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DISSERTATION ABSTRACT

Jeremy Copperman

Doctor of Philosophy

Department of Physics

June 2016

Title: Diffusive and Activated Contributions in Protein Dynamics

A novel approach is developed to describe the dynamics of proteins, described as

fundamentally semiflexible objects collapsed into the free energy well representing the

folded state. This is a multi-scale approach, where structural correlations are used as

input to an effectively linear description, which can be solved in diffusive modes. The

accuracy of the LE4PD is verified by analyzing the predicted dynamics across a set of

seven different proteins for which both relaxation data and NMR solution structures

are available.

The biological function of proteins is encoded in their structure and expressed

through the mediation of their dynamics. We present here a study of how

local fluctuation relates to binding and function. This study indicates how local

fluctuations are likely to initiate biologically relevant pathways as they cooperatively

enhance the dynamics in specific spatial regions of the protein. The picture that

emerges is a dynamically heterogenous protein where biologically active regions

provide energetically-comparable conformational states that can be trapped by a

reacting partner.

The long-time dynamics of proteins is controlled by an activated regime where the

dynamics of the large amplitude diffusive modes becomes dominated by the presence
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of energy barriers. We explicitly study the atomistic simulation-derived free energy

landscape projected from the diffusive modes of the linear Langevin description of

the protein, and obtain a general scaling between the fluctuation lengthscale and

complexity. This hierarchical property of the free energy landscape of proteins is

shown to be general across a set of six different single-domain monomeric proteins.

As a consequence microscopic timescales of sub-angstrom sized fluctuations rapidly

propagate out to folding timescales at the nanometer lengthscale of globular single-

domain proteins.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

The subject of this dissertation is a theoretical model describing the diffusive

relaxation of an isolated well-folded protein (or protein cluster) in aqueous solution.

The derivation of the model will be described in some detail, but primarily the

work consists of the application and expansion of simple dynamical models of linear

chain molecules, or polymers, to the specific case of a chain of amino acids with an

equilibrium folded structure. This very finite-sized system is surprisingly rich, with

diffusive and activated dynamical contributions spanning the picosecond to many

milliseconds in timescale. Globular proteins are highly evolved amino acid chains, and

obtaining the specific structures which these macromolecules take has been one of the

great scientific feats of the previous century; this is the basis for our understanding of

structural biology. This may become the century of dynamical structural biology, as

the understanding grows of how biological processes are governed by the motion and

cooperative rearrangement of macromolecular configuration in time. This dissertation

is driven by the desire to understand the fundamental quantities governing biologically

relevant fluctuations of protein structures.

Folded proteins possess intrinsic fluctuations in isolation which directly

correspond to their biological function; binding pathways, catalysis, etc.

Experimental efforts to determine these equilibrium motions is plagued by a lack of

resolution at the microscopic lengthscale and microscopic to macroscopic timescales

of interest, and the interpretation of available experimental data is often difficult

because of the lack of both realistic and tractable theoretical models. This has been

the goal of the research described herein, to develop a method to quantitavely describe
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the motion of a protein in a realistic yet tractable model, taking the underlying static

structural ensemble as input. The story that emerges over the course of the work is

fascinating because of the remarkable organization of intrinsic dynamical pathways

and biological function in these highly evolved macromolecules.

Chapter II describes the model in detail. This work, co-authored with Dr.

Marina Guenza, was published in the Journal of Physical Chemistry B in 2014,1

and builds upon the previously introduced formalism to include global anisotropy

and a rudimentary approach to account for energy barriers in the protein free energy

landscape. The method is only applied and studied for the Ubiquitin protein.

In Chapter III, the model is extended to allow the use of experimentally obtained

NMR conformer ensembles of proteins, which typically contain only a handful of

structures as opposed to the near-continuous ensembles obtained using atomistic

molecular dynamic (MD) simulations. Additionally, the method was validated over a

set of 7 different proteins using both NMR conformer ensembles and MD ensembles

as input. This work, co-authored with Dr. Marina Guenza, was published in the

Journal of Chemical Physics in 2015.2

Chapter IV addresses the biological relevance of the dynamical mode structure

of the model. Additionally, the model is extended to interacting bound protein

complexes, and compares and contrasts the dynamical models obtained for the free

protein (apo) and bound (holo) protein complexes of the HIV Protease and Insulin

1Copperman, J., and Marina G. Guenza. “Coarse-Grained Langevin Equation for Protein
Dynamics: Global Anisotropy and a Mode Approach to Local Complexity.” The Journal of Physical
Chemistry B 119.29 (2014): 9195-9211.

2Copperman, J., and M. G. Guenza. “Predicting protein dynamics from structural ensembles.”
The Journal of Chemical Physics 143.24 (2015): 243131.
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Growth Factor II Receptor. This work, co-authored with Dr. Marina Guenza, is

currently in submission.3

Surprisingly, the application of the method over many different proteins shows

that general scaling relationships with similar dynamical exponents exist for all

proteins so far studied. Chapter V focuses upon these scaling relationships and

their consequences, as well as the possible origin and relationship to general systems

dominated by disorder. This work has not yet been edited as a co-authored

publication.

3Copperman, J., and Marina G. Guenza. “Mode localization in the cooperative dynamics of
protein recognition.” manuscript in submission.

3



CHAPTER II

GLOBAL ANISOTROPY AND A MODE APPROACH TO LOCAL

COMPLEXITY

The dynamics of proteins, and the related biological function, are inherently

determined by the complexity of their energy landscape. As proteins mostly populate

the energy states at the minimum of a free energy well, the dynamics in these

states mainly consist of local fluctuations around a non-trivial three-dimensional

folded structure. This justifies the application of linear Langevin Equations, such

as the Rouse-Zimm approach, that were originally developed to describe viscoelastic

relaxation in synthetic polymer systems to describe the dynamics of the protein.[6–8]

In a previous paper the structure of the Langevin equation was modified to account

i) for the specific effective friction of each amino acid, which all have variable shapes,

and ii) the dynamics inside the hydrophobic core of the protein, which is screened

from the solvent and as such is not affected by the presence of the solvent-mediated

hydrodynamic interaction.[8] In this current work the theory, which we name Langevin

Equation for Protein Dynamics (LE4PD), develops further focusing in particular on

the treatment of anisotropic rotational de-correlation and a mode approach to the

local complexity in the folded free energy well. The theory uses short-time Molecular

Dynamics (MD) simulations for the input parameters to the analytical solution of the

Langevin dynamics, and as a test of the theoretically predicted dynamical properties,

i.e. time correlation functions, of the protein. Theoretical predictions are then directly

compared to experimental data of Nuclear Magnetic Resonance (NMR) relaxation,

providing a test for the relation among the theoretical model, the MD simulation,

and the experiments.
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The LE4PD approach represents the protein as a collection of interacting units

centered on the alpha carbon, and relies on having N(N − 1)/2 pairwise structural

bond correlations (where N is the number of residues of the protein) and N site-

specific friction parameters. Bond correlation and friction parameters are extracted

from relatively short simulation trajectories of ∼ 10 ns or less, and with them our

approach can obtain the equilibrium dynamics of processes such as global tumbling

and large-amplitude internal motion, which occur in the same time regime as the

simulation or longer.

The approach is based on the fundamental picture of proteins as heterogenous

polymers which are collapsed into a definite tridimensional structure, which

nevertheless retains some amount of flexibility. As opposed to a rigid body, where

the global modes are the only degrees of freedom in the system, protein dynamics

include both rotational and internal fluctuation modes. Our description includes

internal dissipation due to fluctuations in the hydrophobic region by accounting for

an effective protein internal viscosity and considering the relative exposure of each

amino acid to the hydrophobic region (see Figure 1). We show that with the correct

dissipation, the linear modes of harmonically coupled objects provide a simple but

accurate description of the fluctuations of the molecule.

Because fluctuations occur in the energy well, they can be conveniently

approximated by harmonic potentials, and the related intramolecular distribution

of sites, e.g. α-carbons, can be well approximated by a Gaussian distribution, to at

least first order. These harmonic interactions are not restricted to bonded pairs along

the backbone, and construct a network of interactions which are non-local along the

sequence.
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In this way our approach takes advantage of the same physical principles that

motivate the Gaussian Network Models (GNM) and the Normal Mode Analysis

(NMA),[9–11] however it differs from those models in some important aspects. 1)

In Gaussian Network Models,[9–11] the interaction between sites is taken to be a

uniform harmonic interaction as long as site separation is within a distance cutoff;

this cutoff is typically ∼ .7 nm and the interaction strength is adjustable. In the

LE4PD theory all sites are considered to have a pairwise interaction potential whose

parameters are defined by the structural correlations obtained from simulations. 2)

The GNM and NMA models calculate fluctuations starting from a single equilibrium

structure, which is determined experimentally. One important question is how well

the experimental starting structure, usually determined from a crystal phase, is

representative of the ensemble of protein structures that are present in solution, in

physiological conditions.[12] The LE4PD method uses configurations generated from

simulations of the protein in aqueous solutions at physiological conditions, which

is a more realistic representation of the protein’s configurational ensemble.[13] As

the LE4PD model aims at building a direct connection between protein structure

and their dynamics as measured experimentally for example by NMR relaxation

experiments, the representation of the protein from simulations is more realistic.

3) The LE4PD is a diffusive dynamical description with site-specific dissipation,

hydrodynamic coupling, and barriers to internal fluctuations, calculated directly from

the structural ensemble created by the simulation of the protein in aqueous solvent.

The hydrodynamic interaction is key to this description, which is conventionally

neglected in the GNM and NMA approaches which describe collective vibrational

fluctuations.
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In a nutshell, when comparing the LE4PD to GNM-type approaches, the

advantage of the latter is their ability to represent qualitatively the type

of fluctuations displayed by biomolecules within a formally simple description

which requires only limited computational power, while our approach is more

computationally intensive. The limitations of GNM-type approaches are related

to their difficulty to obtain accurate and quantitative values of the energetics

and dynamical properties from their normal modes of fluctuation, as the motion

sampled by these methods is confined to the fluctuations around one equilibrium

structure determined experimentally and the amplitude of the harmonic fluctuations

is fictitious. Furthermore the GNM-type models have limited information of the

free-energy barriers along the paths of important fluctuations,[14] and so the kinetics

and the time-dependent phenomena are not accurately determined. In the LE4PD

approach, the knowledge of the roughness of the free energy landscape, i.e. the

sampled energy barriers, provides information on the long-time dynamics. Using

the mode formalism presented in this paper, the LE4PD includes a microscopic

description of the energetics and barrier crossing present in the molecular dynamic

simulation.

In this paper, the Ubiquitin protein is our primary model system, though the

approach has been tested on other proteins as well. Ubiquitin is a small well-

folded protein whose structure and dynamics have been well characterized utilizing

a number of experimental and computational techniques, including NMR backbone

relaxation.[1, 15, 16] In the first section of this paper, we will discuss the general

properties of the solution of the Langevin equation for biological polymers. Section

2.2 presents the methodology we used to perform Molecular Dynamic simulations

of the protein in the canonical ensemble. Treatment of the rotational dynamics to

7



account for the anisotropic shape of the protein is presented in Section 2.3. A mode-

specific dynamical renormalization of the internal modes based on the free energy

surface sampled in the simulation is described in Section 2.4. A method to calculate

the dynamics of any bond in the protein in terms of the LE4PD solution, necessary to

obtain the N −H bond dynamics probed in experimental NMR backbone relaxation,

is presented in Section 2.5. A discussion of the newly presented method to calculate

long-time protein dynamics from shorter-time simulations concludes the paper.

Theoretical Approach: the Langevin Equation for Protein Dynamics
In the LE4PD equation the dynamics of the protein is described as a diffusive

motion across the configurational landscape,[7, 8, 17] consistent with an optimized

Rouse-Zimm theory of the dynamics of macromolecules in solution.[6, 18] Proteins are

anisotropic in shape and have a hydrophobic core which is only partially exposed to

solvent, with this effect depending on the position of each amino acid in the protein.

The LE4PD includes both rotational anisotropy and the hydrophobic core, which are

features characteristic of biological macromolecules but are uncommon in synthetic

polymers in solution. Local energy barriers in the interior of the protein are important

to properly define its dynamics and are explicitly taken into account in the LE4PD

method.

The Langevin equation formalism is derived starting from the Liouville equation

for the conservation of probability density in the phase space of the full atomistic

system of the protein and solvent, and using projection operators to obtain an

equation of motion for the chosen sites.[19] Here the chosen coarse-grained sites are

the α-carbon of each amino acid in the protein primary sequence. A covariance

matrix analysis has shown that the Cα positions span the essential fluctuations

of proteins.[20] To obtain a linear Langevin equation,[21] we take the coordinates
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tracing the backbone configuration of the protein to be complete of the relevant

slow configurational degrees of freedom, and neglect system memory. Inertial terms

may be discarded as a protein in aqueous solution is safely in the overdamped limit.

The intramolecular distribution around the folded state is assumed to be Gaussian,

and the parameters in the distribution are directly obtained from the starting

configurational ensemble.[8, 22] The coarse-grained LE4PD represents the balance

of viscous dissipation with the entropic restoring force and a random Brownian

force due to the random collisions of the coarse-grained protein with the fast-moving

projected atoms belonging to solvent, ions, and the protein. The time evolution of

the coordinate of the coarse-grained site i is well-described by the following equation

ζ
∂ ~Ri(t)

∂t
= −3kBT

l2

∑
j,k

HijAjk ~Rk(t) + ~Fi(t) , (2.1)

where kB is the Boltzmann constant, T is the temperature, l2 is the squared

bond distance, and ζ is the average monomer friction coefficient, defined as ζ =

N−1
∑N

i=1 ζi, with ζi the friction of the monomer i. ~Fi(t) is a delta-correlated random

force due to projecting the system dynamics onto the coarse-grained sites, where

fluctuation-dissipation requires 〈Fiα(t)Fjβ(t′)〉 = 2kBTζiδ(t− t′)δi,jδα,β where α, β are

cartesian indices. Eq. 2.1 is the well-known Rouse-Zimm equation for the dynamics

of polymers in solution.[18, 23]

To obtain an effective linear description we assume a well-folded state where

site-site correlations are Gaussian in nature. The structural force matrix A defines

the effective mean-force potential, V ({~R}) = 3kBT
2l2

∑N
i,j=1 Aij

~Ri · ~Rj, which has been

successfully adopted in theories of protein folding to describe the final state of the
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folding process.[24] The A matrix is calculated as

A = MT

 0 0

0 U

M , (2.2)

where M is the matrix that defines the center of gyration and the connectivity between

sites,
∑

jMij
~Rj = ~li. In a protein the α-carbons are connected linearly, so that for

i > 1 the matrix is defined as Mi,i−1 = −1 and Mi,i = 1, with i = 2, ..., N , while

M1,i = 1/N for the first row, and Mi,j = 0 otherwise. The U matrix is the bond

correlation matrix with (U−1)ij =
〈~li·~lj〉
〈|~li|〉〈|~lj |〉

.

The matrix H is the hydrodynamic interaction matrix, which describes the

interaction between protein sites occurring through the liquid, represented as a

continuum medium. While it is standard to utilize hydrodynamical models to

obtain the translational and rotational dynamics of proteins,[25] the contribution of

hydrodynamical effects to protein internal motion is generally neglected. While this

may be justified for very localized motion, in general the non-local hydrodynamic

coupling alters the timescale and nature of the large-amplitude highly correlated

internal motion and cannot be neglected.[17, 26] To maintain an effective linear

description, the hydrodynamic interaction must be preaveraged. While the derivation

of the hydrodynamic interaction utilizes the Oseen tensor following the general Rouse-

Zimm treatment of polymer chains in dilute solution,[18] other methods such as the

Rotne-Prager interaction tensor reduce to the same form upon preaveraging over the

equilibrium ensemble.[27] The elements in the matrix of the hydrodynamic interaction

are defined as

Hij =
ζ

ζi
δij + (1− δij)rw〈

1

rij
〉 . (2.3)
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where rw = N−1
∑N

i=1 r
w
i is the average hydrodynamic radius which is defined below.

This is a perturbative hydrodynamic interaction accounting for the nature of the

amino acid primary structure as a heteropolymer made up of building blocks of

different chemical types, propagating through the aqueous solvent but screened in

the dense hydrophobic core. The site-specific friction parameters, ζi, are obtained by

calculating the solvent-exposed surface area, and calculating the total friction of the

ith site via a simple extension of Stoke’s law as

ζi = 6π(ηwr
w
i + ηpr

p
i ) . (2.4)

Here ηw and rw denote, respectively, the viscosity of water and the radius of a spherical

bead of identical surface area as the solvent-exposed surface area of the residue,

the hydrodynamic radius[8], while rp denotes the hydrodynamic radius related to

the surface not exposed to the solvent. The internal viscosity is ηp, which we

approximated in our previous work to be related to the water viscosity rescaled by

the local energy-barrier scale ∼ kBT .[17, 28] The largest possible value of rw that

maintains a positive definite solution of the matrix diagonalization is adopted to

avoid the well-known issue with the preaveraging of the hydrodynamic interaction in

dense systems.[29] For example, in the application of the model to HIV protease, the

calculated rw = 2.28Å is very close to the adopted value of rw = 2.23Å, which avoids

negative eigenvalues.

Because we focus only on the bond orientational dynamics and not translation,

in the interest of a simpler notation we separate out the zeroth order translational

mode from the internal dynamics. Following the same notation introduced for the

orientational dynamics of star polymers,[30] we define a as the M matrix after

suppressing the first row used to define the center of mass, and define L = aHaT .
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FIGURE 1. Hydrophobic and hydrophilic surfaces of a tagged amino acid.
Surface of a tagged residue (Threonine7) in yellow, which is in contact with the
internal protein environment (black), and the external solvent environment.

The orientational Langevin equation governing the bond dynamics is

∂~li(t)

∂t
= −σ

∑
j,k

LijUjk~lk(t) + ~vi(t) , (2.5)

with i, j = 1, ..., N − 1, and where σ = 3kBT/(l
2ζ), and ~vi(t) is the random delta-

correlated bond velocity.

Eq. 2.5 represents a set of N − 1 first-order coupled differential equations, which

are solved by finding the matrix of eigenvectors Q which diagonalizes the product

of matrices LU. In these diffusive modes we have N − 1 uncoupled linear equations

where each mode is just a sum over the original bond vector basis ~ξa(t) =
∑

iQ
−1
ai
~li(t).

We define λa to be the eigenvalues of LU with
∑

i,j,kQ
−1
ai LijUjkQkb = δabλa, ordered

from smallest to largest λ. Like the set of bond vectors ~li(t) the set of coordinates

~ξa(t) defines the instantaneous conformation of the macromolecule. While the L and

U matrices are individually symmetric, the LU matrix is not necessarily symmetric,

making the U matrix only approximately diagonal in the LU eigenvector basis. The

mean squared mode length is then 〈ξ2
a〉 ≡ l2

µa
with µa not exactly the eigenvalues of

12



the bond correlation matrix alone, but defined by the sum
∑

i,j Q
−1
ai U

−1
ij Q

−1
aj ≡ 1

µa
.

The diffusive mode basis spans the same space as the bond vector basis with near

linearity: 〈~ξa · ~ξb〉 ∼= δabl
2/µa.

FIGURE 2. Bond basis and mode basis of ubiquitin.
A snapshot of the Ubiquitin protein, represented in the bond basis (black) and in

the mode basis (global modes in yellow, internal modes in red).

Like the set of bond vectors ~li(t) the set of normal coordinates ~ξa(t) define the

instantaneous conformation of the macromolecule. Figure 2 shows a snapshot of the

protein Ubiquitin in the bond vector and in the mode vector representation, which

is obtained by applying the linear transformation of the inverse eigenvector matrix

to the coordinates of the snapshot of Ubiquitin. It shows how the first three normal

modes, which are the slowest ones, are much larger in magnitude than the internal

modes, indicating that the dynamics of this protein, at least in the simulation runs,

largely conserves the shape of the molecule, while fluctuations do not involve large

conformational transitions or slow cooperative domain motion.
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Local Dynamics

The physical quantities of interest in this paper are the bond autocorrelation

function and the second order Legendre polynomial of the time dependent bond

orientation.

For each bond i along the backbone of the protein, the bond autocorrelation

function is defined as

M1,i(t) =
〈~li(t) ·~li(0)〉
〈l2i 〉

, (2.6)

and in the formalism of the Langevin equation

M1,i(t) =
N−1∑
a=1

Q2
ia

〈l2i 〉
〈~ξa(t) · ~ξa(0)〉 =

N−1∑
a=1

Aia exp[−σλat] , (2.7)

=
N−1∑
a=1

Aia exp[−t/τa] ,

with τa the correlation time for the ath mode.

Another quantity of interest is the second order Legendre polynomial of the time

dependent bond orientation function P2(t) = 3
2
〈cos2[θ(t)]〉 − 1

2
which can be related

to the first order bond autocorrelation by

P2,i(t) = 1− 3(x2 − 2

π
x3(1− 2

π
arctanx)) , (2.8)

which is a function of M1,i(t) as

x =
[1−M1,i(t)

2]
1
2

M1,i(t)
. (2.9)
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This expression relies on assuming a Gaussian form for the joint probabilities in

normal mode coordinates, and it was derived in the paper by Perico and Guenza.[6]

The theory accounts for the distribution of effective bond lengths between two sites,

here alpha carbons, but does not explicitly account for anisotropy in the global modes.

For dipolar relaxation, the Fourier transform of P2,i(t) defines the spectral density

J(ω) =
2

5

∫ ∞
0

P2(t) cos[ωt]dt (2.10)

from which spin-lattice (T1) and spin-spin (T2) relaxation times, and nuclear

Overhauser effect (NOE) as measured in NMR can be calculated as

1

T1

=
d2

4
[J(ωH − ωN) + 3J(ωN) + 6J(ωH + ωN)] + c2J(ωN) , (2.11)

1

T2

=
d2

8
[4J(0) + J(ωH − ωN) + 3J(ωN) + 6J(ωH) + 6J(ωH + ωN)] +

c2

6
[3J(ωN) + 4J(0)] ,(2.12)

NOE = 1 +
d2

4

γH
γN

[6J(ωH + ωN)− J(ωH − ωN)]T1 , (2.13)

where c = ωN δN√
3

, and d = µ0hγHγN
8π2〈r3NH〉

. Here µ0 is the vacuum permeability, h is Planck’s

constant, ωH and ωN are the 1H and 15N Larmor frequencies of the experimental

field, γH and γN are their respective gyromagnetic ratios, δN is the chemical shift

anisotropy of the 15N nucleus, and rNH is the N -H bond length.

Molecular Dynamics Simulations of Ubiquitin
Molecular Dynamic simulations have a double purpose in our studies as they

provide the statistical parameters that define the conformational structure of the
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protein, which enters the Langevin equation, and second because they provide a

test of the time correlation functions predicted with the proposed approach in the

time regime covered by the simulations. In the short-time regime sampled by

the simulations the time correlation functions predicted by the theory, with input

statistics from the simulations, have to be quantitatively consistent with the same

functions directly sampled in the simulations.

Molecular Dynamics simulations were performed for the protein Ubiquitin in

explicit solvent using the spc/e water model with the addition of the appropriate

number of sodium and chloride ions to obtain a neutral system with 45 mM NaCl,

identical to the NMR experiments of Lienin et al.[3] Simulations were performed

in the canonical ensemble with the temperature set at 300 K. We utilized the

AMBER99SB-ILDN[31] atomic force field for proteins starting from structures

obtained from the RCSB protein databank (1UBQ[32] crystal structure of Ubiquitin).

The GROMACS[33–36] molecular dynamics engine was utilized running multiple

nodes (12-64 cores) on the local ACISS cluster at the University of Oregon. The

systems were solvated and energy minimized, and then tempered for 50 ps with all

bonds constrained, utilizing a 1 fs timestep. The system was then equilibrated for

an additional 5 ns with a velocity rescaling thermostat. After this equilibration, a

10 ns run was performed switching to a Nose-Hoover thermostat. Following this, ten

configurations separated by 1 ns were randomly chosen and these were used as initial

conditions for ten production runs of 10 ns each. This was done to efficiently generate

production trajectory, however these ten simulations are clearly not independent

since they were not equilibrated independently. In the calculations of the free energy

surfaces and the bond correlation matrix U−1, statistics from these ten production

runs were used.
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Ubiquitin was selected as a test system to analyze the proposed method because

is a protein which has been extensively studied both experimentally[1, 15, 16] and

by computational methods.[3, 37] While Ubiquitin is a well-folded protein, it also

contains domains of both rigid (β-sheets, α-helices) and highly flexible (active loops,

C-terminus) secondary structures and as such is an excellent test of the theoretical

model.

Global Tumbling Modes and Internal Fluctuations
The dynamics of macromolecules develops in 3N dimensional configurational

space, which for well-folded proteins largely reduces to fluctuations about an arbitrary

three dimensional folded structure. The LU matrix, which spans the configurational

space of the protein, has three eigenvectors which span the R3 subspace that contains

the average folded structure; we will call these the global modes. For a well-folded

globular protein these global eigenvectors are just the ones with the three smallest

eigenvalues, λa, so they are the slowest modes to relax. However, this is not a

strict criteria because sometimes internal modes can be as slow as the global ones.

Furthermore this rule will not hold for a highly anisotropic protein for which the

values of the three eigenvalues can be very different in magnitude, or for very loosely

ordered proteins, for which the scaling of the modes follows more closely that of

unstructured synthetic polymers.

The global rotational modes can be unambiguously identified by the fact that

they are the only modes with a non-zero time average in the body fixed frame– that is

〈~ξa〉 = ~0 for all internal modes while for the global modes 〈~ξa〉 is a vector which defines

the principal diffusion axes of the protein, as shown in Figure 2. For clarity, Figure 3

shows the average mode length 〈|~ξa|〉 and the length of the average mode vector |〈~ξa〉|

calculated directly from the simulation coordinates of the protein Ubiquitin. The two
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quantities are practically identical for the global modes, indicating the stability of

the global fold, while the average internal mode vectors all tend to ~0 by one or two

orders of magnitude. The fact that the average is different from zero indicates that in

Ubiquitin there is some, very small, amount of anisotropy in the internal fluctuations,

mostly in the first few internal modes. Having identified them by this procedure, the

protein’s global orientational dynamics is spanned by these three modes of motion,

[7] which describe rotations along the three main directions of the global structure.

The infinite-time limit of the time correlation function in the body-fixed reference

frame gives

lim
t→∞

M1,i(t) =
〈~li〉2

〈~l2i 〉
. (2.14)

Expressing ~li in its normal mode expansion leads to

〈~li〉2

〈~l2i 〉
=

∑N−1
a,b=1Qia〈~ξa〉 ·Qib〈~ξb〉

〈~l2i 〉
. (2.15)

Due to the stationary nature of the global modes as a set of body-fixed axes as shown

in Figure 3, 〈~ξ1,2,3〉2 ≈ 〈(~ξ1,2,3)2〉, while due to the isotropic nature of the internal

modes 〈~ξa>4〉 = ~0. With this property, along with mode orthogonality, in the long

time limit Eq. 2.15 reduces to

〈~li〉2

〈~l2i 〉
≈

3∑
a=1

Q2
ia

µa
=

3∑
a=1

Aia (2.16)

indicating that the sum of the global mode amplitudes is a local bond order parameter.

As another check that the LE4PD solution has separated into three global modes

and N − 4 internal modes, Figure 3 plots 1/µa a dimensionless measure of the
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amplitude of mode fluctuations. The LE4PD is solved using as input the full bond

correlation matrix U calculated from the simulation, and that calculated from the

PDB crystal structure assuming the only flexibility to be uniform backbone bond

length fluctuations of typical size (Uii = 1.002). We have ordered the modes by

the size of the eigenvalues of the LU matrix, λa. Modes a = 1, 2, 3 are nearly

identical in the two descriptions, reflecting only the small difference in structure

between the solvated protein in the simulation and that in the crystal (Figure 5).

Modes a = 4, N − 1 are drastically smaller in amplitude in the LE4PD with only

bond length fluctuations, indicating that these are the internal modes and the small

perturbation of the bond fluctuations in the model we constructed are not nearly as

collective as the larger-amplitude internal motion sampled in the simulation.

1 2 3 4 5 6 10 20 50
mode number

0.001

0.01

0.1

1

10

av
er

ag
e 

m
od

e 
(n

m
)

1 2 3 4 5 10 20 40 75
mode number

0.001

0.01

0.1

1

10

100

1/
µ a

FIGURE 3. Distinguishing global and internal modes.

Left panel: The modulus of the average mode vector |〈~ξa〉| (black diamonds) and

the average of the mode modulus 〈|~ξa|〉 (squares), calculated from the body-fixed
simulation coordinates. The two quantities are nearly identical for the global modes,

indicating the stability of the global structure, while |〈~ξa〉| is almost zero for all
internal modes. Right panel: µ−1

a , inverse eigenvalues of the bond correlation matrix
U calculated from the PDB crystal structure assuming the only flexibility to be
uniform backbone bond length fluctuations of typical size (Uii = 1.002) in (black

diamonds), and from the simulations (squares). The global modes are nearly
identical while internal modes are drastically smaller in amplitude.
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These three global modes define the body-fixed coordinate system. To illustrate

the relation of the global modes to the structure of the molecule, we calculate the

average gyration tensor of the molecule,

〈Sαβ〉 =
1

N2

N∑
i=1

N∑
j=i+1

〈(~Rj − ~Ri) · α̂(~Rj − ~Ri) · β̂〉 (2.17)

where α, β run over the cartesian indices x, y, z. The eigenvalues of the gyration

tensor 〈Rg
2
x,y,z〉 are typically used to denote the shape of a macromolecule.[38] Noting

that the bead separation vector can be written as (~Rj− ~Ri) =
∑j−1

k=i
~lk, and using the

notation ~lk · α̂ = lαk to denote the αth cartesian component of the kth bond vector,

〈Sαβ〉 =
1

N2

N∑
i=1

N∑
j=i+1

j−1∑
k,l=i

〈lαk l
β
l 〉 (2.18)

and expanding into normal modes

〈Sαβ〉 =
1

N2

N∑
i=1

N∑
j=i+1

j−1∑
k,l=i

N−1∑
a,b=1

QkaQlb〈ξαa ξ
β
b 〉 (2.19)

where we can now exploit the orthogonality of the mode description.

The internal modes a = 4, N − 1 in the harmonic theory are isotropic, reducing

to 〈ξαa ξβa 〉 = (1/3)(l2/µa)δαβ independent of the orientation of the x, y, z coordinate

system. However, the three global modes pick out three orthogonal directions in

3D space and define a natural body-fixed coordinate system where by convention

we align the z-axis with the long axis of the molecule corresponding to ξ1, and

the x − axis with the shortest axis corresponding to ξ3, and the y-axis with
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the middle axis corresponding to ξ2. With this global mode coordinate system,

〈ξαa ξβa 〉 = (l2/µa)δαβδaα, and the result

〈Rg
2
α〉 =

1

N2

N∑
i=1

N∑
j=i+1

j−1∑
k,l=i

(QkαQlα
l2

µα
+

1

3

N−1∑
a=4

QkaQla
l2

µa
)〉 (2.20)

where α corresponds to cartesian directions x, y, z or modes a = 3, 2, 1. The

distinction between the three global modes and the N −4 internal modes is clear; the

global modes provide the contribution from the shape of the global folded structure,

while the internal modes provide the contributions from the fluctuations. In a random

walk model like the freely jointed chain where there is no global structure, the gyration

radius contains only contributions from internal degrees of freedom and this expression

reduces to the expected 〈R2
g〉 = Nl2/6. In a rigid body model the internal modes

would have zero amplitude and the only contributions would be from the global

modes. This calculation of the gyration radius of the protein using the LE4PD modes

yields a root mean square length of Rgx = 5.509Å, Rgy = 6.126Å, Rgz = 8.575Å and

< 1% error from that directly calculated from the simulation trajectory.

To analyze the effect of the hydrodynamic interaction on the dynamics we report

in the right panel of Figure 4 the protein with its global mode axes from the global

tumbling modes without hydrodynamic contribution, which correspond to the inertial

axes of the protein. The figure shows that as the hydrodynamic interaction becomes

more and more relevant, the principal diffusion axes shift, as expected.[39] In addition

the right panel of Figure 4 shows how the eigenvalues of LU change quite dramatically

upon inclusion of the hydrodynamic interaction; global and low order internal modes

are faster while higher order internal modes are slowed with softer scaling with mode

number. This is similar to the effect of including the hydrodynamic interaction
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in flexible polymer descriptions (the Rouse-Zimm theory[18]) where the scaling of

relaxation rate with mode number goes from ka ∼ a2 to ka ∼ a3/2. The hydrodynamic

interaction component strongly affects both the global mode relaxation rates, and

the orientation of the rotational diffusion axes, and has a relevant contribution to the

protein dynamics in general and cannot be discarded.
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FIGURE 4. Effect of hydrodynamic interaction on eigenvalues.
Left panel: Eigenvalues of the LU matrix, which are proportional to the rates of the

diffusive processes governing the dynamics of the Ubiquitin protein, without
hydrodynamic interaction (squares) and with hydrodynamic interaction (diamonds).

Right panel: The red mesh and the red ball correspond to the orientation of the
principal axis of the average structure, and the orientation of the first three modes

in Eq. 2.5 solution with Hi 6=j = 0. The first three eigenvectors of the U matrix
alone correspond to the principal inertial axes of the protein. For simplicity, this
model calculation is performed with identical friction coefficients for each amino

acid. Using this simplification the hydrodynamic interaction is ramped up by tuning
the hydrodynamic radius rw from 0, i.e. no hydrodynamic interaction, to its

maximum possible value yielding positive relaxation times. The rotational axes are
modified by the presence of the hydrodynamic interaction.

Eq. 2.5 deals with the flexibility about the folded structure in an ensemble

averaged fashion. For well-folded proteins, the LE4PD, with simulations as an

input, is a good approximation to determine the diffusion tensor while including the

contribution to the dynamics due to the fact that proteins are semiflexible objects.
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Most computational approaches to determining the rates of rotational diffusion and

the diffusion tensor orientation are designed around the idea of the protein as a

rigid-body. While in these models the hydrodynamical treatment is often more

sophisticated than in our model,[25] this sophistication comes at the cost of neglecting

the contributions from internal degrees of freedom and conformational flexibility to

protein dynamics.

Figure 5 shows that the average orientation of the principal diffusion axes

calculated from the simulation trajectory of Ubiquitin with the LE4PD theory is very

close to that calculated using other methods; the orientation of the most relevant

long axis is 10.9 degrees from that found by fitting the NMR relaxation data to

an axially symmetric anisotropic model, using the N -H bond orientations from the

crystal structure, 6.5 degrees from that found using the HYDRO[40] program with

the crystal structure, and 2.8 degrees from the orientation found using the HYDRO

program and a set of snapshots taken from a Langevin simulation with the tail

unhindered by crystal contacts.[1] Figure 5 shows that the difference in the orientation

of the diffusion axes between the LE4PD and other methods appears to be related

to the different possible configurations of the tail. Given that the tail is quite mobile

the observed difference in the diffusion axes orientation could be just related to a

difference in the sampling of the configurations. This suggests that Eq. 2.5 has

captured the orientation of the principal diffusion axes of the protein.

We also compare the rates of rotational diffusion calculated using the

LE4PD constructed from the crystal structure alone, to that calculated using the

HYDRONMR program.[41] The overall rotational diffusion rate in the LE4PD

Dav = (1/3)TrD is identical to that calculated using the HYDRONMR program

when the AER, the adjustable atomic element radius, is set to a = 1.6 Å. Fit
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to NMR experiment was found using the HYDRONMR program at a = 2.2 Å;[42]

typical values of the AER are much larger ∼ 3.1 Å. Overall anisotropy 2Dz/(Dx+Dy)

in the HYDRONMR calculation and the LE4PD was comparable at 1.45 and 1.48

respectively. These results suggest that the simplified hydrodynamical treatment of

the LE4PD with the inclusion of internal friction sources can lead to similar results for

rotational diffusion as other approaches that have a more sophisticate description of

hydrodynamics and exclusively consider external solvent friction sources and overlook

structural fluctuations.

The differences in the rotational diffusion tensor between that found when fitting

to NMR relaxation data, computational rigid-body hydrodynamical modeling, and

the LE4PD, can be attributed to three main sources; namely i) the hydrodynamical

treatment and its effect on the large-scale dynamics, ii) the presence of flexibility,

i.e. differences between the solvated structural ensemble in solution and the crystal

structure iii) the sources of dissipation considered, in our model both solvent and

internal friction. The qualitative agreement between different methods observed for

Ubiquitin implies that these effects in this protein are not large. Though Ubiquitin

has a highly flexible C-terminal tail, there is no large-scale domain reorientation, so

that the static structure of the protein is close enough to the equilibrated structure

in solution and is a good representation of the equilibrium structural ensemble. In

general, however, for other proteins this is not true, and we argue that starting from

a static picture of a protein to calculate the diffusion tensor, can have some degree of

limitation in providing an accurate representation of the rotational dynamics for the

reasons just discussed.
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FIGURE 5. Diffusion tensor orientations of ubiquitin.
A comparison of the Ubiquitin crystal structure (gray), the ensemble averaged
structure from the simulations (yellow), the orientation of the long axis of the
anisotropic diffusion tensor fit to NMR experiment (black),[1] HYDRO calculation
from a set of snapshots taken during a Langevin simulation allowing the tail to
fluctuate (green), HYDRO calculation from the crystal structure (blue), and the
average global tumbling mode orientation from the theory (red). The long-axis
orientation is very close to other hydrodynamical modeling treatments when tail
flexibility is taken into account, although the short axes orientation is not.

Rotational dynamics in an inertial frame

The mode solution of the LE4PD Eq. 2.5 correctly describes the dynamics of the

molecule in a body-fixed coordinate system attached to the molecule. However, when

calculating time correlation functions in an inertial (lab) frame of reference care must

be taken to deal with the inherent anisotropy of the global tumbling modes. The

internal modes, approximated here to be completely isotropic, are not affected by the

transformation to an inertial coordinate system, so the first step is to isolate the global

tumbling modes in Eq. 2.5. The global modes are an orthogonal set of vectors defining

25



a set of body-fixed coordinates, and aligning the body-fixed coordinate system


x̂′

ŷ′

ẑ′

 =


ξ̂′3

ξ̂′2

ξ̂′1

 , (2.21)

we obtain an orientational diffusion equation in the body-fixed system

∂

∂t


~ξ′3(t)

~ξ′2(t)

~ξ′1(t)

 = −σ


λ3 0 0

0 λ2 0

0 0 λ1




~ξ′3(t)

~ξ′2(t)

~ξ′1(t)

+


~v′3(t)

~v′2(t)

~v′1(t)

 .

The global modes define the orientation of the protein which in the lab-fixed

frame of reference is rotating; denoting vectors in this inertial frame as unprimed

~ξ3, ~ξ2, ~ξ1, at t = 0 we align the x, y, z lab system with the ~ξ′3, ~ξ
′
2,
~ξ′1 body-axis of the

protein. For t 6= 0, the body-fixed and lab axes are related by


~ξ′3(t)

~ξ′2(t)

~ξ′1(t)

 = <̂(t)


~ξ3(t)

~ξ2(t)

~ξ1(t)

 (2.22)

where <̂(t) is the time-dependent rotation which takes the protein into its actual

orientation, which is in general not aligned with xyz lab system.

In the inertial frame, the LE4PD is now

∂

∂t
<̂(t)


~ξ3(t)

~ξ2(t)

~ξ1(t)

 = −σ


λ3 0 0

0 λ2 0

0 0 λ1

 <̂(t)


~ξ3(t)

~ξ2(t)

~ξ1(t)

+ <̂(t)


~v3(t)

~v2(t)

~v1(t)

 ,
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and left multiplying by the inverse rotation which takes the lab coordinate system

into the body-fixed coordinates,

∂

∂t


~ξ3(t)

~ξ2(t)

~ξ1(t)

 = −σ<̂−1(t)


λ3 0 0

0 λ2 0

0 0 λ1

 <̂(t)


~ξ3(t)

~ξ2(t)

~ξ1(t)

+


~v3(t)

~v2(t)

~v1(t)

 ,

where <(0) = 1̂ and identifying the operator

D̂(0) =


λ3 0 0

0 λ2 0

0 0 λ1

 , (2.23)

and

D̂(t) = <̂−1(t)


λ3 0 0

0 λ2 0

0 0 λ1

 <̂(t) . (2.24)

The time dependent D̂(t) can be redefined by assuming that for short time

intervals the rotation of the protein takes place in a series of small angular

displacements. We note here that (σ/2)D̂(0) is the diagonalized rotational diffusion

tensor. This procedure yields a time-independent operator D̂< valid for rotational

diffusion. While rigid-body rotational diffusion is well known,[43] we present a formal

derivation for the rotational diffusion of a semiflexible, fluctuating macromolecule.
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The rotation can be expressed as three consecutive rotations around the lab-fixed

axes <̂(t) = <̂z(γ(t))<̂y(β(t))<̂x(α(t)). Considering small timesteps ∆t we assume

the angles α(t), β(t), γ(t) to be proportional to ∆t, which gives to lowest order in ∆t,

D̂(∆t) = <̂−1
x (∆t)Ĥ(0)<̂x(∆t) + <̂−1

y (∆t)Ĥ(0)<̂y(∆t) + <̂−1
z (∆t)Ĥ(0)<̂z(∆t) .(2.25)

The rotations, to linear order in ∆t, are <̂x,y,z(∆t) = 1̂ + (∆t)L̂x,y,z where

L̂x =


0 0 0

0 0 −1

0 1 0

 , L̂y =


0 0 −1

0 0 0

1 0 0

 , L̂z =


0 −1 0

1 0 0

0 0 0

 , (2.26)

are angular momentum operators. Since we are dealing with a diffusive process, we

can take the limit of infinitely small time steps

lim
∆t→0

1

∆t
(<̂x,y,z(∆t)− <̂x,y,z(0)) = L̂x,y,z . (2.27)

In this limit, we obtain for the time-independent operator

D̂< =
1

2
(L̂Tx D̂(0)L̂x + L̂Ty D̂(0)L̂y + L̂Tz D̂(0)L̂z) , (2.28)

where the factor of 1
2

comes from requiring that Tr(D̂(0)) = Tr(D̂<). Performing the

matrix multiplication, the final LE4PD for the global modes in the lab-fixed inertial
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coordinate system is

∂

∂t


~ξ3(t)

~ξ2(t)

~ξ1(t)

 = −σ


1
2
(λ3 + λ2) 0 0

0 1
2
(λ3 + λ1) 0

0 0 1
2
(λ2 + λ1)




~ξ3(t)

~ξ2(t)

~ξ1(t)

+


~v3(t)

~v2(t)

~v1(t)

 .(2.29)

In the LE4PD, the a = 4, N − 1 internal modes are treated to be isotropic and are

unaffected by this change from a body-fixed to in an inertial frame of reference, which

is translating with the center of mass of the protein. This is an approximation, and

for a more flexible protein with large-amplitude highly anisotropic fluctuations, the

internal modes may need to be treated in a similar fashion.

The Rouse-Zimm model, Eq. 2.5, is typically applied to systems that are either

statistically spherically symmetric (a flexible freely-jointed chain, or a semi-flexible

freely-rotating chain) or possess a single long-axis (a rod). In these cases there is only

one global tumbling mode, DLE is just a number, not a tensor, and the rotational

diffusion equation leaves the single rotational de-correlation rate unaltered. However,

for proteins which have an arbitrary anisotropic folded structure, the full rotational

diffusion equation of an arbitrary 3-dimensional body must be solved.

Rotational Diffusion and Solvent Viscosity in Simulations

Extracting rotational dynamics directly from a simulation is problematic due to

the computational cost of long simulation runs exceeding the relaxation time of the

global rotation by one or two orders of magnitude. Furthermore current water models

have been seen to lead to inaccurate viscosity and surface hydration.[44] The viscosity

of the spc/e water model has been estimated to be the same as real water[45] or about

27% lower.[46] After utilizing the proposed LE4PD formalism, the rates of rotational
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de-correlation are found to be consistent with both the simulation and experiment.

Figure 6 displays a comparison between M1(t) calculated directly from the simulation

and from theory where internal barrier crossings are included as discussed in Section

2.4. The figure shows data for six selected bonds where the rotational diffusion

eigenvalues so calculated improve the comparison to the simulation, which is true for

71% of the 75 bonds in Ubiquitin.

Quantitative results are obtained for the rotational dynamics in the simulation

when the viscosity in the LE4PD is set to 1.33 times that of real water. For

internal processes the relaxation is less sensitive to the exact viscosity used in the

LE4PD because the internal timescales are dominated by the eigenvalue spectra of

the LU matrix and by the energy barriers to relaxation. However at longer times

the rotational decorrelation dominates the dynamics, making the long-time slope

of the bond autocorrelation highly sensitive to the viscosity used as input to the

theory. The statistical error in the in the longer-time regime of the time-correlation

functions calculated from the 10 ns simulations makes the analysis of the reasons

for discrepancy between spc/e water viscosity estimates and the viscosity used in

the LE4PD not particularly conclusive. In particular, Wong and Case estimated the

statistical error in an exponential rotational relaxation process at t =∼ τ to be about

23% when calculated from a 200 ns MD trajectory.[44] The relationship between

the diffusive dynamics of proteins, solvent viscosity, internal viscosity, and hydration

layer properties of the in silico protein in water model certainly warrants further study

and comparison with much longer simulation runs where the simulation time exceeds

the timescale of global diffusive processes by 1-2 orders of magnitude. Studies of

diffusive motions of proteins in these time regimes and the tuning of water models for

better viscosity have recently been undertaken,[47] but the intent of this work is to
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demonstrate the utility of the LE4PD to obtain the protein dynamics from relatively

short simulation runs. For comparison to experiment the correct viscosity of 10%

D2O and 90% H2O at the experimental temperature is used, while for comparison to

simulation results, the viscosity of 1.33 times that of real water at 300K is used in

the LE4PD.
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FIGURE 6. Bond autocorrelation with rotational diffusion.
M1(t) calculated from the simulation (black), LE4PD with l = 1 rotational diffusion

eigenvalues (dashed line), and the bare LE4PD solution in the body-fixed frame
(dashed-dotted line). The LE4PD approch includes the calculation of the internal

mode energy barriers as described in Section 2.4.

Dynamical renormalization of the internal modes from free energy

surfaces
In this section we describe how we account for local-mode barrier crossing in

the Langevin equation for protein dynamics. In our previous paper this correction
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was not included in the theory,[8] but we noticed how the disagreement between

theoretical predictions and the simulations, from which the theoretical parameters

were calculated, for the function M1,i(t) was largely a consequence of neglecting the

local energy barriers.

Here, we explicitly account for the complexity of the free energy landscape,

working with the internal mode description of the linearized Langevin equation

and correcting the modes a posteriori by introducing the local energy barriers, as

measured in simulations. We are interested in calculating the bond autocorrelation

function where we separate the first three non-translational modes from the internal

ones as

M1,i(t) =
3∑

a=1

Aia exp[−σλat] +
N−1∑
a=4

Aia exp[−σλat] , (2.30)

under the assumption that the first three modes represent the rotational dynamics of

the molecule, while the higher modes represent the internal dynamics. This separation

of local and global motion inM1(t) is due entirely to the mode structure of the solution

of Eq. 2.5, and doesn’t rely in any way upon the separation of the dynamics into slow

and fast processes. In fact we will show that upon including internal energy barriers

in the mode coordinates some internal modes can become slow enough to occur on the

same timescale than the rotational decorrelation modes. It is important to note that

the lack of time-scale separation between the first three modes and the other ones

does not affect the validity of the treatment that is presented here. Furthermore, this

separation of local and global motion occurs in the context of a solution for a first

order correlation, while in higher order correlation functions, such as P2,i(t), global

and local modes are necessarily mixed.
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While the first non-zero three modes of relaxation in a largely stiff object

mainly describe the rotational dynamics of the macromolecule, the modes with higher

index, a = 4, ..., N − 1, describes the internal dynamics of the protein and the

collective breathing modes of an overdamped, harmonically connected object. The

more cooperative the motion, the slower the characteristic timescale of the normal

mode. When applied to linear synthetic polymers in solvent, which are uniform

in their composition and are rotationally symmetric in their structure, the time of

relaxation scales in the Rouse-Zimm theory with mode number a as τa ∼ a−3/2,

with τa = (σλa)
−1.[18] Representing the same function for a protein, for example

Ubiquitin, shows a different and more interesting behavior. Figure 7 compares the

Rouse-Zimm scaling law with the data from the simulations of Ubiquitin before and

after accounting for the local energy barriers in the internal normal modes. Without

energy barriers, the global modes are clearly slower than the internal ones. The

inclusion of the local energy barriers in the local modes leads to a more complex

mode-dependence of the relaxation times. The first handful of internal modes display

relaxation times comparable to the rotational modes: those are the modes which

span the most collective and large-amplitude fluctuations of the molecule. In general

the relaxation time still decreases with mode number and, interestingly, the slowest

more-cooperative internal modes also have the highest free energy barriers. This

result is conceptually consistent with the behavior emerging in the first few diffusion

coordinates in the LSDmap method[48] where eigenfunctions of the Fokker-Planck

operator are estimated.

Each normal mode obtained from the diagonalization of Eq. 2.5 is a vector

defined by the linear combination of the bond vectors weighted by the eigenvectors

of the product of matrices LU, as ~ξa(t) =
∑

iQ
−1
ai
~li(t). In polar coordinates the
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vector is represented as ~ξa(t) = {|~ξa(t)|, θa(t), φa(t)}. In Eq. 2.5 the orientation of

each Langevin internal mode diffuses isotropically about all solid angles; however,

the probability distribution of the internal mode vector orientation per solid angle

calculated from the simulation trajectory is unique for each mode.

As a first approximation we assume that the fluctuations in the modulus of the

normal mode vector are random and independent or mode orientation, so that the

relevant changes in the normal mode free energy occur as the angles, expressed in the

spherical coordinates, span the configurational space. For a generic normal mode, a,

the free energy surface is defined as a function of the spherical coordinate angles θa

and φa as

F (θa, φa) = −kBT log {P (θa, φa)} , (2.31)

with P (θa, φa) the probability of finding the normal mode vector having the given

value of the solid angle.

The internal normal modes provide information about the complexity of the

configurational free energy landscape around the folded state. By calculating the

mode-dependent free-energy surface from the simulation probability distribution we

observe that even close to the global folded minima the free energy landscape is rough

and contains multiple local minima, metastable states, and local barriers with related

multiple possible pathways for the local dynamics (see for example Figure 8).

For an approximate rescaling of the dynamics, we correct the rate of

reorientational diffusion of each mode by assuming thermal activation over the mode-

dependent energy barrier 〈E†〉 where

〈ka〉 = k0
a exp[−〈E†a〉/(kBT )] . (2.32)
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FIGURE 7. Mode-dependent relaxation times.
Mode-dependent relaxation time for the protein Ubiquitin. In the bare LE solution
(filled diamonds) the rotational modes are well separated from the internal modes,
while once the dynamics are modified to account for the local free-energy barriers
the internal modes (open diamonds) become closer to the global modes. The three

global modes after accounting for anisotropic rotational diffusion become more
uniform in timescale (squares). Also reported is the standard Rouse-Zimm model

scaling a−3/2 of the normal mode dynamics (circles). Even for Ubiquitin, a
well-folded protein, there is no separation in timescale between global and internal

modes after dynamical renormalization.

This simple dynamical renormalization provides an average correction to the dynamics

of the LE, which approximately accounts for the local barrier crossing, and is in

agreement with free energy landscape theories suggesting an underlying dynamical

glass transition at low enough temperature[49, 50]. Other more detailed methods can

be used to model barrier crossing, such as Markov network models[51] and approaches

which explicitly deal with the complexity of the free energy landscape[48, 52–54]. As a

first approximation, the depth of the minimum free-energy well in the mode serves as

the relevant barrier to transport, and by requiring thermal activation over this barrier

the timescale of all mode-dependent dynamical quantities are simply renormalized by

these factors. This simple model gives a realistic first order correction to the barrier-

free Langevin dynamics.
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The presence of internal free energy barriers is not limited to the first internal

modes. Figure 11 shows that the complexity in the free energy surface is present in any

normal mode, extending out to fluctuations on mode 17th, which is an intermediate

mode, to mode 75th, which is the most local and the last of the internal modes. In

this way the renormalization of the dynamics has to be included for each internal

normal mode of motion.

Protein real-space configurations from the normal mode pathways

In simulations each time frame corresponds to a specific molecular configuration.

Each molecular configuration corresponding to a given simulation frame at time

t can be described by the set of bond vectors ~l1(t),~l2(t), ...~lN−1(t) or equivalently

by the set of mode vectors ~ξ1(t), ~ξ2(t), ...~ξN−1(t). However, a single mode vector

orientation is associated with an ensemble of molecular configurations. Given that

we are interested in the explicit representation of the structure along a pathway of

interest for each normal mode, all structures from the simulation ensemble which

pertain to a particular θ, φ orientation of a mode vector of interest are extracted and

averaged. By calculating this average structure along a particular pathway in the

free energy surface of a particular mode, for example along the path of lowest free

energy connecting two minima, the structural pathway of relaxation in that mode can

be obtained. This is a very different process than projecting the protein structures

along particular directions, often used for example to visualize eigenvector directions

in Essential Dynamics Analysis[55]. Figure 8 displays the free energy surface and

structural pathway of the first of the internal modes of Ubiquitin. Because the modes

are in general ordered from the most collective to the most local, this is the most

collective internal motion for Ubiquitin. Using this process of transforming the protein
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coordinates from the simulation into the mode representation, and then extracting

back the average structure for each specific mode orientation, is possible to reconstruct

the ensemble of protein configurations along a structural pathway for each mode.

The transform shows that the first internal mode mainly involves large-amplitude

fluctuations of the C-terminal tail, which are biologically important as the C-tail is

the linkage point for poly-ubiquitination[2]. Figure 9 shows the free energy surface

of the fourth internal mode which captures concerted fluctuations of the tail and

the loop containing Lys11, a relatively abundant linkage site involved in cell-cycle

regulation[2]. The most collective internal modes are those which span the important

functional motion of the protein, illustrating the fundamental relationship between

protein dynamics and biological function[56].

Coarse-gained representation, dynamics, and internal energy rescaling

In the independent normal modes representation, the LE4PD theory renormalizes

the rough free energy surface measured in simulations and replaces it with a smooth

isotropic surface upon which dynamical processes become faster than in the real

system[57]. From the solution of Eq. 2.5, reorientational diffusion takes place at a

rate k0
a = σλa, while the real free energy surface of the normal mode, as it emerges

from the molecular dynamic simulations, presents complex roughness. Dynamical

processes need to include activate dynamics to overcome internal energy barriers[58].

To find this average activation barrier 〈E†a〉, we calculate the depth of the well in

which the minimum free energy state lies, for each normal mode. Figures 10 shows,

as an example, the average free-energy barriers in the first and fourth internal mode of

Ubiquitin. The difference in energy is taken between the deepest value of the energy
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FIGURE 8. Free energy surface of the first internal mode.
Left panel: free energy surface of the first internal mode. Right panel: structural
fluctuations in the first internal mode along the path of minimum energy.

FIGURE 9. Free energy surface of the fourth internal mode.
Left panel: free energy surface of the fourth internal mode. Right panel: structural
fluctuations in the fourth internal mode, involving the loop containing Lys11, a
relatively abundant linkage site involved in cell-cycle regulation[2]

in the energy well and the barrier that the system needs to overcome to escape the

same.

The height of the energy barrier is mode-dependent (see Figure 12). Complex

energy landscape is observed for any mode and at all length scales, but large energy

barriers, present in the first internal modes, converge to smaller barriers for more

local modes, and finally to a minimum value given by 〈E†int〉 ∼ kBT . Assuming that

the slowing down of the dynamics in the hydrophobic region is largely dominated by
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FIGURE 10. The free-energy barrier to mode fluctuations.
The depth of the free energy well is used as E†, the free-energy barrier to mode
fluctuations. Left panel: first internal mode of Ubiquitin. Right panel: fourth internal
mode of Ubiquitin.

local barrier-crossing we evaluated the protein internal viscosity as

ηp = ηse
〈E†
int

〉
kBT , (2.33)

where the external solvent viscosity is taken as the reference point in the

calculation.[28] The solvent accessible surface area calculation shows that all protein

residues are at least partially exposed to the solvent– which justifies the use of the

solvent viscosity as the valid reference point, as all protein sites are at least partially

solvated, and all dissipation must ultimately lead to dissipation into the solvent to

maintain equilibrium. Because the protein’s free-energy landscape is in general rough

and funnel-shaped, containing barriers of all heights[49], it seems typical that at any

finite temperature the most highly sampled and relevant local internal barriers should

be of the order of ∼ kBT . This simple estimate of the protein internal viscosity in

the hydrophobic core is used as an input in Eq. 2.4. At this point all the information

needed to solve the equation of motion for protein dynamics is defined.
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FIGURE 11. Free energy surface of local internal modes.
Free energy surface of the 17th internal mode (left panel) and of the 75th internal
mode (right panel). Both at intermediate and local lengthscales there is still
complexity in the internal mode FES.

Testing the free energy surface approximation against simulations

As a first test of the proposed approach we compare the decay of the

autocorrelation function of a Cα-Cα bond, M1,i(t) defined in Eq. 2.30, with the

data from simulations. The theoretical function is calculated from the solution of

the Langevin Equation for Protein Dynamics, with and without taking into account

the barrier crossing of the internal normal modes. Figure 13 reports as an example

the bond autocorrelation for bond seven: bond seven lies in a particularly active

loop with large barriers to fluctuations; the inclusion of the renormalization of the

local modes dynamics, due to the internal energy barrier, drastically improves the

agreement with simulations. Further comparison of the LE4PD theory predictions

for M1(t), with the renormalization from the energy barriers in the internal modes,

can be seen in Figures 6 and 16.

Figure 15 displays similar agreement between theory and simulations for bonds

belonging to α-helices, β-sheets, other loops, and the flexible C-terminal tail, where

rotational contributions are removed from both the simulation and the theoretical

time correlation functions to highlight the internal dynamics.
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FIGURE 12. Height of the free-energy barrier as a function of mode number.
Height of the local-mode free-energy barrier to conformational diffusion as a function
of mode number. The first handful of internal modes display large energy barriers,

while the average energy barrier for the higher order internal modes goes to ∼ kBT .

Dynamics of the N-H dipole vector
When comparing to experiments probing dipolar relaxation, it is important to

account for the fact that the experimental probe either refers to the dipole along

the N -H or to the one along the C-H bond. The orientation and dynamics of

both these probes is not necessarily equivalent to the dynamics of the Cα-Cα bond

vector, described by Eq. 2.5. The left panel of Figure 14 shows, as an example,

the relative orientation of the N -H dipole and the Cα-Cα bond vector in one sample

configuration of the protein Ubiquitin from simulations. The N -H dipole, relevant

to 15N NMR backbone relaxation experiments of Ubiquitin in this paper, has a

different orientation than the related Cα-Cα bond vector. The right panel of the same

figure represents a model for the relative orientation of the instantaneous vectors,

~lNH,i(t) and ~lCα,i(t), and the averaged vectors, 〈~lNH,i〉 and 〈~lCα,i〉. In addition to a

difference in average orientation, the Cα-Cα vector and the N -H dipole vector can

have different contributions to their internal dynamics, both additional short-time
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FIGURE 13. Bond auto-correlation function in a highly active loop.
Bond auto-correlation function M1(t), with both rotational and internal motion, for
Cα-Cα bond 7 located in a highly active loop. Data calculated directly from the
simulations (solid line), from Eq. 2.5 with dynamical renormalization of internal
modes (dotted line), and without renormalization of the internal modes (dashed line).

librational processes, and additional slower processes where the N -H bond can rotate

with the peptide plane without affecting the overall backbone orientation.

The orientational bond autocorrelation for N -H bond relaxation

M1,NH(t) =
〈~lNH(t) ·~lNH(0)〉
〈(lNH)2〉

, (2.34)

is calculated from the LE4PD theory by assuming that the modes form a complete set,

which is equivalent to say that we can express the N -H bond vector as an expansion

in the LE4PD normal modes as

~lNH,i(t) =
N−1∑
a=1

QNH,ia
~ξa(t) , (2.35)

where the transformation matrix QNH is defined as

QNH,ia = 〈~lNH,i · ~ξa〉/〈ξ2
a〉 . (2.36)
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FIGURE 14. Relative position for the N -H and the Cα-Cα bonds.
Left panel: the orientation of the bond basis (Cα-Cα) is in black and the N -H

vector measured in 15N NMR is blue-yellow. Right panel: model representation of
the relative position and orientation of the instantaneous and averaged bond vectors

for the N -H and the Cα-Cα bonds.

The bond autocorrelation function is then

M1,NH,i(t) =
N−1∑
a=1

ANH,ia exp[−σλat] , (2.37)

with

ANH,ia =
Q2
NH,ia〈ξ2

a〉
l2NH

. (2.38)

The expansion coefficient QNH,ia can be calculated directly from the simulation using

Eq. 2.36, in this fashion it is possible to obtain the dynamics of any protein-based

vector from the LE4PD modes.

For accuracy, when calculating the normal mode expansion of the N -H

bond vector from the simulation coordinates, the local bond order parameter∑3
a=1 ANH,ia is enforced to be the same as 〈~lNH,i〉2/〈~l2NH,i〉 calculated directly from

the simulation. This normalization is performed prior to enforcing the overall
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normalization
∑N−1

a=1 ANH,ia = 1. This is only a small correction of a few percent for

all bonds except for those located in the C-terminal tail bonds 72-75. Here, the mode

expansion fails and
∑N−1

a=1 ANH,ia calculated from the simulation before normalization

is much less than 1. For these highly flexible C-terminal tail bonds, the Cα-Cα bond

dynamics are obtained well by the LE4PD theory but the predictions for the N -

H bond dynamics are much too fast, showing that there are large amplitude slow

processes which are uncorrelated with protein backbone fluctuations in these bonds.

Comparing the N-H bond and the Cα-Cα dynamics to simulation

As a test of the normal mode solution of the Langevin Equation for Protein

Dynamics to describe the dynamics of both the N − H bond vector and the Cα-

Cα, we compare the decay of the first order autocorrelation function with data from

computer simulations. Calculations were performed for each bond, and as an example

Figure 15 displays the comparison between theoretical predictions and simulations for

the autocorrelation functions of both the N -H bond and the Cα-Cα bond related to

a representative bond in all secondary structure types. To emphasize the difference

in the internal dynamics, in this figure overall rotation is removed from simulation

before calculating the time correlation functions, and the global mode contributions

are removed from the theoretical calculation. Figure 16 compares the results of the full

theory with rotation included for all of the poly-ubiquitination linkage sites, showing

the high variability in the local dynamics at these biologically important residues. The

comparison shows that the agreement is quantitative; similar quality of agreement is

observed for all bonds along the primary sequence, up to the anomalous relaxation

of the N -H bond vectors in some of the tail residues, supporting the validity of

the model proposed in this paper. The theoretical model just presented proves to
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FIGURE 15. Bond autocorrelation functions due to internal processes.
Temporal decay of the bond autocorrelation functions due to internal processes,

where rotational relaxations have been subtracted, for the Cα-Cα vector (top) and
for the N -H vector (bottom) for bonds in many secondary structure types along the
protein primary sequence. The dotted lines are calculated from the LE4PD normal

mode expansion, solid lines are calculated directly from the simulation.

be fully consistent with the simulations, which provide the input quantities to the

theory, in the short time regime where the simulations efficiently sample the local

configurational space.

Comparing the LE4PD predictions to NMR experiment

As a second step in our study we use the theoretical predictions for P2,i(t) =

1
2
(3 cos2 θi(t) − 1), obtained from M1,i(t) using Eq. 2.8, to calculate T1 and

T2 relaxation times, and NOE, which are measured experimentally. 15N NMR

backbone relaxation experiments are very sensitive to the site-specific dynamics in the
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FIGURE 16. Bond autocorrelation at poly-ubiquitination linkages.
Temporal decay of the bond autocorrelation functions due to internal and rotational

processes, for the Cα-Cα vector (top) and for the N -H vector (bottom) for all
poly-ubiquitination linkage sites. The dotted lines are calculated from the LE4PD
normal mode expansion, solid lines are calculated directly from the simulation.
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picosecond to the nanosecond regimes[59]. The target function is the bond relaxation

for the N -H vector, which is calculated using information from the simulations. It

is known that the force-fields used to calculate the N -H bond interaction in the

atomistic simulation are approximate, because they are not designed for high accuracy

at the single-hydrogen level. In addition, the LE4PD modes span the configurational

space of the protein backbone but are not necessarily complete for the local N -H

bond dynamics. To overcome these issues we present three different methods to

estimate the internal N -H bond dynamics. In all three methods, the global mode

contributions ANH,ia for a = 1, 2, 3 are calculated by evaluating Eq. 2.38 from the

simulation, while the internal dynamics and the overall normalization between global

and internal modes differ.

Each method is tested against three different sets of NMR experiments, those

of Lee and Wand[15] at 298K, and those of Tjandra et al.[1] and Lienin et al.[3] at

300K. The solvent viscosity used in the theoretical expression is adjusted to account

for the mixture of 90% H2O and 10% D2O used in all experiments[44]. The simulation

conditions (temperature and salt concentration) were set to match the experiments

of Lienin et al., and only the temperature and the temperature dependence of the

viscosity in the theoretical expression was set to match the different experiments.

The experimental data are for the most part self-consistent, and the theory agrees

quite well with all experiments, with correlation coefficients between .792 and .983,

depending on the method used to describe the internal dynamics of the N -H bond, as

can be seen in the Table 1. Figure 17 shows the comparison between the theoretical

results and the experimental data of T1, T2, and NOE from Lienin et al.[3] The

different theoretical models proposed here provide comparable agreement with the

experiments.
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In the first method, the internal dynamics are taken to be identical to that of the

Cα-Cα vector, with the addition of a trivial contribution from the fast independent

librational motion of the N -H bond. This librational motion is taken to be a sub-

picosecond process with identical magnitude for all bonds. From NMR experiments

in oriented media, Ottiger and Bax estimated an average order parameter S for

independent librational motion of the N -H bond from the backbone basis to be S =

.94[60], corresponding to an approximate amplitude of the independent librational

process in M1,NH(t) of Alibrational = .02. This gives the expression for the relaxation

of the ith N -H bond

M1,NH,i(t) = C
3∑

a=1

ANH,ia exp[−σλat] +
N−1∑
a=4

ACα,ia exp[−σλat] + Alibrational exp[− t

τlib
] ,(2.39)

where τlib = .2 ps. The results are practically independent of τlib as long as it is

taken to be a fast process. To enforce the correct normalization, the constant C =

(
∑3

a=1ACα,ia−Alibrational)/
∑3

a=1ANH,ia so that M1,NH,i(0) = 1. As can be seen in the

Table 1, the α-carbon based internal dynamics of the backbone (model 1) correlates

highly with the N -H bond dynamics measured experimentally for all three different

sets of data.

The second method allows for an arbitrary independent relaxational mode for

each N -H bond that is directly fit to the simulation, that is

M1,NH,i(t) = C
3∑

a=1

ANH,ia exp[−σλat] +
N−1∑
a=4

ACα,ia exp[−σλat] + AindNH(t)] ,(2.40)
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where AindNH(t) is a three-exponential fit to simulations of the difference in the

internal dynamics of the N -H bond and the Cα-Cα vector,

AindNH(t) =
〈~lNH(t) ·~lNH(0)〉
〈(lNH)2〉

− 〈
~lCα(t) ·~lCα(0)〉
〈(lCα)2〉

, (2.41)

evaluated in the body-fixed frame. Normalization is set by C = (
∑3

a=1ACα,ia −

AindNH(0))/
∑3

a=1ANH,ia. Table 1 shows that accounting for the difference between

the local N -H bond dynamics and the backbone leads to lower error and higher

correlation to experiments than the first method. The dynamics of the N -H bonds

calculated with the second method for the highly flexible C-terminal tail agrees well

with simulations, however it disagrees with the experimental data for the tail-bond 75.

This suggests the simulations predict dynamics that are too fast when compared with

the experimental findings indicating that some slow energy barrier is not accounted

for in the simulation.

In the third method the full LE4PD mode expansion is used, M1,NH,i(t) =

C
∑3

a=1 ANH,ia exp[−σλat] with no additional independent processes added. Despite

the errors in the C-terminal tail bonds, the overall agreement and correlation to

experiment is nearly identical to the second method in which the difference in the

internal dynamics between the α-carbon basis and N -H bond is fitted (see the

Table and Figure 17). Only the second method requires any fitting to a time-

dependent quantity, and, as can be seen in the Table, this improves the agreement

with experiment only modestly, if at all.

It is important to point out that the good agreement between theory and

experiment has been obtained without the need of fitting the theory to experimental

data, and in this way our approach differs from other approaches commonly used

to interpret NMR relaxation.[61] When a model is parametrized by fitting to the
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TABLE 1. Correlation coefficients with experimental data of NMR relaxation.

Correlation coefficient of the theoretical models with experimental data
of NMR relaxation, using the three different methods to estimate the
independent N -H bond fluctuations, (1) assuming identical internal dynamics
to the α-carbon bond basis up to an independent librational process, (2)
fitting the independent dynamics of the N -H bond to the simulation,
and (3) using the full LE4PD mode expansion of the N -H bond vector.

NMR reference and theoretical model T1 Corr. T2 Corr. NOE Corr. RMS Rel. Error
Lee[15] et al. 1 .792 .885 .937 7.7%
Lee[15] et al. 2 .875 .974 .967 5.9%
Lee[15] et al. 3 .880 .944 .940 14.8%

Tjandra[1] et al. 1 .806 .879 .948 13.7%
Tjandra[1] et al. 2 .890 .971 .978 12.1%
Tjandra[1] et al. 3 .914 .938 .955 20.6%
Lienen[3] et al. 1 .959 .936 .967 7.0%
Lienin[3] et al. 2 .960 .960 .970 6.6%
Lienin[3] et al. 3 .880 .983 .982 16.6%

experimental data it carries their uncertainty and errors, and it cannot directly

relate the measured data to actual structural relaxation processes. In this respect

our approach has a clear advantage. The level of agreement between theoretical

prediction, simulation, and experiment suggests that the LE4PD approach models

the protein backbone dynamics with accuracy, while the disagreement observed for

specific bonds can be related to insufficient sampling of the free energy landscape that

enters the relaxation dynamics of NMR, or possible experimental errors. The LE4PD

approach has the advantage of being firmly grounded in the underlying physical

processes which relax the dipole orientation.

Conclusions

We have presented a coarse-grained description for the dynamics of a folded

protein in aqueous solution. The theory is closely related to the Rouse-Zimm model

of the dynamics of synthetic, unfolded, polymers in dilute solutions but carefully
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FIGURE 17. T1, T2, and NOE 15N NMR backbone relaxation.
T1, T2, and NOE 15N NMR backbone relaxation, comparison between experiment
(black)[3], the first theoretical method (red) correcting for N -H orientation and only
adding an identical librational process onto the C − α internal motion, the second
theoretical method (green) accounting for differences in internal N -H fluctuations

by fitting indendent N -H relaxation to simulation, and the third theoretical method
with the full LE4PD expansion of the N -H bond vector (purple).
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incorporates the complexity of the protein free energy lansdscape into a linear

Langevin description of the protein dynamics. The theory is conveniently expressed in

normal modes of motion. Because the modes are linearly independent, this facilitates

the inclusion of correction terms that are specific of the dynamics spanned by each

single mode.

The theory, which we call the Langevin equation for protein dynamics (LE4PD),

modifies the Rouse-Zimm equation for both the global and internal modes. Since

proteins have a specific tridimensional structure which is anisotropic, global modes

must describe the fully anisotropic rotational diffusion of the molecule. The three

global modes, properly modified, are able to capture the fully anisotropic rotational

dynamics of the folded structure. The mode framework also allows for the calculation

of the dynamics of bonds in the protein structure other than the α-carbon bond

basis chosen for the coarse-grained description. This is especially important when

comparing to experiments which probe the dynamics of specific dipoles measured in

experimental techniques, here the N -H dipole whose relaxation is measured in 15N

NMR backbone relaxation.

To obtain a formalism that is solvable analytically, our treatment of the

hydrodynamics involves preaveraging; in principle other bead or shell hydrodynamical

models may be more accurate in this regard[25]. However, while the treatment of

the hydrodynamics can be more exact for a completely rigid protein, our approach

captures correctly the essential physics of a collapsed polymer system with internal

fluctuations. Typical synthetic polymers have an isotropic shape and all the

monomers are statistically equally exposed to the solvent. This is not true for proteins;

residues that are inside the protein, in the hydrophobic ”core”, have very little

contact with the solvent, however they experience friction due to interactions with
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other protein residues. The physics of the tumbling of a rigid body, no matter how

detailed the parameterization and hydrodynamical treatment, incorrectly attributes

all frictional sources to solvent contacts. This would imply that the sites belonging

to the hydrophobic core of the protein have little or no friction, whch is unphysical.

Furthermore, for the system of a protein in solvent there is no conservation law

mandating that the friction associated with global diffusive processes be due only to

direct solvent contacts. And it has been observed that the fit to experimental data

in bead and shell hydrodynamical models for rotational diffusion always requires

extra friction. We argue here that while the conventional inclusion of an adjustable

bound layer of water and ions leads to quantitative comparison between rigid body

hydrodynamical calculations and experiment,[25] the neglect of internal friction may

be an additional factor not accounted for in the hydrodynamic modeling of biological

polymers as rigid objects.

The dynamics of the internal modes predicted by the Rouse-Zimm equation for

synthetic polymers is unrealistically fast due to neglecting the complex nature of the

internal free energy landscape. We have presented here a new model of a Langevin

Equation for Protein Dynamics, which includes a first-order correction where the

timescale of relaxation in each internal mode is rescaled by the mode-specific mean

free-energy barrier to orientational diffusion. After rescaling we observe that there is

no longer a separation in timescale between internal and global processes even in the

well-folded Ubiquitin protein. Accounting for global anisotropy and the complexity

of the internal free energy landscape leads to simultaneous quantitative agreement

with simulation and NMR backbone relaxation rates.

The Langevin Equation for Protein Dynamics is based upon the inherent nature

of proteins as polymers with both flexibility and global structure; it is a modified
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Langevin approach for polymer dynamics. The approach seamlessly describes both

internal and rotational fluctuations, as well as dissipation in the internal hydrophobic

core of the protein and the external solvent environment. With the ease of use

of current simulation packages and the availability of computational power, when

starting structures are available, the LE4PD approach can help bridging the gap

between the often short timescales of simulations and longer timescales probed by

experiments, providing a direct formal connection between the protein’s primary

sequence, three dimensional structure, free energy landscape, and the dynamics.
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CHAPTER III

PREDICTING PROTEIN DYNAMICS FROM PROTEIN STRUCTURAL

ENSEMBLES

The evolved amino acid sequence of a native protein encodes its folded structure

and inherent dynamical properties in aqueous solution.[56, 62, 63] The latter

determines the dynamics of specific residues in a protein primary sequence, which

are active participants in the pathways of the biological function. Biologically active

segments are often mobile and adaptable to assume a proper configuration when

binding to a reaction partner. The multiple configurational states that an active

segment may populate are not randomly selected: configurations with minimal energy

are connected by energy barriers, and as such are thermally activated, enabling

emerging regions of high mobility, which can behave like “switches” along the binding

pathway.[63]

Different experiments and computational models exist to probe the dynamical

processes of proteins, spanning the femtosecond regime of bond and angle vibrational

modes to the millisecond and longer time regimes of folding and enzymatic kinetics.

Important information in the picosecond to tens of nanosecond regime can be collected

through NMR relaxation experiments, such as T1, T2 and NOE, however their

interpretation is model dependent. Atomistic Molecular Dynamic (MD) simulations

can provide a realistic dynamical model, but for most proteins of interest sufficient

sampling to obtain converged dynamical correlations is prohibitively costly, and a

theoretical approach is needed.

The theory we present here is the Langevin Equation for Protein Dynamics

(LE4PD), which provides a coarse-grained but still physically realistic representation
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of biological macromolecules at the lengthscale of a single amino acid and larger.

The LE4PD theory describes the amino acid dynamics quantitatively, as the theory

contains information about the extent of the intramolecular energy barriers, specific

amino acid friction coefficient, semiflexibility, degree of hydrophobicity, as well as

hydrodynamics. The LE4PD accurately predicts the sequence-dependent dynamics

starting from the ensemble of metastable structural configurations around the folded

state measured by NMR, or from MD simulations.

The LE4PD model is unique in that it is a minimal dynamical model which

projects the local and global diffusive dynamics of proteins from the protein structural

ensemble with no adjustable parameters. This is possible because it is a coarse-grained

yet microscopic model whose parameters are set directly from the microscopic physical

system. This is in contrast to most methods constructed to model protein dynamics

which rely upon site-specific adjustable parameters, such as the model-free formalism

of Lipari and Szabo.[61] Other methods attempt to define the internal diffusion of

proteins as fractional Brownian processes,[64] which is a more accurate description of

the general nature of the internal motion of proteins but is not predictive in nature.

Nodet, Abergel, and Bodenhausen have modeled the dynamics of proteins as a coupled

network of rotators under the assumption of a single conformational minima and

small displacements.[65] This approach, which attempts to predict fluctuations and

dynamics from a single protein structure, is not directly comparable to the LE4PD

model we present here, where we model the dynamics and take the structural ensemble

from experiment or by sampling an underlying atomistic model via MD simulation.

Like other elastic network models[9–11, 66, 67] the coupled rotator model is capable of

capturing the local variation in flexibility along the protein chain with no site-specific

adjustable parameters, but because it begins from an empirical network description it
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requires a large amount of parameterization and specification of an overall rotational

diffusion time τ0, a scaling factor k0, a cut-off distance Rc, and a characteristic

internal diffusion time tD. The model is explicitly limited to small displacements

around a single conformational minima, and relaxation times centered upon a short

characteristic internal diffusion time of ∼ 300ps. In contrast, the LE4PD model is

capable of simultaneously describing the global rotational diffusion, as well as local

motion spanning the picosecond to many nanosecond and microsecond regimes. In

particular, the long-time, highly correlated, large-amplitude dynamical motion of

proteins is of great biological interest.

Input to the LE4PD is an ensemble of structural configurations, which has to be

representative of the distribution of folded states of the protein. While proteins sample

a very large 3N -dimensional configurational space, with N the number of independent

sites comprising the protein, at the bottom of the funnel-like energy landscape the

conformational diversity is much smaller.[49, 50, 68] A common paradigm is that the

important internal fluctuations of a folded protein span a limited number of specific

structures,[69, 70] and these can be well sampled experimentally by NMR.[12] If that is

the case, NMR conformer ensembles should provide a structural ensemble consistent

with well-sampled MD simulations, and the LE4PD coupled with structural NMR

should provide predictions of the protein dynamics without need of performing lengthy

computer simulations. In practice, NMR solution structures encode a structural

diversity that is due to a combination of thermal fluctuations and a possible lack of

complete experimental information. The LE4PD method provides the ability to test

the capability of an input structural ensemble to produce experimentally determined

dynamical measurements such as site-specific NMR relaxation.
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The diffusive mode solution of the LE4PD organizes the configurational

landscape, defining fluctuations on a set of well-defined length and timescales

encompassing the relative motion between neighboring α-carbons to the global

rotations of the structure as a whole.[8, 17] In the diffusive mode description the

LE4PD identifies the regions of local flexibility and cooperative motion of the residues

inside a protein. As an example we project the MD trajectory onto the diffusive

modes of the HIV protease monomer, and obtain a free energy landscape barrier

height distribution which scales with mode cooperativity. Using the scaling form

for this barrier height distribution, which appears to be a general feature of protein

dynamics, leads to accurate dynamical timescales in the simulation-free conformer-

based LE4PD model.

Mode-based descriptions are extremely useful in computational approaches to

protein dynamics.[20, 55] Analysis of the free energy landscape in covariance modes

have been used to describe the folding of small proteins.[71] The covariance matrix

of the spatial functions of the nuclear spin interactions from MD simulation have

been used to calculate NMR relaxation, as fit to the trajectory correlation times and

experimental values.[72] The characteristic difference between the LE4PD approach

and these other approaches is that we study the modes of an appropriate equation of

motion, and as such are associated directly with the timescale and pathway of a quasi-

independent structural relaxation process. Other mode-based approaches are based

upon studying the abstract covariance modes of a set of variables, and as such any

time-dependence in these modes comes purely from a fit to the simulation trajectory.

The dynamical predictions of the LE4PD model starting from an ensemble of

structures generated from experimentally determined NMR conformers are compared

with a second ensemble of structures generated in the course of an MD simulation in
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the timescale of 50 − 150 nanoseconds. To validate the accuracy of the theoretical

predictions of the dynamics using the LE4PD approach we test its predictions against

experimental data of NMR relaxation for seven different proteins and 1876 site-

specific NMR relaxation measurements. Using either the MD generated or NMR

solution structure ensembles we obtain quantitatively self-consistent predictions, with

similar overall correlation of ρMD = .95 and ρNMR = .93. We find that, in general,

the MD-generated ensembles provide through the LE4PD a closer agreement with

experimental data than the LE4PD informed by NMR ensembles, with 17% lower

relative error.

Structural ensembles of proteins

The LE4PD model predicts the dynamics of the protein using the structural

ensemble as input. By generating a structural ensemble through relatively short time

(∼ 10 ns) MD simulations, the needed input for the LE4PD was evaluated leading

to accurate predictions for the global and site-specific dynamics of Ubiquitin[17]

and the signal transduction protein CheY.[8] The accuracy of the simulations,

however, depends upon the accuracy of the force-field used, and sampling the full

configurational space can become computationally expensive depending upon the size

of the protein and the extent of configurational rearrangements.

Building statistical ensembles from metastable configurations

We take as an ansatz that the configurational space of a folded protein is spanned

by limited number of conformational states, and that these conformational states

are known a priori. As an alternative procedure to performing MD simulations

we assume as starting configurational ensembles the conformers that were measured

59



experimentally by NMR. The extent to which NMR solution structure conformers

represent important metastable states of the protein, as opposed to uncertainty due

to incomplete experimental information, is controversial and varies between different

NMR structures.[73] It is certainly clear that NMR structural ensembles do encode

some measure of the conformational variability of the protein, as NMR structural

ensembles have been shown to correlate highly with structural ensembles generated

by MD simulation,[74] and have been used to gain valuable insight into protein

flexibility in computational studies of ligand binding.[75] In our model we investigate

the assumption that all conformers represent metastable protein configurations which

contribute equally to the full ensemble, and use the resulting dynamical predictions

to evaluate the ability of the input structural ensemble to span the experimentally

observed dynamics.

Fluctuations around the local conformational states are imposed by applying a

Gaussian Network Model (GNM).[9] While many elastic network models of varying

complexity are in routine use, the differences in the predicted local flexibilities are

usually small and affect only the short-time dynamics in the picosecond regime.

The GNM builds a harmonic network of interactions around each residue based on

a distance cutoff criteria, and solves the resulting site-site fluctuations as a linear

matrix equation. GNM models have been shown to reproduce well crystalline state

fluctuations measured as Debye-Waller Temperature factors (B-factors) and thus

are a good representation of the short-time fluctuations while they require minimal

computational effort. Once combined with the LE4PD the theory provides a realistic

and computationally inexpensive prediction of the dynamics of proteins on a wide

range of time scales, from the local fluctuations to the large, concerted, conformational

transitions.
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From the GNM we define the bond correlation matrix locally around the αth

conformer Uα,ij. The GNM defines the pairwise fluctuations 〈 ~∆Ri · ~∆Rj〉 = 3kBT
γ

Γ−1
ij

where Γ is the Kirchoff adjacency matrix defined using a cutoff radius of 7.0Å[9, 10]

and γ is the harmonic interaction strength. We found that in general a value of

γ = 0.06 kcal

molÅ2
is needed to match the short-time 1 − 10 ps orientational fluctuations

of the protein from the MD simulation.

An interaction strength of ∼ 1 kcal

molÅ2
is typically used with the GNM to predict

crystallographic B-factors; this order of magnitude difference in interaction strength

may be due to the local anharmonic softening of the orientational potential energy

surface due to the aqueous solvent.[76] The boundary water layer of hydrated proteins

in aqueous solution is highly mobile in the picosecond regime[77]; the constant shifting

of the protein-water hydrogen bonds may lead to enhanced orientational fluctuations

which are completely local in nature. This effect is absent in the crystalline state,

where the hydration water is much more static.

Recognizing that in the body-fixed reference frame ~li(t) − 〈~li〉 = [~Ri+1(t) −

~Ri(t)] − [〈~Ri+1〉 − 〈~Ri〉] we can determine the local bond correlation matrix around

each conformer as

(U)−1
α,ij =

1

〈|~li|〉〈|~lj|〉

[
〈~li〉 · 〈~lj〉+

3kBT

γ

(Γ−1
ij + Γ−1

i+1,j+1 − Γ−1
i,j+1 − Γ−1

i+1,j)

]
. (3.1)

The total U matrix is then simply the average Ujk = 1
Nc

∑Nc
α=1 Uα,jk with Nc the

number of conformers in the NMR structural ensemble. Similarly, the hydrodynamic

matrix H, the site friction coefficient ζi, and all other input quantities to the

LE4PD, are calculated separately for each conformer and then the statistical average
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is taken over all the conformers. This is an extremely simplistic picture of the

structural ensemble of a protein; however the dynamics predicted by this structural

ensemble generated by the set of NMR conformers is consistent in many ways with

the much more detailed ensemble generated through the sophisticated process of

explicit solvent MD simulation. The set of NMR conformers provides us an ensemble

of important metastable structural minima in the free energy landscape; and the

GNM provides fluctuations around these minima. Molecular anisotropy, rotational

diffusion, hydrodynamic interactions, and local energy barriers are included through

the LE4PD.

Building statistical ensembles from Molecular Dynamics simulations

Because both the determination of NMR conformers and the experimental

measurements of NMR relaxation are affected by errors, we performed as a further

test MD simulations of the same systems to evaluate the quality of agreement of the

LE4PD starting from the NMR and the MD conformers. Simulations were performed

in explicit solvent using the spc/e water model. We utilized the AMBER99SB-

ILDN[31] atomic force field for proteins and the GROMACS[33–36] molecular

dynamics engine was utilized on the TRESTLES supercomputer at San Diego.[78]

All system conditions, e.g. temperature and salt concentration, were set to reproduce

the experimental conditions. The systems were solvated and energy minimized, and

then underwent a 500 ps tempering and equilibration routine including pressure

coupling. The production simulations were performed in the canonical ensemble,

using a velocity rescaling thermostat.[79]

For the PR95 protease monomer, simulations were performed starting from

each of the twenty conformers in the NMR structure, resulting in a set of twenty
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production ensembles used as input to the LE4PD, with averages taken over all

twenty results. The same set of production trajectories for Ubiquitin were used

from our previous work.[17] For the remaining five proteins, the first conformer was

chosen as the starting structure, and only one simulation was performed for each

protein. Each simulation had 50 ns of production. For each trajectory the root

mean square deviation (RMSD) was calculated and statistics were only collected in

the equilibrated sections of the trajectory. The trajectories were also required to

contain only reversible transitions, as monitored by the RMSD. The simulation time

effectively used in the LE4PD for each trajectory ranged from 10 to 30 ns. The

simulations performed and the protein databank structures used are summarized in

Table 2.
TABLE 2. Systems and Structural Ensembles

Protein MD Sim. Starting Struct. Temp. NMR + GNM

Protease 20 x 50 ns 1Q9P (1-20) 293K 1Q9P (1-20)

1GF2R 160 ns 2M6T (1) 273K 2M6T (1-20)

N-TIMP-1 50 ns 1D2B (1) 293K 1D2B (1-30)

S836 50 ns 2JUA (1) 298K 2JUA (1-20)

CPB1 50 ns 1MX7 (1) 298K 1MX7 (1-22)

KAPP 50 ns 1MZK (1) 298K 1MZK (1-30)

Ubiquitin 10 x 10ns 1UBQ (1) 300K 1XQQ (1-128)

The configurational ensembles that emerge from the NMR ensembles and from

the MD simulations are reported in Figure 18. For all but the Ubiquitin protein, the

starting configuration was from the NMR structure, yet the equilibrated simulation

conformations do not exactly resemble this initial structure. Overall, however, the

global fold is fully preserved, and the conformational differences are specific in nature.

This indicates the NMR structures were not necessarily in an exact free energy
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IGF2RKAPPCPB1

s386N-TIMP-1UbiquitinProtease

FIGURE 18. Average configuration in simulation and NMR ensembles.
Average configuration from the MD simulation ensemble (red) and from the NMR
structural ensemble (blue), with the thickness of the ribbon accurate to the local
orientational distribution.

minimum of the AMBER force-field model, though this does not indicate whether

the MD equilibrated protein structures are necessarily more accurate. For all but the

s836 protein, the structural variation in the NMR ensembles is slightly larger than the

MD simulation. This is primarily true in the intrinsically disordered regions of the

protein, such as the C-terminal and N-terminal tails. This may be because the limited

simulation times do not fully sample the configurational space. A study over a test

set of 140 proteins found high correlation between the fluctuations of NMR ensembles

and MD simulations, and found that the increased sampling allowed by using a

coarse-grained protein model led to even higher correlation between simulations and

NMR ensembles.[74] What does agree quite remarkably are the locations of enhanced

flexibility and the timescales of the motion, which can be seen in Figures 22 and 23,

showing the calculated NMR relaxation times from the ensembles.

64



To evaluate the consistency between the dynamics generated using the MD

ensembles as input, and the NMR conformer ensembles, we compare the full decay of

the P2,i correlation function of the ith Cα-Cα segment in the HIV protease protein,

with the data from simulations (see Figure 19). While there are many differences

between the analytical predictions from the NMR ensemble and the MD ensemble,

and differences especially at short times, overall Figure 19 shows that the agreement

is quite good as the LE4PD, from both ensembles, can model quite accurately the

site-specific internal and rotational dynamics of the protein.
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FIGURE 19. P2,i(t) time correlation function.
P2,i(t) time correlation function 3 different sites along the protein sequence of the HIV
protease monomer PR95, calculated directly from the conformer simulations (solid
line), from the LE4PD theory with the conformer simulations as input (dashed line),
and from the LE4PD with the NMR conformer ensemble as input (dashed-dotted
line).

Dynamical barriers and cooperativity
Analysis of the collective fluctuations obtained from simulations of proteins [80]

has shown that the dynamics around the minima of energy is well described by

small fluctuations inside metastable states at low local energy and by the crossings

between them. By reverting the LE4PD equation to its mode form, the structural

representations of these important metastable minima can be identified as a function
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of mode number. We investigate the nature of the free energy surface of a protein

around its folded ground state.

Each diffusive mode obtained from the diagonalization of Eq. 2.5 is a vector

defined by the linear combination of the bond vectors weighted by the eigenvectors

of the product of matrices LU, as ~ξa(t) =
∑

iQ
−1
ai
~li(t). In polar coordinates the

vector is represented as ~ξa(t) = {|~ξa(t)|, θa(t), φa(t)}. The most relevant changes

in the diffusive mode free energy occur as the angles, expressed in the spherical

coordinates, span the configurational space. For any diffusive mode a, the free

energy surface is defined as a function of the spherical coordinate angles θa and

φa as F (θa, φa) = −kBT log {P (θa, φa)},with P (θa, φa) the probability of finding the

diffusive mode vector having the given value of the solid angle. Given that we are

interested in the explicit representation of the structure at the minima of interest, all

structures from the simulation ensemble which pertain to a particular θ, φ orientation,

which is a relatively deep minima in the mode free energy, are extracted and averaged.

By calculating the average structure at each minima we obtain the structural

ensemble of metastable states spanning each internal mode of fluctuation for the

protein. As a representative example, the free energy landscape in the LE4PD modes

from the MD simulation of the HIV protease monomeric construct is presented in

Figure 20. The ensemble of structural minima on the mode free energy surfaces

generated from MD simulations, and the structural ensembles directly measured by

NMR experiments, are compared as well. The full configurational landscape for each

mode is generated from the combination of twenty well-equilibrated independent

simulation trajectories. Each trajectory starts from a different experimental

NMR conformer and runs to 50 ns of simulation time. Superimposed to the

full configurational landscape from simulations, the twenty starting configurations
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measured experimentally by NMR are reported as red stars. The combination of the

trajectories creates a complex free energy landscape, which is only partially spanned

by the NMR conformers. The starting NMR configurations are often close to energy

minima (reported as green triangles), but they do not exactly correspond to them.

Nor they are fully representative of all the minima that define the configurational

landscape obtained from the simulation trajectories.
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FIGURE 20. Free energy surfaces, protease.
Internal mode a = 11 free energy surface of the HIV protease (a = 4 is the first
internal mode) on the left. Projections of the NMR conformer structures, labeled by
conformer index, are plotted with red stars, and the simulation minima from which
structures were calculated are marked on the free energy surface with green triangles.
Structural minima from simulation modes a = 4 − 20 are on the bottom right, and
the set of NMR conformers on the top right.

The fluctuations in each mode appear to be spanned by a handful of metastable

minima. As the mode index increases the fluctuations progress from collective in

nature to more local. The typical energy barrier in each mode, a, is evaluated from

the simulation as the Median Absolute Deviation[81] from the global minimum Egs,

that is E†a = median(θ,φ)(Ea(θ, φ)−Egs,a). The depth of these minima, or the barriers

between them, are largest for the low mode numbers corresponding to the most

collective, large-amplitude fluctuations. Figure 21 shows that the energy barriers
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E†a as observed in the simulation trajectory can be well described as scaling with the

mode index, a measure of the mode cooperativity, over a large range of the protein

fluctuations. The observer scaling with mode number follows E†a ∝ (a− 3)−.5, where

the first three rotational modes have been separated out. At a local enough length

scale, where the specific chemical nature of the amino acid is most important, the

energy barriers are no longer described by this expression.

The observed scaling law is consistent with the hierarchical nature of the protein

free energy landscape. Each mode describes dynamics involving a number of bonds in

the protein, which need to move collectively in a cooperative fashion. At short times

the bonds fluctuate independently, while large-amplitude correlated fluctuations occur

when all the bonds transition collectively.[82] The equilibrium probability for the Z

gating bonds to independently transition away from the ”correct” orientation with

energy preference E is P (Z) ∝ exp(− ZE
kBT

). In a transition state perspective this can

be interpreted as a free energy barrier which scales proportionally with the number of

bonds cooperatively rearranging. This model is similar to the Adam-Gibbs theory of

the glass transition,[83, 84] relating the complex hierarchical nature of the free energy

landscape the protein in solution to a structured glassy fluid.[50, 85] The observed

scaling form is included in the simulation-free LE4PD approach, which adopts the set

of NMR conformers as the input structural ensemble.

Predictions of NMR relaxation are compared to experiments

Theoretical predictions for P2,i(t) = 1
2
(3 cos2 θi(t) − 1) are obtained from

M1,i(t) using Eq. 2.8, and are used to calculate T1 and T2 relaxation times,

and NOE, which are measured experimentally. 15N NMR backbone relaxation

experiments are very sensitive to the site-specific dynamics in the picosecond to
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FIGURE 21. The free energy barrier to diffusion in the modes, protease.
The free energy barrier to diffusion in the modes E†a calculated directly from the set
of 20 simulations of the HIV protease at T = 293K, indexed by letter A-T, with
standard deviations around the average as black bars. The black line is the fit to the
scaling form E†a ∝ (a− 3)−.50.

the nanosecond regimes.[59] To test the LE4PD approach using the NMR solution

structures to generate the structural ensemble, we constructed dynamical models for

seven proteins for which NMR relaxation data and NMR solution structures were

available. These proteins were N-TIMP-1 (1D2B)[86], a de Novo α-helix bundle

protein s836 (2JUA)[87], Cellular retinol-binding protein I CPB1 (1MX7)[88], Kinase-

associated protein phosphatase KAPP (1MZK)[89, 90], Insulin Growth Factor 2

Receptor IFG2R domain 11 (2M6T)[91], Ubiquitin (1UBQ)[3, 32], and HIV Protease

monomer (1Q9P).[92, 93]

The input parameters to the LE4PD equation change from protein to protein: the

structural parameters such as bond length, monomer friction, hydrodynamic radius,

and the pairwise bond correlations are determined from the structural ensemble,
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FIGURE 22. T1, T2, and NOE relaxation times using simulation ensembles.
T1, T2, and NOE relaxation times (see Table 1) for seven different proteins.
Comparison between experimental (black) and theoretical values from LE4PD theory
from MD generated ensembles (red).

while the thermodynamic parameters such as solvent viscosity, and temperature,

are defined by the experimental conditions. The viscosity was set to account for

temperature dependence and content of deuterated water.[44] Parameters such as

the protein internal viscosity ηp, the proportionality constant between cooperativity

and energy barriers, and the characteristic parameters needed to calculate the NMR

relaxation times, such as the chemical shift or 〈1/r3
NH〉, were assumed to be identical

for all proteins in this study and identical to those used in our previous work.[17]

Figure 22 and 23 displays the calculations of T1, T2 and NOE relaxation times

as they are directly predicted by the LE4PD approach and the NMR experimental

data. NMR experimental data of relaxation times are not used at all in any point to
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FIGURE 23. T1, T2, and NOE relaxation times using NMR ensembles.
T1, T2, and NOE relaxation times (see Table 1) for seven different proteins.
Comparison between experimental (black) and theoretical values from LE4PD theory
from ensembles generated from NMR conformers (blue).

optimize the theoretical calculations, so these are independent theoretical predictions.

The comparison between theory and experiments is performed for each amino acid in

the protein and reported as a function of the protein primary sequence. Also reported

are the experimental uncertainties for the NMR data of each protein.
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TABLE 3. Correlation with Experimental Data of NMR Relaxation

Protein ρtotal ρT1 ρT2 ρNOE Rel. Err.

Combined (MD) .95 .88 .73 .70 20.8%

Combined (NMR) .93 .83 .58 .69 24.9%

HIV Protease (MD) .92 .73 .91 .91 32.9%

HIV Protease (NMR) .83 .65 .90 .77 42.6%

Ubiquitin (MD) .98 .96 .94 .97 7.0%

Ubiquitin (NMR) .97 .96 .94 .99 7.2%

N-TIMP-1 (MD) .92 -.10 .50 .82 20.1%

N-TIMP-1 (NMR) .96 -.18 .57 .62 22.2%

s836 (MD) .97 .03 .48 .57 20.6%

s836 (NMR) .93 .18 .13 .33 34.2%

KAPP (MD) .96 .02 .60 .60 20.1%

KAPP (NMR) .91 -.12 .59 .46 24.6%

CPB1 (MD) .98 .03 .06 .16 9.5%

CPB1 (NMR) .96 .03 .14 .28 10.0%

IGF2R (MD) .97 -.06 .84 .80 24.6%

IGF2R (NMR) .95 .34 .15 .67 25.7%

The correlation and errors of the model, using both the MD and NMR solution

structures as ensembles, are shown in Table 2. Over this set of 1876 measurements

the overall correlation to the experimental values was similar for both the dynamical

models constructed from NMR conformer ensembles or the MD ensembles, but with

17% lower relative error for the MD derived ensembles than the NMR conformer

ensembles. Figures 22 and 23, and Table 2, in general show that MD simulations

have the most detailed agreement along the primary sequence. The correlation to
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FIGURE 24. Correlation plot between experimental and calculated values.
Correlation between experimental and calculated values from MD ensembles and
NMR ensembles for a set of 7 different proteins. T1 measurements in black, T2

measurements in red, and NOE measurements in green, for Ubiquitin (circles), N-
TIMP-1 (squares), s386 (diamonds), CPB1 (downward triangles), KAPP (upward
triangles), IGFR2 (x), and HIV protease monomer (star).

NOE and T1 are similar, but higher T2 correlation for the MD ensembles. Over

the seven proteins, the quality of the experimental measurements varies greatly; for

example, in the measured relaxation for the s836 protein the experimental values

themselves come with ∼ 30% error, so that the low correlation of the theory with the

experimental data is expected. For the CPB1 protein the experimental measurements

in most loop and termini regions were unavailable; this is where the largest variability

in the dynamics occurs and where it is possible to develop strong correlation. In

general, the NOE measurements display the largest site-specific variability along the

protein sequence and the highest correlation between theory and experiment for each

individual protein. A scatter plot of the calculated and experimental data is shown

in Figure 24. The agreement between theoretical predictions and measured NMR is

supporting the quality of the predictions of the LE4PD approach.

Because the accuracy of a given NMR solution structure ensemble to represent

the conformational diversity of the protein is unknown, the dynamical model built
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using the LE4PD approach may be useful to evaluate the quality of an available

structural ensemble. We apply the method to 9 different NMR structural ensembles

of the Ubiquitin protein, PDB codes 1XQQ,[94] 2KOX,[95] 2LJ5,[96] 2NR2,[97]

1D3Z,[98] 1G6J,[99] 2KLG,[100] 2MJB,[101] and 2K39.[12] The comparison to the

calculated NMR backbone relaxation in table 4 shows that all the ensembles capture

the primary T1, T2, and NOE baselines and the enhanced flexibility of the tail region.

Ensembles 1XQQ and 2NR2 have the highest correlation and lowest relative error;

when the unstructured C-tail is not considered in the calculation of the correlation

coefficients, it can be seen that the 1XQQ, 2NR2, 2KOX, 2LJ5 and 2K39 ensemble

separate as capturing the structural variability of both the C-tail and the more

structured portion of the protein, see column 2 of table 4. The primary contribution

to this correlation comes from the structural variability at the loop containing lysine 6

and 11, important poly-ubiquitination linkage sites involved in cell-cycle control and

DNA repair.[2] The structural ensemble generated by molecular dynamics simulation

starting from the 1UBQ[32] crystal structure, with results reported in our previous

paper,[17] is perhaps slightly more accurate overall, but only by a very small amount

due to considering the correlation without contributions from the C-tail.

In generating the 1XQQ ensemble the NMR-derived S2 order parameters from

the model-free analysis of Lipari and Szabo[61] were used as an additional set of

restraints in the generation of the ensemble. It is not surprising then that this leads

to an accurate dynamical model. We have shown previously that the site-specific

variability in model-free derived S2 order parameters correlates strongly with our

results,[8] despite differences in the nature of the predicted internal dynamics. This

illustrates the complementary utility of the LE4PD approach, which provides a highly
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TABLE 4. Correlation with Experimental Data for Ubiquitin

NMR Conformer ρNOE (1-71) ρNOE (all res.) ρT2 ρT1 Rel. Error
MD Sim. .71 .96 .94 .97 7.0%

1XQQ .66 .99 .94 .96 7.2%
2NR2 .52 .98 .94 .95 7.3%
2LJ5 .56 .93 -.33 .97 7.7%
2K0X .61 .94 .80 .88 8.2%
1D3Z .02 .88 .80 .94 8.2%
2K39 .70 .88 -.63 .93 11.0%
2MJB -.01 .96 .96 .92 11.2%
1G6J .02 .92 .94 .92 11.5%
2KLG -.05 .86 .92 .73 14.9%

detailed model and additional insight beyond that available when performing only a

model-free analysis of NMR backbone relaxation.

The Ubiquitin ensemble 2K39 was constructed to represent the protein

fluctuations in only the long-time regime beyond the global correlation time. As such

this ensemble is not as accurate overall, and the dynamical model leads to high error

and in particular a poor representation of the C-tail dynamics. However, we do see a

separation in the mode timescales, with a slow internal process emerging on the order

of ∼ 400ns and with ρNOE,(res1−71) = .71, suggesting that this ensemble has captured

fluctuations in the difficult to access time regime between the global correlation time

and the millisecond time regime of conformational exchange. The authors showed that

this ensemble spanned the set of known bound Ubiquitin conformations, suggesting

that there are configurational fluctuations of the Ubiquitin protein in the many

nanosecond regime beyond the global correlation time which are relevant for the

recognition of binding partners.[12]
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Conclusions

The LE4PD approach was tested across a set of seven different proteins with

overall consistent results for both the MD generated ensembles and the NMR

conformer ensembles, with an overall correlation to the 1876 relaxation measurements

of ρ > .93. Calculations using 9 different available NMR structural ensembles for the

ubiquitin protein show that results are strongly dependent upon the quality of the

input structural ensemble and experimental data, and suggest that this approach may

be used as a tool to evaluate the quality of a structural ensemble to represent the

important protein fluctuations around the ground folded state.

The consistent results between the MD generated ensembles and the NMR

ensembles suggest that protein configurational space around the folded state can be

defined by a small set of important metastable minima. However, when determining

the dynamics of transitions between these minima, the hierarchical nature of the

protein free energy landscape needs to be taken into account. The mode approach

of the LE4PD allows one to conveniently separate contributions to the dynamics

depending on the timescales involved. The LE4PD prediction of the existence of a

barrier height distribution for the dynamics of folded proteins is consistent with the

physics of glass-forming systems.

Building a dynamical model from NMR conformer structures using the LE4PD

requires only a few seconds to a few minutes on a single processor with a standard

desktop computer, with the computational time depending on the size of the protein

and on the number of conformers in the NMR solution structure. While explicit

solvent atomistic classical MD simulations are well-developed and can be quite

accurate, achieving MD simulations with converged dynamics on the same timescale

would require on the order of 10, 000− 100, 000 hours of processor time or more. The
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LE4PD is not a replacement for MD simulation as a computational method to predict

the fluctuations and dynamics of proteins, but it is a useful tool to quickly provide a

prediction of the dynamics given an input structural ensemble.

Even though the simulation-free LE4PD requires minimal computation it is site-

specific, informed of intramolecular energy barriers, hydrodynamics, and long-range

correlated motion. It is a sophisticated model of protein dynamics and because of its

accuracy in predicting the dynamics, with no input from the dynamical data, LE4PD

is a valuable and computationally convenient model to investigate barrier-crossing

processes on the suite of timescales defining the fluctuations of proteins.
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CHAPTER IV

MODE LOCALIZATION IN THE COOPERATIVE DYNAMICS OF PROTEIN

RECOGNITION

The biological function of proteins is uniquely defined by the protein primary

sequence, which determines its three-dimensional structure and dynamics.[56, 102]

The protein local motion develops along a pathway of transitions between metastable

states inside a hierarchy of structures that, on the local scale, are separated by small

energy barriers of the order of kBT .[80, 103, 104] It is the unique structure of this

configurational landscape that determines the specific thermodynamic and kinetic

properties of a protein and defines its ability of regulating its function.[62]

Experimental studies have suggested that protein dynamics plays an important

role in protein recognition. Residue-specific, localized dynamics have been shown to

be relevant in the energetic pathways of binding.[105, 106] Pre-existing pathways in

the free-energy landscape have been found to guide the transmission of the allosteric

signals.[107] It has also been shown that point mutations of residues, and also small

ligand binding, can lead to an identical folded configuration while they modify the

protein biological activity. This indicates that, in those cases, not the structure but

the dynamics has the dominant effect on the protein function.[108] Protein dynamics

can facilitate docking of a ligand.[109] Often the bound conformation of the protein

is different from its apo structure. In those cases the bound (holo) conformation

populates a preexisting configuration that is just less probable than the unbound

(apo) structure, and structural elements of the holo form should be already visible in

a dynamic study of the apo protein.[110]
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To investigate the relation between local fluctuations and protein binding, a

theoretical model that relates protein structure to dynamics can play an important

role.[111] The Langevin Equation for Protein Dynamics (LE4PD) is a potential

candidate to fulfill this need because of its capability of predicting with accuracy

protein dynamics on a wide range of timescales.[17, 112] In this paper we extend

the theory to treat two interacting proteins and present the first LE4PD analysis of

sequence-dependent cooperative local fluctuations, which relates these fluctuations to

the protein-specific binding regions.

The LE4PD equation is a hydrodynamic diffusive approach, analytically solved,

which starts from the description of a protein in its equilibrium state and predicts the

dynamics in timescales from the global rotation to the single bond fluctuation.[17, 112]

The theoretical formalism has been tested against NMR relaxation data (T1, T2,

and NOE) and x-Ray Debye-Waller factors for seven different proteins for a total of

1864 point comparison.[17, 112] We used as static input structural configurational

ensembles either from Molecular Dynamics simulations or from NMR experiments.

In both cases the observed quality of agreement between LE4PD predicted values of

the dynamical quantities and the experiments appears to support the validity of this

approach as a method to predict local dynamics of proteins in their equilibrium state

across a wide range of timescales, starting from the structural information.

In this paper we calculate with the LE4PD the local dynamics of two test

proteins in their apo and holo states. We correlate the predicted dynamics with

experiments, and with the information about conserved residues in the family of

proteins performing the same biological function. We study both the isolated and

the dimerized form of the HIV protease,[92, 93] and the Insulin Growth Factor

II Receptor (IGF2R) domain 11 and the IGF2R:IGF2 complex.[91] Besides their
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biological relevance, those proteins have been selected because experimental data of

NMR configurational ensembles and relaxation times are available in the literature,

and provide a further test of the quality of the LE4PD theory and its predictions.

In a recent paper[112] the predictions of the LE4PD were compared when the

input ensemble of structural configurations was taken to be the one generated by the

NMR or the one emerging from atomistic molecular dynamics simulations. In this

paper we continue the comparison of the two procedures and present results of the

LE4PD when NMR conformers are adopted as input configurations and when the

sampling of the configurational space is performed by extended MD simulations of

the protein in aqueous solutions. In both cases the LE4PD lead to fairly consistent

results for the mode-dependent dynamics.

Some of the questions investigated in this paper are born from general

considerations about protein dynamics and function. It is known, for example, that

for a folded protein a number of configurational states are available in spatially

well-defined regions along the primary sequence.[113] At a given temperature a

part of the protein, for instance a loop or a tail, may be intrinsically disordered

and populating a number of thermally activated conformational states that are

metastable, energetically similar, and so equally probable.[114] Enhanced fluctuations

in the spatial positions of key residues or short fragments can make possible the

trapping of favorable configurations by a reactant or a substrate, following the well-

established conformational selection model of binding pioneered by Monod.[69] When

the correct local configuration for binding is available in the configurational landscape

of the isolated protein, the extent of free energy needed for binding is reduced. As

the trapping of a favorable state does not require overcoming an energy barrier,

other processes, for example inter-diffusion of the reaction partners, become the
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slow relevant processes that determine the rate of the reaction. This conformational

selection process for the recognition event, can be followed by a relaxation or induced

fit to the bound conformation.[115]

The gain in energy as the protein transitions over the energy barrier and reaches

the bound state has to be small to allow the possible breaking of the reaction product

when new conditions arise that are destabilizing this state: the process needs to be

flexible enough to permit the progress towards the following reaction step without

dramatic gains or loss of free energy. In this delicate balance of energy, modulated

within an energy window of a few kBT , the primary sequence of a protein plays a

decisive role.

The presence of barriers and their height is important in the binding reaction.

Transitions need to be energetically activated to render the biological process

forbidden if the temperature lowers below physiological conditions. However, the

barriers need to be small to make their crossing possible at physiological temperature,

as the dynamics are “fueled” by the thermal fluctuations of the surrounding

liquid.[63, 116]

Experimentally it has been observed that upon binding the loss in entropy of the

protein, which would oppose the reaction, is often paired to the emergence of disorder

in remote regions of the protein, apparently uncorrelated to the binding site.[115]

New flexible regions often arise in the relaxed bound state, or exposed hydrophobic

residues are found to transition to the hydrophobic region, becoming protected and

increasing the entropy of the solvent in the well-known mechanism of enthalpy-

entropy compensation.[117, 118] In this way, regions with multiple states available

in the configurational space, which are accessed by local thermal fluctuations, play
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an important role in the entropic and enthalpic balancing during recogniton and

binding.

In its diffusive mode description, the LE4PD allows for the identification of a

variety of dynamical processes that emerge at increasing timescales. The diffusive

mode solution of the LE4PD organizes the configurational landscape in a linearly

independent set of variables. Fluctuations are defined on a range of length and

timescales, with dynamics encompassing the relative motion between neighboring

α-carbons to the global rotations of the structure as a whole.[8, 17] In this study

internal modes of motion that present energetically activated local dynamics are

identified together with the characteristic length and timescales of their dynamics. A

range of equilibrium dynamical processes emerge on different timescales following

a hierarchical scheme, suggesting a possible sequential mechanism in the non-

equilibrium reaction pathway.

The LE4PD predicts the emergence of specific regions in the protein three-

dimensional structure that are dynamically active at a given timescale. The diffusive

mode rendition precisely identifies the position inside the primary sequence of these

energetically-guided local fluctuations, and provides information about the extent

of localization of these activated dynamics. This indicates if the motion involves a

single residue or a number of cooperatively moving specific residues. By identifying

and analyzing the regions of local flexibility and cooperative motion of the residues

inside a protein, we argue that it is possible to learn which parts of the protein will

lead the kinetics of the biologically relevant processes. In this way, the LE4PD model

provides a straightforward and visually intuitive representation of the locations of

enhanced reactivity, or “binding regions,” and the emergent length and timescales of

motion. For all the proteins in this study, the LE4PD method indicates regions of high
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mobility and slow, large-amplitude dynamics, which are trapped and not detected in

the bound forms of the protein. We found that these regions directly correspond to

regions with highly conserved residues in the family of proteins with related biological

function, and are involved in the binding interactions.

Finally, the LE4PD analysis shows that upon binding, dynamics in the diffusive

normal mode coordinates can be enhanced or suppressed in other remote regions of

the protein. The extent of the fluctuations indicates if a new dynamically active region

emerges that is likely involved in the following step in a reaction pathway (allosteric

mechanism), or if entropically-relevant multiple states emerge that are distributed

along the protein for an entropy-enthalpy compensation mechanism.

Fluctuation Driven Dynamics of Binding
In this paper the formalism is extended to treat the dynamics of a pair of

interacting proteins. We define the protein complex as one system but we assume that

there is no chemical bond between the α-carbon belonging to the C-terminus of the

first protein with α-carbon belonging to the N-terminus of the second. Formally, the

index labeling the protein bonds is extended to i = 1, ...Ncomplex where, for example in

a two-protein complex, Ncomplex = N1 +N2, and N1 is the number of bonds in the first

protein while N2 is the number of bonds in the second protein. The N1+1 bond is now

related to the first residue of the second protein in the complex, where the ordering

of choosing protein one or two is arbitrary. As just discussed, the only difference

between this description and the single-protein one lies in defining the connectivity

of the backbone.

In its present form, the theory describes fluctuations of the complex, but not

yet possible association and disassociation processes, which exceed the timescale of

the present simulations: for a proper description of the association reaction a realistic

83



reaction pathway should be explicitly included. However, the approach is general and

applies to any kind of multi-molecular complex.

The statistical averaged structural parameters that enter the LE4PD can be

calculated either from the configurational ensembles measured experimentally by

NMR or from the ensemble generated from MD simulations of the same protein

in solution.[112] In this paper we present results for both procedures. Details of the

MD simulations are reported in a previous publication.[112] For the PR95 protease

monomer, simulations were performed starting from each of the twenty conformers in

the NMR structure, resulting in a set of twenty production trajectories of 50 ns. For

the IGF2R protein and IGF2R:IGF2 complex, the first conformer was chosen as the

starting structure, and only one simulation with 150ns was performed. The NMR

configurational ensemble is sampling configurational states that are only partially

consistent with the most stable states sampled in the MD simulation. In practice,

NMR solution structures encode a structural diversity that is due to a combination of

thermal fluctuations and a possible lack of complete experimental information. This

is important because it indicates that both statistical ensembles we are starting with

are not covering the full configurational landscape: the MD simulations are precise in

sampling the states that are relevant in the time regime covered by the simulations,

but other states could be possible at longer times; the NMR ensemble includes states

that are away from the principal minima but their sampling is not complete. The

observation that the predictions of the LE4PD theory are largely consistent in the two

routes, indicates that the most relevant dynamical processes are accurately accounted

for by both methods.

Because of its mathematical foundation, the LE4PD theory can predict any

time dependent property of interest in the coarse-grained coordinates. For example,
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the LE4PD diffusive mode description provides useful information about enhanced

fluctuations and the crossing of energy barriers in localized regions of the protein, as

well as the lengthscale and timescale of these fluctuations. The question we want to

address is if local fluctuations that are present in the dynamics of the protein in its

apo form can be correlated with the spatial regions in the protein that are directly

involved with its binding to another protein or substrate. Although this question

has been investigated in the past, the LE4PD approach can bring a new and useful

understanding because of the diffusive mode description that allows for the convenient

separation of the dynamics into quasi-normal modes with well-defined spatial regions

of activity, and a defined characteristic timescale.

We define as the physical quantity that represents the sequence dependent

fluctuation, the mean-squared Local Mode Lengthscale (LML)

L2
ia = Q2

iaξ
2
a , (4.1)

which depends on the residue in the primary sequence of the protein and on the

timescale and lengthscale of the diffusive mode. In the following analysis we report for

each mode the site -dependent mode length for each protein in its apo and holo states

and compare the dynamics in the two states. A sample of the type of information

collected is represented, in Figure 26 and in the following figures. Through the analysis

of the dynamics in diffusive modes, this study visualizes possible reaction pathways

in mode coordinates for the pre-binding dynamics of the protein, and the time and

space modulation of this dynamics after binding.

We describe Figure 26 as an example. In the right panel of Figure 26 we report

the LML as a function of the primary sequence of the protein, for modes a = 4, 5, 6,

7, 8, and 9. The peaks in the LML define enhanced fluctuations in the local structure
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of the protein. In the left panel of the figure we report a graphic representation of

the fluctuations in the protein structure for each mode. This representation helps

visualize the localization of the fluctuations. The mode amplitudes are projected

along the protein sequence, by making the radius and color of the tube representing

the protein to correspond directly to the extent of the local mode fluctuation. Also

reported for each mode in the left panel is the correlation time of the mode. To

help identify special regions in the protein sequence that are relevant for the protein

biological function we included in the right panel vertical dashed lines.

The diffusive modes have quite different behavior depending on the mode

number. The first three modes (a = 1, 2, 3) represents, for well-folded proteins as the

ones in this study, the three rotational modes. These manifest themselves as very well-

localized minima of energy in mode-space. However, if the simulation contains slow

configurational transitions globally affecting the overall protein structure (i.e. protein

folding), then the first three modes would present a more complex energy landscape

including slow crossing of global energy barriers. For the proteins in this study the

crossing of energy barriers does not involve global conformational transitions, but

only cooperative fluctuations of the folded protein.

The internal modes present different behavior depending on if they are slow (low

index modes) or fast modes (high index modes). For a protein represented by N

coarse-grained units, here amino acids, there are N − 4 internal diffusive modes, and

it would be impossible to include figures for each one of them. However their behavior

is in general different depending on the mode index. The high index modes correspond

to short-time processes (τ ∼ ps), many of which involve just small variation in the

LML along the sequence. These delocalized fluctuations are largely of entropic origin,

and we argue that they mainly serve to balance energetically the chemical processes in
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which the protein is involved, e.g. binding reactions. Some of the high-index modes,

especially the very fastest, are highly localized to specific protein regions, namely the

most tightly packed amino acids, usually integral to the stability of the protein core

and highly conserved. While important, the properties of protein dynamics at short

times have been extensively studied and are well-represented by very simple spring

network models.[119]

Here we are primarily interested in the slow internal modes (low index modes,

a ≥ 4 and τ > ns), which show localized fluctuations that are very different depending

on the mode. Because one timescale corresponds to one mode, we can look at

pathways in which fluctuations are engaged during a window in time, as the localized

fluctuations move along the primary sequence following the mode index. In this

study we report only the most interesting diffusive pathways of mode fluctuations,

but the complete description of the dynamics is obtained from the analysis of the

modes, which represent the equation of motion of the protein with internal energy

barriers and hydrodynamic interactions accounted for. Interestingly if hydrodynamics

is not included or if the local barriers are not included, the dynamical response is

quite different, indicating that long-time dynamics is strongly affected by long-range

interactions due to hydrodynamics and by the cooperative rearrangements of the

chains that overcome internal energy barriers.[112] Thus the internal friction of the

protein plays an important role.[28, 120]

In Figure 25, an example of the mode-dependent free energy landscape is

presented for the apo form of the HIV protease and IGF2R protein domain 11,

calculated from MD simulation. In practice, to build the mode-dependent free-energy

plot, the ensemble of bond vectors, ~li(t), is collected at each time step in the trajectory

and transformed into mode coordinates. From the probability the energy is calculated
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and represented graphically for each mode as a function of the polar coordinates θa

and φa of the mode vector. As the trajectory is analyzed to recover the ensemble of

bond coordinates, the configurations of the protein are collected and averaged together

depending on their value of the polar parameters θa and φa. With this procedure an

average configuration is associated to each point in the mode-dependent energy plot.

The NMR conformer ensemble of the holo form of each protein is depicted in

magenta on the right, and projected onto the free energy landscape as magenta stars

on the left. Interestingly the bound state of the protein, depicted as purple crosses,

populates only a well defined energetic region among all the possible ones. This

seems to indicate a mechanism of trapping of a favorable configuration during protein

binding. However, the picture we observe is more complex than usually assumed.

The holo structure is not simply a single conformation that was already present in

the ensemble of apo structures as a less-populated member of the ensemble, and

that is trapped during binding. We observe instead that the holo protein presents a

restricted ensemble of configurations in the active regions of the apo protein.

Once the dynamics of the apo structure of a protein is resolved we perform

the same calculation for the holo structure of the same protein and compare

localized fluctuations. Through the analysis of the dynamics in diffusive modes,

this study visualizes possible reaction pathways in mode coordinates for the pre-

binding dynamics of the protein, and the time and space modulation of this

dynamics after protein binding. After binding, different active regions emerge with

large amplitude uncorrelated motion for entropic compensation and more-localized

enhanced fluctations indicating possible subsequent steps in the reaction mechanism.
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FIGURE 25. Free energy surface with apo structure projection.
Internal mode free energy surface of the IGF2R protein domain 11 (top left) and
of the HIV protease monomer (bottom left) from MD simulation. NMR structural
ensemble of a dimerized and inhibited HIV protease and the IGF2R:IGF2 complex
are projected on the energy landscape as as magenta stars, with the structures on
the right in magenta. Average structures in minima from the MD simulations (green)
and marked with green triangles.
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Correlation between Local Fluctuations and Binding

In this section we present the study of the correlation between the local

fluctuations in diffusive mode dynamics and the binding of two test proteins: HIV

protease and IGF2R protein domain 11. These proteins were selected because they

have been studied structurally by NMR spectroscopy, so they provide the opportunity

of comparing LE4PD predictions when starting from structural ensembles either

obtained with MD simulations or from NMR experiments.

For the apo form of the two proteins, HIV protease and IGF2R protein domain

11, data of T1, T2, and NOE relaxation from NMR experiments are also available.

In this way they provide a further test of the quality of the predictions by the LE4PD

theory. In a previous paper we reported a detailed comparison of the theoretical

LE4PD data with NMR experiments.[112] In this paper the theory is extended to

treat the dynamics of the complex, and the theoretical predictions for the NMR

relaxation of the holo protein for the HIV-protease dimer in complex with DMP-323

inhibitor are directly compared with the experimental data.

HIV protease

As the first example, we consider the dynamical model of the HIV protease

monomer protein. We study LE4PD predictions starting from the NMR conformer

ensemble 1Q9P.[93] In its active dimeric form aspartyl protease catalyzes the cleaving

of the peptide chain for the separation of the protein products of the HIV genome.[121]

The PR95 monomer construct studied here is modified to prevent the protease from

self-cleavage, with five single-residue substitutions along the sequence and the deletion

of the terminal residues 95 - 99. These C-terminal residues stabilize the dimer

by forming antiparallel β-strands with the N-terminal residues 1 - 5.[122] Without
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the C-terminal residues, both the NMR relaxation rates and the ensemble of NMR

conformers[92, 93] are consistent with an N-terminal tail that is highly flexible.

The dynamic localization is represented visually in the left panel of Figure

26 using the structure of the protein. The analysis of the position inside the

primary sequence of the large-amplitude internal modes shows that in this protein

the fluctuations in the slow modes are mostly localized along the flap loop and the

terminal region. This is consistent with the role of the flap loop in HIV protease,

mediating access to the active site. The LE4PD model indicates these structural

fluctuations of the flap loop take place in a large time interval of 1 ns to 500 ns for

the unbound protein monomer. The motions are strongly correlated with smaller-

scale conformational transitions in the active site, i.e. the sequence between amino

acids 21 and 33, and the region around amino acid 40.

Important conserved regions in the family of HIV protease proteins are the

residues in the active site, aminoacids 22 - 34, the flap loop residues 47 - 52 which

control access to the active site, and a region containing an α-helix and part of the

hydrophobic core residues 74 - 87.[123] These are consistent with the regions where

enhanced mode-dependent fluctuations emerge.[119] Interestingly, the diffusive mode

representation shows how the dynamics is partitioned into a number of time regimes,

and indicates how chemical mutations in specific sequences of the protein could be

affecting differently the kinetic of the process.

The mode-dependent dynamics of the dimerized and inhibited HIV protease

is presented in Figure 27. In the bottom panel of the figure, the LE4PD theory,

which has been shown to predict with accuracy the dynamics of apo proteins, is

compared with the experimental data of NMR relaxation for the protein complex.

When calculating data for the protein complex, we first note that while the protein
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FIGURE 26. Fluctuations of the free HIV protease monomer.
Fluctuations of the free HIV protease monomer. Local mode lengthscale Lia along
the primary sequence (Right panel), and projected as a rainbow gradient onto the
ensemble of conformer structures 1Q9P (Left panel).

complex and inhibitor posess a C2 symmetry axis, the NMR conformer ensemble

breaks the equivalence between the two sides of the homodimer. We then choose to

enforce the C2 symmetry by including permutations of the labeling of protein order

in the conformer structures, which results in dynamical modes which are symmetric

between the two proteins of the dimer. While the lack of C2 symmetry should be

expected for any single NMR structure in the ensemble, since there is no difference in

the two sides of the homodimer, any asymmetric structural minima of the complex

should come in pairs. That this doesn’t hold completely true in the NMR structural

ensemble is probably an artifact of the NMR sampling. In either case, enforcing the

C2 symmetry in the ensemble, or not, leads to identical agreement when comparing to

site-specific NMR relaxation experiments[4] with only 12% root mean-squared relative

error, as shown in the bottom panel of Figure 27. The figure shows that the LE4PD

theory predicts with very good accuracy the dynamics also for the dimerized and

inhibited HIV protease.
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For the dimerized and inhibited HIV protease[124], the diffusive mode

representation shows that the enhanced mobility of the flap loop and the terminal

regions observed in the HIV monomer are not present in the dynamics of the

complex, suggesting that the binding fluctuations of the monomer are suppressed

upon formation of the complex (see Figure27). We notice that there is no information

in this analysis about how this process occurs because we are examining the diffusive

dynamics of the initial and final states of the binding reaction, and not its kinetics.
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FIGURE 27. Fluctuations of the dimerized and inhibitor-bound HIV protease.
Top panels: Primary fluctuations of the dimerized and inhibitor-bound HIV protease.
Local mode lengthscale Lia along the primary sequence (Top right panel), and
projected as a rainbow gradient onto the ensemble of conformer structures 1BVE
(Top left panel). Because the modes are symmetric over the two members of the
homodimer, only residues 1-99 are shown. Bottom panels: Experimental[4] (circles)
and predicted (blue lines) NMR relaxation of the dimerized and inhibited HIV
protease.
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As shown in Figure 27 the large-amplitude fluctuations observed in the slow

modes of the monomer, are now trapped in the dimerized and inibitor-bound protein.

The C-terminal and N-terminal tails which were previously disordered are now locked

into a β-sheet structure, while motions of the flap loop and active site are inhibited by

the binding of the DMP323 inhibitor. This suggests that the binding of the second

protein and of the inhibitor traps specific configurational minima of active regions

of the monomeric protein. A more direct observation of this phenomenon can be

made in the analysis of Figure 25, where the dimerized and inhibitor bound protein

structures are projected onto the mode free energy landscape calculated from MD

simulations of the free monomer. The figure shows that the bound form is localized

to specific regions and minima on the monomer energy landscape.

Figure 27 shows that in the bound protein new fluctuations emerge that are

localized to almost single-residue regions, such as the large-amplitude fluctuations

of L5:W6 and P39:G40. While in the apo protein, the fluctuations in these regions

were correlated with terminal and flap motions, in the complex, the fluctuations have

become highly localized. The well defined peaks that emerge, characterizing localized

dynamics in the region of amino acids 5 and 40, are suggestive of a more specific step

in a following reaction pathway that would involve these amino acids.

This finding is consistent with NMR relaxation experiments of the HIV

protease/DMP323 inhibitor complex which found unusually large and fast motion

at residue 40: this residue was speculated to be involved in the release of the

reaction product after protease activity.[4] Furthermore, mutagenesis studies of the

HIV protease found that non-conservative mutation of residues 5 and 40 resulted in

loss of protease activity, even though the residues are separated in space and sequence

from other highly conserved regions.[125] Our study shows that while these regions
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already present some degree of flexibility in the apo protein,[92] their dynamics are

further and specifically enhanced upon binding. The LE4PD theory indicates the

presence of dynamical allostery in the dimerized complex upon binding.

IGF2R protein domain 11

As a second example, we study the Insulin Growth Factor II Receptor (IGF2R)

protein domain 11 which is responsible for binding and regulating levels of insuline-like

growth factor 2 (IGF2) at the cell surface. Williams et al.[91] resolved the structure

of the IGF2R:IGF2 complex by x-ray, and the structure of an AB loop mutant of the

protein in solution by NMR. The binding sites are composed by defined loops called

AB, CD, FG, and HI. The same nomenclature is reported in our figures. Starting from

this information they developed a binding model of IGF2R with the IGF2 protein

where they suggested a dynamical role for two primary loops flanking a hydrophobic

binding pocket.

Using as an input the ensemble of NMR configurations for the apo protein

we calculated the LE4PD dynamics, which includes fluctuations around the NMR

configurations, local cooperative barrier crossing, and solvent-mediated hydrodynamic

interaction. The diffusive modes show for the residue-dependent Local Mode

Lengthscale, Lia, an interesting mode-dependent behavior. The first internal mode

primarily involves independent fluctuations of the unstructured C-tail. The second

and third internal mode are localized on the AB and FG loops in agreement with the

model proposed by Williams et al. As can be seen in Figure 28 these modes suggest

largely independent, uncorrelated motion of these loops in the tens of nanosecond

regime. The dynamics move from the AB loop to the FG loop on the 3 ns − 30 ns

timescale indicating a possible sequence of steps in the binding mechanism of the
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protein, with the fast local dynamics (∼ 3 ns − 6 ns) occurring in the FG loop and

the slow dynamics (∼ 30 ns) localized in the AB loop.

An analysis of IGF2R sequences across species has shown that a gain of IGF2

binding affinity and function is related to specific, localized point mutations.[126]

Most of the studied mutations were located in the IGF2R:IGF2 binding region,

particularly residues 1544-1545 on the AB binding loop and residue 1600 on the

FG loop.
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FIGURE 28. Fluctuations of the free IGF2R domain 11 protein from the NMR
ensemble.
Fluctuations of the free IGF2R domain 11 protein from the NMR conformer ensemble.
Local mode lengthscale Lia along the primary sequence (Right panel), and projected
as a rainbow gradient onto the ensemble of conformer structures 2M6T (Left panel).

The dynamics presented so far for the IGF2R protein domain in the unbound

and bound configurations is calculated using the LE4PD theory with input from

the experimental structures measured in NMR. However, further calculations were

performed with the LE4PD theory starting from MD simulations. The simulation

collected a 100 ns long trajectory with stable Root Mean Square Deviation from the

initially selected structure, which is the first configuration NMR structure. Results
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for the mode dependent dynamics are reported in Figure 29. The generated MD

ensemble does not span the full range of dynamics observed in the NMR structural

ensemble, which is not surprising since the variability in the NMR structural ensemble

suggested mode dynamics in the ∼ 400 ns timescale, while the simulations are more

limited in the timescale that they cover. However the sampling of the MD simulation

in the sub 100 ns regime is more complete than in NMR experiments, as it can be

observed by the results reported in the figures.

a=
4

a=
7

a=
5

a=
6

a=
8

a=
9

19.7 ns

3.0 ns

7.2 ns 3.5 ns

0.7 ns 0.4 ns

Free IGF2R 0.70

AB AB AB

AB AB AB

FG FG FG

FG FG FG

AB FGCD
0.7

0
CD CD CD

CD CD CD

0.7

0
0.7

0
0.7

0
0.7

0
0.7

0
sequence 1528 1548 1568 1588 1608 1628 1648

Local Mode Lengthscale

MD ensemble

FIGURE 29. Fluctuations of the free IGF2R domain 11 protein from the MD
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Fluctuations of the free IGF2R domain 11 protein from the MD simulation ensemble.
Local mode lengthscale Lia along the primary sequence (Right panel), and projected
as a rainbow gradient onto the ensemble of structural minima in the mode (Left
panel).

The simulation shows a smaller lengthscale process propagating from the AB loop

to the FG loop in the 1 ns − 20 ns timescale as can be seen in Figure 29 , and in

agreement with predictions from the NMR conformer ensemble. Furthermore, a new

dynamical mode emerges in this intermediate timescale, which consists of correlated

motion between the AB and the CD loops, as shown in right panel of Figure 30.

This motion is not present in the NMR structural ensemble. When considering the
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different timescales of the two calculations, the information collected from the two

ensembles is consistent and complementary. Interestingly, the evolutionary analysis

by Williams et al. indicates that the structure and function of the IGF2 binding site

on IGF2R, i.e the CD loop, is conserved in the mammal common ancestor.

From the MD simulation we extracted the mode-dependent free energy surfaces.

These surfaces display quite clearly protein fluctuations between different energetic

minima. We analyze the eighth mode, represented in Figure 30, which displays an

interesting correlation between the binding region CD and the AB loop. The free

energy surface shows conformational transitions during the crossing between the two

metastable end points. Those involve the correlated motion between the AB and

CD loop conformations. The pathway is represented as a series of triangles with the

red one corresponding to the top of the barrier. The transition path is not isotropic

in nature. The conformational selection upon binding is observed by projecting the

NMR structures of the holo form of the protein onto the landscape. Analysis of the

transition states between metastable minima is important as they would mediate the

dynamics of both the recognition process and the relaxation to the bound state.

Upon binding, the dynamics of the loops of IGF2R domain becomes quite

different. We solve the LE4PD dynamics starting from the structure of the complex

IGF2R:IGF2 from the PDB databank, reported as 2L29.[127] In the complex the

dynamics of the three binding loops, AB, CD, and FG, become quenched to a large

extent. As can be seen in Figure 31, in the bound state these loops maintain a small

amount of flexibility but lack the cooperative long-time processes observed in the

apo protein. The tails of the protein are still mobile, but these fluctuations do not

cooperatively propagate to the binding loop regions of the protein. This behavior

suggests that configurational fluctuations observed in the apo protein are trapped in
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the bound complex. The largest fluctuations now take place in the IGF2 substrate

protein. These findings are largely reproduced in the model constructed from the MD

ensemble, as shown in Figure 32.

Conclusions

Residue specific localized dynamics involves the sampling of multiple

conformations and of the transitions between them. Ensembles of conformational

states are localized in mobile parts of the protein that are mostly loops and terminal

regions. Local flexibility of the protein in selected parts of its three dimensional

structure is needed to allow for the “trapping” of the conformational state useful for

substrate binding, following the conformational-selection model of ligand binding.[69]

The study shows that rather than ensuring the presence of specific metastable states

that faithfully are present in the bound conformation, the conformational diversity

in the unbound protein allows the presence of configurational states that are involved
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in binding, and which ultimately relax upon binding to the desired configurational

states. In this way the observed mechanism suggests firstly a conformational-selection

mechanism that traps configurations, which subsequently relax to optimal structures

for binding, following an induced-fit type of mechanism. Conformational diversity in

the apo sturucture ensures the presence of energetically efficient binding pathways,

and the dynamics of motion between these metastable states.

Local dynamics are investigated with the LE4PD approach, a coarse-grained

description that accounts for local semi-flexibility, energy barriers, hydrodynamics,

and the chemical structure of the protein.[112] It is important to notice that the

LE4PD has as its input information the ensemble of configurational states that are

detected either in an all-atom Molecular Dynamics simulations, which contains solvent

molecules and counterions, or directly from NMR experiments. For this reason the

properties at the coarse-grained level are informed by and reflect the properties at

the atomistic-level, including hydrogen bonding, sulfur bridges, and more in general

all short and long-ranged interactions.

In its diffusive mode picture, the LE4PD defines cooperative motion in localized

regions of the protein. The relationship between cooperativity and energy barriers

implies a sequence of relevant steps occurring to support the biological processes.

In this way, the LE4PD theory has the ability to predict the emergence of localized

fluctuations where mobility is enhanced at a given length and timescale, starting from

the protein structural ensemble.

The most relevant information for the kinetics of binding is provided by the

low index modes of motion as these large-amplitude, slow modes of motion identify

cooperative fluctuations which are involved in the dynamics of recognition and binding

of proteins to substrates. These slow dynamics are deemed relevant to the kinetic
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selection of protein binding partners as it detects regions where amino acids move

cooperatively. The dynamics for these modes are characterized by relatively small

barriers that are easily crossed in the nanosecond to several microsecond timescale

that is relevant to protein recognition dynamics. As a consequence, the barriers can

act as a switch that allows or forbids the transition between states through the precise

modulation of the delicate balance of entropy and enthalpy.

Regions of the activated dynamics are in general directly related to sequences that

are conserved inside the family of proteins that perform a specific biological function.

In previous work we showed how the predicted barrier-activated regions along the

protein sequence corresponded to locations of signal transduction mechanisms of

the CheY protein[8] and ubiqitination linkage sites.[17] Here, we show that an even

more precise temporal and spatial description of the local dynamic activation can

be obtained from the analysis of barrier crossing and mode dependent activated

dynamics.

The solvent is a relevant player in these mechanisms of macromolecular binding,

as they modulate the kinetics of the process by tuning the ordering of the solvent

molecules, i.e. entropic contributions, and by breaking or forming hydrogen bonds,

i.e. enthalpic contributions.[76, 77] In the LE4PD the effect of the solvent is implicitly

included through friction, hydrodynamic interaction, and effective energy barriers.

Because the input configurations are either calculated in an atomistic simulation with

explicit representation of the solvent or from the experimental NMR conformers, a

realistic description of the effect of the solvent is included in the projected dynamics

of the LE4PD.

In general we observe that when the protein binds to a substrate, the original

regions of energy activated motion are involved in the binding reaction mechanism
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and their dynamics becomes quenched. In the protein-substrate complex we observe

the quencing of the motion in the single protein enhanced dynamics regions, and

the emergence of new regions of higher flexibility in parts of the protein that are

remote with respect to the binding interface, following an allosteric mechanism. This

emergence of new entropic states balances the reduction of entropy due to binding.

It is from the sophisticated balance of all these energetics, which to a large extent

tend to compensate each other, that the physiological reaction pathways emerge in

the biological mechanisms that regulate the function of proteins. These pathways

must be evolutionarily tuned to avoid kinetic traps and ensure that binding partners

can find their bound conformation.

This study of the dynamics provides insight into protein recognition, which

involves cooperative motion localized to active regions of the protein with fluctuations

occurring over a hierarchy of length and timescales. Slow, correlated, spatially

localized, fluctuations display a dynamical pathway which is relevant to the biological

mechanism and function, while fast, uncorrelated fluctuations indicate simple entropic

compensation after protein binding.
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CHAPTER V

A HIERARCHICAL FREE ENERGY LANDSCAPE CONNECTS ORDERED

AND DISORDERED PROTEIN STATES

Proteins are molecular machines whose structure and dynamics have been

evolutionarily designed to perform functional roles. While random sequences of

amino-acids exhibit strong-disorder and frustration, native sequences possess funnel-

like free energy landscapes, and at physiological temperature can reversibly fold to

unique global configurations.[49, 50, 68] However, the ordered, folded state must

possess dynamical pathways allowing the motion required for biological function. We

have recently developed a Langevin equation for protein dynamics (LE4PD), which

can accurately predict the dynamics of folded proteins from the input structural

ensemble. Results have been quantitatively compared to measurements of NMR

relaxation,[8, 17, 112] and biological activity.[128] In the short-time regime, proteins

fluctuate around a single structural minima characterized by the topology of protein

connectivity.[9] In the long-time regime, proteins transition between metastable states

which are of nearly equal free energy; these are the biologically relevant modes

which come into play in processes such as protein-protein recognition and enzymatic

activity.[110, 128]

To quantitatively capture the timescales of motion, the LE4PD accurately

describes the dissipation and the cooperativity of protein fluctuations. The model is

an effective linear description built by finding the effective intramolecular harmonic

interactions which stabilize the folded state, obtained from the structural ensemble

derived from an underlying model. We have shown how this underlying model can be

taken from experimental structural ensembles, such as NMR conformer ensembles, or
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from explicit solvent molecular dynamic (MD) simulations. MD simulation ensembles

were found to generate the most accurate models when compared to experiment,[112]

and these models for six different single-domain globular proteins are studied here.

The effective linear description allows a solution in a set of diffusive modes which

specifically relate a set of cooperatively rearranging amino acids in the protein. The

scaling properties of the mode solution leads to a subdiffusive scaling regime in the

protein mean-squared displacement. When the MD trajectories are projected onto

these modes of motion, we find an additional scaling between the cooperativity,

or mode lengthscale, and the typical mode-dependent energy barrier. With the

knowledge of the relevant energy barrier to diffusion, the diffusive modes can be

rescaled to account for complexity on the protein free energy landscape.

To develop and analyze the coarse-grained LE4PD model, we performed explicit

solvent molecular dynamics simulation of six different globular single-domain proteins,

to obtain ∼ 100ns of equilibrium trajectory as monitored by a steady root-mean-

squared displacement. Starting structures were taken from NMR or crystal structures

of Ubiquitin (1UBQ),[32] HIV Protease monomer (1Q9P),[93] Kinase-associated

protein phosphatase KAPP (1MZK),[89] N-TIMP-1 (1D2B),[86] Cellular retinol-

binding protein I CPB1 (1MX7),[88] and Insulin Growth Factor 2 Receptor IFG2R

domain 11 (2M6T).[91] These trajectories were used as structural ensembles to

generate LE4PD models of the protein dynamics. These LE4PD models were shown

to quantitavely predict NMR relaxation measurements, with correlation coefficient

ρ = .95 over the 1864 site-specific measurements.[112]

We find the free energy landscape around the folded state to be like an onion with

many layers; the complexity is hierarchical in nature. In this work we analyze the

observed energy barriers on the protein free energy landscape in the LE4PD modes,
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and the general consequences for dynamical properties. Though the sampling in our

MD simulations is limited to the time regime t < 100ns, extrapolation to longer time

and larger scale processes is shown to directly connect folded and unfolded disordered

states of the protein. We also make qualitative comparison to protein folding times,

and quantitative comparison to long-time folding and re-folding MD simulations of

ubiquitin above its folding temperature.[37]

Subdiffusive Motion
The first three global modes of the LE4PD describe the rotations of the folded

structure as the rotational diffusion tensor. The internal fluctuations of the protein

is spanned by the internal modes labeled p = 1, Np with Np = N − 3 because of the 3

rotational modes of the global structure (translational modes have been removed by

going into bond coordinates). While the LE4PD model is site-specific and protein-

specific, the general scaling between the mode number p and mode lengths Lp ∝ p−β,

and diffusive mode relaxation times τp,0 ∝ Lαp , predict the general properties of the

chain dynamics.

The standard Rouse treatment of the freely jointed chain leads to β = 1 and α =

2; and the Zimm treatment of the hydrodynamic coupling leads to α = 3
2
.[18] In the

application to proteins, both exponents are altered by the structural characteristics

of the folded protein state in contrast to an ideal chain. Globular proteins have

an increased connectivity beyond the linear connectivity of the protein backbone,

and are characterized by a fractal dimension in 1 < d < 3 dimensions. Specific

considerations of the folded state of proteins as fractal objects has led to the conjecture

that folded proteins are poised on the edge of metastability where the space-filling

dimension is df > 2 and the the spectral dimension is ds < 2,[129] while analysis of

the vibrational spectrum of globular proteins predicts a general d ∼ 2 dimensional
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folded state.[130] Our results also show that the internal fluctuations of a globular

protein scales algebraically with mode number, and with greater stability than the

fully disordered freely jointed chain. Plotting mode lengths for all six proteins in

the right panel of Figure 33 shows that in the LE4PD, the mode length scales with

internal mode number p with the global fit Lp = L0p
−β with β = .42. At large mode

numbers (processes faster than tens of picoseconds), this scaling changes, but is quite

consistent for all six proteins.

Hydrodynamic coupling alters the α exponent. As in the study of Granek,[26]

we find that the including hydrodynamic coupling alters the scaling between the

diffusive relaxation times and mode number. Figure 39 shows that the diffusive mode

timescale τ0,p = CτL
α
p (red line) with α = 2.38 and Cτ = 3651 ps

nmα
at 298K. Without

hydrodynamic coupling τ0,p = CτL
α
p with α = 2.65 and Cτ = 8890 ps

nmα
at 298K.

In a similar fashion as for the Rouse model, long-range correlations induced by the

hydrodynamic coupling enhances long-wavelength transport in proteins.
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FIGURE 33. Mode length scaling.
Left: Mode length scales with internal mode number p as Lp = L0p

−β with β = .42.
This global fit is set by the scaling for the more collective modes; at large p the scaling
changes. Right: Bead position lengthscale Rp scales with bond orientational mode

lengthscale Lp as R2
p = C2

sL
3
p with Cs = .30nm−

1
2 .

The α and β exponents determine general properties of the dynamical system,

such as the subdiffusive exponent of the mean-squared displacement due to
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configurational diffusion. The protein mean-squared displacement in the center of

mass frame can be written as

MSD =
1

N

N∑
i=1

〈[~Ri(t)− ~Ri(0)]2〉 =
2

N

N∑
i=1

(
〈~R2

i 〉 − 〈~Ri(t) · ~Ri(0)〉
)

(5.1)

In this protein centered frame, the site-site correlation function can be defined in

terms of relative distances

1

N

N∑
i=1

〈~Ri(t) · ~Ri(0)〉 =
1

N2

N∑
i=1

N∑
j=i+1

〈(~Rj(t)− ~Ri(t)) · (~Rj(0)− ~Ri(0))〉 (5.2)

Noting that the bead separation vector can be written as (~Rj − ~Ri) =
∑j−1

k=i
~lk, and

expanding into modes,

1

N
〈~Ri(t) · ~Ri(0)〉 =

1

N2

N∑
i=1

N∑
j=i+1

j−1∑
k,l=i

N−1∑
a=1

QkaQla〈~ξa(t) · ~ξa(0)〉 (5.3)

the bead position mode lengthscale R2
a = 1

N2

∑N
i=1

∑N
j=i+1

∑j−1
k,l=iQkaQlaL

2
a is

obtained by effectively integrating the orientational modes along the chain; the bead

position internal mode lengths Rp then scale with bond orientational mode lengthscale

Lp as R2
p = C2

sL
3
p with Cs = .30nm−

1
2 , as can be seen in the left panel of figure 33. In

the protein reference frame (fixing rotations and translations) the global modes cancel

out of the MSD calculation and the MSD =
∑N−1

p=1 R
2
p(1−exp[− t

τp
]). Approximating

Rp and τp with their scaling forms, and the discrete sum as an integral, we obtain

MSD = 2C2
sL

3
1

∫ Np

p=1

p−3β

(
1− exp

[
− tpβα

CτLα1
exp(−εL1p

−β

kBT
)
])

(5.4)
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For small fluctuations where the largest energy barrier is εL1 ∼ kBT or less, the

barrier-crossing rescaling can be approximately neglected and the integral in equation

5.4 has the short time expansion MSD ∝ tν with ν = 3β−1
βα

. For the Rouse model, this

leads to the standard diffusive exponent with ν = 1. The inclusion of hydrodynamic

coupling (Rouse-Zimm) leads to super-diffusive transport with ν = 4
3
. For proteins,

using the obtained values of β = .42, and α = 2.38, we obtain the strongly subdiffusive

short-time growth exponent ν = 0.27 in direct agreement with that observed in the

MD simulations shown in figure 34. This also agrees with the value of ν ∼ 0.3

needed to model thiyl radical recombination experiments of Milanesi et al., this

subdiffusive exponent was shown to be a property of the polypeptide backbone

independent of sequence.[131]. Without hydrodynamic coupling, the exponent is

only slightly reduced with ν = 0.24. The difference in exponent with and without

hydrodynamic coupling is small, and is of the scale of the variability in observed

exponent between the six different proteins. However, we have shown in previous

work how the hydrodynamic coupling strongly perturbs the structure and absolute

timescale of the large-amplitude modes, and leads to strongly decreased correlation

to experiment when neglected.[112] In general, hydrodynamic effects are large even

in globular protein systems and cannot be neglected.

Hierarchical Complexity Due to Cooperativity
Using the diffusive modes, we investigate the nature of the free energy surface

of a protein around its folded ground state. The diffusive modes organize the

fluctuations of the protein in order of cooperativity. Each diffusive mode obtained

from the diagonalization of Eq. 2.5 is a vector defined by the linear combination

of the bond vectors weighted by the eigenvectors of the product of matrices

LU, as ~ξp(t) =
∑

iQ
−1
pi
~li(t). In polar coordinates the vector is represented as
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FIGURE 34. Subdiffusive regime of the mean-squared displacement.
In the regime where the diffusive motion dominates, i.e. εL1 ∼ kBT or less, equation
5.4 predicts a subdiffusive regime with 〈R2(t)〉 ∝ tν with ν = 0.27 (black-dotted line).
The average MSD of all six-proteins (solid-line) and the MSD of ubiquitin (circles),
protease (quares), KAPP (diamonds), N-TIMP-1 (triangle up), KAPP (triangle left),
and IGF2R (triangle down).

~ξp(t) = {|~ξp(t)|, θp(t), φp(t)}. While the mode length is variable, at any single mode

orientation the mode length distribution is single-peaked about a typical value and the

most relevant changes in the diffusive mode free energy occur as the angles, expressed

in the spherical coordinates, span the configurational space. For any diffusive mode

p, the free energy surface is defined as a function of the spherical coordinate angles θp

and φp as F (θp, φp) = −kBT log {P (θp, φp)},with P (θp, φp) the probability of finding

the diffusive mode vector having the given value of the solid angle. In general as

can be seen in figure 35, the mode landscape contains multiple minima and energy

barriers.
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To obtain an explicit representation of the structure at a minima of interest, all

structures from the simulation ensemble which pertain to a particular θ, φ orientation

which is a strong minima in the mode free energy is extracted and averaged. By

calculating the average structure at each minima we obtain the structural ensemble

of metastable states spanning each internal mode of fluctuation for the protein. In

figure 35 we show the mode free energy surfaces and the structures corresponding

to the metatstable minima on these surfaces. The fluctuations in each mode seem

to be spanned by a handful of metastable minima, and the depth of these minima,

or the barriers between them, are largest for the low mode numbers corresponding

to the most collective, large-amplitude fluctuations. As we progress from the lowest

to highest mode number, we see that the fluctuations go from collective in nature

to local in nature; this is the hierarchical property of the free energy landscape, as

observed in the linear modes of the LE4PD.

The typical energy barrier in each mode, p, is evaluated from the simulation

as the Median Absolute Deviation[81] from the global minimum Egs, that is E†p =

median(θ,φ)(Ep(θ, φ) − Egs,p). The depth of these minima, or the barriers between

them, are largest for the low mode numbers corresponding to the most collective,

large-amplitude fluctuations. Figure 36 shows that the energy barriers E†p as observed

in the simulation trajectory can be well described as scaling with the mode length,

a measure of the mode cooperativity, over a large range of the protein fluctuations.

Figure 36 shows that the observed scaling with mode number follows E†p = εLp with

ε = 6.42 kcal
mol·nm . At a local enough length scale, where the specific chemical nature of

the amino acid is most important, the energy barriers are no longer described by this

expression.
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FIGURE 35. Free energy surfaces and structural minima, protease.
Internal mode free energy surfaces for modes p = 1, 8, 21, 91 on the left and their
associated structural minima on the right. Minima from which structures were
calculated are marked on the free energy surface with grey triangles. The barriers
between minima and the size of the fluctuations spanned by the structural minima
decrease as mode number is increased.

The observed scaling law is consistent with the hierarchical nature of the protein

free energy landscape. Each mode describes dynamics involving a number of bonds in

the protein, which need to move collectively in a cooperative fashion. At short times

the bonds fluctuate independently, while large-amplitude correlated fluctuations occur

when all the bonds transition collectively.[82] The equilibrium probability for the Z

gating bonds to independently transition away from the ”correct” orientation with

energy preference E is P (Z) ∝ exp(− ZE
kBT

). In a transition state perspective this can

be interpreted as a free energy barrier which scales proportionally with the number of
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FIGURE 36. Energy barriers and mode lengthscales.
Typical energy barrier E†p taken as the median average deviation from the global
minimum in the LE4PD mode free energy landscape, plotted against the mode
lengthscale Lp for ubiquitin (orange circles), protease (red squares), KAPP (green
diamonds), N-TIMP-1 (blue triangle up), KAPP (violet triangle left), and IGF2R
(cyan triangle down). Obtained scaling relation E†p = εLp the black dotted line with

ε = 6.42 kcal
mol·nm .

bonds cooperatively rearranging. This model is similar to the Adam-Gibbs theory of

the glass transition,[83, 84] relating the complex hierarchical nature of the free energy

landscape the protein in solution to a structured glassy fluid.[50, 85]

In systems which are dominated by strong disorder, energy barriers have been

observed to scale with the size of the system as E† = (εL)ψ in general.[132, 133]

We go further, and claim that each mode can be treated as an independent system

with energy barriers scaling with the mode size. In our notation, E†p = εLp but

Lp is the mode length, not linear length. The chemical length of the amino acid

chain, Lc = Nl with l the nearly constant distance between α-carbons on the protein
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backbone, describes the linear 1-dimensional size of the system. This linear length is

related to the mode number by Lc ∝ p−1 since each mode involves roughly Np
p

sites.[18]

Thus, in our model, the barrier-exponent ψ is just β, the exponent connecting mode

length to mode number discussed in section 5.1.

To account for the affect of the local energy barriers on the internal dynamics,

the friction becomes mode dependent by assuming thermal activation over the mode-

dependent energy barrier 〈E†p〉

ζ → ζ exp[〈E†p〉/(kBT )] , (5.5)

leading to the slowing of the mode timescale τp = l2ζ
3kBTλp

by τp = τp,0 exp[〈E†p〉/(kBT )].

This simple dynamical renormalization provides an average correction to the dynamics

of the Langevin Equation, which approximately accounts for the local barrier

crossing, and is in agreement with free energy landscape theories suggesting activated

dynamics.[49, 50] As a first approximation, the depth of the minimum free-energy well

in the mode serves as the relevant barrier to transport.

Microscopic Sources of Complexity
What is the microscopic origin of this complexity in the protein free energy

landscape? There are many direct physical interactions of importance among a

chain of amino acids; short-ranged Van der Waals forces of great importance in

packing a stable hydrophobic core, salt-bridges, long-range electrostatic interactions

between charged residues, and stacking of aromatic rings to name several. Beyond

covalent bonds, the most prolific favorable direct interaction with a strength larger

than kBT at biologically important temperatures is the hydrogen bond.[134, 135]

In water, a hydrogen bond network forming fluid,[136, 137] this interaction become
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even more ubiquitous. The φ, ψ amino acid dihedral angles which characterize

the protein backbone, and have significant energy barriers to dihedral rotation,

are often considered to be the relevant parameters describing protein structure

as they characterize the α-helix and β-sheet secondary structures defining protein

folds.[138] However, in aqueous solution the energy landscape of dihedral rotations is

in many ways set by the favorability of intramolecular and protein/solvent hydrogen

bonds.[134] We isolate and focus on the contribution of the hydrogen bonds in protein

systems illustratively, but not in an exclusive sense. All of the myriad of microscopic

interactions in proteins can be of significant importance in varying systems and

condiitions.

The hydrogen bond is a direct microscopic interaction which reduces

configurational freedom, as it requires a specific distance and angle between donor

and acceptor. There is a critical temperature regime where the enthalpic gain

of the interaction is exactly compensated by the entropic loss.[117, 118] For

biological macromolecules, this temperature range not surprisingly is that of liquid

water. Thus the hydrogen bonding network is poised at critical stability with the

constant formation and breaking of the protein/water and crucial members of the

protein/protein hydrogen bonding network. We conjecture that the energy scale and

length scale to make and break hydrogen bonds sets the ε energy per unit length

observed in the energy barrier scaling.

In Figure 37, we show the potential of mean force between hydrogen bond donors

and acceptors, kBT log
(
gdonor−acceptor(r)

)
, for both protein-water hydrogen bonds and

protein-protein hydrogen bonds. In both cases, the height of the energy barrier ∆F

and the distance ∆L required to break a hydrogen bond matches the energy per unit

length of the ε parameter obtained from the fit to the energy barrier distribution
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in figure 36. The energy and length scales considered agree with general studies of

hydrogen bond structure and energetics in liquid water.[137]
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FIGURE 37. Potential of mean force between hydrogen bond donor and acceptors.
Potential of mean force between hydrogen bond donor and acceptors,
kBT log

(
gdonor−acceptor(r)

)
, normalized with the lowest energy distance set to

zero free energy. Solvent-protein PMF (top panel) and Protein-protein PMF
(bottom panel). The energy per unit length, ε = 6.42 kcal

mol·nm , setting the relation
between energy barriers and fluctuation length, E†p = εLp, corresponds to the typical
energy required to make and break hydrogen bonds.

The entropy-enthalpy compensation of individual hydrogen bonds results in

the metastability of protein configurations. Proteins, even near their folded state,

have many configurational minima where competing entropy and enthalpy result in

configurations with similar free energy. These metastable states are coupled to large

changes in the hydrogen bonding connectivity, in particular large rearrangements of

the protein-water hydrogen bond network.[76, 77, 139] In figure 38, we show the
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free-energy landscape in the mode orientation for the p = 4 mode of the IGF2R

protein. This protein is responsible for binding and regulating levels of IGF2 at the cell

surface,[91] and the apo and holo forms of IGF2R require concerted rearrangements

of the AB, CD, and FG binding loops.[127] Figure 38 shows that the p = 4 mode

is characterized by two metastable configurations of the AB and CD binding loops.

Configurational fluctuations are accompanied by large changes in the protein-solvent

hydrogen bond network, and subtle changes in the protein-protein hydrogen bond

network.

Long Crossover to Activated Regime
For motions very close to the folded state, protein motion is diffusion dominated.

However, as the size of the fluctuations increases the barrier distribution dominates

the protein behavior. In figure 39 we plot the diffusive timescales and barrier rescaled

mode timescales from the LE4PD models of all six proteins. For εL1 < kBT the

diffusive and barrier rescaled timescales roughly coincide, but as the fluctuations

grow in size the energy barrier correction causes the mode relaxation time to rapidly

propagate out to folding timescales at the nanometer lengthscale. This happens to

be the typical size of single-domain proteins. The dataset of 2-state folding times

for 52 proteins, plotted against the protein radius of gyration, sits right around the

predicted line for τp with energy barriers included.[5] Rg is not particularly predictive

of individual folding times, but using the protein size as the lengthscale in the

mode timescale τp = CτL
α
p exp[ εLp

kBT
] does capture the ballpark folding times of these

proteins. It should be emphasized that the mode timescales were obtained without

adjustable parameters and the LE4PD description was developed to be quantitative

in the picosecond-nanosecond time regime. The fact that these timescales can be

extended to the length and timescales of protein folding times is surprising, illustrating
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that the hierarchical roughness of the free energy landscape connects folded and

disordered protein configurations.

To investigate the relaxation of proteins in the long-time regime, we utilize the

published results of Lindorff-Larsen et al.[37] who performed multiple millisecond

regime simulations of the Ubiquitin protein above its melting temperature, and were

able to reversibly sample unfolding and refolding events. We conducted a brief 100ns

simulation using the same conditions to validate the short-time predictions of the

LE4PD theory. The theory is not optimized to the simulation, but directly takes the

thermodynamic parameters and solvent viscosity at the simulation temperature of

390K as input. In figure 40 we present the RMSD autocorrelation function

RMSDACF =

(
1

N

N∑
i=1

〈~Ri(t) · ~Ri(0)〉
〈~R2

i 〉

) 1
2

(5.6)

from our short-time simulations, and prediction from equation 5.4 using the obtained

L1 from the simulation. We also present the published result from the long-time

simulations of Lindorff-Larsen et al., compared to the prediction from equation 5.4

using L1 = 1.5nm which is the radius of gyration of the the structural ensemble

obtained in their simulations. At both long and short times the theoretical prediction

of the LE4PD from equation 5.4 and the direct calculation from MD simulation

quantitatively agree, using only the lengthscale of the largest fluctuation as input. In

general this long time regime is set by a very slow logarthmic growth of the protein

MSD; at long times it can be fit by the general coarsening law for disordered systems,

L(t) ∝ log[t]
1
β .

Surprisingly the hierarchichal nature of the protein free energy landscape

observed in the lengthscales accessed at short times t < 100ns seems to propagate

out to the lengthscale of the entire protein, at the timescales of protein folding. This
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scaling of energy barriers with fluctuation lengths sets an upper limit on the domain

size in proteins. The size distribution of protein domains found in biology is peaked at

around 100 amino acids and near zero by 300 amino acids.[140, 141] This corresponds

to proteins of maximum size Rg ∼ 2.0nm, and by the expression obtained in this

work, a longest relaxation time of ∼ 1 minute. Protein domains larger than the

typical size found in nature we predict to have relaxation times exceeding biologically

relevant timescales.

Connecting to Disordered Systems

We have shown how the microscopic CG model of the LE4PD predicts protein

diffusive properties, which when coupled to the barrier distribution propagates

microscopic relaxation times out to the protein-folding regime. But what is the origin

of this roughness in the free energy landscape of proteins? The missing component

in the diffusive description is disorder; proteins are intrinsically frustrated objects.

However, well-folded globular proteins obey the principle of minimal frustration;[50]

so why are the ground states of proteins disordered as well? The answer may be

that biology is poised at the critical stability of the direct chemical interaction of the

hydrogen bond, and the source of the disorder is the constantly shifting hydrogen-

bonding network.

Explicit inclusion of time-dependent disorder qualitatively changes the resulting

dynamics of linear diffusive descriptions. In particular, the description becomes non-

equilibrium; the probability distribution resulting from the equation of motion is no

longer P (V) ∝ exp(− 1
kBT
V) but is governed by a now time-dependent dynamical

partition function. The protein (at-least foldable proteins of typical size) are still

equilibrium systems, it is just that when attempting to coarse-grain over the atomistic

119



degrees-of-freedom that spatial and temporal disorder affect the locally harmonic

energy landscape. Explicit evaluation of the affect of disorder in the LE4PD equation

2.5 is beyond the scope of this work. However, it is known that the isotropic continuum

example of a general elastic manifold embedded in a field of random pinning potentials

results qualitatively in hierarchical free-energy landscapes of the type observed here

for proteins.[142]

To describe directly the simplest model which captures the affect of disorder

in the dynamics of proteins, we assume that every single state of the hydrogen-bond

connectivity has a unique configuration of the protein backbone which is the structural

minima associated with the connectivity. On the timescale of picoseconds, that

hydrogen bond connectivity is being constantly perturbed; and the protein structure

is constantly in an energetic battle between relaxing to the new structural minima

and satisfying the random energy perturbations. The picosecond timescale is also the

timescale implied by local elastic fluctuations to a single structural minima, such as

those observed in the crystalline state.[8] Since we are interested in describing the

affect of the disorder on only site-averaged properties, like the MSD, we describe the

configurational state by the CG coordinate of the site-averaged perturbation from

the average protein structure ~r(t) = 1
N

∑N
i=1

~Ri(t)− 〈~Ri〉. The motion of this vector

~r(t) is governed by an energy functional reflecting the balance between a transverse

elastic energy cost, and the random energy perturbations induced by the shifting

HB connectivity. In the spirit of writing the simplest equation that captures the

properties of motion at times long compared to the timescale of the random energy

perturbations and local elastic relaxation, or t > ns, we could describe the dynamical
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process as obeying the simple energy functional

V(t) =
1

4Γ

(
d~r

dt

)2

− η(~r, t) (5.7)

where the random energy perturbations are white noise in space and time; that is

〈η〉 = 0 and 〈η(~r, t)η(~r′, t′)〉 = η2δ~r−~r′δ(t − t′). Equation 5.7 is the directed polymer

in random media (DPRM).

This is the simplest model of the properties of finite-temperature motion on a

d-dimensional random energy landscape. For proteins we have discussed in section 33

the effective dimensionality is d ∼ 2. This corresponds to the number of d transverse

directions in the d+ 1 DRPM (the extra dimension is time). We conjecture that the

DPRM, which describes the motion of a point particle in a local elastic potential with

the addition of uncorrelated random perturbations, effectively describes the scaling

behavior of the average motion of a tagged particle embedded in the folded protein,

mapping protein dynamics to the DPRM in roughly (2+1) dimensions.

The DPRM has the dynamical partition function

Z(~x, t) =

∫ ~x,t

0,0

D~x exp

[
−
∫ t

0

dsV(s)

]
(5.8)

and differential form

dZ
dt

= Γ∇2Z + ηZ (5.9)

There is one more illustrative mapping; applying the transformation

Z(~x, t) = exp
[ λ
2Γ
h(~x, t)

]
(5.10)
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to equation 5.9 results in

dh(~x, t)

dt
= Γ∇2h(~x, t) +

λ

2

∣∣~∇h(~x, t)
∣∣2 + η′(~x, t) (5.11)

where η′ = 2Γ
λ
η, and equation 5.11 is the celebrated Kardar-Parisi-Zhang (KPZ)

equation describing the surface height of a growing solid.

The transformation equation 5.10 says that log[Z(~x, t)] ∝ h(~x, t), or the

effective free energy of the DPRM is directly proportional to the surface height

of a growing solid.[143, 144] We conjecture that the origin of the universal energy

barrier distribution in the free-energy landscape observed in this work for six different

proteins is the rough surface-height distribution of the KPZ universality class. We

note that the roughening exponent χ = .39 of the d = 2 KPZ-equation is within

numerical precision of the scaling of the exponent β observed for the scaling of free-

energy roughness with chemical length E†p = (εLc)
β. The early-time growth exponent

L(t) ∝ tν of the (2+1) DPRM is numerically known to be ν = .24.[145, 146] In the

simulations, the early-time growth exponent of the RMSD was found to be ∆R(t) ∝ tν

with ν = .27, in agreement with the LE4PD with hydrodynamic coupling. However, in

the LE4PD, the hydrodynamic coupling can be turned off, resulting in ν = .24. The

fact that the roughening and early-time growth exponents correspond to the KPZ

universality class could be merely coincidental. However, examining the mapping

between proteins and generalized systems with strong disorder is an attractive avenue

to explain the features of protein dynamics observed in this work.

122



Discussion

The LE4PD was developed and shown to quantitatively predict protein dynamics

local to the folded state of the protein. It is necessary to include the energy barriers

in the modes of this linear description to quantitatively reproduce the experimental

data of NMR relaxation and time correlation functions calculated directly from MD

simulation. Here we show that the free-energy roughness distribution in the modes of

the LE4PD can be extended to connect ordered with disordered protein states, and

has relevance out to the scale of protein folding times.

Analyzing the scaling behavior of the mode lengths, timescale, and energy

barriers in the LE4PD description, we predict a subdiffusive regime of protein motion

at short times (in agreement with MD simulation and experiment) and a long

crossover to disorder dominated relaxation at long times (also in agreement with

millisecond scale simulations performed on the Anton supercomputer). The resulting

paradigm is a hierarchical free-energy landscape connecting ordered and disordered

protein states.

The source of this energy barrier scaling may be the presence of time-dependent

disorder. For folded proteins which have evolved to be minimally frustrated with

funnel-like energy landscapes, we conjecture that the source of this disorder is the

constant breaking and formation of hydrogen bonds in the critical temperature

regime of biological phenomena where enthalpy and entropy balance. This leads

to multiple configurations local to the folded state which differ greatly in the protein-

solvent hydrogen-bonding network, with subtle rearrangement of the protein-protein

hydrogen bond network.

The predicted roughening and short-time growth exponents are very close to

those of the d = 2 KPZ universality class. We conjecture that this is because the
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constant perturbation of the hydrogen bond network results effectively in noise in the

CG Hamiltonian, which maps the problem to that of a directed polymer in random

media whose free energy is mapped to the KPZ equation for a growing surface.
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FIGURE 38. Structural minima and hydrogen-bond network.
Top: p = 4 orientational mode free energy landscape of the IGF2R protein,
involving concerted fluctuations of the the AB and CD binding loops. Structural
minima and transition state labeled with colored triangles. Bottom: Corresponding
configurational snapshot from MD simulation in each mode orientation labeled in
the top panel. Configurational fluctuations are accompanied by large changes in the
protein-solvent hydrogen bond network, and subtle changes in the protein-protein
hydrogen bond network.
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FIGURE 39. Mode timescales and lengthscales propagate to protein folding scales.
LE4PD formalism built from the structural ensembles of the MD simulations predicts
a scaling of the mode timescales for all six proteins (red crosses) before energy barrier
correction τ0,p = CτL

α
p (red line) with α = 2.38 and Cτ = 3651 ps

nmα
at 298K.

Energy barrier corrected mode timescales of all six proteins (black triangles) and
the scaling τp = CτL

α
p exp[ εLp

kBT
] (black line). Microscopic timescales of sub-angstrom

fluctuations rapidly propagate out to folding timescales at the lengthscale of single-
domain proteins. Folding timescales for 52 2-state globular proteins is plotted against
the protein radius of gyration (blue circles).[5]
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FIGURE 40. RMSD autocorrelation function of the ubiqutin protein at 390K.
RMSD autocorrelation function of the ubiqutin protein at 390K, above the folding
temperature. Multiple millisecond scale simulations of Shaw et al. showed reversible
unfolding and folding starting from the folded configuration. RMSD autocorrelation
function from the Shaw simulations, the black solid line at t > 106ps. RMSD
autocorrelation function from 100ns simulation performed in identical conditions,
black solid line at t < 104ps. RMSD autocorrelation function from integral 5.4
at the 100ns simulation derived 〈~ξ2

1〉
1
2 = 4Å (red circles). Folding timescales are

reached when the largest internal mode length reaches the lengthscale of the protein
as derived from the Shaw simulations 〈~R2〉 12 = 15Å (blue triangle left). Intermediate

scale 〈~ξ2
1〉

1
2 = 7.5, 10, 12.5Å (magenta squares, violet diamonds, and indigo triangles

up). The long-time behavior can be fit by the general coarsening law 1 − A log[t]
1
β

with A = .00077 (black dashed line for t > 105ps).
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CHAPTER VI

DISCUSSION

The biophysical community is shifting from a static view of macromolecular

structure towards one dominated by the concept of the structural ensemble. The series

of four papers presented in this dissertation have developed and validated an effective

linear description of protein motion. The utility of the model presented lies in that it

is perhaps the simplest model capable of quantitatively capturing system-specific and

site-specific protein motion, as derived directly from the structural ensemble. The

dynamical model quantitatively agrees with available experiments, and the large-

amplitude slowest motion predicted in the dynamical modeling directly correlates to

biological function.

The method explicitly separates local and global processes, and diffusive

and activated contributions to protein dynamics. A general relationship between

cooperativity and complexity allows the approximate inclusion of energy barrier

rescaling to the diffusive timescales, resulting in a subdiffusive regime in the

configurational diffusion at short times crossing over to a barrier-activated regime at

long-times. However, the treatment of large-scale configurational rearrangements such

as those involved in a specific allosteric transition or protein folding pathway must be

made more rigorous. Using the diffusive modes of this model as reaction coordinates

for path-based and Markov-chain models would be a start to more explicitly derive

biologically relevant large-scale motions within the formalism.

Evolution has taken advantage of the unique properties of a specific amino

acid chain in water to fine-tune intrinsic fluctuations related to biological function.

Inherent to each individual protein 1−3 nanometers in size there are specific functional
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dynamical processes spanning the microscopic to macroscopic in timescale. Yet on

average these proteins are members of a dynamical, if not universality, then generality

class, bridging a diverse array of sequences and forms. This coexistence of specificity

and universality is part of what makes these molecules fascinating.

Zooming out from the length-scale of a single atom, we find that the free

energy landscape of a protein grows in complexity and the cooperativity of the

allowed motions. Universality generally arises from the simplicity of the physical

description as one coarse-grains from the microscopic to macroscopic, and dynamically

a separation in microscopic and macroscopic timescales results in a hydrodynamic

continuum limit. But even in the simplest building block of biology, the equilibrium

system of a single protein, the trend seems to be going in the opposite direction.

Is this a general feature of biological molecular systems, where as the level of

coarse-graining increases more and more complex and interconnected is the behavior?

Zooming out beyond the single-protein lengthscale in the dynamical system of living

matter, there is no scale invariance, no fixed points in the dynamical system, with

spatial and temporal organisation at the molecular systems level, cell level, organism,

genetic, and ecosystem level. Yet hidden in all of the specificity, are there concepts

of universality applicable? Are there distinct combinations of universality and

specific function yet to be discovered when coarse-graining from the microscopic to

macroscopic in biological systems?
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[54] Sichun Yang, José N Onuchic, and Herbert Levine. Effective stochastic dynamics
on a protein folding energy landscape. J. Chem. Phys., 125(5):054910, 2006.

[55] Herman JC Berendsen and Steven Hayward. Collective protein dynamics in
relation to function. Curr. Op. Struct. Biol., 10(2):165–169, 2000.

[56] B Montgomery Pettitt. Advances in Chemical Physics, Proteins: A Theoretical
Perspective of Dynamics, Structure, and Thermodynamics. John Wiley & Sons,
1990.

[57] Ivan Lyubimov and MG Guenza. First-principle approach to rescale the
dynamics of simulated coarse-grained macromolecular liquids. Phys. Rev. E,
84(3):031801, 2011.

[58] Robert Zwanzig. Rate processes with dynamical disorder. Acc. Chem. Res.,
23(5):148–152, 1990.

[59] Arthur G Palmer III. Nmr probes of molecular dynamics: overview and
comparison with other techniques. Ann. Rev. Biophys. Biomol. Struct.,
30(1):129–155, 2001.

[60] Marcel Ottiger and Ad Bax. Determination of relative n-hn, n-c’, cα-c’, and
cα-hα effective bond lengths in a protein by nmr in a dilute liquid crystalline
phase. J. A. Chem. Soc., 120(47):12334–12341, 1998.

[61] Giovanni Lipari and Attila Szabo. Model-free approach to the interpretation of
nuclear magnetic resonance relaxation in macromolecules. 1. theory and range
of validity. J. A. Chem. Soc., 104(17):4546–4559, 1982.

[62] Hans Frauenfelder, Stephen G Sligar, and Peter G Wolynes. The energy
landscapes and motions of proteins. Sci., 254(5038):1598–1603, 1991.
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