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DISSERTATION ABSTRACT 

 

Scott Charles Maguffin 

 

Doctor of Philosophy 

 

Department of Geological Sciences 

 

September 2016 

 

Title: A Biogeochemical Study of Groundwater Arsenic Contamination in the Southern 

Willamette Basin, Oregon, USA 

 

 

The mobilization and transformation of arsenic within the critical zone is a major 

cause of human suffering worldwide. Microorganisms, as they grow and utilize organic 

matter, accelerate redox processes that can transform and mobilize arsenic within aquifers 

on a large scale. As such, naturally occurring groundwater arsenic is a particularly 

hazardous problem that is chronically poisoning over 100 million people annually. 

Historically, groundwater arsenic research has been focused on the two principal inorganic 

arsenic species: arsenate [As(V)] and arsenite [As(III)]. Recently, organic arsenic species 

have garnered more attention due to their mobility, toxicity, and contemporary recognition 

of the ephemeral yet significant role they have in the global arsenic cycle. Here, I discuss 

laboratory and in situ experiments focused on exploring how microorganisms transform, 

mobilize, and sequester arsenic within a biogeochemically complex aquifer system. In my 

laboratory experiments, I collected aquifer sediments from a naturally contaminated 

bedrock aquifer and incubated a series of laboratory microcosms. Our results show that 

simultaneously robust iron and sulfate reduction temporarily mitigated arsenic 

contamination but then directed arsenic to an unstable adsorbed phase were it was later 

mobilized. Second, I discuss two aquifer injection experiments designed to examine in situ 



 

v 

 

microbial redox processes and the further explore the potential to stimulate arsenic 

sequestration through arsenic-sulfide precipitation. Our results show that in situ stimulation 

of microbial metabolisms accelerated the reduction of arsenic bearing iron (oxy)hydroxides 

as well as sulfate and arsenic reduction. Within 3 weeks of these contemporaneously 

occurring redox reactions, 90% of the dissolved inorganic arsenic was removed (~2000 

ppb) and an effective long-term, anaerobically stable, sequestration of arsenic was observed 

by way of a significant increase of arsenic-sulfide precipitate. Finally, using both the 

laboratory and field experiments, I explore the potential of organic arsenic production rates 

under stimulated conditions. We report new methylation rates that are consequential to the 

potential efficacy of enhanced, biologically-driven arsenic remediation and the 

reconsidered significance of biomethylation pathways in aquifers. These results expand our 

current understanding of the metabolic reach aquifer microorganisms potentially have over 

the fate of arsenic.   

This dissertation includes unpublished material. 
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CHAPTER I 

 

INTRODUCTION 

 

Arsenic is a ubiquitous and toxic contaminant in the critical zone, and is linked to 

cancers of the skin, bladder, and kidneys. Arsenic is also one of the highest priority 

pollutant on the National Priorities List (“Superfund sites”) in the United States.1  The 

most severe cases of human exposure to arsenic have occurred in South and Southeast 

Asia, where naturally-occurring arsenic in groundwater regularly exceeds the World 

Health Organization (WHO) standard of 10 ppb2. An estimated 100 million people have 

been exposed to elevated levels of arsenic in drinking water, in what has been labeled 

“the largest mass poisoning of a population in history”.3–5 Exposure to arsenic through 

consumption of contaminated groundwater is also a problem in the United States, 

particularly in Oregon, Maine, New Jersey, and Florida 6–8. Groundwater arsenic 

contamination can also be affected by indigenous aquifer microorganisms that influence 

groundwater chemistry by way of consuming organic compound; these reduction-

oxidation processes can incorporate arsenic species and change arsenic’s solubility. 

In surface and subsurface aquatic systems, arsenic is typically present as the 

inorganic oxyanions arsenate (As(V)) and arsenite (As(III)) but also occur as methylated 

species.9 Understanding the biogeochemical controls on the distribution of these species 

is critical because arsenic species have different toxicities, mobility, and fates in the 

environment. Due to inorganic arsenic’s proclivity to adsorb onto some aquifer media, 

such as clays and iron oxides, a common process attributed as a source of groundwater 

arsenic contamination is the reduction of arsenic-bearing ferric iron (oxy)hydroxide 

minerals. This contaminating process is strongly dependent on the microbial activity and 
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the geochemistry of the aquifer, particularly pH, dissolved concentrations of arsenic and 

other adsorbing species, and the mineral composition of aquifer itself.10,11 On the other 

hand, recent studies point to the reduction of groundwater sulfate as a mechanism for 

limiting groundwater arsenic through the precipitation of arsenic and iron-sulfide 

minerals.12,13 The efficacy of these processes as a remediation strategy is not well 

understood, especially in the context of more complicated biogeochemical networks 

within arsenic contaminated aquifer systems.  

In Chapter II, in preparation for publication in Environmental Science & 

Technology, I discuss a series of incubated laboratory experiments that explore several 

aquifer-biogeochemical systems. These experiments examine the role of indigenous 

microorganisms in sulfate and iron reducing environments with respect to dissolved 

inorganic arsenic contamination and the additional effect of ethanol-stimulated microbial 

activity. 

In Chapter III, in preparation for publication in Environmental Science & 

Technology, I discuss the results of two aquifer push-pull injection tests into an arsenic-

contaminated aquifer. The first push-pull experiment explored in situ biogeochemical 

reactions and the natural, unstimulated microbial community’s ability to mobilize 

arsenate in a controlled geochemical regime. The second experiment examined the 

aquifer’s geochemical response alongside ethanol-stimulated microbial activity.  

In addition to microorganisms cycling arsenic between inorganic arsenic species, 

many microorganisms also possess the arsM gene, which confers the ability to methylate 

arsenic via the arsenite S-adenosylmethionine methyltransferase enzyme (ArsM). This 

gene allows microorganisms to transform or ‘methylate’ inorganic arsenic to pentavalent 

methylated forms14. Arsenic methylation remains poorly understood relative to other 
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microbial arsenic transformations but the ability to methylate is widespread in natural 

systems and is present in diverse eukaryotic and prokaryotic genomes15 with some 

cultures of arsM-bearing microbes capable of quick arsenic methylation16. Despite these 

findings, the concentrations of methylated arsenic in many aquatic environments remain 

low17,18, and it is currently not known if this is due to limitations to arsenic methylation 

rates or to processes like sorption or arsenic demethylation which prevent the 

accumulation of methylated arsenic in aquatic systems.  

Attention to arsenic contamination has typically focused on inorganic As(III) and 

As(V). However, recent focus on pathways of arsenic into food19 and within groundwater 

systems18 has brought new attention to the importance of methylated arsenic. Several 

methylated arsenic species are volatile and significantly more mobile than their inorganic 

counterparts; therefore, arsenic’s transport potential within and out of groundwater 

increases with methylation.20 The mass transfer of volatile arsenic species from the 

saturated zone to the vadose zone may create a concentration gradient that drives 

diffusive transport of volatile arsenic species out of groundwater. In particular, biological 

(e.g. microbial) arsenic methylation, in both groundwater and the shallow subsurface, is a 

potentially significant pathway relative to other global fluxes of arsenic 18,21–23 and may 

result in arsenic moving from groundwater to shallow subsurface environments. 

In Chapter IV, in preparation for publication in Environmental Science & 

Technology, I discuss observed organic arsenic chemistry in the laboratory and field 

experiments from Chapters II and III. I also identify new methylating capabilities of 

indigenous aquifer microbial communities under ethanol-stimulated conditions.  

In this dissertation, by coupling laboratory and field geochemical experiments and 

utilizing the stimulation of naturally occurring aquifer microorganisms, I have been able 
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to identify the importance of competing biogeochemical reactions relating to arsenic 

mobility and quantify rates of important organic arsenic reactions. 
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  CHAPTER II 

 

CONTROL OF REDOX CHEMISTRY ON THE EFFICIENCY OF ARSENIC 

BIOREMEDIATION 

 

In preparation for submission to Environmental Science & Technology.  

Scott C. Maguffin and Qusheng Jin designed the project. The manuscript was 

written by S.C.M with input from Q.J. Q.J. and S.C.M. conducted laboratory 

experiments. Samples were collected and analyzed by S.C.M. Jing Sun and Benjamin C. 

Bostick carried out synchrotron analyses.  

 

1. Introduction 

Groundwater arsenic contamination is a significant global health problem that 

impacts tens of millions of people worldwide.1–3 As a groundwater species, arsenic 

mainly occurs as pentavalent arsenate [As(V)] and trivalent arsenite [As(III)]. A key 

process controlling the occurrence and concentration of groundwater arsenic is its 

adsorption onto surfaces of ferric minerals and clays.4–6 In most groundwater 

environments, As(V) has a stronger affinity for adsorption than As(III)7. In addition to its 

adsorption properties, arsenic mobilization is controlled by microbial redox processes. 

For example, microbially driven ferric iron reduction by iron reducing bacteria (FeRB) 

can dissolve arsenic-bearing ferric minerals, releasing arsenic into groundwater.8–14 

Microbes can also oxidize arsenite or reduce arsenate, controlling groundwater arsenic 

levels by determining arsenic speciation and its corresponding sorption properties.  

Sulfate reducing bacteria (SRB) can also be a significant control on groundwater 

arsenic mobilization; arsenic does not typically exceed World Health Organization 

(WHO) contamination limits in groundwater where sulfate is abundant.15–18  One 

explanation for this is that sulfate reduction can sequester arsenic by promoting the 
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precipitation of iron and arsenic sulfide minerals, a process that removes dissolved 

arsenic by either incorporating it into the mineral structure or providing additional 

sorbing locations. 

These biogeochemical processes are typically intertwined with each other. 

Therefore, an important question is how simultaneous biogeochemical processes drive 

the mobilization, transport, and fate of arsenic in aquifers. Furthermore, can arsenic be 

bioremediated through the stimulation of microbial metabolisms? Here, we explore the 

role of sulfate, iron, arsenic, and indigenous microorganisms under natural and stimulated 

conditions by using three biologically active batch reactor experiments. We used 

sediments and indigenous microorganisms from a naturally contaminated bedrock aquifer 

to construct laboratory microcosm incubation experiments. With a specific focus on 

arsenic transformation, we examined how microorganisms respond to variations in 

groundwater chemistry and available energy under simulated bedrock aquifer conditions 

and the resulting efficacy of arsenic bioremedation. 

2. Study Area and Experimental Setup 

Laboratory experiments were constructed using extracted aquifer sediments from 

the saturated, anaerobic, and arsenic contaminated volcaniclastic sandstone unit within 

the Fisher Formation located southern Willamette Basin, Oregon, USA. The aquifer 

consists of units of late Eocene to Oligocene andesitic lapilli tuffs and volcaniclastic 

sandstone as well as basalt and andesitic lava flows.20,21 We constructed the experiments 

to simulate three different conditions: 1) in situ (Reactor N); 2) ethanol stimulated 

(Reactor E); 3) ethanol and sulfate stimulated (Reactor ES). A batch-reactor identical to 

Reactor N was prepared and then autoclaved as the biological control (Reactor A). Each 

experiment contained a slurry mixture of aquifer material collected from the field site 



7 

combined with a synthetic groundwater. Aquifer material was homogenized for in an 

anaerobic chamber before combining with the synthetic groundwater. Biologically active 

reactors N, E, and ES were prepared in quadruplicate (Reactor A in triplicate) in 1-liter 

airtight glass containers by mixing 150 g of crushed bedrock sediments and 600 mL of 

synthetic groundwater. The aqueous medium was fashioned to reflect the Na-Cl type 

groundwater of this part of the Willamette Basin; chemical analyses of in situ 

groundwater conditions were used as a reference for the synthetic groundwater (Table 

B1, Appendix B). All glassware, rubber stoppers, and equipment were acid washed and 

autoclaved before use. All reactors were incubated at 15°C in the dark.  

All microcosms experiments were incubated in the dark at 20°C for the duration 

of the experiment. The microcosms were initially run for a period of 28 days without any 

amendment. The purpose of this “mobilization phase” was to follow the natural release of 

arsenic and other geogenic chemicals. Any microbial activity during this initial 

mobilization phase relied on endogenous substrates present naturally.19 

Aqueous and gas phase samples were collected every 4-7 days. Experiments were 

gently shaken before sampling to homogenize the solution and release trapped gases into 

the headspace. Approximately 8 mL of solution was anaerobically extracted from each 

reactor. Extracted solutions were either used immediately to measure pH, ferrous iron, 

and sulfide or centrifuged, filtered (0.22 M), and frozen at -20 °C for future arsenic and 

anion analyses. Gaseous samples were anaerobically extracted from the headspace using 

a gas-tight needle and syringe. We measured methane and CO2 by gas chromatography 

using a flame ionization detector equipped with a methanizer (SRI Instruments, Torrance, 

CA, USA). 
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We analyzed pH using standard electrodes. Sulfide and ferrous iron were 

analyzed using Hach method 2244500 and 103769 with a DU Series 500 

Spectrophotometer (Appendix A). Frozen samples were shipped overnight to the Illinois 

Sustainable Technology Center for arsenic speciation and total arsenic analyses (see 

methods, Appendix A). Total arsenic analyses were completed using a VG Elemental PQ 

Excel ICP-MS with a yttrium internal standard that was calibrated daily. We used ion 

chromatography and high performance liquid chromatography (HPLC) to analyze for 

anion chemistry. Anion results were normalized to chloride concentrations to account for 

analytical drift.  

Solid phase samples from before and after the incubation were preserved at -70C 

until solid phase sequential extraction analyses were conducted. Acid volatile sulfide and 

chromium reducible sulfur methods followed methods outlined in Kirk et al. (2010).22  

Samples collected on days 3 and 50 were also analyzed using x-ray absorption near-edge 

structure (XANES) and micro-focused synchrotron X-ray fluorescence (μSXRF) 

mapping for arsenic and iron. 

3. Results 

In Reactor E and ES, ethanol decreased to below detection limits within 24 days 

while acetate accumulated to concentrations similar to that of initial ethanol 

concentrations (Fig. 1).  The onset of ethanol depletion was accompanied by a drop in pH 

from 8.00.1 to 6.00.1 at day 12 of the experiment. Concurrent with the pH decrease 

were increases in dissolved arsenite, arsenate, sulfide, Fe(II), and H2 (g). Reactors A and 

N varied little in pH throughout the incubation (pH̅̅ ̅̅ : 7.80.25) (Fig. 1). We did not detect 

any ethanol, acetate, ferrous iron, sulfide, methane, or H2 in Reactor A at any time.  
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In stimulated experiments, dissolved ferrous iron was detected after 3 days into 

the experiment and continued increasing until about day 20 when it began to steadily 

decrease (Fig. 1). Within our sampling window, maximum dissolved iron concentrations 

were contemporaneous with the depletion of ethanol in both Reactors E and ES.   

 

Figure 1. Variations with time in pH and concentrations of ethanol, acetate, dihydrogen 

(H2), dissolved inorganic carbon (DIC), ferrous iron, sulfate, sulfide, and methane (CH4) 

in Reactor A (), N (), E (), and ES (). Data points represent the mean of the 

measurement and error bars are the standard deviation. 

 

In Reactors A and N, about 2.5 mM of sulfate were added, and dissolved sulfate 

accumulated over time to about 4 and 5 mM, respectively. Although no sulfate was added 

to Reactor E experiments, sulfate was detected at low concentrations (approximately 0.3 

mM) at the beginning of the experiments.  In Reactor ES, 2.5 mM sulfate was also added 

at the beginning of the experiment. In ethanol stimulated experiments, we observed 

minimum dissolved sulfate concentrations of 0.055 + 0.011 mM and 0.54 + 0.011 mM 
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for Reactors E and ES, respectively. Sulfide was produced in all biologically active 

experiments with maximum concentrations ranging from 0.2 mM (Reactor E) to 0.58 

(Reactor N). All stimulated experiments showed peak H2 concentrations (approximately 

500 moles/L) after thirteen days; however, after 16 days all H2 was depleted and not 

detected thereafter. See Appendix B for complete aqueous results from laboratory 

experiments. 

Fluoride concentrations in non-stimulated experiments maintained a relatively 

stable background concentration with the exception of a sharp increase and decrease 

between day 7 and 20 (Fig 2). This fluctuation was nearly identical in both Reactor A and 

N. In stimulated experiments fluoride concentration began to increase after day 3 and 

continued to do so until about days 14-17. Comparatively, chloride concentrations are 

stable throughout the experiment for all experimental reactors. 
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Figure 2. Variations with time in concentrations of chloride and fluoride in Reactor A (), 

N (), E (), and ES (). Data points represent the mean of measurement and error bars 

are the standard deviation.  



12 

Although the synthetic groundwater included 2.5 mM of dissolved arsenate, initial 

dissolved arsenate concentrations did not exceed 0.6+0.1 mM (Fig. 3). In Reactor N, 

arsenate gradually increased throughout the experiment, reaching concentrations as high 

as 1.0+0.3 mM.  Among stimulated experiments, dissolved arsenic species exhibited 

unique concentrations. In Reactor E, we observed significantly higher arsenate 

concentrations throughout weeks 2 and 3; during this time Reactor ES arsenate 

concentrations remained close to background levels. Arsenite concentrations in both 

stimulated experiments increased to approximately 1100 ppb after 7 days; however, in 

Reactor ES arsenite quickly decreased to below initial concentrations (approximately 200 

ppb) before gradually increasing and exceeding 2000 ppb after about 35 days. 

Conversely, the initial spike of arsenite in Reactor E was followed by a steady increase 

that never exceeded 2000 ppb. After 35 days, Reactor ES exceeded Reactor E in arsenate, 

arsenite, and total arsenic concentrations.  
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Figure 3. Variations with time in the concentrations of total arsenic, and arsenic in 

 arsenate and arsenite in Reactor N (), E (), and ES (). Data points represent the 

mean of measurement and error bars are the standard deviation. Reactor A did not exhibit 

any changes in arsenic concentrations over time and is not shown.  

 

Methane was detected in all ethanol-stimulated experiments and first observed at 

low concentrations (approximately 0.2 mmol*L-1) after day 16. Reactor ES exhibited a 

lower rate of methanogenesis than Reactor E. In all ethanol-amended experiments, the 

rate of methanogenesis increased significantly, after ethanol was completely depleted 

(day 27).  

Synchrotron analyses of solid material show the sloughed, pre-experimental 

aquifer media to be 66%+12% ferrihydrite (Table 1). In stimulated experiments, final 

concentrations of ferrihydrite decreased to 49%+7% and 52%+12% for Reactors E and 

ES, respectively. Hematite increased from 6+2% (bedrock) to 12+11% (Reactor N), 

19+2% (Reactor E), and 10+2% (Reactor ES). Siderite was detected in Reactor ES only. 
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Table 1. Synchrotron analyses of solid phase samples. 

 

Ferrihydrite 

Fe(OH)3 

FeOOH 

Goethite 

Fe2O3 

Hematite 

magnetite 

Fe3O4 

Hornblende 

(Fe2+/3+ 

silicate) 

Siderite 

FeCO3 

Bedrock 6612% 15% 62% 03% 274% 04% 

Reactor N 1954% 3023% 1211% 015% 3819% 016% 

Reactor E 497% 53% 192% 02% 283% 02% 

Reactor ES 5212% 95% 102% 03% 224% 64% 
 

Sequential extraction analyses show solid phase ferrous iron increasing from 

14.77.5 mmol(kg water)1 (before incubation) to 18.05.0, 40.815.9, and 54.29.0 

mmol(kg water)1 for Reactors N, E, and ES, respectively (Table 2). Analyses also 

revealed an increase in sulfide minerals from 0.0540.020 mmol(kg water)1 (before 

incubation) to 0.1100.03, 0.1220.012, and 6.83.2 mmol(kg water)1 in Reactors N, E, 

and ES, respectively.  

 

Table 2. Acid volatile sulfide (AVS), chromium-reducible sulfur (CRS), and ferrous iron 

(Fe2+) before and after incubation in Reactor N, E, and ES.   

Reactors 
AVS 

[mmol(kg water) 1] 

CRS 

[mmol(kg water) 1] 

Fe2+ 

[mmol(kg water) 1] 

Before incubation 0.0540.020 0.0430.016 14.77.5 

Reactor N 0.1100.033 0.1180.069 18.05.0 

Reactor E 0.1220.115 0.0440.008 40.815.9 

Reactor ES 6.8003.193 0.0760.026 54.29.0 

 

Solid phase analyses show decreases of arsenic in arsenic-bearing amorphous 

ferric iron oxyhydroxides in Reactors N, E, and ES as well as increases in arsenic-sulfide 

precipitates in Reactors E and ES (Table 3).  The largest increase of arsenic co-

precipitated with acid volatile sulfide (AVS) was observed in Reactor E, however a 

modest increase was observed in Reactor ES as well. Reactor ES showed the greatest 
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accumulation of adsorbed arsenic throughout the incubation while both Reactors N and E 

exhibited similar amounts as pre-incubation sediments.   

Table 3. Amount of arsenic A) ionically bound; B) strongly adsorbed; C) co-precipitated 

with AVS, carbonate, Mn oxides, and very amorphous iron oxyhydroxides; D) co-

precipitated with amorphous iron oxyhydroxides; E) co-precipitated with crystalline iron 

oxyhydroxides; and F) co-precipitated with pyrite and amorphous As2S3 before and after 

incubation in Reactor N, E, and ES.   

Reactors 

A 

[mol(kg 

water) 1] 

B 

[mol(kg 

water) 1] 

C 

[mol(kg 

water) 1] 

D 

[mol(kg 

water) 1] 

E 

[mol(kg 

water) 1] 

F 

[mol(

kg 

water) 

1]] 

Before 

incubation 
26.813.0 135.60.6 68.34.5 418.1164.5 50.717.4 6.30.0 

Reactor N 14.51.5 129.316.6 59.67.9 254.1108.1 58.89.8 1.81.8 

Reactor E 56.34.4 138.73.9 105.211.3 122.089.8 47.033.3 0.00.0 

Reactor 

ES 
68.124.8 202.635.1 77.812.2 272.893.1 37.810.6 0.00.0 

 

Synchrotron analyses of solid phase arsenic (Table 4) show that Reactor N 

yielded the lowest percentage of arsenite but the highest percentage of As2S3. Among 

stimulated experiments Reactor E had less arsenite and more arsenate and As2S3 than 

Reactor ES.  

Table 4. Synchrotron analyses of final solid phase 

arsenic samples. 

 As(III) As(V) As2S3 

Reactor N 69.30.3% 13.60.2% 15.90.4% 

Reactor E 73.20.3% 15.20.2% 11.80.4% 

Reactor ES 79.10.3% 11.10.2% 9.70.4% 

 

 

4. Discussion 

The primary goal of this study was to assess biostimulation as a strategy for in situ arsenic 

remediation.17,22  We stimulated microbial metabolisms with ethanol in two experiments 

(Reactor E and ES); the enhanced metabolic activity had a significant effect on the 
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concentrations and speciation of dissolved arsenic as well as how effectively dissolved 

arsenic was sequestered. Microorganisms in the unstimulated experiment (Reactor N) also 

exhibited the ability to transform and mobilize arsenic species into the dissolved phase. 

However, our results show that ethanol stimulated experiments yielded significantly higher 

dissolved arsenic concentrations than those under natural conditions, and that the addition 

of sulfate made no statistically significant difference in arsenic sequestration.  

In Reactors E and ES, the ethanol amendment stimulated methanogenesis as well 

as microbial reduction of iron, arsenate, and sulfate. We see evidence that ferric iron 

reduction was strongly coupled to syntrophic ethanol oxidation. Syntrophic ethanol 

oxidation yields acetate, H2, and H+; as a result, we observed a significant decrease in pH 

through day 12 and a corresponding accumulation of acetate. Very low H2 concentrations 

were maintained through H2-driven prokaryote redox processes which prolonged the 

thermodynamic favorability of syntrophic ethanol oxidation.23 Acetate production 

maintained a 1:1 ratio with ethanol consumption during the first 21 days of the 

experiment; we surmise that negligible acetate oxidation occurred before day 21 and that 

H2 was the primary electron donor for most redox processes before day 21. Furthermore, 

hydrogenotrophic ferric iron reduction, sulfate reduction, and methanogenesis consume 

protons (2, 1, and 1 H+ per molecule FeOOH, SO4
=, HCO3

-, respectively)24, which 

explains the increase in pH after day 12.  

Based on changes (or lack thereof) in fluoride and chloride concentrations, we can 

deduce the timing and duration of ferric iron reduction. Ferrihydrite is the main ferric 

mineral among other significant ferric minerals including goethite and hematite in the 

aquifer (synchrotron results). Microbial reduction of ferric minerals results in the 

dissolution of the minerals and the release of sorbed chemical species, such as fluoride 
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and arsenic, into groundwater. At circumneutral pH, fluoride has a high adsorption 

potential on ferrihydrite and strongly interferes with the sorption of other species onto 

ferric iron minerals.25 On the other hand, chloride does not sorb significantly and thus can 

be taken as a conservative tracer. In other words, we can identify the onset and cessation 

of microbial iron reduction on the basis of the difference between fluoride and chloride 

dynamics in the experiments. In Reactor E, dissolved ferrous iron (Fig 1) and fluoride 

(Fig 2) concentrations increased through the first 17 days of the incubation. Around this 

time ferrous iron reached peak concentrations and fluoride concentrations stabilized. 

Compared to Reactor ES, Reactor E exhibited higher ferrous iron and fluoride 

concentrations, both of which are strong indications that iron reduction was more 

significant.  

Solid phase analyses also point towards more ferric iron reduction in Reactor E 

than ES. Iron sequential extraction procedures indicate about 0.6 moles of ferric iron 

were initially present in all reactors (not shown). Synchrotron based x-ray 

microspectroscopy of solid phase mineralogy show decreases in ferrihydrite from 

6612% to 497% and 5212% in Reactors E and ES, respectively.  

Although Reactor E was not amended with sulfate, notable amounts of sulfide were 

produced between 10 and 20 days. Based on the increase of sulfate in Reactor A and N, 

the source of additional sulfate for microbial sulfate reduction was likely from the 

dissolution of sulfate minerals in the aquifer sediments. Sulfide production occurred 

simultaneously with iron reduction, which yielded iron-sulfide precipitate (Table 3). 

Sulfide was produced in all biologically active experiments and at least 3 mM of sulfate 

was reduced to sulfide in Reactor ES; however, we never detected more dissolved sulfide 

in Reactor ES than in Reactor E or N. We attribute this to the robust iron reduction 
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occurring throughout this part of the experiment which produced dissolved ferrous iron 

and scavenged the sulfide before it could be detected. Solid phase analyses of sulfide 

mineralogy support this hypothesis.  

In Reactor E, arsenate reduction began within a few days and continued throughout at 

least day 45. Although approximately 2.5 ppm of arsenate was included in the artificial 

groundwater solution, less than half was observed in initial dissolved phase concentrations 

in all experiments (Fig 3). We attribute this to the significant sorption of arsenate onto 

ferric minerals, especially at lower pH.25  

In both Reactors E and ES, iron reduction quickly began and arsenate desorbed 

from dissolving hydrous ferric oxide (HFO) minerals; this is evidenced by the increase in 

fluoride and the quick increase of dissolved arsenite (>1000 ppb) by way of arsenate 

reduction. We attribute very similar arsenite concentrations in Reactor E and ES through 

day 8 to similar initial iron reduction rates and efficient reduction of arsenate by AsRB. 

However, due to the greater amount of ferric iron reduction in Reactor E than ES, 

significantly more total dissolved arsenate (most of which was quickly reduced to 

arsenite) existed in the dissolved phase of Reactor E between 8 and 30 days. 

In Reactor ES, we observed approximately 30% less dissolved ferrous iron as 

well as lower and earlier peak fluoride concentrations than in Reactor E. This further 

indicates that less robust ferric iron reduction occurred in Reactor ES. We conclude that 

the presence of dissolved sulfate caused SRB to effectively compete with FeRB for H2 

enough to significantly lessen the amount of ferric iron reduction in Reactor ES.  

We see further evidence of the importance of iron reduction and its role in the fate 

of arsenic in each experiment’s solid phase data. As previously discussed, iron reduction 

is a key driver of arsenic mobilization. Arsenic sequential extraction analyses showed 
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that most pre-experiment, arsenic-bearing aquifer minerals occurred as co-precipitated 

with amorphous iron oxyhydroxide. Although Reactors N, E, and ES showed reduction in 

the amounts of arsenic that was co-precipitated with amorphous iron minerals, the 

reduction in Reactor E was most significant, which in turn, released the largest amount of 

arsenic. Furthermore, Reactor ES yielded significantly more adsorbed arsenic than all 

other reactors; this is likely a result from additional adsorbing locations provided by iron-

sulfide precipitates. We measured 6822% more adsorbed arsenic (day 55) in Reactor ES 

than Reactor E. These data account for part of the mid-experiment lull in total dissolved 

arsenic in Reactor ES, much of which went on to desorb later in the experiment due to a 

change in pH.   

 

Figure 4. Illustration of redox processes and total arsenic concentrations over time in 

Reactors E and ES. The dashed line represents projected total arsenic concentrations 

based on groundwater mixing only; the solid line represents measured total arsenic 

concentrations. 
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Based on previous work by Kirk et al. (2012), we expected that dissolved arsenic 

in Reactor ES would be drawn out of solution as an impurity within an iron-sulfide 

precipitate. Although iron reduction and the resulting dissolution of ferrihydrite catalyzed 

the desorption of arsenic species and resulted in initial increases in dissolved arsenic in 

Reactors E and ES, the dynamics of pH in in these reactors played an important role. A 

graphical representation of important redox processes is shown in Figure 4. Arsenate 

sorption onto ferrihydrite decreases with increasing pH and previous studies have also 

shown that arsenate sorption kinetics are more greatly affected by pH than arsenite.26–29 

In fact, Raven at al. (1998) observed little difference in arsenite sorption (at similar 

concentrations) onto ferrihydrite between pH 4.6 and 9.2. However, although the pH 

changes in Reactors E and ES were nearly identical, the retardation of iron reduction in 

Reactor ES proved significant; it provided more sorbing locations for arsenic due to the 

preservation of adsorption sites. Furthermore, precipitating iron sulfide minerals also 

provided sorption sites that were not originally present. Reactor ES therefore yielded 

significantly lower dissolved arsenic concentrations (between days 12 and 30) but only 

temporarily as the previously noted gradual increase in pHs increased overall arsenic 

solubility throughout the experiment. This is reflected in the gradual rise of dissolved 

arsenic concomitant with the increase in pH in Reactor ES and final arsenic 

concentrations nearly identical to those observed in Reactor E.  

 

7. Conclusion  

Solid phase analyses of acid volatile sulfide reveal that very little arsenic was 

incorporated into the sulfide precipitate. We surmise that the temporarily muted (days 12 

through 30) concentrations of dissolved arsenic in Reactor ES are due to decreased 
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amounts of iron and arsenic reduction due to SRB, FeRB, and AsRB competition for H2; 

this resulted in less ferrihydrite dissolution and therefore less arsenic desorption. Also, 

iron sulfide minerals provided additional sorbing locations for dissolved arsenic. This, 

combined with pH-sorption dynamics influenced largely by syntrophic ethanol oxidation, 

kept arsenic out of the dissolved phase during the time of peak iron and sulfate reduction 

and resulted in very little arsenic being sequestered as an impurity within iron sulfides or 

as an arsenic sulfide. The retained adsorbed arsenate species in Reactor ES maintained 

their sorbed locations due to low pH but eventually entered the dissolved phase. 

The results of these experiments suggest that biostimulation was effective at 

temporarily lowering dissolved arsenic concentrations but may not be means for arsenic 

remediation, especially regarding the efficacy of sequestering arsenic as part of the 

mineral structure in iron and arsenic sulfides. Instead, biostimulation of ferric iron and 

sulfate reduction may create a dual effect of iron-sulfide precipitation without first 

mobilizing adsorbed arsenic to be incorporated into the mineral. This may be avoidable 

with efforts to 1) control pH and therefore arsenic adsorption and 2) delay sulfate 

reduction until arsenic is sufficiently mobilized – perhaps with a delayed injection of 

sulfate into the system.  

 

6. Bridge I 

In this chapter (Chapter II), I collected aquifer sediments from a naturally 

contaminated bedrock aquifer ([AsIII] ≥ 3000 ppb), constructed laboratory microcosm by 

adding sulfate and ethanol, and incubated for 2 months. Ethanol-sulfate experiments 

initially yielded significant iron-sulfide precipitates and lowered arsenic contamination to 

~200 ppb; however, arsenic levels later increased to ~3600 ppb; with 31% (~202 



22 

mol×(kg water)-1) and 12% (~78 mol×(kg water)-1) of solid phase arsenic apportioned 

as adsorbed and arsenic-sulfide, respectively. Ethanol-only experiments yielded higher 

initial arsenic contamination (~1500 ppb), however 22% (~105 mol×(kg water)-1) of 

solid phase arsenic was sulfide-sequestered. Our results show that robust, simultaneous 

iron and sulfate reduction can temporarily mitigate arsenic contamination, but may 

marginalize sulfide’s ability to scavenge arsenic and instead direct it to the less stable 

adsorbed phase. This research highlights the complications of arsenic remediation via 

biostimulation with respect to competing redox reactions, microbial activity, and 

secondary controls on the fate of arsenic such as pH changes as a result of ethanol 

oxidation. In the following chapter (Chapter III), for comparison, I explore similar 

biogeochemical reactions through a series of in situ aquifer push-pull tests. 
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CHAPTER III 

 

ATTENUATION OF GROUNDWATER ARSENIC THROUGH STIMULATION 

OF AQUIFER MICROORGANISMS 

 

In preparation for submission to Environmental Science & Technology  

The manuscript was written by Scott C. Maguffin with input from Qusheng Jin. 

Q.J. and Ashley Daigle. designed the project. Samples were collected and analyzed by 

S.C.M, Q.J. and A.D. Q.J., A.D., and S.C.M. conducted analyses. Jing Sun and Benjamin 

C. Bostick carried out synchrotron analyses.  

 

1. Introduction  

Arsenic cycling within the critical zone threatens the health and well-being of an 

estimated 100 million people around the world.1 Although it is widely distributed within 

the critical zone, exposure is especially hazardous by way of groundwater. Either through 

use as drinking water through or irrigation and bioaccumulation in food, arsenic 

poisoning by this pathway can lead to skin lesions, neuropathy, diabetes, cardiovascular 

disease, and cancer.2,3 Arsenicosis is a major problem in South and Southeast Asia as 

well as in the United States.4–6 

In groundwater systems, arsenic is typically present as the inorganic oxyanions 

arsenate [As(V)] and arsenite [As(III)]7,8. The properties of these arsenic species are 

subject to biological and geochemical controls and exhibit different toxicities and 

mobilities in the environment. Biological processes mediate transformations between 

these different arsenic species, and the genetic basis for some of these microbial 

processes is increasingly well understood. Recent attention has been directed towards 

biogeochemical processes that cause and could mitigate arsenic contamination through 

enhanced attenuation of natural chemical and biological regimes.9–11 
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Reduction of ferric (oxy)hydroxide minerals is considered a common source of 

groundwater arsenic contamination.12–16 The presence of arsenic as an impurity within 

ferric iron minerals is consequential in iron reducing environments and its release through 

the dissolution of its host structure may increase As(V) concentrations in the dissolved or 

adsorbed phase. In common groundwater environments, As(V) is competitive for 

adsorbing locations, however, desorption by competing molecules such as phosphate or 

organic compounds can desorb As(V) and increase dissolved phase arsenic 

concentrations.17–19 Microorganisms capable of utilizing As(V) as an electron acceptor 

and reducing it to As(III) complicate the biogeochemical network of aquifer 

microorganism reactions and can further increase dissolved arsenic concentrations.  

Recent studies have focused on the presence of groundwater sulfate and its effect 

on arsenic contamination.11,20–24 Typically, in aquifers where sulfate reduction is an 

active process, dissolved groundwater arsenic is low.4,11,24–26 Laboratory experiments 

have shown that the reduction of sulfate and subsequent production of dissolved sulfide 

can be an effective mechanism for removing dissolved arsenic, either by precipitating it 

with iron-sulfide or in an arsenic-sulfide mineral27.   

Here, we use two aquifer push-pull tests to investigate biogeochemical redox 

processes controlling the naturally occurring arsenic contamination in a bedrock aquifer. 

We explore the natural proclivities for electron acceptors of in situ microorganisms and 

examine the potential use of their metabolisms to mitigate dissolved arsenic 

contamination. Through stimulated simultaneous redox reactions, we show that promoted 

sulfate reduction in the presence of arsenic-contaminated groundwater can effectively 

sequester arsenic in anaerobically-stable solid phase minerals.  
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2. Methods  

2.1 Study Area 

Push-pull tests were conducted within the bedrock aquifer in the southern 

Willamette Basin, Oregon, USA (Fig. 1). The bedrock aquifer, locally known as the 

Fisher Formation, ranges up to 2,100 meter-thick and consists of volcaniclastic arkosic 

sandstone, mudflows deposits, and andesitic lapilli tuffs and breccias4,28,29. 

Hydrologically, the Fisher Formation has relatively low permeability and is considered 

part of the basement confining unit within the western Cascade Range.29 A survey of 

local wells (n = 23) indicates the Fisher Formation is oligotrophic, anaerobic, and 

variably contaminated with both As(III) and dimethylarsinic acid DMAs(V) (769±1051 

and 6.1±4.8 ppb, respectively); the Na-Cl type groundwater exhibits low dissolved 

organic carbon (DOC) (4.7±3.6 ppm), alkalinity 5.9±3.1 meq*L
-1, and a pH of 7.7±0.5. 

See Appendix C for groundwater composition of the bedrock aquifer.   
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Figure 1.  Geologic map of field site and well locations the Eugene-Springfield area of 

Oregon, USA. Well 13 was used for control injection test and stimulated injection test 

field experiments. Figure reproduced from Maguffin et al. (2015) with permission.  

 

To conduct aquifer push-pull tests, we drilled a borehole 38 meters into an 

arsenic-contaminated part of the bedrock aquifer. Groundwater samples were analyzed 

for background chemistry. Aquifer transmissivity was characterized by slug-tests every 

1.5 m between 26 and 38 m depth to determine the most effective location for 

experimental solution injection. We installed stainless steel packers at 29 m and 32 m 

depth to isolate a 3 m section of the aquifer for push-pull test injections. A PVC pipe 

connected the packer-isolated borehole column to the ground surface where it was 

connected to a peristaltic pump; the pump was used for injections of experimental 

solutions and the subsequent sampling of groundwater.  
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2.2 Push-pull experiments 

The first push-pull test was a controlled injection test. In order to create the 

necessary 40-gallon control solution, we extracted groundwater from a nearby well and 

adjusted it to the desired parameters (Table 1). In order to track mixing and dilution 

between the control solution and nearby groundwater, we designed the control solution to 

have a relatively low chloride concentration and monitored the rate at which chloride 

increased to background concentrations. Solution preparation included the purging of 

dissolved oxygen (DO) with a gas mixture of N2 and CO2 (95% and 5%, respectively). 

Solution anaerobicity was confirmed through continuous monitoring with a DO meter. 

The anaerobic control solution was pumped into the packer-isolated borehole column at a 

rate of 2 gallons/minute to begin the control injection test. Daily samples were collected 

throughout the first week and subsequent samples were collected every 2-4 days.  A 

second test was conducted by injecting an ethanol amended solution (EAS) and will 

hereby be referred to as the stimulated inject test. With the exceptions of volume and 

minor differences in solution chemistry (Table 1), the EAS was prepared for injection by 

employing control solution methods outlined above. The EAS was amended with 100 

ppm bromide to establish mixing rates. 
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Table 1. Experimental chemistry 

    Pretest Control Ethanol 

Volume (gal) n.a. 40 100 

T (oC) 15.6 19.2 16.3 

pH  7.6 7.0 7.3 

Conductivity (µS) 2090 1233 1960 

Alkalinity (mM) 12.4 11.8 20.7 

Ethanol (mM) 0 0 40 

Bromide (mM) 0.00 0.00 1.25 

Chloride (mM) 17.4 2.84 0.67 

Ferrous Iron (mM) 0.02 0.01 0.00 

Sulfate (mM) 2.54 1.38 0.51 

As(III) (ppb) 2300 28 8.8 

As(V) (ppb) 130 1900 2000 

 

To prepare solid phase control samples, we collected unweathered bedrock from 

nearby exposed Fisher Formation. Bedrock samples were crushed to reduce particle size 

diameters to 100 - 700 m. The granular bedrock mixture was mixed for homogeneity 

and allotted into a series of mesh-screen containment units. We prepared 7 of these 

bedrock sample units and began incubating them within the packer-isolated borehole 

three months prior to the field experiments.  

2.3 Sample Collection 

Daily, post-injection aqueous samples were collected throughout the first week 

after each push-pull injection; subsequent sampling occurred every 2-4 days.  

Groundwater samples were filtered (0.45 micron) and preserved appropriately for 

laboratory analyses and arsenic speciation (Appendix A). In situ field measurements 

included temperature pH, conductance, [Fe2+], and [HS-]. Incubating solid phase samples 

were extracted from in situ, temporarily housed in a chilled, anaerobic containment unit 

and frozen at -80º C for future analytical work. We collected and analyzed for methane 
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and CO2 using a flexible tedlar bag technique intended for gas chromatography (EPA 

Method 3C).  

2.4 Analytical Techniques 

Field analyses of ferrous iron and sulfide were conducted using the Hach method 

103769 and 2244500, respectively (Appendix A). We analyzed the alkalinity of 

groundwater samples using burette titration methods (EPA Method 310.1). We used ion 

chromatography, HPLC, and ICP-MS for groundwater speciation of arsenic and anion 

chemistry. Low molecular weight organic acids were analyzed using a NPH 

derivatization protocol based on Albert and Martens (1997)30. Solid phase analyses were 

conducted for ferrous and ferric iron, sulfide, and arsenic. Microfocused synchrotron X-

ray fluorescence (μSXRF) maps for arsenic and iron were conducted on solid phase 

samples collected on days 3 and 50. (see Appendix A for analytical methods) 

3. Results 

3.1 Push-pull Experiments 

During the control injection test, neither ethanol nor acetate was detected (data 

not shown). Only small fluctuations in sulfate and ferrous iron were observed in the first 

three weeks of the experiment, after which subtle increases in both species occurred. 

Ferrous iron reached a maximum concentration of 0.04 mM on day 42 (Fig. 1) and 

sulfate concentrations were relatively constant through day 23 (1.46±0.057 mM), and 

steadily increased to 2.4 mM after 54 days into the experiment. Dissolved sulfide showed 

little variation in concentration until day 42, after which sulfide concentrations remained 

low throughout the experiment (Fig. 3).  
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Figure 2. Variations with time in pH (A), organic matter (B), sulfate (C), CO2 gas (D), 

sulfide (E), CH4 gas (F), ferrous iron (G), and alkalinity (H) in the control injection test 

() and stimulated injection test (). Panel B only pertains to the stimulated injection 

test.  

 

At the beginning of the control injection test, arsenate and arsenite exhibited 

concentrations of 1900 and 7 ppb, respectively. Within two days, arsenate concentration 
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decreased to 840 ppb and arsenite concentration increased to 1100 ppb. Afterwards, 

arsenate increased with time, and reached its maximum concentration of 3500 ppb 

arsenic at day 14. Arsenate then quickly decreased to 350 ppb at day 16. On the other 

hand, arsenite first increased to 1100 ppb on day two and decreased to 12 ppb of arsenic 

on day 14 before quickly increasing to 2900 ppb on day 21.  

 

 

Figure 3. Dissolved arsenic concentrations in groundwater throughout the control 

injection test (left) and stimulated injection test (right). The dashed lines show the 

hypothetical concentrations of each species based on groundwater mixing calculations.  

 

Variations in chemical concentrations in the push-pull tests result from both the 

mixing of the test solution with the groundwater and the production or consumption of 

chemical compounds around the well borehole. The production and consumption of 

chemical compounds can be computed based on the extent of the mixing and variations in 
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chemical conditions. As shown in figure 3, the control injection test exhibited volatile 

arsenic concentrations before day 20 and a maximum accumulation rate of arsenite of 

approximately 450 ppb/day. The stimulated injection test exhibited similar volatility in 

arsenic concentrations but arsenite continued fluctuation after day 20 – though, notably at 

significantly lower concentrations that in the control injection test. We observed a 

maximum accumulation rate of arsenite of approximately 600 ppb/day between days 16 

and 20.  

3.2 Biostimulation  

Figure 2 shows how primary groundwater constituents change throughout the 

biostimulation experiment. In the first few days of the biostimulation experiment, ethanol 

concentrations increased from 30 to 35 mM. Between days 11 and 50, ethanol decreased 

at two distinctly different rates: between days 11 and 22 ethanol decreased at rate of 2 

mM/day whereas between days 22 and 50 ethanol decreased at a rate of 0.3 mM/day. 

Concurrent with the decrease in ethanol was the accumulation of acetate. Like ethanol, 

acetate exhibited multiple phases of accumulation. Between days 1 and 16 and days 43 

and 50 acetate increases at a rate of 0.2 mM/day. However, between days 29 and 43 

acetate increases at a rate of 1.6 mM/day. We observed a brief but significant spike in 

isovalerate between days 11 and 18 ranging between 26 and 30 mM. We also detected 

low concentrations (0.0 - 0.7 mM) of formate, propionate, and valerate throughout the 

stimulated injection test (see Table A1 in Appendix).  

Throughout the control injection test we detected no significant amount of ferrous 

iron or HS- and observed an accumulation of sulfate from approximately 1.5 mM to 2.5 

mM. However, the stimulated injection test shows robust accumulation of both HS- and 

ferrous iron between days 11 and 36. Ferrous iron accumulated between day 20 and 36 at 
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a rate of 0.034 mM/day and decreased between days 36 and 50 at a rate of 0.024 

mM/day. Dissolved sulfate in the stimulated injection test briefly accumulated but then 

steadily decreased at a rate of 0.016 mM/day to <0.01 mM by day 43. Stimulated 

injection test sulfate concentrations did not begin decreasing until day 9 but continued a 

steady decline until day 47 when background concentrations were reached. 

During the biostimulation experiment, arsenate quickly decreased from an initial 

concentration of 1600 ppb on day 3 to 61 ppb on day 6. The relatively low (9-60 ppb) 

groundwater As(V) concentrations persisted throughout the experiment with the 

exception of two sampling events. As(V) was measured at 270 and 680 ppb on day 18 

and 25, respectively. Arsenite concentration exhibited two significant spikes throughout 

the experiment; a brief, initial spike (410, 1400, and 310 ppb on days 2, 4, and 6, 

respectively) and then between days 16 and 18 As(III) increased from 270 to 2200 ppb, 

after which As(III) concentrations gradually decreased to 330 by day 29. Subsequent 

As(III) concentrations remained between 330 and 690 ppb.  

3.3 Solid phase  

Chemical extraction of solid phase arsenic show that ionically bound and strongly 

adsorbed arsenic decreased with time in the experiment (Table 2). There was no 

significant change in the amounts of arsenic that precipitated with amorphous iron 

oxyhydroxides. However, there was a notable decrease in arsenic co-precipitated with 

crystalline iron oxyhydroxides. Arsenic co-precipitated with pyrite and amorphous As2S3 

increased towards the end of the experiment.  
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Table 2. Solid phase arsenic analyses. 

stimulated 

injection 

test (days) 

Ionically 

bound 

(ug/g) 

Strongly 

adsorbed 

(ug/g) 

Precipitated 

with AVS 

(ug/g) 

Precipitated 

with 

amorphous Fe 

oxyhydroxides 

(ug/g) 

Precipitated 

with 

crystalline Fe 

oxyhydroxides 

(ug/g) 

Precipitated 

with pyrite & 

amorphous 

As2S3 (ug/g) 

3 9.38 46.91 4.77 4.61 2.47 2.11 

9 5.94 54.65 6.34 4.28 2.85 1.65 

16 8.02 63.59 5.90 2.58 3.04 2.36 

22 3.06 55.56 7.22 4.07 2.19 4.81 

29 5.56 43.90 5.66 3.51 3.51 8.20 

36 3.69 39.73 6.62 4.54 1.76 6.05 

50 4.76 39.22 7.10 5.04 1.54 4.86 

 

Acid volatile sulfide (AVS) and chromium reducible sulfide (CRS) were only 

detected in the last two solid phase sampling days during the stimulated injection test 

(Table 3). Samples collected on day 36 and 50 show AVS concentrations to be 6.6±4.8 

and 6.6±9.2 and CRS concentrations of 11.4±7.3 and 10.5±9.0, respectively (Table 2). 

Iron analyses of solid phase samples from the stimulated injection test show an increasing 

trend of ferrous iron concentrations and high analytical variability in amorphous and 

crystalline ferric iron (Table 4).  
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Table 3. Formation of acid volatile sulfides (AVS) and chromium reducible sulfides 

(CRS) during the biostimulation experiment. Sample analysis was carried out in 

triplicate, and the results are reported as average ± standard deviation in S per dry weight 

of sample. 

Time (days) AVS (mg/g) CRS (mg/g) 

3 0±0.0 0±0.0 

9 0±0.0 0±0.0 

16 0±0.0 0±0.0 

22 0±0.0 0±0.0 

36 6.6±4.8 11.4±7.3 

50 6.6±9.2 10.5±9.0 

 

Table 4. Iron speciation in solid phase mineralogy 

stimulated injection 

test (days) 

Fe2+ 

(mg/g) 

Fe total 

(mg/g) 

Fe3+ (amorphous) 

(mg/g) 

Fe3+ (crystalline) 

(mg/g) 

3 8.3 ± 0 15.3 ± 0 7 ± 0 87.4 ± 0 

9 

11.3 ± 

1.2 19.6 ± 5.3 8.3 ± 5.1 76.6 ± 73.1 

16 14.2 ± 0 19.7 ± 0 5.5 ± 0 - 

22 14.1 ± 4 23.8 ± 5.4 9.7 ± 5.6 50.0 ± 59.0 

29 9.2 ± 0 15.7 ± 0 6.5 ± 0 - 

36 

16.2 ± 

1.9 14.3 ± 5.8 8.1 ± 5.9 18.5 ± 18.4 

50 

13.74 ± 

0 21 ± 0 7.3 ± 0 73 ± 0.0 

 

Synchrotron XANES analyses of solid phase samples revealed differences in iron 

and arsenic between days 3 and 50 (Table 5). Notable changes to iron mineralogy 

included decreases in goethite and ferrihydrite and increase in magnetite. Arsenic results 

include an observed decrease in As(III) and a significant increase in As2S3.  
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Table 5. Synchrotron results for arsenic and iron. 

 Day 3 Day 50 

As(III) 80.3%±0.26% 66.3%±0.26% 

As(V) 19.2%±0.18% 28.8%±0.18% 

As2S3 0.252%±0.32% 4.79%±0.36% 

Siderite FeCO3 0.0%±2.9% 0.0%±3.3% 

FeOOH 

Goethite 11.5%±4% 0.24%±4.7% 

Fe2O3 Hematite 0.003%±1.9% 0.9%±2.2% 

magnetite 

Fe3O4 1.2%±2.6% 8.9%±3% 

Biotite (Fe2+ 

silicate) 1.1%±3.1% 0.19%±3.5% 

Hornblende 

(Fe2+/3+ silicate) 12.8%±3.4% 28.1%±3.9% 

Ferrihydrite 

Fe(OH)3 73.3%±9.5% 61.6%±11% 
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4. Discussion 

We explored the feasibility of biostimulation as a strategy for in situ arsenic 

bioremediation by carrying out two push-pull experiments in the bedrock aquifer of 

Southern Willamette Basin, Oregon. We analyzed in situ rates of biogeochemical 

processes under both natural and biostimulation conditions. This introduction of ample 

electron donating compounds in the form of ethanol and its decompositional products 

stimulated microbial metabolisms. The decomposition of ethanol, as well as the 

production and decomposition of acetate had significant effects on arsenic contamination 

and sequestration. Previous laboratory experiments that used bedrock aquifer media have 

shown that indigenous microorganisms are capable of utilizing common aquifer species 

such as sulfate, ferric iron, and the problematic As(V) to oxidize these organic 

compounds.11,27 We see similar trends in these in situ experiments. Furthermore, here we 

report for the first time in situ sequestration of groundwater arsenic into arsenic sulfide 

minerals through the stimulation of microbial metabolisms.   

4.1 Push-pull experiment redox processes 

Microbial utilization of ethanol began approximately 6 days after the EAS 

injection. We observed a modest increase in acetate and a significant but short-lived 

accumulation of isovalerate between days 6 and 14. The presence of both acetate and 

isovalerate appeared to have a significant effect on sulfate, iron, and As(V) reduction, as 

well as methanogenesis. Less concentrated organic acids such as formate, propionate and 

valerate were detected but do not appear to have played a significant role in primary 

redox chemistry. 

Given that the chemistry of the control solution closely simulated in situ 

conditions, our expectations were that only background levels of dissolved ferrous iron (< 
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0.04 mM) would be observed. We expected the stimulated injection test to simulate 

multiple redox metabolisms and yield insight into microbial use of electron acceptors and 

corresponding interactions between redox products. We observed little accumulation of 

ferrous iron (< 0.04 mM) throughout the control injection test. Likewise, between days 1 

and 20 of the stimulated injection test, we observed similar background ferrous iron 

concentrations (c. 0.04 mM); however, dissolved ferrous iron quickly accumulated from 

day 16 through day 36 to 0.59 mM at a rate of 0.03 mM/day.  

Ethanol depletion exhibited a moderate correlation with ferrous iron production 

(R2 = 0.78, n=10) but was likely not directly involved in the ferric iron redox reaction. 

Acetate, a product of ethanol decomposition, increased between days 16 and 32; its 

concentrations strongly correlated with ferrous iron accumulation (R2 = 0.98, n=5) 

indicating that microorganisms likely oxidized acetate by reducing ferric iron. We 

hypothesize that fermentation was the primary decomposing mechanism for ethanol and 

yielded increases in acetate, H2, and H+ concentrations. 

Although 1.5 mM of dissolved sulfate were available at the beginning of the 

control injection test, sulfate steadily accumulated over time due to the influx of in situ 

groundwater. We detected little HS- throughout the control injection test and surmise that 

only a minimal sulfate reduction occurred. The increase in background sulfate after day 

50 correlated with an increase in sulfate reduction (R2 = 0.83, n=4) and is demonstrated 

by small increases in dissolved HS-.  

Although we observed low levels of dissolved HS- throughout the first 11 days of 

the stimulated injection test, we detected only minimal changes in sulfate. Significant 

stimulated injection test sulfate reduction began around day 11; this is evidenced by the 

decrease in sulfate concentrations and the accumulation of HS-. The significant rate of 
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HS- production between days 11 and 32 show sustained, prolific sulfate reduction 

occurring alongside both ferric iron reduction, As(V) reduction, and methanogenesis.  

4.2 Arsenic redox processes 

The dissolved control injection test As(V) concentrations exhibited volatility in 

the first 14 days; this was likely a manifestation of ongoing adsorption exchanges. 

However, between days 14 and 16, As(V) decreased from 3500 to 350 ppb and between 

days 16 and 21 we observed an increase in As(III) from 15 to 2900 ppb. Based on 

comparisons to As(V) and As(III) mixing calculations, it is clear that significant As(V) 

reduction occurs between days 14 and 21. After 21 days, As(V) concentrations stabilized 

and maintained background, pre-experiment levels, whereas As(III) began to trend 

towards background levels after day 40. Given that there was little iron reduction 

occurring throughout the control injection test, the decreasing trend of As(III) after 36 

days was probably a result of either the uptick in sulfate reduction or the adsorption of 

As(III) – or a combination of both. 

The initial sharp decrease in As(V) and subsequent increased As(III) 

concentrations in the stimulated injection test indicate that As(V) was either quickly 

adsorbed or reduced within the first 4 days.  Between days 6 and 18 both As(V) and 

As(III) remained low and significantly less than what is predicted by mixing calculations. 

However, at day 18, there is a spike in dissolved As(V) (270 ppb) and a significant 

amount of dissolved As(III) (2200 ppb).  This coincides with the onset of robust iron 

reduction. Acetate, and possibly isovalerate, stimulated microbial iron reduction and 

dissolved ferric iron minerals releasing arsenic from its mineral structure and adsorbed 

locations. Active arsenic reducing bacteria quickly reduced As(V) to As(III), as seen in 

the nearly non-detectable concentrations of As(V) during this time. 



40 

4.3 Solid phase arsenic, iron, and sulfide 

The accumulation of dissolved ferrous iron, As(III), and HS- resulted in the 

precipitation of iron-sulfide and arsenic-sulfide minerals. We observed evidence of iron 

and arsenic-sulfide precipitation in the precipitous decrease of HS- beginning on day 32 

and the significant increase of AVS and CRS minerals detected on days 36 and 50 (Table 

2). These data correspond to the 0.024 mM/day decrease in dissolved ferrous iron 

between days 36 and 50. Furthermore, synchrotron analyses show a 20-fold increase in 

As2S3 mineralogy between days 3 and 50; correspondingly, all dissolved HS- and sulfate 

were removed by day 50. In the absence of sulfate reduction, continued iron reduction by 

acetate oxidation after 50 days resulted in a new period of dissolved ferrous iron 

accumulation 

Although no solid-phase samples were collected during the control injection test, 

solid-phase samples were incubated in situ during the control experiment; therefore, the 

first sample of the stimulated injection test is a representative sample of post-control 

injection test mineralogy. Neither CRS nor AVS minerals precipitated during the control 

injection test. This is consistent with aqueous data; we observed no significant sulfate 

reduction nor any dissolved ferrous iron or substantial HS- accumulation throughout the 

control experiment.  

Control injection test redox reactions showed no proclivity for removing removed 

dissolved As(III) or sequestering arsenic in reduced solid phase minerals. However, 

under stimulated conditions provided in the stimulated injection test, we observed 

simultaneous increases in CRS minerals, solid phase ferrous iron, and arsenic that was 

co-precipitated with AVS, pyrite, and amorphous As2S3, all of which manifested in the 

last 20 days of the experiment. Furthermore, we observed an overall decrease in arsenic-
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bearing amorphous and crystalline ferric iron oxyhydroxides. Significant increases 

followed by decreases in As(V) and As(III) between days 18 and 30 document the 

transition of arsenic from arsenic-bearing iron minerals to dissolved arsenic and finally to 

an arsenic bearing iron-sulfide precipitate (Figure 4). These data provide in situ 

confirmation of previous work noting the effectiveness of sulfate and iron reduction in 

removing dissolved arsenic 11,27,31,32.  

 

 

Figure 4. Illustration of redox processes and total arsenic concentrations over time in the 

control and ethanol stimulated in situ experiments. The dashed line represents projected 

total arsenic concentrations based on groundwater mixing only; the solid line represents 

measured total arsenic.  

 

4.4 Arsenic mobilization and sequestration 

Pretest chemical analyses of bedrock pore water show very low dissolved ferrous 

iron (~0.02 mM) and HS- (0.04 mM) while maintaining dangerously high levels of 

As(III) (~2300 ppb) (Table 1). These data, as well as high background sulfate 

concentrations and an iron (oxy)hydroxide rich bedrock media, led us to hypothesize that 
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although the aquifer was anoxic and reducing, arsenic may be a preferred electron 

acceptor over sulfate or iron (oxy)hydroxides minerals. The control injection test 

confirmed this hypothesis; we observed no significant iron or sulfate reduction, however, 

the simulated eutrophic chemical regime of the control injection test resulted in 

approximately 3000 ppb As(V) being reduced to As(III) at a rate of ~500 ppb/day. Based 

on mixing calculations, this rate exceeds the influx rate of background As(III) by more 

than 3 fold.  

Although the control injection test mobilized dissolved arsenic only slightly faster 

than the stimulated injection test during peak arsenic reduction (500 ppb/day versus 480 

ppb/day, respectively), the effects of microbial stimulation yielded drastically different 

final results. Based on the results of the control injection test, namely the exclusively 

significant redox reactions of arsenic mobilization, the stimulated injection test allowed 

us to parse the specific compounding effects of sulfate and ferric iron reduction.  Sulfate 

and iron reduction continued concomitantly between 18 and 40 days in the stimulated 

injection test. Based only on groundwater mixing calculations, we estimate that 2100 ppb 

total dissolved arsenic would have been available after 40 days; however, only 210 ppb 

total arsenic was detected in water. This indicates a dissolved arsenic removal rate of 

90% when both ferric iron and sulfate reduction occur alongside arsenic reduction. This 

highly effective rate of arsenic removal can be followed to the solid phase where we 

observed significant increases in AVS, CRS, and synchrotron-analyzed As2S3 that 

occurred during the stimulated injection test.  Compared to the control injection test, we 

calculated 2300 ppb total dissolved arsenic should have been available after 40 days, 

instead 2980 ppb total dissolved arsenic was detected; this represents an addition of 29%.  
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5. Conclusions 

Control injection test results show that in situ conditions do not require additional 

electron donors to reduce and mobilize arsenic. However, despite ample sulfate and ferric 

iron electron accepting resources, arsenic reduction was the only significant redox 

process observed. Dissolved arsenic accumulation in the control injection test exceeded 

that of surrounding groundwater flux and maintained levels of approximately 3000 ppb. 

stimulated injection test results accelerated arsenic reduction while catalyzing ferric iron 

and sulfate reduction for a period of approximately 22 days. Although As(V) was nearly 

completely reduced during this time, and As(III) quickly accumulated in the dissolved 

phase, ferric iron and sulfate reduction effectively removed total dissolved arsenic at a 

rate of 90%. We tracked the migration of arsenic species from the injected ES and 

bedrock media to being sequestered in sulfide mineral precipitates. These data reinforce 

previous laboratory observations that identify iron sulfide precipitation as an effective 

means of removing arsenic from the dissolved phase in groundwater. For the first time 

we show effective in situ mitigation of arsenic contamination is possible by exploiting 

natural consortia of microorganisms under partially engineered chemical regime. 

 

6. Bridge II 

In this chapter (Chapter III), we conducted two aquifer injection experiments to 

examine in situ microbial redox processes and the potential to stimulate arsenic 

sequestration through arsenic sulfide precipitation. Our results show that in situ 

stimulation of microbial metabolisms accelerated the reduction of arsenic bearing iron 

(oxy)hydroxides as well as sulfate and arsenic reduction. Within 3 weeks of these 

contemporaneously occurring redox reactions, 90% of the dissolved arsenic was removed 

(~2000 ppb) and an effective long-term, anaerobically stable, sequestration of arsenic was 
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observed in a 20-fold increase of arsenic-sulfide precipitate. In the following chapter 

(Chapter IV), I examine organic arsenic reactions from the laboratory and in situ 

experiments discussed in Chapters II and III. I discuss organic arsenic dynamics and rates 

of arsenic methylation under stimulated conditions. 
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CHAPTER IV 

 

RAPID GROUNDWATER ARSENIC BIOMETHYLATION THROUGH 

ETHANOL AMENDMENT 

 

In preparation for submission to Environmental Science & Technology.  

Scott C. Maguffin, Qusheng Jin, and Ashley Daigle designed the projects. The 

manuscript was written by S.C.M with input from Q.J. Q.J., A.D., and S.C.M. conducted 

experiments. Samples were collected and analyzed by S.C.M, Q.J. and A.D.  

 

 

1. Introduction 

Arsenic is a ubiquitous, toxic element that has an insidious knack for enduring as 

bioavailable species in critical zone environments. The toxicity and mobility of arsenic 

are particularly hazardous in groundwater systems where contamination is as much a 

function of the local geology as it is of aquifer microorganisms and groundwater 

chemistry. Together, these factors can create dangerous levels of dissolved arsenic and 

can lead to the poisoning of entire communities that depend on local groundwater as a 

potable resource. Although recent research efforts have focused on the efficacy of 

enhanced, biologically-driven arsenic sequestration and the significance of biological 

methylation (biomethylation) pathways in aquifers, the effect of the former on the latter 

has yet to be studied. Here, we investigate the potential impact of arsenic cycling through 

biomethylation pathways under a stimulated in situ chemical regime similar to those that 

may effectively sequester arsenic in the solid phase. 

A well-established mechanism of arsenic mobilization is the microbial respiration 

of dissolved organic compounds through the reduction of ferric iron minerals1–5. In 

geologic environments where ferric (oxy)hydroxides minerals bear significant arsenic 
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content, iron reduction can mobilize mineral-bound arsenic into an adsorbed or dissolved 

phase. Likewise, dissimilatory arsenate (As(V)) reduction will yield arsenite (As(III)), 

often a more mobile arsenic species in common groundwater environments.6 On the other 

hand, reduction-oxidation (redox) processes can effectively remove dissolved arsenic 

from groundwater; specifically, the production of sulfide via sulfate reduction has been 

shown to remove dissolved arsenic through arsenic-sulfide mineral precipitation7 

(Maguffin, 2016 in prep). These processes can result in dynamic changes of groundwater 

arsenic and can cause arsenic concentrations to exceed current drinking water standards. 

In addition, microorganisms possess the ability to detoxify their local environment, either 

by transforming arsenic back to arsenite – a less toxic oxidation state - or through 

biomethylation. 

Attention to arsenic contamination has typically focused on inorganic arsenite and 

arsenate. However, recent focus on pathways of arsenic into food8 and within 

groundwater systems9 has brought new attention to the importance of biomethylated 

arsenic. Biomethylation of arsenic was first proposed in 1945 when Frederick Challenger 

outlined a process where methyl groups were successively added onto a metalloid species 

through alternating oxidative-methylation and reduction reactions10. Currently, the 

volatility and toxicity of methylarsenicals are not widely agreed upon. However, some 

consensus exists; for example, trivalent monomethylarsonous acid (MMAs(III)) and 

dimethyarsinous acid (DMAs(III)) are generally considered to be more toxic than 

inorganic arsenic, whereas pentavalent monomethylarsonic acid (MMAs(V)) and 

dimethylarsinic acid (DMAs(V)) are considered less toxic than inorganic arsenic11. Even 

less certainty exists for trimethylarsine (TMAs). Despite the lack of clarity regarding the 

relative toxicity and mobility of all arsenic species, the danger of either inorganic or 
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methylated arsenic to humans cannot be ignored, particularly since methylated arsenic 

can be readily converted back to inorganic forms12,13. Several methylated arsenic species 

are volatile and significantly more mobile than their inorganic counterparts; therefore, 

arsenic’s mobility within groundwater increases with methylation14. In particular, 

biological (e.g. microbial) arsenic methylation, in groundwater and the shallow 

subsurface, are significant pathways relative to global fluxes of arsenic9,15–17 and results 

in arsenic moving between reservoirs from soils to the atmosphere or groundwater to 

shallow subsurface.  

Groundwater arsenic methylation has traditionally been viewed as a secondary 

process relative to redox transformations between arsenate and arsenite. However, recent 

studies raise concerns regarding the toxicity of groundwater methylarsenicals and their 

role in the arsenic cycle.11,12,18 Increased attention has also led to a greater focus on 

characterizing all groundwater arsenic species. Despite methylarsenicals typically 

existing at concentrations 1-2 orders of magnitude lower than total dissolved arsenic,19–25 

microorganisms within an oligotrophic aquifer have been shown to produce DMAs(V) at 

a rate of 0.1% of the total dissolved arsenic per day.9 This is a current and promising 

avenue of research in arsenic cycling and may provide insight into future arsenic 

mitigation techniques. However, the role of biomethylation of arsenic for remediation 

purposes has not been fully explored. Here, we discuss the results of several arsenic 

biomethylation experiments and report new rates of enhanced, in situ organic arsenic 

production; these data expand the potential role aquifer microorganisms in arsenic 

cycling. 
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2. Study Area and methods 

We conducted laboratory incubation experiments and two aquifer injection tests at 

our study site located in the southern Willamette Basin, Oregon. Using aquifer material, 

we built 3 laboratory experiments in quadruplicate: N, E, and ES. Experiment N 

simulated the natural chemistry of the bedrock aquifer with no additional electron 

donating amendment. Experiments E and ES were both amended with ethanol and ES 

received an additional supplement of dissolved sulfate (2.5 mM). Experiments were 

incubated with 600 mL of synthetic groundwater in 1 L bottles at 16ºC in the dark.  

We also conducted two aquifer pump tests: a control injection test and a 

stimulated injection test. The control injection test mimicked in situ groundwater 

chemistry with no electron donating amendment whereas the stimulated injection test 

contained c. 30 mM ethanol. We used conservative tracers to track the mixing fraction 

between the test solution and in situ groundwater throughout the experiments.  

Importantly, no laboratory or field test solutions contained organic arsenic. Both 

laboratory and in situ water samples were analyzed for arsenic species and results are 

reported as ‘arsenic as As(V)’, As(III), MMAs(V), or DMAs(V)’. Henceforth, we 

dispense with the preceding clarification and will report concentrations using only the 

speciation identifier (e.g. As(V)). We were not able to collect or analyze for TMAs(V). 

Further details of the methods, experimental set up, and site description are available in 

Maguffin et al. (2015, 2016a, and 2016b)9,26,27. We analyzed solid phase samples for iron, 

sulfide, and arsenic (Supplemental Information). Some laboratory and field data has been 

reproduced with the permission of copyright owner. 
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3. Results 

In the stimulated injection test, ethanol maintained its largest concentrations (35 

mM) between 6 and 11 days. Between 11 and 22 days, ethanol decreased at a rate of 2 

mM/day and between days 22 and 50 ethanol decreased at a rate of 0.33 mM/day. In the 

laboratory experiments, ethanol concentrations began to decrease within the first week. In 

both laboratory and field experiments, acetate concentrations steadily increased, reaching 

maximum values on day 24, 32, and 43 in experiments E, ES, and stimulated injection 

test, respectively (Fig. 1).  
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Figure 1. Ethanol (), acetate () over time in the laboratory experiments (A) and 

stimulated injection test (B). A solid line indicates that sulfate was added in the 

experiment. Experiment N is not shows as no organic matter was detected.  

 

In unstimulated experiment N (Fig. 2), MMAs(V) and DMAs(V) accumulated 

with time, reaching maximum concentrations of 37 and 44 ppb, respectively. Throughout 

N, the ratios in MMAs(V) to arsenate concentrations remained relatively constant at 

2.5±1.1%, with a linear regression coefficient of 0.95 (n=8) (Table 1). In the unstimulated 

control injection test field experiment, there were two distinct phases of organic arsenic 

accumulation (Fig. 3). In the first phase, arsenate and MMAs(V) approached their 
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maximum concentrations after 14 days (3500 and 59 ppb, respectively). The second 

phase occurred after day 26; arsenite and DMAs(V) reached their maximum 

concentrations of 3000 and 38 ppb, respectively. 

 

 

Figure 2. Variations of arsenic species with time in laboratory experiments. Data points 

represent the mean of measurement and error bars are the standard deviation. Symbols 

represent Reactor N (), E (), and ES (). Panels A, B, and C are borrowed from 

Chapter II and included in this figure for context.  

 

In stimulated laboratory experiment E, DMA(V) was first detected after 13 days. 

In ES, DMA(V) appeared after 27 days. We observed the largest laboratory DMA(V) 

concentration in Group E (approximately 140 ppb, day 55) (Fig. 2). On the other hand, 

MMAs(V) was not observed until after day 40. No MMA(V) or DMA(V) was detected in 

laboratory control experiments (not shown).  

Inorganic arsenic in the control injection test exhibited a short-lived peak of 

As(V) above 3000 ppb (day 14) followed by sustained, elevated As(III) concentrations 
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approximately 3000 ppb (days 20-40) (Fig. 3). In the stimulated injection test, two 

significant peaks of elevated As(V) concentrations (Fig. 4). The first peak occurred on 

day 3 (1600 ppb) of the experiment before concentrations decreased to background 

concentrations; the second peak occurred on day 25 (1600 ppb). A similar pattern was 

observed for As(III) in the stimulated injection test. Two significant peaks of As(III) 

concentrations occurred on day 4 (1400 ppb) and day 18 (2200 ppb).   

 

Figure 3. Variations of arsenic species with time in the control injection test. The 

dashed lines represent the projection of a species concentration based on 

groundwater mixing. The solid lines are measured concentrations. Inorganic 

arsenic data from Chapter III is included for context.  

 

In the stimulated injection test (Fig. 4), DMAs(V) concentration quickly increased 

and reached a maximum concentration of 68 ppb at day 9. MMAs(V) was only briefly 

detected at the beginning of the experiment and on day 25.  
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Figure 4. Variations of arsenic species with time in the stimulated injection test. 

The dashed lines represent the projection of a species concentration based on 

groundwater mixing. The solid lines are measured concentrations. Inorganic 

arsenic data from Chapter III is included for context. 

 

There are statistically significant correlations between MMAs(V) and As(V) as 

well as between DMAs(V) and As(III) (table 1). The accumulation rate varied between 

sampling events; unstimulated experiments showed smaller average rates of MMAs(V) 

and DMAs(V) accumulation than the stimulated experiments (table 2). The maximum 

observed organic arsenic accumulation rate occurred in the stimulated injection test 

between day 1 and 9; DMAs(V) accumulated at a rate of 7.5 ppb/day. Furthermore, under 

ethanol oxidizing conditions the field experiment DMAs(V)/As(III) ratio was 

approximately 4 times the average DMAs(V)/As(III) ratio among all other stimulated 

laboratory and field experiments.  
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Table 1. Analysis of arsenic as MMAs(V)/As(V) and DMAs(V)/As(III) relationships in 

laboratory and field experiments. R2 represents the linear correlation value between two 

arsenic species. Column “n” represents the number of data used to calculate each value. 

Control group (sterilized) laboratory data are not shown as no organic arsenic was 

produced.  

  MMAs(V)/As(V) DMAs(V)/As(III) % Organic 
arsenic of 

total 
Inorganic 

As 

  R2 % MMAs(V) n R2 % DMAs(V) n 

Unstimulated 

Group N (lab) 0.95 2.5±1.1% 8 0.66 4.89±1.6% 9 2.26±2.1% 

Control 
injection test 

(in situ) † 
0.99 1.23±0.7% 14 

0.90 2.54±1.6% 12 
2.04±4.7% 

0.95 27.97±1.8% 5 

Stimulated 

Group E (lab) 0.66 1.00±0.9% 28 0.84 4.15±1.9% 10 1.29±1.7% 

Group ES (lab) 0.98 3.12±1.1% 4 0.94 4.46±2.1% 9 1.29±2.0% 

Stimulated 
injection test 

(in situ) †† 
0.97 2.08±1.3% 7 

0.92 3.12±3.8% 17 2.10±0.5% 

 0.97 18.6±0.4% 5 15.92±0.6% 

† DMAs(V)/As(III) ratio for the in situ experiments exhibited strong bimodal correlations. The five samples 

from which the high stimulated injection test DMAs(V)/As(III) ratio was calculated were collected between 

days 6 and 16 (inclusive); the 17 samples that yielded a lower DMAs(V)/As(III) ratio were collected before 

and after days 6 and 16, respectively. Unlike the stimulated injection test, the high DMAs(V) fractions 

observed in the control injection test occurred sporadically throughout the experiment.  

 

Table 2. A comparison of organic arsenic accumulation rates variability and maximum 

observed throughout each experiment. 

  

MMAs(V) (ppb/day) DMAs(V) (ppb/day) 

  

Accumulation rate 
between sampling 

events 

Maximum 
rate 

Accumulation 
rate between 

sampling events 

Maximum 
rate 

Unstimulated 
Group N (lab) 0.89±0.78 2.3 1.47±1.49 5.1 

 

Control 
injection test 

(in situ) 
4.26±4.02 12.0 3.96±3.08 8.3 

Stimulated 
Group E (lab) 2.03±0.32 2.5 6.38±4.06 12.7 

 
Group ES (lab) 2.44±0.27 2.8 8.50±4.48 12.7 

 

Stimulated 
injection test 

(in situ) 
11.83±11.17 23.0 9.09±3.85 14.5 
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stimulated injection test analysis of aquifer media show that adsorbed arsenic 

decreased from an average 55.1±6.8 ug/g throughout the first 16 days to 39.5±0.3 ug/g at 

the end of the experiment (days 36-50) (table 3), a 28±18% decrease. Analyses also show 

that acid volatile sulfide (AVS) and chromium reducible sulfide (CRS) were present only 

after day 36 of the stimulated injection test (table 4).  

Table 3.  Allocation of solid phase arsenic during the stimulated injection test 

stimulated 

injection 

test (days) 

Ionically 

bound 

(ug/g) 

Strongly 

adsorbed 

(ug/g) 

Precipitated 

with AVS 

(ug/g) 

Precipitated 

with 

amorphous Fe 

oxyhydroxides 

(ug/g) 

Precipitated 

with 

crystalline Fe 

oxyhydroxides 

(ug/g) 

Precipitated 

with pyrite & 

amorphous 

As2S3 (ug/g) 

3 9.38 46.91 4.77 4.61 2.47 2.11 

9 5.94 54.65 6.34 4.28 2.85 1.65 

16 8.02 63.59 5.90 2.58 3.04 2.36 

22 3.06 55.56 7.22 4.07 2.19 4.81 

29 5.56 43.90 5.66 3.51 3.51 8.20 

36 3.69 39.73 6.62 4.54 1.76 6.05 

50 4.76 39.22 7.10 5.04 1.54 4.86 

 

Table 4. Formation of acid volatile sulfides (AVS) and chromium reducible sulfides 

(CRS) during the biostimulation experiment. Sample analysis was carried out in 

triplicate, and the results are reported as average ± standard deviation in S per dry weight 

of sample. 

Time (days) AVS (mg/g) CRS (mg/g) 

3 0±0.0 0±0.0 

9 0±0.0 0±0.0 

16 0±0.0 0±0.0 

22 0±0.0 0±0.0 

36 6.6±4.8 11.4±7.3 

50 6.6±9.2 10.5±9.0 

 

 

4. Discussion 

In complex biogeochemical systems such as the one we are studying, 

demethylation competes, with varying degrees of effectiveness, with methylation and 
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thus acts as a "cryptic" process that acts to suppress the accumulation and volatilization 

of methylarsenic in the environment. However, quantifying the amount of methylation 

(As(III)  MMAs(V)  DMAs(V)) versus demethylation (DMAs(V)  MMAs(V)  

As(III)) is not and cannot be apparent from these chemical measurements alone. 

Therefore, given the complexity of identifying true in situ methylation and demethylation 

rates, we have focused on net accumulation rates through all experiments. The following 

data represent net changes in organic arsenic irrespective of demethylating/methylating 

dynamics. 

Accumulation rates of MMAs(V) and DMAs(V) in all laboratory experiments 

were lower than both stimulated and unstimulated field experiments. We attribute this to 

the difference in biomass concentrations between laboratory experiments and natural 

aquifers. Nevertheless, we see a consistent increase in MMAs(V) and DMAs(V) average 

accumulation rates from unstimulated to stimulated experiments in the both lab and field. 

Maximum observed accumulation rates are also consistently larger among ethanol 

stimulated experiments. This is not entirely unexpected but it is noteworthy; our results 

show that arsenic methylation processes are as affected by ethanol stimulation as other 

inorganic metabolic redox processes, and perhaps more so.  

Based on previously reported concentrations, naturally occurring groundwater 

MMAs(V) and DMAs(V) is known to exist at concentrations between 0.1-10% of total 

dissolved arsenic28,9,19–25,29. Here, we report organic arsenic concentrations that exceeded 

previously observed levels by a significant amount (Table 1). Furthermore, we show that 

a robust, ethanol-driven production of organic arsenic effectively removed inorganic 

arsenic from both the aqueous and solid phases of the experiment’s sampling zone.  
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In all ethanol-stimulated experiments and the control injection test, the ratio of 

DMAs(V) to As(III) concentrations strongly correlate; however, in both the stimulated 

injection test and control injection test the correlations are bimodal (table 1). The bimodal 

correlations represent two distinct rates of methylating metabolic activity of aquifer 

microorganisms. Although we observed this pattern in the control injection test, the high 

DMAs(V) to As(III) ratio was not chronologically consistent, rather, we observed 

intermittent sampling events where this ratio existed. We interpret this temporal 

inconsistency as an unpredictable, rapid methylation of available As(III) and hypothesize 

the intermittency is driven by 1) the availability of a reliable energy source for 

methylating microorganisms, 2) the triggering of arsenic methylation by toxic levels of 

As(III), or 3) a combination of these two mechanisms.  

The bimodal correlation between DMAs(V) and As(III) in the ethanol-stimulated 

field experiment was temporally distinct. During an eleven-day period of peak ethanol 

concentration (days 6-16), organic arsenic was rapidly produced at an average rate of 

9.03±3.85 ppb/day with a maximum observed methylation rate of 14.5 ppb/day. During 

this period of enhanced arsenic methylation, MMAs(V) and DMAs(V) accounted for 

15.92±0.6% of all arsenic; this sustained ratio is approximately eight times larger than 

any other methylating phase in any of the experiments we conducted. Contemporaneous 

with this remarkably high arsenic methylating event was a significant drop in inorganic 

arsenic species; As(V) maintained very low concentrations (approximately 50 ppb) and 

As(III) decreased to concentrations well below expected values (based on either 

groundwater mixing or potential arsenate reduction). Enhanced organic arsenic 

production rates ceased on day 16, after which As(III) concentrations rebounded at a rate 

of approximately 650 ppb/day.  
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We considered the possibility that the significant decrease of dissolved As(III) 

during the enhanced methylated phase was, in part, a result of adsorption on to aquifer 

media. However, solid phase analyses show that only a modest amount of arsenic 

adsorbed after day three; this coincided with the precipitous decrease in dissolved As(V) 

and is consistent with previously observed As(V) adsorbing tendencies30–32. Furthermore, 

analysis for iron and arsenic sulfide precipitation allow us to rule out arsenic 

sequestration through mineral precipitation.  

Within the first 16 days of the stimulated injection test, we observed a chemical 

signature consistent with arsenic reducing and methylating conditions. In fact, the 

detection of MMAs(V) and DMAs(V) on day 2 (23 and 9 ppb, respectively) indicate that 

both As(V) reduction and As(III) methylation were underway less than 48 hours after 

injection. These data show that a rapid progression through the reductive and oxidative-

methylation process of arsenic species began quickly and resulted in low dissolved 

inorganic arsenic concentrations. We observed a second, less speedy series of arsenic 

speciation transformations between days 20 and 40. Beginning with the observed 

desorption between solid phase sampling on days 16 and 22, we subsequently observed 

elevated concentrations in As(V) (days 18 and 22), As(III) (days 18-27), MMAs(V) (day 

25), and DMAs(V) (days 32-47). Although this second phase of arsenic transformations 

was similar to the first phase in how it manifested chemically, we did not observe the 

same magnitude in methylation rates. However, we did observe another phase of 

significantly lowered As(III) concentrations between days 29 and 43.  

5. Conclusion  

These data show that the native consortia of microorganisms are capable of 

rapidly reducing, mobilizing, and eventually methylating adsorbed arsenate and further 



59 

highlights the capability of native microorganisms to methylate arsenic species at 

significant rates under natural and stimulated conditions. Here, we report new net rates of 

MMAs(V) and DMAs(V) production under natural and ethanol-amended conditions in 

both laboratory and aquifer experiments. Although MMAs(V) and DMAs(V) are 

intermediate methylated species, their accumulation rates shed light on an unintended, yet 

potentially important by-product of stimulated microbial metabolisms in arsenic 

contaminated areas. Our results demonstrate that 1) ethanol enhanced As-related 

metabolic activity can increase biomethylation rates by an order of magnitude or more, 

and 2) increased microbial activity can produce enough organic arsenic to account for at 

least 15% of all dissolved arsenic. The ability for aquifer microorganisms to rapidly 

transform dissolved arsenic into more volatile species could be an effective method of 

arsenic remediation. Several groundwater remediation studies currently propose the use 

of accelerated microbial metabolisms14,33; in the case of groundwater arsenic, because of 

the toxicity of methylated arsenic, future assessments of efficacy and impact should 

consider the production and fate of methylated arsenic. Given the inherent mobility of 

methylated As34, these data are a noteworthy reminder that the organic arsenic pathway 

may be more significant in the transport and fate of groundwater arsenic than is currently 

recognized. 

 

  



60 

CHAPTER V 

 

SUMMARY 

 

In this dissertation I explore the biogeochemical role of aquifer microorganisms in 

contributing to groundwater arsenic contamination. By implementing a variety of 

laboratory and field experiments as well as analytical and procedural methods, I have 

contributed to a better understanding of the complex biogeochemical network of 

reactions responsible for the mobilization and fate of groundwater arsenic.  

In Chapter II, I investigate simultaneous biogeochemical redox reactions of 

aquifer microcosm laboratory experiments. We collected aquifer sediments from a 

naturally contaminated bedrock aquifer ([AsIII] ≥ 3000 ppb), constructed laboratory 

microcosm by adding sulfate and ethanol, and incubated for two months. Ethanol-sulfate 

experiments initially yielded significant iron-sulfide precipitates and lowered arsenic 

contamination to ~200 ppb; however, arsenic levels later increased to ~3600 ppb; with 

31% (~202 mol×(kg water)-1) and 12% (~78 mol×(kg water)-1) of solid phase arsenic 

apportioned as adsorbed and arsenic-sulfide, respectively. Ethanol-only experiments 

yielded higher initial arsenic contamination (~1500 ppb), however 22% (~105 mol×(kg 

water)-1) of solid phase arsenic was sulfide-sequestered. Results show that robust, 

simultaneous iron and sulfate reduction can temporarily mitigate arsenic contamination, 

but may marginalize sulfide’s ability to scavenge arsenic and instead direct it to the less 

stable adsorbed phase. Therefore, the most effective arsenic-sulfide sequestration may 

occur when sulfate reduction follows significant iron reduction and its corresponding 

release of dissolved arsenic.  
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 In Chapter III, I examine the geochemical results of two aquifer injection 

experiments to examine in situ microbial redox processes and the potential to stimulate 

arsenic sequestration through arsenic sulfide precipitation. Our results show that in situ 

stimulation of microbial metabolisms accelerated the reduction of arsenic bearing iron 

(oxy)hydroxides as well as sulfate and arsenic reduction. Within three weeks of these 

contemporaneously occurring redox reactions, 90% of the dissolved arsenic was removed 

(~2000 ppb) and an effective long-term, anaerobically stable, sequestration of arsenic was 

observed in a 20-fold increase of arsenic-sulfide precipitate.  

In Chapter IV, I report new methylation rates that are consequential to the 

potential efficacy of enhanced, biologically-driven arsenic remediation and the 

reconsidered significance of biomethylation pathways in aquifers. These results expand 

our current understanding of the metabolic reach aquifer microorganisms have over the 

fate of arsenic in the critical zone. 
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APPENDIX A 

 

ANALYTICAL PROCEDURES 

 

 

Total Arsenic Analysis: Total arsenic analysis was performed with a VG 

Elemental PQ Excel ICP-MS. Yttrium was utilized as an internal standard and the 

instrument was calibrated daily with reference materials procured from SPEX Certiprep. 

Verification of instrument calibration was achieved with preparations and analysis of two 

independent reference materials from the same vendor, but with different lot numbers. 

These check standards were analyzed post calibration and post sample analysis. Each 

ICP-MS measurement was conducted in triplicate and a sample duplicate and an 

analytical sample spike was performed during each assay. 

  

Arsenic Speciation Analysis: Arsenic speciation was achieved with a liquid 

chromatography system interfaced to the ICP-MS instrument operated in a transient 

acquisition mode. Separation of the arsenic compounds was achieved with a Phenomenex 

Luna C18 100A column (250 x 4.40 x 5) with a isocratic mobile phase of 2.5 mM 

oxalic acid, 10mM 1-heptanesulfonic acid (ion-pairing agent) and 0.1% methanol 

adjusted to a pH of 4 with ammonium hydroxide. The mobile phase flow rate was set at 

1.0 ml/min and an injection volume of 30 l was used. Yttrium prepared at a 

concentration of 150 ng/ml in mobile phase was employed as an internal standard. 

Injection of 10 l of the internal standard was performed post-column and is necessary 

since mobile phase and sample salts dampen the signal intensity over the course of the 

assay. Calibration of the instrument was conducted with reference materials obtained 

from SPEX Certiprep, Sigma, and Chem Service. Verification of instrument calibration 

was achieved with preparations of reference materials by another chemist other than the 

one who prepared the calibration standards. Check standards were analyzed post 

calibration and post sample analysis. 
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Arsenic Sequential Extraction Procedure 

 

Materials 

50mL polypropylene centrifuge tubes, Teflon tip syringes for decanting, 200nm 

polycarbonate filters, Büchner Funnel, Aluminum Foil, Mortar and pestle, Shaker Plate, 

Centrifuge, Watch Glass, hot plate, timer, and centrifuges for 1.5 ml and 50 ml tubes. 

 

Chemicals and Reagents 

1. Titanium (III) Chloride (TiCl3, M.W. 154.26); 20% in 3% hydrochloric acid; 

Fisher AA3974330.  

2. Water used to prepare the solution is milli-Q water (18.2 m). 

3. Acids (HCl and HNO3) are at trace-metal grade; all other chemicals are at ACS 

grade. 

4. All solutions (except NaHCO3 solution) are degassed for 10 minutes with pure 

N2 and stored inside the anaerobic chamber.  

Solutions 

Solution 1: 1M MgCl2, pH 8 

MgCl2
.6H20  M.W. 203.30g.mol-1, 1Mx1Lx203.30g.mol-1 = 203.30g.L-1 

1. Add 203.30g MgCl2 into 1L volumetric flask, fill with about 600 ml Milli-Q 

water; 

2. Place a pH meter in solution along with a stir bar, and adjust pH to 8; 

3. Bring the total volume to 1 liter. 

 

Solution 2: 1M NaH2PO4, pH 5 

NaH2PO4
.H20 F.W. 137.99g.mol-1, 1Mx1Lx137.99g.mol-1 = 137.99g.L-1 

1. Add 137.99g NaH2PO4 into 1L volumetric flask, fill with about 600 ml Milli-Q 

water. 

2. Place a pH meter in solution along with a stir bar, and adjust pH to 5; 

3. Bring the total volume to 1 liter. 
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Solution 3: 0.2M Ammonium Oxalate/oxalic acid, pH 3 

(NH4)2C2O4
.H20 F.W. 142.11g.mol-1 

0.2Mx1Lx142.11g.mol-1 = 28.42g.L-1 

Oxalic Acid M.W. 134.0g.mol-1 

0.2Mx1Lx134.0 g.mol-1 = 26.8 g.L-1 

1. And 28.42g Ammonium Oxalate into 1 L volumetric flask,  

2. Fill the flask ¾ of the volume with Milli-Q water.  *Always add acid to water* 

3. Add 28.6 g oxalic acid  

4. Place a pH meter in solution along with a stir bar, and adjust pH to 3; 

5. Bring the total volume to 1 liter. 

 

Solution 4: 1N HCl 

trace metal grade HCl: 35% F.W. 36.46 

Density of Conc. HCl = 1.175g/cm3 at 35%,  

((35/100)(1000mL)(1.175g/mL))/36.46g.mol-1 =11.28M 

11.28x=1(1), X = 1/11.28, X = 0.08.86 L, 88.6mL HCl per liter 

1. Fill 1L volumetric flask ¾ of the volume with Milli-Q water.  *Always add 

acid to water* 

3. Pour about 90 ml trace-metal grade HCl into an acid washed beaker. Transfer 

88.6mL HCl into the flask. Do not pipette directly from the acid bottle!!! 

3. Cap the flask and invert three time to mix.  

4. Fill to 1 L with Milli-Q water 

Solution 5: Ti(III)-citrate-EDTA & Bicarbonate solutions:  

Ti(III)-citrate-EDTA solution (1 liter) contains 0.05 M TiCl3, 0.05 M Na2-EDTA, 

and 0.05 M Na-citrate.  

0.05M TiCl3 

F.W. 154.26 g.mol-1, 0.05M x 1L = 0.05x1x154.26= 7.713 g.L-1 

0.05M Na2-EDTA  

C10H14N2Na2O8
.2H2O F.W. 372.24 g.mol-1, 0.05M x 1L = 0.05x1x372.24= 18.612 

g.L-1 

0.05M sodium citrate 

F.W. 294.10 g.mol-1, 0.05M x 1L = 0.05x1x294.10= 14.705 g.L-1 
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Fill 1L volumetric flask ¾ of the way full with Milli-Q water.  *Always add acid 

to water* 

Add 7.713g TiCl3 + 20.81g Na4-EDTA +14.705g sodium citrate to 1L volumetric 

flask. 

Place a pH meter in solution along with a stir bar. 

The solution is degassed with N2 and pH is adjusted to 7. 

Fill to 1L with Milli-Q water.  

 

Solution 6 : NaHCO3 solution 

Bicarbonate solution (100 ml ) contains 1.0M NaHCO3.  

F.W. 84.01g.mol-1, 1Mx100mL = 1x0.1x84.01 = 8.401 g.L-1 

8.401g of NaHCO3 is weighed and moved to the anaerobic chamber. 

Prepare the solution inside the anaerobic chamber using N2-degassed milli-Q 

water.  

Solution 5 and 6 are added together in 10:1 volume ratio (e.g., 40 ml Ti(III)-

citrate-EDTA and 4 ml NaHCO3 solution).  

 

Field Sampling 

1. Immediately after retrieving sediment packs from the well, place the pack into 

an anaerobic jar, and purge the jar with N2 for three minutes.  

2. Store the jar at 4oC until returned to lab. 

3. Back to the lab, move the jar into the anaerobic chamber. Please open the jar 

when transporting the jar through the airlock. The vacuum can break a closed jar.  

4. Inside the chamber, transfer 0.4 g into a sterile Eppendorf tube and the rest to 

other Eppendorf tubes. Record exact amount of the sediments.  

5. Inside the anaerobic chamber, centrifuge at 11,000g for 25 minutes, remove 

water from sample using pipetting/decanting. Please balance the rotor before 

centrifuging. 

6. Inside anaerobic chamber, transfer Eppendorf tubes into a labeled Ziploc bags. 

Store the bags in -80oC freezer until analysis. 

Analysis 
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1. Magnesium Step – Targeting ionically bound arsenic 

1. 0.4g of sediment is homogenized inside anaerobic chamber with mortar and 

pestle until near uniform consistency (<125 microns). 

2. Add the sediment into 50mL centrifuge tube (Polypropylene). 

3. Add 40mL of 1M MgCl2 at pH 8. Note: sediment-to-extractant ratios of 1:1000 

(0.4g to 40mL) are used for each step 

4. Tumble-shake sample for 2 hours. 

5. Centrifuge for 25 minutes at 11,000g, decant supernatant using a syringe; filter 

the supernant inside the syringe using 0.2 m polycarbonate filter into a sampling vial of 

150 ml. 

6. Repeat step 3 to 5; add the filtrate to the same sampling vial. 

7. Repeat step 3 to 5 using Milli-Q water; add the filtrate to the same sampling 

vial. 

8. Acidify the filtrate in the sampling vials with trace metal grade HCl (final 

concentration 24 mM). 

 

2. PO4 Step – Targeting strongly adsorbed arsenic 

1. Inside the anaerobic chamber, add 40mL of 1M NaH2PO4 at pH 5, to the 

remaining residue. 

2. Tumble-shake suspension for 16 hours. 

3. Centrifuge for 25 minutes at 11,000g, decant supernatant using a syringe; filter 

the supernant inside the syringe using 0.2 m polycarbonate filter into a sampling vial. 

4. Repeat step 1 to 3, but shake the suspension for 24 hours. 

5. Repeat step 1 to 3 using Milli-Q water and shake the suspension for 30 min. 

6. Acidify the filtrate in the sampling vials with trace metal grade HCl (final 

concentration 24 mM). 

 

3. HCl Step – targeting As coprecipitated with AVS (acid volatile sulfide), 

carbonates, Mn oxides, and very amorphous Fe oxyhydroxides 

1. Inside the anaerobic chamber, add 40mL of 1N HCl to remaining residue 

2. Tumble-shake suspension for 1 hour. 
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3. Centrifuge for 25 minutes at 11,000g, decant supernatant using a syringe; filter 

the supernant inside the syringe using 0.2 m polycarbonate filter into a sampling vial. 

4. Repeat step 1 to 3 using Milli-Q water. 

5. Acidify the filtrate in the sampling vials with trace metal grade HCl (final 

concentration 24 mM). 

 

4.  Ox Step – targeting As coprecipitated with amorphous Fe oxyhydroxides 

1.  Inside the anaerobic chamber, add 40mL of 0.2M ammonium oxalate/oxalic 

acid at pH 3, to remaining residue. 

2. Cover tube with aluminum foil, tumble shake suspension for two hours. 

3. Centrifuge for 25 minutes at 11,000g, decant supernatant using a syringe; filter 

the supernant inside the syringe using 0.2 m polycarbonate filter into a sampling vial. 

4. Repeat step 1 to 3 using Milli-Q water. 

5. Acidify the filtrate in the sampling vials with trace metal grade HCl (final 

concentration 24 mM). 

 

5. Ti(III)/Citrate/EDTA/bicarbonate extraction – targeting As coprecipitated with 

crystalline Fe oxyhydroxides 

1. Inside the anaerobic chamber, add 40 ml Ti(III)-citrate-EDTA solution and 4 

ml NaHCO3 solution.  

2. Tumble-shake suspension for 2 hours. 

3. Centrifuge for 25 minutes at 11,000g, decant supernatant using a syringe; filter 

the supernant inside the syringe using 0.2 m polycarbonate filter into a sampling vial. 

4. Repeat step 1 to 3. 

5. Repeat step 1 to 3 with Milli-Q water. 

8. Acidify the filtrate in the sampling vials with trace metal grade HCl (final 

concentration 24 mM). 

 

6. HNO3 Step – targeting As coprecipitated with pyrite and amorphous As2S3 

1.  Inside the anaerobic chamber, add 40mL of 16N HNO3 to the remaining 

residue 
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2. Tumble-shake suspension for 2 hours. 

3. Centrifuge for 25 minutes at 11,000g, decant supernatant using a syringe; filter 

the supernant inside the syringe using 0.2 m polycarbonate filter into a sampling vial. 

4. Repeat step 1 to 3 twice. 

5. Repeat step 1 to 3 using Milli-Q water. 

 

7. Hot HNO3 step – targeting orpiment and remaining recalcitrant As minerals 

EPA method 3050B 

1. For each digestion procedure, weigh to the nearest 0.01 g and transfer a 1-2 g 

sample (wet weight) or 1g sample (dry weight) to a digestion vessel. For samples with 

high liquid content, a larger sample size may be used as long as digestion is completed. 

2. For the digestion of samples for analysis by GFAA or ICP-MS, add 10 mL of 

1:1 

HNO3, mix the slurry, and cover with a watch glass or vapor recovery device. 

Heat the sample to 95oC ± 5oC and reflux for 10 to 15 minutes without boiling.  

3. Allow the sample to cool, add 5 mL of concentrated HNO3 , replace the cover, 

and reflux for 30 minutes. If brown fumes are generated, indicating oxidation of the 

sample by HNO3, repeat this step (addition of 5 mL of conc. HNO3) over and over until 

no brown fumes are given off by the sample indicating the complete reaction with HNO3.  

4. Using a ribbed watch glass or vapor recovery system, either allow the solution 

to evaporate to approximately 5 mL without boiling or heat at 95oC ± 5oC without boiling 

for two hours. Maintain a covering of solution over the bottom of the vessel at all times. 

5. After the sample has cooled, add 2 mL of water and 3 mL of 30% H2O2.  

6. Cover the vessel with a watch glass or vapor recovery device and return the 

covered vessel to the heat source for warming and to start the peroxide reaction. Care 

must be taken to ensure that losses do not occur due to excessively vigorous 

effervescence. Heat until effervescence subsides and the vessel cools. Continue to add 

30% H2O2 in 1-mL aliquots with warming until the effervescence is minimal or until the 

general sample appearance is unchanged. 

7. Cover the sample with a ribbed watch glass or vapor recovery device and 

continue heating the acid-peroxide digestate until the volume has been reduced to 



70 

approximately 5mL or heat at 95oC ± 5oC without boiling for two hours. Maintain a 

covering of solution over the bottom of the vessel at all times. 

8. After cooling, dilute to 100mL with water. Particulates in the digestate should 

then be removed by filtration, by centrifugation, or by allowing the sample to settle. The 

sample is now ready for analysis by GFAA or ICP-MS. 
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Analytical Procedure for Acetate Measurement using 

 Dionex ICS-2500 Ion Chromatograph 

NOTES 

The running condition for acetate measurement is:  

Eluent: 0.01 N H2SO4; Flow rate: 0.3 ml / min; Column temperature: 60 °C; 

Detector UV wavelength: 210 nm; lamp setting: High.  

The detection limit for acetate is 11 µM.  

Your samples have to be filtered through 0.2 µM filter paper to remove 

particulate materials before analyzing with the HPLC.  Unfiltered samples can damage 

the injection value and clog the guard column.   

Screen your samples before the run.  Dilution is required, once acetate 

concentration in your sample is greater than 500 µM.   

 

PROCEDURE 

Start Up 

Before start, check the eluent reservoir and flush bottle.  If necessary, fill the 

eluent container A with 0.01 N H2SO4 and flush bottle with Milli-Q water (18.2 m) 

(Cascade 321).  To eliminate gas bulbs in inner wall of eluent container, remove the 

polyethylene delivery line from the container, cap the container and tap the container 

several times and allow it to sit overnight.  Put polyethylene delivery line back into the 

container.  Make sure the connections between the eluent bottle and the polyethylene 

delivery line are tight.   

 

Record the user information onto the EXCEL file “USER LOG” on the desktop 

window of the computer.  Include the following information, user name, running date, 

sample matrix and number, dilution factor, system power up time, pump pressure before 

and after the run, time to start and finish, and other necessary information.  

 

Turn on column heater with a temperature set at 60 °C.  Turn on the HPLC 

modules in the sequence of GP50, AS50, and AD20 by pressing the on/off button on the 

front panels. Once turned on, the AS50, AD20 and GP50 will initialize and run through a 
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diagnostic self-check, and remain in LOCAL mode, with pump off and AD20 UV lamp 

off.   

Prime the pump as described in the Manufacture’s Instruction, which is located on 

the shelf right above the computers.  We recommend priming the pump manually using a 

10-ml syringe for 4 syringe volumes, followed by automatically priming with PRIME 

button on the front panel for 2 minutes.  Before priming, reset the lower pressure limit to 

zero as follows:  

On the front panel of GS50, press Menu and then 2.  

Move the cursor up to LIMITS by pressing the upward arrow ().  

Set the lower pressure limit as zero by pressing 0 and then Enter. Press Menu and 

Enter to return to the default screen. Now the pump is ready for priming. 

 

NOTE: DO NOTE OVER TIGHT THE PUMP VALVES, Which will break the 

nut inside the pump head and result in costly repair service (> $1,000).  

 

Establish Remote Control 

Turn on the computer and launch the program Chromeleon to open the Browser.  

Click on the folder Dionex Templates on the left window of the Browser to open 

the sub-folder Panels, under the folder Dionex_IC click on the sub-folder AD20 and 

AD25 Absorbance Detector Panels.  On the right window of the Browser, click to open 

the file Absorbance_Detector_Gradient_pump_AS50.pan.   

 

On the pup-up window, click to open Control pull-down manual and select 

Connect to the Time Base to initiate the control panels.  Establish the remote control over 

auto sampler, pump, and detector by checking respective box on the control panels.    

 

Set pump speed to 0.3 ml / minute and turn on the UV lamp to HIGH.  The 

resulting pump pressure would be around 370~400 psi.  Check for leaking if the pressure 

is far less than 360 psi; as well, check the pump valves to make sure that they are closed.   
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Click to open Control pull-down manual and select Acquisition On.  On the pop-

up window, make sure that “UV_VIS_1” is checked and then press OK to monitor the 

baseline.  Once the base line is stable, record the time and pump pressure.  Ideal 

magnitude of baseline fluctuation should be less than 0.0001 S, which usually takes 

40~60 minutes to reach.   

Prepare Sequence File 

 On the right up corner of Chromeleon program window, click File and select 

New.  In the pop-up box, select Sequence (using Wizard) and click OK.  Click Next.   

 Time Base.  The Time base is “UOFO-30638099BE_1”; the computer is 

“UOFO-30638099BE”; Protocol is “My computer”. Click Next.  

 Unknown Samples.  Enter the number of samples and start position for sample 

vials.  Set the Injection volume to 50.0 (the sample loop is 100 L).  Add 2 extra vials for 

analyzing repeat, 1 for column rinse, and 1 for shutdown program.  Click on Apply to 

complete the setup.  Click Next.   

 Standard Samples.  Enter the number of standards and start position.  Set 

Injection volume to 50.0 (the sample loop is 100 L).  Click on Apply to complete the 

setup.  Click Next.   

 Methods & Reporting.  Choose acetate.pgm for Program and acetate.qnt as 

Quantification Method. Click Next. 

 Saving the Sequence.  Name the sequence file as “user last name followed by 

year month and date”.  Click OK.    

On the Browser window, edit the sample ID, position and running programs.  

Scheduled a Rinse program and a Shutdown program at the end of the run.  The Rinse 

program is to rinse the column with eluent for 60 minutes, while changing the flow rate 

to 0.1 ml / min and UV lamp status from HIGH to LOW.   The Shutdown program runs 

for 1 minute and turns off the pump and UV lamp.           

Loading Samples 

 Remove the sample tray from the auto sampler and load samples sequentially as 

scheduled in the Sequence file.  The loading volume must be greater than 1 mL.  

Insufficient loading volume may cause low pump pressure and the interruption of 

analyzing process, which will consequently result in mandatory stop of the machine.      
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Note: When loading the sample tray into AS50, do not bump the sampling tray 

onto the sampling needle and arm! The needle and arm are very delicate and any force 

can cause a series of problems from adjusting needle position to major repairs. 

Running the Batch 

Once the baseline is stable, click to open the pull-down menu of Control, select 

Acquisition Off.  

 On the pull-down menu of Batch, click on Edit.  In the pup-up dialog box, click 

Add to upload your sequence file. Click on Ready Check and make sure there is no error 

message. Start the run by clicking Start.  Each sample takes about 16 minutes, including 

flushing and loading time.   

 Check occasionally to make sure that the system is operating properly.   

Rinse and Shutdown 

 If the scheduled programs run successfully, the pump and UV lamp would be 

turned off at the end of the run. But you have to turn off the AS 50, AD 20, and column 

heater sequentially using the power switches on the front panels. Do not turn off GP50 at 

this point. 

Bypass the column by disconnecting the tubing from the column and connect to a 

tubing with a union at one end.  

Wash the system with Milli-Q water for one hour at flow rate of 0.3 mL/min. The 

systems are made of peek, which can not be stored in acid over long time. 

Turn off the GP 50 using the power switches on the front panels.     

Data Analysis 

 Click acetate.qnt within the sequence file.  

 Click General tab, Dimension of amount is ppm (or your desired units).  

 Click Peak Table tab on the bottom of the screen.  Enter the retention time for 

acetate, which is around 9.2 minutes.   

 Click Amount Table tab, enter the highest concentration of your standards into 

the Amount column.  

 Adjust the baselines manually. Check the calibration curves and make sure the 

results of validation are correct.  
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NPH Derivatization Protocol of LMW Organic Acids for HPLC2 

(Albert, D., & Martens, C., 1997) 

 

Pre-procedure: 

This protocol was based on Determination of low-molecular-weight organic acid 

concentrations in seawater and pore-water samples via HPLC and should be reviewed 

before performing. 

All glassware must be acid washed, followed by a subsequent step to remove all 

organics: either 10% nitric acid rinse or muffling at 350-400ºC for 2hrs. Store cleaned 

glassware in aluminum foil. 

Use only 18.2 milli-ohm DI water and Trace Grade HCl. 

Need to re-crystallize NPH (see Recrystallizing NPH protocol) 

All standards and reagents must be made fresh for each run.  

Eluent A and Eluent B should be created and allowed to sit for 24 hrs. 

See revised Protocol for preparing Eluents for the HPLC 

Preparing standards: 

To make 50 ml of stock solutions of the individual standards: 

Standard Formula Wt. (g) Mass (g) into 50ml Final Conc. (M) 

Sodium formate 68.02 .440 0.1 

Sodium acetate 82.03 .410 0.1 

Sodium propionate 96.06 .480 0.1 

Butyric acid 88.11 .441 0.1 

Isobutyric acid 88.11 .441 0.1 

Sodium Lactate* 112.06 0.560 0.1 

Valeric acid* 102.13 0.511 0.1 

Isovaleric acid* 102.13 0.511 0.1 

Add 20µl of 2M NaOH to all the standards except Butyric/Isobutyric acid for 

preservation and store at -20ºC. 

From the 100 mM (0.1 M) set of stock solutions, combine to create a 1 mM 

standard solution.  This solution will not be derivitized but it will be used to create the 8 

more dilute standards. 

With the 1 mM standard solution, use the HPLC Standardization Protocol 

Spreadsheet to create the following standard concentrations: 100µM, 10µM, 5µM, 1µM, 

500nM, 100nM, and a BLANK.  These should be made fresh for each dervatization. 
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Use the excel spreadsheet to create the standards.  Use a piece of styrofoam to 

hold the falcon tube (without the cap) upright on the platform of the digital scale.  Make 

sure the total volume for each standard is correctly entered in the spreadsheet (probably 

14g), then accurately weigh out (via aliquoting into a tube on the balance) the calculated 

amount.  Write this amount into the box provided on the sheet.  Then fill the tube with 

milli-Q DI H2O to a total weight of 14g (or whatever the volume has been decided for the 

standards).  Write the exact amount of the total weight in the spreadsheet.  It is okay if the 

values are not exactly what you tried to aliquot, the spreadsheet will calculate the 

molarity of the standard and the subsequent dilution factor that will be entered into the 

HPLC software. 

Preparing Derivatization Reagents: 

*All solutions should be made fresh for each derivatization, mixed in the 

fumehood in 10ml, acid-washed glass vials, and should be made to a total volume of 5ml 

using milli-Q DI H2O unless stated otherwise. 

For the Pyridine:HCl solution: 

Instead of using a 1:1 ratio of pyridine:HCl, a 4:3 ratio has been determined to 

work better with our specific chemicals.  If the solution is too acidic, derivitization will 

be retarded.  

aliquot 3 ml of the molecular biology grade (>99%) pyridine into the vial first  

then slowly aliquot in 2.25ml of concentrated HCl (~12N) 

this reaction is very exothermic and will off-gas chlorine, refrigerate between HCl 

aliquots if necessary.  Do this step under the fume hood. 

Confirm the pH is between 4 and 5.  Small amounts of additional pyridine may 

have to be added to adjust the pH.   

For the NPH solution: 

aliquot 4.895ml of H2O into the vial 

aliquot 105µl of concentrated HCl (~12N) 

add 76.7mg of the freeze-dried NPH; be sure to add this in small quantities and 

swirl until dissolved before adding more….this may take patience 

For the EDC solution: 

aliquot 5ml of H2O into the vial 

add 287.55mg of EDC (stored at -20ºC) and swirl until dissolved 
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Performing the Derivatization: 

Aliquot 2ml of sample/standard into a 4ml glass vial with a Teflon cap. 

Aliquot 200µl of the Pyridine:HCl solution into the vials and mix. 

Then bubble N2 into vials for 4min to remove CO2 

Either  

Use ethanol/flamed gas syringes at the gas bench. 

Use a Precision Glide 23 Gauge 1 inch disposal needle for each vial 

Aliquot 200µl of the NPH solution to the vials. 

Aliquot 200µl of the EDC solution to the vials, mix well, and let sit at room 

temperature for 1.5hrs. 

Aliquot 175µl of 45% KOH into the vials, mix, and place the vials in 70ºC heat 

bath 10min 

The heat bath takes about 4 hours to heat up to 70ºC.  The bath should also be 

calibrated with a thermometer every few derivitizations. 

After heating remove the samples from the bath and let them cool to room 

temperature. 

The samples can now be run in the HPLC (see Running HPLC protocol) or can be 

stored at 4ºC in the dark for 1 week.  
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Sulfide Spectrophotometer Procedure 

 

Reagents: Hach Sulfide 1 Reagent and Sulfide 2 Reagent 

Sulfide Standards 

1. Weight about one gram Na2S9H2O (M.W. 240.18 gmol1), dry using a piece 

of ChemWipe paper. 

2. Stock Solution A (100 mM S2-). Weight 0.60045 g Na2S9H2O and add into a 

25 ml volumetric flask. Bring the final volume to 25 ml using Milli-Q water (18.2 m). 

(25ml100mM240.18gmol1 = 0.60045 g).  

3. Prepare the standards according to the following table: 

Standard mM 
Mixing 

ml of Standard mL of water 

B 10 10 / A 90 

C 1 1 / A 99 

D 0.5 5 / B 95 

E 0.1 1/ B 99 

F 0.05 5/ C 95 

G 0.01 1/ C 99 

H 0.005 1 / D 99 

I 0.001 1 / E 99 

J 0.0005 1 / F 99 

 

Procedure  

1. Turn on Beckman Coulter DU 530 Spectrophotometer by pressing ON/OFF 

button on the back left side; let warm up for at least five minutes before analysis. 

2. Inside 1.5 ml Eppendorf tubes, add 1 ml of filtered samples or standards, 100l 

of reagent 1, and 100 µl of reagent 2. Mix the solution by inverting the tubes on a rack 

three times. 

3. Incubate the mixture at room temperature for 3 minutes.   

4. Need more details on the spectrophotometer steps. 

5-3 user program 

665 wavelength 

Blank – DI water 

Read – samples 
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Sulfide concentration (M)) is the following equation:  

 
2

665 665[HS ]  A  Aa b c      

where a = 11.555, b = 28.841, and c = 0.9906.  

*don’t need to reblank between samples* 
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Ferrous Iron Spectrophotometer Procedure 

Reagents3
 

A. Ferrozine (FW 492.47, 97%, Aldrich #16,060-1): 10−2 moll−1 repared in an 

ammonium acetate (CH3COONH4, Aldrich #37,233-1, 99.999%) solution of 10−1 

moll−1. 

B. Reducing agent — hydroxylamine hydrochloride (H2NOH.HCl, 99.9999%, 

Aldrich #37, 992-1): 1.4 moll−1 prepared in a solution of analytical grade hydrochloric 

acid 2 moll−1. 

C. Buffer — ammonium acetate: a 10 moll−1 solution adjusted to pH 9.5 with a 

solution of ammonium hydroxide (28–30%, NH4OH, JT Baker #9721-02). 

Ferrous Iron Standards 

1. Weight about one gram FeSO47H2O (M.W. 278.02 gmol1), dry in the oven 

at 105oC for two hours, and cool the chemical in a desiccator to room temperature. 

2. Stock Solution A (100 mM Fe2+). Weight 0.69505 g FeSO47H2O and add 

into a 25 ml volumetric flask. Bring the final volume to 25 ml using Milli-Q water (18.2 

m). (25ml100mM278.02gmol1 = 0.69505 g).  

3. Prepare the standard solution according to the following table: 

Standard mM 
Mixing 

ml of Standard mL of water 

B 50 5 / A 5 

C 25 2.5 / A 7.5 

D 10 1 / A 9 

E 5 1/ B 9 

F 2.5 1/ C 9 

G 1 1/ D 9 

H 0.5 1 / E 9 

I 0.25 1 / F 9 

J 0.1 1 / G 9 

 

Ferrous Iron Analysis 

Add 1 ml of filtered samples or standards to 100 l of reagent A. 

Total Iron Analysis 

Add 800 l filtered samples to 150 l of reagent B; incubate the mixture at room 

temperature for 10 minutes.  Add 50 l of reagent C.  
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Iron Chemical Extraction Procedure 

A. Total "reactive" Fe (amorphous+crystalline Fe(III) oxides and surface-associated 

Fe(II)) 

Add 0.1-1 g (we normally target approximately 0.5 g, depending on the Fe 

content of the material) of wet sediment to 10 mL of a solution of 0.2M sodium citrate 

plus 0.35M acetic acid adjusted (e.g. with 6N HCl) to a pH of 4.8. The citrate/acetic acid 

solution DOES NOT need to be anoxic.  We typically use serum vials (nominal volume 

10 mL, actual volume 15 mL) capped with thick black rubber stoppers (i.e. the kind used 

for anaerobic culturing) for this procedure; some other kind of gas-tight tube or bottle 

would be fine as well.  Note that you can start this extraction procedure in the anaerobic 

chamber if you want to (e.g. in parallel with the other Fe and U extractions), but strictly 

speaking it’s not necessary since the dithionite reduces all the Fe in the sample. 

Working in a fume hood, immediately add approximately 0.5 g of sodium 

dithionite (also called sodium hydrosulfite) to the vial and cap tightly (this is important as 

the dithionite smells terrible). 

Place vial on a rotary (or some other kind of) shaker for 1 hour. 

Remove vial from shaker to fume hood, uncap vial to allow air to enter, and let sit 

overnight. This allows the residual dithionite to oxidize, which is important because in its 

reduced form the dithionite interferes with the colorimetric ferrozine assay of the Fe 

content of the extract. 

Next day, add a small volume (hopefully something on the order of 0.1 mL or 

less) of extract to 5 or 10 mL of ferrozine (1 g/L in 50 mM of Hepes buffer, pH 4) plus 

0.25 mL of 10% (wt/vol, i.e. 10 g in 100 mL of H2O) of hydroxylamine hydrochloride 

(HA). 

Let the reaction mixture sit overnight, during which time the Fe(III) in the extract 

will be reduced by the HA to Fe(II), which in turn reacts with the ferrozine. 

Next day, read the A562 of the ferrozine+extract mixture. 

  

B. Poorly-crystalline Fe(III) and surface-associated Fe(II) 

Working inside the anaerobic chamber, add 0.1-1 g of wet sediment to 10 mL of 

0.5M HCl, cap, and place on shaker for 1 hour. The 0.5M HCl DOES NOT need to be 
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anoxic.  We typically use scintillation vials (approximately 20 mL total volume) with 

foil-lined caps for this procedure 

Remove vial from shaker and let sit for 1-2 hours to allow solids to settle.  If you 

want to analyze these immediately after extraction, transfer 1 mL of the slurry to a 

microcentrifuge tube, spin, and then analyze the supernatant as described below. 

Add  0.5 mL of the extract to 5 mL of ferrozine, and then immediately withdraw 

1 mL (using a pipettor) to measure the A562; this measurement gives you the Fe(II) 

content of the extract. 

Next, add 0.25 mL of 10% HA to the remaining ferrozine+extract mixture, and 

wait 10-15 minutes, during which time the HA reduces any Fe(III) in the extract to Fe(II), 

which in turn reacts with the ferrozine. 

Read the A562 again; this measurement gives you the total (Fe(II) plus Fe(III)) 

content of the extract.  The poorly-crystalline Fe(III) content of your sample is then 

calculated from the difference between total Fe and Fe(II). 
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Sulfide mineral sequential extraction procedure 

The purpose of this procedure is to examine the concentration of two groups of 

sulfide minerals in sediment samples. The sample is first treated with acid to measure 

acid volatile sulfide (AVS), which can be assumed to be primarily associated with 

amorphous and crystalline FeS (mackinawite), pyrrhotite, and greigite. Next, the samples 

are treated with Cr(II) solution, to measure chromium reducible sulfur (CRS), which can 

be assumed to be largely associated with pyrite and marcasite. Some greigite may come 

out in the CRS extraction (Cornwell and Morse, 1987). The sulfide (S(-II)) that is 

evolved in each step is transported by a flow of nitrogen gas to another bottle where it is 

trapped in solution and may later be quantified using a method such as the methylene 

blue method (Eaton et al., 1995). 

The overall extraction approach is taken from Canfield et al. (1986) and Tuttle et 

al. (1986). Cornwell and Morse (1987) and Rice (1993) provide a nice analysis of the 

procedure. Benning et al. (2000), Lowers et al. (2007), Morse and Cornwell (1987), and 

Spadini et al. (2003) are example studies in which this procedure was implemented. This 

protocol is designed for samples collected from cultures. For recently formed sediments 

such as these, the extraction can be carried out at room temperature (Cornwell and Morse, 

1987). To apply this to ancient sediments, the extractions should be heated (Rice et al., 

1993). 

Extraction set-up 

 Extractions can be carried out using septum bottles sealed with butyl 

rubber stoppers as shown in the picture below. The bottle that the sample will be injected 

into (bottles on the right in the picture) should contain a needle for N2 inflow that is long 

enough that the N2 bubbles through the solution. The tubes coming in from the right side 

of the image are supplying N2. An outflow needle also needs to be present to allow N2 

and H2S to travel to the trap solution. It should be a short needle that does not extend into 
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the solution otherwise solution will 

flow out instead of H2S and N2. Each 

of these needles needs to have a 

syringe valve attached so they can be 

sealed from the atmosphere between 

extractions. The outflow needle 

needs to have a short tube extending 

to another long inflow needle in a 

bottle containing a sulfide trap 

solution (bottles on the left in the 

picture). This trap also needs an 

outflow needle. The entire set up 

needs to be free of O2, so once it is 

assembled, flush it with N2 for at 

least a half an hour. The bottles and 

solutions they contain, furthermore, 

should be purged of O2 prior to assembling the extraction set up. This is critical to 

preventing oxidation of sulfide by O2 during the extraction. During the extraction, the 

rate of N2 flow should be very slow; only a few bubbles per second. Adjust this flow rate 

prior to injecting samples. Be sure to use needles that do not core the septum. If N2 flow 

is restricted in one needle more than other needles, the flow rate will be uneven among 

extractions carried out simultaneously. 

Reagents 

7.5 mM zinc acetate [Zn(CH3COO)2·2H2O; FW 219.51] with a pH of about 9. 

You will need 40 mL/bottle and 2 bottles per sample (one for AVS and one for CRS). 

Make the solution and accurately add 40 mL to serum bottles and then purge with N2 to 

remove O2. This bottle serves to trap sulfide liberated during each extraction. The zinc 

reacts with the sulfide and precipitates as ZnS. The solution is basic to ensure that the 

sulfide exists as HS- rather than H2S. This favors formation of ZnS and also serves to 

ensure that the sulfide remains largely in solution. The solution is based upon that 

recommended by Eaton et al. (1995). Because this solution is used, wait at least 10 

minutes for color development when measuring sulfide with the methylene blue method. 
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I used 7.5 mM zinc acetate. You may need to adjust the concentration of zinc so that at 

least an order of magnitude more zinc is present than AVS or CRS. I used sequential 

traps the first time I tried this procedure to ensure the traps were effective at retaining 

sulfide. I was unable to detect sulfide in any of the traps beyond the first, demonstrating 

that one trap was suitable. This might not be the case if the flow rate of N2 is too high. 

6 N HCl with 5% SnCl2. You will need 30 mL/sample. Make the acid solution 

and accurately add 30 mL aliquots to bottles containing 1.5 g of SnCl2. Purge the bottle 

with N2 to remove O2. The SnCl2 is present because it prevents oxidation of sulfide by 

ferric iron that may be present; it reduces the ferric iron. If a lot of ferric iron is present in 

the sample, you may consider adding more SnCl2. Don’t add too much SnCl2 though 

because this could overwhelm the Cr(II) solution that is added later during the CRS 

extraction. The Cr(II) quickly reduces the Sn(II) to Sn metal, thereby consuming Cr(II). 

1 M Cr(II) solution. You will need 30 mL/sample. Purchasing a Cr(II) salt is 

fairly costly and they are unstable. Cr(III) salts, in contrast, are quite inexpensive and 

more stable. As described by Tuttle (1986), to make 1M Cr(II) solution from a Cr(III) 

salt, dissolve 133 g of reagent-grade CrCl3·6H2O in 500 mL of 0.1 M HCl. Pass the 

solution through a Jones reductor (described below). The color changes from bright green 

to bright blue as the Cr(III) is reduced to Cr(II). The solution is unstable in air and should 

be prepared within a day or two of use and stored in a sealed septum bottle that has been 

purged of O2. It does not matter how much volume you add to the storage bottle because 

you will have to remove the appropriate aliquot from this bottle to add it to the sample 

with a syringe. 

Concentrated HCl: 15 mL/sample. 

Ethanol: 10 mL/sample. 

Procedure 

Mix reactor solution and sediment thoroughly and remove 5 mL using a syringe. 

Dissolution of AVS: Inject the sample slowly into a serum bottle containing 30 

mL of 6 M HCl solution with 1% stannous chloride (SnCl2) and flowing N2. If you inject 

the sample too rapidly, you might disrupt the flow of N2 and even cause solution to back 

up into the gas manifold supplying the N2.  

Incubate the sediments in the acid for 1 hour. N2 should be flowing through the 

bottles slowly the whole time.  
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Dissolution of CRS: Once the AVS extraction is complete, seal the valves on each 

sampling bottle and install fresh sulfide traps. Add 10 mL of ethanol to the extraction 

bottle and flush for a few minutes with N2. Next, inject 30 mL of 1 M Cr(II) solution and 

15 mL of concentrated HCl.  

Incubate the extraction at room temperature for 1 hour and then seal valves. 

Quantify the sulfide content of each trap. Use this to determine how much AVS 

and CRS sulfide was present in the original sample. If the sample pore solution contained 

significant sulfide content, you will need to factor this out of your result. 

Jones reductor 

Amalgamated granular zinc is used as a reducing agent in a Jones reductor. You 

amalgamate the zinc by treating it with a mercuric (Hg2+) solution.  An amalgam is 

defined as any compound containing mercury. The procedure I used to amalgamate zinc 

is taken from Kolthoff et al. (1969). I modified the procedure only slightly by changing 

the amounts of reagents to suit my needs. The proportions of each reagent are not 

changed: 

Add 200 mL of 2 % (by weight) mercuric chloride (or nitrate) to 1 mL of 

concentrated nitric acid to 200 g of pure 20 – 30 mesh zinc in a beaker. 

Stir the mixture thoroughly for 10 minutes. 

Decant the solution and wash the zinc 3 times with distilled water. 

The amalgamated zinc should have a bright silvery luster. Fill the reductor tube 

with water and then slowly add the zinc until the column is packed. 

Wash the column with 500 mL of distilled water. Store the column full of 

deionized water after washing to prevent formation of salts. 

 

Ideally, the reductor should be about 25 to 35 cm in height and should have an 

internal diameter of about 2 cm (KOLTHOFF et al., 1969). I used an old 100 mL burret 

with a small plug of glass wool to prevent the zinc from reaching the stopcock. 
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APPENDIX B 
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APPENDIX B 

 

CHAPTER II SUPPLEMENTARY MATERIAL 

 

Table B1. Synthetic groundwater composition 

Ca mmolal 0.6 

Mg mmolal 0.3 

K mmolal 0.2 

Na mmolal 16.7 

HCO3
- mmolal 12.8 

Cl mmolal 1.5 

SO4
= mmolal 2.5 

As(V) (ppb) 2000 

 

Table B2. Ferrous iron data from laboratory experiments 

Fe2+ (mM) 

time 

(d) 

Reactor 

A Stdevpa 

Reactor 

N Stdevpa 

Reactor 

E Stdevpa 

Reactor 

ES Stdevpa 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 - 0.02 0.13 0.01 0.13 0.02 0.13 0.00 

7 0.00 0.00 0.00 0.00 0.05 0.06 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.09 0.02 0.18 0.03 

13 0.00 0.00 0.00 0.00 0.24 0.00 0.24 0.00 

16 0.01 0.00 0.01 0.00 0.49 0.05 0.39 0.02 

20 0.00 0.00 0.00 0.00 0.57 0.05 0.39 0.02 

23 0.00 0.00 0.00 0.00 0.47 0.07 0.28 0.09 

29 0.00 0.00 0.00 0.00 0.47 0.06 0.30 0.03 

31 0.01 0.01 0.05 0.03 0.18 0.01 0.16 0.01 

34 0.00 0.00 0.00 0.00 0.39 0.04 0.25 0.01 

37 0.00 0.00 0.00 0.00 0.11 0.08 0.22 0.05 

42 0.00 0.00 0.00 0.00 0.24 0.09 0.22 0.04 

45 0.02 0.00 0.02 0.01 0.23 0.05 0.23 0.04 

49 0.02 0.00 0.02 0.00 0.11 0.03 0.17 0.00 

52 0.02 0.01 0.02 0.00 0.08 0.05 0.10 0.02 
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Table B3. Sulfide data from laboratory experiments 

Sulfide (mM) 

time 

(d) 

Reactor 

A Stdevpa 

Reactor 

N Stdevpa 

Reactor 

E Stdevpa 

Reactor 

ES Stdevpa 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.008 0.001 0.001 0.001 0.003 0.001 0.007 0.005 

7 0.169 0.015 0.036 0.018 0.181 0.051 0.131 0.026 

10 0.164 0.022 0.030 0.014 0.081 0.020 0.290 0.097 

13 0.132 0.021 0.178 0.051 0.109 0.017 0.343 0.065 

16 0.353 0.146 0.544 0.035 0.161 0.012 0.150 0.030 

20 0.100 0.018 0.174 0.045 0.059 0.013 0.063 0.042 

23 0.019 0.014 0.018 0.021 0.000 0.000 0.002 0.003 

29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

49 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

52 0.052 0.002 0.000 0.000 0.000 0.000 0.000 0.000 

 

Table B4. Sulfate data from laboratory experiments 

Sulfate (mM) 

time 

(d) 

Reactor 

A Stdevpa 

Reactor 

N Stdevpa 

Reactor 

E Stdevpa 

Reactor 

ES Stdevpa 

1 2.433 0.228 2.293 0.282 0.075 0.028 2.504 0.416 

3 3.130 0.129 2.901 0.614 0.107 0.028 2.949 0.182 

7 2.780 0.372 2.400 0.349 0.194 0.013 2.138 0.422 

9 2.319 0.189 2.506 0.579 0.225 0.013 1.778 0.353 

13 2.084 0.038 2.778 1.075   1.353 0.212 

15 2.070 0.612 2.793 0.370 0.586 0.067 1.079 0.114 

20 4.453 0.104 3.567 0.281 0.082 0.022 1.670 0.218 

23 3.009 0.674 5.473 0.708 0.057 0.022 0.932 0.218 

29 2.859 1.153 4.492 0.583 0.051 0.002 0.420 0.103 

31 3.071 0.316 4.170 0.334 0.058 0.016 0.072 0.036 

34 3.300 0.113 4.824 0.763 0.053 0.017 - - 

37 2.811 0.000 4.716 0.405 0.069 0.010 0.027 0.074 

42       0.033 0.014 

45 3.028 0.554 4.429 0.779 0.091 0.011 0.071 0.006 

49 4.041 1.397 4.774 1.151 0.055 0.036 0.041 0.018 
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Table B5. Methane results from laboratory experiments 

Methane (mmol L-1) 

time (d) 

Reactor 

A Stdevpa 

Reactor 

N Stdevpa 

Reactor 

E Stdevpa 

Reactor 

ES Stdevpa 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

13 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.00 

16 0.00 0.00 0.00 0.00 0.28 0.03 0.17 0.03 

20 0.00 0.00 0.00 0.00 0.60 0.09 0.48 0.03 

29 0.00 0.00 0.00 0.00 3.44 0.41 2.10 0.38 

31 0.00 0.00 0.00 0.00 4.78 0.62 2.73 0.37 

34 0.00 0.00 0.00 0.00 5.58 0.81 3.58 0.96 

37 0.00 0.00 0.00 0.00 4.82 0.76 2.03 0.31 

42 0.00 0.00 0.00 0.00 7.12 1.05 2.74 0.52 

45 0.00 0.00 0.00 0.00 8.29 0.49 4.20 0.88 

49 0.00 0.00 0.00 0.00 10.16 0.85 3.10 0.29 

52 0.00 0.00 0.00 0.00 24.08 4.21 12.66 3.41 

 

Table B6. Total Dissolved inorganic carbon data from laboratory experiments 

Total Dissolved Inorganic Carbon (mmol/L) 

Days  Reactor A std Reactor N Std 

Reactor 

E std 

Reactor 

ES std 

1 18.5 2.3 36.6 11.5 45.6 18.3 39.8 4.9 

7 27.4 7.6 25.3 9.0 86.0 27.4 84.0 17.1 

10 14.4 1.1 24.9 2.7 4.8 0.7 3.3 0.3 

13 14.3 6.9 34.3 5.3 1.6 0.2 2.5 0.2 

20 21.3 3.2 25.2 2.6 2.2 0.1 3.3 0.5 

23 9.7 3.0 14.5 1.9 2.7 0.3 5.0 0.5 

31 19.6 11.2 30.7 11.2 4.7 0.5 7.4 0.4 

34 33.9 3.6 32.0 4.4 9.2 0.7 10.9 0.7 

37 17.4 1.6 19.7 0.8 5.9 0.7 7.5 1.2 

42 17.7 2.9 23.9 6.8 5.7 1.5 6.7 0.8 

45 15.3 0.5 18.8 2.5 6.1 0.5 8.2 1.5 

49 15.3 2.9 17.5 4.5 9.4 0.6 8.1 0.9 

52 9.7 13.7 48.1 7.4 25.3 1.7 29.4 7.5 

 

 

 

 



91 

Table B7. Anion data from laboratory experiments 

Reactor A 

Time (d) Fluoride (mM) stdev Chloride (mM)  stdev Nitrate (mM) stdev 

1 0.265 0.060 6.346 0.405 0.000 0.000 

3 0.511 0.063 6.376 0.065 0.000 0.000 

7 0.434 0.096 5.889 0.802 1.276 0.616 

9 2.373 0.000 6.351 0.132 0.442 0.019 

13 3.104 2.029 6.375 0.155 0.504 0.081 

15 2.220 0.592 6.124 0.420 0.000 0.000 

20 1.081 0.219 6.494 0.202 0.000 0.000 

23 0.388 0.102 5.542 0.715 0.000 0.000 

29 0.269 0.242 5.403 1.230 0.000 0.000 

31 0.376 0.045 6.435 0.040 0.000 0.000 

34 0.323 0.034 6.225 0.200 0.017 0.014 

37 0.330 0.000 5.797 0.000 0.000 0.000 

42 0.233 0.207 - - 0.025 0.025 

45 0.392 0.165 6.024 0.384 0.012 0.012 

49 0.334 0.093 5.001 0.913 0.005 0.005 

Reactor N 

 Fluoride (mM) stdev Chloride (mM)  stdev Nitrate (mM) stdev 

1 0.182 0.166 5.332 0.644 0.005 0.029 

3 0.285 0.066 5.336 0.675 0.037 0.031 

7 0.429 0.069 5.119 0.551 0.000 0.000 

9 2.337 0.157 5.747 2.686 0.379 0.178 

13 2.923 1.021 6.326 0.788 0.398 0.191 

15 2.823 1.476 5.806 1.343 0.258 0.029 

20 0.573 0.398 5.856 1.193 0.000 0.000 

23 0.409 0.126 5.193 0.994 0.000 0.000 

29 0.397 0.140 6.057 0.324 0.000 0.000 

31 0.428 0.094 6.104 1.114 0.007 0.012 

34 0.313 0.072 5.791 1.367 0.013 0.022 

37 0.316 0.066 6.013 1.121 0.000 0.000 

42 0.407 0.166 5.620 0.317 0.017 0.016 

45 0.574 0.135 5.777 1.097 0.118 0.016 

49 0.288 0.066 5.035 1.670 0.033 0.024 
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Table B7. (continued) 

Reactor E  

 

Fluoride 

(mM) stdev 

Chloride 

(mM)  stdev 

Nitrate 

(mM) stdev 

1 0.176 0.092 6.451 1.239 0.018 0.026 

3 0.482 0.148 6.776 0.689 0.084 0.034 

7 1.760 0.784 7.734 1.097 0.163 0.134 

9 5.884 1.182 7.013 0.694 0.588 0.237 

13 9.309 1.789 7.581 0.897 1.149 0.141 

15 10.771 1.184 7.797 0.788 0.695 0.030 

20 7.613 1.397 7.136 1.139 0.000 0.000 

23 7.788 1.399 7.009 0.576 0.000 0.000 

29 8.278 0.235 7.459 0.833 0.000 0.000 

31 7.462 0.674 7.567 0.822 0.000 0.000 

34 8.366 0.142 7.577 0.456 0.000 0.000 

37 8.881 0.865 7.654 1.096 0.000 0.000 

42 - - - - - - 

45 7.878 0.736 7.414 0.722 0.000 0.000 

49 6.852 0.172 7.257 0.523 0.000 0.000 

Reactor ES 

 

Fluoride 

(mM) stdev 

Chloride 

(mM)  stdev 

Nitrate 

(mM) stdev 

1 0.378 0.195 6.501 0.458 0.000 0.000 

3 0.696 0.023 6.718 0.420 0.090 0.008 

7 5.043 1.156 6.685 0.830 0.404 0.091 

9 5.534 1.101 6.282 1.685 0.198 0.052 

13 8.865 2.365 6.827 0.549 0.531 0.130 

15 8.411 2.182 5.714 0.930 0.080 0.113 

20 7.413 0.869 6.712 0.678 0.000 0.000 

23 5.822 0.806 6.048 1.796 0.000 0.000 

29 6.459 2.001 6.081 1.606 0.000 0.000 

31 5.334 2.431 3.622 2.807 0.000 0.000 

34 - - - - 0.000 0.000 

37 7.036 2.495 2.234 6.374 0.000 0.000 

42 - - - -     

45 7.552 0.776 6.652 0.386 0.091 0.037 

49 7.225 0.395 6.675 0.505 0.000 0.000 
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Table C1. Field observation data 

  

Well Arsenic 

speciation       

W

ell 

ID  

Arsen

ic as 

As+5, 

Arseni

c as 

MMA, 

Arsen

ic as 

As+3, 

Arseni

c as 

DMA, 

Sum of 

Arsenic 

Species, 

Arsen

ic as 

As+5, 

Arseni

c as 

MMA, 

Arsen

ic as 

As+3, 

Arseni

c as 

DMA, 

  µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L 

3  < 0.4 < 0.2 < 0.4 < 1 < 1 0 0 0 0 

6  0.574 < 0.2 < 0.4 < 1 0.574 0.574 0 0 0 

7  5.688 < 0.2 < 0.4 < 1 5.688 5.688 0 0 0 

8  0.598 < 0.2 25.32 < 1 25.918 0.598 0 25.32 0 

10  250 1.528 4.572 < 1 256.1 250 1.528 4.572 0 

11  62.28 < 0.2 1800 8.196 1870.476 62.28 0 1800 8.196 

13  44.8 < 0.2 2300 

13.36

6 2358.166 44.8 0 2300 

13.36

6 

14  2.15 < 0.2 26.12 < 1 28.27 2.15 0 26.12 0 

15  73.44 < 0.2 3300 

16.50

4 3389.944 73.44 0 3300 

16.50

4 

16  < 0.4 < 0.2 240 < 1 240 0 0 240 0 

17  8.972 < 0.2 150 < 1 158.972 8.972 0 150 0 

18  40.2 0.314 8.62 < 1 49.134 40.2 0.314 8.62 0 

19  < 0.4 < 0.2 110 < 1 110 0 0 110 0 

21  36.24 < 0.2 30.62 < 1 66.86 36.24 0 30.62 0 

22  24.06 < 0.2 100 < 1 124.06 24.06 0 100 0 

23  330 < 1 750 2.51 1082.51 330 0 750 2.51 

24  150 < 1 860 2.645 1012.645 150 0 860 2.645 

25  110 < 1 83.12 0.551 193.671 110 0 83.12 0.551 

26  

17.09

4 < 1 1800 5.578 1822.672 

17.09

4 0 1800 5.578 

27  7.23 < 1 

19.34

2 < 1 26.572 7.23 0 

19.34

2 0 

28  61.66 < 1 310 1.218 372.878 61.66 0 310 1.218 

29  320 < 1 350 1.581 671.581 320 0 350 1.581 

30  28.4 < 1 3100 8.974 3137.374 28.4 0 3100 8.974 
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Table C2. Field observation data 

Well ID  pH T TDS DO H2S Fe++ SO4
-- Alkanility DOC 

   oC microS ppm ppm ppm ppm meq/L ppm 

3  8.17 14.1 189.5 1.22 0.005 0.06 7 2.36 4.488 

6  7.93 13.5 197 1.89 0.044 0.1 28 2.4 5.654 

7  7.95 14 191 0.39 0 0 11 2.8 4.841 

8  8.18 14.4 360 0.05 0.002 0 11 3.56 5.342 

10  7.01 13.3 2210 0.71 0.052 0.12 40 2.8 4.478 

11  7.07 13.7 2320 0.07 0.028 0.36 21 4 5.233 

13  7.47 15.7 2090 0.21 0 0.39 >> 12.8 5.809 

14  7.43 15.7 808 0.11 0.01 0.04 22 8.89 5.496 

15  7.36 16.2 2220 0.09 0.031 0 38 4.56 5.874 

16  8.36 14.5 492 0.03 0 0 7 2.56 4.453 

17  7.62 16.1 331 0.95 0.016 0.54 0 2.6 3.702 

18  7.89 15 731 ? 0.075 0 >> 7.8 10.03 

19  8.67 14.6 335 ? 0.013 0 21 3.36 4.957 

21  7.69 13.1 340 0.05 0 0 9 4.32 4.416 

22  7.9 12.4 1416 ? 0 0.02 >> 7.2 5.561 

23  8.34 12.4 863 0.09 0.03 0 40 6.88 18.61 

24  7.65 13.3 1349 0.07 0 0.06 >> 8.16 2.174 

25  7.01 13.7 281 0.49 0.006 0 0 5.92 1.18 

26  7.64 15.1 633 0.06 0.004 0.16 >> 8.4 1.003 

27  8.19 14.6 2550 0.13 0.008 >> 42 8.08 1.918 

28  7 12.8 1138 0.09 0.006 0.93 8 4.44 1.173 

29  7.9 14.8 1131 0.32 0.003 0.01 >> 12.32 1.167 

30  8.16 16.9 2380 0.09 0.004 0.18 >> 9.36 1.39 

31         8.8  

 

  



96 

Table C3. Field observation data from ICP-AES analyses 

ID 

Fluo

ride 

Chlori

de Sulfate Na Ca Mg K Si Al 

 ppm ppm ppm ppm ppm ppm ppm ppm ppm 

3 0.4 7.3 5.9 12.8 20.3 -0.2 1.4 7.8 0.0 

6 1.0 2.7 3.4 7.5 19.7 3.9 1.4 13.8 0.0 

7 0.7 4.8 3.4 15.9 18.6 1.5 1.4 15.0 0.1 

8 1.4 10.2 7.1 38.3 1.2 -0.5 1.6 5.6 0.0 

10 0.6 958.3 41.3 211.6 128.1 76.2 11.2 15.2 0.1 

11 n.a. 1026.1 18.5 196.8 195.3 68.5 12.1 15.4 0.0 

13 0.7 245.4 87.6 188.9 23.7 7.9 8.3 5.1 0.0 

14 1.4 210.6 5.6 133.1 8.3 1.8 4.8 3.8 0.0 

15 0.9 1599.5 54.6 588.3 32.0 7.2 14.0 4.5 0.0 

16 1.3 74.1 6.5 50.8 3.2 0.0 2.3 5.0 0.1 

17 0.7 20.0 1.7 28.2 5.9 2.0 2.0 10.8 0.1 

18 0.7 26.6 131.6 98.6 14.1 2.6 4.0 18.2 0.1 

19 0.5 5.5 20.5 34.2 0.8 -0.6 1.4 7.9 0.1 

21 1.0 3.8 1.2 10.1 25.3 13.8 2.9 13.6 0.1 

22 1.5 239.7 147.0 152.3 20.3 6.7 4.3 8.3 0.0 

23 1.1 60.1 33.6 82.3 4.3 1.1 4.1 5.9 0.3 

24 0.6 154.3 56.9 128.4 18.9 6.4 6.7 5.9 0.2 

25 0.5 5.4 2.7 22.8 37.7 13.2 3.8 10.3  

26 0.8 179.0 55.3 134.8 17.3 5.5 6.7 8.7 0.2 

27 n.a. 4600.5 38.2 1405.7 47.1 77.6 49.5 5.0  

28 1.0 244.4 4.8 50.2 81.9 31.4 3.5 13.6 0.3 

29 2.2 99.7 60.8 154.0 16.7 4.8 6.2 7.9 0.3 

30 0.2 550.4 84.5 245.6 26.0 8.3 11.3 7.3 0.3 

31    82.8 17.5 7.5 4.2 8.7 0.3 
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