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DISSERTATION ABSTRACT

Kyle J. Welch

Doctor of Philosophy

Department of Physics

September 2016

Title: Emergent Thermodynamics in a System of Macroscopic, Chaotic Surface Waves

The properties of conventional materials are inextricably linked with their molecular

composition; to make water flow like wine would require changing its molecular identity. To

circumvent this restriction, I have contstructed and characterized a two-dimensional metafluid,

so-called because its constitutive dynamics are derived not from atoms and molecules but from

macroscopic, chaotic surface waves excited on a vertically agitated fluid. Unlike in conventional

fluids, the viscosity and temperature of this metafluid are independantly tunable. Despite this

unconventional property, our system is surprisingly consistent with equilibrium thermodynamics,

despite being constructed from macroscopic, non-equilibrium elements. As a programmable

material, our metafluid represents a new platform on which to study complex phenomena such

as self-assembly and pattern formation. We demonstrate one such application in our study of

short-chain polymer analogs embedded in our system.

Chapter 2 has been published in Physical Review E [15]. The writing and analysis were

performed by me as primary author. Eric Corwin is listed as a coauthor as he advised this work.

The material in this chapter is also co-authored with Raghuveer Parthasarathy, for use of his

image analysis software and contributions to the early design and motivation of the experiment,

and Isaac Hastings-Hauss, and undergraduate who helped with construction of the system.

Chapter 4 has also been published in Physical Review E [16]. The writing and analysis were

performed by me as primary author. Eric Corwin is listed as a coauthor as he advised this

work. The material in this chapter is also coauthored with Clayton Kilmer, an undergraduate

who helped with data collection. At the time of this writing, chapter 3 has been accepted

to Proceedings of the National Academy of Sciences but is not yet in print. The writing and

analysis were performed by me as primary author. Eric Corwin is listed as a coauthor as he
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advised this work. The material in this chapter is also coauthored with Alex Liebman-Peláez,

an undergraduate who helped with construction of parts of the experimental system.

This dissertation includes previously published and unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Materials science is a lot like cooking. We do our best to understand the properties of the

ingredients, then manipulate and combine them to create new, hopefully useful (or delicious)

substances. However, in cooking we are ultimately limited by the properties of our ingredients;

no matter how hard we try we can’t make pot roast out of a watermelon. Materials science seeks

to overcome the limitation of its ingredients by not only understanding, but directly controlling

the properties of matter. To do so, however, one must surmount the nearly impossible task of

dynamically manipulating the molecular nature of the material, because like a cake, the properties

of a conventional material are ultimately defined by the properties of its ingredients. For example,

you can tell the difference between water and corn syrup simply by watching them flow: corn

syrup has a much higher viscosity than water. To make water flow like corn syrup, however, you

would need to change the mass and interaction forces of the water molecules, or, put more plainly,

you would need to change the very molecular identity of the water, thus transforming one fluid

into the other. Such alchemy is beyond the scope of modern science.

What’s more, in conventional materials, there exist strict (though often complicated)

relationships between material properties. In the case of fluids, for example, there are well-defined

laws that relate temperature and viscosity. This means that you cannot change the temperature

of a fluid without inducing a commensurate change in the viscosity, as is apparent when one

microwaves honey to make it easier to pour. This restriction represents a serious limitation toward

attaining full control of the properties of matter as it means that a given fluid can only explore

certain combinations of temperature and viscosity. Again, in order to break this limitation, one

would need to achieve independent control over the molecular properties of the system. Thus, the

challenge of finding or creating truly programmable matter remains an active and exciting area of

study.

Recent work is tackling this challenge by creating metamaterials: constructed materials

that reject the molecule as the fundamental unit and instead substitute some athermal,

macroscopic structural element, achieving novel optical [1–3], acoustic [4–6], mechanical, [7–

9] and fluid properties [10, 11] that would otherwise be impossible. Remarkable though this

1



progress is, it comes at a cost. These materials, by deriving their properties from macroscopic,

non-equilibrium or anisotropic elements, abandon the physics of equilibrium thermal systems.

This means sacrificing a large body of tools that can be used to characterize and understand their

behavior. It also leads to a loss of universality; each metamaterial is governed by different physics,

and each must be circumstantially re-characterized to establish their governing laws.

My research has instead taken a bottom-up approach to the creation of programmable

matter. Whereas the existing body of work surrounding metamaterials focuses on careful, top-

down design of constitutive structures, my work instead seeks first to create a meta-system that

obeys the barest criteria of equilibrium thermodynamics, then to study the emergent properties

of said system. In particular, I have created and characterized a metafluid whose properties

are derived from macroscopic chaotic waves excited on the surface of water, independent from

the water itself. These waves (known as chaotic Faraday waves [12, 13]) arise on the surface

of a fluid when it is vertically agitated above some critical amplitude. They provide isotropic,

“molecular” chaos (where the “molecules” here are the waves themselves) and thus satisfy the

basic requirements of kinetic theory as outlined by Boltzmann [14]. By embedding buoyant

tracers in the waves, I can measure the basic properties of the metafluid: temperature, diffusion

constant and viscous drag coefficient. These properties turn out to be identical in nature, but

completely divorced in origin from the analogous properties in conventional fluids. They are

associated with the chaos of the waves in the same way that the temperature of a gas is associated

with the random motion of its molecules, yet they differ only in scale from their conventional

counterparts. As a dramatic comparison, for example, calculations of the ambient thermal

energy associated with the chaos of the waves suggests that the metafluid has a characteristic

temperature one trillion times hotter than the sun’s surface. This may seem like a ridiculous and

specious comparison, but it is made more reasonable when you consider that the sun is largely

composed of hydrogen atoms with mass approximately 1.7 × 10−27kg, whereas the tracer particles

thermalized by the chaotic waves have a mass of a few hundred milligrams ( 10−4kg).

This system carries with it great utility. It constitutes a truly thermal environment while

also exhibiting its “molecular” dynamics at the easy-to-access laboratory scale. This means that

macroscopic analogs to complicated microscopic phenomena can be studied in atomistic fashion,

observing and building up the dynamics from the smallest subunit to the gross bulk behavior.
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I have demonstrated one such application in my study of scaling laws in short-chain polymer

analogs thermalized by the chaotic surface waves.

In a more far-reaching sense, this research hints at a broader universality of

thermodynamics. That all that was required to reproduce equilibrium thermal physics was

isotropic chaos suggests that the tools of thermodynamics may be applied to any system that

satisfies the basic criteria of kinetic theory. This may include such systems as turbulent weather,

bird flocks or complex financial markets.

This work shows that chaotic surface waves form a metafluid that is wholly consistent with

equilibrium thermodynamics, despite being composed of macroscopic, non-equilibrium elements.

Further, the viscosity and temperature of this metafluid are independently tunable. Chapter 2

begins the characterization of this system by examining the motion of passive tracer particles

embedded in the chaotic waves, measuring temperature and diffusion constant and how they

depend on experimental parameters. Chapter 3 expands this characterization by introducing

active rheology to directly measure viscous drag and showing that it, along with temperature

and diffusion constant, obeys equilibrium thermodynamics. Chapter 3 also shows, in detail, the

dependence of temperature and viscous drag on experimental inputs, and demonstrates that they

can be tuned independently of one another. Chapter 4 then illustrates the utility of this system

as a novel platform on which complex phenomena may be studied, in this case, the structural

dynamics of short-chain polymers analogs.

Chapter 2 has been published in Physical Review E [15]. The writing and analysis were

performed by me as primary author. Eric Corwin is listed as a coauthor as he advised this work.

The material in this chapter is also co-authored with Raghuveer Parthasarathy, for use of his

image analysis software and contributions to the early design and motivation of the experiment,

and Isaac Hastings-Hauss, and undergraduate who helped with construction of the system.

Chapter 4 has also been published in Physical Review E [16]. The writing and analysis

were performed by me as primary author. Eric Corwin is listed as a coauthor as he advised this

work. The material in this chapter is also coauthored with Clayton Kilmer, an undergraduate who

helped with data collection.

At the time of this writing, chapter 3 has been accepted to Proceedings of the National

Academy of Sciences but is not yet in print. The writing and analysis were performed by me

3



as primary author. Eric Corwin is listed as a coauthor as he advised this work. The material in

this chapter is also coauthored with Alex Liebman-Peláez, an undergraduate who helped with

construction of parts of the experimental system.
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CHAPTER II

BALLISTIC AND DIFFUSIVE DYNAMICS IN A TWO-DIMENSIONAL IDEAL GAS OF

MACROSCOPIC CHAOTIC FARADAY WAVES

Abstract

We have constructed a macroscopic driven system of chaotic Faraday waves whose

statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We

use real-time tracking of a single floating probe, energy equipartition, and the Einstein relation

to define and measure a temperature and diffusion constant, and then self-consistently determine

a coefficient of viscous friction for a test particle in this thermal-like gas. Because of its simplicity,

this system can serve as a model for direct experimental investigation of non-equilibrium

statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.

This work was originally published in Physical Review E [15]. The writing and analysis

were performed by me as primary author. Eric Corwin is listed as a coauthor as he advised

this work. The material in this chapter is also co-authored with Raghuveer Parthasarathy, for

use of his image analysis software and contributions to the early design and motivation of the

experiment, and Isaac Hastings-Hauss, and undergraduate who helped with construction of the

system.

Background

Classical kinetic theory requires molecular chaos and homogeneity [14, 17]. Atomic-

scale collisions provide the source of homogeneous random motion in thermal systems and

form the foundation of classical thermodynamics. In equilibrium thermal systems the crossover

from ballistic motion to diffusive motion is a fundamental link between microscopic statistical

mechanics and macroscopic thermodynamics [18]. In Einstein’s classic thought experiment of a

pollen grain in water a thorough study of the grain’s ballistic motion would require simultaneous

temporal resolution of ' 10µs and spatial resolution of ' 1 nm [19]. Therefore, this crossover

from ballistic to diffusive has only recently been experimentally demonstrated in the equilibrium

thermal systems of rarefied gases [20, 21] and liquids [22, 23].
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By contrast, macroscopic systems allow studies of their constituent dynamics that are

impossible in the thermal world. Macroscopic systems dilate the characteristic length and time

scales but lose the stochastic excitations of thermal systems. This means that any of the random

motion necessary for mimicking equilibrium thermal behavior macroscopically must be produced

by some stochastic energy input. Because chaotic Faraday waves are very well understood and

characterized they present an ideal source of randomness. The Faraday instability is excited on

the surface of a fluid subject to vertical oscillations beyond some critical amplitude [12, 13, 24].

Above a second, higher, critical amplitude the surface waves transition from stable, ordered waves

to spatio-temporal chaos [25]. Surface flows have been measured using fluorescent dyes [26, 27]

and tracer particles considerably smaller than the characteristic wave size [26, 28–30]. A ballistic

to diffusive crossover has been observed in chaotic Faraday waves using “virtual tracer” data

drawn from particle image velocimetry measurements[31]. However, for real tracer measurements

to date, diffusive motion and fractional Brownian motion have been observed at long and at

relatively short time-scales, respectively [30, 32]; the full crossover from the ballistic regime to

the diffusive regime for real particles has not been demonstrated before our present work.

It remains unproven, therefore, whether a driven (and therefore non-equilibrium), athermal

system like chaotic Faraday waves still exhibit all characteristics of equilibrium statistical

mechanics, such as a ballistic-diffusive crossover and a well-defined temperature derived from

atomistic chaos, as it is in classical kinetic theory. A variety of attempts to define temperatures

have been proposed for non-equilibrium systems [33]. These have had limited success, describing

aspects of the systems’ dynamics only over narrow parameter ranges and for few measured

properties. A typical approach is to use the Einstein relation [34, 35] or fluctuation-dissipation

theorem [35] to define an effective temperature. While successful in producing a well-defined

temperature, these studies do not comment on whether or not their internally determined

quantities exhibit behavior consistent with classical kinetic theory. In the present study we achieve

random excitation and homogeneity by floating a particle large relative to the characteristic

length of the Faraday waves on a chaotic fluid surface (Figure 1). Despite the decidedly non-

equilibrium nature of chaotic Faraday waves, we show that they drive a buoyant tracer to undergo

fully ballistic (short times) and diffusive (long times) Brownian motion, a hallmark of isotropic

equilibrium statistical mechanics. This system admits of a well defined temperature, diffusion
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constant, and drag coefficient consistent with the system being a nearly ideal gas of excitations.

We have created a macroscopic thermal-like system (which, if treated like a conventional thermal

system would be one billion times hotter than the sun’s corona).

Methods

We generate the Faraday waves in a circular aluminum dish brim-full with water (Figure

1). We use a circular dish to discourage ordering of the waves [36]. The inner portion, where the

water is held, has a radius of 9cm and a depth of 1.27cm. A gutter to collect spillover is carved

around this inner region. The dish is vertically agitated by a shaker (Vibration Test Systems

VTS-100) whose frequency f and peak-peak amplitude A we control independently using a

digital function generator (Stanford Research Systems Model DS335) and a voltage amplifier

(Behringer Europower EP4000). Mounted on the bottom of the dish is an accelerometer (CTC

AC244-2D/010) used to measure stroke amplitude and frequency. The dish is filled to brim-full

conditions [24] against a knife-edge to avoid pinning of the contact angle which would create a

“cold” zone near the edges. However, the fluid position remains pinned to the knife edge leading

to some damping of the waves near the edges. Our floating test particle is a 3D printed section of

cone (selectively laser sintered nylon, coated in black spray paint, density approximately .7g/cm3)

with top radius .75 cm, height .25 cm, side angle 45 degrees, and mass 216 mg. The size of the

particle is chosen such that it is always larger than the characteristic size of the Faraday waves

which are on the order of millimeters. The particle is colored black and the dish is spray painted

white for maximum contrast. The system is imaged from ' 1.3m above the surface of the water

with a digital camera (Pointgrey Flea3 FL3-U3-32S2M-CS with a Pentax C32500 KP lens) with a

2080x1552 CMOS sensor.

We know a priori that certain regions of our parameter space are inaccessible (Figure

2): below a critical amplitude line chaotic Faraday waves do not exist; above a sufficiently high

amplitude line the surface undergoes a topological transition and begins to splash, which typically

sinks the particle. The shape of these critical lines is non-trivially dependent on the properties of

the fluid (i.e. viscosity, capillary length, skin depth), the frequency and amplitude of oscillation

and the container aspect ratio [37]. The details of the transition from ordered to chaotic Faraday

waves have been the subject of a great deal of scientific interest [38, 39]. However for this work we

7



Electromechanical Shaker

Accel

FIGURE 1. Experimental Apparatus
(cartoon) Cross-sectional diagram of shaker assembly. The inner portion of the dish is filled with
water to brim-full conditions. The electromechanical shaker vertically agitates the dish, exciting
the Faraday instability on the surface of the water. A buoyant particle is buffeted by the surface

waves. An accelerometer is attached to the bottom of the dish to directly measure peak-peak
amplitude A. (photo) Photo of the experimental apparatus from above. A floating particle is

shown, along with a typical position trace for 7.5 seconds of data collection. The surface of the
water is illuminated from an angle to show the chaotic Faraday waves.
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FIGURE 2. Map of parameter space.
The parameter space is formed by the two externally-controlled parameters, shaker frequency f

and peak-peak amplitude A. This map shows approximate loci between the non-chaotic,
accessible, and splashing regimes. Plotted within the accessible region are points in parameter

space where measurements were taken, color indicating temperature T . Color gradient goes from
blue (dark grey) for “cold” to red (light grey) for “hot.” Plotted behind these points is an

interpolated contour map of T .
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are only concerning ourselves with systems in which spatio-temporal chaos is fully developed, but

the vertical oscillation is not so great that the fluid splashes.

The floating test particle is set into the dish near the center and tracking is initiated. We

track the particle with sub-pixel accuracy using a radial symmetry algorithm [40]. By restricting

our region of interest of the current frame to the area near where the particle was found in the

previous frame, we are able to track in real time at 60 frames per second with a signal to noise

ratio 200:1 and a sub-pixel real space resolution of < 10µm. The particle is tracked for 7.5

seconds, chosen to allow for maximum data collection while reducing the likelihood that the

particle will reach the edge of the dish, where the physics is fundamentally different. The process

is repeated for N = 10 or 100 trials.

We measure the mean square displacement 〈∆r2〉 and use it to characterize the particle’s

motion. If motion is ballistic then

〈∆r2〉 = 〈v2〉∆t2, (2.1)

where 〈v2〉 is the mean square ballistic velocity and ∆t is the lag time. If motion is diffusive, then

〈∆r2〉 = 4D∆t, (2.2)

where D is the diffusion constant. Figure 3 shows a representative mean square displacement

demonstrating ballistic motion (〈∆r2〉 ∼ ∆t2) for short times and diffusive (〈∆r2〉 ∼ ∆t) for long

times. We measure the coefficients 〈v2〉 and D by fitting equations 2.1 and 2.2 to the data in the

ballistic and diffusive regimes, respectively.

Results and Discussion

The insets of Figure 3a show the scaled distributions of displacement magnitude for various

lag times ∆t. For short times in the ballistic regime the distributions collapse when scaled by

a factor of ∆t, and for long times in the diffusive regime the distributions collapse when scaled

by a factor of ∆t1/2. In both regimes, the distributions are well described by a two-dimensional

Gaussian integrated over all directions uniformly. This random walk behavior is an emergent

result of allowing a particle to interact with a chaotic surface.
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FIGURE 3. Ballistic and Diffusive Behavior
Representative mean squared displacement 〈∆r2〉 (f = 85Hz, A = 0.159mm). 〈∆r2〉 is plotted

against lag time ∆t. At short lag times the mean squared displacement shows a power law with
an exponent of 2, indicating ballistic motion. For longer lag times the curve turns over to a power
law with an exponent of 1, indicating diffusive motion. Inset in the upper left is the distribution of

displacement ∆r divided by a factor of lag time ∆t for lag times in the ballistic regime. Inset in
the lower right is the distribution of ∆r divided by ∆t1/2 for lag times in the diffusive regime.

Both distributions are shown to collapse onto a 2D Gaussian integrated over all directions (radial
Gaussian).
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In thermal systems the quantities 〈v2〉 and D are related to temperature T and the

coefficient of viscous friction ζ. In contrast to studies such as [34, 35], we use the average kinetic

energy of the tracer as it undergoes ballistic motion to define an effective temperature. By

equipartition the temperature is proportional to the average kinetic energy per particle as

1

2
m〈v2〉 = T, (2.3)

where m is the mass of a particle (m =216mg) and kB the Boltzmann coefficient. We regard T

as an energy, equivalent to kBT in molecular systems. T , D and ζ are related by the Einstein

relation as

Dζ = T (2.4)

where D and ζ both depend on T . T may be treated with the same physics as a conventional

temperature, as opposed to an “effective temperature” such as those used to describe granular

and other athermal systems. The friction term ζ is primarily associated with the viscosity of the

chaotic Faraday waves as a 2D medium through which the floating particle is moving. Thus, by

measuring 〈v2〉 and D we can determine the intrinsic properties T and ζ of a 2D thermal-like

system.

Analysis of the data reveals the dependence of 〈v2〉 and D, and therefore T and ζ, on

our externally-controlled parameters A and f . Figure 4a demonstrates that temperature T is

proportional to shaker amplitude A, independent of frequency. This trend is also apparent in

the temperature contours shown in figure 2. Thus, driving amplitude is the external control

for temperature. Since the typical Faraday wavelength is primarily determined by the driving

frequency and T is independent of frequency, we may also deduce that T is independent of the

ratio of particle size to wavelength over the range of parameters for which we have conducted our

study. We find a calibration curve between driving amplitude and the temperature of our bath:

T ≈ (1.3× 10−7 J

mm
)A− 1.0× 10−8J. (2.5)

The linearity of this relationship is expected because the height of the chaotic Faraday waves

should be proportional to the driving amplitude, and the particle moves in response to the height

difference between the two largest waves in contact with it. However, there is a curious feature to
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this fit in that T crosses zero at finite A. This is due to the fact that below a particular driving

amplitude the temperature is ill-defined because the Faraday waves are not chaotic. Thus, A must

reach a critical value before T can exist and begin to increase.

While the existence of ballistic and diffusive motion is strongly suggestive that the

system of driven Faraday waves can be considered as a gas at some temperature T , we can more

rigorously examine whether other general properties of thermal gasses, such as the temperature

dependance of their viscosity, manifest themselves in this driven system. Recalling now the

Einstein relation (Eq. 2.4) we examine the behavior of the viscous drag coefficient ζ. Stokes’

equation for incompressible fluids states that ζ ∝ η where η is the viscosity. Sutherland’s formula

for the viscosity of a nearly ideal 2D gas (in which particles have finite collision radii and soft,

long range interaction potentials) [41] further relates η to T as

η = λ′
T√

T + C ′
(2.6)

where λ′ and C ′ are constants of the gas. We can now solve for D as a function of T for an ideal

gas to find

D = a
√
T + b, (2.7)

where all of our constants have been absorbed into a and b. Figure 4b shows our data on T and

D to be well fit by this simple ideal gas model with constants a = .16 ± .01 m/kg1/2 and b =

(−1.87± 0.65)× 10−9 J. The parameter a relates diffusion to energy and the parameter b contains

information on the interactions within the gas.

As a relates diffusion to energy it has units of length/mass1/2. Plugging in the length and

mass scale of the particle we would predict from simple dimensional analysis that a should be on

the order of 0.75 cm/(0.2 g)1/2 ' 0.5 m/kg1/2, which is comparable to the fitted value of a.

Since b is negative there is a positive value of T at which the diffusion constant should go

to zero and thus the viscosity to infinity. This is a singular point that does not exist for real ideal

gases but is difficult to probe directly because the timescales for diffusion diverge as T → −b and,

more practically, it is near the transition from chaos to order in our system.

Above T = −b the viscosity and diffusion constant maintain functional behavior consistent

with that of a nearly ideal gas, suggesting that the chaotic Faraday waves should be considered a
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FIGURE 4. Gas behavior
(a) temperature T plotted against shaker peak-peak amplitude A for various shaker frequencies f ,

with linear fits shown for frequencies plotted in large color symbols (circles, upward triangles,
downward triangles, diamonds). Grey crosses are the remaining frequencies shown in figure 2,

ranging from 35Hz-105Hz, and the dashed line is a linear fit to all data points shown. (b)
Diffusion constant D plotted against temperature T . Data points are taken for data sets where
N = 100 trials. Shown in red is a fit to the data of Equation 2.7. Error bars shown in (a) and (b)

are 1σ confidence intervals resulting from fits used to determine D and T .
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nearly ideal gas of random surface excitations. The sign of the constant b tells us the sign of the

interaction between the elements of the gas: positive for attractive, and negative for repulsive.

One would expect that the interactions in our system are repulsive, as gravity will cause waves to

repel one another over short distances.

Conclusion

We have demonstrated for the first time that chaotic Faraday waves can be described as

a thermal-like, nearly ideal gas of random surface excitations for which a thermal energy scale,

diffusion constant, and viscosity are well defined. We directly observe the particle to receive

normally distributed, isotropic kicks from the chaotic waves. The particle’s displacement scales

with lag time exactly as would be expected for a Brownian particle, and exhibits a clear transition

from ballistic to diffusive behavior, showing that we have produced a laboratory-scale Brownian

system by Aristotelian means. This thermal-like gas takes difficult-to-access time and length scales

and dilates them to easily studied levels. In so doing we have defined a macroscopic effective

temperature in an out-of-equilibrium system functionally identical to, but completely divorced

in origin from a microscopic thermal temperature. The present single-particle study outlines the

method by which one would define a temperature for a system of chaotic Faraday waves, and

future studies will examine the dynamics of the multi-particle case.

This experimentally tractable system will be useful for studying the statistical mechanics of

actively driven non-equilibrium systems in general, especially interparticle interactions and driven

assembly on 2D substrates, which is a subject of active scientific interest [42]. An outstanding

theoretical question for 2D systems is whether it is possible to create long range order from short-

range interactions [43–45]. Our system offers a fully 2D environment in which these questions can

be studied.
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CHAPTER III

FLUIDS BY DESIGN: CHAOTIC SURFACE WAVES FORM A METAFLUID THAT IS

NEWTONIAN, THERMAL AND ENTIRELY TUNABLE

Abstract

In conventional fluids, viscosity depends on temperature according to a strict relationship.

To change this relationship one must change the molecular nature of the fluid. Here, we create

a metafluid whose properties are derived not from the properties of molecules, but rather from

chaotic waves excited on the surface of vertically-agitated water. By making direct rheological

measurements of the flow properties of our metafluid, we show that it has independently tunable

viscosity and temperature, a quality that no conventional fluid possesses. We go on to show

that the metafluid obeys the Einstein relation, which relates many-body response (viscosity) to

single-particle dynamics (diffusion) and is a fundamental result in equilibrium thermal systems.

Thus, our metafluid is wholly consistent with equilibrium thermal physics, despite being markedly

non-equilibrium. Taken together, our results demonstrate a new type of material that retains

equilibrium physics while simultaneously allowing for direct programmatic control over material

properties.

As of this writing, this work has been accepted to but not yet published at Proceedings of

the National Academy of Sciences. The writing and analysis were performed by me as primary

author. Eric Corwin is listed as a coauthor as he advised this work. The material in this chapter

is also coauthored with Alex Liebman-Peláez, an undergraduate who helped with construction of

parts of the experimental system.

Background

Materials science seeks not only to understand, but to control the properties of matter.

To do so, one must dynamically change the nature of conventional materials at the molecular

scale. Recent work circumvents this problem by rejecting the molecule as the fundamental

unit and substituting a macroscopic structural element. This approach has successfully created

metamaterials with novel optical [1–3], acoustic [4–6], mechanical, [7–9] and fluid properties

[10, 11] that would otherwise be impossible. However, this comes at a cost: by deriving their
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FIGURE 5. Experimental setup and Characterization
(a) The rheometer assembly. h is the vertical separation of the drive arm and test rotor. (b)

Top-down cartoon illustrating the coodinates of the system. m1 and m2 are the moments of the
drive arm and test rotor magnets, respectively, R is the radius of rotation of the magnets, θ is the
angular position of the test rotor and γ is the relative angle between the drive arm and test rotor.

(c) Photo of rheometer. (d) Example (Shaker: fs = 60 Hz, As = 0.064 mm, drive arm:
ω/2π = 0.8 Hz) time series of drive arm (red, light) and rotor (blue, dark) positions. (e) Example

(Shaker: fs = 60 Hz, As = 0.064 mm) mean squared displacement (MSD). Our data (points)
shown with the prediction for a truly Brownian particle (line) [46, 47]. (inset) Velocity

autocorrelation function corresponding to the plotted MSD, with the prediction of the Langevin
equation plotted over the data.

properties from macroscopic, non-equilibrium, or anisotropic elements, these materials necessarily

abandon the physics of thermal systems. In this work, using a combination of active and passive

rheology we show that macroscopic chaotic surface waves on a vertically agitated fluid form a fully

thermal metafluid with dynamically tunable material properties. In contrast to a conventional

fluid in which viscosity and temperature are inextricably linked, we show that these quantities

are independently tunable in our system. We further demonstrate that by satisfying the barest

criteria of isotropy and steady-state chaos (as required by kinetic theory [14, 17]) we have

created a system that obeys the Einstein relation [19]. Thus, despite being macroscopic and non-

equilibrium, it is well-described by equilibrium thermal physics.

The “molecules” of our metafluid are chaotic Faraday waves [12, 13], generated in a water-

filled aluminum dish that is vertically oscillated with RMS amplitude As and at frequency fs

(Figs. 5(a) & (c), see chapter 5 for technical details). The waves uniformly cover the surface of the
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water and only experience significant pinning at the boundary, far from where our measurements

are conducted. The chaos and wave density is holistically steady state, though the existence

of a particular wave is transient. Thus, “collisions” in our system refer to encounters between

a buoyant tracer and the ephemeral excitations of the chaotic wave environment. We have

previously shown chaotic Faraday waves to have a well defined temperature decoupled from the

bath temperature by observing the Brownian motion of a tracer particle [15]. We found this

temperature to be proportional to shaker amplitude.

Results and Discussion

Drag coefficent

Our rheometer consists of a driving arm that applies a sinusoidally varying torque τ(t) at

a variable frequency to a buoyant test rotor via a magnetic interaction (Figs. 5(a), (b) & (c), see

chapter 5 for technical details). We derive the exact form of this torque in chapter 5 and find that

it is well approximated as a Hookean interaction between the drive arm and the test rotor with

rotational spring constant kr ≈ 6 × 10−5 Nm (Fig. 14 in chapter 5). Sample time series for the

drive arm and test rotor positions are given in Fig. 5(d).

We program the driving arm’s position β to oscillate sinusoidally as

β(t) = β0 sin(ωt), (3.1)

where β0 is the oscillation amplitude and ω is the angular driving frequency. The resulting motion

of the test particle is described by the differential equation

Iθ̈ = τ(t)− ζr θ̇, (3.2)

where θ is the angular position of the test particle and I is the moment of inertia. Treating the

rotor as a damped driven harmonic oscillator, the solution to this differential equation is

θ(t) = θ0 sin(ωt+ φ), (3.3)
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where the response frequency ω is identical to the driving frequency ω after a brief period as the

rotor relaxes into its steady oscillation. All data sets are collected after allowing for this transient

period. As derived in chapter 5, the driving amplitude β0, oscillation frequency ω, response

amplitude θ0 and phase lag φ are related to the drag coefficient ζr as

ζr =
krβ0

ωθ0
sinφ. (3.4)

The rotor’s response θ(t) is recorded using a contactless magnetic encoder, then the

response amplitude and phase lag are obtained by using a simple lock-in measurement.

In Fig. 6(a) we demonstrate that the metafluid behaves as a Newtonian fluid with a drag

coefficient that is independent of the rheometer drive frequency over an experimentally relevant

range of ω. The above equations also predict (as shown in chapter 5) a mechanical impedance of

Zm(ω) =

√(
ζr
I

)2

+
1

ω2

(
kr
I
− ω2

)2

. (3.5)

Figure 6(b) demonstrates that the measured impedance agrees with the expected form.

Fig. 6(c) shows the results of our active measurement of drag coefficient at values for

shaker amplitude and frequency covering the phase space of chaotic Faraday waves. We find that

the viscous drag coefficient imparted by the chaotic waves is proportional to the product Asfs.

We can make a heuristic argument to show that this relationship is reasonable. If we hold the

shaker amplitude As fixed and increase the shaker frequency fs we will decrease the characteristic

wavelength of the surface waves and thus decrease the characteristic time between collisions of the

waves and the rotor. If we look to the derivation of the Einstein relation we see that ζr should be

inversely proportional to this characteristic time [19] and thus find ζr ∝ fs. Likewise, if we hold

fs constant and increase As we will increase the energy in each surface wave, thus increasing the

momentum transfer effected by each collision and so increasing the drag coefficient.

The onset of chaos limits our measurement range in shaker amplitude and frequency space,

because there exist regions in this space for which the Faraday waves are not chaotic (or indeed,

do not even exist). Nonetheless, we measure the drag coefficient on calm water to be ζr = 1.9 ×

10−5 Js, slightly below the lowest drag coefficient that we are able to measure with chaotic waves.
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FIGURE 6. Tunable Newtonian Fluid Behavior

(a) Demonstration that measured drag coefficient ζr is independent of drive arm frequency ω at
As = 0.85 mm and fs = 50 Hz (squares), As = 1.2 mm and fs = 50 Hz (triangles), and

As = 2.4 mm and fs = 30 Hz (circles). Dotted lines are mean drag coefficient at each amplitude.
(b) Mechanical impedance Zm measured at different drive arm frequency ω. Marker shape

indicates the same values of As and fs as in (a). Solid lines are the expected Zm(ω) for a damped
driven harmonic oscillator. (c) Fitted calibration curve relating rotational drag coefficient to the

product of shaker amplitude As and shaker frequency fs. Best fit shown is
ζr ≈ (3.6× 10−7 Js/(mm Hz))Asfs + 9.4× 10−6Js. Marker color illustrates amplitude; dark to
light gradient corresponds to low to high amplitude variation. Marker shape indicates shaker

frequency: fs = 30 Hz (stars), fs = 40 Hz (inverted triangles), fs = 50 Hz (squares), fs = 60 Hz
(upright triangles), and fs = 70 Hz (diamonds). (d) Fitted calibration curve relating wave

temperature T to shaker amplitude As. Best fit shown is
T ≈ (1.8× 10−7 J/mm)As − 7.3× 10−8 J. Marker shape indicates shaker frequency, as in (c).
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Temperature and diffusion constant

To make passive measurements, we remove the driving arm of our rheometer and thus allow

the test rotor to diffuse freely while tracking its position. From the position trace we calculate the

mean squared displacement (MSD) 〈(∆θ)2〉 and extract two quantities: a mean squared ballistic

angular velocity 〈ω2
b 〉 and a rotational diffusion constant Dr. A sample MSD is shown in Fig.

5(e). Plotted over our data in Fig. 5(e) is the prediction by Ornstein and Fürth for the MSD of a

truly Brownian particle [46, 47]. Set into Fig. 5(e) is the velocity autocorrelation corresponding to

the plotted MSD, shown with the prediction of the Langevin equation for a thermally diffusing

particle. The agreement of predicted thermal behavior with our data demonstrates that our

system has the same constituent dynamics as a thermal particle, albeit at much larger length

and time scales.

For sufficiently small lag times ∆t, the MSD appears ballistic: 〈(∆θ)2〉∆tb = 〈ω2
b 〉∆t2b . At

longer times, the MSD appears diffusive: 〈(∆θ)2〉∆td = 2Dr∆td. To avoid the biases associated

with the traditional method of fitting the MSD to estimate 〈ω2
b 〉 and Dr, we instead choose the

smallest lag times ∆tb and ∆td that are convincingly ballistic and diffusive [48], respectively, and

estimate 〈ω2
b 〉 and Dr using

〈ω2
b 〉 =

〈(∆θ)2〉∆tb − σ2

∆t2b
(3.6)

and

Dr =
〈(∆θ)2〉∆td − 2σ2

2∆td
(3.7)

where σ2 = 3.7 × 10−5 rad2 is the positional error associated with the discrete nature of the

magnetic rotary encoder output. Finally, given the hydrodynamic moment of inertia Ih for the

rotor, equipartition gives us the temperature as T = Ih〈ω2
b 〉.

Fig. 6(d) confirms our previous finding that temperature is proportional to shaker

amplitude As [15]. We would expect the temperature of the system to be proportional to the

energy density in the surface waves, which is itself proportional to the amplitude squared as

T ∝ A2
waves. We can understand the linear dependence of T on the shaker amplitude As

by considering the response properties of Faraday waves. In such systems, the characteristic

response amplitude is generally proportional to the square root of the driving amplitude [49],

so Awaves ∝ A1/2
s which leads to T ∝ As.
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The temperatures we measure here from rotational motion are consistent with the

temperature we measured in earlier work on translational motion [15], giving further credence to

the notion that our system demonstrates energy equipartition and is truly thermal. The measured

temperature is a remarkable 14 orders of magnitude larger than the water bath temperature,

demonstrating that the thermal behavior of our system is completely divorced from that of

ordinary matter.

Einstein relation and hydrodynamic moment of inertia

Thermal fluids satisfy the Einstein relation, which states that Drζr = T . The power

of the Einstein relation is that it connects two very different properties of fluids: rheology

(a measurement of correlated many-body behavior) and diffusion (a measurement of single-

particle dynamics). There is no a priori reason to expect the Einstein relation to hold in a

non-equilibrium complex fluid such as ours in which energy is constantly being injected into

the system. Nonetheless, Fig. 7(a) demonstrates that the Einstein relation is satisfied. That we

discover an intact Einstein relation further convinces us that our macroscopic metafluid is in fact

an equilibrium fluid. Additionally, Fig. 7(b) shows that the diffusion constant calculated from

the MSD is consistent with the diffusion constant as calculated using the Green-Kubo relations,

which relate the diffusion constant to the integral of the velocity autocorrelation function. This

consistency convinces us that Einstein relation in our system may be trusted over all timescales

available to our measurement. Taken together, these results suggest that the universality of

thermal systems should be extended to systems which satisfy broader criteria of steady-state

chaos and isotropy.

This notion of universality is supported by work done in other driven, dissipative systems.

For example, the work of Ojha et al. [50] demonstrated that a particle agitated by turbulent

airflow is identically thermal with a temperature completely divorced from the room temperature.

Here, we have used a new mechanism for thermalization yet nevertheless recover thermal

behavior, also with with a temperature completely divorced from that of the surroundings. Our

work further demonstrates that these macroscopic thermal systems can be tuned in ways that

microscopic systems cannot.
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FIGURE 7. Einstein Relation and Green-Kubo Relation
(a) Demonstration of the Einstein relation in our system. The product Drζr is proportional to the

angular mean square ballistic velocity 〈ω2
b 〉, which is in turn proportional to the effective

temperature of the waves T . The line shown is a fit to the data of the Einstein relation
Drζr = Ih〈ω2

b 〉, with the the hydrodynamic moment of inertia Ih left as a free parameter,
determined by the fitting to be Ih = 1.2× 10−5 kg m2. The error bars shown are 1σ confidence
intervals determined from the calculation of Dr and 〈ω2

b 〉. (b) Comparison of diffusion constant
measured from MSD (Dr,MSD) and using the Green-Kubo relations (Dr,Green−Kubo). The dashed

line has slope 1, indicating good agreement between the two methods of calculating Dr.
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The slope of the fitted line relating 〈ω2
b 〉 and Drζr in Fig. 7(a) is the hydrodynamic

moment of inertia Ih, as T = Ih〈ω2
b 〉. This quantity is larger than the moment calculated directly

from the mass and geometry of the test rotor by nearly an order of magnitude due to the fact that

a volume of water is swept along with the rotor.

We have thus far shown that T ∝ As, ζr ∝ Asfs and Drζr = T . Taken together,

these results imply that Dr ∝ 1/fs. We can heuristically understand this relationship by

realizing that shaker frequency is inversely related to the characteristic wavelength of the chaotic

surface waves. As shaker frequency decreases, the characteristic wavelength increases. Since

the average distance between wave excitations is greater, the mean free path and mean free

time of a diffusing particle increase proportionally. The diffusion constant is proportional to

(mean free path)
2
/(mean free time). By this line of reasoning, Dr should be proportional to 1/fs.

Our results also imply that Dr should not depend strongly on shaker amplitude As. We can

understand this heuristically as well. As the shaker amplitude increases, so too does the amplitude

of the waves, as we outlined in our discussion of why T ∝ As. This increases the strength of the

kicks that set a particle in motion, but also increase the strength of the kicks that slow it down.

The increase in thermal energy is offset by the energy dissipated by the drag coefficient, which

also increases with shaker amplitude. Thus, it is reasonable that Dr not depend strongly on As.

Tunable thermal Newtonian metafluid

We have demonstrated three properties of this metafluid: 1) The metafluid has a well-

defined Newtonian viscous drag which is controlled by the product of shaker amplitude and

frequency. 2) The metafluid has a well-defined temperature which is controlled by shaker

amplitude. 3) The metafluid satisfies the Einstein relation. These results lead to the inevitable

conclusion that our system is in fact a thermal Newtonian metafluid with independently tunable

material properties as shown in Fig. 8. Any arbitrary state or path in Dr − ζr − T space that

satisfies the Einstein relation is translatable using our measured calibration curves into the fs−As

parameter space. An example Dr−ζr−T path is shown in red in Fig. 8(a), then shown translated

into a corresponding fs − As path in Fig. 8(b) using the Einstein relation and the calibration

curves shown in Figs. 6(c) and (c).
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FIGURE 8. Phase Space and Parameter Space
(a) Phase space. Measured diffusion constant plotted against measured drag coefficient (circles).

Marker color indicates measured temperature, which is in reasonable agreement with the
background gradient that represents temperature as calculated from the Einstein relation,

T = Drζr. Example isotherms (black lines) are shown, labelled in units of 10−7 J. Our system can
take any path along the surface defined by the Einstein relation, whereas a conventional fluid is

confined to a particular curve (ideal gas behavior shown as an example). An example path
through Dr − ζr − T phase space beginning at the star is plotted, and is then transformed into

fs −As parameter space (b) via the Einstein relation and the calibration curves shown in Fig 6(c)
and 2(d).

The surface defined by the Einstein relation is shown as the background gradient in Fig.

8(a), with color indicating temperature. Each trial measurement of our system is able to sit

anywhere along this surface as shown by the plotted points in Fig. 8(a). The color of the plotted

points indicates the measured temperature for that trial, and we see, as in Fig. 7(a) that our

system agrees with the Einstein relation.

Conventional fluids, by contrast, lack the freedom to move arbitrarily about this surface,

as they suffer from the additional constraint that viscous drag is a function of temperature. For

example, viscous drag in an ideal gas is related to temperature as ζ ∝ T 1/2 (and thus ζ ∝ Dr)

as shown in the representative ideal gas model curve in Fig. 8(a) (dashed line). To change the

constant of proportionality one would need to change the molecular composition of the gas or,

put more plainly, one would need to change the very identity of the gas. A conventional fluid is

therefore confined to a single curve through Dr − ζr − T space.
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Conclusion

In this paper we have presented a fully tunable, thermal Newtonian metafluid. By

combining passive and active rheology we directly measure diffusion, temperature, and viscous

drag in a system of chaotic surface waves and show that they are independently manipulable. The

Einstein relation is satisfied even though our system is both macroscopic and non-equilibrium,

hinting that a broader universality exists in random systems: so long as steady-state, isotropic

chaos exists, the system may be mapped onto an equilibrium statistical mechanical system. This

reading of the data is supported by previous studies of thermal behavior in driven, dissipitive

systems with inherent randomness [50].

We have followed in the footsteps of previous metamaterial research [1–11], creating and

characterizing a novel material by rejecting the atom as the fundamental thermal unit and

substituting a macroscopic element, in our case, chaotic surface waves. Our system provides

a novel platform in which experiments may be performed, where the tools of thermodynamics

remain intact and the fluid properties can be controlled in real time. There are obvious

limitations, for example, the metafluid can’t flow through a pipe, it can’t be compressed nor is

there an easy way to define pressure, and it is confined to two dimensions. However, we have

already shown it to be useful in observing the atomistic dynamics of 2D polymer analogs [16],

and we believe that it will prove elucidating in many open questions of the thermal world, such as

self-assembly and 2D pattern formation [51–53]. Perhaps, emergent metafluids such as ours exist

throughout the macroscopic world, be they swarms, turbulent weather, financial markets or any

other system with intrinsic randomness.
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CHAPTER IV

EXPERIMENTAL AND COMPUTATIONAL STUDY OF MACROSCOPIC ANALOGS TO

SHORT CHAIN MOLECULES: AN ATOMISTIC APPROACH

Abstract

We use a bath of chaotic surface waves in water to mechanically and macroscopically mimic

the thermal behavior of a short articulated chain with only nearest-neighbor interactions. The

chaotic waves provide isotropic and random agitation to which a temperature can be ascribed,

allowing the chain to passively explore its degrees of freedom in analogy to thermal motion.

We track the chain in real time and infer end-to-end potentials using Boltzmann statistics. We

extrapolate our results, by using Monte Carlo simulations of self-avoiding polymers, to lengths not

accessible in our system. In the long chain limit we demonstrate universal scaling of the statistical

parameters of all chains in agreement with well-known predictions for self-avoiding walks.

However, we find that the behavior of chains below a characteristic length scale is fundamentally

different. We find that short chains have much greater compressional stiffness than would be

expected. However, chains rapidly soften as length increases to meet with expected scalings.

This work was originally published in Physical Review E [16]. The writing and analysis

were performed by me as primary author. Eric Corwin is listed as a coauthor as he advised this

work. The material in this chapter is also coauthored with Clayton Kilmer, an undergraduate who

helped with data collection.

Background

Anyone who has ever put the wrong weight motor oil into a car engine can attest to the

fact that the length of a chain molecule largely determines its mechanics [54]. A low-weight oil

may be too thin and a high-weight oil too viscous for efficient operation. Biopolymers such as

DNA also evidence changing mechanical behavior with changing length. Recent work shows

that short strands are far more flexible than would be expected from simply scaling down the

behavior of long strands [55]. Understanding this scale dependence in polymers is crucial to

creating new materials, as is being done with polymer thin films [56, 57] and so-called “DNA

origami” [58, 59]. Polymer mechanics is well explored in the coarse-grained sense, with many
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established methods for direct measurement [60–62] and simulation [63–66]. However, there is

scant experimental evidence directly relating whole polymer mechanical properties to behavior

at the single bond level. These questions have been addressed in macroscopic granular polymer

studies [67, 68] however such systems lack a thermodynamic temperature, muddying the link to

true thermal systems. Statistical physics predicts [69], and empirical studies confirm [70] that the

end-to-end potential of a sufficiently long polymer chain is harmonic, regardless of the microscopic

interactions. Similarly, universalities are predicted for the scaling of statistical parameters (i.e.,

variance and mean) of both bond winding angle [71] and linear dimension [72, 73] in a polymer

chain when considered as a self-avoiding walk (SAW). While this is a powerful and robust result

regarding the chain-scale mechanics, it does little to elucidate the behavior towards the monomer

scale, as it does not address short chains.

Materials and Methods

In this paper we build a macroscopic analog to polymer physics in a bottom-up fashion

which allows us to observe not only chain-scale but also true monomer-scale behavior. We find

that short polymer chains exhibit behavior fundamentally different than that predicted for their

long counterparts. We use chaotic Faraday waves to create a macroscopic thermal-like bath

with a well-defined temperature T , as we have previously described in reference [15]. The waves

are generated by vertically oscillating a circular aluminum dish with a diameter of 17.5 inches

and a depth of 0.5 inches (Fig 9a). The dish is mounted on a ceramic-coated aluminum shaft

(diameter 2 inches), which passes through a 2 inch inner diameter air bushing (New Way Air

Bearings). This assembly is leveled by a stage mounted to the outside of the bushing mounting

block. The ceramic coated shaft is connected by a 24 inch length of 1 inch T-slot framing to

an electromechanical shaker (Vibration Test Systems VTS-100) powered by a digital function

generator (Stanford Research Systems Model DS335) through a voltage amplifier (Behringer

Europower EP4000). An accelerometer (CTC AC244-2D/010) is mounted to the bottom of the

dish to measure stroke amplitude and frequency.

We 3D-print our macroscopic polymer analogs in a clear photopolymer resin using a

Formlabs Form1. Our macroscopic polymer consists of two basic elements: buoyant particles

and links. The particles are cylindrical boats (diameter 15mm, height 3mm) with centered masts
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FIGURE 9. Experimental Design
(a) The shaker assembly. (b) 3D schematic of one for the buoyant particles in the chain, showing

the definition of restricting angle α. (c) A link showing fixed length R. (d) A chain,
demonstrating the measurement of link angle θi. Bulk rotations are eliminated from our

coordinate system by measuring all θi off of the link most proximal to the anchor. This allows us
to work exclusively in terms of the relative coordinates of members of the chain.
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(diameter 2mm, height 7.5mm). The links are rods with loops at each end, separated by 22mm

on center, that slide over the masts to link the boats together in a chain (Fig. 9c). Bond angle

is restricted by stops on the gunwales of the boats (Fig. 9b) separated by an angular distance

α. This chain is attached to a brass post set into the center of the aluminum dish using a link

that is free to rotate about the anchor point. This prevents the chain from interacting with the

boundary of the dish, where the physics is fundamentally different, and allows us to gather data

for arbitrarily long amounts of time, in our case 8 hours. In this study we present data for: 1) a

chain with α = π/4 consisting of the post plus five other particles, five links, and 2) a chain with

α = π/6 consisting of the post plus eleven particles, and eleven links.

To facilitate automated tracking each boat has a circular well imprinted in the bottom with

a diameter 1/2 that of the boat itself, uniformly filled with black oil paint. The anchor post is

capped with a black tracking point. The positions of these black spots are tracked in real time at

30 frames per second (Pointgrey Flea3 USB camera with a Pentax C32500 KP lens, mounted 8

feet above the dish) using a radial symmetry algorithm [40]. To gather data on the dynamics of

the chain we vertically oscillate our system with a frequency of 40Hz and an amplitude of 0.18mm

peak-to-peak creating a temperature of about 1.3× 108 J. These parameters were chosen such that

the Faraday waves would be well into the chaotic regime without causing the water to splash

and capsize the boats. We are limited in the length scales that we may probe in our system.

Particles or chains smaller than the typical Faraday wavelength (on the order of millimeters)

will not receive thermal-like agitation. Chains longer than the diameter of our dish (44.5 cm) can

interact with the side walls. The dish size was chosen as to allow for the largest possible system

while still remaining within the driving capability of our shaker.

Data Analysis and Simulation

In Figure 10 we demonstrate that the instantaneous bond angle velocities induced by the

chaotic waves are uncorrelated in a chain of rigidly linked particles for times longer than the

ballistic timescale (about 0.3 s). The motion of a given bond angle is initially anticorrelated with

its immediate neighbor due to the buckling of a chain of rigid links. As a bond angle is kicked in

one direction, its neighbor must react in the opposite direction as a result of the constraints in the

system. More distant neighbors show weak correlations that die off quickly. The 10Hz oscillation
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in correlation results from the beating between the dish oscillation frequency (40Hz) and the

imaging frequency (30Hz). The lack of correlation beyond that induced by buckling of the chain

allows us to rule out the possibility of non-thermal correlations between particles.

To simulate the behavior of chains longer than experimentally accessible we employ a

simple unbiased Monte Carlo algorithm to simulate each chain as a SAW. We begin by generating

a random walk with N bond angles where each step is of length R and taken in a direction drawn

from the distribution of bond angles

p(φi,i+1) ∝ e−Vφ(φi,i+1)/T (4.1)

created by a given potential Vφ. The random walk is then checked for overlaps of the boats

and/or the links. If there are any overlaps, the chain is thrown out. If there are no overlaps then

the chain is indeed a SAW and the end-to-end distance and winding angle are computed. This

process is repeated until the data for 106 valid SAWs of length N have been collected.

We follow the Flory convention [73], which utilizes bond lengths and bond angles to

describe a polymer in generalized nearest-neighbor coordinates (Fig. 9d). To coarsen beyond

nearest-neighbor coordinates, we represent the configuration of the chain in terms of radial

distance ri,j between particles i and j and a winding angle between bonds i and j defined as

φi,j =

j−1∑
m=i

(θm − θm+1), (4.2)

where θi is the angle of the ith bond with respect to the link nearest the anchor point. The use

of a bond winding angle ensures that the angles we deal with are cumulative quantities and not

bounded between ±π. Note that, since nbonds = nparticles − 1, the winding angle φi,j corresponds

to the interparticle distance ri,j+1.

We use Boltzmann statistics to measure effective potentials for the winding angle Vφ and

the radial distance Vr. We relate the probability distributions of winding angle p(φi,j) and end-to-

end distance p(ri,j) to the underlying potentials scaled by the temperature T [15] as

p(φi,j) ∝ e−Vφ(φi,j)/T (4.3)
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FIGURE 10. Pair Correlation Function

Average bond angle velocity autocorrelation shown in red (thickest curve) for a chain with
α = π/6. Nearest, second nearest, and third nearest bond angle velocity neighbor correlations

shown in blue, purple, and magenta (second, third, and fourth thickest curves) respectively. The
nearest neighbor bond angle velocities are initially anticorrelated due to buckling in the

interconnected chain, i.e. as one bond angle is kicked its neighbor will react in the opposite
direction. All correlations die off by ∼ 0.3s of lag time. The 10Hz beat frequency results from the

non-commensurate dish oscillation frequency (40Hz) and imaging frequency (30Hz).
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FIGURE 11. Effective Potentials
Effective potentials for total bond winding angle φi,j (top row) and interparticle distance ri,j+1

(bottom row) with example subchains shown as inset diagrams. Potentials are determined from
distributions using equations 4.3 and 4.4. The blue (dark) curves are calculated directly from

empirical data and the red (light) curves are calculated using the distribution for φi,i+1 to
generate self-avoiding walks.

and

p(ri,j) ∝ ri,je−Vr(ri,j)/T . (4.4)

We show the measured effective potentials averaged over all possible sub-chains of each

given length for a system with α = π/4 as blue (dark) curves in Figure 11. We present similar

data for α = π/6 in figures 15 and 16 in chapter 6. Note that the measured potentials for both

systems reach beyond ±α. A small amount of play was required to allow the links to slide without

binding, creating a broadening of the potential. Further, water bridges form where links contacts

stops creating a more complicated potential energy landscape near the boundaries. However, as

we show in this paper, these details are immaterial as the variance of the nearest-neighbor bond

angle distribution is all that matters in determining the physics of the system.

The winding angle potential Vφ is anharmonic for short chains but approaches a harmonic

potential with increasing chain length, as predicted by a simple application of the renormalization

group [69]. The effective potential for end-to-end distance Vr, however, does not approach a

harmonic within the length of chain empirically available to us for both the α = π/4 and π/6
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data. This stands in contrast to the harmonic behavior expected for a freely-jointed chain, due

to the fact that our chain has restrictions on bond angles and is by its nature non-intersecting.

Our data are much better to match to the worm-like chain model, showing qualitatively similar

end-to-end distributions (and equivalent potentials) [74].

In order to understand the behavior of these potentials for long chains we turn to

simulations of our polymer. The red (light) curves in figure 11 show the effective potentials for

simulated chains of the same lengths as our experimental results. The simulated data agrees with

the empirical data, confirming the validity of our simulation approach.

We extrapolate to long chains in order to determine the scaling of the statistical parameters

of the distributions of end-to-end distance and end-to-end winding angle. End-to-end quantities

are denoted as coordinates without i, j subscripts. Figure 12 shows the scaling of the variance

of end-to-end winding angle σ2
φ with N , the number of defined bond angles. We find that for

sufficiently short chains, σ2
φ is linear in N . This is identical to the scaling expected for a simple

random walk because at small scales self-intersections are unlikely due to the restriction of bond

angles. For sufficiently long chains we find that σ2
φ exhibits a logarithmic scaling, as predicted by

[71]. To determine the critical N at which chains transition between “short” and “long” we fit the

data to the piecewise function

σ2
φ =


σ2
φ,0N N < N∗

σ2
φ,0N∗(ln(N/N∗) + 1) N > N∗

. (4.5)

where σ2
φ,0 is the already known variance of the nearest-neighbor link angle. The fit yields

the value of N∗, which we find to be inversely proportional to σ2
φ,0 (Figure 12 (inset)) with a

phenomenological prefactor of order 1 that is likely determined by the relative size of the particles

to the links. N∗ plays a similar role to a Kuhn length in a real polymer. We can collapse all of our

data onto a master curve when scaled so that

N → N

N∗
, σ2

φ →
σ2
φ

σ2
φ,0N∗

. (4.6)

We use three different families of bond angle distributions: 1) The experimentally measured

distributions from our α = π/4 and α = π/6 systems, the corresponding potentials for which
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are shown in the top left of Figure 11 and 15, respectively. 2) A uniform distribution of bond

angles between ±α. 3) A bidisperse distribution of bond angles with value of ±α. We present

simulational data for SAWs from uniform and bidisperse distributions tuned to have the same σ2
φ,0

as the α = π/6 empirical data and find that all three associated scalings have precisely the same

N∗. Thus we see that the full physics of the system is controlled by the variance of the nearest-

neighbor angle distribution.

Figure 13 shows the scaling of the squared mean 〈r〉2 and the variance σ2
r as a function of

N . We see that all curves, for sufficiently large N , go to a power law consistent with the Flory

prediction [72, 73], where

〈r〉 ∼ Nν , σ2
r ∼ N2ν , ν =

3

4
(4.7)

in two dimensions. We collapse all of our data onto a master curve for N >> N∗ by scaling

N → N/N∗ and

〈r〉2 → 〈r〉2

(C1 + C2)N
3/2
∗

, σ2
r →

σ2
r

(C1 + C2)N
3/2
∗

(4.8)

where the constants C1 and C2 are fitted prefactors (figure 13). This scaling was selected such

that 〈r2〉 = 〈r〉2 + σ2
r = 1 at N = N∗, preserving relative magnitude of both statistical parameters.

Our simulations show that the for lengths much longer than experimentally accessible the

radial potentials eventually become harmonic as expected (Figure 17 in chapter 6). However, for

short and intermediate lengths the curves show non-trivial behavior. The compression stiffness

of the polymer, which is related inversely to the variance in end-to-end distance, is far higher in

short chains than would be predicted by the Flory power law. As these chains grow, the stiffness

necessarily softens very rapidly in order to meet the long chain limit and match expectations

above the crossover from “short” to “long.”

Our system shows clear hallmarks of semiflexibility [74, 75], with the end-to-end potential

transitioning from a rigid state in which the equilibrium position is near full extension of the

chain, to a flexible state with an equilibrium position near zero (Figure 17 in chapter 6). We

see further evidence of semiflexibility in the existence of a linear regime in our experimentally

determined potentials (Figure 11, lower right). In the intermediate lengths between the two

states, the potential temporarily becomes wide and flat before becoming harmonic. This

intermediate-scale widening explains the rapid scaling of the variance at these lengths. This roll-
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laws for N >> N∗. (inset) The sum of scaling coefficients C1 and C2 plotted against critical
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over phenomenon is a result of our bonds being treated as rigid rods. This assumption is valid

as considering only torsional degrees of freedom is a standard in the field, consistent with the

rotational isomeric state model of polymers [76, 77].

Conclusion

In this study we have presented a simple mechanical analog to short chain molecules.

We see that the effective interaction potential for winding angle quickly becomes harmonic as

chain length increases, despite the decidedly non-harmonic nearest-neighbor interaction. Though

the effective potential for end-to-end distance does not become harmonic over the length of

our empirical chain, we are able to extrapolate for considerably longer chains and show that

it eventually assumes the familiar Hookean form. We show that our system may be treated as
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a self-avoiding walk with scalings that are consistent with [71] and [72, 73] in the long-chain

limit and that the full character of these scalings is determined by the width of the nearest-

neighbor bond angle distribution. We show that short- and intermediate-length chains exhibit

unconventional behavior, a result likely connected the relative rigidity of bond lengths. Ultimately,

we demonstrate that over the full range of lengths studied all of the physics is controlled by the

variance of the nearest neighbor bond-angle distribution.

Our simulation method accurately predicts the behavior of our mechanical system at the

short scale as well as the well-known behavior of polymers in the long-chain limit. Therefore,

our mechanical analog is consistent with polymer physics and may be used to speak to the

non-universal mechanics of short chain molecules. Our macroscopic, mechanical system is

uniquely suited to passively study these lengths as we can build the physics from the bottom

up all while operating at easily observable length and time scales. It is remarkable that such a

simple macroscopic analog can point to a better understanding of the constitutive mechanics of

microscopic polymers. Beyond the study of polymers, the relative link angles in our chain can

be mapped as spins onto a 1D lattice, so this experiment can be viewed as a simple mechanical

simulation of a 1D X-Y model with peculiar nearest neighbor interactions.
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CHAPTER V

DETAILED MATERIALS AND METHODS FOR CHAPTER 3

Shaker Assembly

The waves are generated in a water-filled aluminum dish (diameter 17.5 inches, depth 0.5

inches) that is vertically oscillated with RMS amplitude As and at frequency fs (Fig. 5(a) in

chapter 3). The dish is mounted on a ceramic-coated aluminum shaft (diameter 2 inches), which

passes through a 2 inch inner diameter air bushing (New Way Air Bearings). This assembly

is leveled by a stage mounted to the outside of the bushing mounting block. The ceramic-

coated shaft is connected by a 24 inch length of 1 inch T-slot framing to an electromechanical

shaker (Vibration Test Systems VTS-100) controlled by a digital function generator (Stanford

Research Systems Model DS335) through a voltage amplifier (Behringer Europower EP4000).

Four springs connect the T-slot framing shaft to the external armature, bearing nearly all of the

static load. An accelerometer is mounted to the bottom of the dish to measure stroke amplitude

and frequency through a digital oscilloscope (Tektronix TDS 2012C).

Rheometer

The driving arm of the rheometer is laser-cut from acrylic and has attached to it two

neodymium magnets (K&J Magnetics, cylinder magnets; thickness 0.125 in, diameter 0.5 in,

moment m1 = 0.42 A m2). Each magnet is positioned R = 3cm from the the center of the

arm with their north poles up. The driving arm sits at the end of a long aluminum shaft and is

rotated about its center by a stepper motor driven by an Arduino Uno. The long shaft ensures

that there is no effect due to magnetic interactions with the stepper motor. The test rotor consists

of two closed-cell nylon foam disk floats held at the same R = 3cm from the center as the driving

arm magnets by a laser cut piece of balsa wood. The wood piece has a hole in its center which,

when slipped over a delrin post set into the center of the dish, holds the test rotor coaxial with

the driving arm but free to rotate. In the center of each float disk is a neodymium magnet (K&J

Magnetics, cylinder magnets; thickness 0.0625 in, diameter 0.25 in, moment m2 = 0.053 A m2)

with its north pole up. The vertical separation between the driving arm and the test rotor is

h = 6cm. A contactlesss magnetic encoder (Avago Technologies, part number AEAT-6600-T16) is
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used to track the angular position of the test particle. To facilitate this a cylindrical, diametric

(polarization orthogonal to the axis of symmetry) magnet with an axial pass-through hole is

mounted in the center of the wooden connector. The magnetic encoder is mounted on top of

the center post and is recorded by a second Arduino Uno.

Derivation of Torque Due to Magnets

Here we derive, in exact form, the torque on the test rotor as a function of relative angle γ.

We begin by defining all salient parameters and variables. Figs. 5(a) and (b) illustrate the

relationship between the quantities.

– θ: Angular position of the test rotor

– γ: Relative angle between the drive arm and test rotor when viewed from above

– R: distance of the magnets from the axis of rotation

– ~m1 = m1ẑ and ~m2 = m2ẑ: magnetic moments of the upper and lower magnets, respectively

– ~r: separation of the upper magnet from the lower magnet

– a: lateral distance between the upper and lower magnets (defining the x̂ direction)

– h: vertical distance between the upper and lower magnets

The coordinates and dimensions of the system are related to one another as

r =
√
h2 + a2 =

√
h2 + 4R2 sin2

(γ
2

)
. (5.1)

Given that ~m1 = m1ẑ, ~m2 = m2ẑ and ~r · ẑ = h, the force between the upper and lower

magnets is

~F (~r, ~m1, ~m2) =
3µom1m2

4πr5

(
2hẑ +

(
1− 5h2

r2

)
~r

)
. (5.2)

The exerted in-plane torque is driven by the component of the force that is directed tangent to

the arc of rotation. To obtain this, we first find the x̂ component of ~F which lies along a. Noting

that ~r · x̂ = a, we can write down the x̂ component of ~F as

Fx = ~F · x̂ =
3µom1m2R

2πr5

(
1− 5h2

r2

)
sin
(γ

2

)
. (5.3)
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We calculate the component of the force tangent to the arc of rotation Fγ = Fx cos( 1
2γ) and thus

the torque τ = FγR using the identity sin( 1
2γ) cos( 1

2γ) = 1
2 sin γ to obtain

τ(γ) =
3µom1m2R

2

2π

(
1

r5
− 5h2

r7

)
sin γ. (5.4)

This is the exact form for the torque on the test particle as a function of relative angle γ, with an

extra factor of 2 to account for the fact that our system has two pairs of magnets. For simplicity,

we would like to approximate this as a Hookean torque. To do this, we make the approximation

that r ≈ h and sin γ ≈ γ. This is a small-angle approximation, and will break down as γ increases.

The Hookean torque we obtain is

τ(γ) = −krγ (5.5)

where

kr =
6µom1m2R

2

πh5
. (5.6)

For the particular parameters of our system, kr ≈ 6× 10−5 Nm. Fig. 14 shows the torque in

exact form and the linear approximation over a range of relevant angles.

Measurement of Drag Coefficient

We program the driving arm’s position β to oscillate sinusoidally as

β(t) = β0 sin(ωt), (5.7)

where β0 is the oscillation amplitude and ω is the angular driving frequency. Assuming a well

defined coefficient of drag, the resulting motion of the test particle is described by the differential

equation

Iθ̈ = τ(t)− ζr θ̇, (5.8)

where θ is the angular position of the test particle, I is the the moment of inertia, τ(t) is the

torque applied by the driving arm and ζr is the rotational drag coefficient. The applied torque τ

is only dependent on the relative angle γ(t) = θ(t) − β(t) between the driving arm and the test

particle, and so can be parameterized as τ(t) = τ(γ(t)). We derive the exact form of this torque
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arm

The full form torque (blue) is well approximated by a Hookean torque with spring constant
kr ≈ 6× 10−5Nm (red) over a range of angles relevant to our active measurement of drag

coefficient.
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above and find that it is well approximated by a Hookean spring:

τ(γ) = −krγ, (5.9)

with spring constant

kr =
6µ0m1m2R

2

πh5
≈ 6× 10−5 Nm. (5.10)

Here, m1 and m2 are the magnitudes of the magnetic moments of the driving arm and test

particle magnets, respectively. This approximation allows us to solve equation 5.8 exactly as a

damped driven harmonic oscillator to find

θ(t) = θ0 sin(ωt+ φ), (5.11)

where

θ0 = β0
kr

IωZm(ω)
, (5.12)

the mechanical impedance is

Zm(ω) =

√(
ζr
I

)2

+
1

ω2

(
kr
I
− ω2

)2

, (5.13)

and the phase lag is

φ(ω) = tan−1

(
ζr
I

ω

ω2 − kr
I

)
. (5.14)

We solve for the drag coefficient to find

ζr =
krβ0

ωθ0
sinφ. (5.15)

Thus, we are able to calculate the drag coefficient by measuring the amplitude and phase lag of

the test rotor’s response relative to the the driving signal. We obtain the response amplitude and

phase lag using a simple lock-in measurement:

θ0 =
(
〈θ(t) cos(ωt)〉2 + 〈θ(t) sin(ωt)〉2

)1/2
, (5.16)

φ = tan−1

(
〈θ(t) sin(ωt)〉
〈θ(t) cos(ωt)〉

)
, (5.17)
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where the angle brackets indicate time averages.
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CHAPTER VI

SUPPLEMENTARY MATERIALS FOR CHAPTER 4

Effective Potentials for Chain With α = π/6
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FIGURE 15. Effective Potentials in Total Bond Winding Angle φi,j
Potentials are determined from distributions using equation 3. The blue curves are calculated

directly from empirical data and the red curves are calculated using the distribution for φi,i+1 to
generate self-avoiding walks.
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generate self-avoiding walks.
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Semiflexible Behavior

Self avoiding walk simulation algorithm

We create self avoiding random walks with fixed bond length 22m, particle diameter 15mm

and bond angles φi,i+1 drawn from a given predefined distribution P (φi,i+1). In order to build a

chain with N bond angles we employ the following algorithm:

Begin

Draw N bond angles from the distribution

For each particle

Calculate the (x,y) value

Test for intersection with all previous particles and links

EndFor

Repeat until a chain of N non-intersecting links is found
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CHAPTER VII

CONCLUSION

This work establishes chaotic Faraday waves as a metafluid that a) is wholly consistent

with equilibrium thermal physics, b) has independently tunable temperature and viscosity and c)

provides a new platform on which complex, many-body phenomena may be studied. It hints at a

new universality: systems need only meet the basic criteria of having steady-state and isotropic

chaos to be governed by the fundamental physics of equilibrium thermodynamics. This work

opens up a new set of exciting questions and applications to be addressed in future work.

Chapter 2 established the system of chaotic surface waves as a thermal-like fluid

composed of macroscopic elements, based on passive rheology of buoyant tracers. The motion

of passive tracer particles exhibits a clear crossover from ballistic to diffusive motion. This

motion is functionally identical to Brownian motion, differing only in length and timescales.

This scale difference is the utility of the system; it dilates the constitutive dynamics to easily

observable levels, where complicated optics and imaging setups are not required to obtain

detailed quantitative data. I showed how, from passive tracer motion, one is able to measure

the temperature of the chaotic waves. I also determined how this temperature depends on the

external driving parameters, in particular, that it is directly proportional to the amplitude of

the vertical agitation generating the waves. Further, I showed that the inferred viscous drag

coefficient (calculated using the temperature and diffusion constant and by assuming the Einstein

relation in our system) is consistent with what would be expected in a nearly ideal gas.

Chapter 2 also begins the discussion of applying equilibrium thermal physics to ostensibly

athermal or non-equilibrium systems. The chaotic waves are far from what would be traditionally

considered thermal or equilibrium: they are macroscopic, and their dynamics do not depend on

the room temperature, making them athermal with respect to their surroundings. The waves are

also indisputably non-equilibrium, as their existence depends on the input of energy in the form of

vertical agitation. Nevertheless, they seem to satisfy the basic criteria of kinetic theory in having

steady-state, isotropic chaos. Chapter 2 showed that chaotic Faraday waves are, at the very least,

consistent with an equilibrium thermal fluid, and that they have a well-defined and easy-to-control

temperature. The results however lack a key piece: a direct measure of viscous drag.
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Chapter 3 addresses this deficiency by introducing an active rheology of chaotic Faraday

waves. Here, by applying a sinusoidally varying torque to a test rotor, I demonstrated the

measurement of a viscous drag coefficient. This “closes the loop” left open by chapter 2. With

direct measurement of temperature, diffusion constant and drag coefficient in the chaotic

waves I showed that this system does in fact obey the Einstein relation, a fundamental result

of equilibrium thermodynamics. This validated our assumptions regarding the thermal-like

nature of chaotic Faraday waves. This now leads to broader implications: perhaps, so long

as the fundamental units of a system exhibit isotropic, steady-state chaos, the system can be

treated with the same physics as an equilibrium thermal system. This suggests that equilibrium

thermodynamics may be extended to certain classes of otherwise non-equilibrium or athermal

systems, or, put another way, that equilibrium thermodynamics may be more universal than

previously thought.

Chapter 3 also showed the systematic dependance of the viscous drag coefficient on input

parameters. The viscous drag imparted by the chaotic waves is proportional to the product

of the vertical driving amplitude and frequency. Considering again that the temperature of

the waves is proportional only to the vertical driving amplitude, this now shows that chaotic

Faraday waves form a fluid that has independently tunable viscosity and temperature. This is

a remarkable property because in conventional fluids, there exists a strict relationship between

viscosity and temperature. Here, no such restriction exists. Instead, this fluid need only obey

the Einstein relation but is otherwise free to move about the temperature-diffusion constant-

viscous drag coefficient phase space. Additionally, my analysis showed that the drag coefficient

was independent of particle velocity, meaning that, for the range of parameters relevant to my

experiment, the chaotic Faraday waves are a Newtonian fluid.

When taken together, chapters 2 and 3 demonstrate that chaotic Faraday waves may

be considered a thermal, Newtonian, tunable metafluid. I call this system a metafluid because

it is constructed using the same philosophy behind all metamaterials: replacing atoms and

molecules with larger, athermal (with respect to the room or bath temperature) elements as the

fundamental unit from which emergent material properties are derived. While there is still work

to be done in rigorously characterizing the chaotic Faraday waves as a thermal metafluid, we may

still use it as a novel platform on which to study analogs to complex microscopic phenomena.
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Chapter 4 shows one such application. Here, I constructed buoyant articulated chains as

macroscopic analogs to short-chain polymers and placed them in the chaotic Faraday waves. This

demonstrated the utility of the waves as a source of thermal agitation. Whereas in a microscopic

system, a polymer is allowed to explore its configurational space through random collisions

with the surrounding atoms and molecules, instead my polymer analog is allowed to explore its

configurational space through collisions with macroscopic chaotic wave excitations. My analysis

shows that, strikingly, these macroscopic polymer analogs are still entirely consistent with the

well-studied physics of real polymers.

Again, the utility of the chaotic wave system is in its scale. Whereas monomer-level

behavior must be inferred from bulk behavior in molecular systems, here we may observe the

dynamics of the polymer from the monomer scale up to the chain scale. This suggests that this

system will be able to shed light on other microscopic phenomena that occur at length and/or

time scales too small to easily observe.

There are many other applications that may be pursued in the future. The most

tempting is the study of many-particle phenomena. For example, buoyant particles with similar

hydrophobicity tend to attract on the surface of a fluid via the popularly-termed “Cheerios effect,”

after the way Cheerios tend to clump together on the surface of milk [78]. This leads to passive

agregation of buoyant particles at the air-water interface. At several points during my graduate

career I have taken exploratory forays into many-particle problems. Though I have not achieved

any powerful quantitative results, I have made several qualitative observations that I believe point

to the potential for impactful science. For example, if many uniform particles are placed in the

chaotic Faraday waves, they will tend to anneal into crystal structures at low shaker amplitudes.

At higher amplitudes (and thus higher temperature of the chaotic waves), small crystalline

clusters will sublimate into a gas-like state of free particles. Thus, we may observe each individual

particle in a material as it undergoes a phase transition. A serious systematic difficulty arises for

large clusters, however, in that the dense packing of particles in the center of a cluster damps

out the surface waves, effectively lowering the internal temperature of the cluster to our system’s

absolute zero (the point at which there are no chaotic waves). Nevertheless, I believe that through

careful design of experiments the chaotic Faraday wave system will prove to be a powerful tool in

studying phase transitions.
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Another future direction for this work is to examine self-assembly and pattern formation.

Self-assembly is an active and exciting area of research [51], with applications to both inorganic

nanotechnology [79] and biology [80, 81]. In fluid interface systems, the Cheerios effect can in fact

be tuned via particle hydrophobicity and shape. Theoretically, buoyant particles could be designed

to bind to or repel from one another with preferred orientations, self-assembling into larger, more

complex macrostructures. For example, the chains of particles described in chapter 4 could be

modified to be heterogenous, leading them to self-fold into particular structures. The Faraday

waves provide an element of thermal agitation that allow particles to passively explore their state

space and anneal into their optimal structure.

There are a number of directions future researchers may carry this work in addition to

the aforementioned applications. To begin with, there are deeper characterization yet to try in

the chaotic Faraday waves. My research has focused on the use of tracer particles. We find that

the tracers diffuse identically to thermal particles, but we do not say anything about the waves

themselves. One possible method to study any diffusive nature of the waves would be to perform

a scattering-style experiment, similar to those used to study diffusive dynamics in colloidal glasses

[82]. The method is relatively simple: image the waves at a frequency commensurate with that of

the shaker, and examine the spatial correlations of the waves for frames seperated by various lag

times. The decay constant of these correlations can be used to determine if the waves themselves

are diffusive or not.

We have demonstrated many canonical results of equilibrium thermodynamics with

this work, but there are many more out there. Do the laws of thermodynamics exist in our

system? For example, can we recover a zeroth law? To answer this question, one would need to

demonstrate energy transport between two coupled chaotic Faraday wave systems. This could

be accomplished by embedding test rotors in each of two systems and couple the rotors via

electromechanical means. If the two baths are held at constant but different temperatures, a

zeroth law of thermodynamics would result in a measurable energy flux travelling from the probe

in the hotter reservoir to the probe in the colder reservoir. A similar experiment has already

been performed in a granular gas system [83] and indeed confirmed that energy flows from hot

to cold in accordance with the notion of irreversibility, at a rate proportional to the temperature

difference between the baths. Not only does this previous work show a proof-of-concept for how
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one might measure the thermodynamics of a macroscopic, non-equilibrium system, it also once

again points toward a broader universality of thermal physics.

I have helped design an experiment in our lab that is still in its infancy to probe this notion

of universality. I have proposed that we build a granular gas system and extract from it thermal

behavior in the same way we have in the Faraday waves. Granular gasses are not a new system for

study [84], but I have proposed a new form of agitation. Granular gasses are generally created

by shaking grains or blowing air through them, often from beneath. This is an efficient way

for achieving the desired gas-like phase, but it inherently introduces anisotropy, thus leading it

away from the traditional tools of thermal physics. The system I have proposed uses isotropic,

turbulent (chaotic) air input as a means of fluidization for a two-dimensional granular gas. The

goal of the project, though I will no longer be present to see it through, is to once again attempt

to recover the Einstein relation in the gas just as we did in the chaotic Faraday waves. If the same

physics emerges, we will have two examples of macroscopic, non-equilibrium systems that exhibit

behavior consistent with equilibrium thermal systems, despite satisfying only the basic criteria of

steady-state chaos and isotropy. A successful result will lend further support to the notion that

thermodynamics may be more universal than previously thought.

I began this dissertation by saying that materials science is a lot like cooking. We do

our best to understand the ingredients, then we mix them together to make new, interesting

things. The properties of the new things must necessarilly be determined by the properties of

the ingredients. When baking a cake, it used to be said that “there’s no substitute for an egg.”

We now know that to be false; all it took was experimentation. I believe my work parallels

this sentiment. Thermodynamics has been traditionally applied to microscopic systems, but

that tradition does not preclude a broader universality. By stripping the physics down to bare

fundamentals, we have found that macroscopic systems can reproduce equilibrium thermal

behavior, and in so doing we have found a substitute for the proverbial egg.
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