mT

(bottom). These images display labyrinth stripe domains that progress into isolated

worm-like domains as the field approaches saturation, similar to previously reported

magnetic transmission X-ray microscopy (M-TXM) results on Fe/Gd multilayers11.

Normally, determining the in-plane local magnetic induction from LTEM data

requires multiple images taken at multiple different defoci, but because these films are

uniform thickness, a single-image transport of intensity (SITIE) equation can be used

to determine the in-plane magnetic induction[83]. The SITIE relates the intensity

I (r⊥, ∆f) at a given defocus to the magnetic phase shift (φm), given a suitable

approximation for the intensity of the in-focus image (I0)

∇2
⊥ φm (r⊥) ≈ − 2π

f

(
1 − I (r⊥, ∆f)

I0

)
, (4.1)
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where ∇2
⊥ is the in-plane (x, y) Laplace operator, r⊥ is the in-plane position

vector, and ∆fthe defocus distance in z from the image plane. In this case, because

the film is uniform I0 is a constant and not dependent on r⊥, we choose to approximate

it as the mean of the defocused image. To solve equation (4.1) we employed the

Fourier-based method of Paganin and Nugen to determine the magnetic phase shift

(φm)[57]. From the magnetic phase the local magnetic induction averaged through

the sample thickness (d) is given by[20],

∇⊥φm(r⊥) = − e
~

[B(r⊥)× êz]d (4.2)

where e is the electron charge, } is the reduced Planks constant and êz is a unit

vector parallel to the electron propagation direction.

Using this analysis, we determined the in-plane component of the magnetic

induction from each of the individual LTEM images taken during the field sweep.

Examples of this analysis are shown in the insets of Figure 15. The left inset

(FIG 15.b) shows a region of Figure 15.a where the domain wall chirality reverses

(a Bloch-point). The domain walls in this film are predominantly Bloch. Figure 15.d

shows this analysis applied to the region containing a skyrmion that appears in the

image during the field sweep.

We observe that many of the domain walls have no chirality reversals, i.e. Bloch-

points, suggesting that the domain walls in this sample are mostly of one chirality.

This cannot be known for certain without knowing which domains are up and which

are down. This single chirality for a given domain wall, can also be determined by

observing the intensity patterns in the Fresnel-contrast images. The domains in these

images appear to have light and dark contrast which gives the false impression that

the contrast is related the magnetization in the domain. In reality this contrast is
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only dependent on the in-plane domain wall spins. In fact, close examination of

the images reveals that this light-dark gray shading is a result of the Bloch-type

domain walls which act to push the impinging electrons into or out of the domain

depending on the direction of the in-plane domain wall spin. Figure 15.(e and f)

schematically show the origin of this contrast, in both the particle (rays) and wave

picture (simulated image[23]). Additionally, shown in (e) and (f) are line profile

data taken from the regions indicated in image (a) together with the profile from the

simulated image. These profiles show the agreement between the experimental data

and simulated images, indicating that indeed the apparent lightness or darkness of

labyrinth domains in raw Lorentz images are due to the chirality of the domain walls

surrounding them, and not the perpendicular orientation of the magnetization within

the domains.

The Lorentz force only acts on electrons traveling perpendicular to a magnetic

field, so LTEM is only sensitive to in-plane components of the magnetization. This

poses a problem when attempting to assign a handedness to the domain walls

rotation because one must know the perpendicular component of the magnetization

Mz. Fortunately, this information is easily obtained from the history-dependent

information in the field sweep. This information is clearly discernable in Figure 15.c,

in which the applied external field is 20 mT, where we can see narrow worm-like

domains surrounded by larger domains. As the applied field increases these domains

continue to shrink and eventually annihilate, leaving the whole film in the saturated

Mz-up configuration. This indicates that the domains that are shrinking in size are

pointed in the direction anti-parallel to the applied magnetic field.

To determine the sign of the perpendicular component of the magnetization in

each magnetic domain, we start at the image where domains first nucleate, assign
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each large domain to be pointing in the direction of the applied field, and each

narrow domain in the direction opposite of the applied field, then ensuring that

the up domains expand and the down domains contract as the applied field is swept

from positive to negative. Computationally this required segmenting each image in

the sequence which was accomplished using 4 steps: (1) automated edge detection,

then (2) manual correction to the detected edges, followed by (3) automated sorting

of domain walls based on domain width, and then finally (4) corrections to sorted

domains, enforcing the rule that a domain shrinking in area is pointed in the direction

anti-parallel to the increasing applied field.

After determining the sign of each perpendicular magnetic domain, the chirality

of the spins in each domain wall were characterized following the approach of Chen

et al. defining the local domain wall chirality angle α. Here n is defined to be in

the plane of the film perpendicular to the domain wall and pointing from Mz-down

to Mz-up. The angle α is then defined to be the angle between the domain wall

normal (n) and the domain wall magnetic moment measured in the counter clockwise

direction[78]. At the top of Figure 16, a schematic visualization of α is shown for the

region included in Figure 15.b.

Figure 16 has a spatial visualization of the distribution of domain wall chirality

angles (α) for three of the images taken during the field sweep with the applied field

indicated on the LTEM data in the left column. In each image in the right column

the Mz-down domains are shown in black, Mz -up in white, and alpha is show in

color corresponding the to the color scale wheel. The frames are dominated by the

blue color corresponding to α ≈ π/2, which we are referring to as a right-rotating

Bloch wall where right denotes the direction the magnetization rotates (clockwise)
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FIGURE 16. Chirality map
Top The same region as Figure 15.b. with the sign of Mz labeled with black

(negative) and white (positive), along with the domain wall chirality angle (α)
visualized in color (see color wheel indicating (RB right-rotating Bloch, LB

left-rotating Bloch, RN right Néel, LN left Néel)). Left Fresnel-contrast LTEM
image of FeGdPtIr at 200 K with applied filed indicated on each image, scale bar 2
µm. Right Maps of domain walls chirality, white indicates Mz-up domains, Mz-spin
down, color the angle α. α is defined to be the angle between the in-plane domain
wall spin and the vector normal (n) to the domain wall pointing from Mz-down to
Mz -up, measured from n to the in-plane spin (see schematic in top image with n

shown in blue).
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FIGURE 17. Chirality distribution
Probability distribution of domain wall chirality angle (α) in the field of view, for all
field values in the series that have domains present. There is a high asymmetry that
favors right-rotating Bloch walls in this field of view, making up 95% of the domain

wall pixels, which remains constant thought the field sweep.

as the domain wall is traversed from Mz-down to Mz-up, and counter clockwise for a

left-rotating Bloch wall (α = (3 π)/2).

The statistical distribution in α is shown in Figure 17 for all images in the series

for which domains are present. The overwhelming majority of the domain walls are

right-rotating Bloch walls comprising 95% of the domain walls imaged. We note

that this number remains roughly constant as a function of applied field. To remain

consistent with the literature[78, 81, 82] in Figure 17 we have labeled α = 0 and

α = π as right-rotating and left-rotating Néel walls respectively.

It is somewhat surprising that there is a preferred helicity of the domain walls.

As noted by multiple authors, interfacial DMI that may be expected from the Ir/Pt

layers is not expected to split the energy degeneracy between right and left Bloch

walls.[76, 82] There could be multiple explanations for the preferred helicity. It has

been shown previously that stripe domains in similar high-anisotropy films emerge

out of widely distributed nucleation sites[84]. Each nucleation site would be expected

58



have one of two helicities. As the field magnitude increases the nucleation site become

unstable and the stripe domains grow and fill the volume, forming large regions with

interconnected stripe domains arising from the same nucleation site[85]. As the stripe

domains grow and split it would not be surprising that they maintain a common

helicity determined during nucleation. Thus a finite image area may have a common

or preferred helicity even in the absence of symmetry breaking. Micromagnetic

simulations of Fe/Gd indicate that Néel caps are present near the surfaces of the

film at the top and bottom of each domain wall[51]. In the simulations, the caps at

the top surface have exactly opposite in-plane components as their counter-part on

the bottom surface, making their effects cancel in transmission-based imaging such

as LTEM images taken at normal incidence. Such Néel caps are expected to be less

prevalent in the current films but they could provide a mechanism through which

interfacial DMI affects the helicity of the Bloch part of the wall imaged by LTEM.

Further investigations will be dedicated to determining the existence of Néel caps in

this system, and their possible role in controlling the chirality of the Bloch walls.

We have shown that by coupling a single-image TIE analysis with the history-

dependent information gained from an in situ applied field sweep, the chirality of a

given domain wall can be unambiguously determined as well as the evolution with

applied field. This technique has the advantage of avoiding the need to tilt the sample

to gain information about the third component of the magnetic induction, and it can

be applied to rapidly measure domain wall chirality distribution over a large area.

This allows its use to be extended to magnetic structures that must be stabilized by

a perpendicular field such as a skyrmion phase.
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Chapter Conclusion

In this chapter, we developed a measurement technique that allows us to measure

the chirality of Bloch-type domain walls. The initial results on one small region of the

sample were promising in that they indicated that asymmetric layer stacking could

be used to control the chirality of Bloch domain walls. This is interesting because

theory predicts that iDMI does not break the degeneracy of Bloch walls. The next

chapter includes results of applying this method to a larger dataset.
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CHAPTER V

IMPROVED DOMAIN WALL DETECTION

Notes on Manuscript

This chapter ‘Python Tools for Domain Wall Detection and Domain

Classification’ is the skeleton of a manuscript detailing a refined algorithm that can

be used to detect domain walls for segmentation of LTEM images. This worked

benefitted from fruitful conversations and pointers from Professor Greg Bothun.

Harjasleen Gulati added in the manual labeling of images. The work started as

a project for the graduate student-organized seminar, Data Science and Machine

Learning at the University of Oregon.

61



Python Tools for Domain Wall Detection and Domain Classification

Recently we demonstrated a method for measuring the chirality of domain walls

using in situ Lorentz transmission electron microscopy[86]. This approach requires a

significant amount of edge detection (domain walls) and image segmentation (domain

classification). The second step, segmenting and classifying the domains after the

edges are detected is quite easy using publically available python packages[87, 88].

The hard part is detecting all the domain walls properly. Our approach was to

try using existing packages such as scikit-image’s Canny edge detector[88]. Prior to

using the Canny detector, an anisotropic diffusion filter was applied to the images

to reduce noise but preserve edge features[89]. Additionally, Mahotas[90] hit-and-

miss functions were used to detect and remove locations where a labeled edge forked

into two lines, since physically a domain wall does not fork into two domain walls.

Finally, custom python functions were developed to remove short superfluous lines

and connect nearly connected lines. In all, this resulted in the correct labeling of

roughly 80% of the domain walls. The results of this processing were then overlaid

in color on top of the original grayscale data and exported to a paint program to be

corrected by hand. Figure 18, depicts the various stages of this process.

Unfortunately, the process outlined above-even with the aid of the automated

edge detection algorithm-required roughly four hours of manual correction per image.

As noted in the previous chapter, before any quantitative statement about the domain

wall chirality of a given material can be made, a statistically significant sample area

must be imaged. This suggests a need for improved domain wall detection tools. It

is worth noting that edge detection is in no way a solved problem in the computer

vision community; it remains on of the most studied problems in the field[91]. Taking

a cue from recent developments in the field, we take a supervised learning based
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FIGURE 18. Initial Edge Detection Process
(a) Representative raw LTEM data. (b) The same data after smoothing process. (c)
Detected edges overlaid on top of the original data, green indicates an edge with no

endpoints other than those that terminate at the boundary of the image, red
indicates edges with dangling endpoints that need connected to other detected edge
segments. (d) A close up of a region where manual correction was required, and (e)

the correction to the problem. (f) The final segmented image with up domains
labeled in red, down domains in blue, and domain walls white.

approach[91], using the previously labeled data to train a new edge detection model.

Many supervised learning edge detection algorithms in the literature require many

human-labeled training examples, in this case there were only nine available. On the

other hand, each image in our data is a 2048 × 2048 array, meaning 4,194,304 pixels.

Due to the large number of pixels needing to be processed and the risk of overfitting

associated with more complex models, logistic regression is used for our new edge

classifier.

Basics of Logistic Regression

The goal of a classification algorithm is to find a decision boundary between

two populations. In the edge detection context an edge is considered a success and

everything else a failure. To better understand the logistic regression model consider

a specific example using only one variable, also known as a “feature”: the gradient

magnitude of the image. This example is chosen because the gradient magnitude is

the basic quantity used in the canny algorithm, and a natural way to define an edge

is a region in which the gradient is large. Additionally, in this case the gradient of the
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FIGURE 19. Gradient Edge Detection
(Left) Example phase image of a FeGdPtIr multilayer film (field of view ≈ 9µm).

(Center) Gradient magnitude of the phase image on left. (Right) Gradient
magnitude with edges overlaid on top.

phase image is directly related to the magnitude of the magnetic induction. Figure 19

shows an example phase image determined using SITIE, the gradient magnitude of

the same image, and the gradient magnitude with the labeled edges overlaid. The

eye can easily pick out where the edges are in Figure 19.b, but keep in mind that the

eye is using much more information that just the value of the gradient. Nevertheless

from the Figure it is clear that the gradient is a reasonable feature to use for edge

detection.

For logistic regression we seek to fit the model,

F (x) =
1

1 + exp (−(β0 + β1x))
, (5.1)

to our labeled data. Above β0 and β1 are fitting parameters and x is the value of the

gradient magnetude at a given pixel. Figure 20 visually shows this fit on a subsample

of the pixels in the image above. One advantage of using logistic regression is the

simplicity of interpreting the results, the value of F (x = x0) is the probability of a

pixel with gradient magnitude x0. The decision boundary for a 50% probability is
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FIGURE 20. Logistic regression classifier
Visualization of the logistic regression classifier. Domain wall pixels were

subsampled at 1:1,000th the original number and domain pixels at 1:10,000th, to
allow for a meaningful visual representation with discernible individual points.

then given, simply by the value x where F (x) = 0.5. In this case F (0.41) ≈ 0.5, so

any pixel with gradient value above 0.41 could be classified as a domain wall because

the model is predicting a greater than 50% probability.

Full logistic regression model

The logistic regression model can easily be extended to multiple dimensions, in

which case the new equation is,

F (x) =
1

1 + exp (−β · x)
. (5.2)

Now x and β are both vectors with dimensionality equal to the number of features

plus one, for the x0 component which is set to 1. In this case the decision

boundary is not a single value on the 1D number line, instead it is a hyperplane

that divides the multidimensional feature space. The new model is composed of

fourteen different features (shown in Figure 21). These features include the Gaussian
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FIGURE 21. Logistic regression features
The fourteen different transformations to the original image that are used as

features in the logistic regression model.

gradient magnitude of the image taken with different kernel sizes, rolling standard

deviation filters, higher-order derivatives, gradient magnitudes of images smoothed

with various edge preserving filters, and the results of convolving a wavelet with the

initial image. This initial logistic regression classifier interprets low-level local pixel

information into a number between 0 and 1 that is the model’s prediction for the

probability that a given pixel is part of a domain wall. A threshold of 45% was then

used to separate the two classes, and the resulting binary image was then skeletonized

to a single pixel line. 45% results in more false positives but these turn out to be

easy to remove. This value was picked using the guess-and-check method and could

be refined further. Finally, all endpoint pairs that were each other’s only nearest

neighbor, less then 15 pixels apart, and well aligned, were connected with a straight

line.

Incorporating Mid-level Information

The logistic regression classifier detailed in the section above performs better

than the Canny detector, but not sufficiently well to have it be the final step in the
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FIGURE 22. Domain wall curvature
Probability density function for the domain wall curvature in the image to the right.

process. Three additional classifiers were built to incorporate the mid-, and high-level

information in the images.

First, from the previous section one could guess that due to the threshold being

set below 50% the results are biased toward including false positives. The majority

of the false positive pixels add to the thickness of the edge and are removed during

the thinning process, but there are also some systematic problems caused by this

threshold. Almost always these problems are near the end of a detected domain

wall segment, in which case the false positives cause the end of the line segment to

curve sharply, when in reality the line should continue roughly straight. To solve this

problem, the curvature of the path at each pixel was calculated. This information

was then used to construct a probability density function (PDF) for the domain wall

curvature for each image, Figure 22 shows an example PDF. The PDF was then used

to identify the top 99th percentile of curvature pixels, which were then removed from

the detected paths.
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Second, after removing the high curvature pixels, more mid-high-level

information was used to determine both how parallel edge segments were to their

nearest neighbor segment. This was done by calculating for each pixel the distance

to the nearest pixel that is not part of the edge segment in question. Then for

each segment the mean and standard deviation of these values were calculated. All

the values were then normalized to have standard deviation of one. Clusters in the

data were then detected using the spectral clustering algorithm available from scikit-

learn[92]. Further, to prevent removal of false negatives, the length, distance of

endpoint to nearest endpoint, and angular change needed to attach to that endpoint

were calculated. If the length was above a threshold value, or if the distance to a

nearest endpoint and angular change were both small, negatives were moved into

the positive group. Finally, these results are used to train a support vector machine

classifier so that they can continue to be used on the data when additional lines are

added during future steps. Figure 23.a show an example of this clustering process,

accompanied by the spatial version of the data.

Third, the final classifier categorizes endpoints based on two features: ratio of

nearest neighbor to next-nearest neighbor distance, and angular change needed to

connect the two lines. The three categories are: connectable by straight line, obvious

nearest neighbor, cluster needing more information. Figure 24 show an example of

this network like analysis. Like the category name suggests, neighbors that can be

connected with a straight line are, the code then attempts to find a high probability

path to connect the obvious nearest neighbors. Finally, a structured element that

we will refer to as a flashlight (see FIG 25), and describe below, is used to try to

connect lines in the clustered regions or at least move these points into one of the

other categories for further processing.
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FIGURE 23. Removal of Non-parallel Edges
Left Results of cluster analysis, red points labeled to be removed from the image.

Right Results of cluster analysis visualized in real space.

The flashlight was calculated using the previously labeled data; it is related to

the radial plus angular conditional probability. Given an endpoint and velocity vector

at the end of a line, it represents the probability that the line will propagate to a

given r and θ value. The flashlight is used by placing it in at the location of the

endpoint of a line pointing in the direction of the end of the line, weighted by the

probability predicted by the initial logistic regression step, shown in Figure25.b. This

process is repeated for each of the next 15–30 pixels at the end of the line, and then

for each line of interest. Following this, a threshold is again applied and the resulting

regions are thinned to a single pixel line. This generally acts to either connect two

edge segments or to extend them allowing them to be placed in a different category.

The full process is then iterated, generally for a set number of times due to

the difficulty of determining a proper stopping condition. During each consecutive

iteration the initial logistic regression threshold is lowered to incorporate more pixels

that were missed in the previous pass, and the higher level classifiers are relied on to
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FIGURE 24. Network analysis
Labeled endpoints after categorization, green-straight connect, cyan-obvious nearest

neighbors, yellow-needs more information.
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FIGURE 25. Flashlight Structure Element
Left Flashlight structure element used to weight possible paths.Right Application

of the flashlight element used to connect two endpoints in a broken path.

reject false positives. This process at best detects all the domain walls present in the

image, and at worst greatly reduces the amount of human time needed to correct the

labeling. Figure 26 shows the lines detected using the original process and those using

the new process with zero human corrections. Notice that the new process detected

domain walls that were missed during the original process, and didn’t detect a false

positive that was present in the initial data.
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FIGURE 26. Old vs New Edge Detection
Left Domain walls detected using the original algorithm.Right Domain walls

detected using the new algorithm. Circled are two points where the new algorithm
outperformed the origianl one.

Chapter Conclusion

In this chapter an algorithm for detection of domain walls was described. The

algorithm utilizes previously labeled data, and could easily be modified for use on

other image segmentation tasks. The following chapter discusses the results of

applying this algorithm to a larger dataset.

72



CHAPTER VI

QUANTITATIVE ANALYSIS OF CHIRALITY MEASUREMENTS

Notes on Manuscript

‘Controlling the Chirality of Bloch Domain Walls’ is my contribution to a

manuscript being co-written with Sergio Montoya, Eric Fullerton and Ben McMorran.

Harjasleen Gulati assisted in the manual segmentation of part of the LTEM images.

Sergio conceived of the idea, made the samples, and did the topological hall effect

measurements. I recorded and analyzed all the LTEM data presented below, and

wrote up this portion of the manuscript.
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Controlling the Chirality of Bloch Domain Walls

Recently, the massive search for materials supporting skyrmions above room

temperature in the absence of large magnetic fields has identified a number of

promising thin-film and multilayer systems[24, 30, 93, 94]. The existence of skyrmions

in these systems is attributed to the interfacial Dzyaloshinskii-Moriya interaction

(iDMI). This effect arises from the breaking of inversion symmetry at the interface

and spin-orbit coupling between the layers[95]. In the micromagnetic framework this

energy can be expressed as,

E = D (mz∂xmx −mx∂xmz +mz∂ymy −my∂ymz) . (6.1)

This term lowers the energy for Néel walls with a specific chirality, thus the sign

of D determines the chirality of the sample. Here we present the observation of

a topological Hall resistance and an extensive Lorentz microscopy study that both

reveal that the chirality of Bloch walls can be controlled by stacking of layers in a

way that breaks inversion symmetry.

Fe/Gd/Fe/Pt/Ir multilayer film with 160 repeating layers with nominal

thicknesses [Fe (3.4Å)/Gd (4Å)/Fe (3.4Å)/Pt (0.25Å)/Ir (0.75Å)] were produced

by sputter deposition onto a 50 nm Si3N4 membrane. Simultaneous anisotropic

magneto resistance (AMR) and Hall resistivity field dependent measurements were

performed using Quantum Design Physical Property Measurement System. The

AMR is measured in three different magnetic field configurations: (i) longitudinal,

ρ||, (ii) transverse, ρ⊥, and (iii) perpendicular to the film ρ⊗ (see Figure 27). Our

measurements suggest that the samples possess a preferred chirality due to the

presence of a topological Hall response.
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FIGURE 27. Anisotropic Magneto Resistance (AMR)
AMR loops from three different magnetic field configurations: (i) longitudinal, ρ||,

(ii) transverse, ρ⊥, and (iii) perpendicular to the film ρ⊗.

To confirm this result we apply the approach described by Chess et al.,

with an improved image segmentation algorithm, to numerous images taken of

Fe/Gd/Fe/Pt/Ir multilayer films. The images were collected using an FEI Titan

equipped with a Lorentz lens and integrated CEOS objective lens aberration corrector.

Cooling was achieved using a Gatan cryo-holder. Fresnel-contrast images were

recorded at 140, 160, and 180 K with a defocus of 1.5 mm. Unless indicated otherwise

all data was recorded after a field cycle from positive saturation to negative saturation

and then up to a slightly positive field. The slightly positive field was chosen to allow

for differentiation between positive and negative domains, based on domain width.

This field cycle was done both to remove any effects of exposure to magnetic field

while inserting the sample into the microscope, and it allows for direct comparison

with previously recorded topological hall measurements.

The films have out-of-plane magnetization with labyrinth like domains. Figure 28

shows a typical LTEM image accompanied with an image of the in-plane magnetic

induction calculated using SITIE[96] for the same field of view. Figure 29 shows the

chirality map for the same region shown in Figure 28.
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FIGURE 28. LTEM and SITIE of FeGdPtIr
Representative Lorentz TEM image, together with the corresponding in-plane

magnetic induction map.

FIGURE 29. Chirality Map
Chirality map indicating the spatial distribution of domain wall chirality. Also

included, the scale and schematic illustrating how alpha is defined.
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FIGURE 30. Chirality as a Function of Temperature
Left Plot showing the change in chirality as a function of temperature. The error
bars in the plot indicate the standard error, treating each image as an individual

sample.Right Histogram showing the chirality distribution for the three measured
temperatures.

The total number of images included in this study is 31, taken at a magnification

of 810 X, converted to an area that is ∼20,956 µm2, or ∼46 mm in domain wall length.

Figure 30 is a plot of the percent asymmetry (γ),

γ =
(number of R Bloch wall pixels)− (number of L Bloch wall pixels)

(number of R Bloch wall pixels) + (number of L Bloch wall pixels)
× 100%,

(6.2)

for each temperature, as well a histogram showing the chirality distribution for each

temperature individually.

Additionally, we had two auxiliary questions: “Is the chirality dependent on the

directionality of previous field cycles applied to the sample?” and “Is the chirality

determined at one location during multiple field cycles statistically different than the

chirality determined from randomly sampling multiple locations on the sample?” To

answer these questions, images at 160 K were recorded in three different ways: first

cycle the field and record images of random locations, second record 5 images at one
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FIGURE 31. Independence of Chirality on Direction of Applied Field
Left Histogram showing the chirality distribution for the three measurement

methods. Right Box and whisker plot showing the three measurement methods.

location but cycle the field between each image, third in the same location as before

cycle the field from negative to positive and then to a slightly negative field between

each image, again recording 5 images.

Figure 31 shows the chirality distribution for the negative, positive, randomly

sampled locations. Also shown in 31 is a box and whisker plot showing that there

are no significant differences between the three measurements. Further, binomial

statistics were used to quantify the error which indicates that each of the three sample

means are within counting error of each other.

Evaluating equation (6.1) for a Bloch wall gives zero, so iDMI cannot explain

the degree of chirality for this sample. The existence of this high degree of chirality

indicates the presence of a bulk-like DMI term in the energy. Our results reveal that

the chirality of Bloch walls can be controlled by breaking inversion symmetry through

asymmetric layer stacking. These results necessitate a further theoretical study on

the origin of this induced bulk-like DMI.
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Chapter Conclusion

This chapter presented the results of combining the algorithm and analysis

technique described in the previous two chapters applied to a large dataset. The

results of this analysis showed that the chirality of Bloch domain walls can be

controlled by asymmetric layer stacking. This asymmetry is not predicted by theory

and necessitates further theoretical developments.

79



CHAPTER VII

3D STRUCTURE OF DIPOLE SKYRMIONS

Notes on Manuscript

This chapter ‘Determination of the 3D Structure of Dipole-Skyrmions’ is the start

of a manuscript detailing a correlative microscopy approach utilizing transmission and

surface based magnetic imaging and micromagnetic simulation to determine the full

3D magnetization of dipole-skyrmions in Fe/Gd films.

Ben and I conceived of the idea. Sergio Montoya deposited all specimens and

measured the bulk magnetic. Simon Couture ran the micromagnetic simulations.

John Unguris and Ian Gilbert collected and helped analyze the SEMPA data. Saul

Propp helped identify the Hopf character of the magnetic structure. Josh Rasink

assisted in collecting LTEM data. I collected part of and analyzed all the LTEM data

assisted in analyzing the SEMPA data produced all figures and wrote up the initial

manuscript.
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CHAPTER VIII

DETERMINATION OF THE 3D STRUCTURE OF DIPOLE-SKYRMIONS

As discussed in Chapter III, both the micromagnetic simulations and the

resonance spectra suggest a more intricate three dimensional magnetization for dipole-

stabilized skyrmions in the Fe/Gd system. A full understanding of the 3D magnetic

skyrmion texture can help build better models for skyrmion dynamics. As referenced

earlier, due to presence of magnetization with opposite directions at the top and

bottom of the sample (asymmetric Néel caps), the transmission geometry of LTEM

and RSXS do not produce any contrast indicating this magnetization. This effect is

further exacerbated in LTEM due to the fact that Néel walls and Néel-type skyrmions

do not produce LTEM contrast. This phenomenon can be understood by writing out

to first order the image intensity in terms of the sample magnetization. For an electron

traveling in the ẑ direction[97],

I(r⊥,∆f) = 1−∆f
eµ0λt

h
(∇×M(r)) · ẑ, (8.1)

where e, µ0, λ, t, h are the electron charge, permeability of free space, electron

wavelength, sample thickness, and Planck’s constant, respectively. For a Néel wall

(∇×M(r)) · ẑ evaluates to zero. This problem can be overcome by tilting the sample.

This strategy has been used to image Néel walls as well as skyrmions by several

authors[98, 99]. The image contrast is then largely caused by the core of a skyrmion,

meaning the polarity of a skyrmion can be determined but not the topology, making

it difficult to distinguish between a skyrmion and a topologically trivial bubble with
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this approach. To date there has been no direct real-space observations of the 3D

magnetic texture of a dipole-skyrmions.

Park et al. claimed to determine the skyrmion texture for a DMI skyrmion[100]

by using off-axis electron holography to measure a Fe0.5Co0.5Si sample with a stepped

thickness. Off-axis electron holography is a interferometric technique that can be

used to measure the phase shift experienced by a electron passing through sample.

Off-axis electron holography is a more demanding experimental technique than in-line

holography (TIE), but it has the advantage of being sensitive to the D.C. component

of the electron phase and is generally thought to be more accurate. Park et al. used

this added sensitivity to determine the magnetic phase shift caused by a skyrmion

as a function of thickness, which is the reason for the step-shaped sample. They

determined that the phase changed linearly as a function of thickness, and used this

to argue that this could only be the case if the skyrmion texture was uniform through

the thickness of the sample. Unfortunately, they only used the model ϕ = mt. Their

fit to the data does not look especially bad, but by eye it appears that a better fit

could be obtained by using a linear model with a constant offset. The presence of

a constant term in the linear model could indicate the presence of asymmetric Néel

caps at the top and bottom of the skyrmions that they observe. They fail to address

this point in their paper. Interestingly, this means that the presence of Néel caps at

the surface of skyrmions in DMI systems has not been ruled out experimentally.

Here we present the results of a combined approach to determine the full

magnetization based on both transmission and surface sensitive data. These

experimental results corroborate the micromagnetic and resonance data presented

earlier. Interestingly, we found based on fitting an analytical model to the
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micromagnetic simulations that the full 3D skyrmionic structure can also be described

as a fractional or cavity hopfion.

In order to determine if Néel-like domain walls were present at the surface of

the film, Scanning Electron Microscopy with Polarization Analysis (SEMPA) was

performed at the Center for Nanoscale Science and Technology at NIST. SEMPA

relies on measuring the spin-polarization of the low energy secondary electrons that

are emitted from the sample while being illuminated by an electron beam probe.

These electrons retain the spin polarization of the sample and can thus be used to

map all three vector components of the surface magnetization. These electrons will

when exposed to a magnetic field, but at different frequencies because they are not

monochromatic, making it necessary to collect images in a field-free environment.

Luckily, Sergio found that by tuning the composition and thickness of Fe/Gd, a

mixed phase of skyrmions, worm domains, and stripes could be stabilized at room

temperature and zero applied magnetic field. Samples were prepared using sputter

deposition on both Si with a native oxide layer and SiN windows for SEMPA and

LTEM respectively with the layer structure Ta 5 nm / [Fe (≈ 3.1 Å– 3.5Å) / Gd (≈

3.9 – 4.1Å)] x 120 / Pt 2nm. The platinum was used as a capping layer to allow for

more easy removal prior to SEMPA imaging, which must have a pristine magnetic

surface.

The SEMPA results are shown in Figure 32. The SEMPA data shows the

presence of Néel-like domain walls with some remnant in-plane magnetization. Based

on LTEM studies this is believed to be caused by the exposure to a slight in-plane

field prior to imaging. Similar stripes can be found in the LTEM sample in regions

where the sample was exposed to a field that wasn’t totally perpendicular to the film

(see Figure 32.c). Using LTEM, this was verified by tilting the sample to a slight
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FIGURE 32. SEMPA image of Néel-like walls
(a-c) SEMPA images of each component of the surface magnetization of a Fe/Gd

multilayered thin film. (c) LTEM image showing similar magnetic stripes, note the
bright dots in the image are caused by structural defects in the SiN substrate. (e)
Enlarged 3D visualization of a region in (a-c). Notice the Néel-like character of the
domain walls. Also, note that there is a slight remnant in-plane component to the

magnetization.

angle applying a field, removing the field and then tilting the sample back to zero.

These stripes also appear in region where the SiN window is slightly bowed. The

center, edges, and corners of the window are closer to parallel with Si chip making

them normal to the applied field, while regions between are slightly tilted receiving

some dose of in-plane field. This is similar to the effect that leads to the formation

of skyrmion bound pairs[101] discussed in Chapter III. Unfortunately, because of

this field history no skyrmions were found during SEMPA imaging. Nevertheless,

the presence of Néel caps on the stripe domains in SEMPA, and Bloch walls in the

LTEM, are in good agreement with the micromagnetic simulations.
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FIGURE 33. Comparison of LTEM with micromagnetic simulations
(a) LTEM data of a region from the same sample shown in Figure 32.c. Again, the
bright dots in the image are caused by structural defects in the SiN window. (b)
Micromagnetic simulation showing the close agreement between the LTEM and

simulated domain morphology. Width of the simulation is 2 µm.

With the surface magnetization determined by SEMPA the only thing left is

to confirm that the central thickness of the film has Bloch-type walls. Figure 33

shows the close agreement between the morphology present in the LTEM and the

micromagnetic simulation. Again remember that the presence of contrast in this

image is evidence of Bloch walls in the projected magnetization. Figure 34 also shows

a direct map determined using SITIE on a small region containing a skyrmions.

Combining this with the SEMPA results and the previously reported resonance

spectra, we believe we have sufficient evidence to conclude that the skyrmion structure

determined in the micromagnetic simulations is a close reflection of reality. This

makes this the most characterized 3D skyrmion structure.

In an attempt to further determine the 3D structure, we collected a series of tilted

images from -30◦ to 30◦ (the maximum angle for the single tilt sample holder we were

using). Prior to attempting reconstructing this tomographic dataset, a mathematical
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FIGURE 34. Bloch skyrmion
Color and vector map showing a Bloch-type skyrmion and the Bloch nature of the

surrounding walls (width of the image is 546 nm).
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model was fit to a skyrmion present in the micromagnetic data. This model was

then used to simulate the magnetic contrast expected for a tilt series. Additionally,

a ‘standard’ skyrmion with no Néel caps but with the same z and domain wall

thickness was also simulated. SITIE was then applied to these images and the x

and y components of the magnetic field were computed. These simulations and the

experimental data are presented in Figure 35. Viewing the data it is not possible

to distinguish between the two models. Even though the data is inconclusive it is

presented to demonstrate the difficulty of trying to determine 3D magnetic structure

without appealing to complementary techniques like SEMPA.

Fitting a mathematical model to the micromagnetic simulation allows us to use

this model to calculate further topological densities, such as the Hopf index. The

model used is,

m(x, y, z) = {mx,my,mz}

m(x, y, z) = {sin[Θ(ρ, z)] cos[φ− γ(z)], sin[Θ(ρ, z)] sin[φ− γ(z)], cos[Θ(ρ, z)]}

Θ(ρ, z) = 2 tan−1
[
(k(z)ρα(z)

]
γ(z) =

π

2
tanh(bγz) + cγ

k(z) = ake
−bkz2 + ck

α(z) = aαe
−bαz2 + cα

(8.2)

This equation is quite complex and warrants some discussion. First we examine γ(z)

this is the helicity of the skyrmion which now varies as a function of z. This reproduces

the Néel caps, changing the skyrmion from Néel-like at the top surface to Bloch at

the center and then Néel again at the bottom but this time with the opposite helicity.

Next there are the two Gaussian terms k(z), and α(z) these both act to reproduce
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FIGURE 35. Tomographic comparison of LTEM with two models
Simulated and experimental x and y components of the magnetic field of a skyrmion

with Néel caps (dipole) and without (‘standard’).
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the barrel like aspect that is present in the domain. The first k(z) sets the extent

of the core, while α(z) is the thickness of the domain wall. This results in a nearly

perfect reproduction of the micromagnetic simulation skyrmion.

From here we are able to calculate the Hopf index given by,

H =
Q

4π

∫ −∞
−∞

∫ −∞
0

sin(Θ) (∂ρΘ∂zφ− ∂zΘ∂ρφ) dρ dz (8.3)

The Gaussian terms inside k(z) and α(z) make this particularly difficult to evaluate

analytically, but luckily they are continuous deformation of the field and can be

dropped when calculating H. With this, H can then be calculated directly using

Mathematica with no special tricks, where the limits of integration on z are adjusted

to ±40 nm, and is independent of all fitting parameters except bγ. Substituting in

the result from fitting the model gives,

H =
tanh(112.613)

2
≈ 1

2
(8.4)

Figure 36 shows a 3D model of this fractional Hopfion, along with flow lines

which form closed paths and have integer valued linking numbers. Similar formations

have been discovered in chiral liquid crystals, another skyrmion-hosting system[102].
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FIGURE 36. Three dimensional visualization of half integer Hopfion
Dipole skyrmion visualized in 3D, showing its Hopf Fibration like character. Also

show are flow lines with integer linking numbers.
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CHAPTER IX

CONCLUSION AND FUTURE DIRECTIONS

We demonstrated a new simplified phase reconstruction algorithm that was

employed to advance the emerging field of magnetic skyrmions. The application

of this technique identified the topological defects in Fe/Gd, and allowed for the

collection of quasi-dynamic data that was used to characterize domain wall chirality.

Further, this technique was coupled with SEMPA to determine the 3-dimensional

structure of dipole stabilized skyrmions.

Much of my work has been directed at building up a sufficient code base to

analyze and visualize the magnetic information in LTEM data. With this complete,

the path is clear to develop new phase measurement techniques geared toward

magnetic imaging. Currently, fast direct electron detectors are totally changing

the way an electron microscope is used. One such application is MIDI-STEM[103],

like many new techniques it was originally marked for increasing phase contrast in

biological applications. This technique could likely be applied with no modification

to map the phase of magnetic samples. An advantage of using magnetic materials

over biological samples, is that most magnetic materials can hold up to much larger

electron doses. Further, one could imagine developing probes tailored specifically to

be sensitive to the z-component of the magnetic field. Electrons passing through a

magnetic field in the z direction experience a rotation, a MIDI-STEM probe could be

constructed to maximize sensitivity to this effect.

Adding the capability to measure all three vector components of the magnetic

induction in a TEM could will greatly enhance our ability to understand the full 3D

character topologically non-trivial magnetizations. Coupling this ability with modern
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computing power and fast direct electron detectors could have a transformative

effect on magnetic imaging similar to the effect that cryo-electron microscopy had

on imaging biological molecules[104].
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