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DISSERTATION ABSTRACT 

 

Julius Alexander McGee 

 

Doctor of Philosophy 

 

Department of Sociology 

 

June 2016 

 

Title: The Paradox of Green Commodities 

 

 

In this dissertation, I establish a theoretical and empirical critique of modern forms of 

environmentally sustainable technology. Theoretically, I critique the application of 

environmentally sustainable technologies in modern capitalist economies using the treadmill of 

production theory and metabolic rift theory. I also expand on these theories by developing an 

analytical concept – the displacement paradox. The displacement paradox refers to a 

counterintuitive phenomenon, where green technologies expand rather displace traditional 

production processes. Empirically, I assess the assumptions of the displacement paradox by 

analyzing the relationship between organic farming and agrochemical application, organic farming 

and greenhouse gas emissions, organic farming and water pollution, and alternatively fueled 

vehicles and total fuel consumption per vehicle. In each of these cases, I find that green technology 

(in the form of organic farming and alternatively fueled vehicles) is not displacing traditional 

production processes, and instead expanding alongside them. I argue that these findings are a result 

of the broader socioeconomic structure that green technology is produced under. Specifically, I 

contend that because current socioeconomic systems are established around traditional production 

processes, to substantially reduce environmental degradation, green technologies must operate as a 

social and technological counterforce to traditional production processes. Currently, the green 

technologies explored in this dissertation act as a technological alternatives to traditional 
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production processes, making them commodities that sustain the current structure of social 

relations, as opposed to social and technological counterforces to environmentally hazardous forms 

of production. I conclude that in order for green technologies to successfully reduce environmental 

degradation, they must be established under social conditions that support their use over traditional 

production processes.  

This dissertation contains previously published and unpublished co-authored material.  
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CHAPTER I 

INTRODUCTION: THE PROBLEM WITH GREEN REVOLUTIONS 

Recently, in a course I was teaching on environmental sociology, I opened up a lecture by asking 

the class what they knew about the green revolution. The topic of this particular lecture pertained 

to the environmental impacts of agricultural production. The point of the question was to get a 

good sense of the students’ prior knowledge of the technology developed during the green 

revolution. Like most questions I asked at the start of lecture, I gazed around at blank faces for 

about thirty seconds, before finally one student raised their hand to break the silence. The student 

who had raised their hand confidently proclaimed that the green revolution referred to the recent 

rise in environmentally sustainable laws, products, and technologies around the world. 

Admittedly, I was somewhat baffled by this response, but it was not because the student was 

incorrect. On the contrary, I was astonished by the student’s interpretation of the current era in 

which we live. The student not only saw this era as a revolution, but more importantly, defined 

this revolution using the term “green”.  

Contrary to my first impression, the development and promise of what my student had 

acknowledged as today’s green revolution was strikingly similar to the development and promise 

of the actual green revolution. The green revolution generally refers to the period between 1940 

and 1970, where innovations in agricultural technology, such as the creation of “dwarf crops” 

and synthetic fertilizers, significantly increased the amount of calories produced per hectare of 

agricultural land. The origins of the green revolution begin with Norman Borlaug, an American 

forest pathologist interested in agriculture, who created a disease resistant high-yielding variety 

of wheat that transformed the Mexican wheat market into a large global exporter (Manning 

2004). Borlaug eventually brought his innovations to the United States, where he was funded by 
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the Rockefeller and Ford Foundations to increase research on dwarf cropping (Shiva 1991). His 

research and innovation not only increased wheat production in North America, but also 

throughout the developing world (Manning 2004).  

The promise of the green revolution and the story that is often told, is that industrial 

agriculture can feed the world and increase the quality of life of billions living in poverty. On the 

surface this appears to be true. From 1975 to 1986 rice and wheat production increased thirty-

two percent and fifty-one percent, respectively. Additionally, the massive famine that had 

plagued India prior to this period was reduced dramatically (Shiva 1991). This is all attributed to 

Borlaug’s innovations, and he was eventually awarded a Nobel Peace Prize in 1970 for the 

success of the green revolution. There is no doubt that the technology of the green revolution 

increased agricultural output dramatically, excluding China, the green revolution increased food 

per capita by 11%. However, due to the massive restructuring of agribusiness during the green 

revolution, the number of hungry people also increased by 11% (Lappé 1998). This is because 

hunger is mostly linked to poverty, which also increased due to the corporate consolidation of 

agribusiness and consistent economic growth in the agricultural industry.  

The often unacknowledged story of the green revolution is that it increased the power of 

fertilizer, pesticide, and seed manufactures in the agribusiness industry. Borlaug’s dwarf crops 

required massive application of agrochemicals to be maintained, forcing farmers to be heavily 

reliant on agrochemicals (Manning 2004). For example, within twenty years the green revolution 

completely deteriorated the soil fertility that had lasted for generations with “phosphorus and 

potash generated from geological deposits and nitrogen derived from petroleum” (Shiva 1991: 

101). Additionally, new seeds that were heavy consumers of fertilizers were required to maintain 

production, and pesticides were increasingly needed to allow mono-cropping techniques to 
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flourish. The increased reliance on external agro-inputs helped to vertically and horizontally 

integrate the agribusiness industry and expand the agricultural market (Magdoff et al. 2000). 

This is the true promise of the green revolution — the increased commodification of agriculture, 

as the organic compounds necessary for agricultural production, became commodities 

themselves.  

The promise of the original green revolution, mirrors the promise of what my student and 

many others see as today’s green revolution – the promise that economic growth can address the 

very problems it creates. However, similar to how the original green revolution increased 

poverty and hunger by further commodifying the resources necessary to combat it, the new green 

revolution has increased environmental degradation by further commodifying the technology 

necessary to combat it. In this dissertation, I argue that the production of green technologies 

produces paradoxical dependencies between green development and environmental degradation, 

where green technologies, rather than displacing environmental degradation, work to expand 

markets and increase environmental impacts. Throughout this dissertation I will empirically 

assess the paradoxical relationship between various forms of green development and 

environmental degradation to demonstrate how green technology is limited due to the 

socioeconomic context that it operates under. The thesis of this dissertation is that capitalist 

economies have commodified green technologies in a way that makes them conducive to modern 

socioeconomic processes that perpetuate environmental degradation.  

What is Green? 

Before discussing this thesis further, it necessary to understand what green technology means in 

capitalist economies. A global definition of green can be found in the United Nations 

Environment Program’s (UNEP 2011) annual report on the green economy, which is a 
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compilation of publications from international organizations and national governments regarding 

environmentally sustainable development. These publications proclaim to be a continuation of 

the World Commission on Environment and Development (WCED 1987) efforts to promote an 

environmentally sustainable economy. The WCED was a gathering of twenty-two nations in 

1987 that sought to lay the foundations for what they considered to be environmentally 

sustainable development, defined as “development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs” (WCED 1987). It 

marked not only the first time multiple nations assembled to address the escalating possibility of 

an environmental catastrophe, but also the first time sustainable development became an 

economic concept. The broad definition of sustainable development defined during the WCED 

was later translated by economists to mean production that does not depreciate per capita well-

being over time (Pezzey 1990). Although in the preceding decades many definitions of 

sustainability have been developed (Pearce1 and Walrath. No date), this particular definition 

became the template used by many nations to address environmental degradation (see 

Confederation of Indian Industry 2008; Republic of Korea 2009; Statistics Netherlands. 2009; 

APCO 2010; Republic of Rwanda. 2011; UNEP 2011; UNEP 2012a; Climate Works Australia 

2011; Ministry of Environment and Sustainable Development 2011; Ministry of Environment 

and Sustainable Development 2011; Jamet 2012; World Bank 2012; CIF 2012; United States 

Department of Energy 2013).  

                                                           
1 Pearce and Walrath (no date accessed May , 2015) found over 200 definitions of the term 
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In this definition of environmental sustainability, well-being is a synonym for capital 

accumulation. This logic is evident in the UNs assessments of successful forms of green growth, 

which argue that:  

…moving towards a green development path is almost certainly a means for attaining 

welfare improvements across a society, but it is also often a means for attaining future 

growth improvement. This is because a shift away from basic production modes of 

development based on extraction and consumption and towards more complex modes of 

development can be a good long-term strategy for growth. (UNEP 2011: p. 22) 

This logic is also evident in multiple nations’ attempts to promote green economic growth, which 

have been highlighted in various reports by the UN (see UNEP et al. 2008 UNEP 2010; UNEP 

2012). In all of these reports, green development is discussed as a technology and/or practices 

that reduces environmental impacts and promotes economic growth. What is considered to be 

green is technology that either increases the efficiency of resource use to limit the emission of 

environmental impacts, or a technology that is void of specific environmentally hazardous 

resources that can act as a substitute for an environmentally hazardous technology. While there 

has been considerable research conducted on the former these processes, (See Alcott 2005; York 

and McGee 2015, on the Jevons Paradox), my dissertation focuses on the latter.  

Technologies commonly perceived to be void of specific environmentally hazardous 

resources that can act as substitutes for traditional forms of production are renewable energy 

sources and organic agricultural practices (FAO 2012; IEA 2009a; 2009b; 2010; UNEP 2010; 

2011). In discussions of these two forms of green production, it is clear that the goal of 

producing these types of green technology is to substitute what the UN defines as brown 

technology2. Below is an example of how each type of technology is discussed.  

                                                           
2The United Nations defines brown technologies as processes that produce substantial environmental degradation, 
such as fossil fuels and conventional agriculture (See UNEP 2011). 
 



6 
 

The other key to balancing different forms of capital recognises that substitutability is a 

characteristic of current technologies. Investing in changing and substituting these 

technologies can lead to new complementarities. Most renewable energy sources, such as 

wind turbines or solar panels, considerably reduce the amount of natural capital that is 

sacrificed in their construction and the lifetime of their operation, compared to fossil fuel 

burning technologies. Both of these types of solutions – setting thresholds and altering 

technologies – are important for achieving a green economy. (UNEP 2011: 19)  

FAO promotes organic agriculture as an alternative approach that maximizes the 

performance of renewable resources and optimizes nutrient and energy flows in 

agroecosystems. Life cycle assessments show that emissions in conventional production 

systems are always higher than those of organic systems, based on production area. Soil 

emissions of nitrous oxides and methane from arable or pasture use of dried peat lands 

can be avoided by organic management practices.” (FAO 2012) 

Each of these processes are put forth as alternatives to existing forms of production. Moreover, 

the goal of each form of production is to reduce a specific environmental impact by substituting 

out an existing, more environmentally hazardous type of manufacturing. In this context, green 

refers to any type of technology that produces little to no environmental impact. Green growth 

refers to the ability of green technology to act as a substitute for a traditional technology in a way 

that allows capitalist economies to grow and expand without producing pollution or degrading 

the environment. This interpretation of environmental sustainability is very similar to the 

interpretation of economic sustainability in neoclassical economics, which identifies 

sustainability as sustained economic growth.  

The Problem with Green Growth 

Attempts to produce green technologies as substitutes that sustain economic growth is nothing 

new to capitalism. For example, growth theory in neoclassical economics, developed by Solow 

(1956) and Swan (1956), is a way of understanding long term growth trends through 

technological innovations and resource substitution. The Solow-Swan growth theory model grew 

out of a critique of a long-standing classical theory on economic growth, which originated from 

the likes of Smith, Ricardo, and Keynes (for an overview of the classical origins to growth 
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theory, see Sardadvar 2011). Solow was critical of what became to be known as the Harrod-

Domar model of economic growth, which he claimed “boils down to a comparison between the 

natural rate of growth which depends, in the absence of technological change, on the increase of 

the labor force, and the warranted rate of growth which depends on the saving and investing 

habits of households and firms” (Solow 1956:1). The key to Solow and Swan’s growth theory 

models is the influence of technological change on economic development. Thus their models 

emphasized the determinants of economic growth as a function of increases in inputs, such as 

labor and capital, and technological progress. Their theoretical framework purported that old 

capital would be pushed out and substituted by new capital that is produced from new constantly 

improving technology.  

The logic of growth theory parallels the logic applied by various nations and international 

organizations to implement green technologies. For instance, both are predicated on the ideology 

that technological progress and resource substitution can sustain economic growth. In this sense, 

the production of green technologies as discussed by governments and international 

organizations is an extension of growth theory, where the notion of sustained economic growth is 

slightly altered to encompass environmental sustainability. However, this logic if flawed in that 

green technologies can be used to sustain economic growth without substituting traditional 

technologies. This is because green technologies are currently produced under a socioeconomic 

context that is not conducive for their widespread use. Instead of acting as direct substitutes for 

traditional technologies, green technologies function as extensions of existing markets in a way 

that perpetuates economic growth. As a result, green technologies that are produced as 

alternative forms of production, are often commodified versions of environmental sustainability, 

and as such act as a continuation of the unique feature of capitalism that Immanuel Wallerstein 
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and Karl Polanyi famously referred to as “the commodification of everything”. Radical scholars, 

and in particular those in the historical materialist tradition, have long been critical of this 

process. In their book titled The Tragedy of the Commodity Longo, Clausen, and Clark explain 

this process very thoroughly.  

Central to this process [capitalism] is the necessity for accumulation of capital, of which 

the commodity is the central vehicle. Capitalism is a system predicated on constant 

expansion. Capital is invested and reinvested to accelerate economic growth, which 

continually propels and sustains the system. The generalized production of commodities 

in the capitalist economy is made so immensely transformative by the endless pursuit of 

economic growth and the institutional mechanisms by which it socially transpires. 

(Longo, Clausen, and Clark 2015: 148) 

This is to say that the current production of green technologies is a way of incorporating 

environmental sustainability into the growth imperative of capitalism. By marrying the two 

concepts of sustainability (economic and environmental), capitalist economies can now measure 

the success of green technologies by their sheer volume, and fail to recognize how they operate 

as tools of economic growth.  

For example, in January of 2016, United States President Barak Obama delivered his 

final State of the Union speech, highlighting the many accomplishments of his seven years as 

president. Among the accomplishments highlighted, was his legacy as the “green” president of 

the United States. He touted the success of clean energy programs, particularly the growth in 

solar and wind energy markets around the United States, proclaiming that not only had these 

markets expanded due to policies implemented during his tenure as president, but clean energy 

was beginning to compete with fossil fuel markets. All this expansion, however, occurred under 

a presidential regime that lifted the United States’ ban on oil exports (allowing the United States 

to soon outpace Saudi Arabia in oil production), signed a bill on transportation expediting 

pipeline permits for oil and natural gas companies, and expanded exports of coal and natural gas. 
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 President Obama’s emphasis on the accomplishments of sustainable technology and lack 

of acknowledgement of the consistent expansion of fossil fuel production during his final State 

of the Union, demonstrates the problematic narrative surrounding the production of green 

technology. There is a general assumption that anthropogenic environmental degradation is 

purely a technological problem. This narrative ignores the socioeconomic context that has 

developed around the production of traditional technology that has led to massive anthropogenic 

environmental degradation. This narrative has also been taken up in academia, specifically 

within the social sciences, in the theory of ecological modernization.       

The theory of ecological modernization is an academic argument supporting capitalist 

economies’ efforts to promote a green economy. A key theme within ecological modernization 

theory is the notion that environmental reform and sustainable development can be reached 

within the current structure of modern society (Spaargaren 2009; Spaargaren and Cohen 2009). 

This is often understood to occur through the development of environmentally-conscious 

technology. Huber (2009, pp. 334–35) argues that economic progress and the emergence of 

“green technologies” (e.g., “clean-burn hydrogen”, photovoltaics) help to reduce the overall 

volume and intensity of resource consumption. Thus as a theory in sociology ecological 

modernization emphasizes instances of environmental reform as examples environmental change 

(see York and Rosa 2003), similar to the way President Obama did in his latest state of the union, 

without providing any comprehensive analysis of environmental reform and unsustainable 

production. It relies on the same neoclassical economic framework discussed above to emphasize 

purely on the volume green technological development, and not green technology’s relationship 

to traditional forms of production or environmental degradation. In environmental sociology, 

there are several theoretical frameworks that are critical of the socioeconomic context that 
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technology is produced under, and have specifically been critical of ecological modernization 

theory. In this dissertation, I will be employing two of these theories – treadmill of production 

theory and metabolic rift theory – to structure a critical argument of the socioeconomic context 

that green technologies are currently produced under. 

Treadmill of Production  

Treadmill of production theory was first introduced by Allan Schnaiberg (1980) to explain the 

massive rise in environmental degradation since World War II. The name was meant to convey 

an image of a society running in place without moving forward. It also represented the decrease 

in social efficiency of the productive system. Schnaiberg’s main argument was (1), that 

environmental degradation was intrinsic to capitalist society, such that social inequalities were 

interwoven with each environmental concern, and (2) that social and political responses to these 

production processes were “variable  and volatile” (Schnaiberg et al. 2002). For these reasons, 

treadmill of production theory argues that capitalist efforts to ecologically modernize are simply 

perpetuations of the treadmill, and offer no solutions to the systemic rift between capitalism and 

nature. 

For treadmill of production, the problem with creating new green markets is that they do 

not necessarily alter the production of existing markets. Furthermore, the success of green 

markets occur at the level of consumption, which does not imply an overall change in 

production. Schnaiberg (1980) noted that, consumer preferences are predicated on a culture of 

individualism, where consumers see themselves as acting alone in consumption, as opposed to 

collectively. This makes the outcome of consumer preferences within capitalist economies 

contingent upon market constraints. So much so that the ability of green consumption patterns to 

generate positive environmental outcomes is dependent upon the allocation of profits earned 
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from green markets. If for example, the consumption of green goods continued to rise at a rapid 

pace and the profits earned from their consumption was used to increase the production of 

environmentally hazardous technologies, then there would be no reason to believe the prevalence 

of green technologies has any positive outcome on overall environmental quality.  

 Some treadmill of production theorists have offered critiques of sustainable efforts within 

modern society through directly addressing the construction of green markets. For example, 

York (2004) argues that instances of environmental reform cited by ecological modernization 

theorists are a result of “confusing a trend in variability with a trend in central tendency” (384). 

He contends that most environmentally conscious products are profitable only as market niches, 

where they provide specialized services and goods to consumers willing to pay a premium price. 

In this sense, environmentally conscious products offer no changes to the general trend of 

markets. York concludes that treadmill of production theory emphasizes the overall 

environmental outcome of capitalist modernization, and that processes of ecological 

modernization should be assessed on this same standard.  

Ecological Marxism 

Ecological Marxism stems from the historical materialist tradition in political economy; where 

capitalism is understood as a system that facilitates the relationships between humans and nature. 

Similar to the treadmill of production, it takes on a critical view of industrial capitalism. 

Specifically, it argues that the contradictions of capitalism extend beyond how Marxists have 

traditionally perceived them. For example, O’Connor (1973) argues that in addition to 

undermining the labor processes that sustain it, capitalism also presents contradictions to the 

natural environment, which maintain its growth. O’Connor claims that the contradiction between 

capitalism and the environment is the “second contradiction” of capitalism (the first being the 
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contradictions between capitalism and labor). He asserts that both capital and labor are 

dependent upon the exploitation of nature. Thus, capitalism as an arena of material relations is 

inherently contradictive to nature. 

 John Bellamy Foster further elaborates upon these contradictions with the notion of 

“metabolic rift”, which refers to Marx’s expression of the “irreparable rift in the interdependent 

process of social metabolism.” (Marx 1981: 949) Foster’s use of metabolic rift is based on 

Marx’s writings regarding metabolism and the development of soil chemistry and the use of 

chemical fertilizer (Foster 1999; 2000). Foster argues that Marx acknowledged the growing 

contradictions between capitalism and nature in his observation of Liebig’s work and the British 

agricultural revolution. Marx accuses capitalism of breaking the natural laws of sustainability in 

its use of synthetic fertilizers to restore nutrients to the soil that were lost during large scale 

agricultural production. This is facilitated and perpetuated by industrialization, which “reduces 

the agricultural population to an ever decreasing minimum” and “results in a squandering of the 

vitality of the soil, which is carried by trade far beyond the bounds of a single country” (Marx 

1981:  949).  

Metabolic rift theory has been used by social scientists to further contextualize 

environmentally hazardous outcomes of various forms of social organization. For example, 

Mancus (2007) examined the metabolic rift in global agriculture markets. He argues that the 

structure of industrial agriculture, which is defined by the overuse and dependence of inorganic 

nitrogen fertilizer, has breached the social metabolism between society and the nitrogen cycle, 

creating massive environmental pollution in natural waterways and soil erosion. In a similar 

vein, Gunderson (2011) applies metabolic rift theory to analyze large-scale livestock production, 

showing how the environmental impacts of industrial livestock production increase greenhouse 
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gas emissions, and pollute natural water systems. Clausen and Clark (2005) apply metabolic rift 

theory to marine systems, demonstrating how intensified production of aquaculture systems and 

overfishing practices pollute natural water systems and reduce aquatic biodiversity. 

 Ecological Marxists’ views on green markets follows the logic of the second 

contradiction and metabolic rift. The (second) contradiction that capitalism creates with nature 

generates a metabolic rift that is perpetuated by capitalism’s “blind desire for profit” (Marx 

1981). This prevents any true rational application of green technologies within capitalism, as 

they are implemented similarly to the guano based fertilizers that Marx observed in England. In 

this way, green capitalism uses resources to maintain and perpetuate the rifts generated between 

natural sustainability and capitalism. This notion was best exemplified by Clark and York (2008) 

who expand on the theory of metabolic rift using the notion of rifts and shifts, which applies to 

the processes “whereby metabolic rifts are continually created and addressed (typically only after 

reaching crisis proportions) by shifting the type of rift generated” (p. 17). They argue that “to the 

myopic observer, capitalism may appear at any one moment to be addressing some 

environmental problems, since it does on occasion mitigate a crisis. However, a more far-sighted 

observer will recognize that new crises spring up where old ones are supposedly cut down” 

(2008 p. 17).  

The Displacement Paradox   

In this dissertation, I will use treadmill of production theory and metabolic rift theory to critically 

assess the application of green technology in capitalist economies. My overarching argument is 

that the specific attempt to substitute traditional technologies with green technologies produces a 

displacement paradox, where green commodities do not completely displace environmental 

degradation produced by traditional technologies. The displacement paradox was first identified 
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and discussed by York (2008; 2012) to refer specifically to the inability of one type of 

technology to fully substitute another group technologies (e.g. one kilowatt of renewable 

electricity not completely substituting one kilowatt of renewable energy), I expand this concept 

here to additionally refer to the inability of green commodities to reduce the environmental 

degradation produced by traditional technologies. While it is useful to understand the 

paradoxical relationship between green technology and traditional technology based on green 

technology’s inability to substitute traditional forms of production, in some instances, it is not 

always the most useful way of conceptualizing the paradoxical relationship between green 

technology and traditional processes. For example, the ability of organic farming to operate as a 

counterforce to conventional agriculture is not simply based on its ability to act as a substitute for 

conventional agricultural land or agricultural products, in that organic agricultural practices at 

times rely indirectly on conventional practices (e.g. the use of manure produced on conventional 

land) to produce goods. Thus it may be the case that organic farming is substituting conventional 

agriculture in terms of land use and product use, while still increasing the application of 

conventional agricultural practices in a way that increases environmental degradation from 

conventional farming.   

Expanding the displacement paradox in this way allows me to empirically and 

theoretically capture the broader counterintuitive phenomenon associated with the production of 

specific types green technologies. Green technologies that produce displacement paradoxes are 

technologies designed with little to no environmental output, produced specifically as substitutes 

for traditional technologies. This includes technologies such as renewable energy, organic 

farming practices, and non-petroleum based vehicles, which are all void of specific elements 

(e.g. fossil fuels or synthetic fertilizers) that produce environmental impacts. I argue that these 
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types of technologies in capitalist economies represent a commodification of environmental 

sustainability in a way that allows green processes to support social structures that perpetuate 

environmental degradation.   

Empirically, the displacement paradox is represented by a counterintuitive association 

between green technology and traditional forms of production. The inability of green technology 

to substitute traditional technology and/or displace environmental degradation from existing 

processes, can be understood as a counterintuitive association that is caused by a multitude of 

factors that vary based on the social and/or biophysical context in which green technology is 

introduced. Thus throughout this dissertation, I will be empirically be assessing what I call 

displacement associations, which refers to the counterintuitive association between green 

technologies and traditional forms of production, using statistical models. These association 

apply to two instances – (1) an outcome where green commodities do not substitute traditional 

commodities or (2) when green commodities are associated with increases in total environmental 

degradation. I will draw from various environmental sociological theories as well natural 

scientific findings to explore the causal link of these displacement paradoxes, however, the 

empirical associations by themselves are simply correlations. My goal is to demonstrate how 

each association is connected to larger socioeconomic processes that can be more generally 

theorized on. 

In this dissertation I will be exploring the displacement paradox of two forms of green 

production – organic agriculture and alternative fueled vehicles. I chose to assess these forms of 

production because of the unique socioeconomic circumstances that each has developed under, 

which will be discussed in the proceeding chapters, and the widely available data on each form 

of production. In chapter two, I will connect the unique history of organic farming to the theory 
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of metabolic rift, and demonstrate how they rely on similar criticism of capitalist agriculture. 

Additionally, I will argue that the structure of organic farming has changed in such a way that it 

may no longer address the metabolic rift between modern agriculture and the environment. I 

conclude that development of organic farming within the context of capitalism limits its ability to 

reduce the application of agrochemicals, such as synthetic fertilizers and pesticides. I build upon 

this argument in chapter three, demonstrating that an additional consequence of organic 

agricultural production, which is its inability to reduce greenhouse gas emissions and water 

pollution. In chapter four, I explore the potential reason and consequences of the displacement 

paradox between alternatively fueled vehicles and traditionally fueled vehicles, arguing that the 

larger structure of the vehicle industry limits the ability alternatively fueled vehicles to substitute 

traditionally fueled vehicles. In the final chapter, I explore potential solutions to the displacement 

paradoxes analyzed in chapters 2 through 4, arguing for alternative socioeconomic solutions that 

allow green technologies to flourish. The larger argument being constructed in the next few 

chapters is that the production and use of green commodities produces a paradox, where green 

commodities fail to displace environmental degradation and/or environmentally hazardous forms 

of production.   
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CHAPTER II 

THE HISTORY OF ORGANIC FARMING AND THE DISPLACEMENT PARADOX OF 

CERTIFIED ORGANIC AGRICULTURE 

Perhaps the most widely-ignored factor in assessing the ecological merits of organic farming is 

its socioeconomic context. Numerous national policies and international organization 

recommendations (FAO 2014), discuss the merits of organic farming almost exclusively in 

biophysical terms. For example, national certified organic programs, such as the USDA (2016), 

the European Commission (2016), and the Organic Federation of Australia (2016), rely on life 

cycle assessments that weigh the ecological benefits of specific organic practices against 

conventional farming techniques, claiming that certified organic farming offers a more naturally 

based form of agricultural production that works to reserve natural ecosystems by preserving 

natural resources and biodiversity, and supports animal health and welfare. However, these 

assessments ignore the broader socioeconomic factors that contribute to the development of 

organic farming, such as the standards most often employed on organic farms, and the 

interconnectivity between organic and conventional farming. In order to understand the 

socioeconomic factors influencing the application of organic farming practices, it is essential to 

understand the historical development of organic farming.  

Early in its history, organic farming was discussed as a socioeconomic alternative to 

conventional agriculture, arguing for a reorganization of society around a self-sustaining, non-

synthetically dependent, agricultural system that connects urban and rural landscapes. Over time 

however, it became seen more as a technological alternative to conventional agriculture, defining 

itself by its use of naturally occurring inputs over synthetically derived inputs. This can be seen 

explicitly in national organic certification programs, which define organic farming solely as a 
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biophysical alternative conventional agriculture. This has led organic farming has become less of 

a counterforce to conventional agriculture and more of an extension of it, relying on off-farm 

inputs such as organic pesticides and manure based fertilizers that indirectly support 

conventional agricultural practices. In this chapter, I will empirically explore the relationship 

between organic agricultural land and the application of agrochemicals. I argue that the 

socioeconomic context that organic farming currently operates under produces a displacement 

paradox between organic farmland and agrochemical application, where organic farming 

increases the application of synthetic fertilizers and pesticides rather than reducing them.   

The History of Organic farming 

Environmental scientists and agricultural philosopher John Paull (2009; 2011a; 20011b; 2014) 

has argued that organic farming’s origins can be traced back to the mid-nineteenth century and 

the work Justus von Liebig. In his book Organic Chemistry in its Application to Agriculture and 

Physiology (1840), Liebig laid the ground work for what he considered to be a rational 

transformation of agriculture, which was the fusion of scientific knowledge and agriculture. In 

his assessment of the necessity of nitrogen in plant growth, Liebig became convinced that 

chemistry could develop a synthetic substitute for fertilizers that would stimulate plant 

development and lower the cost of agriculture. Liebig would later go on to criticize the 

unsustainability of agriculture. However even in his criticisms, he provided precognitions of the 

future of agricultural development. In one of Liebig’s later criticisms of agriculture he notes that 

“Population has reached such a level that it can only be sustained with present techniques of 

husbandry under two conditions. One, if a Divine miracle intervenes to restore the fields to the 

degree of productivity stripped from them by folly and ignorance; and two, if deposits of manure 
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or guano are discovered in volumes approximating to those of the English coalfields”  (Liebig 

quoted in Kautsky 1988 p. 53).  

Eventually, the German chemists Haber and Bosch would discover a way to make 

nitrogen as abundant as the British coal fields when converting nitrogen and hydrogen to liquid 

ammonia (Bosch 1922), sparking a new agricultural revolution and with it a new critique of the 

unsustainable nature of capitalist agriculture. Haber and Bosch’s discovery transformed modern 

agriculture, resulting in a proliferation of chemical farming. The success of Haber and Bosch’s 

research not only influenced the agricultural industry, but it also supported the German war 

effort in World Wat I. Ammonia became an essential ingredient for ammunition and fueled the 

demand for explosives during the Great War (Bosch 1922; Paull 2009). 

As a response to the proliferation of chemical agriculture, in the summer of 1924 in 

Poland, Austrian philosopher and social activists Rudolf Steiner delivered an eight-lecture series 

on the development of modern agriculture (Paull 2011a). In the course, Steiner responded 

specifically to the rise of synthetic fertilizers, claiming that  

“Nowadays people simply think that a certain amount of nitrogen is needed for plant growth, and 

they imagine it makes no difference how it’s prepared or where it comes from… In the course of 

this materialistic age of ours, we’ve lost the knowledge of what it takes to continue to care for 

the natural world” (Steiner, 1924b, pp.9-10; cited by Paull, 2011a p. 64).         

This was the first known negative commentary on industrial agriculture that called for an 

alternative system. It was here that Steiner promoted the idea of agriculture as an organism, 

which focused on a holistic approach to agricultural development that blended with earth’s 

natural ecology and was self-sustaining (Paull 2011b).  
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Steiner’s arguments would further developed after his passing by his student Ehrenfried 

Pfeiffer. Pfeiffer eventually coined the term “biodynamic farming” in the book Bio-Dynamic 

Farming and Gardening (1938), to refer to Steiner’s vision of an organismic agricultural system. 

Biodynamic farming specifically rejected the use synthetic chemicals and non-farm inputs, and 

promoted ecological, social, and economic sustainability (Ehrenfried 1938). In 1939, Ehrenfried 

was invited to a conference on biodynamic farming in Switzerland, where he met Oxford lecturer 

Lord Northbourne.  

A year later Northbourne, inspired by the ideas of biodynamic farming, published the 

book Look to the Land (1940), where he coined the term organic farming. Northbourne’s view of 

organic farming was closely related to Steiner and Ehrenfried’s biodynamic farming. Both 

emphasizing agricultural practices that allowed farming to operate as an organism. He notes that 

“the farm itself must have a biological completeness; it must be a living entity, it must be a unit 

which has within itself a balanced organic life” (Northbourne 1940 p.81, cited by Paull 2014 p. 

34).  He also makes specific claims regarding imported fertility, contending that it “cannot be 

self-sufficient nor an organic whole” (p.96). The rejection of imported fertility, and advocacy of 

a self-sustaining agricultural system, are essential features of both Ehrenfried and Steiner’s view 

of biodynamic farming and Northbourne vision of organic farming. These features stress the 

need for a sustainable agricultural system that operates like an organism embedded within the 

natural environment.  

In many ways, this conception of the farm as an organism is analogous to Marx’s use of 

metabolism when explaining the irreparable rift between society and the environment (see Foster 

1999; Foster 2000). Marx’s notion of metabolic rift deals specifically with the dialectal 
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relationship of humans and the environment, identifying the rift caused by agricultural 

production when it fails to replenish the nutrients taken by humans in cities. 

“Large landed property reduces the agricultural population to an ever decreasing minimum and 

confronts it with an ever growing industrial population crammed together in large towns; in this 

way it produces conditions that provoke an irreparable rift in the interdependent process of the 

social metabolism, a metabolism prescribed by the natural laws of life itself. The result of this is 

a squandering of the vitality of the soil, which is carried by trade far beyond the bounds of a 

single country” (Marx 1981,p. 949–50. Cited by Foster 1999: 379) 

This recognizes the rift caused by humans to the environment due to social organization. 

Northbourne’s critique of chemical farming mirrors this sentiment, arguing that farms that rely 

on external inputs, such as chemical fertilizers, cheap labor, and large-scale mechanization, are 

imbalanced and must be restored as a whole. He calls for an agricultural system that uses mixed 

crop-livestock farming, green manure, crop rotations to restore the imbalance of industrial 

farming. Thus, Northbourne’s organic farming is a statement on the sociobiological 

relationships, arguing for a social reconstruction of agriculture to address the environmental 

consequences of industrial farming. . This is somewhat different from what became the popular 

perception of organic farming in the United States that was conceived by Jerome Rodale.   

Jerome Rodale was an American publicist, who is often given credit for starting the 

organic movement (see Pollan 2006; Silver 2006), although, some have criticized him as simply 

being a promoter, popularizer, and rebrander of ideas from Britain to the American public 

(Jackson, 1974; Paull 2014). On the day of Rodale’s death in 1971, he appeared on “The Dick 

Cavett Show”, where he boasted about the merits of the organic diet. Rodale discussed how he 

felt as though he could live to be one hundred years due to his strict organic diet. Unfortunately, 
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it was during this televised appearance, when Cavett was interviewing his second guest that 

Rodale was later pronounced dead from a heart-attack that he suffered on-set (Cavett 2007). 

Prior to his death, Rodale had become the champion of the organic movement in the United 

Sates. He began writing about organic gardening in 1942 in his magazine Organic Gardening 

and Farming, which in 1971 sold over 720,000 copies (McGrath 2014). Throughout his life, in 

numerous interviews and various publications, Rodale consistently promoted a vision of organic 

farming that lacked of many of Northbourne’s original ideas. Specifically, even though he did 

advocate for environmentally sustainable farming, Rodale emphasized the health benefits of 

natural inputs to the complete exclusion of organic farming’s ability to address the metabolism 

between society and nature. In this way, Rodale’s version of organic farming is distinct from its 

predecessors, in that it ignored the broader implications of a sustainable agricultural system, such 

as mending the divide between agricultural production and social sustainability.  

This distinction is important, since even though the original concept of organic farming 

lie with Northbourne’s writings in 1940, Rodale’s influence on organic farming was much 

greater. This is evident in the way that Northbourne is continually ignored in historical writing 

about organic farming, such as Lockeretz’s 2007 book Organic Farming, An International 

History and Pollan’s The Omnivore's Dilemma: The Search for a Perfect Meal in a Fast-Food 

World (2006), which are two prominently read sources on sustainable agriculture. Northbourne 

did however, have a substantial influence on the development of The Soil Association, which is 

one of the first certifying entities of organic standards. He was cited liberally by founder Eve 

Balfour in her book The Living Soil, which is commonly acknowledged as the book that started 

The Soil Association. Unsurprisingly, The Soil Association to this day has some of the strictest 

standards on organic farming.  
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The difference between Rodale’s version of organic farming and Northbourne’s 

demonstrates a broader ideological divide amongst proponents of organic farming. For instance, 

social scientists, have discussed the ideological split between those who support the development 

of national organic standards and the integration of organic farming and agribusiness, and those 

who see organic farming as an opponent to the larger social context that modern agriculture 

operates under. Below is a discussion of the social factors that have influenced the development 

of the modern organic market and the current divide within the organic industry. 

The Current Social Context of Organic Farming 

The modern interpretation of organic agriculture can be seen in national organic certification 

programs, which create unified definitions of organic farming that farmers must abide by. The 

rise of certified organic farming has been met with many criticism by social scientists. The most 

prevalent criticisms have been brought forth by scholars developing the conventionalization 

thesis, which hypothesizes that as certified organic farming grows, it begins to mimic 

conventional agricultural practices. The term conventionalization was first proposed by Buck et 

al. (1997) to describe the changes occurring within organic agriculture in California. The authors 

utilized the concept to convey the transition of organic farming from an idealistically driven 

counter cultural movement, to a slight variant of conventional agriculture. Buck et al. (1997) and 

Guthman (2004a), found that organic farming was increasingly becoming industrialized, relying 

on non-farm inputs, such as machinery, fertilizers, feed, agrochemicals, and resource 

substitutions, to stimulate production. This has resulted in a bifurcation of the organic market, 

creating of two organic systems—one more in line with the original ideals of the movement that 

emphasized local small scale farming, direct consumer sales, and prohibited the use of non-farm 
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inputs, and another economically driven market that helped to integrate organic agriculture into 

the agribusiness industry.  

It has been argued that the certification of organic farming helps facilitate “regulatory 

capture” and corporate co-optation of organic goods by watering down specific organic standards 

(e.g. Howard 2009). Jaffee and Howard (2010) argue that within the United States, the United 

States Department of Agriculture (USDA) has watered down standards to allow specific inputs 

and limit regulatory oversight. For example, organic certification in the United States does not 

require specific organic agricultural practices, such as crop rotations for pest control and manure-

based fertilizers produced on farm, which in turn allows these methods to increase the amount of 

external agricultural inputs used on organic farms (USDA 2015). Guthman (2004b) argues that 

this allows post-production activities to capture a higher proportion of the total value of organic 

goods, as agribusiness is able to penetrate the organic industry through the production of 

agricultural inputs. This process increases the presence of pesticide and fertilizer manufacturing 

companies in the organic industry, and helps to facilitate the horizontal and vertical integration 

of the organic market similar to the conventional market (see Magdoff, Foster, and Buttel 2000). 

Ultimately, increasing the input of external agricultural products in organic farming, such as 

pesticides, has been found to intensify the have negative environmental impacts associated with 

agriculture (see Bahlai et al. 2010).  

Some have found evidence of conventionalization in other regions, specifically in 

Europe, as well as a variety of organic sectors (Langer and Frederiksen, 2005; Flaten et al. 2006; 

De Wit and Verhoog 2007; Best 2008). For example, Best (2008) found that newer organic 

farms in Germany show signs of conventionalization, noting that newer organic farmers tended 

to use slightly larger farms and had more specialized operations. Additionally the author found 
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that recent adopters did not share the same “pro-environmental” values as earlier farmers. Flaten 

et al. (2006) similarly found that newer organic dairy farmers in Norway used more concentrates 

and had higher milk production yields, highlighting that while all organic farmers shared 

favorable views toward the environment, older farmers had much stronger views and placed 

more emphasis on soil fertility, fertilizers, and pollution. Läpple and Van Rensburg (2007) in 

Ireland, also found that late adopters of organic farming expressed lower environmental values 

and were much more profit driven than early or medium adopters. In the Netherlands, DeWit and 

Verhoog (2007) found that conventional agro-food commodity chains were increasing and the 

use of non-farm inputs in organic farming.  

Obach (2015), has expanded on this narrative, noting that historically there has never 

been a true consensus on what organic farming means. While exploring the development of the 

organic movement in United States, he uses the term “spreaders” to refer to those who welcome 

the wider market for organic food and work with national governments and agribusiness, and 

“tillers” to refer to those who see organic farming as part of a larger social movement that 

encompasses massive social change. His narrative expands the bifurcation concept used by 

(Buck et al. 1997) and Guthman (2004a), demonstrating the true boundaries between the split 

groups in organic farming. For Obach, “spreaders” are more or less those who accept the 

conventionalization of the organic market, and assume that even watered-down organic practices 

are better than chemical intensive agriculture. Obach also notes that “spreaders” argue that they 

are responding to the majority of consumer demands for organic goods, and reaching more 

people by making organic goods more accessible. While the “spreaders” place emphasis on the 

individual health benefits of organic farming, as did Rodale, the “tillers” on the other hand, have 

stayed as close as possible to the ideas of organic farming promoted by Northbourne and the 
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early developers of biodynamic farming. The assumptions made by “spreaders”, however, is 

void of any understanding of the broader social implications of organic agriculture. Furthermore, 

the arguments made by “spreaders”, mirrors the rhetoric used by those advocating for a green 

capitalism, in that they assume the environmental merits of organic farming stem from what is 

done on the organic farm, and that organic farming can eventually operate as a substitute for 

conventional agriculture. 

While the studies discussed above pertain to practices utilized on specific farms, they 

offer a broader conceptualization of how organic farming operates in relation to conventional 

farming. As is found in multiple studies, organic farming at times relies on techniques that are 

common in conventional agriculture, such as the use of off-farm inputs. This fact is telling in and 

of itself, as it demonstrates how organic farming is increasingly playing by the rules set forth by 

the conventional agriculture. It also demonstrates how organic farming is influenced by the 

monopolistic structure of the larger agricultural industry, as organic farming is forced to operate 

as a response to the dominant structure of conventional agriculture but not a counterforce to the 

social relations that support it.  

The agricultural industry is largely structured around the needs of an urban population. 

As discussed previously, the use of inputs to replenish soil fertility, the mechanization of 

agriculture, and the increasing size of farms, are all responses to the town-country divide. 

Capitalism’s response to this divide has been to further decrease rural populations and 

commodify agricultural processes. Since Liebig’s early writings regarding agricultural 

chemistry, soil nutrients have been an essential commodity in the agricultural industry. During 

the second agricultural revolution, farmers’ have had to purchase nutrients, such as bird guano, 

in order to maintain or increase farm productivity (Foster 1999; 2000). This process has only 
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heightened after the proliferation of Haber-Bosch’s chemical fertilizer, which, coupled with the 

developments that occurred during the green revolution, made farmers increasingly reliant on 

off-farm chemical inputs (Hefferman 1998) Additionally, over the past half-century, meat, grain 

and seed production has gradually become consolidated vertically and horizontally (see 

Hefferman 1998; Hendrickson et al. 2014 Howard 2009). While these processes have not been 

directly mirrored by organic farming, they have been very influential, particularly in the United 

States, on the practices used on organic farms. For example, in the United States, the United 

States Department of Agriculture’s (USDA) National Organic Program (NOPP) allows organic 

farms to apply manure to land from conventional farms (NOP 2011). This is problematic for a 

multitude of reasons, but what is perhaps most troubling about this process, is that it represents 

organic farming’s direct and indirect reliance on the monopolistic structure of conventional 

agriculture. A large amount of the production of synthetic fertilizers and genetically modified 

seeds are used to produce grain feed for conventional livestock, such as poultry, dairy, beef, 

hogs, and sheep. When organic farms use the waste produced by conventional livestock to 

replenish soil nutrients, such as nitrates, they are using nutrients produced synthetically that are 

absorbed by livestock when consuming conventional feed. Thus, organic farms that use 

conventional manures are partially relying on synthetic chemicals to restore soil nutrients. While 

the use of livestock manures to replenish soil nutrients is an essential component of organic 

farming, in Northbourne’s (1940) original vision of organic farming, the use of manure is 

understood as part of the cyclical nature of organic farming that allows it to operate as an 

organism. For Northbourne, the use of livestock manures to restore soil nutrients are essential 

because they are cycled through organisms and back to the land. Using livestock manures that 

are produced on organic farms are qualitatively different than using livestock manures that 
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derive from off-farm, chemical-intensive practices. While the extent to which manure from 

conventional farms is used in organic farming is unknown, the fact that conventional manures 

are allowed on organic farms demonstrates how organic farming is being shaped by the structure 

of agribusiness.   

The structure of conventional agriculture, which is dictated by various monopolies at 

different stages of agricultural production, determines the pathways that organic farming can 

take as an alternative market/movement. In many respects, organic farming can be understood as 

reacting to the pressures of monopolized agribusiness in a way that falls in line with the theory of 

monopoly capitalism, where. For example, as Baron and Sweezy note, small businesses in the 

stage of monopoly capitalism are constantly “reacting to the pressures of Big Business” (Baran 

and Sweezy: p. 52), making them qualitatively different than corporations. Each end of the 

bifurcated organic market—both the “tillers” and the “spreaders”—are reacting to the pressures 

of conventional agriculture. While on the one hand “tillers” have maintained a strict stance 

against conventional agriculture, operating exclusively in alternative markets, such as 

community supported agricultural programs and farmers markets, they have increasingly become 

more peripheral over time. Currently, in the United States more than ninety percent of all organic 

sales occur in grocery stores (USDA 2015). “Spreaders” have reacted to the pressures of 

conventional agriculture by conforming to the structure of agribusiness, relying off-farm inputs 

to increase productivity and indirectly relying on conventional processes to obtain these inputs. 

For example, it has been demonstrated in research pertaining to the conventionalization thesis 

that newer entrants in organic farming, whom Obach would identify as “spreaders”, are more 

concerned with economic prosperity than environmental quality. Additionally, as Obach notes, 

those considered to be “spreaders” in the organic movement are more concerned with the growth 
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of the organic industry than the broader values of social activism and/or specific aspects of 

environmental quality. 

The problem with the conventionalization of organic farming and the viewpoints of 

“spreaders” is that they limit the ability of organic farming to operate in opposition to 

conventional agricultural practices, and act as a true alternative to conventional farming. While 

conventionalized organic farming does not make up all of organic farming, their existence does 

raise the question of whether or not organic farming is displacing conventional agricultural 

processes. One potential outcome of the integration of organic farming with conventional 

agriculture is the inability of organic farming to displace the application of agrochemicals. 

Another somewhat ignored feature of organic farming is its reliance on organic-based pesticides, 

of which proponents of the conventionalization thesis have been very critical. If the trends of 

conventionalization continue to grow and organic farming becomes more reliant on off-farm 

inputs, such as livestock manures and pesticides, there may be a displacement paradox between 

organic farming and agrochemicals. Below I develop hypotheses regarding these possibility and 

use the best available data on organic farming and agrochemicals to explore the relationship 

between organic farming and agrochemical application.  

Methods: 

The hypotheses tested here assess the degree to which organic farming reduces the application of 

agrochemicals: 

H1: Increases in the proportion of certified organic farming increases the total amount of 

agrochemicals applied to agricultural land.  
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H2: Increases in the proportion of certified organic farming increases the intensity of 

agrochemicals applied to land.  

To test my hypotheses I use a fixed-effects panel regression with robust standard errors 

adjusted for clustering by nation where data is available (124 for fertilizer application and 69 for 

pesticide application), from 2003-2010. This approach differs from previous analyses that have 

studied the relationship between socioeconomic development and hazardous agricultural 

practices (Longo and York 2008), as well as those that have looked at organic farming’s 

relationship to hazardous agricultural practices (Knight and Newman 2013) in that it is 

longitudinal. A fixed-effects panel model controls for any unobserved, time-constant features 

between nations, as well as events that occurred in each year that have affected nations 

simultaneously. Additionally, I included time dummy variables to account for general period 

effects (see Jorgenson and Clark 2012; York and Rosa 2012). I chose to focus on all nations 

where data is available in order to obtain the most accurate description of global organic 

agricultural practices. 

The logic of my modeling approach derives from the STIRPAT framework (See Cole and 

Neumayer 2004; Cramer 1998; Rosa et al., 2004; Shandra et al. 2004; Shi 2003; York 2008; 

York and Rosa 2012; York et al. 2003a, 2003b, 2003c). STIRPAT was first developed by Dietz 

and Rosa (1997) as a reformulation of the popular IPAT equation. IPAT and STIRPAT both 

assume that environmental impacts are a multiplicative function of population, affluence, and 

technology, however as a stochastic model, STIRPAT allows for hypothesis testing. My models 

assume that chemical fertilizer and/or pesticide application (I) are a multiplicative function of 

population (P), affluence (A), and technology (T). Similar to other STIRPAT analyses, I have 

converted each variable to natural logarithms to obtain their elastic relationship (see York et al. 



31 
 

2003a; 2003c; York and Rosa 2012). This makes the variables relationship multiplicative, 

resulting ecological elasticity coefficients (York et al. 2003c).        

lnyit= β1ln(xit) + β2ln(xit) … βkln(xitk) + µi + wt + eit  

Here the subscript i represents each unit of analysis (nation) and the subscript t the time period, 

yit is the dependent variable in original units for each nation at each point in time, xitk represent 

the independent variables in original units for each nation at each point in time, βk represents the 

elasticity coefficient for each independent variable, ui is a nation specific disturbance term that is 

constant overtime (i.e., the nation specific y-intercept), wt is a period specific disturbance term 

constant across nations, and eit is the stochastic disturbance e term specific to each nation at each 

point in time. 

 

Model A  total chemical fertilizer appliedit = βpopulationit + βGDP per capitait + βpercent 

organic hectares of total agricultural landit+ µi + wt + eit  

 

Model B chemical fertilizer applied per hectare of agricultural landit = βpopulationit + 

βGDP per capitait + βpercent organic hectares of total agricultural landit + µi + wt + eit  

 

Model C  total chemical pesticide appliedit = βpopulation + βGDP per capita + βpercent 

organic hectares of total agricultural land+ µi + wt + eit  
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Model D chemical pesticide applied per hectare of agricultural landit = βpopulationit + 

βGDP per capitait + βpercent organic hectares of total agricultural landit+ µi + wt + eit  

  

Dependent variables: 

The data for the dependent variable in model A and B was obtained from the World Bank’s 

Development Indicators index (2014). Chemical fertilizer refers to the total amount of chemical 

nitrogen, phosphate, and potash applied per hectare of land (the original form of the data 

obtained) measured in kilograms. I chose fertilizer applied per hectare of land to demonstrate the 

relationship between changes in my indicator variables and the intensity of fertilizers applied.     

The data for my dependent variable in models C and D were obtained from the United 

Nations Food and Agriculture Organization (FAO) statistic. Chemical pesticide applied per 

hectare of agricultural land measures the average kilogram of insecticides, herbicides, fungicides 

and others (such as growth regulators) applied per hectare of land (the original form of the data).  

Similar to models A and B, the variable pesticides applied per hectare of agricultural land allows 

me to estimate the relationship between changes in my indicator variables and the intensity of 

pesticide applied.  The dependent variables in all models measures the application in kilograms.  
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Table 1 Descriptive statistics of dependent variables. 

Dependent 

Variables 

Total chemical 

fertilizer 

(Kilograms) 

Chemical 

fertilizer per 

hectare of land 

(Kilograms) 

Total pesticide 

application 

(Kilograms) 

Pesticide 

application per 

hectare of land 

(Kilograms) 

Mean  1.94e+07 245.543 2.50e+08 4.713 

Standard 

deviation 

1.06e+08 1079.268 1.14e+09 8.419 

Maximum 1.15e+09 16532.31 9.24e+09 85.27 

Minimum 17.37465 .005 1748 .01 
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Independent variables: 

To operationalize P, A, and T within my models model, I use the independent variables 

population (P) GDP per capita (A), and percent organic land (T). The variables chosen to 

measure P and A are analogous to other studies that have researched drivers of fertilizer and 

pesticide consumption (see Knight and Newman 2013; Longo and York 2008), with the 

exception of models A and B where P is operationalized as population per hectare of agricultural 

land in order to standardize the specification of population based on the dependent variable. This 

was done by dividing population by hectares of farmland. The data for population, GDP per 

capita, and agricultural land was obtained from the World Bank’s development indicators index. 

The data on population represents total number of people living in each country in each year. 

The data for GDP per capita represents the gross domestic product per capita within each nation 

measured in US dollars adjusted for 2005 inflation. I also include a quadratic term for GDP per 

capita (GDP per capita squared) to test for a potential EKC (Dinda 2004), which would indicate 

a non-linear relationship. The data for agricultural land represents the total amount of agricultural 

land in use in a given year and is measured in hectares.  

The data for organic agricultural land was obtained from Organic World Statistics. Data 

on certified organic agriculture is obtained from the SOEL/FiBL/IFOAM survey. Certified 

organic farming refers to both the certified in conversion areas and the certified fully converted 

areas. A major drawback of this data is that definitions of organic may vary across countries and 

data are gathered using various methods (e.g., surveys, secondary data, experts, etc.). However 

despite these drawbacks, all data on organic farming adheres to the definition “that it is a system 

that relies on ecosystem management rather than external agricultural inputs” (FAO 2015). 

Furthermore, the point of this analysis is to explore the extent to which global organic farming 



35 
 

promotes specific farming practices, thus the variability in farming practices is part of what is 

being assessed. Nonetheless, it is still very important to interpret the results presented here 

cautiously.  

 The independent variable percent organic farmland is a proportion of organic land to total 

agricultural land. This was obtained by dividing the amount of certified organic farmland by the 

total amount of agricultural land used in a specific year. Additionally, I included a quadratic term 

for percent organic farmland (percent organic farmland squared) to test for a potential non-linear 

relationship. I chose to include a quadratic term based upon the assumptions within the 

conventionalization thesis, which argue that over time certification is used as a tool to water 

down standards and promote the economic vitality of organic farming (Buck et al, 1997; 

Guthman 2004a). The assumption specifically within my models is that over time certified 

organic farming starts to directly or indirectly support the use agrochemicals.  
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Table 2 Descriptive statistics of independent variables 

Independent 

variables 

Population Population per 

hectare of land 

GDP per capita 

 

Percent organic 

land 

Mean 3.58e+07 13.547 12550.92 .600 

Standard 

deviation 

1.47e+08 162.612 20316.97 .310 

Maximum 1.35e+09 2870.266 193892.30 14.5 

Minimum 9530 .007 108.01 8.13e-06 
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Results:     

The fixed-effects models presented below control for omitted factors that vary cross-nationally 

but are temporally invariant, such as geographic, climatic, and geological factors, as well as the 

effects of the historical legacy preceding the periods examined here (e.g., the era during which a 

nation began to industrialize agriculture). The models, therefore, control for characteristics 

unique to each nation. Additionally, the models control (via the time dummies) for cross-

sectional invariant factors that change over time, such as prices of organic goods. Thus, these 

models focus on change overtime within nations, not on cross-sectional differences or on general 

average global trends, which has been the focus of previous analyses assessing chemical 

fertilizer and pesticide application (Knight and Newman 2013; Longo and York 2008). I present 

the “within R2” indicating the proportion of variance within nations overtime that is explained.  
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Table 3 Fixed-effects panel regression coefficients predicting total and per hectare 

agrochemical application   

Independent 

Variables 

(logged)  

Model A 

Total chemical 

Fertilizer 

application 

(SE)  

Model B 

Chemical 

fertilizer 

application per 

hectare of 

agricultural land 

(SE) 

Model C 

Total Pesticide 

application 

(SE)  

Model D 

Pesticide 

application per 

hectare of 

agricultural land 

(SE) 

Population -.186 

(.563) 

 .715 

(.807) 

 

Population 

per hectare of 

land 

 . 515 

(.281) 

 -.277 

(.412) 

GDP per 

capita  

.493*** 

(.100) 

.489*** 

(.100) 

.289* 

(.126) 

.242* 

(.132) 

Percent 

Organic land 

-.023 

(.013) 

-.024 

(.013) 

-.012 

(.015) 

-.007  

(.015) 

Constant 13.110 

(9.388 

-.045 

(.871) 

1.971 

(13.376) 

-1.540 

(1.070) 

R2 Within .035 .036 .189 .115 

Highest VIF3 1.51 1.30 1.51 1.30 

* p < .05** p < .01*** p < .001(two-tailed tests)  

 

 

 

 

 

 

 

                                                           
3 Note VIF estimates do not include values for the quadratic terms. 
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Table 4 Fixed-effects panel regression coefficients predicting 

 total and per hectare agrochemical application   

Independent 

Variables  

(logged) 

Model A 

Total chemical 

Fertilizer 

application 

(non-linear)  

(SE) 

Model B 

Chemical 

fertilizer 

application per 

hectare of 

agricultural land 

(non-linear) 

(SE) 

Model C 

Total pesticide 

application 

(non-linear)  

(SE) 

Model D 

Pesticide 

application per 

hectare of 

agricultural land 

(non-linear) 

(SE) 

Population 

 

-.945 

(.654) 

 

 

.537 

(.915) 

 

 

Population 

per hectare of 

land 

 .460 

(.283) 

 -.143 

(.411) 

GDP per 

capita  

1.648*** 

(.381) 

 

1.231*** 

(.348) 

2.237*** 

(.478) 

 

2.279*** 

(.437) 

GDP per 

capita2 

-.075*** 

(.024) 

-.048*** 

(.022) 

-.123*** 

(.030) 

-.129*** 

(.027) 

Percent 

Organic land 

.061 

(055) 

.084 

(.054) 

.318** 

(064) 

.303*** 

(.062) 

Percent 

Organic land2  

.005 

(.003) 

.006** 

(.003) 

.020*** 

(.004) 

.019*** 

(.004) 

Constant 2.763* 

(10.317) 

-2.437 

(1.491) 

-1.434 

(14.580) 

-8.166*** 

(1.819) 

R2 Within
  

.047 .044 .190 .195 

Highest VIF4 1.51 1.30 1.51 1.30 

* p < .05** p < .01*** p < .001 (two-tailed tests)  

                                                           
4 Note VIF estimates do not include values for the quadratic terms. 
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Table 3 presents the basic linear STIRPAT model, which assumes a linear relationship 

between GDP per capita, population, and percent organic land. Here I find that affluence 

measured as GDP per capita is positively correlated and significant at a two-tailed test for both 

the total application of agricultural chemicals and the intensity of agricultural chemical 

application. Interestingly, population is found to be non-significant in all the models. This differs 

from cross-sectional analyses that have found population to be an essential driver of 

environmental impacts within the STIRPAT framework (see Shandra et al. 2004; Shi 2003; York 

2008; York and Rosa 2012). This is possibly a result of the expanding reliance on agricultural 

exports having little impact on agricultural production in nations. Thus, this finding does not 

contradict other STIRPAT analyses, but instead shows that rises in population size overtime 

within nations does not substantially alter agrochemical application. This is similar to Mazur’s 

(1994) finding in regards to energy consumption, where the author found that year to year 

fluctuations in population were an “unimportant contributor” to the year based fluctuations in 

energy consumption The coefficient percent organic farmland is also not significant in models A, 

B, C, and D of table 3.   

Table 4 presents the non-linear STIRPAT models and includes a quadratic term for GDP 

per capita. Likewise, table 4 includes a quadratic term for percent organic farmland to account 

for the assumptions within critics of organic farming who argue that organic farming over time –

begins to support the application of off-farm inputs (Flaten et al. 2006; Best 2008).  Similar to 

table 3, population found not to be significantly correlated in any of the models.   

  Similar to table 3, GDP per capita is found to be positive and significant in all four 

models, however each model has a quadratic that is negative and significant. For models A and 

B, the point at which GDP per capita is associated with declines in fertilizer application (total 
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and per hectare) is 26,000. Approximately 15 of the 124 countries sampled (listed below) have a 

GDP per capita above 26,000, meaning in these countries the total amount of chemical fertilizers 

applied to farmland and the intensity of chemical fertilizers applied to farmland declines as GDP 

increases. For models C and D, the point at which GDP per capita is associated with declines in 

pesticide application (total and per hectare) is 8,000. Approximately 26 of the 69 countries 

sampled in models C and D reach this tipping point, where GDP becomes associated with 

declines in total and per hectare application of chemical pesticides. This implies that there is not 

only a tipping point where GDP begins to be associated with reduction in agrochemical 

application cross-nationally (see Longo and York 2008), but a point within nations over time 

where GDP is correlated with declines in agrochemical application as well. Percent organic 

farmland is not significant in model A and B, but positive and significant in models C and D. 

The quadratic term for percent organic land is positive and significant in models B, C, and D. 

This demonstrates that per hectare fertilizer and pesticide application grows exponentially with 

proportional increases in organic farmland, as well as total pesticide consumption. This suggests 

that organic farming is increasing the per hectare application of chemical fertilizers and 

pesticides over time and the total application of chemical pesticides, which differs from what 

others have found, for instance Knight and Newman’s (2013), who discover that nations with a 

higher percentages of organic farmland use lower amounts chemical fertilizers. My finding 

provides evidence that while countries with higher proportions of organic farmland use less 

chemical fertilizer than countries with lower proportions of organic farmland, increases in 

organic farmland within nations over time increases the intensity of fertilizer use. 

Discussion 
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My argument here is that although historically organic farming was developed as a 

socioeconomic counterforce to conventional agriculture, its current application in nations 

through certification programs limits its ability to reduce conventional agricultural practices. I 

find support for this argument in that organic farming is associated with increases and not 

decreases in agrochemical application. This outcome is evidence of the displacement paradox, as 

it demonstrates that organic farming has not displaced processes associated with conventional 

agriculture. The association at the very least establishes that there is a counterintuitive 

relationship between organic farming and agrochemical application. The positive correlation 

between organic farming and agrochemical application may be a result of organic farming 

supporting conventional agriculture by responding to the diverse needs of some consumers, 

rather than operating as a true counterforce to conventional agricultural practices. This would be 

an example of organic farming acting as an additional facet of the treadmill of production, where 

it works to expand production by diversifying supply in reaction to the practices in conventional 

farming. As mentioned previously, this is a unique characteristic of small businesses within the 

monopoly stage of capitalism. The fact that organic farming positions itself as an alternative 

agricultural initiative, makes it a small business in comparison to the much larger conventional 

agricultural industry. Indeed the fact that organic farming makes up such a small amount of total 

agricultural land makes it unlikely that it would have a measurable impact on conventional 

farming practices. Despite this, I find that organic farming is actually associated with increases in 

conventional agricultural. While it would be an ecological fallacy to assume that is a result of 

organic farms being able to use conventional manure in a significant number of countries or that 

this is a result of organic farms using more conventional practices, such as off-farm inputs, it 
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would also be inappropriate to assume that these has no effect on the relationship between 

organic farming and agrochemical application at the national level.    

Furthermore, treadmill of production theory argues that any declines over time seen 

between economic growth and environmental degradation is a result of the widening global 

production of ecologically hazardous processes, which suppresses the intensity of hazardous 

production in developed economies. This is observed in the positive nonlinear correlation found 

between organic farmland and agrochemical application and the negative nonlinear correlation 

between agrichemical application and economic growth. These findings suggests that even 

though the relationship between agrochemical application and economic growth are attenuating 

over time organic farming is not the culprit behind the observed decline. This positive correlation 

between organic farming and the application of agrochemicals, begs the question of whether 

organic farming is displacing environmental impacts associated with agricultural production. 

This relationship will be explored in the processing chapter.  
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 CHAPTER III:  

THE BIOPHYSICAL CONTEXT AND METABOLIC RIFT OF CERTIFIED ORGANIC 

FARMING 

Organic farming is often put forth as a sustainable alternative to conventional agriculture, 

claiming to rely on ecologically sustainable practices that are more in line with earth’s natural 

ecology (USDA 2014; FAO 2015). This has helped to increase the popularity of organic goods 

around the world, as sales on organic farms have risen five-fold over the past decade and a half 

(FiBL 2015). The recent success of organic farming is also partially due to the rise in organic 

certification, a process whereby external entities, usually government organizations, create a 

unified definition of organic farming to regulate the practices used by farmers and help 

consumers identify organic goods (USDA 2014; ECPA 2015; Soil Association 2015).  

While there are clear merits to having a cohesive definition of organic farming, some 

have argued that certification is being used to integrate the organic industry into to the 

agribusiness industry by regulating standards in a way that increases the economic viability of 

organic agriculture. Specifically, some researchers have suggested that organic certification leads 

to a “conventionalization” of the organic market, by watering down standards and increasing the 

use of inputs produced off farm, such as non-synthetic fertilizers and pesticides, to reduce the 

risk of direct farm investments (Buck et al. 1997; Guthman 2004a; 2004b). If tilling methods and 

fertilizer management practices are being refashioned on organic farms to serve economic 

interests over ecological interests, then the ability of nations to reduce specific environmental 

hazards caused during agricultural production by shifting toward organic practices may be 

weakened. In particular, it has been noted that even though organic goods have clear 

environmental benefits in terms of biodiversity protection and human health (Shepard et al. 2003 
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Stolze et al. 2002), they can have similar, and in some instances higher levels of greenhouse gas 

emissions and nitrate leaching as their conventional counterparts if certain practices (e.g. 

seasonal crop rotations and manure management) are not implemented properly (Syväsalo 2006; 

Torstensson 2006; Aronsson 2007; Tuomisto 2013;). In this chapter I will explore the 

agricultural processes that contribute to both water pollution and greenhouse gas emissions. I 

also present several models aimed at demonstrating the displacement paradox between organic 

farming and pollution and greenhouse gas emissions.   

Agriculture and water pollution 

Agriculture is one of the largest contributors to global water pollution. It increases the amount of 

organic contaminants found in natural water systems and produces chemical imbalances through 

the extensive use of pesticides and fertilizers (Torstensson 2006). Pesticide runoff is known to 

increase bioconcentration, which is the accumulation of chemicals on or in organisms, and 

biomagnification, where chemicals become more concentrated as they move up the food chain in 

ecosystems and may induce biodiversity loss (Ongley 1996). While a lot of organic farms do use 

pesticides (USDA 2014;ECPA 2015; Soil Association 2015), organic pesticides have not been 

linked to water pollution, and there are currently no studies finding a clear relationship between 

organic pesticides and water pollution. Thus at this time, there is no reason to believe use of 

organic pesticides increases water pollution. 

Organic fertilizers that contain nitrogen and phosphate on the other hand, can leach into 

soil and create algal blooms in surface water, causing overall oxygen levels in water to decline, 

which also can result in biodiversity loss in natural water systems (EPA 2009). This process 

often occurs when water drains through soil, taking with it the nitrates contained in the soil. 

Organic fertilizers, such as animal manures that contain nitrogen, have been linked to nitrate 
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leaching when nitrate is added to soil while drainage is occurring, when more nitrate is supplied 

than needed for a crop to grow, and when there is a lack of synchrony between nitrogen supply 

and crop uptake (Shepard et al. 2003). Shepard et al. (2003) also notes that “if soils are left bare 

during fall or crops are poorly developed, there will not be an effective rooting system to utilize 

the soil N that is mineralized after harvest and this will be at risk of leaching over the winter” (p. 

37). 

Some studies that observe levels of nitrate leaching between organic and conventional 

farms argue that organic farms have lower levels of nitrate leaching due to overall lower inputs 

of nitrogen (Edwards et al. 1990; Eltun 1995; Younie and Watson 1992 Shepard et al. 2003), 

however, the bulk of these studies relies on data from specific organic and conventional farms 

and were conducted prior to what recent research that is seen as the conventionalization period of 

organic practices. Furthermore, studies conducted during this same period noted that in some 

instances organic agriculture had similar or higher leaching rates than conventional farms. For 

instance, Hettige et al. (2000) showed that the average nitrate content in soils between 

conventional and organic farms that used manure-based fertilizers in fall was slightly higher in 

organic farms, and far higher in organic farms versus conventional farms that did not use 

manure-based-fertilizers. Condron et al. (2000) found in simulations that nitrate losses were 

similar between conventional and organic farms during rotations in New Zealand. Stopes et al 

(2002), also found that during rotations nitrate leaching was similar for conventional and organic 

farms that used under 200 kilograms per hectare of fertilizer, but were greater for organic farms 

receiving more than 200 kilograms per hectare of fertilizer. More recent studies have also 

concluded that nitrate leaching is similar and in some instances slightly higher on organic farms 

(Syväsalo 2006; Aronsson 2007). For example, Tuomisto et al. (2013) in a systematic study of 
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research observing the environmental impacts between organic and conventional farms, 

concluded that nitrate leaching per unit of area was 31% lower on organic farms, but 49% higher 

per unit of product on organic farms. 

Comprehensively, these studies demonstrate the degree to which water pollution derived 

from nitrate leaching is induced by conventional and organic farming. Furthermore, they reveal 

that in order for organic farms to have lower levels of nitrate leaching than conventional farms, 

they must use specific management practices, which include seasonally conscious crop rotations 

as well as careful and limited inputs of nitrate-based fertilizers. While organic farming is often 

promoted as an agricultural method more in line with Earth’s natural ecology, the requisites for 

this are diverse and complex, and may be limited based on the social context in which organic 

farms are developed. For instance, scholars using the conventionalization thesis have revealed 

that over time organic farmers have become less concerned with the environment, less strict 

about farming practices, and more economically motivated (Buck et al. 1997; Flaten et al. 2006; 

Läpple 2011). These trends produce an organic agricultural system that is less cognizant of the 

practices necessary to reduce bio oxygen demand in water, due to decreasing concern about and 

application of methods necessary to combat nitrate leaching. Additionally, the processes of 

conventionalization work to increase the size of organic farms, and the concentration of inputs 

used on organic farms. Based on criticisms of proponents of the conventionalization thesis and 

the analyses of natural scientists regarding the practices necessary to reduce nitrate leaching, I 

hypothesize that organic farming may not function as a counter-force to all forms of water 

pollution derived from agricultural production, and in fact perpetuate specific types of water 

contamination.  

Organic Farming and Greenhouse Gas Emissions 
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Organic farming practices are known to be more effective at mitigating climate change. Methods 

commonly used in organic agriculture as opposed to conventional agriculture, such as 

conservative tilling and crop rotations, have been found to lead to carbon sequestration (Soil 

Association 2009; Govaerts 2009), a process by which atmospheric carbon dioxide is absorbed 

by plants through photosynthesis and stored as carbon in biomass and soils (FOA 2012).  

Additionally, organic agriculture has been found to have larger sinks for carbon dioxide in soil 

compared to conventional agriculture due to its higher rates of biomass levels and lower rates of 

soil respiration (OECD 2003). Despite these benefits, organic farming does still contribute to 

climate change through the emission of nitrous oxide (N2O), methane (CH4), and carbon dioxide 

CO2.   

 N2O emissions from agricultural production occur both aerobically during the 

nitrification of ammonium ions and anaerobically during the denitrification of nitrate ions 

(Hutchinson & Davidson, 1993). The largest source of these emissions derive from the 

application mineral fertilizers and storage and application of livestock manures. (Chadwick et 

al., 1999). Since the application of mineral fertilizers is prohibited in organic farming, organic 

agriculture emits N2O mostly through the management and application of livestock manures and 

from waterlogging of soils where there is a legume crop, which are often used as nitrate sources 

in soils (Shepard et al. 2003). Additionally, organic farming manages both dry manures, which 

contribute aerobically to greenhouse gas emissions and slurry manures, which can contribute 

anaerobically. According to Kirchmann et al. (2014), using animal manure instead of nitrogen 

fixing crops increases the yields of organic farming proportionally to the amount of nitrogen 

minerals the manure contains. Kirchmann et al. (2014) also mentions that because animal 

manure releases nitrous oxide when added to the soil and since livestock produces methane 
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gases, manure will have higher emissions of GHGs than inorganic nitrogen fertilizers when 

calculating per unit product.  

The main agricultural methane sources globally are enteric fermentation of ruminant 

livestock, stored manures, rice grown under flooded conditions, and land use change (US-EPA 

2006). Organic farming contributes to methane emissions based on the type of feed used. Carbon 

emissions from agricultural production occur through the use of fossil fuels on farms (Shepard et 

al. 2003). Organic matter, can also act as a CO2 sink in agriculture and temporarily store 

atmospheric carbon. However it is important to note that the data used in this analysis does not 

measure the amount of carbon sequestered on agricultural land.   

Recent analyses have also looked comparatively at organic and conventional agricultures’ 

relationship to climate change through life cycle analysis. In these studies, organic farming is 

implemented on the scale of conventional agricultural production in an effort to determine which 

farming practices emit the most greenhouse gases. Williams (2006) analyzed the life cycle 

impacts of conventional and organic wheat, oilseed rape, potatoes, and tomatoes, and found that 

while organic used less energy than conventional agriculture on average, due to organic 

avoidance of synthetic nitrogen, it was offset by lower organic yields and higher energy 

requirements for field work. Additionally, Williams found that organic tomatoes emitted 30% 

more greenhouse gases than conventional agriculture mainly as a result of lower yields.  

In a review of life cycle assessments comparing organic and conventional land, Tuomisto 

et al. (2006) found that organic olive, beef and some crops had lower GHG emissions whereas 

organic milk, cereals and pork had higher GHG emissions compared to conventional products. 

Additionally, In the Netherlands Thomassen et al. (2008) found that most of cases organic milk 

production had higher GHG emissions compared with conventional systems. Higher GHG 
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emissions in organic systems were due to higher methane and nitrous oxide emissions and lower 

milk production per animal. 

Similarly, Pelletier and Rasmussen (2008) studied a hypothetical national transition from 

conventional to organic production of canola, corn, soy, and wheat in Canada. They found that 

organic production would generate 23% lower greenhouse gas emissions than conventional 

production, without considering soil carbon sequestration. This difference was almost entirely 

related to the production of synthetic nitrogen fertilizers for conventional farming. The models in 

this analysis assumed that organic yields produce at the rate of at least 90% of conventional 

yields, that on-farm energy use is similar to conventional farms, and that all organic nitrogen 

inputs are derived from intercrops or cover crops.  

Leifeld and Fuhrer (2010) investigated the ability of organic farming to sequestrate 

carbon from the atmosphere compared to conventional farming. In an analysis of 68 case studies 

that dealt with carbon sequestration and conventional and organic agriculture, the authors 

concluded it was premature to assert that organic agriculture yielded higher benefits in this 

specific area. Furthermore, the authors found that the advantages of organic agriculture were 

largely determined by disproportional application of organic fertilizer compared to conventional 

farming.          

In an analysis of the life cycle patterns of 12 conventional and organic crops in California 

Venkat (2012) found that greenhouse gas emissions from organic production were on average 

10.6% higher (excluding walnuts as an outlier) than conventional production. Venkat cited lower 

yields and higher on-farm energy use in organic farming, the production and delivery of large 

quantities of compost in some organic systems, and the fact that emissions from the manufacture 
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of synthetic fertilizers and pesticides used in conventional farming are not large enough to offset 

the additional emissions in organic farming as reasons for this phenomenon.  

In a comprehensive review of literature comparing the effects of organic agriculture to 

conventional agriculture, Shepard (et al.) 2003 found that there was no definitive difference 

between N2O emissions on organic versus conventional farms, that methane emissions were 

lower per hectare of land on organic farms but higher per yield, and that carbon emissions were 

slightly higher on organic farms due to increased machinery use.  

These studies demonstrate the ways in which organic farming contributes to climate 

change through the emission of greenhouse gas. Similar to organic farming’s relationship with 

water pollution, it is found that organic farming can limit greenhouse gas emissions when relying 

on on-farm methods over off-farm inputs. It is also demonstrated through these studies that 

organic farming can emit similar level of greenhouse gas as conventional agriculture when it 

tries to match the productivity of conventional agriculture. Based on these findings I hypothesize 

that similar to the case with water pollution, organic farming may be contributing to greenhouse 

gas emissions from agricultural production rather than reducing it.   

The Metabolic Rift of Organic Farming 

The studies highlighted above demonstrate the types of organic farming practices that contribute 

to climate change and water pollution. They also demonstrate the extent to which organic 

farming has higher environmental benefits than conventional farming and show the abundant 

literature aimed at assessing the environmental sustainability of organic farming. My argument 

here is that a flaw in discussions pertaining to the green economy is their over reliance on 

biophysical analysis, such as the ones discussed above, to reach conclusions regarding organic 
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farming’s ability to reduce environmental impacts. It is equally important to understand the 

socioeconomic dynamics influencing the application organic farming practices, and how these 

dynamics affect ecological benefits of organic farming. While the socioeconomic context 

influencing the application of organic practices was discussed in detail in the previous chapter, 

here I intend to expand this discussion by emphasizing how these processes further limit the 

environmental merits of organic farming in regards to water pollution and greenhouse gas 

emissions.  

Metabolic rift was developed by John Bellamy Foster (1999) to refer to Marx’s 

expression of the “irreparable rift in the interdependent process of social metabolism” (p. 949). 

The term is based on Marx’s writings regarding metabolism and the development of soil 

chemistry and the use of fertilizer in agricultural production. Foster argues that Marx 

acknowledged the growing contradictions between capitalism and nature in his observation of 

Liebig’s work and the British agricultural revolution. There, Marx proposes that capitalism is 

breaking the natural laws of sustainability in its use of fertilizers to restore nutrients to the soil 

that were lost during large scale agricultural production. Marx also accuses “large landed 

property” of “reducing the agricultural population to an ever decreasing minimum” and as a 

result, the concentration of populations in cities, leads to “a squandering of the vitality of the 

soil” (because all soil nutrients end up in city sewers rather than the land) (Foster 2000 p. 949). 

He further contends that “The way that the cultivation of particular crops depends on fluctuations 

in market prices and the constant change in cultivation with these prices—the entire spirit of 

capitalist production, which is oriented towards the most immediate monetary profits—stands in 

contradiction to agriculture, which has to concern itself with the whole gamut of permanent 

conditions of life required by the chain of successive generations” (Foster 2000 p. 754). In 
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essence, as Foster (1999) notes, Marx argues that the application of market values to agricultural 

production contradicts the ecological forces that sustain farm systems. This involves the ever-

increasing size and scale of farms as well as enhanced reliance on non-farm inputs, such as 

nitrates, phosphates, and potassium derived from manure and guano that are added to soil to 

maintain and increase fertility. 

While Marx’s concern with the application of fertilizers was on soil sustainability rather 

than water pollution produced from nitrate leaching, the notion of metabolic rift has also been 

further developed to explore capitalism’s inherent contradiction with sustainability. Clark and 

York (2008) apply the term rifts and shifts to the process “whereby metabolic rifts are 

continually created and addressed (typically only after reaching crisis proportions) by shifting the 

type of rift generated” (p. 17). They argue that “To the myopic observer, capitalism may appear 

at any one moment to be addressing some environmental problems, since it does on occasion 

mitigate a crisis. However, a more far-sighted observer will recognize that new crises spring up 

where old ones are supposedly cut down” (Clark and York 2008 p. 17). 

I expand on this argument, and contend that the socioeconomic conditions influencing 

organic agriculture mirror those influencing conventional agriculture, as a result, the 

environmental degradation developed by organic agriculture is similar to the environmental 

degradation of conventional agriculture. For instance, just as the metabolic rift observed by Marx 

was a result of the town-country divide, which was addressed by increasing the amount of non-

farm inputs used in agriculture, I argue that conventional organic farming is a refashioning of 

this metabolic rift, relying on natural rather than synthetic inputs. This is to say that the 

production of industrial organic farming (the conventionalized cousin of the original organic 

movement) is simply a change in the technology used in agriculture’s previous metabolic rift, 
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shifting to the use of natural inputs (ironically the inputs observed in Marx’s original analysis) 

instead of synthetic inputs. However, agriculture’s metabolic rift was never about the inputs, but 

the structural processes necessary to maintain society’s destructive relationship with nature. Thus 

in order to address industrial agriculture’s rift with nature, nations must address the economic as 

well as technological context of agriculture. Before discussing how I model and test these 

assumptions, I will briefly review previous research using metabolic rift theory and discuss how 

our research builds on this tradition. 

Metabolic rift theory has been used by social scientists to contextualize the 

environmentally hazardous outcomes of various forms of social organization. For example, 

Mancus (2007) examined the metabolic rift in global agriculture markets. He argues that 

structure of industrial agriculture, which is defined by the overuse and dependence of inorganic 

nitrogen fertilizer, has breached the social metabolism between society and the nitrogen cycle, 

creating massive environmental pollution in natural water ways and soil erosion. In a similar 

vein, Gunderson (2011) applies metabolic rift theory to analyze large-scale livestock production, 

showing how the environmental impacts of industrial livestock production increase greenhouse 

gas emissions, and pollute natural water systems. Clausen and Clark (2005) apply metabolic rift 

theory to marine systems, demonstrating how intensified production of aquaculture systems and 

overfishing practices pollute natural water systems and reduce aquatic biodiversity. 

Others have expanded metabolic rift theory by focusing on the historical development of 

science and technology. For instance, Clark and York (2005) focus on the historical development 

of science and technology to explain the metabolic rift between industrial civilization and the 

carbon cycle. Moore (2003) provides a historical examination of environmental history using 
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metabolic rift theory to explain the rise of global capitalism and the development of the world 

system. 

In a fashion similar to these works, I apply metabolic rift theory to further explore the rift 

between modern social organizations and the natural environment. I expand the theory of 

metabolic rift by examining how it offers critical insights into mechanisms of sustainability, 

specifically, organic agriculture. Additionally, I adopt the conceptual framework of rifts and 

shifts to explain how organic farming is a result of shifting industrial agriculture’s rift from 

synthetic agrochemicals to organic practices. I argue that the process of conventionalization, 

specifically, the vertical and horizontal integration of the organic market, mirrors the structure of 

the conventional agricultural industry by increasing organic farms’ reliance on non-farm inputs. 

In turn, these inputs help to increase the economic viability of the organic market by increasing 

the financial gains of organic pesticide and fertilizer manufacturers (Buck et al. 1997). I argue 

that this shift in the organic market may limit its ability to reduce water pollution and greenhouse 

gas emissions. Below I assess the relationship between global organic agricultural production 

and water pollution, as well as organic farming relationship to greenhouse gas emissions globally 

and nationally within the United States. 

Hypotheses 

Based on the theory discussed above I hypothesize that as the proportion of organic farming 

increases over time, it will not reduce the greenhouse gas emissions and water pollution. To this 

end, I ask if there is a positive correlation between organic farming and water pollution within 

nations as well as whether or not there is a positive correlation between organic farming and 

greenhouse gas emissions within states in the US and within nations overall.  
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Methods 

To test my hypotheses I use a series of fixed-effects panel regressions (for nations and states 

where sufficient data is available) and include time dummies with robust standard errors adjusted 

for clustering by nation from 2002 to 2007 for my analysis assessing organic farming’s 

relationship to water pollution, and from 2002 to 2010 for my analysis assessing organic 

farming’s relationship to greenhouse gas emissions. For my national-level analysis, I use state 

level data on both organic agricultural land and agricultural greenhouse gas emissions, which 

was obtained for 49 states from the years 2000-2008 creating an N of 4395.  

A fixed-effects panel model with time dummies controls for any unobserved, time-

constant features particular to each nation, as well as events factors that change over time but 

that do not vary across nations, such as international commodity prices. 

The logic of my modeling approach is based on the STIRPAT framework (Dietz and 

Rosa 1994; Cramer 1994; Cole 2004; Shi 2003; Shandra 2004; York et al. 2003a; York et al. 

2003b; York 2008; York and Rosa 2012). STIRPAT was first developed by Dietz and Rosa 

(1994) as a reformulation of the popular IPAT equation to gauge how population (P), economic 

growth or affluence (A), and technology (T) affect the scale of environmental impacts (I). 

STIRPAT is a stochastic model that assumes environmental impacts are a multiplicative function 

of population, affluence, and technology, but does not assume that each factor has a proportional 

effect, STIRPAT thereby allows for hypothesis testing. In STIRPAT analyses each variable is 

                                                           
5 The models exclude Alaska in the years of 2000 and 2001, and Louisiana due to absent data in the NASS, resulting 
in an N of 439. 
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converted to natural logarithmic form, since an additive model with logarithms is equivalent to a 

multiplicative model with variables in original units. STIRPAT is therefore an elasticity where 

beta coefficients represent a proportional rate in the dependent variable (here environmental 

impact) for every one-percent change in the independent variable corresponding to the beta 

coefficient (York 2003). The fixed-effects model specification is therefore: 

lnyit= β1ln(xit) + β2ln(xit) … βkln(xitk) + µi + wt + eit  

Here the subscript i represents each unit of analysis (nations/states) and the subscript t the 

time period, yit is the dependent variable in original units for each nation at each point in time, 

xitk represent the independent variables in original units for each nation at each point in time, βk 

represents the elasticity coefficient for each independent variable, ui is a nation specific 

disturbance term that is constant overtime (i.e., the nation specific y-intercept), wt is a period 

specific disturbance term constant across nations, and eit is the stochastic disturbance e term 

specific to each nation at each point in time. Our model is specified below: 

Dependent Variables 

The dependent variable water pollution measures water pollution via biochemical oxygen 

demand (BOD) (in thousands of kilograms per day) which is the amount of oxygen 

microorganisms in water need to break down waste in natural water systems. Organic material in 

water comes from a variety of sources, such as plant, animal, and/or human waste and industrial 

activities. While the organic materials are in the water, metabolic processes of bacteria break 

down the waste over time (Penn 2003). During these processes, a certain amount of dissolved 

oxygen is consumed. BOD measures the amount of oxygen consumed by microorganisms to 

decompose waste. Waters with high amounts of waste correspond to a high BOD because a large 
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number of microorganisms are necessary to breakdown the waste. High BOD rates put other 

aquatic life at risk due to reduced oxygen availability. Nitrates and phosphates are important 

elements that contribute to the amount of BOD found in natural water systems (Penn 2003). 

BOD measurements are one of the most reliable pollution indicators because it is relatively 

inexpensive to measure. In addition, BOD measurements are traditional starters for industrial 

pollution control within nations and are widely used in across nations (Hettige et al. 2000). Our 

data for BOD comes from the World Bank’s environmental indicators website (2010). The 

World Bank’s data on BOD started as continuation of Hettige et al. (2000) attempts to measure 

the amount of industrial pollutants found in natural water systems globally. To achieve this, the 

authors gather data on BOD levels in natural water systems from multiple nations, when/where 

data was available. The World Bank continued this aggregation through 2007. 

The dependent variable agricultural greenhouse gas emissions, measures the total amount 

of greenhouse gas emissions from agricultural production in metric tons. In my national-level 

analysis, this data was gathered from the most recent report of the World Resource Institute 

(2010) (WRI). WRI obtains sector-based data on greenhouse emissions from the United States 

Environmental Protection Agency’s (EPA) Inventory Improvement Program. The Inventory 

Improvement Program uses standard methods to obtain annual sector-based data on greenhouse 

gas emissions for each state and the District of Columbia annually. The data is gathered through 

assessing three major types of agricultural practices that are known drivers of greenhouse gas 

emissions, and several smaller practices. The three major types include; soil management (the 

most influential factor), which consists of fertilizer application and tillage practices, emissions 

from livestock production, and manure management. The smaller sources of emissions include 

rice cultivation and burning crop residue.  
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The data for greenhouse gas emissions in my cross-national analysis comes from the 

United Nations Food and Agriculture Organization (FAO 2015). The main agricultural processes 

that the data measures are enteric fermentation, manure management, rice cultivation, synthetic 

fertilizers, manure applied to soils, manure left on pasture, crop residues, cultivation of organic 

soils, burning – savanna, burning – crop residues, energy use in agriculture. Note that similar to 

my national level data, global data on greenhouse gas emissions is aggregated in accordance with 

the IPCC (1997; 2000; 2003; 2006) guidelines for each nation. The major difference between 

these data and my national-level data is that they includes carbon dioxide emissions from energy 

use on farms. This allows me to hypothesize about one of the key differences acknowledged by 

natural scientists regarding the differences between organic agricultural production and 

conventional agricultural production, which is energy use (see above section).    

Key Independent Variables 

The independent variable in each global analysis is the proportion of organic farmland, which 

estimates the amount of the organic hectares divided by the total farming hectares. The data for 

organic agricultural land was obtained from Organic World Statistics (2014). Data on certified 

organic agriculture is obtained from the SOEL/FiBL/IFOAM survey. Certified organic farming 

refers to both the certified in conversion areas and the certified fully converted areas. A major 

drawback of this data is that definitions of organic may vary across countries and data are 

gathered using various methods (e.g., surveys, secondary data, experts, etc.) thus I interpret the 

results presented here cautiously. 

The data for organic agricultural land in the United Sates was obtained from the United 

States Department of Agriculture’s (USDA) National Agricultural Statistics Service (NASS) 

(2012). The NASS measures the total amount of certified and exempt organic farmland in 
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acreage per state6. A major draw- back to the data used in each of these analysis on organic 

agriculture is that they excludes informal organic practices, which may lead to underestimation 

of organic farming. Furthermore, definitions of organic vary within what is considered certified 

organic by both the USDA and IFOAM (i.e. some organic farms use much stricter practices than 

what is required), which may result in the data not reflecting the mitigating effects of stricter 

organic practices. Additionally, while certified organic farms account for a large portion of the 

organic products developed and used within the United States, they do not capture organic 

farming practices utilized for non-traditional consumer outlets, such as community gardens, 

farmers markets, and community supported agricultural programs. Therefore, I interpret my 

results cautiously and approach this study as a preliminary understanding of organic agricultural 

production’s relationship to greenhouse gas emissions in the United States.  

Cross-national independent variables 

GDP per capita is a control variable to account for a country’s economic standing and was 

gathered from the World Bank (2010). The variable was measured in constant 2005 US dollars. 

GDP per capita is a standard control variable for most environmental impacts analyses. 

Environmental sociological theories of the treadmill of production and world-systems suggest 

economic development to be a major structural driver of environmental degradation (York et al. 

2003b). Previous research on water pollution, ecological footprints, carbon dioxide emission, and 

energy consumption find GDP per capita to be a positive predictor (Shandra 2004; York et al. 

2003a; York et al. 2003b; Jorgenson 2007) (Earlier models not shown here were estimated with a 

                                                           
6 In order to be truly exempt from organic certification, NOP policy states that an organic farm cannot sell more 
than $5,000 worth of organic agricultural products annually. That $5,000 is total gross sales, not net sales. 
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quadratic term for GDP per capita and urbanization, however neither was found significant in a 

two-tailed test). 

Population and urbanization are additional control variables representing important 

national demographic factors and were collected via the World Bank. Previous research on 

nature/society have found population to be a significant factor (York et al. 2003a; York et al. 

2003b; Jorgenson 2007). Urbanization is included as a control variable to evaluate the level of a 

country’s urbanization. Number of persons living in urban areas is estimated as the total persons 

living in urban areas divided by the total population. Additionally, we included urbanization as a 

control variable to serve as a proxy for the number of sewage systems and industrial processes 

that contribute to BOD (Penn 2003). Prior research has shown urbanization to be a significant 

predictor for environmental impacts.  

National independent variables 

The data for organic agricultural land was obtained from the United States Department of 

Agriculture’s (USDA) National Agricultural Statistics Service (NASS) (2012). The NASS 

measures the total amount of certified and exempt organic farmland in acreage per state.7 A 

major draw-back to USDA data on organic agriculture is that it excludes informal organic 

practices, which may lead to underestimation of organic farming. Furthermore, definitions of 

organic vary within what is considered certified organic by the USDA (i.e. some organic farms 

use much stricter practices than what is required by the USDA), which may result in the data not 

                                                           
7 In order to be truly exempt from organic certification, NOP policy states that an organic farm 

cannot sell more than $5,000 worth of organic agricultural products annually. That $5,000 is 

total gross sales, not net sales. 
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reflecting the mitigating effects of stricter organic practices. Additionally, while certified organic 

farms account for a large portion of the organic products developed and used within the United 

States, they do not capture organic farming practices utilized for non-traditional consumer 

outlets, such as community gardens, farmers markets, and community supported agricultural 

programs.  

In order for my data to accurately determine the correlation between greenhouse gas 

emissions from agricultural production and USDA certified organic farming, I included three 

indicator variables—total agricultural land, gross domestic product, and population—to control 

for other drivers of greenhouse gas emissions from agricultural production. Total agricultural 

farmland, my first indicator variable, measures the amount of agricultural land within each state 

in acres. By using total agricultural land as an indicator variable, I am able to control for the 

amount of greenhouse gas emitted by agriculture, allowing the model to show the effect of 

organic farmland on greenhouse gases. Data on total agricultural land was acquired from the 

NASS (2012). My second indicator variable, gross domestic product (GDP), measures the 

average gross domestic product within each state, allowing the model to control for the 

variations in economic size and economic growth in the years measured within each state. The 

data on GDP was acquired from the United States Economic Research Service (ERS) (2012). My 

last indicator variable, population, was acquired from the United States Census Bureau (2012). 

This allows me to control for the amount of people in each state, which potentially affects the 

amount of food and other agricultural products produced in each state and therefore the amount 

of agricultural greenhouse gas emissions.  

Results 



63 
 

As noted above, the fixed-effects models presented below control for omitted factors that vary 

cross-nationally but are temporally invariant, such as geographic, climatic, and geological 

factors, as well as the effects of the historical legacy preceding the periods examined here (e.g., 

the era during which a nation began to industrialize agriculture). The models, therefore, control 

for temporally invariant characteristics unique to each nation. Additionally, the models control 

(via the time dummies) for cross-sectional invariant factors that change over time, such as 

international prices of resources. Thus, these models focus on change over time within nations, 

not on cross-sectional differences. All variables (except dummy variables) are in natural 

logarithmic form, which makes this an elasticity model. 

The results from my analysis are reported in Tables 4, 5, 6, and 7. I present R-squared 

within and the highest variance inflation factor (VIF) for each model. Within R-squared 

measures the variation of the dependent variable within countries explained by the independent 

variables. In fixed-effect panel analyses, R-squared within is a better measurement than R-

squared overall because fixed-effects disregards between-unit variation (York 2008). The 

variance inflation factor measures the amount of multi-collinearity, note that none of the 

independent variables in the models presented below reach a VIF of 10 or higher. This means 

that my coefficients are not substantially affected by a collinear relationships (Beasly et al. 1980; 

O’Brian 2007). 

Results for organic farming and water pollution 

My results in Table 1 provides evidence that the global conventionalization of organic farming is 

increasing, and not reducing agriculture’s metabolic rift with respect to water ecosystems. 

Specifically the model demonstrates that as a country’s organic land increases there is a 

corresponding increase in BOD while holding constant population, urbanization, and GDP per 
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capita, indicating that the rift of water pollution in the water cycle is enhanced through organic 

farming. It is important to note that the coefficient for proportion organic farmland is close to 

zero, meaning that organic farming may have a significant but negligible effect on BOD. Of 

course, the coefficient is not negative, clearly ruling out the hypothesis that organic farming is 

reducing BOD. While these results support my theoretical assumptions, they must be understood 

with caution as they do not assess the specific types of practices conducted on organic farms. 

Population, GDP per capita, and urban population were also found to be significant 

predictors of BOD, which is consistent with the findings of previous STIRPAT analyses (Dietz 

and Rosa 1994; Cramer 1994; Cole 2004; Shi 2003; Shandra 2004; York et al. 2003a; York et al. 

2003b; York 2008; York and Rosa 2012). Specifically, I find that a one percent increase in GDP 

per capita corresponds with a .169 percent increase in BOD. We also find that a one percent 

increase in population results in a more than 1.3 percent increase in BOD, indicating that there an 

elastic relationship between BOD and population. Similarly, we find that a one unit increase in 

the percent of urban population corresponds to a one percent increase in BOD, meaning that not 

only is population a powerful contributor to BOD but specifically urban population. Previous 

research on BOD found similar results from control variables (Jorgenson 2007).  

My results support the findings of soil scientists that specific organic management 

practices lead organic farms to have higher or similar levels of nitrate leaching as conventional 

farms (Stolze et al. 2002; Stopes et al. 2002; Shepard et al. 2003; Syväsalo 2006). Additionally 

our results support the findings of social scientists who argue that organic farming is becoming 

increasingly reliant on non-farm inputs such as organic fertilizers (Buck et al. 1997; Guthman 

2004a; 2004b; Flaten et al. 2006; Best 2008). However, these results may also suggests that 
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shifts toward organic farming are correlated with BOD but have not increased enough to 

counteract the amount nitrate leaching that occurs from conventional farming. 
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Table 1 Fixed-effects panel regression coefficients predicting Biochemical Oxygen Demand. 

Independent Variables Logged Coefficients (SE) 

Population 1.308 *** 

(0.467) 

Percent urban population 1.032 * 

(0.438) 

GDP per capita squared 0.169 ** 

(0.054) 

Proportion organic land 0.018 *** 

(0.003) 

R-squared within 0.266 

Highest VIF 1.003 

N 277 

* p < 0.05; ** p < 0.01; *** p < 0.001 (two-tailed tests). 
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Results for organic and greenhouse gas emissions at the national level 

The logic of my model in table 2 is to control for any potential drivers of greenhouse gas 

emissions from agricultural production (e.g., the economic output of a state, the amount of 

people in a state, and the total amount of agricultural land producing crops in a state), and assess 

specifically the correlation between rises in organic agricultural land and the average output of 

greenhouse gas from agricultural production in states between the years 2000–2008. Keep in 

mind that because my data is interpreted using fixed effects, my models explicitly focus on how 

change in organic farming within states relates to greenhouse emissions. In model 1 the 

variables, total farm acreage, population, and GDP, are found to be insignificant in relation to 

greenhouse gas emissions from agriculture. However, organic agriculture is positively associated 

with greenhouse gas emissions from agricultural production, indicating that changes in the 

amount of certified organic farmland were associated positively with changes in the amount of 

greenhouse gases released from agricultural production.  

The logic of my model in table 3 is a slightly nuanced version of model 1, in that it 

demonstrates how the proportion of organic land to conventional land affects the intensity of 

greenhouse gases emitted from agricultural production while holding constant other potential 

driver of agricultural greenhouse gas emissions (e.g., GDP and population). This is accomplished 

by having the dependent variable in model 2 illustrate the average amount of greenhouse gases 

emitted per acre of agricultural land. Unlike model 1, model 2 is also aimed at addressing the 

social problems associated with organic farming, such as corporate co-optation and 

conventionalization. Just as in model 1, the variables total agricultural land, population, and GDP 

are all insignificant. However, similar to model 1 the independent variable organic farmland 

(here presented as a proportion of total farm land) is positive and significant. The subtle 
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distinction here is that rises in organic land are correlated with rises in the intensity of 

agricultural greenhouse gases emitted per acre of agricultural land. Therefore, models 1 and 2 

understood together demonstrate that organic agricultural land is correlated positively with 

greenhouse gas emissions from agricultural production, as well as the intensity of greenhouse gas 

emitted per acre of agricultural land.  Additionally, I estimated the variance inflation factors 

(VIF) of each of my independent variables to test for potential multi-collinearity and found that 

none of my independent variables reached a VIF of 10 or higher. This means that coefficients in 

each of my models are not affected by a collinear relationship between my independent 

variables8 (see Belsley et al. 1980).  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
8 VIFs for independent variables in model 1: GDP per capita .7, Organic farmland .9, total 

agricultural land 1, population .9. VIFs for independent variables in model 2: GDP per capita 1, 

percent organic farmland 1, total agricultural land .9, population .9  
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Table 2 Agricultural greenhouse gas coefficients for fixed effects panel regression, 

measured in metric tons  

Independent 

variables 

Coefficients  

(standard errors)  

Organic farm acreage 
0 .014***  

(0.003) 

Total farm acreage  
-0.0001  

(1.65 X 10-7) 

GDP  

(In billions of 

dollars) 

3.500** 

 (0.002) 

Population 
-0.273 X10-7 

(2.69 X 10-7) 

R2 within  0.205 

R2 between 0.202 

R2 overall  0.155 

Highest VIF 1 

N 439 

*P <.05 **P <.01 ***P <.001 
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Table 3 Greenhouse gas emitted per acre coefficients for fixed effects 

 panel regression, measured in metric tons 

Independent 

variables  

Coefficients  

(standard errors) 

Percent organic farm 

acreage  

2.260 X 10-6*  

(1.020 X 10-6) 

GDP 

(In billions of 

dollars) 

0 .027***  

(0.006) 

Population density 
-4.570 X 10-9  

(4.900 X 10-9) 

R2 within 0.116 

R2 between 0.0001 

R2 overall 0.000 

Highest VIF 0.9 

N 439 

*P <.05 **P <.01 ***P <.001 
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Results for organic and greenhouse gas emissions at the global level 

The model used to produce the results in table 4 applies the same logic as table 3. The key 

difference being that this model observes the effect at the global level. Additionally, it controls 

for the same independent variables. Similar to the previous tables, table 4 also controls for 

general period effects via time dummies, which are not reported. The main indicator variable in 

table 4 (hectares of organic land) has a positive and significant coefficient, meaning that a one 

unit increase in organic agricultural land is associated with an increase in agricultural greenhouse 

gas emissions. My additional control variables (total agricultural land, population, and GDP) are 

also all found to be drivers of agricultural greenhouse gas emissions. This means that organic 

farming increases agricultural greenhouse gas emissions independent of rises in total agricultural 

land, population, and economic development.    

 

 

 

 

 

 

 

 

 



72 
 

Table 4 Fixed-effects panel regression coefficients predicting agricultural greenhouse gas 

emissions 

Independent variables Coefficients 

(SE) 

Organic hectares  1.541*** 

(.398) 

Total agricultural land (hectares) .098*** 

(.0218) 

Population .7420*** 

(.000) 

Gross domestic product in 

thousands of dollars (adjusted for 2005 

inflation) 

.005*** 

(.001) 

R-squared within .514 

Highest VIF 1.508 

N/nations 795/128 
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Discussion 

The results found in each of these models demonstrates that organic farming is associated with 

the expansion rather than reduction of environmental degradation. This phenomenon represents 

one type of displacement paradox that I argue occurs during the production of green 

commodities in capitalist economies. Specifically, growth of organic agricultural land in 

capitalist economies represents a continuation of the socioeconomic processes that produce the 

environmental impacts derived traditional agricultural production. This is evident in the 

conventionalization of organic farming, which has helped integrate organic agriculture into the 

larger structure of agribusiness by mirroring practices common in conventional farming, such as 

the use of off-farm fertilizers to increase the nitrogen content in soil (Buck et al. 1997; Guthman 

2004a; Best 2008). Agricultural scientists argue that when organic farming increases yield 

productivity to match the output of conventional agriculture, it can have similar levels of nitrate 

leaching and greenhouse gas emissions as conventional farming (Stopes et al. 2002; Shepard et 

al. 2003). Additionally, it is argued in multiple studies that the growing use of and mishandling 

of animal manures increases both greenhouse gas emissions and nitrate leaching on organic 

farms (Kristensen et al; Kirchmann et al. 2014). Thus the positive association in these models 

between organic farming and environmental impacts could potentially be result of organic 

farming mirroring conventional agriculture practices. Metabolic rift theory and the concept of 

rifts and shifts is useful in for understanding this phenomenon, as they indicate that organic 

farming can shift conventional farming’s metabolic rift toward away from synthetic inputs and 

toward organic inputs.            

While the models themselves only imply an association between and water pollution/ 

greenhouse gas emissions and organic farmland, there are a multitude of scenarios that would 
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explain why this correlation might occur. For instance, this association could be a result of 

organic farming and conventional agriculture growing simultaneously, and organic farmland not 

completely substituting conventional farmland. Additionally, as I discussed in the previous 

chapter, organic farming frequently relies on inputs that are developed on conventional farms, 

such as livestock manures. A likely scenario contributing to the association discovered here is 

the use of livestock manures in organic farming that are produced using conventional farming 

techniques, which could intensify greenhouse gas emissions derived from livestock and increase 

BOD in water. Specifically, the utilization of conventional manures on organic land would add 

on top of the water pollution and greenhouse gas emissions that are produced to developing these 

manures, as the application of manure is associated with additional nitrate leaching and 

greenhouse gas emissions. These models ultimately demonstrate that organic farming has not 

substantially reduced environmental impacts, which is evidence of a displacement paradox.        
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CHAPTER IV 

THE DISPLACEMENT PARADOX OF ALTERNATIVELY FUELED VEHICLES 

Nations and international organizations often assume that alternative resources directly substitute 

their fossil fueled-based counterparts (UNEP 2011; United States Department of Energy 2013).  

Whether or not this is the case has been a key concern for social scientists, as it is often noted 

that due to the many complexities embedded within modern socioeconomic processes, new 

resources aimed at substituting conventional goods do not necessarily result in their expected 

outcome (York 2006; McGee 2014). For example, York (2012) found that alternative forms of 

energy have an unexpected impact on fossil fuel sources of energy. Specifically, in contrast to 

the assumption that a one unit of alternative energy displaces a proportional unit of fossil fuel, 

York found alternative sources of energy only minutely displace fossil fuel sources. In an effort 

to elaborate upon the potential consequences of displacement paradoxes, here I explore the 

relationship between alternatively fueled vehicles (AFVs) and total fuel consumption per vehicle 

in the United States.  

I estimate time-series cross-sectional Prais-Winsten regression model with panel-

corrected standard errors (PCSE) to explore (1) how increases in the percentage of AFVs in 

states from 2003-2010 affect the fuel consumption rates of all vehicles, and (2) how increases in 

the proportion of AFVs affect the travel rates of vehicles. This chapter, will further examine how 

the treadmill of production theory (Schnaiberg 1980; Gould 2004) can be used to explain the 

phenomenon of the displacement paradox. Specifically, I will argue that the displacement 

paradox of AFVs is a product of the treadmill of diversifying production (York 2004), where 

green commodities help to increase total consumption within specific industries.  
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Previous Discussions on AFVs     

Previous studies on AFVs have predominantly focused on two phenomenon – the potential of 

integrating AFVs into the vehicle market, and the environmental impacts associated with AFVs. 

The first of these studies offers insights into the manner in which AFVs work as a counterforce 

to climate change, by emphasizing AFVs’ ability to displace traditional vehicles. For example, 

Tran et al. (2013) quantify the conditions that may trigger widespread adoption of AFVs, and 

identified the barriers that exist for early and mass adoption of AFVs. The authors note that for 

early adoption, a major barrier, is price premiums and the lack of available charging facilities 

particularly for battery electric vehicles. They find that the integration of AFVs is largely 

dependent upon a vehicle market that values carbon reduction, which they note is currently not 

the main motivation behind early adopters, as most consumers are influenced by the financial 

rather than environmental benefits of AFVs. In a similar vein, Zhang et al. (2011) explore factors 

that could “speed the diffusion of AFVs”, finding that market pull factors such as “word-of-

mouth” marketing have a positive impact on the potential diffusion of AFVs. However, the 

authors also find that government mandates on fuel economy standards decrease the diffusion of 

AFVs, due to the market share of fuel efficient gasoline vehicles increasing. Achtnicht et al. 

(2012) find alternative fuel availability to be an additional barrier to further integration of AFVs, 

specifically in Germany. They argue that expanding accessibility to alternative fuel stations will 

have a positive effect on consumers’ choosing AFVs, indicating once again that availability is a 

crucial component in the integration of AFVs into the vehicle industry. While these studies 

demonstrate how AFVs can eventually displace traditional vehicles, they fail to acknowledge the 

additional environmental impacts that would undoubtedly come from diversifying the vehicle 

market.       
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Scholars have discussed the environmental outcomes of AFVs for decades, often in 

comparison to gasoline vehicles. For example, Moriarty (1994) assesses the extent to which 

electric cars reduced greenhouse gas emissions in Australia, finding that if the electric grid could 

be made up of at least fifteen percent wind energy, replacing traditionally fueled vehicles with 

electric cars would reduce greenhouse gas emissions relative to their petroleum based 

counterparts. Additionally, Moriarty argued that ethanol from sugar cane had high costs per ton 

of CO2 reduction, and when other trace gases were considered, it shows no definite improvement 

over petroleum. More recently, Lapola et al. (2010) found that carbon emissions derived from 

land use change perpetuated by the growing demand for biofuels in Brazil, would be low due to 

their replacement of rangeland. However, Lapola also argues that indirect land-use changes, 

especially those pushing the rangeland frontier into the Amazonian forests, could offset the 

carbon savings from biofuels, illustrating that growth in biofuel production can potentially yield 

little to no reductions in overall environmental degradation.  

Other studies have used lifecycle analysis to explore the varying environmental impacts 

of AFVs (e.g. Segal, 1995; Hill et al., 2009). For example, Ogden (et al. 2004) preformed a 

lifecycle analysis of numerous categories of AFVs to assess the impacts of each fuel type, and 

found that hydrogen based fuel had the lowest externality cost of all types of fuel. This was cited 

as a result of the life cycle cost of hydrogen-based vehicles as compared to newer gasoline-based 

vehicles, which does not include the cost of extraction. Other research has also found that there 

may be additional individual health risks associated with AFVs. Specifically, Lapin et al. (2002), 

who found that the currently employed natural gas fueled heavy duty trucks have particulate 

exhaust emissions that possess mutagenic activity, which is known to cause serious human health 

risks. 



78 
 

It is clear based on these analyses that there are present barriers preventing expanded use 

of AFVs, and that there are environmental risks associated with the use AFVs. My interest here 

is on the ecological implications of the current barriers preventing further application of AFVs.  

To this end, I propose that it is important to understand the current use of AFVs within a larger 

political economic context that takes into the consideration the broader implications of the 

automobile industry and society’s relationship to nature. If for example AFVs are working to 

expand the vehicle industry, the environmental impacts produced from AFVs may be adding to 

the total environmental impact of vehicle use in the United States What follows is a brief 

overview of the political economic legacy of automobiles and broader socio-environmental 

implications of AFVs.  

The Environmental Political Economy of Automobiles 

The automobile is a unique commodity that continues to have a large impact on the development 

of the cities, consumer culture, and human-environmental relationships. Paul Baran and Paul 

Sweezy (1966) identified the automobile as an “epoch-making innovation” in capitalist 

economies, matched only by the invention of steam engines and railroads. Paterson (2007) 

argues that cars not only embody capitalism, but produce a unique culture and form of 

capitalism. This is because cars have shaped the pattern of economic development over the past 

century, creating massive investment opportunities for a variety of markets. The invention of the 

automobile has been accompanied with the rise of oil corporations, as well as construction and 

insurance companies that all profit greatly from the continual growth of individual car use 

(Sweezy 1973; Paterson 2007). The sustained use of cars as a primary form of transportation in 

cities is a result of multiple governmental and economic efforts to continually shape cities around 

the car use (Paterson 2007). Additionally, the rise of the automobile has coincided with the 
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development of monopoly capitalism (Sweezy 1973), a stage of capitalism that is defined by 

large corporations that accumulate massive amounts of surplus to continually increase 

consumption and counteract diminishing investment opportunities. I argue here that due to these 

unique aspects of the automobile industry, increases in the number of AFVs within the vehicle 

fleet helps to further expand the use of vehicles in the United States rather than operate as a 

counterforce to the environmental degradation produced by the use of vehicles. Below I further 

develop this argument using the treadmill of production theory.  

Schnaiberg (1980) points out that the car industry is a clear of example of the “consumer 

sovereignty model”, where consumer preferences are contingent upon the social circumstances 

that are manipulated by capitalists’ interest. He notes that  

Nowhere is this clearer than in the transportation field. A mixture of public and private 

U.S. enterprises provided urban mass transportation in the first third of this century. Over 

the next three decades, government policy shifted dramatically toward expanded 

provision of public highways, stimulating and expanding suburbanization and private 

automobile usage. (Schnaiberg 1980: 181-182).      

For Schnaiberg this is an example of the treadmill of production, which is a theory of human-

environmental relationships in post-World War II society. Treadmill of production theory (ToP), 

argues that the inherent tendency of modern economies is to expand development by increasing 

resource extraction, which in turn increases environmental impacts (Schnaiberg, 1980; 

Schnaiberg & Gould, 1994; Schnaiberg, 2002). It was first developed Schnaiberg in 1980, as a 

response to the massive increases in resource extraction and environmental destruction that 

occurred after World War II. In assessing modern society’s relationship to nature, Schnaiberg 

concluded that environmental degradation is intrinsic to capitalist society such that social 

inequalities are interwoven with each environmental concern, and that social and political 

responses to these production processes are ultimately futile and unpredictable (Schnaiberg et al., 
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2002). Furthermore, the environmentally destructive characteristics of capitalist production are 

unhindered by consumer and regulatory action aimed at reducing environmental impacts, as 

these attempts are contingent upon capital investments (Schnaiberg, 1980; Schnaiberg & Gould, 

1994; Schnaiberg, 2002).  

Gould et al. (2004) notes that each round of investment in capitalist markets perpetually 

increases levels of demand for natural resources for a given level of social welfare, work to 

weaken employment circumstances for production workers, and degrade the environment. This 

process is accomplished by creating a consistent need for investments to employ workers, and 

continually extracting variety of natural resources to produce new goods. ToP theorists argue that 

this level of dependency reduces consumers and politicians’ ability to work in their best 

environmental interest (Schnaiberg 1980). For example, strong environmental regulations from 

the political sphere are seen as antagonistic to workers, and therefore voters, as it often reduces 

the expansion of jobs by decreasing levels of extraction. This hinders politicians’ ability to take 

regulatory action against environmental degradation.  

Workers’/consumers’, ability to reduce environmental impacts is weakened by their lack 

of influence in resource extraction and production. For instance, if a consumer refrains from 

participating in an environmentally hazardous market, and there is no environmentally 

sustainable alternative commodities within said market, they risk acquiring additional 

socioeconomic burdens that using a environmentally hazardous commodity may relieve. 

Participating in alternative markets or purchasing alternative products aimed at counteracting the 

social and environmental impacts of traditional markets can also be limited, due to the 

monopolistic structure of modern capitalist economies (see Baran & Sweezy, 1966).  
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One must be careful not to fall into the trap of assuming that Big Business and smaller 

businesses are qualitatively equal or of coordinate importance for the modus operandi of 

the system… Smaller business, is on the receiving end, reacting to the pressures of Big 

Business, to a certain extent shaping and channeling them, but without effective power to 

them and still less to exercise an independent initiative of its own. From the view of a 

theory of monopoly capitalism, smaller business should be properly treated as part of the 

environment within which big business operates rather than as an actor on the stage. 

(Baran and Sweezy 1960: p. 52)     

 

In this context, the presence of smaller businesses that sell AFVs and/or big corporations 

that sell AFVs should be understood as reactions to the larger structure of the vehicle industry, 

which is the selling of cars that run of traditional fuel. This concept is explored by York (2004) 

in his notion of the “treadmill of diversifying production”. York (2004) argues that introducing 

sustainable alternatives to environmentally hazardous markets simply diversifies production, and 

ultimately expands markets by meeting diversified consumer interests. This process renders 

ecologically sustainable resources more a reaction to unsustainable processes, rather than a 

counterforce or substitution for them. In a more recent article, York (2006) further explores this 

phenomenon along with the more widely-known Jevons Paradox, which is a phenomenon where 

improved resource efficiency escalates the consumption of that resource, to question whether 

technological advancements alone lead to conservation of natural resources. Here he contends 

that in addition to the Jevons Paradox, there is a paradox of substitution (referred to here as the 

displacement paradox), where new resources fail to reduce existing ones.  

York (2012) empirically tests the displacement paradox by exploring the extent to which 

alternative sources of energy displace fossil fuel sources of energy. He finds that the increased 

presence of alternative sources of energy, such as hydroelectric and nuclear energy, only 

minutely displace the production of fossil fuel energy sources, and argues that this goes against 

traditional assumptions regarding energy expansion. Based on his findings, York concludes that 
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the reduction from fossil-fuel energy use does not occur inevitably with the expansion of 

alternative sources. York’s (2012) findings regarding the paradox of substitution fits the 

theoretical assumptions of ToP, as it demonstrates that the diversification of resources used in 

particular industries produce a “treadmill of diversified production” (York 2004). 

 To this end, I examine the extent to which the increasing proportion of AFVs affects the 

fuel consumption rates per vehicle. While York’s (2012) analysis does not specifically engage 

with ToP, it offers insights into how scholars can further empirically test the assumptions of ToP.  

Hypothesis: 

I ask whether increasing the proportion of alternative fueled vehicles within the vehicle fleet 

increases or decreases total fuel consumption rates per vehicle. This question is articulated in the 

hypotheses below. 

H1: Increasing the proportion of AFVs within the vehicle fleet reduces the total amount of fuel 

consumed by vehicles within states. 

H2: Increasing the proportion of AFVs within the vehicle fleet increases the total amount of fuel 

consumed by vehicles within states.  

 H1 assumes that AFVs are operating as a counterforce to the treadmill of production and 

reducing the amount of fuel that is consumed by vehicles annually at the state level. This 

outcome could be a result of multiple factors, such as AFVs having higher fuel efficiency or 

AFVs being associated with lower rates of travel.  In contrast to the H1, H2 assumes that AFVs 

are exacerbating production and increasing the amount of fuel consumed by vehicles at the state 

level. Similarly to H1, H2 could be a result of multiple factors, such as higher fuel efficiency 
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amongst AFVs, the number of AFVs adding to the total number of vehicles in the vehicle fleet, 

or AFVs increasing travel.  

To further understand the extent to which AFVs act as a facet of the treadmill of 

production, I pose the additional of question of whether rises in the proportion of AFVs increases 

or decreases the amount of miles travelled by vehicles at the state level. This question is 

articulated in the hypothesis below: 

H3: Increasing the proportion of AFVs within the vehicle fleet decreases the amount of miles 

traveled per vehicles in the United States. 

H4: Increasing the proportion of AFVs within the vehicle fleet increases the amount of miles 

traveled per vehicles in the United States. 

 H3 assumes that one way AFVs operate as a counterforce to the treadmill of production 

is by reducing the amount of miles traveled by vehicles at the state level. Conversely, H4 

assumes that one of the ways in which AFVs act as a facet of the treadmill of production is by 

increasing the amount of miles traveled by vehicles at the state level. Although H1 and H3 both 

assume that AFVs operate as a counterforce to the treadmill of production, H1 one can be 

confirmed while H3 is rejected and vice versa. For example, it may be the case that AFVs are on 

average more fuel efficient than gasoline and diesel vehicles requiring less fuel consumption per 

vehicle but increasing travel due to their increased fuel efficiency. This argument is similar to the 

rebound effect (see Greening et al., 2000; Small & Van Dender, 2005; Small & Van Dender, 

2007; Sorrell, 2007), which argues that consumption rates for gasoline grow due to lower cost 

from increased fuel efficiency and behavioral shifts in consumers. Likewise, although H2 and H4 
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both assume AFVs are acting as a facet of the treadmill of production, H2 can be confirmed 

while H4 is rejected and vice versa for the same reasons noted above.  

Data and Methods 

In order to test my hypotheses, I estimate three elasticity models, which were created by taking 

the natural log of my dependent and independent variables. Elasticity models assume that a 

dependent variable is determined by a multiplicative combination of the independent variables. 

Multiplicative models intrinsically take into account one type of interaction among factors, by 

recognizing that a change in one independent variable does not simply add to the dependent 

variable directly, but rather scales it relative to the values of the other factors. Additionally, each 

coefficient for my independent variables is interpreted as the proportional effect of a one percent 

change of the independent variable on the dependent variable.  

Both models are estimated using a time-series cross-sectional Prais-Winsten regression 

model with panel-corrected standard errors (PCSE), allowing for disturbances that are 

heteroskedastic and contemporaneously correlated across panels (see Beck and Katz 1995). Each 

model estimates the relationship from 2003-2010 across U.S states (including the District of 

Colombia)9.  I include state-specific and year-specific intercepts, making the model equivalent to 

a two-way fixed effects model. As with a fixed effects model, this method estimates effects 

within states, rather than between states, over time and controls for variation between states. 

Finally, I correct for AR(1) disturbances within panels, treating the AR(1) process as common to 

all panels because there is no theoretical reason to assume the process is panel specific (see Beck 

and Katz 1995). The model I estimate is: 

                                                           
9 Note that the 357 N in Models 3 and 4 is a result of missing data for Alaska in the EIA database. 
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yit= B1(x1it) + B2(x2it) … Bk(xkit) + ui + wt + eit 

Here the subscript i represents each unit of analysis (states) and the subscript t the time 

period, yit is the dependent variable for each state at each point in time, xkit represents the 

independent variables for each state at each point in time, ui is a state specific disturbance term 

that is constant over time (i.e., the state specific y-intercept), wt is a period specific disturbance 

term constant across states, and eit is the stochastic disturbance term specific to each state at each 

time point. 

The logic of my modeling approach is to observe how change in the number of AFVs 

effects change in the dependent variables. I chose to use a PCSE model year and state specific 

intercepts because it allows me to specifically assess the effect of change from year to year 

within states as oppose to differences across states.  

Dependent Variables 

The data for the dependent variable in Table 3 was obtained from the United States Office of 

Highway Policy Information (OHPI, 2014). The data includes annual motor fuel consumption 

rates for all civilian vehicles and the total number of vehicles. The data on motor fuel consists of 

gasoline, gasohol, diesel, ethanol (85% or higher), compressed natural gas, electricity, hydrogen, 

liquefied natural gas, and liquefied petroleum all measured in gasoline equivalent gallons. The 

dependent variable in Table 3 was calculated by dividing the total amount of fuel consumed by 

civilian vehicles by the total number of civilian vehicles, which includes all mid-sized 

automobiles, compact automobiles, full-size automobiles, sub-compact automobiles, low-speed 

vehicles, motorcycles, SUVs, pickup trucks, full-size trucks, light-weight vans, mid-size vans, 

and mini vans. The dependent variable in Table 4 was also obtained from OHPI (2014) and 
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measures the total amount of miles traveled per vehicle. This variable was created by dividing 

the total amount of miles traveled by the total number of vehicles. The data for motor fuel 

consumption, total number of vehicles, and miles traveled per vehicle relies on annual state 

reports, where each state follows established federal guidelines to maintain consistency across 

regions. The OHPI notes that “These estimates may not be comparable to data for prior years due 

to revised estimation procedures.” However, the most recent revised estimation procedure 

occurred in 2002 when automated data submittal process was implemented by a web-based 

application, which was intended to ease the reporting burden and improve the data accuracy. 

Thus the data used in this analysis is not subject to this particular inaccuracy. 
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Table 1 Summary statistics of dependent variables (unlogged) 

Variable Mean Minimum Maximum Standard 

deviation 

Miles traveled 

per vehicle 

12,823 1,968 32,340 3,051 

Fuel 

consumption per 

vehicle (in 

gallons) 

774.968 505.969 1834.413 173.015 
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Independent Variables 

In order to accurately test the relationship between AFVs, fuel consumption, and miles travel per 

vehicle I employed a number of independent variables to control for the potential influence of 

related time-variant factors. In Tables 3 and 4, I control for the effect of change in percentage of 

the license drivers. The data for this variable also comes from OHPI (2014), and helps to control 

for the impact of changes in the driving pool from year to year. I also control for the effect of 

changes in real GDP per capita in Tables 3 and 4 to account for the influence of changes in 

economic size. The data for GDP per capita was obtained from the Bureau of Economic Analysis 

(BEA 2014). While it seems appropriate in an analysis like this to control for the year to year 

fluctuations in fuel prices, unfortunately, data at the state level for year to year fluctuation in fuel 

price is not available. To address the potential influence of fuel prices, I control for the impact 

tax rates on gasoline, which coupled with my time dummies that control for general period 

fluctuation in my dependent variables, captures the effect of changes such as price over time. In 

Table 3, I control for miles traveled per vehicle to assess how changes in the amount of travel by 

individuals over time affects gasoline consumption. The main independent variable in Tables 3 

and 4 is percent AFVs, which accounts for the percentage of mid-sized automobiles, compact 

automobiles, full-size automobiles, sub-compact automobiles, low-speed vehicles, motorcycles, 

SUVs, pickup trucks, full-size trucks, light-weight vans, mid-size vans, and mini vans that do not 

use gasoline relative to the entire civilian vehicle fleet. Data on AFVs were obtained from the 

EIA (2014) and includes the following fuel sources: ethanol (85% or higher), compressed natural 

gas, electricity, hydrogen, liquefied natural gas, and liquefied petroleum measured in gasoline 

equivalent gallons. It is important to note that according to the EIA (2014) the vast majority of 

AFVs owned by individuals use gasoline and diesel, due to the limited availability and economic 
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viability of E85 fuel. Additionally, the EIA’s estimates on AFVs do not include gasoline or 

diesel hybrids since their primary fuel sources are traditional fuels.        
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Table 2 Summary statistics of independent variables (unlogged) 

Variable Mean Minimum Maximum Standard 

deviation 

Percent 

alternative fuel  

vehicle 

.350 .004 5.694 .446 

Miles traveled 

per person 

10,388 1,679 18,295 1,947 

GDP per capita 

(in dollars)  

48,628 30,333 177,934 18,937 

Percent of 

population with 

driver license 

.702 .428 .907 .056 

Gasoline tax rate 

(in cents) 

21.256 7.5 37.5 5.465 
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Results 

The PCSE models control for omitted factors that vary across states but are temporally invariant, 

such as the effects of the historical legacy preceding the periods examined here (e.g., the era 

during which a state introduced AFVs). The models, therefore, control for characteristics unique 

to each state. Additionally, the models control (via the time dummies) for cross-sectional 

invariant factors that change over time, such as fluctuations in international energy prices. Thus 

these results specifically show the effects of within unit change in the independent variables on 

the dependent variable. 

 Table 3 presents the PCSE model that regresses total fuel consumption on percent AFVs, 

GDP per capita, percent population with a driver’s license, tax on gasoline, and miles traveled 

per vehicle. These models test my hypothesis that increases in the percent of AFVs will increase 

total fuel consumption against the null hypothesis, which is that there is no relationship between 

AFVs and total fuel consumption for vehicles, and the alternative hypothesis, which supports the 

conventional view that AFVs are working as a counterforce to traditional vehicles. Model A in 

Table 3 omits miles traveled per vehicle to assess the combination of both the potential direct 

effect of percent AFVs and an indirect effect of AFVs via its influence on miles travelled. Here I 

find the variable percent AFVs is associated positively with gasoline consumption per vehicle at 

the .001 level with a two-tailed test. This indicates that the rise in percent of AFVs proportionally 

increases the amount of gasoline consumption per vehicle. GDP per capita is also positive and 

significant in Model A at a .001 with a two-tailed test, which demonstrates that change in 

economic size through time within states increases total fuel consumption per vehicle. Thus 

Model A in Table 3 demonstrates that rises in the number of AFVs in the vehicle fleet over time 

within states increases total fuel consumption per vehicle, while holding constant changes in 
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economic size, percentage of the population that has a driver’s license, gasoline tax rate, and the 

general period fluctuation in total fuel consumption. This finding supports my proposed 

hypothesis that AFVs are adding to the consumption rates of total fuel consumption.  

Model B in Table 3 is meant to further test my hypothesis, by controlling for miles 

traveled per vehicle in addition to the independent variables used in Model A. Here I find that 

percent AFVs is still significantly correlated with fuel consumption per vehicle, however the 

effect of a one unit increase in the percent of AFVs is much smaller. Additionally, the variable 

percent driving population becomes significant and is negative, indicating that increases over 

time in the percentage of licensed drivers decreases fuel consumption per vehicle. Similar to 

Model A GDP per capita is also positive and significant in Model B at a .001 with a two-tailed 

test.  The independent variable miles traveled per vehicle in Model B is positively correlated 

with total fuel consumption per vehicle and significant so at a .001 two-tailed test. This means 

that, unsurprisingly, increases in travel per vehicle enhance the amount of fuel consumed per 

vehicle. The change in the overall effect in percent AFVs when adding miles traveled per vehicle 

as an independent variable in Model B implies that the influence of AFVs on fuel is most likely 

heavily tied to AFVs relationship to vehicle travel.            
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Table 3 Prais-Winsten regression model with panel-corrected standard errors coefficients 

predicting gallons of fuel consumption per vehicle10 

Independent variables 

(logged) 

Model A 

Coefficients 

(Standard errors) 

Model B 

Coefficients 

(Standard errors) 

Percent AFV .122*** 

(.031) 

.089*** 

(.022) 

Miles traveled per vehicle 

(in thousands of miles) 

    .238*** 

(.071) 

Real GDP per capita  

(in thousands of dollars) 

.396*** 

(.102) 

   .397*** 

(.076) 

Percent of population with 

driver license 

-.172 

(.089) 

-.145* 

(.074) 

Gasoline tax rate (in cents) -.028 

(.059) 

-.047 

(.1048) 

R2  .886 .917 

 

 

Highest VIF 4.42 4.41 

N 357 357 

* p < .05 (2-tailed test) ** p < .01 (2-tailed test) *** p < .001 (2-tailed test) 

 

 

 

 

                                                           
10 Note that the 357 N is a result of missing data for Alaska in the EIA database 
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Table 4 Prais-Winsten regression model with panel-corrected standard errors coefficients 

predicting miles traveled per vehicle11 

Independent variables 

(logged) 

Coefficients 

(standard errors) 

Percent alternative fueled vehicles  .187*** 

(.035) 

GDP per capita 

(in thousands of dollars) 

-.441***  

(.074) 

Gasoline tax rate (in cents) .001 

(.095) 

Percent of population with driver license -.067 

(.097) 

R2 .098 

Highest VIF 4.34 

N 357 

* p < .05 (2-tailed test) ** p < .01 (2-tailed test) *** p < .001 (2-tailed test) 

 

 

 

 

 

 

 

                                                           
11 Note that the 357 N is a result of missing data for Alaska in the EIA database 
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Table 4 presents the PCSE coefficients for miles traveled per vehicle and is meant to 

explore my hypothesis that increasing the proportion of AFVs increases travel per vehicle. Here 

percent AFVs is found to be positive and significant at the .001 level with a two-tailed test. 

Specially, a unit increase in the percent of AFVs is corresponds with a proportional increase in 

miles traveled per vehicle. This confirms my initial hypothesis by demonstrating that AFVs are 

increasing the average travel per vehicle in the United Stated. Table 4 also shows that increases 

in economic development significantly decreases the amount of miles traveled per vehicle within 

states, demonstrating that further economic development within states reduces the average 

amount of travel per vehicle.  

 Discussion and Conclusion 

My analysis finds that AFVs are associated with increases in total fuel consumption per vehicle, 

as well as increases in travel rates per vehicle. These findings suggest that AFVs are expanding 

vehicle use in the United States rather than shifting fuel consumption away from traditional 

sources (e.g. gasoline and diesel). Consequently, this means that AFVs may be increasing overall 

environmental impacts produced from the vehicle industry. One lesson to be learned from this 

analysis is that the assumption that AFVs work to reduce the use of fossil fuels at this point is not 

true at the state level. While this is not to say that there are no environmental merits to AFVs, it 

does demonstrate that the social and economic barriers at this point prevent AFVs from 

completely offsetting the environmental impacts of mass transportation.  

Perhaps the most important implication of these results is that for now, the poor 

economic viability of most alternative fuel sources prevents the displacement of fossil fuel 
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consumption. The IEA (2015) notes that the limited availability and economic viability of some 

fuel sources, such as E85 fuel, results in the vast majority of AFVs owned by individuals using 

traditional fuels. Additionally others have found similar barriers leading to limited use of AFVs 

(see Achtnicht et al. 2012; Tran et al. 2013; Zhang et al. 2011 discussed above). 

Automobiles represent a unique epoch in technological innovation that is tied to a 

diversity of industries that profit from traditional automobiles. This influences the social context 

that AFVs function under. Baran and Sweezy (1966; 1973) and Schnaiberg (1980) have noted 

that the larger goal of the automobile-industrial complex is to expand production by 

incentivizing consumption. Under this agenda, AFVs are limited in their ability to displace the 

consumption of traditional fuel in that they may be used to expand total fuel consumption. My 

results support these possibilities, as I find that diversifying the types of vehicles within the 

automobile industry increase total fuel consumption over time. There are many scenarios that 

would explain this phenomenon. For example, individuals who traditionally refrain from using 

personal vehicles for travel due to their negative environmental outcomes may use AFVs due to 

their perceived environmental merits. Additionally, people who use traditional vehicles may also 

use AFVs to expand their travel via personal vehicles. In these scenarios AFVs adhere to York’s 

(2004) notion of the “treadmill of diversifying production”, where AFVs function as a reaction to 

the environmental impacts of traditional fuel consumption, and not a counterforce. Similar to 

York’s (2012), my findings here demonstrate a displacement paradox in capitalist production, 

and suggest that AFVs do not displace consumption of traditional fuel. While this relationship 

may change over time, it is worth noting that if the present barriers that prevent further 

integration of AFV into the vehicle fleet persists, then the expansion AFVs may continue to 

increase total vehicle use in the United States.    
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AFVs may also increase fuel consumption for vehicles similarly to the rebound effect 

(see Greening et al., 2000; Small & Van Dender, 2005; Small & Van Dender, 2007; Sorrell, 

2007), where consumption rates for gasoline grow due to lower cost from increased fuel 

efficiency. It is likely that rises in the number AFVs is correlated with increases in fuel efficient 

vehicles, such as electric-hybrid vehicles, which could intensify consumption of gasoline by 

reducing its cost. Furthermore, it is argued that the rebound effect is a result of increased travel, 

the findings here demonstrate a strong correlation between travel and AFVs, suggesting that 

increased travel perpetuates both phenomenon.  

In conclusion, these results coupled with the findings of Moriarty (1994), Segal (1995), 

Lapin (2002), Ogden et al. (2004), Hill et al. (2009), Lapola (2010) suggest that the 

environmental impacts associated with AFV production are at this point additions to the vehicle 

industry’s hazardous environmental output. Future research into this area could directly explore 

how AFVs influence environmental degradation from vehicles, as well as the travel behaviors of 

drivers. This finding also warrants further investigation into other displacement paradoxes within 

environmentally sustainable production.  
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CHAPTER V 

CONCLUSION 

It is fitting to offer some sort of solution to these problems in the conclusion of a dissertation that 

discusses environmental problems, which is ultimately what I intend to do in this chapter. 

However, one thing that makes this dissertation somewhat unique is that it is engaging critically 

with existing solutions that have been put forth to environmental problems, making my 

discussion of solutions to environmental problems a bit difficult, as the solutions I offer must be 

solutions to solutions (this sentence is meant to be confusing). In many ways, this puts me in the 

position of “Liza” in the song “There is Hole in the Bucket”, as my solutions to solutions may 

have their own problems that Henry can’t fix. Fortunately, the statistical models I have used in 

my dissertation have also allowed me play Henry in this analogy, as I have pointed out problems 

to multiple solutions that have been offered. This juxtaposition gives me insights that Liza never 

had, as I am able to identify the root of the problems that are connected to the failed solutions 

that have been offered.  

I hope that this dissertation has at least clarified that the paradox of green commodities is 

that growth cannot simultaneously be a problem and a solution. Just like Henry in the children’s 

song “There is Hole in the Bucket” must realize that he cannot fix the hole in his bucket with the 

tools he has because they all require him to use the bucket, which has a hole in it. Modern 

society must realize that we cannot fix our current environmental problems that stem from 

growth using tools that lead to growth, because growth has a hole in it. The hole in this case is 

the many contradictions that exists between economic growth and the environment. In this 

dissertation, the one specifically discussed is the displacement paradox, which is defined by the 

inability of green commodities to displace traditional commodities and/or the environmental 
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impacts from the production of those commodities. To this end, I would like to discuss solutions 

that address the inherent problems embedded in modern economies’ that produce displacement 

paradoxes.   

In the first chapter of this dissertation, I noted two distinct types of displacement 

paradoxes. The first was discussed heavily by York (2006; 2012) and described the inability of 

alternative commodities to completely displace traditional commodities (e.g. the inability of one 

kilowatt hour of alternatively sourced electricity to displace one kilowatt hour of fossil fuel 

energy). The second, referred to inability of an alternative commodity to reduce environmental 

degradation associated with a traditional commodity. Together, these two outcomes demonstrate 

a unique paradox in the production of green commodities, which is their inability to act as true 

counterforces to environmental degradation. This paradox is distinct from other paradoxes that 

have been identified in capitalist economies, such as the Jevons paradox and the green paradox, 

in that it does not refer to inadequacies of efficiency increases or sustainable policies, instead, it 

deals with the problem of introducing environmentally sustainable technology into capitalist 

economies. Similar to other paradoxes however, it can be defined as simply a counterintuitive 

association. For example, York (2012) and Sellen and Harper (2002) establish that there are 

counterintuitive associations between alternative energies and fossil fuel energies, and digital 

upgrades to computers and paper usage respectively, however, they do not establish causal links 

to their findings. What makes this dissertation unique from these previous inquiries is that each 

chapter attempts to establish a causal link that is tied to abstract political economic conditions 

that influence societies’ relationship to the environment. 

I identify these political economic contradictions utilizing treadmill of production and 

ecological Marxists theories. This dissertation in many respects is a continuation of the efforts of 
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treadmill of production theorists and ecological Marxists to understand the inherent contradiction 

between capitalism and nature. Treadmill of production theorists have abstractly criticized these 

efforts by claiming that the production of sustainable commodities within capitalist economies 

helps to diversify the resources utilized in specific markets to increase growth, rather than 

substituting non-sustainable resources with sustainable resources (York 2004). Ecological 

Marxists have also criticized environmentally sustainable efforts within capitalist economies by 

claiming that environmentally sustainable technology shifts the inherent metabolic rift between 

capitalism and nature to other ecological processes (Clark and York 2008). I argue that one 

empirical outcome of these contradictions is counterintuitive association between green 

technologies and processes associated with traditional technologies. In this dissertation, I have 

empirically assessed the theoretical assumptions of treadmill of production and ecological 

Marxists theorists, and have found evidence to support their claims in multiple instances by 

finding a displacement paradox between green production and traditional production.  

In chapter 2 of this dissertation, I explored the connection between organic farming and 

Marx’s theory of metabolic rift, arguing that both metabolic rift and early notions of organic 

farming criticized modern agriculture’s inability to return nutrients that were lost during 

agricultural production back to the soil. Additionally, I argued that although organic farming 

initially relied on agricultural practices that addressed the metabolic rift produced by capitalist 

agriculture, over time, organic farming began to be practiced in a variety of ways that mirrored 

conventional agriculture. Specifically, a “conventionalized” variant of organic farming, which 

relied more on mono-cropping and off-farm inputs, developed and helped integrate organic 

agriculture into the agribusiness industry. The certification of organic goods helped expand the 

conventionalization of organic farming by creating a ceiling and floor for the practices necessary 
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to be considered organic. For example, most national certified organic programs do not require 

organic based fertilizers, such as livestock manure, to be developed on organic farms or from 

organic farming, and can instead, allow the application of manures obtained from conventional 

farms. Additionally, organic farms are allowed to apply organic-based pesticides.  As a result, I 

argued that there may be a displacement paradox between certified organic agriculture and 

agrochemical application. My findings demonstrate that as the proportion of organic agricultural 

land grows within countries, agrochemical application grows as well. While my findings are not 

a definitive causal link between organic farming and agrochemical application, they do 

demonstrate a potential pattern of conventionalization of organic farming at the national level.  

A potential solution to this particular displacement paradox is to eliminate the application 

of manure-based fertilizers derived from conventional farming on organic farms and/or limit the 

amount of pesticides organic farms can emit. Though, this solution would most likely reduce the 

economic viability of organic farming, which would in turn decrease the pace at which organic 

farming currently grows. The larger problem behind this phenomenon is the economic context 

under which organic farming has become prominent. Organic farming’s ability to displace 

conventional agricultural techniques has become determined by its economic viability as an 

alternative to conventional farming. However, organic farming has been forced to compete with 

conventional agriculture in outlets that are conducive to conventional farming practices, such as 

grocery stores and supermarkets, which rely on large shipments of goods to centralized locations. 

In the United States, over 90% of certified organic goods are sold in grocery stores and 

supermarkets (USDA 2016). This not only limits organic farming’s ability to employ agricultural 

techniques, conservative tilling, on-farm composting, and on-farm manures, which can reduce 

environmental degradation, it also forces organic farming to employ techniques that have similar 



102 
 

environmental consequences as conventional agriculture. In this way, organic farming is a 

reaction to the structure of conventional agriculture, helping agribusiness expand consumption 

by increasing prices and capture a larger consumer base. 

Though speculative, it would be easy to imagine a scenario in which organic farming 

increases the profits made in the conventional farming industry by establishing a market for 

manure-based fertilizers. This allows conventional farms to sell what was traditionally waste to 

organic farms and increasing their overall profits, which can in turn be used to expand 

conventional agricultural production. Furthermore, it has been noted by other scholars that there 

is an increasing presence of corporate conventional manufacturers in the organic market, which 

increases the likelihood of profits made on organic farms being used to expand conventional 

agricultural production.  

To this end, the best potential solution to the displacement paradox between organic 

farming and agrochemical application is to change the major outlets in which organic goods are 

sold. Fortunately, a different outlet already exists in the form of community-supported 

agricultural programs (CSAs).  CSAs are conducive to locally-sourced organic agriculture and 

produce a variety of goods using strict environmentally sustainable farming practices. The logic 

of CSAs is to develop a community-oriented agricultural system, whereby consumers invest in 

shares of a farm by paying an upfront fee (usually annually) that collectively covers the cost of 

maintaining the farm. The consumers then obtain a proportion of the goods that are produced on 

the farm (mostly weekly) throughout the harvest season. Since payments are usually made prior 

to harvest, consumers often share the investment risks as well. CSAs are also often locally-based 

and mostly rely on organic/biodynamic agricultural practices (Lass et al. 2003). Furthermore, 

many CSA farmers utilize practices that are stricter than organic certification standards and even 
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at times avoid organic certification in lieu of more environmentally/economically sustainable 

practices (Obach 2015).  

Although it is not required that CSAs only use environmentally sustainable practices, 

their relatively small size and consumer base allow farmers to more easily implement practices 

that are more in line with the original ideals of organic/biodynamic farming (see chapter 2) and 

mend the metabolic rift produced by modern agriculture. For instance, since CSAs for the most 

part operate in close proximity to the communities they supply to, they limit the environmental 

contradictions that develop out of long distance trade of agricultural goods. This feature allows 

CSAs to address the metabolic rift developed through the town country divide, which Marx 

argued squanders “the vitality of the soil, which is carried by trade far beyond the bounds of a 

single country (Marx 1981,p. 949–50. Cited by Foster 1999: 379).  Additionally, the way in 

which consumers participate in CSAs through directly sharing in farm investments, allows 

farmers to use economically risky practices from which conventionalized organic farmers have 

now strayed, such as crop rotations and grazing livestock (see Buck et al. 1998; Guthman 2004). 

These practices have the potential to accomplish what early advocates of organic/biodynamic 

farming called for by tying communities closer to their environments both socially and 

economically. 

CSAs also have the potential to address the displacement paradoxes found in chapter 3 of 

this dissertation. The statistical models in chapter three find that at both the national and 

international level, organic farming has not reduced greenhouse gas emissions from agricultural 

production, and at the international level it has not reduced water pollution. In chapter 3 I argue 

that these findings are potentially a result of conventionalized organic farming reproducing the 

metabolic rift of conventional farming. It is worth noting here that the models used in this 
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chapter as well as in chapter 2 could be expanded to assess the temporal affect of organic 

farming on agrochemical application, greenhouse gas emissions, and water pollution over time. 

The economic structure of CSAs also allows them to operate more easily as a counterforce to 

conventional agriculture, since they are not directly participating in the agribusiness industry. As 

I suggested previously, the largest limitation certified conventional organic farming has is that it 

participates in markets structured around conventional agricultural practices. CSAs free farmers 

from the necessity to generate a constant surplus, as they participate in economic system.  

However, I would offer caution in assuming that most CSAs operate in ways that address 

concerns raised in metabolic rift theory and/or by early organic farmers. Here I am simply 

arguing that CSAs have the potential to address the socioeconomic contradictions embedded in 

capitalism. Furthermore, the outcomes of the widespread use of CSAs have yet to be fully 

realized. Future research could incorporate the theories to explore the overall viability of CSAs, 

and specifically assess their current limitations and whether or not they can be implemented 

without being heavily influenced by external capitalistic forces.  

In chapter 4 of this dissertation I assess the environmental and socioeconomic implication 

of alternative fueled vehicles (AFVs).  I review literature that argues that AFVs are not 

necessarily a more sustainable alternative to gasoline-based vehicles. Nonetheless, they are still 

put forth by the United States government as route toward displacing gasoline and diesel 

consumption: 

The resulting demand for different types of transportation fuels in 2050… have 

significantly decreased fuel demand due to less demand for motorized transportation 

services and greater fuel economy of vehicles. As indicated, conventional gasoline is 

nearly completely displaced and use of conventional diesel is reduced dramatically.  

(United States Department of Energy 2013: 3) 
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My findings in chapter 4 demonstrate that there is a paradoxical relationship between the 

production of AFVs and fuel consumption rates per vehicle, where increasing the amount of 

AFVs within the vehicle fleet tends to increase total fuel consumption per vehicle. I contend that 

this finding is most likely a result of a displacement paradox occurring between the production of 

AFVs and gasoline and diesel-based vehicles. I further explore the casual mechanisms behind 

this counterintuitive relationship in a subsequent model in chapter 4, where I assess the 

relationship between AFVs and the amount of miles traveled per vehicle in states. In this model, 

I find that AFVs are correlated positively with increases in miles travelled per vehicle, 

suggesting that one reason AFVs increase fuel consumption rates per vehicle at the state level is 

because they increase they increase the amount of miles traveled per vehicle at the state level. 

The findings from my statistical models in chapter 4 support the hypothesis posed by Schnaiberg 

(1980) and York (2004) that there is a treadmill of diversifying production, where commodities 

that are perceived to be environmentally sustainable simply operate as facets of the treadmill of 

production and increase total resource extraction/consumption. Additionally, in chapter 4, I argue 

that the monopolistic structure of the automobile industry limits the ability of AFVs to act as 

counterforces to the treadmill of production.  

While placing AFVs as a counterforce to environmental impacts derived from gasoline 

and diesel based vehicles is a worthy endeavor, I believe AFVs must be part of a larger challenge 

to the automobile industrial complex. AFVs in their current application seem to only challenge 

one facet of the automobile industrial complex, the gasoline and diesel industry. As a result, they 

fall victim to an additional part of the automobile industrial complex—the construction industry 

or more specifically the road construction industry. Sweezy (2000) and Schnaiberg (1980) each 

acknowledged the interconnectivity between the automobile industry and the United States 
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government, which led to the United States’ current reliance on the automobile for travel. Each 

note that road reconstruction was a way of subsidizing the automobile industry. Reducing the 

vehicle fleet in the United States’ reliance on gasoline would require a restructuring of roads that 

are more conducive travel by AFVs. As was noted in chapter 4, a consistent factor that limited 

the use of AFVs by individuals was the lack of infrastructure supporting AFVs. Furthermore, a 

restructuring of the road infrastructure in the United States must also deemphasize the need for 

travel by vehicle. This could mean incentivizing more communal forms of travel or reducing the 

need for excessive travel in specific communities. Thus, a solution to the paradox found between 

AFVs and total fuel consumption rates per vehicle in chapter 4 is a restructuring the means of 

travel within the United States. Obviously, this is no small feat, however if the findings in 

chapter 4 are any indication of the future, further attempts to introduce AFVs will continue help 

increase vehicle travel and fuel consumption.  

Perhaps the overarching solution to the paradox of green commodities is altering social 

relations to incentivize the widespread use of green technologies. The counterintuitive 

relationships found in this dissertation between green technology and traditional production 

processes are a result of green technologies functioning as commodities that serve the interest of 

existing markets. While the findings in this dissertation are in no way natural laws of capitalism, 

they can be understood as stochastic outcomes of structural tendencies in capitalist economies. 

For example, most nations and international organizations apply the logic of growth theory to the 

production of green technology. Growth theory is a neoclassical economic theory that argues that 

long term economic growth trends in capitalist economies can reached by perpetual 

technological innovations, and the substitution of old technology by new technology. In the 

context of green technology, it is argued that old environmentally hazardous technology can be 
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substituted by new environmentally conscious technology to reduce environmental degradation 

and sustain economic growth. This logic does not account for the use of green technology in 

capitalist economies to expand existing markets by diversifying production procedures, and the 

application of traditional socioeconomic processes to green technologies. It is found in this 

dissertation that green technology can support traditional production processes by 

directly/indirectly expanding the use of traditional technologies and/or the absolute use of a 

particular type technology. While this is not the intended outcome of producing green 

technologies, it is a result of green technologies being used as technological alternatives under 

socioeconomic conditions that are conducive to traditional technologies. For example, organic 

farming’s direct and indirect support of conventional farming practices (e.g. the use of off-farm 

inputs and the use of conventional manures in crop production) is as an unintended consequence 

of the continual restructuring of certified organic farming standards to increase the economic 

viability of organic goods. The intentions of most national certified organic programs is to 

increase the economic viability of organic farming procedures by making organic farming more 

accessible to farmers, and in turn the environmental merits produced through organic farming. 

What I find in this dissertation is that organic farming is supporting some conventional 

agricultural practices and as a result increasing some environmental impacts produced by 

agricultural production. In this way, the paradox between organic farming and conventional 

farming an unintended consequence of applying growth theory to the production of green 

technology. While it is not an intentional outcome of national organic certification programs, it is 

a product of a structural tendency in capitalist economies. These types of structural tendencies 

have been discussed extensively by environmental sociologists, particularly those theorizing 

about treadmill of production and metabolic rift theory, my findings support several assumptions 
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of these theories. This, at the very least, suggests that environmental sociologists should continue 

to find ways to test these assumptions, and at the most, suggests that environmental sociologists 

can contribute greatly to political discussions pertaining to environmental sustainability.   
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