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DISSERTATION ABSTRACT 

James Thomas Dietrich 

Doctor of Philosophy  

Department of Geography 

December 2014  

Title: Applications of Structure-from-Motion Photogrammetry to Fluvial Geomorphology 

 

 Since 2011, Structure-from-Motion Multi-View Stereo Photogrammetry (SfM or 

SfM-MVS) has gone from an overlooked computer vision technique to an emerging 

methodology for collecting low-cost, high spatial resolution three-dimensional data for 

topographic or surface modeling in many academic fields. This dissertation examines the 

applications of SfM to the field of fluvial geomorphology. My research objectives for this 

dissertation were to determine the error and uncertainty that are inherent in SfM datasets, 

the use of SfM to map and monitor geomorphic change in a small river restoration 

project, and the use of SfM to map and extract data to examine multi-scale geomorphic 

patterns for 32 kilometers of the Middle Fork John Day River. SfM provides extremely 

consistent results, although there are systematic errors that result from certain survey 

patterns that need to be accounted for in future applications. Monitoring change on small 

restoration stream channels with SfM gave a more complete spatial perspective than 

traditional cross sections on small-scale geomorphic change. Helicopter-based SfM was 

an excellent platform for low-cost, large scale fluvial remote sensing, and the data 

extracted from the imagery provided multi-scalar perspectives of downstream patterns of 

channel morphology. This dissertation makes many recommendations for better and more 
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efficient SfM surveys at all of the spatial scales surveyed. By implementing the 

improvements laid out here and by other authors, SfM will be a powerful tool that will 

make 3D data collection more accessible to the wider geomorphic community.   
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CHAPTER I 

INTRODUCTION 

 

 Since 2011, Structure-from-Motion Multi-View Stereo Photogrammetry (SfM or 

SfM-MVS) has gone from an overlooked computer vision technique to an emerging 

methodology for collecting low-cost, high spatial resolution three-dimensional data for 

topographic or surface modeling in many academic fields. Some of the applications have 

included geomorphology (Fonstad et al., 2013; Javernick et al., 2014; Westoby et al., 

2012), volcanology (James and Robson, 2012; James and Varley, 2012), forestry and 

precision agriculture (Dandois and Ellis, 2013; Mathews and Jensen, 2013) and outside 

the geosciences, in fields like archeology (Koutsoudis et al., 2013, 2014). In 

geomorphology, SfM has the potential to be a powerful addition to the three-dimensional 

remote sensing toolkit alongside traditional stereo photogrammetry, terrestrial laser 

scanning (TLS), and airborne LiDAR (ALS). These tools are being used to construct 

high-quality digital terrain models in an ever growing number of settings (Brasington et 

al., 2000; Heritage and Hetherington, 2007; Lague et al., 2013; Lane and Chandler, 2003; 

Marcus and Fonstad, 2010; Wheaton et al., 2010) 

 The origins of SfM are from the field of computer vision, beginning with Ullman 

(1979) and evolving into the current iterations of algorithms (Agarwal et al., 2010; 

Furukawa and Ponce, 2010; Snavely, 2008; Snavely et al., 2006, 2007). The core concept 

of SfM is the science of photogrammetry, using photographs to make quantitative 

measurements of the scene they represent (McGlone and Lee, 2013; Sharp, 1951). In 

traditional photogrammetry, two overlapping images (a stereo pair) are taken with a 
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calibrated (metric) camera(s). By knowing the internal camera geometry, lens distortions, 

and the distance between photos (parallax), the stereo perspective allows users to 

calculate the distance from the camera to objects in the photographs using trigonometry. 

Digital photogrammetry software can make thousands of measurements in a stereo pair, 

building up a three-dimensional dataset of the scene. The downside of this type of 

photogrammetry is that users need a priori knowledge of the exact camera positions, the 

internal camera geometry, and lens distortions. Stereo photogrammetric datasets also 

suffer from shadowing, which are areas of missing data from obstructions in the 

instrument’s line of sight. SfM operates in a similar manner, but instead of using two 

overlapping images, SfM uses multiple (three or more) images to solve the trigonometry 

and extract the three-dimensional dataset. These multiple views offer three advantages 

over stereo photogrammetry. SfM is able to back-calculate the relative camera positions 

so that exact camera locations do not need to be known a priori. A non-metric camera 

can be used to collect imagery, which reduces the cost of collecting imagery, but the 

internal camera geometry and lens distortions have to be estimated with simplified 

models. The multiple views allow for multiple trigonometric measurements that help 

reduce the error in each 3D point that comes from the simplified camera and lens 

geometries models. Finally, by collecting multiple views of all sides of an object or scene 

users can eliminate shadowing in the final dataset.  

Beyond stereo photogrammetry, SfM also has some distinct advantages over TLS 

and ALS that make it ideal for a wide range of geomorphic research. The first advantage 

of SfM is the cost of the instrument. For SfM, researchers can collect imagery with just 

about any off-the-shelf digital camera, ranging from $100 for a basic point-and-shoot to 
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$1000 for a mid-range digital single lens reflex (SLR) camera, compared to TLS and 

ALS systems that cost upward of $10,000. The second advantage is SfM flexibility to 

capture data at a wide range of spatial scales. TLS has a minimum detection distance of 

roughly 1 meter and a maximum distance of 500 meters, while ALS is used primarily for 

large area surveys. SfM has been used to capture 3D models of archeological artifacts a 

few centimeters long (Koutsoudis et al., 2013) and up to areas tens of kilometers square 

(see Chapter IV).  

The basic SfM workflow produces two datasets, a sparse point cloud and a dense 

point cloud. SfM produces the sparse point cloud in its initial alignment stage; these 

points are both the result of the initial trigonometric measurements and used to help align 

all of the camera positions. After all of the cameras are coarsely aligned, the sparse point 

cloud is used to optimize the camera positions through a bundle adjustment process 

(Hartley and Zisserman, 2003). After the alignment stage, dense matching algorithms are 

used to increase the volume of photogrammetrically measured points (Furukawa and 

Ponce, 2010). For smaller area SfM surveys (101 – 102 m2) sparse point clouds have an 

average density of 10 to 100 points per square meter and dense point clouds can easily 

reach densities of thousands to tens of thousands of points per square meter. One of the 

disadvantages of the way that SfM reconstructs a scene is that it does so in an arbitrary 

coordinate system, meaning that the relative distances between camera locations and all 

of the 3D points are consistent, but not metric. To transform the model from arbitrary 

space to metric/geographic space, multiple ground control points are needed throughout 

the scene. Advanced workflows can interpolate the point clouds into surface models and 

create topographically corrected mosaic orthophotographs. The surface models can be 
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produced using standard GIS data models, triangulated irregular networks (TIN) or raster 

DEM or advanced CAD-based volumetric models, voxels (volumetric pixels) or 

tetrahedral network (TEN) data models. 

 My research objectives for this dissertation were three-fold, and relate to the three 

main chapters in this volume. The first objective was to determine the error and 

uncertainty that are inherent in SfM datasets. The second objective was to use SfM to 

map and monitor geomorphic change in a small river restoration project, and thirdly use 

SfM to map and extract data to examine multi-scale geomorphic patterns for 32 

kilometers of the Middle Fork John Day River. 

 In Chapter II, I examine the consistency, error, and uncertainty associated with 

SfM datasets at scales of 101 – 102 square meters. Understanding the sources and 

magnitude of error and uncertainty are important in being able to interpret the results of 

any change detection between two terrain datasets because SfM is a new method and 

establishing these values is important for future geomorphic change detection studies. 

 Chapter III explores first year geomorphic changes in the Granite Boulder Creek 

stream restoration project and the application of SfM as a 3D geomorphic monitoring 

tool. The channel of Granite Boulder Creek, where it meets the Middle Fork John Day, 

was destroyed by dredge mining in the Middle Fork valley during 1939 -1942. In 2012, 

the Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO), as part 

of a larger restoration effort, constructed a new channel for Granite Boulder Creek, 

connecting it to the main stem of the Middle Fork. I used RTK-GPS cross-sections and 

longitudinal profiles from the CTWSRO and my own SfM surveys to look at changes in 

the newly constructed channel between 2012 and 2013. 
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 In Chapter IV, I used a digital SLR camera mounted on a helicopter to collect 

aerial imagery for 32 km of the Middle Fork John Day River, from Bates State Park 

downstream to Jungle Creek, in order to examine larger spatial scale applications of SfM.  

My goal was to create a high-resolution digital terrain model and orthophotos using SfM 

and use these to extract spatially contiguous datasets of river morphology. Using a 

combination of statistical methods, including hyperscale analysis, I examine the current 

downstream patterns in channel morphology and how they relate to the imprint of human 

modification on the river and the effects of those modifications on Chinook salmon 

habitat. 

 This research will contribute to several fields, beginning with the science of SfM 

and its use in geomorphic applications.  By determining the inherent error and uncertainty 

in SfM datasets, geomorphologists and others that use SfM for change detection will have 

a better understanding of the limitation of SfM when used for change detection. The 

lessons learned from the application of SfM at two different spatial scales will help 

improve survey methodologies for future studies. The second field this research will 

contribute to is stream restoration monitoring. The data from this chapter are important 

baseline data for future studies on Granite Boulder Creek that will evaluate the success of 

the project and help inform the design and monitoring of future restoration projects. 

Lastly, by testing new techniques for data collection and assessing how well those data 

integrate with established data analysis methods, SfM could provide a new dimension to 

fluvial remote sensing. 
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CHAPTER II 

ACCURACY, UNCERTAINTY, AND REPEATABILITY OF 

STRUCTURE-FROM-MOTION PHOTOGRAMMETRIC DATASETS 

 

Introduction 

 Structure-from-Motion and multi-view stereo photogrammetry (SfM or SfM-

MVS) have been a recent addition to the three-dimensional topographic data collection 

toolkit in the geosciences. Since 2012 there has been an explosion of the application of 

SfM to fields like geomorphology (Fonstad et al., 2013; Javernick et al., 2014; Westoby 

et al., 2012), volcanology (James and Robson, 2012; James and Varley, 2012), and 

outside the geosciences, in fields like archeology (Koutsoudis et al., 2013, 2014). SfM-

MVS is a photogrammetric technique that allows users to produce high-resolution point 

cloud datasets from multiple overlapping photographs. A majority of the development of 

SfM has been in the field of computer vision beginning with Ullman (1979). The current 

generation of SfM has primarily come from research at the University of Washington 

(Agarwal et al., 2010; Furukawa and Ponce, 2010; Snavely et al., 2007; Szeliski and 

Kang, 1994). The details of the SfM-MVS process have been extensively reviewed 

elsewhere and will not be covered here (Fonstad et al., 2013; James and Robson, 2012; 

Javernick et al., 2014; Westoby et al., 2012). 

With any new method, it is important to quantify the inherent error in the 

technique so the limits can be established. Given the recent emergence of SfM, most 

studies have focused on the error and accuracy in individual datasets (e.g. Westoby et al., 

2012)  and not between repeat datasets. By comparing the accuracy and error across 
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multiple SfM datasets collected over the same area in quick succession, I can establish 

the uncertainty that underlies the method. It is important to establish uncertainty levels 

for topographic data collection methods because the quality of topographic datasets 

influences the accuracy of data that are derived from them, which include topographic 

parameters as simple as slope and aspect to more complex derivatives like geomorphic 

change detection (Lane et al., 2003; Wechsler and Kroll, 2006). My first objective for this 

research was to ascertain the repeatability and uncertainty in SfM datasets at spatial 

scales of tens of meters (101 – 102 meters). I compared multiple SfM datasets collected 

over one site to examine how consistent or repeatable SfM point clouds are and then used 

those data to calculate a spatially uniform uncertainty estimate as a first step toward 

understanding the uncertainties in SfM datasets. The second objective applied the 

calculated uncertainty to a comparison of SfM data against a comparable 3D surveying 

technology, terrestrial laser scanning (TLS) at different study site. By comparing these 

two 3D surveying techniques as independent datasets, it is possible to assess how the 

uncertainty in SfM might affect the results of a possible change detection study that uses 

multiple data collection methods. 

Repeat topographic datasets are an important part of geomorphology because they 

allow researchers to quantify rates of change and can help infer process (James et al., 

2012; Wheaton et al., 2010). Topographic datasets have differing amounts of uncertainty 

associated with them depending on the method used to collect the data (Bangen et al., 

2014). As with a lot of the terminology that geographers use to describe the quality of 

their data, the term uncertainty is borrowed from statistics (Taylor, 1997; Mowrer, 2000). 

The basic definition of measurement uncertainty from Taylor (1997) is 𝑥𝑏𝑒𝑠𝑡 ± 𝛿𝑥, with 
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𝑥𝑏𝑒𝑠𝑡 representing the researcher’s best estimate of the true value and ±𝛿𝑥, the range of 

uncertainty in the measurement. By Taylor’s definition, uncertainty equals the error in a 

measurement and if multiple measurements are made, the standard deviation of error 

between the measured and actual value is a good estimate of the uncertainty (Taylor, 

1997). In the geospatial literature, uncertainty has come to embody more than just error in 

individual measurements. It has evolved to become an umbrella term for all of the 

potential measures of data quality that encompasses all of the error that is propagated 

through to the final data outputs (Zhang and Goodchild, 2002; Longley et al., 2011).  

If uncertainty is not accounted for in change detection studies, it can cause over- 

or under-estimation in the magnitude of change, which can lead to the misinterpretation 

of the results (Milan et al., 2011; Wheaton et al., 2010). A variety of methods have been 

used to calculate uncertainty to differentiate insignificant change, which lies within the 

range of uncertainty and statistically significant change, which exceeds the uncertainty 

level. These include spatially uniform uncertainty estimates (Brasington et al., 2000, 

2003; Lane et al., 2003) and spatially variable estimates of uncertainty (Wheaton et al., 

2010; Legleiter et al., 2011; Milan et al., 2011; Lague et al., 2013).  

Data and Methods 

Study Areas 

 This research used multiple study areas because of the availability of the TLS 

system used for the second research objective. The datasets for the first portion of this 

study were collected at the mouth of Cummins Creek at Neptune State Park on the central 

Oregon Coast. For the SfM/TLS comparison the data were collected on the campus of 
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Oregon State University in Corvallis, Oregon and on the Mary’s River in Philomath, 

Oregon. 

SfM Processing 

 For the SfM datasets used in this study, I collected large sets of overlapping 

photographs (photosets) with a Canon T5i digital SLR camera (18-55mm lens, fixed at 

18mm focal length). The photographs for the larger ground areas were collected with the 

camera mounted on a pole that extended to 4.5 meters and tilted down to take 

photographs at ~35 degrees off-nadir. Photographs for the vertical surfaces in the TLS 

comparisons were collected by hand without the use of the pole. After collecting each 

photoset, I examined each photo by eye and removed blurry photographs and any with 

duplicate adjacent images. I processed the photosets using the commercial SfM software 

PhotoScan Professional v.1.0.4 by Agisoft (AgiSoft LLC, 2014). All of the photosets 

were processed with the same workflow in Photoscan using the default settings (for 

version 1.0.4) at each step. The photo alignment was processed with the high quality 

setting, pair pre-selection disabled, and with a point limit of 40,000. Georeferencing was 

accomplished using 20 cm checkerboard-style targets placed in regularly spaced grid 

pattern throughout the study area(s). I collected the position of the ground control points 

(GCP) with a Topcon GR-3 RTK GNSS base and rover in UTM coordinates. The ground 

control points had an average horizontal and vertical RMS error of 0.9 cm. The initial 

georeferencing in Photoscan is a linear 7-parameter Helmert transformation using the 

default measurement accuracy settings. To refine the initial georeferencing and optimize 

the camera alignment for non-linear distortions, a calibrated camera model was applied to 

the aligned cameras. The next step was to create a dense point cloud reconstruction. For 
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point cloud comparisons, the dense point cloud was exported to the LAS file format. For 

the GIS outputs, it was necessary to create a TIN mesh over the dense point cloud. From 

the TIN, a raster DEM was exported from Photoscan as a GeoTIFF file. The TIN can also 

be used to create and export ortho-rectified photo-mosaics. 

Uncertainty and Repeatability 

 To test the uncertainty and repeatability of SfM, I chose to collect data at a spatial 

scale of tens of meters to represent a typical bar-scale survey in fluvial geomorphology. 

The study area was an area approximately 20 meters by 15 meters at the mouth of 

Cummins Creek at Neptune Beach State Park, south of Yachats, Oregon (Figure 1). The 

area was a mix of packed sand, coarse gravel, and small woody debris. I collected three 

photosets over the study area using two different out-and-back patterns similar to 

traditional aerial photography flight lines (Table 1). The photosets were collected in 

quick succession to ensure that there was no perceptible change in the surface. Twenty 

GCPs were visible in the study area and an additional 250 validation points were 

collected to assess the uncertainty in SfM outputs (Figure 2). 

Because uncertainty and repeatability in the SfM outputs are linked to the 

accuracy of the georeferencing and optimization steps, I processed each photoset with 

three different combinations of ground control points, resulting in nine total datasets. The 

first georeferencing test case (T1) was georeferenced using the four corner GCPs, the 

second (T2) added two additional points (one each in the middle of the north and south 

edges), and the third (T3) used all twenty GPCs (Table 2). Each of the nine resulting 

datasets were exported from Photoscan as GeoTIFF raster DEMs with a cell size of 0.005 

meters to retain the detail present in the dense point cloud.  
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Table 1: Consistency photoset descriptions  

 
Pattern 

direction 
# of photos 

Point Cloud Size 

(Density) 

Output DEM 

resolution 

Photoset #1 

(PS1) 
North-South 131 

68 million 

(226k pts / m2) 
0.5 cm 

Photoset #2 

(PS2) 
East-West 161 

64 million 

(216k pts / m2) 
0.5 cm 

Photoset #3 

(PS3) 
East-West 167 

66 million 

(221k pts / m2) 
0.5 cm 

 

Table 2: Georeferencing accuracies reported by Photoscan for the nine photoset 

combinations 

Georeferencing 

Test 
Photoset 

X error 

(cm) 

Y Error 

(cm) 

Z Error 

(cm) 

Total RMS Error 

(cm) 

T1 PS1 0.9 0. 6 1.1 1.6 

T1 PS2 0.8 0.3 0.8 1.2 

T1 PS3 0.7 0.6 0.8 1.3 

T2 PS1 1.1 0.6 1.6 2.1 

T2 PS2 1.0 0.5 1.4 1.8 

T2 PS3 1.0 0.6 1.4 1.9 

T3 PS1 1.5 0.9 1.4 2.3 

T3 PS2 1.4 0.8 1.6 2.3 

T3 PS3 1.5 0.8 1.2 2.1 

 

 
Figure 1: Overview of the site, Cummins Creek in the background. 
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Figure 2: Cummins Creek study area 

Testing the repeatability of SfM also has important implications for its usefulness 

in change detection studies. If the SfM process cannot produce consistent results, its 

usefulness as a survey technique should be called into question. By creating 500 random 

points within the study area and extracting the values of the nine DEMs to each point, it 

was possible to assess the repeatability of SfM. The average coefficient of determination 

(R2) and average adjusted RMSE were calculated to test the repeatability between 

photosets within the confines of each georeferencing test case. Constructing a correlation 
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matrix allowed for the testing of repeatability across all of the datasets, which permitted 

the evaluation of the correlation coefficients and RMSE values between all of the 36 

possible combinations of DEMs. 

To calculate the elevation uncertainty in each dataset, I used several statistical 

measures based on the elevation error between the GPS elevation and the nine DEM 

elevations for each of the 250 GPS validation points, Δz = SfM(z) – GPS(z). The two 

primary statistical measures of uncertainty are the standard deviation of the error 

distribution (Eq. 1) and adjusted root mean squared error of a linear regression of GPS 

elevations versus SfM elevations (Eq. 2) (Taylor, 1997).  

 

𝑠 =  √
1

𝑁
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

 (1) 

 

𝐴𝑑𝑗. 𝑅𝑀𝑆𝐸 = √
1

𝑛 − 1
∑(𝑦𝑖̂ − 𝑦𝑖)2

𝑁

𝑖=1

  (2) 

   

In Equation 1, s is the standard deviation, N is the number of observations, 𝑥𝑖 are the 

observed values, and 𝑥̅ is the mean. For Equation 2, n is the total number of observations, 

𝑦𝑖̂ are the predicted values from a linear regression of GPS elevations versus SfM 

elevations, and 𝑦𝑖 are the actual, SfM, observation values. Additional statistical measures 

of accuracy and precision are the mean error and mean absolute error, which illustrate 

any statistical bias in the data and overall magnitude of the errors (Butler et al., 1998; 

Chandler, 1999; Lane et al., 2000). The global statistics are an important measure of the 

global error in these datasets. The spatial distribution of error in these datasets is an 

important indicator of any spatial bias in the data. To test for any broad spatial patterns in 
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the error, I mapped the error values for the 250 validation points for each of the nine 

datasets.  

TLS Comparison 

 Terrestrial laser scan and SfM data were collected at two sites, each with a 

horizontal and vertical component. A Riegl VZ-400 scanner with a Trimble R8 network-

RTK GNSS receiver collected the TLS data at both sites. Previous studies comparing 

TLS and SfM data (i.e James and Quinton, 2014; Westoby et al., 2012) co-registered the 

SfM and TLS using common GCPs. For this study, the goal was to compare the accuracy 

of SfM to an independently collected TLS dataset. Therefore, the SfM data were 

georeferenced with GCPs collected with a Topcon RTK GNSS system and the TLS data 

were georeferenced with a Trimble network-RTK receiver mounted on the instrument. 

The first site was a lawn (approximately 50 m by 50 m) and adjacent building (the 

southeastern façade of Weatherford Hall, 60 m wide by 30 m tall) on the campus of 

Oregon State University in Corvallis, Oregon. The second site was a bar and cut bank 

combination on the Mary’s River in Philomath, Oregon. The bar measured 50 m by 16 m 

and the cut bank 10 m wide by 4.5 m high. Representative site photos are shown in 

Figure 3 and comparisons on the raw data (SfM and TLS) are outlined in Table 3. 

Table 3: TLS and SfM dataset comparison 

  TLS SfM 

Lawn Number of TLS Stations / SfM Photos  5 471 

 Number of Points 12.2 million 104.9 million 

Building Number of TLS Stations / SfM Photos  Same 5 as Lawn 130 

 Number of Points 2.4 million 28.9 million 

Bar Number of TLS Stations / SfM Photos  3 170 

 Number of Points 4.7 million 21.2 million 

Cut Bank Number of TLS Stations / SfM Photos  1 55 

 Number of Points 698,500 1.4 million 
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Figure 3: Views of the lawn and Weatherford Hall facade (left) and Mary's River bar and 

cut bank (right) 

To take advantage of the full point cloud resolution of both the TLS and SfM 

datasets, I used the Multiscale Model to Model Cloud Comparison (M3C2) method 

developed by Lague et al. (2013) to assess the differences between each of the four 

datasets. The M3C2 method allows the user to calculate the cloud-to-cloud distances 

based on the local orientation of the points relative to the surface normal (a vector 

perpendicular to the surface), which creates accurate comparisons of the differences in 

the point clouds in a true 3D environment. In addition to the signed differences between 

the point clouds, M3C2 can calculate a spatial variable confidence interval to determine 

areas of significant difference using uncertainty associated with each point cloud. 

Uncertainty in the point clouds is calculated as a function of the surface roughness in the 

immediate neighborhood of a point (local surface roughness) and a spatially uniform 

registration error. To account for differences in the GPS systems, errors in the TLS point 

cloud registration (Olsen et al., 2009) and the SfM uncertainty, a uniform registration 

error of 2 cm was included into the M3C2 calculations.  
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Results 

Repeatability 

 Although there are differences in the uncertainty statistics, the repeatability results 

(Table 4) show that SfM produces consistent results with all of the datasets, exhibiting 

agreement at 99.7% or better, with most comparisons having sub-centimeter RMSE 

values. Within each georeferencing test, the agreement between photosets was very good; 

for both T1 and T2 the average R2 was 0.9996 and the average RMSE was 0.6 cm, while 

the T3 photosets have slightly less agreement with an average R2 of 0.9985 and a RMSE 

of 0.84 cm. 

Table 4: Coefficient of determination (R2, below the diagonal), and RMSE (in cm, above 

the diagonal) for pairwise linear regressions of SfM z values for comparisons of 500 

random sample points from all 36 DEM combinations. 

  T1 T1 T1 T2 T2 T2 T3 T3 T3 

  PS1 PS2 PS3 PS1 PS2 PS3 PS1 PS2 PS3 

T1 PS1 - 0.572 0.643 0.321 0.723 0.780 1.211 1.003 0.914 

T1 PS2 0.9993 - 0.596 0.620 0.514 0.662 1.122 0.727 0.975 

T1 PS3 0.9991 0.9992 - 0.661 0.636 0.400 0.897 0.942 0.986 

T2 PS1 0.9998 0.9992 0.9991 - 0.587 0.683 1.093 0.960 0.805 

T2 PS2 0.9989 0.9994 0.9992 0.9993 - 0.525 0.923 0.739 0.867 

T2 PS3 0.9987 0.9991 0.9997 0.9990 0.9994 - 0.809 0.885 0.968 

T3 PS1 0.9970 0.9974 0.9983 0.9975 0.9982 0.9987 - 0.971 0.803 

T3 PS2 0.9980 0.9989 0.9982 0.9981 0.9989 0.9984 0.9981 - 0.775 

T3 PS3 0.9983 0.9980 0.9980 0.9987 0.9985 0.9981 0.9987 0.9988 - 

 

Uncertainty 

 The overall error statistics for all of the SfM datasets are shown in Table 5. In this 

table there is a range of small negative biases in the SfM datasets, with mean errors 

ranging from sub-millimeter (-0.07 cm) to the centimeter (-1.68 cm) scale. These values 

suggest that there is a systematic component to the error in these datasets in addition to 

random error. The ranges of the uncertainty metrics (standard deviation and RMSE) are 
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all relatively narrow and show that the magnitude of error in all of the datasets is 

consistent (as seen in the boxplots in Figure 4). The different surveying patterns seem to 

have a small effect on uncertainty. The PS1 datasets, with their North-South orientation, 

have consistently larger mean errors and larger uncertainties than the East-West oriented 

PS2 and PS3. The georeferencing tests also show variation; the T1 datasets have the 

lowest average mean error, but the T3 datasets utilizing all 20 GCPs had the largest 

uncertainties and the highest mean errors. 

 The spatial distribution of error (Figure 5) shows a pronounced pattern of positive 

errors in the middle of the study area and negative errors at the edges. The balancing of 

the positive and negative errors explain the near-zero mean errors for most of the 

datasets. The strong negative mean errors in the T3 datasets are a result of the 

minimization of positive errors in the center and an increase in the negative errors at the 

edges. 

Table 5: Error statistics for all georeferencing tests and photosets, all value are in cm. 

All values in 

cm 

Mean Error 

(ME) 

Mean Abs. Error 

(MAE) 

St. Dev. Error 

(σ) 
RMSE R2 

T1 PS1 -0.23 1.72 2.13 1.97 0.995 

T1 PS2 -0.07 1.56 1.93 1.84 0.995 

T1 PS3 -0.18 1.58 2.12 2.05 0.994 

T1 Average -0.16 1.62 2.06 1.95 0.995 

T2 PS1 -0.91 1.70 1.97 1.92 0.995 

T2 PS2 -0.73 1.44 1.70 1.70 0.996 

T2 PS3 -0.74 1.50 1.81 1.80 0.996 

T2 Average -0.79 1.55 1.83 1.80 0.996 

T3 PS1 -1.68 2.14 2.11 2.07 0.994 

T3 PS2 -1.67 2.06 2.01 2.01 0.995 

T3 PS3 -1.35 1.63 1.63 1.63 0.997 

T3 Average -1.57 1.94 1.92 1.90 0.995 

Overall 

Average 
-0.84 1.70 1.94 1.88 0.995 
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Figure 4: Boxplots showing the distribution of errors for each dataset. The boxes 

represent the median and interquartile range. 

 
Figure 5: Spatial distribution of error for all 250 validation points. DEM provided in the 

background for reference. 
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TLS Comparison 

 The M3C2 results for the lawn are shown in Figure 6. For all of the TLS/SfM 

comparisons, the difference is SfM minus TLS so that positive values indicate that the 

SfM point cloud is above the TLS and negative values indicate that the SfM points are 

below the TLS points. The small missing areas in the northwest corner of the lawn was 

the result of incomplete photo coverage for that portion of the dataset and the hexagonal 

shapes are the TLS scanning locations where the TLS point density was lower. The mean 

difference between the TLS and SfM point clouds was -0.07 cm with a standard deviation 

of 2.38 cm and a mean absolute difference of 1.84 cm. From the M3C2 statistics on 

significance, only 8% of the compared area was statistically significantly different.  

The façade of Weatherford Hall had considerably larger and had more varied 

discrepancies (Figure 7), which are reflected in the difference statistics. The mean 

difference was 5.06 cm with a standard deviation of 27.07 cm and an absolute mean 

difference of 9.55 cm. The uniform difference in the center part of the façade suggests a 

systematic offset in the range of 1 to 2 cm. Large trees shadowed the areas on either side 

of the center section, which also had lower numbers of contributing photos, leading to the 

larger differences. The systematic offset and large differences in this scene contributed to 

over 50% of the points classified as significantly different. 

The Mary’s River bar results (Figure 8) show that the SfM data are consistently 

lower by 2 to 4 cm compared to the TLS with the exception of the eastern edge that has a 

slight positive difference (1-2 cm). The area of significant difference along the south edge 

of the bar relates to the area of the bar that also has the lowest TLS point density. The cut 

bank (Figure 9), like the building, had higher difference values compared to its adjacent 
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bar surface. The high difference values at the top of the cut bank are the result of 

overhanging vegetation. 

Figure 6: Weatherford Hall lawn SfM - TLS comparison; SfM natural color point cloud 

(top left), M3C2 difference map (top right), significant differences (bottom left), and 

histogram of M3C2 differences (zero highlighted in black, bottom right) 
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Figure 7: Weatherford Hall facade SfM - TLS comparison; SfM natural color point cloud 
(top left), M3C2 difference map (top right), significant differences (bottom left), and 

histogram of M3C2 differences (zero highlighted in black, bottom right) 

The Mary’s River bar results (Figure 8) show that the SfM data are consistently 

lower by 2 to 4 cm compared to the TLS with the exception of the eastern edge that has a 

slight positive difference (1-2 cm). The area of significant difference along the south edge 

of the bar relates to the area of the bar that also has the lowest TLS point density. The cut 

bank (Figure 9), like the building, had higher difference values compared to its adjacent 

bar surface. The high difference values at the top of the cut bank are the result of 

overhanging vegetation. The overall SfM/TLS point cloud difference statistics for the 

four TLS sites are shown in Table 6 
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Figure 8: Mary's River bar SfM - TLS comparison; SfM natural color point cloud (top 

left), M3C2 difference map (top right), significant differences (bottom left), and 

histogram of M3C2 differences (zero highlighted in black, bottom right) 

Figure 9: Mary's River cut bank SfM - TLS comparison; SfM natural color point cloud 

(top left), M3C2 difference map (top right), significant differences (bottom left), and 

histogram of M3C2 differences (zero highlighted in black, bottom right) 
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Table 6: M3C2 point cloud difference statistics for the four study sites 

 Mean 

Difference 

Standard 

Deviation 

Mean Absolute 

Difference 

Significant 

Difference 

Lawn -0.07 cm 2.38 cm 1.84 cm 8.1% 

Building 5.06 cm 27.07 cm 9.55 cm 54.2% 

Bar -2.01 cm 1.77 cm 0.23 cm 7.8% 

Cut bank 1.63 cm 7.62 cm 5.28 cm 42.9% 

 

Discussion 

Uncertainty and Repeatability 

 The range of values for each of the uncertainty metrics is quite small; the mean 

absolute error has a range of 0.7 cm, the range of the standard deviation is 0.5 cm, and the 

RMSE a range of 0.4 cm. The differences between the georeferencing tests are small, but 

it appears that the T1 results are an outcome of a georeferencing solution where the 

number of GCPs is not sufficient to provide a robust transformation. This is in contrast to 

the T3 results, where the large number of GCPs provide an accurate transformation in the 

areas that they cover while increasing the error outside the GCPs.  

 The negative bias in the mean error and the spatial patterns of error (Figure 5) 

suggest that there is a systematic component to the errors. These radial error patterns are 

like those described by James and Robson (2014) and similar to those seen by Woodget 

et al. (2014) and Ouédraogo (2014) and are the result of a combination of factors. The 

major contributing causes are the strict parallel camera orientations and an incomplete or 

incorrect camera/lens calibration (James and Robson, 2014; Ouédraogo et al., 2014). 

Radial distortion in camera lenses, especially those with wider fields of view, will cause 

non-linear artifacts in the SfM reconstructions, and by utilizing parallel camera 

orientations the software cannot correctly optimize the reconstruction to eliminate the 
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radial distortions. In Photoscan, the optimization step is meant to correct these non-linear 

distortions in the 3D surface models. When using an incorrect or incomplete calibration 

the radial errors can persist into the final outputs. As Ouédraogo (2014) points out, 

Photoscan uses a 3-parameter lens calibration model rather than a more complex 

calibration model that could help reduce the non-linear distortions. Additional errors in 

SfM reconstructions can come from the fewer number of overlapping photos at the edges 

of the study area. The points derived from the photos along the edges have less robust 

photogrammetric solutions and can be prone to higher errors (Yuan, 2009).  

Despite the systematic error associated with lens distortion, SfM does produce 

extremely consistent datasets. The amount of uncertainty in this study is comparable to 

the study conducted by James and Robson (2012), who reported an RMSE of 3.6 cm on a 

slightly larger study area. These results also demonstrate a precision comparable to other 

topographic surveying techniques (Bangen et al., 2014). As long as uncertainty is 

accounted for and the systematic errors corrected, SfM will be a reliable source of high-

resolution 3D topographic data for change detection studies. The high R2 and low RMSE 

values (Table 4) along with the uncertainty statistics (Table 5) show that the variation 

between datasets are low and there is a high-level of consistency. These results are for 

SfM reconstructions using AgiSoft Photoscan, but other software packages use different 

algorithms and different camera calibration models (James and Robson, 2012, 2014; 

Ouédraogo et al., 2014), which will likely result in different uncertainty values. 

TLS Comparison 

 Overall, the SfM datasets compared favorably to the TLS datasets. The key 

differences were that the horizontal SfM surfaces performed much better than the vertical 
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surfaces. Another important observation is the lack of systematic radial errors like those 

seen in the Neptune Beach SfM data. If the lens distortion/camera calibration errors were 

consistent, then we would expect to see similar radial error patterns (Figure 5) when 

differencing the SfM and TLS datasets. Because the TLS comparison photosets were not 

collected with a strictly parallel orientation, optimization corrected the radial distortion. 

For the lawn dataset, the spatial pattern of differences can be broken into two 

sections, separated by a northeast to southwest dividing line. The differences in the 

southeastern half of the lawn seem to be mostly random, while the northwest half has 

some larger positive and negative differences (approximately ±3 cm). These differences 

can be partially attributed to error in the GCPs used to georeference the SfM. The average 

vertical RMS (VRMS) for several of the GCP exceeded 2 cm; these points were close to 

the building and the high VRMS was probably the result of a lower GNSS satellite count 

and multipathing off the building. There are also two areas (labeled A and B in Figure 6) 

that show abrupt changes in the difference values. These areas are small errors in the SfM 

point cloud that resulted from the misalignment of several photos, causing the 

photogrammetric points associated with those photos to be above/below the mean 

elevation of the neighboring points. 

The other horizontal surface, the bar on the Mary’s river, also lacks any signal of 

radial distortion. The differences here show a more uniform pattern, with a negative bias 

except for the area surrounding the most easterly TLS scan location, which shows a slight 

positive bias. The histogram of the differences for this site clearly shows (Figure 8) these 

biases. These differences do not correlate with the GPS VRMS error despite being under 
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a moderate canopy of cottonwood trees as the points with significant differences are 

concentrated in the areas of lower TLS point density. 

Both of the vertical surfaces, the cut bank at the Mary’s River site and the façade 

of Weatherford Hall, had considerably higher differences. One of the shared attributes of 

both of these sites was the lack of control points on the vertical surfaces. The photographs 

for both of these sites were processed in conjunction with the photographs of horizontal 

surfaces and tied into the same ground control points used to georeference the horizontal 

surfaces. Most of the building façade was 20 meters away from the nearest control points 

and the cut bank was across the channel and approximately 15 meters away from the 

control points on the bar. The distance to the nearest control points and the lack of control 

points on the vertical surface contributed to larger errors associated with the 

georeferencing of the SfM models and in turn resulted in larger variations when 

compared to the TLS. For future SfM reconstructions of large vertical surfaces, it will be 

important to have control points on the surfaces; this will require the use of a total station 

to collect GCPs rather than GPS. An additional consideration for large vertical surface 

mapping with SfM is that photographs can only be collected from one angle so it is 

important to collect from a variety of angles to the subject to create a better SfM 

reconstruction. 

Many of the small-scale differences between the SfM and TLS datasets are at the 

scale of GPS error (1-2 cm). Because of the independent GPS units used to georeference 

the two datasets, the differences can be partially attributed to variability in error between 

the two GPS units and not systematic errors in either dataset. This is an important factor 

in establishing the propagation of errors and uncertainty when trying to establish areas of 
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statistically significant differences between two datasets. Considering the uncertainty that 

exists in the GPS, TLS, and SfM datasets, I would suggest a larger limit of detection 

(Brasington et al., 2000; Milan et al., 2011; Wheaton et al., 2010), 3-4 cm, for 

establishing a threshold for statistically significant differences between TLS and SfM 

datasets. 

One of the most fundamental differences between the TLS and SfM datasets is the 

density of the collected data points by each method. This difference is most apparent at 

the lawn site (Figure 10) where the total number of points are an order of magnitude 

different (104 million for SfM versus 12.2 million for TLS) and the average point density 

is almost two orders of magnitude different. The TLS densities are highest adjacent to 

scanner locations and become lower as a function of distance from the scanner, with 

densities in between scanner locations ranging from an average 500 to 3,000 points∙m-2. 

The SfM point densities have a more uniform distribution, with overall mean density of 

56,000 points∙m-2. The variations in the SfM densities are associated with the number of 

overlapping photos and pattern used to collect the photographs. Lague et al. (2013) 

suggest that point density differences affect the calculation of point cloud to point cloud 

differences and that density differences will also affect the calculation of significant 

change in the M3C2 algorithm. The point densities may also be contributing to some of 

the variations we see between the datasets. In a 4 m2 area of the lawn (Figure 11), the 

point density difference show that SfM is capturing more of the microtopography of the 

grass surface than the TLS. This is a function of how these distinct survey technologies 

are sensing the landscape. The laser pulses from the TLS intersect horizontal surfaces, 

like the grass, at an acute angle that results in a shadowing effect, which limits the 
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sensing of the fine-scale microtopography. The near-nadir viewing angle of the SfM 

photographs gives a better overall perspective and allows for the extraction of SfM 

points, which precisely capture the microtopography. These differences in density and 

viewing angles, which affect resolution and precision, could account for some of the 

vertical differences between the TLS and SfM datasets and could be significant 

depending on the roughness of the surface.  

 

 
Figure 10: Point density comparison for the lawn study site, TLS (top) and SfM (bottom). 

The color ramps are equivalent. 
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Figure 11: Point density comparison for a 2m by 2m area of the lawn. 

 

 



30 

Conclusions 

In this paper, I have demonstrated that Structure-from-Motion (SfM) 

reconstructions of topographic surfaces at the scale of 101-102 meters produce extremely 

consistent results that make this survey method a good option for repeat topographic 

surveys. The topographic surfaces exhibited an average uncertainty of approximately two 

centimeters, which in this case includes a pronounced systematic distortion resulting from 

the survey method and camera calibration. This level of uncertainty is in line with other 

high spatial resolution survey methods and is probably sufficient for most topographic 

survey applications. The uncertainty could be improved using a more convergent survey 

pattern to eliminate the systematic distortions. SfM and TLS are collecting comparable 

datasets; the one key difference is SfM produces higher point densities that make SfM a 

better option for applications that require a higher-level of precision. The error 

propagation and uncertainty in both techniques will require a larger level of detection 

when doing comparisons between these datasets for change detection.  

 This research has also given some insight into the sources of error that we need to 

consider when doing SfM surveys, especially blunders from incorrect photo alignment or 

incomplete photo coverage, the importance of accurate ground control, and the choice of 

survey pattern. To get a better handle on uncertainty, it will be important to do future 

research on the scale dependent nature of uncertainty in SfM so that accurate levels of 

uncertainty can be established for change detection studies at a variety of spatial scales. 

Additional research should also be done on the effects of the non-linear errors in SfM 

(James and Robson, 2014) and how differences in georeferencing affect uncertainty at 

different spatial scales. By conducting this research early in the development of SfM as a 
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3D survey technique, the community can create a simple set of “best practices” for SfM 

surveys, helping those getting started and help lay the groundwork for the successful 

future for this revolutionary technique. 
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CHAPTER III 

FIRST YEAR GEOMORPHIC MONITORING OF THE GRANITE BOULDER 

CREEK STREAM RESTORATION PROJECT 

 

Introduction 

 Stream restoration in the Pacific Northwest has been driven by work to revitalize 

anthropogenically altered streams, enhancing the habitat for endangered salmonids (Bash 

and Ryan, 2002; Roni et al., 2002). The Middle Fork John Day River in east- central 

Oregon (the Middle Fork) has had a long history of human disturbance affecting in-

stream habitat and has been recently designated as critical habitat in the Columbia River 

system for Chinook salmon (Oncorhynchus tshawytscha), Steelhead (Oncorhynchus 

mykiss), and Bull Trout (Salvelinus confluentus) (NOAA, 2005; U.S. Fish & Wildlife 

Service, 2010). The legacy of human modifications on the Middle Fork include channel 

modifications to increase grazable land, bank trampling and the decline in riparian 

vegetation from grazing cattle, logging and mill operations, and the most disruptive, 

dredge mining for placer deposits of gold. 

 As part of basin-wide restoration and conservation efforts on the Middle Fork, in 

2011, the Confederated Tribes of the Warm Spring Reservation of Oregon (CTWSRO) 

undertook a major, multi-phase channel reconstruction project on land they owned. The 

goal of this project is to rehabilitate about 3 km of the Middle Fork affected by dredge 

mining from 1939 to 1943. Granite Boulder Creek is a significant tributary that joins the 

Middle Fork on the CTWSRO property at the site of the dredge mining. The mining 

destroyed the lower portion of Granite Boulder Creek that flowed across the floodplain, 
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so the creek instead drained into the remnant dredge channel. In 2012, the remnant 

dredge channel was filled in and Granite Boulder Creek was given a new channel through 

the dredge tailings to reconnect it with the main stem of the Middle Fork (Cochran, 

2013). 

Biological and geomorphic monitoring of the new channel is ongoing by the 

CTWSRO, university researchers, as well as state and federal agencies. Geomorphic 

monitoring is important because the physical structure of the river is the basis for lotic 

and riparian habitat (Gregory et al., 1991; Kondolf and Micheli, 1995) and quantifying 

geomorphic change provides information on rates that can be used to study process-form 

feedbacks (James et al., 2012; Lane et al., 1994; Wheaton et al., 2010). The CTWSRO 

are using traditional fluvial geomorphic survey methods, RTK-GPS cross sections and 

longitudinal profiles, to monitor the geomorphology of the stream. Cross-sectional 

surveys have two fundamental flaws. They tie the monitoring to specific sites on the river 

that may not be ideal locations for characterizing change as the river evolves (Lane et al., 

1994). Secondly, the discrete nature of cross-sectional measurements characterizes the 

stream as discontinuous, not as a spatially varied system, which means that the limited 

extent and coarse spatial resolution are not sufficient to represent the small scale changes 

likely to be expressed over short time periods (1 – 10 years) (Marcus and Fonstad, 2008, 

2010). The short-term changes are likely to be related to local scale changes in sediment: 

sorting, packing, and the formation of bed forms (textural patches, ripples, bars) 

(Buffington, 2012). 

To increase the spatial resolution of geomorphic monitoring data, I am using 

Granite Boulder Creek as the test bed for a new, lost-cost photogrammetric remote 
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sensing technique, Structure-from-Motion (SfM). SfM has the ability to create high 

spatial resolution three-dimensional topographic datasets from multiple, overlapping 

photographs from a standard digital camera. These three-dimensional data provide a 

broader spatial perspective on geomorphic change than the limited scope of traditional 

survey methods. This paper seeks to examine the best methods to monitor geomorphic 

change in a newly constructed restoration channel by comparing the RTK-GPS cross-

sections and 3D SfM data and to examine how these types of new channels evolve in the 

short-term (one year, 2012 - 2013). After my initial SfM survey in 2012, I expected to see 

settling and sorting of the sediment that was placed in the channel during construction, 

but I did not expect any major changes in the channel because the 2012 winter snowpack 

was below average and there were no major spring flood events. 

Background 

 Stream restoration or rehabilitation are terms used to describe a wide spectrum of 

river management activities that are aimed primarily at improving the health of river 

corridors that have been impaired or degraded by human activities (Bennett et al., 2011; 

Wohl et al., 2005). To counteract the human activities, restoration projects often include 

ecological goals, such as improving aquatic and terrestrial wildlife habitat, 

geomorphic/hydrologic goals, including channel reconstruction or improving floodplain 

connectivity, or societal goals, like improved water quality (Kondolf and Micheli, 1995; 

Palmer and Allen, 2006; Wohl et al., 2005) 

 Stream restoration in the US has grown into a multi-billion dollar industry 

(Bennett et al., 2011; Bernhardt et al., 2005). One aspect that most projects are still 

lacking is post-project monitoring, Palmer and Allen (2006) estimated that less than ten 
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percent of projects include any assessment or evaluation. Post-project monitoring is 

critical to gauge whether the project goals are being met, assessing the long-term success 

or failure of a project, and informing future management actions (Bash and Ryan, 2002; 

Downs and Kondolf, 2002; Kondolf and Micheli, 1995; Palmer and Allen, 2006). Some 

of the key variables used in appraising the success or failure of a project are ecological 

success, stakeholder success, geomorphic success, and most importantly whether 

successes can be built upon and failures learned from for future restoration projects 

(Kondolf, 1995; Palmer et al., 2005). Bash and Ryan (2002) reported that the major 

impediments for post-project monitoring were budgetary (lack or insufficient funding) 

and insufficient personnel and time to conduct monitoring. 

 For geomorphic monitoring, traditional survey methods like GPS or total station 

are some of the most economical methods for capturing topographic information, but it 

takes time to achieve high spatial resolution coverage with these techniques (Bangen et 

al., 2014). Remote sensing techniques could provide a more efficient method for post-

project monitoring than a traditional survey. These techniques would also provide 

managers and researchers with more holistic spatial views of projects and provide more 

spatial data for evaluating the geomorphic conditions and ultimately the success or failure 

of a project.  

A majority of remote sensing technologies are inherently capital intensive, like 

custom aerial/satellite imagery, airborne LiDAR (ALS), and terrestrial laser scanning 

(TLS). The recent introduction of Structure-from-Motion photogrammetry to 

geomorphology could act a lower-cost bridge between traditional survey techniques and 

higher cost remote sensing methods (Fonstad et al., 2013; James and Robson, 2012). SfM 
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is based on multi-view stereo photogrammetry (MVS) and has its origins in computer 

vision (Ullman, 1979), which have given rise to the current iterations of SfM algorithms 

(Agarwal et al., 2010; Furukawa and Ponce, 2010; Hartley and Zisserman, 2003; 

Snavely, 2008). SfM differs from traditional stereo photogrammetry in its multi-view 

approach to constructing three-dimensional surface models of a scene. The multiple 

views (camera positions) allow for increased accuracy and precision from a standard 

digital camera and can achieve greater coverage of a scene by reducing shadowing, areas 

of missing data from obstructions in the instruments line of sight that occur with stereo 

photogrammetry or TLS surveys. The two basic requirements for a SfM survey are 

multiple overlapping photographs, as few as ten for small scenes (100 m2) and many 

thousands for larger scenes (101 km2), and in-photo ground control points to either scale 

or georeference the final surface models. The data outputs of the SfM process vary with 

the different software packages, but the basic three-dimensional data outputs are XYZ 

point clouds (similar to ALS and TLS data) that represent the surface/topography of a 

scene. Interpolating the point cloud data in three-dimensions can produce digital surface 

models (DSM) or be converted to two-dimensional raster digital elevation models 

(DEM). One additional dataset created through the SfM process are topographically 

corrected orthophotographs from the mosaicked input photographs. There are many 

software packages, both commercial, free, and open-source, to process SfM data. For a 

full review of the methods and details of SfM see Westoby et al. (2012), James and 

Robson (2012, 2014), Fonstad et al.(2013), and Javernick et al. (2014).  
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Study Area 

 Granite Boulder Creek is a medium sized tributary of the Middle Fork John Day 

River with a drainage area of 30.2 km2 in the Greenhorn Mountains in east-central 

Oregon (Figure 12). The geology of the basin consists of predominantly Permian to 

Jurassic sedimentary, volcanic, and metamorphic rocks of the Baker Terrane accreted to 

North American craton. The lower elevations of the basin contain Eocene volcanic 

conglomerates, tuffs, and ash of the Clarno formation. The upper elevations contain early 

Cretaceous granitic intrusions that experienced limited alpine glaciation in the Quaternary 

(Ferns and Brooks, 1995; Schwartz et al., 2009).  

 The basin has a maximum elevation of 2472 m at Vinegar Hill down to its 

confluence with the Middle Fork John Day at 1136 m. The main channel length is 12.8 

km with an average gradient of 0.078. Where the stream reaches the base of the 

Greenhorns it has formed an 0.82 km2 alluvial fan before joining the Middle Fork that 

was mostly unaffected by the dredge mining (Jett, 1998). The stream morphology is step-

pool transitioning to plane-bed and straight riffle-pool at lower elevations and the 

dominant grain sizes range from gravels to cobbles. 

 Between 1939 and 1943, a placer dredge mining operation overturned 

approximately 50 hectares of the Middle Fork valley floor, obliterating the last 350 

meters of the channel (Figure 13). The mining left a straight, entrenched channel through 

the dredge tailings that bifurcated the Middle Fork; the channel on the north side of the 

valley (the north channel) captured Granite Boulder Creek and has been the terminus for 

the creek for nearly 70 years. The meandering channel on the southern side of the valley 

(the south channel) had a significant decrease in discharge because of the bifurcated flow. 
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Figure 12: Overview of the upper Middle Fork John Day River. The watershed of Granite 

Boulder Creek is highlighted. 

 

 Until 2001, the only efforts to repair the damage to the Middle Fork valley were 

the smoothing of the dredge tailings to make the disturbed areas marginally better for 

cattle grazing. In 2001, the CTWSRO purchased the 413-hectare property as a 

conservation and stream restoration project site, and rechristened the property as the 

Oxbow Conservation Area (OCA). The CTWSRO, collaborating with federal and state 

government agencies, developed a three-phase restoration plan for the OCA to enhance 

salmonid habitat. The first phase of restoration at OCA started in 2011 and involved 

riparian plantings and the installation of four hundred full-size logs as engineered 

logjams, channel spanning and floodplain log structures along the south channel. The 

second phase, completed in 2012, involved filling in the north channel, reconnecting 

Granite Boulder Creek to the south channel, planting new vegetation along the riparian 

zone of Granite Boulder Creek, and regrading the dredge tailings in-between the north 
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Figure 13: Before and after aerial photography of the Oxbow Conservation Area showing 
the impact of dredge mining and the initial restoration on Granite Boulder Creek and the 

Middle Fork John Day River. Images from: USGS (1939, 1949), Bureau of Reclamation 

(2006), and the author (2013). 



40 

and south channels to enlarge the floodplain of the south channel. The third phase began 

in 2014 and is focused on restoring and reconstructing the dredge affected channel of the 

Middle Fork downstream of Granite Boulder Creek (Cochran, 2013). By designing the 

new channel for Granite Boulder Creek (Figure 14) as a meandering riffle-pool channel, 

the goal was to return to the channel shape seen in the 1939 aerial photographs. The 

design incorporated carefully sorted sediments for the different channel units to mimic 

the sediment in the channel upstream of the dredge channel and engineered logjams 

throughout the new channel to promote scouring and add habitat.  

 
Figure 14: Close up aerial photography of the newly constructed channel for Granite 

Boulder Creek. RTK-GPS cross-section sites are shown. 

 

Data and Methods 

 In order to examine the best methods for monitoring small restoration channels, I 

analyzed the CTWSRO GPS cross-section data and my own SfM data for geomorphic 

change between 2012, at the completion of construction, and in 2013, the first year mark 
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of the restoration project. These geomorphic change detection data provided information 

on where and what features changed in the channel and how those changes related to the 

evolution of the channel. 

As part of their broader monitoring plan, the CTWSRO is using repeat RTK-GPS 

surveys at five cross-sections located at riffles and longitudinal surveys of the thalweg to 

evaluate the stability of the channel. Both GPS surveys were conducted in July, with each 

cross-section averaging 16 points, and the longitudinal surveys containing 160 points in 

2012 and 133 in 2013. I evaluated each cross-section for elevation change by first 

converting the X and Y GPS coordinates into a stream normal coordinate system 

(Legleiter and Kyriakidis, 2006), which normalizes the data points into cross-stream 

distances from the bankfull channel centerline, and downstream distances from the 

upstream end of the restored channel. In the cross-sections, the GPS points for both years 

do not all fall along the exact same lines, making direct comparisons difficult. The stream 

normal coordinates mitigate these differences by allowing me to compare the GPS points 

by their relative positions in the cross-stream direction. The stream normal coordinate 

transformation also benefits the analysis of longitudinal profiles. The elevations of the 

channel thalweg can be compared in relation to their relative downstream distances. 

Differences in the cross-stream position would indicate a shift in the planform location of 

the thalweg. I calculated the distribution of elevation change in each cross-section and the 

longitudinal profiles by interpolating the GPS points and sampling the interpolated line at 

10 cm intervals and differencing these samples. 

 I collected sets of digital photographs and GPS ground control points for SfM 

mapping of the entire length of the channel in August of both years. I used a Canon T5i 
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mounted on a 4-meter pole tilted downwards to take photographs at ~35 degrees off-

nadir. For the first series of photographs from 2012, I positioned the pole in the stream 

and at 1-stride increments (~1 meters) up the channel , and I took five divergent 

photographs starting with the right bank, before rotating the camera pole 45° after each 

photo, until the camera was facing the left bank (Figure 15). After processing the 2012 

photosets there were problems reconstructing the scenes, which led to a different survey 

pattern in 2013 in an attempt to get more convergent camera geometry, shown to provide 

better imagery for SfM surveys (James and Robson, 2014). For the 2013 survey, I 

collected photographs at 1-stride increments from the banks with the camera aimed at the 

center of the channel (Figure 15). For both years, I placed checkerboard-style targets 

along the bank at 6-7 meter increments to georeference the SfM reconstructions and 

recorded their positions with an RTK-GPS.  

 
Figure 15: SfM survey patterns used in this study, divergent in stream survey for 2012 

(left) and convergent bank survey for 2013 (right). 
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 I processed the photo sets for each year using AgiSoft Photoscan Professional v. 

1.0.4 (AgiSoft LLC, 2014) using the default settings for high-quality reconstructions and 

a pre-calibrated lens model to increase the accuracy of the reconstructions. I split the 

photosets into 16 overlapping chunks to facilitate processing; only those that coincided 

with the five GPS cross-sections will be presented in this study. I processed each chunk 

to a dense point cloud, to take advantage of recent developments in point cloud 

differencing algorithms, and produced a mosaicked orthophoto to aid in the interpretation 

of the cross-section and point cloud results. To quantify the change in the SfM point 

cloud, I used Lague et al.’s (2013) Multiscale Model to Model Cloud Comparison 

(M3C2) method implemented in CloudCompare v. 2.5.5.2 (Girardeau-Montaut, 2014). 

The M3C2 method provides a way to difference point cloud datasets in relation to the 

orientations of the various surfaces in the point cloud. By considering the orientation, 

M3C2 provides a three-dimensional way to assess change between two point clouds and 

evaluates significant change as a function of surface roughness in the immediate 

neighborhood of a point (local surface roughness) and a spatially uniform registration 

error between the two clouds. 

 The georeferencing accuracy statistics from Photoscan showed an average root 

mean squared error (RMSE) for the 2012 chunks as 1.21 cm and for 2013 as 1.24 cm. 

However, when I overlaid the point clouds prior to differencing there was an unexplained 

vertical offset between the 2012 and 2013 datasets. The individual chunks had uniform 

offsets between 2.7 and 3.4 cm. To correct this offset, I co-registered the two point clouds 

to each other using a range of four and six pseudo-invariant features, mainly large 

boulders embedded in the banks. The 2013 point clouds were transformed to match the 
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2012 data with an average co-registration RMSE of 1.03 cm. The co-registration error 

was factored into the total uncertainty for the SfM datasets for a minimum level of 

detection of 3 cm, slightly higher than the uncertainty values calculated in Chapter II. I 

included this minimum level of detection in the M3C2 results and they are included as 

part of the white area of the color ramp indicating no or insignificant change. 

 

Results 

 Each of the five cross-sections showed varying amounts of change, but the 

majority of the changes were small magnitude, ±10 cm (Figure 16). Because the cross-

section points were not taken on the exact same lines and were transformed to a stream 

normal coordinate system, these direct comparisons have a considerable amount of 

uncertainty associated with them. Given the inherent measurement uncertainty of RTK-

GPS and the horizontal and vertical shifts in the misaligned cross-sections, I 

approximated the minimum level of detection for these cross-sections to changes greater 

than 5 cm. This means any change less than 5 cm cannot be considered actual change and 

should be treated as insignificant. The largest negative elevation changes were on the 

right bank of XS 3 and the middle of XS 4. The in-channel portion of XS 1 showed an 

increase in bed elevation and XS 2 and XS 5 both had small lateral changes. For the 

cumulative change chart in Figure 16, 79% of the measurements do not meet the 

minimum level of detection, leaving only the largest changes considered measurable 

change. 

 The longitudinal profile comparison (Figure 17) shows that the riffles have 

experienced erosion while the pools have all seen deposition. The areas with more 
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significant erosion is located at 73 and 200 meters downstream and are associated with 

cross-stream wood pieces that have created small scour pools. The riffle between 120 – 

130 meters downstream experienced approximately 20 cm of erosion, which would 

account for the higher than normal deposition in the pool immediately downstream. The 

planform position of the thalweg in Figure 17 remained consistent apart from a few large 

deviations. At 30 – 40 meters downstream, the thalweg shifted 3.5 meters toward the left 

bank. This location is the former confluence of Granite Boulder Creek with the north 

channel, and a portion of the dredge channel was kept intact as a backwater habitat site. 

The riffle upstream of this pool enters the pool on a wider fan of sediment; in 2012, the 

main flow over the fan was toward the right bank and in 2013, the flow had migrated 

across to the left bank side of the fan. These data are also subject to the same uncertainty 

and minimum level of detection as the cross-section data, but these data show more 

measurable change with only 13% of the length of the profile falling below the minimum 

level of detection. 

 The SfM results provide context for the cross sectional and longitudinal results as 

well as spatial information beyond the narrow focus of the GPS survey. Several problems 

arose in the processing of the SfM data, which can be corrected in future surveys, but 

they had an effect on the data quality and can be seen in the results. The photoset from 

2012 contained too many photos, resulting in long processing times, and the divergent 

geometry caused errors during the alignment step in Photoscan. I was able to fix a 

majority of the alignment problems through a labor-intensive process aligning small 

groups of photos and merging these small groups to complete the reconstructions. From  
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Figure 16: 2012 - 2013 change in the 

five RTK-GPS cross-sections. 
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Figure 17: 2012 - 2013 change in the longitudinal profile elevations (top) and planform 

position of the thalweg (bottom). 

 

the lessons learned in 2012, I took fewer photos and changed to a convergent geometry in 

2013. The 2013 survey approach led to photos with insufficient overlap in many areas of 

the channel and led to inconsistent results in the final dense point clouds. In the 

reconstructions for both years, the moving surface of the water coupled with off-nadir 

viewing angles led to high errors in the point cloud in wetted portions of the channel. The 

high error in the wetted areas led to blank areas or noisy data that did not reflect the 

actual topography or bathymetry. 

 At all five cross-section the SfM results resemble the GPS results (Figure 18 and 

Figure 19), however, SfM orthophotos and M3C2 difference maps give a broader 

perspective beyond the narrow slice of the cross-sections. The erosion along the right 

bank below the middle channel-spanning log surrounding XS 1 (Figure 20) shows a 

similar pattern to the GPS cross-section data. The GPS data shows an aggraded bed, 
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which is confirmed by a small mid-channel bar that formed in between the middle and 

upper log structures and the widening of the channel in 2013. At XS 2 (Figure 21), the 

M3C2 difference map shows erosion on the left bank at XS 2 and upstream while there is 

a small amount of deposition on the right bank. Downstream of XS 2, the log structure 

appears to have trapped sediment on its upstream side and caused erosion on the 

downstream end. The in-channel logs upstream of XS 3 (Figure 22) have also caused 

some significant change to the downstream channel. The changes at the cross section 

reflect the shift from a narrow riffle in 2012 to a much wider channel, with the erosion 

along the right bank. The shift to the right bank gave rise to a bar on the left bank just 

downstream of the logs and a slight change in the thalweg. In between the two logs, there 

were changes caused when two Carex nudata (torrent sedge) tussocks planted in stream 

became dislodged. The stream washed away the downstream tussock and shifted the 

upstream one about 0.5 meters. The changes at XS 4 (Figure 23) were small; the in-

channel changes in the profile appear to be from several cobbles exposed in 2012 and 

redistributed by 2013. The left bank of the GPS profile for XS 4 has the appearance of 

deposition high up on the bank. I plotted the sample points on the SfM data and found 

that this was the result of a sampling error on the log structure on that bank, caused 

because the 2012 data contained an extra point in between two of the logs. Unfortunately, 

where XS 5 crosses the stream the SfM difference data are incomplete, but in this section 

of the stream the high banks are made of cohesive clay soils and I was not expecting 

much change in this portion of the river. The other changes in the XS 4/XS 5 sections 

were changes in bar sediment at the left bank bar in the middle of the log structure and 

the right bank bar downstream of XS5. 
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Figure 18: SfM - GPS cross section comparisons for XS 1, XS 2, and XS 3. 
 

Discussion 

 One year after construction, the newly constructed channel for Granite Boulder 

Creek is already showing some signs of change. I did not expect any major changes in the 

channel because the winter snowpack was below average and there were no spring flood 

events. Most of change appears to be minor, focused in the surficial bed and bank 

sediments as the stream adjusts to its new channel. Beyond the geomorphic aspects of the 

stream, the SfM orthophotos provide important information on monitoring the riparian 
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Figure 19: SfM - GPS cross section comparisons for XS 4 and XS 5. 

 

vegetation planted as part of the channel construction. In the areas surrounding the cross-

sections, the grasses and sedges along the channel were actively establishing while some 

of the woody plantings, mainly Alder shrubs, were less successful. 

 The repeat GPS cross-sections and longitudinal profiles provided a narrow, 

simplified view of the stream and were an easy way to visualize change. However, 

without context, the results were difficult to interpret and the high uncertainty diminished 

the value of the data. By fusing the GPS data with the SfM photosets, I could provide that 

context and create a map of change beyond the thin slice of the cross section. This 

broader perspective on channel change not only provides site-specific erosion and 

deposition volumes, but also provides a three-dimensional perspective on channel  
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Figure 20: SfM M3C2 difference results for XS 1 with orthophotos for reference. Flow is 
right to left. 

 

hydraulics in newly constructed stream channels. A clear example of this is in the SfM 

data surrounding XS 3 (Figure 22), where the riffle section was constructed as a straight 

conduit between two pools. The effect of the cross-stream wood structure is visible in the 

2013 data. By diverting flow toward the right bank, the wood structure has induced 

erosion along the right bank and promoted bar deposition on the left bank. 
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Figure 21: SfM M3C2 difference results for XS 2 with orthophotos for reference. Flow is 

right to left. 

 

Despite the problems with the SfM surveys, the method still has a lot of promise 

as a low-cost option for three-dimensional geomorphic monitoring of small streams like 

Granite Boulder Creek. With several refinements to the survey methodology, from the 

lessons learned in this study and potential additions from other research, it is possible to  
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Figure 22: SfM M3C2 difference results for XS 3 with orthophotos for reference. Flow is 
right to left. 

 

improve the quality and accuracy of the results. The first improvement would be in the 

ground control used to georeference the SfM reconstructions; the seven-meter spacing of 

the targets in this study was too far apart to make smaller sections for more efficient 

processing. The distance between targets also meant that they were all needed for 

calibration and none could be held back for validation purposes. My use of temporary 
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Figure 23: SfM M3C2 difference results for XS 4 and XS 5 with orthophotos for 
reference. Flow is right to left. 

 

targets improves flexibility in their placement, but they do not provide any common 

reference points used to gauge error between the temporal datasets. In future monitoring 

studies, I would recommend monumenting several permanent ground control locations on 

the banks of the channel and supplementing these permanent ground control points with 

additional temporary targets with spacing of two meters or less. 
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 The second improvement is change to the SfM survey pattern. Every SfM survey 

location is going to have its peculiarities that will require special considerations to 

achieve the best coverage. The two most important aspects in any SfM survey are large 

overlaps between photos and convergent camera geometry (Fonstad et al., 2013; James 

and Robson, 2014; Westoby et al., 2012). The platform for photography is an important 

consideration that will determine the survey pattern. Hand-held or pole photography are 

the lowest cost options for collecting imagery; hand-held is the most efficient option for 

small areas (100 – 102 m2 ) and can be done quickly, while pole photography, with its 

increased field of view, helps speed up surveys of larger areas. Another option for SfM 

surveys are low altitude aerial platforms like tethered balloons or unmanned aerial 

vehicles/systems (UAV or UAS, fixed-wing or rotorcraft). These platforms afford an 

even larger field of view, but the cost and training requirements can put these platforms 

out of the reach for many researchers. For small streams, I would recommend the pole 

photography platform and a photography pattern that includes both bank and in stream 

photo locations to ensure the broadest possible coverage. 

 Being able to extract water depths and stream bathymetry would also increase the 

usefulness of SfM surveys. Unfortunately, the multi-view nature of SfM and the 

characteristics of water restrict SfM’s ability to measure accurately the bathymetry. The 

movement, aeration, suspended sediment, and bidirectional reflectance of water all 

change in between photographs, making it difficult for the algorithms to find matching 

features in multiple photographs. This leads the software to reject most in-water points 

because they do not meet the threshold for accuracy to be included in the final model. 

Some successful research has been done in this area by Woodget et al. (2014) using nadir 
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photography from a UAV, but more research and validation needs to be done for other 

platforms and fluvial environments. At present, the most efficient option to capture both 

topography and bathymetry is the combined use of SfM for the above water portions and 

GPS/total station surveys for underwater portions. 

Conclusions 

 In this research, I have demonstrated that SfM has potential to be a low-cost tool 

for stream restoration monitoring. The high spatial resolution of SfM is able to provide 

data on the small scale changes that occur in the short-term and the spatially continuous 

perspective is able to capture the variability in the system. However, because of the youth 

of the method more research is needed on the optimal number and spacing of ground 

control points, the best survey patterns and platforms, and the possibility of extracting 

bathymetry from the images and point clouds. With these improvements, SfM paired with 

GPS surveys will be an efficient way to collect high-resolution three-dimensional 

datasets for stream restoration projects, providing a broader perspective on change. 

Granite Boulder Creek has shown some minor channel and vegetation changes in 

the first year since its restoration. The changes are visible throughout the new channel 

and relate to surficial changes in bed and bank sediments. These first year data are an 

important baseline for future monitoring and management activities in this part of the 

Middle Fork. In the future, joining these data with other geomorphic and ecologic 

monitoring data collected in the larger restoration project of the dredge mined portion of 

the Middle Fork will provide a comprehensive view of the progress toward the 

restoration project goals. 
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CHAPTER IV 

SUB-METER REMOTE SENSING FOR RIVERSCAPE MAPPING WITH 

HELICOPTER-BASED STRUCTURE-FROM-MOTION PHOTOGRAMMETRY 

 

Introduction 

 Remote sensing has proven to be an invaluable tool for river research giving 

researchers the opportunity to collect spatially continuous datasets of key river 

morphologic variables (i.e. width, depth, bed sediment size) at high spatial resolutions 

over entire river basins (Carbonneau et al., 2012; Fonstad and Marcus, 2010). Some 

studies have focused on continental scale mapping with satellite imagery (Yamazaki et 

al., 2014) and others have used aerial photography to map grain size distributions 

(Dugdale et al., 2010). These measured morphologic variables, along with other derived 

hydraulic variables, can be used to produce detailed spatially continuous maps of the 

physical structure of rivers that can be used to study both geomorphology and lotic 

habitats, creating a holistic view of the riverscape (Carbonneau et al., 2012; Fausch et al., 

2002). Collecting imagery and elevation data for this type of mapping can be an 

expensive endeavor, especially over large areas. New developments in computer vision-

based Structure-from-Motion multi-view stereo photogrammetry (SfM or SfM-MVS) 

have made the collection of high-quality elevation data and accurate orthophotographs 

easily obtainable for anyone with a high-quality GPS and a modest digital camera 

(Fonstad et al., 2013; James and Robson, 2012; Javernick et al., 2014). 

The Middle Fork John Day River (hereafter the Middle Fork) has been designated 

as critical habitat in the Columbia River system for Chinook salmon (Oncorhynchus 
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tshawytscha), steelhead (Oncorhynchus mykiss), and bull trout (Salvelinus confluentus) 

(NOAA, 2005; U.S. Fish & Wildlife Service, 2010). However, humans have affected this 

critical habitat in the Middle Fork over the past 200 years with channel modifications, 

cattle grazing, and placer mining. Over the last 20 years, conservation-minded 

landowners have purchased large portions of land in the upper portion of the basin and 

have begun to rehabilitate and restore the river in order to improve instream habitat.  

 The goals of this study were twofold. The first objective was to collect aerial 

photography with a helicopter-mounted digital SLR camera and process it with SfM to 

create high-resolution orthophotographs and digital elevation models (DEMs) for a 32-

km segment of the Middle Fork John Day River. The second goal of the study was to 

extract spatially continuous datasets of river morphology from the SfM data and examine 

the current downstream patterns in channel morphology, specifically how they relate to 

the imprint of human modification and the effects of those modifications on Chinook 

salmon habitat. 

Background 

 Traditional sampling in rivers has either been done intensively over small areas or 

extensively over large areas with widely spaced measurements. Both of these methods 

have the potential to undersample river environments and miss critical elements of the 

river (Marcus and Fonstad, 2010). By employing remote sensing, researchers are able to 

collect spatially extensive measurements of both primary physical variables (e.g. width, 

depth, slope, and sediment sizes) and secondary hydraulic variables such as velocity and 

stream power (Carbonneau et al., 2012; Carbonneau, 2005; Dugdale et al., 2010; Fonstad 

and Marcus, 2010; Walther et al., 2011). In this study, I will focus on the primary 
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physical variables, specifically the bankfull or active channel width. Bankfull channel 

width is a fundamental variable to describe stream morphology (Andrews, 1982; Faustini 

et al., 2009). Width is an important variable in hydrology and geomorphology because it 

is the basis for determining discharge using the continuity equation (discharge = width × 

depth ×velocity) (Leopold and Maddock, 1953). Width is also one of the major degrees 

of freedom that streams can adjust in response to natural fluctuations in discharge and 

disturbances (Hey and Thorne, 1986; Knighton, 1998; Pizzuto, 2008; Whittaker et al., 

2007). Because width is the most accessible variable in remotely sensed imagery 

(Pavelsky and Smith, 2008), I will be using width as the primary indicator for channel 

morphology.  

Theoretically, the only limiting factor for the scale of these measurements is the 

spatial resolution of the imagery. The measurements can be aggregated to provide 

spatially averaged data at any spatial scale. These multi-scale data are helping challenge 

classic conceptual models of rivers such as downstream hydraulic geometry (Leopold and 

Maddock, 1953) or the river continuum concept (Vannote et al., 1980), which view rivers 

as smooth downstream trends in morphology and energy. These models are being 

replaced with conceptualizations that embrace the heterogeneity of the river as key to 

understanding both geomorphic and ecologic patterns (Carbonneau et al., 2012; Fausch et 

al., 2002; Fonstad and Marcus, 2010; Frissell et al., 1986; Montgomery and Buffington, 

1998; Poole, 2002; Ward and Stanford, 1995). 

The Middle Fork, like many montane rivers, is also complicated by the mixed 

alluvial and bedrock channel substrates that can interrupt any downstream trends and lead 

to changes in channel morphology that are independent of larger variables like drainage 
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area (McDowell, 2001). The main human influences in the Middle Fork valley have been 

cattle grazing in the floodplain and riparian zones, channel modification to accommodate 

grazing, water diversion for irrigation, and placer mining in the channel. Grazing along 

the Middle Fork has resulted in a reduction of riparian vegetation and in some areas bank 

erosion caused by trampling, which is consistent with previous studies on the impact of 

grazing on river channels (Magilligan and McDowell, 1997; Marston et al., 1995; 

Trimble and Mendel, 1995). Channel modification reduces meandering and habitat 

diversity while increasing velocities and altering sediment transport (Korpak, 2007). 

Irrigation diversions affect instream flows, which have a negative effect on sediment 

transport and aquatic habitat (Angelaki and Harbor, 1995; Richards and Wood, 1977; 

Ryan, 1997). Placer mining causes a complete reconfiguration of the valley and channel, 

which affects the entire local river system, but also alters the sediment and water supply 

to downstream reaches (Graf, 2000; Kondolf, 1994, 1997; Kondolf and Larson, 1995). 

While photogrammetry is not a new tool in the remote sensing of rivers toolkit 

(Lane et al., 1994, 2003), the recent introduction of SfM photogrammetry has given 

researchers new opportunities to collect aerial imagery and create highly detailed digital 

elevation models at far lower costs than traditional aerial photo collection methods. SfM 

has already proven to be useful in rivers at a variety of spatial scales from smaller areas 

of tens and hundreds of meters (Fonstad et al., 2013; Woodget et al., 2014) to kilometers 

(Javernick et al., 2014). The original algorithms for SfM were developed in the field of 

computer vision in the 1970s (Ullman, 1979) and the newest iterations were synthesized 

in the late 2000s (Agarwal et al., 2009; Snavely et al., 2007). SfM provides an alternative 

to traditional photogrammetry because it can be done with an off the shelf digital camera 
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and there are fewer requirements for the number of ground control points needed for the 

final reconstruction (Fonstad et al., 2013; James and Robson, 2012; Javernick et al., 

2014; Westoby et al., 2012). SfM is able to do this by using multiple camera views to 

increase the accuracy of photogrammetrically derived three-dimensional points that result 

in a dense three-dimensional point cloud dataset, not unlike an aerial or terrestrial LiDAR 

dataset. By converting the point clouds into TIN or raster digital elevation models 

(DEMs), the input photographs can then be mosaicked and orthorectified to the DEM.  

Study Area 

 I performed this research on the Middle Fork of the John Day River, in eastern 

Oregon, USA. The segment of interest is in the upper portion of the basin and covers 32 

river kilometers from Bates State Park downstream to 700 m below the USGS stream 

gauge above the confluence with Camp Creek (Figure 24). The Middle Fork is one of 

three main branches of the John Day River, which drains to the Columbia River. To aid 

in the analysis and discussion, I divided the river into eleven segments based on land use 

and valley width. Major tributary junctions act as boundaries, appearing in Figure 24, 

with specific details for each segment outlined in Table 7 and Table 8.  

Euro-American settlement in the area started in the mid-1800s. The Middle Fork 

watershed has been subject to a range of human impacts in that time. Beginning in the 

late 1800s, cattle ranchers used the valleys as summer pasture. The primary effects of 

ranching have been a reduction in riparian vegetation, channel straightening, water 

diversion for irrigation, and bank trampling by cattle. Logging led to the establishment of 

a mill at the upper end of the study area, at Bates State Park, and the extension of a 

railroad spur down the valley. One of the most dramatic impacts on the river was placer  
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Figure 24: Map of the upper Middle Fork John Day River, with study area highlighted by 

the labeled river segments. 

 

gold mining operations that used dredges to overturn the valley floor sediment for gold 

extraction. Mining in the basin has been ongoing since the 1860’s, but the primary 

dredging operations operated in the late 1930’s – 1940’s along the middle of the study 

area, section E, around Granite Boulder Creek. 

The Middle Fork is home to populations of anadromous fish, Chinook 

(Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss). Steelhead along with 

bull trout (Salvelinus confluentus) are listed as threatened under the Endangered Species 

Act, while Chinook in the Middle Fork are listed as a species of concern. The Middle 

Fork, and the entire John Day River system, has been critical habitat for the anadromous 

species because there are no barriers to fish passage after the three lower dams on the 

Columbia River. The critical habitat designation has led a significant effort to rehabilitate 

and restore the Middle Fork to improve fish habitat for all life stages. The restoration 
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activities have included riparian plantings to improve shading of the river, the installation 

of large wood structures to increase habitat in pools, and channel construction to reverse 

the effects of channel straightening and dredge mining.  

The geology of the area is volcanic bedrock, including Miocene basaltic-andesites 

of the Strawberry Volcanics at the higher elevations and mixed Eocene basaltic flows, 

tuffs, and conglomerates of the Clarno Formation at the lower elevations (Ferns and 

Brooks, 1995; Jett, 1998). The hillslope vegetation is predominantly Ponderosa pine 

forest, while grass meadows cover the valley floodplains. The riparian vegetation consists 

of mainly grasses and sedges with sparse woody vegetation. Throughout the study area, 

there are clumps of in-channel vegetation that primarily are Carex nudata, or torrent 

sedge, that can form significant obstacles to flow, especially at lower flows. The 

hydrology of the Middle Fork mirrors many rivers of the Mountain West of the USA with 

peak flows coinciding with spring snowmelt in late April to early May and low flows 

corresponding to the dryer summer months, August and September. At the USGS gauge 

above Camp Creek, peak flows average 30 cms and low flows average 0.5 cms. 

 

Data and Methods 

Aerial Photography Collection 

I collected aerial photography for this research on August 13, 2013 using a Canon T5i 

digital SLR flown on a Robinson R44 Raven helicopter (Figure 25). The camera was 

mounted in a nadir position within the helicopter’s cargo box using a vibration isolation 

mount to reduce the effect of aircraft vibration on image quality. A Garmin GPSMAP60 

CSx handheld GNSS receiver recorded the camera’s approximate location during the 
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Table 7: River segment details. Segments are mapped in Figure 24. 

Segment 

Length 

(km) 

Drainage Area 

at Downstream 

Boundary (km2) 

Downstream 

Boundary Valley Type 

Channel 

Type 

A 2.44 345 Vinegar Cr. Intermediate Riffle/Pool 

B 4.50 404 Caribou Cr. Wide Riffle/Pool 

C 7.19 462 Tin Cup Cr. Narrow 

Mixed – 

Riffle Pool, 

Plane bed 

D 1.78 467 Butte Cr. Wide Riffle/Pool 

E 3.01 538 Beaver Cr. Wide Riffle/Pool 

F 4.79 579 
Big Boulder 

Cr. 

Wide to 

Narrow 

Mixed – 

Riffle Pool, 

Plane bed 

G 3.31 640 Coyote Cr Mixed Riffle/Pool 

H 4.90 667 Camp Cr. Wide Riffle/Pool 

I 0.38 829 - Narrow Plane bed 

 

Table 8: River segment detail, continued. Human modification codes: CS = channel 

straightening, DM = dredge mining, G = grazing. Restoration activity codes: RP =  

riparian planting, LW = large wood placment, CM = channel modification. Segments are 

mapped in Figure 24. 

Segment 

Present Land 

Ownership Current Land Use 

Human 

Modifications 

Restoration 

Activity 

A State Park Recreation CS None 

B Private Conservation CS, RRG Minor – RP, LW,  

C Nat. Forest 
Recreation / 

Limited grazing 
None None 

D Private Conservation None Minor – LW 

E Private Conservation CS, DM Major – LW, RP 

F 
Private /  

Nat. Forest 

Conservation / 

Limited Grazing 
 Minor – RP, LW 

G Private Conservation CS Minor - LW 

H Private 
Conservation / 

Intense Grazing 
CS, G Minor – RP, LW 

I Nat. Forest Grazing None None 

 

flight. The use of the Garmin was strictly to speed up the processing of the images in was 

strictly to speed up the processing of the images in Photoscan. By geotagging each photo 

with an approximate X, Y, and Z location the software can limit its search for nearby 
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camera locations, reducing the time needed for the image aliment stage of the SfM 

processing. 

The spatial resolution of the imagery and image overlap are two key variables in 

any SfM survey. Higher spatial resolutions allow for higher point cloud precision and 

because SfM is a multi-view photogrammetric process, a minimum of 60% overlap in the 

imagery is needed to guarantee at least four different perspectives of any area in the  

imagery (Fonstad et al., 2013; James and Robson, 2012). For this study, I planned for a 

ground resolution of 5 cm; to achieve this the helicopter flew at an altitude of 200 m 

above ground level (AGL). To acquire the required 60% forwardlap in the images, the 

helicopter flew at 25 knots (12.8 ms-1) and an intervelometer triggered the camera shutter 

to capture images at four-second intervals. For narrow valley sections, the flight plan 

Figure 25: Helicopter aerial photography setup. Canon T5i in the vibration-isolating 

mount with GPS and intervelometer (upper left). Robinson R44 helicopter at takeoff 

(upper right). Examples of ground control targets, 1-meter tarps (lower left) and roadside 

painted targets (lower right). 
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consisted of a single line of photographs that followed the river, while the wider valley 

sections used flight lines that covered the ground area with 60% sidelap. The flight time 

was approximately 2.5 hours at a total cost of $1,300 USD. 

A series of 66 ground control targets were laid out throughout the study area, 

which were used as ground control for the imagery. The points were marked with 

marking paint on roadsides (18 points) or with 2-meter blue tarp targets (48 points) 

(Figure 25). I recorded the coordinates for each point using a Trimble GeoXH GNSS 

receiver with an external antenna. I performed a differential correction on all of the points 

to achieve decimeter (<20cm) average error. This portion of the Middle Fork valley does 

not have a suitable network of previously surveyed benchmarks or control points, 

severely limiting the use of an RTK GNSS system. Performing the necessary static 

occupations to establish a network of accurate control points for an RTK survey was 

outside the scope of this research. 

I processed the photos with AgiSoft Photoscan Professional (Version 1.4). The 

processing steps included the initial sparse reconstruction, applying ground control to the 

sparse reconstruction, optimizing the photo locations/sparse reconstruction, dense 

reconstruction, TIN surfacing, DEM, and orthophotograph generation. The flight 

produced 1,483 photographs. By grouping the photos into sets of 200 to 400 photos, it 

was possible to facilitate processing within the memory limitations of the computer. The 

image groups roughly corresponded to changes in the valley morphology.  

Because SfM is an emerging technique, it is important to assess both the 

horizontal and vertical accuracy, as well as the uncertainty in the resulting DEMs and 

orthophotographs. By using the adjusted root mean square error, it was possible to 
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measure the horizontal accuracy, while calculating horizontal uncertainty by the standard 

deviation of the error distribution of the control points versus their location in the SfM 

reconstructions. Measuring vertical accuracy and uncertainty in relation to a 2008 LiDAR 

dataset, which produced a spatially extensive accuracy assessment, enabled the use of all 

the ground control points for calibration. 

Riverscape Data Extraction and Analysis 

 By using both manual and automated GIS methods on the SfM orthophotographs, 

SfM DEMs, and a 2008 LiDAR survey, it was possible to extract river data. Hand 

digitizing of the SfM orthophotographs produced the major geomorphic units of the river, 

which include the wetted channel, active channel (an approximation of bankfull), bars, 

islands, and in-channel vegetation. The basis for the downstream measurements were the 

active channel’s geometric centerline, which was extracted by using a skeletonization 

algorithm applied to the active channel boundary (Haunert and Sester, 2008). A Savitzky-

Golay filter (Legleiter and Kyriakidis, 2006) was applied to the centerline to smooth the 

line and remove angular joints that did not accurately follow the natural curvature of the 

channel. By using an automated routine to plot perpendicular cross-sections at 3- meter 

intervals along the centerline, it was possible to extract cross-sectional information, with 

any overlapping cross-section lines edited to create a continuous dataset of spatially 

unique samples. Intersecting these cross-sections with the digitized channel polygons 

produced cross-sectional width data. This permitted the conversion of the cross-section 

lines to point features at the intersection of the cross-section and the centerline. The point 

features created a master dataset at 3-meter increments used for later downstream 

comparisons.  
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Valley cross-sections were created at 100 meters intervals along the centerline to 

avoid them crossing each other. To calculate width, I intersected the larger cross-sections 

with the valley floor and floodplain polygons. Interpolating the resulting widths allowed 

me to add valley width measurements to each downstream sample point. The drainage 

area for each downstream sample point was calculated using a flow accumulation 

algorithm and the 1/3 arc second National Elevation Dataset for the Middle Fork John 

Day Basin. The 2008 LiDAR raster datasets provided the elevations for each point. 

Several categorical variables were manually added to the sample points using the SfM 

orthophotographs as reference: channel units (riffle/pool/glide), land ownership, grazing 

intensity, presence of restoration activity, affected by dredge mining, and underlying 

geology. The minimum mapping unit for these variables was one sample point, or 

approximately 6 meters. I classified channel units visually, guided by my field 

observations of the different channel segments. Areas of consistent white water were 

classified as riffles, calm water was classified as pools, and areas of intermittent white 

water were classified as glides.  

By using this initial variable set, additional derived variables were then 

calculated. Accurate downstream distances were obtained by transforming the XY 

coordinates of the sample points to a stream normal coordinate system (Legleiter and 

Kyriakidis, 2006). Channel slopes were calculated using the LiDAR elevations and a 

custom moving window mean filter removed areas in the LiDAR data that resulted in 

negative (uphill) slopes. Discharge at all points was estimated using regional low-flow 

regression equations for the annual fifth percentile (Eq. 3) (Risley et al., 2008). 

 𝑄𝑃5 = 1.05437 ∙ 10−2.4832 ∙ 𝐷𝐴0.9304 ∙ 𝑃2.1271 (3) 
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Where DA is the drainage area (sq. miles) at each sample point, P is the basin averaged 

mean annual precipitation (inches), SP is the soil permeability (in/hour), XS is the 

maximum slope in the basin, and F is the percent forest cover in the basin. All of the 

variables except drainage area were taken from the USGS StreamStats program (U.S. 

Geological Survey, 2012). While these regional regression equations provide estimates of 

discharge, at low flows the basin-averaged variables provide a smoothly varying 

discharge that may not account for gains or losses in discharge from hyporheic flow that 

may not be suitable for this type of site specific study. (Risley et al., 2008).  

 Extracting stream depth from the spectral information in the SfM 

orthophotographs (Carbonneau et al., 2012; Fonstad and Marcus, 2010; Legleiter and 

Fonstad, 2012) was one of the goals of this project. Unfortunately, the radiometric 

resolution, water turbidity, and image exposure were not conducive to using spectral 

depth techniques. In place of actual depths, average depths were estimated using an 

inverted form of Manning’s equation, substituting Manning’s n with Jarret’s n (Jarrett, 

1984; Marcus et al., 1992) and replacing the hydraulic radius with average depth: 

 𝑄 = 𝐴 ∙ 𝑣 
(4) 
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In Eq. 4-8, Q is discharge (cms), A is the cross-sectional area of the channel (m2), v is the 

average velocity (m/s), w is the cross-section width (m), d is the average depth (m), n is 

roughness (Jarret’s n in this case), and S is the channel slope. Average depths for the each 

sample point were calculated for both the annual fifth percentile (P5) discharge from the 

regional regression equations (Eq. 3).  

 Pairing depth and discharge with the other variables, I was able to calculate a 

number of additional hydraulic equations, assuming steady state flow, to get estimates of 

velocity (v, m/s) (Eq. 9), unit stream power (Ω, W/m2) (Eq. 10), Froude number (F) (Eq. 

11), and shear stress (τ, kg/m·s2) (Eq. 12) with the following equations: 

 
𝑣 =  

𝑄

𝐴
 (9) 

 
Ω =

𝜌𝑔𝑆𝑄

𝑤
 (10) 

 𝐹 =  
𝑣

√𝑔𝑑
 (41) 

 𝜏 =  𝜌𝑔𝑑𝑆 (12) 

For Eq. 9 – 12 Q is the regional regression discharge (cms), A is the cross-sectional area 

(m2), ρ is the density of water, g is the acceleration of gravity (m/s2), S is the channel 

slope, w is the cross-sectional width, and d is the estimated depth from Eq. 8. 

By creating boxplots of the grouped categorical variables, I examined 

relationships between several of the river variables and the geomorphic and land use 

variables. These boxplots help establish broad relationships across the whole study area. 

 To analyze the downstream patterns in active channel width of the study area, I 

employed hyperscale graphs (Carbonneau et al., 2012; Fonstad and Marcus, 2010). These 

pyramidal graphs illustrate statistical relationships of two river variables across multiple 



71 

spatial scales. For this analysis, I examined the correlation between pairs of variables 

using the Pearson correlation coefficient. This statistical test shows the strength of the 

linear relationship between the two variables and allows for a test of significance, in this 

case, testing for statistical significance at a 99% confidence interval (p=0.1). These 

graphs achieve this multi-scalar view by utilizing a moving window to calculate the 

statistical relationships for each of the different scales. For example, the very top of the 

pyramid represents the correlation coefficient for the entire dataset (for this dataset, n = 

10,776). The next row of the pyramid has window size of n = 10,774 and continues to the 

bottom row, which has a window size of n = 2. This type of analysis can illustrate 

patterns not always visible with other types of reach or segment scale analysis.  

Habitat Mapping 

All of these hydrologic variables can be used as indicators of geomorphic patterns 

in the river; however, we can take these data and apply them to questions about the river 

beyond geomorphology. One potential application is using these data as the basis for 

spatial continuous habitat maps for fish or other lotic species. The Middle Fork John Day 

River provides important habitat for populations of spring run Chinook salmon and 

summer Steelhead. By using the extracted and derived geomorphic variables, it is 

possible to calculate a habitat suitability index (HSI) for adult migrating Chinook. One 

such index was published by Raleigh et al. (1986) and included five habitat variables for 

adult migrating chinook on a scale of 0 to 1: water pH, water temperature, dissolved 

oxygen, percent pools, and a measure of pool quality (width/depth ratio). The water pH, 

temperature, and dissolved oxygen are important physiological requirements for fish, but 

for this example, the assumption is that these variables are within normal ranges and 
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would have an HSI value of one. Pools are an important habitat requirement for 

migrating Chinook because they provide cool, lower velocity areas for fish to hold and 

rest as they migrate to spawning sites (Raleigh et al., 1986) . Percent pools was calculated 

by averaging the length of the river classified as pools over a one-kilometer moving 

window, 500 meters upstream and 500 meters downstream, for each sample point along 

the river centerline. Pools were classified by their width/depth ratio (active channel width 

and derived depths for the P5 discharge) and the dominant pool class in each one-

kilometer moving window determined the HSI value. The HSI values for percent pools 

and pool class were assigned based on the linear functions outlined by Raleigh et al. 

(1986). Calculating the mean HSI value for the five habitat components identified the 

overall HSI for each sample point.  

Results 

Aerial Photography 

 The flight collected 1,483 photographs, all of which were within the target ground 

resolution of 5 to 7 cm per pixel. The planned flight lines and camera timing provided 

sufficient forwadlap and sidelap for a SfM reconstruction with only a few small gaps in 

the coverage. The seven sections of photographs took approximately 60 hours to process 

through the Photoscan workflow to the orthophoto and DEM outputs. Of the 60 hours, 

approximately 20 hours required direct interaction and 40 hours of unattended processing 

time. The output datasets had uniform pixel resolutions of 10 cm that accounted for the 

effects of the mosaicing and orthorectification processes in Photoscan (  

Figure 26 and Figure 27). 
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The SfM orthophoto results were excellent, with sufficient resolution to identify 

individual logs in engineered logjams along the river, but too coarse to identify sediment 

sizes (Dugdale et al., 2010). The exceptions were in a few areas where the helicopter 

drifted from its flight lines and created gaps in the photo coverage (Figure 28). Most of 

these gaps were in the floodplain areas of the valleys, so there was little impact on river 

data extraction. Two small areas (less than 10 meters each) in the narrow canyon sections 

had additional gaps in the photo coverage. I filled the resulting gaps with data from the 

2008 NAIP orthophotos. The orthorectification and mosaicking process created artifacts 

in several locations (Figure 28) that resulted in blurry or noisy sections of the 

orthophotos. These areas only slightly affected the visual interpretation of the imagery 

and likely were the result of an incomplete and noisy DEM underlying the orthophotos.  

 

  
Figure 26: Sample orthophotograph located in segment E. The Middle Fork is at the 

bottom of the photo and tributary is the recently reconstructed Granite Boulder Creek. 

Flow is right to left. 
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Figure 27: Sample DEM of the same area as Figure 3. 

 

 
Figure 28: Examples of the effects of missing photo coverage (left) and orthorectification 

artifacts (right). 
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The accuracy of the georeferencing of the SfM data was excellent (Table 9), with 

sub-centimeter scale mean absolute errors (MAE) in all three axes and centimeter scale 

uncertainties (RMSE and standard deviations). These statistics do not include the raw 

errors and uncertainties from the GPS points (Table 9). The post-processed GPS points 

had mean absolute errors of 17.5 cm horizontal and 29.3 cm vertical. The errors in the 

GPS points ranged from 10 cm to more than a meter in both horizontal and vertical 

directions. 

Table 9: Error, accuracy, and uncertainty for SfM georeferencing (top) and the post-

processed GPS points (bottom). All values are in meters. 

SfM X Error Y Error Z Error 

Mean Absolute Error 5.85 × 10-5 1.56 × 10-5 5.34 × 10-5 

Standard Deviation 0.016 0.026 0.017 

RMSE 0.014 0.018 0.015 

Minimum Error -0.035 -0.095 -0.075 

Maximum Error 0.063 0.086 0.061 

   

GPS Horz Vert  

Mean Absolute Error 0.175 0.293  

Standard Deviation 0.183 0.198  

RMSE 0.252 0.354  

Minimum Error 0.100 0.100  

Maximum Error 1.200 1.100  

 

 The SfM-derived DEMs at first glance were extremely detailed and precise, but 

on closer inspection, it was apparent the accuracy of the elevation data was outside an 

acceptable error range when compared to LiDAR data. The most serious problem was a 

systematic error in the DEMs, discovered by comparing the SfM data to a 2008 LiDAR 

survey. An example of this systematic error, an alternating pattern of positive and 

negative differences, is visible along the valley floor in Figure 29. The error in the 

elevation values can be attributed to two factors, the orientation of the photos along the 
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flight lines and the imprecision in the vertical component of the GPS control points. 

James and Robson (2014) have shown that systematic error in SfM similar to this can be 

the result of the parallel geometry of photographs along the flight lines. This parallel 

geometry allows the SfM algorithms to accumulate error from radial lens distortions, 

affecting the accuracy of the reconstruction. The imprecision in the GPS elevations of the 

ground control points (Table 9) contributed to the overall error in the DEMs. The error in 

individual GPS points was not systematic, leading to the conclusion that these errors 

affected the overall accuracy of the SfM DEMs but not in a quantifiable way that could 

be separated from the systematic errors created by parallel geometry. Two other problems 

affected the vertical accuracy of the DEMs: errors where photo overlap was low, and 

inconsistency in capturing vegetation. Low overlap and incomplete coverage have the 

effect of creating abrupt edges in the DEMs, creating a stair-step pattern in the DEM that 

is visible in the left side of Figure 29. While some researchers have had success mapping 

vegetation with SfM (Dandois and Ellis, 2013; Mathews and Jensen, 2013), I found that 

the DEMs did not consistently reflect accurate vegetation heights. In one area along the 

riparian corridor of a tributary, the DEM contained a dense stand of Alder bushes 1-2 

meters tall, but adjacent 15-20 meter conifers were absent from the DEM. 

Riverscape Mapping 

 The primary and derived data for all 10,776 sample points are plotted in Figure 30 

and Figure 31. The largely automated process produced reliable data with no obvious 

outliers or anomalous results and the conversion of the data to a stream normal coordinate 

system greatly simplified the processing and display of the data. Because the level of 

uncertainty in the derived datasets (depth, stream power, velocity, Froude number) is  
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Figure 29: Map of SfM - LiDAR differences showing systematic errors in the SfM data 

from the parallel camera geometry and abrupt edges from incomplete coverage. Flow is 

right to left. 

 

high, they are purely exploratory in this study. 

 Aggregating the data using the classified variables eliminated some of the noise 

from the plots of the downstream variables shown in Figure 30. Figure 32 shows the 

active channel width distributions of each of the nine segments of the river. Most 

segments exhibit a long-tailed distribution, but the median values show increased active 

channel width with downstream distance. The distributions of active channel widths 

across the three channel units (Figure 33) also exhibit long-tailed distributions, but there 

are only small differences in the median values. The influence of the underlying geology 

on both active channel width (Figure 34) and valley width (Figure 35) are seen with the 

weaker rocks of the Clarno formation giving rise to wider channels and valleys. Current 

cattle grazing intensity (Figure 36) illustrates that intensely grazed segments have wider  
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Figure 30: Primary morphologic variables for the study area. Dotted lines represent river 
segment breaks, labels are at the top. 

 

active channels than those with moderate or no grazing. The amount of stream restoration 

(Figure 37) does not seem to influence channel width. 

 Hyperscale graphs help explore the relationships between active channel widths 

and variables such as downstream distance, slope, and valley width. Active channel width 

versus downstream distance (Figure 38) is an illustration of downstream hydraulic 

geometry. At the larger spatial scales, above an 18 km window, width and downstream  



79 

 
Figure 31: Derived hydrologic variables for the study area. Dotted lines represent river 
segment breaks, labels are at the top. 

 

distance show a moderate positive correlation. Below the 18 km window, the pattern of 

correlations becomes more complex, with both positive and negative correlation 

coefficients showing that there may be other factors contributing to width. In Figure 39, 

active channel width versus slope shows no to very weak positive correlations at the 

larger and intermediate scales, while at the local scale, 1 km or less, there are stronger 

relationships with width. The relationship between active channel width and valley width  
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Figure 32: Boxplot of the distribution of active channel widths for each river segment. 

shows a weak negative correlation throughout most scales (Figure 40). In this graph, we 

can see a pattern reflecting the alternating wide and narrow valleys in the 2 to 4 km range 

because of the alternating positive and negative correlation values. 

Habitat 

 The average habitat suitability index values for adult migrating Chinook salmon 

(Figure 41) range from 0.82 to 0.92, with a majority of the river falling in the upper end 

of the range. The spatial pattern of suitability shows that there are large segments of the 

river that provide excellent habitat, which are punctuated with short sections that are less 

suitable and could act as impediments to upstream migration. 
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Figure 33: Boxplot of active channel widths for each of the classified channel units. N-

values are the number of samples in each class (total = 10,776). 

 
Figure 34: Boxplot of active channel widths for the different bedrock geologies. N-values 

are the number of samples in each class (total = 10,776) 
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Figure 35: Boxplot of the distributions of valley widths for the different bedrock 
geologies. N-values are the number of samples in each class (total = 10,776) 

 
Figure 36: Boxplot of the distributions of active channel widths for each of the current 

cattle grazing intensities. N-values are the number of samples in each class (total = 

10,776) 
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Figure 37: Boxplot of the distribution of active channel widths for the different river 
restoration treatments. N-values are the number of samples in each class (total = 10,776) 

 

Discussion 

Aerial Photography 

One planned dataset was the extraction of bathymetric data, either by direct SfM 

measurements (Woodget et al., 2014) or spectral depth mapping techniques (Legleiter 

and Fonstad, 2012; Marcus and Fonstad, 2008; Walther et al., 2011). The SfM elevations 

in the river did not match depth data measured at several cross sections throughout the 

study area, making the dataset unusable. Instead, I used the cross section data to create 

color-depth regression curves for several band ratio combinations, but none of these 

regressions had adequate fits to enable spectral depth mapping. I can attribute the failure 

of both of these methods partly to the shutter speed, water turbidity, and the radiometric 

resolution of the camera. The shutter speed (1/800 second) was optimized to produce  
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Figure 38: Hyperscale graph of Pearson correlation coefficients of active channel width 

as a function of downstream distance. White areas within the triangle are portions of the 

analysis that did not meet the significance criteria (p = 0.05). 

 

evenly exposed images that balanced the brighter areas, like dry flood plain vegetation, 

and darker areas, such as conifers, water, and shadows. A slower shutter speed would 

shift the exposure to better capture the darker areas but increase the risk of over exposing 

brighter areas. To conserve disk space on the camera for the two-hour flight, the 

photographs were captured in JPEG format with 8-bit radiometric resolution (256 shades 

of gray per band), which limits the camera’s ability to capture the true dynamic range of 

the scene. In principle, to increase the radiometric resolution I could have saved the 

images as RAW format images, though this could have led to memory issues in 

collection and processing. On the Canon T5i, the RAW format provides approximately 
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Figure 39: Hyperscale graph of Pearson correlation coefficients of active channel width 
as a function of slope. White areas within the triangle are portions of the analysis that did 

not meet the significance criteria (p = 0.05). 

 

14-bit (16,384 shades of gray per band) radiometric resolution, which could have 

provided more color information over the darker areas on the water and shadowed areas. 

This extra color information may have provided enough color depth to create accurate 

spectral depth regressions, assuming ideal weather and water conditions. 

 Slight modifications to the setup and execution of future aerial photography 

should solve all of the issues with the orthophotos and DEMs, creating better results. To 

remedy coverage gaps and low overlap, I recommend increasing the camera interval and 

using closer flight lines. Collecting RAW imagery could reduce the difficulties with  
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Figure 40: Hyperscale graph of Pearson correlation coefficients of active channel width 

as a function of valley width. White areas within the triangle are portions of the analysis 

that did not meet the significance criteria (p = 0.05). 

 

exposure and more extensive testing could ensure that all aspects scenes have the correct 

exposure. By collecting ground control points with an RTK GPS, it would reduce errors 

in georeferencing. The greatest problem to overcome is the systematic error caused by the 

parallel camera geometry. The simplest solution is to create convergent camera geometry, 

and James and Robson (2014) suggest several solutions to achieve this geometry in small 

unmanned aerial systems. One solution is the use of a single camera mounted in a gimbal 

that can be pointed off-nadir and adjusted to create convergent geometries. Another 

option would be to use multiple off-nadir cameras, which would not only create 

convergent geometry, but also increase coverage and reduce overlap problems. 
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Figure 41: Downstream plot of habitat suitability index (HSI) for upstream migrating 

Chinook salmon. 

 

Riverscape Mapping 

 The heterogeneity of the Middle Fork is apparent in the downstream plots of the 

extracted and derived variables (Figure 30 and Figure 31). With these raw data, it is 

difficult to differentiate the natural variations in the river from those that are the direct 

result of human influence even though we know where to look for them. The one 

exception is the lower portion of segment E, where the active channel width becomes 

very narrow compared to the surrounding channel. This section of the channel is the final 

path of the dredge mining activity that left an almost straight channel about four meters 

wide and approximately two meters deep. This straight section is visible in the plot of 

channel slope, where the rise in slope around 18 km marks the transition from the natural 

channel down into the dredged channel. 

As mentioned in the results, the derived variables of discharge, depth, velocity, 

unit stream power, Froude number, and shear stress, are all approximations, though 
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reasonable, leading to a high level of uncertainty associated with each one. The 

uncertainty in these data originates from the uncertainty in the regional regression 

equation (Eq. 3), which was used in estimating depth (Eq. 8). The depths that the inverted 

Manning’s equation predict do not actually correspond to changes in riffles and pools, 

which probably are a result of the channel units not having a distinct width signature (see 

discussion below). In the equations of the remaining derived variables, discharge and 

depth figure prominently, which propagates the uncertainty into these variables. Despite 

the high uncertainty, these variables are important in understanding the processes and 

form of the river. If the discharge values were validated and depths that are more accurate 

were obtained, these variables could be useful in creating a more complete picture of the 

riverscape. 

The legacy of human impacts on the channel has complicated the riverscape of 

the Middle Fork. Despite these impacts or because of them, there are several definite 

relationships between the distance downstream and classified variables. Comparing the 

active channel widths across the nine different segments in Figure 32, we see the general 

downstream trend of increased width with downstream distance, expected with 

downstream hydraulic geometry. Two areas that to do not fit that general trend are 

segments E and H. Segment E consists of the valley section that has been the focus of 

intense restoration activity in an attempt to rehabilitate the stream from historic dredge 

mining activity. The most recent phase of restoration, completed in the summer of 2012, 

filled in a second channel left by the dredge barge on the north side of the valley bottom. 

The meandering channel on the south side of the valley has not yet adjusted to the 

increased flow, causing the break in the downstream trend. Segments G and H exhibit the 
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largest range of active channel widths seen in all the segments. Landowners straightened 

and pushed sections of the river to the side of the valley in order to facilitate cattle 

grazing. The wide range of width in this section appears to be a reflection of these 

modifications to the river channel. The large increase in width in segment I is the result 

of the combination of the input of Camp Creek, the largest tributary in the upper part of 

the basin, and an increase in slope, causing the channel to become plane-bedded. 

 Richards (1976) demonstrated that generally rivers show a difference in the width 

of the channel between riffles and pools. The data from the Middle Fork (Figure 33) 

suggest that all three of the mapped channel units had similar width distributions. These 

data agree with my field observations that width does not vary greatly between riffles and 

pools at the reach scale. Another possible control on width could be the underlying 

geology of the valley floor and adjacent hill slopes, which could act as a control on valley 

width and channel width (May et al., 2013; McDowell, 2001). In Figure 34 and Figure 

35, the parts of the river in the Clarno formation have a higher median valley and channel 

width. Because these data also incorporate the downstream hydraulic geometry signal 

from Figure 32, it is difficult to determine how much the geology is influencing the width 

throughout the study area.  

From my field observations of the intensely grazed portions of the study area, I 

hypothesized that the intensity of cattle grazing would increase the active channel width 

when compare to other sections of the river. In the downstream plot of active channel 

width (Figure 30), it is difficult to identify any reaches that are anomalously wider than 

others based on the current grazing intensities. Aggregating the data by grazing intensity 

confirms that the intensely grazed portion of the study area does have a higher median 
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width compared to areas with moderate or no grazing. The last categorical control on 

width was at restoration treatment. In the field, the sections of the river that have different 

restoration treatments visually look different. The analysis showed that the distributions 

of width in each of the three categories were almost identical. Because the restoration 

activities are a recent addition to the river, they may not have yet expressed their 

influence.  

 In the hyperscale analysis of active channel width versus downstream length, the 

positive correlations coefficients in the larger window sizes, 18 – 32 km, are indicative of 

the expected DHG relationship of a channel that widens as drainage area increases with 

distance downstream. From the 18 km window down to 8 km, the river divides into two 

zones, with the lower half of the river holding on to the DHG relationship, but in the 

upper half, that relationship begins to breakdown. This breakdown appears to be triggered 

by the steep, narrow section of the river at the 10 km downstream mark, where the river 

narrows slightly. The narrowing of the river over a relatively short section has a large 

effect on the relationship at these intermediate scales. In the 2 – 6 km window, the 

frequency of the alternating pattern of positive and negative correlations corresponds to 

the alternating wide and narrow valleys, suggesting that valley width may be a control on 

width at these scales. Below the 2 km window, the oscillation of positive and negative 

correlations becomes more frequent. Carbonneau et al. (2012) suggested that that the 

patterns at this scale could relate to riffle pool sequences, but an initial examination of the 

pattern in relation to the classified channel units data does not support that relationship. It 

will require additional investigation to determine what drives these patterns. 
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 The other two hyperscale analyses do not have the same well-defined patterns as 

active channel width and downstream distance. The graph of active channel width versus 

slope shows weak positive correlations at most scales, suggesting that slope has little 

influence on width at most scales. There is a relationship at the finer window sizes of 1 

km or less, where there is again a high frequency switching of the coefficients. In the 

comparison of active channel width versus valley width, the notable relationships are the 

weak negative correlations, which suggest that stream width decreases in wider valleys. 

In this case, large changes in valley width compared to small fluctuations in channel 

width are causing a false signal. 

 Most of the larger scale patterns in these hyperscale analyses I can attribute to 

physical aspects of the river such as geology or the downstream hydraulic geometry. By 

comparison, the smaller scale patterns are more difficult to interpret and an important 

next step for this type of analysis would be to export the hyperscale results into a GIS 

environment where hyperscale patterns could be better visualized in the context of other 

GIS data and imagery. This could reveal what other variables might be causing variations 

in width, from such features as bank or in-stream vegetation or position in relation to 

meander bends. 

Habitat 

 Without spatial data on water pH, dissolved oxygen, and water temperature, this 

HSI for the Middle Fork is only an estimate. A majority of the river had an HSI value 

0.92 indicating that the Middle Fork provides excellent habitat. All of the stretches of 

river that fall below the maximum value I can attribute to the physical setting of the river. 

The large dips in the C and F segments are located in steeper, narrow valleys where the 
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river transitions away from a regular riffle-pool sequence and incorporates long plane bed 

stretches with significantly fewer pools. The small dip in the E section is located at the 

lower end of an ongoing major restoration project that will take time to adjust to the 

impact of the restoration activity. The drops in HSI at the beginning of the G and H 

sections are in wider valley sections that are now in conservation ownership, but were 

straightened by past land owners to facilitate grazing, leading to a lower percent pools 

value. Straightening also occurred along the last major dip at the downstream end of the 

H segment, currently used for active cattle grazing. 

 The two narrow valley sections are natural features in the riverscape and have not 

been impediments to the upstream migration of Chinook. The other areas with lower HSI 

values show the impact of human modifications to the river. By collecting continuous 

variables, like those collected for this HSI for the spawning and rearing habitat, it would 

be possible to combine them to create a spatial HSI that accounts for all of the life stages 

of the Chinook. Implementing these data could then help identify areas of the river that 

are lacking sufficient habitat, which could prioritize them for future restoration. 

Conclusions 

 Using an off the shelf digital SLR camera, I was able to collect 5 cm resolution 

aerial photography for a 32-km segment of the Middle Fork John Day River. The outputs 

from the SfM process provided high-quality orthophotographs for the study area with 

only a few gaps in coverage. The corresponding 10 cm resolution digital elevation model 

suffered from systematic errors caused by the parallel geometry of the aerial imagery, but 

current research shows that the errors can be eliminated in future studies. Despite the 

issues that I encountered, SfM has the potential to be a powerful and inexpensive tool for 
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fluvial remote sensing with a few refinements. These refinements include correcting the 

camera geometry from parallel to convergent, collecting control points with high-

accuracy GPS, improving flight planning to avoid gaps in the imagery, and correcting the 

exposure and increasing the radiometric resolution of the imagery to facilitate spectral or 

SfM-derived bathymetric measurements. 

 While the impacts of human activity on the Middle Fork are apparent in the field, 

in the collected data it is difficult, with few exceptions, to differentiate human activity 

from natural patterns in the current downstream patterns of channel morphology. Both 

the boxplots of classified data and the hyperscale analysis show that there exist 

differences in the downstream patterns at several different spatial scales, but these will 

need to be investigated further to determine the causal relationships. One explanation 

could be that enough time has passed for the river to adjust partially to the historic human 

disturbances and that the river has not had enough time to adjust to the recent restoration 

activities. 

 Mapping the habitat suitability index for migrating adult Chinook showed that the 

river has high quality habitat for this particular life stage of the salmon. The HSI 

highlighted areas that could act as an impediment to their upstream migration and could 

be potential targets for future restoration. Of course, migrating adult salmon are only one 

piece of the complex puzzle that is fish habitat in the Middle Fork. To better effectively 

map habitat and potential restoration sites, we would need to consider the spawning and 

juvenile habitats of salmon and for Steelhead and Bull Trout to ensure that wide range of 

habitats are present to help maintain and, hopefully, start to recover the populations of 

these critical species.  
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CHAPTER V 

SUMMARY 

 

My research objectives for this dissertation were to determine the error and 

uncertainty that are inherent in SfM datasets, use SfM to map and monitor geomorphic 

change in a small river restoration project, and use SfM to map and extract data to 

examine multi-scale geomorphic patterns for 32 kilometers of the Middle Fork John Day 

River. The three chapters of this dissertation illustrate how SfM can be used to collect 

high spatial resolution topographic data for fluvial geomorphology. The methods and 

analyses can also extend beyond fluvial geomorphology into all facets of earth surface 

process mapping and monitoring. The three studies, done at a variety of spatial scales 

demonstrate the versatility of SfM as a topographic data collection technique. A 

significant portion of each chapter was devoted to learning what aspects of SfM worked 

as expected and what parts of the method can be improved for future studies.  

In Chapter II, I found that SfM produces extremely consistent results that exhibit 

an average uncertainty of approximately two centimeters. The uncertainty includes a 

pronounced systematic distortion that resulted from the survey method and camera 

calibration. I will be undertaking future research on the effects of the non-linear errors 

and how to eliminate these errors in SfM. Other areas of future research include how 

differences in georeferencing affect uncertainty at different spatial scales and how the 

magnitude of uncertainty in SfM might impact change detection studies at a variety of 

spatial scales. 
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By combining the CTWSRO data with my own in Chapter III, I found that 

Granite Boulder Creek has shown some minor channel and vegetation changes in its first 

year since reconstruction. The changes were associated with surficial changes in bed and 

bank sediments and identified throughout the new channel. Continued monitoring by a 

variety of methods is going to be important in the future in order to assess the evolution 

of this restoration project through time. The SfM results in this chapter had several 

shortcomings that will help inform additional research on the optimal number and 

spacing of ground control points, the best survey patterns and platforms, and the 

possibility of extracting bathymetry from the images and point clouds. 

In Chapter IV, the large volume of spatially continuous channel morphology data 

extracted from the SfM orthophotos provided a holistic view of the downstream patterns 

in channel morphology. While it was difficult to differentiate the impacts of human 

activities from the natural variations in the stream, the statistical and hyperscale analyses 

did show that there are downstream patterns in the river that exist at a variety of spatial 

scales. The SfM data also showed that using an off-the-shelf digital SLR camera is an 

acceptable method to collect high-resolution aerial photography. The imagery and the 

SfM process provided high-quality orthophotographs, but the digital surface model 

suffered from systematic errors, similar to the systematic errors seen in Chapter II from 

the parallel geometry of the photographs. For future helicopter-based SfM collection 

missions, I will be actively working to correct the camera geometry from parallel to 

convergent, finding efficient ways to collect control points with high-accuracy GPS, 

improving flight planning to avoid gaps in the imagery, and correcting the exposure and 
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increasing the radiometric resolution of the images to facilitate spectral or SfM-derived 

bathymetric measurements. 

SfM offers many benefits to researchers in the fields of remote sensing and 

geomorphology. It is a highly flexible method and can be used at a variety of spatial 

scales and with a wide range of instruments and platforms. SfM has been used to create 

3D reconstructions at the widest range of scales of any remote sensing method, ranging 

from only a few centimeters (Koutsoudis et al., 2014) to mapping tens of kilometers 

(Chapter IV). With images collected from just about any digital camera SfM can be used 

to build a 3D scene. There is even potential to use scanned film images to create 

reconstructions of historical landscapes. The flexibility in scale and instruments also 

allows for a wide-range of platforms including hand-held cameras on the ground to a 

variety of aerial platforms.  

Compared to other survey techniques, SfM is a lower cost method in terms of 

both equipment and field time. The most expensive part of a SfM survey is a precision 

positioning instrument to collect ground control points, but this is a requirement of all 

topographic survey methods. Beyond that, the only required equipment is a digital 

camera. Optional equipment includes commercial software and/or camera platforms. SfM 

also provides a cost savings in the amount of time spent in the field collecting data. 

Traditional survey methods, total station and GPS, require significant time investments to 

achieve high resolution surveys (Bangen et al., 2014) and SfM can reduce the time 

necessary to cover both large and small areas. The lower price point and flexibility of 

SfM increases its accessibility to a wider range of researchers (see Figure 42 for 

comparisons).  



97 

 
Figure 42: Comparison of topographic survey methods and their typical extents and 

resolutions. ALS = Airbourne LiDAR, rtkGPS = real-time kinematic global positioning 

system, SfM = Structure-from-Motion, TLS = Terrestrial Laser Scanning, TS = Total 

Station (After Bangen et al., 2014). 

 

The point cloud data that SfM produces create high quality, repeatable datasets 

with sufficient resolution for almost any application. All aspects of SfM surveys, from 

planning to collection to processing, are under the control of the researcher. This gives 

researchers flexibility in where, when, and how much data are collected and how the data 

are processed. Lastly, the simultaneous collection of imagery and three-dimensional data 

provide important visual context to the 3D data, especially when performing change 

detection studies. 

SfM is still a rapidly developing technique for 3D surveys. By implementing the 

improvements laid out here and by other authors, SfM will be a powerful tool that will 

make 3D data collection more accessible to the wider geomorphic community. By 
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conducting this research early in the development of SfM, it will help inform the broader 

user community who can contribute to creating a simple set of “best practices” for SfM 

surveys and lay the groundwork for the successful future for this revolutionary technique. 
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APPENDIX 

DATA MANAGEMENT 

 

The data for this dissertation are archived on the Geography Department server. The file 

paths below are all located on the server named \\cas-fs-geog 

Chapter II 

 Cummins Creek photographs and GCPs 

o Projects\StructureFromMotion\MFJD_James\Cummins_Repeat 

 TLS comparison data 

o Projects\StructureFromMotion\James_TLS_SfM 

Chapter III 

 2012 Granite Boulder Creek Photographs and GCP data 

o Projects\StructureFromMotion\MFJD_James\2012 

 2013 Granite Boulder Creek photographs and GPS data 

o Projects\StructureFromMotion\MFJD_James\2013\GBC_SfM_2013 

Chapter IV 

 The final orthoimagery, DEMs, and point clouds from the helicopter flight 

o Servers\Yellowstone\MFJohnDay\Imagery\2013_sfm 

 The raw photographs, GPC data, and other supporting data 

o Projects\StructureFromMotion\MFJD_James\2013\Heli 
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