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THESIS ABSTRACT 
 
Benjamin Morris Shapiro 
 
Master of Science 
 
Department of Earth Sciences 
 
June 2017 
 
Title: A New Method of Genome-Scale Metabolic Model Validation for Biogeochemical 

Application 
 
 

We propose a new method to integrate genome-scale metabolic models into 

biogeochemical reaction modeling. This method predicts rates of microbial metabolisms 

by combining flux balance analysis (FBA) with microbial rate laws. We applied this new 

hybrid method to methanogenesis by Methanosarcina barkeri. 

Our results show that the new method predicts well the progress of acetoclastic, 

methanol, and diauxic metabolism by M. barkeri. The hybrid method represents an 

improvement over dynamic FBA. We validated genome-scale metabolic models of 

Methanosarcina barkeri, Methanosarcina acetivorans, Geobacter metallireducens, 

Shewanella oneidensis, Shewanella putrefaciens and Shewanella sp. MR4 for application 

to biogeochemical modeling. FBA was used to predict the response of cell metabolism, 

and ATP and biomass yield. Our analysis provides improvements to these models for the 

purpose of applications to natural environments. 
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CHAPTER I 

A NEW METHOD OF GENOME-INFORMED BIOGEOCHEMCIAL REACTION 

MODELING 

1. Introduction 

Biogeochemical reaction modeling has become an essential tool for investigating 

the microbial processes of natural environments (Bethke; Jin and Roden). This method 

builds on both geochemical and microbial reaction models. Geochemical models describe 

abiotic chemical reactions, such as chemical speciation, redox reaction, and mineral 

precipitation and dissolution. Microbial models capture metabolic reactions of 

microorganisms. By coupling the simulations of abiotic and biological processes, 

biogeochemical modeling offers a quantitative assessment of microbial processes in the 

context of concurrent geochemical reactions. It has been applied to both theoretical and 

practical problems, from biomineralization, to element cycling, and to the remediation of 

contaminants.  

Current approaches of biogeochemical modeling describe microbial metabolisms 

using rate laws, such as the Monod equation and its modifications. These rate laws are 

developed for microbes in laboratory and industrial reactors (Monod; Simkins and 

Alexander), and thus may not be effective in simulating microbial metabolisms in nature. 

For example, most laboratory experiments offer optimal growth conditions, and microbial 

metabolism proceeds at maximum rates. However, in the natural environment, where 

nutrients are often limited and of fluctuating concentrations, microbes must regulate 

biochemical pathways and fine-tune metabolic rates to effectively utilize available 
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nutrients and gain competitive advantage. As a result, natural microbes may behave 

differently from the predictions of the rate laws developed from laboratory experiments.   

Recently, a genome-based method, dynamic flux balance analysis (dFBA), has 

been applied as an alternative to microbial rate laws in predicting microbial rates. This 

method takes advantage of genome-scale metabolic network models, the stoichiometric 

reaction equations of enzymes within entire organisms (Orth, Thiele, and Palsson). It 

applies linear optimization to estimate metabolic rates and other phenotypes from the 

rates of microbial nutrient uptake. FBA brings genome-scale biochemical pathways into 

the simulation of microbial metabolism, which make it possible to incorporate 

biochemical pathways and metabolic regulation into biogeochemical modeling. 

The method of dFBA has been applied to Geobacter and Methanosarcina species, 

as well as to other prokaryotes of biogeochemical significance. However, its application 

has not always been successful. Previous studies have shown that dFBA may 

overestimate the rates of microbial metabolism, sometimes by a factor of 10. This 

overestimation has been attributed to the under-constrained nature of genome-scale 

metabolic models (Scheibe et al.; Tartakovsky et al.).  

In addition, the overestimation may result from the way dFBA computes the 

uptake fluxes of nutrients. Specifically, dFBA computes the uptake fluxes by applying 

the Michaelis-Menten equation to enzymes that consumes nutrients. This equation 

assumes that enzyme reactions depend only on the concentrations of substrates, but 

enzyme activities may also be limited by thermodynamic drives. Thus, the Michaelis-

Menten equation may overestimate the uptake fluxes of nutrients.  
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The overestimation of dFBA may also arise from de trop reactions in genome-

scale metabolic models. In constructing these models, hypothetical reactions, without 

gene association, are often added, to account for documented phenotypes (Thiele and 

Palsson). But non-gene-associated reactions may become de trop – that is, in addition to 

producing the desired phenotype, they may interact with other gene-associated enzyme 

reactions to carry out erroneous functions that are beyond the capability of the microbes 

of interest. 

Here we propose a new method for applying genome-scale metabolic models to 

biogeochemical modeling. We first separate genome-scale metabolic models into 

catabolic and biosynthesis networks. These network models are validated to ensure their 

applicability to the environment using metabolic control analysis. We predict the ATP 

fluxes of the catabolic network by combining the modified Monod equation and FBA. 

We then predict microbial growth rates by applying the ATP fluxes and FBA to the 

biosynthesis network.  

Specifically, network models are validated using metabolic control analysis and 

nutrient fluxes typical of natural environments. Metabolic control analysis quantifies the 

response of individual enzyme reactions of metabolic networks to the variations in 

nutrient uptake fluxes. The results of the analysis are applied to identify de trop reactions 

and to ensure that model predictions are consistent with the physiology of the microbes of 

interest.  

The new method then constrains genome-scale metabolic networks using the 

fluxes of chemical compounds produced or consumed by cell catabolism only. Examples 

of catabolism-specific compounds include electron acceptors A and their reduced forms 
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A-. According to the principle of chemical kinetics, at steady state, rates of enzyme 

reactions (including uptake fluxes of A or release fluxes of A-), are stoichiometrically 

equivalent to the rates of catabolism. Thus we can constrain the fluxes of A or A- using 

the rates of respiration, and then compute respiration rates according to a modified 

Monod equation that accounts for both kinetics and thermodynamics of microbial 

respiration (Jin and Bethke).  

We illustrated the new method by applying it to methanogenesis. Methanogenesis 

is a key biogeochemical process in carbon cycling and global climate change. We 

simulate the metabolism of Methanosarcina barkeri. M. barkeri is a representative 

methanogen that has been extensively studied. Specifically, we are using the genome-

scale metabolic network model for M. barkeri strain Fusaro (Gonnerman et al.). M. 

barkeri is metabolically diverse, capable of making methane from H2/CO2, acetate, 

methanol, and other methyl-containing compounds. We simulated acetoclastic and 

methanol methanogenesis by M. barkeri in laboratory bioreactors using both the hybrid 

method and dFBA. The simulation results show that the new method well predicts 

experimental observations, and represents an improvement over the current method of 

dFBA.   

2. Methods 

2.1. Biogeochemical Reaction Modeling 

Microbes derive energy for growth and maintenance by catalyzing redox 

reactions. Biogeochemical reaction models describe microbial metabolisms using rates of 

respiration, growth, and maintenance. Current methods calculate respiration rate 

(mol·g-1·s-1) according to the modified Monod equation, 
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 (1) 

 where k is the rate constant (mol×g-1×s-1), mD and mA are molal concentrations of electron 

donors and acceptors, respectively, DG is the Gibbs free energy change of redox 

reactions, c is the average stoichiometric number, nP is the ATP yield, DGP is the 

phosphorylation energy, R is the gas constant, and T is the absolute temperature. 

Microbial growth rate is computed according to  

( )k
X M k

[X ] [X ]d r r
dt

¢ ¢= - ×  (2) 

where [X] is the biomass concentration, the dry weight per unit volume (g·L-1), Xkr¢   is the 

specific growth rate, and Mkr¢  is the specific maintenance rate (s-1).  

Microbial metabolism consumes chemical species in the environment. The rate at 

which chemical compound i is consumed is calculated according to 

( )Ck Xk Mki
i Ck i Xk i Mk k

k
[X ]dm r r r

dt
n n n¢ ¢ ¢= × + × + × ×å  (3) 

where mi is the molal concentration; Ck
in  and Xk

in  are stoichiometric coefficients of 

compound i in catabolism and biosynthesis, respectively. Biogeochemical reaction 

models simulate abiotic reactions using the standard protocol of geochemical reaction 

modeling. For example, chemical speciation is assumed at equilibrium. Redox reaction 

and mineral precipitation and dissolution can be simulated using either thermodynamic 

equilibrium or kinetic rate laws. 

2.2. Flux Balance Analysis 

Flux balance analysis (FBA) is a method for analyzing genome-scale metabolic 

models. These models describe genome-scale metabolic networks using a stoichiometric 
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matrix S of size m×n. Here, n is the number of enzymes within the entire organism, and m 

is the number of metabolites consumed or produced by the enzymes. Element Sij is the 

stoichiometric coefficient of metabolite i in the reaction equation of enzyme j. Applying 

the principle of mass balance to these models leads to J = S·R. Here J and R are vectors; 

element Ji is the net rate of metabolite Ai production (mmol·g-1·s-1), and element Rj is the 

flux (or net reaction rate) of enzyme j (mmol·g-1·s-1).  

The goal of FBA is to estimate enzyme fluxes at steady state. It takes the fluxes of 

nutrient uptake as input and assumes that the objective of metabolic networks is to 

maximize rates of microbial growth. It solves for enzyme fluxes using linear 

optimization. 

2.3. Metabolic Control Analysis         

Metabolic Control Analysis quantifies the relative response of enzyme flux Rj to 

the variations in the uptake flux Ri of metabolite i using flux control coefficient j
iC ,  

i jj
i

j i

F dF
C

F dF
×

=
×

 (4) 

Flux control coefficients quantifies the response of enzyme fluxes to external 

perturbations, and thus can be applied to validate genome-scale metabolic networks. 

Specifically, microbes respond to nutrient availability by regulating biochemical 

pathways and modulating the fluxes of enzymes. In the cases of no response, enzyme 

fluxes vary linearly with the fluxes of nutrient uptake, and the flux control coefficients 

remain at 1. In the case of metabolic responses, the relative increase in enzyme fluxes can 

be either larger or smaller than those of nutrient uptake fluxes, and the flux control 

coefficients become either larger or smaller than 1.  
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2.4. Hybrid Method  

The hybrid method simulates microbial metabolism by combining FBA of 

genome-scale metabolic models and rate laws of microbial respiration. This method first 

separates the genome-scale metabolic models into a catabolic network model and a 

network model of biosynthesis, and then applies FBA separately to the respiration and 

biosynthesis networks. The catabolic network consumes electron donors and acceptors 

from the environment, and produces ATP. The biosynthesis network takes up nutrients, 

and uses the ATP to make new cells. It computes respiration rate according to the 

modified Monod equation.   

The hybrid method applies FBA to the catabolic network using uptake rates of 

electron donors or acceptors as a constraint. The results include the yield and rate of ATP 

production. It then applies FBA to the biosynthesis network, using the ATP production 

rate as a constraint. The output includes the rates of growth and nutrient consumption.  

2.5. dFBA 

dFBA computes microbial growth rates by applying FBA directly to genome-

scale metabolic models. It first applies the Michaelis-Menten equation to enzymes that 

directly consume electron donors or acceptors, and computes the rates at which electron 

donors and acceptors are consumed, 

S
N max,j

j S S S,j

mF V
m K

¢= - ×
+å Õ  (5) 

where max,jV ¢  is the maximum activity of enzyme j per cell dry weight (mmol×g-1 dw×hr-1, 

or mmol×g-1×hr-1), mS is the concentration of enzyme substrate, and KS,j is the affinity 

constant. The negative sign appears because current genome-scale models describe the 
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exchange of chemical compound between cell and the environment as the movement of 

nutrients from the extracellular space to the environment, or the release of nutrients from 

the cell. It then applies FBA to the genome-scale metabolic models, using the 

consumption rates of electron donors (or acceptors) as a constraint.   

2.6. Application 

We applied the hybrid method to methanogenesis by M. barkeri. Specifically, we 

first constructed a network model of methanogenesis and a network model of 

biosynthesis on the basis of the biochemical reactions within the genome-scale metabolic 

network model, iMG746 (Gonnerman et al.). The new network models included the 

following modifications: Na+/H+ antiporter that translocate one proton per Na+, acetate 

transporter moves one acetate, together with one proton, into the cytoplasm, and the 

maintenance reaction is excluded from the biosynthesis network.  

We validate the network models using the flux control coefficients of nutrient 

uptake. The flux control coefficients are calculated by applying FBA to the networks of 

methanogenesis and biosynthesis across a wide range of fluxes of substrate uptake or 

ATP production. The objective for the catabolic network is the maximization of ATP 

production fluxes. The objective for the biosynthesis network is the maximization of 

growth rate.  

We simulate the metabolisms of M. barkeri using both the hybrid method and 

dFBA. Applying the hybrid method requires the kinetic parameters for methanogenesis 

and maintenance. Applying dFBA requires the kinetic parameters of enzymes that 

directly consume substrates, including methanol methyltransferase (MTA) and acetate 

transporters (ACT). The parameters for methanogenesis and for MTA are taken directly 
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from previous experimental studies. The parameters for acetate transporters remain to be 

determined, and thus are assigned on the basis of the measurements for Cycloclasticus 

oligotrophus (table 1) (Button).  

Applying both the hybrid method and dFBA also requires the rate of cellular 

maintenance. Gonnerman et al. estimated that M. barkeri had a maintenance rate of 1.75 

mmol ATP×g-1×hr-1.  Taking the growth yield of M. barkeri as 5.0 g×mol-ATP-1, M. 

barkeri has a specific maintenance rate of 2.4×10-6 s-1. 

We implemented the hybrid method by linking COBRA and PHREEQC software 

packages and by using the Microsoft Component Object Model (COM) Server as a 

control and data management source. COBRA and PHREEQC specialize in FBA and 

biogeochemical reaction modeling, respectively. COM is a Microsoft foundations 

technology for exchanging information among software packages of different platforms.  

At each time step, the hybrid method first computes the specific rate of 

methanogenesis using the modified Monod equation (eq. 8) and chemical composition of 

the medium. The specific rate is then applied as a constraint in the analysis of the 

methanogenesis network using FBA. The results include the rates of ATP and methane 

production. Next, the ATP production rate is fed to the application of FBA to the 

biosynthesis network. The application assumes that the efficiency of biosynthesis is 0.5, 

accounting for the observation that actual growth yields are 50% of theoretical 

predictions. The analysis of the biosynthesis network predicts the rates of growth, 

nutrient consumption, and metabolite production, which are then utilized to compute the 

chemical composition and biomass composition in the medium at next time step. 
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3. Results and Discussion 

We simulated the methanogenesis and growth of M. barkeri using the genome-

scale metabolic model, iMG746. Metabolic network models include (1) stoichiometric 

equations and directions of enzyme reactions, and (2) exchange fluxes of energy sources 

and growth nutrients. We validated model iMG746 by checking the consistency in the 

constraints for exchange fluxes, and by carrying out metabolic control analysis. We then 

applied the hybrid method to simulate acetoclastic and methanol methanogenesis of M. 

barkeri in laboratory bioreactors. For comparison, we also simulated the metabolism of 

M. barkeri using dFBA. 

3.1. Constraints of Exchange Fluxes  

Like other genome-scale metabolic models, iMG746 describes nutrient uptake 

from the environment and the release of metabolites into the environment using 74 non-

gene-associated exchange reactions. iMG746 considers a total of 15 nutrients. Out of 

these nutrients, acetate is constrained by a maximum uptake rate, and sulfite is limited by 

a narrow range – from a maximum uptake rate of 10-2 mmol·g-1·hr-1 to a maximum 

production rate of +10-4 mmol·g-1·hr-1. For other nutrients, there is no limitation (see 

supplementary table S1).   

There is no explanation on the special treatment on the constraints of sulfite 

exchange in model iMG746. If a typical constraint for element sources, –104 to +104 

mmol·g-1·hr-1, is applied to sulfite, FBA predicts that regardless of methanogenesis rates, 

acetate or methanol is produced at 103 mmol·g-1·hr-1, the maximum rate allowed by 

COBRA (see figure 1).   
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3.2. Metabolic Control Analysis  

Our metabolic control analysis first focused on the network of methanogenesis 

using acetate as a substrate. To compute flux control coefficients, we carried out a series 

of FBA by varying acetate exchange fluxes from 10-5 to 10 mmol·g-1·hr-1. Note that we 

can perform the same analysis by varying the exchange flux of methane, and arrive at the 

same results (data not shown).  

Figure 2 shows how the control coefficient of acetate on methane production 

varies with the uptake flux of acetate. The flux control coefficient remains constant at 1 

over the entire range of analysis. A constant control coefficient suggests that there is little 

response from the enzymes with the methanogenesis network to the changes in acetate 

uptake fluxes and, as a result, the rate of methane production varies linearly with acetate 

uptake flux. We repeated the analysis for methanol methanogenesis, and the flux control 

coefficient of methanol on methane production also remains at unity, regardless of the 

uptake fluxes of methanol. 

We then carried out the metabolic control analysis on the biosynthesis network by 

varying the flux of ATP supply from 10-5 to 10 mmol·g-1·hr-1. Figure 2 shows how the 

flux control coefficient of biosynthesis rate varies with ATP formation rate of M. barkeri. 

The flux control coefficient for always stays above 1, indicating that in addition to the 

ATP flux from methanogenesis, there is an additional energy source that powers the 

synthesis of biomass. Furthermore, the negative slope of the control coefficient suggests 

that where the flux of ATP from methanogenesis becomes smaller, the contribution of 

this unknown energy to biosynthesis becomes more important.    
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Variations of control coefficients are not unexpected. As methanogens adapt to 

the changes in environmental conditions, they may regulate the activities of individual 

enzymes and re-route the pathways of metabolic functions, thereby modulating the 

significance of enzymes and the stoichiometric coefficients of nutrients and metabolic 

products in overall metabolism. However, the ranges of the flux control coefficient in the 

biosynthesis network is too large to be physiologically feasible. Specifically, the 

variations in the flux control coefficient suggests that in addition to methanogenesis, 

there is an additional source of ATP in the metabolism M. barkeri – a prediction that is 

inconsistent with the current state of knowledge. 

3.3. De Trop Reaction 

The metabolic control analysis pointed out that the biosynthesis network may harbor 

de trop reactions of ATP production. We computed the flux control coefficients for 200 

non-gene-associated reactions in model iMG746 (Gonnerman et al.) (see supplementary 

table S2). Based on the results, we identified a de trop reaction of sulfite reductase 

(SULR2).  

3 F420-2H2 + SO3 ! 3 F420-2+ 3 H2O + H2S + H+ 

This reaction was first identified in Methanococcus maripaludis, and its function was 

assumed as detoxifying or assimilating sulfite (Johnson and Mukhopadhyay). But FBA 

results show that this reaction proceeds backwards, oxidizing sulfide.  

The occurrence of sulfide oxidation arises from the consumption of cysteine. 

Cysteine is an essential nutrient for the growth of M. barkeri. FBA predicted that, in 

model iMG746, cysteine desulfhydrase (CYSDS) utilize cysteine to produce pyruvate 

and sulfide, 
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SULR2 then proceeds backwards, oxidizing sulfide by reducing cofactor F420. Pyruvate 

is then converted to acetyl-CoA, and finally to acetate. The conversion of acetyl-CoA to 

acetate is carried out by PTAs and acetate kinase, producing ATP. In other words, FBA 

of iMG746 predicts that M. barkeri utilizes cysteine as an energy source.  

To prevent the erroneous prediction, we applied two modifications to model 

iMG746. First, we set exchange fluxes for sulfite as –inf and +inf. Second, we limit the 

function of SULR2 to the assimilation of sulfite, by setting the reaction only in the 

forward direction. These modifications eliminated the erroneous predictions, and 

produced a constant flux control coefficient of ATP on growth over the range of ATP 

fluxes tested here.  

3.4. Acetoclastic Methanogenesis 

M. barkeri can make methane by dismutating acetate, 

2 4 3Acetate H O CH HCO-+ +   

Fukuzaki et al. examined the progress of acetate consumption by M. barkeri. In their 

experiments, cells grew at 37 oC in batch reactors of 125 mL that contained 50 mL of 

complex growth medium. The medium had pH 7.1 and contained 19.7 mM acetate. 

Figure 3 shows, according to the experimental observations, how acetate concentrations 

varied with time. 

We simulated the experiments using the hybrid method. We evaluated the rates of 

acetate consumption by methanogenesis using the modified Monod equation and the 

kinetic parameters determined for M. barkeri (table 1). We set an initial biomass 

concentration of 50 mg·L-1 with a specific maintenance rate of 8.92×10-3 h-1.  

cysteine-L +H2O→ H2S+NH4
+ + pyruvate
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As shown in Figure 3, the simulation results match with the observations of 

Fukuzaki et al. At the beginning of the experiments, acetate concentration decreased 

almost linearly with time. After two days into the experiments, the decrease slowed 

down. At day 4, acetate reached a constant concentration. On the other hand, methane 

and biomass concentrations increased linearly during the first two days of the 

experiments. At day 4, methane reached its maximum concentration of 0.3 mM. Note that 

because of the limited solubility, most methane built up in the headspace. At about day 2, 

biomass concentration also reached its maximum. Afterwards, biomass concentration 

decreased steadily with time.  

Figure 3C shows the results of flux balance analysis on the networks of 

methanogenesis and biosynthesis. The ATP yield of the methanogenesis network 

remained constant during the experiments, and the value was 0.75. Acetate consumption 

by biosynthesis network also varied linearly with the ATP flux from the methanogenesis 

network. These linear variations gave a constant fraction of acetate utilized by the 

biosynthesis network. The acetate fraction to biosynthesis is 14.3%.  

According to the rate law (eq. 1), methanogenesis rate depends on acetate 

concentrations and the energy available to M. barkeri. As shown in figure 3D, the kinetic 

factor of acetate decreased with time, due to the decrease in acetate concentration. The 

thermodynamic factor also decreased with time, because of the decrease in the available 

energy (fig 3E). As a result, in the first two days, the rate decreased linearly with time. At 

day 4, the available energy decreased close to the saved energy, which decreased the 

thermodynamic drive and thus the rate of methanogenesis to 0.  
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Microbial growth rate depends on biomass concentration and the specific growth 

rate. At the beginning, the growth rate increased with time, due to the increase in biomass 

concentrations (fig 3F). After reaching a maximum value at day 2, the growth rate started 

to decrease. This is because of the significant decrease in the specific growth rate. After 

day 4, the specific growth rate decreased near 0.   

We also simulated the experimental progress by using dynamic FBA (dFBA). 

dFBA constrained the whole-cell metabolic network, including both catabolic 

(methanogenesis) and biosynthesis networks, using the rate of acetate uptake. M. barkeri 

uses acetate transporters to move acetate from the environment to the cytoplasm. Because 

the kinetic parameters of this enzyme are to be determined for methanogens, we 

evaluated the rate of acetate uptake using the Michaelis-Menten equation, and the 

parameters for acetate transporters (table 1). The simulation set an initial biomass 

concentration of 120 mg·L-1. 

As shown in figure 3, the dFBA predicted well the progress of acetate 

consumption at the beginning of the experiments. However, after day 2.5, dFBA returned 

an infeasible solution. This occurred because dFBA estimates growth rates using the 

method of FBA. FBA builds cell maintenance directly into genome-scale metabolic 

networks. Specifically, FBA represents cell maintenance using the reaction of ATP 

hydrolysis, and quantifies maintenance rate using the rate of ATP consumption. Under 

laboratory conditions, M. barkeri has a maintenance rate of 1.76 mmol·g-1·hr-1.  

According to the results of dFBA, the rate of ATP production decreased with 

time, because of the decrease in acetate concentrations. At day 2.5, where the rate of ATP 
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production by methanogenesis decreases to the rate of ATP consumption by maintenance, 

FBA returns infeasible solution, and the simulation stopped.  

The difference between the two simulation results arises from the control of 

thermodynamics on methanogenesis rate. Methanogenesis is subject to significant 

thermodynamic control (Bethke et al.). The biogeochemical reaction modeling accounts 

for the energy available in the environment using the thermodynamic factor FT. As 

shown in figure 3D and E, the thermodynamic factor was near unity at the beginning of 

the experiment, and decreased with time, due to the decrease in acetate concentrations 

and the accumulation of bicarbonate and methane. After four days into the experiment, 

the value decreased near 0, limiting significantly the rate of methanogenesis. In contrast, 

dFBA describes the rate of acetate uptake using the Michaleis-Menten equation, which 

calculates the uptake rate as a function of acetate concentration. As a result, 

methanogenesis continues until acetate was too low to support cell maintenance.  

3.5. Methanol Methanogenesis 

M. barkeri can also make methane using methanol, 

2 3 4
1 1 1 3Methanol H H O HCO CH
4 4 4 4

+ -= + + + . 

Smith and Mah analyzed methane production and growth of M. barkeri that utilized 

methanol. In their experiments, cells grew between 35-37 oC in 300 mL flasks that 

contained 100 mL complex medium. The medium had pH 6.5 and 25 mM methanol. 

Figure 4 shows, in accordance with the experiments, how dissolved methane and biomass 

concentrations varied with time. 

We first simulated the experimental progress using the hybrid method. 

Specifically, in order to apply model iMG746 to methanol methanogenesis, the exchange 
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flux of acetate is set to 0. We computed the specific rates of methanol consumption using 

the modified Monod equation (eq. 1) and the kinetic parameters determined for M. 

barkeri (table 1). We set an initial biomass concentration of 1.5 mg·L-1 with a specific 

maintenance rate of 8.92·10-3 h-1. 

The simulation results match the experimental observations of Smith and Mah 

(fig 4). According to the simulation results, during the first two days of the experiments, 

methanol concentration decreases gradually with time. Afterwards, methanol 

concentration decreased sharply, and decreased near 0 at day 4. Dissolved methane and 

biomass concentrations increased slowly at the beginning and after day 2, the 

concentrations increased relatively fast. At day 4, methane and biomass concentrations 

reached their maximum values, 0.33 mM and 85 mg·L-1, respectively.  

Figure 4C shows the results of flux balance analysis on the networks of 

methanogenesis and biosynthesis. For methanogenesis, the ATP yield remained at 0.75 

during the experiments. Methanol was consumed by both methanogenesis and 

biosynthesis networks. The fraction of methanol consumption by biosynthesis in the total 

methanol consumption was constant, and the value was 18%. 

According to the modified Monod equation, methanogenesis rate depends on the 

kinetic factor of methanol and the thermodynamic factor of the available energy. As 

shown in figure 4D, both the kinetic and thermodynamic factor were near unity at the 

beginning of the experiment (see table 1). The kinetic factor decreased slowly with time. 

After 3.5 days into the experiments, the kinetic factor decreased sharply. After the kinetic 

factor decreased near 0 at day 4, the thermodynamic factor also decreased to 0. As a 
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result, the methanogenesis rate is controlled mainly by the kinetic factor, and its variation 

with time followed the same pattern as that of the kinetic factor.  

Microbial growth rate depends on biomass concentration and the specific growth 

rate. According to the FBA results of the biosynthesis network, the specific growth rate is 

proportional to the specific rate of methanogenesis (fig 4F,G). At the beginning, the 

growth rate increased with time, due to the increase in biomass concentration (fig 4H). 

After reaching a maximum value at day 4, the growth rate started to decrease and 

decrease below 0, because of the significant decrease in the specific rate of growth. As a 

result, the population sizes started to decline.  

We simulated the experiments using dFBA. We calculated the rate of methanol 

uptake by applying the Michaelis-Menten equation to methanol methyltransferase (MTA) 

of M. barkeri (see table 1). The simulation set an initial biomass concentration of 10–8 

mg·L-1 or 1 cell per reactor – the lowest possible concentration in the experiments. 

As shown in figure 4, the dFBA did not predict well the methane production or 

microbial growth. After 11 hours, dFBA returned an infeasible solution. This occurred 

because dFBA estimates growth rates using the method of FBA. FBA builds cell 

maintenance directly into genome-scale metabolic networks. Specifically, FBA 

represents cell maintenance using the reaction of ATP hydrolysis, and quantifies 

maintenance rate using the rate of ATP consumption. Under laboratory conditions, M. 

barkeri has a maintenance rate of 1.75 mmol·g-1·hr-1.  

According to the results of dFBA, the rate of ATP production decreased with 

time, because of the decrease in methanol concentrations (fig 4A). After hour 11, where 
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the rate of ATP production by methanogenesis decreases to the rate of ATP consumption 

by maintenance, FBA returns an infeasible solution, and the simulation stopped.  

3.6. Diauxic Growth 

Where both acetate and methanol are present, M. barkeri demonstrates a diauxic 

pattern in its growth. M. barkeri first grows by utilizing methanol as a substrate. After 

methanol is depleted, it starts to use acetate as a substrate (Smith and Mah). Diauxic 

growth is widespread in prokaryotes, and is attributed to cell’s preferential usage of 

substrates that support fast growth. Genome-informed biogeochemical modeling 

explicitly simulates microbial growth rates, and thus provides a framework for simulating 

diauxic growth of microbes.  

Smith and Mah grew M. barkeri using both acetate and methanol. In their 

experiments, cells grew at 35-37 oC in a medium that had pH 6.5. Figure 5 shows, 

according to the experimental observations, how methane and biomass concentrations 

vary with time. The isotope labeling experiments demonstrated that methane was first 

produced from methanol and, after methanol was consumed, then derived from acetate 

(Smith and Mah).    

We simulated the diauxic growth experiments of M. barkeri using genome-

informed biogeochemical modeling. We set the initial methanol concentration at 24.4 

mM, and the initial acetate concentration at 53.0 mM. Following the above examples, we 

computed the uptake rates of acetate and methanol using the modified Monod equation 

(eq. 1, table 1). We assume that, where acetate and methanol are both available, M. 

barkeri use the one that supports higher growth rate. We also assumed that after one 

substrate is depleted, there was a lag time before the utilization of the other substrate. We 
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found that a lag phase of 11.87 days (285 hours) describes well the experimental 

observations. We set an initial biomass concentration of 2 mg·L-1 with a specific 

maintenance rate of 8.92×10-3 h-1. 

The simulation results describe well the experimental observations of Smith and 

Mah. As shown in figure 5, M. barkeri first grew by utilizing methanol as a substrate, 

decreasing methanol concentrations. After 4.5 days into the experiments, methanol was 

depleted. Methanol methanogenesis accumulated inorganic carbon and methane in the 

media. At the end of methanol methanogenesis, methane and TIC reached a concentration 

of 0.23 mM and 4.4 mM respectively.  

After methanol was depleted, we assumed that M. barkeri entered a lag phase till 

day 12. During this lag phase, the biomass concentration decreased because of cellular 

maintenance. After day 12, M. barkeri started to grow by using acetate as substrate, 

accumulating more TIC and methane in the reactors. After day 19, methane and TIC 

reached their maximum concentrations of 0.72 mM and 40 mM respectively.  

FBA predicted that, at the beginning of the experiments (fig 5C), M. barkeri 

acquired a growth rate of 1.05 day-1 by utilizing methanol, larger than the rate of 0.65 

day-1 by using acetate. As a result, methanol was utilized to support the growth. After day 

4 no methanogenesis or growth occurred as the result of a lag phase imposed on 

acetoclastic methanogenesis.  

At about day 12, the methanogenesis and growth of M. barkeri resumed, 

consuming acetate as a substrate. The decreases in acetate concentration decreased the 

available energy (fig 5E). After day 20, the available energy was close to the value of the 
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saved energy, which decreased the thermodynamic drive and thus the rate of 

methanogenesis and growth to 0.  

3.7. Discussion 

We applied the hybrid method of FBA and Monod equation to simulating the 

metabolisms of M. barkeri utilizing acetate and methanol. The hybrid method predicted 

well the laboratory observations, including the diauxic metabolism of acetate and 

methanol. The hybrid method represents an improvement over both dFBA and the 

traditional approach of rate laws for simulating the kinetics of microbial metabolisms.  

The hybrid method brings out unprecedented details of genome-scale metabolic 

dynamics to biogeochemical reaction modeling. The traditional approach separates 

microbial metabolism into respiration and growth. It simulates respiration reactions using 

rate laws, such as the Monod equation and its modified forms. For microbial growth, 

because of the uncertainties in the reaction stoichiometry, the simulated rates of nutrient 

consumptions are not up to the accuracy in the simulations of catabolic reactions.  

The traditional approach is also limited in that it takes microbial cells as a black 

box and does not account for biochemical pathways or metabolic regulation. It assumes 

that reaction stoichiometry and microbial parameters remain constant, regardless of 

environmental conditions.  

The hybrid method builds on dFBA, and includes significant modifications for 

improving the quality of the predictions. The method of dFBA combines FBA with the 

Michaleis-Menten equation. FBA predicts metabolic fluxes and growth rates from the 

uptake rates of substrates, not the concentrations of substrates. The prediction is arrived 
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at using linear optimization. In essence, FBA predicts the maximum yields of microbial 

metabolism, the production of metabolites and biomass per substrate.  

Substrate uptake fluxes are computed by applying the Michaleis-Menten equation 

to the enzymes that directly consume substrates. But applying the Michaelis-Menten 

equation to natural microbes is challenging. First, evaluating the Michaelis-Menten 

equation requires both Michaelis constant for substrates and the enzyme activity per cell. 

But both parameters are not available for most natural microbes. Microbes are known for 

their capability of adapting to environmental conditions. Such adaptation may result in 

modifications in the whole-cell activity at different environmental conditions, such as 

different substrate concentrations.  

The Michaleis-Menten equation oversimplifies the kinetics of enzymes by only 

accounting for substrate concentrations. But both reaction products and reaction 

thermodynamics may place a significant control on fluxes of enzymes, especially for 

those that proceeds close to thermodynamic equilibrium. Furthermore, for most cells, the 

concentrations of metabolites are not known, and so is the thermodynamic drives.       

Furthermore, by applying activities of individual enzymes as constraints for the 

entire metabolic networks, dFBA assumes that microbial metabolism is limited locally by 

these nutrient-consuming enzymes. However, this assumption may not be applicable to 

most metabolisms. Previous studies show that microbial metabolism is often limited by 

enzymes within cells. Previous sensitivity analyese show that dFBA predictions were 

highly dependent on the kinetic parameters of substrate uptake enzymes (Klier). Previous 

applications also show that dFBA may overestimate microbial activities by one order of 

magnitude (Scheibe et al.). 
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The hybrid method differs from dFBA by using rate laws to account for 

environmental conditions. In the environment, electron donors and acceptors are often 

limited, and so is the energy available to microbes. In the modified Monod equation (eq. 

1), the kinetic factors account for the availability of electron donors and acceptors, and 

the thermodynamic factor accounts for the energy available in the environment. The 

hybrid method applies the respiration rates as a constraint for steady-state enzyme fluxes 

within the entire network of catabolism, and thus can be viewed as a global constraint on 

microbial metabolic networks.  

The hybrid method takes full advantage of the predictive power of FBA by 

separating genome-scale metabolic networks into the networks of respiration and 

biosynthesis. First, it applies FBA to catabolic networks to predict the maximum yield of 

ATP production, which feeds to microbial rate laws to compute the rates of respiration. 

Second, it applies FBA to biosynthesis networks to predict the maximum rates of 

microbial growth. In this way, the hybrid method does not set the yields of ATP and 

microbial growth as constants, but computes in real time these parameters by accounting 

for the dynamics of environmental conditions. In other words, the hybrid method brings 

unprecedented details of metabolic dynamics into the simulation of microbial 

metabolisms and how microbes may respond to changes in environmental conditions.   

The hybrid method improves predictions by eliminating infeasible solutions of 

FBA. Previous studies show that at small substrate concentrations, FBA returns infeasible 

solutions and suggests that microbial metabolism fails to proceed. Such predictions 

underestimated the extent of substrate consumption by microbial metabolism (Scheibe et 

al.; Tartakovsky et al.). Previous studies attributed the infeasible solution and the under-
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prediction of reaction extents to the under-constrained nature of genome-scale metabolic 

models – large numbers of unknown enzyme fluxes compared to few defined 

relationships among the fluxes (Scheibe et al.; Tartakovsky et al.).  

In the case of iMG746, the infeasible solutions arise from the consideration of 

cellular maintenance by FBA. Specifically, FBA includes cell maintenance into genome-

scale metabolic networks using a hypothetical reaction of ATP hydrolysis. At small 

concentrations of substrates, as in most natural environments, enzyme fluxes, including 

those of ATP synthase, are also small. Where the ATP fluxes decrease below the flux of 

ATP consumption by maintenance, there is no solution of enzyme fluxes that can support 

microbial growth.  

The hybrid method keeps the classical framework of biogeochemical modeling, 

by accounting for maintenance rate in predicting biomass concentrations. It removes the 

hypothetical reaction of cellular maintenance from the genome-scale metabolic model. In 

this way, it relaxes the constraint of cellular maintenance on both catabolism and 

biosynthesis, and makes possible for FBA to locate feasible solutions at small rates of 

substrate uptake. 

 The accuracy of the predictions by the hybrid method and dFBA depends on both 

uptake fluxes and genome-scale metabolic models. In the natural environment, both 

energy sources and nutrients can vary from limited in oligotrophic environments to 

abundant in eutrophic settings. Where the concentrations of energy sources and nutrients 

change, microbes have to regulate their metabolism by modulating fluxes through 

individual enzymes, in order to survive and grow.  
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Most genome-scale models are developed primarily for cell metabolism under 

laboratory conditions. These methods are validated based on laboratory observations. 

Thus, before applying these models to natural environments, it is import to ensure that 

these models are consistent with the physiology of the targeted microbes, and applicable 

to the environment of interest.  

We propose to validate genome-scale metabolic models using metabolic control 

analysis. Genome-scale metabolic models are primarily developed and validated for 

laboratory and industrial applications. In laboratory and industrial reactors, energy 

sources and nutrients are abundant, driving microbial metabolisms at relatively large 

rates. But biogeochemical modeling mainly target natural environments, where nutrients 

are often limited and microbial metabolisms are sluggish. Thus a genome-scale metabolic 

model validated for abundant nutrient conditions may not be directly applicable to natural 

environments.  

Metabolic control analysis is a sensitivity analysis of enzyme fluxes in 

biochemical pathways (Kacser and Burns; Heinrich and Rapoport). It quantifies the 

impact of individual enzymes on overall pathways using flux control coefficients (Flint et 

al.; Middleton and Kacser; Torres et al.). In addition, the metabolic control analysis has 

also been applied to investigate the regulation and design of biochemical pathways 

(Groen et al.; Salter, Knowles, and Pogson; Fell and Snell).  

Metabolic control analysis quantifies the responses of enzyme fluxes within 

metabolic networks to external perturbations. Thus it represents a powerful tool for 

validating genome-scale metabolic models. Here, we designed a framework for validating 

genome-scale metabolic networks for the purpose of biogeochemical application. This 
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method samples across a wide range of nutrient uptake fluxes, from those in oligotrophic 

environments to those typical of laboratory reactors. At each nutrient uptake flux, we 

applied FBA to the genome-scale model of interest, using the objective of maximizing 

the rates of ATP production or growth. The predicted variations in the fluxes of 

individual enzymes were then applied to compute the flux control coefficients.  

We validated the current genome-scale metabolic model of M. barkeri, iMG746. 

The metabolic fluxes over a wide spectrum of the fluxes of substrate uptake and ATP 

synthesis were examined. FBA expresses the flux of an enzyme as a linear function of the 

fluxes of other enzymes in the networks. We expect that enzymes fluxes vary linearly 

with uptake fluxes, and the flux control coefficients remains constant. Any deviation 

from this linear trend either results from metabolic switch of different pathways or 

potential misbehavior of network models. This exercise on the model iMG746 revealed 

that the misbehavior of genome-scale models can arise from un-intended role of enzyme 

reactions in cell metabolism, and can be avoided by modifying reaction directionality. 

The common use of dFBA may be expected to work well for describing microbes in 

laboratory reactors. Metabolic models are currently validated for laboratory reactors, 

where available energy is not limed. However, application of this method to the natural 

environment presents a challenge, because energy availability is small. Integrating 

microbial rate laws improves FBA predictions at small respiration rates observed in the 

natural environment. Genome-scale metabolic models add an unprecedented amount of 

information to biogeochemical modeling. However, more of these metabolic models need 

to be validated for the natural environment. The hybrid method pairs the thermodynamic 
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strengths of microbial rate laws with FBA yield predictions, to improve the simulation of 

microbes in the natural environment. 
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CHAPTER II 

GENOME-SCALE METABOLIC VALIATION FOR THE NATURAL 

ENVIRONEMNT 

1. Introduction 

Genome-scale models are an increasingly important tool in many systems biology 

approaches. Growing knowledge and the creation of genetic databases have paved the 

way for the systematic reconstruction of metabolic models based on microbial genomes. 

Of 130 genome-scale metabolic models in the web-based resource SEED Model, only 22 

of them validated with laboratory observations (Henry et al.). With the advent of high-

throughput genome sequencing and annotation, as well as the use of systems biology 

approaches, (Thiele and Palsson) have already enabled the construction of manually-

curated, genome-scale models describing the complete metabolism of several 

microorganisms (e.g., Geobacter sulfurreducens, Geobacter metallireducens, Shewanella 

oneidensis, Methanosarcia barkeri, and Methanosarcina acetivorans), which play an 

important role in the bioremediation of contaminated groundwater (Mahadevan et al.; 

Sun et al.; Pinchuk et al.; Ong et al.; Gonnerman et al.; Benedict et al.). 

The representation of microbial processes in these reactive transport models is 

often based on the assumption of simple reaction rates and Monod kinetic equations that 

do not always account for microbial processes observed in the environment. Quantitative 

prediction techniques are needed to describe the individual metabolic activities of 

microorganisms to directly parametrize metabolic microbial processes.  

Compared to kinetic models, which require many kinetic parameters that are 

difficult to measure, constraint-based modeling does not require extensive model 
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parametrization (Orth, Thiele, and Palsson; King et al.). In genome-scale modeling, the 

specific uptake flux rates of substrates are usually determined by Monod equations. 

However, in some cases Michaelis−Menten equations, which have the same 

mathematical relationship are used. These two relationships differ in scale, one 

representing the response of the entire microorganism, the other describing enzyme 

response. The flux of substrates is an important capacity constraint in constraint-based 

modeling and any uncertainties in reaction rates or reaction directions have a significant 

influence on predicted microbial growth rates.  

Genome scale metabolic models have been applied to predict the metabolic 

activities of natural microorganisms, including G. sulfurreducens in a uranium-

contaminated aquifer (Scheibe et al.; Fang et al.; Tartakovsky et al.). However, the direct 

applications of constraint-based modeling tend to overproduce the activity of 

microorganisms. Growth yield prediction from genome-scale models are scaled by a 

control coefficient to better fit field observations (Scheibe et al.). 

This study investigated whether use of the current genome-scale models of 

Geobacter metallireducens, Mehtanosarcina barkeri, Methanosarcina acetivorans, and 

Shewanella stains MR1/4/W318 are applicable for natural environments, as described by 

their original authors. We introduce a new method for validating genome-scale metabolic 

models for application to the natural environment. 

2. Method 

2.1. Catabolic and Biosynthesis Networks 

Genome-scale metabolic models summarize entire biochemical reactions of cells 

using stoichiometric reaction equations. The genome-scale reaction equations can be 
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summarized using a stoichiometric matrix S of size m×n. Here, n is the number of 

biochemical reactions of the entire organism, and m is the number of metabolites 

consumed or produced by the enzymes. Element Sij is the stoichiometric coefficient of 

metabolite i in the reaction equation of enzyme j. These models may also specify reaction 

directions, and include nutrient fluxes in or out of the cell.  

To validate these models, we group the biochemical reactions in genome-scale 

metabolic models into catabolic and biosynthesis models. The catabolic models includes 

biochemical reactions that take up electron donors and acceptors from the environment, 

oxidize electron donors, and transfer electrons to the acceptors, and produces ATP.  

The biosynthesis models consider biochemical reactions that transport nutrients 

into the cytoplasm, and uses ATP to synthesize amino acids, nucleic acids, and other 

monomers. Following the common practice in flux balance analysis, we represent 

biosynthesis using an unbalanced reaction equation that converts ATP and monomers to 

ADP, phosphate, and other waste products. This biosynthesis reaction has a rate unit of 

per hr.    

2.2. Flux Balance Analysis 

Flux balance analysis (FBA) is a standard method for analyzing genome-scale 

metabolic models. These method assumes that cell metabolism is at steady state, and 

applies the principle of mass balance to metabolites, J = S·R. Here J and R are vectors; 

element Ji is the net rate or flux of metabolite Ai production (mmol·g-1·s-1), and element 

Rj is the rate of enzyme j (mmol·g-1·s-1). For internal metabolites, the fluxes are 0.  

The goal of FBA is to estimate the rates of biochemical reactions that achieve 

specific metabolic objectives. A common objective is to maximize rates of microbial 
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growth. FBA solves for enzyme rates using linear optimization. We implemented FBA by 

using the COBRA toolbox for MatLab and Gruobi 6.5. Gruobi 6.5 is a linear 

optimization solver that provides acceptable accuracy at small nutrient fluxes. 

2.3. Validation and Revision  

We validated genome-scale metabolic models by analyzing the response of cell 

metabolism to uptake nutrients. According to metabolic control analysis (MCA), these 

responses can be quantified using flux control coefficient j
iC , 
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To compute flux control coefficients, we apply FBA across a wide range of nutrient 

fluxes, from 10-5 mmol·g-1·hr-1, as reported in natural environments, to typical values in 

bioreactors, 10+2 mmol·g-1·hr-1. In applying FBA to the catabolic and biosynthesis 

models, we assume that cells maximize the rates of ATP and biomass synthesis, 

respectively.   

In theory, FBA predictions, both enzyme and biosynthesis rates, increase linearly 

with nutrient fluxes. As a result, the flux control coefficients remain constant, regardless 

of nutrient uptake fluxes. The slopes of the increases give stoichiometric ratios of 

external substrates, internal metabolites, and final products in both catabolism and 

biosynthesis, including the yields of ATP other metabolites, and biomass.  

We validate genome-scale models on the basis of flux control confidents and the 

ATP and biomass yields. Where the flux control coefficients vary with uptake nutrients, 

or where the yield predictions differ significantly from the values reported previously, we 

consider that genome-scale metabolic models require refinement.  
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To improve metabolic models, we first ensure that biochemical reactions are 

consistent with genome annotation and current knowledge. We set reaction directions and 

rates to allow cells to carry out essential functions. 

To reflect biogeochemical conditions of the environments, we only allow the 

uptake of growth factors, but disabled the uptake fluxes of other complex organic 

compounds. We also limit the production and release of metabolites into the environment 

on the basis of cell physiology.    

2.4. Application 

We validated the published genome-scale metabolic models for Methanosarcina 

barkeri, Methanosarcina acetivorans, Shewanella oneidensis, Shewanella putrefaciens, 

Shewanella sp. MR4, Geobacter metallireducens (table 2).   

3. Results 

3.1. Dependence of Biosynthesis on Nutrient Uptake 

We applied FBA to genome-scale metabolic models to predict biosynthesis rates 

across a wide ranges of substrate uptake fluxes (table 3). We varied substrate exchange 

fluxes from 10-5 to 100 mmol·g-1·hr-1. In theory, FBA predictions vary linearly with 

substrate uptake fluxes. Linear optimization problems maximize or minimize an objective 

function that depends linearly on variables (Sloan). Specifically, we constrained the 

substrate uptake (Bordbar et al.). But metabolic shift, utilization of new nutrients and 

pathways, may move the predictions away from the linear dependence.  

Figures 6 and 7 show the biosynthesis rates predicted at different substrate uptake 

fluxes and the flux control coefficients for biosynthesis. For Geobacter metallireducens 

and three Shewanella strains, we predicted their biosynthesis rates by providing ferric 
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mineral as an electron acceptor. For Geobacter metallireducens (model iAF987) 

oxidizing acetate and the three Shewanella strains oxidizing lactate, their biosynthesis 

rates vary linearly with the uptake fluxes. By providing H2 as an electron donor and CO2 

as a carbon source, the biosynthesis rate of strain MR1 also vary linearly with H2 uptake 

flux. But the biosynthesis rate of strain MR1 becomes invariant with H2 uptake fluxes by 

replacing CO2 with acetate as a carbon source. No biosynthesis is predicted for strain 

W318 and MR4 growing on H2. The biosynthesis rates of M. acetivorans (model 

iMB745) and M. barkeri (iMG746) do not follow a linear trend with the uptake fluxes of 

their substrates. 

 3.2. ATP Yield 

We evaluated the flux control coefficient of substrate uptake on ATP synthesis by 

applying FBA to the catabolic reaction models. We varied the substrate uptake fluxes 

from 10-5 to 100 mmol·g-1·hr-1, and assumed that the catabolic models maximize the 

rates of ATP production (figure 8). The results in show that the biosynthesis flux control 

coefficients remained constant for M. acetivorans and G. metallireducens (figure 9). The 

biosynthesis coefficients of M. barkeri are 1 at substrate uptake rate larger than 0.1 

mmol·g-1·hr-1. Below this threshold, the value of the control coefficient decreases to 0.   

Based on the FBA predictions, we estimated the ATP yield per substrate. As shown in 

Table 4, the predicted yield for Geobacter is close to the previous estimation. The 

predicted ATP yields of methanogenesis for both methanogens are smaller than, but 

within 70% of, the current estimations. The predictions for lactate oxidation by 

Shewanella are half of the current estimations. According to the FBA result, Shewanella 
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species do not make any ATP by oxidizing H2. The FBA prediction was 3 ATP per 

lactate, about 20% higher. 

3.3. Growth Yield per ATP 

We computed the flux control coefficients for the biosynthesis network models. 

We enabled the transport of essential nutrients (electron donors and acceptors, nitrogen, 

sulfur, and vitamins) while providing ATP, and maximizing the biosynthesis rate (figure 

10). The FBA failed for provide a solution for M. acetivorans utilizing acetate or 

methanol as a carbon source. For other microbes, their biosynthesis rates vary linearly 

with the flux of ATP supply (figure 11).  

We computed the biomass yield as the ratios of the predicted biosynthesis rates 

and the flux of ATP supply (table 5). The predicted growth yields of M. barkeri are 

larger, but within a factor of two, than previous laboratory observations. But the predicted 

values for other microbes are much larger than the observations, up to three orders of 

magnitude.  

4. Revision 

The above results suggest that the genome-scale metabolic models of iMB745, 

iMG746, iAF987, iMR1_799, iW318_789, and iMR4_812 require improvements before 

applying to natural environments. When energy yields of genome-scale metabolic models 

do not agree with experimental observations there are three factors that contribute to that 

erroneous results. The stoichiometric number of protons translocated outside the 

membrane determine the flux of ATP synthase. It is also possible that some reaction 

equations in the catabolic network do not conform to the mass balance law assumption. 

The last possibility is that there could be unconstrained, de trop, reactions causing 



 

35 

misbehavior in the network. We first evaluated the reaction stoichiometry of proton 

translocation reactions to ensure they were mass balanced and reflected current 

knowledge (see supplementary table S3). 

4.1. Methanosarcina barkeri  

In M. barkeri, iMG746, we changed the stoichiometric coefficients of sodium 

pump (NAt3_1) to translocate one proton per sodium cation. iMG746 described acetate 

transporter (ACt3r) as a bicarbonate antiporter. Based on gene annotation and laboratory 

observations of Methanosarcina mazei (Welte, Kröninger, and Deppenmeier), we 

changed to a proton symporter:  

ac[e] + h[e]  <=> ac[c] + h[c] 

iMG746 includes a sulfite transporter (SO3t) to transport sulfite across the membrane, 

h[e] + so3[e]  <= h[c] + so3[c] 

Because no gene homology is identified from the genome, we removed this reaction. 

Additionally, the model sets a maximum rate of alcohol dehydrogenase (ALCD1y) at 1 

mmol·g-1·hr-1. When degrading methanol as the carbon source and at ATP fluxes above 5 

mmol·g-1·hr-1, the model is NADP limited with this constraint. We set the maximum rate 

for ALCD1y at 1000 mmol·g-1·hr-1. 

4.2. Methanosarcina acetivorans 

In M. acetivorans, iMB745 assumed that methanophenazine reductase (RNF) 

translocates one sodium cation per ferredoxin. We changed to two sodium cations per 

ferredoxin:  

2 fdred[c] + 2 h[c] + mphen[c] + 2 na1[c]  -> 2 fdox[c] + mphenh2[c] + 2 na1[e] 
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iMB745 described acetate transporter (ACt3r) as a bicarbonate antiporter. Based on 

Methanosarcina mazei, we changed to a proton symporter:  

ac[e] + h[e]  <=> ac[c] + h[c] 

iMB745 sets the minimum and maximum rate of carbon monoxide dehydrogenase 

(CODHr) at 0. We set the minimum and maximum rate at -1000 and 1000 mmol·g-1·hr-1, 

respectively. The also constrains the maximum rate of pyruvate synthase (POR2) at 1 

mmol·g-1·hr-1. We set the maximum rate of POR2 at 1000 mmol·g-1·hr-1. Without this 

modification the model becomes pyruvate limited when acetate is the carbon source and 

at ATP fluxes greater than 10 mmol·g-1·hr-1. 

4.3. Geobacter metallireducens 

For G. metallireducens, iAF987 assumed that the ATP synthase XXX makes 

three ATP by translocating X protons. We changed the H+/ATP ratio to 4,  

adp[c] + pi[c] + 4 h[p]  <=>  atp[c] +  3 h[c] +  h2o[c]. 

this stoichiometric ratio is the standard convention for most metabolic networks. 

 In model iAF987, three cytochrome oxidoreductase reactions (CYTMQORpp, 

CYTBMQORpp, and PPCCYTCpp) move protons across membrane. The reaction 

CYTMQOR3pp denotes the transfer of electrons from the menaquinone pool to the 

cytochromes at the inner membrane, 

2 ficytC[c] + mql8[c]  -> 2 focytC[c] + mqn8[c] + 3 h[p]  

where ficytC and focytC are ferro cytochromes in oxidized and reduced forms, mql8 and 

mqn8 are menaquinone-8 in oxidized and reduced forms. We changed this enzyme 

translocates one proton per electron, 

2 ficytC[c] + mql8[c]  -> 2 focytC[c] + mqn8[c] + 2 h[p]  
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PPCCYTCpp transfers electrons from the periplasmic cytochromes to the outer-

membrane cytochromes of model iAF987, 

 focytC[c] + h[p] + ppco[p]  <=> ficytC[c] + h[c] + ppcr[p]  

where focytC and ficytC are ferro cytochromes of the cytoplasm and ppco and ppcr are 

cytochromes of the periplasm. Because no mechanism is available to account for the link 

between proton translocation and electron-transfer outside of the cytoplasmic membrane, 

we removed proton translocation from the reaction. 

 G. metallireducens genome codes only one gene of NADH dehydrogenase 

(Butler, Young, and Lovley). Model iAF987 has two NADH dehydrogenase – 

NADH17pp translocate protons and NADH10 does not. The model assumes that 

NADH17pp translocates 3 protons per NADH, 

3 h[c] + mqn8[c] + nadh[c]  -> mql8[c] + nad[c] + 2 h[p] 

We assume that NADH17pp translocates two protons per NADH. 

4.4. Shewanella 

Pitchuck et al. built a genome-scale metabolic model iSO783 for Shewanella 

onedensis MR-1. Ong et al. revised iSO783, and renamed iMR1_799. Ong et al. (2014) 

also built genome-scale models for Shewanella putrifaciens (iW318_789) and 

Shewanella strain MR4 (iMR4_812).  

We modified the following reactions in iMR1_799, iW318_789, and iMR4_812. 

Hydrogenase HYDi5 and HYDi6 oxidize hydrogen gas, but do not translocate proton. 

But hydrogenases are capable of proton translocation (Cao and Hall). We changed the 

reaction to pump out one proton per election, 

h2[e] + 2 h[c] + mqn7[c]  -> mql7[c] + 2 h[e] 
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h2[e] + 2 h[c] + mmqn7[c]  -> mmql7[c] + 2 h[e] 

Lactate dehydrogenase (LDH5) oxidizes lactate to pyruvate by reducing 

methylmenaquinone to methylmenaquinol, without proton translocation. We modified the 

reaction to pump 2 protons per lactate, 

d-lactate[c] + 3 h[c] + mmqn7[c]  -> mmql7[c] + 2 h[e] + pyr[c] 

In the three Shewanella models, lipid synthesis requires 

phosphatidylglycerophosphate (pglyp). This compound can be produced from 

dihydroxyacetone phosphate (dhap) by glycerol-3-phosphate dehydrogenase (G3PD2) 

and glycerol-3-phosphate 3-phosphatidyltransferase (PGSA), 

glyc3p [c] + nadp[c]  <=> dhap[c] + h[c] + nadph[c] 

cdpdag[c] + glyc3p[c]  <=> cmp[c] + h[c] + pglyp[c] 

consuming NADPH.  

The Shewanella genome sequence contains three NADH dehydrogenases 

(NADH12, NADH14, NADH4). Under anaerobic conditions, two NADH 

dehydrogenases can make NADH using electrons from the reduced forms of 

menaquinone (NADH12) and methylmenaquinone (NADH14). Ubiquinone is used by 

NADH14, which is only during aerobic respiration, so we disabled this reaction (Søballe 

and Poole). 

The three Shewanella models assume that the NADH dehydrogenases can only 

oxidize NADH. We allow the enzymes to either oxidize or produce NADH. These 

models also assume that NAD transhydrogenase (THD5) transfer electrons only from 

NADPH to NAD, and NADP transhydrogenase (THD2) transfers electrons only from 

NADH to NADP:   
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nad[c] + nadph[c]  => nadh[c] + nadp[c] 

2 h[e] + nadh[c] + nadp[c]  => 2 h[c] + nad[c] + nadph[c]  

We assume that the enzymes can drive the reactions both forward and backward (Søballe 

and Poole). 

4.5. Assembly ATP Cost 

 Genome-scale metabolic models describe cell reproduction in two steps. First, 

biosynthesis pathways convert sources of C, N, P, and S to amino acids, nucleic acids, 

peptidoglycan, and other monomers. Second, the monomers are then converted to new 

biomass. The first step is represented using a series of enzyme-driven biochemical 

reactions, but the second step is simplified as a single step, mass-unbalanced, 

hypothetical reaction. Both steps consume ATPs, and the stoichiometric number of ATP 

in the two steps determine the biomass yield per ATP. The ATP consumed by the 

assembly reaction is called GAM in genome-scale modeling (Thiele and Palsson). In 

microbiology and geobiology, maintenance refers to metabolic processes that consume 

ATP but do not contribute to the production of new biomass. Thus, we rename GAM as 

biomass-assembly ATP cost (BAC).   

 A standard protocol estimates GAM and NGAM by fitting FBA predictions to 

nutrient uptake fluxes at different growth rates observed in chemostat experiments 

(Thiele and Palsson). This method has been applied to the estimation of GAM for M. 

barkeri and Shewallena oneidensis. Another method is based on the theoretical 

estimations of biomass synthesis (Stouthamer). This method accounts for the amino acid 

compositions and ATP cost for protein maturation and mRNA turnover. This method has 

been applied to M. acetivorans and G. metallireducens. Table 6 shows the values of 
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GAM and NGAM estimated for various genome-scale metabolic models. The values 

span over one order of magnitude, from 18 to 220 mmol ATP·g-1.  

We estimated the biomass assembly cost by accounting for protein maturation, 

mRNA turnover, and phosphate and nitrogen transport. Protein maturation consumes 5 

ATP per amino acid (Arnold and Nikoloski). The total protein maturation cost is 

calculated from the total amount of amino acid per cell, multiplied by the amount of ATP 

necessary to synthesize an amino acid. Although the genome-scale metabolic models 

include the first step of the maturation process, t-RNA charging, these reactions never 

participate in biosynthesis, because in these models, biosynthesis reactions take amino 

acids as reactants, and hence excluding t-RNA charging. The ATP costs for mRNA 

turnover and nutrient transport are taken as 1.39 mmol ATP·g–1, and 5.2 mmol ATP·g–1, 

respectively, the values estimated for E. coli (Stouthamer). 

The direct application of Stouthamer’s method gives a relatively small GAM 

values, which in turn overestimates the yield of biomass. To circumvent this setback, 

previous studies have included an unknown factor in order to raise GAM. Alternatively, 

we suggest that the efficiency of biomass synthesis is 50%, which reduces the biomass 

yield by half. 

Table 7 shows the GAM estimated for different microbes. The values fall into a 

narrow range, 30.9 to 35.5 mmol ATP·g–1·hr–1. These values fall within the lower range 

of the values used in current models.  

The monomer synthesis cost is the sum of ATP consumption by all the enzyme 

reactions of biosynthesis. We estimated the monomer synthesis cost by applying FBA to 

the biosynthesis models, and by removing the ATP cost from the biosynthesis reaction. 
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Table 7 compares the estimated monomer synthesis costs.  The GAM values for many of 

the models are close (45.1-62.7 mmol ATP·g-1), except for E. coli K-12, which was 

substantially larger. The values estimated for M. acetivorans was lower than those for 

rest of the field.  

The differences in the monomer synthesis cost arise from the differences in 

biomass composition. The synthesis of different macromolecules requires different ATPs. 

Furthermore, different microbes have different amino acid compositions and the ATP 

costs are different for the synthesis of different amino acids (supplementary table S4). We 

estimated the ATP cost for individual amino acids by applying FBA to the biosynthesis 

network, removing the biosynthesis reaction, and maximizing the production flux of 

specific amino acids.   

The relative significances of amino acids are derived either from mass of protein 

from experiments (E. coli K-12 model iAF1260, and Shewanella models). In M. barkeri 

model iMG746 and M. acetivorans model iMB745, amino acid significance is directly 

applied from E. coli K-12, model iAF1260 (Feist et al.). Another approach is to count 

codons in genome sequence (G. mellireducenes model iAF987). The number of codons 

for each amino acid is converted to molar fraction by dividing the total codons reads from 

the genome. The molar fraction is multiplied by the molecular weight of each amino to 

give units of mmol AA·g protein-1 for the abundance. Because gene frequency does not 

always translate directly to protein frequencies, this method is less desirable.  

Between iMG746 and iMB745, most AA significance are similar however, there 

are a few abundances that stand out between the two species (figure 12). For M. barkeri: 
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Alanine, glutamate, glycine, are higher than in M. acetivorans. Glutamine, serine, and 

tyrosine are higher in M. acetivorians.  

In G. mellireducenes, proteins account less for the biomass than M. barkeri and 

M. acetivorans, but more than Shewanella. For the three Shewanella species, their amino 

acid compositions are the same. Note their serine and aspartic acid are comparable to M. 

acetivorans. 

The revised models were compared to Escherichia coli K-12, model iAF1260. 

This model needs modification to be comparable to the other models. Model iAF1260 has 

a different mechanism of nutrient transport from the other models. This model uses active 

transport of nutrients from the periplasm compartment to the cytoplasmic compartment. 

While active transport reactions are included in the other models, these reactions are 

supplemented with proton symporters/antiporters, and diffusion reactions. We replaced 

transport reactions in model iAF1260 with facilitated transport mechanisms. 

We used FBA to compare the predicted energy cost of producing each amino acid 

between models iMB745 and iMG746 (table 8). The amino acid composition measured 

for iAF1260 was used to make iMB745 and iMG746 models comparable. Both models 

were constrained to uptake the same essential nutrients. The largest difference in energy 

cost are reflected in Arginine, Serine, Leucine, and Glutamate (0.7-0.95 ATP·mmol-1 

amino acid). The difference in formation energy could be explained by different 

biosynthesis reactions or different active pathways between the two models. 

  In model iMG746, serine is derived from acetate. Once acetate is converted to 

pyruvate through the acetoclastic pathway. Now in the form of acetyl-CoA, pyruvate 

synthase (POR2) converts it to pyruvate, diverted to the glycolysis pathway. PPDK 
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consumes pyruvate and produces phosphoenolpyruvate (PEP) and this compound exits 

the pathway as 3-Phosphohydroxypyruvate. Phosphor-L-serine phosphatase (PSP_L) 

cleaves off the phosphorus group producing serine. Some of the acetate consumed is 

diverted to carbon monoxide dehydrogenase (CODH) to drive the reduction of ferrodoxin 

which is required by POR2 to proceed in the reverse direction. 

Model iMB745 did not predict the same pathway for serine synthesis of serine as 

model iMG746. Instead serine is produced directly from cysteine. Cysteine synthase 

(CYSS) proceeds in reverse, consuming cysteine and acetate to produce acetyl-serine and 

hydrogen sulfide. Hydrogen sulfide is converted and expelled through methylsulfide 

synthase (MSS) which generates methyl sulfide. This reaction is non-gene associated in 

iMB745 and is not present in iMG746. The presence of this reaction allows CYSS to run 

in the forward direction, unconstrained. The production of methylsulfide has been 

reported in laboratory experiments, but the predicted methylsulfide production is larger 

than laboratory observations. The occurrence of the predicted pathways for serine 

synthesis remains to be tested.   

We also compared the formation energy of amino acids to E. coli model, 

iAF1260. The amount of energy requires ranges from 1.13 – 2.29 times more than model 

iMG746. Aspartic acid, glutamine, serine and prolines show the largest increase when 

compared to M. barkeri and M. acetivorans. Model efficiency is probably cause of the 

greater energy requirements. Model iAF1260 has more biosynthesis reactions in each 

amino acid pathway compared to the methanogens. The synthesis of amino acids 

involves more enzymes and consumes more ATP. For example, to synthesis aspartic 
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acid, iAF1260 involves 35 reactions and 2.1 ATPs, but in model iMB745, only 27 

enzymes are required and, as a result, 0.52 ATPs are consumed per amono acids.  

4.6. Futile loops 

Metabolic network reactions with shared mechanisms and unconstrained reaction 

directions create futile loops that approach infinite flux. According to the FBA results, 

model iW318_789 contains three futile cycles. These cycles are driven by two or more 

enzymes of reaction rates at or near 1000 mmol·g-1·hr-1 (table 9). The first cycle is driven 

by transaminases and dehydrogenases of three amino acids, leucine, isoleucine, and 

valanine, entered futile loops, with reaction rates at or near 1000 mmol·g·hr-1. 

Transaminases transfer amine-group (NH2-) between amino acids and α-keto acid, 

akg[c] + amino_acid[c]  <=> x-oxopentanoate [c] + glu_l[c] 

Dehydrogenases oxidize amino acids,  

h2o[c] + nad[c] + amino_acid[c]  <=> x-oxopentanoate + h[c] + nadh[c] + nh4[c] 

We removed the futile loops by imposing reaction directions on the transaminases and 

dehydrogenases. For isoleucine, both transaminase and dehydrogenase must run in 

backward direction; for isoleucine, transaminase runs in backward, and the 

dehydrogenase can run in both directions; for valanine, the transaminase can proceed in 

both directions, but the dehydrogenase must run backward. 

The second cycle is from threonine transport. According to model iW318_789, 

threonine is transported into the cytoplasm together with proton (THRHT) or sodium 

cation (THRT4), 

h[e] + thr_l[e]  <=> h[c] + thr_l[c] 

na1[e] + thr_l[e]  -> na1[c] + thr_l[c] 
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Together with proton/sodium antiporter that exchanges sodium and proton across the 

membrane, the transporters carry out a futile cycle. To remove the loop, we assume that 

the threonine/proton symporter runs forward only. 

The third cycle is at kinases. AMP kinases, adenylate kinase (ADK1) and 

guanylate kinase (ADK3), transfer phosphate group from atp or gtp to amp,  

amp[c] + atp[c]  <=> 2 adp[c] 

amp[c] + gtp[c]  <=> adp[c] + gdp[c] 

nucleoside-diphosphate kinase, NDPK1, exchanges the phosphate group between atp and 

gdp, 

atp[c] + gdp[c]  <=> adp[c] + gtp[c] 

To remove the loop, we set ADKs and NDPK1 to proceed forward. Futile cycles can be 

more complex than two or three reactions, making it hard to determine reaction direction 

from hypothesis testing. These cycles exist because the reaction constraints on two or 

more enzymes are not known. This is probably the result of limited information about 

reaction mechanism and thermodynamics. 

 Removing futile loops through reaction direction hypothesis testing is time 

consuming and does not influence the overall result of the FBA solution. We manually 

reduced the futile loops for the remaining models. Any reaction with a flux approaching 

1000 mmol·g-1·hr-1 we removed from the reaction network. 

5. Prediction 
5.1. Sweeping Results 

We repeated the flux control analyses for the catabolic network, biosynthesis 

network, and the combined catabolic and biosynthesis network (or genome-scale 

metabolic network).  
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Figures 13 and 14 show how biosynthesis rates vary with nutrients and the results 

of MCA. Figures 15 and 16 show how the ATP formation rate of models iMB745, 

iMG746, iAF987, and Shewanella (iMR1_799, iW813, iMR4_812) vary with the 

consumption substrates and the flux control coefficient of ATP. Figures 17 and 18 show 

how the biosynthesis rate of models iMB745, iMG746, iAF987, and Shewanella 

(iMR1_799, iW813, iMR4_812) vary with production of ATP and how biosynthesis rate 

responds to changes in ATP flux. The modifications corrected the misbehavior of original 

models, and predicted linear dependence of ATP formation rates on substrate 

consumption rates, and the biosynthesis rates on ATP supply fluxes.  

5.2. ATP Yield 

The slopes of ATP fluxes over electron donor fluxes give the ATP yield per 

electron donor (table 10). The energy yield values all fell within the range of reported 

values. For model iMB745, the predicted yield was 0.5 molATP·mol acetate-1 and 0.625 

mol ATP·mol mehtanol-1 which was in the range of 0-1 mol ATP·mol substrate-1 reported 

in literature. Model iMG746 also fell within this reported range for use of methanol with 

a predicted yield of 0.75 mol ATP·mol acetate-1. This model predicted the reported value 

for hydrogenotrophic and acetoclastic methanogenesis. Model iAF987 and Shewanella 

models match the reported values for energy yield of those organisms. 

5.3. Growth Yield per ATP 

We used the modification to the metabolic network models mentioned above to 

evaluate the growth yield of each organism on different substrates (table 11). We 

expected to find growth yield that were comparably the same. The predicted growth 

yields for methanogens where within 10% of observed values, except for M. acetivorans 
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degrading methanol which was 5% higher. Shewanella models (iMR1_799, iW318_789, 

iMR4_812) predicted growth yield within 13% of observed values when using lactate or 

acetate as carbon sources. S. oneidensis and S. putrefaciens predicted yield values within 

1% of observations when using lactate as the carbon source. The predicted yield for S. sp. 

MR4 was father from observered values during lactate utilization. These models 

predicted a slightly lower yield for acetate as the carbon source. S. oneidensis, S. 

putrefaciens, and S. sp. MR4 under predicted the growth yield by 51% when using CO2 

as a carbon source. The estimated ATP assembly cost has the largest effect on growth 

yield (table 12). 

5.4. Biomass Composition 

The biomass equation in metabolic network models defines the average 

macromolecular composition of the cell. However, macromolecular cell composition is 

growth dependent. For example, as growth rate increases the cellular content of RNA 

increases, while the amount of protein, DNA, and content of cell wall polymers decreases 

(Novak et al.). FBA takes the rates of cellular metabolism at steady-state so an average 

macromolecular composition is used. The composition of protein, RNA, DNA, lipids, 

cell wall, and polysaccharides are set based on data available from literature 

(supplementary table S4). However, many reconstructions only have some of this data 

available. Another organism is usually used to fill in the gaps for biomass composition 

and Escherichia coli is normally used. 

By using the nutrient and product exchange fluxes we determined the biomass 

composition be taking the elemental mass consumed by each organism. The biomass 

formula is shown in table 13. Elemental composition was normalized to the composition 
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of nitrogen. There is not much variation in biomass composition between organisms. The 

most variation is observed in hydrogen composition, iMR4_812 and iW318_789 having 

the most and iMG746 having the least hydrogen. The similarity between the model may 

be due to their use of E. coli DNA, RNA, and lipid composition. 

6. Discussion 

We applied our validation method for de-coupled metabolic network models to 

methanogens and iron-reducing organisms. The validation method predicted energy and 

growth yield closer to reported in the literature, than the original models. The validation 

method represents a way to ensure metabolic models developed for laboratory 

environment can be applied to biogeochemical reaction modeling in the natural 

environment. 

This new method for validation of genome-scale metabolic models ensures that 

they can be applied reliably to biogeochemical reaction modeling. The current method for 

model validation only evaluates that model under a limited range of substrate uptake rates 

and observed physiological behavior of microorganisms.  

Our new approach tests the sensitivity of the model over a wide range of 

constraining rates. It decouples microbial metabolism; simulating respiration reaction 

separate from biosynthesis reactions.  

The traditional approach to genome-scale metabolic models takes the cell as a 

system of reaction equations, simulating both respiration and biosynthesis pathways in 

the same linear programing problem. It assumes that reaction stoichiometry and microbial 

yield remain constant, regardless of conditions in the environment. The simulation of 
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both catabolism and anabolism can lead to these pathways assimilating or stagnation 

reactions outside of their normal pathways.  

In laboratory and industrial reactors, energy sources and nutrients are abundant, 

driving microbial metabolisms at relatively large rates. But biogeochemical modeling 

mainly target natural environments, where nutrients are often limited and microbial 

metabolisms are sluggish. Thus, a genome-scale metabolic model validated for abundant 

nutrient conditions may not be directly applicable to natural environments. 

The new method of validation builds on laboratory validated and curated genome-

scale metabolic models for improving the quality of microbial predictions when applied 

to the natural environment. The method use a sequence of FBA predictions of energy 

yield and biomass yield to identify issues to be revised in the model. FBA predicts 

metabolic fluxes and growth rates from the uptake rates of substrates, not the 

concentrations of substrates. The prediction is arrived at using linear optimization. FBA 

predicts the maximum yields of microbial metabolism, the production of metabolites and 

biomass per substrate. 

We propose to validate genome-scale metabolic models using metabolic control 

analysis. Metabolic control analysis is a sensitivity analysis of enzyme fluxes in 

biochemical pathways (Kacser and Burns; Heinrich and Rapoport; Heinrich and 

Rapoport). It quantifies the impact of individual enzymes on overall pathways using flux 

control coefficients (Flint et al.; Middleton and Kacser; Torres et al.). In addition, the 

metabolic control analysis has also been applied to investigate the regulation and design 

of biochemical pathways (Groen et al.; Salter, Knowles, and Pogson; Fell and Snell). 
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Metabolic control analysis quantifies the responses of enzymes fluxes within 

metabolic networks to external perturbations. Thus, it represents a powerful tool for 

validating genome-scale metabolic models. Here, we designed a framework for validating 

genome-scale metabolic networks for biogeochemical application. This method samples 

across a wide range of nutrient uptake fluxes, from those in oligotrophic environments to 

those typical of laboratory reactors. At each nutrient uptake flux, we apply FBA to the 

genome-scale model of interest, using the objective of maximizing the rates of ATP 

production or growth. The objective function that was compared to the constraining rate. 

If these quantities deviated form a linear relationship, revision of the metabolic network 

reactions needed investigation. Reactions were modified by changing stoichiometry, 

reaction direction, and adding or remove compounds from the reaction equation. Each 

modification was tested by running FCA and verifying that the model was within the 

range of reported yield values. Every model we validated required a significant revision. 

In some cases, the model could behave linearly, but provide a prediction that is 

not within the range of observed values. This case was particularly prevalent in the 

biosynthesis network. Microbes preform catabolic reactions to obtain energy to manage 

cell maintenance and for growth. These energy uses are not explicitly accounted for in 

the metabolic network. There is no clear standard for assigning ATP assembly cost in 

metabolic reconstructions. Thiele et al. (2010) who published the protocol for metabolic 

reconstructions, briefly touch on adding GAM and NGAM to the metabolic 

reconstruction. Near the final stage of the protocol, the authors recommend running a 

linear regression on chemostat growth experiments to obtain accurate parameters.  
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Alternatively, they suggest in the absence of growth data, the value can be 

estimated from the energy required for macromolecular synthesis. However, many 

authors have identified issues with these methods of estimation and have applied their 

own methods (Benedict et al.; Goyal et al.; Gonnerman et al.). One recent example was 

outlined in Goyal et al. as a method combining chemostat data and optimization of 

parameters using a metabolic model.  

Gonnerman et al. performed a sensitivity analysis on the iMG746 biomass 

reaction. They examined the impact of the exact coefficients of the biomass reaction, 

adjusted up to 50% smaller or larger, on the predicted growth rate. Changes to the ratio of 

RNA, DNA, lipid, and protein in the biomass reaction had little effect on the predicted 

growth rate and product secretion rates. Only the growth associated maintenance, non-

growth associated maintenance, proton and sodium pump stoichiometry had a significant 

impact on the predicted growth rate. Feist et al. performed a similar sensitivity analysis 

and drew a similar conclusion about the iAF1260 model of E. coli.  

The ATP assembly cost varied over a wide range in genome-scale metabolic 

models. We evaluated the significance of each component of the biomass reaction for 

each model we validated. The ATP assembly cost is the most significant parameter of the 

biomass objective function. The amino acid composition also varied significantly 

between models. The variance is likely derived from the method of determining amino 

acid composition, either directly measuring the concentration of amino acids or 

estimating the composition from amino acid sequence used in the reconstruction of the 

microbe. We calculated ATP assembly cost using the energy required to synthesize the 

enzymes in the model, amino acid maturation, mRNA translation, and transport of 
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phosphate and nitrate. We replaced the original estimation in the biomass objective 

function and recalculated the growth yield. The predicted growth yield using our 

assembly ATP assembly cost fell closer to the range of observed yield values than using 

the original estimation. 

The direct use of validated genome-scale metabolic models may be expected to 

work well for describing microbes in laboratory experiments. Metabolic models are 

currently validated for laboratory environments, where energy is limited, and under only 

a narrow range of conditions. This new validation method for genome-sale metabolic 

models for application to biogeochemical reaction modeling improves FBA predictions 

of microbial parameters in the natural environment. Genome-scale metabolic models 

contain an exceptional amount detail about microbial pathways that adds information to 

biogeochemical modeling. However, some of the information in these models is poorly 

constrained and estimated. There is a need for clearer standards in the reconstruction 

process for ATP assembly cost, constraints of reaction direction, and non-gene associated 

reactions. This new method for validation builds framework using the predictive power 

of FBA paired with reported yield values, to improve the prediction quality of microbial 

parameters when simulating microbes in the natural environment. 
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TABLES 

Table 1. Kinetic parameters of methanogenesis and enzymes of M. barkeri. 

 Parameter Data source 

Methanogenesis k 
(mmol·g-1·hr-1) KS (mM) c  

Acetoclastic  7.06 5.0 2 (Smith and 
Mah) 

Methanol  10.85 0.5 2 
(Ranalli, 

Whitmore, 
and Lloyd) 

Enzyme Vmax 
(mmol·g-1·hr-1) KM (mM)   

Acetate transporter 2.165 0.333  (Button) 

Methanol methyltransferase 1332 50  
(Sauer, 

Harms, and 
Thauer) 
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Table 2. Genome-scale metabolic models, numbers of metabolites and reactions, number 
of reactions in catabolic and biosynthesis models, and electron donors and accepters 
tested using FBA.  
 

Organisms Model Ref. Met,Rxn C X D A 

M. acetivorans iMB745 8 715,825 111 518 Acetate, 
Methanol – 

M. barkeri iMG746 7 718,816 106 501 H2, Ac, 
Methanol – 

G. metallireducens iAF987 4 1109,1284 111 863 Acetate Fe+++ 

S. oneidensis MR1 iMR1_799 6 744,933 69 624 Lactate, 
H2 

Fe+++ 

S. putrefaciens iW318_789 6 739,918 71 620 Lactate, 
H2 

Fe+++ 

S. sp. MR4 iMR4_812 6 755,986 62 630 Lactate, 
H2 

Fe+++ 
C, catabolic network; X, biosynthesis network; D, electron donors; A, electron acceptors. 

 

Table 3. Carbon sources for biomass yield predictions using FBA. 

Organism CO2
* Acetate Lactate Methanol 

M. acetivorans N.A. Y N.A. Y 

M. barkeri Y Y N.A Y 

G. metallireducens N.A. Y N.A N.T. 

S. oneidensis MR1 Y Y Y N.T. 

S. putrefaciens Y Y Y N.T. 

S. sp. MR4 Y Y Y N.T. 

*, electron donor is H2; N.A., not applicable; N.T., not tested.  
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Table 4. ATP yield of original catabolic network models (mol ATP·mol D-1) and 
observations. 
 

Organism H2 Acetate Lactate Methanol 

M. acetivorans – 0.75/0.5a – 0.69/(0~1.0)a 

M. barkeri 0.187/0.25a 0.75/(0~1.0)a – 0.81/(0~1.0)a 

G. metallireducens – 0.9/(1.0~1.5)a – – 

S. oneidensis MR1 0c/0.5a – 1.25/2.5a,b – 

S. putrefaciens Inf d/0.5a – 1.25/2.5 a,b – 

S. sp. MR4 0c/0.5a – 1.25/2.5 a,b – 
a (Jin) reported ATP yield values for methanogens and iron respirers. Mehtanosarcina produces 1 ATP for 

every four H2, M. acetivorans gains 0.5 ATP for every acetate degraded, and M. mazei yields between 0~1 

ATP for every acetate, assumed to be consistent with M. barkeri.  For iron respirers: four H2 yield 2 ATP, 

one acetate yields between 1~1.5 ATP, two lactate yield 3 ATP. ATP yield by oxidation of methanol was 

assumed to be consistent with acetate ATP yield. b(Marsili et al.) reported that 1.5 ATP are produced by the 

electron transport chain and an additional ATP is produced oxidizing lactate to acetate. cFBA did not 

predict synthesis of ATP, but did return a flux distribution. dNo feasible solution (Inf.) within the metabolic 

network. 
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 Table 5. Growth yield of original biosynthesis network models (g·mol ATP-1) 

Organism CO2 Acetate Lactate Methanol 

M. acetivorans – Inf b/6.2a – Inf b/6.2a 

M. barkeri 10.61/6.2a 2179/6.2a – 9.826/6.2a 

G. metallireducens – 59.00/5.3a – – 

S. oneidensis MR1 31.27/5.3a 13.4/5.3a 31.62/5.3a – 

S. putrefaciens 25.70/5.3a 13.4/5.3a 26.25/5.3a – 

S. sp. MR4 25.60/5.3a 13.4/5.3a 26.14/5.3a – 
a(Jin); bNo feasible solution (Infeasible, Inf) within the metabolic network.  
 
 
Table 6. Survey of GAM estimated values use in metabolic models. 

Organism Substrate GAM(mmol 
ATP·g-1) 

NGAM (mmol 
ATP·g-1) Ref. 

E. coli K-12 glucose 59.81 8.39 A 
Lactococcus lactis mannose, 

galactose, 
sucrose, lactose 

18.15 1 B 

M. bakeri acetate, 
methanol, 
H2/CO2 

65 2 C 

M. acetivorans CO, methanol 65 2.5 D 
Methanococcus maripaludis H2/CO2 27.14 7.836 E 
Geobacter metallireducens acetate 79.20 0.81-1000  
Shewanella oneidensis  lactate 220.22 1.03 F 
 lactate 0 0-1000 G 
Shewanella sp. MR-4 lactate 0 0-1000 G 
Shewanella putrefaciens lactate 0 0-1000 G 

A, (Feist et al.) ; B, (Oliveira, Nielsen, and Förster); C, (Gonnerman et al.); D, (Benedict et al.); E, (Goyal 

et al.); F, (Pinchuk et al.); G, (Ong et al.) removed GAM from the biosynthesis equation in their published 

models. 
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Table 7. ATP (mmol ATP·g-1) required for monomer biosynthesis and the cost of 
biomass assembly. 
 

Organism Monomer 
synthesis 

Maturationc mRNAd Transportd BAC 

E. coli K-12 61.2 28.9 1.39 5.2 35.5 

M. acetivorans ∆MSS1 51.4 28.4 1.39 5.2 35.0 

M. barkeri1 52.5 28.9 1.39 5.2 35.5 

G. metallireducens1 45.1 25.8 1.39 5.2 32.4 

S. oneidensis MR12 62.8 24.3 1.39 5.2 30.9 

S. putrefaciens2 62.7 24.3 1.39 5.2 30.9 

S. sp. MR42 52.4 24.3 1.39 5.2 30.9 

a Acetate; b Lactate; ∆,Removed reaction from model; cEstimated following method of (Arnold and 
Nikoloski); dAdditional energy requirements from (Stouthamer). 
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Table 8. Comparison of ATP required for synthesis of amino acids in iMB745, iMG746, 
and iAF1260. 
 
Compound 
name 

iMB745 (mmol ATP·g 
AA-1) 

iMG746 (mmol 
ATP·g AA-1) 

iAF1260 mmol 
ATP·g AA-1) 

Alanine 1.11 1.67 1.98 

Arginine 2.15 3.11 3.87 

Asparagine 0.91 1.43 2.32 

Aspartic acid 0.52 0.91 2.09 

Cysteine 0.03 0.05 0.02 

Glutamic acid 0.64 1.35 2.15 

Glutamine 0.50 1.07 1.89 

Glycine 3.48 3.81 5.33 

Histidine 0.84 1.43 1.62 

Isoleucine 3.61 3.45 4.85 

Leucine 2.07 2.80 4.46 

Lysine 2.78 3.15 5.28 

Methionine 1.20 1.20 1.71 

Phenylalanine 3.10 3.00 4.49 

Proline 1.26 1.37 2.31 

Serine 0.00 0.76 1.29 

Threonine 1.78 1.92 2.63 

Tryptophan 0.93 1.11 1.65 

Tyrosine 2.05 2.05 3.16 

Valine 2.06 2.51 3.75 
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Table 9. Maximum flux of loop reactions constrained by flux direction. 
 
Reaction F/F R/R F/R R/F 
Leucine n.s. 6.75E-04 1000 1000 
Isoleucine n.s. 4.39E-04 0.1048 -4.39E-04 
Valanine n.s. 5.18E-04 5.18E-04 1000 

 

Table 10. ATP yield of validated catabolic network models (mol ATP·mol S-1) and 
observations. 
 

Organism H2 Acetate Lactate Methanol 

M. acetivorans – 0.5/0.5a – 0.625/(0~1) a 

M. barkeri 0.25/0.25a 1.0/(0~1) a – 0.75/(0~1) a 

G. metallireducens – 1.0/(1~1.5) a – – 

S. oneidensis MR1 0.5/0.5a – 2.5/2.5a,b – 

S. putrefaciens 0.5/0.5a – 2.5/2.5 a,b – 

S. sp. MR4 0.5/0.5a – 2.5/2.5 a,b – 

a(Jin); b(Marsili et al.) 

 
Table 11. Growth yield (with 50% efficiency) of validated biosynthesis network models 
(g·mol ATP-1) with BAC estimations from this study. 
 

Organism CO2 Acetate Lactate Methanol 

M. acetivorans – 6.64/6.2a – 7.68/6.2a 

M. barkeri 4.66/6.2a 5.85/6.2a – 6.12/6.2a 

G. metallireducens – 6.45/5.3a – – 

S. oneidensis MR1 2.60/5.3a 4.71/5.3a 5.34/5.3a – 

S. putrefaciens 2.60/5.3a 4.72/5.3a 5.35/5.3a – 

S. sp. MR4 2.59/5.31 4.71/5.3a 6.01/5.3a – 
a(Jin) 



 

60 

Table 12. Growth yield of validated biosynthesis network models (g·mol ATP-1). 

Organism CO2 Acetate Lactate Methanol 

M. acetivorans – 9.70/6.2a – 7.99/6.2a 

M. barkeri 7.01/6.2a 8.16/6.2a – 8.57/6.2a 

G. metallireducens – 8.22/5.3a – – 

S. oneidensis MR1 2.63/5.3a 3.38/5.3a 3.97/5.3a – 

S. putrefaciens 2.62/5.3a 3.39/5.3a 3.86/5.3a – 

S. sp. MR4 2.62/5.3a 3.38/5.3a 3.86/5.3a – 
a(Jin) 

 

Table 13. Elemental biomass composition from biosynthesis network models. 
Organism C H N O P S 

E. coli K-12 4.2 7.4 1.0 2.0 6.5E-02 2.3E-02 

G. metallireducens 4.4 8.9 1.0 1.6 8.1E-02 2.5E-02 

M. acetivorans 3.8 7.2 1.0 2.0 6.4E-02 2.2E-02 

M. barkeri 3.5 5.4 1.0 1.3 7.8E-02 2.7E-02 

S. oneidensis MR1 4.7 8.9 1.0 1.8 6.7E-02 2.0E-02 

S. putrefaciens 4.7 9.5 1.0 1.7 6.7E-02 2.0E-02 

S. sp. MR4 4.7 9.5 1.0 1.8 6.7E-02 2.0E-02 
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FIGURES 

 

Figure 1. Variations in exchange fluxes of acetate and CO2 with rates of methanogenesis, 

predicted by the genome-scale metabolic model of (Gonnerman et al.) and by setting the 

constraint of sulfite to -103 to +103 mmol·g-1·hr-1.  

 

 

Figure 2. Variations in the flux control coefficients of methane production with acetate 

consumption, and in the flux control coefficient of biomass synthesis with ATP 

consumption by M. barkeri.  
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Figure 3. (a)Variations in the concentrations of acetate and methane, and (b) biomass 

during acetoclastic methanogenesis by Methanosarcina barkeri.  Experimental data 

points are from (Fukuzaki, Nishio, and Nagai); solid lines are the simulation results using 

hybrid method; dashed lines are the simulation results using dynamic FBA (dFBA); 

shaded region (a) demarks where FBA solution is infeasible using dFBA. (c) ATP yield 

of the acetoclastic methanogenesis network and fraction of acetate utilized by the 

biosynthesis network. (d) kinetic factor of acetate and thermodynamic factor for 

acetoclastic methanogenesis. (e) Amount of energy available and amount of energy saved 

by M. barkeri. (f) Specific growth rate and rate of methanogenesis. 
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Figure 4. Variations in the concentrations of methanol, methane, and biomass during 

methanol methanogenesis by M. barkeri.  Experimental data points are from (Smith and 

Mah); solid lines are the simulation results using the hybrid method; dashed lines are the 

simulation results using dynamic FBA (dFBA). (c) ATP yield of the methanol 

methanogenesis network and fraction of methanol utilized by the biosynthesis network. 

(d) kinetic factor of methanol and thermodynamic factor for methanol methanogenesis. 

(e) Amount of energy available and amount of energy saved by M. barkeri. (f) Rate of 

methanogenesis and (g) FBA-predicted growth rate with specific maintenance rate. (h) 

Net growth rate. 
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Figure 5. (a) Variations in the concentrations of acetate, methanol, dissolved inorganic 

carbon, methane, and (b) biomass during diauxic methanogenesis by Methanosarcina 

barkeri using the hybrid method.  Experimental data points are from (Smith and Mah). 

(c) FBA-predicted growth rate for acetoclastic and methanol methanogenesis. (d) 

Specific growth rate and rate of methanogenesis. (e) Amount of energy available and 

amount of energy saved by M. barkeri. 
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Figure 6. Predicted biosynthesis rates from a range of substrate consumption rates 

(H2/CO2, acetate, lactate, methanol) using published models. 
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Figure 7. Variations in the flux control coefficients of biosynthesis rate with substrate 

consumption rates (H2/CO2, acetate, lactate, methanol). 
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Figure 8. Predicted ATP formation rates from consumption of electron donors (H2, 

acetate, lactate, methanol) from the catabolic network. 
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Figure 9. Variations in the flux control coefficients of ATP formation flux with electron 

donor uptake flux (H2, acetate, lactate, methanol). 
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Figure 10. Predicted ATP formation rates from carbon source consumption rates in the 

biosynthesis network on different carbon sources (CO2, acetate, lactate, methanol). 
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Figure 11. Variations in the flux control coefficients of biosynthesis with ATP flux on 

different carbon sources (CO2, acetate, lactate, methanol). 
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Figure 12. Amino acid abundance (mmol AA·g X-1) in biomass objective function in 

various models including E. coli. All Shewanella models use the same amino acid 

composition, so S. oneidensis MR1 is only shown here. 
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Figure 13. Predicted biosynthesis rates from a range of substrate consumption rates 

(H2/CO2, acetate, lactate, methanol) with modifications to the combined catabolic and 

biosynthesis network (genome-scale network). 
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Figure 14. Variations in the flux control coefficients of biosynthesis rate with substrate 

consumption rates (H2/CO2, acetate, lactate, methanol) with corrections to the genome-

scale network. 
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Figure 15. Predicted ATP formation rates from a range of electron donor consumption 

rates (H2, acetate, lactate, methanol) from the modified catabolic network. 
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Figure 16. Variations in the flux control coefficients of ATP flux with consumption of 

electron donors (H2, acetate, lactate, methanol) in the corrected catabolic network. 
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Figure 17. Predicted biosynthesis rates from a range of ATP flux rates from the corrected 

biosynthesis network on different carbon sources (CO2, acetate, lactate, methanol). 
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Figure 18. Variations in the flux control coefficients of biosynthesis with ATP flux on 

different carbon sources (CO2, acetate, lactate, methanol) with corrected biosynthesis 

network.  
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