
COUPLING NITROGEN VACANCY CENTERS IN DIAMOND TO A

NANOMECHANICAL OSCILLATOR

by

THEIN HTAY OO

A DISSERTATION

Presented to the Department of Physics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

September 2017



DISSERTATION APPROVAL PAGE

Student: Thein Htay Oo

Title: Coupling Nitrogen Vacancy Centers in Diamond to A Nanomechanical
Oscillator

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Physics by:

Benjamin McMorran Chair
Hailin Wang Advisor
Paul Csonka Core Member
Cathy Wong Institutional Representative

and

Sara D. Hodges Interim Vice Provost and Dean of the
Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded September 2017

ii



c� 2017 Thein Htay Oo
This work is licensed under a Creative Commons

Attribution (United States) License.

iii



DISSERTATION ABSTRACT

Thein Htay Oo

Doctor of Philosophy

Department of Physics

September 2017

Title: Coupling Nitrogen Vacancy Centers in Diamond to A Nanomechanical
Oscillator

Exotic aspects of quantum mechanics, such as quantum entanglement, can

be exploited to solve computational problems that are impractical to solve with

conventional computers. With the realization of robust solid-state qubits, such

as Nitrogen Vacancy (NV) centers in diamond, an outstanding challenge is to

develop experimental approaches that can control the interactions between individual

qubits. This dissertation develops a diamond-based experimental system that

exploits acoustic waves or mechanical vibrations to mediate interactions between

spin qubits. This spin-mechanical system features three essential elements: robust

qubits, high quality-factor diamond nanomechanical resonator, and strong spin-

mechanical coupling, thus enabling a new and promising platform for pursuing solid-

state quantum computer.

For the spin-mechanical system, NV centers are created near the surface

of a bulk diamond through nitrogen ion implantation followed by stepwise high

temperature annealing. We successfully suppress environmental fluctuations and

achieve NV centers with stable and spectrally narrow (< 50 MHz) fluorescence at

low temperature, which is crucial for the spin-mechanical system.
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Diamond nanomechanical resonators with a fundamental frequency near 1

GHz have been successfully fabricated with a diamond-on-insulator approach. The

resonators are suspended from a silicon substrate and are supported with long and

thin tethers, decoupling the mechanical modes from the surrounding environment.

Diamond nanofabrication is still in its infancy. Numerous fabrication problems

occurring during etching, mask transfer, and wafer bonding have been painstakingly

resolved.

Strong spin-mechanical coupling is demonstrated via the strain coupling of the

NV excited-states. The spin-mechanical coupling takes place through a ⇤-type three-

level system, where two ground-spin-states couple to an excited-state through a

phonon-assisted as well as a direct dipole optical transition. Both coherent population

trapping and optically-driven spin transitions have been realized. The coherent

population trapping demonstrates the coupling between an acoustic wave and an

electron spin coherence through a dark state, thus avoiding the short lifetime of the

excited state. The optically-driven spin transitions can enable the quantum control

of both spin and mechanical degrees of freedom.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

1.1. Quantum Information Processing

A quantum mechanical system can feature unusual phenomena such as quantum

superposition and quantum entanglement. This exotic aspect of quantum mechanics

can be exploited to solve computational problems that are impractical or impossible

to solve with conventional, classical computers [1–3]. The quest for developing

quantum computers has attracted extensive worldwide efforts with wide-ranging

technical approaches. The elementary units for quantum information processing are

quantum bits or qubits, which are essentially two-level quantum systems. The most

promising qubit systems for implementing quantum computers have thus far been

superconducting circuits[4, 5] and trapped ions [6–8], which was rewarded with Nobel

Prize in 2012. Intense research efforts have also focused on other qubit systems,

especially solid-state spin qubits that can preserve quantum coherence for a long time

and can potentially enable scalable quantum computers. An outstanding challenge in

these efforts is to develop and demonstrate experimental approaches that can precisely

control the interactions between individual spin qubits.

1.2. Nitrogen Vacancy Centers as Qubits

Negatively-charged nitrogen Vacancy (NV) centers in diamond have recently

emerged as a leading candidate for solid-state spin qubits. NV centers have many

properties that resemble those of trapped-ion atomic systems. The decoherence time
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of an electron spin in NV centers can be of order of a few milliseconds, which is several

orders of magnitude longer than that of superconducting qubits[9, 10]. Spins in NV

centers can be easily manipulated with microwave waves. Spin states can be prepared

and measured (or read out) with high fidelity through convenient optical processes.

In addition, nuclear spins related to NV centers can feature decoherence time greater

than seconds and can thus serve as excellent quantum memories.

1.3. Surface Acoustic Waves (SAW)

Electromagnetic waves have traditionally been the primary experimental tool

for controlling a quantum system and for transmitting and distributing quantum

information. There has also been strong recent interest in using acoustic or mechanical

waves, in particular surface acoustic waves (SAWs), for quantum control and on-chip

quantum communication of artificial atoms.

SAWs are elastic waves which propagate near the surface of a medium.

The deformation in the medium originated by propagation of SAW waves decays

exponentially away from the surface. Therefore, most of the energy is confined within

one wavelength depth of the propagating SAW wave.

SAW filters are widely used in mobile communication industry. In recent years,

SAW has garnered substantial interests in quantum science research. Phonons

generated by SAW waves were successfully coupled to an artificial atom[11]. Universal

on-chip quantum transducers based on SAW waves are theoretically proposed. SAW

induced quantum oscillation is investigated in a two-dimensional electron system[12].

SAW resonators with internal quality factor approaching 0.5 million at 0.5 GHz

was recently demonstrated and they are promising candidates for integrating with

supercounducting quantum circuits[13]. SAW waves are successfully coupled to a

2



coupled quantum dot-nanocavity system in the weak coupling regime of cavity-

quantumelectrodynamcis[14].

1.4. Spin-mechanical Systems

A major focus of the research efforts in this dissertation is to explore the

use of mechanical vibrations including SAWs for quantum control of NV centers,

with the eventual goal of using mechanical waves to mediate coherent interactions

between distant NV centers on a chip. Coherent coupling between electron spins

and nanomechanical resonators has been pursued with a variety of approaches.

An earlier study placed a cantilever with magnetic tip to the close proximity of

an electron spin in diamond[15]. The spin qubit is coupled to the motion of the

magnetized nanomechanical oscillator through magnetic field gradients. Experimental

realization of coupling a mechanical oscillator to an electron spin of a NV center

in diamond through mechanical strain is also successfully demonstrated by several

research groups[16–19]. One approach used a single-crystal cantilever with embedded

NV center spins. The spin-phonon coupling is realized by a lattice strain caused by

mechanical oscillation of the cantilever[18]. Another approach used electrically driven

gigahertz-frequency mechanical (stress) waves instead of a cantilever. The mechanical

(stress) waves are generated by fabricating High-Overtone Bulk Acoustic Resonator

(HBAR) on a diamond sample[20].

3



1.5. Overview of Dissertation

Coupling of an electron spin in NV centers in diamond to mechanical vibrations

has not been widely explored even though NV centers are quite promising for quantum

information and communication systems. First of all, the fabrication of diamond

mechanical oscillators are relatively hard compared to silicon nitride or silicon due

to the physical properties of diamond. NV centers with stable fluorescence are also

difficult to be embedded in diamond resonators because of their sensitivity to some

etching processes. In this thesis, I will try to address three major issues which are

hindering the integration of NV spin systems to a mechanical resonator. First, I

will discuss the near-surface implantation of NV centers in diamond. Then, I will

elaborate on the fabrication of SAW devices and diamond mechanical resonators.

Finally, I will demonstrate how we couple SAW to the excited state of an electron

spin in the NV center.

1.5.1. Implantation of NV Centers

After a brief discussion of NV properties in Chapter II and the experimental

setups in Chapter III, I will discuss the creation of nitrogen vacancy centers in

diamond. These techniques discussed in Chapter IV will be easily transferable to

other color centers such as silicon vacancy centers or germanium vacancy centers. I

will discuss the surface preparation of diamond which are crucial for charge stability

of NV centers and any future resonator fabrication. We will use the ion implantation

method in which we bombard the diamond sample with energetic 15N+ ions. The

energy of the ions and the type of the material ( in our case it is diamond.) controls

how far the ions will penetrate under the surface of the sample. In that way, we

can control the location of NV centers below the surface. Extensive post-annealing

4



and surface termination result in NV centers with stable fluorescence. Having NV

centers with charge stability is one of the crucial requirements of any future study of

quantum behaviors of diamond nano- and micro-mechanical systems.

1.5.2. Fabrication of Diamond Mechanical Resonators

In chapter V, I will discuss the modeling and fabrication of mechanical resonators.

In general, diamond is hard to fabricate due to its well-known chemical inertness.

Therefore, we started the modeling and fabrication on silicon nitride. Silicon nitride

is inexpensive and has relatively well documented techniques about its fabrication

processes such as dry and wet etching. We will also discuss the beam theory

which explain the resonant eigen frequency of these oscillators. We are able to

tailor the desired resonant frequencies by applying Euler-Bernoulli beam theory.

The calculation from Euler-Bernoulli beam theory is in a good agreement with the

experiment.

For diamond resonator fabrication, we have explored two approaches. One uses

focused ions beam milling and another uses on-chip fabrication. We will discuss how

to polish a diamond oscillator using a focused ions beam to minimize the surface

damage, which is important for the quality of the resonator. For on-chip diamond

resonator fabrication, we will focus on wafer bonding process and how to select the

proper mask for etching. The selectivity of the mask is critical when etching diamond

due to the chemical inertness of diamond.

We wil also introduce several ways to characterize the beam we fabricated. We

will demonstrate peizo-driven temporal ring-down measurements and spectral domain

measurements using a simple but powerful optical interferometric measurement setup.

5



1.5.3. Excited State Electron-phonon Coupling

In chapter VI, I will discuss the excited state electron-phonon coupling in NV

centers in diamond using SAWs induced by interdigital transducer (IDT). We will

demonstrate how to incorporate phonon-mediated resolved side band coupling into a

two-level system in NV centers. We will study phonon-mediated excited state Rabi

oscillation. This chapter was previously published in Physical Review Letters[16]

coauthored with Andrew Golter, Mayra Amezcua, Kevin Steward and Hailin Wang.

In chapter VII, I will explore phonon-mediated coupling in a ⇤-type three-level

system in NV centers. We will study both phonon-assisted coherent population

trapping (CPT) and optically driven sideband spin transitions. This chapter was

previously published in Physical Review X[21] coauthored with Andrew Golter, Mayra

Amezcua, Ignas Lekavicius, Kevin Steward and Hailin Wang. .

These experiments demonstrate how to take advantage of the strong excited-state

electron-phonon interaction to mediate and control the coupling between a spin and

mechanical degrees of freedom, while avoiding decoherence usually associated with

the excited state. These approaches can be extended to other emerging spin systems

with spin defect centers such as silicon or germanium vacancy center in diamond,

defect centers in silicon carbide, quantum-dots as well as superconducting systems.
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CHAPTER II

NITROGEN VACANCY CENTER IN DIAMOND

2.1. Introduction

Diamond is well known for its unique and exceptional properties, including

hardness, thermal conductivity, optical transparency, and chemical and biochemical

inertness. Some of its interesting characteristics emerge from its lattice properties.

Nitrogen-vacancy (NV) color centers[22], which are formed in a diamond by one

substitutional nitrogen atom and an adjacent carbon vacancy, are among the most

intensely studied lattice defects in recent years. NV center in diamond behaves like a

solid state artifical atom[23] and has been widely investigated in magnetomery[23,

24], thermometry[25], mechanical sensing, electric field sensing,biosensing[26] and

nanoscale nuclear magnetic spin resonance spectroscopy (NMR). NV center is also a

promising candidate for scalable and feasible implementation of quantum computation

and quantum information processing (QIP)[27].
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2.2. Nitrogen-Vacancy Center in Diamond

2.2.1. Diamond Structure

Diamond is widely acknowledged as an allotrope of carbon constructed by sp3

hybridized covalent bonds in the form of a tetrahedral geometry. It consists of two

face-centered cubic (fcc) lattice structures (see Fig. 2.1). These covalent bonds make

diamond very rigid. Even though diamond is one of the best thermal conductor, it is

also a great electronic insulator with a wide energy band gap of 5.45eV which gives

rise to its optical transparency in the visible regime.
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a. b.

x

z

y

c.

C

CC
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C
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doner e-

FIGURE 2.1. Carbons atoms are marked in red, a nitrogen(N) atom in violet, and a
vacancy (V) is marked in gray and a donor electron from the environment which is
most likely coming from another substitutional nitrogen atom (a) A nitrogen vacancy
center in diamond lattice. (b) Symmetry operations for C3v group include rotational
invariance by 2⇡n/3 around the NV axis. (c) dot structure drawing diagram of NV
defect with surrounding electrons.

2.2.2. Classification of Diamond

Diamond samples with NV centers are commercially available from Element Six

(E6) Technologies, Apollo Diamond, and Sumitomo Electric and can exhibit unique

characteristics such as concentration of impurities and doping as well as specific

nitrogen and carbon isotopes. In general, both natural and artificial diamond are
8



classified into two groups based on the concentration of nitrogen content: type “I” for

high and type “II” for low concentration. Type “I” is further divided into type “Ia”

and “Ib”, so does type “II”. Nitrogen atoms are commonly regarded as contaminants

to diamonds and their concentration is usually expressed in parts-per-million (ppm,

10�6) and parts-per-billion (ppb, 10�9). Both type “Ia” and “Ib” typically contain 100

to 3000 ppm nitrogen atoms. The only difference between type “Ia” and “Ib” is type

“Ia” consists of aggregated nitrogen atoms, whereas type “Ib” has single substitutional

atoms. In contract, type “II” generally contains less than 5 ppm nitrogen atoms.

Nitrogen atoms are the major impurity in type “IIa” which is useful for electrical

insulation. Boron atoms are the major impurity in type “IIb” and these type “IIb”

diamonds are used as p-type semiconductor. Almost all (> 98%) of natural diamonds

belong to type “I" while most artificial diamonds manufactured by chemical vapor

deposition method (so called "CVD diamonds" ) are type “II". Single crystal CVD

diamonds from E6 have even divided into three sub-groups: standard optical grade,

electronic detector grade with (< 50 ppb) in nitrogen atoms and (<0.5 ppb) in boron

atoms and quantum grade with (> 99.95 % 12C) isotopic purity and (< 1 ppb) in

nitrogen atoms. Most of the diamond samples we use in the laboratory come from E6

as electronic-detector grade single crystal CVD diamonds (type “IIa”). The crystal

structure of the CVD single crystal diamonds used in this thesis is (100) oriented

along the surface, with (110) edges, and (111) as a cleavage plane.
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2.2.3. Electronic Properties of NV center in Diamond

Both neutral (NV0) and negative (NV�) centers can be examined in diamond.

In both cases, they are composed of the covalent bonds of three carbon atoms and

one nitrogen atom surrounding the vacancy. The neutral NV center (NV0) possesses

5 electrons and an electron spin of 1/2 whereas the negative NV center has 6 electrons

and an electron spin of 1 (see in Fig. 2.1). The negatively charged NV (NV�) center

has undergone decades of intense scientific research and conventionally referred to as

NV center with the absence of the “�” sign. This naming convention is also applied

through out my dissertation since my research focuses exclusively on the negatively

charged NV center.

The ground state of the NV center is a spin triplet state with 3A2 symmetry.

There are three magnetic sublevels: ms=0 (|0i) and ms=± 1 (|±1i). These sublevels

experience a zero-field splitting due to a spin-spin interaction that raises the energy of

|±1i with respect to |0i by D ⇡ 2.87 GHz. Degeneracy between |±1i can be lifted by

applying an external magnetic field along the NV center axis which causes a Zeeman

shift given by � = ms�B, where gyromagnetic ratio � = g µB/h = 2.8 MHz/G. The

nearest excited state is located at 1.945 eV above the ground state[28–34].

2.2.4. Optical Properties of NV Center in Diamond

At room temperature, the cycling optical transition between the ground (3A2)

and excited (3E) states exhibits a characteristic zero-phonon line (ZPL) at 637nm with

a broad phonon sideband which ranges from 637nm up to 800nm with a maximum at

approximately 680nm. Only 4% of the photons are emitted into zero-phonon line[35]

and the rest decays into the phonon sideband. A single photon can be released at

every 12 ns during the relaxation into the ground states. At cryogenic temperature,
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FIGURE 2.2. Energy level structure at room temperature. The zero field splitting
between ms =0 and ms = ±1 sublevels of the ground triplet states is ⇡ 2.87GHz while
the similar splitting of the excited states is ⇡ 1.43GHz. The green arrows represent
the non-resonant (532nm) optical excitation into the phonon sidebands. Fluorescence
emission is shown in red, the intersystem crossing is shown in gray and non-radiative
decay is indicated by brown arrows.

the bandwidth of optical transitions between the ground and excited triplet states

is narrower than the sublevels and moreover, these transitions, in general, obey the

spin-selection rule. However, there is a non-radiative decay path from the excited

states to metastable singlet states with an effective lifetime of ⇡ 200 ns. Even though

the inhomogeneous optical linewidth of the ensembles of NV centers is approximately

11



several GHz, the single NV center’s linewidth can be in the MHz range which is

actually limited by the excited state lifetime.
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CHAPTER III

EXPERIMENTAL TECHNIQUE & SETUP

3.1. Introduction

All of my research has been conducted on a single NV center at cryogenic

temperature (7.78 K). I will discuss the home-built low working distance confocal

setup, how the optical excitation has been performed and how the spin states are

prepared, how the surface acoustic waves are generated and being monitored.

3.2. Cryogenic Setup

532 nm laser

638 nm laser

AOM

AOM

APD

Filters

Fiber coupler

Dichroic

Galvanometer

Beam 
Splitter

Mirror

Objective

RF Source

RF Amp

Cryostat

Spectrum
Analyzer

Diamond
attached to
3D Stage

IDT Driver

IDT Monitor

FIGURE 3.1. Low temperature and low working distance confocal microscope setup.
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I inherited a confocal setup from my colleague, Andrew Golter and he discussed

in details about the setup in his thesis[36]. Therefore, I will focus only on the major

upgrades I made to his setup. First, the diamond sample is mounted on the sub-nm

resolution 3D positioning stages (ANP 51 series) from Attocube Systems Inc. In

most NV center experiments, it is quite critical to get high fluorescence collection

efficiency. Various various methods such as pillar structures, and solid immersion

lenses[37] (SILs) have been performed to achieve higher collection efficiency.

One of the simple approaches is to use a high numerical aperture microscope

objective (see Fig. 3.1). At the same time, an objective with a high magnification

is also needed to spatially resolve a single NV center from its environment. All

microscope objectives, that satisfy these two requirements, come at a price which is

their low working distance. There are two ways to solve these problems: one is to

place the microscope objective inside the cryogenic chamber and another is to install

an ultra thin cryogenic window so that the low working distance objective can reach

the sample. Frequently cooling-heating cycles could damage the objectives in the

long run; thus, the latter method is chosen to pursue for the cryogenic setup. After

searching through hundreds of microscope objectives, we carefully chose Nikon CFI

Plan LWD IMSI 100X microscope objective with an 0.85 numerical aperture, working

distance 0.95mm, and cover glass thickness from 0.6-1.3mm. To be compatible with

this objective, a 1mm low working distance window with anti-reflective coating from

Montana Instruments Corporation is installed as a side window in our cryostat [38].

It is essential to place the diamond sample as close as possible to the cryostat

window due to the low working distance objective. This means the sample mount

must be about 32.44mm long and more than half of its length will be over hanging

because of the size of the attocube stages. To avoid undesirable torque from the
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b.

c. d.

FIGURE 3.2. Custom-built Sample Mount, Spacer and PCB for Cryogenic System.
(a) Printed Circuit Board (PCB) is designed to be able to mount right next to the
diamond sample and have two available channels for signals coming in and out with
the command ground. (b) Sample mount which will be installed on the top of the
attocube stage. (c) A diamond sample, PCB and sample mount are all put together.
(d) A 54�-angled spacer. Both the sample mount and spacer are made of oxygen-free
high-conductivity (OFHC) copper and are gold-plated to prevent oxidation.

sample mount to the attocube stage and to reduce the vibration while moving the

stages, the sample mount was meticulously designed to shift the center of mass at the

same time as the rigidity of the copper sample mount and the weight limit that the

attocube can tolerate are maintained (see Fig. 3.2b).

The low working distance window from Montana Instruments cryogenic system

is only recommended for the top window. To install it in the side window, we have

to use the long and heavy sample mount which requires ANP 101 series attocube

stages to withstand its weight. We plan to install two sets of 3D attocube stages (

total of six stages) inside the cryostat in the future; therefore, there is only enough

footprint to fit two sets of ANP 51 series attocube stages. To solve this problem,

the 54�-angled spacer is made out of a single piece of oxygen-free high-conductivity

(OFHC) copper to acquire the best thermal conduction through out the spacer by

circumventing thermal contact resistance (see Fig. 3.2d). This 54�-angled spacer will

bring the attocube stages closer to the side window so that the short-length sample

mount can be used as shown in Fig. 3.3d.
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FIGURE 3.3. Cryogenic setup with Sub-nm resolution 3D translational stages. (a)
The inside layout of the cryostat where the spacer, the sample mount, three attocube
stages and thermal flex which bypass attocube stages so that most of the heat can
be transferred from the sample mount to the main cold finger through the spacer.
(b) With the installation of the removable upper body of the cryostat. (c) Top view
with the removable upper body of the cryostat showing that the attocube stages are
successfully installed closer to the side window, and (d) Top view to show how close
the sample is to the side window of the cryostat. Drawing of the cryogenic chamber
assembly is courtesy of Montana Instruments Corporation.
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a. b. c.

FIGURE 3.4. Comsol modeling of the spacer by adjusting the mechanical structure.
(a) 86kHz, (b) 149kHz and (c) 177kHz are the three lowest mechanical frequencies of
the spacer.

All the attocube stages used in this system are open-looped nanopositioners and

are driven by an Attocube Systems ANC300 controller unit with ANM300 modules.

DC voltage within the range of 0-150V can be applied to drive these stages in the fine

positioning mode and a sawtooth wave with amplitude of 0-50V and frequency within

the range of 0-50kHz can be in the coarse positioning mode. For our experiments,

22-25V and 220-280Hz are usually applied in the coarse positioning mode. When

the spacer was modeled, the multiple orders of the fundamental frequency of the

spacer are calculated by using COMSOL modeling software (see in Fig. 3.4) and we

ensure they are not overlapping with the driving frequency of the attocube stages to

avoid resonant vibration in the spacer. By adjusting the position and structure of

the two vertical supports that connect the top and bottom plate, the fundamental

frequency of the spacer (86kHz) is significantly shifted out of the driving frequency

range which is 0-50kHz. This will not be an issue if the spacer is a solid piece but it

will definitely increase thermal mass and the cryostat will take a longer time to cool

down to 7.7K.This current setup with the three attocube stages, the custom mount

and spacer take at least 20 minutes less time to cool down than the previous setup

with the Montana Instruments’ spacer and sample mount even though the latter does

not has attocube stages inside the cryostat.
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3.3. Home-built FPGA-based Fast Photon Counting Instrument

Field Programmable Gate Arrays (FPGAs) are universal in systems that require

high speed data or signal processing. An FPGA is made of a giant array of

interconnected logic gates and they can be configured in multiple ways according to

the requirements of the individual research. Therefore, an FPGA development board

can be constructed as a function generator, lock-in amplifier, spectrum analyzer, pulse

generator, ultra fast digital counter and so forth. These logic gates are reconfigurable.

Thus, a development board can be a function generator at one moment and a few

minutes later it can be an oscilloscope.

An FPGA-based photon counting card is used on some of the experiments such

as Rabi oscillation. With the use of this inexpensive home-built photon counting card,

every photon released from the system can be time-tagged with the resolution of 2.8

ns. This instrument is built based on this article[39]. In our modified version, we have

each individual trigger input for each counting input and have also written a python

module to work with this card. The CG635 from Stanford Research Systems is set up

as an external clock generator via the CMOS signal mode. With the use of memory

mapping in python, 100 MB of binary data can be interpreted as a meaningful plot

within a few seconds.

3.4. SAW Generating and Monitoring Setup

Interdigital transducers (IDT) are fabricated mainly in a pair: one to generate

surface acoustic wave from the electrical signal and another to reconstruct the

electrical signal from the mechanical one. I will refer to the former IDT as Input

IDT and the latter as Output IDT in the rest of this thesis. As shown in Fig. 3.1,

the Agilent Technologies 8648C signal generator is tuned to be the frequency of the
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SAW and the signal coming from the signal generator is amplified by a Mini-Circuits

ZHL-10W-2G+ high power amplifier. The HP 6267B DC power supply is used as a

power supply for the Mini-Circuits amplifier. Even though the typical current and

voltage required for the amplifier are 4A and 24V, the amplifier needs at least 6A to

turn on due to the induced electromotive force.

The output from the power amplifier is connected to the PCB which is shown

in Fig. 3.2c. An annealed 1%Silicon-99%Aluminum (1%SiAl) wire with 32 microns

in diameter, 1-4% in elongation and 19-21g in tensile strength is used to connect

between the PCB and Input IDT via wire bonding. One of the major reasons to use

1%SiAl wires instead of gold or copper wires is the former wires have a 95% success

rate in wire bonding and it can easily be bonded to gold, copper, aluminum and even

bare silicon surface. The signal coming from Output IDT is observed continuously

with Agilent Technologies E4401B spectrum analyzer (see Fig. 3.1).

3.5. PL and PLE Measurement

PL (photo-luminescent) measurement is continuous wave (CW) measurement

that can be performed at both room and cryogenic temperatures. In this

measurement, the optical field at 532nm (green) with a constant power is applied

to the NV center to excite the electrons from the ground state and measure the

number of photons coming out of the system as spontaneous emission when excited

electrons returns to the ground state. By steering the 532nm (green) laser field with

a 2D rotating mirror galvanometer, we can scan the surface of the diamond sample

to profile the density of the NV-center of the diamond sample.

PLE (photo-luminescent excitation) is pulsed wave measurement which can only be

performed at cryogenic because it is a resonant excitation and at room temperature,
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5 μm

FIGURE 3.5. Scanned confocal microscope image showing implanted individual NV
centers

the phonon side band is too broad to do a measurement. Even though the PL

experiment is crucial for indentifying the individual NV-center and it is the very

first measurement to be performed in most of NV center experiment, most of NV-

center measurements on this are done by PLE measurement as it is the only way to

access individual energy levels.
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FIGURE 3.6. (a) The averaged spectrum of 25 PLE scans and (c) multiple successive
scans with respect to the detuning of the resonant Ey transition frequency, and (b)
pulse sequence for PLE scans, in which a green laser is used to repump to reinitialize
the system and a red laser is for measurement.
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CHAPTER IV

FABRICATION OF NV CENTER IN DIAMOND

4.1. Introduction

As mentioned, the electronic spins in the nitrogen-vacancy (NV) center have

been demonstrated to be nanoscale probes in the wide range of applications

in magnetometry[40, 41], magnetic imaging[41–43], electric-field sensing[44], and

thermometry[45, 46] . However, limitations still exist in applications such as nuclear

spin imaging and external spin entanglement[47, 48] due to the weak magnetic dipole

interaction in which the coupling strength decreases with distance (r) as 1/r3. A

simple way to solve this issue is to create a NV center closer to the surface of

the diamond so that a single external electron and a proximal nuclear spin can be

detected with higher sensitivity through the use of any receiver such as a ferromagnetic

or atomic force microscopy[49] (AFM) tip. Ion implantation[50–56] and the delta-

doping[57] method are proven to achieve near surface NV centers in diamond.

4.2. Ion Implantation

Ion implantation is a process in which the energetic ions are injected into

the targeted substrate which changes the electrical and physical properties of the

substrate. In this process, the source gases, in our case is nitrogen gas, are initially

ionized in an electrical discharge in the vacuum chamber. These extracted ions are

ordered in accordance with their atomic mass in a magnetic field, i.e., by magnetic

mass spectrometry. Then, these ions are boosted up to the desired energy and
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a. b.

FIGURE 4.1. Average depth of the implanted 15N+ to the diamond sample as a
function of ion energy (simulated with SRIM) represented in (a) the full energy range
and (b) the zoom-in to focus the energy range used in this thesis.

released to the targeted substrate, which in our case is the diamond sample. Ion

implantation is well-documented industrial process that allows precise control of the

dose and depth profile. Depending on the energy dose, the depth of NV center can

be easily calculated with SRIM[58] ( The Stopping and Range of Ions in Matter)

software. (See Fig. 4.1) It also has excellent lateral dose uniformity with less than 1%

variation across 1200 wafer. And it is also less sensitive to surface cleaning processes.

Implanted ions generally causes damage to the crystal lattice along the path into

the substrate by displacing atoms from their lattice sites. Therefore, an elevated

temperature annealing process is usually followed up to restore crystallographic order

in the lattice.

4.3. NV Center Creation via Ion Implantation
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FIGURE 4.2. Scanning Electron Microscope (SEM) images of parts-per-billion and
parts-per-million diamond sample: (a) a sciafe-polished surface of the ppb-sample and
(b) a chipping and pitting surface of the ppm-sample. (c) The smooth surface shown
in (a) becomes rough and pitted after Oxygen plasma etch with the graphite wafer
clamp. (d) The same issue can be seen on the surface of the 10µm thin diamond
membrane. It is concluded that the graphite wafer clamp is the reason for this
roughness. A few nanometers of carbon are deposited on the diamond sample as an
anti-charging layer before the SEM images are taken.

4.3.1. Surface Preparation
Ion implantation process is one of the most common techniques for creating color

centers in diamond. For this process, we follow the recipe mentioned in this paper.[50]

We start with a single crystal diamond from Element Six (E6) which is presumably

polished along what is known as the “easy axis” (essentially along the in-plane [100]

crystallographic direction). Polishing along the easy axis can minimize the surface

damage resulting from the mechanical nature of the process and this polishing process
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can give the surface as smooth as >1nm in surface roughness. Polishing off the easy

axis will make the surface chip and pit, but these cannot be detected easily. The

significance of easy axis polishing will be explained in details below when we discuss

the surface preparation with induced coupled plasma reactive ion (ICP-RIE) etching.

First, to remove damages due to mechanical polishing, we must etch several

microns of diamond from the surface by applying ICP-RIE etching. We start with a

1:1:1 ratio of concentrated sulfuric, nitric and perchloric acid (so called tri-acid) to

clean the diamond for about two hours at 380 �C. Perchloric acid can be dangerous

and we only need to use 10mL of it thank to the home-built distillation setup.

After this, we perform the standard piranha which is a 3:1 mixture of

concentrated sulfuric acid with hydrogen peroxide for 10 mins and then, rinse in

several cups of deionized (DI) water. Next we sonicate the diamond sample in acetone,

then methanol, then isopropanol (IPA) and eventually rinse with DI water. Usually

the diamond sample placed in an aluminum sample holder is dried out inside the oven

at 200 �C. A nitrogen blow-dry is not a suitable method for such a small sample.

The final step is to remove the top surface of the diamond sample because it is

generally damaged and highly strained from the mechanical polishing process. When

thermal annealing is eventually performed after ion implantation, these damage can

cause undesirable vacancies with broad linewidth and low fluorescence intensity. We

use ICP-RIE dry etching with Oxford Plasma Pro80 Plus to remove several microns

of the top surface of the diamond. To achieve a high quality smooth surface ( < 1nm

RMS surface roughness), the diamond must to be initially sciafe-polished (the so

called the easy-axis mechanical polish). Parts-per-million (PPM) diamond samples

from Element Six (E6) are not sciafe-polished. Therefore, pitting and chipping on

the surface of these samples appear via the optical microscope. After the ICP-RIE
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etching with Oxygen plasma on these samples, pitting and chipping get worse and

even the profilometer’s tip cannot travel along the surface on these samples due to

the roughness. A diamond sample with dimensions 4mmx4mmx500µm in is attached

to a 200 sapphire wafer with 430nm in thickness by bonding with PMMA or crystal

bond. Both can dissolve in acetone to reattach from the carrier wafer. Here, the

sapphire wafer is used as a carrier wafer instead of the silicon/silica wafer because

sapphire is etched much less than silicon/silica during ICP-RIE etching; thus, so

there are fewer unwanted compounds in the plasma cloud. Even though crystal bond

is recommended for better thermal conductivity than PMMA, we don’t find any

significant advantage on surface smoothness after the etching. For Oxford Plasma

Pro80 Plus, the carrier wafer’s thickness must be between 400nm and 500nm to work

well with helium backside cooling.

Oxford Plasma Pro80 Plus comes with a ⇠ 8.600 graphite plate for wafer clamping.

We could not achieve a high quality smooth surface with Oxygen plasma etching

because Oxygen plasma also etches the graphite plate at the same time and the

graphite plate itself is not 100% pure graphite which cause depositing undesirable

particles as masks on the surface. Therefore, we designed and machined an alumina

(Al2O3) ceramic plate as a wafer clamp, which immediately solves the issue.

Before we start any diamond etching, we perform a long and thorough chamber

clean because we conduct both Plasma-enhanced chemical vapor deposition (PECVD)

and ICP-RIE inside the same chamber. We run a four-hour cleaning recipe with the

following parameters: ICP:500 W, RF:20 W, O2:30-50 sccm and chamber pressure:

93 mTorr for 20 mins, 80 mTorr for 20 mins, 70 mTorr for 20 mins, 60 mTorr for 20

mins, 50 mTorr for 20 mins, 40 mTorr for 20 mins, 30 mTorr for 20 mins, 20 mTorr

for 20 mins, 10 mTorr for 20 mins, 5 mTorr for 20 mins, and then, finally 20 mTorr for
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FIGURE 4.3. The surface roughness is measured by an AFM scan and the roughness
is less than 1nm RMS. There are some dust particles on the surface because the
measurement is taken at open air.

40 mins. Instead of running the whole recipe once, I broke it down into two sequences

and during these sequence, I added a step to cool down the wafer to ⇠17�C. This

cleaning process is a long process and so, ICP plasma gradually heats up the diamond

sample and it is good to have a cooling step in the recipe. In the cooling step, we

ensure the diamond sample return to ⇠17�C before we perform another sequence.

For plasma etching/cleaning, we begin a 49 minute etch with the following

parameters: ICP:280 W, RF:210 W, Ar flow rate:10 sccm, Cl2 flow rate:16 sccm, and

chamber pressure:5 mTorr, followed by a second a 60 minute etch with the following

parameters: ICP:420 W, RF:60 W, O2:30 sccm and chamber pressure:10 mTorr. The
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first process is broken down into two 24-minute-sequences with the extra cooling step.

The second recipe is also divided into four 15-minute-sequences with extra cooling

steps. A >1nm RMS surface roughness is measured through an AFM scan (shown

in Fig. 4.3)after the ICP-RIE surface treatment is performed. The etching rate for

the Ar/Cl recipe is about 40nm per minute while the O2 recipe is about 100nm per

minute.

4.3.2. Ion Implantation with 15N+ on diamond

14N+ vacancy center with spin=1 is ubiquitous in diamond even though the

concentration could be varied among samples. To distinguish a naturally occuring

NV center due to 14N+, we decided to implant 15N+ ions with spin=1/2. We use 15N+

at 60 keV and 85 keV with varying doses to generate the near surface NV centers in

diamond. According to the SRIM simulation, the stopping depth of 60 keV and 85

keV would be 75 nm and 100 nm respectively (See Fig. 4.1b). While the energy of

the ions defines how far the ions will penetrate into the diamond, the dose which is in

a unit of ions/cm2 determines the density of 15N+ and, ultimately the density of the

NV centers. We implant in a variety of doses ranging from 109 /cm2 and 1010 /cm2.

In general, any ion implantation[59] process is followed by high temperature

annealing as mentioned before. In recent years, research has be done on annealing

the diamond at different temperatures, ranging from 428 �C to 1200 �C. According to

this recipe, we anneal the implanted diamond at 400 �C for four hours, 800 �C at four

hours, and 1200 �C at two hours, with a one hour ramp-up time to each temperature

transition. The reason for the long ramp up time is to maintain high vacuum (Pressure

10�6 Torr) through out the entire annealing process. The reasons for annealing at

these certain temperatures are as follows: at 400 �C, the self-interstitial defect is
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FIGURE 4.4. Ion Implantation with 15N+ on Diamond. (a) 15N+ ions are injected
into the diamond. (b) The ions stop at a certain distance depending on their
kinetic energy. And implanted ions make damage to the crystal lattice by displacing
atoms from their lattice sites. (c) High temperature annealing is required to restore
crystallographic order in lattice sites.

mobile and anneals out with vacancies so that they annihilate each other; at 800 , the

vacancies are allowed to mobilize and unite with substitutional nitrogen atom (mostly

15) as shown in Fig. 4.4c; at 1200 , the T2 coherent time is substantially increased

while the fraction of NVs converting from NV� to NV0 is largely reduced. ⇠2 hour

tri-acid cleaning is used to remove the graphitized layer generated by annealing at

800 and above.

4.3.3. X-ray Photoelectron Spectroscopy

In every step of the creation of NV centers via ion implantation, the diamond

surface is thoroughly monitored by using X-ray photoelectron spectroscopy (XPS)

with a high performance Thermo Scientific ESCALAB 250 system. XPS is

fundamentally established on the principle of photoelectric effect. XPS analyzes

photo-ionization and energy-dispersion of the emitted photoelectrons ejected from
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FIGURE 4.5. Comparison of XPS survey scans between the implanted sample with
15N+ ions and non-implanted one. This specific sample unfortunately is contaminated
with sodium which comes from the implantation chamber, whereas chlorine comes
from the ICP-RIE chamber.

the surface via irradiation by X-rays. For instance, we can qualitatively distinguish

graphite (sp2 energy binding) from diamond (sp3 energy binding) even though they

both are made of carbon. We use XPS to ensure the surface is clean, properly oxygen-

terminated after Oxygen plasma etch, and free of contaminants such as sodium and

chlorine. The possible contamination due to sodium comes from ion implantation

process where the process chamber and vacuum parts are usually cleaned with small

beads. These beads contains a high percentage of sodium.

Unfortunately, we found some contaminated sample and showed an XPS scan on

one of the contaminated samples in Fig. As the figure shows, oxygen termination did

not completely remove chlorine and at the same time, we get sodium contaminants.
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FIGURE 4.6. With fine XPS regional scans, we can identify the types of the bonding
and quantify the amount of contaminants contained.Regional scans for (a) carbon,
(b) chlorine, (c) nitrogen, (d) sodium and (e) oxygen.

To eliminate chlorine residues, we perform longer (75 minute) oxygen plasma etch. To

eliminate sodium contaminants, we requested Innovion Corp.,where we send all our

samples for implantation, to scan the source plasma to verify no sodium prior to the

implantation. Using XPS analysis, we can not only narrow down the origins of the

contaminants and quantify the percentage of contaminants contained (See Fig. 4.6).

In the contaminated sample, the percentage of sodium contaminants were relatively

quite higher than those for nitrogen as shown in Fig. 4.5. After the final annealing
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process, we have difficulties in finding good NV centers with a reasonable spectral

diffusion (<500 MHz PLE linewidth). We can also conclude from XPS data that the

oxygen surface termination process is working well. In the non-contaminated sample,

there is also a fluorine peak which is due to the ICP-RIE chamber cleaning recipe

which includes 50sccm of O2 and 50sccm of SF6. At this point, we are focusing only

on oxygen surface termination; therefore, we no longer use the O2:SF6 recipe for the

chamber cleaning. Instead, we run a thorough O2 chamber cleaning recipe mentioned

in Subsection 4.3.1.
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CHAPTER V

NANOMECHANICAL RESONATORS

5.1. Introduction

Nanomechanical resonators[60–62] possess a wide range of applications in both

fundamental and applied sciences. Due to their tiny mass (10�15kg), they are the ideal

candidates for studying quantum mechanics in a macroscopic mechanical system such

as quantum ground state cooling[63, 64] and quantum state transfer[65, 66]. On the

other hand, because of their ultra-high sensitivity in detection (10�18 mp
Hz

), they are

also leading candidates for use in the field of commercial application sensors such

as accelerometers[67] and gyroscopes[68]. Moreover, these resonators can serve as

a quantum transducer[69], by which electron spins can couple to the mechanical

degrees of freedom by a magnetic field gradient or electrostatics interaction. Some

solid states qubits such as superconducting qubits which do not interact coherently

with light will be greatly beneficial because this coupling scheme does not rely on

the optical properties of qubits. This could serve as a basic building block for many

quantum communication applications.

Both silicon nitride (SiN) and diamond resonators not only attain extremely low

masses[62] (⇠ 10�15kg) but also mechanical resonant frequencies ranging from a few

megahertz up to gigahertz. These resonators are at least a thousand times lighter

than whispering gallery mode (WGM) resonators. Moreover, both resonators are

known for achieving ultra high mechanical quality factors[70, 71]. Unlike WGM or
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diamond resonators, SiN resonators are open to chip-scale nanofabrication making

them extremely promising candidates for commercial sensing applications.

On the other hand, diamond resonators possess many material advantages over

SiN or other resonators, including high Young’s Modulus, high thermal conductivity

and low intrinsic dissipation[72]. Moreover, their immunity to strong chemicals makes

it possible to use them over an extended period of time by repeatedly cleaning them

with strong acids when they become degraded by moisture and dust from their

environment.

5.2. Transverse Vibration of Mechanical Resonators

First, eigenfrequencies of mechanical modes of nano mechanical resonators are

studied using Euler-Bernoulli beam theory which is based on two major assumptions:

plane sections of the resonator beams remain plane and perpendicular to the natural

axis before and after the deflection as a result of mechanical motion, and the material

is linearly elastic according to Hooke’s law[73]. These assumptions are empirically

reasonable for our case, in which the length of a resonator is at least thirty times

longer than either its width or thickness.

Starting with geometrical deflection of any point on a resonator, we can reach to

the moment curvature relation shown in Eq.(5.1). where the geometrical properties

of the beam are related to its material properties in terms of modulus of elasticity.

M = E I
@2w

@x2
(5.1)

Here, w(x, t) is the deflection of the oscillator from its natural axis which is

perpendicular to the length of the oscillator. I is area (second) moment of inertia
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with the unit of dimension as length to fourth power. M is the bending moment or

torque in the transverse direction of the oscillator and E is the Young’s Modulus of

elasticity of the material. Moreover, we can write the equilibrium condition for force

and bending moment due to mechanical deflection as shown in Eq.(5.2).

X
F = 0

X
M = 0 (5.2)

Combing Eq.(5.1) and Eq.(5.2), we can get the fourth order differential equation

of motion for the oscillator beam Eq.(5.3a), and using separation of variables, the

solution is calculated as Eq.(5.3b).

@4w

@x4
= � 1

a2
@2w

@t2
where a =

s
E I

⇢ A
, (5.3a)

⇢ = density of material, and A = cross sectional area of the beam.

 = C1 sin kx + C2 cos kx+ C3 sinh kx + C4 cosh kx (5.3b)

Using the following boundary conditions,

For doubly clamped beam

 |x=0 = 0 ( No Deflection )

 |x=l = 0

d 

dx

���
x=0

= 0 ( No Slope )

d 

dx

���
x=l

= 0

For cantilevers

 |x=0 = 0 ( No Deflection )
d 

dx

���
x=0

= 0 ( No Slope )

d2 

dx2

���
x=l

= 0 ( No Bending Moment )

d3 

dx3

���
x=l

= 0 ( No Shearing Force )
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the eigenfrequencies (!) of the nano oscillator are

! =
n2

l2

s
E I

⇢ A
(5.4)

where n = 4.73, 7.853, ... for doubly clamped beams, and n = 1.87, 4.694, ... for

cantilevers depending on the order of mechanical modes.

For 3D finite element method (FEM) modeling, COMSOL software is extensively

used. Simulation of in-plane and out-of-plane transverse modes of both cantilevers

and beams are shown in Fig.5.1 and Fig.5.2. The eigenfrequencies of transverse

mechanical modes of diamond resonators with density (⇢ ) 3500 kg/m3, and a Young’s

Modulus of 100 GPa are calculated using FEM models as shown in Fig.5.3. They

are inversely proportional to the length (l) square of mechanical resonators as we

discussed earlier using Euler-Bernoulli beam theory. The first order (red) and third

order (blue) mechanical modes in Fig.5.3 represent the out-of-plane transverse motion

while the second order (green) represent in-plane transverse motion. FEM modeling

would be quite instrumental for studying more complex structures in order to tailor

the desired mechanical frequencies and mode distribution for optomechanical systems.

The experimental measurement of the first order transverse mechanical modes

of these two diamond resonators presented in Fig.5.3 is shown in Fig.5.12 and is in a

good agreement with both Euler Bernoulli theory and FEM simulation.
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FIGURE 5.1. (a) In-plane and (b) out-of-plane transverse modes of cantilevers
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FIGURE 5.2. (a) In-plane and (b) out-of-plane transverse modes of beams

(a) (b)

FIGURE 5.3. Finite element method simulation of first three transverse mechanical
modes of (a) a doubly clamped diamond oscillator with rectangular cross-sectional
dimensions (2 µm x 1.3 µm), and (b) cantilevers with dimensions (1.53 µm x 0.7 µm)

5.3. Fabrication of SiN and Diamond resonators
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5.3.1. Fabrication of SiN resonators

First, the silicon wafer of thickness 500um is prepared with two layers: 3um

thickness of silicon oxide and 100-200nm of silicon nitride. Silicon dioxide is thermally

grown on top of the silicon wafer to serve as a sacrificial layer. On top of the silicon

dioxide layer,a high stress silicon nitride layer is deposited via low pressure chemical

vapor deposition (LPCVD). Then, a 400nm PMMA(polymethyl methacrylate) layer

is spin-coated on top of the silicon nitride layer to be a mask for later etching. Electron

beam lithography is used to write the nano oscillator patterns followed by reactive

ion etching with CHF3 (Fluoroform) for 15 min. Hydrofluoric wet etching is applied

to under-cut and release the silicon nitride beam from the silicon wafer by removing

silicon dioxide. In the final step, the wafer is cleaned with piranha solution, which is

a mixture of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2), to remove most

organic matter preventing unnecessary mechanical dissipation. The detailed steps[62]

are shown in Fig.5.4.
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SiN (100 nm) 
SiO2 (3 μm)
Si (≈ 500 μm) 

PMMA (400 nm)

Spin Coating

Plasma 
Etching

Ebeam 
Lithography

(20 nm/min)

HF Wet Etching
Side View After 

HF Etch (100 nm/min)

FIGURE 5.4. A step-by-step fabrication process of SiN resonators
PMMA(polymethyl methacrylate) layer is spin-coated on top of the silicon
nitride layer. Electron beam lithography is used to write the nano oscillator patterns
followed by reactive ion etching with CHF3 (Fluoroform) for 15 min to remove silicon
nitride while PMMA layer is used as a mask. Hydrofluoric wet etching is applied to
under-cut and release the silicon nitride beam from the silicon wafer by removing
silicon dioxide.

(a) (b)

FIGURE 5.5. Optical images of (a) a (45µm x 3µm x 100nm) silicon nitride beam
and (b) arrays of beams fabricated by using the process shown in Fig. 5.4.

5.3.2. Fabrication of Diamond Resonators Using FIB

Thin diamond film bonded with silicon wafer is not commercially available like in

the case of SiN fabrication. Therefore , the fabrication process for diamond resonators

is completely different from SiN resonators. So far, 3-dimensional focused ion beam

(FIB) milling[74] is the only way given our limited accessibility and usually takes
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about 15-20 hours to make a single diamond oscillator. First, a 4x4x2mm bulk

diamond sample is mounted in a 45� mount on a five-axis stage which is capable of

in-situ (compu-centric) rotation in the FIB chamber. Most of the diamond beams are

usually made out of the edge of a bulk diamond so that both the top surface and the

side wall of the diamond oscillator can be easily accessed throughout the fabrication

process instead of taking out the sample and physically rotating it. A gallium ion

beam of 30kV with programmable current density (1pA-20nA/cm2) is rastered across

the bulk diamond sample at the pixel dwell time 1µs and 50% pixel overlap. To avoid

damage due to the ion beam, three different levels of current density are applied for

raw cutting, fine cutting and final polishing. Two long trenchs of 40µm long, 5µm

deep, and 4-5 µm wide are milled into the top surface of the diamond crystal with

current density at 690pA/cm2. After that, the bulk diamond is rotated so that the

side wall is now facing the Gallium ion beam and another trench of 40µm long, 8µm

deep, and 2-3 µm wide is milled with lower current density(350pA/cm2) to release

the diamond beam out of the bulk diamond (Fig.5.6). For the final polishing step,

100pA/cm2 surface-cleaning step is applied to all four surfaces of the diamond beam.

It is essential to point out that both the top surface of the beam and the top

surface of the bulk diamond, which is underneath of the beam, should be smooth and

parallel to each other so that the interference signal is strong enough to be revealed

in a spectrum analyzer. Even though FIB milling is a lengthy (12-18 hours) and

delicate process, this can literally mill any three dimensional design while traditional

semiconductor fabrication methods cannot access beyond two dimensions.
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Gallium Ion Gun
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Beam Polishing

FIGURE 5.6. Focused Ion Beam milling of diamond resonators. A commercially
available high purity diamond from Element Six is mounted at 45� on a five-axis stage
which is capable of in-situ (compu-centric) rotation to make 3D milling possible.

(a) (b)

FIGURE 5.7. SEM images of (a) a (40µm x 2µm x 1.3µm) diamond beam and (b)
(16µm x 1.53µm x 0.7µm) diamond cantilever which are tilted at 45� . These two
resonators are fabricated by milling with FIB. Several different milling configurations
are used to acquire a perfect smooth surface and to avoid redeposition from milling.

5.3.3. Fabrication of On-chip Diamond Resonators

For this process, we started with the electronic grade bulk diamond from Element

Six (E6). The bulk diamond generally has a dimension of 4mm ⇥ 4mm and thickness

is about 500 µm. First, we send the bulk diamond to Applied Diamond/Delaware

Diamond Knives where it is sliced and mechanically polished into 50 µm thin

membranes. A single bulk diamond with the thickness of 500µm can be sliced into

three 4mm ⇥ 4mm ⇥ 50µ membranes.

To achieve a high quality mechanical oscillator, the surface preparation is very

critical. Therefore, before we fabricate diamond mechanical resonators, we follow a

series of surface preparation steps to clean the surface and remove a few microns of
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strained diamond resulting from the mechanical polishing. These steps are important

for any future incorporation of NV-centers with stable fluorescence. I clean the thin

diamond membranes in a boiling mixture of sulphuric,nitric and perchloric acid in

an equal ratio for 30 minutes to 1 hour. This process removes the residue left

on the diamond surface by the mechanical polishing. Then, I apply ICP dry-etch

with Ar/Cl2 plasma for 45 minutes to reduce the surface roughness down to less

than 1nm RMS. Next, I terminate the diamond surface with oxygen by etching with

oxygen plasma for 3-5 minutes. Then, I can start the actual fabrication of a diamond

mechanical resonator.

(a.) (b.) (c.)

FIGURE 5.8. (a) Transferring a mask by using Ebeam-lithography, (b) Oxygen
plasma etching process while protecting a thin diamond with a silicon nitride mask,
and (c) an on-chip diamond oscillator.

For the on-chip diamond oscillator fabrication, thin diamond membranes must

be mounted on a wafer. I use hydrogen silsesquioxane (HSQ) assisted wafer bonding.

HSQ is a flowable oxide. It comes in liquid form and transforms to a solid glass when

it is heated to the proper temperature. For the carrier wafer, I use a wafer with the

thickness of 1µm-thermal-oxide layer. First, the thermal oxide wafer is cleaned in a

piranha solution for 10 minutes followed by a dehydration bake for 10 minutes. After

42



cooling down the wafer, Fox-15 (HSQ) is spin-coated on it for 10 seconds at 2000

rpm. As soon as the spin-coating process is done, a diamond membrane is placed

on top of the freshly HSQ-coated surface. At this point, the diamond membrane is

usually attached by van der Waals forces. They are not strongly bonded yet. To be

fully bonded, we have to place them on the 6 inch diameter wafer, load them into

the wafer bonder and anneal at 450 �C with 50 mTorr for about 3 hours. It is also

important to wipe out HSQ liquid overspilled to the other side of the carrier wafer

before placing inside the wafer bonder because it becomes dry and partially adhesive

to the 6 inch diameter wafer.

The on-chip diamond membrane is approximately 50µm in thickness. Therefore,

it is necessary to thin it down to less than 2µm. For this process, we will use ICP

dry-etch with Ar/Cl2 plasma with the etching rate of 4.75 µm per minute. To avoid

redeposition and masking due to Ar/Cl2 plasma etch on silicon wafer, we use a 75µm

think quartz mask which is laser-cut to a slightly smaller dimensions of our on-chip

diamond membrane. Silicon wafer is fully protected by the quartz mask during the

etching process. This etching process takes about 10 hours. After that, a quick

(2-5) minutes oxygen plasma etch to remove a chlorine residue which could cause

fluorescence instability in NV centers.

To transfer the desired patterns onto a thin diamond membranes, we develop two-

layer mask transfer. The main motivation behind this approach is due to the fact

that many varieties of masks such as gold or aluminum may not survive the 2µm-etch

of diamond.Therefore, we deposit a 275nm-thick silicon nitride layer using Plasma-

enhanced chemical vapor deposition (PECVD) with SiH4/N2 plasma. Then, 500nm of

Poly(methyl methacrylate) (PMMA) layer is spin-coated on top of the silicon nitride

layer. We use Ebeam-lithography to transfer the patterns followed by reactive ion
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etching (RIE) using CHF3/O2 plasma. The selectivity between PMMA and silicon

nitride is approximately 2:1. The etch rate of silicon nitride is approximately 125nm

per minute. We use O2 plasma to etch the thin diamond layer. The selectivity between

silicon nitride and diamond is approximately 30:1. In terms of etching selectivity to

diamond, silicon nitride is even better than gold metal mask where it is 10:1 instead

of 30:1.

Next, we remove the silicon nitride layer by wet etching using phosphoric acid at

160 �C for 4 minutes. It is also important to point out that the on-chip diamond wafer

is dipped into 5:1 buffered HF for a few seconds to strip oxide residue resulting from

oxygen plasma etching before using phosphoric acid. Phosphoric acid is intentionally

chosen due to the good selectivity between silicon nitride and silicon dioxide with

30:1. Finally, we use 5:1 buffered HF to under-etch silicon dioxide layer and release

the diamond resonators.
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FIGURE 5.9. Fabrication steps for on-chip diamond resonators.

5.4. Experimental Setup

Nanobeam Brownian motion is characterized by optical interferometric phase

detection[75, 76]. A focused laser is applied to the nano beam at normal incidence.

In the detection scheme, the interference between one light wave (ES) coming from

the partial reflection due to the incident laser on the nano beam and another (EL)
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coming from the substrate — provides ample displacement sensitivity to out-of-plane

and in-plane motion of a resonator as described in Eq.(5.5). and Fig.5.11.

I / |E|2 =
��EL ei!t + ES ei(��(t)+!t)

��2 = E2
L + E2

S + 2 EL ES cos(��(t)) (5.5)

As shown in Fig.5.10, a 5mW HeNe laser is focused down to a 1-2µm spot with

the 20X objective(N.A.=0.42) and sent through the vacuum chamber view port. Light

reflected from the sample is taken to a photodiode and the output of the photodiode

is attached to a spectrum analyzer where spectrum density of phase fluctuation of

a nanobeam is studied. All the measurements are conducted at 10�5 torr to avoid

mechanical dissipation due to air molecule and room temperature.

White Light

HeNe

CCD

Diode

M

MF

F

Spectrum 
Analyzer

BS

P = 10-5 torr

Sample

FIGURE 5.10. Optical Interferometric Setup

Incident laser

Substrate

FIGURE 5.11.
Interference between
two light waves

5.5. Measurement Sensitivity

First, we want to know the amplitude fluctuation of our mechanical resonators,

and then compare this Brownian noise signal to the shot noise coming from HeNe

laser which is used as a probe in our interferometric measurement. We can model our
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system as a simple damped harmonic oscillator in a thermal bath with temperature

T. Therefore, easily calculate its amplitude using equipartition theorem ( shown

in Eq.(5.6) ) which states that in thermal equilibrium condition, energy is equally

distributed among all accessible degrees of freedom of a system.

hEi = hEKEi + hEPEi =
1

2
kBT +

1

2
kBT (5.6a)

⌦
x2
↵

=
kB T

m !2
0

(5.6b)

p
hx2i ⇡ 10�12 m (5.6c)

Now the question is what are the essential parameters to be able to detect such a

tiny fluctuation under a spectrum analyzer and unfortunately, there is measurement

imprecision noise ( shot-noise) from HeNe laser. As a simple damped harmonic

oscillator with a mechanical damping (�) and mechanical resonant frequency (!0), the

equation of motion could simply be written as Eq.(5.7), and Eq.(5.8) for its Fourier

counterpart. f(t) is the driving force from the thermal bath with temperature T.

ẍ(t) + �ẋ(t) + !2
0x(t) =

f(t)

m
(5.7)

x̃(!) =
f̃(!)

m

1

!2
0 � !2 + i�!

(5.8)

The spectral density of thermal amplitude fluctuation can be calculated as

Sxx(!) = hx̃(!) x̃⇤(!)i. For thermal bath, f(t) is constant in frequency,

Sxx(!) =
f̃ 2

m2

1

(!2
0 � !2)2 + !2 �2

(5.9)

47



The driving force f(t) due to a thermal bath can be investigated using Eq.(5.6b),

and the Wiener-Khinchin theorem which states that the power spectral density of a

wide-sense stationary random process is the Fourier transform of its auto-correlation

function. Therefore, the spectral density of amplitude fluctuation can be described

as,

Sxx(!) =

Z 1

�1
hx(t) x⇤(t� ⌧)i e�i!⌧ d⌧ (5.10)

⌦
x2
↵

=
1

2⇡

Z 1

�1
Sxx(!)d! =

f 2

2m2

1

!2
0 �

Substituting Eq.5.6b from Equipartition theorem,

f 2 = 2m � kBT (5.11)

The driving force due to the thermal Brownian bath is proportional to the bath

temperature (T) and the damping rate of the mechanical oscillator as expected.

Eventually, substituting this in Eq.5.9 ,

Sxx(!) =
2kBT

m

�

(!2
0 � !2)2 + !2 �2

(5.12)

This expression is also known as fluctuation dissipation theorem (FDT). For a near

resonant oscillation , i.e. !0 ⇡ ! , this can be even further simplified as ,

Sxx(!) ⇡ kBT

m!2
0

1

�
(5.13)

From this equation, spectral density of a diamond beam with the dimensions of (40µm

x 1.53 µm x 0.7 µm) at room temperature would be estimated to be 3 x 10�26 m2/Hz.
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From the optical interferometric measurement, the spectral density of phase

fluctuation (S��(!)) is analyzed, not the spectral density of position fluctuation

(Sxx(!)). However, spectral density of phase fluctuation of a mechanical oscillator

can be derived from the relation between the changes in phase (��) and changes in

position (�x) due to the mechanical oscillation.

�� =
2⇡

�
(2�x)

S��(!) = 4k2Sxx(!) (5.14)

Substituting Eq.(5.13),

S��(!) ⇡ 4

✓
!2
L

c2

◆ ✓
2kBT

m

1

!2
0�

◆
(5.15)

To compare the signal-to-noise ratio between thermal Brownian signal and HeNe

laser’s shot-noise, the spectral density of phase fluctuation of HeNe laser’s shot-noise

can be calculated based on the number-phase uncertainty principle for coherent states.

Based on the power ( P=2 mW ) of the HeNe laser, the spectral density[77] of its

shot-noise is

SL
✓✓ =

1

4 P
h̄!L

(5.16)

Finally, the signal-to-noise ratio of Brownian noise over laser shot-noise can be

described as Eq.(5.17).

S��(!)

SL
✓✓

⇡ 16
⇣ !L

h̄c2

⌘ ✓
2kBT

m

1

!2
0

◆
P

�
(5.17)
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Now the signal-to-noise ratio depends mainly on the power of the HeNe laser and the

damping rate of the mechanical oscillator. For one-to-one signal-to-noise ratio, the

power of the HeNe laser is required to be as low as 130pW.

The experimental measurement of Brownian motion of a (40µ x 1.53 µm x 0.7

µm) cantilever and a (16µm x 1.53µm x 0.7µm) diamond cantilever is shown in

Fig.5.12. The first order out-of plane transverse mechanical mode is approximately

2.66 MHz and the mechanical Q-factor is approximately 20,000 with the linewidth

of 130 Hz for the diamond cantilever and 4.7 MHz, Q ⇡ 10,000, and 230 Hz for the

doubly clamped beam. The resonance of the mechanical mode is in agreement with

Euler Bernoulli theory. At this point, we can not detect the other mechanical modes

other than the first order mode in most of our diamond resonators even though we

can see higher order modes in SiN resonators. Using measurement sensitivity analysis

discussed in the beginning of this section, the signal-to-noise ratio of SiN and diamond

resonators with similar mechanical linewidth, would be mainly dependent on the

power of the laser as described in Eq.(5.17). One of the main reasons is the relatively

weaker local oscillator signal due to the transparent substrate(bulk diamond) which

partially reduces the amount of light coming from it. The larger thickness of the

diamond oscillator which is ⇠10 times thicker than SiN beams, could also make it

worse. Therefore, in the future we can replace the HeNe laser ( 2 mW ) with a more

powerful laser to study the higher mechanical modes of diamond resonators.
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FIGURE 5.12. First order transverse mechanical modes of (a) a (40µm x 2 µm x 1.3
µm) doubly clamped diamond oscillator with Q ⇡ 11, 000, and (b)a (16µm x 1.53 µm
x 0.7 µm) cantilever with Q ⇡ 20, 000.

5.6. Mechanical Ring-down Measurement

Mechanical ring-down measurement is a two-step process. First, a mechanical

oscillator is driven at its resonant frequency by a transducer. In general, a piezoelectric

transducer is attached right next to the mechanical oscillator. Then, the transducer

is turned off so that the mechanical oscillator vibrates freely. The amplitude of the

vibration is exponentially decayed due the mechanical damping loss.

For temporal ring-down measurement, we can rewrite the damped harmonic

oscillator equation shown in (5.7) as:

ẍ(t) + �ẋ(t) + !2
0x(t) = 0 (5.18)

With the initial condition x(t = 0) = x0 ( steady state amplitude) and

assumption as � << !0, the time-dependent decayed amplitude can be expressed

as:

x(t) = x0 e
��t/2 cos(!0t+ �0) (5.19)
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Room temperature mechanical ring-down measurement of SiN oscillator with

dimensions of (46µm x 3 µm x 150 nm) has been shown in Fig. 5.13. The mechanical

quality factor of Q ⇡ 16, 000 and the resonant frequency of 5.06 MHz are observed

from a single data acquisition. Compared to the measurement of the resonant

spectrum at frequency domain shown in Fig. 5.12. which requires multiple scans to

average out the signal, ring-down measurement is at least 10x faster and less sensitive

to the gradual drift of the position of the sample.

Similar measurement is done on a diamond cantilever with dimensions of (16µm

x 1.53 µm x 0.7 µm) as shown in Fig. 5.14. The quality factor of Q ⇡ 20, 000 and the

resonant frequency of 2.6 MHz are observed. The signal is noisier than its counterpart

of SiN oscillator due to the transparency of diamond.

5.7. Driven Oscillation Measurement

In this measurement, a mechanical oscillator is driven to its steady state and the

spectral fluctuation of the driven amplitude is measured with a spectrum analyzer in

frequency domain. The amplitude of the driven oscillation is rewritten from Eq. (5.8).

as:

x2
0 =

f 2
ext

m2

1

(!2
0 � !2)2 + �2!2

(5.20)

In Fig. 5.15., both thermal and piezoelectric-transducer driven motion of a

diamond cantilever is measured simultaneously. As expected, piezoelectric-transducer

driven motion is significantly stronger than thermal driven motion. The quality

factor and the resonant frequency of a resonator can be concluded from these scans.

However, compared to ring-down measurement, each scan can only represent a single

point and several scans are required to get the complete picture of the oscillator. The
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FIGURE 5.13. Mechanical ring-down measurement of a silicon nitride nano-
mechanical oscillator: (a) the SiN oscillator was driven from t=0 to t=3ms using a
piezoelectric transducer and at t=3ms, the external driving force was turned off and
the oscillator was allowed to oscillate freely. (b) the quality factor of SiN oscillator is
extracted from the exponentially decayed amplitude.

53



Driven Decayed Decayed 

.5 1.0 1.5 2.0 2

a.

Time

A
m

p
li

tu
d
e 

o
f 

C
an

ti
le

v
er

 [
A

.U
.]

b.

A
m

p
li

tu
d

e 
o

f 
C

an
ti

le
v

er
 [

A
.U

.]

Time

FIGURE 5.14. Mechanical ring-down measurement of a diamond cantilever: (a) the
diamond oscillator was driven from t=0 to t=3ms using a piezoelectric transducer and
at t=3ms, the external driving force was turned off and the oscillator was allowed to
oscillate freely. (b) the quality factor of a diamond cantilever is extracted from the
exponentially decayed amplitude.
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same experiment with the same sample is done at cryogenic temperature (T= 7K)

as shown in Fig. 5.16. Thermal driven motion is not being able to be detected in

cryogenic temperature compared to its room temperature counterpart ( Fig. 5.15.).

Due to the lack of thermal damping at cryogenic temperature, the quality factor (

QT=7K = 55, 000) is 2.5 time higher than at room temperature measurement.

Frequency
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FIGURE 5.15. Spectrum of both thermal and piezoelectric-transducer driven motion
of a diamond cantilever at room temperature.

In summary, I studied in theoretical terms the eigenfrequencies of the transverse

mechanical modes of SiN and diamond resonators via the Euler-Bernoulli beam theory

and I also experimentally proved how theoretical models is as valid as possible. Both

the time and frequency domain measurement of nano-mechanical resonators at room

and cryogenic temperatures have been demonstrated experimentally. Moreover, both

thermal motion and mechanically driven motion have been characterized thoroughly.
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FIGURE 5.16. (a,b) Spectrum of piezoelectric-transducer driven motion of a diamond
cantilever at cryogenic temperature. (c) Its amplitude is fitted as the square root of
a lorentzian shown in Eq. (5.20).

I also approximated the measurement sensitivity of my mechanical system and

conducted the experimental measurement successfully.
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CHAPTER VI

SURFACE ACOUSTIC WAVE & NV CENTERS

This chapter was previously published in Physical Review Letters[78]. My

primary contribution is the fabrication and characterization of the SAW device. I

am also responsible for building the real time photon counting device using a field-

programmable gate array (FPGA). I also worked closely with Andrew Golter for the

optical measurement. Kevin Steward also helped us with the RF sputtering deposition

of zinc oxide on the diamond surface. Mayra Amezcua contributed to the theoretical

analysis of the experiment. My advisor, Hailin Wang, supervised the project.

6.1. Introduction

A scalable long distance quantum communication[79–81] is one of the greatest

challenges in quantum information processing (QIP). In light of recent significant

progress in hybrid quantum system[82–84] with nano-mechanical resonators and

further development in nano-mechanical device fabrication, optomechanical devices

are one of the promising candidates for sloving the issue. Due to intense study and

technological improvement, these optomechanical systems can be very scalable on

chips; and in terms of quantum communication and processing, phonons have a great

advantage as a quantum memory transducer due to their long-lived coherent time

compared to photons. Moreover, these mechanical systems have been proven to be

able to interact with a wide variety of electric, magnetic and optical quantum systems.
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There are several optomechanical system with different types of mechanical oscillators

such as photonic crystal[85], cantilevers[86, 87] and acoustic wave resonators[88–93].

Recently, surface acoustic wave (SAW) devices have been proposed as a universal,

on-chip quantum transducer[90] and can serve as a universal quantum platform linking

a broad array of qubits such as superconducting qubits[94], quantum dots[95], trapped

ions and nitrogen vacancy centers[96, 97] in diamond and silicon carbide[98]. A

great benefit of using SAW devices is that their technology is well-developed and

approximately 3 billions devices annually have been used in many applications,

especially in the telecommunication sector. With the help of SAW devices, researchers

have recently achieved interactions between the propagating phonons and the

superconducting qubit with the help of SAW devices while there is also significant

progresses in spin-phonon interaction in nitrogen vacancy center in diamond with

high-overtone bulk acoustic resonators (HBARs) and high-quality-factor (high-Q)

mechanical cantilevers. SAW resonators with high-quality-factor have been shown

to be a reasonable candidate for integration into quantum coherent devices.

6.2. Surface Acoustic Wave

a. b. c.

FIGURE 6.1. (a) Compression Wave (b) Shear Wave (c) Surface Acoustic Wave

In acoustic wave motion, there are generally two types of motion: compression

and shear. The motion of the medium is aligned with the direction of the wave

propagation in the compression wave while the motion is parallel in shear wave.

Surface acoustic wave (SAW) is a combination of both the compression wave and
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shear wave. Most of SAW energy is confined within one wavelength into the medium

and the amplitude of SAW falls off exponentially with its depth from the surface.SAW

penetration depth is inversely proportionally to its frequency. Surface acoustic wave

possesses a wide range of frequency starting from 10 MHz to 4 GHz.

a. b. c.

FIGURE 6.2. (a) Thermally deposited 100nm thick aluminum electrodes as
interdigital transducer. (b)Zoom-in subset of interdigital transducer. (c) Simplified
layout of IDT electrodes.

Interdigital transducers[99] (IDTs) are the most widely used transducers for

generating surface acoustic waves. They can convert electrical energy into mechanical

energy and vice versa with the help of piezoelectric material. IDTs are made of

thin metal electrodes deposited on piezoelectric substrate. When the potential is

applied across the IDT electrodes, it causes the periodic surface displacement. For

the piezoelectric materials such as aluminum nitride (AlN), Lithium niobate (LiNbO3)

and zinc oxide (ZnO), the IDT electrodes can be fabricated without any intermediate

step to become a transducer. For our case, diamond is not a piezoelectric material

and we do need a intermediate piezoelectric layer to induce the surface acoustic wave
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and then transfer to the bulk diamond. The resonant frequency of the IDT is defined

as

f =
vs
4w

(6.1)

where vs is the SAW velocity and depends on the thickness of the piezoelectric material

and type of the material we eventually want to generate SAW waves. ‘w’ is the width

of each individual electrode, as shown in Fig. 6.2c.

6.3. Fabrication of Interdigital Transducers on Diamond

Diamond
DiamondZnO

Diamond
DiamondZnO

Sputtering
Deposition

Thermal Deposition
and Lift-off

RF
Sputtering

Pattern
Transfer

ZnOPMMA

E-beam
Lithography

i ii

iiiiv

(Transmitter)

(Receiver)

FIGURE 6.3. Fabrication steps for IDT on Diamond: (i) a bulk diamond sample
(5mm x 5mm x 500µm) with NV centers from E6, (ii) RF-sputtering deposition of
ZnO, (iii) E-beam lithography with PMMA resist (iv) thermal deposition of aluminum
followed by lift-off process with acetone.

First the diamond sample (5mm x 5mm x 500µm) with NV centers from Element

Six is cleaned with a 1:1:1 mixture of sulfuric, nitric, and perchloric acid at 380 for
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2 hours. In order to convert an electrical signal to a mechanical acoustic wave, zinc

oxide (ZnO) is used as piezoelectric material. Approximately 400nm ZnO film is

deposited on the surface of diamond by using a radio frequency sputtering deposition

system with the sputtering gas of 80% Argon and 20% Oxygen at RF power of 50W.

Two Interdigital transducer (IDT) patterns are transferred via E-beam lithography

and subsequently depositing 100nm of Aluminum thin film followed by the lift-off

process with acetone.

We set the width ‘w’ of the individual IDT fingers to 1.5 µm. The resonant

frequency is calculated by means of the relationship shown in Eq. (7.1). For our

sample, vs is approximately 5600 m/s giving us a resonant frequency of roughly

900MHz. Forty pairs of IDT fingers with the length L = 400 µm are made for each

IDT and two IDTs (one to be served as a transmitter and another as a receiver) are

fabricated 80 µm apart. (See Fig. 6.2c)

6.3.1. E-beam Lithography on Diamond

a. b.

FIGURE 6.4. SEM image of E-beam alignment spot burned on PMMA with the
anti-charging gold layer. Due to the different amount of time spent on individual
spots and the variation in thickness of the anti-charging gold layer, some spots are
obvious and others are obscure.
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Since E-beam lithography uses a focused electron beam to shoot to the surface

covered with an electron-sensitive film called E-beam resist, these electrons can easily

build up a negative charge on the substrate if they cannot quickly neutralize with the

ground. When the sample gets a charge, the electron beams will be deflected and

the E-beam pattern will be obscure and distorted. One way to solve the issue is to

clamp a substrate with a metal clamp so that the excessive charges can flow to the

ground. The major drawback with this approach is the pattern has to be written

close to the metal clamp. Another approach, which we use in this fabrication process,

is to deposit an anti-charging layer with gold or titanium. After ZnO deposition

on diamond, we spin-coat 400-500nm of polymethyl methacrylate (PMMA) as an

E-beam resist, followed by a thermal deposition of 4-6nm of gold as an anti-charging

layer.

Nanometer Pattern Generation System (NPGS) software is used to write the E-

beam pattern. It is important to mention that it is necessary to perform X-Y-Focus

Mode because the IDT pattern is a relative large pattern and we need to know in

quantitative terms how much the sample is tilted. X-Y-Focus Mode determines the

height (z-height) between the microscope objective and the substrate and generate

the relation between X-Y coordinate ( assuming the sample is completely flat and

along the X-Y plane. ) and the height. Therefore, to acquire the coordinate data,

we first create a feature on the E-beam resist by burning a tiny hole so that we

can adjust the exact z-height on that point. To calculate a plane, three points is a

minimum requirement but we usually get 5-6 points to get a better calculation with

the root-mean-square-error within the range of 10�6 mm.

For E-beam lithography with a 400-500nm thick PMMA resist, the following

parameters are used in the Zeiss E-beam lithography instrument: 30µ aperture,
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30kV energy, 377 pA beam current, 21.28 nm center-to-center distance, 42.56 nm

line spacing, and 750-800 µC/cm2 area dose. If the thickness of the anti-charging

gold layer is changed, the area dose has to be changed; otherwise the E-beam pattern

will be overexposed or underexposed.

6.4. Electron-phonon Interaction

One of the most successful exploitation of mechanical vibration for quantum

information processing (QIP) involves the combination of both optical and mechanical

interactions through phonon-assisted optical transition or sideband transitions. These

interactions occur in the resolved-sideband regime, where the mechanical frequency,

!m, exceeds the decoherence rate for the relevant optical transitions. The resolved

sideband emission of a quantum dot coupling to a SAW has been demonstrated[95].

In our experiment, we reported the experimental realization of optomechanical

control of the NV center in diamond through the sideband transitions[100]. Quantum

interference between the sideband transition and the direct optical dipole transition

has been observed. We also realized Rabi oscillation of the NV center driven

simultaneously by both optical and surface acoustic fields. These studies represent a

major step toward achieving the quantum control of both the internal atom-like states

and the mechanical motion of a hybrid artificial-atom nano-mechanical system.

A NV center has to be located less than a few microns below the surface of the

diamond so that both mechanical (acoustic) and optical fields have profound effects

on it. The excited state optical transition ( |ms = 0i to |Eyi) near � = 637 nm is

used in the experiment. The optical excitation spectrum of the transition without an

acoustic field for a single NV center is shown in Fig. 6.5c with respect to the detuning

of the laser frequency.
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FIGURE 6.5. (a) A NV center located a few microns below the surface of diamond
can be coupled to both optical and acoustic fields. A 300nm-500nm thick ZnO layer
is deposited as a piezoelectric mediator to induced the surface acoustic waves on
diamond. (b) Energy level diagram representing the blue and red sideband transitions
for the optomechanical interactions. The carrier optical transition is between the
ms = 0 ground state and Ey excited state of the NV center. (c) The excitation
spectrum of the carrier transition while the acoustic field is turned off. (d) The
excitation spectrum of the NV center simultaneously driven by both the optical and
acoustic fields. The acoustic field is driven at !m = 900MHz. The power of the
incident laser fields is about P0 = 0.4µW and the RF input power of the IDT is
PRF = 0.2W . In (c), and (d), flourescence is measured with respect to the detuning
frequency of the optical dipole transition. The data are fitted with the Lorentzian
function as a blue solid line.

The excitation of long-wavelength acoustic phonons in diamond induces a

periodic lattice strain. The orbital degrees of freedom of the excited states of a

NV couple strongly to this lattice strain[86, 101–103], with a deformation potential,
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D, of several eV. The electron-phonon coupling can be characterized by a strain-

induced energy shift as well as state mixing of the relevant electronic energy levels.

For phonon-assisted optical transitions, we consider the strain-induced energy shift

of the NV excited state |Eyi, with the electron-phonon interaction Hamiltonian given

by:

He�phonon = h̄ g (b̂+ b̂†) |Eyi hEy| (6.2)

where b̂ is the annihilation operator for the mechanical mode, g = Dkm
p
h̄/(2m!m) is

the effective electron-phonon coupling rate, km is the wave number of the mechanical

mode, and m is the effective mass of the mechancial oscillator. With the laser field at

the red sideband of the optical dipole transition, the effective interaction Hamiltonian

for the first red sideband transition is given by,

HR =
h̄ g ⌦0

2!m

(b̂�+ + b̂†��) (6.3)

where ⌦0 is the Rabi frequency for the optical field and �± are the raising and

lowering operators for the two-level optical transition. The effective Rabi frequency

for the sideband transition is thus given by ⌦ = g
p
n⌦0/!m, where n is the average

phonon number. A similar Hamiltonian can also be derived for the first blue sideband

transition. Note that electron-phonon interactions in diamond can also take place

through the ground-state triplet of the NV center. The ground state spin-phonon

coupling, however, is a few orders of magnitude weaker than the excited-state electron-

phonon coupling due to the symmetry of the NV ground-state wave functions.

The phonon-assisted sideband transition is observed by detecting the fluorescence

coming out of an NV center when it is simultaneously driven by both optical and

mechanical fields. For the photo-luminescence excitation (PLE) spectrum shown in
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Fig. 6.5c, the NV center is initially prepared to the |ms = 0i state using the green

laser ( � = 532nm) and the NV emission from the excited state (|Eyi) is measured as

a function of detuning of the incident laser field while the the mechanical frequency

(!m) of the acoustic fields is fixed at 900 MHz. The blue and red sideband resonances

observed in the PLE spectrum correspond to the Stokes and anti-Stokes phonon-

assisted optical transitions, respectively, while the carrier resonance at zero detuning

corresponds to the direct optical transition from the |ms = 0i to |Eyi states. The

spectral separation between the sideband and the carrier resonance equals !m, as

confirmed by the dependence of the sideband spectral position on the RF driving

frequency of the IDT shown in Fig. 6.5d.

To further verify these blue and red sideband transitions are due to the acoustic

fields, we examined the splitting between the optical dipole transition and acoustic

field assisted transition in terms of the driven frequency of the acoustic fields. As

we expect, the splitting is determined by the driven frequency. ( see Fig. 6.6a).

At the relatively weak optical and acoustic power, the peak amplitude of the

resonance increases linearly with both power (see Fig. 6.6c). As shown in Fig. 6.6b,

the sideband resonances are more robust against power broadening compared to

the carrier resonances. The spectral linewidths of both the carrier and sideband

resonances are plotted in Fig. 6.6d.

In a relatively low optical power regime (P0 < 25µW ), the linewidths of the

sideband resonances are still approximately 175 MHz while the linewidth of the carrier

resonance ends up four time larger than it was before. The power broadening of the

carrier resonance can be accounted for by a simple two-level model. The broadening

also provides a way to measure the optical Rabi frequency ⌦0. From Fig. 6.6d, we

estimate ⌦0/(2⇡
p
P0) = 65, where P0 is the incident laser power. The lack of power
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broadening in sideband transitions indicates that the effective Rabi frequency ⌦ of

NV center is still small compared to its optical dipole transition linewidth.
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FIGURE 6.6. (a) Frequency measurement of the splitting between the carrier and
sideband resonances as a function of the driven frequency !m. Red line is to guide
the eye where the splitting is equivalent to the driven frequency !m. (b) Excitation
spectra of the NV obtained for three different laser powers and with PRF = .1 W.
Green lines are fits to Lorentzians. (c) Amplitudes of the sideband resonances with
increasing optical P0 and acoustic PRF power. (d) Linewidths of the carrier resonance
(black squares) and red sideband resonance (red circles) as a function of optical laser
power P0, with PRF = .1W . The carrier resonance exhibits strong power broadening.
Black line is the theoretically calculated power broadening. Red line is a liner fit to
guide the eye.
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Surface acoustic wave assisted transition and the direct optical dipole transition

can interfere each other (see Fig. 6.7a). To demonstrate this interference, we drive

these two transitions simultaneously with both optical and acoustic fields. We phase-

lock both !1 and !2 + !m optical fields. Moreover, the phase of the acoustic field !m

is also locked to the optical fields. While all three fields are phase-locked, we scan

the optical field of the sideband transition. A sharp resonance is retained when the

resonant frequency of the carrier transition matches the sum of the frequency of the

sideband detuned optical field and acoustic field (see Fig. 6.7b). The width of the

resonance (< 10 Hz) is limited by the instrument resolution. We can further verify this

interference by varying the relative phase of the acoustic field and measuring the peak

amplitude of the fluorescence coming out of the NV center. This sinusoidal oscillation

demonstrates the interference between the carrier and sideband transition and proves

that the optomechanical processes can be fully coherent with the conventional optical

processes (see Fig. 6.7c).

In general, the optical dipole transition linewidth of a NV center in our

experiment is approximately 200 MHz. And we are driving our acoustic fields at

900 MHz. Therefore, the acoustic field assisted sideband transition is well within

the resolved sideband limit. In the resolved sideband limit, the Rabi oscillation of

the two-level NV system can be driven by using the acoustic field assisted sideband

transition. To demonstrate this, the NV center is initially prepared in the ms = 0

ground state. The optical laser field is tuned into the red sideband. The red detuned

laser field is treated as a continuous field. Then the acoustic pulse is sent out to

mediate the sideband transition and simultaneously the fluorescence emission from

the NV is measured in the time domain. Using three different acoustic field strengths,

we measure the optomechanically driven Rabi oscillations in time domain with the
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FIGURE 6.7. (a) Black arrow represents the direct optical dipole transition and, the
red arrow and dotted arrow represents the acoustic field assisted sideband transition.
(b) The fluorescence of a NV center as a function of detuning between the direct
transition optical field and sideband transition optical field while the acoustic field
is fixed at !m = 900MHz. (c) The fluorescence of a NV as a function of the phase
of acoustic field �m with !1 = !2 + !m, demonstrating the sinusoidal interference
oscillation between two transitions.

time resolution of approximately 3 ns. From this measurement, the estimated Rabi

frequency of ⌦0/2⇡ = 290 MHz is extracted. The effective Rabi frequency ⌦ for the
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sideband transition can be derived from the Rabi oscillations and it complies with

the square root of the RF driving power of the acoustic field (see Fig. 6.8)

The amplitude of the surface acoustic wave (SAW) can be estimated based on

these experiments.

Asaw = 2(!m/km)(⌦/⌦0)/D (6.4)

where Asaw is the amplitude of SAW, !m is the driving frequency of SAW, ⌦ is the

effective Rabi frequency, 0 is the Rabi frequency and D is the deformation potential.

With ⌦0/2⇡ = 290MHz,⌦/2⇡ = 66MHz,!m/km = 5600m/s, andD/2⇡ = 610THz,

Asaw is approximately 0.7 pm. This relatively small amplitude of the SAW required

to drive the Rabi oscillation also reflects the strong electron-phonon coupling between

acoustic phonons and the NV center.

The resolved sideband optomechanical processes realized in these experiment can

be applied to quantum information and processing in high-Q hybrid optomechanical

system such as NV centers embedded in diamond nanomechancial oscillators. For

a diamond nanomechancial oscillator with a mechanical resonant frequency !m =

900MHz and effective mass meff = 1pg, the excited state electron-phonon coupling

can be as strong as 2 MHz.

In summary, we have demonstrated the quantum control of the internal states of

an NV center by using optomechanical sideband transitions and by taking advantage

of the strong excited state electron-phonon coupling of NV centers. The combination

of the long coherent time of the NV center and exceptional material properties of

diamond suggest a promising future for this hybrid system in quantum information

and processing. In addition, the readily available SAW technologies in the industrial

world could give this system a head start in the pursuit of quantum communication.

In this chapter, we have demonstrated how to integrate the excited state electron-
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phonon coupling into a simple two level system. In the next chapter, we will provide

how to implement this electron-phonon coupling into a ⇤-like three level system.
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b.

a.

FIGURE 6.8. (a) Pulse sequence used for the Rabi oscillation experiment. Green
laser is to initialized the NV center to ms = 0 ground state. Red laser is tuned to the
red side of the optical dipole transition and treated as a continuous field right after the
initialization of green laser. (b) NV fluorescence as a function of time.Rabi oscillations
are driven by three different acoustic field strengths. Inset: Rabi frequencies obtained
as a function of RF power.
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CHAPTER VII

SURFACE ACOUSTIC WAVE AND DARK STATE

This chapter was published in Physical Review X[104]. My main contribution

is the fabrication and characterization of the SAW device, and worked together

with both Andrew Golter and Ignas Lekavicius for the optical measurement. Kevin

Steward also helped us with the RF sputtering deposition of zinc oxide on the diamond

surface. Mayra Amezcua contributed to the theoretical analysis of the experiment.

My advisor, Hailin Wang, supervised the project.

7.1. Introduction

In the previous chapter, we demonstrated how a surface acoustic wave (SAW)

can be manipulated to couple an electron spin inside a diamond by taking advantage

of the two level systems of the ground spin states of NV center in diamond[105]. In

this chapter, we are going to pursue how to couple between a surface acoustic wave

and an electron spin via⇤-type three-level system in which two ground spin states

couple to a common excited state through a phonon-assisted and a direct dipole

optical transition.

In general, the decay of the ground state of the NV center is much longer than

the decay of its excited state. We can take advantages this by using an optically

prepared dark state, which can be established through quantum interference or

through adiabatic evolution of the spin states. In this way, the ground spin states

are sensitive to the excited-state strain coupling through optical interactions but are
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nearly immune to the decay of the excited state. The deformation potential, which

defines the strength of the excited state strain coupling, scales with the relevant

energy gap and the deformation energy of the excited state is five orders of magnitude

stronger than its counterpart of the ground state of the NV center[106, 107].
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FIGURE 7.1. (a) Schematic of a ⇤-type three-level system driven by two optical
fields with respective Rabi frequency,⌦1 and ⌦2. In the limit of large dipole detuning,
�, the system becomes equivalent to an optically driven transition between the two
lower states. (b) Schematic of a ⇤-type three-level system driven by an acoustic
field (brown dashed line) as well as two optical fields. The |g1i to |ei transition is a
phonon-assisted transition with effective Rabi frequency ⌦R. In the limit of large �,
the system becomes equivalent to an optically driven transition between the phonon
ladders of the two lower states, where n denotes the phonon number.

The ⇤-type three-level system can be realized by using two ground states and

one excited state of the NV center in diamond[108, 109]. The spin scan be transferred

from one ground state to another through a SAW assisted dark state, in which the

electron is trapped in a special coherent superposition of the two ground spin states

and is thus decoupled from the excited state. Moreover, in the regime in which

the external optical fields are sufficiently detuned from the respective dipole optical

transitions, the excited state in the ⇤-type three-level system can be adiabatically

eliminated from the dynamics of the two spin states. In this case, the optically driven

transitions take place between the phonon ladders of the two spin states (which we

refer to as sideband spin transitions), as illustrated in Fig. 7.1. We have demonstrated
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the coherent coupling between a SAW and an electron spin in diamond via a dark

state by observing phonon-assisted coherent population trapping (CPT).

7.2. Experimental Setup

The sample preparation and the generation of the surface acoustic waves (SAW)

are identical to those described in the previous chapter. As mentioned, the ground

state of NV centers is a spin triplet state composed of ms = ±1 states and ms = 0

state while the excited states are denoted by A1,2 , Ex,y and E1,2 with respect to their

symmetry properties. For this experiment, the ⇤-type three-level system is built by

ms = +1 , ms = 0, and A2 state. A1 andE1,2E state can also be served as the upper

state of a ⇤-type system instead of A2. However, we avoided using these states due to

various mechanisms of state mixing[110, 111]. A practical advantage of using ms = 0

as one of the lower state is that the initial spin preparation and detection can be

done without the use of microwave fields. This also excludes the extra fabrication

step required to design and implement a microwave antenna close to the NV center.

Different NV centers have their own unique splitting of energy level structure

for many reasons such as their orientation, strain and so on[111]. For instance, for

the implanted NV centers, during the implantation process, we tried to alleviate the

mechanical strain. Therefore, the splitting between Ex and Ey is relatively narrower

than its counterpart of non-implanted NV centers. First, we conduct a photo-

luminescence excitation experiment to identify each excited state optical transition

so that we can single out the individual states to construct the desired ⇤-type three-

level system. For this photo-luminescence excitation experiment, the green laser

(� = 532nm) is used to initialize the spin state. While the green laser is used as a
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FIGURE 7.2. (a) Energy-level structure and dipole optical transitions of a NV center
(strain free). (b) State mixing due to built-in dc strain, leading to additional dipole
transitions, as indicated by the dashed lines. Shaded levels and arrows highlight
the ⇤-type three-level systems used in our experiments. (c) Excitation spectrum
with a pump field fixed at the Ex transition. Peak labels indicate the corresponding
transitions in (b). Red lines are fits to Lorentzians. Inset: Excitation spectrum
obtained with no pump field.

pump laser , the red laser near the zero phonon line (� = 637nm) is used asa probe

laser. The pump and probe lasers are alternated periodically with a period of 10 µs.

When we scanned the probe laser around the wavelength (� = 637nm), there are

photo-luminescence resonant excitations between the ground state ms = 0 and the

excited states (Ex and Ey) as shown in the inset of Fig. 7.2 (c). For the particular

NV center, there is a relatively broad energy splitting (9.6 GHz) between Ex and Ey

which confirms a comparably large native dc strain. This leads to transitions between

the Ey and the ms = ±1 state as well as transitions between the E1,2 and the ms = 0

state. We have to bring in the second laser pump to identify these transitions due

to strain-induced state mixing. This pump laser is fixed at the resonant frequency of

the transition between ms = 0 and Ex state. As show in Fig. 7.2 (c), the excitation

spectrum is obtained by scanning the red probe laser while the second pump laser is
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fixed at Ex transition and the x-axis is the detuning of the probe laser with respect

to the second pump laser.

The high fluorescence background level in the excitation spectrum shown in

Fig. 7.2 (c) is due the second pump laser driven Ex excitation. This resonant

excitation also pumps the electron to ms = ±1 state because there is a small

probability for the electron to decay back to ms = ±1 state instead of ms = 0

state.

As shown in Fig. 7.2 (c), there are three positive peaks, which are labeled as ‘1’,

‘2’, and ‘3’, representing the transitions between ms = ±1 ground state to E1,2 and

Ey excited state. In these three cases, the electron is pumped back into the ms = 0

ground state and therefore, the total amount of fluorescence of the transition between

Ex and ms = 0 is increased. In contrast, the excitation spectrum of the transition

from ms = 0 to E1,2 and Ey state emerges as three negative peaks labeled by ‘4’, ‘5’,

and ‘6’. These transitions effectively reduce the fluorescence from the pump-drive Ex

transition. This pump-probe excitation spectrum provides detailed information on

the optical transitions of the NV center without the need for a microwave field.

7.3. Phonon-assisted Coherent Population Trapping

As mentioned, the electron-phonon interaction Hamiltonian can be written as

He�phonon = h̄ g (b̂+ b̂†) |Eyi hEy| (7.1)

where g = Dkm
p
h̄/(2m!m) is the effective electron-phonon coupling rate, b̂ is

the annihilation operator for the mechanical mode, km is the wave number of the

mechanical mode, !m is the mechanical frequency and m is the effective mass of the
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mechanical oscillator. For the phonon-assisted optical transition from the ms = 0

to the Ey state and with a laser field at the red sideband of the optical transition,

the effective interaction Hamiltonian linear to the mechanical displacement can be

derived as

HR =
h̄ g ⌦0

2!m

(b̂ |Eyi hms = 0| + b̂+ |ms = 0i hEy|) (7.2)

where ⌦0 is the Rabi frequency for the laser field coupling to the transition between

the ms = 0 and the Ey state (i.e., the Ey transition). The effective Rabi frequency

for the sideband transition is thus given by ⌦ = g
p
n⌦0/!m, where n is the average

phonon number.

Fixed

a. b.

Tuned

FIGURE 7.3. (a) Energy-level diagram used for phonon-assisted CPT. The solid
red arrows are the optical fields. The dashed brown arrow is the acoustic field. (b)
Fluorescence from state Ey as a function of !0 + !m � !±. The optical power at
frequency !0 and !± is 4 µW and 1 µW, respectively. The RF input power for the
IDT is about 0.13 W. The two negative peaks correspond to ⇤-type systems formed
with either the ms = +1 or the ms = �1 state. The solid red curve is the theoretical
calculation discussed in the text. The fluorescence is normalized to the peak of the
theoretical excitation spectrum with no CPT.
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Similar to what we did for the phonon-assisted Rabi oscillation demonstrated

in the previous chapter, we can integrate a phonon-assisted optical transition into

a ⇤-type three-level system as shown in Fig. 7.3 (a). In general, a dark state can

be generated in a ⇤-type three-level system by simultaneously driving two optical

transitions. A dark state is a special coherent superposition of the two lower states

that is decoupled from the upper state. In NV center, it is also known as a metastable

singlet state. Due to the nature of the destructive quantum interference between the

optical fields and phonon-assisted optical field, the originated fluorescence level is

quenched as shown in Fig. 7.3 (b). In this case, the direct optical dipole transition

takes place between Ey and ms = ±1 state while the phonon-assisted transition occurs

between Ey and ms = 0 state. The dark state for this ⇤-type three-level system can

be written as:

| di =
1p

⌦2
R + ⌦2

±
(⌦R |ms = ±1i � ⌦± |ms = 0i) (7.3)

where ⌦± is the Rabi frequency for the direct dipole optical transition between

Ey and ms = ±1 state. The electrons are trapped in the two lower states in the

phonon-assisted CPT.

For this phonon-assisted CPT experiment, a SAW driven at !m = 818MHz

is coupled to the NV center in diamond. The two optical fields are detuned by

two acoustic optical modulators (AOMs). The ms = ±1 states are split into

!B/2⇡ = 24MHz apart bringing an external magnetic field closer to a NV center.

Another optical field is fixed at !0 which is detuned exactly !m away from the

resonant transition to Ey state. Initially, the NV center is prepared to be in the

ms = 0 state by using the green laser. Then, the power of two optical fields is

set to be approximately equal such that ⌦R ⇡ ⌦±. When the frequency !0 of
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one optical field is tuned so that the difference between !0 + !m and !± becomes

exactly as the ground state splitting (⇡ 2.88GHz) of a NV center. As soon as this

Ranman Resonant condition is fulfilled, the destructive interference occurs and we

can see the decrease in the fluorescence as shown in Fig. 7.3. In our case, due to the

Zeeman splitting, the splitting of ms = +1 and ms = �1 would, consequently, be at

⇡ (2.88 + 0.024)GHz and ⇡ (2.88� 0.024)GHz. The experimental result is in total

agreement with the corresponding Zeemen splitting. Moreover, these negative peaks

are a direct manifestation of the phonon-assisted CPT process, revealing the coherent

interaction between the SAW and the relevant electron spin coherence.

We have used the density matrix equations for the ⇤-type three-level system to

model the phonon-assisted CPT experiment. Note that the ms = ±1 states exhibit

a hyperfine splitting of 2.2 MHz due to coupling with the nitrogen nuclear spin with

I = 1. These hyperfine states, which are included in our model, cannot be clearly

resolved in the CPT experiment because of power broadening of the CPT peaks and

the limited signal-to-noise ratio. With the assumption that ⌦R = ⌦±, the observed

depth of the CPT peak yields ⌦R/2⇡ = 8MHz, in agreement with the Rabi frequency

estimated from individual dipole optical or phonon-assisted optical transitions and

with the Rabi frequency derived from the sideband spin transition experiment, which

will be discussed in the next section.
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7.4. Optically Driven Sideband Spin Transitions

One of the disadvantages of the ⇤-type system in the NV center is the shorter

spin coherence life time of the excited state. There is a way to avoid this by using

stimulated Raman adiabatic passage (STIRAP)[112], which has been successfully

demonstrated for NV centers. With the help of STIRAP, the electron can be

transferred from ms = 0 to ms = ±1 states without passing though the upper excited

state ( Ey) by detuning from the respective optical dipole transitions. In this adiabatic

limit, the three-level system becomes equivalent to an optically driven spin transition

between the two lower states, with an effective Rabi frequency for the spin transition

given by ⌦ss = ⌦1 ⌦2/(2|�|), where ⌦1 and ⌦2 are the Rabi frequencies for the two

dipole transitions and � is the dipole detuning, as illustrated in Fig. 7.4 (a). In our

case, we have two optical fields and one SAW acoustic field in our ⇤-type system and

we can modify the effective Rabi frequency for this phonon-assisted spin transition

as:

⌦ss =
⌦R ⌦±

2 |�| =
⌦0 ⌦±

2 |�| !m

g
p
n = gss

p
n (7.4)

Here, gss is the single-phonon Rabi frequency for the sideband spin transition.

In Fig. 7.4 , we conducted the spectral domain experiment to demonstrate and

characterize STIRAP with the detuning �/(2⇡) = 100MHz. The optical and RF

power used in this experiment is relatively identical to the previous CPT experiment.

The spin population of ms = ±1 is detected by using the resonant excitation between

ms = ±1 to A2 state followed by measuring the fluorescence. The pulse sequence

used for this experiment is shown in Fig. 7.4 (b). As usual, the green laser is used

to initialize the electron into the ms = 0 ground state. SAW acoustic field was

continuously applied through out the experiment. Both applied optical fields have
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FIGURE 7.4. (a) Energy-level diagram including spin detection used for the sideband
spin transition experiments. (b) Pulse sequence used for the spectral domain
experiment. (c) Fluorescence from state A2 as a function of !0 + !m � !±. The
solid red line is a fit to six Lorentzians with equal linewidths. A background due to
optical pumping has been subtracted from the data.

the duration of 2µs. At the end of each sequence, the detection of fluorescence is

taken place via ms = ±1 to A2 transition. The fluorescence from A2 is plotted as a

function of detuning !0 + !m � !±, while both !0 and !m are fixed. The spectral
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linewidth (full width at half maximum) of the transition resonances is 0.7 MHz, in

agreement with the expected spin dephasing rate. The clearly resolved hyperfine

structure of the ms = ±1 states, with a 2.2 MHz hyperfine splitting, demonstrates

that the sideband spin transitions are nuclear-spin selective, thus allowing the use of

nuclear spins in quantum acoustics.

a. b.

FIGURE 7.5. (a) Pulse sequence used for the transient sideband spin transition
experiment. (b) Fluorescence from state A2 as a function of the optical pulse duration.
Solid circles: !0+!m�!± satisfies the Raman resonant condition for the sideband spin
transition. Solid squares: !0+!m�!± is 6.5 MHz detuned from the Raman resonant
condition (the data are smoothed). The solid lines are the theoretical calculations.

For the time domain measurement, we use the pulse sequence shown in Fig. 7.5

(a) which is similar to the spectral domain measurement except the fact that the

duration of the optical driving fields is a variable parameter. The experimental results

are plotted with respect to the duration of the optical driving field in Fig. 7.5 (b). We

have shown two data sets. The solid circles represent the fluorescence from state A2

as a function of the optical pulse duration, while !0,!± and !m are fixed so that the

Raman resonant condition for the sideband spin transition is satisfied for the state

with ms = +1 and mn = +1, where mn denotes nitrogen nuclear-spin projection.

The initial rise of the fluorescence is primarily due to the sideband spin transition

from the ms = 0 state to the ms = +1 state, with the rise time determined by ⌦ss.
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Optical pumping resulting from the excitation and subsequent decay of the upper

state can also lead to population in the ms = +1 state.

The experimental result is plotted as the solid squares in Fig. 7.5 with the

detuning frequency (!0 + !m � !±)/2⇡ ⇡ 6.5 MHz away from the Raman resonant

condition. The solid lines show the theoretical calculations based on the density

matrix equations, where we have taken ⌦R = ⌦± and �1, the decay rate from the Ey

state to ms = ±1 states,as adjustable parameters. The calculations yield �1/2⇡ = 1.8

MHz and ⌦R/2⇡ = 8 MHz,which agrees with the Rabi frequency derived from the

phonon-assisted CPT experiment using the same optical powers. From these results,

we obtain an effective Rabi frequency for the sideband spin transition, ⌦ss/2⇡ = 0.3

MHz. The strong agreement between the experiment and theory shows that both

the sideband spin transitions and the optical pumping are well characterized by the

density matrix equations.

In the limit of large dipole detuning, the upper-state population in the ⇤-type

system scales with 1/�2. Both the optical pumping rate and the optically induced

decoherence rate, �opt, thus also scale with 1/�2. In comparison, ⌦ss scales with 1/�.

In this regard, strong excited state mediated spin-phonon coupling can be achieved

with negligible optical pumping or optically induced decoherence. For example, by

setting ⌦±/|�| and ⌦0/|�| to 1/60, we keep �opt/2⇡ to about 1 kHz. With |�| =

25!m, Eq (7.4) then yields a single-phonon Rabi frequency gss that is three orders of

magnitude greater than what can be achieved with direct ground-state spin-phonon

coupling. More optimal excited-state-mediated spin-phonon coupling with greater

gss and smaller �opt can be achieved by exploiting techniques such as a shortcut to

adiabatic passage.

84



In summary, by coupling a SAW to an electron spin in diamond through a ⇤-

type three-level system, we have realized both phonon-assisted CPT and optically

driven sideband spin transitions. These experiments demonstrate that we can take

advantage of the strong excited-state electron-phonon interaction to mediate and

control the coupling between spin and mechanical degrees of freedom while avoiding

decoherence associated with the excited state. Note that ⇤-type three-level systems

with strong excited-state strain coupling provide an excellent experimental platform

for exploring spin-based quantum acoustics.

Our approach can also be extended to other emerging spin systems with

spin defect centers such as SiC, as well as to quantum-dot and superconducting

systems. A diamond nanomechanical resonator featuring optically driven sideband

spin transitions resembles a trapped-ion system. For a resonator with a modest

mechanical Q factor, phonon lasing from a single spin, as well as cooling of

the mechanical resonator via coupling to an electron spin, can be explored. A

nanomechanical resonator with a sufficiently high mechanical Q factor can enable

us to achieve strong spin-phonon coupling at the level of a single phonon and to

pursue the highly successful paradigm of trapped-ion-based quantum computing in a

solid-state system.
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CHAPTER VIII

CONCLUSION

8.1. Summary

In this dissertation, we have demonstrated the coupling of mechanical vibrations

to a single spin qubit embedded in diamond using optical sideband transitions and

have developed the technical approach to fabricate spin-mechanical systems that can

take advantage of unique properties of diamond and especially spin qubits in diamond

More specifically, we have demonstrated the quantum control of the internal

states of a NV center by using sideband transitions and by taking advantage of

strong excited-state electron-phonon coupling of NV centers. We have realized Rabi

oscillations of a NV center by coupling the NV simultaneously to both optical and

SAW fields in the resolved-sideband regime. Quantum interferences between the

optomechanical sideband and the direct dipole-optical (or carrier) transitions have

also been observed. In addition, we have also realized strong spin-mechanical coupling

by exploiting dark states in a ⇤-type three-level system. These studies establish firmly

the physical mechanisms and processes that will be used for coherent coupling between

electron spins and mechanical vibrations in a spin-mechanical system.

We have successfully fabricated diamond nanomechanical resonators using a

diamond-on-insulator platform. The elaborate fabrication process overcame many

obstacles in nearly all essential steps, including wafer bonding, deposition of SiN

mask, mask transfer to SiN, as well as O2 and Ar/Cl reactive ion etching of diamond.

In addition, we have also further developed the experimental technique[50] to the
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generation of high quality single NV centers within 100 nm of the diamond surface via

ion implantation. For this process, a step-wise thermal annealing up to 1200 degrees

and a careful surface treatment including oxygen termination at a temperature of

500 degree are crucial for creating optically stable NV centers, i.e. NV centers with

absorption linewidth less than a few hundred MHz at low temperature.

8.2. Future Work

The experimental progresses made in this dissertation open the door to using

resolved-sideband coupling for quantum control of both the atom-like internal states

and the motional states of a diamond nanomechanical oscillator, leading to the

realization of a solid-state analog of trapped ions. With the robust electron spin

coherence in diamond, the next immediate technical challenge is to realize diamond

nanomechanical resonators with long lifetime for mechanical vibrations. Given the

exceptionally small intrinsic mechanical loss in diamond, the primary mechanical

loss mechanism is clamping loss[113–117]. For the next generation of diamond

nanomechanical resonators, a phononic crystal structure[118–122] can be used to

isolate the mechanical modes from the mechanical support, thus suppressing the

clamping loss.

In addition to NV centers, diamond can also host other spin qubit systems

such as silicon vacancy centers and germanium vacancy centers. These centers

can feature properties that are in many aspects superior to those of NV centers.

The technique of generating near-surface single NV centers in diamond via ion

implantation demonstrated in our work can be directly applied to create other defect

enters such as silicon vacancy and germanium vacancy centers in diamond.
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With much improved diamond-based spin qubits and nanomechanical resonators,

it will be promising to realize a new solid-state experimental platform based on the

coherent coupling between spin and mechanical degrees of freedom to implement

quantum computers
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APPENDIX

SUPPLEMENTARY INFORMATION

A.1. Estimated Amplitude of the SAWs

We use our measurement of optomechanically-driven Rabi oscillations to estimate

the amplitude of the IDT-generated SAW, ASAW . The position operator for the

harmonic oscillator is

x̂ =

r
h̄

2m!m

(b̂+ b̂†) (A.1)

where m is the effective oscillator mass, !m is the mechanical SAW frequency,

and b̂ and b̂† are the creation and annihilation operators for the phonon mode. The

amplitude is thus given by

ASAW =

r
h̄

2m!m

2
p
n (A.2)

Here n is the mean phonon number. Moreover,

⌦ =
g
p
n⌦0

!m

(A.3a)

g = Dkm

r
h̄

2m!m

(A.3b)

where ⌦ is the effective Rabi frequency for the sideband transition, is the optical

Rabi frequency, g is the effective electron-phonon coupling rate, D is the deformation

potential for the NV center excited state, and km is the wave number of the phonon

mode. Combining Eq. (A.2) and Eq. (A.3) gives
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ASAW = 2
!m

km

⌦

⌦0

1

D
(A.4)

With ⌦/2⇡ = 66MHz, ⌦0/2⇡ = 290MHz, !m/2⇡ = 940MHz, km/2⇡ =

1/(6µm), and D/2⇡ = 610THz, we can estimate the amplitude of the surface acoustic

wave, ASAW = 0.7pm based on the measured Rabi frequency.

We now compare this to an order-of-magnitude estimate for the amplitude of

the SAWs based on the driving power of the IDT and the IDT dimensions. The

SAWs propagate away from the IDT at velocity, v . The displacement is largest

at the surface and falls off on a length scale of about one wavelength, � . As an

approximation we will first assume the SAW energy is uniformly distributed between

the surface and one wavelength deep. The energy density is then given by

E

V
=

PRF

A v
(A.5)

where PRF is the power transmitted by the IDT and is the cross-sectional area

through which the SAW travels. Taking A = L � v
!m

2⇡ , where L is the length of the

IDT, leads to

E

V
=

PRF!m

2⇡ L v2
(A.6)

The energy density of the mechanical wave is given by

E

V
= 2⇢ !2

m A2
SAW (A.7)

with ⇢ as the mass density of diamond. Combining Eq. (A.6) and Eq. (A.7), and

rearranging gives
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ASAW =

s
PRF

4⇡ L v2 ⇢!m

(A.8)

The power applied to the IDT was about . We assume 50% of the power is

transmitted to the device. The electromechanical coupling efficiency of the IDT is

estimated to be ⇡ 0.05%[123, 124]. Also, the IDT transmits in both directions so

only half the power reaches the NV center. Furthermore, the NV centers used in this

work were typically located roughly 0.7� from the surface so we estimate that they

will see half the average power. We set PRF = 0.45⇥ 1/2⇥ 0.0005⇥ 1/2⇥ 1/2. Using

L = 400µm, ⇢ = 3500kg/m3 , and v = �!/(2⇡), we get ASAW ⇡ 3pm . This is likely

an overestimate since we have used overly optimistic values for the IDT efficiency.

In this regard, our predicted amplitude is in general agreement with the amplitude

derived from the Rabi frequencies.

A.2. Optical Rabi Frequency and Power Broadening

The dependence of the carrier resonance linewidth on optical power provides an

estimate for the power dependence of the optical Rabi frequency. The linewidth of

the NV center optical dipole transition is subject to spectral diffusion due to the

off-resonant excitation step in the PLE measurement, as well as to power broadening.

The power broadened FWHM, Fp , is given by

Fp ⇥ 2⇡ = 2�

s

1 +
⌦2

0

��
(A.9)

where � is the coherence decay rate, and � is the excited state population decay

rate. We treat the spectral diffusion as an inhomogeneous broadening yielding a

Gaussian distribution with a linewidth of Fs. The convolution of the power broadening
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and spectral diffusion is a Voigt profile with a FWHM approximated by

F ⇡ 0.535 Fp +
q

0.217 F 2
p + F 2

s (A.10)

We take �/2⇡ = 14MHz and �/2⇡ = 20MHz. To fit the data at low optical

power we use Fs = 135MHz. To fit the higher power data we take ⌦/2⇡ =
p
P0 ⇥

65MHz, where is the optical power given in units of µW. The values of ⌦/2⇡ used in

these experiments are therefore estimated to range between about 10 MHz and 300

MHz.

A.3. Interference between Carrier and Sideband Transitions: Theory

For phonon-assisted sideband transition experiment,we simultaneously drive the

carrier and sideband transitions and observe a phase dependent interference effect.

To model this interference experiment, we consider a two level system with transition

frequency !0. There are two complex Rabi frequencies ⌦a = ⌦̄ae
�i!at+i�a and ⌦b =

⌦̄be
�i!bt+i�b with !a and �a as the frequency and phase of the carrier excitation and !b

and �b for the sideband excitation (Fig. A.1).(!b and �b are the sum of the frequencies

and phases of the optical and acoustic fields which together drive this transition.)

From the optical Bloch equations, we get

⇢̇22 = ��⇢22 +
1

2
[�i⌦⇢22 + h.c.] (A.11a)

⇢̇a12 = (�� + i!0)⇢
a
12 +

i

2
⌦⇤

a(⇢22 � ⇢11) (A.11b)

⇢̇b12 = (�� + i!0)⇢
b
12 +

i

2
⌦⇤

b(⇢22 � ⇢11) (A.11c)
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FIGURE A.1. Energy level diagram for the interference measurement

where ⌦ = ⌦a + ⌦b and ⇢12 = ⇢a12 + ⇢b12. We take

⇢̇b12 = (�� + i!0)⇢
b
12 +

i

2
⌦⇤

b(⇢22 � ⇢11) (A.12a)

⇢a12 = ⇢̄a12e
i!at (A.12b)

⇢b12 = ⇢̄b12e
i!bt (A.12c)

and substitute into Eq. (A.11b) and Eq. (A.11c) to get

⇢̇a12 = (�� + i�a)⇢
a
12 +

i

2
⌦̄ae

�i�a(⇢22 � ⇢11) (A.13a)

⇢̇b12 = (�� + i�b)⇢
b
12 +

i

2
⌦̄be

�i�b(⇢22 � ⇢11) (A.13b)
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where �a,b = !0 � !a,b. Solving these in the steady state gives

⇢a12 =
�i⌦̄ae

i�a

2(�� + i�a)
(A.14a)

⇢b12 =
�i⌦̄be

i�b

2(�� + �b)
(A.14b)

where we have taken a zeroth order approximation and set (⇢22 � ⇢11) = 0 .

Next we combine Eq. (A.14) and Eq. (A.12), and then substitute into

Eq. (A.11a). We will get

⇢̇22 = ��⇢22+
1

2


⌦̄2

a

2(� � i�a)
+

⌦̄2
b

2(� � i�b)
+
⌦̄a⌦̄be

�i�!tei��

2(� � i�b)
+
⌦̄a⌦̄be

i�!te�i��

2(� � i�a)
+ c.c.

�

(A.15)

where �! = (!a � !b) and �� = (�a � �b).

Now we assume

⇢22 = ⇢̄
(0)
22 + ⇢̄

(+)
22 ei�!t + ⇢̄

(�)
22 e�i�!t (A.16)

which combined with Eq. (A.15) gives

⇢̇
(0)
22 = ��⇢(0)22 +

1

2


⌦̄2

a

2(� � i�a)
+

⌦̄2
b

2(� � i�b)
+ c.c.

�
(A.17a)

⇢̇
(0)
22 = (��� i�!)⇢̄(+)

22 +
1

2


⌦̄a⌦̄be

i��

2(� � i�b)
+ c.c.

�
(A.17b)

⇢̇
(0)
22 = (��+ i�!)⇢̄(+)

22 +
1

2


⌦̄a⌦̄be

i��

2(� � i�a)
+ c.c.

�
(A.17c)
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Solving these in the steady state and substituting back into Eq. (A.16), we arrive

at an expression for the excited state population.

⇢22 =
1

2�


⌦̄2

a

2(� � i�a)
+

⌦̄2
b

2(� � i�b)
+

⌦̄a⌦̄be
�i�!tei��

2(� � i�b)(�+ i�!)
+

⌦̄a⌦̄be
i�!te�i��

2(� � i�a)(�� i�!)
+ c.c.

�

(A.18)

Our measurement of the excited state population, by means of the spontaneously

emitted fluorescence, averages over a long time period. This means that when �! is

nonzero the phase dependent terms in Eq. (A.18) averages to zero. When �! = 0 (

and therefore �a = �b = �) , the expression simplifies to

⇢22 =
1

2�


⌦̄2

a⌦̄
2
b

2(� � i�)
+

⌦̄a⌦̄b

(� � i�)
cos(��) + c.c.

�
(A.19)

which has a nonzero phase dependent term that goes as the cosine of the phase

difference. Unity contrast in the interference fringes can be achieved if ⌦a = ⌦b.

A.4. Optomechanically Driven Rabi Oscillations: Theory

In this section we discuss optomechanically driven Rabi oscillations, in particular

contributions from the carrier (i.e. direct optical dipole) transition to the Rabi

oscillation experiment. We consider a two-level system, where the upper state |ei

couples to a lower state |gi via an acoustic and laser field. The full Hamiltonian for

this system is as follows:

H = h̄!mb
†b+ h̄!0�+�� + h̄

⌦0

2
[�+e

�i!Lt + h.c.] + h̄g(b+ b†)�+�� (A.20)
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where the laser field has Rabi frequency ⌦0 and laser frequency!L . The Pauli

operators correspond to the two-level system with transition frequency !0, whereas

the b†, b denote the phonon operators with frequency !m . The effective electron-

phonon coupling rate is g . The Hamiltonian for the first red sideband transition is

given by

HR = ih̄
⌦0g

2!m

(b�+ � b†��) = ih̄
⌦

2
(b�+ � b†��) (A.21)

Fig. A.2 shows the optomechanically driven Rabi oscillations obtained using

HR and the same parameters as those from the experiment, indicating an overall

agreement between the theory and experiment.

The sideband detuned laser field can couple directly to the carrier transition

and as a result induces generalized Rabi oscillations of the excited state population.

Fig. A.3 shows the calculated generalized Rabi oscillations using parameters the

same as those for Fig. A.2, except that the acoustic field is now turned off. For

comparison, we also compare directly in Fig. A.3 the generalized Rabi oscillations with

the optomechanically-induced Rabi oscillations shown in Fig. A.2. The generalized

Rabi oscillations are not observable in our experiments because of the limited time

resolution (2.8 ns).

We also note that in addition to the optomechanically-driven Rabi oscillations

due to HR, the combined optical and mechanical coupling can also lead to a weak

temporal modulation (with frequency !m) in the excited state population. This

modulation is not observable in our experiments, again due to the limited time

resolution.
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FIGURE A.2. Calculated optomechanically driven Rabi oscillations for three different
RF powers. For clarity, the oscillations displayed are vertically offset. The effective
Rabi frequency is indicated in the figure.

A.5. Theoretical Model for ⇤-type System

We consider a ⇤-type three-level system, driven by two optical fields and an

acoustic field, as shown in Fig. A.4. The two dipole optical transitions, with

frequency v1 and v2, couple to the two optical fields, with frequency !1 and !2 and

Rabi frequency 1 and ⌦2, respectively. With the rotating wave approximation, the

Hamiltonian of the system, is given by

H =h̄!mb
†b� h̄v1 |g1i hg1|�

h̄v2 |g1i hg1|+ h̄g(b† + b) |ei he|+

h̄
⌦1

2
(ei!1t |ei hg1|+ h.c.) + h̄

⌦2

2
(ei!2t |ei hg2|+ h.c.)

(A.22)
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FIGURE A.3. Calculated generalized Rabi oscillations (solid blue curve) using
parameters the same as those for Fig. A.2, except that the acoustic field is turned off.
For comparison, the dashed curve shows the optomechanically driven Rabi oscillations
(with ⌦ ⇡ 66MHz ) in Fig. A.2

.

where b† and b are the creation and annihilation operators for the acoustic

field with frequency !m and g is the electron-phonon coupling rate. Applying the

Schrieffer-Wolff transformation

U = exp


g

!m

(b† � b) |ei he|
�

(A.23)

to the Hamiltonian gives

eH =h̄!mb
†b� h̄v1 |g1i hg1|�

h̄v2 |g1i hg1|+ h̄
g2

!m

|ei he|+

h̄
⌦1

2
(ei!1t+

g
!m

(b†�b) |ei hg1|+ h.c.)+

h̄
⌦2

2
(ei!2t+

g
!m

(b†�b) |ei hg2|+ h.c.)

(A.24)
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FIGURE A.4. (a) Schematic of a ⇤-type three-level system driven by two optical
fields with respective Rabi frequency, ⌦1 and ⌦2. In the limit of large dipole detuning,
�, the system becomes equivalent to an optically-driven transition between the two
lower states. (b) Schematic of a ⇤-type three-level system driven by an acoustic
field (brown dashed line) as well as two optical fields. The |g1i to |ei transition is a
phonon-assisted transition with effective Rabi frequency ⌦R. In the limit of large �,
the system becomes equivalent to an optically-driven transition between the phonon
ladders of the two lower states, where n denotes the phonon number.

which has the same form as the trapped ion Hamiltonian. Transforming to an

interaction picture, we then have

eH =h̄
⌦1

2
(ei�1te�

g
!m

(b†ei!mt�be�i!mt) |ei hg1|+ h.c.)+

h̄
⌦2

2
(ei�2te�

g
!m

(b†ei!mt�be�i!mt) |ei hg2|+ h.c.)

(A.25)

where �1 = (v1 � g2/!m) � !1 and �2 = (v2 � g2/!m) � !2 are the effective

detunings of the two optical fields from their respective dipole transitions.
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We assume that the ⌦1 field is tuned near the red phonon-sideband of the |g1i

to |ei transition (�1 ⇡ !m) and the ⌦2 field is tuned near the |g2i to |ei transition

(�2 ⇡ 0). Expanding eH in g/!m, which can be viewed as an effective Lamb-Dicke

parameter for our solid state system, and keeping only the nearly resonant terms, we

can approximate the interaction Hamiltonian as

HI = h̄
⌦1

2

g

!m

⇥
bei(�1�!m)t |ei hg1|+ h.c.

⇤
+ h̄

⌦2

2

⇥
ei�2t |ei hg2|+ h.c.

⇤
(A.26)

which is similar to a Hamiltonian for a ⇤-type three-level system driven by two

optical fields, with effective detuning, �R = �1 � !m and �2, and effective Rabi

frequency, ⌦R = g
p
n⌦1/!m and ⌦22, respectively, where n denotes the average

phonon number. Note that the Raman resonant condition is �R = �2. The above

Hamiltonian is also valid for relatively large �R and �2, as long as �R ⇡ �2 . With

�R = �2, the Hamiltonian given by Eq. (A.26) features a dark state,

| di =
1p

⌦2
R + ⌦2

2

[⌦R |g2i � ⌦2 |g1i] (A.27)

with HI | di = 0. This dark state is decoupled from state |ei, leading to phonon-

assisted CPT of the electron in the two lower state. The equations of motion for the
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density matrix elements,⇢ij , in the rotating frame, which we have used to model the

experiments, can also be derived from HI and are given as

⇢̇e1 = �(i�R + �)⇢e1 +
i⌦R

2
(⇢ee � ⇢11 �

i⌦2

2
⇢21 (A.28a)

⇢̇e2 = �(i�2 + �)⇢e2 +
i⌦R

2
(⇢ee � ⇢22 �

i⌦2

2
⇢12 (A.28b)

⇢̇21 = �[i(�R ��2) + �s]⇢21 +
i⌦R

2
⇢2e �

i⌦2

2
⇢e1 (A.28c)

⇢̇ee = ��⇢ee + (
i⌦R

2
⇢e1 + c.c.) + (

i⌦2

2
⇢e2 + c.c.) (A.28d)

⇢̇11 = �1⇢ee � (
i⌦R

2
⇢e1 + c.c.) (A.28e)

⇢̇22 = �2⇢ee � (
i⌦2

2
⇢e2 + c.c.) (A.28f)

where �s and � are the decay rates for the spin coherence and optical dipole

coherence, respectively,� = �1 + �2 is the total decay rate for the upper state

population, with �1 and �2 being the decay rate to |g1i and |g2i, respectively. For the

theoretical calculation, we have used �s/2⇡ = 0.35MHz, which is primarily due to

spin dephasing induced by the nuclear spin bath, and �/2⇡ = 14MHz, as determined

experimentally. We have assumed � = �/2+�orb, where �orb is the dephasing rate due

to coupling to the orbital degrees of freedom and have taken �orb/2⇡ = 12MHz[125].

We have also used �1/2⇡ = 1.8MHz, as derived from the optical pumping experiment.

NV spectral diffusion is treated as a Gaussian distribution of the optical transition

frequency with a linewidth of 140 MHz, as derived from the excitation spectrum of

the Ey resonance.
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A.6. Effects of Strain-induced electric fields

For our experiments, the strain field of a SAW can induce a propagating electric

field in the piezoelectric ZnO layer. This strain-induced electric field can couple to

NV centers, though theoretically this coupling is expected to be small compared with

the deformation potential coupling. This is because the strain-induced electric field is

relatively small[126], and also because this electric field is mostly confined in the ZnO

layer and the NV center is about a few microns (3 µm in our experiment) below the

diamond surface. For an experimental confirmation, we rapidly heated up the sample

from 8 K to room temperature. When we cooled the sample back down again to 8 K,

the phonon sidebands in the excitation spectrum vanished, but the IDT still functions,

though with a slightly reduced amplitude. In this case, the rapid temperature change

broke or significantly weakened the bonds between the ZnO and diamond. Although

the electric field induced by the strain field still propagates in the ZnO layer, the

SAW no longer propagates in diamond. We can only recover the phonon sideband

by removing and then re-depositing the ZnO layer. Our experiments show that the

coupling between the strain-induced electric field and the NV center used in our

experiment is negligible compared with the deformation potential coupling.
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