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DISSERTATION ABSTRACT

Dashiell Lawrence Pyle Vitullo

Doctor of Philosophy

Department of Physics

September 2016

Title: Propagation of Photons through Optical Fiber: Spin-Orbit Interaction and
Nonlinear Phase Modulation

We investigate two medium-facilitated interactions between properties of light

upon propagation through optical fiber. The first is interaction between the spin

and intrinsic orbital angular momentum in a linear optical medium. This interaction

gives rise to fine structure in the longitudinal momenta of fiber modes and manifests

in rotational beating effects. We probe those beating effects experimentally in cutback

experiments, where small segments are cut from the output of a fiber to probe the

evolution of both output polarization and spatial orientation, and find agreement

between theoretical predictions and measured behavior.

The second is nonlinear optical interaction due to cross- and self-phase

modulation between the complex-valued temporal amplitude profile of pump pulses

and the amplitude profiles of generated signal and idler pulses in optical fiber photon-

pair sources utilizing the four-wave mixing process named modulation instability. We

develop a model including the effects of these nonlinear phase modulations (NPM)

describing the time-domain wave function of the output biphoton in the low-gain

regime. Assuming Gaussian temporal amplitude profiles for the pump pulse, we

numerically simulate the structure of the biphoton wave function, in symmetric

and asymmetric group velocity matching configurations. Comparing the overlap of

iv



the joint temporal amplitudes with and without NPM indicates how good of an

approximation neglecting NPM is, and we investigate the effects of NPM on the

Schmidt modes. We find that effects of NPM are small on temporally separable

sources utilizing symmetric group velocity matching, but appreciably change the state

of temporally entangled sources with the same group velocity matching scheme. For

sources designed to produce entangled biphotons, our simulations suggest that NPM

increases the Schmidt number, which may increase entanglement resource availability

with utilization of a phase-sensitive detection scheme. We find that NPM effects

on temporally separable sources designed with asymmetric group velocity matching

produce non-negligible changes in the state structure. The purity is unaffected at

perfect asymmetric group velocity matching, but if the pump is detuned from the

correct wavelength, the purity degrades. The largest changes to the state due to

NPM occur in long fibers with long pulse durations and low repetition rates.
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CHAPTER I

INTRODUCTION

Propagation of light through a medium involves an intricate dance of electric

and magnetic fields telling charged matter which way to go, and the motion of that

matter makes a polarization response, altering the traveling light. Even in free space,

light couples to virtual electron-positron pairs, giving rise to a polarization response

from the vacuum. In this sense, the description of light energy going from one place

to another is inseparable from matter, which imposes limits on how much power a

light beam can contain before rapidly transforming that energy into a jet of particles

[1].

The most thorough, quantum mechanical description of light propagation

requires corpuscular packets of energy called photons, which are excitations of the

electromagnetic field that have a discreteness to them in that they are created

and annihilated in quantized units. Classical fields lack this corpuscularity.

Furthermore, quantum systems exhibit behaviors that appear “uniquely quantum”

and have motivated the development of quantum algorithms that efficiently perform

computations which cannot be performed efficiently with any known classical

algorithms [2, 3].

Light is an ideal messenger that: interacts weakly with other light, can transmit

largely unchanged through transparent materials, travels at the fastest possible speed

in free space, and then can be efficiently detected at its destination. Light traveling

through a transparent material is absorbed and re-emitted with a different phase, and

the superposition of the traveling light with the response light can be described by

a refractive index. In these cases, the dipole polarization response of the medium is

1



proportional to the electric field, and the phenomena described fall into the category

“linear optics” [4, 5].

Media can also facilitate light interacting with itself. In this case, the polarization

response is approximated by a power series and terms with nonlinear dependence on

the electric field make substantial contributions, so phenomena thus described fall into

the category of “nonlinear optics.” Nonlinear optical interactions can be thought of

as multi-photon processes in which the sum of the number of excitations annihilated

plus the number of excitations created is greater than two.

1.1 Spin-Orbit Interaction

Photons have four degrees of freedom (DoF): one spin and one for each spatial

dimension in 3D space. A paraxial beam of light has a momentum distribution

that does not deviate substantially from the beam axis, which we take to be the z-

axis. For photons in a paraxial beam, these degrees of freedom are: spin angular

momentum (SAM), frequency, radial transverse momentum, and orbital angular

momentum (OAM). In classical mechanics, orbital angular momentum is the cross

product of position and momentum ~L = ~r × ~p while spin angular momentum is

related to rotation of an object around its center of mass ~S = I~ω. In quantum

mechanics, spin is best understood as a quantized intrinsic property that satisfies the

commutation relations between operators
[
Ŝi, Ŝj

]
= i}εijkŜk,1 and is deeply related to

the bosonic or fermionic nature of a quantum particle [6]. Orbital angular momentum

for a quantum particle shares the same definition as given for classical mechanics with

position r̂ and momentum p̂ promoted to operators [7]. While it has long been known

that light carries angular momentum [8], Leslie Allen’s work in 1992 showing that

1Where εijk is the Levi-Civita symbol and there is implied summation over repeated indices.
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photons carry quantized orbital angular momentum (`} per photon, with integer `)

sparked substantial recent interest [9, 10].

While a light wave’s spin is always intrinsic (origin-independent), its orbital

angular momentum can be either extrinsic (EOAM), i.e. due to the path the

light follows, or intrinsic (IOAM), i.e. independent of the path the light takes

[11, 12]. Thus interaction between spin and orbital angular momentum can be divided

into spin-IOAM interaction and spin-EOAM interaction, and both can occur in the

same system. In 1972, Kapany and Burke pointed out that the so-called “hybrid”

eigenmodes (referred to as EH and HE modes) of a cylindrically symmetric optical

waveguide carry quantized orbital angular momentum and that the HE and EH

modes are differentiated by the sign of their splitting due to interaction between

spin and orbital angular momentum [13]. That is to say, HE modes have IOAM and

SAM z-component vectors pointing in the same direction, which is called a parallel

combination and results in a spin-IOAM splitting with a minus sign, and EH modes

have IOAM and SAM z-component vectors pointing in opposite directions, which is

called an anti-parallel combination and results in a spin-IOAM splitting with a plus

sign. For electrons, coupling between spin and IOAM is widely known to give rise to

atomic energy level splittings (Russell-Saunders coupling), and the same interaction

creates a fine structure for modal propagation constants in waveguides [13, 14]. In

the atomic case, the splitting can be thought of as due to an effective magnetic field

that electrons experience from their motion relative to a nucleus. In the waveguide

case, interaction between light’s SAM and IOAM is facilitated by the inhomogeneity

of the medium.

Tomita and Chiao explained the rotation of optical linear polarization they

observed in a single-mode fiber wrapped around a cylinder in a helical path as being
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due to a geometric (Berry’s) phase [15]. Dooghin et al. demonstrated that the same

effect can be explained with the spin-orbit interaction (SOI) investigated by Rytov

and Vladimirskii [16], sparking interest in the connection between SOI and Berry’s

phase [17–19]. An excellent review by Bliokh et al. presents geometric phases as a

unifying description underlying spin-orbit interactions [20], but does not include a

construction of spin-orbit splitting for fiber modes.

Experimental investigation of optical SOI has focused on coupling EOAM to

spin [15, 16, 21, 22]. The case of the highly multimode fiber investigated by Dooghin

et al. with a rotating speckle pattern was described with both a ray and wave

picture [23], and is analogous to the case of the large glass cylinder investigated

by Bliokh et al. [22] but excited with a broader angular distribution. Abdulkareem

et al. recently investigated the effects of EOAM coupling in highly multimode fiber

with light traveling in a helical path in a fiber traveling in a helical path [24]. Our

work utilizes few-mode fiber where the width of the waveguide is a small multiple

of the wavelength of the guided light, and a wave picture is preferable to the ray

trajectory approach used in larger waveguides. Investigation of the (IOAM=1)2 case

was undertaken in this regime by Butkovskaya et al. [25], though they only give data

for a single length. The IOAM=1 case for light has uniquely complicated dynamics

and is not representative for other IOAM values. A spectroscopic approach utilizing

fiber Bragg gratings to characterize fiber modes spectroscopically does not reveal

propagation dynamics, but is a complimentary method for measuring the magnitude

of SOI splittings [26].

2IOAM can be positive or negative, i.e. aligned with or against the direction of propagation, but
when we refer to specific values, e.g. IOAM=2, we are referring to the absolute value of the IOAM.
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1.2 Quantum Light Generation

Quantum measurements are nondeterministic. For a particular measurement

with multiple possible outcomes, even with perfect information about the initial

conditions, outcome cannot be predicted with certainty. A quantum source is

characterized by the statistics of the outcomes of measurements performed on the

system. Assuming a pure state, the system is described by its quantum state with ket

|ψ〉 (and dual bra 〈ψ|). A quantum measurement is described by a set of measurement

operators {Λm} indexed by possible outcomes m [2]. Let Λm = |m〉 〈m| be a projective

measurement. Probabilities of particular measurement outcomes are found using the

Born rule p(m) = 〈ψ|Λm|ψ〉 = | 〈m|ψ〉 |2. The interpretation of this mathematical

statement, which translates it into a statement of physics, is that the complex-valued

wave function, for example ψ(p) = 〈p|ψ〉 for the wave function in momentum (p)

space, gives amplitudes that describe the chances of measuring outcomes and the

relationships (phases) between those outcomes while the modulus square of the wave

function describes real-valued probabilities of particular measurement outcomes. The

sum of the probabilities of all possible outcomes must be one.

Experimental investigation of quantum mechanics requires sources that

repeatably prepare quantum particles in appropriate states. Nonlinear optical

interactions between a definite number of photons serve well in this capacity. The

input photons provide energy and momentum that are conserved (or not) depending

on the symmetry properties of the source system under translation in time (energy)

and space (momentum). In systems with perfect energy conservation and “good”

momentum conservation, i.e. the momentum kick to or from the nonlinear medium is

small compared to the momentum of the photons, there can be many ways to divvy

up the energy and momentum to satisfy conservation. That energy is conserved is
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set, but how energy is conserved, i.e. the particular distribution of energy amongst

the outputs from the process, is not set. This allows for creation of an entangled

state. To properly define entanglement, we need to generalize to a description of the

state in terms of the density operator ρ, which can describe mixed states, is Hermitian

ρ† = ρ, has trace Tr(ρ) = 1, and is positive semidefinite ρ ≥ 0. An entangled state

cannot be written as a tensor product of two subsystems, labeled with A and B

ρentangled 6=
∑
j

pjρ
A
j ⊗ ρBj . (1.1)

States that can be written as products are called separable states.

Design and control of the properties of the nonlinear medium and the input light

allows tailoring of the state describing the output. Nonlinear optics offers an avenue

for generating light with a tailored wave function.

The three-wave mixing process of spontaneous parametric down conversion has

served as the standard photon source process for decades [27]. It takes place in crystals

with a non-centrosymmetric unit cell, and divides the energy and momentum of one

pump photon into two product photons. Four-wave mixing sources tend to have lower

material nonlinearity, and thus require more power to attain the same rate of creation

events, but offer the advantages of more freedom in process design, e.g. frequency

translation devices with a broader range of translation-distance settings [28], and can

utilize convenient optical systems like optical fibers, which allow for long interaction

lengths in a compact space [29, 30]. However, put colloquially, “having more knobs

you can adjust means having more knobs you must control.” Undesired processes

that cannot be separated from the process of interest can cause complications in

four-wave mixing devices, as we discuss in Chapter VI.
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1.3 Questions Addressed

This dissertation addresses questions regarding how light changes while traveling

through an optical fiber. Encoding information in spatial patterns transmitted

through optical fibers is a frontier of fiber communications. Utilizing modes of higher

order than the fundamental modes introduces challenges of coupling between modes

intended for use and non-trivial propagation dynamics. These challenges apply to the

transmission of both classical and quantum information.

We investigate the propagation of optical-fiber spatial modes carrying intrinsic

orbital angular momentum, focusing on single-core fibers and targeting a single-input

mapped to single-output scheme, (in contrast to multiple-input and multiple-output

(MIMO) schemes). Cody Leary developed a theoretical description of expected

effects due to interaction between spin and intrinsic orbital angular momentum for

both photons in optical fiber and electrons traveling through analogous cylindrical

waveguides [14, 31, 32]. We carry out experimental tests of that theoretical framework

in optical fibers to address the following questions:

Does spin-orbit interaction alone determine the evolution of the shape and

polarization of light traveling through a fiber, or do other effects play an important

role? How well does a spin-orbit interaction model of evolution match observed

behavior? How well can we achieve excitation of a desired combination of modes

such that the same combination of modes (with phase shifts) exits the fiber output

without exciting undesired modes? We find that interaction between spin and intrinsic

orbital angular momentum well describes observed behavior in a short fiber (∼ 1 m)

following a straight path, even in the presence of weak undesired coupling between

modes.
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We also investigate the nonlinear optical effects of self-phase modulation and

cross-phase modulation on photon-pair sources utilizing birefringent optical fibers,

focusing on fibers designed for single spatial profile operation at the pump wavelength.

Working in the low-gain regime, it is a good approximation to consider the

vacuum (which does not lead to detection events) and single photon-pair creation

events only. In this regime, we develop a theoretical model that includes the

effects of the aforementioned nonlinear phase modulations on the output time-

domain photon-pair wave function. Assuming pump pulses with Gaussian temporal

distributions, we numerically investigate example systems designed to produce

photon-pair wave functions that are: separable through asymmetric group-velocity

matching, approximately separable through symmetric group-velocity matching, or

entangled with symmetric group-velocity matching.

We find that effects of self- and cross-phase modulation are small on sources

that are approximately separable due to symmetric group-velocity matching, but

appreciably change the wave function of temporally entangled sources under the

same group-velocity matching scheme. For sources designed to produce entangled

photon pairs, our simulations suggest that NPM increases the Schmidt number, which

may increase entanglement resource availability with utilization of a phase-sensitive

detection scheme. We find that NPM effects on temporally separable sources designed

with asymmetric group-velocity matching produce non-negligible changes in the state

structure. The purity is unaffected at perfect asymmetric group-velocity matching,

but if the pump is detuned from the correct wavelength, the purity degrades. The

largest changes to the wave function due to NPM occur in long fibers with long pulse

durations and low repetition rates.
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1.4 Outline

This dissertation is organized as follows: Chapter II reviews background theory

of spatial modes in free space, and both exact (vector) and approximate (scalar)

bound mode solutions in optical fibers. Perturbative corrections to the propagation

constants (phase velocities) of scalar modes, which account for interaction between

spin and orbital angular momentum, are discussed. Theoretical predictions of the

behavior expected for combinations of modes with different corrections suggest a

method for measuring spin-orbit corrections.

Chapter III details a “toy” simulation of our experiments that explores

basic examples to get a sense of the physics of spatial pattern and polarization

evolution with propagation. Excitation of undesired modes at the fiber input and

constant unitary defect-driven mode coupling are investigated numerically. Chapter

IV discusses the design and operation of equipment used in Chapter V, where

experimental procedures and results are discussed and compared to theory.

Chapter VI details simulation of the effects of nonlinear phase modulation on

photon-pair creation via the modulation instability process in optical fibers, and

discusses the effects on heralded state purity and Schmidt mode populations in the

output signal photon state. We consider the circumstances in which nonlinear phase

modulation degrades purity or effects the population and structure of signal Schmidt

modes.
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CHAPTER II

SPATIAL MODES

2.1 Spatial Modes in Free Space

Maxwell’s equations in free space combine to give the 3D electromagnetic wave

equations [33, 34]

(
∇2 − 1

c2

∂2

∂t2

)
~E(~r, t) = 0 (2.1)(

∇2 − 1

c2

∂2

∂t2

)
~H(~r, t) = 0 (2.2)

where ∇2 is the Laplacian, c is the speed of light in vacuum, ~r is position, t is

time, ~E(~r, t) is the electric field, and ~H(~r, t) is the magnetic field. We use complex-

valued field descriptions and linear optics from here through Chapter V, with the

understanding that the physical field is the real part of the complex-valued field.

The starting point for thinking about the propagation of light through free space

is a monochromatic plane wave

~E(~r, t) = A exp
[
i
(
~k · ~r − ωt

)]
ê (2.3)

where A is the amplitude, ~k is the propagation vector with magnitude k, ω is the

angular frequency, and ê is the polarization unit vector. Ideal plane waves have

infinite extent, and though they cannot be produced in a laboratory setting they are

the building blocks for all practically realizable beams through superposition.
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Solutions to the wave equation constitute sets of modes, which are self-consistent

field distributions that are orthonormal under the inner product

∫
d~r ~Ei(~r) · ~E∗j (~r) = δij (2.4)

where δij is a Kronecker delta and ∗ denotes complex conjugation. In free space,

modes may scale (change size) as they proceed through space, but do not change

shape. In media, symmetry and boundary conditions must be satisfied. In an optical

fiber with invariant structure along the axis of propagation, modes do not scale with

propagation through the fiber.

2.1.1 Gaussian Beams

Following Siegman, we separate the electric field parameterized in Cartesian

coordinates E(x, y, z) = u(x, y, z) exp(−ikz) into the quickly varying propagation

factor exp(−ikz) and the slowly varying envelope u(x, y, z) [35]. A Gaussian beam is

represented by

u(x, y, z) =
1

q̃(z)
exp

[
−ikx

2 + y2

2q̃(z)

]
(2.5)

where q̃ is the complex Gaussian beam parameter with information about the

curvature of the beam, R(z), and the width of the beam, w(z) as a function of

z. Specifically,

1

q̃(z)
=

1

R(z)
− i λ

πw2(z)
, (2.6)

where λ is the wavelength in the medium in which the beam is propagating. The

beam waist w0 is the minimum beam radius in the plane z = 0. Propagation of a
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beam through free space follows

q̃(z) = q̃0 + z = z + izR (2.7)

where zR = πw2
0/λ is the Rayleigh range and q̃0 = q̃(0) = izR. The Rayleigh range is

the distance in z away from the waist at z = 0 where the beam width increases from

w0 to
√

2w0, and approximately demarcates the near-field region from the far-field

region. The confocal parameter, b = 2zR is the longitudinal range outside of which

the beam diverges substantially.

The evolution along z of the beam’s width, wavefront radius of curvature, and

Gouy phase, G(z) are, respectively,

w(z) = w0

√
1 +

(
z

zR

)2

(2.8)

R(z) = z +
z2
R

z
(2.9)

G(z) = tan−1

(
z

zR

)
. (2.10)

The beam parameter is introduced for Gaussian beams, but also applies in describing

the behavior of higher-order Hermite-Gauss and Laguerre-Gauss modes.

2.1.2 Hermite-Gauss Modes

The Hermite-Gaussian (HG) transverse mode basis described with coordinates

(x,y,z) contains modes with Cartesian symmetry, i.e. they are even or odd under the

inversions x → −x and y → −y. One example system that creates HG modes is a

laser cavity containing two crossed wires, one oriented along the horizontal direction
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and the other oriented along the vertical direction. We use laser systems with crossed-

wire configurations for this purpose in our experiments (described in Chapter V).

HG spatial modes are described by [36]

CHG
n,m =

(
2

πn!m!

)1/2

2−(n+m)/2 (2.11)

HGn,m(x, y, z) =CHG
n,m

1

w(z)
Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp

[
−x

2 + y2

w2(z)

]
× exp

[
−i
(
k

r2

2R(z)
+ (n+m+ 1)G(z)

)]
(2.12)

where Hn and Hm are Hermite polynomials.

2.1.3 Laguerre-Gauss Modes

While light always has spin angular momentum (SAM), only some light beams

carry orbital angular momentum (OAM). Allen et al. showed that Laguerre-Gaussian

laser modes carry quantized units of `} per photon [9].

As explained by O’Neil et al. [11] (following up on the clear description by Berry

[37]), orbital angular momentum can be separated into extrinsic (EOAM), which is

dependent on the choice of rotation axis, and intrinsic (IOAM), which is independent

of axis choice. Consider a light beam with average momentum 〈~p〉 = (px, py, pz)

and choose a rotation axis oriented in the z-direction. The average orbital angular

momentum in the z direction is 〈Lz〉 = 〈(~r × ~p) · ẑ〉. Displacing the rotation axis

laterally by some distance ~r0 = (r0x, r0y) changes Lz by ∆Lz = r0xpy − r0ypx. If

the transverse momentum is zero, i.e. px = py = 0, then ∆Lz = 0 and the OAM is

intrinsic. Or, as O’Neil et al. write
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Any beam with a helical phase front apertured symmetrically about

the beam axis has zero transverse momentum and, consequently, an

orbital angular momentum of `} per photon, independent of the axis

of calculation. The orbital angular momentum of the light beam may

therefore be described as intrinsic.

Laguerre-Gaussian modes are eigenmodes of IOAM, and are described in

cylindrical coordinates (r, φ, z) by

CLG
n,m =

(
2

πn!m!

)1/2

min(n,m)! (2.13)

LGn,m(x, y, z) =CLG
n,m(1/w)L

|n−m|
min(n,m)(2r

2/w2) exp

[
− r2

w2(z)

]
× exp

[
−i
(
k
x2 + y2

2R(z)
+ (n+m+ 1)G(z) + (n−m)φ

)]
(2.14)

Relating the coordinate systems by the standard r =
√
x2 + y2 and φ =

tan−1(y/x), LG and HG modes are related by

b(n,m, k) =

√
(m+ n− k)!k!

2n+mn!m!

1

k!

dk

dtk
[(1− t)n(1 + t)m] |t=0 (2.15)

LGn,m(x, y, z) =
n+m∑
k=0

ikb(n,m, k) HGn+m−k,k(x, y, z) (2.16)

Thus, combinations of LG modes carrying IOAM can combine to make HG modes

with no IOAM and vice versa. Control of the phase between these modes is important

for these transformations, and Beijersbergen et al. designed an optical astigmatic

mode converter device that utilizes the Gouy phase and astigmatic focusing to

introduce the correct phase shifts to convert between HG and LG modes [36].
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2.2 Guided Modes In Optical Fiber

Optical fibers guide light from their inputs to their outputs. Diffraction is

counteracted by a confinement mechanism that reflects light rays and prevents them

from exiting the fiber core [38]. Another picture is excitation of bound modes that

propagate all the way to the fiber output, as they are ideally lossless and uncoupled

to radiation modes that “leak” light out of the fiber [39, 40]. For an object to act as

a waveguide, it must have an inhomogeneous refractive index structure.

The conceptually simplest design is a step-index fiber (see Fig. 2.1) with a core

that has radius a, and refractive index nco, which is greater than the refractive index

of the surrounding cladding ncl. A ray of light shone into the fiber such that it strikes

the interface between the core and cladding at an angle to the surface normal, α

that is greater than the critical angle, αc = sin−1(ncl/nco), will undergo total internal

reflection at that intersection, and all subsequent intersections with the interface,

provided the bend radius of the fiber path never brings α below αc [41]. Many real

fibers are coated with a jacket that protects the fiber and absorbs light lost from

the core, but the jacket is at a radius much greater than modal extent, so the fiber

cladding can be taken to have infinite cross-sectional extent in modal calculations.

When a is comparable to the wavelength of the light λ, it is preferable to use a modal

wave picture.

Fiber coupling is directional, in the sense that the angular distribution of light

radiated from each point on a source limits the achievable coupling efficiency. A

diffuse source, e.g. a lightbulb filament, emits light in all directions from each point

on the source. Lenses cannot improve the coupling efficiency of a diffuse source above

the coupling efficiency achieved by placing the source against the fiber input face

[41, Section 4-14]. A directional source, e.g. a laser beam with a narrow angular
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distribution at each point in its output plane, can be matched into the fiber mode

area with a lens system for efficient coupling. Lasers with direction of emission sharply

peaked about the beam axis are a natural choice of source for exciting optical fiber

modes.

We assume that fibers are invariant in the longitudinal direction, z. Fiber modes

experience a refractive index neff bounded by nco > neff > ncl. The phase velocity a

mode experiences is ν = c/neff where c is the speed of light in vacuum.

FIGURE 2.1. Geometry and index profile for a step-index fiber.

Bound fiber modes have characteristic wavenumber ncok = nco2π/λ, with

longitudinal component, β, and transverse component of length κ, illustrated in Fig.

2.2 [38]. The effective index can be expressed as neff = β/k and is also simply

related to a characteristic angle θc = cos−1(neff) = cos−1
(

β
ncok

)
, which is not to be

confused with the critical angle αc, (often denoted θc in other work). It is helpful to
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FIGURE 2.2. In-fiber wavevector decomposition into transverse and longitudinal
parts and their associated lengths.

define positive and dimensionless modal parameters

U =
√
a2(k2n2

co − β2) = ka
√
n2

co − n2
eff (2.17)

W =
√
a2(β2 − k2n2

cl) = ka
√
n2

eff − n2
cl. (2.18)

The modal parameters combine to make the waveguide parameter or normalized

frequency

V =
√
U2 +W 2 = ka

√
n2

co − n2
cl. (2.19)

For a particular wavelength and fiber parameters, V determines the number of bound

fiber modes. When V ≈ 2.405, or less, only the fundamental spatial distribution is

guided and will propagate long distances. Fibers in this regime are often referred

to as “single-mode fibers” even though the number of modes guided is wavelength

dependent, and there are two polarization modes for the fundamental. There is only

one spatial shape guided through a fiber in single-mode operation, so, in that sense,

the name is justified.1 Leaving the design wavelength range may result in multimode

operation. When V is above this cutoff, multiple spatial modes are bound (guided)

1It is also common for the term “mode” to be used loosely when “spatial profile” or “approximate
mode” is understood to be the intended meaning.
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over long wavelengths. Fibers referred to as “multimode” are often well above this

limit. Between single-mode and multimode operation, few-mode fibers will only guide

a small number of shapes. For V � 1, the number of bound waveguide modes can

be approximated by Nbm ≈ V 2/2 [41, Eqn. 36-41].

In the next sections, we explore exact (vector) and approximate (scalar) wave

equation solutions for optical fiber modes. Parameters that approximate a Thorlabs

SM2000 fiber excited by a HeNe laser, are shown in Table 2.1, and used to generate

solutions in both sections.

TABLE 2.1 Fiber parameters reverse engineered for a Thorlabs SM2000 fiber and
used to generate exact mode solutions Sec. 2.3 and scalar mode solutions in Sec. 2.4.

Description Property Value
Core Radius a 5.5µm
Wavelength λ 632.8 nm

Cladding Index ncl 1.4570121246
Core Index nco 1.4527438681

V-Parameter V 6.08597

To maximize the bandwidth available for fiber communication is to maximize the

number of independent communication channels. Frequency and polarization control

techniques are well developed for optical fibers. Wavelength division multiplexing

is widely deployed technology2 that, in part, owes its robust performance to linear

optics where the frequency at the output is the same as the frequency at the input.

The remaining two degrees of freedom for adding more independent channels are

spatial, so there is great interest in mode-division multiplexing [42–46]. However,

unavoidable perturbations to fiber index profiles drive energy coupling between fiber

modes, compromising the independence of the modes. This coupling is depend on

2That probably played a part in you, dear reader, obtaining this dissertation.
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how well the modes are separated in β [47]. In Sec. 2.4, we discuss what is commonly

referred to as the weak guidance approximation, but is better known as the low

contrast approximation (as the modes are still strongly guided), which neglects spin-

orbit interactions with the assumption that nco ≈ ncl. Since nco > neff > ncl and

neff = β/k, fiber systems well described in this approximation will have a small

range of β values over which to separate their modes. Thus, it is desirable for mode-

division multiplexing to utilize fiber systems with larger differences in nco − ncl for a

large available β space, and in this regime spin-orbit effects will be larger than in low

contrast systems.

2.3 Exact Modes

Light guided in a fiber with a z-invariant index profile can be represented as

superpositions of fields written in a separable form as modes

~E = ~e exp(iβz) (2.20)

~H = ~h exp(iβz) (2.21)

where the characteristic longitudinal (ẑ) propagation constant of a mode is β. Modes

satisfy the modal vector wave equations for the complex electric ( ~E) and magnetic

( ~H) fields [48]:

(
∇t

2 + k2n2 − β2
)
~e = − (∇t + iβẑ)~et · ∇t ln

[
n2
]

(2.22)(
∇2

t + k2n2 − β2
)
~h =

[
(∇t + iβẑ)× ~h

]
×∇t ln

[
n2
]

(2.23)

where ∇t is the transverse gradient and the t subscript generally indicates the

transverse components, k is the vacuum wavenumber, and n is the local refractive
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index. In cylindrical symmetry, the solutions within regions of uniform index take the

form of Bessel functions and modified Bessel functions of the first and second kind,

all indexed by an integer ν ≥ 0.

Imposing proper boundary conditions on the fields at the interface results in a

characteristic equation with a discrete set of solutions. For a cylindrically symmetric

single-step-index fiber the characteristic equation is

(νneff)2

(
V

UW

)4

=

(
n2

coJ
′
ν(U)

UJν(U)
+
n2

clK
′
ν(W )

WKν(W )

)(
J ′ν(U)

UJν(U)
+

K ′ν(W )

WKν(W )

)
(2.24)

where J is a Bessel J function (Bessel function of the first kind), K is a Bessel K

function (Bessel function of the second kind), and the prime indicates the derivative

of the function with respect to its argument (U or W ). Solving this transcendental

characteristic equation for eigenvalue U , (or equivalently, neff, W , or β; as they are

all related), can be accomplished numerically.

Exact mode solutions are organized into four classes, the transverse electric (TE),

transverse magnetic (TM), and two so-called “hybrid” modes referred to as HE and

EH modes. TE and TM modes are solutions for which the longitudinal component

of either the electric, Ez, or magnetic, Hz field is zero. There are no solutions with

both longitudinal components zero in fiber. TE and TM modes are solutions for

ν = 0. The EH and HE modes are solutions for ν 6= 0, in which case we can use

the definitions x = J ′ν(U)
UJν(U)

, C = (νneff)2 ( V
UW

)4
, b = K′ν(W )

WKν(W )
, and

n2
cl

n2
co

= 1 − 2∆ and

rewrite the characteristic equation as a second degree equation in x with real roots

x = −b(1−∆)±
√
b2∆2 + C/n2

co (2.25)
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The plus sign corresponds to EH modes while the minus sign corresponds to HE

modes. The EH modes have anti-parallel combinations of OAM and SAM, while the

HE modes have parallel combinations, as discussed further in section 2.6 [13].

The characteristic equations for the TE and TM modes with ν = 0 simplify to

(TE)
J1(U)

UJ0(U)
= − K1(W )

WK0(W )
(2.26)

(TM)
n2

coJ1(U)

UJ0(U)
= −n

2
clK1(W )

WK0(W )
, (2.27)

and the graphs of the dimensionless left-hand sides and right-hand sides for both

equations are shown in Fig. 2.3. Solutions to the characteristic equations are indexed

by Mν,m where M is the mode class designation M ∈ {TE,TM,HE,EH}, and m is

the radial mode index. The TE and TM mode solutions with the smallest U values

correspond to m = 1, the solutions with the next largest U correspond to m = 2, and

so on. Thus, Fig. 2.3 shows that there are two TE modes (TE0,1 and TE0,2) and two

TM modes, (TM0,1 and TM0,2), bound in this fiber configuration, while higher-order

radial modes are cut off. U values for all mode classes are given in Table 2.3.
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FIGURE 2.3. Graphical solutions to the characteristic equation with ν = 0. LHS =
left-hand side. RHS = right-hand side. Left: TE characteristic equation, 2.26. Right:
TM characteristic equation, 2.27. The vertical blue lines do not produce solutions
where they intersect with the gold curve.
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Expressions for the field components of a step-index fiber from [48] are given in

Table 2.2 with a1 = (F2 − 1)/2, a2 = (F2 + 1)/2, a3 = (F1 − 1)/2, a4 = (F1 + 1)/2,

a5 = (F1 − 1 + 2∆)/2, a6 = (F1 + 1 − 2∆)/2, F1 =
(
UW
V

)2
(
b1+(1−2∆)b2

ν

)
, F2 =(

V
UW

)2
(

ν
b1+b2

)
, b1 = J ′ν(U)

UJν(U)
, b2 = K′ν(W )

WKν(W )
, h0 =

√
ε0
µ0

, and ∆ = (1− n2
cl/n

2
co)/2.

TABLE 2.2 Exact field distributions for a single-step-index fiber with expressions
from [48]. F.C. abbreviates field component.

F. C. Core Cladding

Eρ −
(
a1Jν−1(Uρ/a)+a2Jν+1(Uρ/a)

Jν(U)

)
− U
W

(
a1Kν−1(Wρ/a)−a2Kν+1(Wρ/a)

Kν(W )

)
Eφ −

(
a1Jν−1(Uρ/a)−a2Jν+1(Uρ/a)

Jν(U)

)
− U
W

(
a1Kν−1(Wρ/a)+a2Kν+1(Wρ/a)

Kν(W )

)
Ez −i U

βa
Jν(Uρ/a)
Jν(U)

−i U
βa

Kν(Wρ/a)
Kν(W )

Hr h0
n2

co

neff

(
a3Jν−1(Uρ/a)−a4Jν+1(Uρ/a)

Jν(U)

)
h0

n2
co

neff

U
W

(
a5Kν−1(Wρ/a)+a6Kν+1(Wρ/a)

Kν(W )

)
Hφ −h0

n2
co

neff

(
a3Jν−1(Uρ/a)+a4Jν+1(Uρ/a)

Jν(U)

)
−h0

n2
co

neff

U
W

(
a5Kν−1(Wρ/a)−a6Kν+1(Wρ/a)

Kν(W )

)
Hz −ih0

UF2

ka
Jν(Uρ/a)
Jν(U)

−ih0
UF2

ka
Kν(Wρ/a)
Kν(W )

FIGURE 2.4. Electric field distributions for TE0,1 and TM0,1 modes.

Visualizations of the vector structure of TE0,1 and TM0,1 are shown in Fig. 2.4.

For the EH and HE modes, solutions to the characteristic equation are found by

iterating the graphical solution through values of ν. Unlike for the TE and TM

modes, there are two parities of each EH and HE mode, denoted with superscripts e
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TABLE 2.3 U values for the exact modes

Mode U Mode U
HE1,1 2.06018 HE1,2 4.65069
TE0,1 3.26685 TE0,2 5.77635
TM0,1 3.26889 TE0,2 5.77729
HE2,1 3.26830 HE2,2 5.77743
EH1,1 4.35442
HE3,1 4.35555

for even or o for odd, which refer to parity under inversion about the horizontal- or

x-axis [48, p. 67]. The modes visualized in this section are all even parity, and the

odd parity mode distributions are the even modes rotated counterclockwise by 90◦.

The exact vector modes have locally linear polarization and a whole-beam3 degree of

polarization of zero due to the spatial inhomogeneity [41].

Graphical solutions to the hybrid field characteristic equations4 for ν = 1 are

shown in Fig. 2.5. The HE1,1 mode is the fundamental mode, and it and the next radial

mode, HE1,2, are shown in Fig. 2.6. The polarization in the outer lobe of the HE1,2

points opposite to the inner lobe due to a π phase difference between the lobes. The

EH1,1 mode and HE3,1 modes are both in the IOAM= 2 group, and have complicated

polarization structure, as shown in Fig. 2.7. However, their superposition creates a

uniformly polarized profile referred to as a “clover” mode, due to its resemblance to

a four-leaf clover. These mode combinations will be discussed more in section 2.4.

The ∇t ln [n2] term in Eqn. 2.22 prevents analytical solutions from being

tractable in all but the simplest geometries, such as the step-index fiber case detailed

3“Whole-beam” polarization parameters are found by integration over the whole transverse extent
of the beam in calculating the normalized Stokes parameters, which are then used to calculate the
degree of polarization. For more information, see Sec. 4.2.

4Eqns. 2.25 with both sides multiplied by U to simplify curve behavior.
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FIGURE 2.5. Graphical solutions to the characteristic equation for ν = 1. LHS
= left-hand side. RHS = right-hand side. Left: HE characteristic equation. The
vertical blue lines do not represent solutions where they intersect with the gold curve.
Right: EH Characteristic equation. The curves do not intersect below U = 4, and
the lowest-order solution occurs at U = 4.35442.

FIGURE 2.6. Electric fields of the HE1,1 and HE1,2 modes.

above. Neglecting this term simplifies the field distributions and generates uniformly

polarized approximate solutions that are easier to work with and can be perturbatively

corrected to well-approximate exact mode behavior.

2.4 Scalar Modes

In the regime where nco ≈ ncl, the gradient ∇t ln [n2] ≈ 0 and the wave equations

simplify substantially. This “weakly guiding” approximation, as it is widely referred

to in the literature, make for electric and magnetic field distributions with negligible
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FIGURE 2.7. The HE3,1 (left) and EH1,1 (middle) mode electric field distributions,
which combine to make a clover profile (right). The fringes along the anti-diagonal
of the clover combination are numerical artifacts.

z-components, i.e. quasi-TEM behavior where ~E ≈ ~Et and ~H = ~Ht [48, p. 115].

As Snyder and Love note in Optical Waveguide Theory, one of the standard texts

describing optical fibers, the name can be misleading in that light is still strongly

confined and can be guided long distances [41, p. 281]. It might be better thought

of as the “quasi-homogeneous,” or “low-contrast” approximation. Just as in Fresnel

reflection at a planar interface [48],

r⊥ =
cos(θi)− (n2/n1) cos(θt)

cos(θi) + (n2/n1) cos(θt)
(2.28)

r‖ =
cos(θi)− (n1/n2) cos(θt)

cos(θi) + (n1/n2) cos(θt)
, (2.29)

where θi is the angle of incidence and θt is the angle of refraction, similar refractive

indices makes for reflection behavior that is similar for both polarizations because

n2/n1 ≈ n1/n2. Neglecting the ∇t ln [n2] term in the vector wave equation ignores

the effects of polarization on reflection, and to neglect the effect of polarization at the

interface on the spatial distribution of the fields is to neglect spin-orbit interaction.
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The simplified scalar wave equation is

(
∇2

t + k2n2 − β̃2
)
F`,m(ρ, φ) = 0, (2.30)

where β̃ is the approximate propagation constant, n is the local refractive index, `

is the OAM quantum number, m is the radial quantum number, and F`,m(ρ, φ) is a

scalar field representing the magnitude of the electric field. The common solutions

to the scalar wave equation assume a linear-polarization basis (êj where j ∈ {x, y}),

and compose the so-called linearly polarized (LP) modes with

~Et(ρ, φ) = F`,m(ρ, φ)êj (2.31)

~Ht =

√
ε0
µ0

neff

(
ẑ × ~Et

)
, (2.32)

where ε0 and µ0 are, respectively, the permittivity and permeability of free

space, F`,m(ρ, φ) = ψ|`|,m(ρ)f(`φ) is the transverse spatial distribution with radial

distribution ψ|`|,m(ρ), and f(x) = cos(x) for even parity modes and f(x) = sin(x)

for odd parity modes. LP modes are have degenerate β̃ for both parities and

polarizations, which makes the fundamental doubly degenerate in polarization (there

is only one spatial parity for the fundamental), and all higher-order modes fourfold

degenerate.

Instead of using the LP basis, we are free to choose an OAM and SAM modal

eigenbasis that is simply related to the LP modes through linear combinations, and

we call this the circularly polarized (CP) basis with polarizations êσ = êx+iσêy where

σ = ±1 is the helicity or handedness (+ = left-circular, - = right-circular) of the SAM,

and F`,m(ρ, φ) = ψ|`|,m(ρ)[cos(`φ)+iµ sin(`φ)] = ψ|`|,m(ρ)ei`φ has characteristic orbital
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angular momentum phase structure with integer-valued OAM quantum number, `,

and sign (handedness) µ = `/|`|.

Instead of parity, CP modes are degenerate in µ. LP and CP modes are

respectively denoted LP|`|,m and CP`,m where m is the radial quantum number, as

with the exact mode solutions, but the first index is the IOAM quantum number

associated with the mode. LP modes, as written here, are superpositions of IOAM

eigenmodes that carry no net OAM, but |`| denotes the number of nodal lines in the

field profile. The β̃ values that solve 2.30 for LP and CP modes are identical. Scalar

modes have a polarization separable from the spatial distribution, and π phase shifts

between adjacent radial or azimuthal lobes cause field vectors to point in opposite

directions in different lobes at a particular instant in time.

For a single-step-index fiber or radius a, imposing the continuity of ψ|`|,m at the

interface leads to the scalar characteristic equation

U
J|`|+1(U)

J|`|(U)
= W

K|`|+1(W )

K|`|(W )
, (2.33)

where J represents Bessel functions of the first kind, K represents Bessel functions

of the second kind, and the radial distribution is

ψ|`|,m(ρ) =


J|`|(Uρ/a)

J|`|(U)
ρ ≤ a (core)

K|`|(Wρ/a)

K|`|(W )
ρ > a (cladding)

(2.34)

Observant readers will note that the m index is not explicitly present on the right-

hand side, but is hidden in the particular U and W values for a mode. So, the full
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description for the electric field of a CP mode is

⇀

CP`,m(ρ, φ, z) = ψ|`|,m(ρ)ei`φei(β̃z−ωt)êσ. (2.35)

Graphical solutions to the scalar characteristic equation and corresponding

modal intensity distributions for CP modes are shown in Fig. 2.8 with U value

solutions presented in Table 2.4.
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FIGURE 2.8. Scalar mode characteristic equations and transverse intensity
|ψ|`|,m(ρ, φ)|2. Columns have consistent OAM value, `.

In the weakly guiding regime, the exact vector modes HE|`|+1,m and EH|`|−1,m

tend towards the same β, and linear combinations of them create LP`,m “modes”
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TABLE 2.4 Scalar mode U values.

Mode U Mode U
CP0,1 2.05932 CP0,2 4.64940
CP1,1 3.26685 CP1,2 5.77635
CP2,1 4.35355

and vice versa. The mathematics of this are explored in more depth in Appendix

A. The physics underlying this is the spin-IOAM interaction giving rise to the fine

structure of the modal β space. The index ν is the z-component of the total angular

momentum Ĵz = L̂z + Ŝz, with hats indicating operators. The modes are quantized

such that the eigenvalues of L̂z are integers and the eigenvalues of Ŝz are σ = ±1

for the photon. These eigenvalues have the same sign for parallel combinations in

HE|`|+1,m modes, and opposite signs for anti-parallel combinations in EHν−1,m modes.

The TE and TM modes correspond to total angular momentum zero combinations.

The IOAM=1 mode family of CP1,m scalar approximate modes (corresponding to

exact modes TEm,TMm, and HE2,m), behaves uniquely. All other families with

IOAM maintain the degeneracy within parallel and anti-parallel combination pairs,

which correspond to the two degenerate parities of EH and HE modes in section

2.3. This degeneracy is broken in the IOAM=1 case for photons only. It is not

broken in the analogous electron waveguide case, where the half-integer electron spin

cannot combine with IOAM to produce total angular momentum (TAM) zero [14].

This suggests the existence of an interpretation where the photon modes “avoid”

TAM=0 combinations, as solutions to Maxwell’s equations cannot have TAM=0.

This behavior gives rise to three possible beat frequencies when exciting IOAM=1

combinations, so we avoid this added complexity by investigating IOAM=2 modes.
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As with Russell-Saunders coupling in atoms, the scalar modes can be

perturbatively corrected to a β = β̃ + δβ value that approximates the exact

propagation constants.

2.5 Perturbative Correction

The propagation constants for scalar modes can be perturbatively corrected to

well approximate the exact ones [14, 41, 48]. These corrections are widely known

in fiber theory as the “polarization corrections,” as they correct for the influence of

polarization ignored by neglecting the ∇t ln [n2] term in the vector wave equation.

For clarity, we differentiate the vector-valued approximate transverse electric field,

ẽt = F`,m(ρ, φ)ê, from the solutions to the scalar wave equation from the transverse

part of the electric field solution to the vector wave equation, ~Et. This approach

is based off of taking the difference between the scalar wave 2.30 and vector wave

2.22 equations, assuming that the transverse field distributions are nearly the same

ẽt ≈ ~Et, and finding the difference in propagation constants squared,

δ
[
β2
]

= β2 − β̃2 = −
∫
A

(∇t · ẽt) (ẽt · ∇t ln[n2]) dA∫
A
|ẽt|2 dA

, (2.36)

where A is the entire cross-sectional fiber area, and the correction integral is being

taken over the scalar ẽt. It is not necessary to know ~Et to calculate the perturbation

(as is standard for perturbation theory). The fully corrected propagation constant is

β =

√
β̃2 + δβ2. (2.37)

However, a good approximation that makes the mode combination mathematics more

straightforward [31, Eqn. 5.80] is to assume a linear correction β = β̃+δβ, substitute
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into the difference, and note β2 − β̃2 ≈ 2β̃δβ after dropping small term δβ2, so

δβ =
δ [β2]

2β̃
. (2.38)

The scalar product in the correction integral separates into two terms

∇t · ẽt =
1

ρ

(
d(ρ ẽr)

dρ
+

d(ẽφ)

dφ

)
, (2.39)

which yield two correction integrals. The corrections (using the linear correction

approach), for the radial and azimuthal terms respectively, are

δβ1 =
−1

2β̃

[∫ ∞
0

ψ|`|,m(ρ)

(
dψ|`|,m(ρ)

dρ

)(
1

n2(ρ)

dn2(ρ)

dρ

)
ρ dρ

]/∫ ∞
0

ψ2
|`|,mρ dρ

(2.40)

δβ2 =
−1

2β̃

[
σ`

∫ ∞
0

ψ2
|`|,m(ρ)

(
1

n2(ρ)

dn2(ρ)

dρ

)
dρ

]/∫ ∞
0

ψ2
|`|,mρ dρ. (2.41)

In the remainder of this section, we consider combinations of modes with the same

|`|. In general, δβ = δβ1 + δβ2, but δβ1 corrections are the same for modes with the

same |`|, and we are interested in mode splitting, rather than mere shifting. Thus, we

neglect δβ1 and the separable overall phase factor it contributes by taking δβ = δβ2,

in the following analysis. The linearized correction to the propagation constant takes

F`,m(ρ, φ)e−iωteiβ̃z êσ → F`,m(ρ, φ)e−iωtei(β̃−σµ|δβ|)z êσ (2.42)

where σµ = +1 corresponds to parallel modes where the z-components of IOAM and

SAM are co-oriented, and the spin-orbit propagation constant correction is negative,

while σµ = −1 correspond to anti-parallel modes, where the z-components of IOAM
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and SAM are oriented in opposite directions and the propagation constant correction

is positive. Table 2.5 compares exact and scalar mode U values and shows corrections

for the |`| = 2 modes.

TABLE 2.5 Comparison of exact, scalar, and corrected modal constants. Corrected
U values for |`| = 2 modes are found by using U = a

√
k2n2

co − β2 on the linear

correction to β from Eq. 2.38 to get Ũ , and the full correction of Eq. 2.37 to get Ū .

Scalar Designation Scalar U Exact Designation Exact U Ũ Ū
CP0,1 2.05932 HE1,1 2.06018
CP1,1 3.26685 TE0,1 3.26685
CP1,1 3.26685 TM0,1 3.26889
CP1,1 3.26685 HE2,1 3.26830
CP2,1 4.35355 EH1,1 4.35442 4.35242 4.35299
CP2,1 4.35355 HE3,1 4.35555 4.35468 4.35412
CP0,2 4.64940 HE1,2 4.65069
CP1,2 5.77635 TE0,2 5.77635
CP1,2 5.77635 TE0,2 5.77729
CP1,2 5.77635 HE2,2 5.77743

2.6 Measuring Spin-IOAM Interaction

The spin-orbit interaction manifests as a splitting of parallel and anti-parallel

modes. In abstract terms, combining one parallel and one anti-parallel mode produces

light with a property that rotates with propagation along the fiber, as the difference in

phase velocities makes for a beating effect. There are two ways to combine parallel and

anti-parallel modes, spin-controlled orbital rotation and orbit-controlled spin rotation.

In each case, the property that we call the “control property” is common to both

modes and its sign controls the direction of rotation while the property associated

with the other angular momentum has opposite sign for the parallel and anti-parallel

modes, and the combination of the two signs creates a linear feature that rotates with
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propagation. Description of these effects in terms of the exact fiber modes is given

in Appendix A, while combinations in terms of the uniformly polarized CP modes,

which give the same results more simply, are given here.

In spin-controlled orbital rotation, combinations of CP modes with the same

polarization, but opposite IOAM values produce light with constant circular

polarization and a clover spatial profile with two nodal lines that rotate with

propagation as

F+|`|,mêσ + F−|`|,mêσ = ψ|`|,m(ρ)
(
e(i(|`|φ−σ |δβ| z) + e−i(|`|φ−σ |δβ| z)

)
êσ (2.43)

= 2ψ|`|,m(ρ) cos

[
|`|
(
φ− σ

∣∣∣∣δβ`
∣∣∣∣ z)] êσ. (2.44)

The spatial distribution rotates in the direction set by σ, by an angle ξ = σ
∣∣ δβ
`

∣∣ z.

Orbit-controlled spin rotation is the other combination of parallel and anti-

parallel modes. Representing the polarization with a Jones vector in a Cartesian

basis, êσ = [1, σi]T ,

Fµ|`|,mê+ + Fµ|`|,mê− = ψ|`|,m(ρ)ei ` φ
(
e−i µ|δβ| z ê+ + ei µ|δβ| z ê−

)
(2.45)

= 2ψ|`|,m(ρ)ei ` φ

 cos(|δβ|z)

µ sin(|δβ|z)

 , (2.46)

where the spatial distribution is unchanged and the linear polarization rotates with

z, in a direction controlled by the OAM handedness µ, by an angle φ̃ = µ|δβ|z.

The orientation of the linear polarization corresponds to the angle φ̃ on the Poincaré

sphere5, as described in section 4.2.

5A note on notation: to reconcile conflicting conventions, in this section, we refer to the azimuthal
angle in cylindrical coordinates as φ and use φ̃ to refer to the Poincaré sphere coordinate. However,
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Thus, the rotation vs. distance for the spatial rotation has slope dξ
dz
≡ Rs = σ

∣∣ δβ
`

∣∣,
and for the polarization rotation is dφ

dz
≡ Rp = σ |δβ|. The rotation rates for the two

effects differ by a factor of |`|. If the fiber contains optical activity or other structure

that shifts modal propagation constants based on IOAM or SAM value only, then the

result is a modification of the observed splitting by a constant shift ±δβ → ±δβ+B,

where B has the same sign for both values of the control property (signs of δβ).

This can be shown by adding a phase factor of the form exp(iσBσ) or exp(iµBµ) to

shift each mode, and only effects observed rotation when the added phase factors are

not factorable. Thus, cutback experiments also measure birefringence in IOAM and

SAM. Spin-orbit interaction does not occur in homogeneous media, such as free space,

so excitation of the appropriate modes in a straight fiber iteratively cut to shorter

lengths (L) is expected give straight lines for φ̃ vs. L and ξ vs. L with slopes Rp and

Rs that reveal δβ and birefringence in SAM or IOAM.

in all other chapters, φ refers to the Poincaré sphere coordinate, and spatial orientations are denoted
by ξ. In all cases, it should be clear from context which quantity is intended.
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CHAPTER III

TOY SIMULATION

A “toy” simulation uses a simplified model of the system to explore the

underlying physics. The goal to get a sense of the elementary mechanisms absent

obfuscatory complications. Combinations of two eigenmodes for spin-controlled

orbital rotation and orbit-controlled spin rotation have simple behaviors, but

evolution of combinations of many modes quickly becomes unwieldy. To investigate

these combinations, we made a simulation in Mathematica that combines spatial

modes, including phase and polarization information.

The most developed iteration of the code uses LP modes for an arbitrary step-

index fiber with parameters described in Table 3.1. The excitation is assumed to be

monochromatic.

TABLE 3.1 Fiber parameters used in the toy model simulation.

Description Property Value
Core Radius a 5.5µm
Wavelength λ 800 nm

Cladding Index ncl 1.455
Core Index nco 1.465

V-Parameter V 7.381

A combination of two fiber modes indexed by 1 and 2 takes the form

⇀

F 1 exp
[
i(β̃`1,m1 − σ1µ1δβ`1,m1)z

]
+

⇀

F 2 exp
[
i(β̃`2,m2 − σ2µ2δβ`2,m2)z

]
(3.1)

where
⇀

F i is the transverse spatial distribution, including polarization information,

for the mode indexed by i. For CP modes (discussed in Chapter 2.4), the polarization
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is spatially uniform and can be separated into
⇀

F i = F`,mêi. The distance over which

the phase difference reaches 2π is called the beatlength

LB =
2π

β1 − β2

=
λ

n
(1)
eff − n

(2)
eff

. (3.2)

Beating effects for combinations of modes with common ` and m values are

independent of the unperturbed propagation constant, β̃`,m, which factors out as

an overall phase factor, leaving a beatlength determined by spin-IOAM interaction,

LB = π/δβ. Combinations of modes with different ` and m values exhibit much faster

beating effects dominated by the difference between the unperturbed propagation

constants β̃`1,m1 − β̃`2,m2 , which make for beatlengths that are too small to resolve

experimentally
[
2π/(β̃0,1 − β̃2,1) = 47µm and 2π/(β̃1,1 − β̃2,1) = 89µm

]
.

To model the beating behavior in a way that approximates what we see in

our experiments using a disperson-tailored fiber with a complicated index profile,

I used the spatial distributions from solving the scalar characteristic equation, but

used a longitudinal propagation constant β0 from the best simulation effective indices

provided by Patrick Gregg of the Ramachandran group at Boston University. Using

m = 1 for all modes of interest, β̃`,1 = n
(`)
eff k and the effective indices at λ = 800 nm

used in the simulation are given in Table 3.2.

TABLE 3.2 Unperturbed effective indices used in simulation.

n
(0)
eff 1.475

n
(1)
eff 1.467

n
(2)
eff 1.458

Input vectorial modes, including overall amplitude and phase, are combined

at multiple lengths to simulate the evolution of the polarization properties, i.e.
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normalized Stokes Q, U , and V parameters, as well as (θ, φ, DOP), and both

the spatial amplitude distribution and an interferogram from its combination with a

horizontally polarized reference beam,

CP0,1 = ψ0,1(ρ) exp[ikyy]

 1

0

 , (3.3)

with tilt ky = 5× 106 m−1.

In runs reported here, angles θ and φ are in Poincaré degrees (recall 2 Poincaré

degrees = 1 degree in real space for φ), ξ is in real space degrees, and z is in m. In this

chapter, modes are abbreviated CPσ
`,m where σ ∈ {+,−} for left- and right-handed

circular polarization, so both the modal SAM and IOAM are readily apparent.

3.1 Multimode Propagation

This investigation uses δβ = 61.08652 rad/m, set to match the ∼ 35◦/cm

rotation rate from the crossed-wire Ti:sapphire experiment detailed in section 5.5, and

corresponds to a beatlength of 5.14286 cm. The input modal excitation is summarized

in Table 3.3, for convenience.

TABLE 3.3 Index of multimode excitation (MM) runs with input modal excitation.

Run Designation Input Excitation
RunMM1 CP+

+2,1 + CP−+2,1

RunMM2 CP+
+2,1 + CP+

−2,1

RunMM3 CP+
+2,1 + 0.8 CP−+2,1

RunMM4 (CP+
+2,1 + CP−+2,1) + 0.5

(
CP+
−2,1 + CP−−2,1

)
RunMM5 (CP+

+2,1 + 0.95 CP−+2,1) + 0.3
(
CP+
−2,1 + 1.1 CP−−2,1

)
RunMM6 (CP+

+2,1 + CP−+2,1) + 0.5
(
CP+

0,1 + CP−0,1
)

RunMM7 CP+
+2,1 + CP−+2,1) + 0.3

(
CP+

0,1 + CP−0,1
)

RunMM8 (CP+
+2,1 + CP−+2,1) + 0.5

(
CP+

1,1 + CP−1,1
)
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RunMM1: Use input CP+
+2,1+CP−+2,1 to test orbit-controlled spin rotation, with

polarization properties shown in Fig. 3.1 and intensity profiles and interferograms

shown in Fig. 3.2. The simple analytical description of Eq. 2.46 is correctly

reproduced, which is a check that the code is working properly. The interferogram

reference beam has constant horizontal linear polarization, so the interference

visibility changes as φ changes, as expected.
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FIGURE 3.1. RunMM1: Polarization information. φ rotates at +70 Poincaré
degrees/cm.

RunMM2: Use input CP+
+2,1 + CP+

−2,1 to test spin-controlled orbital rotation.

Polarization and spatial mode information is shown in Fig. 3.3, and spatial profiles

and interferograms are shown in Fig. 3.4.
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0

1.28571

2.57143

FIGURE 3.2. RunMM1: Intensities and interferograms at various distances. The
interference visibility decreases because the linear polarization of the output fiber
mode combination φ changes as z changes, while the reference has constant horizontal
linear polarization. The spatial profile does not change with propagation.
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FIGURE 3.3. RunMM2: Propagation of input horizontally polarized ` = +2 profile.
Polarization properties, (φ, θ, DOP), as well as nodal line orientation ξ for RunMM2.
The polarization is invariant while ξ rotates at a rate of −17.5◦/cm.
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FIGURE 3.4. RunMM2: Intensities and interferograms rotating at a rate of
−17.5◦/cm at three fiber lengths.
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RunMM3: Changing the relative amplitude of the modes to CP+
+2,1 +0.8CP−+2,1

changes the visibility of the interferogram 3.6 and shifts θ to a new value, but does

not change the slope of φ vs. z or the DOP (Fig. 3.5). This illustrates that spin-IOAM

causes φ to precess around the circular axis of the Poincaré sphere.

●●
●●

●●
●●

●●
●●

●●
●●

●

●●
●●

●●
●●

●●
●●

●●
●●

0 1 2 3 4 5
z [cm]

-100
-50
0
50
100
150

ϕ

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 1 2 3 4 5
z [cm]

50

100

150

θ
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 1 2 3 4 5
z [cm]

0.2

0.4

0.6

0.8

1.0
DOP

FIGURE 3.5. RunMM3: Polarization information shows the expected rotation in φ.
Unequal modal excitation amplitudes result in θ being offset from the equator at 90◦.
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FIGURE 3.6. RunMM3: Intensities and interferograms. The donut intensity profile
does not vary with propagation.
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RunMM4: Combination of (CP+
+2,1 + CP−+2,1) + 0.5

(
CP+
−2,1 + CP−−2,1

)
. There

is obvious distortion in φ vs. z, shown in Fig. 3.7. θ is unchanged as long as the

linearly polarized combinations in both the first pair of parentheses and second

pair of parentheses both are balanced. There are two DOP oscillations over one

beatlength, the numerical derivative ∆φ/∆z shows oscillatory structure, and the

spatial profile oscillates between a sine-like clover, a donut, and a cosine-like clover,

without continuous rotation of the nodal lines. Spatial profiles and interferograms

are shown in Fig. 3.8.
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FIGURE 3.7. RunMM4: Polarization information. ∆φ/∆z is the numerical
derivative of φ.

RunMM5: Imbalance in the circular polarization “pairs” leads to θ

oscillation, as shown in Fig. 3.9. The input excitation is (CP+
+2,1 + 0.95CP−+2,1) +

0.3
(
CP+
−2,1 + 1.1CP−−2,1

)
. Spatial profiles and interferograms are shown in Fig. 3.10.

RunMM4 and runMM5 have very similar spatial profiles, but different visibilities.
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FIGURE 3.8. RunMM4: Intensities and interferograms over one beatlength.
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FIGURE 3.9. RunMM5: Polarization. The θ vs. z plot is zoomed in to show small
variation. ∆φ/∆z is the numerical derivative of φ.
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FIGURE 3.10. RunMM5: Intensities and interferograms over one beatlength.
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What beating effects occur if the excitation is not limited to parallel and anti-

parallel modes with the same IOAM? Combinations of different orders of IOAM gives

rise to “clocking” where singularities move around angular positions, as shown in Figs.

3.12, 3.14, and 3.16. An important caveat is that the rotation of the singularities in

those figures looks to be periodic over the beatlength shown, but this appearance

is due to aliasing and they are actually performing many full rotations between the

lengths shown. The visibility changes due to changing polarization do happen on

the length scale investigated. We observe singularity clocking in our experiments,

but the orientation looks random, which is what we expect since we are far from

having the precision length control necessary to resolve the beating between different

IOAM orders. It is noteworthy (and expected) that orientations of the singularities

are stable at a particular length, showing that the optical path length is stable not

just on the scale of the slow SOI rotations, but also on the scale of the more sensitive

clocking.

RunMM6: IOAM=2 and IOAM=0: singularity splitting with the input

excitation: (CP+
+2,1+CP−+2,1)+0.5

(
CP+

0,1 + CP−0,1
)

is shown in Fig. 3.12. Polarization

evolution is shown in Fig. 3.11. The IOAM=0 (fundamental) modes have no spin-

IOAM splitting. Addition of the fundamental splits the IOAM=2 singularity into two

IOAM=1 singularities separated symmetrically from the center.

RunMM7: IOAM=2 and IOAM=0: singularity splitting with the input

excitation: (CP+
+2,1 + CP−+2,1) + 0.3

(
CP+

0,1 + CP−0,1
)

shown in Fig. 3.14. Polarization

information in shown in Fig. 3.13. Reduced amplitude in the IOAM=0 mode

compared to runMM6 results in the singularities being closer to the center.
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FIGURE 3.11. RunMM6: Polarization information. ∆φ/∆z is the numerical
derivative of φ.
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z [cm] Intensity Interferogram z [cm] Intensity Interferogram
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FIGURE 3.12. RunMM6: Intensities and interferograms. The singularity clocking
shown here is aliased and performs more than a full rotation between lengths shown
here. ∆φ/∆z asymptotes to about 33.2◦/cm.
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FIGURE 3.13. RunMM7: Polarization information. ∆φ/∆z is the numerical
derivative of φ.
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FIGURE 3.14. RunMM7: Intensities and interferograms. The singularity clocking
shown here is aliased and performs more than a full rotation between lengths shown
here. ∆φ/∆z asymptotes to about 33.2◦/cm.
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RunMM8: IOAM=2 and IOAM=1: singularity splitting with input excitation

(CP+
+2,1 + CP−+2,1) + 0.5

(
CP+

1,1 + CP−1,1
)

shown in Fig. 3.16. Polarization information

is shown in Fig. 3.15. Twice as much distance is shown shown in Fig. 3.15 as in

previous runs due to a longer beatlength from a smaller assumed splitting, specifically

δβ′ = δβ/2 for IOAM=1.
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FIGURE 3.15. RunMM8: Polarization information. ∆φ/∆z is the numerical
derivative of φ.

In summary, oscillating DOP and deformations to the linearity of ξ or φ rotations

can result if undesired modes are excited with desired modes. The magnitude of those

oscillations indicates the excitation amplitude of the undesired modes.
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FIGURE 3.16. RunMM8: Intensities and interferograms.The singularity clocking
shown here is aliased and performs more than a full rotation between lengths shown
here. ∆φ/∆z asymptotes to about 33.2◦/cm.
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3.2 Mode Coupling

Ideally, fiber modes are orthogonal, i.e. excitation of a single mode at the input

will result in emission of the corresponding mode at the output. The output mode

may differ from the input mode due to propagation effects, but energy should not

be coupled to other fiber modes. Real fibers contain unavoidable imperfections

that couple excitation probability between modes. If modes are expected to act as

independent channels, then that coupling between channels is referred to as crosstalk.

Using a spatial light modulator on the output profiles from a fiber, a crosstalk matrix

between modes for a particular configuration can be measured [49].

We model the effects of mode coupling with a constant coupling rate, in a basis

of CP modes with IOAM=2 only. In this section, we assume that all modes are lowest

order radial modes with m = 1, and use a shorthand notation denoting the IOAM

and SAM as either ‘+’ or ‘-’ such that CP+− refers to CP mode F+2,1ê−. The same

fiber parameters are used in this section as were used in the last section, and are

shown in Table 3.1.

Let the vector of modes be

S =

[
CP++ CP+− CP−− CP−−

]
(3.4)

and the complex excitation amplitudes A of the modes be

Ψ =



A++

A+−

A−−

A−−


(3.5)
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thus, the matrix product

SΨ = A++CP++ + A+−CP+− + A−+CP−+ + A−−CP−− (3.6)

is the superposition of the modes and their respective amplitudes, which include

relative phases.

The coupling matrix

M =



−δβ −iεp −iεs −iεc

iεp δβ −iεc −iεs

iεs iεc δβ −iεp

iεc iεs iεp −δβ


(3.7)

where εp is the constant that couples modes with opposite SAM and the same IOAM,

εs is the constant that couples modes with the same SAM and opposite IOAM, and

εc is the constant that couples modes with both IOAM and SAM opposite.

Mode coupling due to anisotropic, but z-independent perturbations to the fiber

index profile can be expanded as

∆n2(ρ, φ) =
∞∑

p=−∞

ap(ρ)eipφ, (3.8)

where ap is a coefficient, and p is an IOAM [47, 50]. Coupling between modes 1 and

2 with IOAM `1 and `2 depends on the overlap between the transverse fields of the

modes and the perturbation

〈F`1,m(ρ)|∆n2(ρ, φ) |F`2,m〉 =
∞∑

p=−∞

〈ψ`1(ρ)| ap(ρ) |ψ`2(ρ)〉 〈ei`2φ| eipφ |ei`2φ〉 , (3.9)
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leading to the selection rule

p− (`1 − `2) = 0. (3.10)

The coefficients ap are expected to decrease with increasing p, and trend as ap ∝ 1/p

in the fiber used in [47]. Coupling a mode with a particular IOAM to a mode with the

opposite sign requires p = 2|`|. In addition to satisfying p = 2|`|, εc must flip SAM, so

we expect the coupling constant magnitudes to satisfy the ordering |εp| > |εs| > |εc|.

Let U = exp [iMz] be a unitary matrix. We assume unitary mode coupling of

the form

Ψout = exp [iMz] Ψin, (3.11)

where “exp” here is a matrix exponential. This form of coupling neglects losses to

radiation modes and coupling to any modes outside of the IOAM=2 mode family.

The coupling rate with distance

dΨout

dz
= iMΨout (3.12)

represents z-independent mixing, set by the elements of M (from whence the

name “coupling matrix”). Constant mode coupling with distance does not include

stochastic or localized perturbations from defects, which would cause the same

behaviors in the output field, but with more complicated spatial variation. Our

approach also neglects coupling to backward-propagating modes that reflect energy

back out of the input, which we expect to be a good approximation.

M is Hermitian, so it has real eigenvalues and orthogonal eigenvectors. The

eigen-decomposition M = NDN−1 relates M to a diagonal matrix D (with entries

that are the eigenvalues of M) through a unitary matrix N. N changes the basis

from that of the CP fiber modes to the eigen-basis of the coupling process. Its
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columns are eigenvectors composed of the linear combinations of CP fiber modes.

These eigenvector combinations are orthogonal to each other, i.e. do not mix with

propagation. The decomposition of M also yields the decomposition of U,

U = exp[iMz] = N exp[iDz]N−1. (3.13)

Mode coupling behavior can involve intricate combinations of many terms, even

within the restricted subspace of modes considered here. Mathematica’s abilities

to do both symbolic and numeric evaluation are well-suited to investigation of the

resulting effects.

3.2.1 Analytic Example: Two-Mode Coupling

Let’s illustrate the mode coupling with a simple, analytically tractable example.

Taking εs = εc = 0 and εp = ε in Eq. 3.7 yields

M =



−δβ −iε 0 0

iε δβ 0 0

0 0 δβ −iε

0 0 iε −δβ


(3.14)

which models two isolated pairs of coupled modes. We’ll focus on one of those pairs

in a 2 × 2 subspace by assuming that the other pair have zero excitation amplitude

at the fiber input. Making use of the identities

cosh(ix) = cos x (3.15)

sinh(ix) = i sinx (3.16)
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and taking γ =
√
δβ2 + ε2, the unitary coupling matrix for the subspace (denoted

with a tilde) is

Ũ =

 cos(γz)− i δβ
γ

sin(γz) ε
γ

sin(γz)

− ε
γ

sin(γz) cos(γz) + i δβ
γ

sin(γz)

 . (3.17)

The modal excitation as a function of z is Ψ̃out = ŨΨ̃in, and examples are given

with equal excitation of the two modes in Fig. 3.17, and for excitation of only one of

the two modes in Fig. 3.18. For ε = 0, γ = δβ, as expected, and there is no mode

coupling. The undesired coupling population |A|2 goes like ε2

δβ2+ε2
, so if a single mode

is excited at the input, the population for that mode will not go to zero unless δβ = 0.

In this case of isolated pairs, if ε is small compared to δβ, then Ψin will be similar to

Ψout, and the modes are well isolated.

δβ = 1
ε = 0.4

γ = 1.07703

A
(in)
++ = 1/

√
2

A
(in)
+− = 1/

√
2

���������

0.0 0.5 1.0 1.5 2.0 2.5
z [arb.]

0.2

0.4

0.6

0.8

1.0
|A 2

A++

A+-

FIGURE 3.17. Evolution of modal population vs. z for equal input amplitude of the
two coupled modes. Parameters listed on the left.

3.2.2 Numerical Investigation

We now investigate coupling general coupling between the IOAM=2 modes. To

visualize the excitation of the fiber modes in Ψ, a 3D plot is preferable, as the
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FIGURE 3.18. Evolution of modal population vs. z for single-mode input amplitude.
Parameters listed on the left.

population of multiple fiber modes tend to coincide in a way that makes it difficult to

display them both in 2D. RunMC1 is an example with εs = εp = 0.5 and is shown

in Fig. 3.19.

δβ = 1
εs = 0.1
εp = 0.1
εc = 0

Ψin =
[

1 1 0 0
]T
/
√

2

δβ = 1
εs = 0.5
εp = 0.5
εc = 0

Ψin =
[

1 0 0 0
]T

FIGURE 3.19. RunMC1: Example populations |Ψ|2 vs. z.

The goal of this series of simulations is to get a sense of the effects of mode

coupling in our experimental runs. To that end, this section uses the experimental

value δβe = 22.1◦/cm = 38.5718 rad/m, in agreement with our measurements from

the dual-rotation experiment of Sec. 5.6.
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Coupling through the εc term, shown in RunMC2, directly couples energy

in clover or donut modes with one value of the control property into the mode

combination with the opposite value of the control property, as shown in Fig 3.20.

This would cause the rotation rate of the rotating quantity to oscillate sinusoidally

instead of exhibiting linear behavior. Luckily, perturbations that induce εc coupling

must flip both IOAM and SAM, without flipping direction of propagation, so we

expect the magnitude of εc to be small.

δβ = 38.5718 rad/m
εs = 0
εp = 0

εc = 3 rad/m

Ψin =
[

1 0 1 0
]T
/
√

2

δβ = 38.5718 rad/m
εs = 0
εp = 0

εc = 3 rad/m

Ψin =
[

1 1 0 0
]T
/
√

2

FIGURE 3.20. RunMC2: Populations |Ψ|2 vs. z under εc coupling. z is in m.

Simulating the effects of the couplings on all desired IOAM=2 inputs for

experimental parameters shown in Table 3.4. We now investigate the effects of having

just one non-zero ε value on all input SOI mode combinations. The effect of εp = 10

rad/m is investigated in RunMC3, with population vs. z shown in Fig. 3.21 and

both polarization and nodal line orientation shown in Fig. 3.22. Coupling between

circular polarizations at a ratio of
ε2p

δβ2+ε2p
= 6.3% causes: a minor undesired population

imbalance in the input clover mode combinations, a greater population imbalance for

the input donut mode combinations, minor oscillation in θ for all mode combinations,

61



oscillations of the clover DOP but not the donut DOP, and results in minor variation

in the slope dφ
dz

.

TABLE 3.4 Fiber parameters used in the toy model mode coupling simulation.

Description Property Value
Shortest (Ending) Fiber Length Lf 0.34 m
Longest (Starting) Fiber Length L0 0.46 m

SOI Splitting δβe 22.1◦/cm

LCP Clover Ψc+
in

[
1 0 1 0

]T
/
√

2

RCP Clover Ψc-
in

[
0 1 0 1

]T
/
√

2

(` = +2) Donut Ψd+
in

[
1 1 0 0

]T
/
√

2

(` = −2) Donut Ψd-
in

[
0 0 1 1

]T
/
√

2

The effects of εs = 10 rad/m are investigated in RunMC4, with population vs.

z shown in Fig. 3.23 and both polarization and nodal line orientation shown in Fig.

3.24. Coupling between IOAM=+2 and IOAM=-2 at a ratio of ε2s
δβ2+ε2s

= 6.3% causes:

a minor undesired population imbalance in the input donut mode combinations, a

greater population imbalance for the input clover mode combinations, no effects on

θ for any mode combination, oscillations of the donut DOP but not the clover DOP,

and results in minor variation in the slope dφ
dz

.

The effects of εc = 10 rad/m is investigated in RunMC5, with population vs.

z shown in Fig. 3.25 and both polarization and nodal line orientation shown in Fig.

3.26. Coupling between modes with the signs of both IOAM and SAM flipped at a

ratio of ε2s
δβ2+ε2s

= 6.3% causes more disruption than the couplings considered above.

Specifically, it causes: gradual reversal of the sign of the control property (e.g. an

input LCP clover becomes an RCP clover) for all SOI mode combinations, large

deviation in θ for clovers but no effect on donut DOP, substantial deviation in both
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(a) Ψc+
in (b) Ψc-

in

(c) Ψd+
in (d) Ψd-

in

FIGURE 3.21. RunMC3: Effect of εp coupling on all IOAM=2 SOI combinations.
Number of run points = 21. εp = 10 rad/m. εs = εc = 0.
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FIGURE 3.22. RunMC3: Polarization and nodal line orientation. Number of run
points = 21. εp = 10 rad/m. εs = εc = 0. In the plot of ξ vs. z, the orientation-finding
algorithm fails for donut modes, so only clover orientation is shown. Discontinuities
in dφ

dz
for donut modes are due to the polarization value looping from one end of the

range to the other.
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(a) Ψc+
in (b) Ψc-

in

(c) Ψd+
in

(d) Ψd-
in

FIGURE 3.23. RunMC4: Effect of εs coupling on all IOAM=2 SOI combinations.
Number of run points = 21. εs = 10 rad/m. εp = εc = 0.
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FIGURE 3.24. RunMC4: Polarization and nodal line orientation. Number of run
points = 21. εs = 10 rad/m. εp = εc = 0. In the plot of ξ vs. z, the coupling between
donut modes causes azimuthal minima to appear, and their orientation are shown for
the donut modes. Discontinuities in dφ

dz
for donut modes are due to the polarization

looping from one end of the range to the other.
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φ and ξ vs. z for donut modes, large deviations in DOP for both clovers and donuts,

and nonuniform slope dφ
dz

.

(a) Ψc+
in (b) Ψc-

in

(c) Ψd+
in

(d) Ψd-
in

FIGURE 3.25. RunMC5: Effect of εp coupling on all IOAM=2 SOI combinations.
Number of run points = 21. εp = 10 rad/m. εs = εc = 0.

In order to roughly estimate the magnitude of the couplings that would cause the

effects shown in our dual-rotation experimental run (discussed in Sec. 5.6), I varied the

parameters and looked to see how well the oscillation amplitudes matched our data.

RunMC6 has the parameter set {εp, εs, εc} = {8, 5, 0} rad/m with modal excitation

vs. z shown in Fig. 3.27 and polarization and orientation information shown in Fig.

3.28). The θ and DOP variation in this run have magnitude similar to that observed
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FIGURE 3.26. RunMC5: Polarization and nodal line orientation. Number of run
points = 21. εs = 10 rad/m. εp = εc = 0. In the plot of ξ vs. z, the coupling between
donut modes causes azimuthal minima to appear, and their orientation are shown for
the donut modes. Discontinuities in dφ

dz
for donut modes are due to the polarization

looping from one end of the range to the other.
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in the dual-rotation experimental data. Compared to the experimental rotation rate

of δβ = 38.5718 rad/m, these coupling parameters are small.

(a) Ψc+
in (b) Ψc-

in

(c) Ψd+
in

(d) Ψd-
in

FIGURE 3.27. RunMC6: Effect of εp coupling on all IOAM=2 SOI combinations.
Number of run points = 21. εp = 8 rad/m. εp = 5 rad/m. εc = 0.
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FIGURE 3.28. RunMC6: Roughly a good match to the θ and DOP behavior seen
in our dual-rotation experimental run. Number of run points = 21. εp = 8 rad/m.
εp = 5 rad/m. εc = 0.
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It’s possible that the couplings εj could include phase shifts. The effects of adding

phase shifts to the coupling parameters that approximately match dual-rotation

experimental observations are summarized in Table 3.5, which accounts for the

expected factor of |`| = 2 between the observed clover rotation rate and the splitting

δβ (see Eq. 2.44) in spin-controlled orbital rotation. Best-fit slopes for data measured

in that experiment are summarized in Table 5.3. Not all of the slopes in Table 3.5 fall

within fit uncertainty range of the experimental measurements of the corresponding

rotation. However, taking the mean average of the splittings and the worst-case error

[51],1 gives a splitting range of δβ = 22.1 ± 0.7◦/cm, which contains all slopes in

Table 3.5. While not a unique fit of the coupling constants, the behavior in RunMC6

is consistent with experimentally observed behaviors, including the magnitude of θ

and DOP oscillation (see Fig. 5.17). This supports the hypothesis that mode coupling

perturbations that give rise to the experimentally observed oscillations do not give rise

to changes in best-fit slopes that exceed the uncertainty we deduce from experimental

fits.

TABLE 3.5 Coupling parameters εj and linear best-fits for the splitting δβ as
measured by the slope of 2ξ vs. z (corrected with the factor of |`| = 2) for clovers
and polarization φ for donuts in configuration space ◦/cm. Clover is abbreviated ‘C’,
donut is abbreviated ‘D’, and the ± sign in the heading denotes the sign of the control
property. The slopes without all couplings set to zero is δβ = ±22.1◦/cm.

εp εs εc C+ δβ C- δβ D+ δβ D- δβ
[rad/m] [rad/m] [rad/m] [◦/cm] [◦/cm] [◦/cm] [◦/cm]

8 5 0 22.7765 −22.7765 −22.2364 22.2364
8 5 exp

(
iπ
2

)
0 22.1663 −22.5554 −22.2364 22.7367

8 exp
(
iπ
2

)
5 0 21.8146 −21.8146 −21.5569 22.1305

8 5 1 22.2803 −22.2392 −22.7171 22.7218
8 5 1 exp

(
iπ
2

)
22.4815 −22.4815 −22.7579 22.7601

1Worst-case error for the mean splitting is the sum of the uncertainties for all four splittings
divided by the number of splittings, (0.5 + 0.5 + 0.9 + 0.7)/4 = 0.7.
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3.3 Summary

There are multiple beating effects present in a cutback experiment when

undesired modes are excited in addition to desired modes. These beating effects

can manifest in whole-beam polarization measurements, intensity profiles, and

interferograms. Investigating the excitation of undesired modes at the input without

mode coupling shows that excitation of all four IOAM=2 modes results in oscillations

in the DOP, numerical derivative ∆φ/∆z, and spatial profile distribution. Oscillations

in ∆φ/∆z entail deviations from linear behavior in φ vs. z. Small imbalances in

excitation of the CP modes constituting left- and right-circularly polarized clover

combinations result in small oscillations in θ vs. z. Excitation of undesired IOAM=1

or IOAM=0 modes (in addition to desired IOAM=2 combinations) result in off-axis

phase singularities (corresponding to intensity nulls) that rotate around the z-axis

quickly with propagation. They also result in DOP and ∆φ/∆z oscillation.

Including the consideration of constant unitary mode coupling, we find that

coupling between modes with opposite signs of both IOAM and SAM will cause

oscillation in the direction of rotation. Combinations of εs and εp coupling can cause

this indirectly, while εc coupling causes it directly. Mode coupling of magnitudes

similar to {εp, εs, εc} = {8, 5, 0} rad/m give rise to oscillation behavior similar to that

observed in the dual-rotation experiment discussed in Section 5.6. These coupling

magnitudes are are small compared to the splitting δβ = 38.5718 rad/m, and the

resulting oscillations do not change the associate best-fit linear fit slopes by more

than the worst-case experimental error.
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CHAPTER IV

MODE PREPARATION AND MEASUREMENT

4.1 SLM Holography

A spatial light modulator (SLM) is an array of pixels that serves as a computer-

controlled mask that controls some combination of phase and amplitude. SLMs can

operate as reflective or transmissive elements and are controlled in the same manner

as a computer display. Dileep Reddy set up a system to split video output from a

computer to both a standard monitor and the SLM, so we could see exactly what

signal was being sent to the SLM and didn’t have to bend over the table to look

at the SLM display directly (where the displayed patten is visible by eye). We

used an HEO1080P from HOLOEYE Photonics, graciously lent to us by Raghuveer

Parthasarathy’s lab. This model is a reflective SLM that directly alters phase and

not amplitude, and has a filling fraction of 87%. The conversion efficiency into the

first order was low, even with blazed holograms, but the hundreds of µW it produced

were sufficient for our experiments. The pixel values fed to the SLM control a voltage

with discretized settings that produces a phase delay. The phase delay as a function

of voltage is not strictly linear, so the holograms used in our experiment utilize a

restricted range of pixel values (0-245) instead of the full range of values (0-255).

4.1.1 Hologram Design

A simple description of hologram design for converting one transverse spatial

distribution to another transverse spatial distribution is to create a superposition of
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the input field and the desired field. Illumination of the hologram with the input field

creates many diffraction orders on the output, similar to a diffraction grating.

While developing our holograms, I started with phase-only holograms and a short

path length, but the profiles I got out in those configurations had many undesired

radial features. I talked to Ben McMorran and Jordan Pierce about optimizing

hologram design, and Ben passed along a Mathematica document form Sonja Franke-

Arnold of the University of Glasgow who has worked on free-space communication

using OAM modes [52]. I modified these holograms to tune the prism period (a

linear phase ramp that generates an angular offset between the back-reflected zeroth

order reflection and the desired first-order reflection in the desired spatial pattern)

and added lensing (circularly symmetric phase ramp) to them. The holograms we

used are shown in Fig. 4.1, and are designed for a lowest-order Gaussian input spatial

profile. The code needed some modification for lensing and to create non-IOAM

profiles, like clovers or coffee beans.

Holograms with a phase singularity impart IOAM to all but their zeroth-order

outputs. An input beam with IOAM ` properly matched to the hologram with

singularity charge `′ will have a nth-order output diffraction pattern with IOAM

`+n`′. n can be any integer. The non-unity filling fraction of the HEO1080P creates

a second grating with rectilinear symmetry, which has a broader angular distribution

than our desired diffraction orders. We “blazed” our holograms to optimize power

into the first-order beam.

Including the amplitude profile of the desired output profile improved the quality

of the output spatial mode substantially, even though the HEO1080P is a phase-

only SLM and does not directly control amplitude. When optimizing the conversion

efficiency and spatial profile, I noticed that changing the hologram would create
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FIGURE 4.1. Holograms for exciting the fiber fundamental, clover combination, and
donut (IOAM=2) combination.
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deviation in the beam centroid at my fiber input if the input beam was not exactly at

normal incidence. The prism period is limited by the physical pixel size, with smaller

periods making steeper phase ramps. The angular separation of the first-order beam

from the zeroth-order retroreflection is not large and my attempts to tilt the SLM

to ease pick-off of the first order introduced this unwanted feature. Correction was

simple, though working at normal incidence along with limitations on how large of

an angular deviation could be imparted to the first-order output beam necessitated a

long beam path for isolation the desired output. Long beam paths are an opportunity

for “beam wander” or deviation in the beam centroid at the beam target, e.g. the

fiber input.

4.1.2 IOAM Verification

We verified the IOAM interferometrically. Interfering the LG profile with a

Gaussian beam with a flat phase profile gives a “fork” interferogram. Tuning the

mismatch of the k-vectors of the beam from the SLM and reference beam changes the

fringe spacing, and bigger fringes sometimes obscure details of the IOAM structure.

Specifically, small fringe spacing can show that what looks to be an IOAM=2

singularity is two separated IOAM=1 singularities. Adjusting the collimation of the

input beam onto the SLM effects this separation, so adjusting the telescope controlling

the input beam collimation was an important tool for controlling the IOAM profile.

To verify the IOAM in a singularity, one must know the direction of the k-vector

mismatch, labeled as ∆~k and the direction in which more fringes are located, ~f , both

illustrated in Fig. 4.2.

To identify the IOAM charge:

1. Draw a box around the singularity,
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FIGURE 4.2. Reference illustration for identifying IOAM handedness from an IOAM
singularity. This singularity has IOAM=+2, which we identify as left-handed, in
agreement with our definition of circular polarization where σ = +1 corresponds to
left-circular polarization. ~f points in the direction of more fringes. ∆~k points along
the direction of the phase gradient, which is set by the k-vector mismatch between
the IOAM beam and the reference beam.

2. Choose a starting location and then start traveling in a direction along the box.

3. Count the number of fringes as you travel in one direction as positive and the

fringes you count as you travel in the other direction as negative.

4. The sum of the number of fringes is the enclosed IOAM.

While the sign of the sum of the fringes as detailed above can correctly distinguish

between the two handednesses, an interferogram alone does not contain sufficient

information to identify the handedness µ of the IOAM. The direction of propagation

of the reference beam ~kref and the IOAM beam ~kIOAM combined as

∆~k = ~kref − ~kIOAM, (4.1)
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in addition to whether the ~kIOAM directed into or out of the plane of the image,

must also be known. Our convention is that if ∆~k × ~f is oriented along ~kIOAM, i.e.

~kIOAM ·
(

∆~k × ~f
)
> 0, then µ = +1 (left-handed); ~kIOAM ·

(
∆~k × ~f

)
< 0 indicates

µ = −1 (right-handed). This definition of IOAM charge uses the same sense of

handedness as we use for polarization.

4.2 Polarimeter

In order to measure polarization, I built a polarimeter from a Wollaston prism,

achromatic HWP and QWPs, and a few power measuring devices, shown in Fig.

4.3. Experimental data were collected with two Thorlabs power meters using silicon

heads which produce a current proportional to the integrated intensity over their

active areas. Polarization measurements were taken with care to ensure that the

active area contained the whole beam and averaging over power variation until the

standard deviation of the power measurement stabilized. An iteration that gives

maps of local polarization information in a beam is described in Section 4.2.1. The

FIGURE 4.3. Polarimeter configuration. Waveplates are slid into and out of the
beam to quickly and repeatably change basis.

Stokes parameters describing the polarization state of light are the total intensity and

the difference of the intensity of light measured along two orthogonal axes in three
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different bases,

I = 〈|EH |2〉+ 〈|EV |2〉 (4.2)

Q = 〈|EH |2〉 − 〈|EV |2〉 (4.3)

U = 〈|ED|2〉 − 〈|EA|2〉 (4.4)

V = 〈|EL|2〉 − 〈|ER|2〉, (4.5)

where H/V indicate horizontal/vertical, D/A indicate diagonal/anti-diagonal, L/R

indicate left-/right-circular polarization, and 〈 〉 indicates a time average. These

parameters can be calculated for individual locations in a beam’s transverse spatial

profile (as discussed in the next subsection), but I report values for the whole beam in

the next chapter, which is to say the intensities above are integrated over the whole

transverse beam distribution. Normalizing Q,U, and V by I using Q̃ = Q/I, Ũ = U/I

and Ṽ = V/I, restricts the range of each to [−1, 1], and the resulting parameters give

coordinates for polarization within a unit sphere known as the Poincaré sphere, see

Fig. 4.4. Position on this sphere can also be parameterized in spherical coordinates

with

DOP =

√
Q̃2 + Ũ2 + Ṽ 2 (4.6)

θ = tan−1

(√
Q̃2 + Ũ2/Ṽ

)
(4.7)

φ = tan−1(Ũ/Q̃), (4.8)

where θ indicates “how circular” the polarization is, while φ gives the orientation

of the semi-major polarization axis, and the DOP is the length of the polarization

vector, indicating the homogeneity of the polarization.
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FIGURE 4.4. The polarization Poincaré sphere. A polarization state vector is shown
as the red vector. The state with DOP=1 would intersect the sphere at the green
point. Q = +1 corresponds to horizontal polarization while Q = −1 corresponds
to vertical polarization, showing that φ is related to angles in configuration space
by a factor of 2. Each axis is labeled with “A/B” where A is indicated by the axis
arrow, and B is antipodal to A on the sphere. Some references use the other circular
polarization convention, and LCP and RCP are swapped as a result.

It is unfortunate that there are two opposing historical conventions for circular

polarization. I use the convention that circular polarization is represented by the

Jones vector

êσ =
1√
2

 1

σi

 (4.9)

where σ = +1 is left-circular polarization and σ = −1 is right-circular polarization.

This convention is also used by Les Allen [9] and Pedrotti [33]. Many optics textbooks

use the other convention, which swaps the LCP and RCP poles, as seen in Born &

Wolf [53] and Saleh & Teich [5] which show Poincaré spheres with RCP at the “north”

pole where θ = 0.
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It is possible for the power to vary between measurements of Q, U , and V , but

as long as the polarization state is stable in time, the normalized Stoke’s parameters

should be robust and unaffected.

4.2.1 Stokes Mapper

Using a beam profiler or CCD camera to catch the output beams from the

Wollaston prism (see Fig. 4.3) and subtracting properly registered greyscale images

gives Stokes parameters for each location in the beam, which I call a Stokes map. This

stands in contrast to the whole-beam Stokes measurements described in Eqs. 4.2-4.5,

where intensity is integrated over the whole beam before subtraction. Examples of

Stokes maps taken as part of the wavelength tuning experiment of Sec. 5.4.2 are

shown in Fig. 4.5, and indicate dominantly circular (V-basis) polarization, with some

spatially nonuniform and low-intensity structure in the horizontal-vertical (Q) and

diagonal/anti-diagonal (U) bases. Beams with spatial distributions of polarization

that cover substantial portions of the Poincaré sphere have been a topic of recent

interest [54, 55] and controllable excitation of such a beam would be necessary to

excite a single fiber hybrid eigenmode (EH/HE).

4.3 Fiber Coupling

Efficient coupling of light into optical fiber relies on good overlap of the input

field with the modes of the fiber. For an input mode ~Min and a fiber eigenmode ~Mf in

Cartesian coordinates, both normalized to
∫∞
−∞

∫∞
−∞ dx dy | ~Mj(x, y)|2 = 1 with j ∈ {f,

in},

overlap =

∫ ∞
−∞

∫ ∞
−∞

dx dy ~Min(x, y) · ~M∗
f (x, y) (4.10)
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Placing the beam focus on the fiber input face creates a flat phase front that

maximizes overlap. Fiber modes are not, strictly speaking, Gaussian in that their

radial dependence is a Bessel function. Nevertheless, matching the input Gaussian

beam waist (which is a radius-like quantity) to half the fiber mode field diameter is

a good approximation when working with Hermite-Gauss or Laguerre-Gauss input

beams.

Excitation of particular modes in a few-mode fiber is tricky, so we now discuss

some practical techniques that are helpful in achieving selective excitation. The

alignment is sensitive enough that backlash and coupling between knobs is important

to keep track of, even at the levels present in high-quality optomechanics. Coupling

light into the output end of the fiber and aligning the input beam with the backward

propagating alignment beam is a process that we refer to as “back-coupling.” The

process I used to excite higher order spatial profiles starts, like so many optical

alignment schemes, with a pair of irises; one near the fiber input face, and one far iris

that is substantially prior to the near iris along the input beam trajectory. First, align

the input beam to the alignment irises. Second, use back coupling and maximize the

power going backwards through the fiber. Then, without the input coupler installed,

shine the back-coupled light through the iris near the fiber input to center the fiber

position, iterating to ensure that the fiber position is still central to the input beam

and the tilt is set by the back-coupled light on the near iris. Third, install the input

objective and adjust its position and tilt to maximize power in the forward-coupled

fundamental. The secondary reflection off of the fiber input face can be very helpful for

getting the objective in place and at the right distance from the input face. Similarly,

matching the beam parameters of the back-propagating and forward-propagating light

in the space between the irises through adjusting the input objective is helpful with
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the caveat that it is important to check that the power propagating in each direction is

similar, when matching by eye, or properly accounted for. Monitoring the secondary

reflection during an experimental run provides a sometimes useful probe for changes

in input alignment.

When close to well-coupled, the secondary reflection of the fiber input will show

signs of interference, which occurs because some of the light coupled into the fiber

is reflected off the output face, and exits the input face to interfere with the light

reflected directly off the input face. We assessed this by looking at the interference

pattern before and after adding a drop of index-matching fluid to the output end,

which affected the interference pattern in the secondary reflection on the input side

of the fiber. Furthermore, this interference from the input face is not a concern for

the output spatial profiles, as the product of a small reflection coefficient R and a

large transmission coefficient T for an additional round trip through the fiber goes

like R2T 2 with R2 negligibly small.

Equipped with these tips and tricks, we next review their implementation as part

of our experimental measurements of spin-IOAM interaction.
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CHAPTER V

EXPERIMENTAL DESIGNS AND RESULTS

5.1 Overview

To observe spin-IOAM interaction in optical fiber, we excite combinations of

parallel and anti-parallel modes at the fiber input, record the output profiles at the

fiber output, and then reduce the fiber length with a cleaver. We refer to these

experiments as “cutback” experiments, and they destroy the fiber segment under

test. To avoid rotations due to geometric phase (spin-EOAM interaction) the fiber is

made to follow a straight path from input to output, aligned with the trajectory of the

input beam. The fiber is mounted on two mounts that are aligned to be straight with

the laser. There are two versions of the rotation effect that we probe experimentally,

one where the spatial mode stays the same and the linear polarization rotates, and

another where the circular polarization stays the same and the clover mode rotates.

We began our investigations with observation of the latter rotation, spin-controlled

orbital rotation.

5.2 Dispersion-Tailored Fiber

Our first attempts at measuring spin-IOAM interaction took place in standard

step-index fiber, but never yielded clean output modes. Designs for sorting the output

using a series of parity sorters [56] were underway when Siddharth Ramachandran

visited and provided a better way forward in idenfitying our problem as the tendency

of modes with IOAM=0 and m > 1 to have having similar propagation constants

to OAM modes in step-index fiber. Distance between modes in β space is a good
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indicator of how strongly coupled modes will be by unavoidable random defects in

the fiber (see Section 3.2 and [47]).

The Ramachandran lab provided us with two 20 m spools of dispersion-tailored

fiber, whose index profile design is intended to isolate the OAM modes from nearby

OAM=0 modes [57], guided by the perturbation integrals of Snyder and Love [41].

A scanning electron microscope image of the core structure is shown in Fig. 5.1. We

were able to see clean modal excitation over ∼ 20 m of this fiber and at our ∼ 1 m

cutback experiment lengths.

FIGURE 5.1. Scanning electron microscope image of the core structure of the
dispersion-tailored fiber used in our experiments.
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A complication arising from use of this fiber is that its modes are difficult to solve

for. The Ramachandran group has computer code that simulates the exact modes

using a finite-element approach to solving Maxwell’s equations.

5.3 External Cavity HeNe Experiment

Initial spin-IOAM experiments were performed with an external cavity helium-

neon (HeNe) laser, as shown in Fig. 5.2 [58]. Crossed wire, composed of tungsten

lightbulb-filament, are placed in the cavity to suppress modes with intensity along

the filament orientation. A zoom lens with transverse 2D translation mounts on an

optical rail to control longitudinal translation adjusts the input modes to precisely

match the fiber modes. Horizontally polarized light enters the QWP, and circularly

polarized light that reflects off of the fiber input face becomes vertically polarized

and is directed towards the screen by the PBS. This “poor-man’s” optical isolator is

helpful in precise alignment.

FIGURE 5.2. Diagram of experimental setup as viewed from above. OC = output
coupler. W = crossed wires. I = adjustable iris. LP = linear polarizer. PBS =
polarizing beam splitter. QWP = quarter-wave plate. NDFW = neutral density
filter wheel. CCD = computer controlled CCD camera. The crossed wires and iris in
the external cavity HeNE laser allow for selection of the transverse spatial mode of
the beam. The linear polarizer is set to horizontal polarization (parallel to the plane
of the table). The QWP is set to create left or right circularly polarized light. Figure
from [58].
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In addition to the cutback experiment, qualitative spin-EOAM coupling was

investigated between experimental runs. Taking the output end of the fiber in hand

and shining the output mode on an index card, and rotating the output end to about

±90◦ from the original orientation produced no change in the output intensity pattern.

Thus, small twists that may occur at the output end of the fiber during cutback and

remounting do not affect the rotation of the output profile. In contrast, fixing the

output end and changing the path that the fiber takes between the input and the

output caused a clear rotation.

The optical fiber was suspended between two Newport 561-FH mounts with a 10”

v-groove supporting the fiber in between, as shown in Fig. 5.3. These elements were

all aligned straight with the laser path before the fiber was mounted. The v-groove

has double-stick tape on the leftmost and rightmost sides, and the pre-stripped fiber

is immersed in an optical couplant gel in the v-groove that is index matched to the

fiber cladding, to provide a loss mechanism that prevents light from being guided by

the air-cladding interface.

FIGURE 5.3. Photograph of an early version of the experiment using an internal
cavity HeNe, showing the fiber input and output mounts, as well as the v-groove
used to support the fiber.
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The mode coupling was optimized by first translating the wires out of the cavity

beam and shining a Gaussian into the fiber to excite the fundamental mode. Once

that was cleanly achieved with a high percentage of laser power exiting the fiber, the

wires were translated back into place and the input coupling tweaked to optimize

coupling of the HG1,1 into the fiber to excite the LP2,1 mode combinations. The

HeNe tube is not stabilized, so the polarization of the light output from the HeNe

changes over time. The light incident on the fiber input has stable spatial mode and

polarization, but the power transmitted by the linear polarizer varies. The power

at the fiber input was measured to vary between 115 − 150 µW while the power

at the fiber output spanned 51 − 72 µW . Thus, the ratio of the average powers is

P̄out/P̄in = 46%. To control for input coupling rotation effects, the alignment controls

were not adjusted after their original calibration at the beginning of a data collection

run. The only element prior to the fiber input to be adjusted during a run was the

QWP, which was rotated to switch polarization handedness.

The fiber length was measured with a tape measure and was shortened on the

output side with a Fujikura high-precision CT-30 fiber cleaver, designed to ensure

that the cleaving process left flat optical surfaces at the fiber ends. The segments

removed from the output were ∼1.2 cm long, which is the minimum length for which

the cleaver has a good hold on both sides of the cleave location. The segments were

measured with a ruler to confirm the distance change, and kept on index cards with

double-stick tape in case future characterization or length measurement checks were

necessary.

The generated HG1,1 input profile (shown in Fig. 5.4) has good overlap with the

desired LP2,1 fiber mode, though the presence of interference-fringe-containing lobes
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in the output profiles in Table 5.1 indicates that the LP2,2 mode had some excitation,

and tracked the orientation of the central LP2,1 lobes.

Output profile orientations ξ for all lengths are measured “by eye” in software

by rotating a crosshair to coincide with the nodal lines of the output profile. In this

run, I asked peers to replicate my measurements in order to assess the uncertainty

of this method1, and found the deviation to be 2◦. The average of these results are

shown in Fig. 5.5. The angles in this run do not change by more than a full range of

90◦,2 so there is no need for adding offsets before fitting. The linear best-fit model

for LCP is

Order of Term Coefficient Standard Error

1 185.076 0.976433

x −3.04636 0.0182138

with coefficient of determination R2 = 0.999357, and for RCP it is

Order of Term Coefficient Standard Error

1 −172.191 1.49641

x 2.85093 0.0279132

with R2 = 0.998277, supporting highly linear behavior.

The difference in rotation rates exceeds the fit errors, which do not include the

uncertainties in L and ξ. As an estimate of the slope uncertainties, I perturbed

each data point in software with a random offset in L normally distributed with a

standard deviation of 2 mm, and a random offset in ξ normally distributed with a

1Thanks to Roger Smith, Kyle Klarup, Jeremy Thorn, Erin Mondloch, and Paul Martin for the
replication.

2The full range of the spatial mode rotation is 180◦ because of the alternating phases on the
lobes, but without a stable and known phase reference, the phase information in unavailable and
the rotation is ambiguous after 90◦.
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FIGURE 5.4. Input HG1,1 profile for HeNe cutback experiment.

62.3 cm 57.5 cm 52.6 cm 47.8 cm 42.2 cm

RCP

LCP

TABLE 5.1 Pictures of a representative subset of the recorded output modes
illustrating the rotation. Error bars are present and comparable to the point size.
Figure from [58].

standard deviation of 2◦. Repeating this over 3000 trials, the standard deviation

of the resulting slopes stabilized to σ = 0.07◦/cm, which does not bridge the gap

of between the means of the slopes of 0.15◦/cm. Thus, the slopes measured in this

experiment are distinguishable by a small but statistically significant margin, which

is consistent with a small amount of circular birefringence in this segment of fiber

(from fabrication or systematically induced in its mounting).

Using these least-squares fits, the y-intercepts of the data from Fig. 5.5 can

be used to find the number of 90◦ rotations consistent with constant rotation

from the input orientation angle, ξ0 = 2.25◦ for both LCP and RCP input clover
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FIGURE 5.5. Raw angles for mode rotation in degrees vs. fiber length. The points
are measured data and the lines are the best-fit lines for those data. Error bars a
present, but too small to be clear.

profiles. Adding the input orientation and including the offsets, reconstruction of the

orientation of the spatial profile through the fiber is shown in Fig. 5.6.

The linear best-fit coefficients from Mathematica for LCP are

Order of Term Coefficient Standard Error

1 2.11725 0.498983

x −3.02757 0.00953758

with R2 = 0.999811, and for RCP are

Order of Term Coefficient Standard Error

1 2.98196 0.742015

x 2.90454 0.0141829

with R2 = 0.999547.
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FIGURE 5.6. Mode rotation in degrees vs. fiber length. Best-fit reconstruction of
rotation from input to output. The points are measured data and the lines are the
best-fit lines for those data. Error bars are present, but too small to be seen.

At λ = 632.8 nm, δβ is small, which is consistent with the modal intensity

being well isolated from the inner interface during propagation. However, the

Ramachandran group’s simulations at the time of the experiment expected a rotation

rate of 340◦/cm. This large disagreement with theory motivated more experimental

investigation to test the simulation results and verify that we had observed interaction

between light’s spin and the intrinsic orbital angular momentum.

5.4 Ti:sapphire Wavelength Tuning Experiment

In order to work closer to the design wavelength of the fiber (∼ 830 nm) and

explore the wavelength dependence of spin-IOAM interaction, crossed-wires were

placed in a wavelength-tunable homebuilt Ti:sapphire laser running in a continuous-

wave (CW) configuration to create higher order spatial modes over a broad wavelength

range of about 750 - 850 nm. The experimental configuration is shown in Fig. 5.7.
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FIGURE 5.7. Experimental apparatus for wavelength-tunable crossed-wire
Ti:sapphire Experiments. LP = linear polarizer. PBS = polarizing beamsplitter.
BD = beam dump. Image measurement is performed with or without an output
coupling objective, to observe far- and near-field images respectively.

To investigate the wavelength dependence of rotation effects, we coupled a clover

profile into dispersion-tailored fiber and adjusted the birefringent filter in the laser

cavity to tune the wavelength. Etalons in the cavity were necessary for frequency

stability during cutback experiments, but were unnecessary and removed for the

wavelength tuning runs.

While cutback experiments give information about the relative phase velocity of

modes, measurements of changes in clover orientation vs. wavelength, in a fiber of

constant length, give information about the relative group velocities of the modes.

Group velocity can equivalently be described as a refractive index called the group

index [59]

ng = n− λdn

dλ
. (5.1)

The change of orientation with wavelength tuning is

dξ

dλ
=

z

|`|
d(δβ)

dλ
=
πz

|`|
d

dλ

(
∆neff

λ

)
=
πz

|`|

(
1

λ

d∆neff

dλ
− ∆neff

λ2
)

)
(5.2)
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and applying Eq. 5.1 gives

dξ

dλ
= − πz

λ2|`|
∆ng. (5.3)

5.4.1 Linear Rotation: 755-835 nm

The response of clover orientation to wavelength tuning is shown to be linear

over the broad range of 755-835 nm in Fig. 5.8. A 112.2 cm segment of dispersion-

tailored fiber was set straight in the v-groove and the birefringent filter was tuned to

over a broad wavelength range. These data have been linearized by adding 90◦ where

appropriate. Best-fit linear model coefficients,
∑1

j=0Cjx
j , for LCP are

Order of Term Coefficient Standard Error

1 22647.1 116.477

x −29.8913 0.148056

and for RCP are

Order of Term Coefficient Standard Error

1 −21534. 203.415

x 28.5773 0.258285

.

5.4.2 Turn-Around Point

There exist wavelengths where, as the wavelength is tuned in a single direction,

the direction of the output clover “turns around” and starts rotating in the opposite

direction. These wavelengths are called turn-around points (TAP) and occur where

the group indices of modes cross. Clover profile orientation vs. λ is shown in Fig.

5.9. These data were taken with a fiber segment of length L = 88.6 cm. The fiber
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FIGURE 5.8. Orientation of clover nodal-line orientation ξ out of fiber vs. λ from
755-835 nm. Points are measured and lines are best-fit linear models.

segment was not the same as used in the previous section. The Stokes maps shown in

Fig. 4.5 were taken during this run, and indicate dominantly circular polarization for

the output profiles with some spatially non-uniform structure in the Q and U bases

that slightly degrade the degree of polarization.

The best fits to a quadratic model
∑2

j=0Cjx
j from Mathematica have coefficients

for LCP:

xj Cj Estimate Standard Error

1 −283223. 7147.9

x 668.179 16.8858

x2 −0.393965 0.00997214
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FIGURE 5.9. Measurement of clover nodal-line orientation ξ vs. λ to ascertain the
turn-around-point for |`| = 2 modes. Points are measured data, and curves represent
the quadratic best fits. The maxima of the LCP fit and the minima of the RCP fit
both occur at 848 nm.

and for RCP

xj Cj Estimate Standard Error

1 275110. 3815.12

x −648.854 9.01262

x2 0.382584 0.00532253

and those models both have turn-around points at 848.0 nm. The difference in group

indices ∆ng calculated using the the best fits of the measured data and Eq. 5.3 are

shown in Fig. 5.10.

These data were used in the exact mode simulation done by the Ramachandran

group as a figure of merit for validating the simulation results. With this data and

interferometric index profile measurements of a sample of our fiber, the simulation

was improved and the disparity with the results reduced, as discussed in the next

section.
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FIGURE 5.10. Best-fit model of group index differences ∆ng between modes coupled
by LCP and RCP light. The group index is unitless, and its axis is rescaled by a
factor of 10−5. The group index differences go to zero at 848.0 nm.

5.5 Ti:sapphire Spatial Rotation Experiment

Cutback experiments near 800 nm show faster spin-controlled orbital rotation

than observed with HeNe laser light.The experimental configuration is the same as

for the wavelength tuning experiments, and is shown in Fig. 5.7. The experimental

procedure is the same as used in the HeNe experiments. Results of a representative

run at λ = 800.5 nm are shown in this section. A sample of output profiles are shown

in Fig. 5.11. The same peers that assisted replicating angle fits with the HeNe data

assisted again to fit the Ti:saph run, with similar deviation in angles. The angle

measurements, each point the average of each peer’s values, as before, are shown in

Fig. 5.12. There was enough rotation to require “linearization” of the data by adding

integer multiples of 90◦ to points to bring them into alignment for fitting.
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FIGURE 5.11. Representative near-field output clover modes from CW crossed-
wire Ti:sapphire laser spin-controlled orbital rotation experiment, with etalons in the
cavity for wavelength stability.

The best-fit linear model for the LCP clover rotation is

Order of Term Coefficient Standard Error

1 1120.81 9.8274

x −18.1083 0.1432

with R2 = 0.998813, and the best-fit RCP clover rotation is

Order of Term Coefficient Standard Error

1 −1135.13 10.6583

x 18.3377 0.155308

with R2 = 0.998639, supporting highly linear rotation behavior. The rotation

rates for the two circular polarizations have the same magnitude to within fit error,

indicating no circular birefringence in this fiber segment and the same underlying δβ

for both combinations of parallel and anti-parallel modes. The direction of rotation

99



��������

60 65 70 75 80
L [cm]

-300

-200

-100

0

100

200

300

ξ [°]

LCP Clover RCP Clover

FIGURE 5.12. Angle measurements for CW crossed-wire Ti:sapphire laser spin-
controlled orbital rotation experiment at λ = 800.5 nm.

is controlled by σ, as expected. Adding integer multiples of 90◦ offsets to the data to

bring the best-fit y-intercept as close to the origin as possible, adding the input clover

orientation, and refitting yields the orientation ξ vs. L data shown in Fig. 5.13.

With the input orientation included, the linear best fit for LCP is

Order of Term Coefficient Standard Error

1 7.82564 5.52267

x −17.6305 0.0823676

with R2 = 0.999564, and the linear best fit for RCP is

Order of Term Coefficient Standard Error

1 −10.5735 6.65242

x 17.6921 0.0992172
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FIGURE 5.13. Best-fit reconstruction of rotation from input to output in CW crossed-
wire Ti:sapphire laser spin-controlled orbital rotation experiment at λ = 800.5 nm.

with R2 = 0.999371. This rotation rate indicates a spin-IOAM splitting of δβ =

35.4◦/cm, and replicates the expected behaviors both expected from theory and seen

in HeNe laser experiments at a different wavelength. At Ti:saph wavelengths, the

modes are less confined in the central core and the effect magnitude is larger, as

compared to HeNe wavelengths.

The improvement in Ramachandran group’s simulation brings the disagreement

with observed rotation rates at λ = 800.5 nm to a factor of ∼ 7. The simulation still

predicts a rotation rate faster than is observed. This is a substantial improvement

from the first simulation run, but we wanted further evidence to maximize our

certainty that we have observation of spin-IOAM interaction.

101



5.6 Dual-Rotation Experiment

Acquisition of an SLM enabled many different spatial patterns to be coupled

into the fiber in series without requiring laser cavity tweaks that tend to seriously

affect alignment. Initial investigation used Stokes maps, but consistently good

spatial uniformity indicated that this was unnecessary, so whole-beam polarization

measurements were used. Segment lengths (distances between recorded fiber lengths)

were measured with calipers in these runs, for more precise length measurements, but

the overall length was measured with a meter stick.

Modes with |`| = 3 are cut off in this fiber at all wavelengths that we can

access with the Ti:Saph (lower bound 750 nm), as predicted from modal simulations

and verified experimentally by exciting modes with |`| < 3. Switching from the

fundamental to a clover or |`| = 2 donut gave output that resembled the input (with

expected rotations), but when |`| = 3 holograms were selected, the mode did not

transmit through even a meter of fiber.

Cutback experiments including |`| = 1 modes were undertaken, and both spatial

and polarization evolution were more complicated for |`| = 1 modes than for |`| = 2

modes. In addition, |`| = 1 modes had notably lower DOP at many lengths during

these runs. However, these runs took place with a single-mode fiber acting to “clean

up” the spatial mode between the laser cavity and the SLM, and the fiber was adding

drift to the input light. This fiber was removed, and the drift problems vanished.

Due to experimental time constraints, |`| = 1 mode data were not collected in the

run presented in the next section.
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5.6.1 Design

To observe both spin-controlled orbital rotation and orbit-controlled spin

rotation, five experimental inputs comprise the input mode set, shown in Fig.

5.14. The five input profiles are clovers with left- and right-circular polarization,

horizontally polarized ` = ±2 modes, and a horizontally polarized Gausisan free-

space beam which excites the fundamental fiber mode. The fundamental carries no

IOAM and its polarization should propagate through the fiber unchanged to serve as

a “control group”.

FIGURE 5.14. Input profiles and interferograms. The profiles are generated from
holograms for Laguerre-Gauss modes, or linear combinations of them for the clover
modes. The lowest order Laguerre-Gauss mode is a standard Gaussian.

The experimental apparatus is shown in Fig 5.15. The input mount has the

fiber epoxied into place and the output mount has the fiber resting on double-stick

tape. In the dual-rotation run, the fiber holder was closed, as that had no observable

effect on the output light. Two tension relief platforms with double-stick tape on

the top prevent disruption during cutback from changing the sensitive alignment.

Experimental runs that lacked tension reliefs suffered misalignment of the input
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FIGURE 5.15. Diagram of setup used for cutback experiment. Dashed elements “flip”
in and out of the beam path during measurements. PBS = polarizing beamsplitter.
QWP = quarter-wave plate, which sets light to right- or left-circular polarization.
Mirrors are implicit for beam direction changes. Light reflected from the fiber input
face is directed to a screen (not shown) to assist with input coupling. The output
profile is measured with a beam profiler. BS1 separates the reference beam used for
interferometric measurements of the phase structure of the input and output profiles.
The reference beam is blocked for non-interferometric measurements.

during cutback. The fiber is stripped of it’s jacket before the experiment from the

tension reliefs on.

The experiment consists of taking polarization and spatial mode measurements

for all the five input beam settings in sequence, and then “cutting back” the fiber,

from which these experiments earn the name “cutback experiments.” A Fujikura

high-precision CT-30 fiber cleaver is used to cut small segments of length ∼1.2 cm off

the output end of the fiber. The fiber is then pulled straight with as much force as

is necessary to straighten the fiber, but not more, to avoid inducing strain. A meter

stick positioned on the table to move the output mount along the straight fiber path.
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5.6.2 Results

Representative power levels at the fiber input and output are given in Table 5.2.

Wavelength is continuously monitored on a Burleigh WA-1500 wavemeter, has an

initial value of λ = 799.953 nm and varies by up to 2 pm over the course of data

collection, which is small and output light is observed to have stable polarization and

spatial orientation.

TABLE 5.2 Representative input and output powers for each input spatial profile,
recorded at the beginning of the experimental run.

Input Profile Input Power [µW] Output Power [µW] Transmission [%]
Fundamental 110 52 47

Clover 54.1 19.3 36
Donut (` = +2) 162 52 32
Donut (` = −2) 163 53 33

Polarization properties of the output profiles of are shown in Fig. 5.17. The “by

eye” fits of the nodal lines were not replicated by peers in this run, as the averages

of peer measurements for previous runs have been consistent with measurements by

me only. The output profiles are shown in Fig. 5.16. Mode coupling is evident from

the modal profile distortion and the oscillation in θ. The toy model indicates that

intermodal coupling is a better explanation for oscillation in θ than excitation of

unintended modes at the input, as it better replicates the behavior observed as the

length is changed. The DOP dips as low as 0.55 for the IOAM modes, while staying

more consistent for the fundamental. Even so, the spatial, ξ, rotations (see Fig. 5.17c)

and polarization, φ, rotations are linear with fiber length and the slopes (see Table

5.3) differ by the appropriate factor of |`| and have sign controlled as expected by the

control property. The slopes indicate a common splitting of δβ = (22.1 ± 0.7)◦/cm
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where the uncertainty is the worst-case of averaging the fit uncertainties together3,

and indicate that, to within error, the anti-parallel modes are degenerate in β and

the parallel modes are degenerate in β.

FIGURE 5.16. Output spatial profiles.

These data indicate some mode coupling is taking place, but toy models put the

error expected due to mode coupling of the same order as the fit error we measure,

as detailed in Section 3.2. Strong mode coupling would result in nonlinear behavior

for ξ and φ, and no such behavior is observed. The consistency of the independent

3As opposed to adding the fit uncertainties in quadrature and then dividing by the number of
uncertainty values (N=4), which gives an error of 0.3◦/cm. The worst case is given in the main
text as it is unclear whether the errors are correlated, which would make the addition in quadrature
unsound.
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Legend applies to all plots.
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TABLE 5.3 Best-fit slopes for the spatial rotation, Rs, and polarization rotation, Rp,
shown in Fig. 5.17c. The first column is the sign of the control property, which is
plus for LCP and ` = +2; minus for RCP and ` = −2.

Rs [◦/cm] Rp [◦/cm]
Plus +11.2± 0.5 +22.2± 0.5

Minus −11.0± 0.3 −22.1± 0.5

measurements of spin-IOAM interaction with spin-controlled orbital rotation and

orbit-controlled spin rotation are strong evidence that we are observing spin-IOAM

interaction. As such, we conclude that the exact simulation is off by about an order

of magnitude.

In summary, observed experimental behavior is well described by our theoretical

description of the interaction between spin and intrinsic orbital angular momentum.

Inversion symmetry between the two control property settings is robust, indicating

the absence of circular birefringence for IOAM and SAM, and that the magnitude of

the splitting is the same for both combinations of parallel and anti-parallel modes.

Some experimental data runs took place over multiple days, and reacquisition of

higher-order mode coupling gave consistent output polarization and orientation from

day to day. These runs also indicate variation between the segments used in different

runs, and a good next step would be characterization of fiber uniformity, over length

scales longer than used in these experiments, with spin-IOAM measurements validated

against interferometric profiles of the fiber segments.

Characterization of spin-IOAM interaction effects lays the foundation for

investigation of spin and both IOAM and EOAM. In fibers with modes well separated

in β, and thus robust against intermodal coupling, inclusion of EOAM coupling could

make models of output profile orientation, that include fiber path, and allow for
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precision encoding of both quantum and classical information in spatial distribution

without the extra computation required for MIMO methods. Furthermore, design of

fibers with radial structure that produces δβ = 0 could eliminate spin-IOAM rotation

effects over some wavelength range.
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CHAPTER VI

NONLINEAR PHASE EFFECTS IN PHOTON-PAIR GENERATION

6.1 Introduction

Nonlinear optics in optical fibers made from fused silica is dominated by the

third-order Kerr nonlinearity χ(3). χ(3) processes are also referred to as four-wave

mixing (FWM) for the straightforward reason that the interactions occur between

four fields. In a quantum picture, the sum of the number of photons created in

FWM plus the number annihilated is four. The probability of a particular nonlinear

process occurring with a given set of frequencies is determined by the magnitude of

the relevant χ(3) value, energy conservation, and momentum conservation (referred

to as phase matching). The energy and phase mismatches are

∆ω =
∑
j

ωout
j −

∑
i

ωin
i (6.1)

∆~k =
∑
j

~kout
j −

∑
i

~kin
i . (6.2)

where i and j index the input and output fields, respectively. Processes with ∆ω = 0

conserve energy, and processes with ∆~k = 0 conserve momentum and processes that

meet both of these conditions occur with optimal efficiency. Processes that are not

perfectly matched exchange energy or momentum with the medium.

In the χ(3) process of modulation instability, two photons are annihilated from a

strong “pump” field and two photons are created in sidebands, historically referred

to as the signal (for the higher frequency field) and the idler (for the lower frequency
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field).1 The signal and idler share the energy of the two annihilated pump photons.

Depending on the properties of the pump field, and both fiber dispersion and length,

the pairs of photons produced by modulation instability can share this energy such

that their frequencies are entangled, or they can be separable.

If the signal and idler fields contain few photons, modulation instability is a

spontaneous process that occurs stochastically. Since the signal and idler photons

are correlated in creation time and are always created in pairs, a technique called

heralding can be employed where the arrival of one photon signals the system to

expect the arrival of the other, and only detections in both the signal and the idler

channels in time windows with the expected separation are considered. This technique

is effective for isolating single pair-creation events from detections due to noise, and

filtering on the heralding photon can be used to conditionally prepare the state of the

other [60]. In these experiments, it is common for one of the signal or the idler to be

referred to as the “herald” instead. We take the idler to serve as the herald in the

following brief description.

The quantum state created by a source that produces photons in pairs can be

described in the frequency domain by

|ψ〉 = v|vac〉+ ε

∫ ∫
dωsdωrψ(ωs, ωr)a

†
s(ωs)a

†
r(ωr)|vac〉+ ε2(HOTS). (6.3)

v =
√

1− ε2 − ε4 − ... ≈ 1 is the output vacuum amplitude, ψ(ωs, ωr) is the joint

spectral amplitude (also called the wave function) and a†j with j ∈ {s, r} is a

creation operator. Operating in the regime where ε2 is negligible, the source outputs

“biphotons” described by their joint statistics. If the source is configured such that

1Though these names are often used in the literature without adhering to the frequency ordering
convention.
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the product photons are separable, then the wave function can be factored into the

product of two wave functions

ψ(ωs, ωr) = ψs(ωs)ψr(ωr). (6.4)

Heralding is commonly performed without resolving frequency information. This

traces out the herald photon ρ̂s = Trr

(
|ψ〉s,r 〈ψ|

)
. If the wave function is entangled

in frequency, this leaves the signal photon in a mixed state, which is undesirable for

quantum information processing. If the wave function is separable in frequency, then

the signal-state purity is preserved, so it is desirable to design separable sources for

use with heralding schemes.

The separability of ψ(ωs, ωr) can be tailored by design of the group velocities

of the pump, signal, and herald fields, as well as the length of the optical fiber.

Separability can be achieved by matching the group velocity of the pump field to

be the same as the group velocity of exactly one of the signal or herald fields,

in a condition called asymmetric group-velocity matching (AGVM). Approximate

separability can be achieved when the group velocities of the signal and herald fields

are the same, a condition referred to as symmetric group-velocity matching (SGVM),

by choosing a combination of the length of the medium and the duration of the pump

pulse to balance the value of the signal and herald group velocities, as described in

more detail in Sec. 6.3.1. Choosing different ratios of these values under SGVM makes

for a source that generates spectrally entangled output photon-pairs.

The same χ(3) nonlinearity that annihilates two photons from a strong pump

mode and produces photon pairs in signal and idler modes through modulation

instability gives rise to self-phase modulation (SPM) and cross-phase modulation

(XPM), considered together as nonlinear phase modulation (NPM), which will
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be present in any real photon-pair source based on four-wave mixing. In our

characterization of the photon sources birefringent fiber sources [30, 61], we became

interested in the effects of NPM on the output state of our source. Previous work has

investigated the effects of nonlinear phase modulation on photon-pair sources, but

did not take the temporal structure into account (assume a flat temporal structure)

[62]. These effects are often neglected when designing quantum light sources, and,

in collaboration with Colin McKinstrie [63–65], we developed a theory that includes

them. We find that NPM can increase entanglement for a photon-pair state and

change the temporal structure of the process Schmidt modes.

6.2 Theory

Consider pump Ap, signal As, and idler Ar fields propagating through an optical

fiber with coordinate z denoting position and coordinate t denoting time. t is

measured in the rest frame of the pump pulse, which travels at group velocity νpg .

The coupled mode equations describing the evolution of the fields along the length of

the fiber are [66]

∂zAp = iγ
∣∣∣Ap∣∣∣2Ap (6.5)

(∂z + β′r∂t)Ar = i2γ
∣∣∣Ap∣∣∣2Ar + iγA2

pA
∗
s (6.6)

(∂z + β′s∂t)As = i2γ
∣∣∣Ap∣∣∣2As + iγA2

pA
∗
r, (6.7)

where γ is the nonlinear parameter with units 1/(W m), and all fields have, in general,

temporal and spatial dependence. We use the index i to denote the signal (s) or

idler (r) fields only, but the index µ represents all fields, i.e. includes the pump.

β′i = ∂kiz
∂ω
− ∂kpz

∂ω
= 1

νig
− 1

νpg
is the group slowness in ẑ, the direction of propagation, and
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is measured in the rest frame of the pump where β′p = 0. Aµ is the (complex-valued)

electric field, in units of
√
W . We do not include group-velocity dispersion (i.e. are

working in the narrow pulse-bandwidth limit). The term on the right-hand side of

Eq. 6.5 describes SPM, while the first term on the right-hand sides of Eqs. 6.6-6.7

represent XPM, the effects of which are neglected on the pump as the signal and idler

fields are weak.

Pump evolution is given by the solution to Eq. 6.5,

Ap(z, t) =
∣∣∣Ap(z, t)∣∣∣ exp[iφp(z, t)], (6.8)

where

φp(z, t) = φp(0, t) + γ
∣∣∣Ap(z, t)∣∣∣2z (6.9)

is the pump phase function where the first term is the input temporal phase profile

and the second term accounts for self-phase modulation (SPM).

FIGURE 6.1. Ray diagram in the pump rest frame. The gradient is representative of
the envelope of the pump, characteristic rays only are shown for the signal and idler,
and they intersect at the collision point (zc, tc). The slope of the rays is given by the
group slownesses, β′i.

We use the time-domain collision method [64] for determining the Green’s

functions which are then used to construct the biphoton output state. The Green’s

functions can be separated into four processes with transfer functions Gij where
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j ∈ {s, r} indexes the input mode and i ∈ {s, r} indexes the output mode. To

find Gss and Grr, consider an input signal impulse δ(t′), in the pump rest frame with

the pump pulse maximum at zero, (e.g. either the signal ray or idler ray in Fig. 6.1).

The phase accumulated by a field propagating under XPM only (from the first term

on the right-hand sides of Eqs. 6.6-6.7 is

φj(z, t) = 2γ

∫ t

t−β′jL

|Ap(s)|2

β′j
ds (6.10)

for a fiber of length L. The time it takes a pulse to traverse the fiber is β′iL, so at the

fiber output, (t = tout, z = L)

Gss(L, tout, t
′) = δ(tout − β′sL− t′) exp(iφs(L, tout)) (6.11)

Grr(L, tout, t
′) = δ(tout − β′rL− t′) exp(iφr(L, tout)) (6.12)

The Grs and Gsr Green’s functions describe the effect of one of the weak fields

on the other, and arise from the rightmost terms in Eqs. 6.6-6.7. Consider a ray that

describes the path of an impulse idler, δ(tr − β′rL), that starts at (0, tr − β′rL) and

ends at (L, tr). See Fig. 6.1. Define β′rs ≡ β′r − β′s. The idler ray intersects the signal

ray at the collision point, (zc, tc), where

zc = (t′r − (tr − β′rL)) /β′rs, tc = (β′rt
′
r − β′s(tr − β′rL))/β′rs. (6.13)

Integrating the modulation instability term in Eqs. 6.6 - 6.7 from the input to the

collision point yields G+
rs(zc, tc) = iγ|Ap(zc, tc)|2 exp[i(2φp(zc, tc) − φs(zc, tc))]/β

′
rs.

After the collision, the idler field propagates to the output under XPM (expressed

as φc→Li (zc, L, ti)), which is the same phase term given in Eq. 6.10 with the limits
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changed to integrate from the collision point to the fiber output), so the Green’s

functions are (for β′rs > 0)

Grs(L, t, t
′) =

iγ

β′rs

∣∣∣Ap(zrsc , trsc )
∣∣∣2H(t′ − t+ β′rL)H(t− β′sL− t′)

· exp
[
i
(
2φp(z

rs
c , t

rs
c )− φs(zrsc , trsc ) + φc→Lr (zrsc , L, t)

)]
(6.14)

zrsc =
1

β′rs
(t′ − (t− β′rL)) (6.15)

trsc =
1

β′rs
(β′rt

′ − β′s(t− β′rL)) (6.16)

and

Gsr(L, t, t
′) =

iγ

β′rs

∣∣∣Ap(zsrc , tsrc )
∣∣∣2H(t′ − t+ β′rL)H(t− β′sL− t′)

· exp
[
i
(
2φp (zsrc , t

sr
c )− φr (zsrc , t

sr
c ) + φc→Ls (zsrc , L, t)

)]
(6.17)

zsrc =
1

β′rs
((t− β′sL)− t′) (6.18)

tsrc =
1

β′rs
(β′r(t− β′sL)− β′st′) . (6.19)

The output state of the signal and idler biphoton can be described with the

Green’s functions. Let the output times for the signal and idler fields be ts and tr.

The collision coordinates coordinates above in Eqs. 6.18-6.15 are not common in

that t and t’ are the input and output time for different fields, with different group

velocities, in each equation. The common collision coordinates and temporal window
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function are

β′rs > 0 β′rs < 0

tc (β′rts − β′str)/β′rs (β′str − β′rts)/β′sr

zc L+ (ts − tr)/β′rs L+ (tr − ts)/β′sr

Wc H(tr − ts)H(ts − tr + β′rsL) H(ts − tr)H(tr − ts + β′srL)

(6.20)

where H is a Heaviside step function. Modulation instability with a vacuum state for

the signal and idler fields at the input, denoted with the a subscript, and produces

pairs of photons which exit the fiber at the output, denoted with the subscript b,

described in the time domain by the state

|ψ〉 = |vac〉a = v|vac〉b + ε

∫ ∫
dtsdtrψ(ts, tr)b

†
s(ts)b

†
r(tr)|vac〉b + ε2(HOTS). (6.21)

where v =
√

1− ε2 − ε4 − ... ≈ 1 is the output vacuum amplitude, and we work in

the Heisenberg picture where time evolution does not change the state, but causes

the state to be represented in a different basis. In the low-gain regime, ε2 � ε, we

can neglect the higher-order terms (HOTS). The input and output ladder operators

are related to each other through the backward Green’s functions, denoted hij with

i, j ∈ {s, r},

as(t) =

∫
dt′ hss(t, t

′)bs(t
′) +

∫
dt′ hsr(t, t

′)b†r(t
′) (6.22)

ar(t) =

∫
dt′ hrr(t, t

′)br(t
′) +

∫
dt′ hrs(t, t

′)b†s(t
′), (6.23)
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and the reciprocity equations

hss(t, t
′) = g∗ss(t

′, t) = G∗ss(L, t
′, t) hrs(t, t

′) = −gsr(t′, t) = −Gsr(L, t
′, t)

(6.24)

hrr(t, t
′) = −g∗rr(t′, t) = −G∗rr(L, t′, t) hsr(t, t

′) = grs(t
′, t) = Grs(L, t

′, t) (6.25)

relate the backward Green’s functions to the forward Green’s functions. Using the

fact that Gss and Grr are proportional to delta functions, it follows that the joint

temporal amplitude is

ψ(ts, tr) = −Grs(L, tr, ts − β′sL) exp(iφs(L, ts)) (6.26)

= −Gsr(L, ts, tr − β′rL) exp(iφr(L, tr)) (6.27)

=
−iγ
|β′rs|

|Ap(zc, tc)|2Wc(ts, tr) exp
[
i
[
2φp(zc, tc) + φc→Lr (zc, L, tr) + φc→Ls (zc, L, ts)

]]
,

(6.28)

where φc→Li indicates the phase accumulated by a field due to XPM from the

collision point through exiting the fiber. This phase structure has a straightforward

interpretation: the pump pulse enters the fiber and undergoes SPM until a photon-

pair is produced, and then the signal and idler fields propagate under XPM until they

exit the fiber. The pair creation process can happen anywhere along the length of

the fiber, and the state describes the probability amplitude distribution for detecting

both an idler photon at tr and a signal photon at ts.
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6.2.1 Gaussian Pulse Shapes

To proceed from here, we will assume a Gaussian temporal profile for the pump

pulse, with a flat temporal phase profile at the fiber input, φp(0, t) = 0. The functions

that describe the state are then

∣∣Ap(zc, tc)∣∣2 =
PP√
π

exp

(
−t2c
σ2
p

)
(6.29)

φp(zc, tc) = γ
∣∣Ap(zc, tc)∣∣2zc (6.30)

φc→Li (zc, L, ti) =
PP γ σp
β′i

(
erf

(
ti − β′i zc

σp

)
− erf

(
ti − β′i L

σp

))
, (6.31)

where i ∈ {s, r}, zc = L + (tr − ts)/β
′
sr, tc = (β′str − β′rts)/β

′
sr, and erf is an error

function. From here on out, we’ll work with β′rs < 0 variables from Table 6.20.

6.2.2 Perturbation Theory Limits

To check the bounds of the perturbation theory, we interpret ε2 as the probability

of one photon-pair being measured at the output. Using the appropriate term from

Eq. 6.21,

〈1ts , 1tr |1ts , 1tr〉 = ε2
∫ ∞
−∞

∫ ∞
−∞
|ψ(ts, tr)|2dts dtr, (6.32)

we can absorb all the probability into ε2, which is to say that if we renormalize ψ

such that 1 =
∫∞
−∞

∫∞
−∞ |ψ(ts, tr)|2dts dtr then

ε2 = γ2P 2
P

σpL

|β′sr|

√
π

2
= φ2

max

σp
|β′sr|L

√
π

2
, (6.33)

where φmax = γPPL is the maximum phase accumulated over the length of the fiber

due to SPM.
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For Gaussian pulses and symmetric group-velocity matching, simulation indicates

that the maximum purity occurs when σp/(β
′
srL) ≈ 1/4. Assuming this condition,

Eq. 6.33 becomes

ε2 = φ2
max

√
π

32
. (6.34)

We neglected terms of ε2 in our derivation of ψ by assuming ε� 1, so the maximum

phase accumulated, φmax, must also be small for separable states under symmetric

group-velocity matching. For cases other than symmetric group-velocity matching, ε

can be kept small, while φmax is not small, by adjusting the aspect ratio σp
|β′sr|L

, within

bounds set by neglecting dispersion, avoiding stimulated Brillouin scattering, and

ensuring that the walkoff of the products allows for coincident detection to exclusively

come from pairs generated by the same pump pulse.

6.3 Numerical Simulation

Code for calculating the state, performing Schmidt decompositions and state

purity are implemented in Mathematica.

6.3.1 Phase Structure and Effects

The structure of the wave function, ψ, also called a joint temporal amplitude

(JTA) in the time domain, is shown in is shown in Fig. 6.2). The amplitude is a

Gaussian traveling in (tr, ts) space an angle defined by θ = arctan[β′r/β
′
s], truncated

by the window function Wc. The phase structure due to SPM in the pump is

oriented along θ, and the ratio between σp and the window width, β′srL determine the

separability of the state. Entangled light is produced when θ = ±45◦, and the aspect

ratio, σp/(β
′
srL), is either large or close to zero.
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Separable states, where ψ(ts, tr) = f(ts)g(tr) for some functions f and g, can

be created through asymmetric group-velocity matching (AGVM), where β′i = β′p for

exactly one of the signal or the idler fields, and approximately separable states can be

made with symmetric group-velocity matching (SGVM), where β′s = ±β′r ∴ θ = ±45

and the aspect ratio, σp/(β
′
srL) ≈ 1/4 for Gaussian pump profiles. The plots in Fig.

6.2 were generated with γ = 0.01, σp = 1, L = 4, and β′s, β
′
r in the range {−1, 1}

chosen for the desired θ = arctan(β′r/β
′
s) with the constraint that β′sr = 1. That is

to say that I chose a separable SGVM condition and then varied θ. Highly entangled

states with a small aspect ratio are optimally oriented to gain entanglement from

SPM (and are investigated in Section 6.3.2.2), while those with an aspect ratio much

greater than 4 can not simultaneously accrue appreciable φmax while ε remains small.

The JTA gives the probability amplitude of detecting the idler at tr and the

signal at ts, at the fiber output, where the times are referenced to the pump peak

exiting the fiber at time zero. A biphoton created at the fiber exit and detected at

ts = tr = 0 will have a phase imprint from SPM with no contribution from XPM,

as is seen at the origin of the SPM phase plots of Fig. 6.2. Biphotons created at the

fiber input have no SPM phase contribution, but travel with different group velocities

under XPM, creating the two phase lobes shown in the XPM plots of Fig. 6.2. The

steepness of the phase lobes is set by σp, and β′r and β′s control the slope of the XPM

phase lobes independently.

How different is the state coming out of a fiber versus what you think it would

be if you neglect the nonlinear phase effects? One way to gauge this is by taking

the overlap integral of the state without nonlinear phase effects and the state with
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nonlinear phase effects included:

O = 〈ψon|ψoff〉. (6.35)

Fig. 6.3b shows the effects of increasing the power on O using the same group velocities

used to make the JTAs displayed in Fig. 6.2.

It is common for one photon from a biphoton source, for example the idler, to act

as a herald, and if the properties of the herald are not resolved, then the signal is in

a mixed state after detection of the idler. Mixed states are undesirable for quantum

information processing (e.g. interference at gates). Here, we use purity,

P = Tr(ρ2
s), (6.36)

where ρs is the reduced density matrix with the idler traced out, to refer to the purity

of the reduced system of the signal only. This assumes that the idler is detected, but

its time of arrival is not resolved. We perform the numerical calculation by taking

the sum of the Schmidt coefficients to the fourth power (which is equivalent to Eq.

6.36). Fig. 6.3a shows the change in purities due to changing power for states with

the same group velocities used in Fig. 6.2. The purity degradation vs. ε2 due to NPM

is a straight line (in this regime), so to investigate which θ degrades purity the most,

we measure the degradation as the purity at ε2 = 0.005 minus the purity at ε2 = 0.48,

(see Fig. 6.4).

Under SGVM with a separable aspect ratio, the phase structure entangles

signal and idler photons, but the effect on purity is small, as is necessitated in our

perturbation regime by the constraint of Eq. 6.34. The maximum purity achievable

under SGVM, neglecting nonlinear phase, is 0.82 [67]. Using the same parameters,
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Fig. 6.4 shows that the purity degrades the most at around (−45 ± 26.6)◦, which is

−71.6◦ or −18.4◦. Under AGVM, the phase structure is exactly separable and the

purity is not dependent on pump power.

6.3.2 Realistic Cases

We use birefringent fiber sources after Smith et al. [30] and report realistic values

for a Fibercore HB750 fiber, and the very similar HB800 fiber. We use the parameter

values: γ = ω0n2

cAeff
and c = 299792458 m/s. Following Agrawal [66], n2 = 7.7 ×

10−21 m2/W (the recommended 2.3× 10−20 m2/W, divided by 3 because we assume a

cross polarized process). The effective area was calculated using HB800 parameters2

to be Aeff = 13µm2 at λp = 802 nm, and Aeff = 22µm2 at λp = 1089 nm, and

Aeff = 22µm2 at 1089 nm. Pulses were assumed to have Gaussian temporal profiles,

which means their peak power PP = Pave/(Rσp
√
π) where R is the repetition rate,

which we take to be 76 MHz.

6.3.2.1 SGVM - separable

For separable SGVM the effects of NPM do not change the state much within the

domain of validity the perturbation theory, as we expect from condition 6.34. That is

to say, as long as the source is run in the regime where the probability of more than one

photon-pair creation event within the detection time window is negligible, the effects

from NPM on the state are also small. Perfect SGVM is not experimentally achievable

in the HB750 due to its dispersion structure, and we work around θ = −42◦, so we

use our parameters from Section 6.3.2 and L = 3.3 m as a typical case. Degradation

2The effective areas of the fundamental modes of the HB750 and HB800 are similar enough to
be used interchangeably.
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of the overlap and purity is shown in Fig. 6.5. The Schmidt modes as a function of

ε2 are shown after the references in Table 6.1. Though the effect is small, we include

the Schmidt modes for the wave function in table 6.1. Neglecting NPM is a good

approximation in the low-gain regime for separable SGVM.

6.3.2.2 SGVM - entangled

Now we examine sources designed to produce entangled photon-pairs. Using a

length of L = 100 m for our fiber, the state has an aspect ratio of 0.0082, and is

shown in Fig. 6.6. The degradation of the purity and overlap is shown in Fig. 6.7.

At ε2 = 0.105, O = 0.38 and the Schmidt number K = 1/P increases from 17

with NPM off to K = 24 with NPM on. Schmidt number is an entanglement

monotone [68], which means that the amount of entanglement resource cannot

decrease as K increases.3 Thus, increased Schmidt number suggests that NPM

increases the amount of entanglement resource in the output state, but utilization of

that entanglement would require a phase-sensitive detection method, such as temporal

mode interferometry [69]. The Schmidt modes are shown in Table 6.2.

6.3.2.3 AGVM - short pulses

The NPM phase structure has the largest effect on purity and overlap when φmax

is maximized, which can be accomplished while staying in the ε2 � 1 regime, (see Eq.

6.33), by minimizing σp/(|β′sr|L). The two extreme regimes are short pulse duration,

which is limited in our model by the negligence of group velocity dispersion, and long

pulse duration, limited by stimulated Brilloun scattering and walkoff.

3Strictly speaking, the amount of entanglement resource could, pathologically, stay the same.
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Agrawal’s dispersion length LD = σ2
p/|β′2| where β′2 is the GVD parameter, and

neglecting dispersion is a good approximation when L � LD. Keeping L = 3.3 m,

we set pulse duration to σp = 1 ps, which is in the range LD/L ≈ 20. AGVM is

achieved in the HB750 fiber at λp = 1089µm, λs = 825.1 nm, λr = 1602 nm, which

gives θ = 0.01 ≈ 0. Under AGVM, the purity is unaffected by increasing ε2, i.e. peak

power, but the nonlinear phase contribution to the state is substantial, reducing the

overlap, as shown in Fig. 6.8. At ε2 = 0.105, which corresponds to PP = 285 W, the

overlap is 0.83. The Schmidt modes for the process are changed by NPM, as shown

in Table 6.3. The phase structure is simple in the flat AGVM case.

What if the pump is tuned a little to change the central wavelengths of the photon

pairs? This seems a likely case for neglect of NPM resulting in a smaller actual purity

than expected. Small changes from perfect AGVM can result in purity degradation,

as shown for a 1.75 nm detuning to λp = 1091 nm, λs = 825.1 nm, λr = 1610 nm,

which corresponds to θ = 0.9◦. This reduces the purity by creating a non-separable

amplitude, but NPM further reduces the purity as PP increases. The resulting ε2

dependence is shown in Fig. 6.9. The Schmidt modes for this wave function, Si where

i ∈ {s, r}, are shown in Table 6.4. The purity is decreased from about 0.88 to 0.74,

a degradation of about 0.14.

6.3.2.4 AGVM - long fibers

Theoretically, the regime where perturbation theory works and φmax is largest is

with large pulse durations and long fiber lengths. This follows from combining the

LD = 20L heuristic with the ratio σp/(|β′sr|L). Practically, long fibers and long pulse

durations make for a cumbersome, low-brightness photon-pair source.
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Long fibers can make for large walkoff times between signal and idler fields,

and this time must be kept small enough to be sure that coincident detections are

coming from a single photon-pair creation event. Allowing products generated by one

pump pulse to overlap with those created by a temporally adjacent pump pulse would

increase false coincidences. Defining the pump pulse train period Tp ≡ 1/R, and the

coincidence window ∆t, I propose the guideline

Tp > 3σp + β′srL+ ∆t (6.37)

to ensure that coincidences are not attributable to MI products from adjacent pump

pulses.

To avoid Brilloun scattering, I chose σp = 0.5 ns on rough guidance from

Agrawal’s text [66], and chose L = 500 m to stay on the good side of condition

6.37 by ∼ 2 ns. At λp = 1091 nm, λs = 825.1 nm, λr = 1610 nm, where θ = 0.9◦, the

purity and overlap degradation is shown in Fig. 6.10.

In search of the worst case, lowering the repetition rate of the laser allows for use

of much longer fibers while remaining in the perturbative regime. Using σp = 0.5 ns,

L = 10 km (which is inside the limit of order one hundred km, set by fiber loss, for

the transmission of quantum information [70]), R = 5 kHz, and λp = 1089.8 nm, λs

= 825.1 nm, λr = 1604 nm, give θ = 0.27◦, which is a large enough angular mismatch

to give large degradation over the long length, as shown in Fig. 6.11.

6.4 Discussion

Self- and cross-phase modulation modify the phase structure of biphotons out of

a fiber source utilizing modulation instability, which can decrease purity if neglected
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when designing a separable source. In the low-gain regime, the effects of NPM

on sources designed with separable symmetric group-velocity matching are small.

For entangled sources designed with symmetric group velocities, the state can be

appreciably affected, causing changes to the Schmidt modes. The increased Schmidt

number in this case suggests entanglement resource generation is improved, and could

be accessed with phase-sensitive Schmidt mode detection. Separable sources utilizing

short pulses and perfect asymmetric group-velocity matching show appreciable change

in state structure but no change in purity, under NPM. If such a source is detuned to

slightly imperfect asymmetric group-velocity matching, then purity will decrease due

to NPM. Long fibers with long pump pulse durations are the most effected by NPM,

and show substantial state change and purity degradation.
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FIGURE 6.2. Amplitude and phase of ψ. Top row: θ = −45◦, middle row: −67.5◦,
and bottom row: θ = −90◦. The purpose of these plots is to show the structure
of ψ; the input parameters are arbitrary. The columns from left to right show:
amplitude, SPM phase contribution, XPM phase contribution, and total nonlinear
phase contributions.
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(a) (b)

FIGURE 6.3. Purities and Overlaps vs. ε2 for different group-velocity matching
conditions, labeled by θ in the legend.

FIGURE 6.4. Degradation vs. θ with constant aspect ratio, σp/(|β′sr|L).

FIGURE 6.5. θ = −42◦: Degradation for the HB750 fiber under separable SGVM.
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FIGURE 6.6. θ = −42◦: Absolute value and phase of ψ(ts, tr). The yellow regions of
zero phase corresponding to |ψ| = 0 are not meaningful.

FIGURE 6.7. θ = −42◦: Degradation for HB750 fiber under entangled SGVM. The
plot on the right is zoomed to show purity degradation.

FIGURE 6.8. Overlap and purity for short pulses and AGVM parameters.
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FIGURE 6.9. Purity and overlap vs. ε2 with short pulses close to AGVM, with
θ = 0.9◦.

FIGURE 6.10. θ = 0.9◦, L = 500 m, σp = 0.5 ns: long fiber degradation.

FIGURE 6.11. θ = 0.27◦, L = 10 km, σp = 0.5 ns: long fiber degradation with low
repetition rate R = 5 kHz.
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CHAPTER VII

CONCLUSIONS

In this dissertation, we investigate interaction between properties of light as

it propagates through a medium. We begin in Chapter II with a brief overview of

spatial modes in free space and in optical fiber, and describe how coupling between the

intrinsic spin of light and its intrinsic orbital angular momentum (IOAM) gives rise

to fine structure of the longitudinal propagation constants of bound fiber modes. We

discuss how excitation of parallel and anti-parallel combinations of fiber modes exhibit

the rotational beating effects of spin-controlled orbital rotation and orbit-controlled

spin rotation, and how their measurement reveals the splitting due to spin-IOAM

interaction. In Chapter III, we use a toy model to garner insight into the effects of

the excitation of undesired modes, along with the desired ones, both at the input of

the fiber, and due to defect-driven constant unitary coupling with propagation.

Experimental methods for preparing, coupling, and measuring our desired spatial

and polarization states after propagation through a few-mode fiber are detailed in

Chapter IV. Chapter V explores experimental observations of spin-IOAM interaction

and wavelength tuning experiments used as figures of merit for improvement of

simulations of the exact modes of our experimental fiber. Our theoretical predictions

from Chapter II describe observed behavior well, even in the presence of weak mode

coupling. Future research into the simultaneous coupling of extrinsic as well as

intrinsic orbital angular momentum to spin could allow for precise encoding of classical

or quantum information in the spatial distribution of light sent through optical fibers.

Chapter VI presents theoretical investigation of the effects of self- and cross-phase

modulation on photon sources operating with a single spatial profile. After discussion
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of desired behavior for quantum light sources, we describe a model predicting how

both nonlinear phase modulation effects change the biphoton state output from a

fiber source and use a numerical simulation to explore regimes in which the effects

can be safely neglected and when neglecting them will produce errors in the complex-

valued temporal structure of the wave function and the purity of the state describing

signal photons upon heralding. We find that effects of NPM are small on separable

sources utilizing symmetric group velocity matching, but appreciably change the

state of entangled sources with the same group velocity matching scheme. We also

find suggestion that nonlinear phase modulation could provide more entanglement

resource from fiber photon sources for quantum information applications if phase-

sensitive detection methods, such as temporal mode interferometry, are used. We find

that NPM has the largest effect on state structure and photon purity after heralding

for long pump pulses in long fibers with low repetition rates.
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APPENDIX

SPIN-ORBIT INTERACTION WITH EXACT MODES

Recall that beams carrying single-valued IOAM have a phase profile exp[i`φ] with

` = µ|`| and beams with circular polarization have polarization vector êσ. Two exact

modes with propagation constants β1 and β2 will exhibit beating effects dependent

upon ∆β = β2 − β1, if excited together. Let the central propagation constant be

β̄ = (β2 + β1)/2 and half the difference be δβ′ = ∆β/2 = (β2 − β1)/2. The beating

between a parallel and an anti-parallel mode with the same underlying quantum

numbers, |`| and m (radial index), is driven by the linearized azimuthal polarization

correction to the propagation constant δβ2 from Eq. 2.41, which is the same as δβ′ in

a cylindrically symmetric waveguide in the low contrast (weak guidance) limit with

δβ′ � β̄, which we assume in this chapter. The exact central propagation constant

β̄ corresponds to the scalar mode propagation constant β̃ plus the linearized radial

polarization correction as β̄ = β̃ + δβ1.

The scalar approximate modes referred to as “linearly polarized” or LP modes

have the form:
⇀

LP`,m(ρ, φ, z) = ψ|`|,m(ρ)g`(φ)ei(β̃z−ωt)ê (A.1)

where ψ|`|,m(ρ) is the radial mode function and g`(φ) = cos(`φ) for even parity modes

and g`(φ) = sin(`φ) for odd modes, and ê is a linear polarization vector, e.g. x̂

or ŷ. In the low contrast (weak guidance) limit, the exact modes transverse spatial

distribution and polarization (sans traveling wave phase factors) take the simple form
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of combinations of LP modes [48]

⇀

HE
e

|`|+1,m = ψ|`|,m(ρ)(x̂ cos(|`|φ)− ŷ sin(|`|φ)) (A.2)

⇀

EH
e

|`|−1,m = ψ|`|,m(ρ)(x̂ cos(|`|φ) + ŷ sin(|`|φ)) (A.3)

⇀

HE
o

|`|+1,m = ψ|`|,m(ρ)(x̂ sin(|`|φ) + ŷ cos(|`|φ)) (A.4)

⇀

EH
o

|`|−1,m = ψ|`|,m(ρ)(x̂ sin(|`|φ)− ŷ cos(|`|φ)). (A.5)

In a single-step-index fiber, ψ|`|,m(ρ) takes the form

ψ|`|,m(ρ) ∝


J|`|(Uρ/a)

J|`|(U)
: ρ ≤ a

K|`|(Wρ/a)

K|`|(W )
: ρ > a

(A.6)

where a is the core radius, U and W are modal constants for the core and cladding

respectively, J is a Bessel function of the first kind, and K is a modified Bessel

function of the second kind.

Including the traveling wave phase factors, the combination of exact fiber modes

that is analogous to the combinations of LP modes that make CP modes is

M(σ, µ|`|) ≡ ei(β̄z−ωt)

2

{
e−i|δβ

′|z
⇀

HE
e

|`|+1,m(1 + σµ) + ei|δβ
′|z

⇀

EH
e

|`|−1,m(1− σµ)

+i[e−i|δβ
′|z

⇀

HE
o

|`|+1,m(µ+ σ) + ei|δβ
′|z

⇀

EH
o

|`|−1,m(µ− σ)]
}

(A.7)

where superscripts e and o refer to even and odd parity of the mode under a 1D parity

flip around the x-axis. After setting σ = ±1 and µ = ±1, which leaves combinations

of EH modes only or HE modes only, it is easy to show by substituting Eqs. A.2-

A.5 into Eq. A.7 that these combinations take the form M(σ, `) ∝ ei`φêσ and are
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eigenmodes of IOAM and SAM. For example,

M(+1,+|`|) =

(
⇀

HE
e

|`|+1,m + i
⇀

HE
o

|`|+1,m

)
ei[(β̄−|δβ

′|)z−ωt]

=
(
ψ|`|,m(ρ) [(cos(|`|φ) + isin|`|φ)x̂+ (−sin(|`|φ) + icos(|`|φ))ŷ]

)
ei[(β̄−|δβ

′|)z−ωt]

(A.8)

= ψ|`|,m(ρ)ei`φ(x̂+ iŷ)ei[(β̄−|δβ
′|)z−ωt]

= ψ|`|,m(ρ)ei`φê+e
i[(β̄−|δβ′|)z−ωt] (A.9)

where line A.8 shows explicitly that a combination of two exact modes is a

combination of all four LP modes with particular phase relationships to construct

a (polarization corrected) CP mode on line A.9. If cylindrical symmetry is broken,

modes of different parity within the same mode family e.g. HEo and HEe, have

different propagation constants, and OAM combinations of modes are unstable [71].

A.1 Spin-Controlled Orbital Rotation

Unnormalized combinations of exact modes with the same SAM but opposite

IOAM are:

M(σ,+|`|)+M(σ,−|`|)

=
ei(β̄z−ωt)

2

{
e−i|δβ

′|z
⇀

HE
e

|`|+1,m(1 + σ)+ei|δβ
′|z

⇀

EH
e

|`|−1,m(1− σ)

+i
[
e−i|δβ

′|z
⇀

HE
o

|`|+1,m(1 + σ)+ei|δβ
′|z

⇀

EH
o

|`|−1,m(1− σ)
]

+e−i|δβ
′|z

⇀

HE
e

|`|+1,m(1− σ)+ei|δβ
′|z

⇀

EH
e

|`|−1,m(1 + σ)

+i
[
e−i|δβ

′|z
⇀

HE
o

|`|+1,m(−1 + σ)+ei|δβ
′|z

⇀

EH
o

|`|−1,m(−1− σ)
]}
. (A.10)
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Factoring HE and EH modes separately,

e−i|δβ
′|z

⇀

HE
e

|`|+1,m(1 + σ) + e−i|δβ
′|z

⇀

HE
e

|`|+1,m(1− σ)

= 2
⇀

HE
e

|`|+1,me
−i|δβ′|z (A.11)

ei|δβ
′|z

⇀

EH
e

|`|−1,m(1− σ) + ei|δβ
′|z

⇀

EH
e

|`|−1,m(1 + σ)

= 2 EHe
|`|−1,me

i|δβ′|z (A.12)

ie−i|δβ
′|z

⇀

HE
o

|`|+1,m(1 + σ) + ie−i|δβ
′|z

⇀

HE
o

|`|+1,m(−1 + σ)

= 2 i σ
⇀

HE
o

|`|+1,me
−i|δβ′|z (A.13)

iei|δβ
′|z

⇀

EH
o

|`|−1,m(1− σ) + iei|δβ
′|z

⇀

EH
o

|`|−1,m(−1− σ)

= − 2 i σ
⇀

EH
o

|`|−1,me
i|δβ′|z. (A.14)

Thus, Eq. A.10 becomes

M(σ,+|`|) +M(σ,−|`|)

=

(
⇀

HE
e

|`|+1,m + i σ
⇀

HE
o

|`|+1,m

)
e−i |δβ

′|z +

(
⇀

EH
e

|`|−1,m − i σ
⇀

EH
o

|`|−1,m

)
ei |δβ

′|z. (A.15)
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Substituting the low contrast expressions for the exact modes A.2-A.5 into A.15 yields

ψ|`|,m(ρ)
[
e−i |δβ

′|z
((
x̂ cos(|`|φ)− ŷ sin(|`|φ)) + i σ(x̂ sin(|`|φ) + ŷ cos(|`|φ)

))
+ei |δβ

′|z
(

(x̂ cos(|`|φ) + ŷ sin(|`|φ))− i σ
(
x̂ sin(|`|φ)− ŷ cos(|`|φ)

))]
= ψ|`|,m(ρ)

[
e−i |δβ

′|z
(

cos(|`|φ)(x̂+ iσŷ) + sin(|`|φ)(iσx̂− ŷ)
)

+ei |δβ
′|z
(

cos(|`|φ)(x̂+ iσŷ)− sin(|`|φ)(iσx̂− ŷ)
)]

(A.16)

Using êσ ≡ x̂+ iσŷ and (iσx̂− ŷ) = iσ(x̂+ iσŷ), Eq. A.16 becomes

ψ|`|,m(ρ) êσ

[
e−i |δβ

′|z(cos(|`|φ) + iσsin(|`|φ)
)

+ ei |δβ
′|z(cos(|`|φ)− iσsin(|`|φ)

)]
=ψ|`|,m(ρ) êσ

[
e−i(|δβ

′|z−σ|`|φ) + ei(|δβ
′|z−σ|`|φ)

]
= 2ψ|`|,m(ρ) êσcos(|`|φ− σ|δβ′|z). (A.17)

The direction of the rotation is controlled by σ and δβ controls the rotation rate.

Letting ξ ≡ |`|φ− σ|δβ′|z be the phase of this rotating profile, a surface of constant

phase is identified by setting ξ = K, where K is an arbitrary constant so

K = |`|φep − σ|δβ′|z (A.18)

∴ φep = σ
|δβ′|z
|`|

, (A.19)

where φep is the azimuthal coordinate of the surface equal phase. The rotation rate

Rs of the mode is

Rs ≡
dφep
dz

= σ
|δβ′|
|`|

. (A.20)

This agrees with the results of the perturbative approach in Eq. 2.44.
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A.2 Orbit-Controlled Spin Rotation

Orbit-controlled spin rotation consists of combinations of common OAM, but

opposite circular polarizations combining to make linear polarization,

M(+1, µ|`|) +M(−1, µ|`|)

=
1

2

[
e−i|δβ

′|z
⇀

HE
e

|`|+1,m(1 + µ) + ei|δβ
′|z

⇀

EH
e

|`|−1,m(1− µ)

+i[e−i|δβ
′|z

⇀

HE
o

|`|+1,m(µ+ 1) + ei|δβ
′|z

⇀

EH
o

|`|−1,m(µ− 1)]

+e−i|δβ
′|z

⇀

HE
e

|`|+1,m(1− µ) + ei|δβ
′|z

⇀

EH
e

|`|−1,m(1 + µ)

+i[e−i|δβ
′|z

⇀

HE
o

|`|+1,m(µ− 1) + ei|δβ
′|z

⇀

EH
o

|`|−1,m(µ+ 1)]
}
. (A.21)

Factoring EH and HE modes separately,

e−i|δβ
′|z

⇀

HE
e

|`|+1,m(1 + µ) + e−i|δβ
′|z

⇀

HE
e

|`|+1,m(1− µ)

= 2
⇀

HE
e

|`|+1,me
−i|δβ′|z (A.22)

ei|δβ
′|z

⇀

EH
e

|`|−1,m(1− µ) + ei|δβ
′|z

⇀

EH
e

|`|−1,m(1 + µ)

= 2 EHe
|`|−1,me

i|δβ′|z (A.23)

ie−i|δβ
′|z

⇀

HE
o

|`|+1,m(µ+ 1) + ie−i|δβ
′|z

⇀

HE
o

|`|+1,m(µ− 1)

= 2 i µ
⇀

HE
o

|`|+1,me
−i|δβ′|z (A.24)

iei|δβ
′|z

⇀

EH
o

|`|−1,m(µ− 1) + iei|δβ
′|z

⇀

EH
o

|`|−1,m(µ+ 1)

= 2 i µ
⇀

EH
o

|`|−1,me
i|δβ′|z. (A.25)
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Thus, Eq. A.21 becomes

M(+1, µ|`|) +M(−1, µ|`|)

=

(
⇀

HE
e

|`|+1,m + i µ
⇀

HE
o

|`|+1,m

)
e−i |δβ

′|z +

(
⇀

EH
e

|`|−1,m + i µ
⇀

EH
o

|`|−1,m

)
ei |δβ

′|z. (A.26)

Substituting the low contrast expressions for the exact modes A.2-A.5 into A.26 yields

M(+1, µ|`|) +M(−1, µ|`|)

= ψ|`|,m(ρ)
{[(

x̂ cos(|`|φ)− ŷ sin(|`|φ)
)

+ iµ
(
x̂ sin(|`|φ) + ŷ cos(|`|φ)

)]
e−i |δβ

′|z

+
[
(x̂ cos(|`|φ) + ŷ sin(|`|φ)) + iµ

(
x̂ sin(|`|φ)− ŷ cos(|`|φ))

)]
ei |δβ

′|z
}
.

(A.27)

Noting that cos(|`|φ) = cos(µ|`|φ) because cos is even, and grouping cos(|`|φ) +

iµ sin(|`|φ) = ei`φ gives an overall IOAM phase factor common to all terms

M(+1, µ|`|) +M(−1, µ|`|)

= ψ|`|,m(ρ)ei`φ
[

(x̂+ iµŷ) e−i |δβ
′|z + (x̂− iµŷ) ei |δβ

′|z
]

= 2ψ|`|,m(ρ)ei`φ
[
cos(|δβ′|z)x̂+ µsin(|δβ′|z)ŷ

]
(A.28)

which is linear polarization with orientation on the Poincaré sphere (which we’ll call

φ̃ here to avoid confusion with the azimuthal coordinate in configuration space)

φ̃ = µ|δβ′|z (A.29)

and rotation rate Rp

Rp ≡
dφ̃

dz
= µ|δβ′|. (A.30)
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This agrees with the results of the perturbative approach in Eq. 2.46.
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