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DISSERTATION ABSTRACT

Sripoorna Paniyadi Krishna Bharadwaj

Doctor of Philosophy

Department of Physics

June 2017

Title: Theoretical Study of Spin-wave Effects in Quantum Ferromagnets

In this dissertation, we examine quantum ferromagnets and determine various

effects of the magnetic Goldstone modes or “magnons” in these systems.

Firstly, we calculate the magnon contribution to the transport relaxation rate

of conduction electrons in metallic ferromagnets and find that at asymptotically

low temperatures, the contribution behaves as T 2e−T0/T and not as T 2 predicted

previously. To perform these calculations, we derive and use a very general effective

theory for metallic ferromagnets. This activation barrier-like behavior is due to the

fact that spin waves only couple electrons from different Stoner subbands that arise

from the splitting of the conduction band in presence of a nonzero magnetization.

The T 2 behavior is found to be valid only in a pre-asymptotic temperature window.

The temperature scale T0 is the energy of the least energetic ferromagnon that couples

electrons of different spins.

Second, we discuss magnon-induced long-range correlation functions in quantum

magnets. In the ordered phases of both classical ferromagnets and antiferromagnets,

the long-range correlations induced by the magnons lead to a singular wavenumber
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dependence of the longitudinal order-parameter susceptibility in spatial

dimensions 2 < d < 4. We investigate the quantum analog of this singularity using a

nonlinear sigma model. In a quantum antiferromagnet at T = 0, a weaker nonanalytic

behavior is obtained, which is consistent with power counting. The analogous result

for a quantum ferromagnet is absent if the magnon damping is neglected. This is due

to the lack of magnon number fluctuations in the quantum ferromagnetic ground state.

Magnon damping due to quenched disorder restores the expected nonanalyticity.

Finally, we use an effective field theory for clean, strongly interacting electron

systems to calculate the magnon contribution to the density of states, the longitudinal

magnetic susceptibility and the conductivity in an itinerant ferromagnet. Utilizing a

loop expansion that does not assume the electron-electron interaction to be a small

parameter, we obtain the leading nonanalytic corrections to the Stoner saddle-point

results for these observables, as functions of the frequency and wavenumber in the

hydrodynamic limit.

The dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

Magnets are among the most widely-researched condensed matter systems.

They have a wide variety of technological applications ranging from electric motors

to magnetic data storage devices and medicine. At the atomic level, the origin

of magnetism can be attributed to an intrinsic property of the electron, namely,

the angular momentum known as “spin”. Due to its spin, each electron basically

behaves like a tiny magnet. At low enough temperatures, the various interactions

between these electronic spins lead to a plethora of magnetic systems with interesting

arrangements of spins. At high temperatures, the thermal fluctuations in the system

cause disorder and the spins point in random directions.

Heisenberg Model

A model widely used to describe various magnetic systems is the Heisenberg

model. Consider a collection of atoms at lattice sites i, each with an associated

classical spin Si, a three dimensional vector. According to the Heisenberg model, the

energy of this system, in the absence of an external magnetic field, is given by the

Hamiltonian [1, 2]

H = −J
∑

〈ij〉

Si . Sj, (1.1)

where J is the exchange integral. It is related to the overlap of the charge distributions

of atoms at sites i, j and represents the characteristic magnetic energy scale. The

symbol 〈ij〉 indicates that the interaction is only between nearest-neighbor pair of

spins [3].
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When the quantity J > 0, the ground state of the system is the one where all

the spins are aligned parallel to each other, leading to a nonzero net magnetization,

as shown in Fig. 1(a). This state with a nonzero magnetization, exists below a

certain temperature known as the “Curie temperature”. This particular ground state

corresponds to a ferromagnet. Eq. (1.1) adequately describes simple ferromagnetic

insulators like CrBr3, EuO and EuS. In these materials, all the spins are ionic in

origin and in their ground states, the ionic spins are aligned parallel to each other as

in Fig. 1(a).

However, the Heisenberg model does not describe metallic ferromagnets like Fe,

Co and Ni. These metals obey a band or itinerant electron model of ferromagnetism

[4], which will be discussed in Chapter II. In short, the ferromagnetism in these

materials is due to the different populations of up-spin and down-spin electrons in

the system.

(a) (b)

FIGURE 1. (a) A ferromagnetic and (b) an antiferromagnetic arrangement of lattice
spins

The case J < 0 corresponds to an antiferromagnet, where the classical ground

state has neighboring spins anti-parallel to each other as shown in Fig. 1(b), with a

net zero magnetization. This state is known as the “Néel state”, which exists below a

temperature known as the “Néel temperature” [5]. Some examples of antiferromagnets

are Cr, MnO and FeO. The spins in an antiferromagnet can be interpreted as

belonging to two sublattices A and B. The spins in a particular sublattice are parallel

to each other. But, the spins belonging to two different sublattices have the same
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magnitude but are antiparallel to each other, i.e. SA = −SB. Above the ordering

temperature, in both ferromagnets and antiferromagnets, the spins point in random

directions and there is no long-range order in the system. This is the paramagnetic

state.

Some other ordered arrangements of electron spins are ferrimagnets, canted

antiferromagnets and helical magnets. A ferrimagnet is a more general version of

an antiferromagnet, where the antiparallel spins of the two sublattices have different

magnitude, i.e. |SA| > |SB|. Examples of ferrimagnets are magnetite (Fe3O4), ferrites

of the form MO.Fe2O3 where M is often Zn, Cd, Fe, Ni, Cu, Co or Mg [3].

Helical magnets are another interesting class of materials. The inversion

symmetry in the system is broken and the Hamiltonian has a Dzhyaloshinksi-Moriya

term [6, 7]. This leads to a helical or spiral order in the ground state, where the

magnetization is ferromagnetic in planes perpendicular to some pitch vector q, with

a helical modulation along the q- axis as shown in Fig. 2. A well-known helimagnet

is MnSi [8, 9].

FIGURE 2. A helical magnet with the spins modulated along the z-axis
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There also exist more complicated forms of magnetism like spin glasses, spin

liquids, spin-density waves etc [10, 11, 12, 13]. This dissertation only considers

isotropic ferromagnets and antiferromagnets.

Order Parameter and Spontaneous Symmetry Breaking

The preceding section discussed some ordered arrangements of classical spins

that exist below an ordering temperature. In order to describe these systems, it is

useful to introduce a quantity that signifies the degree of ordering in the system.

This quantity is known as the “order parameter” of the system. Usually, the order

parameter is nonzero in the ordered phase and is zero in the disordered phase. For

ferromagnets, the net magnetization M is the order parameter. For antiferromagnets,

the net magnetization is zero even in the ordered phase. Therefore, one needs to

use the “staggered magnetization” as the order parameter. It is defined as M ′ =

1/V
∑

i

(−1)iSi, where alternate sites are labeled even or odd.

In both cases, the lattice model of spins can be coarse-grained into a continuum

model where the order parameter is a spatially-varying classical vector field φ(x) [14].

Then, a continuum description of the ferromagnetic or the antiferromagnetic state can

be obtained in terms of a free-energy which is a function of the order parameter φ.

In short, the partition function for the Heisenberg model, which is in terms of the

spins at individual sites, can be rewritten purely in terms of the continuous field by

integrating out the site-specific spin variables Si. What is left behind is the Landau-

Ginzburg free-energy functional [15],

F [φ(x)] =
∫

ddx [
c

2
|∇φ(x)|2 +

r

2
|φ(x)|2 +

u

4
(|φ(x)|2)2 + . . .]. (1.2)
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The coefficients c, u, r, . . . are functions of the exchange energy J and temperature T .

Eq. (1.2) is more general than Eq. (1.1) and describes both metallic and insulating

magnets.

Considering a spatially uniform φ, one now analyzes the free-energy density

f(M) = (r/2)ϕ2 + (u/4)ϕ4. Here, ϕ is the magnitude of the order parameter. For

stability, it is assumed that u > 0. If r > 0, the free-energy is minimized when ϕ = 0.

This represents the disordered paramagnetic state. When r < 0, the free-energy is

minimized at nonzero ϕ, which represents the ordered state. Generically, r ∝ T − Tc

for T ≃ Tc. Therefore, Tc represents the ordering temperature which is the Curie

temperature in ferromagnets and Néel temperature in antiferromagnets.

In the disordered phase, the symmetry of the system, namely the spin-rotation

symmetry, is unbroken. That is, the free energy remains invariant under arbitrary

rotations of the field φ(x). However, in the ordered phase, the system chooses to order

along some arbitrary direction, e.g., φ(x) = (0, 0, ϕ) and it is no longer invariant

under arbitrary rotations of φ. Therefore, the spin-rotation symmetry has been

broken in the ordered phase. This phenomenon is known as “spontaneous symmetry

breaking” and it occurs in many physical systems like superconductors, liquid crystals,

particle physics etc [16, 17, 18]. The word “spontaneous” signifies that these systems

develop a nonzero order parameter on their own at sufficiently low temperatures,

without being subjected to an external magnetic field.

An important consequence of a generic continuous symmetry which is

spontaneously broken is the necessary presence of massless or soft excitations,

predicted by Goldstone’s theorem. These massless excitations are known as

“Goldstone modes”. In solids, spontaneously broken translational and rotational

symmetry results in phonons, which are the Goldstone modes. In both ferromagnets
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and antiferromagnets, the breaking of the continuous spin-rotation symmetry results

in Goldstone modes known as “magnons”.

Magnons

As mentioned in the previous section, a spontaneously broken continuous

symmetry is accompanied by massless Goldstone modes. In ordered spin systems,

the Goldstone modes are magnons. These massless excitations have a wavelike form,

as shown in Fig. 3, and are analogous to lattice vibrations or phonons. Magnons

are oscillations in the relative orientations of spins on a lattice. In this dissertation,

the terms “magnons” and “spin waves” are used interchangeably. In the following,

the derivations of the ferromagnetic and the antiferromagnetic magnon dispersion

relation in [3] are briefly recapitulated.

FIGURE 3. A spin wave on a line of spins, showing one wavelength. In the top row,
the spins are viewed in perspective. In the bottom row, the spins are viewed from
above

Ferromagnon Dispersion Relation

To derive the magnon dispersion relation, one assumes, for simplicity, a chain of

spins that prefer to align parallel to each other, i.e. J > 0 in the Heisenberg model.

From Eq. (1.1), the effective magnetic field felt by the lth spin is

Bl = (−2J/gµB) (Sl−1 + Sl+1), (1.3a)
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where g is the electronic g-factor and µB is Bohr magneton. From mechanics, the

effective magnetic field causes a torque on the lth spin. Then, the rate of change of

the angular momentum ~Sl is

~
dSl

dt
= (−gµB)Sl × Bl = (2J/~) [Sl × Sl−1 + Sl × Sl+1]. (1.3b)

In general, these equations are nonlinear. Assume that the spins predominantly point

along the z-direction, i.e. Szl ≈ S. Then, the transverse components Sxl , S
y
l ≪ S,

which means that the amplitude of the excitations are small. With these assumptions,

the following linearized equations are obtained:

dSxl
dt

= (2JS/~) [2Syl − Syl−1 − Syl+1] (1.4a)

dSyl
dt

= −(2JS/~) [2Sxl − Sxl−1 − Sxl+1] (1.4b)

dSzl
dt

= 0. (1.4c)

To solve these linearized equations, plane wave solutions for Sx and Sy can be

assumed. Taking Sxl = u exp[i(lka − ωt)] and Syl = v exp[i(lka − ωt)], with u, v

constants, k the wavenumber and a the lattice constant, Eqns. (1.4a) yield

−iωu = (4JS/~)(1 − cos(ka))v, (1.5a)

−iωv = −(4JS/~)(1 − cos(ka))u. (1.5b)

For nonzero u and v, the determinant of the coefficients must be zero. This yields

the ferromagnetic dispersion relation

~ω = 4JS(1 − cos(ka)). (1.6a)
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The above expression is the magnon dispersion relation for a ferromagnetic spin chain.

For a ferromagnetic cubic lattice with nearest-neighbor interactions,

~ω = 4JS(N −
∑

δ

cos(k.δ)). (1.6b)

The summation is over N vectors that join the central atom to its nearest neighbors.

For small wavenumbers, or equivalently long wavelengths, ka ≪ 1. Thus, we obtain

a quadratic dispersion relation

~ω = (2JSNa2)|k|2. (1.6c)

For comparison, phonons have a linear dispersion relation. The coefficient of |k|2 is

the spin-wave stiffness, which can be measured by neutron-scattering experiments.

Antiferromagnon Dispersion Relation

For antiferromagnets, the steps for the ferromagnetic case follow through in a

similar fashion. First, it is assumed that spins with even indices 2l belong to the

sublattice A with (Sz = S) and the spins with odd indices 2l + 1 belong to the

sublattice B with (Sz = −S). Considering only nearest-neighbor interactions with

J < 0 in Eq. (1.1), the set of linearized equations now read; for the up spins

dSx2l
dt

= (2JS/~) [−2Sy2l − Sy2l−1 − Sy2l+1] (1.7a)

dSy2l
dt

= −(2JS/~) [−2Sx2l − Sx2l−1 − Sx2l+1], (1.7b)
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dSx2l+1

dt
= (2JS/~) [2Sy2l+1 + Sy2l + Sy2l+2] (1.8a)

dSy2l+1

dt
= −(2JS/~) [2Sx2l+1 + Sx2l + Sx2l+2] (1.8b)

for the down spins. Defining a new variable S+ = Sx + iSy, the equations can be

combined to yield

dS+
2l

dt
= (2iJS/~) [2S+

2l + S+
2l−1 + S+

2l+1] (1.9a)

dS+
2l+1

dt
= −(2iJS/~) [2S+

2l+1 + S+
2l + S+

2l+2]. (1.9b)

Looking for solutions of the form

S+
2l = u exp[i(2lka− ωt)]; S+

2l+1 = v exp[i((2l + 1)ka− ωt)], (1.10a)

one obtains

ωu =
4|J |S
~

(u+ v cos(ka)), (1.10b)

ωv = −4|J |S
~

(v + u cos(ka)). (1.10c)

As before, the above system of equations has nonzero solutions for u and v if

ω2 = (
4|J |S
~

)2 (1 − cos2(ka)) =⇒ ω =
4|J |S
~

| sin(ka)|. (1.10d)

For long wavelengths, ω ≈ (4|J |S/~)|ka|, which is a linear dispersion relation.

The preceding discussion was in the context of classical spins. At very low

temperatures, quantum effects become relevant and the spins in the system must
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be treated quantum mechanically. Therefore, the spins Si in Eq. (1.1) are now

quantum mechanical operators. In a spin 1/2 system, that is S = 1/2, the individual

components of Si are the Pauli matrices. Then, the spin waves in the ordered state

are quantized, analogous to photons and phonons.

Outline

In this dissertation, we are interested in studying the various effects of

magnons on certain thermodynamic and transport observables. In metallic quantum

ferromagnets, the conduction electrons can be scattered by magnons in a similar

fashion to their scattering by phonons and photons. In Chapter II, the magnon

contributions to the electronic single-particle and transport relaxation rates are

calculated. These relaxation rates are in turn related to the thermal and electrical

conductivity, respectively. At asymptotically low temperatures, both the relaxation

rates display an activation-barrier like behavior, which is in contrast to a previous

result [19].

In Chapter III, the zero-temperature magnon contributions to the longitudinal

order-parameter susceptibility of both quantum ferromagnets and quantum

antiferromagnets are calculated and compared, using some very general models that

are insensitive to the origin of the magnetic ordering. Since the magnons are massless,

one expects that they give rise to nonanalyticities in the long-wavelength/low-

frequency dependence of transport coefficients and thermodynamic quantities. These

nonanalyticities correspond to a power-law behavior of correlation functions in real-

time/real-space. However, the ferromagnetic magnon contribution vanishes at T = 0,

whereas the antiferromagnetic magnon contribution does not. Chapter III explains

the reason and examines the robustness of this null result.
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Chapter IV considers a particular class of ferromagnets known as itinerant

ferromagnets and briefly introduces an effective field theory for these systems. This

field-theoretical approach allows for a systematic identification and analysis of the soft

modes in the system. Within the framework of this effective field theory, the spin-wave

contributions to the longitudinal susceptibility, the dynamical electrical conductivity

and the electronic density of states are calculated. The magnon contribution to the

longitudinal susceptibility matches the result from Chapter III. The corresponding

contribution to the conductivity is also found to vanish at T = 0 and differs from a

previous result [20]. The reason for this discrepancy is a sign error in the original

paper that led to an incorrect result. Chapter IV points out where exactly this error

occured and gives the correct result for the conductivity.

Chapters II and III contain previously published material co-authored with

D. Belitz and T. R. Kirkpatrick. Chapter IV contains unpublished material co-

authored with D. Belitz and T. R. Kirkpatrick.
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CHAPTER II

SPIN-WAVE CONTRIBUTION TO THE ELECTRONIC RELAXATION RATES

IN METALLIC FERROMAGNETS

This work was published in volume 89 of the journal Physical Review B in April

2014. Dietrich Belitz and Theodore R. Kirkpatrick were the principal investigators for

this work; Sripoorna Bharadwaj performed the calculations and produced the figures

in this chapter.

Motivation

In a metallic system, the electronic relaxation rates contain important

information about the various excitations. The single-particle relaxation rate

1/τ corresponds to the lifetime of the electrons and also determines the thermal

conductivity κ = v2
FcV τ/3. The transport relaxation rate 1/τtr determines the Drude

electrical conductivity, σ = nee
2τtr/me. In this dissertation, we alternate between

referring to the electrical conductivity and its reciprocal, the electrical resistivity

(which is directly proportional to the transport relaxation rate). Here, and in

what follows, me and ne are the conduction electron effective mass and number

density, respectively, vF is the Fermi velocity and cV is the specific heat. The

different excitations present in the system contribute to these relaxation rates. The

excitations can be propagating or particle-like − for example, longitudinal phonons.

Coupling of these phonons with the conduction electrons leads to the famous T 5 Bloch

behavior of the electrical resistivity and T 3 behavior of the thermal conductivity

[21]. If the system has some form of magnetic order, the coupling of the conduction
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electrons to the magnetic Goldstone modes contributes to the relaxation rates. In

isotropic Heisenberg ferromagnets, the Goldstone modes are the “ferromagnons” or

“spin waves”. Ueda and Moriya found that the ferromagnons contribute a T 2 term

to the transport relaxation rate [19, 22, 23, 24]. In helimagnets [7, 25], which

have a helically modulated magnetic ordering, the corresponding Goldstone mode

− the “helimagnon”, leads to a T 5/2 contribution to the electrical resistivity at low

temperatures [26, 27, 28]. In antiferromagnets, the corresponding contribution is

proportional to T 3 [29]. It should be noted that the aforementioned results are

dimensionality-dependent and in particular, hold only for three dimensional systems

− the only physical dimension in which magnetic order exists for T > 0 [30]. In

a generic dimension d > 2, the ferromagnons, which have the frequency-momentum

relation ω ∼ k2, are expected to contribute a T (d+1)/2 term to the resistivity.

There are also the dissipative excitations: excitations with a continuous

spectrum. An example of such excitations contributing to transport coefficients is

the well known Fermi liquid T 2 behavior of both the single-particle and transport

relaxation rates due to the Coulomb interaction between the electrons in a metal.

In metallic ferromagnets, in addition to the propagating spin waves, there are

longitudinal magnetization fluctuations and “Stoner excitations” in the transverse

channel, which are opposite spin electron-hole excitations [24]. These excitations

are dissipative and non-hydrodynamic in nature, and are also found to contribute

a T 2 behavior to the resistivity, with a prefactor inversely proportional to the

magnetization [19].

The primary topic of discussion in this chapter is the ferromagnon contribution

to the electronic relaxation rates in ferromagnets. As mentioned previously, Ueda and

Moriya found that at low temperatures, the ferromagnons contribute a T 2 term to the
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electrical resistivity. A problem with this established result was first noted in context

of helimagnets [31]. It turns out that if the T 2 behavior is valid at asymptotically

low temperatures, then the helimagnetic and ferromagnetic cases are not mutually

consistent. To elaborate, when the ferromagnetic limit of the helimagnetic result was

taken by letting the wavelength of the helically modulated spin-ordering go to infinity,

the leading contribution to the resistivity, which yields a power law, vanishes. What

remains in the ferromagnetic limit is an exponential behavior of the form

1/τtr ∝ (T 2/λ) exp(−T0/T ), (2.1)

where the temperature scale T0 is related to the conduction band splitting or

“Stoner gap” λ, which in turn is directly proportional to the magnetization, and

the Fermi energy ǫF. This result is particularly noteworthy, given that the leading

magnetic Goldstone mode contribution to the relaxation rates in both helimagnets

and antiferromagnets are power laws. Understanding the difference between the

scattering of electrons with ferromagnons and other magnetic Goldstone modes is

important. Additionally, the electrical resistivity is a basic physical property that

can be easily measured and is very useful, for example, in tracking and identifying

magnetic phase transitions. Therefore, correctly establishing its true low temperature

behavior in the ferromagnetic phase is crucial.

In the following, the ferromagnon contribution to the single-particle and

transport relaxation rate in a metallic ferromagnets is calculated and it will be shown

that it is indeed an exponential behavior of the form shown in Eq. (2.1). We also

recover the Ueda-Moriya T 2 result, albeit only in a sizable preasymptotic temperature

window. The reason for the exponential “activation-barrier”-like behavior is the fact
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that, in a ferromagnet, the Goldstone modes are purely transverse and therefore only

couple to electrons in different Stoner bands. In other words, the effective electron-

electron interaction, mediated by ferromagnon exchange, is a purely inter-Stoner-band

scattering, hence leading to an activated process. This is in contrast with helimagnets

and antiferromagnets, wherein the effective electron-electron interaction has an intra-

Stoner-band coupling term, which leads to a power law. This coupling vanishes in

the ferromagnetic limit as the characteristic wavenumber of the magnetic order goes

to zero. These results are valid for all metallic ferromagnets, irrespective of the

origin of magnetism. The magnetism could be caused by the conduction electrons

themselves, such systems are referred to as “itinerant ferromagnets”, or by localized

electrons in a different band, referred to as “localized-moment ferromagnets”. The

model considered for the necessary calculations is very general and only relies on

basic symmetry arguments.

Model: Magnon-mediated Electron-electron Interaction

Effective Action

We start with an action S0[ψ̄, ψ] for the conduction electrons in terms of the

fermionic spinor fields ψ̄ = (ψ̄↑, ψ̄↓) and ψ = (ψ↑, ψ↓). The suffixes (↑, ↓) ≡ (+,−) = σ

are the spin projection indices of the fermions. In terms of ψ̄ and ψ, the electronic

spin density is expressed as

ns(x) =
∑

σ,σ′

ψ̄σ(x)σσ,σ′ψσ′(x), (2.2)

with σ = (σ1, σ2, σ3) the Pauli matrices and x = (x, τ) corresponding to the real-space

position x and the imaginary-time variable τ . We now assume that the conduction
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electrons are subjected to a magnetization M(x), whose origin is not relevant for the

following calculations. This magnetization will act as an effective magnetic field that

the conduction electrons couple to, via a Zeeman term. Then, the action is

S[ψ̄, ψ] = S0[ψ̄, ψ] + Γt

∫

dxM(x).ns(x). (2.3)

Γt is a coupling constant, with the dimensions of energy times volume, or inverse

density of states. The ferromagnet is assumed to order in the 3−direction. Therefore,

〈Mi(x)〉 = δi,3m, with m, the value of the spontaneous magnetization. Now, in Eq.

(2.3), M is replaced by its average to obtain

Sλ[ψ̄, ψ] = S0[ψ̄, ψ] + λ
∫

dxns,3(x), (2.4a)

where λ = Γtm. Then, the partition function for the electrons is given by

Zλ =
∫

D[ψ̄, ψ] eSλ[ψ̄,ψ]. (2.4b)

We note that the Zeeman term splits the conduction band into two subbands, one

for each spin projection. Henceforth, λ will be referred to as the Stoner gap. In

Eq. (2.4a), the fluctuations of the magnetization were neglected, in a mean-field

approximation. Considering the fluctuations of the magnetization δM ,

S[ψ̄, ψ] = Sλ[ψ̄, ψ] + Γt

∫

dx δM(x).ns(x). (2.5a)

Along with the additional term in above, we must include an action that describes the

dynamics of δM . This extra term in the action must correspond to the fluctuations
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of the physical magnetization and therefore, must contain the ferromagnons. To

Gaussian order, this term reads

Sfluct[δM ] = −1

2

∫

dx dy δMs,i(x)χ−1
ij (x, y) δMs,j(y), (2.5b)

where χij(x, y) is the physical magnetic susceptibility. In the ordered phase of a

ferromagnet, the transverse components of χij , which in this case are i, j = 1, 2 with

the assumed choice of the magnetization direction, correspond to the ferromagnons,

the Goldstone modes of the ordered phase. Therefore, these components of χij must

be singular in the limit of small frequencies and wave numbers. By adding Eqs.

(2.5a) and (2.5b) and integrating out the fluctuations δM using a Gaussian integral,

an effective action purely in terms of the electronic fields is obtained.

Seff[ψ̄, ψ] = Sλ[ψ̄, ψ] + Sex[ψ̄, ψ], (2.6a)

where

Sex[ψ̄, ψ] =
Γ2
t

2

∫

dx dy δns,i(x)χij(x, y) δns,j(y) (2.6b)

describes the effective electron-electron interaction mediated by magnetization

fluctuations. If only the transverse components (i, j = 1, 2) of χij are considered, then

Sex corresponds to a ferromagnon-mediated effective electron-electron interaction.

To proceed with the calculations, we specify S0 and χij . In general, S0 describes

interacting conduction-band electrons. However, for the purpose of evaluating the

ferromagnon-exchange contribution to the relaxation rates, the electron-electron

interactions that do not involve any ferromagnon exchange are of no qualitative
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importance and are neglected. Therefore, we work with an action S0 that corresponds

to non-interacting electrons in a band.

In Fourier space,

S0[ψ̄, ψ] =
∑

k

∑

σ

[iωn − ξk] ψ̄σ(k)ψσ(k), (2.7a)

where k ≡ (k, iωn), ωn = 2πT (n + 1/2), n ∈ Z. k is the Fourier space momentum

and ωn is a fermionic Matsubara frequency. ξk = ǫk − µ, where µ is the chemical

potential and ǫk is the energy-momentum relation for the electrons in the band under

consideration. Then, Sλ

Sλ[ψ̄, ψ] =
∑

k

∑

σ

[iωn − ωσ(k)] ψ̄σ(k)ψσ(k) (2.7b)

with

ω±(k) = ξk ∓ λ. (2.7c)

We see that the Zeeman coupling of the conduction electrons to the average

magnetization splits the conduction band into two Stoner bands for the two spin

projections as shown in Fig. 4, with their Fermi surfaces given by the equation,

ωσ(p)

∣
∣
∣
∣
∣
∣
p ∈ FSσ

= 0. (2.8)
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kF
k+

F

k−
F

k0

FIGURE 4. Splitting of the conduction band Fermi surface. Here, k0 = k+
F − k−

F .
The blue and red Fermi surfaces represent the up-spin and down-spin electrons,
respectively.

For future reference, we define at the σ− Fermi surface, the density of states

Nσ
F and the corresponding Fermi wave number kσF. In a parabolic band, where ǫk =

k2/2me,

k±
F = kF

√

1 ± λ/ǫF, N±
F = k±

Fme/2π
2. (2.9)

The Green functions for the electrons in the two Stoner bands are

Gλ,σ(p) =
1

iωn − ωσ(p)
. (2.10)

In an isotropic ferromagnet where the crystal-field effects or spin-orbit coupling

are neglected, the Goldstone modes accompanying the spontaneously broken

symmetry in spin space, the ferromagnons, are purely massless.
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A ferromagnon of momentum k has a resonance frequency given by the dispersion

relation

ω0(k) = D(λ)k2, (2.11)

where D(λ) is the spin-stiffness coefficient and vanishes as λ → 0. It is given by

a magnetic energy scale divided by a microscopic wave-number scale squared, on

the order of the Fermi wave number. The transverse magnetic susceptibility can be

written down in terms of simple poles that describe circularly polarized ferromagnons,

χ±(k, iΩm) =
K(λ)

(2NFΓt)2

1

ω0(k) ± iΩm

(2.12)

where Ωm = 2πmT,m ∈ Z, a bosonic Matsubara frequency. The factor K(λ) is

dimensionally an inverse volume. The coefficients K(λ) and D(λ) both are model-

dependent. However, the above expression has this particular form in any isotropic

ferromagnet, irrespective of the origin of magnetism. In k ≡ (k, iΩm) space, we write

down the transverse susceptibility tensor χT(k) in terms of χ±(k) using the symmetry

arguments: χiiT(k) = χiiT(−k) and χijT(k) = χjiT(−k) = −χijT(−k).

χT(k) =
1

2







χ+(k) + χ−(k) i[χ+(k) − χ−(k)]

−i[χ+(k) − χ−(k)] χ+(k) + χ−(k)







(2.13a)

which, for small k and Ωm, reads as

χT(k) =
K(λ)

(2NFΓt)2

1

ω0(k)2 − (iΩm)2







D(λ)k2 −i(iΩm)

i(iΩm) D(λ)k2






. (2.13b)
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Using Eq. (2.13a), the magnon exchange interaction, Eq. (2.6b), is now

Sex[ψ̄, ψ] =
1

2

∑

σ,σ′

∫

k
δnσσ′(k)Vσ′σ(k)δnσ′σ(−k), (2.14a)

where
∫

k
≡ (1/V )

∑

k

T
∑

iΩm

, and the effective potential V is

Vσ′σ(k) = Vσ′σ(k) + Vσσ′(−k), Vσσ′(k) = (1 − δσσ′) Γ2
t χσ′(k). (2.14b)

Diagrammatically, this is shown in Fig. 5.

p, σ

p − k, σ′

k, σσ′

p′, σ′

p′ + k, σ

FIGURE 5. Effective electron-electron interaction mediated via magnon exchange.
The dashed line represents the effective potential Vσσ′(k)

From Fig. 5, we notice that the ferromagnons couple only electrons with opposite

spin projections. Therefore, a ferromagnon-exchange mediated effective electron-

electron scattering is a purely inter-Stoner-band scattering process. This is the

crucial point that is in contrast to the helimagnetic case, where the effective electron-

electron interaction has an intra-Stoner-band scattering contribution and comes with

a prefactor that is proportional to the square of the helical pitch wave number [26].
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Stoner Model for Itinerant Ferromagnetism

In the previous discussion, a conduction band of electrons subject to a non-zero

magnetization of unspecified origin was considered. Now, we examine the case of

itinerant ferromagnetism, where the conduction electrons themselves are responsible

for the magnetism. Using the formalism introduced in the preceding discussion, we

have the fermionic action

S[ψ̄, ψ] = S0[ψ̄, ψ] +
Γt
2

∫

dxns(x).ns(x) (2.15)

where the second term now represents the spin-triplet interaction between the

conduction electrons, which is known to be responsible for magnetism. Γt is the

spin-triplet interaction amplitude. S0 is the same as the one defined in Eq. (2.7a).

Again, all other electronic interactions that do not contribute to magnetism, have

been neglected as they will not qualitatively affect the forthcoming results. In the

ordered state of an itinerant ferromagnet, 〈ns,i〉 = δi3λ/Γt, assuming the system orders

along the 3− direction. A simple mean-field approximation can be made by replacing

one of the spin density fields in the second term of Eq. (2.15) by its expectation value.

Concretely,

n2
s ≈ 2〈ns〉.ns − 〈ns〉2. (2.16)

Upto an irrelevant constant term, we have

Sλ[ψ̄, ψ] = S0[ψ̄, ψ] + λ
∫

dxns,3(x). (2.17)
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The mean-field approximation used to obtain Sλ assumed 〈ns,i〉 = δi3λ/Γt. To ensure

that this approximation is self consistent, we require the following:

λ = Γt〈ns,3(x)〉λ ≡ Γt
Zλ

∫

D[ψ̄, ψ]ns,3(x) eSλ[ψ̄,ψ]

= Γt
d

dλ
lnZλ. (2.18)

Note that the average 〈. . .〉λ implies that the average is determined by Sλ itself, as

stipulated by the usual self-consistent mean-field requirement. As before, a parabolic

band is assumed and the non-interaction Green function corresponding to S0 given

by

G0(k, iωn) =
1

iωn − ξk

(2.19)

with the same ξk defined previously. Eq. (2.18) then becomes

1 = −2Γt

∫

p

1

G−2
0 (p) − λ2

. (2.20)

The condition for a nonzero solution for λ, which implies a nonzero magnetization, is

2NFΓt > 1. This condition is the famous Stoner criterion for itinerant ferromagnetism

[4]. Explicitly, after performing the integral in above, we find

λ = 2NFΓt
ǫF
3

[(1 + λ/ǫF)3/2 − (1 − λ/ǫF)3/2]. (2.21)

The action Sλ does not contain any ferromagnetic fluctuations. However, it is

useful for calculating the effective action. We designate Sλ as the “reference ensemble”.

The spin susceptibility of the reference ensemble is defined as

χλ,ij(x, y) = 〈δns,i(x)δns,j(y)〉Sλ
. (2.22)
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In terms of the reference-ensemble Green function

Gλ(k) =
G−1

0 (k)

G−2
0 (k) − λ2

σ0 − λ

G−2
0 (k) − λ2

σ3, (2.23)

χλ is

χλ,ij(x, y) = −tr [σiGλ(x, y) σj Gλ(y, x)]. (2.24)

The trace is performed over the spin degrees of freedom. Upon tracing and performing

a Fourier transform, we find

χλ,ij(k) =











f1(k) f2(k) 0

−f2(k) f1(k) 0

0 0 f3(k)











(2.25)

where

f1(k) = −2
∫

p

G−1
0 (p)G−1

0 (p− k) − λ2

[G−2
0 (p) − λ2][G−2

0 (p− k) − λ2]
, (2.26a)

f2(k) = −2iλ
∫

p

G−1
0 (p) − G−1

0 (p− k)

[G−2
0 (p) − λ2][G−2

0 (p− k) − λ2]
, (2.26b)

f3(k) = −2
∫

p

G−1
0 (p)G−1

0 (p− k) + λ2

[G−2
0 (p) − λ2][G−2

0 (p− k) − λ2]
. (2.26c)

It is useful to note that

f1(k = 0) = 1/Γt, f2(k = 0) = 0. (2.27)

The first equality follows from Eq. (2.20).

It should be noted that the reference ensemble does not have the magnons that

are the Goldstone modes of the the spontaneously broken symmetry in the ordered
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phase. We require a theory of fluctuations, like Sfluct in the previous discussion,

that is consistent with the treatment of the static magnetization to describe the

magnons. However, having obtained the reference-ensemble spin susceptibility, a

Gaussian action for the magnetization fluctuations, which in this case are δns(x),

can be written down in terms of χλ.

Aλ,fluct[δns(x)] = −1

2

∫

dx dy δns,i(x)χ−1
λ,ij(x, y) δns,j(y) (2.28a)

such that,

χλ,ij(x, y) =
∫

D[δns] δns,i(x) δns,j(y) e−Aλ,fluct[δns]. (2.28b)

There is another term that is quadratic in δns, that has not been considered

until now. This term comes from the original spin-triplet interaction term in Eq.

(2.15). Adding this term to Eq. (2.28b), the complete Gaussian fluctuation action is

Afluct[δns(x)] = −1

2

∫

dx dy δns,i(x)χ−1
ij (x, y) δns,j(y), (2.29a)

where χ is now the physical spin susceptibility, which is related to the reference

ensemble spin susceptibility χλ by

χ−1
ij (x, y) = χ−1

λ,ij(x, y) − δij δ(x− y) Γt. (2.29b)

Afluct[δns] is a specific case of the general Sfluct[δM ] that was written down in Eq.

(2.5b).
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Considering only the transverse (T) components(i, j = 1, 2) of χij , in k ≡

(k, iΩm) space,

χ−1
T (k, iωm) =







f1(k, iΩm)/N(k, iΩm) − Γt −f2(k, iΩm)/N(k, iΩm)

f2(k, iΩm)/N(k, iΩm) f1(k, iΩm)/N(k, iΩm) − Γt







(2.30a)

with

N(k, iΩm) = [f1(k, iΩm)]2 + [f2(k, iΩm)]2. (2.30b)

From Eq. (2.27), it is clear that, at zero frequency and wave number, χ−1
T has two zero

eigenvalues. After performing the integrals in Eq. (2.26) using standard Matsubara

frequency summation techniques, and keeping terms up to linear order in iΩm and

second order in k, Eq. (2.30a) is

χ−1
T (k, iΩm) =

(2NFΓt)
2

2NF







k̂2fk(λ)/3 2i(iΩ̂m)fΩ(λ)ǫF/λ

−2i(iΩ̂m)fΩ(λ)ǫF/λ k̂2fk(λ)/3






, (2.31a)

with the normalized frequency-momentum k̂ = k/2kF and Ω̂m = Ωm/4ǫF. The

functions fk(λ) and fΩ(λ) are

fk(λ) = −4ǫ3F
5λ3







1 − 3λ

2ǫF







1 +
λ

ǫF





3/2

−


1 +
3λ

2ǫF







1 − λ

ǫF





3/2

,(2.31b)

fΩ(λ) =
ǫF
3λ







1 +
λ

ǫF





3/2

−


1 − λ

ǫF





3/2

. (2.31c)

Typically, the Stoner gap λ is small compared to the Fermi energy ǫF. Therefore, in

the limit of weak ferromagnets, where 2NFΓt ≈ 1 and λ/ǫF ≪ 1,

fk(λ → 0) = fΩ(λ → 0) = 1 +O(λ2). (2.32)
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In this limit, after inverting χ−1
T in Eq. (2.31a) and comparing it with the general

transverse susceptibility written down in Eq. (2.13b), we find [24]

D(λ) =
λ

6k2
F

, K(λ) = 4NFλ. (2.33)

It is useful to identify some relevant energy scales and their relation to

experimentally observable quantities. The following quantities are defined for the

simple case of one conduction band. One obvious fundamental magnetic energy scale

is the Stoner gap, λ, which is also closely related to the exchange splitting δEex = 2λ

[32]. The latter can be measured by photoemission experiments and can also be

obtained from band structure calculations. Due to the fact that magnon-exchange

between the conduction electrons is a purely inter-Stoner-band process, the smallest

wave number that can be transferred by means of magnon-exchange is k0 = δEex/vF.

Specifically, for a parabolic band, this corresponds to k0 = k+
F − k−

F , as shown in Fig.

4. Therefore, the smallest energy that can be transferred by magnon exchange is

T0 = Dk2
0 ≈ 1

4
Dk2

F

(
δEex

ǫF

)2

. (2.34)

The largest momentum transfer is given by k1 = k+
F + k−

F ≈ 2kF. This corresponds

to the energy scale,

T1 = 4Dk2
F (2.35)

which is expected to be close to the exchange splitting. In Stoner theory, T1 = 2λ/3 =

δEex/3. There is also the microscopic energy scale given by the Fermi energy, ǫF.
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We thus have a hierarchy of energy scales, T0 ≪ T1 ≪ ǫF. Additionally, the ratio

of energy scales T0/T1 is given in terms of the Stoner gap and the microscopic energy,

T0

T1

≈ 1

4

(
λ

ǫF

)2

. (2.36a)

In terms of electron number density, ne and the magnetization m, the above relation

becomes

T0

T1
≈ 1

9

(
m

ne

)2

. (2.36b)

Single-particle Relaxation Rate

Having obtained the effective electronic action, the single-particle inelastic

relaxation rate due to the exchange of magnons can now be calculated. The single-

particle relaxation rate is directly related to the electronic self-energy Σ, which is

defined such that the full Green function G of the electron, with the interactions

taken into account, is given by a Dyson equation:

G−1
σ (p) = G−1

λ,σ(p) − Σσ(p), (2.37)

Gλ,σ(p) is defined in Eq. (2.10).

To linear order in the effective potential, Eq. (2.14) gives two contributions to

the spin-dependent self-energy Σσ, as shown in Fig. 6.

28



p, σ

p, σ

p, σ

p, σ

k, σ′σ

k, σσ′

p + k, σ′

p − k, σ′

FIGURE 6. Self-energy contributions Σσ(p) for the σ-spin Green function

Therefore, the self-energy Σσ can be calculated as

Σσ(p) =
∫

k

∑

σ′

Vσσ′(k)Gλ,σ′(p+ k)

= 2Γ2
t

∫

k
χσ(k)Gλ,−σ(p+ k). (2.38)

The single-particle relaxation rate Γ for a quasiparticle with spin-σ, averaged over

the σ-Fermi surface is related to the self-energy Σσ as

Γσ(ǫ) = − 1

Nσ
FV

∑

p

δ(ωσ(p)) Σ′′(p, ǫ), (2.39)

where Σ′′(p, ǫ) = Im Σ(p, iωn → ǫ + i0) is the spectrum of the self-energy. The

Matsubara frequency iωn has been analytically continued to a real frequency ǫ,

following the standard procedure in finite temperature Quantum Field Theory
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techniques. The factor δ(ωσ(p)) pins the momentum p to the σ-Fermi surface and the

factor 1/(Nσ
FV ) is the appropriate normalization factor for the Fermi surface average.

Now, from Eq. (2.38),

Σσ(p, iωn) =
T

V

∑

k

∑

iΩm

Vσσ′(k, iΩm)Gλ,σ′(p + k, iωn + iΩm). (2.40a)

We now use the spectral representations for the effective potential V and the Green

function Gλ,σ,

Vσσ′(k, iΩm) =
∫ ∞

−∞

du

2π

V ′′
σσ′(k, u)

iΩm − u
,

V ′′
σσ′(k, u) = −2 Im Vσσ′(k, iΩm → u+ i0). (2.40b)

where V̄ ′′ is the spectrum of the effective potential, and

Gλ,σ′(k, iωn) =
∫ ∞

−∞

dv

2π

A′′
σ′(k, v)

iωn − v
,

A′′
σ′(k, v) = −2 ImGλ,σ′(k, iωn → v + i0) = 2π δ[v − ωσ′(k)] (2.40c)

where, A′′
σ′ is the spectrum of the Green function Gλ,σ′ . Then,

Σσ(p, iωn) =
T

V

∑

k

∑

iΩm

∫ ∞

−∞
du

∫ ∞

−∞
dv

V ′′
σσ′(k, u)

iΩm − u

A′′
σ′(p + k, v)

iωn + iΩm − v
. (2.40d)

Using the Matsubara summation identity,

−T
∑

iΩm

1

iΩm − u

1

iωn + iΩm − v
=
nB(u) + nF (v)

iωn + u− v
(2.40e)
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Σσ(p, iωn) = − 1

V

∑

k

∫ ∞

−∞

du

2π

∫ ∞

−∞
dv [nB(u) + nF (v)]

V ′′
σσ′(k, u) δ[v − ωσ′(p + k)]

iωn + u− v
.

(2.40f)

Then, Eq. (2.39) yields

Γσ(ǫ) = N−σ
F

∫

du [nB(u) + nF (u+ ǫ)]
∑

σ′

V̄ ′′
σσ′(u)

= 2Γ2
tN

−σ
F

∫ ∞

−∞
du [nB(u) + nF (u+ ǫ)] χ̄′′

σ(u), (2.41a)

where nB(u) = 1/(eu/T − 1) and nF (u) = 1/(eu/T + 1) are the Bose and Fermi

distribution functions respectively, and

V̄ ′′
σσ′(u) =

1

Nσ
FN

σ′

F V
2

∑

k,p

δ[ωσ(k)] δ[ωσ′(p)] V ′′
σσ′(k − p, u). (2.41b)

Similarly,

χ̄′′
σ(u) =

1

Nσ
FN

σ′

F V
2

∑

k,p

δ[ωσ(k)] δ[ωσ′(p)]χ′′
σ(k − p, u). (2.41c)

Recalling Eq. (2.12), we have

χ′′
±(k, u) =

∓K(λ)π

(2NFΓt)2
δ[ω0(k) ∓ u]. (2.41d)

It is useful to note that the single-particle relaxation rates, Γσ, have the symmetry

relation

N+
F Γ+(ǫ) = N−

F Γ−(−ǫ). (2.41e)

Because the wave vectors k and p are pinned to different Fermi surfaces, a consequence

of pure inter-Stoner-band scattering contribution to the self energy, the spectrum
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χ̄′′
σ(u) is nonzero only in a range of frequencies, T0 ≤ |u| ≤ T1. On the energy shell

ǫ = 0, the relaxation rate on the σ-Fermi surface is

Γσ(ǫ = 0) =
1

2τσ
=

πK

2Nσ
FT1

T
∫ T1/T

T0/T

dx

sinh(x)

=
πK

Nσ
FT1







Te−T0/T if T ≪ T0

1

2
T ln(T/T0) if T0 ≪ T ≪ T1

1

2
T ln(T1/T0) if T ≫ T1

. (2.42)

Therefore, the ferromagnon contribution to the thermal resistivity ρth = 1/κ is

ρth =
6

v2
FcV

πK

NFT1







Te−T0/T if T ≪ T0

1

2
T ln(T/T0) if T0 ≪ T ≪ T1

1

2
T ln(T1/T0) if T ≫ T1

. (2.43)

Transport Relaxation Rate

In the following, the transport relaxation rate, which determines the electrical

resistivity, or equivalently the electrical conductivity is calculated. Consider the Kubo

formula for the electrical conductivity tensor [33],

σij(iΩ) =
i

iΩ
[πij(iΩ) − πij(iΩ = 0)] (2.44a)

where

πij(iΩ) = −e2 T
∑

n1,n2

1

V

∑

k,p

vi(k) vj(p) 〈ψ̄n1,σ(k)ψn1+n,σ(k) ψ̄n2,σ′(p)ψn2−n,σ′(p)〉.

(2.44b)
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πij is the current-current polarization function. This correlation function describes

the linear response of the system to an applied electric field. Here, v(k) = ∂ǫk/∂k.

Assuming a parabolic band, v(k) = k/me. The average 〈. . .〉 is to be calculated using

the effective action in Eq. (2.6). In terms of the interacting Green function defined

in Eq. (2.37), Eq. (2.44b) becomes

πij(iΩ) = −i e2 T
∑

iω

1

V

∑

p,σ

pi

me

Gσ(p, iω) Gσ(p, iω − iΩ) Γjσ(p; iω, iω − iΩ). (2.45)

where Γ is a vertex function. Diagrammatically, πij is represented by Fig. 7.

πij(iΩ) = iΩ iΩΓjσ

p, iω − iΩ, σ

p, iω, σ

i
pi

me

FIGURE 7. Diagrammatic representation of the current-current correlation function,
which describes the linear response of the system to an applied external electric field

The vertex function Γ effectively gives more weight to large-angle scattering of

electrons, as these processes contribute more to the transport relaxation rate. It is

important that the interacting Green functions G which contain the self-energy Σ, are

used. Also of importance is that the vertex Γ and the self-energy Σ are calculated

in a mutually consistent way [34]. Thus, for the self-energy formula used in Eq.

33



(2.38) which is linear in the effective potential V , Γ is calculated using the ladder

approximation,

Γσ(p; iω, iω − iΩ) = i
p

me
+
T

V

∑

k,iΩ′

∑

σ′

Vσσ′(k − p, iΩ′)

× Gσ′(k, iω + iΩ′) Gσ′(k, iω − iΩ + iΩ′)Γσ′(k; iω + iΩ′, iω − iΩ + iΩ′).

(2.46)

The diagrammatic representation of Eq. (2.46) is given by Fig. 8.

p, iω − iΩ, σ

p, iω, σ

Γσ =

p, iω − iΩ, σ p, iω − iΩ, σ

p, iω, σp, iω, σ

+i
p

me

k, iω − iΩ + iΩ′, σ′

k, iω + iΩ′, σ′

Γσ
′Vσσ

′(k − p, iΩ′)

FIGURE 8. Ladder approximation for the vertex function Γ

The vector vertex function Γ(p; iω, iω − iΩ) has to be parallel to p. Therefore,

using the ansatz Γ(p; iω, iω− iΩ) = i(p/me)γ(p; iω, iω− iΩ), a scalar vertex function

can be defined. Then Eq. (2.46) becomes

γσ(p; iω, iω − iΩ) = 1 +
T

V

∑

k,iΩ′

∑

σ′

p.k

p2
Vσσ′(k − p, iΩ′)

× Gσ′(k, iω + iΩ′) Gσ′(k, iω − iΩ + iΩ′)Γσ′(k; iω + iΩ′, iω − iΩ + iΩ′). (2.47)
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The polarization and the conductivity tensors are diagonal. Therefore, Eq. (2.44b)

becomes

πij(iΩ) = δij e
2 T

∑

iω

1

V

∑

p,σ

p2

m2
e

Gσ(p, iω) Gσ(p, iω − iΩ) γσ(p; iω, iω − iΩ)

= δij
e2

m2
e

1

V

∑

p,σ

p2 Sσ(p, iΩ), (2.48a)

where

Sσ(p, iΩ) = T
∑

iω

Gσ(p, iω) Gσ(p, iω − iΩ) γσ(p; iω, iω − iΩ). (2.48b)

To calculate the Matsubara frequency sum, the following contour integral is

considered:

Sσ(p, iΩ) = −
∫ ∞

−∞

dε

2πi
nF (ε)

×





Gσ(p, ε+ iΩ)

[

Gσ
ret(p, ε) γσ(p, ε+ i0, ε+ iΩ) −Gσ

adv(p, ε) γσ(p, ε− i0, ε+ iΩ)
]

+ Gσ(p, ε− iΩ)
[

Gσ
ret(p, ε) γσ(p, ε− iΩ, ε+ i0) −Gσ

adv(p, ε) γσ(p, ε− iΩ, ε− i0)
]





.

(2.48c)

Here, Gret and Gadv are retarded and advanced Green functions, respectively. They

are related to G by

Gret(p, ε) = G(p, iωn → ε+ i0), Gadv(p, ε) = G(p, iωn → ε− i0).

(2.48d)
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From Eq. (2.44a), the dc conductivity is given by

σ = lim
Ω→0

Reσ(iΩ → Ω + i0)

=
e2

m2
e

1

V

∑

p,σ

p2 lim
Ω→0

Im [Sσ(p, iΩ → Ω + i0) − Sσ(p, iΩ = 0)]

Ω
. (2.48e)

Eq. (2.48) yields

σ =
e2

3πm2
e

∫ ∞

−∞
dǫ

[

− ∂nF (ǫ)

dǫ

]
1

V

∑

p,σ

p2



|Gσ(p, ǫ+ i0)|2 γσ(p; ǫ+ i0, ǫ− i0)

− Re
[

Gσ(p, ǫ+ i0)
]2

γσ(p; ǫ+ i0, ǫ+ i0)





σ =
e2

3πm2
e

∫ ∞

−∞

dǫ

4T

1

cosh2(ǫ/2T )

1

V

∑

p,σ

p2



|Gσ(p, ǫ+ i0)|2 γσ(p; ǫ+ i0, ǫ− i0)

− Re
[

Gσ(p, ǫ+ i0)
]2

γσ(p; ǫ+ i0, ǫ+ i0)



.

(2.48f)

The momentum sum in the above expression is evaluated using the Abrikosov-Gorkov-

Dzhyaloshinksii approximation, in which the radial part of the momentum integral

is performed by means of a contour integral over the interval ξk ∈ (−∞,∞) [35].

The real part of the self-energy Σσ in Gσ only renormalizes the Fermi energy. The

imaginary part of the self-energy, from which the single-particle relaxation rate was

calculated in the previous section, vanishes at low temperatures, as can be seen from

Eq. (2.42). Therefore, the AGD approximation can be carried out in the limit of

vanishing self-energy. In this limit, the leading contribution to Eq. (2.48f) comes

from the first term, where the frequency arguments of the two Green functions lie
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on different sides of the real axis. Therefore, the second term in Eq. (2.48f) will be

neglected. Then,

σ =
e2

3πm2
e

∫ ∞

−∞

dǫ

4T

1

cosh2(ǫ/2T )

1

V

∑

p,σ

p2 |Gσ(p, ǫ+ i0)|2 γσ(p; ǫ+ i0, ǫ− i0). (2.48g)

In the aforementioned limit of a vanishing self-energy, the dominant contribution

from the momentum integral comes from the momenta that obey ωσ(p) = ǫ. This is

guaranteed by the pole of the Green function. Note that the energy ǫ scales as T .

Therefore, for leading T dependence, all ǫ dependencies that do not appear as ǫ/T

can be neglected. With these approximations, the conductivity is now given by

σ =
e2

2me

∫ ∞

−∞

dǫ

4T

1

cosh2(ǫ/2T )

∑

σ

nσ
Λσ(ǫ)

Γσ(ǫ)
, (2.49a)

where nσ is the density of σ-spin electrons. Γσ is the single-particle relaxation rate

defined in Eq. (2.41). The quantity Λσ is defined as

Λσ(ǫ) =
1

Nσ
FV

∑

p

δ[ωσ(p)] γσ(p; ǫ+ i0, ǫ− i0). (2.49b)

Using Eq. (II), Λσ(ǫ) obeys the following integral equation,

Λσ(ǫ) = 1 +
∑

σ′

Nσ′

F

∫

duWσσ′(u) [nB(u) + nF (u+ ǫ)]
Λσ′(u+ ǫ)

Γσ′(u+ ǫ)
, (2.50a)

with

Wσσ′(u) =
1

Nσ
FN

σ′

F V
2

∑

p,k

∑

σ′ 6=σ

δ[ωσ′(k)] δ[ωσ(p)] V ′′
σσ′(k − p, u)

k.p

p2
. (2.50b)

Again, V ′′
σσ′ is the spectrum of the effective potential.
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Using the fact that k and p are pinned to different Fermi surfaces by the

corresponding δ factors in above, the resulting identity,

k.p = k2
F

[

1 − ω0(k − p)

2Dk2
F

]

can be used to express Wσσ′ as

Wσσ′(u) =
(
kF

kσF

)2 [

V̄ ′′
σσ′(u) − V̄ ′′,(2)

σσ′ (u)
]

(2.51a)

with V̄ ′′
σσ′(u) defined in Eq. (2.41b) and

V̄ ′′,(2)
σσ′ (u) =

1

Nσ
FN

σ′

F V
2

∑

k,p

δ[ωσ(k)] δ[ωσ′(p)] V ′′
σσ′(k − p, u)

ω0(k − p)

2Dk2
F

. (2.51b)

According to the spectrum of Vσσ′ , which is related to the one in Eq. (2.41d), the

ferromagnon energy ω0(k − p) in Eq. (2.51b) is equal to ±u. Therefore, V̄ ′′,(2)
σσ′ (u)

has an additional factor of u relative to V̄ ′′
σσ′(u). Hence, the analog of Γσ(ǫ) in Eq.

(2.41a) can be defined as

Γ(2)
σ (ǫ) = N−σ

F

∫

du [nB(u) + nF (u+ ǫ)]
∑

σ′

V̄ ′′,(2)
σσ′ (u). (2.52)

Then, Eq. (2.50a) becomes

Λσ(ǫ) = 1 +
(
kF

kσF

)2 ∫

du
∑

σ′

Nσ′

F

[

V̄ ′′
σσ′(u) − V̄ ′′,(2)

σσ′ (u)
]

[nB(u) + nF (u+ ǫ)]
Λσ′(u+ ǫ)

Γσ′(u+ ǫ)
.

(2.53)

The usual procedure to solve this integral equation is to make an uncontrolled

approximation that replaces Λ(u + ǫ)/Γ(u + ǫ) in Eq. (2.53) with Λ(ǫ)/Γ(ǫ), thus

turning an integral equation into an algebraic equation [33]. However, it was pointed
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out in [36] that Eq. (2.53) is a Fredholm equation of the second kind. This

integral equation can be solved asymptotically exactly, and it was shown that the

temperature dependence given by the exact solution and the one obtained from the

simple approximation are qualitatively the same, only their prefactors are different.

Therefore, using the simple approximation, Eq. (2.53) turns into a system of two

coupled algebraic equations for Λ±(ǫ). As before, ǫ is set to 0 in Eq. (2.49a), since

this will only affect the prefactor of the temperature dependence of the conductivity.

Using Λσ ≡ Λσ(ǫ = 0) and Γσ ≡ Γσ(ǫ = 0), the equations for Λσ are

Λ+ = 1 +
(
kF

k+
F

)2 [

Γ+ − Γ
(2)
+

]
Λ−

Γ−
,

Λ− = 1 +
(
kF

k−
F

)2 [

Γ− − Γ
(2)
−

]
Λ+

Γ+
.

(2.54)

Γσ(ǫ = 0) is given by Eq. (2.42). Γ(2)
σ is obtained from an analogous integral with an

additional factor of frequency in the integrand.

Γ(2)
σ = =

πK

Nσ
F

T 2

T 2
1

∫ T1/T

T0/T
dx

x

sinh(x)

=
πK

Nσ
F

T

T1







2T0

T1

(

1 +
T

T0

)

e−T0/T if T ≪ T0

π2

4

T

T0
if T0 ≪ T ≪ T1

1 if T ≫ T1

. (2.55)

For T ≪ T0, we notice that Γ(2) is proportional to Γ:

Γ(2) =
2T0

T1

(

1 +
T

T0

)

Γ. (2.56)
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Neglecting λ/ǫF ≪ 1 wherever it is not of qualitative importance, and using Eqs.

(2.42), (2.41e) and (2.55), the solution of Eqs. (2.54) is

Λ±

Γ±

=
Γ+ + Γ− − Γ

(2)
±

−4T0

T1
Γ+Γ− + Γ+Γ

(2)
− + Γ−Γ

(2)
+ − Γ

(2)
+ Γ

(2)
−

. (2.57)

Using Eq. (2.57) in Eq. (2.49a), the transport relaxation time τtr, defined via a Drude

formula σ = (nee
2/me)τtr, is given by

τtr =
Γ − Γ(2)

2

−4T0

T1
(Γ)2 + 2ΓΓ(2) − (Γ(2))2

. (2.58)

Here, Γ ≈ Γ+ ≈ Γ− and Γ(2) ≈ Γ
(2)
+ ≈ Γ

(2)
− , which are obtained from Eqs. (2.42)

and (2.55), respectively, with Nσ
F replaced with NF. These approximations give small

corrections of O(λ/ǫF) that only change the prefactor of the temperature dependence

of the transport relaxation time.

Finally, the ferromagnon-exchange contribution to the electrical resistivity ρel =

1/σ is

ρel =
me

nee2

πK

NFT1







4

T1
T 2 e−T0/T if T ≪ T0

π2

2T1

T 2 if T0 ≪ T ≪ T1

T if T ≫ T1

. (2.59)

Validity of the Effective Action

In this section, the validity of the ferromagnon-exchange mediated effective

electronic interaction obtained in Eq. (2.6b) is discussed. To briefly summarize how

the effective electronic interaction was obtained, it was assumed that the conduction

electrons are subject to a magnetization and magnetic fluctuations of unspecified
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origin. The dynamics of these fluctuations are governed by the physical magnetic

susceptibility. Then, these fluctuations were integrated out, leaving behind an

action purely in terms of the electronic fields. It is important to note that the

feedback of the electrons on the magnetic fluctuations has already been built into

the effective action, by means of the Zeeman coupling of the electronic spin density

to magnetization fluctuations. Therefore, it would be erroneous to use the effective

action to renormalize the susceptibility, either directly or indirectly.

However, for the purposes of calculating electronic relaxation rates, it is safe to

use the effective potential, Eq. (2.14b), up to first order in V perturbatively. For

localized-moment ferromagnets, where the magnetism is due to localized electrons in

a different band, the validity of this procedure is more obvious compared to the case

of itinerant ferromagnets. But, the coupling of the spin density to the magnetization

fluctuations, produced by other electrons either in the same band or a different band,

remains the same. Therefore, the above arguments must follow through similarly in

the itinerant case. To further illustrate this point, we will now obtain well-established

results for the electronic relaxation rates due to Coulomb interaction and due to

phonons, using the presented procedure to generate the effective action.

We start with a band of noninteracting electrons with action S0, with a statically

screened Coulomb interaction given by

Sint[ψ̄, ψ] =
∫

k
δn(k) vsc(k) δn(−k). (2.60)

The screened Coulomb interaction is vsc(k) = 4πe2/(k2 + κ2), with κ the screening

wave number. n(k) is the Fourier transform of the number density field, given in

terms of the fermion fields by n(x) = ψ̄(x)ψ(x). In the magnetic case, we had
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to assume a nonzero magnetization and define a reference ensemble with action Sλ.

Here, the finite average number density of electrons is already built in via the chemical

potential µ in S0. Therefore, in this case, S0 itself is the reference ensemble. Mirroring

the steps in the magnetic case, one of the δn fields is replaced by δN , a number

density fluctuation. We can interpret δN as the density fluctuation created by all

other electrons, in analogy with magnetization fluctuations in the case of an itinerant

magnet. This yields, in real space and imaginary time,

S[ψ̄, ψ] = S0[ψ̄, ψ] +
∫

dx dy δN(x) δ(τx − τy) vsc(x − y) δn(y). (2.61)

Including a Gaussian action that governs the density fluctuations, similar to Sfluct[δM ]

Sfluct[δN ] = −1

2

∫

dx dy δN(x)χ−1(x− y) δN(y), (2.62)

where χ is the physical density susceptibility. Integrating out the δN fields by means

of a Gaussian integral, we obtain

Seff[ψ̄, ψ] = S0[ψ̄, ψ] +
1

2

∫

k
δn(k)V (k) δn(−k) (2.63a)

with the effective potential

V (k) = [vsc(k)]2χ(k). (2.63b)

Using this effective action, the single-particle relaxation rate is

1

2τ
= Γ(ǫ = 0) = 2NF

∫ ∞

−∞
du V̄ ′′(u)

1

sinh(u/T )
, (2.64a)

V̄ ′′(u) =
1

(2NFV )2

∑

k,p

δ(ξk) δ(ξp)V ′′(k − p, u). (2.64b)
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From Eq. (2.63b), the spectrum of the effective potential V is given by the spectrum

of the physical density susceptibility χ, which to the lowest order in the Coulomb

interaction is nothing but the Lindhard susceptibility χ0. The spectrum of χ0 is

χ′′
0(k, u) =

πNFu

vF|k| , for |u| < 2kF|k| − k2

2me
. (2.65)

Therefore, at low temperatures, we get the well-known Fermi-liquid result for the

relaxation rate,

1

2τe-e

=
π

4

T 2

ǫF
. (2.66)

Hence, we conclude that the procedure followed to derive the effective electronic action

gives the correct result in case of Coulomb scattering of electrons.

If δN represents ionic density fluctuations, they couple to δn in the same way

as in Eq. (2.61), via a statically screened Coulomb interaction. In this case, the

susceptibility χ describes ionic density fluctuations, which are the phonons. The

calculations for the previous case follow through in the same way, except that the

spectrum of effective potential, if we consider longitudinal phonons, is [37]

V̄ ′′(k, u) = [vsc(k)]2χ′′(k, u), χ′′(k, u) = π ρ2 κ u2 δ
[

u2 −ω2
L(k)

]

, (2.67)

with ωL(k) = c|k|, the longitudinal phonon frequency. ρ is the ionic number density, c

is the longitudinal speed of sound, and κ = −(∂V/∂p)/V , with V the system volume

and p the pressure, the compressibility. This electron-phonon interaction in metals

leads to the single-particle relaxation rate

1

τe-ph
=

7π

3
ζ(3)

ρ2κ

nemec2
T 3, (2.68)
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which is consistent with the established result [21]. This serves as a further

justification of the validity of the magnon-exchange effective electronic action in the

calculation of electronic relaxation rates.

Discussion and Conclusions

In summary, the ferromagnon exchange contribution to the thermal and electrical

resistivity has been calculated, using a very general theory for the effective electronic

interaction mediated by the ferromagnons. The theory only relies on symmetry

arguments and is not sensitive to the origin of magnetization, be it localized electrons

in a different band or the conduction electrons themselves. Eqs. (2.43) and (2.59)

show that at asymptotically low temperatures, below a temperature scale T0, both the

thermal and the electrical resistivity due to the ferromagnons are exponentially small.

The exponential dependence is a direct consequence of the conduction-band splitting

in a metallic ferromagnet. The Ueda-Moriya T 2 behavior of the electrical resistivity

is recovered in a pre-asymptotic temperature window. The thermal resistivity is

proportional to T in the same window. This temperature window ranges from T0 to

a high temperature scale T1, which is typically close to the exchange splitting. For

T ≫ T1, both resistivities show a linear temperature dependence.

To elaborate on the physical reason for the exponential dependence of the

relaxation rates at low temperatures, consider Fig. 4. The figure schematically

shows the splitting of the conduction band Fermi surface into two for the two spin

projections of the electrons. The ferromagnons couple only electrons with opposite

spins. Therefore, the minimum momentum that can be transferred in this scattering

process is k0 = k+
F − k−

F ≈ ∆Eex/vF. Now, the magnon dispersion relation is

given by ω = Dk2, which implies that the smallest transferrable energy in the
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scattering process is T0 = Dk2
0. Typically, the magnon stiffness coefficient D is itself

roughly proportional to ∆Eex. Hence, the temperature scale T0 ∝ (∆Eex)3. When

the temperature T ≪ T0, the ferromagnon-exchange electron scattering process is

greatly suppressed and thus, the relaxation rates show an activated behavior with

an activation energy T0. The largest momentum transfer in this scattering process

is given by k1 = k+
F + k−

F ≈ 2kF, which corresponds to a largest energy transfer

of T1 = Dk2
1 ≈ ∆Eex. One may interpret T1 as the fundamental magnetic energy

scale, an analog of the Debye temperature ΘD in case of electron-phonon coupling.

However, there is no analog of T0 in the electron-phonon problem, as the scattering

process in that case is inter-band.

The primary difference between the results presented above and the Ueda-Moriya

result [19] is that these authors neglected the exchange splitting of the conduction

band in their calculation. Consequently, there was no minimum energy scale T0

and the T 2 behavior of the transport relaxation rate, which is in fact only valid for

temperatures larger than T0, was obtained at low temperatures. It is worth noting

that this discrepancy shows only in the ferromagnon contribution to the electrical

resistivity. The contributions from the dissipative spin-excitations, somewhat similar

to the Coulomb scattering case, remain unaffected by the exchange splitting and are

proportional to T 2 even at asymptotically low temperatures.

In the following, numerical estimates of the values of T0 and T1 are discussed. To

start with, a fictitious case of simple, single-conduction-band, metals with magnetic

properties similar to the classic “high-temperature” ferromagnets Nickel, Cobalt and

Iron are considered. The values of the exchange splitting in these materials are

∆Eex ≈ 0.25, 1.0 and 2.0 eV, respectively [32, 38]. These values are obtained from

photoemission experiments. Neutron scattering experiments give values for the spin-
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stiffness coefficient D, 364 for Ni, 500 for Co and 281 for Fe, in units of meV Å2 [3].

Assuming a generic value kF ≈ 1Å
−1

Fermi wave number and ǫF ≈ 105 K for the

Fermi energy, the temperature scales are, T1 ≈ 10000 − 20000 K for these materials,

and T0 ≈ 500 mK for Ni, 10 K for Co and 30 K for Fe. For weak ferromagnets, such as

MnSi or Ni3Al, D ≈ 23.5 meV Å2 [39] and 70 meV Å2 [40], respectively. The magnetic

moments per formula unit is 0.4 µB for MnSi [41] and 0.17µB for Ni3Al [40], about

two thirds and one third, respectively, that of Ni. Assuming a linear-correlation

between the magnetic moment and exchange splitting based on observations [38],

∆Eex ≈ 0.17eV for MnSi and 0.07eV for Ni3Al. Taking kF ≈ 1Å
−1

and ǫF ≈ 105 K,

yields, T1 ≈ 1000 K and T0 ≈ 20 mK for Mnsi, and T1 ≈ 2800 K and T0 ≈ 10 mK for

Ni3Al.

Using the relation between K and λ as in Eq. (2.33) and the fact that T1 ≈ λ, the

prefactor in Eq. (2.59) πK/NFT1 is of order unity. Comparing this with the Fermi-

liquid result Eq. (2.66), it seems that the ferromagnon T 2 contribution is larger

than the Fermi-liquid T 2 contribution by roughly a factor of ǫF/T1 ≈ 10 in a single-

band model. In reality however, the aforementioned materials are either transition

metals, or compounds containing transition metals, with a complicated band structure

and Fermi surfaces containing multiple sheets. Consequently, the electron-electron

Coulomb scattering contribution to the electrical resistivity is likely much larger than

implied by a single-band model. There have been suggestions that this scattering

makes the largest contribution to the observed T 2 behavior at low temperatures

[42]. This is due to the fact that in a realistic multi-band case, different band edges

have different distances from the common chemical potential and thus, have different

effective Fermi temperatures. Depending on whether the electron spin is flipped or not

in the various scattering processes and whether or not these processes couple different
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sheets of the Fermi surface, the various relaxation rate contributions may or may not

be additive, leading to a complicated structure of the overall resistivity. In addition to

ferromagnons and Coulomb scattering, dissipative spin excitations also contribute a

T 2 term to the resistivity [19]. Hence, it turns out that the low-temperature transport

rate in Fe, Ni, and Co is roughly 100 times larger than the estimate given by the single-

band Fermi liquid result, Eq. (2.66), with a single Fermi temperature of 105 K [42].

The temperature scale T1 is largely unaffected by the complicated band structure. It

only depends on the spin-stiffness coefficient, which can be experimentally measured,

and the largest possible momentum transfer, which in a good metal is on the order

of 2π/a, with a the lattice constant, and is roughly close to the value 2kF for a single

spherical Fermi surface that yields the same electron density. Therefore, the estimates

of T1 are largely model independent. In conclusion, it turns out that the ferromagnon

contribution to the electrical resistivity in Fe, Ni and Co at temperatures T > T0

is about an order of magnitude less than the combined contribution from Coulomb

scattering and dissipative magnetic excitations. Although in MnSi and Ni3Al T1

is much lower and the magnon scattering is accordingly stronger, the observed T 2

prefactors in the resistivity of these materials are orders of magnitude larger than

the ones in Fe, Ni and Co. The ferromagnon contribution to the resistivity cannot

possibly account for this.

The effect of the band structure on T0 is more complicated. Various scattering

processes involving electrons on different sheets of the Fermi surface are expected to

be have different values of T0. Therefore, with decreasing temperature, contributions

to the ferromagnon-exchange part of the electronic scattering rate will sequentially

freeze out as the temperature drops below a sequence of temperature scales T0. The

estimates of T0 given previously are thus only rough estimates for the lowest of these
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temperature scales. Estimating higher temperature scales requires a detailed analysis

of the electronic band structure. The fact still remains that below the lowest T0 the

ferromagnon contribution to the relaxation rates will be exponentially small. Thus,

the obvious candidates for the low-temperature T 2 behavior in metallic ferromagnets

are Couloumb scattering and dissipative magnetic excitations. Experimentally, one

would expect a distinct temperature dependence of the prefactor of the T 2 term in

the electrical resistivity.

Additionally, in a material with complicated band structure, it could transpire

that there may be points or lines in reciprocal space where the two Stoner bands cross.

In such a case, the exponential suppression of the relaxation rates is expected to be

weakened, but the nature of this weakening will be highly dependent on the nature of

the crossing. Also, real materials always have some amount of quenched disorder. The

interplay of the scattering process discussed in this chapter and quenched disorder is

an interesting problem that is surely important for a quantitative understanding of

real materials. A complete discussion of disorder effects is a separate problem on its

own and will not be discussed here.

In the next chapter, we investigate the phenomenon of generic scale invariance

in quantum magnets. More specifically, we calculate and compare the one-loop spin-

wave contribution to the longitudinal order-parameter susceptibility in both quantum

ferromagnets and antiferromagnets. We also make predictions for neutron-scattering

experiments.
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CHAPTER III

MAGNON-INDUCED LONG-RANGE CORRELATION FUNCTIONS IN

QUANTUM MAGNETS

This work was published in volume 94 of the journal Physical Review B in

October 2016. Dietrich Belitz and Theodore R. Kirkpatrick were the principal

investigators for this work; Sripoorna Bharadwaj performed the calculations and

produced the figures in this chapter.

Motivation

In the previous chapter, the magnon contribution to the electrical resistivity

was calculated. Another important effect of these low-energy excitations is the

long-ranged nature of certain correlation functions, which can be easily probed by

neutron-scattering experiments. The magnons themselves can be directly observed via

neutron scattering [16, 37]. However, these transverse order-parameter fluctuations

(i.e. the Goldstone modes) also have profound indirect effects on other observables.

An example of this is the divergence of the longitudinal spin susceptibility, χL, as

k → 0 in a classical Heisenberg ferromagnet or antiferromagnet. This divergence

exists in the ordered phase for all spatial dimensions 2 < d < 4 [43, 44]. The leading

contribution to χL from the coupling of the longitudinal order-parameter fluctuations

to the transverse ones takes the form of a convolution of two Goldstone modes,

χL ∝
∫

dp
1

p2

1

(p − k)2
≈

∫

|k|
dp

1

p4
∝ 1

|k|4−d
. (3.1)
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The diagrammatic representation of above is as shown in Fig. 9. This result was

originally derived for ferromagnets in perturbation theory and later shown to be

asymptotically exact using renormalization-group (RG) methods [45]. It reflects the

scale dimensions that characterize the stable RG fixed point describing the ordered

phase. Eq. (3.1) holds for both classical ferromagnets and antiferromagnets. In the

latter case, χL is actually the longitudinal order-parameter susceptibility, which is

the correlation function of the staggered magnetization rather than the physical spin

susceptibility.

L L

T

T

k k

p

p − k

FIGURE 9. Diagrammatic representation of the coupling between the longitudinal
and the transverse spin fluctuations in the classical case: A longitudinal (L) mode
couples to two transverse (T) modes. The resulting contribution to the longitudinal
susceptibility χL has the form given in Eq. (3.1)

This divergence of χL, which in the absence of mode coupling with the Goldstone

modes is a non-singular quantity, is an example of a nonanalyticity. This nonanalytic

dependence of χL on the wave number reflects long-range correlation functions in the

system due to the massless magnons. In real space, for large distances r, χL falls off as

a power law, χL ∝ 1/r2d−4. This is an example of a more general phenomenon - soft or

massless modes in the system inducing long-range correlations that are then reflected

in the nonanalytic behavior in the limit of small frequencies and wave numbers.

Existence of soft modes in entire phases implies nonanalytic behavior, usually in the

form of power laws, over the entire phase. This phenomenon is known as generic
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scale invariance [46]. Soft modes that exist only at isolated critical points are not

related to this phenomenon. In a magnetic system, magnons are not necessarily

the only massless modes in the system. There may be other soft modes that could

couple to any given observable and compete with the magnons in producing long-

range correlations or nonanalytic behavior. For instance, in disordered metals at zero

temperature (T = 0), there are massless diffusive excitations known as “diffusons” and

“Cooperons” that lead to nonanalyticities in observables known as weak-localization

effects [47, 48].

The work presented in this chapter investigates the fate of the singular behavior

of the classical longitudinal spin susceptibility, Eq. (3.1), in the limit T → 0. In

quantum statistical mechanics, the statics and the dynamics are intrinsically coupled.

Therefore, at T = 0, the expression for χL must include a frequency integration in

addition to the wave-number integration, with the integrand being comprised of the

dynamic Goldstone modes. Power counting arguments suggest that this additional

frequency integration will weaken the classical singularity at T = 0. Specifically, for

quantum antiferromagnets at T = 0, power counting suggests that Eq. (3.1) becomes

χL ∼
∫

|k|
dp

∫

Ω
dω

1

(p2 + ω2)2
∼ |k|d−3 ∼ |Ω|d−3 (3.2)

for 1 < d < 3, with a logarithmic singularity in d = 3. The “∼” symbol is

meant to denote “scales as”. An explicit calculation done later in this chapter agrees

with this guess. For quantum ferromagnets, the expression obtained by replacing the

denominator in Eq. (3.2) by (p2+ω)2, which yields a kd−2 or |Ω|(d−2)/2 behavior, is not

correct. This can be seen from spin-wave theory, which expresses the spin operators

by bosonic operators via a Holstein-Primakoff transformation [3]. In a ferromagnet,

the longitudinal spin fluctuation is given in terms of the magnon-number operator
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and thus, χL is actually the magnon-number correlation function. There are no

magnon number fluctuations at T = 0 and therefore, the contribution analogous to

Eq. (3.2), is identically zero (i.e. scales like kd−2 with zero prefactor). In other

words, in the ground state of a quantum ferromagnet the magnetization is at its

maximum value. Hence, the ground-state energy has the same value as it does

classically and cannot be decreased by quantum fluctuations. This argument clearly

does not hold for a quantum antiferromagnet. The classical Neél state is not an

eigenstate of the Hamiltonian, and the ground-state energy can be lowered below

its classical value by quantum fluctuations. Detailed calculations are performed and

discussed in this chapter, which will demonstrate the difference in the behavior of the

T = 0 longitudinal order-parameter correlation function in quantum ferromagnets

and quantum antiferromagnets. The calculations for both cases are performed using

the nonlinear sigma model (NLσM), which provides a convenient description of the

long-wavelength and low-frequency properties of the ordered phase of systems with

spontaneously broken symmetry. This model is essentially an effective field theory

that focuses on the Goldstone modes and integrates out all massive fluctuations in

the simplest approximation that respects the symmetry. The divergence of χL in

a classical Heisenberg ferromagnet, Eq. (3.1), can be easily demonstrated using

the classical O(3)-symmetric nonlinear sigma model [49]. Therefore, it is natural

to consider a quantum NLσM to study the corresponding effect in quantum magnets.

The results presented here were published as [50].

NLσM for Quantum Ferromagnets

Consider a quantum ferromagnet with a fluctuating magnetization M(x) =

M0(x)m̂(x), where x = (x, τ) - x and τ being the real-space position and imaginary-
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time, respectively. M0 is the magnitude of the order parameter and the direction unit

vector m̂(x),

m̂(x) = (π1(x), π2(x), σ(x)) (3.3a)

with

m̂2(x) = π2
1(x) + π2

2(x) + σ2(x) ≡ 1. (3.3b)

In a NLσM description of a quantum ferromagnet, fluctuations of M0 are neglected.

Taking M0(x) ≡ M0, the partition function can be written as [51, 52]

Z =
∫

D[m̂] δ(m̂2(x) − 1) e−
∫
dxLFM[m̂]. (3.4a)

Here,
∫

dx =
∫ 1/T

0
dτ

∫

V
dx, where T is the temperature and V is the system volume.

The Lagrangian LFM is

LFM[m̂] = −ρs
2

m̂(x).∇2m̂(x) −M0µH .m̂(x)

+
iM0

1 + σ(x)

(

π1(x)∂τπ2(x) − π2(x)∂τπ1(x)
)

, (3.4b)

where ρs is the spin-stiffness coefficient and is proportional to M2
0 , H is the external

magnetic field and µ the Bohr magneton. In the right-hand side of Eq. (3.4b), the

first two terms are the same as in a classical O(3) NLσM [49]. The third term is

a topological Wess-Zumino term or a Berry-phase term that describes the quantum

dynamics [51, 52, 53, 54]. The Bloch spin precession is governed by this term. Note

that Eq. (3.4b) has been written down, assuming that the ferromagnet order is along

the z-direction.
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Expanding the action in powers of the fields π1 and π2, the Fourier-space

Gaussian action that governs the transverse fluctuations is as follows:

A(2)[π1, π2] =
M0

2

∑

k

2∑

i,j=1

π1(k) Γij(k) πj(−k), (3.5a)

Γij represents the matrix elements of a 2 × 2 matrix

Γ(k) =







D k2 + µH −Ωn

Ωn D k2 + µH







(3.5b)

where D = ρs/M0. Here k = (k, iΩn) with k a wave vector and Ωn = 2πTn (n

integer) a bosonic Matsubara frequency. The external field is taken to be pointing

in the z-direction H = (0, 0, H). The inverse of Γ yields the Gaussian transverse

susceptibility matrix, i.e., the correlation function

M2
0 〈πi(k)πj(−k)〉 = χijT(k), (3.6a)

where

χT(k) =
M0

(D k2 + µH)2 + Ω2
n







D k2 + µH Ωn

−Ωn D k2 + µH






. (3.6b)

The matrix Γ is non-Hermitian and the frequency couples the magnetization

components Mx and My. This reflects the structure of the Bloch spin-precession

term in Eq. (3.4b). This term also shows the quadratic dispersion relation of the

ferromagnetic magnons, iΩn = ±Dk2. The spin-wave stiffness coefficient D (not a

diffusion coefficient) is linear in M0 (since ρs ∝ M2
0 ). The eigenvalues of Γ(k) are

λ±(k) with

λ±(k) = λ∓(−k) = Dk2 + µH ∓ iΩn. (3.7a)
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The left and right eigenvectors are

(u, v)L = (1,∓i) ,

(u, v)R = (1,±i) . (3.7b)

The Gaussian action can be diagonalized and written in terms of fields ψL =

(ψL,+, ψL,−) and ψR = (ψR,+, ψR,−),

A(2)[ψL, ψR] =
M0

2

∑

k

∑

σ=±

ψL,σ(k)λσ(k)ψR,σ(−k). (3.8)

In terms of the ψL and ψR, the fields π1 and π2 are

π1 =
1√
2

(ψL,+ − iψL,−) =
1√
2

(ψR,+ + iψR,−) ,

π2 =
1√
2

(−iψL,+ + ψL,−) =
1√
2

(iψR,+ + ψR,−) . (3.9)

We note that the four fields ψL,σ, ψR,σ are not independent. Eq. (3.9) yields

ψL,+ = iψR,− , ψL,− = iψR,+. (3.10)

The above constraints restore the original number of degrees of freedom. Then, from

Eq. (3.8), the Goldstone mode can be obtained.

g±(k) = 〈ψL,±(k)ψR,±(−k)〉 = 1/M0 λ±(k). (3.11)

This is massless in the absence of the symmetry breaking field H . Also, this equation

only represents one Goldstone mode, since the two eigenvectors are not independent,
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unlike the antiferromagnetic case, where there are two Goldstone modes [55]. Using

the Eq. (3.10), the following nonzero correlation functions can be written down.

〈ψL,+(k)ψL,−(−k)〉 = i/M0 λ+(k) ,

〈ψR,+(k)ψR,−(−k)〉 = −i/M0 λ+(−k). (3.12)

The normalized longitudinal magnetization fluctuations are given by δσ(x) =

σ(x) − 〈σ(x)〉. Then, the normalized longitudinal susceptibility is given by the

correlation function 〈δσ(x)δσ(y)〉 = χL(x − y)/M2
0 . Utilizing the NLσM constraint

from Eq. (3.3b), the following expansion can be written down for this correlation

function.

〈δσ(x)δσ(y)〉 =
1

4
〈(π2

1(x)+π2
2(x))(π2

1(y)+π2
2(y))〉− 1

4
〈(π2

1(x)+π2
2(x))〉2+. . . . (3.13a)

In terms of the fields ψL and ψR, the above expression becomes

〈δσ(x)δσ(y)〉 =
1

4

∑

σ,σ′=±

[

〈ψL,σ(x)ψR,σ(x)ψL,σ′(y)ψR,σ′(y)〉

−〈ψL,σ(x)ψR,σ(x)〉〈ψL,σ′(y)ψR,σ′(y)〉
]

(3.13b)

Finally, the one-loop contribution to the longitudinal susceptibility χ
(1)
L , obtained by

using Wick’s theorem and the correlation functions in Eq. (3.12), is

χ
(1)
L (k) = M2

0

T

2V

∑

p

∑

σ

gσ(p) gσ(p− k)

=
T

2V

∑

p

∑

σ

1

λσ(p)λσ(p− k)
. (3.14)

Fig. 10 is the diagrammatic representation of this contribution.
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T, σ
T, σ

k, iΩ k, iΩ

p, iΩ′

p − k, iΩ′ − iΩ

FIGURE 10. Diagrammatic representation of the coupling between longitudinal and
transverse spin fluctuations in the quantum case

At T = 0, the frequency summation in Eq. (3.14) can be turned into an integral.

Since the diagonalized Gaussian action in Eq. (3.8) only couples ψL,+ with ψR,+

and ψL,− with ψR,−, the T = 0 frequency integral is such that both the poles of the

integrand lie on the same side of the real axis. Therefore, at T = 0, the one-loop

contribution to the longitudinal susceptibility vanishes, instead of being a nonzero

kd−2 or Ω(d−2)/2 contribution. Hence, adding a frequency dependence to the classical

expression has a much stronger effect than increasing the dimensionality by two, as

the naive power counting argument suggests and at T = 0, it completely suppresses

the effect. The absence of a nonanalyticity in the quantum case is a generic property

of ferromagnets at T = 0 and can be readily traced back to the structure of the Bloch

precession term in the action. This null result is neither an artifact of the NLσM

nor the one-loop approximation. It is worth noting that this particular null result is

specific to the 2-point correlation function of σ(x).

The following correlation function is an example of a nonzero T = 0 one-loop

contribution in a quantum ferromagnet.

Ψ(x− y) =
1

4
〈(π2

1(x) − π2
2(x))(π2

1(y) − π2
2(y))〉

=
1

4

∑

σ,σ′=±

σσ′ 〈ψL,σ(x)ψR,σ(x)ψL,σ′(y)ψR,σ′(y)〉. (3.15)

57



This correlation function is a physical, if hard to measure, correlation function.

It describes the response to a “field” ∆ that makes the exchange coupling J in a

Heisenberg model anisotropic in the x − y plane: Jx = J + ∆, Jy = J − ∆. After a

Fourier transform, instead of Eq. (3.14), we obtain

Ψ(k) =
T

2V

∑

p

∑

σ

1

λσ(p)λσ(k − p)
. (3.16)

At T = 0, the frequency integral is now over a function that has poles on either side

of the real axis and the correlation function behaves as simple power counting would

suggest.

Ψ(k, iΩn = 0) ∝ const.+ |k|d−2,

Ψ(k = 0, iΩn) ∝ const.+ |Ωn|(d−2)/2. (3.17)

In d = 2, there is a logarithmic singularity. This nonzero T = 0 contribution is

in complete analogy to Eq. (3.2). This illustrates that the absence of a singular

contribution to χL and the related fact that the maximally spin-polarized state is

an exact eigenstate of the Heisenberg ferromagnet, is not due to the absence of

quantum fluctuations. It is actually due to the fact that χL can be formulated as

a correlation function of the magnon number. Quantum fluctuations do exist in

the ground state of a ferromagnet and correlation functions like Ψ, that cannot be

formulated entirely in terms of fluctuations of the magnon number, are affected by

these quantum fluctuations. The same holds for the longitudinal susceptibility in an

antiferromagnet.
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Now, the T > 0 behavior of the one-loop contribution χ
(1)
L in Eq. (3.14) will be

analyzed. Performing the Matsubara frequency sum, we obtain

χ
(1)
L (k,H) =

−1

V

∑

p,σ

n(ωp + µH) − n(ωp−k + µH)

ωp − ωp−k + σiΩn

, (3.18)

where n(x) = 1/(ex/T − 1) is the Bose distribution function. The units are such that

~ = kB = 1. ωp = Dp2 = (ρs/M0)p
2 is the ferromagnetic magnon frequency. To

obtain the leading singular behavior as k → 0 for fixed T , the Bose function can be

expanded, n(x) ≈ T/x. Then, at zero external frequency, i.e. k = (k, i0) and zero

external field, Eq. (3.18) becomes

χ
(1)
L (k, H = 0) ≈

(
M0

ρs

)2 2T

V

∑

p

1

p2(p − k)2
. (3.19)

This leading contribution is necessarily linear in T and the wavenumber integral is a

convolution of two classical Goldstone modes. In d = 3, the explicit expression for

χ
(1)
L is

χ
(1)
L (k, H = 0) =

T

4D3/2
√
ωk

[

1 +O(
√

ωk/T )
]

(d = 3). (3.20)

In generic dimensions 2 < d < 4, the singularity is proportional to T/|k|4−d, with

a d-dependent prefactor. For d ≤ 2, the singular integral has a zero prefactor since

M0 = 0, which can be understood using the Mermin-Wagner theorem [30]. The above

result is valid for µH ≪ ωk ≪ T . This implies that the range of validity of Eq. (3.19)

shrinks with decreasing temperature. In the asymptotic low-temperature limit in a

vanishingly small field, i.e., for µH ≪ T ≪ ωk,

χ
(1)
L (k, H = 0) =

cL
π2

T 3/2

D3/2ωk

[1 +O(T/ωk)] (d = 3). (3.21)
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Here, cL =
√

π/2 ζ(3/2) ≈ 2.395, with ζ the Riemann zeta function. For T < ωk,

the T/
√
ωk singularity crosses over to T 3/2/ωk. Also, as T → 0, the prefactor of the

singularity vanishes, which matches the T = 0 null result.

For ωk ≪ µH ≪ T ,

χ
(1)
L (k → 0, H) =

T

4πD3/2(µH)1/2

[

1 +O(
√

H/T )
]

(d = 3). (3.22)

For T ≪ ωk ≪ µH , the leading behavior is

χ
(1)
L (k, H) =

1

2π3/2

T 3/2

D3/2ωk

e−µH/T (d = 3). (3.23)

Finally, for ωk ≪ T ≪ µH , the result is proportional to T 1/2e−µH/T with no singular

dependence on ωk.

An important quantity in the context of neutron scattering experiments of

ferromagnets is the dynamical structure factor. The longitudinal part of the

dynamical structure factor SL(k, ω) = (2/(1−e−ω/T ))χ′′
L(k, ω), with χ′′

L the spectrum

of the longitudinal susceptibility χL. From Eq. (3.18), the one-loop contribution is

[43]

S
(1)
L (k, ω) =

1

1 − e−ω/T

T

4πD3/2
√
ωk

ln




1 − e−(ω+ωk)2/4Tωk−µH/T

1 − e−(ω−ωk)2/4Tωk−µH/T



. (3.24)

For small k, ω and H and fixed T , the leading behavior is

S
(1)
L (k, ω) ≈ T 2

4πD3/2ω
√
ωk

ln




(ω + ωk)2/4Tωk + µH/T

(ω − ωk)2/4Tωk + µH/T



. (3.25)
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Eq. (3.25) is also obtained by taking the classical limit, ~ → 0 (µ/~ is independent

of ~).

Figs. 11 and 12 show plots of a normalized version of S
(1)
L as a function of the

frequency ω, with T, ωk, H fixed.
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FIGURE 11. The one-loop contribution to the longitudinal part of the dynamical
structure factor for a ferromagnet, Eq. (3.24), normalized by

√
ωk/4πD

3/2, for H = 0
as a function of the frequency ω for various values of the temperature T . ω and T
are measured in units of ωk. On the scale shown, the result for T/ωk = 10 is almost
distinguishable from the classical result, Eq. (3.25)
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FIGURE 12. The one-loop contribution to the longitudinal part of the dynamical
structure factor for a ferromagnet, Eq. (3.24), normalized as in Fig. 11, for T/ωk as
a function of the frequency ω for various values of the magnetic field H . ω and H
are measured in units of ωk and ωk/µ, respectively. Even a very weak magnetic field
broadens the resonance feature.

The following are some of the notable features of the structure factor in Eq.

(3.24).

1. There is a logarithmic singularity at ω = ±ωk, the magnon frequency. This leads

to a broad feature, even for undamped magnons, whose width is independent

of the normalized temperature.

2. There is a marked decrease in the overall value of SL with decreasing

temperature.
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3. SL becomes strongly asymmetric at low temperature due to the detailed-balance

factor.

4. A nonzero magnetic field removes the logarithmic singularity, and even a small

magnetic field substantially broadens the resonance feature.

As an aside, the minus first frequency moment of the spectrum χ′′
L yields the

static susceptibility: χL(k) =
∫ ∞

−∞
dω χ′′

L(k, ω)/πω. Performing the frequency integral

recovers the results given in Eqs. (3.20)− (3.23).

NLσM for Quantum Antiferromagnets

The NLσM for quantum ferromagnets is as follows [51, 52]. The partition

function is given by

Z =
∫

D[n̂] δ(n̂2(x) − 1) e−
∫
dxLAFM[n̂] (3.26a)

with the action density

LAFM[n̂] =
ρs
2

[

− n̂(x).∇2n̂(x) +
1

c2
(∂τ n̂(x) − iµH × n̂(x))2

]

. (3.26b)

Here, n̂(x) is the normalized staggered magnetization, ρs the spin stiffness, c is the

spin-wave velocity and H is a homogeneous external magnetic field. As before, we

can parameterize n̂(x) as n̂(x) ≡ (π1(x), π2(x), σ(x)). The NLσM constraint is given

by

n̂2(x) = π2
1(x) + π2

2(x) + σ2(x) ≡ 1. (3.27)

From Eq. (3.26a), it is clear that in the absence of an external field the dynamics

are given by a (∂τ n̂)2 term, in contrast to the linear dependence on ∂τ in the
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ferromagnetic case, Eq. (3.4b). Setting the external field H = 0 and proceeding

as in the ferromagnetic case, the Gaussian transverse fluctuation action diagonal in

the π1-π2 basis is

A(2)[π1, π2] =
ρs
2c2

∑

k

2∑

i=1

πi(k)µ(k) πi(−k) (3.28a)

with an eigenvalue,

µ(k) = ω2
k − (iΩn)2, ωk = c|k|. (3.28b)

ωk is the antiferromagnetic magnon frequency.

The one-loop contribution to the longitudinal order-parameter susceptibility is

calculated, in a manner similar to the ferromagnetic case. It should be noted that

in case of antiferromagnets, the longitudinal order-parameter susceptibility describes

the response to a staggered field, rather than a homogeneous one. Taking χL(x−y) =

N2
0 〈δσ(x)δσ(y)〉, the antiferromagnetic analog of Eq. (3.14) is

χ
(1)
L (k) =




N0c

2

ρs





2
T

V

∑

p

1

µ(p)µ(p− k)
. (3.29)

As in the ferromagnetic case, we first analyze Eq. (3.29) at T = 0. In contrast

to Eq. (3.14), the frequency integration at T = 0 involves poles on either side of the

real axis. This yields a nonzero result,

χ
(1)
L (k, iΩn = 0) =




N0c

2

ρs





2
1

2V

∑

p

1

ωp+k/2 ωp−k/2

× 1

ωp+k/2 + ωp−k/2

(3.30)

χ
(1)
L (k = 0, iΩn) =




N0c

2

ρs





2
1

V

∑

p

1

ωp

1

4ω2
p + Ω2

n

. (3.31)
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Performing the momentum integration in above yields results expected from

naive power counting, Eq. (3.2). For 1 < d < 3,

χ
(1)
L (k, iΩn = 0) ∝ |k|d−3,

χ
(1)
L (k = 0, iΩn) ∝ |Ωn|d−3. (3.32)

The above derivation makes it clear that the difference in behavior of this

correlation function for ferromagnets and antiferromagnets, respectively, is a direct

consequence of the different spin dynamics in the two systems. In time space, a Ωd−3
n

low-frequency behavior corresponds to a 1/td−2 long-time tail, as seen from Eq. (A.6).

In d = 3, the divergence is logarithmic. Keeping only the leading terms,

χ
(1)
L (k, i0) =

N2
0 c

8π2ρ2
s

log(ω0/ωk), (3.33a)

χ
(1)
L (k = 0, iΩn) =

N2
0 c

8π2ρ2
s

log(ω0/|Ωn|), (3.33b)

χ
(1)
L (k = 0, iΩn → Ω + i0) =

N2
0 c

8π2ρ2
s

[

log(ω0/|Ω|) + i
π

2
sgn Ω

]

. (3.33c)

where ω0 is an ultraviolet cutoff frequency. In d = 2, the explicit result is

χ
(1)
L (k, i0) =

N2
0 c

2

8ρ2
s

1

ωk

, (3.34a)

χ
(1)
L (k = 0, iΩn) =

N2
0 c

2

8ρ2
s

1

|Ωn| , (3.34b)

χ
(1)
L (k = 0, iΩn → Ω + i0) =

N2
0 c

2

8ρ2
s

[
i

Ω
+ π δ(Ω)

]

. (3.34c)
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In the following, the T > 0 behavior of the one-loop contribution from Eq. (3.29)

is investigated. Performing the Matsubara frequency summation yields

χ
(1)
L (k) =




N0c

2

ρs





2
−1

2V

∑

p,σ

1

ωp

n(ωp) − n(−ωp)

(ωp + σiΩn)2 − ω2
p+k

. (3.35)

The leading infrared behavior can be obtained by taking the small-momentum

behavior of the integrand. To this end, the following approximation is used,

n(x) ≈ T/x. Then, at zero external frequency,

χ
(1)
L (k, i0) ≈




N0

ρs





2
T

V

∑

p

1

p2(p − k)2
. (3.36)

Like the ferromagnetic case, Eq. (3.19), the above expression reproduces the classical

result, Eq. (3.1). In d = 3,

χ
(1)
L (k, i0) =

N2
0 c

8ρ2
s

T

ωk

[

1 +O
(

(ωk/T ) log(ω0/ωk)
)]

. (3.37)

The above expression is valid for ωk ≪ T ≪ ω0.

Taking the T → 0 limit of Eq. (3.35), when n(ωp) − n(−ωp) → 1, the integrals

of Eq. (3.30) are recovered. Specifically, Eq. (3.37) crosses over to Eq. (3.33a), for

T ≪ ωk.
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From Eq. (3.35), the one-loop contribution to the longitudinal part of the

dynamical structure factor can be obtained. In three dimensions,

S
(1)
L (k, ω) =

N2
0 c

4πρ2
s

T/ωk

1 − e−ω/T
ln

(
sinh(|ωk + ω|/4T )

sinh(|ωk − ω|/4T )

)

=
N2

0 c

16πρ2
s

1

1 − e−ω/T





∣
∣
∣
∣1 +

ω

ωk

∣
∣
∣
∣ −

∣
∣
∣
∣1 − ω

ωk

∣
∣
∣
∣

+
4T

ωk

ln
(

1 − e−|ωk+ω|/2T

1 − e−|ωk−ω|/2T

)


. (3.38)

In the second equation, the first term is a contribution that survives the

T → 0 limit and the second term is qualitatively very similar to the ferromagnetic

longitudinal structure factor from Eq. (3.24). The first term represents the quantum

fluctuations that are responsible for the singular behavior of χ
(1)
L (k) at T = 0. The

second term has the same logarithmic singularity at the magnon resonance frequency

ω = ±ωk as the ferromagnetic case. This structure factor is plotted in Fig. 13.

The zero-temperature limit of Eq. (3.38) does not vanish as ω → ∞, instead it

is constant. This statement is equivalent to the logarithmic divergence in the static

susceptibility. This fact can be verified by calculating the minus first moment of the

spectrum χ′′
L(k, ω) = (1 − e−ω/T )SL(k, ω)/2 in the T → 0 limit, which recovers Eq.

(3.33a).
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FIGURE 13. The one-loop contribution to the longitudinal part of the dynamical
structure factor for an antiferromagnet (left panel) and a ferromagnet (right panel),
normalized by N2

0 c/4πρ
2
s and as Figs. 11 and 12, respectively, for T/ωk = 0.05 as

functions of the frequency ω measured in units of ωk. The inset in the left panel
separately shows the T = 0 contribution to the antiferromagnetic structure factor
(blue curve) and the contribution that vanishes as T → 0 (red curve). The structure
factor shown in the main panel is the sum of these two contributions, as expressed in
Eq. (3.38)

In the classical limit, Eq. (3.38) becomes

S
(1)
L (k, ω) =

N2
0 c

4πρ2
s

T 2

ωωk

ln
(
ωk + ω

ωk − ω

)2

, (3.39)

analogous to Eq. (3.25).

In d = 2 at T = 0, the result is

S
(1)
L (k, ω) =

N2
0 c

2

4ρ2
s

Θ(ω2 − ω2
k)

Θ(ω)
√

ω2 − ω2
k

. (3.40)

Calculating the minus first frequency moment recovers Eq. (3.34a). For T > 0, there

is no long range order in d = 2.
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All the previous calculations were performed in the case of a vanishing external

magnetic field. The following briefly describes the effects of a nonzero external field

H . The (H × n̂)2 term in the action, Eq. (3.26a), implies that in the ground state

the order-parameter vector n̂ is perpendicular to H . Assuming H = (H, 0, 0) and

parameterizing as in Eq. (3.27), the Gaussian action is

A(2)[π1, π2] =
ρs
2c2

∑

k

2∑

i=1

πi(k)µi(k) πi(−k) (3.41a)

where

µ1(k) = µ(k) + (µH)2 , µ2(k) = µ(k), (3.41b)

with µ(k) unchanged from the zero field case. Therefore, one of the two Goldstone

modes in the zero field case acquires a mass and the other remains unchanged. Then,

the nonzero field counterpart of Eq. (3.29) is

χ
(1)
L (k) =




N0c

2

ρs





2
T

V

∑

p

∑

i

1

µi(p)µi(p− k)
. (3.42)

Therefore, due to the presence of a massless mode, there is a singularity for

k → 0 even for H 6= 0. At T = 0 in d = 3, to leading logarithmic accuracy,

χ
(1)
L (k, i0) =

N2
0 c

16π2ρ2
s

[

log
(
ω0

ωk

)

+ log
(

ω0
√

ω2
k + (2µH)2

)]

. (3.43)
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The corresponding result in d = 2 is

χ
(1)
L (k, i0) =

N2
0 c

2

16ρ2
s

1

ωk

[

1 +
2

π2
g(ωk/

√

ω2
k + (2µH)2)

]

, (3.44a)

g(x) =
∫ 1

−1
dη

ln(1 + xη)

η
√

1 − η2
=







π2/2 for x = 1

πx for x → 0

. (3.44b)

For µH ≪ ωk, Eq. (3.34a) is recovered. For µH ≫ ωk, χ
(1)
L (k, i0) ∝ 1/H .

Corresponding results are obtained for χ
(1)
L as a function of the frequency.

Effects of Damped Ferromagnetic Magnons

In the preceding discussion, the effects of damping on the magnons have been

neglected. This section determines the effects of magnon damping on the longitudinal

susceptibility and the longitudinal dynamical structure factor in ferromagnets. To

this end, the effects of damping on the ferromagnetic Goldstone mode need to

be determined. Using the standard time-dependent Ginzburg-Landau theory for a

ferromagnet [14, 56, 57], we have an equation of motion

∂tM(x, t) = M(x, t) × δS

δM(x)

∣
∣
∣
∣
∣
∣
M(x,t)

−
∫

dy Γ(x − y)
δS

δM(y)

∣
∣
∣
∣
∣
∣
M(y,t)

. (3.45a)

Here, Γ(x) is a damping operator and S a suitable action for the static magnetization

M(x), say the Landau-Ginzburg functional of Eq. (1.2). To linear order in M ,

δS

δM(x)
= − ρs

M2
0

∇
2M(x) − µH . (3.45b)
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The notation used for the prefactor of the gradient-squared term is the same as the

one used in the ferromagnetic NLσM.

Using Eq. (3.45), the linear response of the transverse magnetization components

to the external field H , i.e., the transverse magnetic susceptibility χT, is calculated:

χT(k) =
M0

(D k2 + µH)2 + (Ωn + sgn (Ωn)Γkk2)2

×







D k2 + µH Ωn + sgn (Ωn)Γkk2

−(Ωn + sgn (Ωn)Γkk2) D k2 + µH






. (3.46)

The above result is Eq. (3.6b) with the substitution Ωn → Ωn + sgn (Ωn)Γkk2. Here,

Γk is the Fourier transform of Γ(x).

An interesting aspect of ferromagnetic magnons is that these excitations cannot

be overdamped, irrespective of the magnitude of the damping coefficient. This is

because the poles of χT(k, z), with z the complex frequency, always have a real

part given by ±Dk2, independent of Γk. This is in contrast to a damped harmonic

oscillator, where the resonance frequency has no real part if the damping coefficient is

larger than a threshold value, and also to sound waves in fluids [37], antiferromagnetic

magnons and helimagnons in helical magnets [26] - all of which have the same

structure as a damped harmonic oscillator.

The one-loop contribution to the longitudinal susceptibility by the damped spin-

waves is still given by Eq. (3.14), but with λ± replaced by

λ±(k, iΩn) = Dk2 + µH ∓ iΩn ∓ iΓkk2sgn (Ωn). (3.47)
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The sgn (Ωn) in the damping term follows from causality requirements. The damping

coefficient is written as an expansion in the long-wavelength limit,

Γk→0 = γ0 + γ2k
2. (3.48)

The above expansion separates two physically distinct cases [57]:

1. A nonconserved order parameter, i.e.,
d

dt
M total 6= 0, in which case γ0 > 0. This

is realized, for example, by magnetic impurities [58, 59].

2. A conserved order parameter, i.e.,
d

dt
M total = 0, in which case γ0 = 0.

This is realized by, e.g., damping by electron-magnon and/or magnon-magnon

interactions at T > 0 [60] or by nonmagnetic quenched disorder at any

temperature, including T = 0 [59, 61, 62].

In the following, the integrals in Eq. (3.14), with λ± as defined in Eq. (3.47) and

H = 0, are performed.

Nonconserved Order Parameter

For a nonconserved order parameter, Γp = γ0. For d = 3 and at T = 0, keeping

only the leading terms,

χ
(1)
L (k → 0, i0) = const. − 1

32π

γ0/
√
D

γ2
0 +D2

√
ωk. (3.49a)
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Since ωk = Dk2, χ
(1)
L (k) has a |k| nonanalyticity at T = 0 for d = 3, with the

prefactor of the nonanalyticity that vanishes as γ0 → 0. Similarly,

χ
(1)
L (k = 0, iΩn) =

2

πV

∑

p

Γp p2
∫ ∞

ω2
p

dx
1

x+ (Γp p2)2

1

x+ (Γp p2 + Ωn)2

=
2

πV

∑

p

Γp p2 1

Ω2
n + 2ΩnΓp p2

ln



1 +
Ω2
n + 2ΩnΓp p2

ω2
p + (Γp p2)2





=
2

π

∫ 1

0
dα

1

V

∑

p

Γp p2

αΩ2
n + 2αΩnΓp p2 + ω2

p + (Γp p2)2
. (3.49b)

In the last line, the logarithm has been expressed in terms of an auxiliary integral.

After splitting off the constant contribution at Ωn = 0 in d = 3, and scaling out the

frequency,

χ
(1)
L (k = 0, iΩn) = const. − γ0

π3D5/2
f(γ0/D) |Ωn|1/2, (3.49c)

χ
(1)
L (k = 0, iΩn → Ω + i0) = const.−

γ0√
2π3D5/2

f(γ0/D)[1 − i sgn (Ω)]|Ω|1/2.(3.49d)

The function f is given by

f(x) =
1

(1 + x2)2

∫ 1

0
dαα

∫ ∞

0
dy

1 + 2xy2

y4 + 2y2αx/(1 + x2) + α/(1 + x2)

=
π

6
√

2

1

x5/2(1 + x2)3/2

{[

3 + 7x2 − 2x
√

1 + x2

] √

x2 + x
√

1 + x2

−3(1 + x2)3/2 sinh−1(
√
x/(1 + x2)1/4)

}

.

For small γ0/D,

f(
γ0

D
→ 0) =

√
2π

5
+

3π

7
√

2

γ0

D
+O(

γ2
0

D2
). (3.49e)
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In d = 2, there is a logarithmic singularity. This can be seen easily by looking

at the last line of Eq. (3.49b) and power counting. Explicitly,

χ
(1)
L (k → 0, i0) =

1

2π2

γ0

γ2
0 +D2

ln(ω0/ωk), (3.50a)

χ
(1)
L (k = 0, iΩn) =

1

2π2

γ0

γ2
0 +D2

ln(ω0/|Ωn|), (3.50b)

χ
(1)
L (k = 0, iΩn → Ω + i0) =

1

2π2

γ0

γ2
0 +D2

[

ln(ω0/|Ω|) + i
π

2
sgn Ω

]

. (3.50c)

Conserved Order Parameter

For a conserved order parameter, Γp = γ2p
2. Using this in Eq. (3.49b) and to

linear order in γ2, we get the following results.

For d = 3,

χ
(1)
L (k → 0, i0) = const. +

γ2

64πD7/2
ω

3/2
k +O(k2), (3.51a)

χ
(1)
L (k = 0, iΩn) = const. −

√
2 γ2

7π2D7/2
|Ωn|3/2, (3.51b)

χ
(1)
L (k = 0, iΩn → Ω + i0) = const. +

γ2

7π2D7/2
[1 + i sgn (Ω)] |Ω|3/2. (3.51c)

In d = 2, the leading singularity is

χ
(1)
L (k → 0, i0) = const. − γ2

48π2D3
ωk ln(ω0/ωk), (3.52a)

χ
(1)
L (k = 0, iΩn) = const. − γ2

6πD3
|Ωn|, (3.52b)

χ
(1)
L (k = 0, iΩn → Ω + i0) = const. +

iγ2

6πD3
Ω. (3.52c)

The nonanalyticities obtained are weaker in comparison with the nonconserved

order parameter case.
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To summarize, in ferromagnets with undamped magnons, the nonanalytic

frequency and wave-number dependence of the one-loop contribution to the

longitudinal susceptibility is absent at zero temperature. This is due to the absence

of fluctuations that couple to the longitudinal magnetization fluctuations. However,

when damped magnons were considered, certain nonanalyticities were found. This

is a consequence of additional fluctuations introduced by the disorder in the system.

Furthermore, magnetic disorder which couples directly to the order parameter, has a

stronger effect than nonmagnetic disorder and thus results in a stronger singularity.

Renormalization-group Interpretation of the Results

In the following, we confirm all of the aforementioned ferromagnetic results using

scaling arguments and renormalization-group considerations. It will be demonstrated

that the exponents of the nonanalyticties obtained when damping is considered, are

asymptotically exact.

The following is a schematic Gaussian action, with a damping term included

according to the prescription Ωn → Ωn + sgn (Ωn)Γkk2. This schematic action is in a

notation that shows only what is necessary for power counting and is as follows:

A(2) =
∫

dx π(x) [D∂2
x + ∂τ +H + γn∂

n+2
x ] π(x), (3.53)

where π(x) is the transverse magnetization fluctuations. Here, n = 0 and n = 2

correspond to cases of a nonconserved and conserved order parameter, respectively.

Any additional terms in the action fall into two classes:
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1. Gaussian with additional gradients, with the leading terms of the form

δA(2) =
∫

dx ∂4
xπ

2(x), (3.54a)

or equivalent in terms of scale dimensions.

2. Higher order in π, with leading terms of the form

δA(4) =
∫

dx ∂2
xπ

4(x), (3.54b)

or equivalent.

We now sketch a renormalization-group analysis of this action. Using the scheme

pioneered by Shang-Keng Ma [14], scale dimensions are assigned to lengths and

imaginary times, respectively: [L] = −1, [τ ] = −2. Then, there is a stable Gaussian

fixed point where π has a scale dimension [π(x)] = d/2. In Fourier space, this

corresponds to [π(k)] = −1. Thus, 〈π(k)π(−k)〉 ∼ 1/k2 ∼ 1/Ωn. This scaling

behavior describes the magnons and the Gaussian fixed point describes the ordered

phase where the symmetry is broken. The field H is relevant with respect to this

fixed point with a scale dimension [H ] = 2. For a nonconserved order parameter, the

damping coefficient γ0 is dimensionless, [γ0] = 0, and the damping term is part of

the fixed-point Hamiltonian. The free energy density f , the magnetization m, and

the scaling part δχL of the longitudinal susceptibility χL = ∂m/∂H then have scale

dimensions [f ] = d − 2, [m] = d, and [δχL] = d − 2, respectively. Then we can write

down the homogeneity law

δχL(k, iΩn) = b2−d Fχ(kb, iΩnb
2, γ0), (3.55)
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with b an arbitrary length rescaling factor and Fχ a scaling function. This function

has the property Fχ(x, y, γ0 → 0) = O(γ0). This yields the scaling behavior

δχL(k, iΩn) ∼ γ0|k|d−2 ∼ γ0|Ωn|(d−2)/2, (3.56)

which agrees with the explicit calculations. The leading correction terms to the

fixed-point action are irrelevant by power counting, with scale dimensions −2 for the

operator in Eq. (3.54a) and −d for the one in Eq. (3.54b), respectively. This implies

that the one-loop results obtained in the previous section are exact as far as the

exponents are concerned. Higher order terms in the loop expansion will change the

prefactor of the nonanalyticity, but not the power.

In the case of conserved order parameter dynamics, the damping term is not part

of the fixed-point action. It is an irrelevant operator with a scale dimension [γ2] = −2,

which is the same as the operator in Eq. (3.54a). The homogeneity equation for δχL

is now

δχL(k, iΩn) = b2−d Fχ(kb, iΩnb
2, γ2b

−2). (3.57a)

Other irrelevant operators are not shown. Even though γ2 is irrelevant, the scaling

function still vanishes for γ2 = 0. Therefore, to linear order in γ2,

δχL(k, iΩn) = b−d γ2 F̃χ(kb, iΩnb
2) (3.57b)

with F̃χ another scaling function. This yields

δχL(k, iΩn) ∼ γ2|k|d ∼ γ2|Ωn|d/2, (3.58)

which agrees with the calculations.
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Conclusions

In summary, the coupling of the magnons in quantum ferromagnets and

antiferromagnets to other correlation functions, in particular the longitudinal

susceptibility and the longitudinal part of the dynamical structure factor, have been

investigated. In the case of ferromagnets with undamped magnons, the magnon

contribution to the longitudinal susceptibility vanishes at T = 0. In d = 3, and in

the absence of an external magnetic field, an interpolating expression that correctly

describes the leading behavior for both T > ωk and T < ωk is

χ
(1)
L (k, H = 0) =

T

4D3/2
√
ωk

1

1 + (π2/cL)
√

ωk/T
, (3.59)

where ωk = Dk2 is the ferromagnetic magnon frequency and cL is a constant. For

T > ωk, the classical 1/|k| is obtained. For T < ωk, χL vanishes as T 3/2. For a

quantum antiferromagnet, the corresponding interpolating expression is

χ
(1)
L (k, i0) =

N2
0 c

8ρ2
s

T

ωk

[

1 + (ωk/π
2T ) log(ω0/ωk)

]

. (3.60)

Here, ωk = c|k| is the antiferromagnetic magnon frequency. This reflects the expected

scaling behavior: 1/|k| for high temperatures, and ln |k| for low temperatures.

Similarly, the longitudinal structure factor vanishes at T = 0 in the ferromagnetic

case, whereas in the antiferromagnetic case, there is a nonzero contribution even at

T = 0. Quenched disorder introduces additional fluctuations, which lead to magnon

damping and qualitatively change the ferromagnetic results. Magnetic impurities,

which lead to a nonconserved order parameter, result in a longitudinal susceptibility

that scales as |k|d−2, where the zero exponent in d = 2 signifies logarithmic divergence.
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Nonmagnetic disorder leads to a weaker scaling, |k|d. For T > 0, the longitudinal

dynamical structure factor has a logarithmic singularity at the magnon frequency in

both ferromagnets and antiferromagnets.

The classical singularity of χL in the ferromagnetic case as a function of an

external field has been observed experimentally [63]. The theoretical prediction is

that in the limit of low temperatures, T ≪ µH , χL becomes exponentially small. The

logarithmic singularity at the magnon resonance frequency is a remarkable feature in

the longitudinal dynamical structure factor. In a clean system at low temperature,

the magnon damping is very weak and the spectrum of the transverse dynamical

susceptibility has very narrow magnon peaks. The longitudinal susceptibility, or the

structure factor, by contrast, shows an intrinsically broad feature at the magnon

frequency. The prediction is that even a small magnetic field substantially broadens

and suppresses this logarithmic singularity.

In the following, we interpret the differing results of ferromagnets and

antiferromagnets using entanglement entropy arguments. The entanglement entropy

gives a global measurement of fluctuations in a system. It is defined as the von

Neumann entropy of a subsystem of linear size L. At zero temperature, the entropy

vanishes in the thermodynamic limit, and for L → ∞, it grows more slowly than the

volume Ld. In systems that do not contain a Fermi surface, the leading contribution

is in general given by an “area-law” term that grows as Ld−1 [64]; this term is due to

short-range entanglement and has a non-universal prefactor. The leading universal

contribution, which is a measure of long-range fluctuations, in systems with Goldstone

modes grows as lnL. This is true for both quantum ferromagnets [65, 66], and

antiferromagnets [67, 68, 69] for d = 2, 3. But, the area-law term is missing in the

ferromagnetic case [66]. This is another indication that the fluctuations exist in the
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ferromagnetic ground state, although they may or may not be probed by a specific

correlation function. In metallic magnets, and more generally in systems with a

Fermi surface, there is an area-law term with a multiplicative logarithm that is due

to long-range fluctuations in the fermionic degrees of freedom. This is one of many

indications of the fundamental differences between metallic and insulating magnets.

Finally, we recall Eq. (3.34a), which predicts that in a T = 0 antiferromagnet

in d = 2, χ
(1)
L (k = 0, iΩn) ∝ 1/|Ωn|. In real-time, this nonanalyticity signifies a

constant long-time behavior, Eq. (A.19). The following is a comment on the physical

meaning of this constant long-time behavior. Let Tmax be the maximum time scale,

which can be say, the total duration of the experiment, or L divided by the relevant

characteristic velocity. χL then depends on two times, t1 and t2. As long as t1, t2 and

|t1 − t2| all are small compared to Tmax, χL will not decay as |t1 − t2| increases. In

position space, by contrast, χL does decay, but only as a power: The 1/|k| divergence

in the 2-d quantum antiferromagnet is the same as the one in a 3-d classical magnet,

and implies that in the real space the correlation function decays as 1/r. This result

is an example of an effect that can be even stronger: In classical non-equilibrium

fluids, and in Fermi liquids even in equilibrium, there are correlation functions that

increase with increasing length or time-scales in a well-defined sense[70, 71, 72].

An important point worth repeating is that the behavior of the longitudinal

susceptibility, namely it vanishing at T = 0 in the undamped ferromagnetic case,

is not generic, but rather restricted to a class of correlation functions that can

be expressed entirely in terms of magnon number fluctuations. Other correlation

functions do show the expected ω(d−2)/2 frequency scaling. An example of a correlation

function belonging to the same class as the longitudinal susceptibility is the dynamical

electrical conductivity in a metallic quantum ferromagnet. They both share the same
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scaling behavior. This implies that the undamped magnons do not lead to an ω(d−2)/2

frequency dependence of the conductivity at T = 0, or a lnω singularity in d = 2.

This is in contrast to the results from a previous work [20], which agrees only with

the latter conclusion, because there was a sign error in the calculations. The detailed

calculations of the conductivity are presented in the next chapter.
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CHAPTER IV

AN EFFECTIVE FIELD THEORY APPROACH TO ITINERANT

FERROMAGNETS

This work contains unpublished co-authored material. Dietrich Belitz and

Theodore R. Kirkpatrick were the principal investigators for this work; Sripoorna

Bharadwaj performed the calculations and produced the figures in this chapter. The

calculations presented here are, in large parts, a reproduction of the calculations in

[20]. However, there was a sign error in the original reference and this chapter reports

the correct results.

Motivation

In the previous chapter, the magnon contributions to the longitudinal order-

parameter susceptibility in quantum ferromagnets and antiferromagnets were

calculated. The nonlinear sigma model provided a general theoretical framework

for those calculations. The origin of the magnetization was not relevant in that

discussion. In quantum ferromagnets, when undamped magnons were considered,

their contribution to the longitudinal susceptibility vanished at T = 0. This was

interpreted as a consequence of the longitudinal magnetization fluctuations being

purely determined by the magnon-number fluctuations. In general, correlation

functions that can be expressed entirely in terms of the magnon-number fluctuations

all share this property of vanishing T = 0 contribution. A correlation function that

can not be formulated as a correlation function of the magnon number, see Eqn.

(3.15), was also considered and a singular nonzero T = 0 contribution was found. In
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the conclusions section of the preceding chapter, we mentioned in passing that the

dynamical electrical conductivity in a metallic quantum ferromagnet is a correlation

function that belongs to the same class as the longitudinal susceptibility. The aim

of the work presented in this chapter is to perform the conductivity calculations

and explicitly prove this claim. For this purpose, the quantum ferromagnetic NLσM

of the previous chapter is not suitable because it only describes the behavior of the

magnetization, not the conduction electrons. Therefore, the Stoner model for itinerant

ferromagnets introduced in Chapter II is considered.

An effective field theory is developed in terms of the quaternionic fields Q, which

are bilinear products of the fermionic fields ψ and ψ̄. This theory was used previously

to describe a disordered Fermi liquid [45, 73]. It turns out that this theory also has a

saddle-point solution, a “Stoner saddle-point”, that corresponds to a ferromagnet

- both with and without quenched disorder [20]. The magnonic soft modes are

identified in this theory. The contributions of these soft modes to various observables

like the longitudinal susceptibility, dynamical electrical conductivity and density of

states are calculated by expanding about the saddle point to Gaussian order. These

calculations are performed at the one-loop order within a loop expansion method

that does not assume the electron-electron interaction to be a small parameter.

This technique is fundamentally different from the perturbative schemes based on

many-body diagrammatic theory. The power and generality of the loop-expansion

method allows for a renormalization-group analysis that shows that the one-loop

results represent the exact leading nonanalyticities.
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Q-matrix Formalism

Action in terms of Composite Variables

We start with an action for the electrons in terms of the Grassmann valued

fermionic fields ψ̄ and ψ, which includes the spin-triplet interaction responsible for

ferromagnetism,

S[ψ̄, ψ] = S0[ψ̄, ψ] +
Γt
2

∫

dx ns(x).ns(x). (4.1)

where S0 represents the free fermion action, x = (x, τ) denotes the real-space position

x and imaginary-time variable τ . nis(x) =
∑

α,β

ψ̄α(x)σiα,βψβ(x) corresponds to the

electronic spin-density. σ1,2,3 are the Pauli matrices. The fields ψ and ψ̄ carries

a Matsubara frequency index n and a spin index σ = (↑, ↓) ≡ (+,−). Fermionic

Matsubara frequencies are denoted by ωn = 2πT (n + 1/2) and bosonic Matsubara

frequencies by Ωn = 2πTn. The units are such that ~ = 1 and kB = 1. The second

term in Eq. (4.1) represents the spin-triplet interaction.

We are interested in the effects of spin waves in an itinerant ferromagnet. These

spin waves involve fluctuations of the electronic spin density ns, which is a bilinear

product of ψ and ψ̄ . Hence, it is useful to transform to a field theory in terms of

composite variables. We introduce a matrix of bilinear products of the fermion fields,

B12 =
i

2















−ψ1↑ψ̄2↑ −ψ1↑ψ̄2↓ −ψ1↑ψ2↓ ψ1↑ψ2↑

−ψ1↓ψ̄2↑ −ψ1↓ψ̄2↓ −ψ1↓ψ2↓ ψ1↓ψ2↑

ψ̄1↓ψ̄2↑ ψ̄1↓ψ̄2↓ ψ̄1↓ψ2↓ −ψ1↓ψ2↑

−ψ̄1↑ψ̄2↑ −ψ̄1↑ψ̄2↓ −ψ̄1↑ψ2↓ ψ̄1↑ψ2↑















∼= Q12. (4.2)

All the fields in Eq. (4.2) are taken at position x and (1, 2) ≡ (n1, n2) denotes the

fermionic Matsubara frequencies. The elements of B commute with each other and
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therefore are isomorphic to complex-valued (classical) fields Q. Consequently, the

adjoint operation on a product of fermion fields is equivalent to complex conjugation

of the classical fields. We can then rewrite the partition function by constraining B

to Q using a functional δ function. This delta function can be enforced by means of

a functional integral over an auxiliary or ghost complex valued field Λ̃, which plays

the role of a Lagrange multiplier. Then, the fermionic fields can be integrated out to

give an effective action entirely in terms of the classical matrix fields Q and Λ̃.

Z =
∫

D[ψ̄, ψ] eS[ψ̄,ψ]
∫

D[Q] δ[Q− B]

=
∫

D[ψ̄, ψ] eS[ψ̄,ψ]
∫

D[Q]D[Λ̃] etr[Λ̃(Q−B)]

≡
∫

D[Q]D[Λ̃] eA[Q,Λ̃].

(4.3)

The matrix elements of both Q and Λ̃ are spin-quaternions, i.e. elements of

Q×Q, with Q the quaternion field. It is clear from Eq. (4.2) that expectation values

of the Q matrix elements yield single particle Green functions and Q-Q correlations

describe four-fermion correlation functions. To perform calculations involving the

matrix field Q, it is useful to expand this 4×4 matrix field in a spin-quaternion basis,

Q12(x) =
3∑

r,i=0

(τr ⊗ si)
i
rQ12(x). (4.4)

The same applies for Λ̃ as well. Here, τ0 = s0 is the 2×2 unit matrix, and τj = −sj =

−i σj , (j = 1, 2, 3), with σ1,2,3 the Pauli matrices.

From Eq. (4.2), we note that i = 1, 2, 3 correspond to the spin-triplet and r = 0, 3

describes the particle-hole channel (ψ̄ψ and ψψ̄). Spin-singlet is given by i = 0, while

r = 1, 2 describes the particle-particle channel (ψψ and ψ̄ψ̄).
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In the spin-quaternion basis, the Q matrices have the following symmetry

properties,

0
rQ12 = (−1)r 0

rQ21 (r = 0, 3) (4.5a)

i
rQ12 = (−1)r+1 i

rQ21 (r = 0, 3; i = 1, 2, 3) (4.5b)

0
rQ12 = 0

rQ21 (r = 1, 2) (4.5c)

i
rQ12 = − i

rQ21 (r = 1, 2; i = 1, 2, 3) (4.5d)

i
rQ

∗
12 = − i

rQ−n1−1,−n2−1 (4.5e)

where ∗ denotes complex conjugation.

In Eq. (4.3), the ‘tr’ is a trace over all discrete indices that are not explicitly

shown. The action A is the following.

A[Q, Λ̃] =
1

2
Tr log(G−1

0 − iΛ̃) +
∫

dx tr(Λ̃(x)Q(x)) + Aint. (4.6a)

Here,

G−1
0 = −∂τ + ∂2

x/2me + µ (4.6b)

is the inverse free electron Green operator, ∂τ and ∂x being the derivatives with

respect to imaginary time and position, respectively. me is the electon mass and µ is

the chemical potential. ‘Tr’ denotes trace over all degrees of freedom, including the

continuous position variable. Aint corresponds to the interacting part of the action

and is given by

Aint =
T Γt

2

∫

dx
∑

r=0,3

(−1)r
∑

n1,n2,m

3∑

i=1

[tr((τr ⊗ si)Qn1,n1+m(x))]

× [tr((τr ⊗ si)Qn2+m,n2(x))]. (4.6c)
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Stoner Saddle Point

The saddle point of the field theory Eq. (4.6) must represent an itinerant

ferromagnet, with a spatially homogeneous ground state. Assuming the system orders

along the 3-direction, the particle number density n and the magnetization M can be

defined in terms of expectation values of Q fields in the spin-quaternion basis as

n = −4i T
∑

n

〈0
0Qnn(x)〉 (4.7a)

M = −4i µB T
∑

n

〈3
3Qnn(x)〉, (4.7b)

where µB is the Bohr magneton. The average 〈. . .〉 is taken with respect to the full

action Eq. (4.6).

Based on Eq. (4.7), the following ansatz for the saddle point can be used.

i
rQ12|sp = δ12[δr0δi0Gn1 + δr3δi3Fn1 ], (4.8a)

i
rΛ̃12|sp = δ12[−δr0δi0iΣn1 + δr3δi3i∆n]. (4.8b)

The saddle-point condition is

δA
δQ

∣
∣
∣
∣
∣
∣
Qsp,Λ̃sp

=
δA
δΛ̃

∣
∣
∣
∣
∣
∣
Qsp,Λ̃sp

= 0. (4.9)
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This yields the following equations,

Gn =
i

2V

∑

k

iωn − ξk

(iωn − ξk)2 − ∆2
n

=
i

2V

∑

k

Gn(k) (4.10a)

Fn = − i

2V

∑

k

∆n

(iωn − ξk)2 − ∆2
n

=
i

2V

∑

k

Fn(k) (4.10b)

Σn = 0 (4.10c)

∆n = −4iΓt T
∑

m

eiωm0Fm = ∆, (4.10d)

with ξk = k2/2me − µ and ∆ = ΓtM/µB. The last equation in Eq. (4.10) leads to

the familiar equation of state from Stoner theory:

1 = −2Γt T
∑

n

1

V

∑

k

1

(iωn − ξk)2 − ∆2
. (4.11)

The above equation also recovers the Stoner criterion for the onset of magnetization.

The threshold value of Γt is given by

2NFΓt = 1, (4.12)

where NF is the density of states at the Fermi surface.

At this stage, a matrix saddle-point Green function can be defined as follows.

Gsp =
(

G−1
0 − iΛ̃

)−1
∣
∣
∣
∣
∣
∣
sp

(4.13a)

with

(Gsp)12 = δ12[Gn1(τ0 ⊗ s0) + Fn1(τ3 ⊗ s3)]. (4.13b)
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Gaussian Approximation

Expanding Q and Λ̃ about their saddle points as : Q = Qsp+δQ and Λ̃ = Λ̃sp+δΛ̃,

the full action can be expressed in powers of δQ and δΛ̃. Keeping only the Gaussian

order terms in the expansion gives A = Asp + AG with

AG =
1

4
Tr

(

Gsp δΛ̃Gsp δΛ̃
)

+ Tr(δΛ̃ δQ) + Aint[δQ]. (4.14)

After Fourier transforming the fields δQ and δΛ̃ as δQ, δΛ̃(k) =
∫

dx exp(ik x) δQ, δΛ̃(x), the piece of Eq. (4.14) quadratic in δΛ̃ is

Aquad[δΛ̃] =
1

V

∑

k

∑

1234

∑

r,s={0,3}

∑

ij

i
r(δΛ̃)12(k) ij

rsA12,34(k) j
s(δΛ̃)34(−k), (4.15a)

with the matrix A defined as

ij
rsA12,34(k) = δ13 δ24 [ϕ00

n1n2
(k)m00

rs,ij+ϕ
03
n1n2

(k)m03
rs,ij+ϕ

30
n1n2

(k)m30
rs,ij+ϕ

33
n1n2

(k)m33
rs,ij]

(4.15b)

where

ϕabnm(k) =
1

V

∑

p

Ga
n(p)Gb

m(p + k), (4.15c)

with a, b = 0, 3, G0 = G and G3 = F .
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The m matrices are defined as

m00
rs,ij =

1

4
tr(τrτ

†
s )tr(sis

†
j) (4.15d)

m03
rs,ij =

1

4
tr(τrτ3τ

†
s )tr(sis3s

†
j) (4.15e)

m30
rs,ij =

1

4
tr(τ3τrτ

†
s )tr(s3sis

†
j) (4.15f)

m33
rs,ij =

1

4
tr(τrτ

†
s )















+

−

−

+















i

tr(sis
†
j), (4.15g)

with r, s = {0, 3} and





+
−
−
+





i

= δi0 − δi1 − δi2 + δi3. The matrix A has the following

structure.

Anm =
































X+
nm 0 0 0 0 0 0 Y +

nm

0 X−
nm 0 0 0 0 Y −

nm 0

0 0 X−
nm 0 0 −Y −

nm 0 0

0 0 0 X+
nm −Y +

nm 0 0 0

0 0 0 −Y +
nm X+

nm 0 0 0

0 0 −Y −
nm 0 0 X−

nm 0 0

0 Y −
nm 0 0 0 0 X−

nm 0

Y +
nm 0 0 0 0 0 0 X+

nm
































(4.16a)

where, using ϕabnm as defined in Eq. (4.15c),

X±
nm = ϕ00

nm ± ϕ33
nm

Y ±
nm = ϕ03

nm ± ϕ30
nm (4.16b)

90



Rescaling Q by a factor of 4, defining a new field Λ̄ via

δΛ̃(k) = 2A−1(δΛ̄(k) − δQ(k)) (4.17)

and using the above expression for δΛ̃ in Eq. (4.14), Λ̄ and Q decouple. Then, δΛ̄

can be integrated out, leaving behind a Gaussian action purely in terms of δQ.

AG[δQ] = − 4

V

∑

k

∑

1234

∑

r,s={0,3}

∑

ij

i
r(δQ)12(k) ij

rsM12,34(k) j
s(δQ)34(−k) (4.18a)

with

ij
rsM12,34(k) = δ13 δ24

ij
rs[(A12)

−1](k) + 2T Γt δ1−2,3−4 δrs δij (1 − δi0). (4.18b)

The matrix M is an 8×8 matrix, since r, s = {0, 3} and i, j = {0, 1, 2, 3}. A−1 is the

inverse of A defined in Eq. (4.15b). Using Eq. (4.18), the Gaussian Q propagators

can be written down. At this stage, frequency restrictions on the Q matrix fields

are enforced by only considering matrix elements Q12 with n1 ≥ n2. This is done to

remove any redundancies arising from the symmetry properties of Q, Eq. (4.5). We

find

〈ir(δQ)12(k) j
s(δQ)34(−p)〉G = δk,p

V

16
ij
rsI12

ij
rsM−1

12,34(k) (4.19a)

with

ij
rsI12 = 1 + δ12[−1 + J ijrs], (4.19b)
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The matrix J is given by the following.

J ijrs =
1

4
tr(τrτsτ

†
3 ) δr0



tr(sisjs
†
3) +















+

+

+

−















i

tr(sjsis
†
3)





+
1

4
tr(τrτsτ

†
3 ) δr3



tr(sisjs
†
3) −















+

+

+

−















i

tr(sjsis
†
3)



 + 2 δrs δij [δr0 δi0 + δr3 (1 − δi0)]

(4.19c)

and

ij
rsM−1

12,34(k) = δ13δ24
ij
rsAn1n2(k) + δ1−2,3−4

ij
rsEn1n2,n3,n4(k) (4.19d)

where the 8 × 8 matrix E, which is the interacting part of the propagator, is defined

as

En1n2,n3n4(k) = An1n2(k).B.



I8×8−
∑

n5,n6

δn1−n2,n5−n6An5n6(k).B





−1

.An3n4(k), (4.19e)

with

B = −2 T Γt δrs δij (1 − δi0). (4.19f)

The elements of E that diverge as k → 0 and n1 → n2 correspond to the soft

modes of the system. Taking



I8×8 −
∑

n5,n6

δn1−n2,n5−n6An5n6(k).B



, we identify which

elements on the diagonal and the anti-diagonal go to zero in the k → 0, n1 − n2 → 0

limit.
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Using the following,

ϕ03
nn(k = 0) − ϕ30

nn(k = 0) = 0 (4.20a)

and

1 + 2 Γt T
∑

n

[ϕ00
nn(k = 0) − ϕ33

nn(k = 0)] = 0, (4.20b)

we find that ij
rsE is massless for i, j = 1, 2. (It should be noted that Eq. (4.20b) is the

same as Eq. (4.11).) These matrix elements are nothing but the magnetic Goldstone

modes. In the limit |k|/kF,Ωn/ǫF ≪ ∆/ǫF ≪ 1, they take the following form.

g±(k, iΩn) =
d

±iΩn − ck2
(4.21a)

with

c =
∆

6k2
F

, d = − ∆

2NFΓt
. (4.21b)

Spin Waves and Longitudinal Susceptibility

One-loop Contribution

Having identified the spin-waves in the Gaussian order matrix field theory, we

proceed to calculate the one-loop contribution of these soft modes to the longitudinal

susceptibility χL. The aim here is to try and reproduce the results from Chapter III.
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To perform this calculation, the following source term is added to Eq. (4.1).

Sj = −
∑

m

∫

dx jm(x)
∑

n

∑

σ

σ ψ̄n,σ(x)ψn−m,σ(x). (4.22a)

As before, the fermionic fields are integrated out by introducing the classical matrix

fields Q and Λ̃. The source-dependent partition function is

Z[j] =
∫

D[Q]D[Λ̃] eA[Q,Λ̃,j] (4.22b)

with

A[Q, Λ̃, j] =
1

2
Tr log(G−1

0 + JL− iΛ̃) +
∫

dx tr(Λ̃(x)Q(x)) + Aint, (4.22c)

where

(JL)12(x) =
1

2

∑

m

jm(x)L12,m (4.22d)

and

L12,m = [(τ− ⊗ σ3) δn1,n2+m − (τ+ ⊗ σ3) δn2,n1+m], τ± = τ0 ± iτ3. (4.22e)

Then, χL(k, iΩm) is given in terms of derivatives of Z[j] as

χL(k, iΩm) =
∂2

∂jm(k)∂j−m(−k)
logZ[j]

∣
∣
∣
∣
∣
∣
j=0

. (4.23)
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Expanding the first term in Eq. (4.22c) in powers of j and δΛ̃, and utilizing Eq.

(4.13), we find

A[Q, Λ̃, j] ⊃ −1

4
Tr(GspJLGspJL)

︸ ︷︷ ︸

A(2,0)

+ −1

2
Tr(GspJLGspδΛ̃GspδΛ̃)

︸ ︷︷ ︸

A(1,2)

3

8

[

Tr(GspJLGspδΛ̃GspJLGspδΛ̃) + Tr(GspJLGspJLGspδΛ̃GspδΛ̃)
]

︸ ︷︷ ︸

A(2,2)

+ (higher order terms). (4.24)

+ + O(2-loop)

A(2,2) A2
(1,2)

FIGURE 14. The solid lines represent δΛ̃ and the wavy lines represent JL

Fig. 14 is a diagrammatic representation of the terms A(2,2) and A2
(1,2). The

higher order terms are neglected. Using Eq. (4.24) in Eq. (4.23),

χL(k, iΩm) =
∂2

∂jm(k)∂j−m(−k)

∣
∣
∣
∣
∣
∣
j=0

[

〈A(2,0)〉G + 〈A(2,2)〉G +
1

2
〈A2

(1,2)〉G

]

. (4.25)

The average 〈. . .〉G is taken with respect to the Gaussian action derived in the previous

section. 〈A(2,0)〉G gives the tree-level longitudinal susceptibility. It does not involve

any spin-wave contribution. The spin-wave contribution comes from the last two
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terms in Eq. (4.25). However, it turns out that 〈A(2,2)〉G does not contribute at all

at zero temperature. Therefore, the focus is on calculating
1

2
〈A2

(1,2)〉G. We start with

writing out A(1,2) explicitly.

A(1,2) = −1

2

∫

dxdydz tr
[

Gn1n2
sp (x − y)JLn2n3(y)Gn3n4

sp (y − z)

× δΛ̃n4n5(z)Gn5n6
sp (z − x)δΛ̃n6n1(x)

]

. (4.26)

We are only concerned with the singular terms originating from the wavenumber and

frequency dependence of soft modes. Therefore, we are justified in neglecting all

non-singular k and Ω dependencies. Then,

A(1,2) ≈
√

T

V

∑

k,m

A(1,2)m(k) jm(k) (4.27a)

with

A(1,2)m(k) = −1

4

∑

n1n2

∑

rs,ij

1

V

∑

p

∑

σ=±

σ ij
rsN

−σ
n1

× i
r(δΛ̃)n1,n1+n2(p) j

s(δΛ̃)n1+n2,n1+σm(−p − k), (4.27b)

where

ij
rsN

−σ
n =

∑

a,b,c=0,3

tr(τaτ−στbτrτcτs) tr(saσ3sbsiscsj)
∫

dxdyGa
n(x)Gb

n(x − y)Gc
n(y)

︸ ︷︷ ︸

Mabc
n

=
∑

a,b,c=0,3

tr(τaτ−στbτrτcτs) tr(saσ3sbsiscsj)M
abc
n

= [(−1)r δrs + iσ (1 − δrs)] [−4σN (1)
n δij + (δi2δj1 − δi1δj2) 4i N (2)

n ]. (4.27c)
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The factors N (1) and N (2) are defined as follows.

N (1)
n = M003

n −M030
n −M300

n +M333
n

N (2)
n = M000

n −M033
n −M303

n +M330
n . (4.27d)

This yields

χL(k, iΩm)|one-loop =
T

16V

∑

n1,n2,n′

1,n
′

2

∑

i,j,i′,j′

∑

r,s,r′,s′

∑

σ,σ′

σσ′ ij
rsN

−σ
n1

i′j′

r′s′N−σ′

n′

1

1

V 2

×
∑

p,p′

[

〈 ir(δΛ̃)n1,n1+n2(p) i′

r′(δΛ̃)n′

1,n
′

1+n′

2
(p′)〉G

× 〈 js(δΛ̃)n1+n2,n1+σm(−p − k) j′

s′(δΛ̃)n′

1+n′

2,n
′

1−σ′m(−p′ + k)〉G

+ 〈 ir(δΛ̃)n1,n1+n2(p) j′

s′(δΛ̃)n′

1+n′

2,n
′

1−σ′m(−p′ + k)〉G

× 〈 js(δΛ̃)n1+n2,n1+σm(−p − k) i′

r′(δΛ̃)n′

1,n
′

1+n′

2
(p′)〉G

]

. (4.28)

The δΛ̃ fluctuations contain the massive δΛ̄ and the soft δQ fluctuations. In the saddle

point approximation, the δΛ̄ fluctuations can be integrated out by simply dropping

them. Recalling Eq. (4.17), dropping δΛ̄ amounts to doing the following.

ij
rsN

σ
n =⇒ 4 ijrsN

σ
n/B

2
n

δΛ̃ =⇒ δQ, (4.29a)

where

Bn =
1

V

∑

p

[G2
n(p) − F2

n(p)]. (4.29b)
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The above procedure is valid for i, j = 1, 2, which is the channel that corresponds to

the soft modes. Thus,

χL(k, iΩm)|one-loop =
T

V

∑

n1,n2,n′

1,n
′

2

∑

i,j,i′,j′

∑

r,s,r′,s′

∑

σ,σ′

σσ′
ij
rsN

−σ
n1

B2
n

i′j′

r′s′N−σ′

n′

1

B2
n′

1

1

V 2

×
∑

p,p′

[

〈 ir(δQ)n1,n1+n2(p) i′

r′(δQ)n′

1,n
′

1+n′

2
(p′)〉G

× 〈 js(δQ)n1+n2,n1+σm(−p − k) j′

s′(δQ)n′

1+n′

2,n
′

1−σ′m(−p′ + k)〉G

+ 〈 ir(δQ)n1,n1+n2(p) j′

s′(δQ)n′

1+n′

2,n
′

1−σ′m(−p′ + k)〉G

× 〈 js(δQ)n1+n2,n1+σm(−p − k) i′

r′(δQ)n′

1,n
′

1+n′

2
(p′)〉G

]

. (4.30)

We thus need correlation functions of the form

〈 ir(δQ)n1,n1+n2(p) i′

r′(δQ)n′

1,n
′

1+n′

2
(p′)〉G = V (2π)d δ(p+p′) Cijrs(n1, n1+n2,p|n′

1, n
′
1+n′

2)

(4.31a)
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with

Cijrs(n1, n2,p|n3, n4) =
1

16

[

Θ(n1 − n2)Θ(n3 − n4)
ij
rsM−1

n1n2,n3n4
(p)

+ Θ(n1 − n2)Θ(n4 − n3)(−1)s















+

−

−

−















j

ij
rsM−1

n1n2,n4n3
(p)

+ Θ(n2 − n1)Θ(n3 − n4)(−1)r















+

−

−

−















i

ij
rsM−1

n2n1,n3n4
(p)

+ Θ(n2 − n1)Θ(n4 − n3)(−1)r+s















+

−

−

−















i















+

−

−

−















j

ij
rsM−1

n2n1,n3n4
(p)

]

(4.31b)

The Θ functions in the above expression are a consequence of the frequency restriction

enforced in the previous section to get around the redundancies due to the symmetry

of Q−matrix elements.

The sums over r, r′, s, s′, i, i′, j, j′ in Eq. (4.30) are performed. We restrict

i, j, i′, j′ = 1, 2 because, as shown previously, the i, j = 1, 2 channel of the interacting
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part of the propagator ij
rsE corresponds to the spin waves. This yields

χL(k, iΩm)|one-loop =
64T

V

∑

n1,n2,n′

1,n
′

2

∑

σ,σ′

∑

p

σσ′

B2
n1
B2
n′

1

×





[N

(1)
n′

1
N (1)
n1

[

(σC11
00 − σ′C11

33)(σ′C11
00 − σC11

33) − (σC12
03 + σ′C12

30)(σC12
30 + σ′C12

03)
]

−N (1)
n′

1
N (2)
n1

[

(σC12
30 + σ′C12

03)(σ′C11
00 − σC11

33) − (σC11
00 − σ′C11

33)(σC12
03 + σ′C12

30)
]





,

(4.32)

wherein C in the first bracket is C(n1, n1 +n2,p|n′
1, n

′
1 +n′

2) and in the second bracket

is C(n1 + n2, n1 + σm,p + k|n′
1 + n′

2, n
′
1 − σ′m). In obtaining the above expression,

approximations have been made that do not affect the leading nonanalytic terms.

It turns out that the second term in Eq. (4.32) does not contribute to the leading

nonanalytic frequency dependence. In terms of Eq. (4.21), we obtain

χL(k, iΩm)|one-loop = Γ2
ta

2 T

V

∑

p

∑

n2

Θ(n2)

×
{

g+(p, iΩn2)[g+(p + k, iΩn2 − iΩm) + g+(p + k, iΩn2 + iΩm)]

+ complex conjugate
}

(4.33a)

where

a = T
∑

n

[ϕ00
nn(k = 0) − ϕ33

nn(k = 0)]
N (1)
n

B2
n

. (4.33b)

Finally,

χL(k, iΩm)|one-loop = 2Γ2
ta

2d2 T

V

∑

p

∑

n2

c2|p|2|p + k|2 − Ωn2(Ωn2 − Ωm)

(c2p4 + Ω2
n2

)(c2|p + k|4 + (Ωn2 − Ωm)2)
.

(4.34)

The above expression is mathematically equivalent to Eq. (3.14) from the previous

chapter. Therefore, Eq. (4.34) evaluates to zero at T = 0 and there are no
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nonanalyticities. This is due to the lack of fluctuations coupling to the longitudinal

magnetization fluctuations.

Effects of Damping

In the preceding calculations, the damping of the magnons was ignored. In the

following, the effects of damping, due to quenched disorder, are calculated explicitly

by including the following term in the full action A[Q, Λ̃] from Eq. (4.6a):

A′[Q, Λ̃] = A[Q, Λ̃] + Adis[Q]

Adis[Q] =
1

πNFτ

∫

dx tr
(

Q(x)
)2

, (4.35)

with NF the density of states at the Fermi level in saddle point approximation and τ

the single-particle scattering or relaxation time. The disorder term Adis corresponds

to nonmagnetic impurities in the system.

As in the clean case earlier in this chapter, we make a saddle point ansatz like

in Eq. (4.8) and obtain the saddle-point equations,

Gn =
i

2V

∑

k

iωn − ξk − Σn

(iωn − ξk − Σn)2 − ∆2
n

=
i

2V

∑

k

Gn(k) (4.36)

Fn = − i

2V

∑

k

∆n

(iωn − ξk − Σn)2 − ∆2
n

=
i

2V

∑

k

Fn(k) (4.37)

Σn = − 2i

πNFτ
Gn (4.38)

∆n =
2i

πNFτ
Fn − 4iΓt T

∑

m

eiωm0Fm. (4.39)

These equations lead to an equation of state,

1 = −2Γt T
∑

n

1

V

∑

k

1

(iωn − ξk + i
2τ

sgnωn)2 − ∆2
n

. (4.40)
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This integral is independent of the disorder to the lowest order in 1/τ and therefore

is identical to the Stoner criterion in the clean case, Eq. (4.12). This is the magnetic

equivalent of Anderson’s theorem for superconductors [35].

Using this disordered saddle point, the Gaussian Q propagators can be calculated

using the Replica trick and in a similar fashion to the clean case. Then, Eq. (4.18)

in the presence of quenched disorder becomes

AG[δQ] = − 4

V

∑

k

∑

1234

∑

r,s={0,3}

∑

ij

i
r(δQ)12(k) ij

rsM12,34(k) j
s(δQ)34(−k), (4.41a)

with

ij
rsM12,34(k) = δ13 δ24

[

ij
rs(A12)

−1(k)−1/(πNFτ) δrs δij

]

+2T Γt δ1−2,3−4 δrs δij (1−δi0).

(4.41b)

Proceeding as in the clean case, the structure of the magnetic Goldstone modes can

be determined. We find

g±(k, iΩn) =
1

1 + 2Γt T
∑

m E±
m,n+m(k)

E±
nm(k) =

X−
nm(k) ± Y −

nm(k)

1 − (X−
nm(k) ± Y −

nm)/(πNFτ)
, (4.42a)

with X− and Y − as defined in Eq. (4.16b).

In the limit |k|/kF,Ωn/ǫF ≪ ∆/ǫF ≪ 1, we find

g±(k, iΩn) =
d( 1

τ
)

±iΩn − c( 1
τ
)k2 − η( 1

τ
)k2|Ωn| , (4.42b)
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where c, d and η are constants that depend on the single-particle relaxation time τ .

To lowest order in 1/τ ,

c(1/τ → 0) =
∆

6k2
F

, d(1/τ → 0) = − ∆

2NFΓt
, η(1/τ → 0) =

v2
F

16∆4τ
. (4.42c)

As τ → ∞, the damping coefficient η vanishes and Eq. (4.21) is recovered. The

structure of the damped Goldstone mode shown in Eq. (4.42b) is different from the

one obtained from the Time-Dependent Ginzburg-Landau theory,

g±(k, iΩn) =
d

±i[Ωn + sgn (Ωn)ηk4] − ck2
. (4.42d)

Using Eq. (4.42b) in Eq. (4.34) and setting k = 0, the following relevant

dimensionless integral, which is proportional to χ
(1)
L (k = 0, iΩm), is obtained at T = 0:

I1(Ωm) =
1

V

∑

p

∫ ∞

−∞
dω

p4(1 + η|ω|)(1 + η|ω − Ωm|) − ω(ω − Ωm)

[p4(1 + η|ω|)2 + ω2][p4(1 + η|ω − Ωm|)2 + (ω − Ωm)2]
.

(4.43)

Performing the integrals, we find

I1(Ωm → 0) = I1(0) + Zd η |Ωm|d/2, Z2 = −π

6
, Z3 = −4

√
2π

35
. (4.44)

This result is qualitatively very similar to the results for the “conserved-order-

parameter” damped magnons discussed in the previous chapter, Eq. (3.51).

Introducing nonmagnetic disorder results in additional fluctuations in the system that

couple to the longitudinal magnetization fluctuations and yields nonanalyticities.
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Some Finite Temperature Results

Recalling (4.34), the summation over the bosonic Matsubara frequency n2 is

performed and the following result is obtained.

χL(k, iΩm)|one-loop = 2Γ2
ta

2d2 1

V

∑

p

[nB(cp2) − nB(c|p + k|2)]

×



1

c|p + k|2 − ck2 + iΩm

+
1

c|p + k|2 − ck2 − iΩm



 (4.45)

where nB(x) = 1/(ex/T − 1), the Bose distribution function. This result is identical

to Eq. (3.18) from the previous chapter. The analytic continuation, iΩm → ω + iδ is

performed. In the regime ω ≪ ck2 ≪ T ,

Re[χL(k, ω)]

∣
∣
∣
∣
one-loop

≈ Γ2
ta

2d2 T

2c2|k| , (4.46)

which is the classical one-loop result also discussed in the previous chapter, Eq. (3.19).

The spectrum of χL is given by

χ′′
L(k, ω) = Γ2

ta
2d2 T

4πc2|k| log
1 − exp[−β(ck2 + ω)2/4ck2]

1 − exp[−β(ck2 − ω)2/4ck2]
, (4.47)

which is again identical to the spectrum χ′′
L from the previous chapter.

Electrical Conductivity

The Q-matrix field theory with an appropriate source field can also be used to

calculate the Goldstone mode contribution to the dynamical electrical conductivity.

The following is an identical reproduction of the calculations performed in [20].
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In terms of the Grassmannian fields ψ and ψ̄, the dynamical electrical

conductivity is given by the Kubo formula,

σ(Ω) =
i ne

meΩ
+

i T

ΩV m2
e

∑

n1n2

∑

σσ′

∫

dx dx′ 〈ψ̄n1,σ(x) ∂x1ψn1+m,σ(x) ψ̄n2,σ′(x′) ∂x′

1
ψn2−m,σ′(x′)〉

∣
∣
∣
∣
iΩm→Ω+i0

.

(4.48)

Here, ne is the electron density and me is the electron effective mass. In order to

calculate the one-loop spin-wave contribution to the conductivity, the following source

term is added to the action Eq. (4.1), in analogy to Eq. (4.22a).

Sj = −
∑

m

jm

∫

dx
∑

n

∑

σ

ψ̄n,σ(x)∂x1ψn−m,σ(x). (4.49)

As before, the Grassmannian fields are integrated out, leaving behind an action

analogous to Eq. (4.22c) with JL, in this case, defined as

(JL)12(x) =
1

2

∑

m

jmL12,m∂x1 = (JL)′
12∂x1 (4.50a)

with

L12,m = (τ− ⊗ s0)δn1,n2+m − (τ+ ⊗ s0)δn2,n1+m. (4.50b)

Once again, the action Eq. (4.22c) is expanded in powers of j and δΛ̃ to give Eq.

(4.24). Then, according to Eq. (4.48),

σ(Ω) = − ine

meΩ
+

iT

ΩV m2
e

∂2

∂jm∂j−m

∣
∣
∣
∣
∣
∣ j=0
iΩ→Ω+i0

[

〈A(2,0)〉G + 〈A(2,2)〉G +
1

2
〈A2

(1,2)〉G

]

. (4.51)
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〈A(2,0)〉G yields the Boltzmann conductivity since it does not include the effect of

spin waves. The spin-wave contribution comes from 〈A(2,2)〉G and
1

2
〈A2

(1,2)〉G. A(2,2)

involves one Goldstone propagator whereas A2
(1,2) has two Goldstone propagators

and is therefore expected to be the dominant contribution. In the following, we

concentrate on calculating

σ(1,2)(Ω) =
iT

2ΩV m2
e

∂2

∂jm∂j−m

∣
∣
∣
∣
∣
∣ j=0
iΩ→Ω+i0

〈A2
(1,2)〉G. (4.52)

Writing out A(1,2) explicitly, we obtain

A(1,2) = −1

2

∫

dxdydz tr
[

Gn1n2
sp (x − y)JLn2n3(y)Gn3n4

sp (y − z)

× δΛ̃n4n5(z)Gn5n6
sp (z − x)δΛ̃n6n1(x)

]

= −1

2

∫

dxdydz tr
[

Gn1n2
sp (x − y)(JL)′

n2n3
∂y1G

n3n4
sp (y − z)

× δΛ̃n4n5(z)Gn5n6
sp (z − x)δΛ̃n6n1(x)

]

z→z+x−→
y→y+x

−1

2

∫

dxdydz tr
[

Gn1n2
sp (−y)(JL)′

n2n3
∂y1G

n3n4
sp (y − z)

× δΛ̃n4n5(z + x)
︸ ︷︷ ︸

≈δΛ̃(x)+z.~∇δΛ̃(x)

Gn5n6
sp (z)δΛ̃n6n1(x)

]

. (4.53)

It turns out that only z.~∇δΛ̃ contributes to A(1,2). As before, all non-singular p and

m,n2 dependencies are neglected. Then,

A(1,2) ≈
∑

m

A(1,2)mjm, (4.54a)
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with

A(1,2)m = −1

4

∑

n1n2

∑

rs,ij

1

V

∑

p

ipx
∑

σ=±

σ ij
rsN

−σ
n1

i
r(δΛ̃)n1,n1+n2(p) j

s(δΛ̃)n1+n2,n1+σm(−p),

(4.54b)

where

ij
rsN

−σ
n =

∑

a,b,c=0,3

tr(τaτ−στbτrτcτs) tr(sasbsiscsj)
∫

dxdyGa
n(x)∂x1G

b
n(x − y)y1G

c
n(y)

︸ ︷︷ ︸

(M ′)abc
n

=
∑

a,b,c=0,3

tr(τaτ−στbτrτcτs) tr(sasbsiscsj)(M
′)abcn

= [(−1)r δrs + iσ (1 − δrs)] [−4N (2)
n δij + (δi2δj1 − δi1δj2) 4i σ N (1)

n ], (4.54c)

and

N (1)
n = (M ′)003

n − (M ′)030
n − (M ′)300

n + (M ′)333
n

N (2)
n = (M ′)000

n − (M ′)033
n − (M ′)303

n + (M ′)330
n . (4.54d)

This yields

σ(1,2)(Ω) = − iT

16ΩVm2
e

∑

n1,n2,n′

1,n
′

2

∑

i,j,i′,j′

∑

r,s,r′,s′

∑

σ,σ′

σσ′ ij
rsN

−σ
n1

i′j′

r′s′N−σ′

n′

1

1

V 2

∑

p,p′

px p
′
x

×
[

〈 ir(δΛ̃)n1,n1+n2(p) i′

r′(δΛ̃)n′

1,n
′

1+n′

2
(p′)〉G

× 〈 js(δΛ̃)n1+n2,n1+σm(−p) j′

s′(δΛ̃)n′

1+n′

2,n
′

1−σ′m(−p′)〉G

+ 〈 ir(δΛ̃)n1,n1+n2(p) j′

s′(δΛ̃)n′

1+n′

2,n
′

1−σ′m(−p′)〉G

× 〈 js(δΛ̃)n1+n2,n1+σm(−p) i′

r′(δΛ̃)n′

1,n
′

1+n′

2
(p′)〉G

]

. (4.55)
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The above expression can be rewritten in terms of the δQ fields via the following

substitutions, which is valid for i, j = 1, 2 (which correspond to the spin waves):

ij
rsN

σ
n =⇒ 4 ijrsN

σ
n/B

2
n

δΛ̃ =⇒ δQ, (4.56)

where

Bn =
1

V

∑

p

[G2
n(p) − F2

n(p)]. (4.57)

Therefore, the leading ferromagnetic Goldstone mode contribution to σ(1,2) is

σ(1,2)(Ω) = − iT

ΩV m2
e

∑

n1,n2,n′

1,n
′

2

∑

i,j,i′,j′

∑

r,s,r′,s′

∑

σ,σ′

σσ′
ij
rsN

−σ
n1

B2
n

i′j′

r′s′N−σ′

n′

1

B2
n′

1

1

V 2

∑

p,p′

p2
x

×
[

− 〈 ir(δQ)n1,n1+n2(p) i′

r′(δQ)n′

1,n
′

1+n′

2
(p′)〉G

× 〈 js(δQ)n1+n2,n1+σm(−p) j′

s′(δQ)n′

1+n′

2,n
′

1−σ′m(−p′)〉G

+ 〈 ir(δQ)n1,n1+n2(p) j′

s′(δQ)n′

1+n′

2,n
′

1−σ′m(−p′)〉G

× 〈 js(δQ)n1+n2,n1+σm(−p) i′

r′(δQ)n′

1,n
′

1+n′

2
(p′)〉G

]

. (4.58)

With Cijrs defined as before Eq. (4.31b) and carrying out the spin and quaternion

sums,

σ(1,2)(Ω) =
−64T

Ωm2
eV

∑

n1,n2,n′

1,n
′

2

∑

σ,σ′

∑

p

p2
x

σσ′

B2
n1
B2
n′

1

×





[N

(1)
n′

1
N (1)
n1

[

(σC11
00 − σ′C11

33)(σ′C11
00 − σC11

33) − (σC12
03 + σ′C12

30)(σC12
30 + σ′C12

03)
]

−N (1)
n′

1
N (2)
n1

[

(σC12
30 + σ′C12

03)(σ′C11
00 − σC11

33) − (σC11
00 − σ′C11

33)(σC12
03 + σ′C12

30)
]





.

(4.59)
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The sums over indices σ and σ′ are performed. Keeping only the leading terms, the

above expression can be expressed in terms of the Goldstone propagators Eq. (4.21)

as

σ(1,2)(Ω) = − iΓ2
t a

2 T

Ωm2
e V

∑

p

p2
x

∑

n2

Θ(n2)

×
{

g+(p, iΩn2)
[

g+(p, iΩn2 − iΩm) + g+(p, iΩn2 + iΩm)
]

+ complex conjugate
}

∣
∣
∣
∣
∣
∣
iΩm→Ω+i0

, (4.60)

with a as defined previously in Eq. (4.33b), albeit with (M ′)abcn instead of Mabc
n . The

above expression is almost exactly the same as Eq. (4.33a), except for an additional

factor of p2
x which comes from the vertex. Considering the undamped Goldstone

propagators Eq. (4.21), the relevant dimensionless integral at T = 0 is

I1(Ωm) =
1

V

∑

p

p2
∫ ∞

−∞
dω

p4 − ω(ω − Ωm)

(p4 + ω2)(p4 + (ω − Ωm)2)
, (4.61)

which evaluates to zero. Therefore, the spin waves do not contribute any nonanalytic

frequency dependence to the conductivity at zero temperature. This is due to the

fact that the current-current correlation function can be expressed purely in terms of

the magnon-number fluctuations. This result differs from the original one-loop result

for the conductivity given in [20]. According to [20],

σ(1,2)(Ω) = − iΓ2
t a

2 T

Ωm2
e V

∑

p

p2
x

∑

n2

Θ(n2)

×
{

g(p, iΩn2)
[

g(p, iΩn2 − iΩm) + g(p, iΩn2 + iΩm)
]}

∣
∣
∣
∣
∣
∣
iΩm→Ω+i0

, (4.62a)
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where

g(p, iΩn) = g+(p, iΩn) + g−(p, iΩn)

=
−2dcp2

Ω2
n + (cp2)2

. (4.62b)

Then, the relevant dimensionless integral at T = 0 is

I1(Ωm) =
∫ ∞

0
dppd+1

∫ ∞

0
dω

p4

ω2 + p4

×



1

p4 + (ω − Ωm)2
+

1

p4 + (ω + Ωm)2



 (4.63a)

I1(Ωm → 0) = I1(0) − π2

23+d/2 sin(πd/4)
|Ωm|d/2. (4.63b)

However, Eq. (4.62a) is not correct. This is because in [20], there was an error in

performing the sums over σ and σ′ in Eq. (4.59), which led to some terms being

omitted. The correct result is Eq. (4.60), which shows that undamped spin waves

have a vanishing one-loop contribution to the conductivity at T = 0.

If the damped Goldstone propagators from Eq. (4.42b) are used, we obtain (with

Ω ≡ Ωm)

I1(Ω) =
1

V

∑

p

p2
∫ ∞

−∞
dω

p4(1 + η|ω|)(1 + η|ω − Ω|) − ω(ω − Ω)

[p4(1 + η|ω|)2 + ω2][p4(1 + η|ω − Ω|)2 + (ω − Ω)2]

(4.64a)

I1(Ω → 0) = I1(0) +







R2|Ω|2 log(
cp2

0

|Ω| ) if d = 2

R3|Ω|2 + Y3|Ω|5/2 if d = 3

, (4.64b)

110



where R2, R3 and Y3 are negative finite constants, all proportional to η. p0 is some

momentum cutoff. Then, the one-loop contribution of damped spin waves to the

conductivity is given by

σ(1,2)(Ω) ∝ −i[I1(Ωm) − I1(0)]

Ω

∣
∣
∣
∣
iΩm→Ω+i0

Re[σ(1,2)(Ω)] =







(1/12π) η k2
F | Ω

∆
| if d = 2

(4/63π2) η k3
F | Ω

∆
|3/2 if d = 3

. (4.65)

The above contribution is a positive quantity, which means that it is localizing in

nature, i.e. the conductivity decreases with decreasing frequency.

Density of States

The single-particle density of states is another quantity that gets contributions

from the spin-waves. In terms of Q fields, the frequency or energy dependent single-

particle density of states, with energy measured from the chemical potential µ (which

is the Fermi energy ǫF at T = 0), is

N(µ + ω) =
4

π
Re 〈 0

0Qnn(x)〉
∣
∣
∣
∣
iωn→ω+i0

. (4.66)

Using

〈 0
0Qnn(x)〉 = 0

0Qnn|sp + 〈 0
0(δQ)nn(x)〉, (4.67a)

Eq. (4.66) becomes

N(µ + ω) = NF +
4

π
Re 〈 0

0(δQ)nn(x)〉|iωn→ω+i0

= NF + ReQGM(iωn)

∣
∣
∣
∣
iωn→ω+i0

. (4.67b)
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To calculate this quantity, we start by recalling the action in Eq. (4.6a). This action

is written as a sum of the saddle-point contribution, the Gaussian part Eq. (4.14)

which is quadratic in Q and Λ̃, and non-Gaussian (cubic and higher order) terms.

A[Q, Λ̃] = A[Qsp, Λ̃sp] + AG[δQ, δΛ̃] +
∞∑

l=3

Al[δΛ̃] (4.68a)

where

Al[δΛ̃] = − 1

2l
Tr (iGspδΛ̃)l. (4.68b)

The fields δΛ̃ and δQ in AG can be decoupled by introducing a new field δΛ̄ as defined

in Eq. (4.17). Then,

A[Q, Λ̄] = Asp + AG[δQ, δΛ̄] +
∞∑

l=3

Al[2A
−1(δΛ̄ − δQ)]. (4.68c)

The diagrammatic loop expansion for the irreducible part of 〈δQ〉, or equivalently

for the one-point vertex function, is shown in Fig. 15.

(a) (b)

FIGURE 15. One-loop (a) and two-loop (b) contribution to the one-point vertex
function 〈δQ〉

The one-loop term, Fig. 15(a), is given analytically by

〈δQnn(x)〉|1-loop = 〈δQnn(x) A3[2A
−1(δΛ̄ − δQ)]〉G. (4.69)
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The leading nonanalyticities are given by contributions where the loop in Fig. 15(a)

is a soft mode. That is, the loop must be a Q-propagator, since the Λ̄-propagator is

massive.

Thus,

QGM(iωn)

∣
∣
∣
∣
1-loop

=
4

πV

∑

q

〈 0
0(δQ)nn(q) × −1

6
Tr (−iGsp 2A−1δQ)3〉G

= − 16i

3πV 4

∑

q

∑

p1,p2,p3

∑

n1,n3,n5

∑

rst,ijk

∑

a,b,c=0,3

tr (τaτrτbτsτcτt)

× tr (sasisbsjscsk)G
a
n1

(p3)G
b
n3

(p3 − p1)Gc
n5

(p3 − p2 − p1)

×A−1
n1n3

(p1)A−1
n3n5

(p2)A
−1
n5n1

(−p1 − p2)

× 〈 0
0(δQ)nn(q) ir(δQ)n1n3(p1)

j
s(δQ)n3n5(p2)

k
t (δQ)n5n1(−p1 − p2)〉G

︸ ︷︷ ︸

Apply Wick’s theorem

= − 16i

πV 4

∑

q

∑

p1,p2,p3

∑

n1,n3,n5

∑

rst,ijk

∑

a,b,c=0,3

tr (τaτrτbτsτcτt)

× tr (sasisbsjscsk)G
a
n1

(p3)G
b
n3

(p3 − p1)G
c
n5

(p3 − p2 − p1)

×A−1
n1n3

(p1)A−1
n3n5

(p2)A
−1
n5n1

(−p1 − p2)

× 〈 0
0(δQ)nn(q) kt (δQ)n5n1(−p1 − p2)〉G

︸ ︷︷ ︸

= V
16
δq,p1+p2 δ0k δ0t δn,n5 δn,n1Ann(q)

〈 ir(δQ)n1n3(p1) js(δQ)n3n5(p2)〉G

= − i

πV 3

∑

q

∑

p1,p3

∑

n3

∑

rs,ij

∑

a,b,c=0,3

tr (τaτrτbτsτc) tr (sasisbsjsc)

×Ga
n(p3)Gb

n3
(p3 − p1)G

c
n(p3 − q)A−1

nn3
(p1)A

−1
n3n(q − p1)

× 〈 ir(δQ)nn3(p1)
j
s(δQ)n3n(q − p1)〉G

(4.70)

113



QGM(iωn)
∣
∣
∣
∣
1-loop

= − i

πV 2

∑

p1

∑

n3

∑

rs,ij

(−1)s















+

−

−

−















j

A−2
nn3

(p1) 〈 ir(δQ)nn3(p1) js(δQ)nn3(−p1)〉G

× 1

V

∑

a,b,c=0,3

tr (τaτrτbτsτc) tr (sasisbsjsc)G
a
n(p3)G

b
n3

(p3 − p1)Gc
n(p3).

Performing the sum over the indices a, b, c and assuming ωn > 0,

QGM (iωn) = − 4i

πV 2

∑

m<0

∑

k

∑

r,s=0,3

∑

i,j=1,2

[

ϕ(3)
nnm(k)

]ij

rs

×D−2
nm(k) (−1)s+1

〈
i
r(δQ)nm(k) js(δQ)nm(−k)

〉

,

(4.71a)

where

[

ϕ(3)
nnm(k)

]ij

rs
= (−1)r+1 δrsδijA

nnm(k) − (1 − δrs)(δi1δj2 − δi2δj1)B
nnm(k)

Annm(k) =
1

2V

∑

p

[G+
n (p)G+

n (p)G−
m(p + k) +G−

n (p)G−
n (p)G+

m(p + k)]

Bnnm(k) =
1

2V

∑

p

[G+
n (p)G+

n (p)G−
m(p + k) −G−

n (p)G−
n (p)G+

m(p + k)]

Dnm(k) =
1

2V

∑

p

[G+
n (p)G−

m(p + k) +G−
n (p)G+

m(p + k)] (4.71b)

with

G±
n (k) =

1

(iωn − ξk ± ∆)
. (4.71c)

The constants c and d are the ones defined in Eq. (4.21b). In the above equations, r, s

and i, j are restricted to {0, 3} and {1, 2}, respectively, so that the δQ propagators

exclusively represent the spin-waves. The quantities Annm(k) and Bnnm(k) are
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calculated using the AGD (Abrikosov-Gor’kov-Dzhyaloshinskii) approximation. This

yields

Annm(k) ≈ NFπi
[

1

(iΩn−m + 2∆)2 − (vFk)2
+ (∆ → −∆)

]

Bnnm(k) ≈ NFπi
[

1

(iΩn−m + 2∆)2 − (vFk)2
− (∆ → −∆)

]

. (4.72a)

We note that as m → n and k → 0, Annm(k) and Bnnm(k) remain finite, due to the

nonzero ∆. Therefore, to leading order in k and Ωn−m,

Annm(k) =
NFπi

2∆2

Bnnm(k) = −NFπi

2∆2

(
iΩn−m

∆

)

. (4.72b)

Clearly, Bnnm(k) has an additional Ωn−m/∆ factor relative to Annm(k). Therefore,

the leading contribution to the DOS correction comes from the A term, with the B

term contribution a subleading correction.

Thus, taking

〈ir(δQ)nm(k) ir(δQ)nm(−k)〉 = −V

8
ΓtTD

2
nm(k)

d ck2

c2k4 + Ω2
n−m

(4.73)

in Eq. (4.71a) and analytically continuing ωn, the leading spin-wave correction to the

DOS turns out to be

δNGM (ω) = ReQGM(iωn)

∣
∣
∣
∣
iωn→ω+i0

=
1

8
6d/2 Sd−1

d(2π)d
kdF
∆

∣
∣
∣
∣

ω

∆

∣
∣
∣
∣

d/2

, (4.74)

Sd−1 is the surface area of a d dimensional hypersphere with unit radius.
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Conclusions

In summary, we have calculated the leading spin-wave contribution to the

longitudinal susceptibility, electrical conductivity and the density of states in itinerant

ferromagnets using the framework of a Q-matrix theory for the electrons and a Stoner

saddle-point solution of this field theory. For simplicity, a single parabolic band of

electrons has been considered and the effects of the spin waves on the transport

and thermodynamic properties have been calculated. Microscopic details like band

structure etc. do not affect the universal properties that are due to the soft modes in

the system.

As seen in the preceding sections and Chapter III, the one-loop spin-wave

contribution to the longitudinal susceptibility vanishes at T = 0, when undamped spin

waves are considered. If the disorder is neglected in the model, the spin waves are not

damped at long wavelengths and low frequencies, even by electron-hole excitations.

When nonmagnetic disorder is explicitly included in the model, the spin waves are

damped and the leading spin-wave contribution to the longitudinal susceptibility at

T = 0 is proportional to (1/τ)|Ω|d/2. This result is in agreement with the very

general results presented in the previous chapter. When the single-particle scattering

or relaxation time, τ tends to infinity the nonanalytic behavior turns off.

We have also calculated the leading spin-wave contribution to the electrical

conductivity. It turns out this contribution is structurally very similar to the one-loop

contribution to the longitudinal susceptibility, only differing by a factor of momentum-

squared in the relevant integral, which comes from the vertex. This is a result of the

current-current correlation function, like the longitudinal susceptibility, being purely

related to the magnon-number fluctuations. Naive power counting arguments and

previously published results suggested that the undamped spin waves contribute a
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Ω(d−2)/2 term to the conductivity at T = 0. However, a careful calculation of the

same revealed that this nonanalyticity has a zero prefactor, akin to the longitudinal

susceptibility. The damped spin-waves lead to a positive (1/τ)|Ω|d/2 contribution; the

positive sign signifies the localizing nature of the spin waves.

The leading spin-wave correction to the electronic density of states has also been

calculated. Unlike the other two observables, the undamped spin waves lead to a

nonzero correction, consistent with power counting. The correction is positive and

behaves like |ω/∆|d/2, where ‘ω’ is the energy measured from the Fermi level. The

Stoner gap, ∆, provides a natural energy scale for this nonanalyticity. This behavior

can be probed using scanning tunneling experiments and measuring the zero-bias

tunneling anomalies.
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CHAPTER V

SUMMARY

To summarize, the work presented in this dissertation leads to a better

understanding of the fundamental properties of metallic ferromagnets at low

temperatures and the various effects caused by the accompanying Goldstone modes.

This could have long-term implications on practical applications. As modern

electronic devices get smaller, quantum mechanical effects become more relevant

and therefore, knowledge of these effects will be helpful in the design and achieving

the desired performance of these devices. Hence, understanding the dynamics of

ferromagnets and the effects of Goldstone modes is important.

In Chapter II, the ferromagnon contribution to the single-particle and transport

relaxation rate was calculated using a model based on simple symmetry arguments

that did not depend on the origin of the magnetization. It was noted that the

ferromagnon-mediated electron-electron interaction is purely inter-Stoner-band in

nature and requires the flipping of the electronic spin. As a result, the relaxation rates

display an activation-barrier-like behavior at asymptotically low temperature,s and

below a certain temperature the ferromagnon contribution freezes out. Therefore, the

ferromagnon contribution is markedly different from the power-law contributions of

magnons in antiferromagnets and helimagnets. The previously reported T 2 behavior

of the ferromagnon contribution to the transport relaxation rate [19] was found to

be valid only in a preasymptotic temperature window. The results of Chapter II are

compatible with the low-temperature helimagnet results [26, 27, 28], which was the

primary motivation in re-examining the validity of the T 2 result.
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Chapter III explored the magnon-induced nonanalyticities in the long-

wavelength/low-frequency behavior of correlation functions in quantum magnets.

Specifically, the correlation function of the longitudinal order-parameter fluctuations

was considered. Naively, the coupling between statics and dynamics in the quantum

case is expected to lead to a weaker nonanalyticity compared to the classical case.

However, for quantum ferromagnets, it was found that the one-loop undamped-

magnon contribution to the longitudinal susceptibility vanished at T = 0. This

null result is not an artifact of the nonlinear sigma model used for the calculations,

or the one-loop approximation; rather, it is a property of correlation functions

that can be expressed entirely in terms of magnon-number fluctuations. The

longitudinal susceptibility in quantum ferromagnets is one such correlation function.

This is in contrast to quantum antiferromagnets: the longitudinal order-parameter

susceptibility is not such a correlation function and the expected nonanalyticity

exists at T = 0. This difference between the quantum ferromagnets and quantum

antiferromagnets is highlighted in the longitudinal dynamical structure factor, a

quantity relevant in neutron-scattering experiments. Further, damped ferromagnons

were considered and a nonvanishing one-loop contribution to the longitudinal

susceptibility was obtained. The damping can be due to some disorder in the system.

The quenched disorder introduces new fluctuations in the system, which restore the

nonanalyticity. A simple renormalization-group scaling analysis showed that the one-

loop result is exact, as far as the exponent of the nonanalyticity is concerned.

Chapter IV considered the Stoner model of itinerant ferromagnets and briefly

introduced an effective field theory in terms of quaternionic fields. The magnonic

soft modes were identified and their contributions to the longitudinal susceptibility

and the dynamical electrical susceptibility were calculated using a source formalism
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with the appropriate source field. It is found that that the dynamical electrical

conductivity, like the susceptibility, is given purely in terms of magnon-number

fluctuations. Therefore, the T = 0 undamped ferromagnon contribution to the

conductivity vanishes, in disagreement with a previous result [20]. As before,

introducing quenched nonmagnetic disorder restored the nonanalytic low-frequency

dependence of the conductivity. The leading spin-wave correction to the single particle

density of states was also calculated and a nonanalyticity, consistent with power-

counting arguments, was found.
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APPENDIX

CAUSAL FUNCTIONS AND LONG-TIME TAILS

The following are some properties of the class of causal functions that the

longitudinal susceptibility belongs to. The proofs can be found in [74].

Non-integer Powers

Consider a causal function χ of complex frequency z that behaves, for z → 0, as

χ(z) =
1

cos(απ/2)
[zα + (−z)α], (A.1)

with α real and not integer. Here and in what follows, only even functions of z are

considered, since the magnetic susceptibility has this property. Only the asymptotic

small-frequency, or long-time behavior is given here; for z → ∞ χ, or any causal

function vanishes.

On the imaginary axis, χ takes the values

χ(iΩn) = |Ωn|α. (A.2)

Then, the reactive part χ′ and the spectrum χ′′, respectively of χ read as

χ′′(ω) = − sin(απ/2) |ω|α sgnω, (A.3)

χ′(ω) = cos(απ/2) |ω|α. (A.4)
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The real-time behavior of χ is given by the Fourier transform of χ′′(ω),

χ(t) =
∫ ∞

−∞

dω

π
e−iωt χ′′(ω). (A.5)

In the long-time limit, the Hardy-Littlewood tauberian theorem yields a long-time

tail:

χ(t → ∞) = i
Γ(α + 1)

π
sin(απ)

1

|t|α+1
. (A.6)

The ferromagnet with damped magnons in d = 3 is an example of this behavior,

with α = 1/2 and α = 3/2 for a nonconserved and a conserved order parameter,

respectively. This behavior is also realized by both ferromagnets and antiferromagnets

in generic dimensions.

Even Powers

Considering the following causal function,

χ(z) =
(−)m

2
z2m [ln z + ln(−z)], (A.7)

with an integer m. On the imaginary axis this yields,

χ(iΩn) = |Ωn|2m ln |Ωn|. (A.8)

The spectrum and the reactive part are

χ′′(ω) =
(−)m+1π

2
ω2m sgnω, (A.9)

χ′(ω) = (−)m ω2m ln |ω|. (A.10)
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and the long-time behavior is

χ(t → ∞) = i
(2m)!

|t|2m+1
. (A.11)

The above behavior is seen in antiferromagnets in d = 3 and ferromagnets in d = 2

with a nonconserved order parameter.

Odd Powers

Finally, taking

χ(z) =
(−)m+1

2
z2m+1 [ln z − ln(−z)] (A.12)

with m integer, which leads to

χ(iΩn) = |Ωn|2m+1, (A.13)

and

χ′′(ω) = (−)2m+1 ω2m+1. (A.14)

A distinction needs to be made between m ≥ 0 and m < 0. For m ≥ 0, the spectrum

is analytic and the reactive part vanishes,

χ′(ω) = 0, (A.15)

and there is no long-time tail in the real-time domain. However, there is a long-time

tail in the limit of large imaginary time τ → ∞. χ(τ) is given by

χ(τ) = T
∑

iΩn

e−iΩnτ χ(iΩn). (A.16)
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At T = 0, the sum turns into an integral and one finds,

χ(τ → ∞) =
1

π
(−)2m+1 (2m+ 1)!

1

τ 2(m+1)
. (A.17)

An example for this behavior is the ferromagnet with damped magnons in d = 2 with

a conserved order parameter.

For m < 0, the spectrum is singular at ω = 0 and there is a long-time tail even

in real-time domain. For m = −1,

χ′(ω) = δ(ω), (A.18)

and the long-real-time behavior is a constant,

χ(t) = −i. (A.19)

An example is the antiferromagnet in d = 2.
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[63] J. Kötzler, D. Görlitz, R. Dombrowski, and M. Pieper. Z. Phys. B, 94:9, 1994.

[64] J. Eisert, M. Cramer, and M. B. Plenio. Rev. Mod. Phys., 82:277, 2010.

[65] V. Popkov and M. Salerno. Phys. Rev. A, 71:012301, 2005.

[66] W. Ding, N. E. Bonesteel, and K. Yang. Phys. Rev. A, 77:052109, 2008.

[67] H. F. Song, N. Laflorencie, S. Rachel, and K. Le Hur. Phys. Rev. B, 83:224410,
2011.

[68] M. Metlitski and T. Grover. arXiv:1112.5166, 2011.

[69] G. Misguich, V. Pasquier, and M. Oshikawa. arXiv:1607.02465, 2016.

[70] J. M. O. de Zarate and J. V. Sengers. Hydrodynamic fluctuations in fluids and

fluid mixtures. Elsevier, Amsterdam, 2007. ch. 7.5.

[71] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman. Phys. Rev. A, 26:995,
1982.

[72] T. R. Kirkpatrick and D. Belitz. Phys. Rev. B, 93:125130, 2016.

[73] D. Belitz, F. Evers, and T. R. Kirkpatrick. Phys. Rev. B, 58:9710, 1998.

[74] M. J. Lighthill. Introduction to Fourier analysis and generalised functions.
Cambridge University Press, Cambridge, 1958.

128


