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THESIS ABSTRACT 
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Title: Comparing Photogrammetric and Spectral Depth Techniques in Extracting 

Bathymetric Data from a Gravel-Bed River 

 

 

Recent advances in through-water photogrammetry and optical imagery indicate 

that accurate, continuous bathymetric mapping may be possible in shallow, clear streams. 

This research directly compares the ability of through-water photogrammetry and spectral 

depth approaches to extract water depth for monitoring fish habitat. Imagery and cross 

sections were collected on a 140 meter reach of the Salmon River, Oregon, using an 

unmanned aerial vehicle (UAV) and rtk-GPS. Structure-from-Motion (SfM) software 

produced a digital elevation model (DEM) (1.5 cm) and orthophoto (0.37 cm). The 

photogrammetric approach of applying a site-specific refractive index provided the most 

accurate (mean error 0.009 m) and precise (standard deviation of error 0.17 m) 

bathymetric data (R2 = 0.67) over the spectral depth and the 1.34 refractive index 

approaches. This research provides a quantitative comparison between and within 

bathymetric mapping methods, and suggests that a site-specific refractive index may be 

appropriate for similar gravel-bed, relatively shallow, clear streams. 
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CHAPTER I 

INTRODUCTION 

 The understanding of physical and ecological processes that govern rivers and 

their biota are critical components of myriad studies and disciplines. River processes 

have significant controls on a wide range of geographical extents, from whole landscapes 

to a small side channel supporting life for hundreds of organisms. Quantifying 

bathymetry has been of particular concern of fluvial geomorphology and river 

management because it is a basic descriptor of channel morphology, as well as one of the 

major elements of a river that adjusts in response to fluctuations and disturbances 

(Montgomery and Buffington, 1998; Westaway et al., 2001; Woodget et al., 2014). 

Bathymetry and changes in bathymetry define the location of channel units, and therefore 

control the location of various habitat types and hydraulic variables that influence the rate 

of geomorphic change. 

 Understanding fluvial topography is, therefore, paramount in understanding river 

form, process, and function. Bathymetry is generally derived from spatially extensive but 

low density data, such as from total station or rtk-GPS surveys (Feurer et al., 2008; 

Marcus and Fonstad, 2008; Bangen et al., 2014). These traditional survey techniques to 

collect bathymetric data describe streams in a discontinuous manner, and can potentially 

overlook key physical features of the river that influence river behavior and affect biota at 

the sub-meter scale (Marcus and Fonstad, 2008; Dietrich, 2015). Our understanding and 

mapping of rivers across disciplines has been based on discontinuous data to describe a 

continuously varying system.  
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New applications to study rivers, including geomorphic change detection, 

physical habitat modeling, 2D hydraulic modeling, sediment budgeting, and restoration 

assessment and monitoring, are demanding more continuous, higher resolution 

bathymetric data in order to improve our knowledge of river form and process. All of 

these applications require an objective and repeatable technique that offers high 

resolution and spatially continuous data (Woodget et al., 2014). Aerial and satellite 

imagery may be an option for larger rivers in non-forested watersheds and when funding 

is available, but do not meet the spatial or temporal requirements for monitoring small 

streams (Lejot et al., 2007; Carbonneau and Piegay, 2012). Some areas may have 

bathymetric LiDAR data available, but these data are most accurate at depths greater than 

0.50 meters (Feurer et al., 2008), as well as being expensive and infrequently collected. 

ADCPs (Acoustic Doppler Current Profilers) and sonar are commonly used as well, 

however cannot be used in very shallow depths or in some riffle habitats. When timing 

and extensive surveys are essential to observe morphological changes, non-continuous 

land surveys or infrequent aerial surveys to collect bathymetric data become inadequate. 

In order to understand the physical processes that occur following fluctuations and 

disturbances, we need higher resolution data, both spatially and temporally. 

Recent advances in photogrammetry and optical imagery have demonstrated 

potential in meeting the demands for high spatial and temporal resolution bathymetric 

data and mapping as an alternative to orthodox field methods (Marcus and Fonstad, 2008; 

Legleiter, 2012), particularly for shallow rivers, where high spatial resolution is needed 

but little data have been collected (Feurer et al., 2008). These advances indicate that 

accurate, continuous mapping of depth and in-stream habitats should be possible (Marcus 
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and Fonstad, 2008), and numerous studies, given relatively shallow depths and clear 

water, reported results demonstrating the ability and potential of remote sensing methods 

to derive accurate and precise digital elevation models (DEMs) for submerged 

topography (Marcus et al., 2003; Carbonneau et al., 2006; Lejot et al., 2007; Feurer et al., 

2008; Legleiter et al., 2009; Fonstad et al., 2013; Woodget et al., 2014; Dietrich, 2015).  

Despite these advances and promising results, large gaps remain in the literature 

regarding the types of methods available and able to derive bathymetric data in different 

river systems. An overwhelming majority of published literature utilizes aerial 

photography and spectral depth methods. The use of aerial photography is inflexible and 

has been repeatedly cited as a logistical issue regarding planning, cost, and ability of 

repeat flights (Lejot et al., 2007; Feurer et al., 2008; Marcus et al., 2012). Unmanned 

aerial systems (UAS) are becoming increasingly popular as they offer flexibility for a 

much lower cost, however very few studies have used an unmanned aerial vehicle (UAV) 

or drone to collect imagery (Carbonneau and Piegay, 2012). Spectral depth may be the 

most widely used method for deriving water depth (Woodget et al., 2014), even though 

research has found spectral depth to be more effective where the streambed is 

homogeneous with little spatial variation in the streambed spectral properties (Feurer et 

al., 2008; Legletier et al., 2008). Shadow is well documented as a major limitation to 

using the spectral depth method, but there are no published methods to mitigate this 

shadow problem (Carbonneau et al., 2012), and quantitatively measuring the differences 

in accuracy and precision in shadow and non-shadow areas of the channel has not been 

thoroughly explored. 
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The photogrammetric technique is based on multiplying the predicted water depth 

by a refractive index to account for the light refraction occurring at the air-water 

interface. The accepted refractive index of 1.34 established by Jerlov (1976) has been 

applied in multiple publications using this technique, but some researchers also reported 

that in shallow depths of less than 0.4 meters, mean error of depths were negligible and 

similar to errors on exposed topography, and that depths greater than 0.4 meters produced 

larger errors that increased with depth (Westaway et al., 2001; Woodget et al., 2014). 

Additionally, Butler et al. (2002) stated that the simple application of Snell’s Law is not 

sufficient to account for the refraction effect because the magnitude of the refractive 

index depends on the angle of incidence and the distance and angle of the sensor from the 

water surface. This questions the applicability of a single coefficient to correct for 

refraction on all clear, shallow streams, and that the coefficient encompasses all the 

variables at play that lead to varying error in a stream. 

Photogrammetric and spectral depth methods succeed in extracting flow depths in 

different environments, but through-water photogrammetric methods are published far 

less often (Feurer et al., 2008), and the accuracy and precision of the two methods have 

not been directly quantitatively compared. Both methods require knowing the elevation 

of the water surface (Westaway et al., 2001; Butler et al., 2002; Javernick et al., 2014) 

and researchers have acknowledged that this step is crucial in extracting accurate water 

depths, yet most studies have only provided one to two sentences at best to justify their 

choice of water surface interpolation method, if an explanation is given at all. The 

accuracy and precision results produced by these methods must be contextualized with 
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the quality of the interpolated water surface, which often passes as an undiscussed topic 

(Williams et al., 2014).  

This research seeks to quantitatively compare spectral depth and photogrammetric 

approaches and assess water surface interpolation methods in a gravel-bed stream. I used 

a UAV and structure-from-motion (SfM) software to acquire and process the imagery, 

and collected validation data with an rtk-GPS on a reach of the Salmon River, in 

northeast Clackamas County, Oregon. After deriving regression equations to estimate 

water depth with both approaches, I assessed which method extracts more accurate depth 

measurements at the study site. The data processing and results will indicate if these 

methods are ready for widespread application in collecting high resolution, spatially 

continuous bathymetric data, and how to improve these methods for future research. This 

thesis will present a methodological analysis of the advantages and disadvantages 

between two types of bathymetry measurements to answer the following research 

questions:  

1. Given the site conditions, which remote sensing methods improve the accuracy of 

each bathymetric mapping technique?  

a. For both the spectral depth and structure-from-motion photogrammetry 

techniques, which method of deriving a water surface lid produces the best 

results for deriving bathymetry? 

b. Regarding the photogrammetric approach, what is the appropriate 

refraction coefficient for a test reach of the Salmon River, and how can it 

be applied to similar gravel-bed streams? 
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c. Regarding the spectral depth approach, how does separating the river into 

shadow and non-shadow areas and habitat units affect the accuracy of the 

bathymetry? 

2. Which remote sensing approach, structure-from-motion or spectral depth, extracts 

more accurate data from a gravel-bed stream and provides the highest quality data 

for monitoring fish habitat? 

This research aims to identify methods that produce repeatable results for 

interpolating a water surface, and deriving water depths from photogrammetric and 

spectral depth methods to allow others to make the same assessments and comparisons on 

different types of rivers. The goal is to quantify the differences in accuracy and precision 

between the two methods, and to influence future research to compare these methods in 

order to develop guidelines for best practices and where these methods can be applied. 

Quantifying these differences would be an important contribution to any application that 

involves collecting high resolution bathymetric data, as well as to the broader remote 

sensing community in measuring aspects of submerged topography. 

 

 



 

7 

CHAPTER II 

BACKGROUND 

Fluvial Remote Sensing 

 Remote sensing has been used to characterize river forms and bathymetry for 

decades, which has coincided with the rapid increase in availability of high resolution 

digital imagery (Lejot et al., 2007; Feurer et al., 2008; Marcus et al., 2012). The use of 

remote sensing has become more popular in studying river processes due to the need for 

surveying larger extents more frequently, however its use is also limited by logistical and 

cost concerns (Marcus et al., 2012). While obstacles exist that hinder remote sensing 

methods from capturing high quality images in all environments, remote sensing is the 

only feasible method for measuring, mapping, and monitoring various river features at a 

sub-meter resolution (Marcus and Fonstad, 2008; Carbonneau and Piegay, 2012).  

 Among commonly used imagery are those collected from satellites, aerial 

photography, and bathymetric lidar. While there are advantages to each, all three methods 

are inadequate in measuring bathymetry in relatively small, shallow streams, and pose 

considerable logistical challenges. For streams located in forested watersheds, 

overhanging vegetation would prevent the full channel from being captured in the images 

acquired from above the canopy height. Satellite imagery is only viable for large rivers 

because even the spatial resolution of the best quality imagery is too coarse to identify 

detailed features in a small stream (Lejot et al., 2007; Carbonneau and Piegay, 2012). 

Bathymetric lidar, while it does not depend on illumination conditions, uses algorithms 

that make it nearly impossible to accurately measure depths shallower than 0.5 meters, 

and its minimum vertical accuracy is 0.2 meters (Feurer et al., 2008). Aerial photography 
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can be very expensive and difficult to plan logistically, and thus repeat flights are 

difficult to plan or fund. As for the sensors that are affordable and widely used, many do 

not penetrate water (Williams et al., 2014). 

 Using UASs to collect imagery gives researchers the flexibility and higher 

resolution imagery not always available by the previously discussed methods, and at a 

lower cost. Having access to a UAS allows control over timing of the flight that may 

change close to the planned flight day without losing money on an aerial flight. The water 

must be clear and visible at the time of photo acquisition, and weather and turbidity 

cannot always be predicted far enough in advance to plan an aerial flight. UAVs, 

helikites, and other platforms and sensors allow the researcher to control the flying height 

and capture imagery below overhanging canopy that would otherwise block visibility of 

the channel taken from a higher altitude. Given these difficulties, an increasing number of 

river researchers are obtaining their own sensor (Marcus and Fonstad, 2008). Despite the 

increase in flexibility and decrease in cost, UAVs and ‘drones’ are rarely used in studies 

to collect imagery (Carbonneau and Piegay, 2012) and the combination of UAS with 

SfM-photogrammetry has not been rigorously evaluated within fluvial geomorphology 

applications. Fonstad et al. (2013), Woodget et al. (2014), and Tamminga et al. (2015) are 

among the few researchers that have published results from UAS imagery that was 

processed by SfM software to quantify fluvial topography.  

 The three general approaches used to derive water depth with remotely sensed 

data are 1) photogrammetry, 2) spectral depth correlation, and 3) physically based 

models, and some research uses a hybrid of these approaches (Marcus and Fonstad, 2008; 

Marcus et al., 2012). Physically based models are outside the scope of this study, but can 
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be reviewed in the following articles (Legleiter et al., 2004, 2009; Fonstad and Marcus, 

2005; Walther et al., 2011; Flener et al., 2012; Marcus et al, 2012; Legleiter, 2015). The 

following sections will discuss the previous research involving spectral depth and 

photogrammetry.  

 

Spectral Depth 

  The spectral depth approach to estimate water depth from images was one of the 

first techniques that applied remote sensing technology to water environments (Lyzenga, 

1978; Legleiter and Fonstad, 2012), and has now become one of the most commonly used 

approaches to measure water depth (Winterbottom and Gilvear, 1997; Marcus et al., 

2003; Legleiter et al., 2004; Lejot et al., 2007; Feurer et al., 2008; Javernick et al., 2014). 

Optical bathymetric mapping requires a correlation to be established between the pixel 

value or spectral properties of an image at multiple locations and field depth 

measurements at the same locations (Winterbottom and Gilvear, 1997; Marcus et al., 

2012). This correlation between water depth and water color creates a regression equation 

that can be applied to the rest of the image to estimate water depths on a spatially 

continuous scale. This relationship depends on the predictable attenuation rates of 

different wavelengths of light as it propagates through clear water. Longer wavelengths 

attenuate at a faster rate as depth increases in comparison to shorter wavelengths with 

weaker attenuation. Thus, a ratio using two bands of varying attenuation rates increases 

as depth increases (Legleiter and Fonstad, 2012). The most commonly used bands for this 

ratio are the natural log of the green band over the red band, which has been found to 
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correlate linearly with water depth across a large range of substrate albedos and types 

(Legleiter et al., 2004).  

 The radiometric signal is more successful at predicting water depth under certain 

conditions, including homogeneous substrate and water column conditions (Lejot et al., 

2007), and is adversely affected by differences in illumination and shadow, turbidity, 

water surface roughness, and substrate (Winterbottom and Gilvear, 1997; Legleiter et al., 

2004; Carbonneau et al., 2006). Despite these limitations that constrain its application on 

a wide range of river environments, most research reports that this method can estimate 

water depth fairly well. The highest levels of accuracy achieved in the fluvial remote 

sensing community range between 75 and 90%, as 100% is impossible to achieve given 

the inherent variability in natural rivers (Marcus et al., 2012). Among the highest 

accuracies for using spectral properties to estimate depth were achieved by Marcus et al. 

(2003), Lejot et al. (2007), and Javernick et al. (2014) (Table 1). The review of these 

three articles is not meant to be comprehensive, but rather a way to summarize varying 

data and accuracy results used, and to indicate the gaps in previous research that are 

found throughout the fluvial remote sensing discipline.  

Table 1: Summary table of previous depth mapping studies from optical imagery. R2 

values represent estimated vs. observed water depth correlation 

Site Features Platform & 

Sensor 

Spatial 

Resolution 

Spectral 

Range 

# 

Bands 

R2 

Value 

Author(s) 

Typical depths 

0 – 0.6 m; 

pool riffle 

morphology 

Helicopter – 

PROBE-1 

sensor 

1 m 400-

2400 nm 

128 0.20 – 

0.99 

Marcus et 

al., 2003 

2 sites: sand 

and silt; 

gravel. Depths 

0-5 m 

Pixy drone, 

digital 

camera 

5 cm, 7 

cm 

Visible 3 

(r,g,b) 

0.53 – 

0.90 

Lejot et 

al., 2007 
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Braided river; 

mean depth = 

0.55 m 

Helicopter, 

digital 

camera 

0.12 m, 

0.16 m 

Visible 3 

(r,g,b) 

0.71 – 

0.76 

Javernick 

et al., 

2014 

  

 While Marcus et al. (2003) achieved high accuracies of estimating water depth 

within habitat units by using a maximum likelihood classification of principal component 

images. Depending on the habitat type, the R2 value increased or decreased from the R2 

value for all the sites combined. This water depth estimation within habitat units is 

usually done using a classification system and hyperspectral data, and not using the 

simple spectral depth band ratio approach with 3-band imagery. Additionally, Marcus et 

al. (2003) described the site characteristics at length and included an on-the-ground photo 

of typical habitat types of interest to inform the reader of all the variables that would 

affect the viability of the method. This description is crucial to understanding the 

characteristics within which this approach may be successful, but is often not included in 

publications. 

 Javernick et al. (2014) conducted their study by using a basic 3-step process for 

optical bathymetric mapping: 1) collecting photographs and water depth measurements, 

2) generating a water surface, and 3) developing a relationship between spectral 

properties and water depth in order to subtract the depth data from the water surface layer 

to create a river bed elevation map. The authors do not discuss their reasoning for 

choosing a particular water surface interpolation method, which is all too common for 

both spectral depth and photogrammetric bathymetric mapping literature. Some articles 

reference other articles as to which method they used (Javernick et al., 2014), and others 

give a short explanation as to the preference of one interpolation method over another 

(Westaway et al., 2001), but quantitative differences between the accuracy and precision 
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of water surfaces created from various interpolation methods are usually not described. 

Javernick et al. (2014) and Woodget et al. (2014) interpolated a TIN (triangulated 

irregular network) water surface by extracting elevation values along the water’s edge, 

under the assumption that the study site has a planar water surface. Westaway et al. 

(2001) also interpolated a water surface from edge-of-water elevations, however they 

found that using an inexact interpolation algorithm, such as kriging, produced a smoother 

water surface than an exact interpolation (eg. triangulation), which produced an angular 

surface. However, Westaway et al. (2001) didn’t elaborate whether the smoother water 

surface was also more accurate than the angular surface or discuss any further 

quantitative differences.  

The paper by Williams et al. (2014) is an exception, where they acknowledged 

this widespread issue of under-reporting water surface elevation interpolation methods 

and compared the quality of two different water surfaces: the standard Delaunay 

triangulation method that interpolates a surface from field data, and a GIS method that 

identifies channel edge elevations and interpolates as surface across the channel. They 

found that the GIS method produced a more precise water surface elevation model, 

however both approaches relied on field measurements, and Williams et al. (2014) 

collected over 5,000 water surface elevation measurements. Legleiter (2012) found 

success in calculating water surface elevations from LiDAR data, however this method 

requires tedious and potentially inconsistent manual digitization, as well the expensive 

and infrequent LiDAR data. 

 Lejot et al. (2007) removed data points that were shaded or covered by riparian 

canopy, but did not compare how this removal changed the resulting regression 
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equations. Many articles similarly do not mention shadow at all or simply remove it 

completely from the data set. Lejot et al. (2007) also mentioned that the brightness 

between photos varied significantly, and minimized the differences by standardizing the 

brightness by redistributing the brightness histogram to match a reference image. This 

approach, however, assumes that the difference in brightness is the only optical property 

that is different between images (Carbonneau et al., 2012). Lejot et al. (2007) briefly 

speculated that their lowest R2 value of 0.53 was in a reach with heterogeneous bottom 

and varying flow conditions; most researches limit this type of environment in their 

spectral depth experiments as much as possible. The authors concluded that this 

technology was ready to be applied to monitoring restored river reaches and supplying 

data for 2D hydraulic modeling. Like many other publications, they do not couple this 

information with what types of river environments this method can be applied to in order 

to derive similar levels of accuracy.  

 

Through-Water Photogrammetry 

 Through-water photogrammetry will be discussed through the lens of structure-

from-motion (SfM) multi-view stereo photogrammetry software. SfM operates under the 

same principles as stereoscopic photogrammetry, except the camera positions and scene 

geometry are automatically identified and reconstructed from a set of multiple 

overlapping images taken from a wide range of angles (Westoby et al., 2012). The 

development of free and low cost SfM software packages with more automated 

procedures make photogrammetry more accessible and simple to use by non-experts. 

SfM has the ability to produce high resolution orthophotos and DEMs that have the 
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accuracy and precision similar to LiDAR or better, collected by a low cost consumer 

grade camera (Fonstad et al., 2013). The use of SfM in fluvial geomorphology and 

remote sensing studies, however, is still in its infancy.  

 Both photogrammetric and spectral depth methods can use SfM software-derived 

orthophotos and DEMs to map bathymetry, however the photogrammetric method 

estimates water depth by correcting the original DEM with a simple refraction correction. 

The correction algorithm reduces the systematic bias caused by the refraction of light at 

the air-water interface (Westaway et al., 2001; Butler et al., 2002). Snell’s Law explains 

the geometry of light refraction at the water surface and how this is translated into the 

DEM by overestimating the bed elevation, or underestimating water depth (Butler et al., 

2002; Woodget et al., 2014). Jerlov (1976) established that the refractive index is 1.340, 

varying by +/- 0.007, for clear water between 0 and 30 degrees Celsius. This value has 

been accepted as the constant refractive index in the fluvial remote sensing field, and has 

been found to significantly reduce DEM errors (Westaway et al., 2001; Woodget et al., 

2014; Tamminga et al., 2015).  

 Although this value is accepted and applied, multiple studies have stated that the 

refraction correction may not be necessary in shallow waters; the error in shallow depths 

are similar to those on exposed topography and that error increases with depth, even after 

applying the refraction correction (Westaway et al., 2001; Woodget et al., 2014; 

Tamminga et al., 2015). Some researchers attributed this increase in overestimating bed 

elevation with depth to a combination of light refraction effects and photogrammetric 

processes that may introduce error during point alignment (Westaway et al., 2001; 

Woodget et al., 2014). Butler et al. (2002) also stated that the magnitude of the refractive 
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index increased with distance between the sensor and the water surface, and that the 

index depended on the angle of incidence, or the angle at which light hits the water 

surface. These changes in the refractive index do not include other effects such as water 

surface roughness and turbidity. Butler et al. (2002) also found that elevations at greater 

depths received larger refraction corrections to compensate for greater height errors. It is 

reasonable, then, to question that 1.34 is an appropriate refractive index to measure 

submerged topography with digital photogrammetry, or to suggest that 

photogrammatrists should apply a corrective index that encompasses both refraction and 

any other associated errors.  

 This research will contribute to the baseline knowledge of studying river 

environments with digital photogrammetry and SfM, and will introduce a data-derived 

‘apparent’ refractive index and compare it to the established 1.34 refractive index. To my 

knowledge, the only other researchers that have employed a UAS and SfM approach to 

which I can compare my results are Woodget et al. (2014) and Tamminga et al. (2015). 

Both studies measured fluvial topography with a UAV and digital photogrammetry, but 

Tamminga et al. (2015) quantitatively compared the error of submerged topography 

between using the 1.34 refractive index and spectral depth approaches. However, these 

studies validated their results by comparing the estimated and observed bed elevations, 

which introduces the relationship where elevation decreases in the downstream direction, 

thereby increasing the reported R2 value instead of measuring this method’s predictive 

power of water depth independently. Additionally, these studies did not explore 

accounting for light refraction using an index other than 1.34. Thus this research will also 

evaluate these methods by measuring the accuracy and precision between estimated and 
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observed water depths, which, as a new evaluative approach, makes it difficult to 

contextualize my results within published literature. 

 

Study Site 

 The study site is a 140-meter reach of the Salmon River in the Sandy River Basin, 

Oregon (Figure 1). The Salmon River begins on the south slopes of Mount Hood and 

flows for 53 kilometers through a largely forested watershed, and it provides habitat for 

threatened fish species including Chinook Salmon, Coho Salmon, and Steelhead. The 

study site is approximately 2.4 kilometers upstream from the confluence with the Sandy 

River. The sediment type at the site consists of gravels and cobbles and it has pool-riffle 

morphology. Large boulders and log structures were placed before data collection as part 

of a restoration effort to improve salmonid habitat in August 2015. A large log structure 

was placed on the gravel bar on the left bank and an emulated landslide deposit was 

placed on the right bank downstream. Both structures were designed to enhance pool 

habitat, increase gravel deposition, accumulate large wood, and provide cover and peak 

flow refuge. The boulder placements were designed to improve glide habitat and promote 

spawning gravel deposition (Wanner, personal communication, 2015). 

 This river is different from previous rivers that are used to test bathymetric 

mapping methods because of the optical challenges that exist within this reach. The 

characteristics of the Salmon River are representative of other streams in the Pacific 

Northwest that could potentially benefit from the use of these methods, but the lack of 

studies on these streams limit our knowledge of the methods’ abilities or what aspects of 

the method should be improved for successful application. This reach of the Salmon 
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River is a good candidate to use a UAV for image acquisition because of the canopy 

blocking visibility from a higher altitude, the small reach length would benefit from the 

use of SfM (Fonstad et al., 2013), and it is an ecologically important scale for physical 

habitat assessments (Woodget et al., 2013). While it is likely that the photogrammetric 

method will outperform the spectral depth method due to the Salmon’s heterogeneous 

river bed, performing both approaches facilitates the development of guidelines for using 

these methods and which method should be preferred on this river environment over 

another.  

 

Figure 1: Study site location map.  

 Collecting high-resolution and spatially continuous data on the Salmon River, 

where the salmonid habitat is a paramount concern to river managers, can encourage 



 

18 

others to provide the data necessary to detect unique habitats or disturbances that can 

affect fish distribution and abundance; management decisions are often based on studies 

with spatially discontinuous data, which may have contributed to the decline of some fish 

populations (Bergeron and Carbonneau, 2012). Depth is an important habitat 

characteristic to measure and monitor because salmonids of different life stages exhibit 

preferences for various depths. This reach of the Salmon River has relatively shallow 

flows that juvenile salmon prefer, which can potentially be measured by these remote 

sensing techniques. Many articles have stated that these methods are ready to be used and 

applied, so testing these methods on a site that is in need of monitoring is a good place to 

start assessing whether these methods are ready for widespread application, particularly 

for monitoring fish habitat.  
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CHAPTER III 

METHODS 

 Figure 2 provides a general outline of the methods used in this research, which are 

detailed in the following sections. The structure-from-motion and water surface 

interpolation sections include methods and results because the results are needed to 

extract bathymetric data in subsequent methods. 

 

Image acquisition and GPS data collection 

Before I collected my primary data, I established six control points for surveying 

and determined their coordinates using static occupation with an rtk-GPS. I chose the 

single most accurate control point as a base station to collect the rest of my data with an 

rtk-GPS. I conducted my field work between September 15th and 18th, 2015, after 

restoration activities were completed in August, including image acquisition, and cross 

section and ground control point (GCP) locations with an rtk-GPS. I surveyed 12 channel 

cross sections over three days, including the gravel bars up to the edge of vegetation on 

the floodplain. The cross sections are relatively evenly spaced, with cross sections 

between each of the steps in the riffle to capture the changes in the bed topography and 

water surface elevation. The original cross section data are in Appendix B. 

 On a sunny day, I distributed cards to mark ground control points across the site, 

both on the dry gravel bars and on the channel bed. I flew a DJI Phantom III Pro UAV 

over my study site between 5 and 25 meters above the channel and collected still pictures 

with the 12 megapixel camera attached to the UAV. Given the time constraints 

determined by the 4 UAS batteries available, I aimed to collect images with at least 60% 
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Figure 2: General workflow used to compare the accuracy and precision between 

photogrammetric and spectral depth approaches. 

 

overlap in order to ensure that any given point was captured from different perspectives 

to aid 3-D point cloud generation with SfM software (James and Robson, 2012; Westoby 

et al., 2012; Fonstad et al., 2013; Dietrich, 2015). While flying at low altitudes produces 

high point cloud densities, I flew the UAS at varying altitudes to reduce systematic 

distortions (Fonstad et al., 2013) and I angled the camera just off nadir to reduce the 

doming error in the images (James and Robson, 2014; Woodget et al., 2014). The entire 

1. Data Acquisition 

a. Collect cross-section data (rtk-GPS) 

b. Distribute GCPs throughout site and survey locations with rtk-GPS 

c. Collect images with a UAV 

2. SfM Processing 

a. See appendix for detailed Agisoft PhotoScan methods 

b. Align points, and generate dense point cloud, orthophoto, and DEM 

3. Water Surface 

a. Adjust cross section edge-of-water elevations 

b. Extract edge-of-water elevations from the DEM (2b) 

c. Used 3a and 3b to interpolate water surface using TIN and Spline methods 

d. Qualitatively chose 2 best water surfaces based on amount and location of channel covered     

by the surface 

e. Quantitatively compared the surfaces and selected the best water surface 

4. Photogrammetric Approach: Refraction Correction 

a. Derive observed water depth by subtracting GPS bed elevation data (1a) from the water 

surface (3e) 

b. Derive predicted water depth by subtracting DEM bed elevations (2b) from the water surface 

(3e)  

c. 1.34 coefficient 

i. Multiply (4b) by 1.34 

ii. Compare (4ci) to (4a) to determine goodness of fit 

d. Site specific coefficient 

i. Derive linear regression between (4a) and (4b) to randomly selected calibration data 

ii. Apply regression equation (4di) to remaining validation data to determine goodness of fit 

e. Coefficient by habitat unit 

i. Divide channel into 3 classifications based on water surface roughness and apparent depth 

ii. Divide GPS elevation data (1a) into these classifications and apply (4d) to each 

5. Spectral Depth Approach 

a. Extract RGB values from orthophoto at cross section GPS locations 

b. Derive ln(G/R) for each GPS data point 

c. Derive linear regression between (5b) and (4a) to randomly selected calibration data 

d. Apply regression equation (5c) to remaining validation data to determine goodness of fit 

e. Divide data into shadow and non-shadow, and by habitat unit, and repeat (5a – d) for each 

group, similar to (4d and 4e) 

6. Comparison of DEM accuracy and precision between methods  

a. Determine goodness of fit, mean error, and standard deviation for each method 

b. Choose best methods for (4) and (5) based on results from (6a)  
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flight occurred in less than one hour in order to reduce the amount of potential changes in 

water surface elevation, atmospheric conditions (Lejot et al., 2007), and sun angle that 

could affect the quality of the point cloud and DEM.  

 Theoretically, the georeferencing process using SfM only requires a minimum of 

3 GCPs, however, because the appropriate amount and distribution of GCPs has not been 

established (Woodget et al., 2014), I assumed a 1:10 ratio between GCPs and 

photographs based on my estimation of collecting no more than 300 photographs for a 

140 meter reach. I placed 30 GCPs throughout the field site, both on the dry gravel bars 

and in the channel. I used the rtk-GPS to collect GPS locations at the GCPs as close to 

the time of image acquisition as possible, and I used a stadia rod to collect water depths at 

the GCPs located under water. 

 

Structure-from-Motion Processing 

 I used commercial SfM software PhotoScan Professional v.1.0.4 by Agisoft 

(AgiSoft LLC, 2015) to process my images. This software performs digital 

photogrammetry by processing images and producing 3D spatial data. After image 

acquisition, I inspected all the photographs and removed any that were blurry or extended 

beyond the study area. I added the remaining photographs to Photoscan and used the 

‘Estimate Image Quality’ tool to further ensure the photos are of high enough quality to 

use in alignment. The DJI Phantom III Pro collects images in the WGS-84 coordinated 

system, and thus I converted the geotagged photos to NAD83 UTM Zone 10, the 

coordinate system used to collect GPS data in the field. I aligned the photos, disabled 

photos that could not be aligned correctly, and removed any points that were too far away 
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from the main point cloud to be accurate. This process resulted in 163 photos being used 

to create the final dense point cloud. I imported the ground control point GPS locations 

and assigned the locations to the appropriate locations in the images. After optimization, I 

removed any ground control points that caused higher error in the point cloud, resulting 

in 23 of the 30 ground control points used to georeference the point cloud. Then I built 

the dense point cloud, mesh, and texture, from which it derived an orthophoto (Figure 3) 

and digital elevation model (DEM) (Figure 4). For a more detailed Agisoft PhotoScan 

workflow, see Appendix A. There is a large gap in both the orthophoto and DEM on the 

right bank. This is likely due to a lack of high quality photos with enough overlap to align 

matching points. 

 

Figure 3: Site orthophoto output. Cell size of 0.37 cm. Water flows from the upper right 

to the lower left of the image.  
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Figure 4: Site DEM output from PhotoScan prior to correction. Spatial resolution of 1.50 

cm. 

 

Water Surface Interpolation 

 In order to extract bathymetric data from the DEM and orthophoto, a model of the 

water surface needs to be created. In the photogrammetric approach, bed elevations are 

subtracted from this water surface to calculate water depths, and in the spectral depth 

approach, water depths are subtracted from the water surface to derive bed elevations 

(Westaway et al., 2001; Javernick et al., 2014). The accuracy of the water surface directly 

affects the results of extracting bathymetry for all subsequent methods, and therefore it is 

important to explore the most accurate yet repeatable method in deriving the water 

surface. While in the field, I collected edge-of-water elevations with the rtk-GPS on both 

banks of the cross sections whenever possible. It was often not possible to collect edge-
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of-water elevations on the right bank of some cross sections because the tree canopy 

reduced the accuracy of the GPS location. 11 of the 12 cross sections collected fall within 

the usable extent of the orthophoto and DEM, and of those cross sections there are 14 

edge-of-water elevations collected. The edge-of-water elevations do not all decrease in 

the downstream direction. This error could have been due to the expected vertical error 

associated with the rtk-GPS (vertical error ranges 0.7 – 2.9 cm) or equipment error while 

collecting the data in the field (Appendix B). In order to reduce this error, I altered water 

surface elevation measurements to make a more realistic water surface that decreases in 

elevation in the downstream direction by comparing all the elevations as a whole. 

 Figure 5 shows the longitudinal profile of water surface elevations from the edge-

of-water elevations collected by the rtk-GPS, and water surface elevations (WSEs) 

collected at ground control points (GCPs) in the channel, calculated by adding the 

recorded water depth to the bed elevation. WSEs at cross sections 5 and 12 do not 

decrease in elevation in the downstream direction (Table 2). The two edge-of-water 

elevations at cross section 5 are 337.20 m and 337.22 m, which are both slightly higher 

than the one edge-of-water elevation at cross section 4 upstream. Both elevations at cross 

section 5 are higher, and both cross sections are located in a glide where there is a 

relatively smooth water surface. For these reasons, I increased the WSE on the left bank 

of cross section 4 to 337.21 m, the average of the two elevations at cross section 5 (Table 

2). While the GCPs upstream and downstream also have a higher elevation than cross 

section 4, I did not use the GCP elevations in the averaging of the altered edge-of-water 

elevation because the GCP elevations in the relatively flat areas of the reach appear to be 

systematically higher than most other edge-of-water elevations.    



 

25 

Figure 5: Longitudinal profile of water surface elevations at the left and right banks (LB 

and RB) of the cross sections and the water surface elevations measured at the GCPs in 

the channel. 

 

Table 2: Adjusted edge-of-water elevations at cross sections to ensure the decrease in 

elevation in the downstream direction. An ‘x’ denotes that and edge-of-water elevation 

not collected at that side of the cross section due to poor GPS quality or inaccessibility. 

For the original WSEs, I used the original rtk-GPS-collected elevations at the sub-meter 

scale, but only included centimeter scale elevations in the table. 

Cross 

Section 

LB Original WSE 

(m) 

RB Original WSE 

(m) 

Altered WSE 

(m) 

2 337.32 x  

3 x x  

 4 337.19 x 337.21 (LB) 

5 337.22 337.20  

6 337.06 x  

7 336.99 x  

8 336.39 x  

9 335.88 x  

10 335.84 335.84 335.84 (both) 

11 335.80 x 335.84 (LB) 

12 335.87 335.82 335.84 (both) 
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Cross sections 10, 11, and 12 are located below the riffle where the WSE was 

observed to be relatively flat. The elevations decreased almost half a meter in a short 

distance between cross sections 10 and 11, and subsequently increased almost half a 

meter between cross sections 11 and 12 (given the average of edge-of-water elevations at 

cross section 12, Table 2). Although the left and right bank elevations at cross section 12 

differ by about 4 cm, the average elevation of the two is 335.85 m, which is one 

centimeter different from the average of the elevations at cross section 10, 335.84 m. 

Thus, the average elevation between all edge-of-water elevations at cross sections 10 and 

12 (335.84 m) was applied to cross sections 10, 11, and 12 (Table 2, Figure 6). Including 

the GCPs adjacent to these cross sections in the averaging of the edge-of-water elevations 

would have increased the average to an elevation higher than 4 of the 5 edge-of-water 

elevations collected at the 3 cross sections; therefore, including the GCP elevations in the 

edge-of-water elevation average for the 3 cross sections could not be supported.  

In addition to the altered WSEs from Table 2, I also extracted water surface 

elevations from the DEM in areas where I could clearly see the boundary between water 

and dry topography, and in areas where the flow velocity was very low so the water 

surface elevation wasn’t influenced by surface turbulence. Between extracted elevations 

from the DEM and the edge-of-water elevations from the cross section data, there were 

60 locations with WSE data that could be used to interpolate a water surface layer across 

the wetted channel (Appendix C).  
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Figure 6: Adjusted water surface elevations from Table 2 used in creating a water 

surface.  

 

 Given the synopsis of current water surface interpolation methods in Chapter II, I 

created water surfaces from TIN and spline interpolation methods. Kriging interpolation, 

supported by Westaway et al. (2001), is based on spatial autocorrelation, and therefore an 

even spacing of points is ideal to result in an accurate water surface. My data set did not 

allow for evenly spaced edge-of-water elevations because the tree canopy reduced the 

GPS accuracy and photo overlap on the right bank, consequently reducing the number of 

accurate elevations in certain areas of the channel collected from either the GPS data or 

the DEM. It is possible that kriging is more appropriate when the edge-of-water 

elevations used are extracted from the DEM because there is more error introduced from 

the georeferencing from the orthophoto, and thus creating a surface based on a group of 

proximate elevations would be more applicable instead of forcing the surface through 

each point. However, my data were collected with a highly accurate rtk-GPS, and 
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therefore a spline or triangulated interpolation would ensure the surface passed through 

these elevations. For these reasons, I interpolated water surfaces using TIN and Spline 

interpolation methods in ArcGIS, using the 60 water WSEs described above. 

 The first TIN surface created (Appendix C) in ArcGIS showed some irregularities 

in the surface, where the WSEs were not consistent in some cross sections. Upon closer 

inspection of the DEM-extracted elevation points, five of the points were surrounded by 

points that had more similar elevations. The agreement of multiple surrounding 

elevations led me to remove the inconsistent elevations and to create a second TIN 

surface with only the agreeing elevation points (Appendix C). While there is still some 

variation in WSEs across any given cross section, the removal of a few DEM elevation 

points that disagreed with multiple adjacent elevations promoted generally level water 

surfaces that decreased in the downstream direction.  

 Using the spline interpolation tool, I created another water surface using the same 

WSE points used to create the second TIN surface (Appendix C). I specified this surface 

to be a tension spline, assuming a planar water surface, and accepted all other default 

parameters in ArcGIS. Even though this assumption is certainly not true in the riffle units 

and most likely not true in other areas of the channel, these methods were intentionally 

developed to be simple in order to create steps that could be easily followed, reproduced, 

and accessible to non-experts; therefore, incorporating water surface roughness into the 

water surface layer was not included in this study. 

 When comparing the two surfaces in ArcMap, they both seem to show elevation 

breaks in similar points in the riffle. The spline’s elevation is slighter higher than the TIN 

in the glide upstream, and slightly lower in the channel downstream of the riffle 
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(Appendix C). To further qualitatively assess the water surfaces, I examined the TIN and 

spline surfaces in 3D in ArcScene to see the extent of the water surface, and to ensure the 

surface did not overflow the banks or cover protruding boulders (within the red boundary 

in Appendix C). The spline appears to cover more of the submerged channel, particularly 

on the right bank in the riffle section, although much of the orthophoto in this section 

appears fuzzy, indicating poor DEM quality here. Both surfaces do not cover parts of the 

channel just downstream of the log structure on river left. The DEM and orthophoto 

quality in this part of the channel is also quite poor, as demonstrated by the elevations 

along the water’s edge in the DEM that are much higher than surrounding elevations. 

Due to these inaccuracies in the DEM, adjusting the water surface such that it covers 

these areas would make the water surface elevations in areas with a clearer DEM less 

accurate. Because the purpose of this research is to determine the most accurate method 

for extracting bathymetric data, the water surface must be chosen based on the parts of 

the channel with the best DEM and orthophoto. 

 The visual comparison between the two surfaces did not reveal one surface to be 

significantly more accurate, and so I ran a quantitative test. Because there is no data to 

compare the elevation data set to, I randomly selected half of the WSE data and created 

one TIN and one spline water surface with this half of the data. Ensuring that the random 

sampling of water surface calibration and validation data were relatively evenly 

distributed throughout the channel (Appendix C), I compared the remaining half of the 

data points to the interpolated WSEs from the water surfaces at those locations (Table 3).  
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Table 3: Comparing the water surface elevations from GPS data and DEM vs. the water 

surface elevations determined by the TIN and spline interpolation, demonstrated by the 

slope and R2 values. Y represents the validation WSE, and X represents the elevation 

extracted from the interpolated water surface. The slopes equal to 1 demonstrate that the 

validation elevations are almost identical to the elevations created by the water surface at 

the same location. 

 TIN Spline 

Regression equation y = 1x y = 0.999x 

R2 0.990 0.991 

 

 Table 3 demonstrates that there is no significant difference between the accuracies 

of the TIN and spline water surfaces. I chose the spline for the purpose of developing 

repeatable methods based on the data requirements for spline versus TIN surfaces. While 

both splines and TIN algorithms are deterministic interpolations, splines can include 

barriers that allow interpolation across linearly discontinuous features, such as river 

banks. Splines force the surface through the elevation data points and create a smooth 

surface while minimizing curvature of the surface, which may better represent a water 

surface in a river than an angular TIN surface. Unlike TIN surfaces, splines do not 

require relatively evenly spaced points, which is an important consideration for rivers 

such as the Salmon that has canopy coverage that prevents the collection of accurate GPS 

points or enough photo overlap to create an accurate dense point cloud. Figure 7 shows 

the final spline surface chosen to make subsequent calculations regarding water depth.  



 

31 

 

Figure 7: Spline water surface chosen to execute the photogrammetric and spectral depth 

approaches with the locations of the WSEs used to create the spline.  

 

Photogrammetric Approach 

1.34 Refraction Correction 

 Step 4a-c in Figure 2 describes the basic method of calculating the water depth 

after applying the refractive index of 1.34 to clear, nonturbid water (Jerlov, 1976; 

Westaway et al., 2001; Butler et al., 2002; Woodget et al., 2014). A refraction correction 

is applied by multiplying the predicted water depth, or the depth calculated from the 

original DEM that does not account for the effects of light refraction in water, by the 

refractive index. Comparing the estimated water depth to the validation water depth data, 
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or the water depth measured in the field, is a measure of how well the refractive index 

can correct for the refraction of light in water. The measured or observed water depth is 

calculated by subtracting the GPS measured bed elevations in the cross section data from 

the water surface, and the predicted water depth is calculated by subtracting the DEM 

elevations in the submerged channel from the water surface. This predicted depth is 

multiplied by 1.34, and then compared to the measured water depths at the same locations 

to determine the goodness of fit of this refractive index on this reach of the Salmon River 

(Figure 8). Before the multiplication, I removed 21 data points from the analysis due to 

being located in areas of the channel where the DEM quality was low, such as areas in 

extreme shadow, white water, low photo overlap, or negative actual water depths. 

Negative actual water depths could have occurred from poor DEM quality, inaccurate 

water surface at this location, or both. I performed these processes in ArcGIS by 

subtracting and multiplying the appropriate layers. 

 

 

 

 

 

Figure 8: Refraction correction workflow to derive water depth. 

 

Site-Specific Refraction Correction 

 Applying a site-specific refraction correction outlined in step 4d of workflow 

Figure 8 is similar to applying the 1.34 coefficient, however, first the refractive index that 

best estimates depth for the data set needs to be determined. The cross section data must 

1. Water Surface – DEM  Predicted Depth  

2. Predicted Depth x 1.34 Corrected Depth  

3. Compare Measured 

and Corrected Depth  
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be randomly divided into calibration and validation data in order to derive a linear 

regression equation between predicted and measured water depth and to test how well 

that equation corrects for light refraction in water, respectively. Multiple combinations of 

the data were used to derive a regression equation in order to determine the most accurate 

refraction correction. The combinations included using 2/3 of the data for calibration and 

1/3 for validation and dividing the data in half, as well as varying levels of excluding 

outliers from the data set before calibration (Table 4). Because these methods are being 

tested to determine how well a refractive index can predict water depth, any negative 

measured depths were not included in the calibration or validation of the regression 

equation. ‘Obvious outliers removed’ in Table 4 refers to any data point that overlaps 

with a physical characteristic of the orthophoto that would cause the elevation in the 

DEM to be inaccurate, such as white water, extreme shadow, and poor photo overlap 

(represented as fuzzy image quality in the orthophoto).  

 

Table 4: Method of dividing data to derive site-specific refraction coefficient. 

Division of Data Data used 

2/3 calibration, 

1/3 validation 

All data, except negative measured depths 

Obvious outliers removed 

1/2 calibration, 

1/2 validation 

All data, except negative measured depths 

Obvious outliers removed 

 

 Once the best regression equation was determined from the four resulting R2 

values of the validation data set, I took the data set that resulted in highest R2 and 

removed more outliers from the calibration data set. The purpose was to test whether only 

using ideal data that occurred in locations of the channel with adequate sunlight, smooth 

water surface, and sufficient photo overlap could better predict water depth for all the 

validation data set, including outliers.  
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 Some studies have suggested that light refraction in water is minimal for depths of 

less than about 0.2 meters, and thus a refraction correction for these areas may not be 

necessary (Westaway et al., 2001; Woodget et al., 2014). I developed new regression 

equations for the data set that produced the best results to test if excluding shallow depths 

from the calibration would improve the estimation power of the refractive index.  

 

Habitat Unit Refraction Correction 

 A third way of categorizing the data to derive the most accurate refractive index is 

by habitat units. Limitations to remote sensing of rivers with close-range photogrammetry 

are associated with physical and flow features that obscure the bottom of the bed, such as 

water surface roughness and greater water depths (Lyzenga, 1978; Winterbottom and 

Gilvear, 1997; Westaway et al., 2001; Fonstad et al., 2013; Woodget et al., 2014) where 

light may not penetrate enough to be detected by a sensor (Marcus et al., 2012) and 

therefore make it difficult for SfM to detect edges at deeper depths. While channel units 

are not defined by fixed physical characteristics, channel units often have associated 

morphologies that overlap with flow characteristics (Montgomery and Buffington, 1998; 

Harvey et al., 2007). It would be possible to delineate the channel into many specific 

units by which to derive refractive indexes, however for the sake of simplicity and 

repeatability by river managers, dividing this reach into three habitat units visually 

encompasses the varying surface flow and depth characteristics that appear to occur in 

the orthophoto: 

1) Glide - shallow apparent depth and relatively low water surface roughness; 

2) Riffle – shallow apparent depth and relatively high water surface roughness; 
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3) Pool – deep apparent depth and relatively low to medium water surface 

roughness. 

 For the purposes of the initial test, I viewed each individual cross section point 

and determined its habitat unit based on the water surface roughness and apparent depth 

at each location (Figure 9). Once the cross section data has been divided, the same 

procedures are applied here as in the previous sections to develop a refraction correction 

for each habitat unit (Step 4e, Figure 2). If this method produced the best estimated water 

depths, then the whole channel should be delineated into habitat units in order to create a 

corrected DEM.  

 

Figure 9: Habitat unit delineation based on water surface roughness and apparent depth 

differences.  
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Spectral Depth Approach 

 The spectral depth approach requires similar data sets as the photogrammetric 

approach, and a majority of the initial methods for optical bathymetric mapping are the 

same (Javernick et al., 2014). The orthophoto, GPS elevations, and water surface 

interpolation provide the information needed to establish a correlation between the 

spectral properties and measured depth (Winterbottom and Gilbear, 1997; Legleiter 2004; 

Lejot et al., 2007; Javernick et al., 2014). First, the natural log of the green divided by the 

red DN values should be calculated for each GPS location (Figure 2). If this value 

equaled 0, or where the red and green values were equal for a given pixel, then this value 

was removed from the data set because it does not report any information about the depth 

at that location. When these data are randomly split for calibration and valdiation data 

sets, the calibration data is used to create a regression equation between the ln(G/R) and 

the measured water depths calculated in step 4a (Figure 2). The resulting linear regression 

equation is applied to the remaining validation data, where the ln(G/R) value is entered as 

the ‘x’ variable, or the slope, in the regression equation. The R2 value of this relationship 

determines the goodness of fit of the regression equation.  

Similarly to the photogrammetric approach, the data was split into habitat units 

using the same deliniation (Figure 9). Because spectral properties are strongly affected by 

shadow, the data were also split into shadow and non-shadow in order to test the effect of 

shadow. Shadow was defined as any part of the channel where there was an object 

between the sun’s rays and the water surface, whereas for non-shadow areas, there is a 

direct path from the sun to the water surface, disregarding atmosphere as an obstacle. The 

correlation between measured water depth and ln(g/r) is applied to these groups in the 
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same way as it was applied to all the data (Figure 2, Steps 4a-d), resulting in 6 spectral 

depth regression equations. 
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CHAPTER IV 

RESULTS 

 This chapter will explore the results of the goodness of fit, accuracy, and 

precision of the photogrammetric and spectral depth bathymetric mapping methods in 

estimating water depth. The structure-from-motion processing and water surface 

interpolation results are discussed in the respective sections of Chapter III, as the results 

from these sections were used in deriving the bathymetric data.  

 

Photogrammetric Refraction Correction 

 Figure 10 shows that the 1.34 refractive index compared to the measured water 

depths has an R2 value of about 0.60, with some systematic error shown in the deviation 

from 0 and 1 in the y-intercept and slope values, respectively. Table 5 contains various 

site-specific refraction corrections created from the data (linear regression equations in 

the calibration column) and how well the refraction correction equations estimated water 

depth (R2 in the validation column). The calibration equation that resulted in the highest 

R2 of 0.67 was created after removing data outliers and then randomly splitting the data 

into 2/3 and 1/3 for calibration and validation, respectively. After removing more outliers 

from this best-fitting site-specific calibration data, the R2 value remained the same, 

however the slope of the validation equation became closer to one and the y-intercept 

became closer to zero (Table 6). Thus the refraction correction with more outliers 

removed from the calibration data set was chosen as the best-fitting site-specific 

refraction correction (bolded in Table 6), shown in Figure 11. I also removed shallow 

depths less than 0.2 meters to test the hypothesis that these shallow depths may not be 
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affected by light refraction in water to the same extent as deeper water depths, however 

these results show no significant improvement (Table 7).  

 

Figure 10: 1.34 Refraction coefficient. Scatterplot of the estimated water depths by the 

1.34 refractive index vs. the measured water depths. 

 

Table 5: Refraction correction equations (calibration column) and its goodness of fit 

(validation column) for various combinations of the data. The highest  

 Data Calibration Validation 

2/3 

calibration, 

1/3 

validation 

All data d = 1.06x + 0.17 

R2 = 0.60 

d = 0.94x – 0.002 

R2 = 0.46 

Outliers 

removed 
d = 1.08x + 0.15 

R2 = 0.55 
d = 1.11x – 0.09 

R2 = 0.67 

½ 

calibration, 

1/2 

validation 

All data d = 1.04x + 0.18 

R2 = 0.54 

d = 0.98x – 0.02 

R2 = 0.56 

Outliers 

removed 

d = 1.06x + 0.16 

R2 = 0.66 

d = 1.09x – 0.06 

R2 = 0.53 

 

Table 6: Refraction correction after removing more outliers. 

 Calibration Validation 

Original best fit equation d = 1.08x + 0.15 

R2 = 0.55 

d = 1.11x – 0.09 

R2 = 0.67 

More outliers removed to 

create regression 
d = 1.21x + 0.09 

R2 = 0.62 
d = 0.96x + 0.009 

R2 = 0.67 
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Figure 11: Best-fitting site-specific refraction correction to estimate water depth 

(equation bolded in Table 6). 

 

Table 7: Refraction correction after removing shallow depths. 

Included Water Depths Calibration Validation 

Depths >0.2 m d = 1.08x + 0.17 

R2 = 0.55 

d = 0.99x – 0.004 

R2 = 0.59 

Depths >0.15 m d = 1.13x + 0.14 

R2 = 0.58 

d = 0.98x + 0.01 

R2 =0.62 

Depths >0.10 m d = 1.16x + 0.12 

R2 = 0.61 

d = 1.01x – 0.01 

R2 = 0.66 

 

 Table 8 shows the calibration equations and validation R2 after dividing the data 

into habitat units based on apparent depth and water surface roughness. The R2 values 

decreased in comparison with non-habitat divided data, ranging from 0.34 in glides to 

0.46 in pools. Outliers were also removed from the calibration data sets for the three 

habitat units before deriving a refraction correction equation (Table 9). While all the R2 

values stayed the same, the slope and y-intercept values of the validation equation 

showed an increase in accuracy for glide habitats, and a decrease in accuracy for riffle 
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and pool habitats (Table 9). Table 10 shows the best refraction correction equations and 

validation equations and R2 values for the whole site and for each habitat unit.  

Table 8: Refraction correction for data in three habitat units.  

Habitat (# pts) Calibration Validation 

Glide 

(88) 

d = 0.65x + 0.16 

R2 = 0.15 

d = 1.08x – 0.02 

R2 = 0.34 

Riffle 

(34) 

d = 1.14x + 0.18 

R2 = 0.59 

d = 0.69x + 0.11 

R2 = 0.34 

Pool 

(45) 

d = 0.90x + 0.26 

R2 = 0.45 

d = 0.87x + 0.21 

R2 = 0.46 

 

Table 9: Refraction correction for data in three habitat units after removing outliers from 

calibration data.  

Habitat  Calibration Validation 

Glide 

 

d = 0.67X + 0.14 

R2 = 0.12 
d = 1.05X + 0.008 

R2 = 0.33 

Riffle 

 

d = 1.37X + 0.11 

R2 = 0.70 

d = 0.57X + 0.17 

R2 = 0.34 

Pool 

 

d = 1.46X – 0.08 

R2 = 0.70 

d = 0.54X + 0.48 

R2 = 0.46 

 

Table 10: Best refraction correction equations for the site and habitat units. 

Data Group Calibration Validation 

Site d = 1.21x + 0.09 

R2 = 0.62 

d = 0.96x + 0.009 

R2 = 0.67 

Glide d = 0.67X + 0.14 

R2 = 0.12 

d = 1.05X + 0.008 

R2 = 0.34 

Riffle d = 1.14x + 0.18 

R2 = 0.59 

d = 0.69x + 0.11 

R2 = 0.34 

Pool d = 0.90x + 0.26 

R2 = 0.45 

d = 0.87x + 0.21 

R2 = 0.46 

 

Spectral Depth Regression 

 To test the applicability of the spectral depth approach, the data were randomly 

divided into calibration and validation data sets for the whole channel, parts of the 

channel in shadow and not in shadow, and for the three habitat units (Table 11). The R2 

values range from 0.03 in the shadowed areas to 0.28 in riffles. The highest R2 value 

associated with a data group that covers a majority of the channel is the non-shadow 
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group. Because of the low R2 values for all the data groups, the best solution is to apply 

the non-shadow regression to estimate water depth, and use the site regression for areas 

in shadow. The relationship between these two water depth estimates are shown in 

Figures 12 and 13.  

Table 11: Spectral Depth regressions and goodness of fit for the site and three habitat 

units. The best R2 value and its corrisponding regression equation are in bold for each 

data group. Obvious outliers were removed from the first calibration and validation data 

sets (columns two and three), and more outliers were removed from the second 

calibration data set (column 4).  

Data Group Calibration Validation Calibration, 

outliers 

removed 

Validation, 

new calibration 

equation 

Site: ½ 

calibration, 

½ validation 

d = 0.68X + 

0.41 

R2 = 0.09 

d = 1.29X - 

0.09 

R2 = 0.11 

d = 0.69X + 

0.41 

R2 = 0.09 

d = 1.26X – 

0.07 

R2 = 0.11 

Site: 2/3 

calibration, 

1/3 

validation 

d = 0.82X + 

0.42 

R2 = 0.11 

d = 0.77X + 

0.11 

R2 = 0.07 

d = 0.97X + 

0.41 

R2 = 0.17 

d = 0.66X + 

0.17 

R2 = 0.06 

Non-Shadow d = 1.30X + 

0.49 

R2 = 0.24 

d = 0.89X - 

0.04 

R2 = 0.20 

d = 1.64X + 

0.53 

R2 = 0.35 

d = 0.61X + 

0.07 

R2 = 0.16 

Shadow d = 0.03X + 

0.49 

R2 = 0.0001 

d = 5.54X – 

2.41 

R2 = 0.02 

d = 0.16X + 

0.31 

R2 = 0.05 

d = 2.18X - 

0.39 

R2 = 0.03 

Glide d = 0.27X + 

0.31 

R2 = 0.06 

d = 0.83X + 

0.007 

R2 = 0.04 

d = 0.31X + 

0.31 

R2 = 0.09 

d = 0.71X + 

0.05 

R2 = 0.03 

Pool d = 1.25X + 

0.72 

R2 = 0.11 

d = 1.09X - 

0.06 

R2 = 0.19 

d = 1.16X + 

0.72 

R2 = 0.09 

d = 1.18X - 

0.11 

R2 = 0.19 

Riffle d = 0.61X + 

0.35 

R2 = 0.10 

d = 1.66X - 

0.18 

R2 = 0.28 

d = 0.67X + 

0.36 

R2 = 0.13 

d = 1.36X - 

0.07 

R2 = 0.21 
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Figure 12: Scatter plot of the estimated water depths by the site spectral depth regression 

vs. measured water depths.  

 

 

Figure 13: Scatter plot of the estimated water depths by the non-shadow spectral depth 

regression vs. measured water depths. 
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Comparison of Photogrammetric and Spectral Depth Approaches 

 Table 12 compiles the 2 photogrammetric and 2 spectral depth equations that 

produced the highest R2 values. The error distributions between the estimated water depth 

after the correction and the observed water depth are displayed in histograms, density 

curves, and a box and whisker plot in Appendix D. In order to measure accuracy and 

precision, I calculated the mean error (ME) and mean absolute error (MAE) as indicators 

of systematic error, as well as the standard deviation of error (SD) as an indicator of 

random error (Table 13) (Westaway et al., 2001). The photogrammetric approach 

provides a water depth estimate prior to the refraction correction, and thus I could 

measure if the ME and SD significantly decreased after the refraction correction was 

applied to the data (Table 14). This comparison of ME was complicated by negative and 

positive errors; for example, the site-specific coefficient ME was negative before the 

correction and positive after the correction, and therefore a one-tailed t-test comparing 

the MEs cannot test if the error has significantly decreased after the correction. The only 

way to measure if the systematic errors have decreased is by comparing the non-

directional error, or the MAE. Thus, a two-tailed t-test tested whether the before and after 

MEs are not significantly different from one another, and one-tailed t-tests measured if 

the MAE does not significantly decrease after the refraction correction. For both one and 

two tailed tests for the 1.34 coefficient, the p-value is less than 0.05, where only the one-

tailed t-test for the site-specific coefficient has a significant p-value (Table 14). This 

indicates that the before and after MEs are significantly different, and that the MAE is 

significantly smaller only after the 1.34 refraction correction is applied, thereby 

significantly reducing the amount of error. Additionally, I used Levene’s Test to test the 
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null hypothesis that the population variances are equal between the before and after 

refraction correction data. A significant result from the Levene’s Test would indicate that 

the precision significantly increased after the correction. Both p-values were greater than 

0.05, and thus the null hypothesis is accepted (Table 14). The reduction in ME and 

negligible change in the SD after the refraction correction procedure is similar to the 

results of other studies (Westaway et al., 2001). 

Table 12: Comparison of photogrammetric and spectral depth approaches 

Approach Calibration Validation 

Photogrammetry 

(1.34 coefficient) 

- d = 0.82x + 0.13 

R2 = 0.60 

Photogrammetry 

(Site-specific coefficient) 

d = 1.21x + 0.09 

R2 = 0.62 

d = 0.96x + 0.01 

R2 = 0.67 

Spectral Depth 

(Non-shadow regression) 

d = 1.30x + 0.49 

R2 = 0.24 

d = 0.89x - 0.04 

R2 = 0.20 

Spectral Depth 

(Site regression) 

d = 0.69x + 0.41 

R2 = 0.09 

d = 1.26x – 0.07 

R2 = 0.11 

 

Table 13: Mean error and standard deviation values of two photogrammetric refraction 

corrections and two spectral depth regressions. 

 Validation data 

before correction (m) 

Validation data 

after correction (m) 

Approach ME & MAE SD ME & MAE SD R2 

Photogrammetry 

(1.34 

coefficient) 

-0.16 

0.18 

0.179 -0.071 

0.138 

0.183 0.60 

Photogrammetry 

(Site-specific 

coefficient) 

-0.15 

0.17 

0.175 0.009 

0.13 

0.172 0.67 

Spectral Depth 

(Non-shadow) 

- - 0.09 

0.20 

0.24 0.20 

Spectral Depth 

(Site) 

- - -0.036 

0.22 

0.30 0.11 

 

Table 14: Changes in mean error and standard deviation after refraction correction 

 Two-tailed t-test: 

ME 

One-Tailed t-test: 

MAE 

Levene’s Test 

Approach T-value P-value T-value P-value F Value P-value 

Photogrammetry 

(1.34 

coefficient) 

-4.56 0.000007 2.55 0.006 0.07 0.79 
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Photogrammetry 

(Site-specific 

coefficient) 

-4.83 0.000004 1.49 0.07 0.24 0.62 

 

 Under the assumption that the site-specific coefficient best estimates water depth 

based on its high R2 value, I wanted to test if its post-correction ME and SD values are 

significantly lower than those values of the other approaches. Table 15 shows the results 

of the two-tailed and one-tailed t-tests, where the null hypothesis for the two-tailed t-test 

is that the difference in ME between the site-specific coefficient and each of the other 

three approaches is equal to zero, and the null hypothesis for the one-tailed t-test is that 

the MAE of the site-specific coefficient is not less than that of the three remaining 

approaches. The p-values for the 1.34 coefficient show that its ME (-0.071 m) is 

significantly different from the site-specific coefficient ME (0.009 m), but that the MAE 

of the site-specific coefficient (0.13) is not significantly less than the MAE of the 1.34 

coefficient (0.138). The MEs of the non-shadow spectral depth and site-specific 

coefficient are significantly different, and the MAE of the non-shadow spectral depth is 

significantly greater than the MAE site-specific coefficient. The site spectral depth ME is 

not significantly different from the site-specific coefficient ME, but its MAE is 

significantly greater than the site-specific coefficient MAE. The site-specific coefficient’s 

MAE is significantly less than the spectral depth MAEs, however it is not significantly 

lower than the 1.34 coefficient MAE; only the MEs of the two photogrammetric 

coefficients are significantly different.  

Table 15: T-tests measuring significant difference between mean error of site-specific 

coefficient and other approaches 

 Two-tailed t-test: ME One-Tailed t-test: MAE 

Approach T-value P-value T-value P-value 

Photogrammetry 

(1.34 coefficient) 

2.95 0.004 -0.25 0.40 
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Spectral Depth 

(Non-shadow) 

-2.16 0.03 -2.81 0.003 

Spectral Depth 

(Site) 

1.07 0.29 -3.35 0.0006 

  

The last step of the analysis is to assess if spatial autocorrelation of the mean 

errors exist. Only the validation data errors were used in this visual and statistical 

analysis, and therefore there were not enough data points to conduct a local statistic. 

Table 16 details the results of the Moran’s I global statistic for each approach given a 

certain distance from which to calculate the average error, D. Given that the validation 

data were chosen randomly for each approach, each data set varied in the smallest 

distance that existed between two points. Nine meters was the smallest D value possible 

for two of the data sets, and so Moran’s I was calculated with D = 9 m for all four 

approaches for consistency, and calculated the statistic again for approaches with a 

possible smaller D value. I removed one point from the non-shadow validation locations 

because it was approximately 15 meters away from any other point, which is a large 

distance to include as spatial neighbors in the calculation for a stream of this size 

(Appendix D). Table 16 shows that the site-specific coeffient is the only approach that 

does not have spatial autocorrelation in its error. The Moran scatterplots and visual error 

figures are in Appendix D.  

Table 16: Moran’s I statistic for 4 approaches to test for spatial autocorrelation of error. 

D is the distance from each point within which average error is calculated. D for the 

smallest distance possible is stated in meters in the cell abvoe the value.  

 D = 9 meters Smallest distance possible 

Approach Moran’s I P-value Moran’s I P-value 

Photogrammetry 

(Site-specific 

coefficient) 

0.06 

 

0.20 

 

- - 

Photogrammetry 

(1.34 

coefficient) 

0.29 0.0000000000000002 

(2.2e-16) 

4 m 

0.37 

4 m 

2.689 e-14 
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Spectral Depth 

(Non-shadow) 

0.31 0.0001 5 m 

0.41 

5 m 

0.0002 

Site Spectral 

Depth 

0.35 8.50 e-07 - - 

 

 Given the above results and metrics in comparison with other methods, the site-

specific photogrammetric correction is the highest quality approach to derive bathymetric 

data in this study. The site-specific correction had a higher R2 value and lower SDE than 

the three other approaches, and was the only approach with a significantly low spatial 

autocorrelation of error. This method also resulted in a significantly lower MAE than the 

spectral depth approaches, and its validation slope was closest to 1 and its y-intercept was 

closest to zero in comparison to the other validation equations. The site-specific 

coefficient resulted in higher accuracy and precision, and a better goodness of fit 

validation equation.  

 

Creating the Corrected DEM 

The next step is to apply this refraction correction to the submerged DEM 

(Appendix D), and merge it to the dry DEM (Figure 14). Due to the cell sizes of the water 

surface, the cell size of the submerged DEM is different from the original DEM’s cell 

size, and thus the submerged DEM was resampled to the original DEM cell size before 

merging the two. Figures 15 and 16 show the error distributions in the channel, based on 

measured water depths after the site-specific correction is applied. While the site-specific 

correction is the best approach in this study, Figure 16 shows that this method still has a 

systematic error: it predicts a smaller range of depths in comparison to ground truth 

values, because it over-predicts depths in shallow areas, and under-predicts water depths 

in deeper areas of the channel. 
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Figure 14: Final DEM after site-specific refraction corrected submerged channel DEM is 

merged to dry DEM. Spatial resolution of 1.50 cm. 
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Figure 15: Error distributions between predicted depths from the site-specific correction 

and observed water depths. 
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Figure 16: Residual plot of depth differences in measured water depths. 
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CHAPTER V 

DISCUSSION 

 This chapter will examine the results found in the previous chapter. These 

sections include interpretations of the results and suggestions for how the methods could 

be improved in the future. The research questions are discussed in depth, and suggestions 

for river managers and scientists are given, along with these methods’ limitations and 

considerations. 

 

Image Acquisition 

 The proximity of the tall tree canopy to the wetted channel complicated image 

acquisition. In forested mountain drainage basins such as the Sandy River Basin, even a 

sunny, cloudless day may not guarantee better point clouds and DEMs because the tall 

tree canopy adjacent to the banks place parts of the submerged channel in shadow for a 

majority of the day. For example, in my site on the Salmon River, approximately the first 

40 meters of the upstream section was in sunlight in the morning, but by the time a 

majority of the channel was in sunlight, the left bank upstream around the log structure 

was in shadow. Part of this shadowed area, particularly in the cross section directly 

downstream of the log structure, had inaccurate elevation predictions in the SfM output. 

The area on the right bank directly downstream of the second log structure also had a 

poor DEM. I believe it is because the first batch of photos collected here were in sunlight, 

and after taking pictures of the whole site and returning downstream 40 minutes later, the 

area was in shadow. Even though I collected imagery within one hour on the same day, 
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the tree canopy reduced the amount of time available to collect imagery with relatively 

even illumination.  

 Additionally, I only had access to four UAV batteries, giving me just under an 

hour to collect images. I used all four batteries, and still there is a large hole in the DEM 

and orthophoto on the right bank across from the first log structure. It is possible that the 

time limit of the UAV batteries prevented collecting enough photos, which contributed to 

PhotoScan not being able to develop a point cloud in this area. While it is possible to 

generally evaluate photo overlap in the field, the UAV battery is still a limitation. I 

captured the images on the last day of my field work, which was the only sunny day of 

the week. Leaving the field site to charge the batteries for another flight would have taken 

a minimum of three hours, and the change in the amount of channel in shadow would 

have certainly changed.  

 In areas of the channel with sufficient overlap and no shadow, submerged areas of 

the channel appeared clear in the orthophoto. The goal of the study was to capture 

bathymetry, so while I did not measure any quantitative results on dry land, I trust that 

the point cloud and DEM is accurate on the bar on river left, adjacent to the wetted 

channel and not underneath the canopy, given that the detail in the orthophoto is clear.  

 

Water Surface Interpolation 

 The canopy also caused issues with the accuracy of the GPS data collection and 

the creation of the DEM. In areas where the canopy prevented the rtk-GPS from 

collecting an accurate GPS location, the canopy also reduced the amount of photo overlap 

and visibility. Consequently, there are large areas, particularly on the right bank, where 
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the DEM is inaccurate and there are no GPS locations to contribute to the water surface 

elevations. Even with GPS locations with relatively low errors, the rtk-GPS vertical error 

tends to be higher than horizontal error (Appendix B), and more error could have been 

introduced while using the equipment in the field. The cross sectional data, and therefore 

the edge-of-water elevations, were collected over two and a half days due to weather 

constraints, while the photos were collected within one hour. It is possible that using a 

combination of edge-of-water elevations and DEM water surface elevations over multiple 

days could have led to collecting and using slightly different water surface elevations. 

Multiple sources of small error could make a large difference in the accuracy of 

extracting submerged topography, especially in small, shallow streams where the vertical 

error may be equal to a large portion of the water depth.  

 I made the decision to slightly alter some of the water surface elevations to 

decrease in elevation in the downstream direction, but the effect of this change on the 

water surface accuracy, whether positive or negative, is unknown. While there is no way 

to guarantee that all GPS elevations will decrease in the downstream direction, in the 

future I would collect more edge-of-water elevations so that there are more data on which 

to base these decisions. More edge-of-water elevations could also improve the robustness 

of the quantitative test to determine which water surface represents the water surface 

more accurately.  

 The accuracy of the water surface affects both actual and predicted water depths, 

and therefore affects the accuracy of the linear relationship derived between the two 

depths. The ‘observed’ water depths were calculated by subtracting the GPS elevations 

from the water surface, and because the accuracy of the water surface is unknown, it is 
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unclear how much error exists in the ‘observed’ water depths due to the water surface and 

rtk-GPS errors, and therefore how well the mean error captures the accuracy and 

precision of the data. Due to the uncertainty of how SfM operates under water, the error 

between the predicted and actual water depths may not be the same, and thus the linear 

relationship derived from the calibration data and the R2 may not describe the 

relationship adequately. This again supports the need for more edge-of-water elevations 

collected with high quality surveying equipment. On a site like the Salmon River, where 

the edge-of-water tends to be hidden between and under gravels and cobbles on the bar, 

relying on the DEM to extract these elevations will most likely overestimate the water 

surface elevation, as SfM is better at determining the elevations of the tops of cobbles and 

may not have visibility between cobbles. For the time being, the accuracy of the water 

surface in extracting submerged topography with little error requires field surveying of 

the water surface rather than relying on SfM alone.  

 

Photogrammetric Approach 

 Between the 1.34 coefficient and the 4 site-specific coefficients, the site-specific 

coefficient with outliers removed proved to be the best fitting correction for these data, 

and applying this correction significantly reduced the mean error, or increased the 

accuracy by accounting for some of the light refraction. Removing more of the outliers 

from the calibration data set and applying this equation to all the validation data reduced 

systematic error further, as shown by the y-intercept and slope. While the accuracy was 

increased, the R2 value remained the same, which may indicate an increase in the scatter 

of the data or the standard deviation of error. Using this same data set and removing 
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shallow depths did not improve the R2, but the slope was closer to 1 in all three cases. 

Further experiments are needed in order to understand this phenomenon of whether 

shallow depths may not need a refraction correction.  

 The highest achieved R2 value of 0.67, indicating a moderately strong linear 

relationship, does not seem to be reflected when looking at the range of errors. The 

majority of the depth differences between the predicted and observed water depths occur 

between 0 and 0.15 meters (Appendix D), but the range spans from -0.55 to 0.35 meters. 

Upon examination of Figure 16, it is common for the refraction correction to over predict 

the depth in shallow waters (<0.4 m) by 50 – 100% of the measured depth, and to under 

predict depth in deeper waters (>0.6 m) by 30 – 50%. In a shallow stream such as the 

Salmon River, this is very problematic. 

 The idea that shallow waters may not need to be corrected for light refraction, 

along with my results of a site-specific coefficient, begs the question of the 

appropriateness of applying Snell’s Law and 1.34 as the refractive index for every clear, 

shallow river. The higher accuracy of the site-specific coefficient does not disprove 

Snell’s Law or suggest that 1.34 is not a suitable refractive index for some rivers; rather, 

it suggests that our lack of understanding of how SfM generates elevations underwater 

implies that we cannot be sure that Snell’s Law holds true when SfM software aligns 

point clouds. It is possible that the site-specific coefficient may account for the point 

cloud alignment process, however no conclusions can be made without further 

experimentation. Even though refraction physically occurs in the same manner at the air-

water interface, Butler et al. (2002) suggested that Snell’s Law is inadequate to account 

for the refraction effect due to a number of factors that alter the magnitude of the 
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refractive index, such as the position, angle, and distance of the camera relative to the 

water surface. Thus, while we may not completely understand how SfM aligns 

submerged topography, the site-specific coefficient might account for the differences in 

alignment from one river to another. Additionally, Snell’s Law only accounts for light 

refraction under the assumption of a planar water surface, and it is unclear how the 

varying angles and slopes of the water surface may alter the effects of refraction, and how 

SfM uses this information. Again, this is mere speculation and further experiments should 

be done to better understand how water surface topography and roughness affect apparent 

depth and how SfM processing functions in underwater environments.  

 The division of the data sets into habitat units also did not improve the goodness 

of fit of the refraction correction for the data. Photogrammetrically, the lower R2 values 

in riffles and pools corroborate the physical environments in which SfM software has 

trouble identifying edges and creating point clouds, such as deeper water depths and 

reflective water surfaces. However, if the physical environments influence the accuracy, 

then it would be hypothesized that glides, with their shallow depths and smooth water 

surfaces, would result in a higher R2. It is possible that the within habitat unit variation is 

so great that dividing the data into groups emphasizes this variation and therefore doesn’t 

improve the goodness of fit of the model. Assuming a homogeneous channel unit groups 

together features where large pixel-scale variability may exist. If the within-unit variation 

does exist, then a combination of errors could have accumulated to cause the variation, 

such as errors in the water surface layer and rtk-GPS locations. It is also possible that 

removing deeper apparent depth points could over-exaggerate depth where the water is 

shallow (Westaway et al., 2001). After removing more outliers from the calibration data 
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for the three habitat units, the R2 values remained the same, but only the glide validation 

equation showed an increase in accuracy demonstrated by its slope and y-intercept being 

closer to 1 and 0. For pool and riffle habitats, the slopes and y-intercepts shifted farther 

away from 1 and 0, unveiling more systematic error. This may have occurred due to the 

smaller sample sizes in the pool and riffle habitats (45 and 34 points) in comparison to 

the glide habitat (88 points). This may imply that if the data set is large enough, removing 

more outliers from the calibration data to create a linear equation reduces systematic error 

represented in the slope and y-intercept but does not improve precision. This may or may 

not be true in this data set or for other data sets, but collecting more GPS points in a 

variety of water depths and water surface roughness areas throughout the site could help 

avoid this issue.   

 These results demonstrate that the site-specific coefficient, given its highest R2 

and lowest error, is the most appropriate refraction coefficient for this reach of the 

Salmon River. This implies that if this is a viable method to derive the most accurate 

water depths, then this method could be applied to other similar gravel-bed streams 

environments that are clear and shallow. However, the refractive index must be derived 

from data collected at the site of interest. 

 

Spectral Depth Approach 

 The results of the spectral depth regressions clearly demonstrated that this 

approach most likely cannot be successful in a stream such as the Salmon River, where 

the environmental conditions lead to large errors and a poor depth estimation. This reach 

of the Salmon River contains local variations in substrate colors, surface turbulence 



 

59 

causing sun glint on the water surface, and a large amount of shadow between cobbles 

and gravels in the riverbed, which all contribute to producing different reflectance values 

captured by the sensor that greatly complicate depth mapping by changing the 

relationship between depth and image radiance (Marcus et al., 2003; Legleiter et al., 

2009; Marcus et al., 2012; Carbonneau et al., 2012). These characteristics contributed to 

the low R2 values for both the site-specific regression and the habitat unit regressions, 

where, similar to the photogrammetric habitat unit equations, it is possible that a 

combination of a greater within group variation and small sample size increased the error. 

While these facts are accepted in the remote sensing community, spectral depth results in 

depth mapping on streams such as the Salmon River are not published; rivers with 

brighter, homogeneous, and low-texture substrates and smooth water surfaces are chosen 

for spectral depth tests (Feurer et al., 2008). A larger range of fluvial environments 

should be surveyed using the spectral depth approach in order to develop the range of 

rivers and optical river environments where the spectral depth approach can and cannot 

be successful in bathymetric mapping.  

 In addition to the errors that accumulated from the GPS locations and water 

surface interpolation that affect both photogrammetric and spectral depth approaches, the 

radiometric resolution of the sensor adds another source of error that greatly affects the 

success of the spectral depth approach. Radiometric resolution, or a sensor’s capacity to 

perceive small changes in radiance, often determines bathymetric precision (Legleiter and 

Roberts, 2009), where the amount of reflectance detected is dependent on the change in 

radiance exceeding the fixed amount of radiance represented by one digital number 

(Legleiter and Fonstad, 2012). Additionally, the range of digital values captured by a 
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sensor is significantly smaller for water than for land (Marcus and Fonstad, 2008), further 

reducing capacity of the sensor to detect changes in radiance. When examining the 

differences in digital number values of the green and red bands of the pixels used in the 

calibration and validation data sets, many of the green and red values were equal to each 

other at a wide range of depths, or the values only differed by a small amount in 

comparison to the possible range of digital number values for this sensor (256). This 

implies that the radiometric resolution of the sensor likely influenced the spectral depth 

relationship to have high variability, where similar LN(G/R) values were calculated at a 

large range of depths. It is possible that capturing images with a sensor that has finer 

radiometric resolution could produce a better spectral depth relationship, however the site 

and optical characteristics that complicate bathymetric mapping would still be present. 

 Regardless of the divisions and details, the spectral depth approach could not 

yield reliable and accurate results. This river environment is not amenable to using the 

spectral depth approach, and so analyzing the differences between the water depth errors 

in areas of shadow and non-shadow is not realistic. This is a question that would be best 

answered in rivers with characteristics that have allowed this approach success in 

previous studies. 

 

Comparison of the approaches and applicability in surveying fish habitat 

 This research has shown that this reach of the Salmon River that is shallow, clear, 

and a gravel-bed stream is best surveyed for bathymetry using photogrammetric 

techniques by applying a refraction correction to predicted DEM elevations. The 

photogrammetric results had higher R2 values, lower standard deviation of error values, 
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and significantly lower mean error than the spectral depth results. Between the 1.34 and 

site-specific coefficients, the latter estimated water depths with greater accuracy and 

precision than the former, represented by a validation slope closer to 1 and a y-intercept 

closer to 0, and a higher R2 value. The high local variation in substrate sizes and colors 

created a high textured environment that facilitates SfM processing, and complicates 

spectral depth relationships. Depending on the sensitivity of the application to accuracy 

and precision, a photogrammetrist would provide a river manager with the data that 

provides the highest accuracy (the lowest mean error), the highest precision (lowest 

standard deviation of error), or both (Westaway et al., 2001).  

 When comparing the practicality of surveying using photogrammetric and 

spectral depth techniques, the main distinctions are dependent on the river environment 

and sometimes cost. Both techniques require the same data set and generally the same 

data processing, with the only difference being the use of RGB values or predicted depth 

in the calibration and validation data sets. Regardless of the technique, predicted depth 

and color values of each pixel can be collected and calculated with the same data set from 

image acquisition, GPS data collection, and processing the data with SfM software. The 

two methods are both affected by changing environmental conditions, although to 

varying degrees, such as weather, time of day, and shadow. In other words, both 

techniques perform best on cloudless, sunny days with minimal shadow, which is 

affected by sun angle and the proximity and height of the tree canopy. The river 

environment, as discussed above, is the main determinate of which technique would 

perform best in a given site. Photogrammetric methods can more easily extract 

bathymetric data in heterogeneous river environments and substrates of varying colors 
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and sizes, whereas homogeneous river environments with bright, low texture substrates, 

such as sand, are amenable to spectral depth methods. Cost may also be a factor, where 

spectral depth better predicts depth with a high radiometric resolution sensor, whereas 

photogrammetric techniques do not depend on this factor to the same degree. Regardless 

of the sensor, flying a UAV at a lower altitude can generally increase spatial resolution, 

whereas the level of radiometric resolution in a sensor cannot be changed. 

 When comparing the two approaches in their ability to provide high quality data 

for fish habitat surveys, the approach to choose depends on the river environment of the 

target fish species. For the Salmon River and other similar gravel-bed rivers in the Pacific 

Northwest, where native salmon species depend on gravels at various life stages and 

monitoring gravel recruitment is a common practice, the photogrammetric approach 

would most likely work best. This research has shown that photogrammetric methods 

provided higher quality data in this environment, most likely because of the high texture, 

heterogeneous substrates (Feurer et al. 2008).  

 Stream monitoring programs most commonly used in the Pacific Northwest have 

overlapping goals that are directly or indirectly related to evaluating fish habitat, 

including the Columbia Habitat Monitoring Program (CHaMP), Pacific Infish Biological 

Opinion Effectiveness Monitoring Program (PIBO), and Aquatic and Riparian 

Effectiveness Monitoring Program (AREMP). In order to determine if these monitoring 

programs could provide high quality data from photogrammetric surveys, I will compare 

the photogrammetric data to the type of data and the scale of the monitoring programs. 

Photogrammetric data can potentially provide high quality data at the reach scale for the 
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geomorphic aspects of fish habitat, along with some other observable characteristics, but 

not quantitative hydraulic or water quality metrics.  

 The goal of AREMP is to describe the ecological condition of aquatic ecosystems 

and watersheds by monitoring the ecosystem processes that shape and maintain habitats 

rather than smaller scale channel habitat features, such as number of pools or pieces of 

large wood (Reeves et al., 2004). Basin geomorphology is one of many ecological 

conditions that AREMP protocol is interested in collecting, including hydrologic patterns, 

water quality, and riparian forest conditions. Photogrammetry could provide high quality 

data for the geomorphological aspect of the protocol, however this research measured 

submerged topography at the mesohabitat scale. Logistical obstacles associated with 

these methods are collecting field validation measurements near the time of flight or 

photo acquisition, which is unfeasible at the watershed scale (Marcus and Fonstad, 2008). 

While aerial photos are always helpful in characterizing general form and patterns, 

AREMP may not be the best beneficiary of photogrammetric data from SfM software at 

the basin scale.  

 For monitoring programs that focus on collecting data on smaller scales, using 

SfM to collect topographic information related to fish habitat would provide high quality 

data required by PIBO and CHaMP surveys. While CHaMP is more of a fish-centric 

survey, both surveys are moderately data intensive, requiring the collection of reach 

length, cross-sections, delineating and measuring features of channel units, and a drawing 

of a reach map, among other topographically related data (Bouwes et al., 2011; Heitke et 

al., 2011). The CHaMP survey even emphasizes the use of aerial photography and remote 

sensing to improve the surveys and potentially provide spatially continuous data, and that 
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the topographic data collected with a total station should be used to produce high 

resolution DEMs and a water depth map. While photogrammetry can’t provide stream 

characteristics such as discharge and water chemistry, the photogrammetric methods in 

this research can provide a majority of the topographic data necessary as a high resolution 

and spatially continuous data set, and even general descriptions of riparian structure, fish 

cover, and relative surface water speed. While the use of remote sensing to collect 

substrate information is outside the scope of this study, other studies have examined the 

use of close-range photogrammetry techniques in measuring grain sizes (Carbonneau et 

al., 2004; Verdu et al., 2005; Hedger et al., 2006; Dugdale et al., 2010).  

 Both PIBO and CHaMP surveys are conducted in wadable streams, and given 

other stream conditions such as low turbidity and shadow, photogrammetry could provide 

the same or better data for these or similar surveys that measure topographic variables 

related to fish habitat at the reach or mesohabitat scale. Photogrammetric data processed 

by SfM can produce high resolution DEMs that can be used to measure various aspects of 

the quantity and quality of stream habitat available to fish. While it doesn’t eliminate the 

need for data collection and adds its own field work requirements, the higher resolution 

and spatially continuous data can improve the understanding of the connection between 

habitat attributes and salmonid life history requirements and therefore the ability and 

scope of these monitoring programs.  

 

Suggestions for River Scientists and River Managers 

 Photogrammetric techniques in extracting bathymetric data still have a ways to go 

before reaching the point where they can be common monitoring methods for rivers. 
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However, for future studies and river managers in using a UAV to collect bathymetric 

data on a clear, shallow, gravel-bed stream like the Salmon River, the following section 

provides some improvements on these methods or factors to think about before and 

during surveying and data collection. Table 17 provides a set of best practices for 

collecting these data in the field. I believe that a large majority of my errors could be 

improved by having enough photo overlap in all areas of the submerged channel, less 

shadow, having an accurate water surface, and potentially altering GPS surveying 

techniques.  

Table 17: Best field surveying practices. 

 Best Practices 

Collecting 

imagery 

 Capture imagery at various heights. The highest photos should 

include the entire width of the channel and some of the bars and/or 

floodplain if possible.  

 When capturing closer imagery, zig-zag the sensor and take photos 

incrementally to ensure photo overlap (calculate beforehand the area 

included in the image given the sensor is at a certain height – this 

can inform the surveyor of the amount needed to move the sensor to 

capture 60% overlap. More overlap is always safer).  

 Collect imagery as close together in time as possible to reduce 

differences in illumination. 

 Plan photo acquisition for the time of day with as much sunlight 

covering the channel as possible. These methods are more successful 

when images are collected on a bright, cloudless day. 

Ground 

control points 

 Given site area, estimate a range of the number of photos you might 

take. Choose the higher number, and use at least one-tenth of that 

number for ground control points.  

 For underwater GCPs, place them in areas with a very smooth water 

surface. If you can’t clearly see the point on the card that you will 

survey when it’s underwater, then it shouldn’t be used to 

georeference images. Record water depth with a stadia rod at 

underwater GCPs. 

 Draw a map of where you put the GCPs and what number they are. 

Topographic 

surveying 

 Validation bed elevations: Random surveying points are 

recommended, but if you choose to survey using cross sections, 

surveying points between cross sections is suggested. The density of 
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pointsis dependent on the channel characteristics (water depth, water 

surface roughness, etc). 

 Validation elevations: Consider surveying on top of gravels and 

cobbles and not between them, particularly in gravel-bed streams 

where it is difficult to see in the dark crevices in between gravels. 

 Water surface elevations: Collect edge-of-water elevations at a 

regular spacing, or increase the density of points where slope 

changes more rapidly. The accuracy of the water surface will 

influence the accuracy of all subsequent calculations. Plan surveying 

so the water surface elevations are recorded the same day the 

imagery is collected. 

Pilot Study  Conducting a pilot study on a small area first will help avoid 

mistakes in data collection and improve the accuracy and precision 

of the results. The results of the pilot study will give a better 

indication of the best way to set up a sampling scheme. 

 Test different refraction correction techniques and mapping areas by 

habitat or shadow and non-shadow. 

 

 

 Photo overlap is key in generating a high-density point cloud, an accurate DEM, 

and therefore a potentially stronger relationship between predicted and actual water 

depth. Ensuring enough photo overlap in the images can be evaluated in the field by 

reviewing photographs. This suggestion should be considered within the context and 

goals of a study, as higher density point clouds are not always necessary or helpful. 

However, it is possible to reduce the resolution by merging DEM pixels with a low-pass 

filter if necessary, while increasing the resolution of the DEM is more difficult. Given my 

site and research goals, collecting more photos likely would have improved my results. If 

limited flying time is an issue, then a trade-off can be made between area of the stream 

captured and flying altitude. Similar to limited flying time, planning for image acquisition 

during the least amount of shadow in the channel may also be an issue, particularly if the 

orientation of the canopy limits the window of time in which photos can be collected with 

minimum shadow. Making observations at the site and planning a flight pattern prior to 
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data collection can mitigate the limitations created by the length of battery life and 

duration and location of shadows. If necessary, it might be useful to capture imagery in 

sections based on when certain sections will be in sunlight, but the effects of this in the 

photogrammetric processing is uncertain. 

 It is very likely that a large amount of errors stemmed from the inaccuracies of the 

interpolated water surface, and potentially from the implementation of surveying 

techniques. I collected validation data through cross section data, and only collected 

edge-of-water elevation data on each side of the cross section. In the future, I would 

survey points throughout the site with a generally even spacing, but even if cross sections 

are still used to collect data, I would also collect relatively evenly spaced edge-of-water 

elevations, with a greater density of elevations in areas where the slope changes. This 

increases the amount of water surface elevations available and reduces dependency on the 

SfM-produced DEM for elevations, which introduces more error. Additionally, I would 

consider placing the rtk-GPS pole on top of cobbles and gravels instead of the between 

cobbles, which is a common tendency and practice (Westaway et al., 2001), where light 

may not reach and muddle the detection of edges in SfM software. If the end goal is to 

provide accurate and precise bathymetric data, the surveying of submerged topography 

should be in locations that SfM software, and spectral depth techniques, can better detect 

and predict elevations, which in turn could potentially improve the strength of the 

predicted to actual water depth relationship.  

 In addition to observing site conditions prior to data collection, it may also 

behoove the researcher to complete a pilot study to improve data collection at the study 

site in order to improve the depth prediction, such as understanding the spatial 
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autocorrelation structure of the river and the amount and type of sampling needed. I 

calculated the Moran’s I statistic, which is not ideal because it is a global statistic and my 

data were too far apart to draw strong conclusions or implications. Three of the four 

approaches that I tested for spatial autocorrelation produced low, although statistically 

significant, spatial autocorrelation of error between the estimated and observed water 

depths. The low spatial autocorrelation does not allow any concrete conclusions, but 

understanding the spatial autocorrelation of error in a river could improve the depth 

prediction.  

 

Limitations and Considerations   

 The same limitations exist for these methods that have been discussed in previous 

sections and explained thoroughly in published literature (article here…Westaway et al., 

2001; Woodget et al., 2014), such as the water depth limit, shadow, and water surface 

roughness. There are other limitations and considerations that affect current practices in 

the field regarding SfM processing, the way we think about and apply Snell’s Law, 

whether accuracy and precision values are representative of the area of interest, and the 

range of river environments that these techniques can successfully extract bathymetric 

data.   

 Applying a simple refractive index to correct for light refraction in water is 

appealing for various applications because of its ease of use and repeatability. However, 

simplifying this procedure for a majority of streams while using SfM is contradictory in 

terms of their underlying processes and assumptions. SfM functions by producing 3D 

point clouds from overlapping, converging images from different angles and distortion 
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can be reduced by using imagery collect at varying distances (Westoby et al., 2012; 

Fonstad et al., 2013), but the degree of the refraction correction required increases with 

radial distance from the sensor (Butler et al., 2002). Any single refractive index functions 

under the assumption of a planar water surface, which is rarely the case in natural 

streams, and thus requires a different refractive index for water surface roughness that 

introduces varying angles of the surface that also changes from image to image. If the 

angle of the water surface is constantly changing and different in each image captured, 

this also questions how SfM can align submerged points that appear in a different 

location in each image. This implies that the refractive index would not only be different 

in each image based on factors such as water surface roughness and the distance between 

the water surface and the sensor, but the refractive index may be different throughout one 

image. Assuming that SfM can align submerged points under a non-planar water surface 

and that one refraction correction can be applied to a site and act as an average correction 

for all the different refractive indexes needed across the images, then the average 

refraction correction depends on the range of refractive indexes, which will be different 

for every site and every data set. Therefore, while 1.34 may be a physically correct 

refractive index, the refractive index used for SfM-derived DEMs should average the 

refractive indexes that exist in the images in order to encompass both refraction at the air-

water interface and any other processes causing more errors to occur. In other words, the 

refraction correction should be site and image specific in the same way that the 

correlation between spectral properties and depth is specific for each site and set of 

images. The refraction phenomena should be further studied to determine if it is affected 

by more than just the air-water interface in photogrammetric outputs, such as depth, 
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water surface roughness, and the alignment of point clouds in SfM software, or if the 

refractive index used to correct submerged elevation encompasses the correction of other 

errors and not only refraction.  

 Fluvial remote sensing studies report error, accuracy, and precision metrics in the 

form of mean error, standard deviation, R2, and percent correct value that only represents 

the validation data. The two questions that arise from this are 1) can these quantitative 

indicators be extrapolated to the entire channel as a whole or do they only describe the 

individual validation data collected (Westaway et al., 2001); and 2) can these metrics 

actually be used and compared to a subjective threshold to determine a ‘better’ method 

based on minimal theory about the accuracy and precision levels necessary for specific 

applications (Marcus and Fonstad, 2008)? Every study uses a different amount of 

validation data that could result in varying levels of accuracy and that may or may not be 

representative of the submerged topography as a whole. This makes comparison of 

research results difficult, or at least implies that choosing a method shouldn’t be chosen 

based solely on these metrics. Additionally, the range of amenable environments in which 

we can expect certain levels of accuracy and precision from these methods is unknown. 

This lack of knowledge needs to be resolved by testing both methods on all different 

types of streams to establish where these methods can be applied in order to establish the 

levels of accuracy and precision required for different applications. 

 The methods and results in this research also highlight the gaps of knowledge in 

the literature. Researchers have not quantitatively examined the effects of using different 

water surface interpolation methods. For both photogrammetry and spectral depth 

approaches, researchers tested these methods on sites with ideal conditions and often 
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used elevation data to validate predicted water depths to measure error, thereby reducing 

reported error. Most articles using spectral depth to estimate water depth tested the 

method on rivers with homogeneous substrates, smooth water surfaces, and low turbidity 

that improve the spectral depth relationship (Winterbottom and Gilvear, 1997; Lejot et 

al., 2007). To my knowledge, there are no articles published with R2 values as low as the 

values from my spectral depth regression equations. Testing spectral depth on ideal sites 

does not establish a range of environments that are amenable to this technique. For the 

photogrammetric studies, the comparison of the measured and estimated topographic data 

measures the strength of the refractive index, when in reality the use of the elevation data 

instead of water depths introduces a bias that improves the R2 value due to the inherent 

relationship that elevation decreases downstream. Spectral depth studies compare 

measured and predicted water depths, but cannot be compared to photogrammetrically 

derived bathymetric data. Both types of approaches should be tested on a wider range of 

streams and use the same measure of accuracy and precision in order to be comparable.  
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CHAPTER VI 

CONCLUSION 

 This research has shown the differences in methods and results of using 

photogrammetric and spectral depth methods in extracting bathymetry from a gravel-bed, 

shallow, clear stream. The results showed that the photogrammetric site-specific 

refraction coefficient was the best fitting model for the data and resulted in higher 

accuracy and precision in comparison to the other photogrammetric and spectral depth 

tests. The photogrammetric methods clearly produced higher R2 values, accuracy, and 

precision than the spectral depth approaches. The low accuracy and precision produced 

by the spectral depth results implies that this type of river environment is not amenable 

for the use of spectral properties in deriving water depths. That being said, many of the 

estimated depth errors from the photogrammetric method are proportionally high for a 

shallow stream. These errors could be potentially minimized by improving the water 

surface accuracy, surveying on top of cobbles instead of in between them, and ensuring 

relatively equal lighting during image acquisition. This site-specific coefficient could be 

applied to similar stream environments from images and data collected at the site of 

interest and under ideal illumination conditions.  

 This research demonstrates the importance for the fluvial remote sensing 

community to produce more studies that quantitatively test the accuracy and compare the 

methods that produce bathymetric data. In particular, the interpolation of water surfaces 

and the refraction effects on photogrammetric processes should be tested in robust 

studies. Other methods not currently published, such as a site- or habitat-specific 

refractive index, should be evaluated in their ability to extract bathymetry in a wider 
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range of fluvial environments. This technique can be improved by testing at various sites 

with different depths and hydraulic characteristics in order to develop guidelines for 

where this method can and cannot be applied, and to develop best practices for this 

method. 
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APPENDIX A 

STRUCTURE-FROM-MOTION 
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AGISOFT PHOTOSCAN WORKFLOW 

 

1) Workflow > add original jpeg photos downloaded from UAV (ensure that the 

image quality is above 0.6) 

2) Convert (button above loaded images on left) the photo coordinate system if the 

photos are geotagged. 

3) Align photos (Medium accuracy, Disabled pair preselection; Advanced options 

left as default) 

4) Select all photos that did not align, ‘reset camera alignment’, then ‘align selected 

cameras’ 

5) Zoom out from sparse point cloud and disable cameras that are not in the right 

place 

6) Select any points that are located outside of the point cloud and remove. 

7) Import GCP text file with name, lat, long, and altitude 

a. If the camera/UAV image locations are in decimal degrees, then import 

your GCP text file under the correct geographic coordinate system (ie, 

WGS 84) 

b. Make sure the lat and long in your text file are already converted in 

decimal degrees, or whatever the camera coordinate system is set to 

8) Select all the photos in the Cameras section (reference pane) and uncheck all 

geotagged photos. 

9) Locate and assign GCPs to your images (right click point on image, place marker, 

and select correct GCP) 

a. To get an idea of if this will work, choose a few GCPs spread throughout 

the image, and place markers on them in at least 3 images. Save then click 

update. If the error (m) and error (pix) are still low for those markers, then 

continue to assign GCPs 

10) Once you are done locating and placing GCP flags on all your pictures, Save. 

11) Click the optimize button, then check your errors. Uncheck any markers that have 

high error, then click optimize again.  

12) Once you are happy with your error, build your dense point cloud (medium 

quality if lots of pictures, aggressive depth filtering) 

13) Build Mesh. Select Height Field for the surface type if your final product is a 

DEM, Dense Cloud for the source data, and Medium face count. Select Enabled 

interpolation. 

14) Build texture. Adaptive orthophoto as the mapping mode, mosaic as the blending 

mode, and the texture size/count was left at default number. ‘Enable color 

correction’ was left unchecked.  

15) Export DEM or orthophoto – ensure the projection is the same. Leave defaults, 

and click export. 
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APPENDIX B 

RTK-GPS CHANNEL CROSS-SECTION DATA 
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FID Northing Easting Elevation (m) HRMS (m) VRMS (m) HDOP VDOP Solution 

0 5023809.145 577617.787 337.101 0.006 0.011 1.127 2.395 2.113 

1 5023810.434 577618.107 336.849 0.007 0.011 1.09 2.179 1.887 

2 5023810.778 577617.794 335.602 0.012 0.018 0.98 1.991 1.733 

3 5023811.984 577618.457 335.536 0.009 0.012 1.195 2.085 1.708 

4 5023814.028 577619.17 335.595 0.008 0.012 1.158 2.045 1.686 

5 5023816.178 577620.391 336.859 0.008 0.011 1.353 2.33 1.897 

6 5023817.332 577620.869 336.872 0.007 0.01 1.314 2.246 1.822 

7 5023818.713 577621.287 336.917 0.007 0.011 1.249 2.199 1.81 

8 5023819.873 577621.562 336.93 0.007 0.01 1.309 2.256 1.837 

9 5023821.616 577622.135 336.948 0.007 0.01 1.246 2.209 1.824 

10 5023823.038 577622.657 337.033 0.008 0.011 1.244 2.215 1.832 

11 5023824.782 577623.156 337.053 0.008 0.011 1.242 2.22 1.84 

12 5023826.207 577623.492 336.943 0.008 0.011 1.352 2.337 1.906 

13 5023827.512 577623.9 336.903 0.014 0.019 1.252 2.273 1.897 

14 5023829.134 577624.335 337.381 0.01 0.012 1.486 2.571 2.098 

15 5023830.207 577624.568 336.854 0.013 0.02 1.337 2.396 1.989 

16 5023831.278 577624.878 337.019 0.009 0.012 1.336 2.451 2.055 

18 5023812.625 577607.649 337.192 0.006 0.015 1.046 2.799 2.596 

19 5023813.524 577608.119 337.093 0.006 0.014 1.025 2.606 2.396 

20 5023814.455 577608.471 336.923 0.006 0.014 1.007 2.413 2.193 

21 5023815.365 577608.845 336.993 0.006 0.013 1.02 2.53 2.315 

22 5023816.251 577609.34 336.992 0.006 0.013 1.019 2.505 2.289 

23 5023817.088 577609.859 336.953 0.006 0.013 1.049 2.409 2.169 

24 5023818 577610.338 336.931 0.006 0.014 1.093 2.956 2.747 

25 5023818.884 577610.77 337.032 0.006 0.012 1.141 2.74 2.491 

26 5023819.799 577611.159 336.993 0.006 0.014 1.093 2.969 2.761 

27 5023820.688 577611.638 337.111 0.006 0.016 1.052 3.323 3.152 

28 5023821.63 577612.017 336.962 0.006 0.015 1.052 3.309 3.138 

29 5023822.468 577612.495 337.067 0.006 0.015 1.077 3.301 3.12 

30 5023823.365 577612.951 337.078 0.007 0.015 1.256 3.342 3.097 

31 5023824.26 577613.449 336.964 0.006 0.015 1.301 3.395 3.136 

32 5023825.169 577613.87 337.007 0.01 0.025 1.204 3.338 3.114 

33 5023826.057 577614.376 336.966 0.007 0.015 1.298 3.443 3.189 

34 5023826.989 577614.714 337.016 0.014 0.028 1.386 3.494 3.208 

35 5023827.841 577615.283 336.955 0.011 0.018 1.666 3.222 2.758 

36 5023827.824 577615.23 337.041 0.009 0.015 1.648 3.205 2.748 

37 5023828.732 577615.63 337.083 0.014 0.023 1.772 3.477 2.991 

38 5023829.662 577616.086 336.931 0.015 0.024 1.837 3.501 2.98 
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39 5023830.564 577616.471 336.865 0.012 0.019 1.826 3.428 2.901 

40 5023816.962 577600.2 337.164 0.007 0.012 1.237 2.601 2.288 

41 5023818.294 577600.161 336.868 0.007 0.014 1.237 2.607 2.295 

42 5023819.676 577600.133 337.231 0.007 0.013 1.237 2.613 2.301 

43 5023824.328 577600.526 336.786 0.006 0.01 1.021 2.073 1.804 

44 5023825.635 577600.623 336.84 0.007 0.012 1.236 2.635 2.327 

45 5023829.214 577600.329 336.882 0.006 0.011 1.041 2.161 1.894 

46 5023830.423 577600.33 336.889 0.007 0.012 1.097 2.301 2.022 

47 5023831.721 577600.175 336.736 0.007 0.014 1.233 2.701 2.403 

48 5023832.596 577600.016 336.581 0.007 0.014 1.233 2.716 2.42 

49 5023833.16 577600.047 336.263 0.007 0.014 1.232 2.721 2.426 

50 5023833.366 577600.001 336.098 0.007 0.014 1.232 2.725 2.431 

51 5023833.663 577599.823 335.945 0.006 0.011 0.96 1.922 1.665 

52 5023834.024 577599.742 335.942 0.006 0.01 0.961 1.923 1.666 

53 5023811.94 577586.282 337.084 0.006 0.011 1.084 2.242 1.962 

54 5023813.288 577585.948 337.043 0.006 0.011 1.084 2.244 1.964 

55 5023814.933 577585.46 336.974 0.006 0.011 1.085 2.246 1.967 

56 5023816.311 577585.048 336.872 0.006 0.012 1.085 2.248 1.969 

57 5023817.576 577584.615 336.883 0.006 0.011 1.085 2.25 1.972 

58 5023818.925 577584.211 336.806 0.006 0.011 1.085 2.253 1.974 

59 5023820.068 577583.737 336.82 0.006 0.01 1.011 1.966 1.686 

60 5023821.317 577583.366 336.834 0.006 0.011 1.086 2.256 1.978 

61 5023822.758 577582.923 336.846 0.006 0.012 1.164 2.605 2.331 

62 5023823.82 577582.5 336.865 0.006 0.011 1.087 2.262 1.983 

63 5023825.308 577581.954 336.811 0.006 0.012 1.087 2.264 1.986 

64 5023826.632 577581.665 336.73 0.006 0.012 1.087 2.266 1.988 

65 5023827.774 577581.402 336.736 0.006 0.011 1.087 2.268 1.99 

66 5023828.973 577581.116 336.707 0.012 0.029 1.401 3.446 3.149 

67 5023830.305 577580.754 336.752 0.008 0.017 1.394 3.091 2.759 

68 5023831.445 577580.327 336.732 0.013 0.028 1.405 3.127 2.793 

69 5023832.537 577579.992 336.436 0.008 0.017 1.252 2.887 2.602 

70 5023833.519 577579.582 336.459 0.008 0.018 1.2 2.848 2.583 

71 5023834.318 577579.191 336.397 0.007 0.017 1.31 2.894 2.58 

72 5023835.293 577578.864 336.435 0.013 0.029 1.228 2.89 2.616 

73 5023836.347 577578.569 336.578 0.013 0.029 1.197 2.839 2.574 

74 5023837.292 577578.143 336.562 0.008 0.017 1.427 3.206 2.871 

75 5023838.082 577577.81 336.556 0.014 0.027 1.44 3.24 2.903 

76 5023839.252 577577.448 336.612 0.014 0.026 1.328 2.941 2.624 

78 5023841.621 577576.356 337.049 0.008 0.015 1.422 2.878 2.503 
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79 5023842.174 577576.261 337.189 0.008 0.015 1.384 2.723 2.345 

80 5023837.742 577567.31 336.95 0.008 0.013 1.277 2.336 1.957 

81 5023837.358 577567.444 336.625 0.009 0.015 1.278 2.339 1.96 

82 5023836.508 577567.567 336.534 0.008 0.014 1.383 2.748 2.374 

83 5023835.678 577567.738 336.456 0.008 0.013 1.383 2.748 2.375 

84 5023834.631 577567.908 336.44 0.008 0.014 1.383 2.749 2.376 

85 5023833.805 577568.281 337.16 0.008 0.014 1.383 2.749 2.376 

86 5023833.342 577568.257 336.605 0.008 0.014 1.383 2.749 2.376 

87 5023832.418 577568.582 336.632 0.007 0.012 1.283 2.354 1.974 

88 5023831.53 577568.833 336.975 0.007 0.011 1.284 2.356 1.975 

89 5023830.771 577569.089 336.75 0.007 0.011 1.285 2.358 1.978 

90 5023829.964 577569.24 336.59 0.007 0.01 1.286 2.36 1.979 

91 5023828.853 577569.426 336.606 0.007 0.01 1.286 2.361 1.98 

92 5023827.98 577569.46 336.673 0.007 0.011 1.287 2.364 1.982 

93 5023827.156 577569.772 337.187 0.007 0.01 1.288 2.366 1.984 

94 5023826.69 577569.845 336.708 0.007 0.011 1.289 2.367 1.985 

95 5023825.911 577570.098 336.512 0.007 0.011 1.29 2.369 1.987 

96 5023825.119 577570.286 337.052 0.007 0.01 1.291 2.37 1.988 

97 5023824.506 577570.576 336.626 0.007 0.01 1.292 2.372 1.989 

98 5023823.7 577570.76 336.965 0.007 0.01 1.292 2.373 1.99 

99 5023823.002 577571.097 336.738 0.007 0.011 1.293 2.374 1.991 

100 5023822.087 577571.389 336.695 0.007 0.011 1.294 2.376 1.993 

101 5023821.092 577571.639 336.895 0.006 0.01 1.079 2.122 1.827 

102 5023820.177 577571.87 337.012 0.006 0.01 1.007 1.92 1.635 

103 5023818.657 577572.363 337.065 0.006 0.01 1.077 2.103 1.806 

104 5023817.791 577572.57 337.051 0.006 0.01 1.004 1.906 1.621 

105 5023816.979 577572.805 337.045 0.006 0.009 1.004 1.905 1.618 

106 5023815.787 577573.13 337.152 0.006 0.01 1.073 2.066 1.765 

107 5023814.887 577573.301 337.253 0.007 0.011 1.308 2.393 2.003 

108 5023814.115 577573.5 337.003 0.007 0.011 1.39 2.727 2.346 

109 5023813.563 577573.497 336.951 0.01 0.016 1.04 1.959 1.66 

110 5023812.659 577573.823 337.141 0.01 0.015 1.046 1.957 1.654 

111 5023808.933 577567.723 336.984 0.006 0.007 0.961 1.693 1.394 

112 5023809.696 577566.989 336.872 0.006 0.008 1.007 1.805 1.498 

113 5023810.444 577566.323 336.798 0.006 0.008 0.968 1.692 1.388 

114 5023811.145 577565.648 336.939 0.006 0.008 0.971 1.691 1.384 

115 5023813.422 577563.671 336.835 0.008 0.008 1.233 1.854 1.385 

116 5023814.082 577562.945 336.735 0.007 0.008 1.23 1.846 1.376 

117 5023814.865 577562.326 336.724 0.008 0.01 1.615 2.655 2.107 
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118 5023815.606 577561.565 336.688 0.008 0.008 1.34 2.039 1.536 

119 5023816.299 577561.029 336.936 0.007 0.008 0.994 1.681 1.356 

120 5023817.189 577560.368 337.019 0.006 0.008 0.997 1.679 1.352 

121 5023817.952 577559.735 337.057 0.012 0.013 1.595 2.48 1.898 

122 5023818.732 577559.131 336.743 0.008 0.009 1.221 1.819 1.348 

123 5023819.555 577558.499 337.013 0.007 0.008 1.005 1.675 1.339 

124 5023820.284 577557.876 336.975 0.007 0.008 1.217 1.808 1.337 

125 5023821.067 577557.221 336.917 0.007 0.009 1.142 1.912 1.534 

126 5023821.754 577556.544 336.661 0.007 0.008 1.06 1.817 1.475 

127 5023822.671 577556.07 336.884 0.007 0.008 1.018 1.666 1.319 

128 5023823.478 577555.553 336.881 0.014 0.012 1.688 2.445 1.769 

129 5023824.227 577554.893 336.892 0.007 0.008 1.05 1.701 1.338 

130 5023825.08 577554.154 336.478 0.008 0.01 1.383 2.114 1.598 

131 5023825.792 577553.53 336.567 0.013 0.017 1.394 2.2 1.701 

132 5023826.618 577552.963 336.863 0.012 0.017 1.559 2.424 1.856 

133 5023790.687 577539.845 335.792 0.006 0.01 1.032 2.054 1.776 

134 5023791.62 577539.192 335.497 0.007 0.011 1.276 2.442 2.082 

135 5023792.325 577538.613 335.452 0.007 0.011 1.31 2.455 2.076 

136 5023792.915 577538.004 335.326 0.008 0.012 1.39 2.494 2.071 

137 5023793.331 577537.476 335.385 0.008 0.011 1.389 2.488 2.064 

138 5023794.092 577537.188 335.333 0.007 0.012 1.27 2.411 2.049 

139 5023794.695 577536.765 335.26 0.007 0.011 1.389 2.472 2.044 

140 5023795.4 577536.385 335.26 0.008 0.011 1.389 2.461 2.031 

141 5023795.912 577536.02 335.357 0.008 0.011 1.388 2.45 2.019 

142 5023796.572 577535.283 335.268 0.007 0.012 1.309 2.489 2.117 

143 5023797.276 577534.74 335.203 0.012 0.019 1.292 2.4 2.022 

144 5023798.009 577534.192 335.216 0.008 0.013 1.399 2.456 2.019 

145 5023798.68 577533.682 335.369 0.007 0.011 1.252 2.319 1.951 

146 5023799.033 577533.428 335.537 0.007 0.011 1.251 2.311 1.943 

147 5023799.695 577532.837 335.662 0.008 0.012 1.25 2.304 1.936 

148 5023800.565 577532.166 335.718 0.009 0.013 1.387 2.376 1.93 

149 5023801.511 577531.218 335.732 0.008 0.011 1.387 2.371 1.923 

150 5023802.474 577530.653 335.79 0.009 0.013 1.345 2.516 2.127 

151 5023803.408 577530.043 335.906 0.013 0.018 1.45 2.773 2.364 

152 5023804.385 577529.528 335.922 0.011 0.016 1.338 2.476 2.083 

153 5023812.537 577537.992 336.41 0.013 0.02 1.256 2.525 2.191 

154 5023811.911 577538.763 336.526 0.008 0.012 1.246 2.303 1.937 

155 5023811.389 577539.5 336.33 0.011 0.02 1.272 2.623 2.294 

156 5023810.662 577540.425 335.879 0.007 0.012 1.244 2.299 1.933 
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157 5023810.294 577541.143 335.93 0.007 0.012 1.285 2.358 1.977 

158 5023809.704 577541.943 336.059 0.006 0.011 0.972 2.132 1.897 

159 5023809.127 577542.74 336.107 0.007 0.011 1.129 2.227 1.92 

160 5023808.393 577543.591 336.041 0.007 0.012 1.243 2.294 1.928 

161 5023807.729 577544.487 336.241 0.012 0.021 1.235 2.467 2.135 

162 5023807.012 577545.626 335.846 0.007 0.013 1.289 2.569 2.223 

163 5023806.34 577546.731 335.76 0.007 0.014 1.29 2.564 2.215 

164 5023805.45 577547.597 335.801 0.008 0.018 0.999 2.801 2.617 

165 5023804.684 577548.442 336.014 0.007 0.013 1.06 2.446 2.205 

166 5023803.902 577549.266 335.908 0.006 0.012 1.109 2.454 2.189 

168 5023802.622 577550.674 336.289 0.01 0.022 1.027 2.404 2.173 

169 5023801.842 577551.375 336.323 0.006 0.013 0.938 2.355 2.16 

170 5023801.117 577551.936 336.31 0.005 0.012 0.938 2.351 2.156 

171 5023805.396 577561.968 336.972 0.006 0.009 1.081 1.955 1.629 

172 5023806.374 577560.872 336.823 0.006 0.008 1.04 1.654 1.287 

173 5023807.235 577559.781 336.858 0.006 0.009 1.098 1.89 1.538 

174 5023808.44 577558.368 336.728 0.006 0.008 1.099 1.89 1.538 

175 5023809.414 577557.305 336.703 0.006 0.008 1.012 1.741 1.417 

176 5023810.291 577556.106 336.537 0.006 0.008 1.008 1.771 1.456 

177 5023810.998 577555.327 336.303 0.006 0.007 1.044 1.645 1.271 

178 5023811.929 577554.023 336.024 0.007 0.009 0.999 1.722 1.403 

179 5023812.618 577553.285 335.897 0.006 0.008 1.001 1.725 1.405 

180 5023813.421 577552.392 335.669 0.006 0.008 1.003 1.727 1.406 

181 5023814.365 577551.109 335.56 0.006 0.008 1.006 1.73 1.408 

182 5023815.142 577549.958 335.695 0.007 0.009 1.008 1.733 1.409 

183 5023815.892 577549.135 336.024 0.007 0.008 1.197 1.752 1.279 

184 5023816.452 577548.238 336.183 0.013 0.017 1.076 2.104 1.808 

185 5023816.797 577547.454 336.012 0.013 0.016 1.081 1.993 1.674 

186 5023817.512 577546.488 335.949 0.009 0.01 1.152 1.997 1.632 

187 5023818.113 577545.672 336.483 0.015 0.013 1.718 2.523 1.848 

188 5023818.922 577545.005 336.637 0.009 0.01 1.225 2.117 1.726 

189 5023820.117 577544.414 336.661 0.011 0.01 1.761 2.446 1.697 

190 5023821.204 577543.916 336.686 0.009 0.01 1.236 2.109 1.709 

191 5023822.022 577543.301 336.863 0.008 0.01 1.251 2.178 1.783 

192 5023820.25 577544.267 336.704 0.008 0.01 1.274 2.343 1.966 

193 5023773.941 577529.439 335.837 0.007 0.011 1.248 2.317 1.952 

194 5023774.538 577528.596 335.764 0.007 0.01 1.284 2.384 2.008 

195 5023775.192 577527.869 335.556 0.008 0.01 1.49 2.496 2.003 

196 5023775.89 577527.149 335.771 0.008 0.01 1.428 2.411 1.942 
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197 5023776.625 577526.428 335.421 0.008 0.01 1.485 2.475 1.98 

198 5023777.27 577525.712 335.411 0.009 0.015 1.403 2.859 2.491 

199 5023777.924 577524.917 335.347 0.008 0.012 1.362 2.647 2.27 

200 5023778.5 577524.148 335.413 0.008 0.011 1.513 2.463 1.943 

201 5023779.143 577523.355 335.514 0.007 0.011 1.286 2.313 1.923 

202 5023779.798 577522.488 335.144 0.008 0.011 1.521 2.473 1.95 

203 5023780.423 577521.835 334.996 0.007 0.01 1.256 2.234 1.847 

204 5023781.154 577521.091 335.106 0.008 0.011 1.256 2.223 1.834 

205 5023781.77 577520.358 334.913 0.008 0.01 1.528 2.42 1.877 

206 5023782.635 577519.737 334.974 0.008 0.014 1.403 2.834 2.462 

207 5023783.347 577519.129 334.644 0.008 0.013 1.418 2.901 2.531 

208 5023784.104 577518.362 334.712 0.008 0.014 1.405 2.834 2.462 

209 5023765.73 577521.651 335.658 0.007 0.012 0.994 2.042 1.783 

210 5023766.544 577520.795 335.553 0.008 0.012 1.392 2.635 2.238 

211 5023767.272 577519.825 335.432 0.008 0.013 1.333 2.599 2.231 

212 5023768.094 577518.856 335.326 0.008 0.012 1.391 2.622 2.223 

213 5023768.873 577517.79 335.245 0.008 0.013 1.293 2.535 2.181 

214 5023769.41 577516.915 335.122 0.007 0.012 1.291 2.527 2.173 

215 5023769.92 577516.181 335.051 0.008 0.013 1.389 2.599 2.196 

216 5023770.573 577515.579 334.966 0.009 0.013 1.287 2.515 2.161 

217 5023771.203 577514.764 334.93 0.008 0.013 1.387 2.57 2.164 

218 5023771.725 577514.019 335.04 0.008 0.014 1.279 2.487 2.133 

219 5023772.296 577513.277 335.024 0.008 0.013 1.31 2.502 2.132 

220 5023773.141 577512.379 335.01 0.011 0.016 1.498 2.796 2.36 

221 5023773.729 577511.369 334.916 0.013 0.02 1.179 2.324 2.002 

222 5023774.544 577510.56 335.246 0.01 0.014 1.388 2.491 2.069 

223 5023775.026 577509.909 335.215 0.012 0.017 1.466 2.803 2.389 

225 5023777.894 577510.125 334.298 0.012 0.015 1.473 2.331 1.806 

226 5023778.046 577509.921 334.542 0.01 0.012 1.446 2.276 1.757 

227 5023778.128 577509.736 334.74 0.012 0.011 2.029 2.779 1.899 

228 5023768.169 577504.132 335.774 0.012 0.011 1.914 2.61 1.774 

229 5023768.015 577504.417 335.463 0.015 0.014 2.067 2.746 1.807 

231 5023766.703 577506.198 334.936 0.01 0.022 1.07 2.609 2.38 

232 5023765.573 577507.529 334.914 0.01 0.02 0.919 2.058 1.841 

233 5023764.99 577508.214 334.843 0.007 0.014 1.221 2.826 2.549 

234 5023764.472 577508.887 335.064 0.009 0.013 1.713 3.09 2.571 

235 5023763.688 577509.904 334.977 0.007 0.011 0.913 2.082 1.871 

236 5023763.13 577510.674 335.237 0.006 0.01 0.9 1.936 1.714 

237 5023762.794 577511.182 335.141 0.007 0.013 1.184 2.786 2.522 
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238 5023762.325 577511.866 335.104 0.006 0.01 0.901 1.929 1.705 

239 5023761.784 577512.735 335.228 0.006 0.01 0.901 1.925 1.701 

240 5023761.241 577513.75 335.272 0.006 0.011 0.902 1.92 1.695 

241 5023760.606 577514.527 335.579 0.006 0.013 1.095 2.721 2.491 

242 5023760.166 577515.451 335.453 0.01 0.021 1.099 2.709 2.477 

243 5023759.56 577516.23 335.593 0.006 0.013 1.095 2.695 2.463 

244 5023759.216 577517.056 335.589 0.006 0.013 1.192 2.737 2.464 

245 5023758.868 577518.016 335.756 0.006 0.012 1.043 2.638 2.424 
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APPENDIX C 

WATER SURFACE INTERPOLATION  
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WATER SURFACE ELEVATIONS MEASURED IN THE FIELD AT CROSS 

SECTIONS 10, 11, AND 12 
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EDGE-OF-WATER ELEVATION LOCATIONS 
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 TIN 1 OF WATER SURFACE 
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TIN 2 OF WATER SURFACE 
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SPLINE OF WATER SURFACE 
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3D VIEW OF SPLINE WATER SURFACE 
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3D VIEW OF TIN 2 WATER SURFACE 
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SPATIAL DISTRIBUTION OF WSE DATA FOR QUANTITATIVE COMPARISON 

OF WATER SURFACE INTERPOLATION ACCURACY 
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APPENDIX D 

ERROR DISTRIBTUIONS  
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COMPARISON OF DEPTH ERROR BETWEEN METHODS 
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ERROR DENSITY CURVES FOR FINAL CORRECTIONS 

 

  



 

96 

1.34 REFRACTION CORRECTION: DEPTH ERROR DISTRIBUTION 
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SITE-SPECIFIC REFRACTION CORRERCTION: DEPTH ERROR DISTRIBUTION 
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SPECTRAL SITE REGRESSION: DEPTH ERROR DISTRIBUTION 
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NON-SHADOW SPECTRAL REGRESSION: DEPTH ERROR DISTRIBUTION 
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DATA POINT REMOVED PRIOR TO CALCULATING MORAN’S I FOR NON-

SHADOW VALIDATION DATA 

 

 

 

Data point removed 
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SITE-SPECIFIC COFFICIENT: MORAN SCATTERPLOT, D = 9 
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1.34 COEFFICIENT: MORAN SCATTERPLOT, D = 9 
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1.34 COEFFICIENT: MORAN SCATTERPLOT, D = 4 
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SPECTRAL SITE REGRESSION: MORAN SCATTERPLOT, D = 9 
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NON-SHADOW SPECTRAL REGRESSION: MORAN SCATTERPLOT, D = 5 
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NON-SHADOW SPECTRAL REGRESSION: MORAN SCATTERPLOT, D = 9 
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MAGNITUDE OF ERROR AFTER APPLYING THE 1.34 REFRACTION 

COEFFICIENT 
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MAGNITUDE OF ERROR AFTER APPLYING THE SITE SPECTRAL DEPTH 

REGRESSION 
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MAGNITUDE OF ERROR AFTER APPLYING THE NON-SHADOW SPECTRAL 

DEPTH REGRESSION 
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ADJUSTED DEM IN SUBMERGED CHANNEL AFTER SITE SPECFIC 

CORRECTION 
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