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DISSERTATION ABSTRACT

Tyler Harvey

Doctor of Philosophy

Department of Physics

June 2017

Title: Electron Orbital Angular Momentum: Preparation, Application and
Measurement

The electron microscope is an ideal tool to prepare an electron into a specified

quantum state, entangle that state with states in a specimen of interest, and

measure the electron final state to indirectly gain information about the specimen.

There currently exist excellent technologies to prepare both momentum eigenstates

(transmission electron microscopy) and position eigenstates (scanning transmission

electron microscopy) in a narrow band of energy eigenstates. Similarly, measurement

of the momentum and position final states is straightforward with post-specimen

lenses and pixelated detectors. Measurement of final energy eigenstates is possible

with magnetic electron energy loss spectrometers. In 2010 and 2011, several groups

independently showed that it was straightforward to prepare electrons into orbital

angular momentum eigenstates. This disseratation represents my contributions to

the toolset we have to control these eigenstates: preparation, application (interaction

with specimen states), and measurement. My collaborators and I showed that

phase diffraction gratings efficiently produce electron orbital angular momentum

eigenstates; that control of orbital angular momentum can be used to probe
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chirality and local magnetic fields; and that there are several routes toward efficient

measurement.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

In 1992, a group at Leiden [1] discovered that light beams could carry discrete

quanta of orbital angular momentum (OAM). In the years that followed, a wide

range of tools to manipulate and measure OAM were developed. These tools were

quickly adopted in pursuit of a number of interesting applications of the OAM of light,

including microscopy and astronomical imaging [2, 3, 4, 5], communication [6, 7], and

manipulation of particles [8, 9, 10].

In 2010 and 2011, three groups independently demonstrated that electrons can

similarly be placed in quantized OAM states [11, 12, 13]. In the last seven years, the

emerging field of electron OAM has developed a basic toolset to manipulate electron

OAM and the beginnings of some exciting applications. Many of these tools and

applications have been borrowed from the literature on the OAM of light; a few

involve properties specific to electrons with OAM.

The most useful tool borrowed from light optics is the ability to prepare electron

OAM states with diffraction gratings [12, 13, 14, 15, 16]. Diffraction gratings remain

one of the best ways to produce electron OAM states. However, two new methods to

produce electron OAM states look distinctly different than their counterparts for light.

Spiral phase plates for light can be made extremely transparent and machined with

very good precision; however, even the most electron-transparent materials produce

significant undesirable scattering at the thickness required for a maximum phase shift

of 2π, and materials are difficult to machine precisely enough on the nanometer scale

to produce a good spiral phase plate [11, 17]. Several groups have designed better

spiral phase plates that utilize the interaction of electrons with magnetic [18, 19]
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and electric [20, 21] fields. Diffraction gratings allow more detailed control of the

electron wavefunction [14, 16, 22], but typically produce more than one beam and add

some noise due to unwanted scattering processes in the grating material. Magnetic

and electric spiral phase plates offer more efficient, lower-noise methods to produce

electron OAM states, but are less versatile and are non-trivial to fabricate.

Now that there are multiple good methods to produce electron OAM states, we

can begin to apply them to the study of materials and basic physical processes. There

have been a wealth of proposals for uses for electron OAM states and few realizations

so far [23, 24, 25, 26, 27, 28, 29, 30, 31]. One experiment has demonstrated rotation of

nanoparticles on a substrate [32]. Two experiments have demonstrated sensitivity to

the chirality of materials [33, 34]. Several experiments have shown that the additional

magnetic dipole moment carried by an electron with OAM offers sensitivity to out-of-

plane magnetic fields [35, 36, 37, 38]. Much effort has been dedicated to demonstrating

magnetic dichroism with incident electron OAM states; no conclusive results have

been published.

The slow progress towards applications is in part due to the lack of a crucial tool:

the ability to cleanly post-select for electron OAM states. The ability to spatially

isolate OAM states, such that the OAM can be quantitatively measured and each

individual state can be further manipulated, would make many applications easier

to realize. Three classes of OAM measurement tools have been developed so far:

reference-wave interference methods [13] self-interferometric methods [39, 40, 41] and

phase-flattening methods [42, 43]. Interferometric methods require coherence of the

incident beam, and become increasingly less accurate as the number of incident OAM

states increases [44]. Phase flattening with a grating is inefficient and not quantitative.

None of these methods works particularly well to measure the mess of states that
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results from interaction with a real material, and none can be used to post-select for

a single OAM state. We therefore need better OAM measurement tools.

This dissertation is composed of three previously published papers and two

manuscripts that are in progress. I have chosen to organize them in three chapters

corresponding to the three steps necessary to employ an electron to probe a specimen:

preparation of the electron in an orbital angular momentum state; interaction of the

electron with the specimen; and measurement of the electron final state.

The following manuscripts are included in this work:

Chapter II. Preparation

Tyler R. Harvey, Jordan S. Pierce, Amit K. Agrawal, Peter Ercius, Martin Linck,

and Benjamin J. Mcmorran. “Efficient diffractive phase optics for electrons.” New

Journal of Physics 16 093039 (2014).

Electron diffraction gratings can be used to imprint well-defined phase structure

onto an electron beam. For example, diffraction gratings have been used to prepare

electron beams with unique phase dislocations, such as electron vortex beams, which

hold promise for the development of new imaging and spectroscopy techniques for

the study of materials. However, beam intensity loss associated with absorption,

scattering, and diffraction by a binary transmission grating drastically reduces

the current in the beam, and thus the possible detected signal strength it may

generate. Here we describe electron-transparent phase gratings that efficiently diffract

transmitted electrons. These phase gratings produce electron beams with the high

current necessary to generate detectable signal upon interaction with a material. The

phase grating design detailed here allows for fabrication of much more complex grating

structures with extremely fine features. The diffracted beams produced by these

gratings are widely separated and carry the designed phase structure with high fidelity.
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In this work, we outline a fabrication method for high-efficiency electron diffraction

gratings and present measurements of the performance of a set of simple prototypical

gratings in a transmission electron microscope. We present a model for electron

diffraction gratings that can be used to optimize the performance of diffractive

electron optics. We also present several new holograms that utilize manipulation

of the diffraction efficiency to produce new types of electron beams.

This article is published under the terms of the Creative Commons Attribution

3.0 International license (https://creativecommons.org/licenses/by/3.0/). Any

further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

Tyler R. Harvey. “Transfer of Orbital Angular Momentum from Photons to

Electrons.” In preparation.

We explore the interactions of photons and electrons that involve an exchange of

orbital angular momentum. We develop formalism to understand ‘angular diffraction’

of electrons from a superposition of light orbital angular momentum states.

Chapter III. Application

Tyler R. Harvey, Jordan S. Pierce, Jordan J. Chess and Benjamin J.

McMorran. “Demonstration of electron helical dichroism as a local probe of chirality.”

arXiv:1507.01810.

We report observation of electron helical dichroism on a material with chiral

structure. In analogy with circular dichroism, a common technique for molecular

structural fingerprinting, we use a nanofabricated forked diffraction grating to prepare

electron vortex beams with opposite orbital angular momenta incident upon metal

nanoparticle clusters and post-select for a zero-orbital angular momentum final

state. We observe a difference in the differential scattering probability for orbital
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angular momentum transfer from vortices with opposite handedness incident on chiral

aluminum nanoparticle clusters at 3.5±0.8 eV. We suggest that the observed electron

helical dichroism is due to excitation of surface plasmon vortices. Electron helical

dichroism enables chirality measurement with unprecedented spatial resolution over

a broad range of energies.

Tyler R. Harvey, Colin Ophus, Fehmi Yasin, Jordan J. Chess, Vincenzo Grillo

and Benjamin J. Mcmorran. “Scanning transmission electron microscopic holography

with forked diffraction gratings.” In preparation.

We offer a model for analysis of electron holograms formed in the scanning

transmission electron microscope. We first demonstrate a simple method to extract

the specimen transfer function using a straight diffraction grating, and then show

a similar method to measure longitudinal magnetic fields with a forked diffraction

grating.

Chapter IV. Measurement

Tyler R. Harvey, Vincenzo Grillo and Benjamin J. McMorran. “Stern-Gerlach-

like approach to electron orbital angular momentum measurement.” Physical Review

A 95 021801 (2017).

Many methods now exist to prepare free electrons in orbital angular momentum

states, and the predicted applications of these electron states as probes of materials

and scattering processes are numerous. The development of electron orbital angular

momentum measurement techniques has lagged behind. We show that coupling

between electron orbital angular momentum and a spatially varying magnetic field

produces an angular momentum-dependent focusing effect. We propose a design

for an orbital angular momentum measurement device built on this principle. As

the method of measurement is non-interferometric, the device works equally well for
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mixed, superposed and pure final orbital angular momentum states. The energy and

orbital angular momentum distributions of inelastically scattered electrons may be

simultaneously measurable with this technique.

This article is published under the terms of the Creative Commons Attribution

4.0 International license (https://creativecommons.org/licenses/by/4.0/). Any

further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

Benjamin J. McMorran, Tyler Harvey and Martin Lavery. “Efficient sorting of

free electron orbital angular momentum.” New Journal of Physics 19 023053 (2017).

We propose a method for sorting electrons by orbital angular momentum (OAM).

Several methods now exist to prepare electron wavefunctions in OAM states, but no

technique has been developed for efficient, parallel measurement of pure and mixed

electron OAM states. The proposed technique draws inspiration from the recent

demonstration of the sorting of OAM through modal transformation. We show that

the same transformation can be performed with electrostatic electron optical elements.

Specifically, we show that a charged needle and an array of electrodes perform the

transformation and phase correction necessary to sort orbital angular momentum

states. This device may enable the analysis of the spatial mode distribution of

inelastically scattered electrons.

This article is published under the terms of the Creative Commons Attribution

4.0 International license (https://creativecommons.org/licenses/by/4.0/). Any

further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.
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CHAPTER II

PREPARATION

Notes on Manuscripts

Note on ‘Efficient Diffractive Phase Optics for Electrons’

From Tyler R Harvey et al., New J. Phys. 16 093039 (2014).

Benjamin McMorran contributed the project idea. I and Jordan Pierce took the

data for the paper. I, Benjamin McMorran and Jordan Pierce wrote the manuscript

together. Jordan Pierce and I produced most of the figures. Peter Ercius contributed

one. Amit Agrawal and Martin Linck helped Benjamin McMorran with the project

idea and experimental design.

Note on ‘Transfer of Orbital Angular Momentum from Photons to Electrons’

The second part of the chapter is an unpublished manuscript with no co-authors.

The work emerged from a Quantum Optics course taught by Mike Raymer. I

appreciated helpful discussions with Mike, Chris Jackson, Jordan Pierce and Galen

Gledhill.
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Efficient Diffractive Phase Optics for Electrons

Tyler Harvey1, Jordan Pierce1, Amit Agrawal2,3, Peter Ercius4, Martin Linck5

and Benjamin J. McMorran1

1 Department of Physics, University of Oregon, Eugene, Oregon

2 Department of Electrical Engineering, Syracuse University, Syracuse, New York

3 Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland

4 National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California

5 Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg, Germany

25 September, 2014

Introduction to Efficient Diffractive Phase Optics

Scanning transmission electron microscopy (STEM) has recently offered a large

number of critical insights into the structure and behavior of materials at the atomic

scale [45, 46, 47]. As a result of several decades of advancements in electron optics,

modern STEM instruments use precisely controlled electric and magnetic fields to

prepare Ångstrom-sized 60 to 300 keV electron probe beams with currents on the

order of nano-Amperes [48, 49]. The focused probes have an approximately Gaussian

intensity distribution and a flat phase profile.

Following the development of atomic-scale STEM, there has been a surge of

interest in using shaped probe beams with carefully designed phase structure and

non-Gaussian intensity distributions. The interaction of such a shaped probe beam

with a material can offer more information than is available through the use of a

traditional probe beam [50, 51]. For example, electron vortex beams [52, 53, 54] may

soon be employed to accomplish atomic resolution spin imaging [53, 55] with STEM.

Holographic diffraction gratings [53, 54, 56, 57] and phase plates – both material [52]
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and magnetic [58, 59] – have been successfully used to imprint the helical phase that

defines a vortex beam.

Electron probe beams with well-defined phase structure can be produced via

diffraction from a nanofabricated holographic diffraction grating placed in the probe-

forming aperture of a STEM instrument [50] (see Figure 1). A second aperture

lower in the column can be used to isolate one of the diffracted probes and use it to

form an image. One can, in general, define the two-dimensional pattern s(x, y) of a

holographic diffraction grating by interference of a wavefunction of interest Ψ(x, y)

with a reference wave [60]:

s(x, y) = |Ψ(x, y) + Ψref(x, y)|2 (2.1)

For example, to produce an electron vortex beam with m~ orbital angular momentum

in the first diffraction order of a linear grating periodic in the x-direction, one uses

the two-dimensional pattern

s(x, y) =

∣∣∣∣ 1√
2

(
eimφ + eikx

)∣∣∣∣2 = 1 + cos(mφ+ kx) (2.2)

A physical diffraction grating can imprint this pattern onto a transmitted complex

wave, either through a modulation of amplitude or phase. In the case of a phase

grating, the optical path length is varied according to the two-dimensional pattern

s(x, y), usually by varying the thickness of transparent grating material. We will

return to the theory that guides the design of holographic diffraction gratings, and in

particular optimal three-dimensional structure, in Section 2.5.

Other methods exist for imprinting a spiral phase dislocation onto electron

beams; both material phase plates [52] and magnetic nanowire phase plates [58, 59]
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add a spiral phase to an electron passed through them. However, production of pure

spiral phase states with integer topological charge m is a significant challenge with

these techniques. The topological charge imprinted depends on electron beam energy

and is highly sensitive to fabrication errors and fringing fields, respectively. Diffractive

electron optics offer the advantage that arbitrary phase structure can be imprinted on

the electron beam with high fidelity and independent of beam energy. Furthermore,

these devices can simultaneously produce multiple probe beams with complementary

phase dislocations for dichroism techniques [50, 61].

There are two common challenges that must be addressed before diffractive

electron optics may be widely adopted for use in electron microscopy. First, diffraction

gratings must produce sufficiently intense diffracted beams so that information carried

by a diffracted probe is measurable. Second, the multiple diffracted probe beams must

be sufficiently separated in the specimen plane for use in the study of materials with

varied shapes and sizes. For example, several recent diffractive structures used to

create electron vortex beams [53, 56, 57] are composed of patterns of slits milled all

the way through a relatively thick foil that is opaque to electrons. These structures

operate by selectively subtracting beam current through high-angle scattering in the

material and transmitting the rest through the slits. Thus, these structures behave

as binary amplitude gratings, which can only place a maximum of 10.1 % of the

incident electrons into the first diffraction order. This is particularly troublesome for

STEM applications, in which beam current must be maximized in order to generate a

detectable signal of interest over background noise. These electron amplitude gratings

furthermore have small separation between diffracted beams; it is thus difficult

to isolate signal generated by a particular beam. An amplitude grating must be

sufficiently thick so as to be opaque to electrons. This restricts the smallest lateral
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feature size that can be patterned, which consequently limits the diffraction angle.

One recent demonstration of electron vortex production employed an amplitude

diffraction grating which produced a beam separation of 3 µrad [53], or, equivalently,

a real-space separation on the order of 5 nm in the specimen plane of a modern

high-resolution STEM instrument.

To address these challenges, in our work developing electron vortex beams [54, 62]

we have devoted considerable effort towards developing electron-transparent phase

grating structures [63] that modulate the phase of the electron wave rather than

the amplitude. Here we present a detailed study of these diffractive phase optics

for electrons. We discuss the materials and nanofabrication method, performance

measurements, and a model for these devices that incorporates the effects of both

phase and amplitude modulation. Here we primarily discuss simple straight gratings

periodic in one dimension, as shown in Figure 2, in order to elucidate the role of

several basic grating structure parameters on diffraction efficiency. Optimization of

the nanofabrication process for these simple gratings can then be applied to fabricate

diffraction holograms which produce electron beams with non-trivial transverse

wavefunctions Ψ(x, y). In Figure 3, we demonstrate four gratings which produce

diffracted beams with various different phase dislocations.
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FIGURE 1. Probes prodced by a diffraction grating
(Top image) Layout of the diffraction process in a STEM showing the grating in the

condenser aperture producing separated STEM probes at the specimen plane.
When placed at the condenser aperture plane, the patterned circular area of the
transparent grating has the same beam-defining properties as a regular circular

condenser lens aperture. The diffracted beams can either be isolated using a second
aperture, or the entire set of beams can be scanned across a local sample feature,

providing multiple images of the object each containing unique information.
(Bottom image) TEM image of multiple diffracted STEM probes from a 50 µm-wide

fork-dislocation grating at the specimen plane.
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FIGURE 2. An example diffraction grating
Uniform phase gratings for electrons, which serve as a simple prototype to measure
performance. In a TEM operated at 300 keV these gratings are nearly transparent –
all of these images were recorded in an SEM at 5 keV in order to show contrast. (a)
An example of a FIB patterning dose array in which the ion beam dwell time was

varied. (b) A smaller, 10 µm diameter grating with 120 nm pitch. (c) A perspective
view of a FIB cross section of the phase grating shows the corrugated surface.

Approximately 50 nm of Pt was deposited on the corrugated surface only so that
the cross section could be prepared and imaged – this Pt coating is not normally

included in phase gratings meant for TEM.
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FIGURE 3. More example diffraction gratings
Examples of several phase grating designs that produce beams with non-trivial

phase structure, together with the corresponding diffraction patterns. (a) A spiral
phase dislocation grating produces beams with Lz = 5n~ orbital angular momentum
at a defocus n∆f , where n is the diffraction order number. The diffraction pattern is
defocused so that the n = +1 order is in focus. (b) Multiple spatially separated fork

dislocations produce diffracted beams with a net 〈Lz〉 = 0~ when in focus. (c) A
Hermite Gaussian (1, 2) mode pattern. (d) An inner double fork dislocation grating

and an outer zero-dislocation grating produces beams that are co-propagating
superpositions of vortex beam and spherical wave. Note the suppressed 0-order
intensity and enhanced ±1-order intensities. In all of these examples, the beams

have been defocused to reveal the details of their intensity and phase.
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Electron Diffractive Phase Optics Design Goals

To be broadly useful for novel electron microscopy techniques, diffractive electron

optics should efficiently diffract beam current into a desired diffraction order, and

produce diffraction orders that are well-isolated from one another.

Diffraction Efficiency

In emerging STEM techniques using beams with engineered phase dislocations,

it is important to maximize current in the probe beam. The efficiency of the

diffraction hologram producing the beam thus becomes a primary concern. The

diffraction hologram can be designed to generate just one electron probe beam,

or simultaneously produce two or more probe beams with complementary phase

dislocation properties. For example, a forked grating hologram with a symmetric

thickness profile simultaneously produces pairs of electron probe beams with phase

dislocations that are equal in magnitude but opposite in sign. It is expected that

these two beams with opposite wavefront topologies can be used to provide dichroic

image contrast [50, 61]. While in some applications it is desirable to produce only

these two beams, in other instances it is desirable to also have a conventional electron

probe beam with no phase dislocation to use for a reference signal. In all of these

circumstances, the thickness profile of the hologram can be tailored to maximize the

current in the electron beam and diffract it into one or more desired beams. It is also

possible to form a blazed diffraction hologram that produces only one probe beam

with a particular magnitude and/or sign of phase dislocation.

There are several important independent figures of merit for the diffraction

efficiency of a holographic grating. Absolute diffraction efficiency η
(i)
n , transmitted

diffraction efficiency η
(t)
n , and relative diffraction efficiency η

(n′)
n are each useful for
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characterizing total detectable current, total detectable current as a fraction of the

theoretical maximum for a given grating design, and detectable current relative to

the noise produced by inelastic scattering in the grating, respectively.

The absolute diffraction efficiency is defined as

η(i)
n ≡ In

Iinc
(2.3)

where In is the current in the nth diffraction order, and Iinc is the total current

incident on the diffraction grating. Potential electron microscopy applications require

a maximal beam current in the +1st diffraction order, in which case η
(i)
+1 is the primary

figure of merit. For a binary transmission grating, however, the maximum η
(i)
+1 is only

10.1 %. We demonstrate phase gratings that have twice this diffraction efficiency.

When using blazed gratings, η
(i)
+1 can be made even larger at the expense of η

(i)
−1.

For material electron diffractive phase optics, some loss of electrons due to

inelastic scattering is unavoidable. The total coherently transmitted beam current

Itrans, equal to the sum of currents in all diffraction orders, is always less than the

incident beam current, Itrans =
∑

n In < Iinc, and this is largely independent of the

parameters of the particular groove shape. So to compare just the effects of groove

shape and depth on diffraction efficiency independently from the effects of different

thicknesses of material, it is then useful to define a transmitted diffraction efficiency

describing the intensity in a particular diffraction order relative to the integrated

intensity of all coherently transmitted electrons:

η(t)
n ≡

In
Itrans

(2.4)
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For STEM EELS with diffracted probes, quantitative analysis of an energy loss

spectrum depends not just on the overall current in the beam, but also on the isolation

of signal from a single diffracted probe. Adjacent diffraction orders may contribute to

background signal. Thus, for such an application, the relative diffraction efficiency,

defined as the ratio of intensity of the nth order to the n′th order, η
(n′)
n , is a key figure

of merit

η(n′)
n ≡ In

In′
. (2.5)

In most of the applications proposed to date for shape probe beams, the probe of

interest is in the n = ±1 order, and the next most intense probe is the n′ = 0 order.

We will explicitly discuss the relative efficiency η
(0)
1 of gratings produced in this work.

Each of these figures of merit for efficiency represents a unique property of the

STEM probes produced by a grating; absolute efficiency η
(i)
n measures total detectable

current in the nth diffracted order, transmitted efficiency η
(t)
n is a good measure of

total detectable current as a function of theoretical maximum, and relative efficiency

η
(n′)
n affects the signal-to-noise ratio for a measurement involving the nth probe where

noise from the n′th is a concern. During review of this manuscript, Grillo et al.

reported 25 % efficiency for the first-order diffracted probe of their phase diffraction

gratings [64]; we note that this was a transmitted efficiency. Using our model

developed in Section 2.5, we estimate that the 120 nm thick excess silicon nitride

material supporting the grating structure incoherently scattered roughly 80 % of

the incident intensity; after accounting for this intensity loss, we calculate that the

absolute efficiency of this grating was approximately η
(i)
1 = 5 %.

As we shall see in Section 2.5, the diffraction efficiency of a grating is a function

of the shape and depth of grooves, the projected mean inner potential of the grating
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material, and the electron beam energy. The theoretical maximum efficiency of a

sinusoidal pure phase grating is 33.9 % [65]. For electron sinusoidal phase gratings

made of silicon nitride (Si3N4), our model predicts that a physical groove depth of

about 33 nm achieves this maximum. Utilizing high resolution FIB milling we have

consistently fabricated gratings with η
(i)
1 > 20 %.

Diffraction Order Separation

A diffractive optical element in a STEM application produces in general multiple

probe beams, and there must be sufficient angular separation between them such that

the signal they each generate can be isolated. To meet this design goal and provide

large free space diffraction angles, electron diffractive optical elements should be

fabricated with as small a feature size as possible without sacrificing pattern fidelity.

For electrons of de Broglie wavelength λ transmitted through a grating-like

diffraction hologram with pitch d, where typically λ � d, the angular separation

∆θ between diffracted beams is

∆θ =
λ

d
. (2.6)

In the specimen plane of a STEM, the real-space physical separation ∆x between

diffracted probe spot centers at the specimen plane is

∆x =
z∆θ

M
=

zλ

Md
(2.7)

where M is the magnification of the lower probe-forming STEM optics (not the image

magnification) and z is the physical distance between the diffraction hologram and

the specimen plane. Alternatively, in terms of the effective camera length L of the
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lower probe-forming optics, the spot separation is

∆x =
Lλ

d
. (2.8)

In the TEAM 1 instrument at the National Center for Electron Microscopy, a

grating with pitch d = 83 nm installed in the second condenser lens aperture produces

diffracted 300 keV (λ = 1.97 pm) probe beams separated by ∆x = 43 nm in the

specimen plane (See Figure 1).

We note that it is easier to achieve larger angular separation between diffraction

orders using diffractive phase optics. A distinct advantage of phase gratings over

amplitude gratings is that they can be fabricated with much finer feature sizes, and

so can produce much wider separation between diffracted beams. Free-standing

amplitude-type gratings must be sufficiently robust to support the mass of the

relatively thick, electron-opaque material; this condition limits the minimum lateral

feature size of such a structure. Amplitude-blocking diffractive optics demonstrated

to date [53, 56, 57] have a minimum periodic feature size on the order of 1 µm. On

the other hand, phase gratings can be much thinner than amplitude gratings, and

can be fabricated on an electron-transparent supportive membrane [63]. In [54] we

demonstrated phase gratings with 75 nm period, and have since fabricated gratings

with periodic feature sizes down to 20 nm [66].

Nanofabricated Diffractive Electron Optics

To achieve our stated design goals for efficient electron diffractive optics, we

explored a diverse array of nanofabrication techniques for imprinting the phase grating

onto electron-transparent materials. High-quality gratings may be produced with
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high-resolution focused ion beam (FIB) milling, electron beam-induced deposition

(EBID), and electron beam lithography (EBL); the choice of technique places some

limitations on the structure of the gratings produced but is primarily a question of

practical considerations. In this work, we consider prototypical electron diffractive

optics produced by focused ion beam (FIB) milling, as FIB instruments are present

in many TEM labs and can be used safely to produce an electron diffraction grating

with minimal training. Some specific considerations for nanofabrication of gratings

with FIB are detailed in the Appendix.
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FIGURE 4. AFM profiles of diffraction gratings
(top) Two-dimensional AFM surface profile of an 80 nm pitch grating with a trench

depth of 30.6 nm. The grating was milled by focused ion beam on a 50 nm thick
silicon nitride membrane. The average membrane thickness h̄, groove depth ∆h,
groove spacing, or pitch, d, and relative groove width w are labeled for reference.

(bottom) One-dimensional AFM profiles of several 100 nm pitch gratings. The error
bars represent variation in the measured groove depth over the area of the grating.

The solid lines represent a best fit Gaussian-shaped groove used in our model of
phase gratings.
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Phase Grating Model for Optimizing Diffraction Efficiency
A

B

C

D

E

F

G

FIGURE 5. TEM images of diffracted beams
TEM diffraction images for gratings A - F. The diffracted beams are intentionally

defocused in order to examine the uniform phase and amplitude in each beam. The
grooves for each grating in the figure are successively deeper from top to bottom

(associated AFM profiles are in Figure 4). (A-E) The 0th order can be suppressed by

deepening the grooves; here, η
(0)
1 can increase well beyond unity. (B) At this depth,

the transmitted efficiencies of the -1, 0 and +1 orders, η
(t)
−1, η

(t)
0 and η

(t)
+1 are greater

than 25 %. (E) With sufficiently deep trenches, we achieve η
(0)
±1 > 5 – that is, both

positive and negative first-order beams are five times more intense than the zeroth
order. (F) 0th order intensity will increase again if the grooves are too deep. (G)
Asymmetric grooves forming a blazed grating result in an asymmetric diffraction
pattern, and a first-order diffracted beam with η

(t)
1 = 36.5 %, and η

(i)
1 = 27.6 %.

To compare the measured diffraction efficiencies of our holographic phase gratings

to theoretical limits, we developed a model for mixed phase/amplitude gratings for

electrons. The structure of the grating is a thin membrane with a modulated thickness

h(x, y). Figure 4 shows the thickness patterns of several fabricated grating measured

with atomic force microscopy (AFM). The transmission function describing the effects

of this structure on transmitted electron wavefunctions is

t(x, y) = e−αh(x,y) · eiCV0h(x,y) = eik̃h(x,y) (2.9)
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where k̃ = CV0 + iα is the effective complex wavenumber of the electron within the

material. The amplitude decay coefficient α describes the effects of inelastic and

high angle scattering, and V0 is the mean inner potential of the grating material. C

depends only on the energy of the beam [67]. If such a grating is illuminated by an

incident electron wave ψi, then the transmitted electron wavefunction immediately

behind the grating is

ψt(x, y) = ψi(x, y)eik̃h(x,y). (2.10)

The far field diffracted wave can be computed with the Fraunhofer approximation as

shown in the Appendix (2.28).

In the case of simple linear phase gratings with uniform periodicity in only one

direction, x, the modulated thickness of the material can be described as an array of

grooves,

h(x, y) = h̄+
∑∞

n=−∞ g(x− nd, y)− b (2.11)

where h̄ is the average thickness of the material grating, d is the pitch, or center-to-

center groove spacing, and g(x, y) describes the profile of the grooves. The offset b

cancels any residual constant from the infinite sum. These parameters, as well as the

groove depth ∆h and width w, are shown in Figure 4. If the incoming wave ψi is a

normally-incident plane wave (2.23), the diffracted wave amplitude from this linear

grating may be written as

|ψ(r′)| = (2π)2

λz′
√
V
e−αh̄

∞∑
n=−∞

|cn|δ
(
kx′

z′
− 2πn

d

)
δ

(
ky′

z′

)
(2.12)
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where λ is the de Broglie wavelength and V is a plane wave normalization factor. The

relative amplitude of the nth diffraction order, cn, depends upon the specific groove

profile g(x, y). A general form for computing cn from any arbitrary periodic structure

is described in detail in (2.38-2.40). The transmitted diffraction efficiency η
(t)
n defined

in (2.4) is calculated as

η(t)
n = |cn|2. (2.13)

Note that the absolute diffraction efficiency η
(i)
n , defined in (2.3) as a fraction of the

incident beam, is less than (2.13) due to high-angle scattering

η(i)
n = e−2αh̄|cn|2. (2.14)

where h̄ is the average thickness of the grating over the back surface, as illustrated

in Figure 4.

Cross sections (Figure 2) and AFM profiles (Figure 4) of the surface of

our gratings indicate that individual grooves have a somewhat Gaussian shape.

Earlier findings suggest that single-pixel-wide FIB-milled trenches have a remarkably

Gaussian profile [68], so we model our gratings as a periodic sum of Gaussian grooves.

The profile of an individual groove is

g(x) = A√
2πσ

e−
x2

2σ2 (2.15)

with amplitude A, characteristic width σ; the profile of the entire grating is described

by the periodic sum in (2.11) with this grating shape g(x). The groove depth ∆h and

groove width w are related to the parameters A, σ, and b in (2.51-2.52) and (2.55).
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Groove width is defined as the full width of the groove at half the maximum depth

as a fraction of the pitch d.

With structure parameters describing the groove shape (depth ∆h and width w)

and material properties (absorption coefficient α and mean inner potential V0), we

can calculate the expected relative diffraction amplitudes cn for a grating according

to (2.38). We can thus reliably model the diffraction efficiency with a small number of

measured parameters. While the diffracted wave could also be computed without any

model numerically, the analytical calculation of cn as a function of model parameters

allows us to build an intuitive map of diffraction efficiency as a function of groove

shape.

We parameterized the average groove shape of every grating in all of our

fabrication arrays using the Gaussian groove model to determine the width w and

depth ∆h. In Figure 6, we used these average groove dimensions to categorize each

grating (location in figure) and express the measured electron diffraction efficiency

as a color value. These measured values compare well to the theoretical diffraction

efficiency calculated using our model (background color).

The variations in efficiency between gratings with nearly identical trench depth

and width, seen most clearly in Figure 7, are primarily due to gallium implantation

from the FIB. We have observed up to 10 atomic % gallium concentrations in milled

areas of our diffraction gratings with energy-dispersive X-ray spectroscopy (EDX)

composition analysis. We do not account for any modification of the mean inner

potential V0 of the material in the mill process. We expect that the lower-than-

expected first-order transmitted efficiency η
(t)
±1 and higher-than-expected zeroth-order

transmitted efficiency η
(t)
0 observed for gratings with a trench depth ∆h = 20± 5 nm

are also due to gallium implantation. However, as gallium concentration is not easy
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Predicted Measured

η
(i)
1 ≡ I1/Iinc 0.136± 0.005 0.17± 0.04

η
(t)
1 ≡ I1/Itran 0.33± 0.01 0.34± 0.07

η
(0)
1 ≡ I1/I0 5± 3 3.8± 0.8

TABLE 1. Comparison of predicted and measured efficiencies
Comparison of predicted and measured efficiencies for a grating with a width
w = 0.411± 0.003, trench depth ∆h = 35.7± 0.5 nm, and an average thickness

h̄ = 57.2± 0.3 nm.

to measure, and as this variation in efficiency is specific to only small range of gratings

fabricated with FIB and does not affect our prediction for peak efficiency, we have

chosen not to include extra parameters in our model to characterize this additional

variation. We can use this simple model, which we have shown to predict efficiency

with reasonable accuracy, to make prescriptions for the fabrication of highly efficient

gratings.

The analysis summarized by Figure 6 provides a map that we used to explore a

space of many interdependent parameters used for the nanofabrication process. We

see in Figure 6 that any grating fabricated with a depth ∆h between 27 nm and 40

nm and a full width at half max w > 0.40 will produce first-order diffracted beams

with transmitted efficiency η
(t)
1 > 30 %. The most efficient grating we fabricated

indeed lies within this range. Table 1 offers a comparision of predicted and measured

efficiencies for this grating. The predictions of the Gaussian groove model compare

well with the diffraction efficiencies we measured from actual gratings.

This model provides a useful tool in the future design and fabrication of nanoscale

electron phase gratings. For example, Figure 3 shows how the diffraction efficiency

of the holograms can be manipulated to produce several different types of electron

beams with engineered phase and intensity.
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FIGURE 6. Parameter space map for optimizing diffraction efficiency
Parameter space map showing the predicted (background color) and measured
(squares) first-order (top) and zeroth-order (bottom) transmitted diffraction

efficiencies for electron phase gratings as a function of the depth ∆h and width w of
grooves. Each square data point represents a phase grating fabricated in a silicon
nitride membrane using a unique combination of FIB milling parameters. Each

square’s position describes the associated grating’s groove depth (horizontal axis)
and width (vertical axis) measured by AFM scans, and the square color is the
diffraction efficiency of the respective order measured by TEM diffraction. The

labeled data points correspond to the gratings that produced the diffraction
patterns in Figure 5. The background color map represents a model that assumes
symmetric grooves with uniform Gaussian-shaped depth cross sections and plane

wave illumination. Both measured and predicted efficiencies in each plot share the
same color scale denoted by the right-hand bar.
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FIGURE 7. Measured efficiencies vs. trench depth
Measured transmitted diffraction efficiency of electron phase gratings as a function

of groove depth ∆h. The grooves of each grating plotted here all have the same
width w = 0.375± 0.025 relative to the center-to-center groove spacing. The solid

line is a theoretical model that assumes Gaussian-shaped grooves, using only
previously measured parameters.
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Conclusion

Here we described our studying and optimizing the efficiency of electron

diffractive phase optics for use in high resolution electron microscopy. We described

a process for fabricating spatially coherent nanoscale material phase gratings, and

characterized the performance of simple prototypical phase gratings in a TEM. We

developed a theoretical model for optimizing the design of the gratings for particular

uses. We demonstrated diffractive phase gratings with 80 nm periodic feature sizes

covering areas 50 µm in diameter, and demonstrated grating periods down to 20 nm.

We demonstrated phase gratings that produce equally intense -1st, 0th, and +1st

diffraction order beams with 25 % of the transmitted beam current each, gratings

with suppressed 0th order beams (intensities in the 1st order up to 5 times greater) and

blazed gratings that place 27 % of the incident beam current into the +1st diffraction

order. When installed in a TEM operated at 300 keV, these gratings are capable

of providing multiple Ångstrom-scale electron probes with precisely manufactured

phase dislocations. We demonstrate example nano fabricated holograms in which

this diffraction efficiency is controlled in order to efficiently convert an incident

electron beam into various engineered electron beams. This technology now makes

possible shaped STEM probe techniques designed to produce more information about

magnetically ordered, superconductor, semiconductor and biomolecular materials.
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Diffraction Intensity Measurement

To determine the intensity of one diffraction order, we first measured noise in the

image; we calculated the average background intensity Ib in a part of the micrograph

where no signal intensity was present. We then subtracted this background intensity

from the entire image, then set to zero all pixels which had an intensity less than this.

Finally, to measure the intensity of the nth diffraction order, we centered a circular

measurement region with a diameter equal to the spacing between orders over the nth

diffraction spot. We then measured the total integrated intensity inside the circle.

We performed this measurement on an FEI 80-300 Titan TEM at 300 keV in

Low-Angle Diffraction at a camera length of 104 m. We used a gun lens strength of 6

and a spot size of 8, a 150 um C2 aperture to limit the extent of the incoming wave,

and an illuminated area of 104 µm. We then limited the outgoing wave with a 10 um

objective aperture. The incident, transmitted and relative diffraction efficiencies of

the beams formed by the grating are independent of aperture size and shape when

absolute efficiency is measured as a function of incident intensity after the aperture

[69]. We used a defocus of −21.37·10−6 so that the spots did not saturate the detector

but were still well spaced.

Nanofabrication Considerations

To meet our stated design goals for efficient electron diffractive optics, we

explored a large number of nanofabrication techniques for imprinting the phase

grating onto electron-transparent materials. We have found a combination of grating

material, charge alleviation layer, and patterning technique that provides good results,

and discuss each of these separately in the following sections.
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Grating Material

While there are many electron-transparent materials that can be used for this

purpose, we choose to use silicon nitride membranes because of its mechanical

robustness, thermal stability under electron illumination, and availability. We used

silicon nitride membranes from several manufacturers, ranging in thicknesses from

15 nm to 100 nm thick, suspended over windows from 80 um across to 2 mm. Low-

stress 30 nm to 100 nm-thick silicon nitride membranes purchased from SPI Supplies,

Inc. performed best under long-term mill processing. We note that in general,

a membrane thickness on the order of twice the final mill depth minimizes beam

amplitude loss due to high-angle inelastic scattering while maintaining mechanical

stability. In particular, we found that while 30 nm and 50 nm thick membranes block

roughly 20 % and 50 % of the incident beam intensity, respectively, these standard

thickness membranes routinely provide the greatest absolute diffraction efficiency for

a 300 keV beam.

Nanofabrication Optimization

We have applied several nanofabrication techniques for patterning electron

diffractive optics, including high-resolution focused ion beam (FIB) milling, electron

beam-induced deposition (EBID), and electron beam lithography (EBL). We will

concentrate our description here on the FIB-milling technique, since FIBs are present

in many TEM labs and this maskless fabrication technique provides a quick method

for making electron gratings. In particular, we used an FEI Helios NanoLab FIB to

mill all gratings described in this work.

Modern FIB instruments offer many different parameters that can be used

for milling the electron diffraction hologram pattern. The ion beam dwell time,
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number of passes, milling scan direction, beam current, ion beam convergence angle,

addressable pixel spacing, total ion dose, and pattern complexity all play a large and

interconnected role in the quality of the final grating. An in-depth discussion and

review of these effects is provided in [68]. We performed a systematic exploration of

this complex parameter space in order to find the best combination for manufacturing

efficient gratings for electrons.

We created a series of arrays of linear diffraction gratings in which we

systematically varied total ion dose, dwell time, number of passes, patterning order,

and beginning membrane thickness. These dose-arrays were placed in a field emission

TEM operated at 300 keV. Low angle electron diffraction patterns were recorded

under identical illumination conditions for each grating. Examples of these diffraction

patterns are shown in Figure 5. The diffraction spots were defocused in order to

examine the uniformity of the intensity of each beam – darker areas indicate an

unwanted variation in groove width and depth across the grating area. We then

measured the surface topology of each grating using an atomic force microscope

(AFM) with a small diameter tip (Figure 4).

Many FIBs provide the ability to mill a pattern using a bitmap image or by

direct programmable control of the beam path. We find that when using the bitmap

patterning method, the pixel spacing of the magnified bitmap image should be an

integer multiple of the minimum pixels spacing [68] of the FIB in order to avoid

artifacts in the final structure due to nonuniform ion dosing. The scan direction

of the beam should be chosen such that the slow scan axis is perpendicular to the

grooves. While we have made decent gratings using both raster and serpentine scans

during milling, we find best results when using a “vector scan” technique [68]; taking

full programmable control of the beam path such that one complete groove can be
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milled before moving on to the next element. For most purposes, we found that 10

passes, reversing the milling order each time, resulted in the highest quality gratings.

However, when milling patterns covering large areas, settling and movement of the

silicon nitride membrane reduces the quality of the pattern – in these cases it is best

to reduce the number of passes. We find that ion beam currents below 10 pA produce

the finest features, but larger currents on the order of 20 pA to 50 pA are necessary

to complete a pattern larger than 20 µm diameter without major thermal drift over

the course of the mill. For the pattern milled in Figure 2, the ion beam current was

set to 10 pA and the number of passes was 80 with a pixel size of 3.3 nm.

Charge Alleviation Layer

The nitride gratings must be coated with a thin conductive layer to alleviate

charging. We have experimented with using sputtered Ni, Ti, Cr, and Au, thermally

evaporated C, and Pt from ion beam induced deposition (IBID). We find that 15 nm of

amorphous carbon sufficiently minimizes charging and causes little absorption in the

transmitted beam. However, when the carbon-coated grating is placed in an upper

condenser lens of a TEM and exposed to a beam over the course of several weeks, the

carbon can migrate into the grating trenches and decrease the absolute diffraction

efficiency. A 5 nm to 10 nm layer of Au deposited on a 1 nm Cr adhesion layer leads

to a slightly lower absolute diffraction efficiency η
(i)
1 , due to absorption and scattering,

but the diffraction efficiency of such gratings remain stable for weeks under exposed

conditions in the beam path of the TEM. We find that Pt deposited by IBID contains

significant amounts of carbon which can migrate under electron beam exposure, but

the grating diffraction efficiency can be renewed by regular plasma cleaning. In all

cases where a metal film is used, enhanced electron scattering decreases the absolute
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diffraction efficiency η
(i)
1 and contributes to an unwanted background signal. However,

a diffractive structure composed of silicon nitride grooves capped with a metal layer,

produced either with FIB or IBID, modulates both the amplitude and phase of

transmitted electrons. Such a mixed amplitude-phase grating can almost entirely

suppress the 0th (undiffracted) order (see Figure 5(d) and Figure 5(e)).

Hologram Uniformity, Spatial Coherence and Quality of Imprinted Phase

Spatial variations in the width and depth of grooves across the grating affect

the amplitude uniformity inside each diffracted beam. These spatially dependent

errors of FIB-milled gratings are primarily due to secondary dynamic processes such

as redeposition, charging, heating, and membrane relaxation associated with the

incidence of ions on the substrate surface. Large-area patterns with very fine pitch

typically take several hours to mill, and changes in substrate tension or temperature

can cause the substrate to drift at speeds on the order of nanometers per minute, which

noticeably impacts the spatial coherence of the resulting structure. However, with

an appropriate choice of a moderate ion beam current, a fewer number of patterning

passes, and the application of a conductive layer to the membrane to prevent local

charging, we have successfully produced spatially coherent gratings with 103 grooves

over areas several tens of microns in diameter. We are in the process of developing a

quantitative measure of spatial coherence.

Derivation of Diffraction Efficiency

The diffractive electron optical elements described in this work are thin

membranes with a modulated thickness h(x, y). As the both the de Broglie wavelength

of electrons and the maximum thickness of an electron-transparent membrane in a

35



transmission electron microscope are necessarily small relative to the grating period,

the thin grating condition under which wave interference due to propagation inside

the grating material is negligible [65]

λh << d2 (2.16)

is necessarily satisfied. Therefore, if an electron diffractive grating is illuminated by

an incident electron wave ψi, then the transmitted electron wavefunction immediately

behind the grating is

ψt(x, y) = ψi(x, y)t(x, y). (2.17)

where t(x, y) is the transmission function describing the effects of a thin grating

structure on transmitted electron wavefunctions. We note that if ψi(x, y, z) is a

normally plane wave, then ψt(x, y) ∝ t(x, y). We can express the transmission

function as

t(x, y) = e−αh(x,y) · eiCV0h(x,y) = eik̃h(x,y) (2.18)

where k̃ = CV0 + iα is the effective complex wavenumber of the electron within the

material. The amplitude decay coefficient α describes the effects of inelastic and

high angle scattering, and V0 is the mean inner potential of the grating material. C

depends only on the energy of the beam [67]:

C =
2π

λVa

eVa +mec
2

eVa + 2mec2
(2.19)

where Va is the accelerating voltage for the electron.
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We can describe any surface h(x, y) periodic in the x-direction as a Fourier series

with period d:

h(x, y) =
a0

2
+
∞∑
m=1

[am cos(kmx) + bm sin(kmx)] (2.20)

where km = 2πm
d

and the coefficients are defined by

am = 2
d

∫ x0+d

x0
h(x, y) cos(kmx)dx (2.21)

bm = 2
d

∫ x0+d

x0
h(x, y) sin(k)mx)dx (2.22)

If an electron plane wave normalized in a finite-size box with volume V ,

ψk =
1√
V
eikz (2.23)

is normally incident on a grating with a surface described by h(x, y), so that ψi(x, y) =

ψk, we see from (2.17) that if we place the back of the grating at z = 0, as shown

in Figure 1, the wavefunction ψt(x, y) at z = 0 is proportional to the transmission

function t(x, y) of the grating,

ψt(x, y) =
1√
V
t(x, y) (2.24)

Let’s examine how this wave propagates.

Far from the grating, the outgoing electron wavefunction behind a grating can

be described by the Fraunhofer formula [70],

ψ(r′) = 1
iλz′

eikz
′ ∫
ψt(x, y)e−i(xqx′+yqy′ )dx dy (2.25)
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If we define the two-dimensional Fourier transform of a function f(x, y) as

f̃(qx′ , qy′) =
1

(2π)2

∫
f(x, y)e−i(xqx′+yqy′ )dx dy (2.26)

we can then rewrite ψ(r′) simply in terms of the Fourier transformation of the

transmission function

ψ(r′) = (2π)2

iλz′
eikz

′
ψ̃t(qx′ , qy′) (2.27)

ψ(r′) = (2π)2

iλz′
√
V
eikz

′
t̃(qx′ , qy′) (2.28)

at coordinates (x′, y′, z′), where the spatial frequencies qx′ and qy′ are given by

qx′ =
kx′

z′
qy′ =

ky′

z′
(2.29)

Equation (2.28) can be easily modified to take into account the shape of a finite-

size aperture which limits the incident intensity; the diffraction efficiencies we will

calculate, however, are unaffected by aperture shape and size [69].

Let’s then rewrite t(x, y) so that we can compute the Fourier transform easily.

In terms of the Fourier series expansion of h(x, y), we have

t(x, y) = exp
(
ik̃
[
a0
2

+
∑∞

m=1 am cos(kmx) + bm sin(kmx)
])

(2.30)

= eik̃a0/2
∏∞

m=1 e
ik̃am cos(kmx)eik̃bm sin(kmx) (2.31)

Using the Jacobi-Anger expansion,

eiz cos θ =
∞∑

`=−∞

i`J`(z)ei`θ eiz sin θ =
∞∑

`=−∞

J`(z)ei`θ (2.32)
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we can rewrite t(x, y) simply in the plane wave basis.

t(x, y) = eik̃a0/2
∏∞

m=1

∑∞
`=−∞,`′=−∞ i

`J`(k̃am)J`′(k̃bm)ei(`+`
′)kmx (2.33)

If we now change the variables in our double sum, defining j = ` + `′ so that our

plane wave term depends only on one index, j, we have

t(x, y) = eik̃a0/2
∏∞

m=1

∑∞
j=−∞

∑∞
`=−∞ i

`J`(k̃am)Jj−`(k̃bm)eijm
2πx
d (2.34)

t(x, y) = eik̃a0/2
∏∞

m=1

∑∞
j=−∞ γj(k̃, am, bm)eijm

2πx
d (2.35)

where we’ve defined a coefficient

γj(k̃, am, bm) =
∑∞

`=−∞ i
`J`(k̃am)Jj−`(k̃bm) (2.36)

We now have t(x, y) written in terms of plane waves, but not as a linear superposition

of plane waves. We can write the transmission function more simply if we perform the

product. As the product of two plane waves with wave vectors k1 and k2 is another

plane wave whose wave vector is the sum of the first two, we can rewrite a product

of a sum of plane waves as a sum of plane waves whose coefficients are products over

all terms whose total wave vector is constant. If we first define the vectors

M ≡



1

2

...

m

...


, J ≡



j1

j2

...

jm
...


(2.37)
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t(x, y) = eik̃a0/2
∑∞

n=−∞ cne
iknx (2.38)

cn =
∑

sn

∏∞
m=1 γjm(k̃, am, bm) (2.39)

sn = {J : J ·M = n} (2.40)

The calculation of cn can be considered as a discrete path integral in momentum j

and a time m to a final position

qf =
∞∑
m=1

jmm = n

Each set sn describes one path which terminates at qf ; cn is calculated as the sum of

products of the coefficient γjm,m over all such paths.

We see that only those paths which include a finite number of steps at non-zero

jm or rapidly oscillate in j as m approaches infinity can possibly terminate at finite

qf . Fortunately, the contribution of oscillatory paths to the integral is negligible, as,

for any physically realistic grating surface h(x, y), am, bm << 1 and thus γjm,m < 1

for m >> 1 and |jm| > 0. Thus, we can approximate cn by choosing a cutoff mc

based on parameters of the model h(x, y) for the product.

Now that we have written t(x, y) in the plane wave basis, we can quickly calculate

the diffracted wavefunction far behind the grating. Plugging t(x, y) from (2.38) into

our calculation of the diffracted wavefunction, (2.28), we have

ψ(r′) = 1
iλz′
√
V
eikz

′ ∫
eik̃a0/2

∑∞
n=−∞ cne

iknxe−i(xqx′+yqy′ )dx dy (2.41)

ψ(r′) = (2π)2

iλz′
√
V
ei(kz

′+k̃a0/2)
∑∞

n=−∞ cnδ (qx′ − kn) δ (qy′) (2.42)
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at coordinates (x′, y′, z′), where the spatial frequencies qx′ and qy′ are given by

qx′ =
kx′

z′
qy′ =

ky′

z′
(2.43)

The amplitude of ψ(r′) in (2.42) produces (2.12):

|ψ(r′)| = (2π)2

λz′
√
V
e−αh̄

∞∑
n=−∞

|cn|δ
(
kx′

z′
− 2πn

d

)
δ

(
ky′

z′

)
(2.44)

As noted in (2.11) and (2.15), we model our nanofabricated gratings as an array

of Gaussian-shaped trenches. In general, for a grating with pitch d and characteristic

width σ, the surface thickness h(x, y) of a FIB-milled grating can be described as the

periodic sum of Gaussians,

h(x, y) = h̄+
∑∞

n=−∞

(
A√
2πσ

e−
(x/d−n)2

2σ2

)
− b (2.45)

where h̄ is the average grating height. The normalization A and offset b depend only

on trench depth ∆h and characteristic width σ. The Fourier coefficients of this model

for h(x, y) are

a0 = h̄+ A− b (2.46)

am = 2Ae−
1
2

(2πσm)2 (2.47)

Therefore, written as a Fourier series, the height profile is

h(x, y) = A
(

1 + 2
∑∞

m=1 e
− 1

2
(2πσm)2 cos (kmx)

)
+ h̄− b (2.48)

where km = 2πm/d as usual.
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We note that as the coefficients am in our model are Gaussian in m, they fall off

quickly and the diffraction from such a model can be calculated with good precision

by cutting off cn at mc = β
σ
, where β is an O(1) number.

In order to quickly numerically compute h(x, y), we note that the Fourier series

can be written in terms of the third Jacobi Theta function, ϑ3 [71]. This function is

defined as

ϑ3(z, τ) = 1 + 2
∞∑
m=1

(
eiπτ
)m2

cos (2πmz) (2.49)

Thus, we see that we can rewrite h(x, y) as

h(x, y) = Aϑ3

(
x
d
, 2πiσ2

)
+ h̄− b (2.50)

Now, we can easily set the normalization and offset A and b in terms of ∆h and h̄. We

choose ∆h to be positive always by convention; A and b may change sign depending

on groove shape. Profiles with narrow trenches have A < 0; FIB-milled gratings have

a narrow-trench profile. Profiles with wide trenches, or, equivalently, narrow peaks

have A > 0; deposited structures on a flat substrate have a narrow-peak profile. Let’s

define A and b for the case that A < 0.

A = − ∆h
ϑl−ϑr

(2.51)

b = A (2.52)

where we’ve used the shorthand

ϑl = ϑ3 (0, 2πiσ2) (2.53)

ϑr = ϑ3

(
1
2
, 2πiσ2

)
(2.54)
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As the scaled full-width at half-maximum of a groove w is more intuitively meaningful,

we use w in the main paper. In terms of the characteristic width σ, we see that

w ≈ 2
√

2 ln 2σ (2.55)

This approximately linear relationship breaks down as w approaches 0.5; at this point,

the surface is only better-approximated as a single sinusoid with w = 0.5 as the

characterstic width σ increases. To represent the very wide trenches of a low-density

line array produced by electron beam lithography or ion beam induced-deposition,

we need only to flip the physical interpretation of the model: we actually want very

narrow peaks, so we may flip the sign of ∆h and fit the peaks with a small value of

σ.

If we furthermore want to calculate h̄ from a known maximum grating thickness

hmax, trench depth ∆h and characteristic width σ, we see that

h̄ = hmax −∆h
1− ϑr
ϑl − ϑr

(2.56)

To calculate diffraction coefficicents cn in this model, we choose a cutoff

mc =
0.5

σ
(2.57)

With this cutoff, we can calculate cn to 10−5 precision for any physically reasonable

width or height.
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Hologram Pattern Design

We can now speak more clearly about how to physically implement a particular

thickness modulation h(x, y) to produce a desired diffracted wavefunction.

Let’s show that we can produce a wavefront with an azimuthal phase which

has been encoded in h(x, y) by interference with a reference plane wave. First, let’s

define the grating thickness h(x, y) in terms of the peak-to-trench height ∆h and the

minimum thickness h0:

h(x, y) = ∆h

∣∣∣∣12 (eimφ + eikdx
)∣∣∣∣2 + h0 (2.58)

h(x, y) = ∆h
1

2
(1 + cos(mφ+ kdx)) + h0 (2.59)

We can now calculate the transmission function t(x, y) of the grating and therefore

the final diffracted wavefunction ψ(r′). If we plug h(x, y) into (2.18), we see

t(x, y) = eik̃(∆h 1
2

(1+cos(mφ+kdx))+h0) (2.60)

t(x, y) = eik̃(∆h/2+h0)eik̃(∆h/2 cos(mφ+kdx)) (2.61)

Let’s calculate the Fourier transformation of t(x, y) so that we can use it in (2.28).

t̃(qx′ , qy′) =
1

(2π)2

∫
t(x, y)e−i(xqx′+yqy′ )dx dy (2.62)

t̃(qx′ , qy′) =
1

(2π)2

∫
eik̃(∆h/2+h0)eik̃(∆h/2 cos(mφ+kdx))e−i(xqx′+yqy′ )dx dy (2.63)

t̃(qx′ , qy′) = eik̃(∆h/2+h0) 1

(2π)2

∫
eik̃(∆h/2 cos(mφ+kdx))e−i(xqx′+yqy′ )dx dy (2.64)

t̃(qx′ , qy′) = Aeiγ
1

(2π)2

∫
eik̃(∆h/2 cos(mφ+kdx))e−i(xqx′+yqy′ )dx dy (2.65)
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For simplicity, we’ve called the overall global phase and amplitude term Aeiγ. This

term won’t affect the shape of the diffracted wavefunction.

Using the Jacobi-Anger expansion,

eiz cos θ =
∞∑

`=−∞

i`J`(z)ei`θ (2.66)

we can rewrite the position-dependent term in the transmission function:

eik̃(∆h/2 cos(mφ+kdx)) =
∞∑

`=−∞

i`J`(k̃∆h/2)ei`(mφ+kdx) (2.67)

We can now apply the convolution theorem to separately transform the azimuthal

phase and the linear phase; we’ll see that the Fourier transformation of the azimuthal

phase is trivial in cylindrical coordinates. Let’s define

tr(x, y) =
∞∑

`=−∞

i`J`(k̃∆h/2)ei`(mφ+kdx) (2.68)

f(x, y) = ei`mφ (2.69)

g(x, y) = ei`kdx (2.70)

tr(x, y) =
∞∑

`=−∞

i`J`(k̃∆h/2)f(x, y)g(x, y) (2.71)

With the convolution theorem, we see

t̃r(x, y) =
∞∑

`=−∞

i`J`(k̃∆h/2)f̃ ∗ g̃ (2.72)
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Let’s evaluate f̃ and g̃. For f̃ , we see

f̃ =
1

(2π)2

∫
ei`mφe−i(xqx′+yqy′ )dx dy (2.73)

f̃ =
1

(2π)2

∫
ei`mφe−i(qr′ ·r)dφ rdr (2.74)

f̃ =
1

(2π)2

∫
ei`mφe−i(qr′r cos(φ−φq)dφ rdr (2.75)

Using the Jacobi-Anger expansion again, we see

f̃ =
1

(2π)2

∞∑
n=−∞

in
∫
ei`mφJn(−qrr)ein(φ−φq)dφ rdr (2.76)

As ∫ 2π

0

eiNφdφ =
1

iN
(e2πiN − e0) = 0 (2.77)

for integer, non-zero N, and as

∫ 2π

0

e0dφ = 2π (2.78)

we see that ∫ 2π

0

eiNφdφ = 2πδN,0 (2.79)

We can therefore evaluate the φ integral to calculate f̃ .

f̃ =
1

2π

∞∑
n=−∞

inδ`m+n,0e
−inφq

∫ ∞
0

Jn(−qrr)rdr (2.80)

f̃ =
1

2π
i−`mei`mφq f̃r(kr) (2.81)

In practice, we use an aperture or a radial profile in the hologram to affect the radial

distribution of the hologram, and therefore the diffracted wavefunction, so we can
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leave f̃r(kr) as an unknown function of a real radial distribution. Let’s now evaluate

the more trivial g̃, which produces a more familiar δ-function.

g̃ =
1

(2π)2

∫
ei`kdxe−i(xqx′+yqy′ )dx dy (2.82)

g̃ = δ(qx′ − `kd) (2.83)

Therefore, putting the two pieces together, we can evaluate t̃r and thus t̃. From (2.65)

and (2.72), we see

t̃(qx′ , qy′) = Aeiγ t̃r (2.84)

t̃(qx′ , qy′) = Aeiγ
∞∑

`=−∞

i`J`(k̃∆h/2)f̃ ∗ g̃ (2.85)

t̃(qx′ , qy′) = Aeiγ
∞∑

`=−∞

i`−`mJ`(k̃∆h/2)

(
1

2π
ei`mφq f̃r(kr) ∗ δ(qx′ − `kd)

)
(2.86)

(2.87)

Inserting this transmission function into (2.28), we have

ψ(r′) ∝ eikz
′
t̃(qx′ , qy′) (2.88)

ψ(r′) ∝ eikz
′
∞∑

`=−∞

i`J`(k̃∆h/2)
(
ei`mφq f̃r(kr) ∗ δ(qx′ − `kd)

)
(2.89)

(2.90)

We now see, exactly as we’d hope, that a holographic grating defined by (2.58)

produces diffraction orders with m`~ orbital angular momentum in the ` diffraction

order.
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Transfer of Orbital Angular Momentum from

Photons to Electrons

Tyler Harvey

23rd June 2017

Introduction to Electron-Photon Interactions

I am interested in interactions that cause orbital angular momentum transfer

from a laser to a free electron state. As both electron OAM and interaction between

lasers and free electrons are both fairly new fields, there are many open questions

here. I will focus on one basic question and one practical question:

– What does a single scattering event between a photon and an electron look like

in a cylindrically symmetric basis?

– Can this interaction be employed to prepare an electron in an OAM state?

Let’s first explore the first question, as we must before we can think about the second.

Scattering in a Cylindrically Symmetric Basis

Setup

Let’s calculate the transition amplitude corresponding to photon absorption or

emission from a single electron, as shown in Figure 8.
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FIGURE 8. Diagram of electron-photon interaction
Feyman diagram for photon absorption or emission by an electron. .

We’ll stick to the conventions of Cohen-Tannoudji et al. [72] and define

H = H0 +HI (2.91)

H0 =
p2

2me

+
∑
i

~ωi
(
a†iai +

1

2

)
(2.92)

HI =
1

2me

(
e (p ·A + a · p) + e2A2

)
(2.93)

The amplitude for absorption is

Tabs =
e

2me

〈ψf |e 〈0|γ p ·A + A · p |ψi〉e |1k,σ〉γ (2.94)

where the electron state is represented as |ψ〉e the photon state as either a single

photon or the vacuum. p is the electron momentum operator and A is the vector

potential. Emission is the complex conjugate of this amplitude.

In the plane wave basis, Cohen-Tannoudji et al. write [72] the vector potential

as

A(r) =

∫
dk
∑
σ

Aω

(
ε̂σaσ(k)eik·r + ε̂∗σa

†
σ(k)e−ik·r

)
(2.95)
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Birula and Birula show [73] that the creation and annihilation operators can

be rewritten in the Bessel basis, a plane wave-like cylindrically symmetric basis, by

integrating over the azimuthal angle in momentum space, φk:

aσ(kz, k⊥,m) =
1

2π

∫ 2π

0

dφke
−imφkaσ(k) (2.96)

We can therefore rewrite the vector potential in the Bessel basis if we perform the

integral over φk in (2.95). To do so, we just first need to perform the Jacobi-Anger

expansion:

eik·r = eikzzeik⊥ρ cos(φ−φk) = eikzz
∑
m

imJm(k⊥ρ)eim(φ−φk) (2.97)

where k⊥ and ρ are the magnitudes of the components of momentum and position,

respectively, that lie in a plane perpendicular to ẑ. If we do so and integrate over φk,

(2.95) becomes

A(r) =

∫
dkzk⊥dk⊥

∑
σ,m

2πAω

(
ε̂σaσ(kz, k⊥,m)eikzzeimφimJm(k⊥ρ)+

ε̂∗σa
†
σ(kz, k⊥,m)e−ikzze−imφi−mJm(k⊥ρ)

)
(2.98)

We can see transfer of angular momentum from photons to electrons easily if we

also use a Bessel basis for the absorbed or emitted photon state, denoted |1κz ,κ⊥,n,σ0〉γ

and for the electron state, denoted |kzi , k⊥i ,mi〉e. With eigenstates of the Bessel basis

for both, absorption of a photon co-propagating with an electron is represented by
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the amplitude

Tabs−cyl =
e

2me

∫
dkzk⊥dk⊥

∑
σ,m

2πAω 〈kzf , k⊥f ,mf |e 〈0|γ (p · ε̂σφkz ,k⊥,m(r)+

φkz ,k⊥,m(r)p · ε̂σ) aσ(kz, k⊥,m) |kzi , k⊥i ,mi〉e |1κz ,κ⊥,n,σ0〉γ (2.99)

where φkz ,k⊥,m(r) = eikzzeimφimJm(k⊥ρ), which simplifies to

Tabs−cyl =
e

2me

κ⊥2πAω 〈kzf , k⊥f ,mf |e p · ε̂σ0φκz ,κ⊥,n + φκz ,κ⊥,np · ε̂σ0 |kzi , k⊥i ,mi〉e

(2.100)

We can now see that there’s clear transfer of orbital angular momentum, as the

operator eimφ raises orbital angular momentum:

eimφ |kzi , k⊥i ,mi〉 ∝ |kzi , k⊥i ,mi +m〉 (2.101)

Photon spin angular momentum, too, can be transfered to electron orbital angular

momentum. If the photon is circularly polarized with helicity σ = ±1, then ε̂σ =

x̂ + iσŷ. As

p · ε̂σ = px + iσpy = (p⊥ + iσpφ) eiσφp , (2.102)

and as eimφp also raises orbital angular momentum,1

eσiφp |kzi , k⊥i ,mi〉 ∝ |kzi , k⊥i ,mi + σ〉 , (2.103)

1This can be shown easily in two ways. One is to project onto a plane wave basis:
〈k| eiσφp |kzi , k⊥i ,mi〉 = eiσφp 〈k|kzi , k⊥i ,mi〉 ∝ ei(σ+mi)φk . Another is to protect onto a position

basis: 〈r|p · ε̂σ|ψ〉 = eiσφ
(
∂
∂ρ + iσ

ρ
∂
∂φ

)
ψ(r).
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we see that that absorption of a photon with helicity σ contributes σ to the z-

component of the orbital angular momentum of an electron in free space.

Transition probability

We must enforce energy conservation to calculate a transition probability in

the long-interaction-time limit. Energy and momentum cannot simultaneously be

conserved in absorption or emission of a single photon by a single free electron, as

~kc� ~2k2
2me

, so we’ll have to consider other vertices to calculate a transition probability

for interaction with monochromatic light.

If the kinetic energy of the electron is much larger than the energy of the photon

and the electron is paraxial, i.e. kzi |ki|, the largest transition amplitude comes from

the A2 term.2

The amplitude for absorption and re-emission of a photon with the A2 term is

Tscat = 〈kzf , k⊥f ,mf |e 〈1κzf ,κ⊥f ,nf ,σf |γ
e2A2

2me

|kzi , k⊥i ,mi〉e |1κzi ,κ⊥i ,ni,σi〉γ . (2.104)

If we act the annihilation and creation operators and ignore terms that won’t conserve

energy, we see that

Tscat =
4π2e2

me

κ⊥iκ⊥fAωiAωf ε̂σi · ε̂
∗
σf
〈kzf , k⊥f ,mf |e φκzi ,κ⊥i ,ni(r)φ∗κzf ,κ⊥f ,nf

(r) |kzi , k⊥i ,mi〉e

(2.105)

where φκzi ,κ⊥i ,ni(r)φ∗κzf ,κ⊥f ,nf
(r) = ei(κzi−κzf )zei(ni−nf )φJni(κ⊥iρ)Jnf (κ⊥fρ)ini−nf .

2The second-order process associated with the p ·A term, absorption and re-emission, is much
smaller for a circularly polarized photon co-propagating with an electron. This second-order

transition amplitude includes an extra factor that the A2 term does not of (roughly) (p·ε̂σ)2
~2kziκz

; both

kzi are much larger than any transverse wavevectors when both the electron and photon are paraxial.
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Now, we see that energy conservation will produce a delta function that sets

κzi = κzf but leaves ni and nf free. Therefore, at lowest order, only orbital angular

momentum can be transferred from a photon to an electron. One could prepare a

pure electron orbital angular momentum state if one could efficiently prepare and

post-select photons of arbitrary orbital angular momentum.

Practial Preparation of Electron OAM States

A much more practical and efficient experimental setup likely involves lasers. If,

instead of two single photon states, we choose two coherent states, α and β, for our

light, we see an angular Kaptiza-Dirac effect.

T2laser = 〈kzf , k⊥f ,mf |e 〈φα,β|γ
e2A2

2me

|kzi , k⊥i ,mi〉e |φα,β〉γ (2.106)

If we write our coherent states as

|φα,β〉γ = cα |ακz ,κ⊥1
,m1,σ〉γ + cβ |βκz ,κ⊥2

,m2,σ〉γ , (2.107)

we see that the sum of two cross-terms in A2 interfere. This is not surprising, as the

laser beams also interfere.

The transition amplitude, without energy-non-conserving terms and loops,

reduces to

T2laser =
4π2e2

me

κ⊥1κ⊥2AωAω 〈kzf , k⊥f ,mf |e
(
φκz ,κ⊥1

,m1(r)φ∗κz ,κ⊥2
,m2

(r)+

φ∗κz ,κ⊥1
,m1

(r)φκz ,κ⊥2
,m2(r)

)
|kzi , k⊥i ,mi〉e (2.108)
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Let’s look at the interference:

(
φκz ,κ⊥1

,m1(r)φ∗κz ,κ⊥2
,m2

(r) + φ∗κz ,κ⊥1
,m1

(r)φκz ,κ⊥2
,m2(r)

)
= cαc

∗
βe

i(m1−m2)(φ+π
2

)Jm1(κ⊥1ρ)Jm2(κ⊥2ρ) + c∗αcβe
−i(m1−m2)(φ+π

2
)Jm1(κ⊥1ρ)Jm2(κ⊥2ρ)

(2.109)

If cα = |c|eiδα and cβ = |c|eiδβ , then

(
φκz ,κ⊥1

,m1(r)φ∗κz ,κ⊥2
,m2

(r) + φ∗κz ,κ⊥1
,m1

(r)φκz ,κ⊥2
,m2(r)

)
= 2|c|2 cos

(
∆m(φ+

π

2
) + δα − δβ

)
Jm1(κ⊥1ρ)Jm2(κ⊥2ρ) (2.110)

where we’ve defined ∆m = m1 −m2.

This transition amplitude tells us that the most significant final electron states

produced by this interaction, aside from the initial state, are a superposition of states

with mf = mi + ∆m and mf = mi −∆m.

Much like the linear Kapitza-Diract effect, this angular effect can be considered

as diffraction of the electron by a standing wave of light–in this case, the interference

pattern varies azimuthally. As the physical mechanism is the same–the linear Kapitza-

Dirac effect is also caused by the A2 term–we can therefore estimate the efficiency of

the transition we’re interested in based on previous calculations of the linear Kapitza-

Dirac effect.

We expect that the probability of transition to a superposition of mf = mi±∆m

will be of order 0.1 with an incident electron kinetic energy of hundreds of eV and a

nanosecond-pulsed laser with an energy of hundreds of micro-Joules per pulse focused

to a spot size of tens of microns [74].
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(a) (b)

FIGURE 9. Visualization of angular diffraction of electrons
(left) Simulated intensity of a laser described by a superposition of coherent states
with m1 = +2 and m2 = −2 in a Laguerre-Gaussian basis (in contrast with the
Bessel basis used in the text). (right) Qualitative visualization of the probability
density of an electron diffracted by the laser shown to the left with amplitudes of
0.1 for the first-order diffracted modes, with higher-order diffracted modes excluded.
(Note: this visualization excludes the effect of the laser on the radial part of the
electron wavefunction.)

Open Questions

We’ve shown that several interactions can produce angular momentum transfer

from photons to electrons. There may yet be others that are more practical. In

particular, surface plasmons offer relief from the tight constraints of conservation of

energy and momentum in free space. Recent work has shown [75, 76] that surface

plasmons excited by a laser can efficiently transfer momentum and energy to free

electrons. It may be similarly be possible to transfer angular momentum and energy

with the appropriate surface plasmon resonance.

Similarly, it would be interesting to explore whether it’s possible to efficiently

diffract electrons from a superposition of co-propagating lasers with different orbital

angular momenta and a slight linear momentum mismatch that produces a helical

interference pattern. One might also wonder what happens if more laser beams are

added–can one bias the angular momentum transfer in one direction?
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Lastly, the most straightforward approach to preparation of a pure electron

orbital angular momentum state with light might be the addition of a difference

in the convergence angle of the two interfering lasers. The resulting interference

pattern looks like a spiral zone plate [77, 78] and, in combination with an aperture in

an appropriate plane, could produce a well-isolated pure orbital angular momentum

state.
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Chapter Conclusion

In this chapter, we introduced a method to produce electron orbital angular

momentum states with phase diffraction gratings. We measured efficiency of a large

range of diffraction gratings and showed that they matched reasonably well with our

model. We also explored the possibility to prepare electron orbital angular momentum

states using light. In the next chapter, we will consider applications of electron orbital

angular momentum.
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CHAPTER III

APPLICATION

Notes on Manuscripts

Note on ‘Demonstration of Electron Helical Dichroism as a Probe of Local Chirality’

The first part of this chapter is from a submitted manuscript currently available

on the arXiv: Tyler R Harvey et al., arXiv:01810.

Benjamin McMorran and I developed the project idea together. I designed the

experiment with help from co-authors. I conducted all experiments and took all data

for the paper with help from co-authors. I wrote the manuscript with help from

co-authors. I produced all figures.

Note on ‘Holography in Scanning Transmission Electron Microscopy with Forked

Diffraction Gratings’

The second part of the chapter is the skeleton of a manuscript that is in

preparation. Benjamin McMorran contributed the project idea. I developed the

theoretical model, with help from Colin Ophus, Fehmi Yasin, Jordan Chess, Vincenzo

Grillo and Benjamin McMorran. The final manuscript, with experimental data, will

likely include Burak Ozdol, Peter Ercius, Hao Yang, Jim Ciston and Roberto dos Reis

as co-authors. These latter co-authors helped with specimen preparation, experiment

design, and microscope control.
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Demonstration of electron helical dichroism

as a local probe of chirality

Tyler Harvey1, Jordan Pierce1, Jordan Chess1, and Benjamin McMorran1

1 Department of Physics, University of Oregon, Eugene, Oregon

02 July 2015

Chirality – the absence of symmetry under parity – lies at the heart of a

variety of open research questions, including CP violation, the existence of an

elementary majorana fermion, magnetic skyrmion behavior, and broken symmetry in

the biochemistry of life. Chirality can also serve as an easy proxy for properties that

are more difficult to directly measure. For example, sugar molecules consumed and

produced by living organisms are always right-handed; to measure the concentration

of a sugar in solution, one can measure the rotation of linearly polarized light passed

through the solution [79].

Light has long been used to measure the chirality of ensembles of molecules,

and more recently, increasingly small engineered structures. Circular dichroism (CD)

is a standard spectroscopic tool for structural fingerprinting of molecules through

measurement of three-dimensional chirality associated with molecular structure at a

particular length scale [80]. Circular dichroism measures the difference in absorption

of right- and left-circularly polarized light. Circularly polarized light carries chirality;

the chirality of a massless particle is equivalent to its spin helicity,

hS = S · p̂ (3.1)

where S is the spin angular momentum vector and p̂ is the propagation direction of

incident light. Helicity, like chirality, is invariant under rotation and changes sign
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under parity. Chirality-sensitive interactions between circularly polarized light and

engineered chiral structures have also recently been predicted theoretically [81] and

observed in experiments [82, 83, 84, 85]. Circular dichroism is sensitive to other kinds

of chirality beyond material structure: X-ray magnetic circular dichroism (XMCD)

characterizes the chirality associated with unpaired electron angular momentum in

atoms that leads to magnetization [86].

However, circular dichroism techniques can only survey limited energy ranges

with diffraction-limted spatial resolution. Standard light sources for visible circular

dichroism typically can efficiently produce only the lowest energy UV light,

and atmospheric oxygen strongly absorbs UV over 6 eV. However, UV circular

dichroism spectra are necessary for amino acid [87] and protein secondary structural

characterization [88]; X-ray circular dichroism allows for local, element-specific

magnetization determination in magnetic materials [86]. Far-UV and X-ray circular

dichroism spectra are typically gathered at synchrotron light sources [86, 89].

Electron microscopes, on the other hand, are equipped for spectroscopic analysis

of materials over a stunning range of energies: a single electron microscope can

quickly measure spectra across five orders of magnitude in energy. Monochromated,

aberration-corrected electron microscopes can resolve excitations with energies as low

as 10 meV (far-infrared) and well into keV (hard X-ray) in combination with sub-

nanometer structural resolution on durable specimens [90]; good progress has been

made towards atomic resolution on beam-sensitive materials [91]. In this Letter, we

demonstrate sensitivity to chirality in a new kind of spectroscopy with helical electron

states.

Free electrons can be prepared in states with helical wavefronts, called electron

vortices. Electron vortices are eigenstates of Lz, the orbital angular momentum
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operator along the direction of propagation 〈p̂〉 = ẑ. These states carry a property

we call orbital helicity

hL = L · 〈p̂〉 = Lz. (3.2)

The helicity of massive particles is a reference frame-dependent analogue of chirality:

helicity is invariant under rotation, changes sign under parity, but also changes sign

under a boost into a reference frame that reverses the direction of propagation.

As seen in (3.2), orbital helicity behaves differently under transformation but is

equivalent to orbital angular momentum in a given reference frame.

(a) (b)

FIGURE 10. Probe-forming optics and image of probes
(a) Schematic of probe-forming optics. Electrons produced by the field-emission gun
(FEG) are accelerated through a gun lens (not pictured) to 300 keV, and emerge from
the upper condenser lens system (C1L) with planar wavefronts. The single-forked
vortex diffraction grating (vG) adds an azimuthal phase and transverse momentum.
The lower condenser lens system (C2L, OL) produces a focused far-field diffraction
pattern at the specimen plane (NP); the nth diffraction order is a vortex with mi = n
quanta of orbital helicity. (b) Transmission electron micrograph of an mi = −1 (top)
and mi = +1 (bottom) electron vortices with nearly identical intensity distributions
passed through silicon nitride substrate. Due to the phase singularity at the center
of the beam, intensity is near zero there.
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Electron eigenstates of orbital helicity can be prepared in a transmission electron

microscope (TEM) by inclusion of an optical element that adds an azimuthal phase to

the electron wavefunction [11, 12, 13]. The resultant wavefunction ψ(x) ∝ eimφ, where

φ is the azimuthal angle and m is the orbital helicity quantum number (〈hL〉 = m~).

Nanofabricated diffraction gratings [12, 13, 14, 15], material [11] and magnetic phase

plates [18, 19] can produce beams with well-defined orbital angular momentum. The

orbital helicity of electron vortices is well-suited for chirality measurement.

We report observation of electron helical dichroism on a material with chiral

structure. Electron helical dichroism is the electron-vortex analogue of circular

dichroism. We record an electron energy-loss (EEL) spectrum for the interaction of

incident single-helix electron vortices (with incident orbital helicity quantum number

mi = ±1) with a specimen, and we post-select for the component of the outgoing

wave that has zero final orbital helicity (mf = 0). When the probability of multiple-

scattering is low, electron intensity as a function of energy lost is approximately

proportional to a differential scattering cross-section (for volume excitations) or a

differential scattering probability (for surface excitations) [92]. An orbital helicity

dependence in the electronic density of states appears as a peak in the electron helical

dichroism spectra. Structural chirality of a specimen breaks the symmetry between

positive- and negative-orbital helicity modes in the density of states. The dichroic

interaction therefore probes the chirality of a specimen. Indeed, Asenjo-Garcia and

Garćıa de Abajo recently predicted that dichroism is possible with electron vortices

incident on a material with chiral structure [27].

The electron vortices employed in this experiment were produced in an FEI

Titan transmission electron microscope (TEM) at 300 kV. We placed a nanofabricated

forked diffraction grating in the condenser lens aperture of the microscope, as shown
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in Fig. 10a [14]. We then focused the +1 (−1) diffracted order of the grating to

a nanoscale probe in the plane of the sample to be analyzed; this beam carried

mi = +1 (−1) quanta of orbital helicity [13]. We examined chiral clusters of sub-

100 nm-diameter aluminum nanoparticles, shown under planar illumination in Figure

11c. Aluminum nanoparticles were well-suited for study in our instrument, as the

electronic states we excited are most likely surface plasmon resonances, and aluminum

nanoparticles have documented surface plasmon resonances well into the UV (i.e.

above 3 eV) [93]; these resonances were easily resolvable on our instrument, which

has a spread in incident electron energy on the order of 1 eV.

A successful dichroism experiment depends on pre- and post-selection of angular

momentum. In the case of optical and X-ray circular dichroism, in which the incident

spin is fully transferred to the specimen when a photon is absorbed, a post-selection

for a vacuum state means mf = 0 and thus one quantum of angular momentum is

always transferred to the specimen per photon. To measure electron helical dichroism,

we must be more careful; the electron we send into a specimen exits with a spectrum

of energies and orbital angular momenta. We seek to pick out the electron mf = 0

state. We compare the inital and final states in circular dichroism and electron helical

dichroism in Table 2. Electron energy loss measurement devices are commercially

available for electron microscopes, but orbital angular momentum measurement is

not so well-developed.

As yet, no quantitative, non-interferometric orbital angular momentum

measurement technique exists for electrons. Interferometric measurement techniques

[39, 40] cannot measure the orbital angular momentum of the incoherent superposition

of energy and orbital angular momentum eigenstates produced by inelastic scattering

in a specimen [25]. Fortunately, we did not need a sophisticated orbital angular
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Particle used as probe Initial probe state Final state
Circularly polarized photon |ki,ms = ±1〉 |0〉
Electron vortex |ki,mi〉 |kf ,mf〉

TABLE 2. Comparison of electron and photon dichroism
In a simplified decription of circular dichroism, measurement of absorption of a photon
probe |ki,ms = ±1〉, i.e. post-selection for the vacuum state |0〉, automatically
guarantees post-selection for a zero-angular momentum ms = 0 final state as a zero-
photon state carries no angular momentum. However, as massive electrons cannot
annihilate to a vacuum state, we must carefully prepare the incident electron probe
state |ki,mi〉 and post-select for the final electron state |kf ,mf〉.

momentum measurement technique to select for the final state that corresponds to a

transfer of one quantum of orbital angular momentum to the specimen.

Instead, we performed a simple post-selection for the zero-orbital angular

momentum final state. We admitted only the center of an in-focus projection of

the incident vortex beam on the specimen through an aperture, into the detector,

as shown in Figure 11. This post-selection weights more heavily the component of

the outgoing wave that transferred all incident orbital angular momentum to the

specimen [94, 95]. We detail this post-selection in Section 3.3 in the Supplemental

Material [96].

We sought to use this centered-aperture post-selection technique to control the

angular momentum transfer to characterize the chirality of our aluminum nanoparticle

cluster. We measured electron energy-loss spectrum pairs J+(E) for mi = +1 and

J−(E) for mi = −1 and a more heavily weighted mf = 0 final state with this post-

selection. The peak in the dichroic electron energy-loss spectrum Jd = J+ − J−

produced is a measurement of the difference in differential scattering probability dP±
dE

for excitation of electronic states with opposite angular momentum:

Jd ∝
dP+

dE
− dP−

dE
. (3.3)
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An extended explanation of helical dichroism measurement can be found in Section

3.4 in the Supplemental Material [96].

Great care must be taken to produce a dichroism spectrum. A small mis-

assignment of energies to peaks in any two consecutive energy loss spectra, such

as our dichroic pairs, can produce apparently significant dichroism. The beam-

specimen interaction recorded in the spectrometer can change in response to any

small drift in the position of the specimen relative to the beam, caused by, for

example, thermal expansion of the stage or fluctuations in temperature, pressure

or stray magnetic or electric fields in the microscope room. We controlled for these

potential issues in this experiment by intentionally re-aligning the beam, specimen

and post-selection aperture and recording spectra over multiple timescales so that our

measured uncertainty accurately reflects all relevant fluctuations in our microscope.

We also controlled for the possibility that small differences in the wavefunctions

of beams with opposite incident helicity could produce spurious dichroism. We would

expect to see such an artifact on specimens without explicit chiral structure. However,

We observed no significant dichroic peaks for vortex beams incident on a symmetric

aluminum nanoparticle or a silicon nitride substrate (Fig. 12a).

Dichroic spectra on the chiral aluminum cluster in Figure 12b show one significant

UV peak at 3.5 ± 0.8 eV. This dichroic peak likely corresponds to excitation of

surface plasmon vortex states. A surface plasmon vortex is a collective excitation of

surface conduction electrons that carries orbital angular momentum, and therefore

features the same azimuthal phase structure carried by an electron vortex [84].

Three observations support the identification of this peak as surface plasmon vortex

excitation:
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1. The majority of the post-selected wavefunction that enters the spectrometer

does not directly pass through the aluminum particle, but rather passes near

the surface, as shown in Figure 11d.

2. Isolated aluminum nanoparticles with diameters on the order of 100 nm have

dipolar plasmon resonances on the order of 3 eV [93]; we should therefore expect

a surface plasmon vortex mode on a chiral cluster of similarly-sized particles at

the same order of magnitude.

3. Localized surface plasmon resonances are strongly sensitive to geometry, and in

particular, surface plasmon vortex excitation is sensitive to structural chirality

[84, 97]. Not every chiral cluster for which we recorded spectra showed a strong

dichroic peak, which suggests a strong dependence on particle size, shape and

cluster configuration. We discuss further observations of dichroism in section

3.5 in the Supplemental Material [96].

We therefore conclude that the observed dichroic peak on the chiral cluster likely

corresponds to excitation of a surface plasmon vortex. There may be other significant

contributions under 1 eV, or less signficant peaks of the opposite sign, that might be

identifiable in an electron helical dichroism experiment conducted on an instrument

with better energy resolution. A Nion HERMES instrument will soon be equipped

to probe dichroism at much lower energies [98].

We have demonstrated electron helical dichroism on a chiral cluster of aluminum

nanoparticles. We inferred that the dichroic peak represents a difference in the density

of plasmon vortex states for this cluster. With further development, electron helical

dichroism may be valuable for high-spatial resolution measurement of chirality over

a large range of energies.
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In particular, fully-developed chirality measurement with electrons demands a

theoretically predicted and experimentally validated quantitative description of the

relationship between the geometric chirality of a material and the magnitude of

dichroism. If further work can shed light on this connection, electron helical dichroism

may be employed to map out the chirality of single biomolecules and nanostructures

with high spatial resolution over infrared, visible, ultraviolet and X-ray energies.

As structural determination of non-crystalline biomolecules at near-atomic

resolution remains challenging [91, 99], structural biology stands to benefit from a

new tool to measure chirality and infer structure in lieu of perfect atom-by-atom

imaging. Furthermore, the ability to map surface plasmons with orbital angular

momentum in the transmission electron microscope could illuminate future plasmon

vortex-based device engineering. Lastly, the tools developed for this electron helical

dichroism measurement may be transferrable to the advancement of other applications

for dichroism measurement with electron vortices.
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(a) (b)

(c) (d)

FIGURE 11. Post-specimen optics for post-selection
(a) Simulated two-dimensional cross-sectional intensity (top) and radial intensity
profile (bottom) of fully coherent beams with angular momentum quantum numbers
m = 0 (red), m = 1 (blue) and m = 2 (green) and other beam parameters held
constant. Only the m = 0 beam has non-zero amplitude at the center of the beams.
(b) Schematic of post-specimen optical configuration. The condenser lens system (CL)
focuses the incident vortex onto the chiral nanoparticle cluster in the specimen plane
(NP); the projector lens system (PL) re-forms an image of the vortex-on-specimen
at the round detector entrance aperture (DA). The electron energy-loss spectrometer
(EELS), highly simplified in this schematic, separates the outgoing wave by energy to
produce a spectrum. (c) Transmission electron micrograph of chiral particle cluster
under parallel illumination. (d) To-scale representation of chiral particles under vortex
beam illumination. (grey) Aluminum particles (grey); (white) deposited hydrocarbon
layer; (blue) mi = +1 vortex beam; (red) actual spectrometer entrance aperture
position used for one pair of electron energy-loss spectra.
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(a) (b)

FIGURE 12. Measured dichroic electron energy loss spectra
(a) (top) Comparison of electron energy-loss spectra for several incident wavefunction
and specimen permutations. Dichroism appears at 3.5 ± 0.8 eV in the energy-
loss spectrum pair J+(E) (red, solid) and J−(E) (dashed) produced by interaction
of vortices with the chiral cluster of Al nanoparticles on a SiNx substrate, shown
in Fig. 11c. Spectrum pairs produced by interaction with the SiNx substrate
without nanoparticles (black) or a spherically symmetric nanoparticle (grey) show
no significant differences. Energy loss from an mi = 0 planar wave (black, dash-
dot) due to interaction with the same Al chiral cluster has no distinct peaks in the
3.5± 0.8 eV range. (bottom) The average of all dichroic spectra (black line) shows
a significant dichroic peak at 3.5 ± 0.8 eV. The 68% (dark grey region) and 95%
(light grey region) confidence intervals are smoothed for clarity. The extreme width
of the confidence intervals near zero energy loss illustrate that small variations in
beam position cause large fluctuations in zero-loss intensity with our post-selection
technique.
(b) (top) Electron energy-loss spectrum pairs J+ for the interaction of a single-helix
vortex beam with mi = +1 (solid) and J− for mi = −1 (dashed) with the chiral
cluster. Spectra are offset for clarity, and blue and green spectra were recorded with
a shorter exposure to control for the possibity of beam position fluctuation. (bottom)
Dichroic spectra Jd(E) (colored points) calculated by subtraction of J+ spectra from
J− spectra shown above; the average (black line) of all dichroic spectra deviates from
zero dichroic counts with 68% confidence (dark grey region) only in this energy range.
In fact, the dichroic peak deviates from zero with 95% confidence (light grey region)
over a 1 eV range.
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Post-Selection

The post-selection technique we use in this work is based upon the spatial

distribution of intensity caused by the singularity of vortex beams, which we developed

in more detail in past work [94, 95].

The peak intensity of a vortex beam forms a ring (Fig. 10b). Inside this ring, the

intensity of a fully coherent vortex drops to zero, because the azimuthal phase term

of a vortex beam, eimφ, is singular at the center of the beam. The orbital angular

momentum of a vortex beam is conserved in free space; in other words, the hole in the

center of a vortex is stable under free-space propagation [100]. Equivalently, because

transverse variations in phase grow infinitely large towards the center of the beam,

the wavefunction of a vortex is diffraction-limited at its center and must develop

a hole upon far-field propagation. A gaussian beam with no angular momentum,

however, has no phase singularity and the peak intensity is at the center of the beam

(Fig. 11a). We can utilize this difference in the position of peak intensity to perform

a simple post-selection for the component of an outgoing wave that transferred all

incident orbital angular momentum to the specimen.

If an incident electron vortex beam withmi = ±1 quantum of angular momentum

along the propagation axis transfers that angular momentum via interaction with a
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specimen, the full-OAM-transfer ∆m ≡ mi −mf = ±1 scattered component of the

beam that has mf = 0 will cause an increase in the intensity of the center of the beam.

However, if the opposite angular momentum transfer occurs upon interaction, with

∆m = ∓1, the scattered component of the beam that corresponds to this interaction

has mf = ±2 and retains the singularity at the center of the beam. The distinct radial

profiles of m = 0, m = 1 and m = 2 beams with a common radial quantum number

are illustrated in Figure 11a. An aperture with a radius equal to the radius of peak

intensity of the m = 1 vortex would allow 63% of the intensity of the m = 0 beam to

pass, but only 8% of the m = 2 beam. Therefore, a spatial post-selection can serve as

a qualitative measurement of orbital angular momentum transfer: any measurement

that weights intensity at the center of the outgoing wave higher than intensity at larger

radii will weight the scattering amplitude for the full-transfer ∆m = ±1 transition

more heavily than the ∆m = ∓1 transition.

Electron Helical Dichroism: an Introduction

There are 3 steps necessary for an electron helical dichroism experiment.

First, one records the electron energy-loss spectrum J±(E) for the orbital angular

momentum-transfer interaction (in this experiment, the mf = 0 final state) for

both positive and negative-orbital angular momentum initial states. Then, since

the total intensity produced by the post-selection scheme described in Section 3.3 is

highly sensitive to fluctuations in beam position, one must normalize the spectra

so that non-chiral peaks are equally large. Lastly, one subtracts the negative-

orbital angular momentum-transfer spectrum J− from the positive-orbital angular

momentum-transfer spectrum J+ to produce an EHD spectrum. We used initial

orbital angular momentum states mi = ±1. As all mf = mi signal will cancel in
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the dichroic spectrum, since the probability for ∆m = 0 inelastic scattering does not

depend on the sign of mi, and as higher-order orbital angular momentum transfer has

negligible measured intensity due to our post-selection, the dichroic spectrum Jd is a

measurement of the difference in differential scattering probability dP±
dE

for excitation

of surface plasmon vortices of opposite angular momentum:

Jd = J+(E)− J−(E) ∝ dP+

dE
− dP−

dE
(3.4)

As current orbital angular momentum measurement techniques for electrons

cannot post-select for a single final orbital angular momentum state from an

incoherent superposition of states with varying energy, we use the spectrometer

entrance aperture to post-select for the mf = 0 final state.

We measured the electron energy-loss spectrum of the central scattered portion

of an electron vortex with mi = ±1 orbital angular momentum incident on a chiral

distribution of aluminum nanoparticles. To do so, we centered the particle cluster and

electron vortex over the entrance aperture of the electron energy-loss spectrometer in

order to increase the ratio of the intensity of the central scattered mf = 0 portion

of the beam relative to the unscattered mf = mi = ±1 beam that passes into the

spectrometer. Electron energy-loss spectra recorded this way are shown in Figure

12a. We then subtracted J− spectra recorded for the mi = −1 incident beam from

the mi = +1-incident J+ spectra. These dichroic spectra are shown in Figure 12b.

As the alignment of the incoming vortex, particle cluster and entrance aperture are

crucial for good post-selection of the zero-orbital angular momentum component of

the outgoing wave, we recorded J+ and J− spectrum pairs with five independent

alignments of the beam, specimen and aperture. Indeed, we see significant variation
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in the non-chiral plasmonic spectrum among the five spectrum pairs shown in Figure

12b, but a consistent difference between J+ and J−.

Supplemental Observation of Dichroism

As a further control for the possibility of misalignment-induced spurious

dichroism, we performed an electron helical dichroism experiment on a second chiral

cluster. We observed a similar peak at 1.8 ± 0.5 eV, and no other significant peaks,

as shown in Figure 13a. We also reconstructured a three-dimensional model of the

particle cluster by tomographic tilt series, shown in Figure 13b.

We recorded spectra on several other chiral clusters which showed a barely-

significant or no significant dichroic peak in the same energy range. We speculate

that this dearth of dichroism on some clearly chiral clusters results from the

strong dependence of surface plasmon resonances on particle size, shape and cluster

structure: we may have incidentally gathered spectra from a location on the cluster

with a relatively weak plasmon resonance. Further development of electron helical

dichroism may allow for rapid spectrum acqusition across all positions on a chiral

structure.
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(a) (b)

FIGURE 13. More dichroic electron energy loss spectra
(a) Second observation of dichroic electron energy-loss spectra on a chiral particle
cluster. (b) (i) Micrograph of particle cluster with orientation, beam positon (blue)
and aperture position (red) used in acquisition of dichroic spectra shown in (a). (ii)
Three-dimensional model of the chiral particle cluster, reconstructed by tomographic
tilt series.
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Introduction to STEM-Holography

The electron microscope offers the opportunity to directly image material

structure and physical processes at extremely small length scales. Whereas many

bulk measurements must be interpreted to infer microscopic structure or processes,

in the transmission electron microscope, one can directly measure the positions of

atoms and atomic columns or local shifts in transition energies with high precision.

Scanning transmission electron microscopy (STEM) with a high-angle annular dark

field detector (HAADF) has long offered highly interpretable contrast. However [101],

the electron dose required to produce a good signal-to-noise ratio is high even on high-

atomic-number materials, and becomes prohibitive for low-atomic-number materials

that only weakly scatter electrons and may change in structure due to electron beam

damage past a certain dose. Ptychography and matched illumination and detector

interferometry (MIDI) offer a dose-efficient alternative for reasonably interpretable

phase contrast in STEM, but as both techniques are only senstive to local phase
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variations surrounding a tightly-focused probe, both techniques effectively high-pass-

filter the phase contrast image [102, 103, 104].

Electron holography offers a more interpretable reconstruction of phase with

respect to a vacuum reference wave, but high dose is necessary to accurately

reconstruct phase with high spatial resolution. In this manuscript, we develop a

method to reconstruct phase measured from the interference of multiple STEM probe

beams produced with an electron diffraction grating. This technique is called STEM-

holography in past works that used or assumed a pre-specimen biprism to produce

multiple probes; we retain that name in this manuscript. Cowley issued a clever

proposal for STEM-holography that relied on the assumption of exactly two beams.

We develop a more general approach to handle the three or more beams produced

by a realistic diffraction grating in an instrument that does not contain specialized

apertures to block the additional beams. This general approach also allows us to

consider STEM-holography with vortex beams.

An electron diffraction grating has several advantages over a biprism for STEM-

holography. The transverse coherence length necessary for optimal fringe visibility is

much lower: when a biprism is used to split the beam, the fringe visibility decreases

with the ratio of the transverse coherence length over the width of the illumination;

when a grating is used to split the beam, the fringe visibility decreases with the ratio

of the transverse coherence length over the grating period. A biprism produces two

opposing half-circular probes in reprocal space, whereas a grating can produce probes

with identical phase and amplitude distributions 1. Lastly, a diffraction grating can

produce electron beams with orbital angular momentum.

1Indeed, identical probes are necessary to realize the analysis method Cowley proposed. The
optimal instrument designed to realize his proposal might be a STEM instrument with a diffraction
grating in the condenser aperture and a second aperture at a crossover above the specimen to select
only two beams.
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Let us first consider STEM-holography with a straight diffraction grating, then

add orbital angular momentum and consider the kinds of information we can access

with that addition. In particular, vortex-STEM-holography provides access to out-

of-plane magnetic fields.

Note to the reader: in this early version of this manuscript, some signs might be

off and some normalization factors (such as the factor of 2π necessary for a properly

normalized Fourier transform pair) may be omitted, but the basic mechanics of the

model have been triple-checked by hand as well as numerically validated.

Simple Grating Analysis

First, let’s introduce our notation. We’ll use a pre-specimen probe wavefunction

ψi(x) = a(x− xp) (3.5)

where xp is the offset-position of our probe. If we assume a thin specimen, we can

describe the interaction of the probe with the specimen as a multiplication by a

specimen transfer function t(x), resulting in a post-specimen wavefunction

ψf (x) = a(x− xp)t(x) (3.6)

and an interference pattern at the detector at probe position xp

Gp(k) = |ψf (k)|2p =
(
A∗p(k) ∗ T ∗(k)

)
(Ap(k) ∗ T (k)) (3.7)

where Ap(k) is the Fourier transform of a(x − xp). If we assume that we’ve used

a diffraction grating to produce multiple sharply-peaked, evenly spaced probes, our
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probe wavefunction is

a(x− xp) =
∑
m

cma0(x−mx0 − xp), (3.8)

where a0(x) is sharply peaked at x = 0 and thus

Ap(k) =
∑
m

cme
−ik·(mx0+xp)A0(k). (3.9)

We have here assumed that the aperture function, or probe wavefunction, is identically

A0 for all probes. This assumption is valid for a straight diffraction grating with no

phase structure. It would be easy to keep track of different phase distributions Am

for each probe for the case of a diffraction grating with non-trivial structure.

The simplest example ofA0(k) is also the most commonly used: a round aperture.

A0 =


1 q < qmax

0 q ≥ qmax

(3.10)

Let’s plug this into (3.7).

Gp(k) =
∑
m,n

c∗mcn
[(
A∗0(k)eik·(mx0+xp)

)
∗ T ∗(k)

] [(
A0(k)e−ik·(nx0+xp)

)
∗ T (k)

]
(3.11)

Using the property of plane-wave terms under convolution,

(
f(x)eikx

)
∗ g(x) =

[
f(x) ∗

(
g(x)e−ikx

)]
eikx, (3.12)
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we see that (3.11) can be rewritten as

Gp(k) =
∑
m,n

c∗mcn
[
A∗0(k) ∗

(
T ∗(k)e−ik·(mx0+xp)

)] [
A0(k) ∗

(
T (k)eik·(nx0+xp)

)]
eik·((m−n)x0).

(3.13)

We can see that the specimen transfer function t(x) is encoded in the set of plane

waves eik·((m−n)x0). How do we retrieve it? Let’s consider a set of simiplifying

assumptions to illustrate what (3.13) means.

We can immediately get some intuition by considering the limit that the specimen

transfer function does not vary over the scale of the probe size. In the limit that

A0(k) = 1, the probes are infinitely small, and

[
A∗0(k) ∗

(
T ∗(k)e−ik·(mx0+xp)

)] [
A0(k) ∗

(
T (k)eik·(nx0+xp)

)]
→ t∗(mx0+xp)t(nx0+xp).

(3.14)

So, in the slowly-varying specimen limit, we see clearly that every plane wave in

(3.13) of order ` = m − n carries information from beams that have passed through

the specimen at probe positons separated by a distance `x0.

Let us now consider a massive simplification: all beams but the m = 0 and

m = +1 beams are blocked, and m = 0 passes through vacuum t(x) = 1 near x = 0

over a region larger than the maximum range of xp. Now, (3.13) simplifies to

Gp(k) = c∗0c1A
∗
0(k)

[
A0(k) ∗

(
T (k)eik·(x0+xp)

)]
e−ik·x0 + c.c.+G0(k,xp) (3.15)

where G0 corresponds to the n = m terms that contain information only about

the amplitude of the specimen transfer function. Let’s now for simplicty ignore

aberrations and assume A0 is real. The Fourier transform of Gp will be clearer without

the complex conjugations. Let’s take it.
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G(xp,x) =

∫
dkeik·xGp(k) (3.16)

= c∗0c1a0(x) ∗ [a0(x)t(x + x0 + xp)] ∗ δ(x− x0) + c.c.+G0(x,xp) (3.17)

(3.18)

For clarity, let’s take x → x + x0–let’s shift the first “diffraction” order of the

Fourier transform into the center. This gets rid of the delta function, since convolving

with a delta centered around zero is an identity operator. We’ll now ignore the other

terms; numerically, we’ll perform a discrete Fourier transform over a window that

only includes the term of interest.

We want an interpretable function of just t(xp), but we have two position

variables. Let’s get rid of one. The simplest way to do this is to integrate over

x with a0(x) as a kernel.

If A∗0 = A0, this integral is very simple, as a0(x) ∗ a0(x) = a0(x), wondrously 2.

2

a0(x) ∗ a0(x) =

∫
dx′a0(x′)a0(x− x′) (3.19)

=

∫
dx′

∫
dkeik·x

′
A0(k)

∫
dk′eik

′·(x−x′)A0(k′) (3.20)

=

∫
dkA0(k)

∫
dk′eik

′·xA0(k′)δ(k− k′) (3.21)

=

∫
dk|A0(k)|2eik·x =

∫
dkA0(k)eik·x (3.22)

= a0(x) (3.23)
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tM(xp + x0) =

∫
dxa0(x)G(xp,x) (3.24)

=

∫
dx

∫
dx′c∗0c1a0(x)a0(x− x′) [a0(x′)t(x′ + x0 + xp)] (3.25)

=

∫
dx′c∗0c1|a0(x′)|2t(x′ + x0 + xp) (3.26)

= −c∗0c1psf(xp) ∗ t(xp + x0) (3.27)

We see that the object we’ve defined, which we call tM to mean the measured

transfer function, is exactly the specimen transfer function convolved with a point

spread function |a0(x′)|2.

Forked Grating Analysis

If we use a forked diffraction grating, the biggest change to our formalism happens

in (3.6). In principle, the interaction of the transverse components of the magnetic

vector potential with a transverse electron wavefunction can be calculated exactly as

a convolution in reciprocal space, we’ll take a shortcut here. Even with shortcuts,

though, the effective operator for the interaction is no longer diagonal in position

space. The lowest-order interaction of an electron orbital angular momentum state

with a magnetic field produces a constant phase shift (see (4.25),(4.43)). We will

therefore treat the magnetic interaction as a unitary operator, for each each beam

is an eigenstate. This approach should completely fail if there are rapid variations

of the out-of-plane magnetic field over the size of each beam (over a0(x)), but will

roughly show us what to expect for an out-of-plane magnetic field that varies on the

scale of x0, the separation between beams.
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The unitary operator, acting on orbital angular momentum eigenstates, becomes

ULarmor |m`〉 = eiφLarmor(m`) |m`〉 (3.28)

where m` is the orbital angular momentum quantum number, and

φLarmor(m`) = −m`

√
e

8meVa

∫ ∞
−∞

B1(z)dz. (3.29)

me is the electron rest mass, Va is the accelerating voltage, and B1(z) describes the

longitudinal profile of the magnetic field.

We can now use the model we developed above with small tweaks, and treat the

Larmor phase as part of the specimen transfer function.

The easiest way to add orbital anguar momentum is to modify what we called

the aperture function to include the azimuthal phase.

Am(k) = A0(k)eim`φ (3.30)

This azimuthal phase produces an orbital angular momentum m` = m` in the mth

diffraction order.

Now, (3.15) becomes

Gp(k) = c∗0c1A
∗
0(k)

[(
A1(k)eiφLarmor(`)

)
∗
(
T (k)eik·(x0+xp)

)]
e−ik·x0 + c.c.+G0(k,xp)

(3.31)

Fortunately, although it’s not trivial to show, it still appears to be true that

a∗1(x) is an appropriate kernel. As we noted before, the convolution of an aperture-

limited probe wavefunction with itself is trivial because the equivalent multiplication

82



in reciprocal space is trivial. Fortunately, orbital angular momentum is invariant

under the Fourier transform, so, with approproate care towards signs and complex

conjugation, we see that

a∗1(x) ∗ a0(x) = a∗1(x) (3.32)

which, as before, produces an all-real point spread function. In this case, that point

spread function is donut-shaped:

tM(xp + x0, `) = −c∗0c1e
iφLarmor(`)|a1(xp)|2 ∗ t(xp + x0) (3.33)

We therefore see with quick arguments that STEM-holography with a vortex

grating provides sensitivity to the out-of-plane magnetic field. We already have some

experimental evidence that this method can work [38]. In principle, it should be

possible to flip the sign of ` and then subtract tM(−`) from tM(+`) to isolate the

Larmor phase. In practice, this may be challenging, as small artifactual differences

between the two signals could be much larger than the Larmor phase. Coupled with

normal STEM-holography, this method may used to efficiently map electrostatic,

in-plane magnetic and out of plane magnetic fields produced by a specimen.

We may also be able to access other kinds of information about a specimen

with vortex-STEM-holography. We could, for example, consider integrating with

respect to a modified kernel a∗1(x)ei`φ kernel that has the appropriate amplitude

but no azimuthal phase. This kernel produces a point spread function with a

leftover azimuthal phase, which might be interpreted as spiral phase-contrast STEM-

holography [105]. More careful analysis of the elastic interaction of a vortex beam

with a large chiral structure is necessary to predict whether chiral sensitivity in vortex-

STEM-holography is feasible.
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Chapter Conclusion

In this chapter, we demonstrated two applications of electron orbital angular

momentum: for spectroscopic chirality determination, and for holographic magnetic

field measurement. In the next chapter, we will consider methods to measure or

postselect final electron orbital angular momentum states. Efficient postselection

will make applications of electron orbital angular momentum involving inelastic

interactions much more feasible and efficient.
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CHAPTER IV

APPLICATION

Notes on Manuscripts

Note on ‘Stern-Gerlach-like Approach to Orbital Angular Momentum Measurement’

The first part of this chapter is from Tyler Harvey et al., Phys. Rev. A 95

021801 (2017). https://doi.org/10.1103/PhysRevA.95.021801

I came up with the project idea, with inspiration from past simulations of electron

vortex propataion in magnetic lenses that Dave Shook and Benjamin McMorran

conducted [106]. I had been exploring the possibility to entangle orbital angular

momentum with linear momentum for a while using a longitudinal magnetic field that

linearly decreases in a transverse direction, like the original Stern-Gerlach experiment.

With input from Vincenzo Grillo, I realized that a cylindrically symmetric field was

far more sensible, as OAM is conserved, and the idea began to converge toward the

question Dave Shook had explored: does the focal length of a magnetic lens depend

on orbital angular momentum?

I wrote the manuscript, and made most figures. Vincenzo Grillo made one. I

developed the model with help from Vincenzo Grillo.

Note on ‘Efficient Sorting of Free Electron Orbital Angular Momentum’

The second part of this chapter is from Benjamin McMorran et al., New J. Phys.

19 023053 (2017). https://doi.org/10.1088/1367-2630/aa5f6f

Martin Lavery originally devised the idea as a method for measuring the orbital

angular momentum of light [107]. He and Benjamin McMorran contributed the idea
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to develop the same method for electrons. Benjamin McMorran noticed that an

electrostatic needle produces the required phase for the unwrapper element; I then

noticed that the corrector phase is a solution to Poisson’s equation could also be

easily produced electrostatically.

Benjamin McMorran wrote the introduction, conclusion, and the section on the

unwrapper element with help from Martin and me. I wrote the section on the corrector

element and much of the Appendices with help from Bejamin McMorran and Martin

Lavery. I performed all electrostatic potential simulations and produced many of the

figures.
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Introduction to Orbital Angular Momentum Measurement

How does one measure the orbital angular momentum (OAM) of the quantum

state of an unbound, massive, charged particle after interaction with another particle

or a material? Free electrons with OAM, also called electron vortices, are now

routinely prepared in electron microscopes [11, 12, 13, 14, 15, 16, 18, 19, 77, 108, 109]

and control of this new degree of freedom is widely recognized as a useful tool in the

both the study of materials and basic physical processes [12, 25, 27, 34]. A variety of

impressive techniques now exist to prepare an electron in an OAM state. Full control

of free electron orbital angular momentum, though, demands good measurement tools.

One of the most promising potential applications of electron OAM–measurement

of magnetization at atomic resolution via helical dichroism spectroscopy–serves as

an excellent example of the importance of both preparation and post-selection in

applications of electron OAM. Magnetic dichroism has, surprisingly, not yet been

realized with electrons prepared in OAM states. This application is analogous to X-

ray Magnetic Circular Dichroism (XMCD), a widely-used technique for magnetization

measurement based on the ratios of core-transition peaks in left- and right-circularly

polarized X-ray absorption spectra. There exists a crucial difference, though,
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between circular dichroism–which involves controlled transfer of photon spin angular

momentum–and helical dichroism–which involves controlled transfer of electron OAM

[34]. Photons are massless and can be absorbed by materials, so the final state of a

photon in a circular dichroism measurement is just the vacuum state. Electrons are

massive, and carry away non-zero energy and angular momentum from an interaction.

If we seek to gain the most information about a material in an electron spectroscopy

experiment, we ought to measure both the final electron energy and OAM 1. Helical

dichroism can be made far more efficient with careful post-selection of electron OAM

states. This insight, in fact, applies to many applications of electron OAM.

There are a wide range of applications of good OAM post-selection. Theoretical

predictions and simulation suggest that electron impact ionization [30, 111],

photoionization [112, 113], electron-atom scattering [114], material investigation with

angle-resolved photoelectron spectroscopy [115] and electron energy loss spectroscopy

[31], production of spin-polarized electrons [116], and even high-energy elementary

particle collisions [23] can produce non-trivial final OAM states and could therefore

benefit from OAM post-selection.

Several techniques have so far been developed for electron OAM measurement;

they work well as quality-assurance tests for new OAM state preparation techniques.

All have limitations that prohibit their application to post-selection of a single final

state of an inelastic interaction. Indeed, two recent theoretical proposals that demand

perfect post-selection of OAM final states for application of electron OAM to the

study of materials recognized that existing techniques are not sufficient [27, 117].

Self-interferometric techniques [39, 40, 41, 108] depend on analysis of the spatial

distribution an electron after a transformation. In general, inelastic interaction of an

1Simulations [110] suggest that a small dichroism effect does exist when one measures only the
probability density of the final state–and therefore traces out OAM in the final state.
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electron and a material produces mixed electron final states thanks to entanglement

with the material. Mixed and superposed OAM states are extremely difficult to

quantitatively measure with self-interferometric techniques [44]. Furthermore, energy-

filtered TEM is necessary to isolate and analyze the spatial distribution of the states

scattered to a given energy. Holographic phase-flattening [42, 43] can partially

spatially isolate a single component of a mix of inelastically scattered final OAM

states, but is currently fairly inefficient.

We propose a technique for OAM post-selection based on coupling of OAM to

a spatially varing magnetic field. The effect is analogous to the coupling between

spin and a spatially varying magnetic field that Stern and Gerlach employed in their

demonstration of the quantization of spin [118]. In the Stern-Gerlach device, spins

aligned (anti-aligned) with the magnetic field are pulled by the Zeeman interaction

toward the side of the device with higher (lower) field strength. Unlike the Stern-

Gerlach device for measurement of spin, we consider a cylindrically symmetric design

for measurement of OAM. Cylindrical symmetry gaurantees conserve electron OAM

through the measurement device [119] and control the Lorentz force [120, 121].

Fortunately, cylindrically symmetric, spatially varying magnetic fields find great use

as electron round lenses [122]. We show that the coupling of OAM to the field of a

magnetic round lens produces a shift in the focal length of a magnetic round lens.

In this proposed device, electrons with orbital dipole moments aligned (anti-aligned)

with the magnetic field are pulled inward toward (pushed outward away from) the

strong magnetic field along the optic axis.
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OAM-dependent Focusing Effect

An ideal measurement device introduces a unitary interaction that entangles a

state of interest with a measurement apparatus state that lies in a separate Hilbert

space [123]. In the case of electron orbital angular momentum measurement, we

consider entangling orbital angular momentum states (the states of interest) with

radial states (the measurement apparatus state). In other words, we seek to encode

information about orbital angular momentum in the radial wavefunction of the

electron and then measure the position of the electron. The simplest realization

of such a measurement device is an orbital angular momentum-dependent lensing

effect.

For a state propagating along the z-axis, the transfer function of a lens with focal

length f on an electron with wavelength λ is

Ulens = e−i
πρ2

λf (4.1)

where ρ is distance from the z-axis in cylindrical coordinates (z, ρ, φ).

If instead we want an OAM-dependent focal length, we’ll want to construct a

transfer function

U = exp

(
−iLzρ

2

~b2

)
. (4.2)

This transfer function produces a quantum non-demolition measurement of orbital

anguar momentum: OAM is an eigenstate of both this transfer function and the free-

space Hamiltonian, and OAM is encoded in the radial distribution of the electron

wavefunction. The effect of this transfer function on an OAM state is visualized in

Figure 14.

90



FIGURE 14. Phase effects of OAM-dependent lensing
Illstration of the effect of the orbital angular momentum-dependent lensing effect.
Propagation of a wave with, in this case, ±3~ OAM–and therefore an azimuthal phase
(first column)–in a Hamiltonian with the OAM-dependent lensing term in equation
(4.4) produces a parabolic phase (second column) in proportion to the OAM. The
result is a spiralling phase with a winding magnitude and direction that depends on
OAM (third column).

For quick insights into the potentials necessary to produce an OAM-dependent

lensing effect, we notice that, in the short-time limit, the time evolution operator

applies a phase modulation that’s proportional to the Hamiltonian. (See Section 4.8

of the Supplemental Material for an explanation of a magnetic round lens in these

terms.) So, we need to find a potential that will produce an Lzρ
2 term in the electron

Hamiltonian.

Counting powers of momentum and position, we see that only the A ·p term can

produce this term. In particular, we can see that we’ll produce a transfer function

like (4.2) with the vector potential

A =

(
B1(z)

ρ

2
−B3(z)

ρ3

8b2
+ ...O(ρ5)

)
φ̂. (4.3)
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where B1 and B3 describe the longitudinal profile of the field, i.e. Bz = B1(z) −

B3(z) ρ
2

2b2
. This vector potential corresponds to a magnetic field that points along the

±ẑ-direction at the origin and curves outward away from the origin over a length

scale b. We’ll call b the dispersion length. The corresponding Hamiltonian for an

electron in this vector potential includes two lensing terms,

Hlens =
1

8me

(
e2B2

1 −
eB3Lz
b2

)
ρ2. (4.4)

where e = |e| is the magntide of the electron charge. The latter term produces an

OAM-dependence in the focal length of the lensing effect. Figure 15 illustrates this

lensing effect with multislice-simulated [124] propagation of superposed OAM states

in this Hamiltonian 2 and ray trajectories calculated by numerical integration of the

radial equation of motion. Filled intervals represent a range of classical trajectories

that correspond to a single wavefunction.

The intuitive explanation in terms of the Zeeman potential UZ = −µ ·B shows

us that a magnetic dipole µ aligned with a magnetic field B is pulled toward regions

of higher field strength by a force Fρ = −∂UZ
∂ρ

. An orbital magnetic dipole µ = − e
2me

L

is therefore pulled inward in a field when the longitudinal strength Bz(z, ρ) decreases

away from the optic axis (i.e. B3 is nonzero) and the orbital dipole moment is

aligned with the field. Although we treat only spin-unpolarized electrons here, it

may be interesting in the future to examine the analogous effect on spin-polarized

electrons. We expect that the OAM-dependent lensing effect, a spin-dependent

lensing effect, and spin-to-orbital conversion via spin precession [116, 125] should

all be independently observable in the non-relativistic limit.

2The non-unitarity of the lowest-order approximation to the transformation induced by Lz terms
produces a small, unphysical loss of probability density with each slice.
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The vector potential (4.3) above is an approximation to the vector potential of

any cylindrically symmetric current distribution with azimuthal current flow. The

dispersion length is related to the radial extent of the current distribution. In the

case of a single loop of wire of radius R, b is just R and B3 is on the same order

as B0, the magnetic field at the center of the loop. So, in fact, there exists a small

OAM-dependence in the focal length of any standard magnetic round lens. The key to

designing an orbital angular momentum measurement device is to isolate or maximize

the OAM-dependence.

To do anything with an OAM-dependent lensing effect, we need to know the focal

length of the lens. The focal length can be calculated analytically with two reasonable

approximations: the paraxial approximation, and the thin lens approximation. The

thin lens-paraxial Schrodinger equation [126] for an electron in our model vector

potential (4.3) is a separable first-order differential equation,

2ikz
∂χ

∂z
=
e

~

(
B1(z)−B3(z)

ρ2

4b2

)
mχ+

e2B2
1(z)

4~2
ρ2χ (4.5)

for a transverse wavefunction χ(ρ, φ) with Lzχ = m~χ. kz is the longitudinal

wavevector of the full wavefunction. Upon integration, we see that

Ulens = exp

(
−i e2

8~2kz

∫ ∞
−∞

dz

[
B2

1(z)− m~
eb2

B3(z)

]
ρ2

)
. (4.6)

Comparing this with (4.1), we see that an initially collimated eigenstate of Lz with

quantum number m that passes through the vector potential (4.3) will be focused at

a distance fm from the center of the potential, where

1

fm
=

e2

8meE

∫ ∞
−∞

B2
1(z)− m~

eb2
B3(z)dz. (4.7)
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where E is the kinetic energy of the electron.

We can more simply rewrite this as

fm =
f0

1− Λm
, (4.8)

where f0 is the focal length of them = 0 eigenstate and the OAM dispersion coefficient

Λ = β0~
eB0b2

is a dimensionless constant that depends only on the peak field strength B0,

the dispersion length b, fundamental constants, and a dimensionless O(1) number β0

that depends on the shape of the current distribution. We calculate this focal length

for several current distributions in Section 4.10 of the Supplemental Material. For

small OAM dispersion Λ, therefore, focal length is approximately linear with OAM.

fm ≈ f0 (1 + Λm) . (4.9)
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(a) (b) (c)

(d) (e) (f)

(g)

FIGURE 15. Propagation of OAM superpositions in a strongly OAM-dependent lens
(top) Multislice-simulated intensities of a superposition of m = ±8 Laguerre-Gaussian
orbital angular momentum states with E = 80 keV in a Glaser-model, i.e. equation
(4.59), field with maximum field strength B0 = 2 T, longitudinal extent a = 1 mm
and an OAM dispersion length b = 79 nm, sampled at (a) −2.0 mm, (b) −1.5 mm,
(c) −1.0 mm, (d) −0.5 mm, (e) 0.0 mm and (f) 0.5 mm from the center of the
lens. (bottom) Ray trajectories for m = −8, m = 0 and m = +8 modes calculated
by numerical integration of the radial equation of motion corresponding to the full
Hamiltonian in equation (4.30) with a Glaser-model field.
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FIGURE 16. Schematic depicting the action of an OAM-dependent lens
Ray diagrams for a lens (blue disk) with a strongly OAM-dependent focal length fm
as given in (4.9). (red, dense dots) rays for m = +1 electrons; (green, dashes) rays
for m = 0 electrons; (blue, loose dots) rays for m = −1 electrons.
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Physical Realization of Device

When the current source for the vector potential in (4.3) is a superconducting

ring, there’s an easy physical interpretation of the OAM dispersion coefficient Λ. A

superconducting ring of radius b encloses an area πb2 and has an OAM dispersion

coefficient inversely proportional to the number n of flux quanta in the ring, as n ∝
B0πb2

Φ0
and the flux quantum Φ0 = h

2e
. We can therefore write the focal length of a

lens made of superconducting ring as

fm ≈ f0

(
1 + β1

m

n

)
(4.10)

where β1 is another O(1) number.

If a lens can be constructed with a large OAM dispersion coefficient Λ ∼ 1, the

simplest application of this lensing effect to OAM measurement needs only a small

aperture to select out one focused mode in the appropriate plane, as shown in Figure

17. In fact, preferential admission of individual modes into an aperture might be used

to perform a simple helical dichroism experiment without incident OAM. One can see

that the focal length (4.7) has an OAM-independent part that depends just on the

magnitude of the lensing magnetic field and an OAM-dependent part that depends

on both the magnitude and direction of the magnetic field. In other words, one can

control OAM dispersion via the direction of the lensing field. With an aperture set

to preferentially admit the m = +1 mode, one can flip the polarity of the lens and

therefore flip the sign of OAM dispersion, and consequentially admit the m = −1

mode without physically moving anything. This experiment likely will require an

exceptionally stable microscope and careful alignment to ensure that no other beam

properties change upon a lens polarity flip.
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FIGURE 17. Schematic depicting a possible dichroism experiment
Schematic ray diagrams for a dichroism experiment based on the OAM-dependent
lensing effect. Interaction with a specimen (brown) produces a mix of outgoing
m = +1 (red, dense dots), m = 0 (green, dashes) and m = −1 (blue, loose dots)
OAM eigenstates. (left) An aperture (black) preferentially admits the m = +1 OAM
eigenstate. The m = +1 state has a longer focal length in the positive-polarity lens
(blue disk). (right) The aperture preferentially admits the m = −1 OAM state when
the lens polarity is flipped.

Several physical sources could produce a magnetic field with a significant OAM

dispersion. The most obvious, but perhaps the most difficult to build, is a nanoscale

solenoid. A solenoid with a radius on the order of 100 nm and a peak magnetic

field on the order of 1 Tesla produces an OAM dispersion coefficient on the order of

0.1. The bound current density on the surface of a hole in an out-of-plane-polarized

ferromagnetic thin film looks identical to the current density of a solenoid and could

produce the same dispersion; such a hole would be far more easily nanofabricated and
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has the advantage over a loop of wire that the normal lensing effect will be partially

canceled in the hole. A pulsed laser with a radially polarized magnetic field has the

appropriate symmetry. The laser used in a recent experiment to prepare well-defined

electron momentum states [76], with a peak magnetic field of 0.334 T and a spot size

of 50 um, would produce an OAM dispersion coefficient on the order of 10−6. This

might be improved by several orders of magnitude with plasmonic field enhancement.

It is also likely that a more detailed analysis of non-trivial current distributions

and electron propagation through them, including thick lens effects, could reveal

other ways to maximize B3(z)/b2. In particular, for slower electrons, where adiabatic

invariance of the magnetic moment can be assumed [127], it may be possible to

analytically derive OAM-dependent effects in the propagation of electrons through a

magnetic bottle or magnetic mirror.

FIGURE 18. Ray trajectories in a set of stacked OAM-dependent lenses
Ray trajectories of m = −100 (blue), m = 0 (green) and m = +100 (red) OAM
modes propagating in a set of ten stacked afocal systems (4.13) of Glaser-model
lenses (4.59) with longitudinal extent a = 100 µm, OAM dispersion length b = 1 µm
and maximum field strength B0 = 2 T. The magnification of OAM goes exponentially
with the number of lens sets.
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A completely orthogonal approach to realization of an OAM measurement device

of this kind might involve stacking many lenses with a small OAM dispersion

coefficient in a manner that magnifies the OAM-dependent effect. We discuss two

possible designs for a stacked lens OAM measurement device below: an afocal system

with spacing 2f0 between lenses with opposite OAM dispersion in Section 4.5, which

produces exponentially increasing OAM-dependent magnification with number of

lenses, as shown in Figure 18; and a system with variable spacing between the lenses

in Section 4.6. Both designs produce strongly OAM-dependent magnification but

only weakly OAM-dependent image plane locations.

Device Design 1: Afocal System

If the OAM dispersion coefficient Λ = 2~
eB0b2

is small, then the focal length is

approximately

fm = f0 (1 + Λm) (4.11)

If we set two lenses back-to-back with a distance 2f0 in between them with opposite

OAM dispersion in each (Λ1 = −|Λ|; Λ2 = |Λ|) we produce an afocal system with

Mm = − (1 + 2Λm) (4.12)

Since an afocal system produces no convergence or divergence–the effective focal

length is infinite [128]–any combination of afocal systems is also an afocal system;

this afocal system is thus easy to stack. In particular, for a stack of N such afocal

systems, in the limit of large N , the total magnification approaches

MN
m = (−1)N exp (2ΛmN) (4.13)
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This set of N afocal systems has one clear advantage: even with arbitrarily small

OAM dispersion Λ, we can easily distinguish between any two OAM orders with a

sufficiently long stack N .

A twenty-element (N = 20) set of identical afocal systems with a = 10 µm,

b = 100 nm, B0 = 2 T and a resultant f0 ≈ 60 mm has an OAM dispersion coefficient

|Λ| = 0.066 and a produces a magnification of an m = +1, 80 keV electron beam

of |M20
+1| = 3.73; on the other hand, an m = −1 beam sees a magnification of

|M20
−1| = 0.27. A superposition of two otherwise-identical m = +1 and m = −1 modes

passed through this device leave with a fourteen-times difference in magnification.

The total length of this device is on the order of a couple meters.

Device Design 2: Variable Spacing Between Lenses

FIGURE 19. Ray diagram of a possible combination of two OAM-dependent lenses
Ray diagram for a combination of two lenses (blue disks) with variable spacing in
between and opposite OAM dispersion which combine to produce a strongly OAM-
dependent magnification, as given by (4.14) and a weakly OAM-dependent image
position.
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If we place two lenses with opposite OAM dispersion back-to-back with a distance

2 s+1
s
f0 between them, and place an object at a distance (s+ 1)f0 in front of the first

lens, we’ll see a focused image at a distance (s + 1)f0 behind the second lens with a

magnification

Mm =
1

1− 2(s+ 1)Λm
(4.14)

The result is similar to that for an afocal system with two major differences: the

advantage of this system is that larger magnification is produced by a larger spacing,

rather than more lenses; the disadvantage is that only one mode can be fully separated

from the rest at a time, as if 2(s+ 1)Λm ≈ 1 so as to maximize magnification of the

m-OAM components of the beam, then 2(s + 1)Λ(m + 1) cannot also be close to 1

unless m is very large.

Conclusion

If the measurement device can produce a sufficiently strong OAM-dependent

magntification and the initial transverse spread of a state is small, the OAM

distribution is mapped onto magnification. The orbital angular momentum spectrum

can be quantitatively measured as the radial profile of the probability density after the

electron is passed through the device. This OAM measurement is fully quantitative,

parallel and effective for inelastically scattered states.

As the orbital angular momentum-dependent lensing effect we study is a non-

destructive measurement of OAM, it may also we possible to employ it for preparation

of a pure OAM state. Pratical preparation of OAM states inevitably involves small

errors in the definition of the correct amplitude and phase for a desired state. These

small errors introduce extra OAM states in superposition with the desired state [109].

The combination of a single lens with a strong OAM-dependent lensing effect with a
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small aperture placed at the focal point of the desired OAM state is ideally-suited to

prepare pure OAM states.

We have demonstrated a Stern-Gerlach-like effect for measurement of electron

orbital angular momentum. The measurement technique is applicable to the mixed

states produced by inelastic scattering, which are otherwise difficult to measure.

We outlined several strategies for practical implementation of this measurement

device. If the device can be successfully built and integrated into electron

spectrometers, simultaneous measurement of electron energy and orbital angular

momentum distributions may be possible.
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Hamiltonian Approach to Magnetic Lensing

How does a standard magnetic round lens work? We shall schematically identify

terms in the electron Hamiltonian that cause lensing by inspecting the time evolution

operator that results from the Hamiltonian. Although this approach won’t get us

the focal length of a magnetic lens–we will need to solve the paraxial Schrodinger

equation (see Section 4.9) to do that–it will allow us some intiutive insight with

regard to lensing behavior.

Standard Lensing Hamiltonian

In order to construct a time evolution operator that causes lensing,

U(t) = exp (iHt/~) ∝ exp

(
−iπρ

2

λf

)
, (4.15)

we need a Hamiltionian with a ρ2 term. The round magnetostatic lenses used most

frequently used in electron microscopes can be described by a vector potential

A =
B0(z)

2
ρφ̂. (4.16)
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In cartesian coordinates, we see

A =
B0(z)

2
(xŷ − yx̂) ; (4.17)

A · p =
B0

2
(xpy − ypx) =

B0

2
Lz; (4.18)

A2 =
B2

0(z)ρ2

4
; (4.19)

which produces a non-relativistic Hamiltonian

H =
1

2me

(p + eA)2 = H0 +HLarmor +H2, (4.20)

where H0 =
p2

2me

; (4.21)

HLarmor =
eB0Lz
2me

; (4.22)

H2 =
e2B2

0(z)

8me

ρ2; (4.23)

where the electron charge qe = −e, H0 is the free Hamiltonian, HLarmor causes image

rotation through a magnetic lens, and H2 causes lensing.

Full Hamiltonian with OAM-dependent Lensing

Let us now add in a lowest-order radial correction to the vector potential that

arises from the finite size of the current source. In the main text, we wrote our model

vector potential in Eq. (3) as

A =

(
B1(z)

ρ

2
−B3(z)

ρ3

8b2
+ ...O(ρ5)

)
φ̂. (4.24)
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The full non-relativistic Hamiltonian for this vector potential is

H = H0 +HLarmor +H2 +H4 +H6, (4.25)

where H0 =
p2

2me

; (4.26)

HLarmor =
eB1Lz
2me

; (4.27)

H2 =
1

8me

(
e2B2

1 −
eB3Lz
b2

)
ρ2; (4.28)

H4 +H6 =
e2

8me

(
−B1B3

ρ4

2b2
+B2

3

ρ6

16b4

)
; (4.29)

where, as in the lowest-order description, H0 is the free Hamiltonian, HLarmor causes

image rotation. H4 and H6 are higher-order terms that traditional multipole magnetic

corrector elements can cancel without affecting H2 (see Section 4.12). The term

we care about is H2, which again produces lensing and now has two contributions:

the standard magnetic lensing term,
e2B2

1

8me
ρ2 [122], and the OAM-dependent term

eB3Lz
8meb2

ρ2. Just as the Larmor term can be interpreted either as causing a rotation

or an OAM-dependent phase shift, the OAM-depent lensing term could equivalently

be interpreted as a radius-dependent rotation. This term is one source of spiral

distortion, an aberration that Scherzer documented in 1937 [129].

If higher-order terms H4 + H6 are corrected (see Section 4.12), the full orbital

angular momentum measurement Hamiltonian is

H0 =
p2

2me

+
eB1Lz
2me

+
1

8me

(
e2B2

1 −
eB3Lz
b2

)
ρ2. (4.30)
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Calculation of General Thin Lens Focal Length

In this section, we derive an expression for the orbital angular momentum-

dependent focal length for a thin magnetostatic lens. One can use the same formalism

for the focal length of a thick lens 3. We use the non-relativistic Schrodinger equation

for simplicity; low-order relativistic corrections can easily be added into the result.

∇2ψ − 2e

~i
A ·∇ψ +

2me

~2
(eV + E)ψ − e2

~2
A2ψ = 0, (4.31)

where me is the rest mass of the electron and E = eVa is the non-relativistic total

energy of the electron accelerated by a voltage Va. If write ψ in terms of longitudinal

and transverse parts of the wavefunction,

ψ = ψ0χ, (4.32)

where

ψ0 = eikzz, (4.33)

we can quickly simplify our Schrodinger equation with a paraxial approximation. If

kz ≈ k =
√

2meE
~ , we then see that

∇2ψ0 +
2me

~2
Eψ0 ≈ 0. (4.34)

3Pozzi [126] elegantly showed that one can calculate electron wavefunction propgation through
arbitrarily thick electrostatic or magnetostatic optical elements with an analytical multislice
formalism. As the lens effect we’re interested in will be practically easiest to implement with a thin
lens, we only include the thin lens-approximate calculation. However, we follow Pozzi’s notation so
that an interested reader could complete the thick lens calculation.
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Let us now parse through the terms in the the paraxial Schrodinger equation that

results. As

∇2ψ = ψ0∇2
⊥χ+ 2ikzψ0

∂χ

∂z
− k2

zψ0χ+ ψ0
∂2χ

∂z2 ,

≈ ψ0∇2
⊥χ+ 2ikzψ0

∂χ

∂z
− k2

zψ0χ, (4.35)

since ψ0
∂2χ
∂z2
� k2

zψ0χ, we can use (4.34) and divide out ψ0 to produce the paraxial

Schrodinger equation for χ:

∇2
⊥χ+ 2ikz

∂χ

∂z
− 2e

i~
A ·∇⊥χ−

2e

i~
Az

(
∂χ

∂z
+ ikzχ

)
+

2mee

~2
V χ− e2

~2
A2χ = 0. (4.36)

If we first choose

Aφ = B1(z)
ρ

2
−B3(z)

ρ3

8b2
, (4.37)

we see that we can cancel the higher-order (ρ4 and ρ6) terms in A2 independently with

similar terms in V produced by an electrostatic aberration corrector or Az produced

by a multipolar magnetostatic aberration corrector 4 (see Section 4.12). Let us then

solve the Schrodinger equation without these higher-order terms. We will come back

to them in Section 4.11. We want to study a propagation of an orbital angular

momentum eigenstate,

χ ∝ eimφ. (4.38)

4Of course, a ρ4 term in Az produces a ρ8 term in A2, so, as with any multitpolar aberration
corrector, we can only push aberrations up to a higher order.
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With this eigenstate,

2e

i~ψ
A ·∇ (χψ) =

2e

i~
Aφ

1

ρ

∂χ

∂φ
,

=
2e

~
Aφ
ρ
mχ. (4.39)

If we take a thin lens approximation and drop the small ∇2
⊥χ term 5, this resulting

equation is a separable first-order differential equation. The thin lens-paraxial

Schrodinger equation with this vector potential, then, is

2ikz
∂χ

∂z
=
e

~

(
B1(z)−B3(z)

ρ2

4b2

)
mχ+

e2B2
1(z)

4~2
ρ2χ. (4.40)

Upon integration, we can identify the transfer function of the lens as

χ(z →∞)

χ(z → −∞)
= exp(iφLarmor)Ulens, (4.41)

where Ulens = exp

(
−i e2

8~2kz

∫ ∞
−∞

dz

[
B2

1(z)− m~
eb2

B3(z)

]
ρ2

)
, (4.42)

and where φLarmor = − me

2~kz

∫ ∞
−∞

B1(z)dz, (4.43)

= −m
√

e

8meVa

∫ ∞
−∞

B1(z)dz. (4.44)

5In dropping this term, we ignore other orbital angular momentum-dependent effects that are
beam radius-dependent and therefore harder to control. In particular, the non-commutation of the
Larmor term and p2z produces lensing that is linear with Lz, and the p2φ term produces lensing that
is parabolic with Lz. These thick-lens orbital angular momentum-dependent effects may be worthy
of further study, and are clearer in a Langrangian analysis.
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We see, by comparison with (4.15) that

1

f
=

e2λ

8π~2kz

∫ ∞
−∞

dz

[
B2

1(z)− m~
eb2

B3(z)

]
, (4.45)

=
e2

8meE

∫ ∞
−∞

dz

[
B2

1(z)− m~
eb2

B3(z)

]
, (4.46)

=
e

8meVa

∫ ∞
−∞

dz

[
B2

1(z)− m~
eb2

B3(z)

]
. (4.47)

We thus showed that we can derive the orbital angular momentum-dependent focal

length of a thin lens from the paraxial Schrodinger equation. Let us now calculate

the that focal length using some example current sources.

Calculation of Example OAM-dependent Focal Lengths

Loop of Wire

The simplest current source that acts as a round magnetic lens is a single loop

of wire in a plane normal to the electron propagation direction. We shall calculate

the OAM-dependent focal length of a single loop of wire. First, we need to calculate

the vector potential.

For a loop of wire with radius R and current I0, the vector potential can be

calculated as

A(r) =
µ0I0R

4π

∫
dφ′

φ̂
′√

z2 +R2 + ρ2 + 2Rρ cos(φ′ − φ)
. (4.48)

110



For small ρ � R, we can use only the lowest-order terms in the Taylor series

expansion,

A(r) ≈ µ0I0R

4πd(z)

∫
dφ′φ̂

′
(

1− 1

2

ρ2 + 2Rρ cos(φ′ − φ)

s2(z)
+

3

8

(
ρ2 + 2Rρ cos(φ′ − φ)

s2(z)

)2

−

− 5

8

(
ρ2 + 2Rρ cos(φ′ − φ)

s2(z)

)3

+ . . .

)
, (4.49)

where s(z) =
√
z2 +R2. If we perform the integral over φ′ and keep terms up to ρ3,

we see

A(r) =
µ0I0R

4π

(
ρRπ

s3(z)
− 3

2

ρ3Rπ

s5(z)
− 15

4

ρ3R3π

s7(z)
+ . . .

)
φ̂. (4.50)

Using the formalism we developed above, let us calculate the focal length of the

lensing behavior produced by this term. First, let us define

B0 =
µ0I0

2R
; (4.51)

B1(z) =
B0R

3

s3(z)
; (4.52)

B3(z) = 6B0

(
R5

s5(z)
+

5

2

R7

s7(z)

)
; (4.53)

such that can write the vector potential as

A(r) ≈ B1(z)

2
ρ− B3(z)

8R2
ρ3φ̂. (4.54)

We thus observe that our model vector potential, equation (4.3), is an accurate

physical description up to ρ3. Let us now calculate the focal length of this lens.
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We see that, as ∫ ∞
−∞

B3(z)dz = 24B0R, (4.55)

and as ∫ ∞
−∞

B2
1(z)dz =

3π

2
B2

0R, (4.56)

we can write the focal length of this lens, using (4.45), as

1

fm
=

e2

8meE

(
3π

2
B2

0R−
m~
eR2

(24B0R)

)
, (4.57)

fm =
16meE

3e2B2
0Rπ

(
1− 16m~

eB0R2π

) . (4.58)

Glaser Field

Another simple model for the longitudenal field of a magnetic lens is the Glaser

field. Let us compare the OAM dependence of the focal length with a Glaser field

model to the focal length we calculated above for a single loop of wire. The Glaser

field,

BG(z) = B0

(
1 +

z2

a2

)−1

, (4.59)

has a peak magnetic field B0 and a longitudinal extent of length a. If we choose

B1 = B3 = BG for our focal length calculation, so that the Glasel model field has our

lowest-order correction for the finite transverse extent of the field, we see

fm =
16meE

e2B2
0aπ

(
1− 2m~

eB0b2

) . (4.60)

We see that this result is indentical in form to the focal length of a loop of wire,

(4.58), if the longitudinal extent of the Glaser field is set by the radius of the wire
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(a = R) and the OAM dispersion length is set by the radius (b = R). The focal

lengths differ only by constant factors.

OAM Lensing and Spherical Aberration

If, instead of dropping terms above ρ2 in Eq. (4.36), we include up to ρ4, we can

calculate the contribution to the spherical aberration coefficient Cs from the OAM

dispersion term. Keeping this term in our thin lens-paraxial Schrodinger equation,

we see

2ikz
∂χ

∂z
=
e

~

(
B1(z)−B3(z)

ρ2

4b2

)
mχ+

e2B2
1(z)

4~2
ρ2χ− e2B1(z)B3(z)

8~2b2
ρ4χ. (4.61)

Integrating as in (4.42), our transfer function now includes the term

Uspherical = exp

(
i

e2

16~2kzb2

∫ ∞
−∞

dz [B1(z)B3(z)] ρ4

)
. (4.62)

The aberrations of an electron lens are conventionally expanded in terms of the polar

angle of incidence at the back focal plane of the lens α = arctan
(
ρ
f

)
with a transfer

function for the lowest-order spherical aberration [130],

Uspherical = exp

(
i
2π

λ

C3

4
α4

)
, (4.63)

where C3 is the third-order spherical aberration coefficient. If we rewrite (4.62) in

this form with the approximation that ρ ≈ fα, we can calculate the contribution to

C3.

Uspherical = exp

(
i
2π

λ

e2

4~2k2
zb

2

∫ ∞
−∞

dz [B1(z)B3(z)] f 4α
4

4

)
. (4.64)
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By comparison with (4.63), we see with some reorganization that in the thin lens

approximation, the contribution to C3 from the OAM dispersion term we introduced

is

C3 =
e2f 4

8meEb2

∫ ∞
−∞

dz [B1(z)B3(z)] . (4.65)

As the OAM dispersion length b must be small to produce significant orbital

dispersion, C3 could be prohibitively large under standard transmission electron

microscope conditions even with independent reduction of C3 by a multipole corrector

(see Section 4.12). Realization of orbital dispersion that is distinguishable over

spherical aberration for 80 to 300 keV electrons may demand better aberration

correctors than are available today. On the other hand, it may still be possible

to distinguish differences between two spectra produced with opposite lens polarities,

even with large spherical aberration.

Independent Correction of Aberrations

In this section, we show that a multipole corrector has no Aφ component and

thus can independently correct aberrations produced by the A2 term of an OAM

measurement device without affecting measurement of OAM.

If we represent an n-pole magnetic lens as a ring of n solenoids of alternating

polarity with the solenoid axis oriented radially, we will immediately see that the Aφ

component of the vector potential would produce a lens with infinite focal length–no

lensing effect–in the thin lens approximation.

First, though, we shall write a model for the vector potential of a solenoid

oriented along the z axis. As the current of an ideal solenoid is entirely azimuthal
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and cylindrically symmetric, we can write this vector potential as

Aax = A0(z, ρ)φ̂. (4.66)

If we now rotate this vector potential to point along the x axis, we see

Arad = A0(x,
√
y2 + z2)

(
−z√
y2 + z2

ŷ +
y√

y2 + z2
ẑ

)
. (4.67)

Lastly, if we define a set of rotated coordinates (xm, ym) defined by a rotation angle

θm = 2πm
n

where

xm = x cos(θm + y sin(θm), (4.68)

ym = y cos(θm)− x sin(θm), (4.69)

we can now easily write the vector potential of this lens in terms of a sum of solenoidal

vector potentials in the rotated coordinates.

An−pole =
n−1∑
m=0

A0(xm,
√
y2
m + z2)

(
−z√
y2
m + z2

ŷm +
ym√
y2
m + z2

ẑ

)
. (4.70)

We can immediately see that the ŷm component, which includes a non-zero φ̂ term,

is odd in z and thus integrates to zero under a calculation of the focal length in the

thin lens approximation.

∫ ∞
−∞

dz An−pole · φ̂ = 0 ⇒ fmn−pole
=∞. (4.71)

Therefore, a multipolar magnetostatic aberration corrector element has a

vanishingly small orbital angular momentum lensing effect, and can safely be used
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to independently correct higher-order aberrations produced by a round lens without

affecting the orbital angular momentum dispersion of that round lens.
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Introduction to the OAM Sorter

Electrons scattered by an interaction with matter, such as from individual atoms,

molecules, or materials, acquire a spectrum of energies, linear momenta, and spin

polarizations. Information about the event is encoded in these various degrees

of freedom by the electron’s wavefunction. Recently, several groups demonstrated

control of the orbital angular momentum (OAM) of freedom of free electrons

[11, 12, 13]. Myriad techniques for generating electron OAM states now exist,

including material and magnetic spiral phase plates [11, 17, 18, 19], phase [14, 15, 16]

and amplitude [12, 77] diffraction gratings, and mode conversion [108]. Exchange

of OAM between a target specimen and a fast electron could provide information

about the structural chirality [27, 34] and out-of-plane magnetization of the target

[24, 25, 131]. In these applications, the electrons can scatter to many different

final orbital angular momentum states, and measurement of the final orbital angular

momentum distribution can provide new information about the scattering targets.

However, there are currently no measurement techniques that can efficiently and

quantitatively measure the orbital angular momentum distribution of free electrons.

In 2010, Berkhout et al. [107] demonstrated a new method to efficiently sort

OAM states of light using four refractive optical elements. The apparatus transforms
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an azimuthal phase at the input into a linear phase at the output, such that OAM

components at the input are mapped into separate linear momentum states at the

output. This ability to measure superpositions and mixed states of optical OAM

enables parallel orbital angular momentum measurement. The apparatus has been

rapidly employed for a range of optical applications in both fundamental research

[132, 133], quantum information [134], and communications [135, 136]. As shown in

Fig. 20a, the apparatus is based on two custom-made non-spherical refractive optical

components, the phase unwrapper U and the phase corrector C, with two lenses L1

and L2 used to the Fourier transform the output of each.

The first optical element (U and L1 in Fig. 20) is a log-polar transformer [137]

that transforms a set of concentric rings at the input plane into a set of parallel lines

at the back focal plane of the lens–or, equivalently, orbital angular momentum states

into planar waves. The phase profile of this unwrapper element is described by Eq.

1 in [107]:

ϕU(x, y) =
1

∆t

[
y arctan

(y
x

)
− x ln

(√
x2 + y2

b

)
+ x

]
, (4.72)

where ∆t is a lengthscale that sets the separation distance between orbital angular

momentum states in the output plane, and b is a lengthscale that determines the

position of the unwrapped beam in the corrector plane. A plot of the phase

distribution for this lens is shown in Fig. 21a.
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FIGURE 20. Schematic comparison of photon and electron OAM sorters
Schematic of the optical arrangement of OAM-sorting devices for (a) light and (b)
electrons. Different OAM states are shown in different colors. Mixed OAM states
are incident on the top of both systems, each of which consists of four elements. A
phase unwrapper element U in the front focal plane of a lens L1 is followed by a
phase corrector element C in the back focal place of L1. For electrons, the proposed
element U is a charged needle or knife edge, and the corrector element C is an array of
electrodes with alternating bias. Immediately after the corrector element C, different
OAM components are separated in momentum space. At the bottom of each device,
a Fourier-transforming lens L2 separates OAM components into different spots in real
space at the output.
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(a) (b)

FIGURE 21. Phases necessary for sorter elements
Phase profiles of the (a) unwrapper element U described in Equation 4.72 and (b)
the corrector element C described in Equation 4.75. In (a), the lowest phase (white)
occurs at the position of the needle. Both plots use parameters expressed in Table 3.

Electrostatic OAM Unwrapper for Electrons

To imprint the phase profile described in Eq. 4.72 onto an electron wavefunction,

one could use either refractive or diffractive wavefront-shaping techniques. In light

optics, there are established methods for fabricating custom phase plates out of

transparent material such as glass. However, while thin film phase plates for electrons

are possible [17], they contaminate easily and are difficult to fabricate. Finally, no

material is sufficiently electron-transparent to imprint the large phases required for

sorting OAM. Arbitrary electron phase profiles can be imprinted holographically using

nanofabricated diffractive optics [14, 15]. However, the smaller but still significant

inelastic scattering in the material, the small diffraction angles, low diffraction

efficiency, and finite size of the diffractive structures make the use of such holograms

for an OAM mode sorter impractical.

Instead, a relatively simple electrostatic phase plate consisting of a charged needle

and a conductive plate can be used to imprint a phase equivalent to Eq. 4.72 onto
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a charged particle wave. The phase that the tip of a charged needle imparts to

an electron has been studied previously by several different groups [138, 139, 140].

Matteucci et al. [138] calculated this analytically by first considering the electrostatic

potential V (r) around an infinitesimally thin wire of finite length and uniform charge

density placed a distance h away from a flat conducting plate. The spatially varying

phase shift a potential V (r) imparts to an electron plane wave of energy E and

relativistically-corrected wavelength λ traveling in the +z direction can be calculated

by the integral

ϕ(r) = CE

∫ ∞
−∞

V (r)dz, . (4.73)

where CE is a constant that depends only on the energy of the beam [141] (CE = 6.53

mrad V−1 nm−1 for 300 keV electrons).

In 4.19, we adapt Matteucci et al.’s result (Equation 4 in [138]) for the purpose of

imprinting Eq. 4.72. We show that if the electron beam is localized around the needle

tip nearest the plate electrode, and the length of the needle and its separation from

the plate are sufficiently large, this arrangement imprints the appropriate unwrapping

phase for sorting electron OAM:

ϕU(x, y) =
QCE
4πε0L

[
y arctan

(y
x

)
− x ln

(√
x2 + y2

L

)]
+ ϕ0, (4.74)

where L is the length of the needle, E is the kinetic energy of the electron beam, and

ϕ0 is a uniform phase common to all paths, which is unobservable at the detector.

With the exception of a missing linear phase, we see that Eq. 4.74 exactly matches

Eq. 4.72 if b = L and Q
L

= 4πε0
CE∆t

. This discrepancy is unimportant, as a linear phase

in the unwrapper plane corresponds to a position offset in the corrector plane that can
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be easily provided by position alignment optics (based on static in-plane magnetic or

electric fields) found in the transmission electron microscope.

There are several possible methods for practical realization of such an

electrostatic element in an electron microscope, as discussed further in 4.20. A

thin insulating wire could provide the constant line charge density assumed for the

derivation of Eq. 4.72, although in an actual device the charge density could be

affected by the incident beam current and could fluctuate in time. On the other

hand, a conducting wire fabricated such that its physical surface coincides with the

equipotential surface of a constant line charge may be more easily tunable and more

robust against changes in the incident beam current. In 4.20, we use simulations

to demonstrate that such needles can impart the appropriate unwrapper phase

modulation with excellent fidelity, and we find that this is insensitive to electrostatic

boundary conditions. The inner conductive surfaces of an electron microscope are

typically grounded and are hundreds of microns to millimeters away from the electron

beam, and in such limits these surfaces will have little effect on the phase imparted

by the needle.

When using the proposed device to measure OAM distributions of electrons

scattered from a specimen in a TEM, it is important to realize that these orbital

states will originate from different locations in the sample. For example, electron

orbital states could be generated by scattering from each atom in a material, and so

the electron vortices will have different centers each offset from one another. This

results in a complicated distribution in the near field of the specimen. To ensure all

of these offset orbital states are aligned with the input of the proposed OAM sorter,

the input of the sorter should be positioned in the far-field of the specimen where

the orbital mode distribution will be spatially coherent and all electron vortices will
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be concentric. For actual experiments, the needle-based phase unwrapper should

therefore be placed in the back focal plane of the sample. A modified aperture holder

provides a convenient way to install, position, and electrically bias the needle-based

corrector. Such holders have already been developed for a variety of TEMs in order

to control charged Möllendstedt biprism wires for use in electron holography.

We also note that an extended knife edge electrode could potentially be used

instead of a charged needle. The 2D electrostatic potential of a semi-infinite plane

of charge with it’s edge along the z-axis has the same functional form as the desired

unwrapper phase ϕU(x, y) (see Chapter 7 in [142]). Thus, a knife-edge electrode

aligned along the optical axis could provide an alternative design to the needle, if the

length were long enough such that phase introduced near the beginning and end of

the electrode were negligible.

Electrostatic Phase Corrector for Electrons

The phase unwrapper element is followed by a conventional electron lens system

(L1). Simulations of the electron wave function in the back focal plane of this

intermediate lens show that there are large variations in the phase due to the

unwrapping operation. These phase variations must be removed by a second optical

element to reveal the subtler OAM-dependent differences. This phase corrector

(labelled “C” in Fig. 20) is described by the following phase profile:

ϕC(u, v) =
b

∆t
exp

(
−2πu

d

)
cos

(
−2πv

d

)
, (4.75)

where, following the notation of Berkhout et al. [107], we use (u, v) to describe

the transverse coordinates of the transformed field in the corrector plane from the

transverse coordinates of the input field. This corrector phase, shown in Fig. 21b,
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is identical to the phase derived by Berkhout et al. [107], using some re-labeled

variables. To accurately correct the phase in this plane, the amplitude of this phase

modulation must be proportional to b
∆t

, and the lengthscale d = λf
∆t

, where f is the

focal length of lens L1 between the unwrapper and corrector planes.

Electrostatic elements can also be employed to imprint this corrector phase. As

the phase distribution is a solution to Laplace’s equation in 2D, i.e. ∇2ϕC(u, v) = 0,

we see that an electrostatic potential in 2D can take this form. We can approximate

the 2D potential solution in 3D with a potential that varies slowly in z. Specifically,

we can apply ϕC(u, v) to an electron with a set of alternating electrodes, as shown

in Fig. 22b. As long as the longitudinal height D of the electrodes is much longer

than the period d (see4.21), and the thin grating condition, λD � d2 is satisfied, the

variation of the potential in the longitudinal direction is negligible over the depth.

The corrector phase can be written as

ϕC(u, v) = CEDVC0 exp

(
−2πu

d

)
cos

(
−2πv

d

)
. (4.76)

We see that we get the appropriate ϕC (Eq. 4.75) if CEDVC0 = bd
λf

and VC1 =

VC0 exp
(
−2πu1

d

)
. Further analysis (see 4.21) shows that it could be practical to remove

the reference electrodes at u = u1 if the nearest grounded surface is sufficiently far

away (at some distance much larger than d).

As shown in Figure 23b, and 23e, immediately after the corrector the phase of the

electron beam is flattened, such that an input state with orbital angular momentum

quantum number m is transformed here into a bar-shaped distribution with a phase

that linearly varies in the v-direction from 0 to 2πm over the width of the beam profile.

The slope of this corrected phase ramp is inversely proportional to the width of the

beam profile in the v-direction, equal to ∆t. Thus, after the Fourier-transforming
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(a)

(b)

FIGURE 22. Cartoon depicting both electrostatic sorter elements
(a) Top-view cartoon of charged needle and ground plate used to produce the
unwrapper phase. Electrons passing into the device near the right end of the needle
will acquire the phase described by Eq. 4.74. (b) Top-view cartoon of example
electrodes that could be used to produce the corrector phase, 4.75. Alternating very
high (VC0) and very low (−VC0) voltages at the boundary at u = 0 produce a sinusoidal
potential in the v-direction. Alternating weakly high (VC1) and weakly low (−VC1)
voltages at the boundary at u = u1 produce an exponential decay in the u-direction.
The electrodes at u = u1 aren’t physically necessary, as we show in Fig. 29b
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lens L2, the initial orbital modes are focused at the output plane into separate lines

(Fig. 23) with a final spacing of

∆t =
λf

d
. (4.77)
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(a) (b) (c)

(d) (e) (f)

FIGURE 23. Illustration of sorted OAM states
Illustration of the action of the device. The unwrapper U and intermediate lens L1
produces a beam in the corrector plane that has width d in the v-direction and that
has rapid phase variations (a,d). The corrector C removes the rapid phase variations
to produce plane wave-like beams in the corrector plane (b,e) which correspond to
deflected spots in the output plane (c,f). These simulations assume ideal unwrapper
and corrector phases (Eqs. 4.74 and 4.76) with parameters shown in Table 3.
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Design Parameters and Simulated Outputs

Lavery et al. separated orbital angular momentum states of light with a

wavelength of λ = 632.8 nm, lens focal length f = 300 mm, a corrector period

d = 8 mm and therefore an unmagnified separation of ∆t = 23.73 µm [132]. As

preparation of a collimated photon orbital angular momentum state with a waist on

the order of 10 µm is straightforward, this separation is sufficient.

The orders of magnitude of these parameters are wildly different for electrons,

but good separation is similarly straightforward. One set of possible parameter values

to achieve this is listed in Table 3. With a needle length of L ∼ 50 µm, an incident

beam waist on the order of 1 µm is physically reasonable. Separation on the order

of ∆t = 0.2 µm can be achieved in a transmission electron microscope at 300 kV

with λ ∼ 1.97 pm and a corrector period of d ∼ 10 µm if the focal length of the

lens between the needle and corrector, L1, is f ∼ 100 cm. Several lenses with focal

lengths in the 1 cm to 10 cm range can be combined to more practically produce a 1

meter focal length over a much shorter distance.

TABLE 3. Exemplary parameters for the sorter

Sorter Parameter Magnitude
λ 1.97 pm
f 1 m
d 10 µm
b = L 50 µm
VC0D 39 V · µm
Q/L 8.5 pC/m
VU 0.63 V

To review, the parameters of this arrangement are: (a) the charge Q added to the

needle-based unwrapper phase plate, (b) the length of the needle L, (c) the voltage

VC0 applied to the corrector electrodes, (d) the spatial periodicity d of the corrector
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FIGURE 24. Sorted mixes and superpositions of OAM states
The simulated (a,b,c,d) input and (e,f,g,h) output of the proposed electron OAM
sorter using parameters shown in Table 3. Input states are Laguerre-Gaussian modes
with a 5 µm beam waist and (a) superposed m = +3 and m = −3, (b) superposed
m = +5 and m = −2, (c) superposed m = 3 and m = 0, and (d) mixed m = +3 and
m = 0. Each electron OAM component at the input gets mapped onto a separate
region in space at the output, which is viewed directly using TEM imaging optics. In
this way, a spectrum of electron OAM states can be efficiently recorded in parallel.

electrodes, and (e) the focal length of the lenses f . We have offered one possible

combination of parameters here, but this may of course be tuned according to the

application.

Figures 23, 24, and 25 show the action of a sorter with these parameters on

various input states. Note that, just as with an optical OAM sorter, the electron

device sorts multiple input OAM states identically regardless of whether they are in

coherent superpositions (Fig. 24(c) and 24(g)) or incoherent mixtures (Fig. 24(f) and

24(h)). As shown in the simulation in Fig. 25, the electron OAM sorter could also

be used for orbital mode decomposition of arbitrary wavefunctions, which could be

used to reveal hidden chiral asymmetries in electron-scattering targets.
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(a) (b)

(c) (d)

FIGURE 25. Sorted random globs
(a) Initial random wavefunction with non-trivial orbital angular momentum
distribution; amplitude is shown as brightness and phase is shown as hue; (b)
calculated orbital angular angular momentum distribution; (c) probability density of
the random wavefunction passed through the sorter; (d) orbital angular momentum
distribution calculated by binning the output of the sorter.
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Crosstalk

An important figure of merit for a measurement device is the crosstalk: the rate of

erroneous counts that occur when adjacent measurement outcomes are counted as the

outcome of interest. In the proposed electron OAM sorter, there will be some crosstalk

that arises from the diffraction limit. Input electron orbital modes separated by a

single OAM quanta (∆m = 1) become plane waves just after the corrector element

that are just slightly tilted from one another, with phase ramps that only differ by

2π across the width of the states. Thus, when focused onto an imaging detector by

lens L2, these two states are only just resolvable. Figure 26 shows the crosstalk of

an ideal electron orbital angular momentum sorter, simulated with phases shown in

Eqs. 4.74 and 4.76 and parameters shown in Table 3. In a real device, aberrations

and misalignment of the electron beam are likely to further increase this minimum

amount of crosstalk.

(a)

FIGURE 26. Crosstalk of the sorter
Crosstalk of the electron orbital angular momentum measurement with parameters
shown in Table 3. A perfect sorter would have outcome probabilities of exactly 1 for
every `measured = `input and 0 elsewhere. As with an optical OAM mode sorter, the
crosstalk of this device is due to diffraction limit.
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Conclusion

Knowledge of interactions in which a free electron exchanges OAM with a

specimen can lead to insights into the properties of the object. However, many

attempts by several groups to observe OAM transfer between a prepared focused

electron with OAM and an atom have so far been unsuccessful, due to the fact that

electrons are scattered into a superposition of orbital states. Here we described an

electron-optical analog of the OAM sorter developed for photons. This device can non-

destructively disperse the spectrum of electron OAM, providing a way to measure the

OAM distribution of electrons scattered or ejected from atoms, molecules, and larger

collections of matter. Thus, this could provide a completely new form of spectroscopy

that can be used to probe the asymmetric structure of matter, atomic and molecular

polarizations, and chiral interactions.

Calculation of Phase Past Charged Needle

Here we consider electrons propagating in the z direction past an infinitesimally

thin needle of constant charge density σ = Q/L, where L is the length of the needle.

We consider that the needle lies on the x-axis with one tip at the origin and the other

located at x = −L. The charged needle is oriented perpendicularly to a conducting

plate that lies parallel to the y− z plane at x = h. The electrostatic potential of this

arrangement can be written as

V (r) = Q
4πε0L

ln

[(
x+L+
√

(x+L)2+y2+z2

x+
√
x2+y2+z2

)

×
(
x−2h−L+

√
(x−2h−L)2+y2+z2

x−2h+
√

(x−2h)2+y2+z2

)]
(4.78)
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Following [138], we use Eq. 4.73 to calculate the phase an electron plane wave

acquires as it propagates through this potential:

ϕU(r) = − QCE
4πε0L

[
|y| sin−1

(
−x−L√

(x+L)2+y2

)
− |y| sin−1

(
−x√
x2+y2

)
+|y| sin−1

(
−x+2h+L√

(x−2h−L)2+y2

)
− |y| sin−1

(
−x+2h√
y2+(x−2h)2

)
−x ln

(√
(x+L)2+y2√
x2+y2

)
− x ln

(√
(x−2h−L)2+y2√

(x−2h)2+y2

)
−L ln

( √
(x+L)2+y2√

(x−2h−L)2+y2

)
+ 2h ln

(√
(x−2h−L)2+y2√

(x−2h)2+y2

)]
. (4.79)

We consider a situation in which the incident electron beam is confined only to

the region immediately adjacent to the tip of the needle nearest to the plate. If we

take the distance h between the needle and the plate to be much larger than the region

of interest, i.e. h�
√
x2 + y2, we see some simplification. The third and fourth terms

cancel, the sixth term goes to zero, and the last two terms go to a constant phase

shift that depends only on L and h. Depending on the relative magnitudes of h and

L, it is also possible to extract a linear phase in x from the latter three terms.

ϕU(r) = − QCE
4πε0L

[
|y| sin−1

(
−x−L√

(x+L)2+y2

)
− |y| sin−1

(
−x√
x2+y2

)

−x ln

(√
(x+L)2+y2√
x2+y2

)]
+ ϕ0, (4.80)

where ϕ0 is a constant “background” phase that does not affect the sorter mechanism.
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If we rewrite the inverse trigonometric functions, we see that the extra |y|π
2

terms

cancel and we have

ϕU(r) = − QCE
4πε0L

[
|y| cos−1

(
x+L√

(x+L)2+y2

)
− |y| cos−1

(
x√
x2+y2

)

−x ln

(√
(x+L)2+y2√
x2+y2

)]
+ ϕ0, (4.81)

If we now take the length of the needle as large compared to the region of interest,

i.e. L�
√
x2 + y2, we see further simplification of the result. As cos−1(1) = 0, we’re

left with two terms. With this approximation, the phase distribution induced onto

an electron wave passing close to the tip of the needle is:

ϕU(r) = − QCE
4πε0L

[
− |y| cos−1

(
x√
x2+y2

)
+ x ln

(√
x2+y2

L

)]
+ ϕ0, (4.82)

which we can finally rewrite, using the fact that cos−1 x√
x2+y2

= tan−1 |y|
x

, as

ϕU(r) = QCE
4πε0L

[
y tan−1

(
y
x

)
− x ln

(√
x2+y2

L

)]
+ ϕ0. (4.83)

Eq. 4.83 is exactly the desired phase of the unwrapper element (Eq. 4.72) minus

a linear phase. The missing linear phase corresponds to a position shift in the output

plane that can be easily corrected with readily available magnetostatic or electrostatic

position alignment optics.
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Fidelity of the Phase of Proposed Unwrapper Element

It is well established that a thin, biased conducting needle does not maintain

a constant line charge density [143, 144]. Experiments have shown that a thin,

insulating needle aquires a negative charge under the incident electron beam [20], and

it’s possible that the charge density on such an insulating needle is nearly constant.

However, it seems that the value of the charge density, and therefore the parameters of

the sorter, might depend more strongly on the incident beam current than is desirable

for a robust, tunable device.

A more controllable approach involves the use of a biased conductor with a

physical surface fabricated to match the equipotential surfaces of a constant line

charge density [143]. In particular, to produce a potential that corresponds to a line

charge density Q/L and a length of the line charge L, the needle should be held at a

voltage VU with a surface defined by the equipotential

VU =
Q

4πε0L
ln

(
x+ L+

√
(x+ L)2 + y2 + z2

x+
√
x2 + y2 + z2

)
(4.84)

which corresponds to Eq. 4.78 in the limit that h→∞.

We simulated the potential produced by the nearly-hyperboloid tip described

above, with a conducting surface at the equipotential VU = 8 Q
4πε0L

. As Eq. 4.78

is a solution to Laplace’s equation, i.e. ∇2V (x, y, z) = 0, everywhere except at the

position of the needle, we numerically solved Laplace’s equation with a Dirichlet

boundary given by Eq. 4.84. We tried several boundary conditions for the external

boundaries to test the robustness of the potential against variations in the shape

and location of the grounded conductor. The results of these simulations are shown

in Fig. 27. The phases calculated with Eq. 4.73 from simulated potentials show
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excellent agreement with the ideal unwrapper phase, Eq. 4.83, regardless of boundary

conditions, and especially as the distance h to the conducting plate is increased. When

h is smaller (e.g. Fig. 27c), a noticeable astigmatic y2 − x2 phase is noticeable. This

deviation is correctable using standard quadrupolar stigmators.
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(a) (b) (c)

(d) (e) (f)

FIGURE 27. Simulation showing possible errors with electrostatic needle transformer
Simulations of the electron phase effects of a shaped conducting needle with physical
surfaces defined to match equipotentials of a constant line charge density, with various
boundary conditions. The electrostatic potential was calculated around a needle of
length L = 50 µm with various boundary conditions, and the phase imparted to the
electron was calculated after traversing the region from x = −10 µm to x = +10 µm,
y = −10 µm to y = +10 µm, and z = −40 µm to z = +40 µm. The von Neumann
boundary condition ∇V · n̂ = 0 was used for all boundaries. (a) Phase distribution
imprinted by the needle on an electron wave passing through the simulated region.
(b) Deviation of the phase shown in (a) from an ideal unwrapper phase described
by Eq. 4.72. Deviation is defined as the difference between the simulated phase
and the ideal phase, divided by the difference between the maximum and minimum
ideal phase in the 20 µm x 20 µm region shown. (c) Deviation of a phase calculated
from a simulation box with a flat ground plate (Dirichlet boundary) at x = +25 µm.
(d) Deviation of a phase calculated from a simulation box with a flat ground plate
at x = +30 µm. (e) Deviation of a phase calculated from a simulation box with a
semi-cylindrical ground plate at a radius of +25 µm from the end of the needle. (e)
Deviation of a phase calculated from a simulation box with a semi-cylindrical ground
plate at a radius of +30 µm from the end of the needle.
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Fidelity of the Phase of Proposed Corrector Element

As the corrector phase solves Laplace’s equation, it is straightforward to generate

this phase with an electrostatic potential V (u, v), following Eq. 4.73. We can

approximate the two-dimensional solution to Laplace’s equation V (u, v) with a nearly-

z-independent three-dimensional solution. The simplest boundary conditions are

constant over a range in z that we’ll call the depth, D. In particular, we can specify

the V (u, v) we want with boundaries at u = 0 and u = u1. In other words,

V (ui, v, z) =

 V (ui, v) |z| ≤ D
2

free elsewhere
(4.85)

We investigated these boundaries with a numerical solution to Laplace’s

equation. For Figures 28 and 29a, we set Dirichlet boundary conditions at two

positions in u. In the range |z| < D
2

, we set the Dirichlet boundary conditions

V (u = 0, v) = VC0 cos
(
−2πv

d

)
(4.86)

V (u = u0, v) = VC1 cos
(
−2πv

d

)
, (4.87)

where VC0 and VC1 are the peak potentials at u = u0 = 0 and u = u1, respectively,

and d is the period in v. We see that, to satisfy Laplace’s equation, we must have

VC1 = VC0 exp
(
−2πu1

d

)
. We used periodic boundary conditions in v, and the von

Neumann boundary condition ∇V · n̂ = 0 for all other boundaries. For Figure 29b,

we used a more physical approximation to the above: we used Dirichlet boundary

conditions with constant potentials along u = 0 only inside square, flat electrodes,

and used the von Neumann boundary condition at u = 0.8d.
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We found that, as long as the depth D was much larger than the period d, i.e.

the potential is constant in z over a much longer length scale than it varies in u and v,

the fringing fields were insignificant. Specifically, we found that the potential decayed

exponentially with a decay length d
2π

outside the device. The contribution of this tail

to the phase scales with d, while the contribution from inside the device scales with

D. The precision of the phase can therefore be arbitrarily increased by increasing D

while holding d constant, up to the limit of the thin grating condition λD � d2. As

λ = 1.97 pm for 300 keV electrons, if d = 10 µm, the device would still act as a thin

grating up to D ∼ 100 m.
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(a) (b)

FIGURE 28. Simulations showing ideal behavior of electrostatic corrector
(a) Cross-section of simulated potential in the u-z plane at v = 0 showing rapid decay
of potential outside the device.
(b) Line plot of a simulated potential at u = 0.3d in the u-z plane showing exponential
decay of the potential outside the device. (blue) Simulated potential V (u = 0.3d, v =
0, z), also shown as blue line in (a); (green) Model of the potential that is constant

inside the device and exponentially decays as V ∝ exp
(
±2π(z±D/2)

d

)
outside the

device.
This simulation used a period d = 1.0, a depth D = 2.0 (resulting in boundaries at
z = ±1.0), arbitary VC0 , and boundaries at u = 0, u = 1.0, v = 0, v = 1.0, z = −50.0
and z = 50.0 with a voxel size of 0.01 by 2−5 by 0.01.
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(a) (b)

FIGURE 29. Simulated corrector phases under ideal and realistic conditions
Corrector phase calculated by simulating the potential with two different sets of
boundary conditions. (a) Phase calculated with potential set by a sinusoidally-varying
potential along u = 0 and along u = d. (b) Phase calculated with flat, constant-
voltage electrodes (grey outlines) at u = 0 and von Neumann boundary conditions at
u = 0.8d. Both produce sufficiently accurate corrector phases.
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Chapter Conclusion

In this chapter, we proposed two techniques for postselection of electron orbital

angular momentum states: with electrostatic transformations in two conjugate planes,

and with small orbital aberrations in magnetic lenses. Both methods are in principle

effective measurements even for the entangled electron-specimen states that result

from inelastic interaction. Development of one or both of these techniques will allow

a far wider range of application of electron orbital angular momentum.
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CHAPTER V

CONCLUSION AND FUTURE POSSIBILITIES

We demonstrated a set of tools associated with the control of electron orbital

angular momentum: efficient preparation of orbital angular momentum states with

diffraction gratings, interaction of electron states with specimen states to probe

structural chirality and magnetic fields, and measurement of final electron states with

either electrostatic elements in conjugate planes or orbital aberrations of magnetic

lenses.

The prospects are good for application of electron orbital angular momentum

to the study of materials. In particular, if we can develop measurement tools that

match in quality our tools to prepare electron OAM, a wide range of applications will

become much easier to realize. We may be able to routinely visualize the orbitals of

an atom or crystal [145], identify the handedness and structure of a biomolecule with

a small electron dose [27, 34, 146], or quickly characterize the symmetry of a crystal

or plasmon mode [31, 146].

In addition to future applications, some more basic questions remain. Is it

possible to use light to efficiently and controllably prepare electrons into orbital

angular momentum states? Is there a unified description of the interaction of electron

spin and angular momentum with the longitudinal and transverse components

of a magnetic field? Can measurement of the orbital angular momentum of

photoemitted or field-emitted electrons reveal more about a material? Does the field

or photoemission from a chiral-structured material show any ‘orbital polarization’?

The future for study of questions related to electron orbital angular momentum is

promising.
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[17] A. Béché, R. Winkler, H. Plank, F. Hofer, and J. Verbeeck. Focused electron
beam induced deposition as a tool to create electron vortices. Micron,
80:34–38, January 2016.
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