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Why are Formal Models Useful in Psychology?
Drpuglas L. Hintzman

University of Orepon

Ahbstraot

This chapter explores the value ol formal (masthematical and computer) models in
psychology. Rescarch on factors thal have been shown to hias and limit unzided human
reasoning is briefly reviewed, and it is noted that psychologists are susceptible w these
errars, just as their subjects are. Characteristics of formal models sre discussed in relation
1o such errors, in an clfort o identify the ways in which models can and cannot aid
scientific thowght. Some limitations of the modeling approach are also discussed. [t is
argued that beeause psychological models gresly oversimplify the domains to which they
are applicd, model evaluation 15 a complex matier. The measure of a model's valug lics not
in 1ts ahility to £t data, bul in how much we can learn from it



When I was a Senior at Northwestern University, 1 was corolled in an honoes
seminar, One of our first assignments was Lo give an oral report on an arlicle from
Psychological Review. For my report, [ chose a paper by someonc al the University of
Vermont, named Bennet B. Murdock, Jr, (Murdock, 1960%. The paper concerped 3
method of quantifying the distinctiveness of stimuli that vary along a single dimension.
One aspect of the paper was application of the methad o cxplaining the shape of the serial-
position curve ol serial learning. [t was the first attempt T had seen to derive formally, from
4 priori consideralions, an cmpirical phenomenon of human memory, and 1was quite
impressed.

Lest Ben be blamed for what Isay here or castigated for determining the direetion
of my carcer, [ should add that my auitude toward the role of formal models in psychology
has been shaped my numerous other experiences. As a first-yoear graduate student al
Stanford, | began working on a computer simulation model of paired-associate learning that
eventually became the topic of my dissertation (Hintzman, 1968). This work allowed me
(o expericnee first-hand the limilations of intuitive reasoning. Time afler lime, [ made
changes in the program with the expectation of achieving a particular oulcome, only 1o learn
that the revised system did ot hehave as 1had planned.” T also recall writing a term paper
for & graduate course, presenting a new theory of visual illusions, based on the recently-
discovered receptive fields of visual cortical cells. The class instructor was a5 exeited abowt
the theary as 1 was, until one day he dropped by my office 1o tell me he couldn't make it
work algebraically, [couldn't either, Fortenately the end of the term was past and |
alrcady had my "A"

These expericnces and others have made me skeptical of unaided, intuitive
Judgments concerning how specilic theoretical assumptions relate to particular empirical
results. Other people who work with formal medels scem to share this distrust.

The [law in my account of visual illusions was caught before any real damage had
been done. There are several stages where such errors can be detected as an idea makes is
uncerlain way from privite hunch 1o generally accepted principle: in the investigator's own
claboration and explication of the hunch, in discussions with colleagues, in the reviewing
and editorial process, and--if these fail--in published commentary appearing betore the idea
is embraced by the scientilic community as 4 whole, But an assertion can be so intuitively
compelling that it is accepted without close cxamination. In these cases, it may take a
formal model 1o convinee researchers that the assertion is wrong, and even then the belief
may he hard to kill.  The widespread misconception that serial and paralle]l processes can
casily be distinguished on empirical grounds is one example (see Townsend, 19900,
Anather 15 the idea that if two variables interact, then they must affect the same processing
stage (see McClelland, 1979, 1988).

A number of experiments have been done in which subjects lirst learn W classify
category cxemplars, and then are tested on the exemplars and also on calegory protoly fres
which they have not seen before. Classification performance can be higher for the new
I_Jlmlﬂt:r'pus than [or the old cxemplars, Even where this difference is not present initially, it

as been reported W emerge over time. The standard imerpretation--which [once
accepied--has been thal a representation of the ceniral lendercy of the calegory is abstracted
and stored, and that this representation has a slower forgetting rate than do traces of the
exemplars themselves. We now know that a simple model that stores only exemplars can
account for such resulls (Hintzman, 1986; Hintzman & Ludlam, 1980).

Many experimenis have been reported in which subjects search for elemenis such as
letters--cither in a set commitled o memory or in 2 viswal display. Such experiments



produce a varicty of results: search times may increase lincarly with set size, of increase
nonlincarly, or not increase at all; and scarch times on trials when the target is sbsent may
show the sume slope or a greater slope than on positive trials. The standard view in
copmitive psychology has been that these different paticrns require [or their cxplanation
dillerent sorts of mechanisms--incorporating cither a serial or a parallel search, fr
example, and either a self-terminating or an exhaustive stop rule. However, formal
models show that basically the same mechanisms can produce any of these results
(Broadbent, 1987; Townsend, 1990),

Students of memory are currently inteeested in relationships and comparisons
among memory tasks. A popular idea has been that certain patterns of results indicate that
twar tasks are performed by dilferent memory systems. One such patiern is a funclional
dissociation, in which a manipulated variable has different effects on the two tasks. The
other is stochastic independence displayed by the contingency table relating successes and
failures om the tasks. Formal models, however, show that such dala patlerns are nol
diagnosiic of different systems. A single memory svstem can icl functional
dissociations {Andcrson & Reder, 1987; Humphreys, Bain, & Pike, 1989), and two tasks
can show stochastic indcpendence even il the same system performs both tasks (Hinteman,
1987, Nosofsky, 1988). (For further discussion of these issues, see Hintzman, 1990.)

Another example from the field of memory concerns how memory or an original
event is influenced by the interpolation of conflictiing information between the original
learming and the st Ina typical experiment, subjects must choose between the original
and the mlerpolated information on a foreed-choice recognition test,  These subjecis appear
i display ﬁnn:r recognition memaory than do controls whao did not see the interpolated
material, The resull has been widely interpreted as showing that the inconsisienl
intormation either is incorparated destructively into the original memory trace or interferes
with its retrieval. However, McClosky and Zaragoza (1985) showed, using numerical
examples, that the resull is entircly consistent with 2 simple Markov model thal assumes
coexisience and noninterference between traces of the onginal and interpolated events.

I can'i resist adding a somewhat dilferenm example. A recent lexthook on leamning
has a chapler on sociobiology. which contains the following claim regarding sexual
promiscuily: "While aduliery rates for men and women may be equalizing, men still have
more partners than women do, and they are more likely 10 have one-night stands” (Leahey
& Harris, 1985, p. 287). It is clear from the context that this does not hinge on the slight
plurality of women to men (which would make it trivial), and that homosexval pariners do
not count, [ ehallenge anyone o set up o formal madel consistent with the claime-<that is.
there must be cqual numbers of men and women, hul men must have more helerosexual
pariners than women do. {While you are ai i, derive the prediction about one-night
stands.) An effort to set up such a model could have helped the auihors avold making a

mathematically impossible elaim.

My general point i that formal models are of proven value in psychology. They

can clear up misconceptions and reveal underlying truths that are not obviows at first

ance. The typical member of this avdicnoe may sce the valve of modeling as beyond

ispute; but this avdicnee is not a representative sample, and many psychologists are quite
skeptical about the modeling approach. | propose that we iry 1o undersiand why--and in
what ways--formal models asdvance our understanding. This may help us increase the
efficiency of our science by puiting models 10 better use. My hope in this chapter is 1o al
least provoke some needed thought and discussion an this important bt neglected 1opic,

Same preliminary comments are in order, First, [discuss only explanatory models-
=the theoretical side of the research enlerprise. Formal models of data are used almost



universally in psychology, for example in our standard statistical wehnigques. It might ako
be warthwhile 1o ask why models of dala are useful (and more widely accepted than the
cxplanatory kind) but 1 won't do that here, Second, in many people’s minds, formal
modeling is synonymous with quantitative modeling. However, for reasons that will
become apparent later, [ want 10 make s distinction here. Quantitative models, which
atlempt 1o accoun! for the precise numerical values obtained in an empirical investigation,
represent an important subsel of formal models, but the gencral class is much broader than
thitt. Third, the question arises as o just what the class of formal models includes. Like
many concepts, this is a fuczy one, Diagrams, Mow-charts, ete. may or may not qualily as
formal models, depending on the extent W which they involve symbols that are manipulated
according to definite rules. By restricting the discussion to the clear cases of mathematical
and compuler models, we can avoid arguing about exactly where the [uzzy boundarics lie.

 The Iollowing discussson has four parts. First, I list several sources of error in
unaiched human reasoning: second, [ discuss the nature of formal models; third, 1 attempt 1o
relate models 1o reasoning errors, to uncover where the advantages of modeling might lic.
Fimally, 1 consider the cvaluation of formal models, and arguc thal there are limutations as
well as advaniages in their use.

Human Reasoning

A guwjng body of psychological rescarch atiesis to the flaws and foibles of human
Illuru 'II:L me phenomena that seem directly relevant 1o errors in scientifie reasoning are
as [ollows:

l. Working memory capacity constrains the number of concepts of entilics we can
manipulate mentally at the same time (e.g., Johnson-Laird, 1983). Chunking,
aulomatization of rules, and external ais such as diagrams can relieve the burden
somewhal (Kotovsky, Hayes, & Simon, 1985), but the limitations are still severe.
Erupﬂ. Goodnow, and Austin (1962) referred o this prohlem evocatively as "cognitive
strain.”

L. Imagining a dynamic sysiem in action may require keeping track of the current
states of sevieral variables, Humans have difficulty vpdating the current values of variahles
and purging from memory outdated oncs (Bjork, 1978).

3. Because memory i conlent-addressable, similarity is of overriding importance
in retricval,  Humans reason by analogy with familiar situations (Nishew, Fong, Lehman,
& Cheng, 1987). We tend (o judge likelihood bascd on ease of retrieval (Tversky &
Kuahneman, 1973). W are prone 1o confuse similar concepts and percepts, and even
similar-sounding wornds.

4. Human cognition is fauli=tolcrant, in that it will come w guick-and-diny
conclesions even when crucial information is missing. People are generally nod aware of
the exlent 1o which defaull expectations and objective data have been intermixed in the
conclusions they have reached (e.g., Johnson, Bransford £ Solomon, 1973).

5. The mapping of meanings to words and of words (0 meanings is nol one-to-
onc.  One consequence is that a verbal argument can maintain apparent coherence while
subtly relying, at differeni points, on different (and possibly conflicting) interprelations of
the same or synonymous words, Another consequence is thal people may reason
differently ahout essentially the same situation if'it is deseribed in slightly different ways
("framing cllecws"; Tversky & Kahneman, 1981),



6. Humans are biascd to accepl as troe statements that thcy have encountered
frequenily before, independently of whether the statements arc actually true or false
(Hasher, Goldssein, & Toppino, 1977).  (Consider the sociobiology cxample--"males
have mare one-night stands."™)

T. People are betier al reasoning about peuiral material than about maicrial thal is
cmotionally charged (Lefford, 1946). We tend 10 base acoeptance or rejection of an
argument’s validily on whether or not we like the conclusion (Janis & Frick, 1943; Lord,
Ross, & Lepper, 1979). It seems that rescarchers like the conclusion, "1 was right”, and
dislike the conclusion, "1 was wrong," In onc recent experiment, research scienlists were
asked 1o review for publication an experimental paper on ESE. By inserling descriptions of
results that either agreed or disagreed with the scientists' preconceptions, the experimenter
msnipulated their evaluation of the experimental method (Koehler, 1989),

8, Onee peaple know something, they find it difficult or impossible 1o remember
whal it was like not 10 know it (Fischhoff, 1975; Fischhofl & Beyih, 1973). This is called
hindsight bias, or the "knew-it-all-along" effect, but as applicd 1o researchers it might be
called the "that's-just-what-I-would-have-predicted” efTeet. This lendency can profect
researchers againsl recognizing ways in which their theories are fawed,

9. Humans often ireat mere labels or slogans as though they were explanations.,
Ironically, this is so even when the label itsell implies that the phenomenon is unexplained-
.., UFO and ESP. Examples from psychology include "direet perception” (which
somMelimes seems Synomymons wilh . and "schema” (often credited with complex
powers that are described, bt nol explained).

10, In hypothesis testing, humans have a confirmation bias, in that they seck
information consmtent with their favored hypothesis. They tend not 1o look for data that
would disconlirm Uhe hypothesis, or 1o ask whether an aliernative hypothesis might also be
consistent with the data (Mynait, Doherty, & Twency, 1977; Wison & Johnson-Laird,
1972). The lailure to consider other hypotheses, even 1h1':u§h thg' are crucial, has been
called "pseudodiagnosticity” (Beyih-Marom & Fischholl, 1983; Doherty, Mynall, Teeney,
& Schiavo, 1979),

Surcly this is only # partial list, but for present purposcs it is more than enough,
Human reasaning is open o many sources of error. Twanl o emphasize just one point,
which will figure in the arguments Twill make: Knowing the "eorreet” answers,
Eychuluglm sometimes chuckle at the errors that subjects in reasoning experiments make.

ul we are a8 human as our subjects, and we would be foolish indeed 1o think that these
cognitive limitations don't also apply 1o us.

Why Formal Models?

Why should psychologists use formal models? One mighit think thal so
fundamenial a question would be posed and answered as a routine matler in the
iniroductory section of every clementary treatise on mathematical psychology. | have
searched widely for such an account, with little success. Bjork (1973) argucd that models
making quantitative predictions are more easily falsified; but that may be o mixed blessing,
for reasoms that | discuss later. Townsend and Kadlec (1989) say that pxychology neads
mathematics because its phenomena are so complex; but do aot say why complexity should
malter. One might argue that textbooks do not explain the uselulness of formal models
because il is obvious; but 1exthooks say many obvious things, and it is hard to sce why
something so central would be left out. 1 have heard psychologists deny that there are any



W‘E,m for formal models in Fﬂfchnlﬂg)' and claim that modclers are just slavishly
(and inappropriately) imitating physacs, so the answer must not be obvious. Lacking a
clear answer regarding psychology per se, let us sicp up a level in our conceplual hicrarchy
and ask why formal models work in any branch of scicnce.

There is a long history of thought about why mathematics is uscful in science as a
whale, The 1opic is surveyed rather thoroughly by Kline {1985).  The Pythagoreans
resolved the mystery by holding that number relationships are the substanee and form of
naturc-1hus, mathematics and nwture are essentinlly the same thing. Plato held that reality
had been designed aceording to mathematical principles, so that only mathematics, and not
our imperfect senses, can tell us what nalere is really like. In the Middle Agcs, people
didn’t think about the prahlem, because all necurrences in nature were constdered acts of
Guxl; but Renaissance thinkers held thal "God is a mathematician,” thus justifying
mathematics and science as quests to glorily God.  These accounts strike me as woefully
inadequate. Deep down, they just say there is a correspondence between mathematics and
nature because a correspondence exists. Whal appears 1o be a curment version of this theme
is something called the compulational viewpoint of physical processes.  “The basic notion
here is that the material world and the dynamic systems in it are computers |md{ the baws
of nature are algarithms that contral the development of the system in time, just like real
programs do for computers.” (Pagels, 1988, p. 45).  Claiming that the material world is a
compuler scems s circular an explanation as saying thal natere is number or God is a
mathematician,

Another approach has heen 1o view mathematics as 3 human invention, rather than
something having independent existence, Aristotle, in contrast 1o Plato, saw mathematics
s me n:tidcsm iptive. But this leaves unanswered the key guestion of why mathematics
works. Kant asseried that the mind imposes structure on nature--hence the same entity that
creates mathematics creates our perception of nature. This position seems to endow the
mind with uncanny coberence (and perhaps an overwheiming coafirmation bias). At best,
il fails 1o cxplain why theorics sud{:n are wrong. The dominant modern view seems o be
conventionalism. The idea here is thal mathematicians invent the mathematical models--of
which there are in principle an infinile number--and scientists just pick the models that
work best in particular domains.  Thus, the correspondence is explained by a kind of
Darwinian sclection. 1f a model fits the data we keep it, if not we either modify it or throw
it out and ry another. The problem with this account is that some mathematical models
keep working--not just on observations similar (o the ones they were selected to explain,
bul also on completely novel observations, which confirm long chains of deductions that
were never tested before. This is true in the physical seiences, if not in psychology, and i
is something that conventionalism seems unable w explain. On oceasion, the power of
mathemalics has been declared incxplicable--for example, by Ficree, Shridinger, and
Einstein (Kline, 1985). Maybe this is why mathematical psychology texthooks don'l
explain why mathematics works.

It may bc useful o characterize brielly what mathematics is. [ts essence lies in the
concept of proof. A mathematical proof begins with a sct of assumptions or axioms
represeated by sirings of discrete symbaols, and a set of iransformation rules that can be
apphicd to the symbol sirings, There is also a theorem or conclusion 10 be proved, also
expressed as a symbol sicing. The prool consists of a step-by-step demonstration that one
can F.c[ from the axioms 1o the thearem by applying the rules. The axioms of a proof must
be clearly stated and mutually consistent. According 1o Davis and Hersh (1981), "The
demands ol precision require that the meaning of each symbol or cach symbol string be
razor sharp and unambiguous. The symbo] ... is perceived in a way which distinguishes il
traom all other symbols ..., and the meaning ol the symbol is to he agreed ug:un.
universally™ (p. 124). Moreover, in a calculation (e.g., a peool) "a string of mathcmatical



symbols is processed according to a slandardized sct of agreements and converted into
another string of symbols. This ml? be done by a machine; if it is done by hand, it should
in principle be venfiablc by a machine” (p. 125). Although an actual published proof will
contain many gaps (where the intervening sieps are presumably obvious), the implicit
promise is that they can be filled in on demand, (These inuitive leaps are where errors are
muost ofien found.) The nature of a proof and its eentral role Jed Sup'ﬁcs (1984} 10
churacierize mathematics as a "radically empirical” science, because the evidence {1h¢_}|:mnfj
I8 "presented with a completeness not characleristic of any other area of science” (p. 78).

In short, mathematics has the earmarks of a system for imposing consistency on
reasoning. Indeed, Descartes saw in Euclid’s geometry a way 1o perfect buman reasoning:
An argument was to be broken down into steps so small that none of them could be
doubted.  Contrary 1o Kant, Suppes (1984) says, "The cerainty we [ind in mathematics
ariscs not from any intuitive or a priori consideration but simply from the discreteness and
casily exhibited charzcter of the evidence offered in support of a particular [cﬂﬁ' scal)
clim” (p. 79). In a computer simulation, the steps are those of the algorithm being
computcd, which can be examined in a print-oul of the program. We can be vintpally
ceriain that the program is being followed consistently because it is being run on a (reliablc)
machinc.

If the essence of mathematics is consisiency, as [ claim, how does that help explain
why mathematics works? At rool, the answer may be simply that reality is consistent, too.
This is, of course, a fundamental assumption of science. AL the deepest level, nature's
consistency presumably derives from there being only a fow types of elementary particles
and forees behind all phenomena in the universe. In higher or more mmglux domains like
psychology, consistency derives from similarities within the classes of objects siudied--
such as human brains. This view seems 10 make the power of mathematics explicable
while retaining the basic assumptions of conventionalism. Consistency implies an
underlying redundancy in causal mechanisms, even when surface manifesiations appear
quitc distincl. Thes a mathematical model that we have sclected and retained because it
mimics a range of phenomena in a particular domain has a chance of succeeding on
new phepnmiena in thal domain. Although the surface manifestations may appear new, the
underlying sources of redundancy have noi changed. A one-to-one mapping between
constructs of the model and entities in the world should not be required for this 1o work,
although presumably it would help,

Trying this argument out on colleagues, Thave been accused of contradieting
mysell, 1said that humans are inconsisient in their reasoning, and that nature is consisient,
bt also that humans are part of nature. How can humans be inconsistent, then? | think
this objection displays the problem of muliiplc meanings, which 1 listed earlier as reasoning
problem #5. Humans are consistent, in that human reasoning--like all nalural phenomena-
-shows regularities. These regularitics might be caplured in a formal model of human
reasoning: but a spccessiul model probably would not assume thal humans reason
logically--that i, in such a way as (o avoid coniradictions in the conlents of their heliels
The objection, 1 think, confuscs two meanings of "consktent™—oae applying 1o the lows
that govern thinking, and one to what the thoughts are about.

Formal Models and Sources of Ermor

Let us now consider how the characteristics of formal models relate o the problems
with human reasoning that were lisied earlier.

1. Working memory problems are largely alleviated by execuling sleps one at a
time. In mathematical modeling, intermed iate resulls can be recorded on notepads and



consulicd when needed; in computer simulation, they arc held in memory as long as
required.

2. Updating is likewise not a problem, particularly il a r s uscd, The
ability 10 keep track of the current values of large numbers of varahles that are continually
changing makes computers uscful in simulations of all kinds of complex systems--¢.g.,
wealher patierns, national coonomics, and military encounters.

4 Symbols are discrete, so even conceptually similar entities should notbe
confused, Diflerent versions of a conce E:l are distinguished by subscripts or superscripts,
in i mathematical model, and by stoting the information in different memory locations, na
l'.'ﬂ-ﬂ'lj:lllll’.l'.

4. Default expectations may play a significant role in inventing a mathematical
proof or in devising a program to accomplish some poal. But the mathematical method s
designed 1o catch any sieps in the proofl stself that are not cxplicitly supported by the axioms
and the rules. In a samulation model, if crecial information is missing or garbled, the
program usually will not run.

5. The requirement that symbols be clearly defined and separately identilied within
4 formal system helps 1o eliminate contradictions. The consequences of a contradiction
(&g, prools ol both P and not-1) can be umlmhigunusl:.r identificd in o mathematical
argument, and eireular references are Nagged as errors m a computer program,  Likewise,
the requirement that & prablem be formally stated can help to climinate framing elleels.
(The question of which is the "correet” formulation is empirical, however, as the
canventionalisl view of mathematics suggesis. )

6-7. Familiarity, emotioaality, and agreement or disagreement wilh the conclusions
should play no role in a formal deduction, {::r s¢. They can, however, powerfully
influence ane's starting assumptions and whal one irics to prove. (The mathematician,
Kurt Gidel, is said w have devised a prool of the existence of God [Pagels, 1988].)

Such factors can also influence whether one looks for a bug in a program or an ermor in a
mathematical argument. These are pood reasons for researchers 1o write their own versions
of programs and to check cach other's proofs,

8. With a formal moedel, hindsight can e rigorowsly checked. That is, if the theory
wirs explicitly stated (o begin with, then "postdictions” and predictions should be derivable
from the axioms in exactly the same way, Al theorems are implicit in the axioms,
regardless of whether they or the relevant data were realized first.

9, The requirement that one derive observaiions from deeper assumplions
immediately exposes labels and slogans as devoid of explanaloey power.  Formal madels
would be an mvaluable aid to thinking for this reason alone.

10. Where confirmation bias is concerned, the valve of formal models is not so
clear. On the positive side, a formal model can [orce one to recognize that one's
assumplions are inconsistent with an empirical oulcome. Moreover, experience with
models may help one realize that the connection between theoretical assumplions and
behavior are sometimes nonobvious, so thal aliernative explanations should be considered.
Simulation models, in particular, can help one (o develop new intuilions about the behavior
of systems having properties such as variability, parallelism, and nonlincarity. These are
certuinly propertics of the brain, snd they are inherenily hard 1o understand,  Models have
heuristic value, in that experience with several model systems can help one anticipate how
new combinations of assumptions are likely o inleract,



But in other respects medels can magnify the confirmation hias, Mode] building
can take an enarmaus amount of intellectual work, and so modelers have a greater stake
than other theorists in avoiding disconfirmation. The fear of rejecting one's mode]
manifests ilsell as "conservative focusing” (¢l Bruner, et al., 1962). Technically
speaking, the model is being exposed to possible Falsification, but rather than testing
predictions that scem unlikely on a prion prounds, the modeler chooses 1o only slightly
modify the experimental conditions under which the model has already shown suceess.
However well such a strategy may serve o further one's carcer, it seems inimical 1o
scientilic progress, If the purpose of research is to discard mistaken ideas and replace them
wilh better ones, then the sooner we reconize our errors, the better science we will do. 1T
theorists are reluctant to "go for the jugular”, they may need encouragement. Itis
sumetimes suggested that Psvchology needs a Nobel prize, but 1 think that would be a
mistake. [ propose an award "to the researcher who has most advanced psychological
seience by admitting error.” (It woulda't have to he given cvery vear.)

As 1his discussion of confirmation bias suggests, [ormal modeling has limitations,
as well as sirengihs. Explanatory models formalize the deduetive process, but that is only
aome crucial part of the scientific enterprise. Theorists must be clear and consistent in their
assumplions, but beyond that they can make any postulates they want. They can change
their pastulates if they don't like how they behave--indeed, the "hypothetico-deductive
method” dictales that this is how things are done. A theorists can cven reinterpret the way
the made] relates 10 the waorld, while lesving the model itself exactly the same. The
invention, interpretation, and evaluation of 8 model are matters completely outside the
[ormal system isclf. As such, they are subjeet to all the weaknesses af human reasoning
discussed carlier, as well as 1o its strengths,

Ewvaluating Models

The problem of model evaluation raises the question of which predictions are fair
game. A scientific madel of any complex domain must include some assumptions that are
arbitrary bul necessary 10 get the modeling exercise off the ground.  For example,
mathematical modelers ofien assume lincar or exponential functions, solely because they
arc mathcmatically tractable; and simulation modelers employ discrete time steps beciuse
that 1s how computers work. [n my MINERVA 2 model, stimulus items and memaory
traces are represented as random vectors of +1's, -1's, and s, Such assumptions are not
the focus of interest. They are adopted lor their Familiarity, tractability, and ease of
implementation, and because you have to be explicit abowt everyihing 1o have a system that
works, Now an important guestion is, if vou are going o "go %n:ur the jugular,”" do you
fecus on a prediction that crucially depends on these arbitrary assumptions, rather than on
whal the theorist considers the central ones?  Tsee tests of the list-strength effect, predicied
by my model and others, as important (Ratcliff, Clark & Shiffrin, 19907 but if someons
were 1o show empirically that stimuli cannat be random vectors, T wouldn't be especially
impressel,. The question of which predictions 1o wst can be difficult to answer, however,
hecause the line between focal and arbitrary assumptions is fuzzy, and it is often unclesr o
what extent different assumplions contribute o a particular prediction that & maodel makes.

The explicit recognition that psychological models contain assumptions that are
arhilrary has some implications that have been largely overlooked, One 1s that assessing 4
model's ability 1o account for precise, quantitative features of the data may often be difficult
to justify, 1 think quantitative data fitting has a legitimate place in the modeling emerprise--
particularly when the core assumptions of a model lead to definite guantitative predictions,
independently of the arbitrary ones, But data fitting sometimes appears to be carried ool
almost as a filual, or as an end initself. | have read statemenis like this: "Although the



poodness-of-fil statistic was signilicant (p<.01), we are gencrally quitc plcased with the
model's account of the data.” Such remarks could be taken as manifestations of
canlirmation bias, but [ think they are more an admission that we lack the kind of precision
that the data-fiting excreise imphicitly assumes.

) The observation that scientific models oversimplify their domains is especially true
in prychology. In virwally every experimental situation, there are signilicant souress of
variance that our models do not even allempt (o caplure in a realistic way, These can
include such ohviows factors as subjeet and item differences, as well as more subtle ones
such as subject-item interactions, practice and fatigue cifects, and the evolution of
stralegies during the experimental session. 11 these are significant sources of varlance in an
experiment, and one's model does not take them into account, then why would one expect
the precise, quantitative peedictions of the model 1o be correct? This may be an example of
the mappropriate imitation of physics. Physicists do not just assume for the purpose of
model building that 21l clectrons are tokens of the same type--they believe it. By contrast,
psychologists do not belicve that all subjects or all words arc identical, or thal stralcgics
never change. I think that when psychologists discount their models’ fatlures to it data,
they are implicitly acknowlcdging that such precision was not a realistic expectation in the
first place. A maodel could casily fail to fit data from an experiment cven though its core
assumpiions--those that arc the locus of interest--are correct. Peripheral assumptions,
made only 1o promote the model's tractability, may be o blame,

Here is an example of how an arbitrary assumption can mislead, Experienced
mtelers, as well as nonmaodelers dabbling in stochastic reasoning, routinely make what |
call the ypiformity assumption.  The pool of observations, combined over subjects and
ilems, is used o compute 4 parameter estimate--say, the probability of recall, P=.5. From
that point on, it is implicitly assumed that this value applies to each subject and cach item
individually, as though recall atiempis were as uniform as tosses of coins.  Put dilTerently,
il s assumed that the P's for difTerent subject-item combmations have a varfance of zero.
For many derivations this assumption docs no harm, and it makes the mathematics casy;
but supposc a theorist wants 1o derive the probability of a subject recalling a given item at
least once in two recall attempts, assuming that the sticmpts are independent. The theorist
computes P+P-P2 = .75, as the textbooks all diciate, The problem is than (his derivation
rclgmrcﬁ_ﬂ variance of zero. To see this, consider the most extreme case, in which half the
subjeet-item combinations (set A) have P=0 and half (set B) have P=1, so P still has the
mean .S, but the variance is .25, For set A, P+P-PZ = 0, and for set B, P+P-P2 = 1, s0
the "eorreet” prediction is .5 instead of .75, The model may be rejected because the
predicied value of .75 is wo high, even though all the postulates are correct except an
implict one=-the uniformity assumplion. The stark simplicity of this example may make the
error seem obvious, but it eraps up in the memory literature repeatedly in more disguised
forms. Rescarchers who would never argue explicitly that all subjects, items, or subject-
item combinations arc the same, sometimes go (o greal lengths 1o perform quantitative lests
that depend crucially on that being true.  Onee the assumptions of a model been laid
down, their iniual arbitrariness tends to be forgoticn--as though the credibility of the modcl
as a whole can be divorced from the credibility of its parts.

S0 a model can fail 10 fit data even if its core assumpilions are right. Are we on
firmer ground il we have a model that fis? Consider the asionishing success of the one-
element model (Bower, 1961), which lined numcrous statistics from a hand ful of paired-
assaciaies experiments with incredible precision, despite having only one {ree parameter--
the probability of all-or-none learning ol o pair on a given study trisl. The model made no
allowance for confusions among ilems, and it assumed--implausibly--that the learning rate
wits the same across all subjects and ilems and trials.  Moreover, a wide range of empirical



evidence shows that the model's basic assumption of all-or-nonc learning is wrong. The
onc-clement model does a good job of fivting simulation data from my Mincrva 2 model
(Himtzman, 1984), even though the assumptions of the models differ in several significant
ways, The lesson I draw from all this is that 2 mode] can Gt data with impressive precision
even though ils basic assumptions are wrong.

So far, | hawe that neither failure nor success in fiting psychological data
quantitatively is a reliable guide to the truth of & model's core assumptions,  This may
seem to undermine the whole modeling enterprise, but it simply reaflirms that evaluation is
a matter of human judgment. It cannol be reduced 0 a simpl:: algorithm, such as
compubng (or comparing) measures of goodness of fie In cvaluating a model, many
questions need 10 be asked: Which assumptions deserve 1o be taken seriously, and which
are arbitraary”? To what extent does a particular prediction depend, either quantitatively or
Qualitatively, on assumptions of these two types?  Are the core assumptions of the mode|
plausible? How o they fit with data and theory in related domains? Depending on the
particular situation, there are any number of questions that one should ask. Why should
this be so complicated? My answer is that the point of modeling is not really 1o [ doia,
although modelers often seem 1o assume that itis,  The point is o learn things. Ina
model, one has an artificial svstem throwgh which the interrelationships between
assumptons and behavior can be explored. By comparing the behavior of such systems
with the behavior of subjects, we can confirm, refine and revise our ideas of how mental
processes work,  Fitting data may aid in this activity or may even distract [rom it,
depending on the specitic context in which it is done,

If oversimplification can cause certain problems, the aliernative is worsc.
Computcr modelers, in panticular, can get carricd away with the power and flexibility of the
programmuing medium, as though the goal were 10 create in the computer a complete
duplicate of the human mind. Svch models quickly become so unwicldy that no one can
lell why they fail or suceeed. This completcly misses the point of consirucling a formal
model i the first place. 1T theories evolve by shedding their bad assumptions and keeping
of adding pood ones, then they must be simple enough 1o be undersiond. Piling ad hoe
assumption on op of ad hoe sssumplion can enly impede progress, by obscuring what the
core assumptions of the model imply.

Because science is a collective activily, evaluating models aklso requires good
communication, Modelers sometime complain that experimenters continue to draw
inferences aboul underlying mechanisms from supposed|y disgnostic patterns in their dala
lang afier it has been shown that such inferences are wrong (see Townsend, 1993).  Non-
modelers camplain about wading through technically difficult papers only to discover, afier
much effort, that the models were irrclevant 1o their interests, nave, ar absurd.  The
number of experimenters willing to read a Psycholopical Beview paper s inversely related
10 the number of equations it containg and 1o the strangeness of the symbols it employs,
And the number who will read an article in the Jopmal of Mathematical Peychology is
zero. Our discipline would benefit if experimentalists put more effort into keeping up with
developments in modeling, but modelers need 1 take the initiative, 1oo.  They could make
miore use of ﬂiﬂfﬂtmﬁ 10 et basic idens across, and put more ¢lfort ino explaining in
wiords whal their mathematieal expressions mean, I non-modelers were ealled on (o
review madeling papers (and modelers expected this), many communication difficultics
might be avoided.  Highly technical papers written for a mathematical amlicnce might he
supplemented with more readable summiaries of the central implications in mainsiream

e journals,  In the long run, our science will benelit if students get more experivnee
with formal models, as hoth producers and consumers; but progress in this direction has
been slow,



Concluding Remarks

Broadbent (1987) has complained that standards of precision in theory have aot
ket pace with those in cxperimental methodology, and that they may even have regressed:

Terms are vsed such as “wecess o the lexicon', ‘automatic processing', ‘central
execulive', 'resourees’; Tormal delinitions of such terms ane rare, and cven rarer are
statements of the rules supposed o be governing their interaction, As a resull one
Is left unelear ahout exactly what kinds of experimental data would invalidate such
theorics, and whether o not they are intended 1o apply Lo some new experimental
situalion. {p. 169)

Watkins (1990) recently struck a similar notc:

When a theory does attract criticism, the critic almost always turns oul 10 have
misundcrsiond, and the theory stands as originally proposcd. ... On the rare
occasion a criticism demands action, fine tuning will almost always sulfice. Thus,
the chances of a theory having 1o be sbandoned ar even appl‘ﬁiahg}' revised as a
conscquence of criticism are vanishingly small, and henee rescarchers can be
confident that their theorics will stay alive just as long as they continue 1o nourish
them, (p. 328)

Interestingly, while these two authors appear to deseribe the same symploms, their
disgnoses are quite different. Broadbent (1987) argues thal researchers should avoid the
ambiguity of verbal theorizing by implementing simple models on a personal computer,
But Watkins (1990)--noting that mos! theoeies are vague and that most theories invoke
mediating processes (such as ml.:mm‘{ traces --concludes that "the problem is
mediationism” (p. 328). Broadbent thinks we need 1o tishten up our explanstory theorics;
Waitkins thinks we need 10 get rid of them.

Obwiously, | side with Broadbent on this issoe, and not with Watkins, But let us
look at the examplcs that Broadbent and Watkins support their positions with, Broadbent
(1987) demonstrates that a simple computer simulation model can mimic several quite
diffcrent patierns of reaction tmes commonly obtained in visual-scarch and memaory-
search experimentis--patierns so different that they have been believed o rellect quite
different sores of underlying mechanisms, Watking (1990) gives his own "cue overload
principle” as an example of the sort of empirical laws that can be achieved withow
postulating mediating processes or states, (This principle says that the more items a cue
subsumes, the less effectively it retrieves any one of them.)  To show that mediating states
are not essential w seientific explanation in general, Watkins ciles Newton's law of
universal attraction.

Newton, however, used a formal model 1w provide a decp explanation of many
phenomena that, on the surface, appear quite diverse.  As Reichenbach (1951) comments:

The law of gravitation has the form of a rather simple mathematical equation.
Logically speaking, it constitutes an hypothesis, which is not aceessible (1o direct
verhcaton, 11 is established indirectly, since, as Newion showed, all the
observational results summarized in Kepler's laws can be derived from it And not
only Kepler's resulis; from Newton's law, Galileo’s law of falling bodies is
likewise derivable, and so are many other observational facts, such as the
phenomenan of the tides in their eorrelation o the positions of the moon,  (p. 101)



Later, Reichenbach direetly conlrasts the basic o pﬂruuch advocated by Watkins (ofien called
functionalism in psvchology) with Newton's method:

Whoever speaks of empirical scicnce should not forget that obscrvation and
experiment have boen capable of building up modern science only becmse they
wire combined with mathematical deduction. H-:wmn':lfhyﬁim differs greatly
from the picture of inductive scicnce that had been drafied two generations corlicr
by Francws Bacon, A mere collection of observational facts, such as presented in
Bacon's tables, would never have led o scientist to the discovery of the law of
attraction. Mathematical deduction in combination with obscrvation is the
instrumcni that accounis for the sucoess of modern science. (p. 103)

Certainly, Broadbent's modeling exercise fits Newton's hyputhetico-deductive method
better than Walkins's empirically induced cue-overload principle dos,

It is from this perspective--that we should seck deep explanations of the lawful
phenomena we observe--that [ am encouraged by the current crop of memory models
{e.g.. Eich, 1982; Gillund & Shiffrin, 1984; Hintzman, 1986; Hintzman, 1958;
Humphreys, ef al., 1989; Murdock, 1982; Murdock, 1989: Raaijmakers & Shiffrin, 1980).
Rather than focusing on specific tasks, in the style of the mathematical psychology of the
196015, such models as Murdock's TODAM sttempt to characterize the basic properties of
a memaory system that underlics perlormanee in many tasks.  Although existing efforts are
only approximations o the ideal, the general npproach can be characlerized as one of
postulating s kind of memorial deep-struciure whose principles are manifested in various
ways when the sysicm is placed in different lask environmenis. The focus of inlerest 5 on
understanding how many apparently diverse empirical phenomena can arise from a small
setof basic principles.  As for the cue-overlond principle, the current models all suggesi
that it may be just one of several implications of the fact that human memory is content-
addressable. Through the use of formal models, such conjectures can be given rigorous
test,
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