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DISSERTATION ABSTRACT

Kyle Edward Klarup
Doctor of Philosophy
Department of Physics

September 2017

Title: Density Controlled Photon Pair Generation: a Prototype Source of Tunable
Entangled Photons from Supercritical Xenon

This dissertation describes the development and verification of a fiber based
prototype system for generating entangled photon pairs with a reduced spontaneous
Raman scattering background compared to solid-core optical fibers. To achieve this goal,
the guidance properties of hollow-core photonic bandgap fibers are combined with the
density variability and high optical nonlinearity of supercritical xenon fluid. The
dispersion properties of the system provide the proper conditions for the spontaneous
generation of entangled photons by the nonlinear process of degenerate four-wave
mixing. By altering the density of supercritical xenon in the fiber, the conditions for the

four-wave mixing can be modified to tune the frequencies of the entangled photons.
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CHAPTER |

INTRODUCTION

The generation and manipulation of specific quantum states of light is
increasingly important in a range of quantum optical technologies, including developing
quantum computers that can perform certain tasks more efficiently than classical
computers [1], providing completely secure communication [2], and enhancing the ability
to use light as for sensing and metrology [3, 4]. This is in part because photons, the
ubiquitous term for the quantum of electromagnetic radiation [5], are an attractive vehicle
for creating and transmitting quantum information over long distances because they are
relatively easy to generate, travel at the speed of light, interact weakly with their
environment, and can be manipulate with linear optics [6].

However, challenges still exist. This dissertation describes efforts to develop a
system to address some of those challenges by developing a prototype system capable of
generating correlated, entangled photons at tunable frequencies and frequency
separations. Such a system shows promise at expanding the limits and possibilities of

generating quantum states of light.

1.1 Photon Pairs
One particular use of photon pairs is as a source for single photons, which in turn
are used in quantum information processing [7, 8]. It is difficult to generate single

photons [9], and it is even harder to generate single photons deterministically [6]. And



definitively checking to see if a photon has been generated has the unfortunate side effect
of annihilating the photon.

Photon pairs provide a solution to the problem of verifying the existence of a
single photon. The measurements and annihilation of one of the photons in the pair can
be used to herald the existence of the other photon. The effectiveness of such systems to
herald the existence of a single photon is directly dependent on the correlation between
the existence of the measured photon and the existence of the heralded photon. If a
system that generates photon pairs also produces single photons with similar
characteristics to the photons in the generated pair, the correlation is decreased and
effectiveness is lost [6].

A common source of such uncorrelated photons is Raman scattering [10, 11], the
process where energy is transferred to or from the vibrational modes of the material,
shifting the light’s frequency [12]. Reducing or removing such sources of uncorrelated
photons can improve the effectiveness of photon pair generation as a source of heralded
single photons.

Systems that can produce photon pairs are also capable of translating the quantum
information from a photon at one frequency to a photon at another frequency [13]. These
systems may be used to facilitate communication between quantum systems that operate
at different optical frequencies. Again, sources of light outside of the degrees of freedom

used to generate the photon at the new frequency add noise and errors to the process.



1.2 Photon Pair Sources

Crystals can generate photon pairs though a down-conversion process where a
single, high-energy photon is annihilated and two lower-energy photons are created.
Crystals are simple to put into experimental systems, and the frequencies of the photons
generated can be tuned, to an extent, by rotating the crystal [6]. However, the frequency
of the high-energy photon is limited by the crystals structure and the lower-energy
photons are produced in multi-mode cones along different propagation paths [6].

The generation of photon pairs in silica fiber addresses some of these limitations.
The waveguide nature of the fiber results in the generated photon pairs co-propagating,
making them easier to couple through additional optical systems. Long interaction
lengths also provide for an enhancement of the linear features of the fiber and control
over the state of the produced light by modifying the length of the fiber [14]. However,
because the light is traveling through a large amount of silica, Raman scattering can lead
to the creation of uncorrelated photons that are similar in frequency and time to the
photon pairs [6]. Additionally, the parameters of fibers necessary to achieve the
generation of photon pairs from a single pump limits the wavelengths available to the
fibers to the near infrared and infrared wavelengths. The development of photonic
crystals will be described in greater detail in Chapter 3, but it should be noted that the
inclusion of a photonic crystal surrounding the solid silica core of a solid-core fiber made
manufacturing of fibers that produced entangled photons at shorter wavelengths possible
[15]. However, the issue of Raman scattering still persists.

To truly address the issue of Raman scattering, we can turn to fiber that guides

light in a hollow core [16]. These cores could then be filled with fluids that had only very



weak vibrational modes [17-21] or discrete vibrational modes [22-24]. There are two
main types of hollow-core fiber. The photonic bandgap fiber will be discussed in greater
detail in Chapter 3, and is the fiber of choice for this dissertation. The other option is the
Kagome fiber [25], which is believed to guide light through an ‘anti-resonant reflection
optical waveguiding’ [26]. These fibers allow for the guidance of a broad range of
wavelengths, but have only weak dispersion properties. As such, the dispersion of the
filling fluid dominates when determining the wavelengths of generated photon pairs,
which in turn limits them to being used with lower pressures of fluid.

This dissertation looks at how the properties of the hollow-core photonic bandgap
(HC-PBG) fiber may be combined with those of supercritical xenon fluid to produce a
system capable of addressing some of the limitations described in the above fiber

systems.

1.3 Outline

Chapters 2-4 provide an overview of the various optical properties, technologies,
and materials used to create a system capable of producing a fiber based system for
tunable entangled photon pairs. The first chapter begins with a discussion of the essential
properties and mathematical descriptions of light necessary for the work presented in the
dissertation. From the foundational equations of classical light, it develops the wave
equation for the propagating fields of electromagnetic radiation and looks at how the
fields can interact in constructive and destructive ways based on their wave-like
attributes. Both linear and nonlinear optics are explored, including the nonlinear theory

of four-wave mixing, which describes the process used to generate entangled photon



pairs in this dissertation. Quantizing the electric field and the development of the
analogous quantum equations for light is also discussed, as the generation of entangled
photons is intrinsically quantum in nature.

Chapter 3 focuses on the properties of hollow-core photonic crystal fiber
waveguides necessary for the generation of tunable entangled photons. It begins with an
intuitive description of photonic crystals and how they have been harnessed to create
fibers capable of guiding light in a hollow core. Following sections discuss the
ramifications of this guidance mechanism on the optical properties of the waveguide,
from the wavelengths of light which can be confined to the dispersion profile of the
waveguide, to how those properties may be altered by the inclusion of fluids into the
system.

Chapter 4 is dedicated to the central material of this dissertation: xenon. It
describes the properties which make it so appealing for this work. In particular, the fact
that xenon is a noble gas with a relatively high optical nonlinear response and transitions
from a gaseous state to a supercritical fluid at reasonable pressures and temperatures.

The development and design of experimental apparatuses needed to construct the
prototype source of entangled photons are covered in Chapter 5. Xenon is a rare gas, and
efforts had to be made to confine and recycle it over many experiments. This section
highlights the systems that were created to allow the xenon to be brought to supercritical
pressures, how to fill the fiber with xenon in a controllable and reversible manner, and
how to be able to optically couple to the waveguide after being filled with xenon.

Experimental designs and results are presented in Chapters 6-9. The first

experiments deal with the linear interaction of the light with the xenon filled fiber,



showing how the pressure of xenon in the fiber alters the guided wavelengths and
dispersion profile of the system. A scalar model, originally developed in [27] is shown to
hold at the densities of xenon used in this study, and that model is extended and modified
to explain the way the dispersion profile of the fiber depends on the xenon density as
well.

The last experimental chapter, Chapter 9, is dedicated to the production and
measurement of correlated photons. Initial measurements with an interferometer are
followed by detections of single photons and counting coincidences and correlations to
verify the generation of non-classical light.

Finally, Chapter 10 provides some concluding remarks on the work presented and

on future avenues that could be pursued.



CHAPTER II

MATHEMATICAL DESCRIPTION OF LIGHT

Creating, detecting, and verifying entangled photon pairs requires understanding
how light interacts with matter and interferes with itself from both classical and quantum
perspectives. This chapter provides an overview of the mathematical framework the
prototype source of tunable entangled photon pairs is built upon. While the chapter does
not try to replicate the breadth or completeness found in optical physics textbooks (see [5,
12, 28, 29] as good examples of such texts), it does attempt to provide a foundation to
understand both the physical phenomena of entangled photon pair generation from
degenerate four wave mixing and the methods used to validate said generation.

This chapter begins from the classical perspective of light as a field. From
Maxwell’s equations, a wave equation for describing the propagation and interaction of
light with matter is developed. Key descriptors of light are drawn from the linear solution
to that wave equation, and the effects of first and second order correlations between light
fields discussed. The classical view of light concludes with solutions to the nonlinear
wave equation that result in the generation of new frequencies of light from degenerate
four-wave mixing (FWM).

This chapter then switches to a quantum perspective of light, focused on the local
excitations of the electromagnetic field coined photons. The concept of quantizing the
field is addressed, and the operators and states of quantum optics developed. The
quantum version of second-order correlations is discussed and finally the generation of

entangled photon pairs from the quantum view is performed.
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2.1 Light as a Field
A classical perspective of light may be built around the idea of representing light
as a field. For this view, lights propagation and interaction with matter can be described
through the development of a wave equation. The foundations of this perspective are

Maxwell’s Equations,

V-D=p (2-1)
V-B=0 (2-2)
—0B
VXE = — 2-3
X ot 2-3)
oD
H=— 2-4
V X 0t+l (2-4)

where E is the electric field vector, H is the magnetic field vector, D is the electric flux
density, B is the magnetic flux density, p is the free charge density, and J is the free
current. When the electric and magnetic fields are traveling through a material, the fields
may interact with the atoms, potentially inducing electric and magnetic polarizations (P
and M, respectively) that modify the flux densities,

D=¢E+P (2-5)

B=uH+M, (2-6)
where €, and p, are the vacuum permittivity and permeability.

In the materials discussed in this dissertation, several valid approximations may
be made to simplify Maxwell’s Equations and lead to a wave equation describing the
propagation of the electric field. The materials used in this work are nonmagnetic,

(M = 0), devoid of free charges (p = 0), and have no free currents (J = 0). With these
assumptions, Maxwell’s equations now take the form,

8



V-D=0 (2-7)

V-B=0 (2-8)
—0B
- 2-9
VXE = (2-9)
oD
- e — 2-10
VXB=ypu, E ( )

Taking the curl of Equation 2-9, inserting Equation 2-10 and making use of Equation 2-7,
the wave equation for the electric field may be found:

1 92
VZE — —D=0. 2-11
€oc? Ot? (211

Here the speed of light is defined as: ¢ = / !

Ho€o

2.2 Linear Solution to the Wave Equation
The electric flux density contains terms for the electric field and the induced
polarization of the material. To get a wave equation purely in terms of the electric field,
the induced polarization needs to be written in terms of E. For relatively weak electric
fields, the induced polarization may be accurately approximated as a linear response to
the electric field, where the strength of the response is set by the linear susceptibility, x(l),
of the material to being polarized by the field,
P = ¢,xVE. (2-12)

Returning to Equation 2-5, the electric flux may be written as

D = (1 +xV)E = ¢n?E, (2-13)

where



n=+1+ X(l) (2-14)
is the linear refractive index of the material defined in terms of the linear susceptibility.

Finally, the linear wave equation becomes:

where we see the speed of light in the material is set by the strength of the linear
refractive index:
v="C. (2-15)
Solutions to the wave equation take the form of plane waves:
E(r,t) = Ajeitkm—o8), (2-16)
where 4, is the amplitude of the field, o is the frequency of the light, and k the wave
vector

k= ”(‘;’)“)f, (2-17)

where k may be found by solving the wave equation, and | have explicitly included the
frequency dependence of the linear refractive index, n(w). While the infinite extent of
plane waves makes them unrealistic by definition, real modes of light may be represented
by the superposition of plane waves [28]. In addition, optical fields may often be
approximated as plane waves to gain insight into how the light will behave in the system.

The plane wave description of the electric field contains terms representing
observables of the field. The energy of the field is encoded in the amplitude, 4,, and
observed in measurements of the optical intensity of the light:

I(r,t) = |[E(r,t)|> (2-18)

10



The oscillations of the field are described either by the frequency (w), wave vector (k), or
wavelength (1), or the light, where

1 2mc 219
=ik~ n@w (19)
and the wavelength depends on the refractive index of the material the light in

propagating through.

2.3 First-Order Correlations, g
With a foundation of the wave equation and plane wave solutions built, observed

interactions between different fields of light may be discussed. For example, consider the
intersection of two plane waves with equal amplitudes but different frequencies at a
particular point in space and time:

E (1, t) + Ex(1,t) = Ajeltar—o1) 4 A pilkaT=w20) (2-20)
The instantaneous intensity of such a combination of fields would then depend on a
quickly oscillating term:

I(r,t) = A;2(2 + 2cos[(ky — k)T + (w1 — w,)t]) (2-21)
Actual measurements of the intensity will be done over some amount of time, so the

measured intensity is a time average of Equation 2-21:
T
(I) = j I(t)ot = 24,°% (2-22)
0

If, however, the frequencies of the two fields are the same, then Equation 2-20 reduces

further to

E,(1,t) + E;(r,t + 7) = 2A ¢!l g-ivt p-laT (2-23)

11



where I’ve rewritten the time component in terms of the delay between the 2 fields. Such
a system has an intensity of

I =2A,%(1+ cos(wr)), (2-24)
which is constant as long as the delay between the fields, 7, stays constant. Then the
average intensity will depend on the particular value of t but can range in value from 0 to
4A,°.

When the observed intensity is high, the fields are said to constructively interfere
and when the intensity is low, the fields are said to destructively interfere. The
observation of the phenomena can be used to probe how light interacts with material.

The amount of interference between the two fields may be quantified as 1%-order
interference, g™ (1), defined as [5],

(E"(t)E(t + 1))
KIE@®)1ZXIE( + T)[2)]/?Z

where we have stopped explicitly labeling for the position and * indicates taking the

g (1) = (2-25)

complex conjugate of the field. It can be seen that 0 < g™ (1) < 1.

2.4 Mach-Zehnder Interferometer
Interferometers such as the Mach-Zehnder exploit this interference in the
amplitudes of two waves in order to measure properties of the light passage through a
material within the spectrometer. The basic design of Mach-Zehnder interferometer is
shown in Figure 2.1, where an incoming beam of light (Ey) is split by a beamsplitter and
sent along the reference (E;) and sample (E;) arms of the interferometer. The reference

arm generally has some method to controllably change its length, allowing the effective

12



optical path length of that arm to vary. The light is then recombined on a second
beamsplitter and leaves the interferometer from two ports (E; and E4). When the light it
recombined on a second beamsplitter, the changes in the optical path length manifest in

changing the value of the delay term, 7, in Equation 2-25.

=7

Motorized
Stepping
Stage

N

Figure 2.1. Diagram of a Mach-Zehnder Interferometer: The constructive or
destructive interference of the optical fields from the two arms of the detector
depend on the relative time delay set by the effective optical path lengths of each
arm and the coherence length of the source light.

For continuous wave (CW) plane waves, this interference is cyclical, where

delaying one wave with respect to the other allows the interference pattern to repeat

indefinitely, i.e,
gD (x) = e7ioT, (2-26)
such that for iwt = 0, &, 27, ...
gV @ =1, (2-27)
and when wt = 7/,,37/,, ..
g (@) = 0. (2-28)

In real systems, limitations on the bandwidth of the light, the consistency of the source

and the pulse length of the field all cause this coherent interference to diminish with
13



increased delays and set a coherence time, 7., or time beyond which the interference
effects will diminish and eventually disappear.

When operating with a non-ideal light source, the coherence time of the light will
create an envelope over the periodic interference pattern. Maximum visibility will be
observed at T = 0 and the g™ (t) value will gradually diminish for increased delay
times. For the purposes of the work presented in this dissertation, the Mach-Zehnder
interferometer will be a useful tool for measuring the speed of light in a sample placed in
one of the arms of the system.

Using a source with a very short coherence length, observing 1%-order coherence
will only occur when 7 = 0. To determine the length of the reference arm that
corresponds with T = 0, the visibility of observed fringes within the coherence length

may be quantified as,

Im X Imin
visibility = ————. (2-29)

max + Imin

With the maximum visibility in the fringe pattern observed when 7 = 0.

2.5 Second-Order Coherence, g
While the 1%-order correlation function, g™, looked at correlations in the
amplitudes of the electric fields, the 2"-order correlation function, g, quantifies the
intensity correlations between the fields. In a similar fashion to g(», a general definition
of g? for classical light may be written as [5],

(I, (ry, t) (15, £5))

2.
(I (ry, t NI (1, ) (2-30)

9(2) (ry,t; 1, ) =

14



where r and t are the space-time locations of measurement, I is the intensity of the field
at those locations, and {( ) indicates a time average.
the values of g are limited to the range [5],

1<9g® < oo, (2-31)
Experimentally observing g® relies on measuring the intensities of the separate fields.
In this work, that will be accomplished by measuring the intensities of the fields at two
different locations and observing how g varies for different time delays. A typical
measurement might be as shown in Figure 2.2, where the 2"-order correlations of a
single optical beam are measured by splitting the beam with a beamsplitter and

measuring the intensities correlations of light along the two paths [30].

I
50:50 I
1
Beam- 7 )-
splitter (---.T_§
Iy

Figure 2.2. Diagram of a 2"%-Order Correlation Measurement: a simple cartoon of
how a g® (t) measurement could be performed on a single field with optical
intensity I, where the time delay, , between detections is set by the location of the
detector long path 1.
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In a scenario like the one shown in Figure 2.2, we can simplify g to:

_ ({L(0)()

&) =77
R ONTAG)

(2-32)

where T = t; — t, is the difference in time between two detections and the spatial

locations r; and r, are accounted for by the subscripts on the intensities.

2.6 Classical Nonlinear Wave Equations
All the previous work assumed a linear induced polarizability response to the
optical field, which was sufficient to describe the coherence measurements expected from
interference between the amplitude and intensity terms of a classical field. At higher
optical intensities, the induced polarization no longer depends linearly on the field. The
resulting nonlinear contribution opens the possibility for interactions between multiple
fields of different frequencies, mediated by the presence of the nonlinear material. This
will eventually allow for the generation of entangled photons.
The induced polarization, P, may be generalized as a power series to account for
this nonlinear response to strong electric fields:
P = € (xVE + xXPEE+®EEE+"), (2-33)
where xU) is the j+1 rank tensor describing the j order susceptibility.
In symmetric materials like glass or noble gases, the 2" order nonlinear
susceptibility, x®, contribution to the nonlinear response is zero, and the leading
nonlinear contribution comes from x®) [12]. Truncating the expansion of the

polarizability there,
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P = €,xVE + €,x® EEE
(2-34)
= PMW + pB),
The electric flux density may be written in terms of the linear flux and the nonlinear

correction term to the polarizability,

D = €,E + €oXVE + €, x®EEE

(2-35)
= D(l) + P(3)’
and the wave equation can be rewritten with a nonlinear correction term:
2 02 1 02
pp_M@ 0 o 10 e (2-36)

2 9t2 ey at?
Thanks to this nonlinear optical response, it is possible to generate new frequencies of
light in the material by the process of degenerate four-wave mixing (FWM), which can
be seen by solving the nonlinear wave Equation 2-36, as shown by Wang et al. in [12]. In
degenerate FWM, a single CW pump frequency interacts with a material confined in a
length of fiber and produces new light under the conditions of energy conservation,

2w3 = w1 + Wy, (2-37)
and phase conservation,

2k; = ki + ky, (2-38)
where the subscripts indicating the pump (3) and sidebands (1,2) of the degenerate FWM
process.

To see the importance of energy and phase conservation in a degenerate FWM

scenario, let the total electric field comprise of three classical components [31]:

E(t)=E (r,t)+ E,(r,t)+ E5(,t). (2-39)
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I will assume all three fields are overlapped and co-propagating in the same direction, z.
Then using separation of variables, field becomes:

E;i(r,t) = Ui(x,y)A;(2)e™*~*i* + c.c. (2-40)
where the z-dependence is separated from the transverse dependence, loss is neglected,
and “c. c.” indicates the complex conjugate term.

Assuming the transverse components for each of the three modes are identical,
solving the nonlinear wave equation for the combined field results in three equations for
the amplitudes of each field:

dA,(2) _ Biw,2x®)

2 2k.c? (2|A3|2A1 + |A3|2A2*@i9) (2-41)
1
dA,(z) 3Biw,*x® .
= (214574 + 14574y e ) (2-42)
2
dA;(z) 3iws*x®
DS =
3
Here,
0 == (2k3 - kl - kz)Z - (20)3 - (1)1 - a)z)t, (2'44)
and recall that,
gy = LD (2-45)
c

The equations for the amplitudes of the new sideband wavelengths (4, and A,) are
coupled. To uncover the evolution of the amplitudes as a function of z, Equation 2-45
may first be solved,

A3(2) = A3(0)e?®), (2-46)
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with

Bws2x®
9(2) = ——5 45|’z
2kesc? (2-47)

= VPSZ!
where P; is the average pump power and y is the nonlinear coefficient defined in terms of
the nonlinear refractive index n®, which itself is proportional to 3,

n@ew

y=2 (2-48)
CAeff

The second term in Equation 2-44 may be dropped due to energy conservation (2w; —
w, — w, = 0), and the resulting coupled evolution equations for the amplitudes of the

new frequencies may be written as

dA .
d—; = iy(2P;A; + P3A,"el(2YPa—bi)z) (2-49)
da," .
dZZ = —iy(2P3A,e"@rP=80z 4 op A %), (2-50)
with
Ak = kl + kz - 2k3 (2'51)

being the phase mismatch of the optical fields.
To solve these equations, new variables may be introduced to describe the

amplitude evolution of the sideband of the degenerate FWM process,
B; = Aje™?¥PsZ (j = 1,2) (2-52)

yielding,
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dB ;
d_Zl = 2iyP;B,"e —i(Ak+2yP3)z (2-53)

dB,”"
dz

= —2iyP;B,e!(Bk+2yPs)z, (2-54)

Looking at these last 2 coupled equations, it becomes apparent why phase matching is a
second required feature of generating meaningful signals from four wave mixing. Under
most circumstances and for most frequencies of light, the term in the exponentials of
Equations 2-53 and 2-54 may be substantial. This would cause the amplitudes of fields
B;and B, to oscillate around very small values and never grow to a macroscopic value.
Let me define this term as the phase matching of the system, k, as
K = Ak + 2yP;
(2-55)
=ky + k, — 2k3 + 2yP;.

If, however, k ~ 0, then this oscillation goes away and the amplitude of the light is free
to grow to measurable values.

In the case of perfect phase matching, x = 0, the gain of the system a distance z

through the material can be found by comparing the field amplitude of 1 sideband at the

start of the system to the strength of the field in the other sideband:

2

Bl(z) — |)/P3Z|2. (2'56)

B,(0)

From this, we see that quadratic growth is expected for the gain of the intensity in the
signal and idler frequencies when either the pump power is increased, the nonlinear
coefficient increases, or the interaction distance z increases. This is only true under the
assumption of a non-depleting pump (i.e. that P5 stays constant throughout the length of

the fiber).

20



Because this derivation has been done for classical fields, the gain when there are

no initial fields B; and B, is ill-defined. A quantum view is needed in that case.

2.7 Quantizing the Electromagnetic Field

A full development of the quantum picture is put forth in [5], and stems from the
idea that electromagnetic radiation is quantized. Thinking of these quanta as little
particles of light termed photons is problematic [5]. Still, the term photon is so engrained
in our way of discussing light that | will adopt it like everyone else has done.

Quantizing the electric field may be done by letting the fields be represented by
operators and the addition or removal of quantized amounts of energy being carried out
by creation and annihilation operators. These operators act on eigenstates of the
electromagnetic field, called number states, |n), where n indicates the number of photons
of a particular spatial mode of the state.

A single photon may be added or removed from a number state by means of

creation and annihilation operators (af, a ) such that,

atn) =vn+1jn+ 1) (2-57)
aln) = Vnln - 1). (2-58)

A photon number state with one photon may then be written in terms of a creation
operator acting on the vacuum,

|1) = at|vac). (2-59)
The energy carried in a quanta of the electric field depends on the frequency of the field.
To account for this in the number state representation of light, let me add a frequency

dependence,
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|1,) = at(w)|vac). (2-60)
For classical fields, a realistic representation of light is built by superimposing many
plane waves. The same thing must be done when quantizing that field. The result is that

the photon state could cover a range of frequencies,
1) = | doy (@) @plvac), (2-61)

where f(w;) contains information about the frequency distribution or spectral amplitude
function of the photon, where the single frequency, w, in Equation 2-60 becomes the

central frequency of the distribution.

2.8 Quantum g®
With a quantized field, the 2"-order correlation measurements will change.
Consider the event of a single photon entering a system like that shown in Figure 2.2. The
detection of that photon by either detector annihilates the state, leaving only vacuum. So
a photon should never be measured by both detectors simultaneously and g®® should be
zero—in violation of the inequality developed with classical fields and expressed in

Equation 2-33. We can redefine g® for quantized light in a single mode as [5],

g?@ =222 <aTaC;f , (2-62)

where it can be shown the value of g will depend on the number of photons being
measured,

An? — (n)
(n)z -

gP@ =1+ (2-63)

This yields a different inequality,
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1
1=t S g@ (). (2-64)

This inequality returns the expected prediction for a single photon in the system: it won’t
be detected by both detectors.
Experimentally, we can write the value of 2"-order coherence based on the

probability of detections by detectors as,

P
) — AB

where P, is the probability of detecting coincidences between both detectors, P, and Pg
are the probabilities for the individual detectors to detect a photon, and f defines the
frequency that photons are introduced to the system.

A slightly modified design can remove the need to know the probabilities of the
detectors and the frequency at which photons enter the system. If the photon entering the
system is produced by a source along with another photon, the second photons may be

used to herald the existence of the photon in the detection system as shown in Figure 2.3.

. C
50:50

Beam- >-

splitter €=——— >
T
C
- Source

Figure 2.3. Diagram of a Heralded 2"-Order Quantum Correlation Measurement:

a cartoon of how a g® (t) measurement could be performed on a single photon
from a pair of correlated photons.
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With such a design, a heralded g'® measurement may be performed where

PppcPc

@(7) = : (2-65)
g PacPac
or in terms of the counts from the detectors:
NagreN,
@(7) = _ABCTC : (2-66)
g NacNac

where different probabilities of detection between the detectors cancel from the

numerator and denominator [32].

2.9 Quantum Picture of Degenerate FWM
In a quantum picture of degenerate FWM, two photons from the pump are
annihilated to create a photon in the signal sideband and a photon in the idler sideband.

This state may be written as,

1p) = Te~tho @A) | pump) @ [vac), (2-67)

where T is the time-ordered operator and the Hamiltonian is defined as
L ~ -~ ~
A = j dzyES (2, OB (2,0 B (2, B (z,0), (2-68)
0

The state |r) can be used to find the state where 2 photons are generated by degenerate
FWM by expanding the exponential around the vacuum state and keeping only the term

related to the creation of two photons,
2) = —ie | de’ A lpump) @ vac). (2:69)

Dropping normalizing terms yields,
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© L
W) = | de [ dzyEOG0
— 00 0
f dw a,e~ kpz=pt) f dw' a,e kpz=wpt) (2-70)
0 0

f da)"a;r ei(ksz—wé't)f do'" a;l'ei(kiz—wl{”t)lpump> ® |vac).
0 0

Energy conservation appears from the time integral,

124

j dt e(@ptwp-os—w )t — 218 (wp + wp — wf — wi"). (2-71)

The pump is in a coherent state, so the annihilation operators produce amplitudes,

a,0a,|pump) = a, (cop)ap (co;’ +w;" — a)p), (2-72)

and the integration over the length of the fiber results in a phase matching condition,
L . 12} n L n nr
f dze—L(Ak(w,w @ ))z — sinc [g Ak] elfAk(w’w ,® )’ (2-73)
0

Where,
Ak(w, 0", 0"") = ky(w) + kp(wg’ + w;" — wp) —ks(w;) — ki(w{"). (2-74)
Limiting the pump photons to have the same central frequency, we find the joint spectral

amplitude of the 2 photon state to be,

f(ws, w;) = f dw ap(wp)ap(wg’ + 0] — wp)
(2-75)

L L n nr
xsinc [EAk(w,a)”,w”’)] R CEC

Depending on the particular parameters of the system, the joint spectral amplitude may or
may not be factorable. If factorable, f (wi, wj) may be separated into individual

probability amplitudes for each photon,
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f(wy ;) = gi(w) g;(w))- (2-76)
So after heralding, the remaining photon still exists in a pure state useful for
quantum information applications [7, 8]. If f (w;, w;) is not factorable, the photons
cannot be described individually, and their entangled nature may be used in many

applications [33].
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CHAPTER IlI

HOLLOW-CORE OPTICAL FIBERS

The previous section provided the mathematical framework for how entangled
photons can be generated by degenerate four-wave mixing (FWM), highlighting that the
efficient generation of the fields requires a high nonlinearity of the material, long
interaction lengths, and high peak pump powers. A waveguide can help achieve the long
interaction lengths and high peak pump powers while providing the necessary phase
matching for degenerate FWM. To create a system capable of tunable control over the
frequencies of the generated correlated photons, the unique properties of a particular type
of waveguide, the hollow-core photonic bandgap fiber, will be exploited. This chapter
will serve as an overview of the waveguide, highlighting how the hollow-core allows a
filling fluid to provide the nonlinearity and how the photonic crystal surrounding the core
can be used to tune the properties of the fiber.

The underlying concept for hollow core photonic bandgap (HC-PBG) fibers can
be traced to the 1970s in a series of papers by Yeh and Yariv [34-36], where the idea of
using a pattern of materials of different refractive indices to form a waveguide was
developed. A physical realization of these fibers was performed by Cregan a few decades
later [16]. After those initial papers, the field developed, with the theory of guidance
being refined [37, 38], fabrication techniques improved, and whole new methods for
guiding and trapping light being developed [37, 39].

The mechanism used by these fibers, in particular HC-PBG fibers, is vital for

understanding how these fibers may be used to produce frequency tunable entangled
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photons by four-wave mixing (FWM). This chapter serves as an overview of this

mechanism, highlighting the aspects most relevant to the goal of the dissertation.

3.1 Brief Overview of TIR
The guidance method of HC-PBG fibers differs dramatically from standard, solid
core fibers. Briefly, traditional fibers guide by total internal reflection (TIR) (see Figure
3.1), which occurs when light in a high refractive index material (like glass) encounters

an interface with a low refractive index material (like air) at some incidence angle 6.

np cladding

ny A
core

ny cladding

Figure 3.1. TIR in Solid Fiber: A cartoon of the guidance mechanism of a standard,
solid core fiber. Light in the higher refractive index core is reflected by total
internal reflection.

If the angle between the normal of the interface and the propagation direction of the light
is large enough, Snell’s Law tells us the light will be reflected back into the high
refractive index material:

NeoreSiN(Ocore) = ncladdingSin(ecladding)- (3-1)

Solving for the ratio of core to cladding refractive index,

Neore _ Sin(ecladding)

ncladding Sin(ecore)

(3-2)

)
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and looking at the limiting case where 8.;444ing = 0, it can be seen that TIR only holds

when,

Neore
—2>1. (3_3)
ncladding

Hollow-core fibers, by definition, have a low refractive index core. As such, TIR
is not a viable mechanism for confining and guiding light. Instead, these fibers must rely
on other methods of confining light to the fiber’s core. While several mechanisms exist
[40], HC-PBG fibers rely on a photonic bandgap created by a photonic crystal

surrounding the hollow core.

3.2 Photonic Crystal and Bragg Scattering
A photonic crystal consists of a periodic array of refractive indices, which
influence the light traveling through the crystal [41]. Mathematically describing such a
system involves solving the wave equation for a periodic system with variable refractive
indices over a range of frequencies and wave vectors [41]. Nnumerical methods have
been developed for this [37, 38, 42], but an intuitive understanding of the guidance
mechanism can be developed by thinking about Bragg scattering [36].

Bragg scattering is the occurrence of light scattering off of the crystalline
structure of a material such that the waves interfere constructively in some common
direction [43]. Consider a steady state plane wave that is normally incident to an array of
atoms in 1 dimension as shown in Figure 3.2. At every atom, some amount of the light is
reflected such that the total reflected wave may be written as

E,

) = TEge i ketkd) o g pro—i(kz2kad) 4 o pr g —ilkz43kd) (3-4)
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— rEOe—Lkz(e—Zlkd + e—21kd + e—21kd + )

where 7 is the reflection coefficient from the interaction with the atom.

o O © O O O O

E'(z) = rEje %

Figure 3.2. 1D Bragg Scattering: A representation of 1-dimensional Bragg scattering
off elements spaced length d apart. When the reflected waves add together
constructively, the incident light is effectively reflected.

If the wave vector of the light is such that the Bragg condition (k = YZ—Z) IS met,

for a semi-infinite material, no matter how small r is, the light will always be reflected. A
1-dimensional photonic crystal operates in a similar way, where instead of atoms in a
lattice,onel period of the photonic crystal reflects some portion of the incoming light, as
shown in Figure 3.3 (with the similarity to Figure 3.2 highlighted by the imaginary atoms

shown.

Nog Ny, [ng, |, [Nno, |1, [N

B = Eoikz | |do |di |do [dy |do
(Z) = Ep€ 1~ 1~ T~ ~
S Tl { ! e \
1\ |/ (\ J L’ l\ J see

& <

E'(2) = rE ek

N

Figure 3.3. 1D Photonic Crystal: A cartoon of a 1-dimenstional photonic crystal with
the atomic Bragg grating of Figure 3.2 overlaid. If the total reflected waves from
each optical unit add constructively, light incident will be effectively reflected.
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Just as in the case with the atoms, if the reflection from each unit of the photonic crystal
is such that the reflected waves add constructively, a semi-infinite photonic crystal will
exhibit perfect reflection.

Qualitatively, the photonic crystal surrounding the core of a HC-BBG fiber may
be thought of as a Bragg mirror encircling the core and serving to reflect light with wave
vectors that are close to the Bragg condition. But quantitatively, this view runs into some
difficulties. In a more realistic case of a 2-dimensional photonic crystal with a more
complex geometry and light not completely perpendicular to the crystal surface,
additional considerations like the polarization of the light and the range of angles of
incidence must be considered [44]. Finally, to go from a photonic crystal with an outside
wave incident on its surface to a waveguide transmitting light through a core, a defect
will need to be added to the photonic crystal that allows for such an occurrence [35, 41].

Bloch-wave solutions found iteratively for the photonic crystals periodic structure
can achieve this, and have shown an optimal design requires larger volumes of the low
refractive index material to expand the range of wavelengths that can be confined in the
core and a triangular lattice light design for the high refractive index material to best
reflect both TE and TM polarized light [41, 42, 45]. The result is a HC-PBG fiber with a

photonic crystal as shown in Figure 3.4.
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Figure 3.4. HC-PBG Fiber Face: A SEM image of the face of a HC-PBG fiber
produced by Dr. Fetah Benabid and imaged at the University of Oregon, showing
the 10um core surrounded by a 2-dimensional photonic crystal comprised of large
low refractive index hollow holes and narrow high refractive index connected fused
silica struts.

While this work is vital for the construction of HC-PBG fibers, the conceptual
model above is probably sufficient when treating the fibers as pre-manufactured

waveguides.

3.3 Altering the Guidance Window by Changing Refractive Index
Because the photonic bandgap depends on the geometry of the crystal and the
refractive index values of the crystal’s materials, modifying any of those properties will
affect the bandgap and what wavelengths of light can be effectively guided by the fiber.
It is relatively simple to change the refractive index of the low refractive index
element of these fibers by replacing the air with some fluid [26], which has led to
numerous experiments exploiting hollow core fibers and waveguides to study nonlinear

optical interactions with fluids [19, 39, 46-49].
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A scalar model was developed to predict the new guidance window of the fiber

after changing the refractive index of the photonic crystal [44]:

2 L2
T= 2 [P Tuid (3-5)

ng2 —ny?

Here A represents the wavelengths of light in the guidance window, n, is the refractive
index of the silica in the photonic crystal, n, is the initial refractive index of the air holes
of the photonic crystal, ng,q is the refractive index of the filling fluid, and A represents
the wavelengths of light in the new guidance window. While strictly only true for scalar
fields, its accuracy has been shown for fibers filled with heavy water [27].

From Equation 3-5, it can be seen that as the refractive index of the fluid
increases, the wavelengths in the guidance window of the fiber will decrease.
Furthermore, this shift can be seen as a mapping of the old wavelengths to the new ones.
For example, if Ao represented the center of the guidance window, the application of
Equation 3-5 would give the central wavelength of the shifted guidance window, 2.

The ability to change the wavelengths guided by the HC-PBG fiber makes it an
interesting candidate for a system meant to have tunability over the frequencies of light
generated by FWM. By changing the refractive index of the fluid filling the fiber, new

wavelengths of light are potentially made available to the nonlinear process.

3.4 Dispersion of Light in the Guidance Window
In addition to being able to be filled with fluids and have a tunable guidance
window, the last feature of HC-PBG fiber that makes it so appealing for this type of work
is the dispersion profile of light in the window. To achieve efficient four-wave mixing
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(FWM) as described in Chapter 2, the electric fields of the light must obey both energy

and phase conservation. Recall that the wave vector k is defined as,

Ky = L (3-6)

c
where the subscript, j, distinguishes the wave vector of the different fields involved in the
degenerate FWM process. The phase matching condition requires the wave vectors obey

ki +k, —2k; + 2yP; = 0, (3-7)
along with energy conservation:

20)3 - (1)1 - CUZ = 0 (3'8)

Combining the above, and assuming perfect phase matching:

2 n3 (wc3)w3 ! (0;1)601 _ N, (w2)w; — 2yP,. (3-9)

Assuming for a moment the pump power is very weak, such that 2yP; =~ 0, this
simplifies to,
2nz(w3)wsz — ny(w1)wy — Ny (wz)w, = 0. (3-10)
The simplest way to achieve both phase and energy matching would be to have
ny(wq) = ny(w;) = nz(ws). (3-11)
However, this isn’t normally found in nature. Instead, bulk materials exhibit normal
dispersion, where the phase velocity of lower frequency (longer wavelength) light travels
faster through the material than higher frequency (shorter wavelength) light.
The addition of a waveguide can address this issue by modifying the dispersion of
light. Within the HC-PBG fiber’s guidance window, the shorter wavelengths experience

normal dispersion. However, at longer wavelengths the dispersion becomes anomalous
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[50]. In this domain, longer wavelengths (smaller frequency) light travels slower than
shorter wavelengths.

Intuitively, this agrees with what would be expected by looking at the Kramers-
Kronig relations for a structure light a HC-PBG fiber [51], where light outside of the
guidance window can be thought of as being absorbed by the fiber. In such a system, the
transition from absorbing to guiding at the short wavelength edge of the fiber would
result in normal dispersion while the transition to absorbing at the long wavelength edge
would correspond to anomalous dispersion.

The total dispersion for a fluid filled HC-PBG fiber can then be thought of as
having 2 contributions, the material and waveguide elements [12]:

i, =n; + An,. (3-12)

The phase matching condition may be rewritten as,

AkM + AkWG = 2)/P3, (3'13)
where,
Aky, = 2 n3(w3)ws _ ny (w1)w, N (wz)wz, (3-14)
c c c
and

Ang(w3)ws _ Any (wq)wq _ An, (w,)w,

Aky =2 (3-15)

Cc Cc Cc

When the total dispersion of the system is near 0, these terms allow phase matching to

occur for select sideband frequencies, as shown in the example Figure 3.4.
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Sideband Frequencies for
Degenerate Four—-Wave Mixing

= Phase matching solutions
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Figure 3.5. Phase Matching Solutions to Four-Wave Mixing: An example of
expected frequencies of the sidebands satisfying Equations 3-8 and 3-15 for
degenerate four-wave mixing when the pump is close to the zero dispersion
frequency.

3.5 Birefringence

To construct these fibers, draw towers are used. Large preforms of the fiber,
measuring several centimeters across, are mounted at the top of the tower and heated.
Gravity pulls the glass to the bottom of the tower, where the fiber is spooled [37]. During
the process, small asymmetries often develop in the core, leading it to become more
elliptical than designed. This ellipticity results in the fibers becoming birefringent:
polarized light along one axis of the fiber will travel at a different speed than light
polarized along a different axis. If the fiber is polarization maintaining, this opens the
possibility of additional phase matching opportunities by cross phase matching four-wave

mixing [52].
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3.6 Surface Modes

A final note on the use of photonic crystals to confine light to the hollow core of a
fiber: while modes in the hollow-core at the center of the photonic fiber are excited to
propagate light through the fiber, surface modes may be excited as well. These modes
rest at the interface between the photonic crystal and the core and can be distinguished
from core modes by having the majority of the energy stored within the high refractive
index walls of the core [53].

Surface modes tend to be fairly lossy, as energy is coupled to leaky modes in the
photonic crystal and out of the fiber [53]. For certain frequencies of light in the guidance
window of the fiber, there can be effective coupling of energy from the core mode to
these surface modes. This leads to regions of the guidance window created by the
photonic crystal which are unsuitable for long range transfer of light, as the energy
couples to the surface mode and from the surface mode out of the fiber.

The existence of these surface modes depends on the termination of the photonic
crystal around the core of the fiber [41]. By altering or removing the walls of the core,
these surface modes may be reduced or eliminated [53, 54], which has proven critical for
this work, as calculations done by our collaborator Prof. Fetah Benabid’s group indicated
coupling between core and surface modes would dominate the guidance window with

high density filling fluid.
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CHAPTER IV

XENON

It was shown in the previous chapter that changing the refractive index of the air
holes in the photonic crystal of a hollow-core photonic bandgap (HC-PBG) fiber changes
the wavelengths of light guided by the fiber and the dispersion properties of the fiber. A
fluid with a large range of refractive index values could then be used to create a tunable
system for optimizing the guidance properties of the HC-PBG to produce entangled
photon pairs at desired frequencies.

Additionally, the fluid needs to have a strong enough nonlinear response to have
meaningful numbers of photon pairs generated by degenerate four-wave mixing (FWM).

As shown in Chapter 2, the classical gain for FWM is defined as

= lyPsz|?, (4-1)

with

IO

y - - ) (4-2)
CAeff nCAeff

where the nonlinear coefficient y is dependent on the nonlinear refractive index of the
core (n®), the frequency of the pump (w), the speed of light (c), and the effective
transverse mode of the pulse in the material (As5). The nonlinear refractive index may

be written in terms of the nonlinear susceptibility of the material by,

(3)
n® — XT (4-3)
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So for light confined to the core of the fiber, interacting with a material with a relatively

large x® is necessary for generating strong enough signals to be easily detected.

4.1 ldeal Filling Fluid

A fluid with a high nonlinearity and a variable density would then be best for
creating a system with tunable control over the generation of entangled photon pairs in
the sideband frequencies of degenerate FWM. Liquids have high nonlinearities, but the
density of liquids is very hard to change. The density of gas may be easily altered by
changing the pressure, but the nonlinear response of gases is weak compared to materials
like fused silica [55].

Supercritical fluids combine the high nonlinearity of liquids with the
compressibility of gases. By working with a supercritical fluid, the guidance properties of
the hollow-core fiber may still be tuned by varying the density of the filling fluid while
the nonlinearity of the fluid in the core is sufficiently large to allow nonlinear optical
processes like four-wave mixing to take place.

Finally, the guidance window of the fiber is relatively narrow: a few hundred
nanometers. In order for the system to be useful for generating entangled photons, other
nonlinear sources of light should be suppressed. One of the largest, and a partial

motivator for this work, is Raman scattering.
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4.2 Raman Scattering

A derivation of the generation of Raman light may be found in [12], but a
conceptual explanation might be useful at this stage. Light is constantly interacting with
the atoms of the material it is traveling though. This interaction is observed in the reduced
speed of light in material, compared to the speed of light in vacuum. Rarely, the photon
can participate in a scattering event that transfers some of the energy of the photon to a
vibrational mode of the material and results in a photon with less energy [28]. This is
Stokes scattering and, depending on the available vibrational modes in the material, can
reduce the energy in the light by discrete amounts (hydrogen gas [56]) or in a continuum
(fused silica [12]). The opposite may also occur, named anti-Stokes scattering, where
energy from a vibrational mode is added to the emitted light, but this is less likely at
room temperature materials [28]. The amount of light scattered by this process is set by
the number of photon-atom interactions. As such the intensity of light generated by this
process is dependent on the average power of the light source.

Stokes scattering is particularly noticeable in fiber systems, where the high
intensity pump light is interacting with the silica-glass material of the core of the fiber
over long distances [12]. If the frequencies generated by Stokes or anti-Stokes scattering
overlap the frequencies produced by a process light FWM, it is difficult to distinguish
between the two. Any desire to see correlations between photons will be hampered, as the
Raman light will appear as noise in the same frequency band as the desired signal. To
avoid this issue, systems for producing entangled photons from four-wave mixing in solid
core fibers normally are designed to generated the photon pairs at frequencies

substantially different than the pump [12] or very close to the pump [57] to reduce the
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overlap between the generated sidebands from the FWM and the Raman light produced
by Stokes scattering from the pump.

The relatively small guidance window of a hollow-core photonic bandgap fiber
means light generated from Raman scattering can occupy large sections of the available
frequencies for generating light from FWM. An ideal material for filling these fibers
would then, in addition to have a strong nonlinear response and wide range of accessible
refractive index values, be incapable of generating Stokes and anti-Stokes light from
Raman scattering.

The noble gases have just this sort of property. Singular atoms with full electron
shells, these gases have no rotational vibrational modes and therefore no mechanism for
Raman scattering [17]. And while a very small concentration of xenon atoms form
diatomic molecules, the Raman spectrum from these is expected to be both minimal and

have narrow spectral overlaps with the guidance window.

4.3 Noble Properties

Of the noble gases, xenon has the largest nonlinear optical response while being stable

(e.g. not radon), as shown in Table 4.1 [58].
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Table 4.1. Nonlinear Polarizability of Noble Gases: Measurements of the nonlinear
polarizability of noble gases showing xenon the most nonlinear by almost a factor of
3 [58].

Helium Neon Argon Krypton Xenon
1@ | 3.43 6.18 80.60 219.52 644.84
m? m? m? m? m?
X 10_28% X 10_28F X 10_28% X 10_28F X 10_28F

Because of this high nonlinear response compared to the other noble gases, the
concentration of xenon fluid necessary to provide a viable nonlinear material will be less
than that of the other gases, making it an easier system to achieve.

Xenon is able to provide both a strong nonlinear response and a wide range of
refractive index values thanks to its transition from a gas to a supercritical fluid. This
transition is readily accessible with standard laboratory equipment, with a critical point of
16.6 °C and 57.6 atm. Operating at room temperature, it is possible to increase the
pressure of xenon to traverse through the gaseous stage and enter the supercritical regime,

as can be seen in Figure 4.1.
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Figure 4.1. The Phase Diagram of Xenon: A cartoon of the phase diagram of xenon
highlighting the critical point at 16.6 °C and 57.6 atm.

During this transition, the relationship between the density of xenon and the
pressure of the xenon becomes highly nonlinear, as shown in Figure 4.2. At low
pressures, gases obey the ideal gas law,

PM = pRT, (4-4)
where P is the pressure, M is the molar mass (for xenon: 131.3 g/mol), p is the density, R
is the ideal gas constant, and T is the temperature. But, as the xenon fluid approaches the
supercritical regime, the density of xenon increases at a much greater rate with respect to
pressure. Realistic values for the xenon density as a function of pressure were given by

NIST measurements [59].
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Figure 4.2. Xenon Density Equation of State: A plot of the xenon density as a
function of pressure from the realistic equation of state compared to the density of
an ideal gas.

Because both the linear and nonlinear refractive index of xenon depend on its
density [60], this enhancement of the density of the xenon during the phase transition is
the key feature that makes xenon such a good choice of filling fluid for generating
tunable entangled photons in the hollow-core photonic bandgap fiber. At supercritical
pressures, the nonlinear refractive index of silica approaches that of fused silica while
also offering substantial control over the guidance properties of the photonic crystal [18].
Even at 950 psi, the nonlinearity is nearly 250 times greater than at standard temperature

and pressure (STP), and becomes large enough to allow for the generation of observable
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fields from four-wave mixing given the equipment and constraints of the lab were the
work was performed.

The refractive index of xenon at a given wavelength and density of fluid may be
found by solving a Lorentz-Lorenz equation developed by modifying the dilute-gas

Sellmeier equation [60],

nye)2—1 (2 0.26783 0.29481
= = (—) 0.012055 T+ T
ngg(M?2+2 \3 43.741-1/,, 57480 -1/,
(4-5)

, 50333 ) (pXE)
112.74 — 1/A2 po /'’
where py is the density of xenon, p, is the density of xenon at STP, nyz(A) is the
wavelength dependent refractive index at that density, and A is the wavelength in
microns. For reference, the refractive index of xenon as a function of wavelength at STP

is plotted in Figure 4.3
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Figure 4.3. Xenon Phase Refractive Index: Plot of the wavelength dependence of the
phase refractive index of xenon at standard temperatures and pressures (STP) from
Equation 4-5. The reduction in refractive index with increased wavelength
demonstrates normal dispersion, and the gradual flattening of the dispersion curve
with longer wavelengths is typical of bulk materials.
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Coupling this with the scalar theory from Chapter 3, it can be shown (see Chapter
6) that the guidance window of a HC-PBG fiber can be substantially shifted is
wavelength by varying the xenon pressure within the fiber. Shifting this window is the

first step towards creating a system that can produced tuned entangled photons.
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CHAPTER V

PROTOTYPE DESIGN

Xenon is extremely rare in the atmosphere, representing just .0000087% of its
chemical composition [61]. Relatedly, xenon is expensive and sold in commercial tanks
at pressures ranging from (around 40-60 atm) below those needed for this work (80-90
atm). To be able to reach desired pressures of xenon and to recycle and reuse xenon for
multiple experiments, some effort was made to create a closed system for the hollow-core
photonic bandgap (HC-PBG) fiber. To accomplish this, an apparatus was built to hold the
supercritical xenon and control the pressure of xenon in various sections of the system by
using liquid nitrogen (LN>). This containment system was connected to cells designed to
surround the HC-PBG fiber and bathe it in xenon, allowing the fluid to flow into the
hollow sections of the fiber from either end. This chapter discusses the design of these

elements.

5.1 Xenon Containment System
In order to be able to effectively store and reuse xenon for filling various fibers, a
closed system was designed that made use of xenon’s melting point being warmer than
the temperature of liquid nitrogen [62]. The system needed to be able to evacuate air
from sections exposed the atmosphere when a fiber was installed into the system and also
effectively control the density of xenon at the fiber by regulating the pressure in the cell

holding the fiber.
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To accomplish these goals, a system with 3 main compartments and numerous

valves was built, as shown in Figure 5.1.

Compartment 1 Compartment 2 Compartment 3
r - - - - - 1 - - -/ —

A

Figure 5.1. Xenon Containment System: Diagram of the xenon containment system
used to extract xenon from a low-pressure commercial tank, store xenon between
experiments and during fiber evacuations, and transfer xenon to the cell containing
the hollow core fiber

Initially, the system was evacuated via a vacuum pump connected at (G). Then,
xenon gas from a commercially purchased tank (A) could be drawn into the system.
Compartment 1 consisted of a small volume (D) and a series of valves (B; and B;)
allowed for discrete amounts of gas to be introduced into the system while a pressure
gauge (C) could be used to monitor the pressure of gas in either the commercial tank (A)
or the rest of the system.

Once the pressure of xenon in the apparatus was equal or greater than the pressure
of xenon gas left in the commercial tank, the pressure in compartment 2 could be reduced

by placing the U-tube (F) in LN>. This froze the xenon, lowering the pressure and
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allowing the filling to resume. An emergency relief valve (E) insured the xenon never
accidentally reached a dangerous pressure. Once the desired amount of xenon had been
drawn into compartment 2, valve B; could be sealed, the LN, bath removed, and the
xenon allowed to warm to room temperature. The third compartment contained chamber
(H), which allowed for discrete units of xenon to be transferred to the fiber cell though
valve (Bs) in a similar manner to how volume (D) was used in compartment 1.

Should the fiber need to be replaced, the xenon could be drawn back into
compartment 2 via the LN, trap (F), the valve (B3) sealed. The remaining portion of the
system could then safely break vacuum while the fiber was being replaced. Once
completed, the vacuum pump at (G) was used to evacuate the rest of the system.

If the xenon in the apparatus was not at a sufficient pressure, a hot water bath
could be placed around U-tube (F) to increase xenon pressure in compartment 2. Through

regulation of valves B3z and Bs, the pressure in the fiber could then be increased.

5.2 Fiber Cells

With a system for reaching and regulating supercritical xenon pressures
constructed, the other main component needed for this work was a way to fill the HC-
PBG fiber with xenon while still allowing for optical coupling of light into and out of the
fiber’s core. In order to subject the fiber to the smallest amount of stress, the final design
consisted of a cell that placed the fiber in a bath of xenon. This kept the pressure inside
the fiber equal to the pressure outside the fiber.

Depending on the length of fiber being used, two different cells were constructed.

Both made use of commercially available pipe fittings and tubing to keep costs down and
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to allow for modifications and adaptions. Of central importance was keeping the HC-
PBG fiber stationary and available for optical coupling while the cell was being filled
with xenon.

For short lengths of fiber, a cell made completely out of pipe and tube fittings was

constructed. A representation of this cell is shown in Figure 5.2.

- 567 8 9
[ N ==
o T *-l—4 (b)
I (b) a*
side T al
face

Figure 5. 2. Short Fiber Cell: Diagram of the fiber cell used for 15cm pieces of fiber,
securing the fiber in a bath of xenon while allowing optical coupling of light through
the fiber.

The main body was 16 cm long and made of 3/8” pipe fittings and adapters (1). A
pressure gauge (2) was installed to allow monitoring of the fiber pressure when the cell
was sealed off from the rest of the xenon filling apparatus. The cell was connected to the
rest of the xenon filling apparatus by PEEK™ tubing and could be sealed from the rest of
the filling system by a valve (3) after a desired pressure of xenon was achieved.

Because xenon was being introduced and removed through valve (3), changes in
the pressure of xenon resulted in forces on the fiber within the cell. An unsecured fiber

could be easily moved out of laser coupling range by the flowing xenon. To address this
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issue, a mount needed to be developed that could secure the fiber during changes in
Xenon pressure.

To do this, a removable platform was machined to hold the fiber in the cell (4). It
consisted of two parts: (a) a longer 3/4™ prass cylinder lower section with a groove for
the fiber to rest in and (b) a shorter nickel rod machined to be placed over the fiber in the
groove, gently pressing on the fiber and securing it in place via friction. The platform was
machined to just fit inside the cell, using the friction between the platform and the inner
diameter of the cell to secure the rod onto the cylinder platform.

To allow for optical coupling in and out of the fiber, optical windows needed to
be installed at either end of the cell. To form an airtight seal, a VCO adapter (4) was
used. A rubber O-ring (5) fit the groove of the VCO adapter and pressed against a 6mm
fused silica window (7). A machined Teflon washer (8) was placed between the window
and the VCO nut (9) to help protect the window from damage while tightening the nut
onto the cell.

For longer sections of fiber, it became necessary to modify the cell to allow the
fiber to be coiled. The above cell was adapted by including PEEK™ tubing. The addition of
the PEEK™ also changed the way the fiber was secured in the cell, requiring the addition of

a second clamp at the head of the fiber as shown in Figure 5.3.
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Figure 5.3. Long Fiber Cell: Diagram of the cell variant for long sections of fiber.
The inclusion of tubing necessitated a second smaller cell with its own fiber mount
for the head of the fiber, as well as an additional procedure for inserting the fiber
into the cell.

A standard fiber chuck from Thorlabs (1) was machined to fit a small head-cell
constructed from pipe fittings with VCO and Swagelok ends (2). PEEK™ tubing (3) of the
desired length connected this head-cell to the tail-cell: the short length fiber cell now
modified with a Swagelok adapter (4).

To install the fiber into the long fiber cell, the front of the fiber was first placed
into the fiber chuck and inserted into the head-cell before the PEEK™ tubing was attached.
Care was taken with installing the fiber into the PEEK™, as attempting to push the fiber
through the PEEK™ ran the risk of breaking the fiber if friction between the fiber and the
tubing stopped the progress of the fiber and caused a kink.

To avoid this issue, a prep line of copper wire was first fed through the PEEK™.
Once this had been successfully passed through the length of tubing, the HC-PBG fiber

was attached to the copper wire at one end, and the wire pulled through the PEEK™ tubing.
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This allowed the fiber to be drawn, rather than pushed, through the PEEK™ tubing and
avoided the possibility of friction related kinks and damages. Finally, the end of the fiber

was placed on the original platform and installed in the tail-cell.

5.3 Filling the Fiber

Care was taken when pressurizing or depressurizing the fiber in the cell to
minimize the pressure differentials in the fiber. Because the core of the fiber has a
diameter roughly 10x that of the photonic crystal holes, the pressure in the core will reach
equilibrium with the pressure of the cell in less time than the photonic crystal [63, 64].
The rate at which the holes in the fiber will reach equilibrium with the pressure of the cell
can be determined from flow rate models where the mass flow rate, m, may be written as
[64]:

m = C x d* X AP?I, (5-1)
with d being the diameter of the hole, AP being the difference in pressure between the
face of the fiber and the midpoint, and C being a constant incorporating all the
unchanging properties of the system, such as length of the fiber, the gas constant, etc.

It was found that the holes in the photonic crystal would take several minutes to
reach equilibrium. For a system where the fiber is being filled from both ends, the point
of greatest pressure difference between the core and the photonic crystal holes will be in
the center of the fiber. The force of this pressure differential is relatively small, and the
probability of structural failure of the core wall depends on the characteristic strength of
the fused silica [65] and the shape of the core walls. To avoid needing to fully calculate
this failure force, the xenon pressure differential between the cells and the photonic
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crystal at the center of the fiber was kept low by regulating the pressure increase of the
fiber cells. Small pressure changes of around 10 psi were allowed to take place in the cell,
then the photonic crystal’s pressure was allowed to equilibrate over 5 minutes before the
next pressure change was performed. To fill the fiber from vacuum to 1300 psi, an ideal

application of this procedure would reach the desired pressure in 10.8 hours.
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CHAPTER VI

TUNING GUIDANCE WINDOW WITH SUPER-CRITICAL XENON

In order to achieve tunable entangled photons, the filling fluid in the fiber would
need to have a large enough working range in refractive index that the guidance window
of the fiber could be substantially altered, as discussed in Chapter 3. Xenon’s transition
from gas to supercritical fluid offers such a dynamic range. Using the scaler method from
[27] shown in Chapter 3 as Equation 3-5, it was predicted the guidance window could be

effectively transitioned over 200 nm within the operating range of the fiber cell,

- Ns2 — Ngyig?
I=1 S . ﬂul;i : (6_1)
ng® — Ny

where wavelengths of the guidance window under vacuum (4) can be mapped to the
wavelengths in the guidance window when filled with fluid (1) by a simple scaling
function dependent on the refractive index of the silica of the photonic crystal (ng) and
refractive index of the holes of the photonic crystal under vacuum (n,) and with the fluid
(Mfia)-

Of particular interest was the tunability of the guidance window after the
supercritical transition, when the nonlinearity of the xenon would be high enough for
observing optical nonlinear effects such as four-wave mixing (FWM). However, the
scalar model was expected to stop being valid as the refractive index of the filling fluid
approached that of the fused silica. To both verify the scalar model still held for

supercritical fluids and to measure the tunability of the guidance window at higher
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pressures, recordings of the guidance window of the fiber were taken at many pressures,
ranging from 0 to 1290 psi.
Work presented in this chapter summarizes and extends results previously

published in [18], with a new fiber.

6.1 Experimental Setup

A FemtoPower1060 Supercontinuum Laser Source from NKTPhotonics was used
as a white light source (WLS) to generate a broad spectrum of 20 MHz pulsed 6 ps light
ranging in wavelength from at least 500 nm to 1100 nm. The actual spectral range was
much broader, but coatings on optical elements and sensitivity limits of the spectrometer
limited measurements. The light from the WLS was coupled to a 15 cm HC-PBG fiber
fabricated by Dr. Rodrigo Amezcua Correa with a guidance window centered around
1064 nm, constructed with modified core walls to be surface mode free [54]. The length
of the fiber was not critical to the experiment, needing only to be sufficiently long to
allow light not in the guidance window of the fiber to propagate through the photonic
crystal and escape the fiber.

At the output of the fiber, a second lens collimated the remaining light. After
additional optical elements, the output light was measured by a spectrometer to record the

guidance window of the fiber, as shown in Figure 6.1.
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Figure 6.1. Guidance Window Experimental Setup: Cartoon of the experimental
setup for measuring the guidance window of the fiber at various pressures of xenon.

The upper working range of the spectrometer used to record the spectrum of light
transmitted through the xenon filled fiber was 1030 nm, meaning only a portion of the
guidance window was observable at low pressures of xenon (see Figure 6.2).

Because of this, the short wavelength edge of the guidance window was chosen as
an easily measurable feature of the guidance window to track as the pressure of xenon

within the fiber increased and compare with the scalar theory from Equation 6-1.

6.2 Measuring Guidance Window Edge
Once the system was appropriately aligned, the HC-PBG fiber and its cell were
evacuated. When sufficiently purged, xenon was slowly released into the fiber cell and
allowed to fill the fiber to the desired pressure. The output spectrum of the HC-PBG fiber

was recorded on the spectrometer, as shown in Figure 6.2.
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Figure 6.2. Guidance Window Spectrum vs Pressure: The measured and extracted
guidance window of the HC-PBG fiber at 6 different pressures. Subfigure (a)
provides a detailed view at the guidance window spectrum at a higher pressure,
where the measured WLS spectrum is used to back out the fiber’s guidance window
from the measured spectrum. Subfigures (b)-(g) show the shift in the guidance
window to shorter wavelengths as pressure of xenon increases.
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The observed intensity of different wavelengths transmitted by the hollow core

fiber would depend on three elements:

1) the efficiency of the detector at that wavelength,

2) the transmission efficiency of the fiber at that wavelength, and

3) the input intensity of light from the WLS.
To have the spectrometer measurements give an accurate representation of the guidance
window of the fiber, elements (1) and (3) needed to be accounted for. To do this, the
spectrum of the WLS was recorded prior to coupling into the xenon filled fiber (purple
dashed line in Figure 6.2). This measurement showed the combined effects of a
nonuniform input spectrum from the WLS and the nonuniform detection efficiency of the
spectrometer.

Once the spectrum of light leaving the xenon fiber was recorded (black data
points and smoothed curve in Figure 6.2), this pre-xenon measurement was used to back
out the effects (1) and (3), leaving only (2). From this corrected spectrum (shown as the
blue, shaded curve in Figure 6.2), the edge of the guidance window was defined as being
at 5% the maximum intensity of the measured guidance window, although the observed
trend was not particularly sensitive to how the edge of the guidance window was defined.

The effect of this correction was a guidance window edge located at a slightly

longer wavelength than the raw data would suggest, as exemplified in Figure 6.2.
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6.3 Comparing to Theoretical Model

The density-dependent Sellmeier equation for the xenon refractive index,
Equation 4-5, was used to determine the linear refractive index of the xenon as a function
of pressure and combined with the scalar model shown in Equation 6-1 to predict the
xenon refractive index as a function of pressure, as also shown in our publication [18].
Defining the guidance window edge as starting at 5% the maximum intensity of the
measured light from the guidance window as observed by the spectrometer, the
experimental shift in the edge of the guidance window could be compared to theoretical
predictions using xenon’s known equation of state or an ideal gas. The results are shown

in Figure 6.3.
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Figure 6.3. Guidance Window Edge vs Theory. Plot showing the short wavelength
edge of the guidance window agreeing with a scalar theory using the xenon equation
of state. The nonlinear nature of the curve corresponds to the transition of the
xenon from a gas to supercritical xenon and may be compared to a model based on
the ideal gas law.
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Error bars on the horizontal axis due to the pressure gauge having a 5% accuracy error.
Error bars on vertical axis represent at +/-2% choice in the definition of the intensity of
the start of the guidance window compared to the maximum intensity of the spectrum.
Temperature of xenon fit to data, and agrees with working around lab temperature. The
strong agreement between the scalar model predictions and the measured edge of the
guidance window validates the use of the model for supercritical xenon. The guidance
window edge was tuned over 200 nm from an initial location of 975 nm at vacuum to 740
nm at 1290 psi.

The transition to supercritical fluid was stretched over a range of over 150psi
because of the temperature of the system. The critical point of xenon is at 16.6 °C. By
working at a lab temperature of ~22 °C, the transmission was made more gradual. By
staying away from the step-like density transition that occurs near the critical point,
xenon densities along this transition curve are available choices for tuning the guidance
window to guide the wavelengths of the desired entangled photon pairs.

At 950 psi, the nonlinearity of the xenon in the core of the fiber was estimated to

1.45X10716cm? L . . . .
ben, = — which is sufficient under our experimental constraints to observe

nonlinear optical effects like FWM. Past this pressure, the guidance window was still
tunable over 100 nm.

The upshot of that result is that the system’s guidance window can be tuned over
a substantial wavelength range to choose the window of wavelengths where the

correlated photons would be produced.
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CHAPTER VII

TUNING DISPERSION PROFILE WITH SUPER-CRITICAL XENON

In addition to controlling the guidance window of the hollow-core photonic
bandgap (HC-PBG) fiber, the density of xenon within the fiber is also expected to alter
the dispersion profile of the guidance window. This dispersion profile, as outlined in
Chapter 3, is the combination a material dispersion term dependent on the supercritical
xenon in the fiber’s core and a waveguide dispersion term related to the photonic crystal
of the fiber. By measuring the group velocity dispersion (GVD) of the guidance window,
the zero dispersion wavelength (ZDW) may be found, near which nonlinear optical
processes such as degenerate four-wave mixing (FWM) may be performed [12]. This
section discusses the experimental method used to measure the relative group velocity of

light in the guidance window of the fiber and derive the GVD profile.

7.1 Experimental Setup

To measure the relative group velocities of light in the guidance window of the

HC-PBG fiber, a Mach-Zehnder interferometer setup as shown in Figure 7.1 was used.
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Figure 7.1. Group Velocity Setup. A diagram of the Mach-Zehnder design for
measuring the relative group velocities between bands of light in the guidance
window of the fiber by observing fringes from 1°-order correlations between the
fields in the 2 arms.

The white light source (WLS) from the previous chapter was split along the two
arms of the fiber. In one arm, the light was coupled through a 15 cm section of xenon
filled HC-PBG fiber. The other arm contained a movable stage connected to a step-motor
capable of minimum steps of 256 nm. Once the light was recombined on the output
beamsplitter of the interferometer, various bandpass filters were used to limit the
transmitted bandwidth to a 10 nm section of the light in the fiber’s guidance window. The
intensity profile of this transmitted light was detected on a 1-dimensional pixel array run

through LabVIEW.
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7.2 Measuring Group Velocity and GVD

The 10-nm bandwidth and pulsed nature of the WLS lead the light to have a short
coherence length, as discussed in Chapter 2, so visible interference fringes from 1%-order
correlations between the fields in the arms of the interferometer only occurred when the
time delay between the arms was close to zero. When the maximum visibility of these
fringes is observed, it indicates the effective optical paths of the 2 arms are equivalent.

The motorized stepping stage in the interferometer was scanned while its position
and the intensity pattern on the 1-dimensional CCD camera were recorded. A slight
misalignment between the 2 arms of the interferometer allowed multiple fringes to be
measured on the CCD camera for every position of the motorized stage. After the
measurements were complete, the visibility of the fringes at each position of the stepping

stage was computed using Equation 2-29:

Im X Imin
visibility = —————=, (7-1)

max + Imin

The location of the motorized stepping stage at the maximum visibility could then be
used along with knowledge of the fiber’s length and group velocity properties of optical
elements in the interferometer to find the relative group velocity light in that 20nm band
of the fiber’s guidance window. This measurement was repeated over many bands within
the guidance window, and a 4™-order polynomial was fit to the group velocity

measurements to model the group velocity profile (see Figure 7.2).
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Figure 7.2. Group Velocity Measurements. A plot of the measured relative group
velocity, v, at various wavelengths, the 4"-order polynomial fit used to describe the
group velocity through the guidance window, and the GVD curve derived from the
v, polynomial curve. The ZDW is shown with a vertical dashed line to be at 1018

nm.

The horizontal error bars in the measurements of relative group velocity stem
from the use of 10 nm bandpass filters. The vertical error bars are derived from the width
of the visibility curve found over the stepping stage positions. The GVD curve is simple

to find from the 4™-order polynomial fit of the group velocity,

o/ 1
GVD = —( ) (7-2)

0w \ Ugroup

From the GVD curve, the zero dispersion wavelength (ZDW) is seen when the GVVD goes
from having positive values (normal dispersion) to negative values (anomalous

dispersion).
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7.3 Birefringence
A rotatable polarizing beam splitter was used at the output of the Mach-Zehnder
interferometer (see Figure 7.3) to look for any birefringence in the group velocity profile
of the fiber due to asymmetries in the core dimensions. A slight birefringence was

observed, highlighted by the difference in ZDW between the 2 axes.

Group Velocity Birefringence
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2 .
o
950 1000 1050 1100

Wavelength (nm)
Figure 7.3. Birefringence in Group Velocity: Plots of the measured birefringence in
the group velocity along the two polarization axes of the fiber. The group velocity

polynomial fit and the inferred ZDW are also shown for both curves, demonstrating
that the dispersion profile varies between the two axes.

The existence of birefringence opens the possibility of additional control over the
frequencies of entangled photons by performing cross phase matching over both axes of
the fiber [12]. However, further testing determined the fiber was not strongly polarization
maintaining. This possibility is left as a potential future avenue for the work with a fiber

more capable of keeping light on the two axes from mixing during propagation through
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the core. For the remaining sections of this chapter, the dispersion profile along a single

axis of the fiber is presented, but similar trends occurred on the other axis as well.

7.4 Dispersion Pressure Dependence
The xenon pressure was increased slowly over several pressures ranging from
vacuum to 95 atm (1400 psi). Periodically, the filling of the fiber was paused to measure
the relative group velocity of the guidance window of the fiber. Select group velocity
measurements, polynomial fits, and ZDWs for the respective GVDs are shown in Figure

74.

Group Velocity Measurements
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Figure 7.4. Group Velocity Curves at Various Pressures: The measured relative

group velocities, polynomial fits, and inferred ZDWs for 4 pressures are plotted.
The v, polynomial curve becomes symmetrical due to the material dispersion

contribution of the xenon core.

The ZDW can be seen to shift to shorter wavelengths with increased density of

xenon in the HC-PBG fiber. This is opposite the shift observed in other hollow-core
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fibers, such as Kagome [47]. The difference can be explained by the different guidance
mechanism of HC-PBG fibers, and will be discussed in greater detail in the next chapter.
Qualitatively, this wavelength shift is similar to the guidance window edge shift so well
modeled by the scalar theory in the previous chapter.

However, quantitatively the ZDW shift lags behind the guidance window edge
shift. In addition, the profile of the group velocity develops a pronounced asymmetry at
high pressures of xenon. Both these developments may be attributed to the material
dispersion of the xenon in the core of the fiber. A model encompassing this dispersion is
described in the following chapter and is capable of predicting the dispersion profile of
the fiber as a function of pressure in a way similar to the scalar model.

Finally, while the GVD’s ZDW sets the rough wavelength range where phase
matching will allow efficient FWM to occur with a degenerate pump, actually predicting
the location of the generated frequencies requires knowing the phase refractive index
dependence on frequency. Converting measurements of the group velocity to estimates of
the phase refractive index in not possible in general, but a method for doing so in the

guidance window of a hollow-core fiber will be put forth.
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CHAPTER VIII

MODEL FOR DISPERSION IN FLUID FILLED FIBER

As discussed in Chapter 2, the phase matching required for four-wave mixing
(FWM),
kl + kz - 2k3 + ZVP3 == O, (8'1)

is dependent on the phase refractive index, n(w),

Ny (w1)wy " 1z (w2) W, _ > n3(w3)ws +2yP, =0, (8-2)
c c
with,
K, = )W (8-3)

J c
Measuring the phase refractive index profile of the guidance window would then allow
predictions of what, if any, frequencies entangled photon pairs would be generated at for
a given pump frequency. But accurately measuring the phase refractive index of the
system is non-trivial [66].
By contrast, the group refractive index profile of the fiber’s guidance window is
straight forward to learn from the group velocity profile polynomial fit found from the

Mach-Zehnder interferometer group velocity measurements of the previous chapter:

ng(w) = (8-4)

vg(w)
A method of converting from group refractive index measurements to phase refractive

index would circumvent the issue of directly measuring the phase refractive index. At a
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first glance, this should be trivial to do as the group and phase refractive indices are
related by a single equation,

on,(w)

Jw (8-5)

ng(w) = ny(w) + w

where the subscript explicitly labels the phase refractive index. However, the derivative
in the last term of Equation 8-3 suggests a measurement of n, (w) cannot be used to
uniquely determine n,, (w) in a general case [66]. This chapter focuses on particular cases
where an estimate for the phase refractive index can be extracted from group refractive
index measurements and how doing so can be used to predict the phase matching

conditions necessary for degenerate FWM.

8.1 Modeling Phase Refractive Index
The impediment placed by the derivative in the last term of Equation 8-5 can be
circumnavigated in the particular case where the group refractive index and the phase
refractive index may both be accurately modeled as polynomials. Under a polynomial
approximation, the phase refractive index may be described as,
ny,(w) = A+ Bw + Cw® + -, (8-6)
where the terms 4, B, C, ... are unknown constants. The derivative of Equation 8-6 then

takes the form,

on,(w)

=B+2Cw+ -, (8-7)
dw

such that
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ng(w) = A+ Bw + Cw® + -+ w[B + 2Bw?* + -]

A+ 2Bw + 3Cw? + - (8-8)

+Bw + Cw? + --.

Il
)

Because the constants in both polynomial representations are related to each other by a

simple scaling term set by the power of the polynomial, determining the values of the

constants 4, B, C, ...

is sufficient to determine the values of the constants 4, B, C, ...

Using this method with the group velocity measurements at 80 atm and 95 atm

from Chapter 7, the phase refractive index estimated curve was found. From that curve,

frequencies that satisfied phase matching and energy conservation over a range of pump

wavelengths could be determined. These curves are shown in Figure 8.1.
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Sideband Wavelength (nm)

Sideband Frequencies for
Degenerate Four-Wave Mixing

= Phase matching 80 atm

=== Phase matching 95 atm

m o nn Pump frequency

870 880 890 900 910 920 930
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Figure 8.1. Predicted Phase Matching Curves. Plots of the predicted wavelengths of
sideband created by degenerate FWM from the measured group velocities of the
guidance window at 2 pressures of supercritical xenon.
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At wavelengths longer than the ZDW, phase matching demands the sideband
frequencies of the FWM process by quite close to the pump frequency, as is seen for
longer wavelengths in Figure 8.1. Once the pump wavelength is just shorter than the
ZDW, the FWM sidebands rapidly diverge from the pump. The ZDW of the fiber under
80 atm of xenon is shown to be at a longer wavelength than the ZDW of the fiber under
95 atm of xenon, as expected for the dispersion curve and guidance window shifting with
increased xenon density.

It should be noted that the guidance window of the fiber at these pressures ranges
from roughly 775 nm to 950 nm and predicted phase matching beyond those wavelengths

is unphysical.

8.2 Dispersion Pressure Dependence

In addition to being able to predict the phase refractive index from group
refractive index measurements, it would be useful to have some way of estimating how
this phase refractive index curve would change with xenon pressure. But as was
mentioned in the previous chapter, the scalar model does not produce accurate
predictions for the ZDW or any other feature of the dispersion curve. This is because that
model only accounts for changes to the waveguide cause by the modifying the photonic
crystal with the density of the filling fluid. A model which incorporates the changing
material dispersion contribution of the xenon fluid to the total dispersion of the system
can reproduce the observed changes in the dispersion profile.

This may be most easily demonstrated with a simple 2"-order polynomial toy

model. For concreteness, let the guidance window of the vacuum filled fiber initially be
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located between 950nm (1.8 PHz in angular frequency) and 1150nm (1.4 PHz in angular
frequency)

The phase refractive index of xenon over a large range in wavelengths is
accurately described by the Sellmeier dispersion Equation 4-5 and plotted in the guidance
window in Figure 8.2. Over the range of the fiber’s guidance window, however, the
xenon’s material phase refractive index may be approximated by a 2" order polynomial.

Xenon Refractive Index (STP)

=== Phase malching solutions

1 000689 = uuns Pump frequency

1.000688

Refractive Index

1.000687

165 170 175 180 1.85 190 1.95
Angular Frequency (PHz)

Figure 8.2. Quadratic Fit to Sellmeier. A plot of a 2™ order fit to the Sellmeier

dispersion curve over the frequencies of the toy model’s guidance window to
demonstrate the validity of using a polynomial approximation.

The normal dispersion of bulk xenon manifests in the positive slope of the phase
refractive index curve as a function of frequency.

For the sake of this toy model, let me assume the group velocity in the guidance
window of the evacuated fiber may also be modeled by a 2"-order polynomial, where the
group velocity resides in the center of the guidance window. The corresponding group

refractive index then has a minimum value at the center of the window as well. This is
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shown in Figure 8.3. The phase refractive index of the system is found as described

above and the waveguide contribution to the phase refractive index determined from,
fi(w) = ny(w) + Anyg(w), (8-9)

where the material contribution n,,(w) = 1 for all frequencies because the fiber is in

vacuum. The waveguide contribution is plotted in Figure 8.3, and shows anamolous

dispersion.
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Figure 8.3. Group and Phase Refractive Index of Toy Model: The plotted group
refractive index and waveguide contribution to the phase refractive index for the
HC-PBG fiber in the simple model.

If the fiber is now filled at room temperature to 1 atm of xenon, the material and
waveguide dispersions from Equation 8-9 combine to give a total effective phase
refractive index for the system. At 1 atm of xenon, the group velocity of this system
closely matches that of the vacuum filled system, with a vertical offset caused by the light
now traveling at a slower speed relative to when the fiber was under vacuum. This is

shown in Figure 8.4.
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Figure 8.4. Combined Group Refractive Index at 1 atm: A plot of the group
refractive index created by the photonic crystal’s limits on the guidance window and
the composite system with the HC-PBG’s core filled with 1 atm of xenon. The
overlap of the 2 curves highlights the negligible effect the material dispersion has on
the composite system at low pressures.

Now, say the fiber is filled to 70 atm of xenon. From the scalar model of Chapter
6, this shifts the short wavelength edge of the guidance window to 750 nm. The
waveguide’s contribution to the phase refractive index is simply shifted by the same
mechanism that shifts the edges of the guidance window. In addition, the increased
density of xenon changes the material refractive index of the core, as now it is based on a
subsection of the Sellmeier at shorter wavelengths and at greater density. By scaling the
Sellmeier to the appropriate density and fitting a 2"-order polynomial to the new

guidance window wavelengths, the materials phase refractive index may be found.
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Combining the material refractive index with the waveguide contribution gives the total
phase refractive index of the system.

Solving for the group refractive index, the minimum value is seen to no longer
reside in the center of the guidance window, but rather to have been shifted to longer

wavelengths by the addition of the material dispersion of the core.

X
(0]
= Effect of Xe on Group Refractive Index -
v, e | | | | 2
> 1219’ = Combined Group Ref. Index wsssm Waveguide Group Ref. Index ] —
= Z 1.0025
[
o 1%
kT 11.0020 o
x 5
o -
3 11.0015 O
QL
|
0 S
° 11.0010 3,
£ S
0 (T
= 2.1 2.2 2.3 24 25 =
5]
O Angular Frequency (PHz)

Figure 8.5. Combined Group Refractive Index at 70 atm: A plot of the group
refractive index created by the photonic crystal’s limits on the guidance window and
the composite system with the HC-PBG’s core filled with 70 atm of xenon. The
mismatch of the 2 curves highlights the substantial amount the material dispersion
contributes to the composite system and demonstrates the asymmetry seen in the
experimental measurements of n,(w).

Using this model, the approximate location of the ZDW at pressures of xenon
may be modeled and used to determine appropriate pressures of xenon for achieving

phase matching with a given pump wavelength.
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8.3 More Work to be Done

The polynomial model used above relies on a polynomial fit to the measured
group refractive index. The relative scarcity of recorded group refractive indices in the
guidance window and the associated error bars from the previous chapter limits the
quality of this fit. This is especially true for records at lower pressures of xenon, when
even fewer group refractive index measurements were performed.

Because of this limitation, the model was only able to give estimated regions for
the generation of sidebands. A more complete mapping of the guidance window’s group

refractive index may improve this technique.
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CHAPTER IX

ENTANGLED PHOTON GENERATION BY FOUR-WAVE-MIXING

Chapters 7 and 8 demonstrated that the guidance window and dispersion profile of
xenon filled Hollow-core photonic bandgap (HC-PBG) fiber could be modified by
altering the linear refractive index of the filling fluid. Furthermore, both processes could
be modeled in order to predict what wavelengths would be guided by the fiber and what
wavelengths would achieve phase matching in spontaneously generating sidebands from
degenerate four-wave mixing (FWM). But to be a source of tunable, entangled photon
pairs, the xenon filled fiber needed to produce said photon pairs. This chapter describes
the generation, observation, and verification of those sidebands.

9.1 Experimental Setup

Using the models and measurements described in the previous chapters, a filling

pressure of 1250 psi (85 atm) was chosen for the xenon. This shifted the guidance

window of the fiber to 775-965 nm, moved the zero dispersion wavelength (ZDW) to

2.0x10"16¢cm?

920 nm, and gave the core of the fiber a nonlinear refractive index of n, = W

(comparable to that of fused silica) [18]. A pulsed 80 MHz Ti:sapphire laser at
wavelengths just under the ZDW and pulse duration of around 10 ps was coupled into a 4
meter xenon filled section of the HC-PBG fiber. The duration of the pulse was inferred
from visibility measurements of the 1%-order correlation of the beam, assuming a
Gaussian limit. A rotatable half-wave plate and polarizing beamsplitter were used to

control both the polarization and total power of light being coupled into the xenon fiber.
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The light transmitted by the fiber was then passed through another polarizing
beamsplitter aligned with the first and imaged onto a pinhole, which helped to remove
Raman generated light from any excited surface and lattice modes. After the pinhole, the
remaining light was re-collimated, filtered to remove the pump, and recorded with a
liquid nitrogen cooled spectrometer, as shown in Figure 9.1. A flip mirror allowed a
white light source to be coupled through the fiber and used to align the output of the

xenon fiber with the spectrometer.
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Figure 9.1. Sideband Spectrum Setup: The diagram for observing the generation of
sidebands from a Ti:Sapphire pump pulse on a spectrometer. A Mach-Zehnder
interferometer was used to verify the pulse duration and a White Light Source to
optimize transmission of light from the xenon filled fiber to the spectrometer.

9.2 Observations of Sidebands
The filters used to block the pump wavelength from saturating the spectrometer

also limited the spectrometer to only being sensitive to wavelengths longer or shorter
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than the pump wavelength for any given recording. Two of these measurements are
combined and shown in Figure 9.2, showcasing the detected sidebands at 890 nm and 945
nm for the 914.4 nm pump. Diminished sensitivity of the spectrometer at longer
wavelengths largely account for the reduced count rates for the longer wavelength

sideband.
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Figure 9.2. Sideband Peak Pump Power Dependence: The sideband peaks in the
spectrum for short and long pulses with average power held constant are shown,
demonstrating the sideband dependence on peak pump power.

In addition to detecting photons generated in the predicted sideband frequencies
of the system, additional photons were detected in these measurements. The small, broad
peak at 955 nm in Figure 9.2 is one such example. This peak corresponds to a peak in the
Raman spectrum of fused silica for a 914 nm pump laser, so it was believed that some
amount of laser-fused silica interactions were occurring. Verifying that the photons at the
sideband wavelengths came from a mechanism like FWM and not Raman scattering was

done by varying the pulse duration of the pump.
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The sideband gain from FWM is quadratically dependent on the peak power of
the pump laser, while Raman scattering only depend on the average power of the pump.
To verify that the signals being observed on the LN2 spectrometer were from a source
depending on the peak power of the pump laser, 2 spectrum measurements were recorded
for every pump wavelength, power, and polarization. The first measurement used a short
10-15 ps pulse duration while the second had a much longer (100-300 ps) pulse duration.
The average pump power remained constant for both pulse durations, so the longer pump
pulses had a much lower peak power. This caused any signal from a process dependent
on peak power to be greatly diminished.

By comparing the measurements with 2 different pulse durations, it was possible
to verify the sideband peaks were dependent on the peak power of the pump pulses while
the Raman peaks intensity depended on the average pump power. Improved coupling of

the pump into the fiber could help remove the remaining Raman scattering.

9.3 Energy Conservation

Energy conservation must hold in FWM. Coupled with the phase energy
requirement, these two rules place strong constraints on the parameters of a system
needed to generate observable sidebands. Based on the dispersion models and
measurements described in Chapters 7-8 and the guidance window range from Chapter 6,
it was expected that the energy and phase conversation constraints would define different
sideband wavelengths for different pump wavelengths around the ZDW.

In particular, as the pump wavelength approached the ZDW from the short

wavelength side, it was expected that the difference in wavelength between the pump and
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both sidebands would decrease in such a way that the short wavelength sideband (idler)
would increase at a faster rate than the pump and the long wavelength sideband (signal)
would decrease as the pump wavelength increased.

To observe this effect, the pump wavelength was tuned over a range of
wavelengths from 911.1 nm to 915.5 nm for input polarizations along both the fast and
slow axes of the fiber. The sideband wavelengths intensities were recorded by the LN,
spectrometer. The resulting transition of the observed sideband peaks are shown in Figure

9.3.
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Figure 9.3. Observed Birefringence and Energy Conservation: Plot of the measured
peak intensities of sidebands generated at multiple pump wavelengths and along
both axes of the xenon filled fiber. For a given polarization and pump wavelength,
the sideband peaks obey energy conservation. Over multiple pump wavelengths, the
peaks also follow the predicted slopes of light from degenerate four-wave mixing.
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The sideband wavelengths move as expected for light produced by degenerate
FWM. As the pump wavelength is increased, the shorter wavelength idler increases at a
faster rate while the longer wavelength signal decreases.

The slight birefringence of the fiber, described in Chapter 7, was also observed,
where the different dispersion profiles of the axes of the fiber resulted in the generation
of sidebands at lightly different wavelengths. However, the fiber was only moderately
polarization maintaining, so additional work would need to be done to make use of this
birefringence to expand the tunability of the system even further.

Using the pump frequency and the frequency of one of the sidebands, predictions
for the location of the second sideband could be made using conservation of energy.
These predictions are shown in Figure 9.2, and the overlap between predictions and
measured intensity peaks verifies that the process generating the sidebands obeys energy
conservation.

Comparing these measured results from the model put forth in Chapter 8 and
shown in Figure 8.1, the sideband wavelengths from the experimental results at 85 atm of
xenon fall between the predicted wavelengths for 80 atm and 95 atm, as shown in Figure
9.4. Limitations of the model are apparent in the differences between the slopes of the
predicted phase matching curves and the experimentally observed sideband wavelengths.
Additional work to improve the phase matching model at arbitrary pressures still needs to
be performed, but the measurement of sideband wavelengths between the two theoretical
curves is an encouraging indicator that the model can capture the overarching structure of

the system.
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Figure 9.4. Comparing Measured Sideband Wavelengths to Predictions: Plot of
measured sideband wavelengths for both axes of the fiber at 85 atm falling between
predicted sideband wavelengths for pressures of 80 and 95 atm.

9.4 Seeding
In the above experiments, spontaneous FWM served to generate the initial
sideband photons. One of the sidebands could be initially seeded, however, to produce an
amplified signal in the other sideband. This was done using a weak continuous wave
(CW) diode laser centered at 882 nm, which overlapped the sideband gain range of the
xenon filled fiber when the pump was at 914.3 nm. The resulting gain in the sideband
spectrum at 949 nm is shown in Figure 9.5 and demonstrates the amplified growth of

wavelengths which satisfy energy conservation with the CW seed and pump.
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Figure 9.5. Seeded Amplification: Measurement of the seeded amplification from a
CW diode laser co-coupled into the fiber within the short wavelength sideband
spectrum. A fringe pattern from the filters used to block the pump from entering
the spectrometer is also visible on the spontaneous gain spectrum.

While further work was not performed in this seeded regime, this demonstrated the
possibility of using the prototype system to convert single photons from one sideband

wavelength to the other [13].

9.5 Single Photon Statistics Setup
When generating photons by spontaneous degenerate FWM, a key feature is that
they are generated in pairs. For every photon produced in the signal wavelengths, a
corresponding photon should be produced in the idler wavelengths. While the LN,
spectrometer could measure the intensity of the sidebands and verify they obeyed energy
conservation and pump peak power dependence, it was not able to verify a correlation in

generation of the photons in the sidebands.
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To measure this correlation, the experiment was modified to remove the LN,
spectrometer and include avalanche photodiodes (APDs) capable of detecting single

photons.

The pump wavelength was fixed at 912 nm, with sideband wavelengths observed
at 870 nm and 958 nm. For the following work, I’1l call the short wavelength sideband
photons the idler and the long wavelength sideband photons the signal. Prisms were
added to the experimental setup after the pinhole to separate the signal and idler
wavelengths from the pump, filters were installed to remove the remaining pump light,
and multimode, solid-core fibers were used to guide the signal and idler photons to single

photon sensitive APDs, as shown in Figure 9.6.
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Figure 9.6. Correlations Setup: The experimental design for measuring correlations
between photons in the sidebands.

To initially align the system, the white light source (WLS) from Chapters 6-7 was

coupled into the HC-PBG and the classical fields at the wavelengths of the generated
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sidebands used to optimize detection. Once optimized, the WLS was removed and the
pulsed Ti:sapphire pump used to generate sidebands at the appropriate wavelengths.
Once a photon was detected by the APD, an electronic signal was sent by the
APD via a BNC cable to a field-programmable gate array (FPGA) coded for coincidence
counting. The FPGA had a measured coincidence window of 1.36 ns, long enough that
all photons from a 10 ps pulse would be detected in the same window, but short enough
that the 12.5 ns separated pump pulses could be distinguished. Delay boxes were placed
in the BNC cable line to allow the signal from the APD to be delayed up to 73.5ns in .5

ns increments.

9.6 Correlations vs Delay

Singles count rates of the APDs ranged from a ~100,000 counts/sec to ~1,000,000
counts/sec, meaning the average number of photons detected from a single pulse was less
than 1. Operating in this regime kept the dead time of the APDs from being of concern.
Using the delay boxes on the BNC lines between the APDs and FPGA, coincidence
counts could be measured comparing different arrival times between the signal and idler
photons.

The correlations from the coupled generation of signal and idler sidebands would
be reflected in a large number of coincidence measurements when APD detections from
the same pulse were overlapped in the coincidence window of the FPGA. When the APD
detections from the same pulse were delayed relative to one another such that they did
not fall into the FPGA coincidence window, this enhancement in detected coincidences

should not be detected. Measurements of coincidences were taken for relative delays
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between the APD detectors ranging from -30 ns to +30 ns, as shown in Figure 9.7. The

delay at 0 ns corresponded to an overlap of detections from the same pulse.
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Figure 9.7. Coincidence as a Function of Delay: A plot of the coincidence counts
between the APDs as a function of delay. The strong peak at 0 ns delay comes from
the correlations present in the FWM generated sidebands. The smaller peaks at
other delays correspond to accidental counts when detections from 2 different pulse
events are overlapped on the FPGA.

The number of detected coincidences in never expected to reach zero. Accidental
coincidence measurements dependent on the statistics of the single count rates were
expected for all time delays, with an upper bound for these accidental coincidence set as

shown in the following section.

9.7 Calculating the Accidental Coincidences
We can approximate light from thermal sources and the electronic dark counts of

the APDs as being continuous [32]. Without intensities that vary with time, calculating
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the expected rate of accidental coincidence counts is straight forward under the
assumptions that detections are independent and follow Poisson statistics.

Given the detected singles rates, the rate of accidental coincidences will be the
rate of singles from each APD multiplied by the coincidence window of the FPGA,

Ngee = Ny X N; X T, (9-1)
where Nis the number of counts/sec detected by the signal APD, N;is the number of
counts/sec detected by the idler APD, and T,, is the coincidence window. For example, if
Ny = N; = 1000/secand T,, = 1 ns,

1000 x 1000 x 10~2 .001 9.0
Nyee = Ny X N; X T, = — = (9-2)

In the case of pulsed input, this simple equation no longer applies because the probability
of detection varies with the amplitude of the incoming light. Under the assumption that
the pulses are much shorter than the detection window, there is no need to worry about
the shape of each pulse. In this case the number of accidental coincidences detected per

second will depend on the pulse rate of the source, f,,:

N, x N;
Ngce = . (9-3)
f;‘ep
100,000 .
If Ns =N; =1000/secand f.., = p— the average expected accidental rate would

be,

_ NgxN; 1000 x 1000 1

N, = _ _1 _
acc = f o 1000,000sec  sec (9-4)
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Realistically, the detections from the APDs in the experiment will come from both pulsed
and continuous sources, so the total accidental count number will be a combination of

Equations 9-1 and 9-3:

pulse pulse
NP"S€ x N

Ngee =
f;’ep

+ Nscont X Nicont % Tw- (9_5)

Without conducting measurements to determine the ratio of detected photons coming
from pulsed and continuous sources, an upper bound may be found for the accidental
coincidence count by assuming all detected photons are from either a pulsed or
continuous source, calculating the expected accidental count total, and keeping the

maximum value:

Ng X N, |
pyupper bound _ - , pulsed source

acc ax f;‘ep
Ng X N; X T,,, continuous source.

(9-6)

This is the upper bound on accidentals shown on Figure 9.7 as the horizontal dashed line.
The coincidence rate for delays |t| > 1 ns falls under this upper bound, indicating that
those counts may be described as accidentals. When the detection signals from the same
pulse are optimally overlapped in the detection window of the FPGA (7 = 0 ns), the
detected coincidence rate is over 10 times greater than this upper bound, indicating some
process is generating correlated photons at the sideband wavelengths of the degenerate
FWM process in the fiber.

In addition to observing the expected correlations between the signal and idler
photons at zero relative time delay, measurements of the coincidence rate as a function of

pump power were also performed.
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The quadratic growth in coincidence counts is shown in Figure 9.8, and agrees

with the expected gain from degenerate FWM first shown in Chapter 2.
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Figure 9.8. Quadratic Coincidence with Power: A plot of the coincidence count rate

as a function of power showing the quadratic nature of both the coincidence counts
and the upper bound on the accidental coincidences.

9.8 Second-Order Correlations
The generation of correlated photon pairs by spontaneous degenerate FWM is a
non-classical phenomenon, as discussed in Chapter 2. To support the claim that the
photons being generated in the xenon filled fiber are entangled and not just classically
correlated, a g® measurement of the intensity correlations in one of the sidebands was
performed. As discussed in Chapter 2, a g® < 1 would violate the classical inequality

and verify that some amount of entanglement existed between the generated photons.
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To measure g, a 50:50 beamsplitter was used to split the photons from the
signal wavelengths and a 3™ multimode fiber and APD added to the detection scheme.

An additional delay line was also included before the FPGA as shown in Figure 9.9.
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Figure 9.9. Experimental Setup for 2"%-Order Correlations: A diagram of the
modified correlation experiment, now with a third APD for heralded g®of the
signal channel.

The heralded g® was measured using detections from the idler wavelength APD

as a herald. As described in Chapter 2,

NapcNe (9-7)
NacNpc

g(Z) =
In an ideal case with no loss, no noise, and no time delay between the overlap of
detection signals from the three APDs, the two photons generated by degenerate FWM

should never be detected at all three detectors. So with Nygc = 0, g® = 0. As soon as a

time delay is added to the system, the possibility of coincidence counts between S; and S,
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will return, as now a coincidence measurements can occur from photons from multiple
pairs.

Measurements of g were performed for two different delay settings with a
pump average power of 5 mW and pulse width of 13.5 ps. In the first instance, the delay
box settings for all three APDs were set such that the detections from the same pump
pulse were overlapped on the FPGA (0 ns delay). In the second instance, the delay boxes
were used to overlap three different pulses on the FPGA (+/-12.5 ns delay). One hundred
recordings of counts each over a 10 second interval were performed and the average
values measured for the count rates shown below. A third recording with the pump laser
blocked was also performed to collect dark count and electronic count statistics to
remove from the raw values recorded in the first measurements.

Table 9.1. FPGA Recordings for 2"-Order Correlations: The detected number of
photons and coincidences for determining g® values for 2 different time delays.

Na Nagsc Nag Nac
=0 2,296,270 56.3 + 8.5 20,295.2 17,847.8
+ 93,245 +1110.7 + 960.0
T=+112.5ns 2,24,7030 44420 2670.4 2350.5
+ 100,418 + 220.4 + 190.8
The resulting 2"-order coherence values are:

@) (+ — _ +.11
g (t = 0ns) .36_.10

g®(r=412.5ns) = 1.57
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Lower values of g (t = Ons) were observed with lower pump powers, but because of
the very low rates of heralded coincidences in the T = +12.5 ns design, insufficient
statistics for g (r = +12.5 ns) were recorded for those lower powers, While additional
measurements should be performed to reduce the error bars on the g(® values, g < 1
for T = 0 ns time delay demonstrates that the light being produced by the degenerate

FWM is non-classical, indicative of its makeup by pairs of single photons.
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CHAPTER X

CONCLUDING REMARKS

This dissertation described a prototype source of tunable entangled photons by
combining a hollow-core photonic bandgap (HC-PBG) fiber with a noble supercritical
fluid. By changing the density of the fluid filling the fiber, the guidance and dispersion
properties of the system could be optimized for desired phase matching conditions to
produce photon pairs by degenerate four-wave mixing. The ability to tune the dispersion
profile of the fiber, in particular, opens another degree of freedom to generating
entangled photons. By proper choices of pump laser wavelength and xenon density in the
system, the wavelengths and wavelength separations of the entangled photon pairs can be
chosen.

This system can serve as a heralded source for single photons with a range of
central wavelengths. At a given xenon pressure, tuning the pump laser allows for a range
of sideband wavelengths to be accessed within the guidance window of the fiber. And
while not experimentally shown in this dissertation, changing to a new pressure of xenon
in the fiber opens up new wavelengths for the sidebands.

Applications that need control over the central wavelengths of both photons
generated by the four-wave mixing process may find this system especially attractive, as
the extra degree of freedom provided by a tunable dispersion profile allows the
wavelengths of each sideband to be controlled by proper control over the xenon pressure

and pump wavelength.
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The use of a material without strong Raman gain should also not be forgotten, as
this prototype has the possibility of providing a near-ideal source of entanglement
without contamination from Raman generated light.

After briefly situating the work in the larger historical and contemporary context,
mathematical descriptions of light were explored to develop an understanding of how
light interacts with matter in both linear, nonlinear, and quantum regimes. Particular
focus was spent on how the interference of light fields may be used to measure properties
of systems and how the nonlinear interactions of light with matter under specific
conditions can give rise to entangled light and new frequencies.

After developing the foundational principles of generating entangled photons
from light-matter interactions, this dissertation turned its attention to the hollow-core
photonic bandgap (HC-PBG) fiber. The photonic crystal guidance mechanism was
discussed and how that guidance mechanism provides an opportunity for controlling
parameters of the waveguide by means of controlling the refractive index of the photonic
crystal.

The last element needed to finish the groundwork for this dissertation was a fluid
to fill the HC-PBG. The fluid needed to provide a high nonlinearity and a tunable
refractive index while not acting as a source for undesired optical effects. Supercritical
xenon was shown to achieve all these requirements thanks to its accessible supercritical
region and its lack of vibrational modes.

With all the pieces needed for the prototype described, the next section discussed
building the laboratory apparatuses that became the prototype source for entangled

photons. The need to contain and control the xenon was realized by using liquid nitrogen
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to control the density of xenon throughout a containment system. Cells that would
withstand the pressures of supercritical xenon, support the HC-PBG fiber, and allow
coupling of light to and from the core of the fiber were described, with a word of caution
given about installing delicate fibers into cells without causing substantial damage.

With the prototype constructed, the 2" half of the dissertation looked at
experimental measurements and developed models used to profile the prototype and
enable future projects to predict parameters without needing to measure them in the lab.
The first experiments showed how increasing the density of xenon filling the photonic
crystal of the fiber changed what wavelengths were guided by the fiber in a predictable
fashion, opening the door to tuning the fiber to the desired wavelengths for generating
entangled photons.

The next set of experiments looked within the guidance window of the fiber at the
group velocity and group velocity dispersion profiles of the light. By use of a white light
Mach-Zehnder interferometer, these parameters could be measured at different pressures
of xenon and the zero dispersion wavelength found. The complication of measuring
group refractive index when phase refractive index is the property which controls
nonlinear four-wave mixing was raised, and a solution involving polynomial
approximations was shown.

A model to describe the dispersion profile of the guidance window of HC-PBG
fibers as a function of fluid density was developed, combining the ways the waveguide
and material dispersion curves change with pressure. A toy model was shown to replicate
the observed asymmetries in the group refractive index profile as well the change in the

zero dispersion wavelength as a function of pressure.
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With the prototype fully parametrized, the final section of this dissertation
described the experimental observations of correlated photons created by degenerate
four-wave mixing in the xenon filled fiber. Measurements of the wavelengths of the
sidebands containing the correlated photons were shown to obey energy conservation
over a range of pump wavelengths, and their growth was shown to be quadratically
dependent on the peak pulse power. Coincidence measurements of the sidebands showed
that the photons at those wavelengths were significantly correlated, and a 2"-order
coherence measurement demonstrated that the light being generated was non-classical in
nature, as expected for pairs of single photons.

To achieve this prototype system, several challenges needed to be overcome. As
discussed in Chapter 3, HC-PBG fibers guide light though a core defect in a photonic
crystal that propagates through the length of the fiber. In addition to supporting core
modes within a certain frequency band, these fibers also can support surface modes along
the core walls of the fiber in the same frequency band. Certain frequencies that overlap
both the core and surface modes are naturally lossy, as light from the core mode couples
to the surface mode and then to leaky modes of the fiber’s cladding. As the pressure of
the xenon increased, the wavelengths of this overlap increase, leading to the possibility
the entire guidance window is lossy due to overlap with surface modes. Special fibers
designed to not have surface modes were necessary to achieve transmission of light at
high pressures of xenon.

Temperature control was also a continuing challenge with this system. Especially
near the critical point, changes in the temperature of xenon can have substantial effects

on the density of xenon. This in turn can cause changes to the refractive index of the
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xenon and scattering of light in the fiber. Care in controlling the temperature of the fiber
throughout its length, but particularly at the tip where localized heating is most likely to
occur from imperfect coupling, in necessary to achieve good transmission of light.

Looking forward, this project could benefit from additional work to improve
efficiencies and statistics. Investigating the generation of correlated photons at multiple
pressures and potentially on multiple polarization axes of the fiber are additional avenues
that could be pursued. With the models developed in this dissertation, future projects with
fluids and HC-PBG fiber could accurately estimate all parameters necessary for
generating entangled photon pairs from degenerate FWM in the guidance window of the
fiber. Finally, xenon’s lack of vibrational modes was largely uninvestigated. Experiments
on the potential of this type of system for generating entangled without significant Raman
gain could open the door to fiber based photon pair generation close to the central

frequency of the pump.
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