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DISSERTATION ABSTRACT

Rick Daniel Montgomery

Doctor of Philosophy

Department of Physics

December 2014

Title: Fractal Electrodes for Interfacing Neurons to Retinal Implants

With life expectancy on the rise, age-related ailments are a signi�cant strain on the

welfare of individuals and the economy. Progress is being made towards combating the

leading cause of unavoidable blindness, age-related macular degeneration (AMD). AMD

a�ects ten million Americans and costs the world economy 343 billion dollars annually.

Retinal implants promise to restore sight by replacing the eye’s damaged photoreceptors

with electronic photodiodes. Clinical trials succeed at restoring some vision, but are

limited by the stimulating electrodes. We study the electrode-neuron interface with a

focus on the geometrical dependence of the electrode.

�e functionality of neurons is intimately connected to their branching and curving

shape, described by fractal geometry. We examine the morphology of neurons using

fractal analysis. �e results inform our electrode designs, which are fabricated using top-

down lithographic and bo�om-up self-assembly techniques.

A novel technique for fabricating a fractal electrode is presented. Heating and cooling

a �lm of poly(methyl methacrylate) on a SiO2 substrate causes fractal structures to form

on the surface. �e geometry of the structures is temperature dependent, producing

crystalline branches at lower temperatures and di�usion-limited aggregates at higher

iv



temperatures. Subsequent deposition of antimony nanoclusters shows preferred di�usion

to the fractal surface features.

�e dependence of a photodiode’s performance on its top contact geometry is

explored using modi�ed nodal analysis. �e results reinforce the need to balance a low

mean semiconductor-metal separation distance with an adequate contact width for low

resistance, all while maximizing light input. Future designs will bene�t from the spatial

voltage maps produced by the simulation.

�e electric �eld emanating from an electrode is also dependent on the geometry

of the electrode. �e Faraday cage e�ect is exploited to achieve similar electric �eld

responses to traditional electrode shapes.

A preliminary study of neural adhesion to SU-8 fractal electrodes is promising. �e

neuron grows along the electrode even at 90° turns.

�e role the fractal geometry plays in neuron and electrode functionality is shown

to be signi�cant. Continued study of, and experimentation with, new electrode designs is

sure to produce exciting possibilities in the future.

�is dissertation includes previously unpublished co-authored material.
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CHAPTER I

INTRODUCTION

During my six years in graduate school, approximately 350 000 Americans have been

diagnosed with age-related macular degeneration (AMD)[1]. At present, in 2014, more

than eight million Americans have an intermediate form of AMD with nearly two million

more showing advanced stages of vision loss in the central focusing area of the eye [2]. �e

expected annual global cost of this disease is signi�cant at 343 billion USD [3]. Another

leading cause of blindness, retinitis pigmentosa (RP), is an inherited degenerative disease

that a�ects 1 in 4000 people worldwide [4]. Both of these forms of blindness are due to

problems occurring at the layer of photoreceptors in the back of the eye. Researchers

have been developing drug therapies to slow and stop the loss of vision from these kinds

of degenerative eye diseases [1, 5].

We join a network of researchers that aim to not just stop the loss of vision but to

restore it. Stem cells, optogenetics and implantable devices are the three major approaches

to restoring vision. Embryonic stem cells have been successfully implanted into human

patients with AMD [6]. Visual improvement was reported for the majority of the patients

in this study. One of the dangers of implanting stem cells is uncontrolled growth of those

cells into tumors. However, the results from this study show medium- to long-term safety.

Another approach to restoring vision is optogenetics. Gene treatments hijack ganglion

cells in the optic nerve and create photosensitivity [7]. �ese newly photosensitive

neurons absorb light and communicate vision to the brain. Retinal implants are the

solution that we choose to pursue. A retinal implant is an electronic device that captures

visual information and transmits that information to the brain by stimulating neurons in

the eye [8].
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�e eye is a light sensitive organ that communicates vision to the brain by way

of electrically excitable cells called neurons. Over time, the scienti�c community has

developed the ability to reproduce these biological functions. An electronic response to

light was �rst noticed back in 1839 when Edmond Becquerel discovered the photovoltaic

e�ect by placing two electrodes in an electrolytic bath and exposing the setup to sunlight

[9]. In 1755, Charles LeRoy was able to elicit a visual response in a blind man by

passing current through the tissue of the man’s eye [10]. �e �elds of photovoltaics and

neurostimulation have come a long way since these beginnings. In 2000, retinal implants

consisting of an array of photodiodes with neurostimulating electrodes were implanted

into the eyes of six human patients with RP [11]. Since then a number of clinical trials

have been performed on patients with RP or AMD [11–14]. In 2012, the Food and Drug

Administration approved the �rst device for commercial sales in the United States [15].

1.1. Retinal Implants

�ere are two classes of implantable devices, designated by where the implant is

placed in the eye. Epiretinal implants are a multi-unit solution with a camera mounted on

a pair of glasses, a computer worn on the hip, and the electrode array implanted in the eye.

�e camera captures light and sends the information to the computer for processing. �e

processed visual information is relayed to the epiretinal implant in the eye. �e epiretinal

implant is an electrode array that sits in front of the retina (in contrast to the subretinal

implant), see Figure 1.1. �e electrode array is connected to and stimulates the ganglion

cells, which pass the signal to the optic nerve. A functioning retina processes a large

amount of visual information before the signal is sent to the brain [16]. Because the

epiretinal implant bypasses this neural circuitry, the visual information must be processed

through computer algorithms before the electrode array is told which ganglion cells to
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stimulate. For this reason, using an epiretinal implant requires the patient to wear a

camera and a computer, in addition to the invasive operation for implanting the electrode

array.

FIGURE 1.1. A schematic of the placement of a retinal implant in the eye. An epiretinal
implant sits in front of the retina and stimulates the ganglion cells. A subretinal implant
replaces the photoreceptors at the back of the retina and stimulates the bipolar cells. �e
signal is then processed through the network of bipolar, horizontal, and amacrine cells
before being passed onto the ganglion cells and transmi�ed to the brain via the optic
nerve.

Subretinal implants are the second kind of visual prosthesis aimed at stimulating

the retinal neurons to restore vision. �e subretinal implant is placed at the back of

the retina in the space once occupied by the healthy photoreceptors, the rods and cones,

see Figure 1.1. �is physical location allows the implant to make use of the processing

power of the retinal circuitry. �e subretinal implant typically consists of an array of

photodiodes, each with its own stimulating electrode. A schematic of one such pair is

shown in Figure 1.2. �e light collected by a photodiode is converted to a current, which

acts as the control for a voltage ampli�er for the stimulating electrode. Bipolar cells in

front of the stimulating electrodes are activated, thus maintaining the spatial information

from the incoming light. Once activated, the bipolar cells pass on the visual information
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to the brain in their normal, healthy way. �is dissertation focuses on the subretinal

architecture.

R

R

A

+
−

Top contact

Current-controlled
voltage ampli�er

Stimulating electrode

Light

FIGURE 1.2. Schematic of the relationship between the photodiode and the stimulating
electrode for a retinal implant. �e current of the photodiode operating in short circuit
mode is used to control a voltage ampli�er that charges a working electrode to stimulate
neurons.

�e reported visual acuities of patients with retinal implants is much worse than

expected by resolving power alone. People with normal visual acuity are said to have

20/20 vision. For comparison, a person with 20/80 vision can resolve objects from 20

feet away that a person with 20/20 vision would be able to see from a distance of 80 feet.

A person with 20/20 vision can discern a gap size (measured as a visual angle) in the

Landolt C equal to 1′, see Figure 1.3. When standing at a distance of 20 feet from an eye

chart, 1 arc minute is equivalent to a 1.75 mm gap.

�e metric of visual acuity A is de�ned as

A =
1

θ
, (1.1)
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where θ is the visual angle in arc minutes. �e geometrical relationship (see Figure 1.3)

between the visual angle θ, the focal length of the eye f , and the image size d on the retina

is

tan(θ/2) =
d

2f
. (1.2)

For small angles, this relationship is approximated by

tan(θ) ≈ d/f. (1.3)

�e typical human eye has a focal length of 17 mm. A visual acuity of 20/20 then

corresponds to a distance of d = 5 µm between the “pixels” at the back of the eye. �is

distance is between the average size of a photoreceptor (2 µm) and the size of a bipolar

cell (10 µm), which is the �rst processing neuron in the pathway to the brain.

d θ

f

(a)

Gap size

(b)

FIGURE 1.3. Resolving power of the eye. (a) An angular resolution of θ = 1′ is
considered normal vision. �e average human eye has a focal length of f = 17 mm,
which corresponds to an image size on the retina of d = 5 µm. (b) A Landolt C is used
to determine visual acuity. �e le�er is printed on a chart at various sizes with the gap
pointing in di�erent directions. A patient a�empts to distinguish which direction the gap
is pointing. �e visual angle of the smallest gap that was successfully determined is used
to measure the patient’s visual acuity.

�e size of the photodiodes used in subretinal implants is on the order of 20 µm,

which should correspond to a visual acuity of 20/80. �e reported acuity measurements

of patients with subretinal implants was no be�er than 20/1200 [11]. �ere seems to be

something more than pixel density that is limiting the resolution given by a subretinal
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implant. It is the working hypothesis of this research team that this low acuity is due to

the interconnection between the retinal implant and the neurons. It is the purpose of this

dissertation to explore the possibility of creating be�er interactions between neurons and

electrodes by focusing on the geometry of the electrode.

1.2. Outlook

Chapter II introduces the concept of fractal geometry and some tools to characterize

fractals. An improved algorithm for analyzing fractals is introduced along with a

method for determining the scaling range for certain fractals. �e fractal properties of

hippocampal neurons from mice are explored using the tools introduced. It is shown that

a neuron is fractal because of its branching structure, but the particular quality of the

fractal, its fractal dimension, is derived from its curvature.

In Chapter III, we present four fabrication methods for fractal electrodes. A

novel self-assembled texturing technique for a polymer substrate is introduced. �e

fractal dimensions of the resultant fractal geometries are temperature dependent. Metal

deposited onto the substrate di�uses to the newly formed textures creating a fractal

electrode on an insulating substrate. �e deposition of metal onto graphite is also explored

as a technique for creating surface features on an electrically conducting substrate.

Electron beam lithography is used for the other two fabrication methods. An inorganic

hardmask and a photoresist are used to create short and tall electrodes, respectively. �ese

electrodes will be revisited in Chapter IV for their use in neural adhesion studies.

Chapter IV details the roles that fractal electrodes will play in a retinal implant. One

use of a fractal electrode is as the top contact of the photodiode, refer to Figure 1.2. A

circuit model will be used to explore the electrical performance of two di�erent top contact

geometries. Another fractal electrode will replace the traditional stimulating electrode,
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again see Figure 1.2. �e electric �eld produced by a fractal electrode is simulated and

found to be equivalent to that of a square electrode, but the geometry of the fractal

electrode will show promise in our preliminary neural adhesion studies.

�ere is a statement at the beginning of Chapters II, III, and IV outlining the research

e�orts of my collaborators.

Due to the various stages of development in the fabrication process and our interest

in the role that geometry plays in neural adhesion, the term electrode will be used

throughout this document to refer to surface structures even if they are not metallic

structures connected to a power supply. For example, when testing neural adhesion to

SU-8 surface features on a SiO2 substrate, we still refer to the device as an electrode.
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CHAPTER II

FRACTAL ANALYSIS OF NEURONS

�e neuron extraction and imaging described in this chapter was performed by Dr.

Bruce Harland at the University of Canterbury, New Zealand. Saba Moslehi and Jason

Barkeloo constructed the straightened models of the neurons. Julian Smith generated the

ternary fractals. I was the primary contributor to the remainder of the material presented

herein.

�is chapter introduces the concept of fractals and a number of ways to classify

them. A new algorithm for a box counting analysis is presented, as well as a method for

determining the domain of length scales over which an object exhibits fractality. �ese

tools are then used to analyze a batch of neurons. �e neurons exhibit a narrow range

of values for their fractal dimensions. �e reason for this is speculated to be the varying

curvature of the neuron’s branches. Reconstructed models of neurons with straightened

branches agree with this reasoning. �e projection of a neuron into two dimensions

is shown to have the same fractal dimension as the three-dimensional model, but the

projection can force a loss of information in the length scale cuto�s.

2.1. Introduction to Fractals

A look around the world provides beautiful panoramas of extremely complex

structures. Mountainscapes, cloud formations, and even just the typical tree can make

one stop and wonder, in awe, how all of this came about. �e explanation behind these

three examples of beautiful complexity, as well as plenty of others, lies in a mathematical

concept called a fractal. A fractal is an object that exhibits scale invariance. To be scale

invariant is to lack the notion of size. It can be impossible to guess the actual size of
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some clouds in the sky (without a prior knowledge of meteorology). A large cloud very

far away can look just like a small one that is much closer. Likewise, the unfathomable

size of some mountain ranges is tied to the presence of many peaks at di�erent heights.

Fractals are the scale invariant geometry of trees, clouds, and mountains. �e coiner of

the term, Benoit B. Mandelbrot, said it best when he titled his book, �e Fractal Geometry

of Nature [17].

Two examples of fractals are shown in Figure 2.1. On the le� is a branching pa�ern

that repeats itself exactly at each magni�cation. On the right, the branching pa�erns of

an actual tree don’t repeat themselves exactly, but they do resemble each other. �e key

to understanding this relationship lies in fractal geometry.

FIGURE 2.1. Two examples of branching fractal pa�erns. On the le� is an exactly
self-similar branching pa�ern that repeats its structure at each magni�cation. �e tree
branches on the right are an example of statistical self-similarity. �e way in which the
pa�erns occupy space is the same at di�erent magni�cations, even if the branching angles
are di�erent. Reprinted with permission from the author [18].
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Some fractals that will continue to surface through this dissertation include the

Sierpinski carpet and Menger sponge, the H tree, and a ternary fractal, all of which are

exact fractals. Di�usion-limited aggregates and neurons play the role of the statistical

fractals. A variation of the ternary fractal will elucidate one way that exact and statistical

fractals can be related.

�e Sierpinski carpet is generated by removing the middle third of a square, taking

the remaining eight squares and removing the middle third from each of those, and so on.

�e Menger sponge is analogous to the Sierpinski carpet, but in three dimensions. Divide

a cube into twenty-seven smaller cubes and remove the central one, leaving twenty-six

cubes whose central pieces are removed at the next iteration, etc. �e H tree is grown by

sprouting a shrunken H from each of the terminal lines. What we are calling a ternary

fractal is not a previously de�ned fractal, but one generated for this dissertation. It is

constructed by le�ing three lines extend from a point in space. At the end of each line,

three shorter lines will extend into a plane perpendicular to the previous line. An example

of each of these fractals in their third iteration are shown in Figure 2.2. All of these fractals

are generated by performing the same operation, whatever it may be, on the exact same

object, but at a smaller length scale.

In Figure 2.3 are examples of statistical fractals. Di�usion-limited aggregation (DLA)

clusters and neurons do not follow the same set of shrink-and-add rules that the exact

fractals do. �ey are more organic and involve varying levels of randomness in their

construction. DLA is a theory for structure growth based on particles randomly bumping

into the main structure and sticking. Neuron growth is much more complex. It is not

completely understood yet, but it is known that the dendritic growth is due to both

chemical and physical cues [19]. �e statistical ternary fractal is generated by allowing
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(a) (b)

(c) (d)

FIGURE 2.2. Four examples of exact fractals each generated to their third iteration: (a) a
Sierpinski carpet, (b) a Menger sponge, (c) an H tree, (d) and a ternary fractal.
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some randomness to be added to the length of the new lines in the exact generation

scheme.

(a) (b) (c)

FIGURE 2.3. �ree examples of statistical fractals: (a) a di�usion-limited aggregate, (b) a
neuron, (c) and a ternary fractal.

�e next section provides a way to characterize these complex objects by their

fractal dimension. �e box counting analysis is introduced as a way to extract the fractal

dimension for a given data set of a fractal.

2.2. Box Counting

Box counting is an analysis method that characterizes an object’s physical scaling

properties with a parameter called the fractal dimension Df . �e fractal dimension

provides an understanding of how an object �lls space when viewed from di�erent length

scales. �is method provides a pragmatic approach to estimating the fractal dimension of

a visual pa�ern.

Beginning with an example to build intuition, the dimension of three Euclidean

shapes (a line, a square, and a cube) are determined from a box counting analysis. For

the one-dimensional line in Figure 2.4, the number of boxes N increases as the box size

L decreases in the following way: N = L0/L, where L0 is total length of the line. For a
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square, the number grows as N = L0/L
2. Finally the number of boxes that �ll a three-

dimensional cube grows by N = L0/L
3 as L is decreased. �is leads to the idea of a

generalized dimension D that characterizes the scaling relationship in the following way,

N ∝ L0/L
D. (2.1)

L0

L = L0/3

L = L0/2

L = L0

D = 1 D = 2 D = 3

N = 1 N = 1 N = 1

N = 2 N = 4 N = 8

N = 3 N = 9 N = 27

FIGURE 2.4. An intuitive idea of dimension is developed measuring Euclidean objects in
one, two, and three dimensions with di�erent size boxes sizes. �e number of boxes N
that spans the object grows as L0/L

D, where L is the box size, L0 is the length of a side
of the image, and D is the dimension.
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�e idea of a generalized dimension can also be applied to more complex systems.

Rearranging Equation 2.1 to

log (N) ∝ D log (L0/L) (2.2)

provides an opportunity to extract the dimension D from the graph of log (N) versus

log (L0/L). �e slope of the log–log plot is the generalized dimensionD. �e schematic in

Figure 2.5 is representative of the power law relationship between the number of occupied

boxes and the length scales. For Euclidean objects, D is the integer normally associated

with the dimension of that object.

log(L0/L)

log(N)

Lc Lf

FIGURE 2.5. Schematic of the results of a box counting analysis. �e logarithm of the
number of occupied boxes is plo�ed against the logarithm of the box size. �e dimension
D is given by the slope of the line. �e coarser box sizes, denoted by Lc, are on the le�
hand side and the �ner box sizes Lf are on the right hand side.

Performing the same procedure on a fractal object will result in a non-integerD, the

fractal dimension Df . In the following example, box counting is performed on the fractal

object that was created by DLA [20] shown in Figure 2.6(a). �e L0 × L0 pixel image
14



data is stored in a two dimensional array with a value of 0 representing a white pixel and

a value of 1 representing a black pixel. Dividing the image into boxes of side length L,

each box that occupies at least one black pixel is counted. Figure 2.6(b,c,d) shows the box

counting process with L = L0/12, L0/15, L0/20, respectively. �e fractal dimension of a

di�usion-limited aggregate is Df = 1.7 as shown in Figure 2.7.

(a) (b)

(c) (d)

FIGURE 2.6. Example of counting boxes on a di�usion-limited aggregate. As this is a
fractal object, the number of colored boxes grows as a function of the box size in a non-
integer power.

Fractals that are de�ned mathematically are scale invariant. However, the scaling

behavior of a physically realizable fractal must deviate at some upper and lower bound.

�ese are called limited range fractals. �e standard coarse scale cuto� has a limit of Lc <

L0/5, such that at least �ve boxes span the image. �e standard �ne scale cuto� Lf is a

box size �ve times greater than the data resolution. �e motivation for this cuto� is that it
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takes �ve points to de�ne a sine curve, which is a minimally simple shape with interesting

properties. �ese standard cuto�s are represented by the vertical bars in Figure 2.7. �ere

has been a debate in the literature over how many orders of magnitude are necessary to

describe an object as fractal [21]. Our interest is less in whether or not an object should

be called a fractal per se, but whether the fractal analysis provides a meaningful metric

on the system.

FIGURE 2.7. �e scaling plot for the box counting analysis performed on the DLA pa�ern
from Figure 2.6. �e slope of the �t line provides a fractal dimension of Df = 1.7. �e
vertical bars represent the coarse (le�) and �ne (right) scale cuto�s of Lc = L0/5 and
Lf = 21 pixels, respectively.

2.3. Binning

�e previous algorithm for a three-dimensional box count was a multistep process

that recursively divided the image into sets and then recursively traversed those sets,

counting the number of data points in each lowest subset. �is was a time and resource

heavy approach that was applicable only to data sets in three dimensions.
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�e binning algorithm is a simpli�ed approach that is applicable to any dimension

of data. It takes advantage of the binary nature of the black and white image. �e

image data is stored as a two-dimensional array where every element is a 0 or a 1.

�is image data can also be stored as a list of the (x, y) coordinates of every occupied

element, e.g. {(2, 1), (3, 1), (1, 2)}. �ese representations are shown in Figure 2.8. A

mathematical operation on the coordinates of the occupied elements reduces the workload

of the algorithm.

1 0 0

0 1 1

FIGURE 2.8. A simple bitmap image and its data representation.

Consider the one-dimensional image in Figure 2.9. �e set of coordinates of the black

pixels is {2, 4, 5, 9}. Starting with a box size of L1 = 1, the count is N1 = 4. Increasing

the length of the box L1 → L2 = 4, the count is now N2 = 3, but the relative position

of the box is now ambiguous. �e boxes are shi�ed to �nd the optimal covering, in this

case N2 = 2.

To understand this procedure mathematically, begin by taking the ceiling of the set

of coordinates divided by the length scale in question,

d({2, 4, 5, 9})/4e = d{2
4
, 4
4
, 5
4
, 9
4
}e = {1, 1, 2, 3}.
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L1 = 1

L2 = 4

N = 4

N = 3

N = 3

N = 3

N = 2

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 2.9. A representative example of the box counting analysis in one dimension. �e
data set {2, 4, 5, 9} is resampled with a ruler four times longer. �e ruler is also shi�ed
relative to the data points to ensure that the minimum number of bins is used to capture
all the data.
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�e shape of the object is dependent on the relative, rather than the absolute, coordinates.

Hence shi�ing the boxes is equivalent to adding an integer to the coordinates,

d({2, 4, 5, 9}+ 3)/4e = d{5
4
, 7
4
, 8
4
, 12

4
}e = {2, 2, 2, 3}.

�ere are dLie variations that must be checked for each length scale. At each length

scale Li, each coordinate has three operations performed on it: add an integer, divide by

the length scale, and take the ceiling. �e number of integers that need to be added is

equal to the size of the box (or its ceiling, if it is not an integer). Finally, the duplicates

must be removed from the list for an accurate count of N . Overall, this algorithm takes

much less time to run than the previous algorithm.

�e algorithm is tested on a �ve iteration Menger sponge. �e scaling plot from the

analysis is shown in Figure 2.10. �e le� vertical bar is the standard coarse scale cut o� of

L0/5 = 49 pixels. �e right vertical bar is the standard �ne scale cut o� of 5 pixels, as a

single pixel is the smallest feature size. �e best �t line to the data points inside the bars

provides the correct fractal dimension for a Menger sponge of Df = 2.7.

�e box sizes are chosen algorithmically to be evenly spaced on a log scale using

Mathematica’s FindDivisions function [22] between some minimum and maximum. If

too many divisions are sought, the data will be oversampled. For example, in Figure 2.10,

the staircase pa�ern on the le� side of the graph is from oversampling the length scales.

�e six largest box sizes are too big to resolve any of the Menger sponge’s holes and so

count the same number N .

A visual example of the analysis is shown in Figure 2.11. �e analysis can be

understood as a resampling of the data at various length scales and counting how many

pixels are necessary to represent the data at a given length scale. �e rescaled Menger

sponge is shown at four di�erent box sizes. Note that while the Menger sponge is an
19



FIGURE 2.10. �e scaling plot from a box counting analysis performed on a �ve iteration
Menger sponge. �e slope of the �t line provides a fractal dimension Df = 2.7.

exact fractal which repeats itself exactly as the magni�cation is changed by a factor of

1/3, the box sizes in the algorithm are chosen to be evenly spaced on a log-scale and

therefore will not be whole numbers. �is is why the object is misshapen and why the

box counting analysis is only an estimate of the fractal dimension.

2.4. Best-of-R2 Fit

For some fractals, the log-log scaling plots of objects are not straight throughout the

standard scaling range, but they are straight throughout a signi�cant portion of it. �e

best-of-R2 �t determines a linear range in the scaling plot and provides a fractal dimension

for that region. Linear regressions are calculated for a range of sets of contiguous data

points with some chosen minimum number of points. �e set with the highest coe�cient

of determination R2 is chosen as the set that determines the fractal scaling range.
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(a) (b)

(c) (d)

FIGURE 2.11. �e visual representation of the Menger sponge at di�erent box sizes: (a)
49 pixels, (b) 23 pixels, (c) 11 pixels, and (d) 5 pixels.
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�e coe�cient of determinationR2 is a measure of the goodness of �t, and is de�ned

by

R2 ≡ 1 − SSres

SStot

, (2.3)

where SSres =
∑
i

(yi − fi)
2 is the residual sum of squares, dependent on how far

each data point deviates from the given �t, and SStot =
∑
i

(yi − ȳ)2 is the total sum

of squares, which is proportional to the sample variance. As the �t line approaches the

data, SSres approaches zero. Meanwhile, SStot increases with each additional data point.

�ere can exist a maximum R2 that is determined by the balance of these two e�ects: the

bene�t to SStot of additional points and the penalty to SSres because those points are not

modeled by the �t. However, this maximum is not guaranteed and the scaling plots must

be analyzed with discretion.

�is method is tested on the scaling plot of the Menger sponge in Figure 2.10.

�e linear regression and coe�cient of determination were calculated for every set of

contiguous data points including at least 30 data points. Figure 2.12 shows the R2 value

for 2015 di�erent �t lines. In this case, a maximum R2 exists that corresponds to a �t line

including 71 points.

�e best-of-R2 �t line and the data points used to determine it are shown in

Figure 2.13. �e staircase pa�ern at the coarse scale (on the le�) is excluded from the

�t, but there is no limit at the �ne scale. �e lack of a �ne scale cuto� in this box counting

example is due to a commensurability between the cube-like nature of the Menger sponge

and the cubes used to measure it. �e fractal dimension from this analysis also provides

the correct fractal dimension for the Menger sponge, Df = 2.7.
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FIGURE 2.12. Plot of the coe�cients of determination R2 from the best-of-R2 analysis on
a Menger sponge. A linear regression was applied to each set of contiguous data points
from the box counting analysis (see text) that included at least 30 data points. �e highest
R2 value is highlighted in green.

FIGURE 2.13. Scaling plot from the best-of-R2 analysis on the Menger sponge. �e fractal
dimension, as determined by the gradient of the �t line, is Df = 2.7. �e staircase
pa�ern on the le� was excluded by the analysis. �e cube-like nature of the Menger
sponge matches the boxes used in the box counting analysis in a way that allows the �ne
scale behavior to extend until the boxes reach a single pixel.
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2.5. Neurons

A neuron is a biological cell that responds to electrochemical stimuli and, in response,

transmits a signal. �ere are many di�erent types of neurons, coming in various shapes

and sizes, but most are comprise a soma, dendrites, and an axon. �e soma contains the

nucleus of the cell and acts as the central processing unit of the neuron. �e dendrites and

the axon branch o� of the soma and typically act as multiple inputs and a single output,

respectively. �is chapter focuses on pyramidal neurons from the CA1 hippocampus of

male adult rats. While the framework of analysis presented here is performed on neurons

from the brain, a similar approach will be applied to retinal neurons in a future project.

�e hippocampus is a region of the brain that plays an important role in memory

formation and anxiety [23]. It is also one of the �rst a�ected regions in patients with

Alzheimer’s disease [24, 25]. �e early detection of structural changes of the neurons

in the hippocampus is an indicator for susceptibility to Alzheimer’s disease. For these

reasons, it is desirable to understand as much about the geometry of these neurons as

possible.

�e CA1 pyramidal cell is an important output pathway for long-term memory

formation and the development of spatial skills. It is a multipolar cell composed of an

apical and basal arbor, each containing many dendrites, and a soma [26]. �e apical arbor

is named as such because it extends from the apex of the pyramidal soma, with the basal

arbor opposite. An example of a CA1 pyramidal cell is shown in Figure 2.14.

�e functionality of a neuron is related to its shape [27]. Morphometric parameters

like length, surface area, volume, etc. are useful for characterizing distinctive geometries

of di�erent neurons. �e fractal dimension of a neuron has also been shown to be a

useful morphometric parameter that can map the complexity of cortical circuitry through

di�erent regions of the brain [28]. An extensive review can be found at [29].
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FIGURE 2.14. A CA1 pyramidal cell from the hippocampus of a rat’s brain. �e soma is
the spherical central body. �e basal arbor is below the soma and the apical arbor is above.

2.5.1. From Raw Images to Computer Models

A number of steps are involved in analyzing a neuron. A�er extraction from the rat’s

brain, the neurons are micrographed and converted into a three-dimensional model. �e

models are then voxelized for the fractal analysis.

�e hippocampus is sectioned into 200 µm slices in the coronal plane (front to back).

�e sections are stained with a metallic Golgi-Cox stain. �is stains 1–5 % of the neurons

so that their cell bodies and dendritic trees can be visualized. Individual neurons are

located using a standard microscope, see Figure 2.15. Because of the large size of the CA1

neurons, a few slides contain a mixture of whole neurons, while most contain basal arbors

or apical arbors only.

A Leica laser scanning confocal microscope is used to collect high resolution image

stacks for each neuron. �e image stacks are created using a 20× glycerol objective with

a 0.7 numerical aperture, providing a x and y resolution of 0.378 µm. �e step size (z

distance between image stacks) is 2 µm.

25



(a) (b)

FIGURE 2.15. Construction of the three-dimensional model of a neuron. (a) Confocal
micrographs of a hippocampus. �e focal planes are separated by 2 µm. Images taken
by Dr. Bruce Harland. (b) A close up of a branching dendrite in the reconstructed three-
dimensional model. Figure compiled by the Taylor lab.

�e confocal module in Neurolucida1 converts the layers of pictures into a three-

dimensional model. �e data can be exported to various formats including the Wavefront

.obj format, which played an intermediate role in the analysis here.

�e Wavefront �les are converted to a voxel data set with a resolution of 4 voxels/µm

using binvox2 [30]. A number of options are available when converting �les with binvox.

�e models are centered inside the bounding box. �e model is voxelized “exactly”

meaning that if any part of the polygonal model falls inside a voxel, the voxel is added to

the list of coordinates. �is is in contrast to a more accurate method that uses the graphics

card to determine whether a voxel should be occupied. While more accurate, the graphics

method limits the object size to 1024×1024×1024 voxels. Finally, the binary output from

binvox is converted to a list of {x, y, z} coordinates ready for use with the box counting

program wri�en in a Mathematica notebook.

1MBF Bioscience.
2h�p://www.google.com/search?q=binvox
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2.5.2. Box Counting Analysis of a Basal Arbor

�e box counting analysis and best-of-R2 �t analysis are performed on a basal arbor.

�e coe�cients of determination for each set including at least 25 data points are plo�ed

versus the number of points in that data set in Figure 2.16.

FIGURE 2.16. Plot of the coe�cients of determination R2 from the best-of-R2 analysis on
a basal arbor. A linear regression was applied to each set of contiguous data points from
the box counting analysis (see text) that included at least 25 data points. �e highest R2

value is highlighted in green.

�e scaling plot is shown in Figure 2.17. �e neuron deviates from the fractal

behavior, as determined by the best-of-R2 �t line, at a �ne scale cuto� ofLf = 3 µm, which

is slightly larger than the average diameter of its dendrites, which are approximately

1.5 µm. �e coarse scale cuto� Lc, denoted by the le�-most blue point, is 24 µm. �is

value is a li�le smaller than the statistical coarse scale cuto� of L = L0/7 = 32 µm. �ese

length scale cuto�s do generally depend on the spacing of the data points and should not

be taken as highly accurate values for where the scaling behavior begins and ends. Rather,

they should serve more as comparisons between objects that should exhibit the same kind

of behavior.
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�e limiting behavior is as expected. When the box sizes become large enough, all

of space will be �lled and the slope will tend to D = 3. As the box sizes become smaller

than 3 µm, they begin to resolve the hollow of the cylinder and the gradient becomes 2.

At a small enough box size, the analysis probes the connectedness of the data. �ese data

are a set of points, which have D = 0.

FIGURE 2.17. �e scaling plot from the box counting analysis on the basal arbor from
a CA1 neuron. �e neuron exhibits fractality in the scaling range 3–24 µm and has a
fractal dimension Df = 1.4, according to the best-of-R2 �t. �e vertical lines denote
the statistical coarse (le�) and �ne (right) scaling limits. �e scaling behavior deviates to
D = 3 at the coarse scale, as expected because the box sizes are so big that they must �ll
space. Smaller than 3 µm, the scaling behavior goes to D = 2 as the boxes resolve the
hollow cylindrical nature of the dendrites. Once the box size is smaller than the distance
between the data points, the scaling behavior goes to D = 0, indicative of the point-like
nature of the data. It is interesting that the fractal dimension lies between 1 and 2, rather
than between 2 and 3.

It is interesting to note that the tangent of the plot data does not smoothly transition

from three-dimensional to zero-dimensional behavior. �e scaling plot transitions from

D = 3 to Df = 1.4 before experiencing another sharp transition to D = 2. �is

is in contrast to a simple fractal, which transitions as a smooth arc. We believe that

28



these transitions and the length scales at which they occur will be important in future

experiments for testing neural adhesion, see Chapter IV.

2.5.3. A Neuron’s Projection

Projecting a fractal object into a space with a lower dimension Dp will not change

its fractal dimension Df as long as the fractal dimension is less than the dimension of

the space into which it is being projected, Df < Dp [17]. For a neuron, which occupies

space in three dimensions and has a fractal dimension of Df = 1.4, a two-dimensional

projection of the neuron should still have a fractal dimension of Df = 1.4. However, the

practicalities involved with imaging neurons can sometimes lead to inconsistency in the

results of the fractal analysis [31]. �is section will show that although the box counting

analysis provides the correct fractal dimension for the projection of these neurons, there

is relevant information in the length scale cuto�s that is lost.

�e same three-dimensional model of a neuron from Section 2.5.2 was projected into

three orthogonal planes. �e resulting two-dimensional models were analyzed using the

best-of-R2 analysis, see Figure 2.18. All three projections maintained a fractal dimension

of Df = 1.4, but the fractal scaling regions changed.

Recall that the three-dimensional model exhibited fractality in the range 3–24 µm.

�e length scale cuto�s from the projections in Figure 2.18 are 2–13 µm, 1–32 µm, and

2–11 µm, respectively.

Focusing �rst on the �ne scale cuto�, projecting the neuron into a plane collapses

the hollow of the dendrite. In three dimensions, a box size smaller than 3 µm would begin

to resolve the two-dimensional nature of the surface of the cylinder. However, in two

dimensions, the hollow is now �lled, allowing smaller boxes to be incorrectly counted as

�lled. �e three-dimensional model is a model of the surface of the neuron. Projecting it
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FIGURE 2.18. A basal arbor projected into three di�erent planes. �e data shows a fractal
dimension equivalent to the 3D analysis of Df = 1.4, but the length scale cuto�s have
lost some of their meaning. �e data sets are vertically o�set for clarity.

into two dimensions creates an object that represents surface area, rather than perimeter.

�e �ne scale limiting behavior of these projections has a slope equal to 1.7. �e neuron

is beginning to �ll more space, but it is still too spindly to reach D = 2.

�e changes in coarse scale cuto�s are more extreme. In the two cases (top and

bo�om) where two di�erent arbors can be visually distinguished from each other, the

coarse scale cuto� is reduced by half. �e counts on the le� are low, indicating that the

empty space between the two arbors is contributing to the shortened fractality. �e head-

on view that collapses the two arbors has a coarser cuto� than even the three-dimensional

model. �is is due to the overlap of dendrites. �e empty space that separated the

dendrites in three dimensions is now being counted as a �lled box in two dimensions.

�is inaccurately extends the scaling range.
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�ese details are part of the reason why it is important to understand what the box

counting analysis is actually measuring. �e details of the scaling plot can provide more

useful information than just a fractal dimension for an object.

2.6. Similarity Dimension

Before moving onto the self-similarity model, there are three reasons to believe that

the box counting analysis is quantifying a genuine fractal quality in the neuron. First, the

gradient of the scaling behavior shi�s away from Df = 1.4 at the expected scaling limits.

Second, the analysis is not simply �nding a tangent line in a smooth curve to denote

as the straight region. Rather, the data experiences a sharp transition at both scaling

limits. �ird, the neuron structure and its projection share the same fractal dimension, as

expected for a fractal.

To understand where this fractal behavior in the neuron comes from, the self-

similarity model will be applied to the neuron. �e similarity dimension Ds is introduced

using a ternary fractal. �e methodology of the similarity dimension will then be applied

to the neuron. We will see that the self-similarity model does not explain the fractality of

the neuron, but there are interesting insights in the analysis.

�e box counting analysis can determine the fractal dimension for any fractal. �ere

are some fractals, though, for which a simple self-similarity model can be adequate for

quantifying the scaling behavior. �e similarity dimension Ds of a fractal is calculated by

counting how many replicasN have been added at a contraction rate r, using the formula:

Ds = log (N)/ log (1/r). (2.4)

�ere are two di�erent methods for counting N , depending on whether the fractal

is forking or branching at each iteration. For fractals such as the Sierpinski carpet, N is
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counted via the forking rules. At a given iteration, an existing part is broken intoN parts,

each smaller by a factor of r. �e original square is replaced byN = 8 squares that are r =

3 times smaller. �is provides a similarity dimension of Ds = log(8)/ log(1/3) ≈ 1.89.

�e branching rules dictate counting N in a di�erent way. Take the H tree, for example.

�e largest H is the zeroth iteration branch. Four Hs are shrunk by a factor of 2 and added

to the original H as the �rst iteration branches. �e H tree has a similarity dimension of

Ds = log(4)/ log(1/2) = 2.

Consider a ternary fractal expanding into three dimensions, Figure 2.19. �ree lines

branch from an origin into a plane, separated by 120° each. �e line forks into three new

lines, which are r times smaller. �ese new lines lie in a plane that is perpendicular to

the previous iteration. �e forking rules dictate that N = 3. �e fractal dimension can be

tuned by adjusting the contraction rate,

r = N−1/Ds . (2.5)

To match the fractal dimension of the neuron Df = 1.4, the length scale should be

contracted each iteration by ≈ 0.43.

A statistical fractal can be modeled from this exact one by allowing �uctuations in

the length of each new line. An exact and a statistical ternary fractal, both of 6 iterations,

are shown in Figure 2.19. �e branch lengths of the exact fractal are multiplied by 0.43

at each iteration. For the statistical fractal, the length at each iteration is chosen from a

Gaussian distribution, where the mean is determined by the exact contraction rate and

the standard deviation is 50 % of that.

�e count N and mean branch lengths 〈L〉 can be plo�ed to recover the fractal

dimension in a way that is nearly identical to the box counting analysis, i.e. log(N)

vs. log(L0/ 〈L〉). �e similarity dimension scaling plot in Figure 2.20 shows a similarity
32



(a) (b)

FIGURE 2.19. (a) An exact ternary fractal and (b) a statistical ternary fractal. �ey both
have a similarity dimension of Ds = 1.4. �e branch lengths of the exact fractal contract
at the same rate for each iteration, while those of the statistical are randomly distributed
around a mean that matches the di�erent iterations of the exact fractal. Fractals generated
by Julian Smith.

dimension of Ds = 1.4 for both the exact and statistical ternary fractals. �e variation in

branch lengths does allow di�erent iterations to have overlapping branch lengths. �at

is, some of the third iteration branches will be longer than some of the second iteration

branches, etc.

To apply the similarity dimension model to the neuron, the neuron’s branches were

assigned iteration numbers via the forking rule. Refer to Figure 2.21 for this analysis of

the neuron. �is is the same rule used in the ternary fractal example. �e histogram of

the branch lengths shows there are multiple length scales in the neuron but there is no

sequence as there is in the ternary fractal. �e similarity dimension scaling plot (also

in Figure 2.21) shows that this model is insu�cent to explain the fractal behavior of the

neuron. �e branching rules were tested and also found insu�cient.
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FIGURE 2.20. �e similarity dimension scaling plot for the exact (green) and statistical
(blue) ternary fractal. �e variation in branch lengths does not change the scaling
behavior of the means. �e statistical data is shi�ed to the right because the variation
introduced into the lengths lets L0 > 〈L〉.

�e similarity dimension does not provide a meaningful characteristic of the neuron,

but the existence of the branches is nevertheless important. �e multiple branches are

necessary for a neuron to be a fractal, as will be explored in the next section.

2.7. Limiting Iterations

In this section, a certain amount of branching is shown to be necessary to generate

the fractal behavior of the neuron. �e branching rules are used to assign iteration

numbers to the di�erent branches of the neuron.

�e rule set here places the longest branches in the zeroth iteration, the next longest

branches are in the �rst iteration, etc. Tracing from the soma, the decision for which path

to take at each spli�ing point is chosen by the path with the longest distance to a terminal

branch. In this way, the four branches originating from the soma are the four zeroth order

branches. �ere are 10 �rst iteration, 10 second iteration, and 4 third iteration branches.
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(a) (b)

(c)

FIGURE 2.21. Simple self-similarity model applied to a neuron. (a) �e neuron’s branches
are colored according to their iteration number under the forking model, from red to
purple, through the rainbow. (b) �e stacked histogram of the branch lengths for the
neuron. �e colors are matched to the branch distribution in (a). Note that there are
fourth iteration branches (green) at every length scale. �is model could still work as
long as the mean of those branches follows the power law distribution. (c) �e scaling
plot for the similarity dimension of the neuron. �e number of branches versus the mean
branch length at each iteration does not follow a power law. �e line demonstrates what
a fractal with a similarity dimension of Ds = 1.4 would behave like. �e self-similarity
model does not explain the fractal behavior of the neuron.
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�e neuron model is analyzed with varying number of included iterations. At low

iteration level, the neuron does not exhibit fractal behavior, as is shown in Figure 2.22 by

the narrow domain over which the blue data points �t the line. It is only when enough

branches have been added in that the scaling plot starts to behave like the object is a

fractal.

FIGURE 2.22. �e scaling plot results for a neuron from its zeroth to third iteration in a
branching model. �e plots are vertically o�set for clarity. �e neuron does not exhibit
fractal behavior until most of the branches are present in the third iteration.

�e fractal behavior does not derive from a simple self-similarity model, but it does

require a certain number of branching iterations. �e only other option for the origin of

the fractal behavior is that the curvature of the branches through space creates the fractal

characteristic. In the next section, two neuron models are reconstructed without curves

to explore this idea.
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2.8. �e Dependence of Fractal Dimension on Curvature

Given that the similarity dimension fails to explain the fractal dimension, the

remainder of this chapter returns to the box counting analysis. �e box counting analysis

was performed on 239 basal arbors and 218 apical arbors. �e variation in the fractal

dimension of these di�erent neuron arbors is shown in Figure 2.23. �e basal arbors have

a mean fractal dimension of 〈Df〉 = 1.4, with a standard deviation of σ = 0.03. �e apical

arbors also have a mean fractal dimension of 〈Df〉 = 1.4, with a standard deviation of

σ = 0.04.

FIGURE 2.23. Smooth histograms of the fractal dimensions of the apical and basal arbors.
�e variation is due to di�erent levels of weaving.

�e working hypothesis is that the variation in the fractal dimension of the neurons

arises from di�erent amounts of curvature in the dendrites of the neurons. To test this

hypothesis, two neuron models are reconstructed without curves. �e branch of a neuron

is modeled by a series of connected cylinders whose axes point in slightly di�erent

directions. �is allows the branch to weave through space. In the reconstruction of
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the neuron model, all of the cylinder axes within a branch are set to point in the same

direction.

When a branch splits into two, there are two angles that de�ne the new axes, see

Figure 2.24. �e cross product of the new axes de�nes a plane. �e sweeping angle

measures the distance between the two new axes in the plane. �e declination angle

measures how that plane di�ers from the originating axis. Each of these angles for the

two models were measured using MeshLab3. �e lengths and angles were then used to

construct new models in a CAD program.

In Figure 2.25, we see the results indicating that the fractal dimension of one of the

straightened neurons was reduced from Df = 1.4 to Df = 1.3. �is reduction in fractal

dimension happens because the straightened neuron is �lling less space at the �ner length

scales. �e smaller number of boxes needed to resolve the straight lines at the �ne scales

brings the slope of the line down. However, the fractal dimension of the other neuron was

not changed by straightening the branches.

We believe it is the varying levels of curvature in the neurons that account for the

spread in fractal dimension of the arbors. �e arbors with more tightly packed curves will

have higherDf than those which are reaching further away from the soma with straighter

branches. It is this closer proximity of branches that is associated with a higher functional

capacity in some neurons, but there is still work to be done before the direct link to various

processing functions can be drawn from the dendritic morphology [32].

2.9. Summary

�e analysis performed on the CA1 neurons in this chapter does not provide the

�nal word on the fractality of neurons. �is chapter presents a toolbox that is part of

3Developed with the support of the 3D-CoForm project.
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(a)

(b)

FIGURE 2.24. �e two angles at a branch point in the original model are preserved in the
straightened reconstruction. (a) �e sweeping angle measures the distance in the plane
created by the cross product of the two axes. (b) �e declination angle measures the angle
between the old axis and one of the new axes.
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FIGURE 2.25. �e scaling plots for an unaltered neuron and a straightened neuron. �e
data sets are vertically o�set for clarity.

a larger picture explaining how to think about neuron morphometrics. Not only is the

fractal dimension of a neuron relevant to how it �lls space and thus interacts with its

neighbors, but also the domain of fractal length scales can provide useful information

about the neuron.

�e fractal character of a neuron derives from its branching structure, but not in

a way that can be accounted for by a simple self-similarity model. �e forking and

branching models for similarity dimension are insu�cient to model the shape of the

neuron, but perhaps a hybrid or another model could. �e curvature of the dendrites

a�ects the fractal dimension and produces variation within a set of neurons that otherwise

behave similarly.

A new algorithm for box counting was developed that provides a signi�cant increase

in speed over the previous algorithm used in the Taylor lab and more �exibility than

previously published box counting programs, such as FracLac [33], a plug-in for ImageJ

[34]. �e time saved by the new algorithm allows for more length scales to be examined
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and opens the possibility of being more precise in length scale cuto�s. �is new algorithm

is also dimension-independent. No modi�cations are necessary to analyze data in one,

two, three or n-dimensions.

A method for determining which points should be included in a linear �t was

presented. �is method provides a systematic way of determining length scale cuto�s

so that large sets of fractals can be processed automatically. It should be noted that the

error involved with the length scale cuto�s can be signi�cant and this tool should be used

more as a comparison between fractal objects, rather than as absolute values.

It was shown that while the projection of a fractal into a lower dimensional spaceDp

preserves the fractal dimension Df (as long as Df < Dp), it can distort the length scale

cuto� behavior. When possible, it is best to perform the box counting analysis on the data

in whichever dimensional space the object existed in.

With respect to designing electrodes that interact more e�ectively with neurons,

there are two key points that we learned from the fractal analysis. First, the particular

way in which the neuron weaves through space has an e�ect on its fractal dimension

Df . �is will become even more important when we see in Chapter IV that the neuron

shape can be a�ected by the geometry of an electrode. Second, the fractal dimension of

the three-dimensional neuron is the same as that of its projection into two-dimensional

space. We are not yet sure of the practical implications of this property, but it might be

the case, for example, that a planar fractal electrode with a fractal dimension Df = 1.4

could lead to enhanced adhesion to a neuron.
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CHAPTER III

FABRICATION AND CHARACTERIZATION OF FRACTAL

ELECTRODES

�e electrodes in this chapter were fabricated and characterized by a number of

people including Kurtis Fairley, Bill Wa�erson, Dr. Stephen Golledge, and Shannon

Conroy. Kurtis Fairley fabricated the HafSOx electrodes. Bill Wa�erson fabricated

the SU-8 electrodes. Dr. Stephen Golledge assisted with two of the characterization

techniques on the Sb-PMMA electrodes. Shannon Conroy assisted with the fractal

analysis of the surface features in PMMA. Within the context of their contributions,

I designed the electrode geometries, performed the remainder of the Sb-PMMA

characterization, developed the fractal analysis and completed the analysis of the surface

features in PMMA.

�is chapter is focused on the construction of electrodes with fractal surface features.

�ese electrodes are intended to electrically stimulate neurons. Four di�erent approaches

to fabricating electrodes will be discussed in this chapter. Two exact fractal designs

will be introduced at the beginning of this chapter and revisited in Chapter IV to test

their usefulness. �e remainder of this chapter will focus on two electrode designs with

statistical fractals.

Creating an exact fractal requires a predetermined top-down approach. �e bene�t

to using statistical fractals is that certain growth processes naturally create fractal shapes.

By harnessing these growth dynamics, design parameters can be tuned to �t particular

applications. An example of each kind of device can be seen in Figure 3.1.
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(a) (b)

(c) (d)

FIGURE 3.1. �e four kinds of electrodes presented in this chapter are made of (a) HafSOx,
(b) SU-8, (c) Sb-HOPG, and (d) Sb-PMMA.

43



Hard bake
250 ◦C

Etch metal

So� bake
80 ◦C

Pa�ern a
fractal

Develop
with TMAH

Spu�er a
metal

Spin on
HafSOx

FIGURE 3.2. �e �ow chart for HafSOx fabrication.

3.1. Exactly Self-similar Electrodes

�is section deals with two di�erent electrode designs based on exactly self-similar

fractals.

3.1.1. HafSOx Electrode

�e HafSOx electrode design is based on a lithographic pa�erning of the material

Hf(OH)4−2x−2y(O2)x(SO4)y · qH2O (HafSOx). �e fabrication technique is an electron

beam milling process that uses HafSOx as a mask [35]. �e �nal product is a continuous

surface electrode with a fractal relief of an exactly self-similar design. While HafSOx has

been used to produce very narrow line widths [36], its hardness limits the height of the

structures that can be made. A �ow chart for the fabrication process is shown in Figure 3.2.
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A�er a metal is spu�ered onto a substrate, a 20 nm layer of HafSOx is spin-coated

onto the metal. A so� bake at 80 ◦C prepares the sample for electron beam lithography.

Exposure to the electron beam cross-links the HafSOx, causing it to harden. �e

unexposed HafSOx is washed away in the developer tetramethylammonium hydroxide

(TMAH). �e remaining HafSOx structure is hard baked at 250 ◦C. Finally, the metal is

etched in a milling process that leaves behind the hardened HafSOx regions on the original

substrate. �e sample is then ready to be electrodeposited with the electrode metal of

choice.

Scanning electron microscope (SEM) pictures of a Sierpinski Carpet and an H tree are

shown in Figure 3.3. �e �ve iteration Sierpinski carpet spans 100 µm and has a smallest

hole of 19 nm and has a Df = 1.89. �e H tree is a six iteration fractal spanning 100 µm

with a smallest line width of 21 nm. �e fractal dimension of this H tree isDf = 1.9. �e

fractal dimension of the H tree can be tuned by adjusting the contraction rate, r = 4−1/Df .

(a) (b)

FIGURE 3.3. SEM photographs of two HafSOx designs. (a) A 100 µm wide �ve iteration
Sierpinski carpet. �e smallest hole is 19 nm and the scale bar is 100 nm. (b) An H tree
of Df = 1.9 that spans 100 µm and has a narrowest line width of 21 nm. �e scale bar is
2 µm. Images taken by Kurtis Fairley.
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A number of di�erent fractal pa�erns were produced using this technique, including

Sierpinski carpets, H trees, angled H trees, arrays of pillars, fractal arrangements of

uniformly sized pillars, and square platforms.

3.1.2. SU-8 Electrode

�is section details the fabrication of electrodes using SU-8 electron beam

lithography, which is capable of making taller structures than the HafSOx technique. �is

electrode is also designed using a lithography technique but this time with the negative

photoresist SU-8. �e exposed regions of a negative photoresist are hardened and remain

a�er rinsing the sample in developer.

Four di�erent designs are chosen for SU-8 fabrication. Two H trees of Df = 1.5

and Df = 2 are fabricated, as well as a uniform array of the smallest iteration of the H

tree. �e fourth pa�ern is a square platform that spans the same area as the other three,

approximately 2500 µm2. �e three more interesting pa�erns are shown in Figure 3.4.

(a) (b) (c)

FIGURE 3.4. �ree electrode geometries made using SU-8. (a) A �ve iteration H tree of
Df = 2 spans an area of 464 µm × 406 µm. �e scale bar is 100 µm. (b) A four iteration H
tree of Df = 1.5 spans an area of 560 µm × 492 µm. �e scale bar is 100 µm. (c) An array
of the smallest Hs used in the previous designs, spanning an area of 550 µm × 490 µm.
�e scale bar is 200 µm. Images taken by Bill Wa�erson.

A clean substrate is essential for succesful lithography. �e preparation of the

substrate wafer includes a 30 s plasma etch at 150 W with 30 % O2. Spin coating with
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nanopure water at 2000 rpm ensures there is no dirt or dust le� on the substrate. A few

drops of SU-8 2002 are deposited in the center of the wafer with an eye dropper. Slowly

ramping the spin coater up to speed can create a more evenly distributed �lm. �e wafer

was ramped at 100 rpm/s to 500 rpm for 10 s, before ramping at 200 rpm/s to 2000 rpm for

30 s. �is produces a nominal height of 2 µm.

�e sample is so� baked in a convection oven at two ramping speeds. First it is heated

to 65 ◦C for 4 min at a ramping speed of 450 ◦C/h, followed by heating to 95 ◦C at 8 min at

a ramping speeed of 120 ◦C/h. �e pa�erns are exposed with a 30 kV electron beam with a

current density of 0.5 µC/cm2, using a 7.5 µm aperture. �ere is also a post exposure bake

using the same ramping rates and temperatures as the so� bake. �e sample is sonicated

in SU-8 developer for 60 s. An additional 30 day hard bake at 150 ◦C was performed on

some samples.

SU-8 lithography is a well-studied and robust fabrication technique that will be relied

on for future electrode development. It can provide a wide range of structure heights (0.5–

100 µm) and a high aspect ratio for those structures [37].

3.2. Statistically Self-similar Electrodes

�e remainder of this chapter will focus on the development of electrodes with fractal

geometries of a statistical nature. Recognizing that the intended counterpart to these

electrodes are neurons, the fabrication of electrodes that match the fractal properties of

the neuron seems sensible. Two di�erent approaches are taken. �e �rst is a technique

that harnesses DLA, a growth process that has been studied in great detail [20, 38]. �e

second approach employs a novel polymer supercooling technique [39] to create fractal

structures of varying fractal dimension based on the temperature gradient.
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3.2.1. Sb-HOPG Electrode

�e fabrication technique discussed here is called nanocluster deposition [38, 40].

Nanoclusters of a metal are evaporated from a crucible and deposited onto a substrate.

�e resultant structures are described by the theory of DLA. Variables such as deposition

rate and total amount of material deposited can be tuned to control di�erent features.

�e experiment is performed in a high vacuum deposition chamber, see Figure

3.5. �is is a three stage vacuum chamber. A roughing pump evacuates the system

to a pressure suitable to be exposed to a sorption pump, approximately 10 mTorr. �e

sorption pump is a cylinder containing a molecular sieve. �e pump is submersed in liquid

nitrogen, dropping the pressure along with temperature, see Figure 3.5. Once exposed to

the higher pressure of the deposition chamber, the pressure gradient draws particles into

the sorption pump that are then trapped in the molecular sieve reducing the pressure. �e

sorption pump reduces the pressure to levels suitable for the ion pump, e.g. 10−5 Torr. �e

ion pump is a high voltage capacitor wrapped in a large electromagnet. �e large electric

�eld produced by the capacitor plates ionizes any particles remaining in the chamber.

�ese ions are then accelerated in the magnetic �eld, circling inside the ion pump until

they reach the outer wall, also made of titanium, and are trapped there, again reducing

the pressure. With a clean and well dehydrated chamber, the ion pump in this system can

reach pressures as low as 10−9 Torr.

�ere are many considerations in the construction of a deposition chamber such

as this. No plastics can be used inside the chamber, as they will continue to outgas,

preventing the chamber from reaching a suitably low pressure. �e lack of plastic requires

clever solutions to problems such as keeping electrical wires, for say, bu�on heaters or

thermocouples, from shorting. �is problem is exacerbated by the need for the electrical

components to be able to move along with the sample holder from the loading chamber
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FIGURE 3.5. A high vacuum deposition chamber. A roughing pump (not shown) and the
sorption pumps (bo�om-le�) prepare the chamber to pressures suitable for the ion pump
(center). �e samples are maneuvered into position using the accordion sleeve design.
�e electronics rack (right) houses the power supply for the crucible heating and the
barometer readouts.

to the deposition chamber. An accordion sleeve design allows �exibility in the chamber

setup but must be adjusted with caution to avoid shorting the electrical components.

Pressures near atmosphere are measured with a digital barometer and a cold cathode

ion gauge is used for the lower pressures. �e sample holder is equipped with two bu�on

heaters and two thermocouples. Above the sample holder, there is a high temperature

incandescent light bulb. In order to get clean di�usion on the surface of a sample, it

is necessary to remove any adsorbates, such as water molecules, before depositing the

chosen material. �e bu�on heaters and incandescent light bulb are used in conjuction to

remove the adsorbates.

�e metal is sublimated from a ceramic crucible (see Figure 3.7) in the 4-way cross

located between the 6-way cross and the ion pump. �e 4-way cross is separated from the

6-way cross by ba�es that collimate the sublimated particles into a beam. �e deposition
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(a)

(b)

FIGURE 3.6. �e sample holder and the support arm. (a) �e sample holder shown from
above with the samples face down. (b) �e support arm for the sample holder is shown
from below with two bu�on heaters (circles) and two thermocouples (cylinders).
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material is sublimated using resistive heating of the ceramic crucible by a power supply

that can deliver up to 15 A of current. �e 4-way cross is also wrapped with watercooling

copper pipes to ensure the chamber does not overheat.

FIGURE 3.7. A ceramic crucible is resistively heated to evaporate the antimony (or
bismuth) it holds.

�e metal vapor is collimated through a ba�e and deposited on a substrate, in this

case highly-oriented pyrolitic graphite (HOPG). �e sample is mounted face down in the

sample holder, as shown in Figure 3.6. �e metal is deposited through a hole with a

diameter of 3 mm. A schematic view of the deposition chamber is shown in Figure 3.8.

In the sublimation of bismuth (Bi) and antimony (Sb), the typical molecule emi�ed

from the crucible is Bi2 or Sb4 [38]. Given the smoothness of the substrate, these

nanoclusters di�use along the surface until encountering another nanocluster, a defect, or

a step-edge in the graphite. �e clusters continue to aggregate, creating geometries that

are dependent on the material being deposited, and the la�ice structure of the substrate.

Bi forms rods [41] and Sb, which is the focus of this section, forms branched, dendritic
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FIGURE 3.8. A schematic of the nanocluster deposition apparatus. Once the ion pump
has reduced the pressure to a suitable range (10−6–10−7 Torr), the crucible is heated until
a vapor forms. �e vapor is collimated by the ba�es and forms a beam. �e deposition
rate is monitored by a crystal rate monitor. �e sample substrate is then positioned in line
with the beam for the appropriate deposition time. From Ref. [38].
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pa�erns [42]. �e dynamics of nanocluster deposition are well modeled by the framework

of DLA, discussed in the next section.

�e crystal properties of Bi dictate a rod-like or a six-fold geometrical �gure growth,

as shown in Figure 3.9 [41, 43]. Bi was tested in the deposition chamber to ensure that the

equipment functioned properly. An increase in �lm thickness from 0.50 nm to 0.83 nm

allowed the growth to transition from rods to six-fold �gures.

(a) (b)

FIGURE 3.9. Nanoclusters of Bi aggregate into a six-fold symmetry structure. (a) A �lm
thickness of 0.50 nm deposited at a rate of 0.002 nm/s allows the pecan-shaped structures
to grow. (b) Depositing 0.83 nm at the same rate provides enough material to allow the
symmetry to manifest itself. �e scale bars in both pictures are 1 µm.

Sb is known to produce DLA-like structures, but with fat branches. Figure 3.10 shows

the results of Sb deposition in this vacuum chamber. Given that the substrate and surface

structures are both metal, this design can be used as an electrode with fractal features.

It has been demonstrated that these DLA structures can be grown at chosen locations

by preparing the substrate using focused ion beam ablation [44]. In theory, then, an

array of seeds could be used to grow these fractal electrodes at pre-determined sites. �is

would be useful in the design of a fractal electrode taking advantage of both top-down

and bo�om-up approaches.
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(a) (b)

FIGURE 3.10. Nanoclusters of Sb di�use on HOPG to create DLA structures. (a) A �lm
thickness of 0.62 nm deposited at a rate of 0.04 nm/s creates isolated DLA islands. (b) A
�lm thickness of 0.31 nm deposited at 0.2 nm/s produces too high of a �ux of incoming
particles for di�usion to take place. �e lined rows indicate the presence of step edges in
the graphite substrate as well. �e scale bars in both pictures are 1 µm.

3.2.1.1. Di�usion-Limited Aggregation

DLA theory describes the growth and morphology of accreting particles, typically

on a two-dimensional surface. One variation of the model allows a particle to randomly

walk across a square la�ice until encountering a pre-determined seed particle, at which

point its location becomes �xed. A new particle is randomly placed on the la�ice and

allowed to walk until it encounters a �xed particle. Another particle is then added and

the process continues until the set number of particles is achieved. �is simple generating

process produces surprisingly complex structures, as can be seen in the 1.5× 105 particle

aggregate in Fig. 3.11. �ese structures exhibit self-similarity with a fractal dimension of

1.7.

�e di�using particle, in its random motion, is unlikely to make the necessary steps

to navigate to the center of the structure. It comes into contact with, and sticks to, a

particle near the outside of the structure, perputating the branching. One variation allows

particles to stick to a nearest neighbor or to a next-to-nearest neighbor. Another variation
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FIGURE 3.11. A DLA structure with 1.5× 105 particles.

models competitive capture by allowing multiple seed sites. �e likelihood of a particle

landing at the connecting pixel between two neighboring structures is practically zero.

�is creates an avoidance phenomenon such that the two structures will continue to grow

but stay separate. �is competitive capture can be exploited to design electrically isolated

structures, such as electrodes. An example is shown in Figure 3.12. �is process can be

realized experimentally by seeding the substrate with a focused ion beam [44].

�e theory of DLA is a powerful tool for explaining many complex processes in

nature and will be revisited in the next section.

3.2.2. Sb-PMMA Electrode

�e following section details the hindsight of a serendipitous discovery. �e previous

section presented the results of growing Sb fractals on HOPG, which is a conductor. �is
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(a) (b)

FIGURE 3.12. DLA structures exhibiting competitive capture. (a) A DLA simulation with
two seed particles in close proximity. �e avoidance phenenomen keeps islands separate,
even as they grow near each other. (b) A DLA simulation with four seed particles set at
the center of the boxes. �e boxes represent the electrical isolation of the electrodes.

section presents the growth of Sb fractals on an insulating substrate. Based on a result

that demonstrates Sb preferentially di�using from poly(methyl methacrylate) (PMMA) to

polystyrene [45], the methodology from the HOPG experiment is applied to depositing

Sb on PMMA. One successful result is the early onset of DLA growth of Sb on PMMA,

which is presented here. However, a more interesting result is also presented. During the

preparatory heating of the PMMA substrate, the high molecular weight polymer begins to

depolymerize. �e newly freed low molecular weight chains undergo di�erent dynamics

depending on the local cooling rate. �e most common morphology is dendritic crystals

that crystallize from the low molecular weight chains. �e deposited Sb then migrates to

these dendritic crystals, creating the prototype for a fractal electrode on an insulating

substrate. Future work includes tuning the Sb deposition parameters to ensure well-

connected electrodes.
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3.2.2.1. Polymer Crystallization

PMMA is a polymer o�en used in industrial applications as an alternative to glass and

in lithography as a photoresist. When a polymer is heated above its melting temperature

Tm, it can crystallize upon cooling. �e crystal morphology depends on the rate of cooling

and the temperature the sample is allowed to crystallize at, called the crystallization

temperature Tc [39]. More directly, there is a strong dependence on the di�erence of

those two temperatures, ∆T = Tm − Tc. �e morphology of the surface structures

presented herein range from dendritic crystals to DLA islands to square crystals, in order

of increasing Tc. �is section discusses the results observed in PMMA samples heated and

cooled in the vacuum chamber from Figure 3.8.

�e formation of surface structures on PMMA takes two dominant morphologies.

�e largest structures, spanning up to half of a millimeter, are formed by the lower

crystallization temperatures. �ese structures have a long backbone with two smaller

generations of branches extending at roughly 90°. �is pa�ern is similar to that of

electrodeposited silver [46]. �e second morphology is that of a typical DLA island [42].

�ese range in size from 100 nm to 5 µm. A third crystal morphology emerges when the

crystallization temperature is very near the glass transition temperature, that is, at small

∆T . While many of the dendritic and DLA islands su�er thermal degradation at this high

Tc, there is at least one example of a region that developed square crystals. An example

of each of these can be seen in Figure 3.13.

�e depolymerization of PMMA via thermal degradation happens via both chain-end

scission and random chain scission [47]. Chain-end scission is the release of a monomer

or oligomer from either end of a polymer chain. Random chain scission is the spli�ing of

a polymer at any point along its chain. 40–47 % of a PMMA sample will degrade in the

temperature range 220–270 ◦C. �is batch of PMMA has an average molecular weight of
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(a) (b) (c)

FIGURE 3.13. �ree growth morphologies of surface structures on PMMA. (a) Dendritic
crystals grow at large ∆T , when the temperature is near the crystallization temperature
Tc. �e scale bar is 10 µm. (b) DLA islands appear at an intermediate ∆T , when extra
thermal energy allows the monomers to di�use at a faster rate. �e scale bar is 10 µm. (c)
Square crystals appear at small ∆T , when the sample has been cooled to the crystallization
temperature and reheated to the melting tempearture. �e lighter colored circles are
bubbling of the PMMA. �e scale bar is 1 µm.

120 000 g/mol. �e depolymerization then produces a broad range of molecular weights.

�ese newly released products are free to aggregate and crystallize [39, 48].

�e ceiling temperature Tceiling of a polymer is the temperature at which there is

a dynamic equilibrium between polymerization and depolymerization. �ere is a wide

variety in the reported ceiling temperature for PMMA because Tceiling heavily depends

on the physical states of the polymer chains and the monomers. Reported values range

from 197 ◦C to 400 ◦C [49–51].

Heat is delivered to the sample by conduction through the copper sample holder, see

Figure 3.6. �e deposition hole in the sample holder creates a radial temperature gradient

that explains the distribution of morphologies. Being in direct contact with the copper, the

PMMA near the edges of the sample receives the most heat. In addition, the rate of heating

and cooling will be faster for this region. �e dendritic crystals, with the 90° branching,

appear nearest the perimeter, where Tc is low. �e region towards the center cools slower

and this higher heat allows DLA dynamics to dominate the morphology. Reheating the

sample a�er the onset of crystallization produces the square crystal morphology [39].
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3.2.2.2. Experimental Methods

�e substrates are prepared in a way similar to that for photolithography, but with

some modi�cations. 5 mm× 5 mm squares are scribed and broken from a SiO2 wafer.

�ey are cleaned using a spray bo�le of acetone and then IPA, followed by a nitrogren

blow dry. �e average molecular weight of the PMMA used is 120 000 g/mol. It was

purchased in 1997 from Aldrich Chemical Company Inc. (now Sigma Aldrich). �e

powder is mixed into chlorobenzene at 10 % by weight in 2009. A drop or two of the

photoresist solution is deposited onto the substrate from an eyedropper and spun at 3000

rpm for 60 s to achieve a nominal thickness of 100 µm. �e sample is then heated in a

convection oven to 250 ◦C at a rate of 3 ◦C/min and cooled at 2 ◦C/min for a total of 3 h

at an elevated temperature. Note that the usual annealing recipe for PMMA is 180 ◦C in a

convection oven for 60–90 s [52], but this recipe is designed to increase the di�usion rate

of Sb on PMMA [53].

�e sample is placed PMMA-side down in the copper sample holder with a 3 mm

hole drilled below where the sample sits, see Figure 3.6. �e sample holder is loaded into

the high-vacuum chamber. A�er the chamber is pumped down to 10−8 Torr, the sample

is heated to between 200 ◦C and 300 ◦C by two ultra high vacuum (UHV) bu�on heaters

situated below the sample holder. Note that this temperature is well above PMMA’s glass

transition temperature of 105 ◦C [52]. PMMA begins to slowly degrade at a temperature of

220 ◦C and up to 47 % will degrade between 220–270 ◦C [47]. �e sample is then removed

from the vacuum chamber and data is collected by a range of instrumentation.

59



3.2.2.3. Scanning Electron Microscope

�e pictures in this section were taken using a JEOL-7000F �eld emission SEM. �e

polymer surface experiences severe charging e�ects due to the electron beam. Depositing

a metal layer for imaging is avoided because of the small height of the structures.

Figure 3.14 shows an example of the di�culty in imaging a non-conducting surface.

�e wrong imaging conditions can hide the relevant information. �e optimal method

for imaging these structures in the SEM is to use a 4 keV beam to create contrast in the

surface, followed by a 20 keV beam to discharge the surface. �e electrons penetrate deep

enough that they make it to the Si substrate and are conducted away. �en a�er changing

the beam energy to 1 keV or 4 keV, a picture is taken with good contrast but without

severe charging.

(a) (b) (c)

FIGURE 3.14. E�ect of electron beam charging on the PMMA sample. �ree SEM images
at the same location a�er di�erent levels of exposure to the electron beam for imaging. (a)
�e PMMA surface is not a conducting surface. Besides the visible surface defects, there
is no obvious structure on the PMMA. (b) A�er a few seconds of exposure, the electrons
charge the PMMA surface, producing contrast for imaging. Large networks of dendritic
crystals become visible. �e white square provides the location of the magni�ed image in
(c). (c) A�er too many seconds, the PMMA starts to degrade from heating and charging
e�ects, worsening the image quality. �e scale bar in all of these images is 100 µm.

One of the properties of a fractal is that small, intricate details exist over very

large distances. In order to understand how the crystal morphologies vary across the

sample, many individual pictures are taken at a high magni�cation and stitched together
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in Photoshop, see Figure 3.15 (Note that the CAMCOR facility at the University of Oregon

now has the ability to do this automatically). �is stitched picture covers a width of

approximately 2.5 mm and a height of 0.75 mm. �e dendritic branches are more prevalent

near the edge of the sample and the DLA islands are closer to the center of the sample.

FIGURE 3.15. Forty SEM pictures stitched together provide a high resolution view of a
large area of the sample. �e transition from dendritic crystals to DLA islands is a function
of distance from the edge of the sample (bo�om of the picture). �e scale bar is 0.5 mm.

3.2.2.4. Energy-dispersive X-ray Spectroscopy

Energy-dispersive X-ray spectroscopy (EDS) is an analysis technique performed in an

SEM to determine the atomic constitution of a surface. An electron beam is accelerated

to an adequate energy to knock out core shell electrons from atoms in the sample. An

electron from a higher energy level falls into the empty lower energy state and a photon

equal to the di�erence in energy is emi�ed. Di�erent atoms have di�erent spacings

between their energy levels. By recording the energy of the emi�ed photon, the type

of atom whence it came can be determined. �ese studies are performed with an electron

beam of 15 keV at a magni�cation of 400×. �e probe current is 0.59 nA.

�e analysis shown in Figure 3.16 reveals that the spot analyzed comprises 84 %

carbon, 9 % silicon, and 7 % oxygen. �e high carbon and oxygen content comes from
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FIGURE 3.16. EDS analysis of dendritic crystals on a PMMA sample. �e SEM picture in
the inset shows the focus of the electron beam (red dot). �e surface at this point consists
of 84 % carbon and 9 % silicon with 7 % oxygen. �is is consistent with the theory that the
fractal structures are made of hydrocarbons. �e scale bar in the inset is 200 µm.

the PMMA. While hydrogen is also present in PMMA, it is too light to be measured using

EDS. �e silicon content comes from the SiO2 substrate. �ese results are consistent with

the proposed idea that the fractal structures are reorganizations of the PMMA.

3.2.2.5. Time-of-Flight Secondary Ion Mass Spectrometry

Time-of-�ight secondary ion mass spectrometry (TOF-SIMS) is a powerful tool to

analyze the molecular constitution of a sample. A focused particle beam is rastered across

a sample ablating the top 5 nm of the surface. �e free molecular ions are accelerated

with an electric �eld away from the sample and through a magnetic �eld that curves

the paths of the molecules. �e time it takes for the molecule to reach the detector is

dependent on its massm and charge q, and is given by the forumla, t = k
√
q/m, where the

proportionality constant k depends on the particular setup of the measurement apparatus.
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Speci�cally, k = d/
√

2V , where d is the distance from the sample to the detector and V

is the accelerating voltage. �is technique o�ers high mass resolution at the expense of

image quality and vice versa. A Bi3+ primary ion source is used to analyze the sample.

�e imaging mode and spectroscopy mode both use a 25 kV beam. �e beam diameter

for imaging is focused to 200 nm at a current of 0.1 pA. To take high mass resolution

data, the spectroscopy mode uses a 3 µm beam diameter at a current of 0.4 pA. No charge

neutralization is used in this analysis.

�e results provide more information about the molecular content of the hydrogen

and carbon content that was seen in the EDS analysis. �e molecules detected are not

necessarily the most prevalent on the surface, but rather the ones that are most easily

removed by the ion source. �ere is no presence of any metals save a trace amount of

aluminum. A number of di�erent molecules are detected, including C3H7, C4H7, C4H9,

C4H11, C5H9, C6H11, C2H3O2, C4H5O, C5H7O, and PDMS. �e highest contrast images

are shown in Figure 3.17. �e fractals produce a signal with a strong contrast for the

hydrocarbons C4H9 and C4H7. A signal is also detected at a molecular weight of 83 Da

(note: the dalton Da is used in mass spectrometry, but is equal in measure to the uni�ed

atomic mass unit u), but there appears to be three di�erent molecules that are contributing

to the signal. C6H11, C5H7O, and another CHO variant are the most likely candidates.

�e prevalence of these lightweight hydrocarbons as the most populous materials on the

surface is consistent with the hypothesis that heating the high molecular weight PMMA

degrades the polymer and produces smaller molecules.

3.2.2.6. NiCr/Au Seeding

�e following experiment is performed in an a�empt to initiate fractal growth from a

pa�erned edge. Samples are deposited with 5 nm of NiCr (used as an adhesive) followed by
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(a) (b)

(c) (d)

FIGURE 3.17. ToF-SIMS high spatial resolution micrographs for the higher contrast
molecules. Lighter colors represent higher concentrations of (a) C3H7, (b) C4H7, (c) C4H9,
and (d) a signal containing three molecules with an atomic weight near 83 Da. �e most
signi�cant contribution comes from C6H11 with minor contributions from C5H7O and a
weak signal, which is most likely another CHO variant. Images taken by Dr. Stephen
Golledge.
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a 45 nm layer of Au. �e deposition is masked using a membraneless TEM grid. Figure 3.18

summarizes the results of the seeding experiment. �e polymer crystallization is not

seeded by the deposited metal, but rather the crystals form below the metal and show

through in relief.

(a) (b) (c)

FIGURE 3.18. NiCr/Au seed pa�ern does not work as expected. (a) �e PMMA forms
fractals underneath the Au. (b) �e fractal structures in the PMMA show through the
gold pads in relief. (c) �e gold has started to peel away and the fractal structure can be
seen to extend below where the gold was.

3.2.2.7. Sb Deposition and Di�usion

Sb nanoclusters are deposited onto PMMA substrates a�er crystallization. Sb is

chosen to be the deposited material because of the reported high di�usivity on PMMA

[45]. �e samples are heated to various temperatures a�er the deposition of Sb, see

Figure 3.19. �e nanoclusters tend to aggregate to the PMMA fractal structures with and

without heating. Excessive heating (199 ◦C) begins to degrade the dendritic crystals.

3.2.2.8. Atomic Force Microscopy

�is section compares the PMMA fractals with and without a deposition of Sb. �e

height pro�les for the PMMA fractal surface features and the deposited Sb were measured
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(a) (b) (c)

FIGURE 3.19. Sb was deposited onto four di�erent crysallized PMMA samples. (a) �is
sample was not heated post-deposition. �e scale bar is 200 nm. (b) �is sample was
heated to 58 ◦C. �e scale bar is 1 µm. (c) �is sample was heated to 199 ◦C. �e crystal
structure begins to degrade at this temperature. �e edge of the Sb deposition can be seen.
�e scale bar is 50 µm.

using a Digital Instruments Dimension 3100 atomic force microscope (AFM). Pictures of

the DLA island morphology are presented in Figure 3.20.

�e height pro�les of a dendritic crystal pa�ern are shown in Figure 3.21. �e

structure’s height varies between 9 nm and 32 nm. �e rod-like height variations might

be due to the particular folding pa�ern of the polymer crystal.

�e Sb nanoclusters di�use on the surface of the PMMA and aggregate on the fractal

structures. �e isolated Sb clusters range in height from 15 nm to 21 nm. �e clusters

that di�use and aggregate onto the fractal structure reach a height up to 43 nm above the

surface of the PMMA.

3.2.2.9. �e Onset of DLA

If possible, it would have been an easier task to allow the Sb clusters to di�use on

the PMMA surface and form DLA structures on their own, rather than having to rely on

the PMMA fractal pa�erns to act as seeds. Only one example of the beginnings of DLA

islands is found, see Figure 3.23. �e cauli�ower-like shapes in the Sb nanoclusters are

the precursors of DLA structures [42]. A �lm thickness of 0.62 nm is deposited on the
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(a) (b)

FIGURE 3.20. AFM images of DLA islands formed from low molecular weight polymer
chains. (a) �e transition in morphology is most likely due to a temperature gradient in
the surface. �e polymers on the right cannot overcome the activation energy necessary
to di�use into the DLA structures. �e scale bar is 10 µm. (b) A magni�ed view of (a)
showing the random branching angles indicative of DLA. �e scale bar is 5 µm.

sample and it is not heated post Sb-deposition. �is is the �rst example of nanocluster

di�usion to form DLA precursors on PMMA. However, it would be extremely di�cult to

reproduce even this li�le amount of growth. �e growth dynamics of DLA cannot match

the millimeter-size of the dendritic crystals.

3.2.2.10. Fractal Analysis of Surface Structures

�e fractal surface features are analyzed using the box counting technique described

in Chapter II. �e fractal dimension of the structures formed is a function of the

crystallization temperature Tc [39]. �e fractals measured from these samples range from

Df = 1.5 to 1.7.

For a structure to be analyzed with the box counting technique, the SEM photograph

must be converted to a binary bitmap. �e outline of the binary bitmap is traced by hand

using a Wacom Intuos5 tablet. A box counting analysis is performed on the images and the
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(a)

(b) (c) (d)

FIGURE 3.21. (a) �e AFM height pro�les of various features of a dendritic crystal in
PMMA. �e structures range between 9 nm and 32 nm. (b) Height pro�le along the
tall backbone showing �uctuations on the order of 20 nm. (c) Cross section of the tall
backbone showing a maximum height of 20 nm above the surface of the PMMA. (d) �e
shorter branch has an average height of 7 nm.
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(a)

(b) (c) (d)

FIGURE 3.22. (a) �e AFM height pro�les of Sb clusters deposited onto a PMMA sample
with dendritic crystals. �e tallest structure is 43 nm above the surface of the PMMA.
(b) �e Sb clusters range in height between 10–20 nm. �is variation is likely due to
measuring o� center of some of the Sb clusters. (c) �e Sb clusters are 19 nm tall. With the
assumption that this branch is equivalent to the shorter of the branches in Figure 3.21(a),
then the Sb clusters have nearly doubled their height by coalescing to 37 nm on the fractal
branch. (d) If the backbone here is 20 nm tall, the Sb clusters are their typical height of
21 nm along the peak.
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FIGURE 3.23. �e onset of DLA of Sb clusters on PMMA. �e cauli�ower shape is a
precursor to DLA growth

FIGURE 3.24. Fractal analysis of the DLA islands. �e fractal dimension is the slope of the
line Df = 1.7.
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results are shown in Figures 3.24 and 3.25. �e PMMA DLA island has a fractal dimension

Df = 1.7, which matches that found in the literature [20]. �e PMMA dendritic branches

have a slightly smaller value of Df = 1.6.

FIGURE 3.25. Fractal analysis of the dendritic crystals on one sample without Sb
deposition (top-le�) and another sample with Sb deposition (bo�om-right). �e fractal
dimension of both dendritic crystals is Df = 1.6. �e presence of the Sb nanoclusters
does not a�ect the fractal dimension. �e data are vertically o�set for clarity.

�e fractal analysis of a dendritic crystal at two di�erent magni�cations is combined

to show that the object exhibits fractality for 2.5 orders of magnitude. �e zoom sequence

for the data analyzed is shown in Figure 3.26. �e outlines are traced in white and shown

again as insets in the scaling plot, see Figure 3.27. �e slope of the data transitions away

from a fractal dimension of Df = 1.6 at a �ne length scale of 90 nm. �is length is the

diameter of the Sb nanoclusters. �at is to say that the deposition of the Sb nanoclusters

does not reduce the fractality except at the length scale that the individual clusters can be

resolved.
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FIGURE 3.26. Zoom sequence for fractal structure coated with Sb.

�ere is a range of fractal dimensions associated with both types of structures. �is

is a�ributed to the temperature gradient of the sample. �e variation is consistent with

that reported in the literature [39]. It is shown that the dendritic crystals exhibit fractality

for 2.5 orders of magnitude. It is uncommon to �nd spatial fractals that span this range

in physical systems.

3.3. Summary

�is chapter discussed the fabrication of four di�erent fractal electrode designs.

Both top-down and bo�om-up approaches were used to make exactly self-similar and

statistically self-similar electrode geometries. Lithography techniques were exploited

to create exact fractals as isolated metal structures and as bas-relief electrodes. A

graphite electrode was texturalized with Sb fractals using the principles of DLA. Finally,
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FIGURE 3.27. �e scaling plot of the Sb-coated PMMA analyzed at di�erent
magni�cations. �e blue and purple points relate to the images on the le� and right,
respectively. �eir relation to each other can be seen in Figure 3.26. �e structure shows
fractal behavior over an impressive 2.5 orders of magnitude with a fractal dimension of
Df = 1.6. �e structure ceases its fractal behavior at the resolution of the Sb nanoclusters,
L = 90 nm. �e data have been vertically o�set to show that the gradient �ts both sets of
data.
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a crystallization technique for PMMA was demonstrated as well as its subsequent coating

in Sb as an approach for making self-assembled millimeter-sized fractal electrodes.

�e HafSOx design was used to make several fractal shapes. Among these shapes

were Sierpinski carpets, Sierpinski pillars, H trees, angled H trees, an array of pillars, a

fractal arrangement of pillars, and a square platform as a control structure. However, none

were brought to the completed level of metal deposition. Overall, the HafSOx fabrication

is excellent at achieving very narrow linewidths but is limited to short heights of less than

20 nm. Taller structures may be possible if reactive ion etching is used rather than wet

etching.

�e SU-8 designs were limited to just the H tree at two di�erent fractal dimensions,

Df = 1.5 and 2.0, an array of the smallest iteration of Hs, and a square platform control.

�e height of the SU-8 design was 2 µm. �is is the method that the Taylor lab is most

likely to carry forward in its experiments.

�e Sb-HOPG design is a proof of principle for texturalizing a �at electrode surface

with DLA fractals. AFM characterization was not carried out on these samples, but the

heights are most likely between 10–30 nm, based on the literature for Sb deposition [42].

�e Sb-PMMA electrode was a successful design in fabricating a fractal branching

metal on an insulating substrate. �e di�erent morphologies are a function of temperature

and can be tuned. Furthermore, it was shown that the object is fractal for over 2.5 orders

of magnitude. Ensuring the Sb coverage is optimized is the last step to �nalizing this

electrode design.
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CHAPTER IV

FRACTAL ELECTRODES FOR A RETINAL IMPLANT

�e research presented in this chapter was a collaborative e�ort. Bill Wa�erson

assisted with the photodiode simulations. �e neural adhesion experiments were

performed by Bill Wa�erson and Associate Professor Maria �ereza Perez at Lund

University in Sweden. I was the primary contributor to the remainder of the work

presented.

In this chapter, the fractal electrode’s role in a retinal implant is explored. �ere

are three di�erent capacities that the fractal electrode might play in a retinal implant.

In Section 4.1, the top contact of a photodiode is replaced with a fractal design and the

resulting dynamics are explored using a circuit model called modi�ed nodal analysis.

Section 4.2 tasks the fractal electrode with stimulating neurons. Electric �eld simulations

are carried out for various electrode designs using the �nite element method. Finally,

in Section 4.3, the physical adhesion of neurons on fractal electrodes is studied. �e

retinal neurons of mice are cultured on substrate samples with various electrode designs.

�e further developments and future directions of these projects will be discussed in the

concluding chapter.

4.1. Photodiode Dynamics

A subretinal implant is an electronic device containing an array of photodiodes,

each with an electrode for neural stimulation, that is inserted into the eye to replace the

natural photoreceptors. �e light levels inside the eyeball are relatively low, so whatever

illumination current is generated in each photodiode should not be squandered. �e

photodiode is operated in short circuit mode to minimize the diode current. �e eyeball
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should not be exposed to excessive heat, so it is also important to minimize the Joule

heating.

4.1.1. Photodiode Mode of Operation

A photodiode is an electronic device capable of converting absorbed light into

an electric currrent. Traditionally, it is made of two di�erently doped semiconductor

materials sandwiched between two metal contacts to extract the current. �e

semiconductor is regionally doped with electron acceptors (p-type) and donors (n-type).

�e boundary of these regions is called the PN junction. When a photon is absorbed, an

electron-hole pair is created. If the minority carrier happens to di�use to the PN junction,

the intrinsic electric �eld drives it across the junction. �is separation of charges produces

the illumination current. A high resistance in the photodiode contacts will cause charge

to build up. �is charge produces its own electric �eld that drives a current opposing

the illumination current. �is opposition current is called the diode current. �e sum of

the currents is called the photocurrent. �e circuit diagram for a photodiode is shown in

Figure 4.1.

�e bo�om of the photodiode (Figure 4.2) is completely covered by a metal to

e�ciently extract the photocurrent. However, the top contact must not completely

cover the top because light must pass into the photoactive material. �e e�ciency of a

photodiode relies on absorbing as much light as possible and extracting as much current

as possible. It is the purpose of this section to examine whether the high perimeter-to-

surface-area ratio of a fractal top contact can be bene�cial in this regard.

�e electrical behavior of two hypothetical photodiodes is shown in an I-V curve

in Figure 4.2. �ere are three parameters that explain the shape of the curve. �e short

circuit current (y-intercept) and the open circuit voltage (x-intercept) are the maximum
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FIGURE 4.1. Photodiode circuit model. A photodiode can be modeled electrically as a
series resistance and a current source in parallel with a diode and a shunt resistor. �e
current source acts as the illumination current caused by photon absorption. �e diode
models the internal electric �eld generated by the increased concentration of majority
carriers. In an ideal photodiode, the shunt resistance would be in�nite, preventing any
internal voltage drops due to defects. �e series resistance accounts for the resistance of
the semiconductor, metal, and metal-semiconductor junction resistances.

current and voltage possible. A third variable called the �ll factor is a measure of the

curvature. Our simulation will model a photodiode in short circuit mode (also shown in

Figure 4.2), in order to maximize the current available. �e lower coverage of the fractal

top contact will allow more light into the device producing a higher short circuit current.

�e simulation of the top electrode’s electrical properties relies on a technique called

modi�ed nodal analysis (MNA). It is an algorithmic approach to solving Kircho�’s laws

for large symbolic circuits. �e mechanics of the simulation will be explained using a

simple circuit and then applied to the photodiode case. �e simulation focuses on just the

e�ect of the geometry of the top contact as the rest of the photodiode is identical.

4.1.2. Modi�ed Nodal Analysis

Modi�ed nodal analysis is a method for solving an electrostatics or electrodynamics

problem by viewing a physical system as a network of circuit elements [54]. �e system

can be divided into a discrete space where every two nodes are connected by a simple

circuit element. �e example in Figure 4.3 shows �ve nodes, all connected by resistors of
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FIGURE 4.2. (a) Schematic of a photodiode operating in short circuit mode. Upon
absorbing light, the PN junction acts a current source with series resistance. (b) Schematic
of an IV curve for two photodiodes with di�erent top contacts. �e short circuit current
Isc is dependent on the amount of light absorbed by the photodiode. �e open circuit
voltage Voc is the maximum voltage di�erence across the photodiode when there is no
load. Because of the fractal top contact’s smaller coverage, it absorbs more light and has a
higher short circuit current. �e smaller resistance of the fractal design creates a smaller
voltage drop in the circuit.
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varying resistances Ri. A voltage is applied to node b and node f is set to ground. �e

voltage at each node and the current in the circuit can be solved by applying Kircho�’s

laws. In this way, bitmap representations of large electrical networks can be solved using

optimized algorithms.

V R4 R5

R1

R2

R3

b d
f

a c e

FIGURE 4.3. An example of a circuit in its standard circuit element form and in bitmap
representation form. �is equivalence allows us to simulate large resistor networks based
on an image of their geometry.

�e problem is ultimately solved by �nding a solution for the matrix equation

Ax = b. (4.1)

�e elements of the matrix are allocated according to the following set of rules. A is an

(m + n) × (m + n) matrix, where m is the number of independent voltage sources and

n is the number of nodes. For this example, m = 1 and n = 6. �e matrix A contains

information about which nodes are neighbors and their internodal conductances. �e

vector b has (m + n) elements, with the �rst n holding the value of a current source at

node n and the last m holding the values of the voltage sources. �e vector x also has

(m + n) elements, which upon solving will produce the voltage at each node n and the

current associated with each voltage source m.

Each type of circuit element a�ects the matrix equation in a di�erent way. For

example, at node i, the conductance of each connected node j, k, . . . is added at Aii and
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subtracted at Aij,ji, Aik,ki, etc. �is is summarized in the following matrix equation called

a resistor stamp

Ai Aj

i 1
Rij

− 1
Rij

j − 1
Rij

1
Rij

.

�e stamps for di�erent circuit elements are available [55]. A�er applying these rules

to the circuit in Figure 4.3, the resulting matrix equation is



1
R1

+ 1
R2

− 1
R1

− 1
R2

0 0 0 0

− 1
R1

1
R1

+ 1
R4

0 − 1
R4

0 0 1

− 1
R2

0 1
R2

+ 1
R3

− 1
R3

0 0 0

0 − 1
R4

− 1
R3

1
R3

+ 1
R4

+ 1
R5

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1

0 1 0 0 0 −1 0





Va

Vb = V

Vc

Vd

Ve = 0

Vf = 0

I



=



0

0

0

0

0

0

V



.

(4.2)

�e solution to this equation is x = A−1b. Because of the possible magnitude of the

equation (up to 5× 106 elements), we use the Eigen [56] and SuperLU [57] libraries to

invert A and solve for x.

4.1.3. Comparing Top Contact Geometries

�e di�erent types of connections in the resistance network of a photodiode are

shown in Figure 4.4. �ere are three di�erent resistance values to consider. �e resistance

between two metal nodes is Rmm, two semiconductor nodes is Rss, and the resistance

between a metal-semiconductor interface is Rms. Each uncovered semiconductor also
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acts as a current source. One metal node in the center of the geometry is also grounded

to put the photodiode in short circuit mode.

x

iss
Rss

imm

Rms

ims

Rmm

FIGURE 4.4. Internodal resistances between the semiconductor and metal nodes
in a photodiode model. �ere are three di�erent types of connections. Metal-
metal connections run along the top nodes and are modeled by a resistance Rmm,
semiconductor-semiconductor connections run along the bo�om nodes and are given
by Rss, and the metal-semiconductor junctions connect the two layers vertically. �eir
resistance is Rms. Semiconductor nodes below the metal contact are modeled without
current sources.

�e two top contact geometries are shown in Figure 4.5. �e geometries are a central

square contact and an H tree top contact. �e square contact has the same geometry

as the Arti�cial Silicon Retina device developed by the company Optobionics [11]. �e

photodiode is a 20 µm square of Si with a gold (Au) top contact. �e square electrode is

9 µm on each side. �e width of the H tree �ngers is 80 nm at its narrowest and 520 nm at

its widest. Our starting hypothesis is that the H tree geometry will outperform the square

geometry by allowing the carriers to leave the more resistive semiconductor layer sooner.

�e nodal analysis is performed at a resolution of 20 nm/pixel such that there are two

layers of 106 pixel each. �e semiconductor thickness is taken to be 1 µm. �e height of the

metal contact is 250 nm. �e values for the variables of each node are given in Table 4.1.

�e resistivity of Au is 2.4× 10−8Ωm [58]. �e Si resistivity assumes a phosphorus
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(a) (b)

FIGURE 4.5. Two di�erent photodiode top contact geometries are modeled using MNA.
(a) A 9 µm square electrode sits atop a 20 µm square photodiode. (b) A four iteration H
tree acts as the top contact on a 20 µm square photodiode.

doping level of 1019 /cm3, which provides an approximate resistivity of 5.5× 10−5 Ωm

[59]. �e contact resistance is taken to be 10−10Ωm2 as within the typical range for metal-

semiconductor contacts [60].

Variable Value Description
Rmm 0.1Ω R = ρ× L/A = 2.4× 10−8Ωm× 20 nm/(20 nm× 250 nm)
Rss 55Ω R = ρ× L/A = 5.5× 10−7Ωm× 20 nm/(20 nm× 1 µm)
Rms 2.5× 105Ω R = ρc/A = 10−10Ωm2/(20 nm× 20 nm)
I 1.2× 10−13 A I = J × A = 300 A/m2 × 20 nm2

Vappl 0 V �e metal contacts are shorted.

TABLE 4.1. �e resistance, current, and applied voltage values for each node in the
simulation.

�e simulation outputs the voltage at each node and the amount of current �owing

through each node. �e voltages of each node are presented as temperature maps in

Figure 4.6, with the color scales ranging 0 (blue) to 0.8 (red) µV for the square contact and

0 (blue) to 0.3 (red) µV for the H tree. �ese voltages in the µV range are much smaller

than the open circuit voltage of Si at 730 mV [59]. �is is consistent with the assumption
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that the photodiode is operating in short circuit mode (Figure 4.2). Large gradients in

voltage represent highly resistive paths. �e higher voltage in the square case is due to

the charge buildup in the corners of the photodiode, as they have the furthest distance to

travel before reaching the lower resistivity of a metal contact.

(a) (b)

FIGURE 4.6. �e voltage maps for the two photodiodes with di�erent top contact
geometries. Blue to red scales the voltage 0–0.8 µV and 0–0.3 µV, respectively for the
(a) square and (b) H tree. �e higher voltage for the square top contact is due to charge
buildup in the corners. �e distance to the metal contact is greater for this geometry.

Joule heating is used as a performance indicator for the two geometries. �e square

of the voltage di�erence between two nodes is divided by that nodal resistance. �e power

loss is summed for every nodal connection. �e results for the two top contact geometries

are shown in Figure 4.7.

�e H tree geometry reduces the power loss by half. �e H tree loses more power

in the metal-metal connections because of the thin branches of the metal contact. It also

su�ers in the metal-semiconductor junction due to the current crowding phenomenon,

which will be explored next. However, the H tree is successful at reducing the

semiconductor-semiconductor losses by shortening the distance that carriers must travel

in the highly resistive semiconductor material. �e H tree’s losses are also relatively
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higher due to the higher incoming power. �e H tree geometry lets 6% more light pass

into the photodiode. �e higher incoming power causes more Joule heating.

metal-metal semiconductor-
semiconductor

metal-
semiconductor

total
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FIGURE 4.7. Power lost to Joule heating for each type of nodal connection and the total
power loss for each geometry. �e H tree loses more power in the metal-metal and metal-
semiconductor connections due to the thin branches of the H tree and current crowding,
respectively. �e H tree outperforms the square geometry by reducing the distance that
carriers travel in the highly resistive semiconductor, thereby reducing the Joule heating
in the semiconductor. �ere is also a small relative increase in the H tree’s losses due to its
smaller coverage. �e H tree geometry allows 6% more light to pass into the photodiode,
increasing the Joule heating.

A closer look at the metal-semiconductor connection provides another insight to

designing an e�ective top contact. Current crowding is the name given to the nonuniform

current distribution that arises from a semiconductor’s junction with a metal contact.

Consider the geometry for which the current is �owing parallel to the surface of the

semiconductor (Figure 4.4). As the current reaches the metal-semiconductor interface,

the current has two options: continue �owing through the semiconductor or �ow into

the metal. As the current travels along the semiconductor, some amount enters the metal
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at each node. �e voltage drop Vms across the metal-semiconductor junction is given by

Vms = imsRms, (4.3)

where ims is the current �owing into the metal and Rms is the metal-semiconductor

resistivity in Ωm.

�e voltage drop across the next junction will be smaller because of the current that

has already le� the semiconductor. �at relationship in di�erential form is

∂Vms(x)

∂x
= −rssiss, (4.4)

where rss is the resistivity of the semiconductor-semiconductor interface in Ω/m.

Kircho�’s current conservation law provides the �nal equation. �e amount of

current lost along each semiconductor-semiconductor node is the current diverted to the

metal
∂iss(x)

∂x
= −ims (4.5)

Combining Equations 4.3, 4.4, and 4.5 provides

∂2Vms(x)

∂x2
= L2

TVms. (4.6)

�e solution to this di�erential equation is an exponential with the characteristic

length LT , called the transfer length, given by,

LT =

√
Rms

rss
. (4.7)

Based on the values in Table 4.1, the transfer length of this system is LT = 1.35 µm.
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Returning now to the simulation, the current through each metal-semiconductor

node junction is calculated,

Ii = (Vmi
− Vsi/Rms). (4.8)

�is simulation accurately models the exponential decrease in current entering the metal

as a function of distance into the electrode. In the case of the square electrode, the current

fell to 1/e of its original value at a distance of λ = 1.27 µm, within 6 % of its expected

value of LT = 1.3 µm. �e results are shown in Figure 4.8.

FIGURE 4.8. Photodiode simulation results for the square top contact exhibiting current
crowding. �e current entering the metal from the semiconductor falls o� exponentially
as a function of distance into the electrode. �e characteristic length λ of the �t line is
within 6 % error from the expected transfer length LT = 1.3 µm. �e current falls to 37 %
of its original value by this length scale.

�e current crowding e�ect is ruinous for an H tree design with such narrow �ngers,

Figure 4.9. At the contact’s widest point, the current transfer only drops from 0.786 pA to

0.777 pA over a distance of 140 nm. �is is only a 1 % decrease in current transferred to

the metal. Beyond 140 nm, the current entering the metal is forced to increase because of

current continuity. �e current must make it to ground, regardless of the resistance.
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FIGURE 4.9. Photodiode simulation results for the H tree top contact exhibiting current
crowding. �e amount of current transferred as a function of distance falls by only 1 % of
its original value. �e majority of the current �ows underneath the metal to the ground
at the center of the electrode and is forced through at high resistive loss. �e terrible
performance of this contact is due to the narrow widths of the H tree �ngers.

A possible solution to avoid the narrow �ngers of the H tree but also extend the

reaches of the square contact would be to use a Sierpinski carpet as a top contact.

A Sierpinski carpet covers (1 − 8n/9n) × 100% of its surface area. A two iteration

Sierpinski carpet would then cover 80 % of the photodiode, but the average distance a

carrier would have to travel through the semiconductor would be shorter and the top

contact’s narrowest width would be 2.2 µm. Modifying the geometry of the Sierpinski

carpet to decrease coverage and maintain wide contacts could prove bene�cial for both

aspects. �is idea will be revisited in Chapter V.

4.2. Electric Field Simulations

�is section will explore the e�ects of using a fractal geometry for an electrode to

stimulate neurons. Neurostimulation is performed in an electrolytic �uid with an AC
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electric �eld. �e electric �eld emanating from the electrode depolarizes the neuron,

initiating the propagation of an electrochemical signal in the neuron. As a �rst step

towards understanding the e�ects of using a fractal electrode, the DC electric �eld

emanating into a vacuum is studied using the �nite element method. A fractal geometry

that produces an equivalent electric �eld to that of a square electrode is presented.

�e photodiode from the previous section operates in short circuit mode with an

ammeter in series, refer to Figure 1.2. A voltage ampli�er that is regulated by the value

of the ammeter applies a voltage to the stimulating electrode. Electrical simulations

determine the e�ects of designing the stimulating electrode with a fractal geometry.

COMSOL Multiphysics is a so�ware engine designed to simulate di�erent kinds of

physics applied to computer-aided design (CAD) geometries [61]. It solves problems using

the �nite element method. �is is a numerical technique that reiteratively solves boundary

value problems for many neighboring volume elements until a steady state solution is

found. A limiting factor in the solution of problems with fractal geometries using the

�nite element method is the number of volume elements for which the relevant physics

needs to be solved. �e multiscale behavior of a fractal necessitates solving physics for

small features over long distances. �is limits the feasible number of iterations in any

model. Up to four iterations of an H tree, spanning 1.2 decades, are modeled in these

simulations.

�e relevant physics explored here is Laplace’s equation,

∇2V = 0, (4.9)

which states that the divergence of the gradient of the electric �eld potential V is 0 when

there are no free charges. �e geometry consists of a 20 µm × 20 µm square region.

A ground electrode (1 µm wide) follows the perimeter of the square. At the center is
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a 10 µm × 10 µm stimulating electrode, see Figure 4.10. �e height of the stimulating

and ground electrodes is 1 µm. �e Dirichlet boundary conditions are a voltage on the

stimulating electrode set to 1 V and the ground electrode set to 0 V. �e electrode is

situated in free space with the potential going to zero at in�nity. �e material properties of

the simulation were set such that the metal electrode is a perfect conductor (i.e. ρ = 0Ωm)

and the permi�ivity of the medium is ε0.

�e �rst four iterations of an H tree are compared to a square electrode design. �e

electric potentials of three designs (H2, H4, and the square) are shown in Figure 4.10. �e

lower iterations, such as H2, have electric potentials that fall o� faster with distance from

the electrode. As the number of iterations of the H tree increases, the electric potential

behaves more similarly to the square electrode. �e surface areas of the square electrode

and the four iterations of the H tree are given in Table 4.2. �e increased surface area

on the interior of the fractal electrode does not contribute to the electric potential. �is

shielding of the interior of the electrode is the Faraday cage in e�ect. �e relevant metric

here is the amount of metal that lies on the bounding perimeter. �e square’s actual

perimeter and bounding perimeter is the same. �e higher iterations of the H tree have

more metal on the bounding perimeter and thus approach the same behavior as the square

electrode.

Square H1 H2 H3 H4
Surface area / µm2 96 20 72 160 340

TABLE 4.2. Surface areas of various electrode geometries with a height of 1 µm.

�e average of the electric �eld E in the plane as a function of distance above each

electrode is shown in Figure 4.11. �e electric �eld falls o� fastest for H1, but at near

equivalent rates for H4 and the square.
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(a) (b) (c)

FIGURE 4.10. �e geometry of a fractal electrode can be tuned such that the way the
electric potential extends into space matches that of the square electrode. Each image
shows the electric potential of an electrode with a rectangular ground on the perimeter
of the image. (a) H2 and (b) H4 have the same fractal dimension (Df = 2). �e electric
potential of (b) H4 and (c) the square electrode are e�ectively equivalent.
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FIGURE 4.11. Average of the electric �eld versus distance above the electrode for four
iterations of the H tree and the square electrode. �e behavior of the electric �eld tends
to that of the square for higher iterations of the H tree.
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It is not feasible to experimentally measure the electric �eld at all points in space.

Rather, the capacitance of the electrodes would be measured. �e capacitance of the

higher iteration fractal electrodes approaches that of the square. Gauss’ law states that

the electric �eld E integrated over a surface S is equal to the charge enclosed Qenc, or

Qenc = ε0

∮
S

E · dA. (4.10)

When a voltage di�erence V is applied between the stimulating electrode and the ground

electrode, the charge Q is distributed through the system. �e capacitance C determines

the amount of charge Q necessary to produce the voltage di�erence V and is given by

C =
Q

V
. (4.11)

�e integral of the electric �eld �ux through the surface of a Gaussian cube provides the

charge enclosed Qenc. �e capacitances of the electrodes are calculated with the charge

Qenc and the applied voltage V . �e capacitances are shown in Figure 4.12. �e results

indicate that the capacitance of an H tree electrode tends to that of the square electrode,

as the number of iterations increases.

To summarize, a voltage is applied to the stimulating electrode. �e electric �eld

in space is calculated using the �nite element method. Integrating the electric �eld

�ux through a Gaussian surface provides the charge enclosed. �e capacitance then is

calculated via the measured charge and the applied voltage.

�e square and H4 have e�ectively the same charge, but di�erent surface areas and

therefore di�erent charge densities. �at is, when the voltage of an electrode is set, the

charge density is dependent on the particular geometry. �e charge density, and thus the

local electric �eld, will be higher at the four corners of the square and at each of the H’s
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FIGURE 4.12. �e calculated capacitances for �ve di�erent electrode geometries, a square
and four iterations of an H tree. �e capacitance of the H tree tends to that of the square
electrode for higher iterations of the H tree.

needle-like protrusions at the boundary. At a distance, these local maxima for the square

and H4 are averaged out and the average electric �elds approach the same value. �e

result is that the electric �eld emanating from an electrode with thin �ngers and gaps is

the same as that of a square electrode, as long as the actual perimeters and the bounding

perimeters are equivalent. �is result is signi�cant because the electrical performance of

the electrode need not be forfeited while, as we shall see in the next section, the adhesion

of neurons is enhanced by these �ne features.

4.3. Neural Adhesion

An experiment for neural adhesion is performed by culturing mouse retinal cells

on various substrates and measuring the resultant cell density and neurite growth.

�e technique will be described brie�y here, but there are more in-depth explanations

elsewhere [62]. �e retinal neurons are removed from the retinal pigment epithelium
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and are mechanically agitated in solution. �ey are then �ltered through a 20 µm mesh

�lter to break o� existing axons and dendrites such that the soma can regrow neurites

once on the substrate. �e somas are deposited on the sample substrate and kept in a

clean environment to grow. A�er three days, the neurons are �xed in place and stained

for �uorescent microscopy. �e neuron nuclei are stained blue with 4’,6-diamidino-2-

phenylindole (DAPI). Neurons are stained red with β-tubulin III. Glial cells, which act as

physical and nutritional support for the neurons, are tagged with the green �uorescent

protein (GFP) and thus �uoresce green.

Neurons a�ach to a substrate through a series of connections. Transmembrane

receptors (integrins) on the surface of the neuron a�ach to the extracellular matrix (ECM)

proteins, which themselves bind to proteins (e.g. arginylglycylaspartic acid (RGD)) on the

surface of the substrate. �e ECM is the framework of molecules outside the cell that the

cell uses to interact with its environment. Actively controlling the arrangement of binding

proteins on the substrate has been shown to improve adhesion [63, 64]. �e experiments

presented here do not control the placement of binding proteins on the surface, but allow

the binding proteins from the solution to se�le on the surface. �is method tests the

dependence of adhesion by topography alone.

�e topography of the substrate can a�ect neuron adhesion in a number of ways

[65, 66]. �e total number or concentration of binding proteins can be in�uenced by

topography. �e substrate sti�ness plays a role in the binding strength. Localized charge

buildup on the surface of the substrate can also a�ect protein binding. Furthermore, the

cell is not a passive object. It can try to maximize its own interaction area with the

environment. �is is believed to be the reason that neurons have a strong adhesion with

nanorods [67–69].
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�ese experiments are designed to test the adhesion of retinal neurons to two types

of materials and a number of di�erent topographies. �e electrode materials tested here

are HafSOx and SU-8, with and without HfO2 coatings.

4.3.1. HafSOx Electrode

�e fabrication process for the HafSOx electrodes was described in Chapter III. �e

substrates tested have six electrode designs, each 100 µm × 100 µm, and spaced 400 µm

apart. �e designs include an H tree, an angled H tree, a Sierpinski carpet, a fractal

arrangement of pillars, a regular array of pillars, and a square. See Figure 4.13 for designs

and site locations. �e di�erent designs are distributed through twenty-�ve sites per

substrate to account for local �uctuations in cell density.

�e HafSOx electrodes without the HfO2 layer are able to support neuron survival.

However, none of the designs show that the neurons prefer to a�ach to or grow near the

electrode designs. An example of the results are shown in Figure 4.14.

�e substrates that are coated with 3 nm of HfO2 show an increase in cell a�achment

and neurite outgrowth compared to the substrates without HfO2. However, there is still

no preference for the electrode sites. An overview of the substrate and a closer look at the

neurons is shown in Figure 4.15. �e 20 nm heights of the HafSOx structures are too short

to elicit a response in the neurons. �is result is applicable to the photodiode aspect of the

retinal implant. If the neurons do not respond to structures with heights up to 250 nm,

then the neurons will not crowd the photodiode by adhering to the top contact.

4.3.2. SU-8 Electrode

�e fabrication process for the SU-8 electrodes was described in Chapter III. �ese

electrode designs are fabricated with a height of 2 µm. While SU-8 is an easy-to-use
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FIGURE 4.13. HafSOx electrode designs and site locations. (a) H tree, scale bar is 1 µm.
(b) Angled H tree, scale bar is 200 nm. (c) Sierpinski carpet, scale bar is 2 µm. (d) Fractal
array of pillars, scale bar is 1 µm. (e) Regulary array of pillars, scale bar is 200 nm. (f) �e
electrode designs are arranged on the substrate in such a way as to reduce the e�ect of
random local �uctuations in neuron density. �e numbers correspond to the designs: 1
H tree, 2 Angled H tree, 3 Sierpinski carpet, 4 Fractal array of pillars, 5 Regular array of
pillars, 6 Square platform. Images taken by Kurtis Fairley.

(a) (b) (c)

FIGURE 4.14. Fluorescence microscopy images of HafSOx electrodes without the HfO2

coating. Each box is 100 µm wide. �e staining process dyes nuclei blue, neurons red,
and glial cells green. �e homogeneous distribution of staining indicates that there is no
preferential adhesion for the electrodes.
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(a) (b)

FIGURE 4.15. Fluorescence microscopy images of HafSOx electrodes with a 3 nm coating
of HfO2. Each box is 100 µm wide. �ere is no preferential adhesion for the electrode
sites. �e 20 nm electrodes are too short to evoke a response from the neurons.

photoresist for lithography, it is known to be toxic to neurons [70–72]. �ree di�erent

processing methods are used to combat this cytotoxicity. �e unprocessed SU-8 acts as a

control. �e �rst processing method covers the photoresist with a 20 nm layer of HfO2.

�e second method employs a three day hard bake at 150 ◦C. �is is believed to increase

neuronal viability by completing the cross-linking process in the photoresist, removing

toxic molecules, or changing the surface characteristics of the photoresist [70]. �e third

method employs the three day hard bake and then coating with HfO2.

Each sample comprises three control electrodes and an H tree of one fractal

dimension in a 4× 4 site con�guration, shown in Figure 4.16. �e electrodes are 500 µm

wide and spaced 500 µm apart. �ree di�erent fractal dimensions, Df = 1.5, 1.7, and

2.0, are used for the H tree in di�erent samples to test whether one fractal dimension

performs be�er than the others. �e controls include a square with the same bounding

area as the fractal pa�erns (500 µm × 500 µm), a square with the same surface area as

the fractal pa�erns (52 µm × 52 µm), and a regular array of small Hs that match the

smallest iteration H in the fractal. �ese designs are chosen to di�erentiate the e�ects that

surface area (large square versus small square), large edges (H tree versus small Hs), and
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multiscale features (H trees of di�erent Df ) have on the adhesion and growth of neurons.

�e contributing factors may include the concentration of proteins that can build up on

the di�erent geometries, the number of edges that the neuron’s growth scheme can detect,

and any resonances between the shape of the neuron and the geometry of the electrode.

(a) (b)

(c)

4 2 2 1

3 1 4 3

2 4 1 2

1 3 3 4

(d)

FIGURE 4.16. SU-8 electrode designs and site locations. Each substrate has only one H
tree of a particularDf , an array of small Hs, a square platform equal in surface area to the
fractal design, and a square platform with the same bounding area. (a) H tree ofDf = 1.5,
scale bar is 100 µm. (b) H tree of Df = 2, scale bar is 100 µm. (c) Array of small Hs, scale
bar is 200 µm. (d) �e electrode designs are arranged on the substrate in such a way as to
reduce the e�ect of random local �uctuations in neuron density. �e numbers correspond
to the designs: 1 H tree, 2 Array of small Hs, 3 Small square, 4 Large square. Images taken
by Bill Wa�erson.

�e raw images from �uorescence microscopy are processed to measure the adhesion

as a function of processing method and electrode design. �e adhesion performance is
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measured by cell density in each electrode area and a random unpa�erned spot (500 µm×

500 µm) between electrodes, as an extra control. �e raw images are thresholded and

separated into clusters of nuclei, single nuclei, and stray counts, see Figure 4.17. �e

numbers of clusters and single nuclei above the electrode are summed and divided by the

area that the electrode spans.

(a) (b) (c)

FIGURE 4.17. �e thresholding and counting process to calculate the area of an electrode
occupied by neurons. (a) �e image is cropped to the area bounded by the electrode design.
(b) A thresholding �lter roughly selects the relevant nuclei. (c) �e nuclei are divided into
clusters (cyan), singles (blue), and stray selections that are not counted (red). Images taken
by Bill Wa�erson.

�e results are charted in Figure 4.18. �e processing method that includes the hard

bake and HfO2 coating performs best. It is curious that the hard bake method alone

performs worse than the control, considering the results of other experiments [70]. �e

performance bene�ts of the electrode designs for any one processing method are not

immediately apparent. For the substrate that is both hard baked and coated with HfO2,

the large square electrode outperforms the others, but there is an uneven distribution of

nuclei across the substrate as a whole. Overall, the results suggest that hard baking and

coating the SU-8 in HfO2 is bene�cial, but more experiments are necessary to understand

the e�ects of the di�erent electrode geometries. �e highest cell density is reported at
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5200 cells/mm2, indicating that this SU-8 treatment is a viable technique for retinal cell

cultures.

No treament HfO2 Hard bake Hard bake
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FIGURE 4.18. Cell density above each test pa�ern for the four substrate processing
methods and an unpa�erned test area that is chosen at random between electrode
sites. �e preliminary results indicate that the hard bake plus HfO2 coating create
a be�er environment for the neurons than the other methods of treating SU-8 for
cytocompatibility. Within that treating method, the small square performs the worst.
However, more experiments are necessary to generate the statistics to make meaningful
statements.

A problem arose during the experiments that needs to be addressed in the future,

see Figure 4.19. �e appearance of nuclei outside the substrate area means that some

cells were likely washed o� of the substrate and onto the microscope slide during the

staining stage. On another sample substrate, there was an inhomogeneous distribution

of neurons that cannot be accounted for by the presence of the electrodes. �is suggests

that, although the cells were growing along the topography, some did not �rmly a�ach

to the substrate and were removed during staining.
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(a) (b)

FIGURE 4.19. Fluorescence microscope images showing the accidental removal of neuron
nuclei during staining. �e nuclei are stained blue using DAPI. Overexposing the image
changes the color of the cells to pink. �e appearance of cells on the microscope slide
indicate that they were washed o� of the substrate during the staining stage. �e scale
bars are 2 mm. (a) �ere are nuclei appearing on the microscope slide (top-right corner)
indicating that they came loose during the staining stage. (b) �e nuclei were not
distributed uniformly across the substrate. �e le� half of this substrate may have lost
neurons during staining. Images taken by Bill Wa�erson.

�ere are examples of neurites growing along the H trees (Figure 4.20). �is growth

behavior strengthens the hypothesis that certain electrode geometries will not only be

compatible, but bene�cial, to the adhesion of neurons on substrate surfaces.
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(a) (b)

FIGURE 4.20. Fluorescence micrographs of neurites growing along an H tree electrode.
�e box from (a) is magni�ed in (b). Neurites growing along the topography of the fractal
pa�ern take 90° turns to remain a�ached to the electrode. Scale bar in (a) is 200 µm and
in (b) is 20 µm. Images taken by Bill Wa�erson.
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CHAPTER V

CONCLUSION

�is chapter brie�y highlights the results of this dissertation while introducing the

framework for where this research will go next. In Section 5.1, a research proposal for a

retinal implant that can provide color vision is introduced. �is section draws from many

research ideas explored through this dissertation. Section 5.2 focuses on a more realistic

simulation for neural stimulation. Rather than simulating the electric �eld in free space,

an electrolytic �uid is introduced. �e presence of a conducting medium necessitates an

AC electric �eld.

5.1. Arti�cial Color Vision

Along with reducing the resistive losses in the photodiode, a fractal top contact can

provide another special feature by enhancing transmission at selective wavelengths. A

surface plasmon polariton (SPP) is an electromagnetic wave that can travel along a metal-

dielectric interface. Light incident on the metal �lm can create create SPPs that enhance

the transmi�ance of light at certain wavelengths [73–75]. �e holes in the metal �lm act

as a di�raction grating creating constructive interference. Enhanced transmission occurs

at wavelengths associated with the hierarchy of hole sizes, which is related to the fractal

dimension.

�ree di�erent fractal top contacts will be designed with di�erent values of Df

that selectively enhance the transmission of visible light at the red, green, and blue

(RGB) wavelengths. A color sensitive retinal implant can be created by organizing the

photodiode array into RGB triplets. �is new feature is quickly met by a new problem. A

red photodiode is useless without the ability to connect to a “red” bipolar cell. A recent
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study on the retinas of zebra�sh found that at least some of the cone-speci�c bipolar cells

have unique dendritic tree morphologies [76]. While the zebra�sh retina is di�erent from

the human retina, the fact that there are generally 10–13 di�erent types of bipolar cells in

mammals [77] suggests that there may be some selective features between types of bipolar

cells in humans as well. As an illustrative example, one such color sensitive photodiode /

stimulating electrode pair is shown in Figure 5.1. �e next generation of neural adhesion

experiments will aim to �nd electrode geometries that promote adhesion with speci�c

dendritic pa�erns.

R

R

A

+
−

Current-controlled
voltage ampli�er

Light

V

I

FIGURE 5.1. Schematic of the proposed geometry for a photodiode / stimulating electrode
pair in a subretinal implant. �e photodiode operates in short circuit mode with the
grounded top contact electrically connected to the grounded perimeter of the stimulating
electrode geometry. �e stimulating electrode delivers a square voltage pulse. �e
amplitude is controlled by the amount of current generated by the photodiode, up to
a maximum of 1.5 V. �is 1.5 V limit exists to inhibit electrolysis. �e voltage pulse
creates a charge-balanced current that depolarizes the neuron to induce a signal in the
neuron. A�er a millisecond interval, which assures the neuron is stimulated, the current
is reversed to avoid any unwanted electrochemistry deteriorating the surface of the
electrode. �is also allows time for the neuron to return to its resting state.
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A user-friendly front end will be developed for the box counting analysis and best-

of-R2 ��ing procedure. �ese tools will be used to assess the morphologies of retinal

bipolar cells. �e results of those studies will inform the next set of experiments in neural

adhesion.

�ree factors a�ecting neural adhesion (surface area, edge concentration, and

resonant geometry) will be isolated using various electrode geometries (Figure 4.16).

Recall that the neuron adheres to proteins on the surface by way of the extracellular

matrix. �e amount of accessible protein is a function of surface area. �is factor will

be tested by varying the size of square electrodes. �e presence of edges is known to

be bene�cial for neural adhesion [62, 69]. �e concentration of edges will be tested by

comparing adhesion to the H tree and to the array of small Hs, refer to Figure 4.16. �e

preliminary results show that the neurites will take 90° turns in order to stay a�ached

to the electrode. �e idea behind testing resonant geometry is that although the neuron

will grow along a surface in spite of sharp turns, is there a geometry commensurate to

the neuron’s natural shape that can promote adhesion to an even greater degree? Testing

fractal electrodes of varying Df will answer this question. Most excitingly, do neurons

with di�erent dendritic morphologies prefer electrodes that resonate with their geometry?

�e ultimate goal is to fabricate a photodiode array of RGB triplets, where, for

example, red light incident on a red photodiode creates a stimulating electric �eld

emanating from a “red” stimulating electrode. If successful, this would be the �rst retinal

implant with the ability to restore color vision.

5.2. AC Simulations

Neuron do not exist in free space, but live inside the body. To move beyond the

simulations from Chapter IV, an electrolytic �uid must be introduced into the simulation.

104



�e ions in this �uid respond to the static electric �eld by rearranging themselves to

cancel the �eld, just like in a metal conductor. However, unlike in a metal conductor,

it does take an appreciable amount of time for these ions to rearrange. �e stimulating

electrode is given a square voltage pulse, inducing a charge-balanced current, refer to

Figure 5.1. �e cathodic pulse comes �rst, depolarizing the neuron. A millisecond delay

ensures the neuron will be stimulated by the electric �eld emanating from the electrode.

�e anodic pulse is then delivered to restore charge balance. Balancing the charge is

necessary to inhibit the release of ions from the electrode into the body due to unwanted

electrochemistry at the surface.

Rather than using COMSOL’s �nite element method, the new simulations are carried

out using modi�ed nodal analysis (MNA). MNA takes the above dynamics into account

by creating an equivalent circuit model with an electrode-electrolyte surface capacitance

and a bulk �uid resistivity. �e simulation solves for the time varying potential between

the stimulating electrode and the grounded perimeter electrode.

�e goal of these simulations is to model the neuron as a passive component �rst and

eventually an active component in the circuit. �e cell walls of the neuron have both a

surface capacitance and resistance. When modeled as an active component, the neuron’s

cell walls will also include a variable resistance. In this way, a voltage applied to the

stimulating electrode will a�ect the potential on the inside of the neuron. �e neuron will

transmit its signal when the membrane potential of the soma passes a threshold. Once

these simulations are working, the e�ect of various electrode geometries will be tested.

�e most e�cient geometries can then be fabricated for use in a retinal implant.
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5.3. Fiat Lux

�e future is bright. It’s only a ma�er of time before one of the proposed solutions

to blindness reaches a breakthrough that makes quality vision available and a�ordable.

With one epiretinal implant already approved by the FDA, the path is cleared for more

retinal implants to follow. �e subretinal implant architecture has the obvious advantage

of utilizing the body’s builtin retinal circuitry. A subretinal implant with color vision

would be a sight for sore eyes, indeed.
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