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DISSERTATION ABSTRACT

Ian Pilgrim

Doctor of Philosophy

Department of Physics

September 2014

Title: Electron Transport Dynamics in Semiconductor Heterostructure Devices

Modern semiconductor fabrication techniques allow for the fabrication of

semiconductor heterostructures which host electron transport with a minimum of

scattering sites. In such devices, electrons populate a two-dimensional electron gas

(2DEG) in which electrons propagate in exactly two dimensions, and may be further

confined by potential barriers to form electron billiards. At sub-Kelvin temperatures,

electron trajectories are determined largely by reflections from the billiard walls, while

net conduction through the device depends on quantum mechanical wave interference.

Measurements of magnetoconductance fluctuations (MCF) serve as a probe

of dynamics within the electron billiard. Many prior studies have utilized

heterostructures employing the modulation doping architecture, in which the 2DEG is

spatially removed from the donor atoms to minimize electron scattering. Theoretical

studies have claimed that MCF will be fractal when the confinement potential defining

the billiard is soft-walled, regardless of the presence of smooth potentials within the

billiard such as those introduced by remote ionized donors. The small-angle scattering

sites resulting from these potentials are often disregarded as negligible; we use MCF

measurements to investigate such claims.
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To probe the effect of remote ionized donor scattering on the phase space in

electron billiards, we compare MCF measured on billiards in a modulation-doped

heterostructure to those measured on billiards in an undoped heterostructure, in

which this potential landscape is believed to be absent. Fractal studies are performed

on these MCF traces, and we find that MCF measured on the undoped billiards do

not exhibit measurably different fractal characteristics than those measured on the

modulation-doped billiards.

Having confirmed that the potential landscapes in modulation-doped heterostructures

do not affect the electron phase space, we then investigate the effect of these impurities

on the distribution of electron trajectories through the billiards. By employing

thermal cycling experiments, we demonstrate that this distribution is highly sensitive

to the precise potential landscape within the billiard, suggesting that modulation-

doped heterostructures do not support fully ballistic electron transport. We compare

our MCF correlation data with the dynamics of charge transfer within heterostructure

systems to make qualitative conclusions regarding these dynamics.
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CHAPTER I

INTRODUCTION

1.1. Toward High-Mobility Electron Transport

In the decades since John Bardeen, Walter Brattain, and William Shockley

developed the transistor in 1947, the technology world has witnessed the inexorable

march toward ever smaller solid-state devices. The exponential rate at which the

number of transistors populating integrated circuits increases is known as Moore’s

Law [3], and is displayed in Fig. 1.1.

FIGURE 1.1. Moore’s Law plots the exponential increase in the number of transistors
found in integrated circuits. Image licensed under Creative Commons CC BY-SA 3.0
(creativecommons.org/licenses/by-sa/3.0/us) by Wikipedia contributor Wgsimon.
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In spite of the remarkable tenacity of Moore’s Law, it is likely unreasonable to

expect that this trend will persist indefinitely—as transistors approach the atomic

scale, fundamental physical constraints will prevent the further shrinking of devices.

Nonetheless, even if we presume ourselves to be reaching fundamental size limits, there

exists much active research regarding the optimization of transistor technologies.

One significant avenue of semiconductor device optimization, and one which

serves as a guiding theme in this dissertation, pertains to the trajectories of electrons

as they traverse a solid-state device. In abandoning cumbersome electron vacuum

tubes in favor of their solid-state counterparts, we have also abandoned the elegance

of ballistic electron transport in a vacuum for the disordered and circuitous electron

paths typically found in metals and semiconductors. Is it possible to reclaim the

efficiency of electron transport unperturbed by scattering events in solid-state devices?

To address this question, we must first establish a vocabulary regarding electron

transport.

1.2. Electron Scattering and Ballistic Electron Transport

In the ideal case, electrons traverse a conducting material via straight-line paths

that only deviate upon reflection from an intentionally-designed feature, as is the case

for an electron traveling in vacuum; such transport is termed ‘ballistic’ (see Fig. 1.2).

In solid-state materials, however, electrons encounter a variety of impediments to ideal

ballistic transport—impurities, phonons, and electrostatic potentials serve to scatter

the electrons from their initial path. Such perturbations can be greatly mitigated,

however—modern semiconductor fabrication techniques allow for the growth of a

nearly perfect crystal lattice free of impurities, and phonon scattering is effectively

eliminated at sub-Kelvin experimental temperatures.
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FIGURE 1.2. Illustrating three regimes of electron transport in two dimensions. (a)
If the mean free path ` is smaller than the conducting area’s dimensions W and L,
the conduction is called diffusive. (b) If L > ` > W , transport is known as quasi-
ballistic. (c) If the mean free path ` exceeds the device dimensions, such that electrons
follow straight-line trajectories until encountering intentionally defined boundaries,
transport is known as ballistic. From Ref. [4].

The extent to which these scattering events perturb the motion of an electron may

be represented by the mobility mean free path `µ, which measures the average distance

traversed by an electron before encountering a large-angle scattering event. If the

mean free path exceeds the dimensions of the conducting region, the electron is often

said to undergo ballistic transport, in analogy to transport through vacuum. Such

a definition assumes that small-angle scattering events have a negligible impact on

the dynamics of electron transport; the ideal case of true ballistic transport, however,

requires the absence of both large- and small-angle scattering events. The prospect

of realizing ballistic electron transport in semiconductor devices holds considerable

interest for both fundamental and applied physics—in particular, the study of electron

transport in the semiclassical regime can harness the Aharonov-Bohm effect [1, 5] (see

Section 2.8) as a probe of quantum chaos [6–9].
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1.2.1. Electron Billiards: An Experimental Test Bed

The experimental investigations discussed in this dissertation pertain primarily

to electron motion in a two-dimensional potential well at a semiconductor interface.

While such systems may in principle be made arbitrarily large, a study of electron

transport dynamics is simplified by constraining electron motion to a small portion

of the plane. In particular, the electronic systems considered here typically involve

confining electrons to an approximately 1 µm × 1 µm square with quantum point

contacts serving as entry and exit ports; such devices are known as electron billiards,

whose fabrication and properties are detailed in Section 2.7. The Fermi wavelength

of an electron in a billiard device is many times smaller than the billiard size at

roughly 50 nm; as a result, electrons may be idealized as traveling in straight-line

paths through the billiard until experiencing a scattering event or specular reflection

from the billiard walls. Furthermore, at low temperature, an electron may remain

phase-coherent as it traverses a billiard device, so that the net conduction through

the billiard derives from the quantum interference of the electronic wave functions as

they exit the billiard. Our studies treat electron billiards almost exclusively in this

semiclassical regime, in which we may harness quantum mechanical effects as a probe

of electron dynamics while considering a distribution of classical trajectories.

Given that the billiard dimensions are typically smaller than the mean free path

`µ, one might feel justified in considering scattering events within the billiard to be

negligible. As we shall see, however, the elimination of large-angle scattering events

is not sufficient to ensure true ballistic electron transport.

The primary means of investigating electron transport employed in this

dissertation involves the measurement of the fluctuating conductance through an

electron billiard as a function of the magnitude of an applied magnetic field. These
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fluctuations are known as magnetoconductance fluctuations (MCF), and are described

in Section 2.8. The measured conduction through a billiard will depend on the

quantum interference of the collection of phase-coherent electron trajectories through

the billiard; the application of a magnetic field yields a systematic shift in the relative

phases of these electrons through the Aharonov-Bohm effect, such that the precise

form of an MCF trace may serve as a “fingerprint” of the precise distribution of

electron trajectories through the billiard.

In the case of true ballistic electron transport, we would then expect the

distribution of electron trajectories through the billiard, and hence the form of a

measured MCF trace, to depend on the billiard geometry alone in a predictable and

measurable manner. As an example, consider the relative properties of a circular

billiard and a stadium-shaped billiard (i.e., two half-circles connected by straight

lines): the classical trajectories through the stadium are chaotic, in the sense that two

nonidentical but initially similar trajectories will diverge exponentially in time, while

the trajectories through the circle are stable. Employing a theoretical framework

set forth by Jalabert et al. [10], prior experimental studies by Marcus et al. [6]

have claimed to be able to distinguish between such billiards based on the spectral

content of MCF traces measured on each device. Such a claim, however, rests on the

assumption that electron transport in billiard devices is indeed ballistic.

In reality, we cannot say for certain whether ballistic electron transport has

been achieved based solely on mobility mean free path measurements. These

measurements are heavily biased toward large-angle scattering events, with the

implicit assumption that small-angle scattering events are negligible with respect

to the distribution of electronic trajectories within a billiard. These small-angle

scattering events are an inevitable consequence of the modulation doping method
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of heterostructure fabrication, which introduces a spatial separation between the

conducting plane and the ionized dopants used to populate the conducting plane

with electrons (see Section 2.6). The modulation doping method thus yields a

conduction plane that remains prone to scattering from the electrostatic potentials

of remote ionized impurities. Topinka et al. [11] cite this soft potential landscape as

the mechanism for their observed branching of electron flow within an AlGaAs/GaAs

heterostructure system, which they note is a purely classical phenomenon. Their

work, as well as the experimental findings presented in this dissertation, suggest that

the potential landscape induced by remote ionized impurities plays a very substantial

role in determining the electron trajectories in electron billiard devices.

This potential landscape may be eliminated, however, in electron billiard devices

which populate a two-dimensional conducting plane with electrons without the use

of dopant atoms. These ‘undoped’ electron billiards, characterized in depth by

Drs. Andrew See and Adam Micolich at the University of New South Wales,

employ a positively biased, degenerately-doped n+-GaAs cap on an AlGaAs/GaAs

heterostructure to electrostatically induce the conduction electrons to populate the

heterostructure interface.

1.2.2. Fractals and Electron Billiards

Additionally, an investigation of the fractal properties of MCF measured on

electron billiard devices allows for a probe of electron dynamics within the billiard.

Generally speaking, the term ‘fractal’ may be understood to denote a pattern which

exhibits structure on a variety of size scales; a rigorous discussion is provided in

Chapter III. In the case of MCF, a fractal structure denotes a trace which exhibits

fluctuations at a wide range of scales in magnetic field. Fractal structures were
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originally observed in MCF by R. P. Taylor et al. [8] and by A. P. Micolich et al.

[12], and subsequently and independently by A. S. Sachrajda et al. [13].

Dr. Roland Ketzmerick has demonstrated [14] that MCF traces measured on

billiards characterized by a mixed phase space supporting both chaotic and stable

trajectories will generally be fractal, such that a fractal analysis of these traces can

reveal details regarding the nature of this phase space. It is understood that a mixed

phase space may result from the two-dimensional geometry of the billiard as well as

the gradient of the potential barriers used to form the billiard. But what about the

small-angle scattering introduced by remote ionized donors? Do these have sufficient

influence on the phase space within a billiard to alter these fractal characteristics?

Ketzmerick argued that they do not, claiming that “[a]s long as the elastic scattering

can be modeled by smooth impurity potentials it will not change the generic properties

of the mixed phase space” [14] (emphasis in original).

FIGURE 1.3. Visualizing three classes of potential profiles in electron billiards. The
dashed line represents the Fermi energy in the billiard. (a) A ‘hard-walled’ billiard,
which will support only stable electron trajectories unless the billiard geometry is
designed so as to introduce chaos. (b) A ‘soft-walled’ billiard, which will yield a
mixed phase space and hence fractal MCF. (c) A soft-walled billiard with an additional
potential landscape introduced by remote ionized donors.

Figure 1.3 schematically portrays the question at hand. This figure displays

three classes of potential profiles within the electron billiard: panel (a) shows a

billiard defined by ‘hard-walled’ potentials, in which only the billiard geometry could

introduce chaos to the phase space; panel (b) shows a billiard defined by ‘soft-walled’

potentials, which Ketzmerick notes will lead to a mixed phase space and hence the
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observation of fractal MCF. Panel (c), on the other hand, portrays the potential

profile of a modulation-doped electron billiard, which exhibits both soft walls and

small-angle scatterers. We hypothesize that the potential landscape introduced by

remote ionized impurities may in fact yield a measurable difference in the fractal

qualities of MCF measured on a modulation-doped billiard. To test this hypothesis,

we conduct an investigation of the fractal properties of MCF traces measured on

both the modulation-doped and undoped AlGaAs/GaAs electron billiards, with the

expectation that the modulation-doped billiards should yield MCF with a more

pronounced fractal structure.

1.3. Dissertation Outline

This dissertation is presented as follows:

Chapter II describes the theory of electron transport in two dimensions.

Following a quantum mechanical description of electron transport in the presence of an

applied magnetic field, we describe the semiconductor heterostructure devices known

as electron billiards on which our experimental measurements are made. Finally, we

discuss the technical details of low-temperature electrical measurements.

Chapter III discusses fractal structures, both as spatial and time-series

structures. We discuss a variety of techniques for characterizing fractal structures, and

discuss the complications that can arise when applying these techniques to structures

found in nature which may exhibit a limited range of scaling properties. The nature

of these difficulties is studied systematically through the application of the fractal

analysis techniques discussed to computer-generated fractal structures under a variety

of conditions.
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Chapter IV investigates of the fractal properties of MCF measured in both

modulation-doped and undoped AlGaAs/GaAs electron billiards, with the aim of

concluding whether one set of fluctuations is demonstrably more fractal than the

other. Given that the modulation-doping technique is hypothesized to yield a

potential landscape that serves to introduce chaos to the electrons’ phase space, we

expect MCF traces measured on the modulation-doped billiard to exhibit a more

pronounced fractal character than those measured on the undoped billiard. Our

results, however, fail to support this hypothesis; we instead find that MCF traces

measured on each billiard exhibit similar fractal characteristics, and that a rigorous

comparison is hindered by the limited scaling range exhibited in these traces.

Chapter V describes an investigation of the thermal stability of MCF measured

on electron billiard devices. While Chapter IV demonstrates that remote ionized

donors do not impact the phase space in AlGaAs/GaAs electron billiards in a

detectible way, we seek to probe and understand the way in which these ionized

donors affect the individual electron trajectories within the billiard. We describe an

experimental procedure in which MCF traces are recorded before and after thermal

cycles of the electron billiards to various intermediate temperatures, which serve to

rearrange the potential profile in the plane of the 2DEG. The temperature-dependent

decorrelation of MCF traces is quantified and fitted to a model which describes the

charge transfer process hypothesized to be responsible for the decorrelation in both the

AlGaAs/GaAs and InGaAs/InP material systems. These results serve to demonstrate

that electron trajectories in modulation-doped electron billiards are highly sensitive

to the charge distribution among the ionized dopants, such that these devices do not

support true ballistic electron transport.
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Finally, the dissertation concludes with a summary of our findings and

suggestions of avenues for future research
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CHAPTER II

MESOSCOPIC ELECTRON TRANSPORT:

PRINCIPLES AND DEVICE FABRICATION

2.1. Principles of High-Mobility Electron Transport

Electron transport through a system of disordered atoms subject to thermal

lattice vibrations is in general intractably complex on the subatomic scale—a fully

quantum-mechanical description of electronic transport through such a system would

require an understanding of the precise configuration of all atoms in the system as

well as the individual wave functions for each of an Avogadro’s number of electrons.

In such cases, which are representative of electron transport in traditional metal wires

at room temperature, conductance is necessarily described as the net motion of the

collection of electrons, with a net current density proportional to the strength of the

applied electric field ~E: ~J = σ ~E, where σ is known as the conductivity of the system.

We can further relate the current density to the mean velocity of electrons in the

system through ~J = ene~vd, where e = |e| is the charge of a single electron, ne denotes

the number of electrons participating in the conduction, and ~vd is the average velocity

of conduction elections, known as the drift velocity. Combining these expressions for

current density yields

σ = ene

∣∣∣vd
E

∣∣∣ = eneµm. (Equation 2.1)

The quantity µm, which represents the proportionality between the electronic drift

velocity and the magnitude of the applied electric field, is known as the electron

mobility.
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For a given applied electric field, the electron mobility is thus limited by those

factors which limit the electronic drift velocity—namely, such factors as thermal

vibrations and the inhomogeneity of the atomic lattice. One method for improving

electron mobility, then, is to eliminate the atomic lattice entirely and harness electron

conduction in a vacuum, as is the case in electron vacuum tubes. In such a system, a

fully quantum-mechanical description of electron transport is tractable; however, the

elegance of this solution is undermined by the technical considerations that make

such a solution impractical for everyday usage, such as the volume and mass of

electron vacuum systems relative to solid-state electronics. As a result, there is

considerable technological interest in optimizing a solid-state conductive material

such that thermal perturbations are negligible and momentum-randomizing scattering

events are minimized. Such a system is now realizable with modern semiconductor

fabrication technology such as molecular beam epitaxy (MBE) and metal-organic

vapor phase epitaxy (MOVPE), which allow for the deposition of a high-purity

semiconductor device one atomic monolayer at a time, resulting in a near-perfect

crystal lattice.

In principle, even a perfect crystal lattice does little to ameliorate the difficulties

of a fully quantum-mechanical description of charge transport in a solid-state device,

since the wave function Ψ(~x) for any given electron would need to account for the

potential introduced by every atomic nucleus and non-conducting electron comprising

the conductive system. However, the translational symmetry introduced by a perfect

lattice allows us to derive a semiclassical solution for the electronic wave function in

which the effect of the atomic lattice is entirely accounted for through an adjustment

of the electron’s effective mass. In the fully quantum-mechanical approach, we

would seek electron wave functions Ψ(~x) which satisfy ĤΨ(~x) = εΨ(~x), where
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Ĥ = p̂2/2m + U(~x). In a perfectly periodic potential landscape U(~x), the electronic

wave functions will be of the form Ψ(~x) = eı
~k·~xu(~x) = ψ(~x)u(~x), where ~k is the

wave vector. Such a wave function—a plane wave modulated by a periodic function

u(~x) which encapsulates the periodicity of the lattice—is known as a Bloch wave.

Applying the Schrödinger equation to a Bloch wave function and assuming a parabolic

dispersion relation εn(~k) for small ~k yields

Ĥψ(~x) = − ~2

2m∗
~∇2ψ(~x) + V (~x)ψ(~x) = εnψ(~x), (Equation 2.2)

where

m∗ =
~2/m0

∂2εn(k)/∂k2
(Equation 2.3)

is the electron’s effective mass (with m0 as the electron’s rest mass), V (~x) represents

the potential experienced by the electron due to any defects in the lattice (in the

absence of an external field), and εn represents the single-electron energy. We may

thus describe electron wave functions in a near-perfect crystal lattice as equivalent to

plane waves traveling in a vacuum with an effective mass m∗ which depends on the

material properties of the crystal lattice.

2.2. Low-Dimensional Electron Transport

Through careful band engineering (discussed below), it is possible to fabricate

solid-state devices in which the generally three-dimensional electron wave functions

are confined to its lowest-energy bound states in a single dimension (typically labeled

as the ẑ direction) such that electron transport takes place in two dimensions. In

addition to simplifying device architecture and reducing the number of scattering

impurities in the conducting region, low-dimensional electron transport may introduce
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novel physical properties. For instance, in two dimensions, the density of states is

energy-independent. To understand why this is the case, consider a planar region

of area A = LxLy, in which the allowed quantum mechanical wave vectors are kx =

2πnx/Lx and ky = 2πny/Ly, where nx and ny are integers. In such a system, an

electron’s energy state may be fully characterized by the parameters nx and ny, such

that its energy state may be represented as a point on a grid in ~k-space (see Fig. 2.1).

FIGURE 2.1. The allowed energy states of an electron in a two-dimensional system
of dimensions Lx × Ly may be visualized as the vertices of a grid in ~k-space.

In the low-temperature limit, electrons will minimize their energy E = ~2~k2/2m∗;

however, as fermions, no two electrons in the same spin state may be characterized

by wave functions with identical values of both kx and ky, such that each location

on the grid in k-space may be occupied by at most two electrons (one for each spin

state). Thus, electrons will populate the allowed states in ~k-space in a way that

minimizes their distance from the origin while obeying the Pauli exclusion principle;

in two dimensions, this corresponds to the electron energy states forming a circle in
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~k-space whose radius kF is known as the Fermi energy EF (measured relative to the

conduction band minimum) [15]; see Fig. 2.2.

FIGURE 2.2. Electron energy states in ~k-space at absolute zero. At absolute zero,
electron energy states populate ~k-space in such a way that they fill a Fermi circle
with radius kF .

Thus, at absolute zero, all energy states with |~k| =
√
k2
x + k2

y ≤ kF will be filled

(with a spin degeneracy of two). As a result, we may express the Fermi energy as a

function of the total number of available states N in the system: N(kF ) = k2
FA/2π.

More generally, for k ≤ kF and using E(k) = ~2k2/2m∗, the number of available

energy states with energy no greater than E(k) is N(E,A) = m∗EA/π~2. The

density of states (DOS) for an arbitrary system represents the number of available

energy states per unit volume and per unit energy, and so may generally be calculated

as

g(E) =
1

A

∂N(E,A)

∂E
. (Equation 2.4)
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In the two-dimensional case, this simplifies to

g2D(E) =
m∗

π~2
. (Equation 2.5)

Thus, notably, the two-dimensional density of states is independent of energy. (For

comparison, the densities of states in the one- and three-dimensional cases scale as

E−1/2 and E1/2, respectively). The carrier density of any electronic system may be

calculated as ns =
∫∞

0
g(E)f(E)dE, where

f(E) =
1

e(E−EF )/kBT + 1
(Equation 2.6)

is the Fermi-Dirac distribution which gives the probability of an electron at

temperature T occupying an energy state E. In the low-temperature limit,

EF � kBT , and f(E) may be approximated by the step function Θ(E−EF ). Hence,

for the 2D density of states obtained above and in the low-temperature limit, we find

ns =

∫ EF

0

m∗

π~2
dE =

m∗EF
π~2

, (Equation 2.7)

where ns is the two-dimensional electron sheet density. Thus, in two dimensions and

at low temperature, we find a direct proportionality between the electron density and

Fermi energy.

In the low-temperature limit, all electrons that contribute to conduction

processes possess an energy very near the Fermi energy EF , since the lowest available

energy states are also very near EF [16]; this allows for a straightforward derivation

of physical quantities characterizing their wave functions. For instance, the Fermi
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wavenumber corresponding to the Fermi energy is given by

EF =
~2k2

F

2m∗

kF =
1

~
√

2m∗EF

=
√

2πns. (Equation 2.8)

Since the velocity ~v corresponding to a wave vector ~k is given by ~v = ~~k/m, the

velocity of electrons contributing to conduction is related to the carrier density as

vF =
~
√

2πns
m∗

, (Equation 2.9)

and the Fermi wavelength of these electrons is thus

λF =
2π

kF
=

√
2π

ns
. (Equation 2.10)

2.3. Conductivity and Resistivity in Two Dimensions

We have previously defined the conductivity σ of a material as the proportionality

constant that satisfies ~J = σ ~E, such that σ is a scalar quantity and ~J ‖ ~E. In the

presence of a magnetic field, it is no longer true that ~J ‖ ~E, and it is necessary to

replace the scalar σ with the conductivity tensor σ, such that in two dimensions we

have:  Jx

Jy

 =

 σxx σxy

σyx σyy


 Ex

Ey

 . (Equation 2.11)

Equation 2.11 describes the response of the two-dimensional current density to a two-

dimensional electric field (perhaps in the presence of a magnetic field, whose effect
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is encapsulated in the conductivity tensor); inverting this equation gives the field

response to a current density via the resistivity tensor ρ:

 Ex

Ey

 =

 ρxx ρxy

ρyx ρyy


 Jx

Jy

 , (Equation 2.12)

where

ρ = σ−1 =
1

σ2
xx + σ2

xy

 σyy −σyx

−σxy σxx

 . (Equation 2.13)

We may determine the components of the conductivity and resistivity tensors by

considering the Drude model of conduction, which asserts that, in the steady state, the

momentum gained by a system of electrons due to their interaction with electric and

magnetic fields must be precisely balanced by the momentum lost due to scattering

processes [17], such that

(
d~p

dt

)
scattering

=

(
d~p

dt

)
fields

. (Equation 2.14)

If we introduce the momentum relaxation time τm, we may then write

m∗~vd
τm

= e
(
~E + ~vd × ~B

)
, (Equation 2.15)

where ~vd is the electrons’ drift velocity. This vector equation may be rewritten as a

tensor equation as

 Ex

Ey

 =

 m∗

eτm
−B

B m∗

eτm


 vx

vy

 ; (Equation 2.16)
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rewriting further in terms of ~J = e~vdns, we have

 Ex

Ey

 =

 m∗

eτm
−B

B m∗

eτm


 Jx

ens

Jy
ens


= σ−1

 1 −µB

µB 1


 Jx

Jy

 , (Equation 2.17)

where σ ≡ ensµ and µ ≡ eτm/m
∗. Hence, the elements of the conductivity and

resistivity tensors are given by

ρxx = ρyy = σ−1 (Equation 2.18)

and

ρyx = −ρxy = µB/σ = B/ens, (Equation 2.19)

together with Equation 2.13.

2.4. Quantum Mechanical Treatment of Two-Dimensional Conduction in

a Magnetic Field

In the presence of a nonzero magnetic field, the Hamiltonian for free electrons

must be modified to include a contribution from the magnetic vector potential ~A. In

the Landau gauge, the magnetic vector potential corresponding to a magnetic field

~B = Bẑ is ~A = (0, Bx, 0), and the Hamiltonian for free electrons confined to the x−y

plane becomes

Ĥ =
(~p+ e ~A)2

2m∗
=
p̂2
x + (p̂y + eBx̂)2

2m∗
. (Equation 2.20)
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Since an electron traveling at a velocity ~v in the presence of a magnetic field ~B will

experience a Lorentz force ~F = e(~v× ~B), the electron will begin moving in a circular

path. By equating the centripetal force mv2/r to the magnitude of the Lorentz force

eBv, we may derive the angular frequency of this circular motion ωc = eB/m, known

as the cyclotron frequency. We may then express Equation 2.20 as follows:

Ĥ =
p̂2
x

2m∗
+

1

2
m∗ω2

c

(
x̂− ~ky

m∗ωc

)2

. (Equation 2.21)

Comparing Equation 2.21 to the Hamiltonian for the quantum harmonic oscillator

ĤQHO =
p̂2

2m
+

1

2
mω2x̂2, (Equation 2.22)

we find that the Hamiltonian of an electron in a perpendicular magnetic field matches

that of a quantum harmonic oscillator with a potential minimum shifted by ~ky/m∗ωc

whose energy levels are given by En = ~ωc(n + 1/2) (n = 1, 2, 3, . . .). Thus, whereas

a system of free electrons confined to two dimensions exhibits an energy-independent

density of states, the available energy states for the same system in the presence

of a perpendicular magnetic field are discretized into states known as Landau levels

[17] separated in energy by ~ωc; see Fig. 2.3. Under the approximations of zero

temperature and a perfect crystal lattice, the Landau levels take the form of a series

delta-functions in a plot of density of states vs energy; however, electron scattering

induced by finite temperature and lattice imperfections results in a broadening of

these levels. It is nonetheless instructive to consider these energy levels as delta-

functions, such that the density of states in the presence of a perpendicular magnetic
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field ~B can be written

gB(E) =
2eB

h

∑
n

δ(E − En). (Equation 2.23)

FIGURE 2.3. Comparing the densities of states for free electrons in two dimensions
(red) and electrons in the presence of a magnetic field (blue).

Given that the sheet density of electrons ns must be independent of the applied

magnetic field, the integral of gB(E) over all E ≤ EF must return the same value ns

regardless of the value of B. Hence, the degeneracy of each Landau level changes with

magnetic field such that each Landau level contributes a value of 2eB/h to the total

electron density, which motivates the introduction of the filling factor

ν =
hns
2eB

(Equation 2.24)

which indicates the number of Landau levels that are completely filled at a magnetic

field B and electron sheet density ns. Thus, for a given sheet density ns, increasing
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the magnitude of a perpendicular magnetic field will lead to a decrease in the filling

factor ν such that each filled Landau level must account for a greater proportion of

the total ns.

2.5. Characterizing a Two-Dimensional Electron System

Consider a two-dimensional conducting region in the geometry shown in Fig. 2.4;

this geometry is known as a Hall bar [17] owing to its utility in observing the Hall

effect, described below.

FIGURE 2.4. Hall bar geometry for electrical measurements. The numbered
yellow squares represent electrical leads, while the grey area represents the active
region for electron conduction. A typical characterization measurement consists
of passing a current ~I through the Hall bar (here, from lead 6 to lead 3) and

applying a perpendicular magnetic field ~B, and measuring the longitudinal voltage
drop Vxx = V2 − V1 and the transverse voltage drop Vyx = V5 − V1 = VH .

When a current ~I is applied through the length of the Hall bar, the y-component

of the current density ~J is zero, and Equation 2.19 becomes

 Ex

Ey

 = Jx

 (ensµ)−1

B(ens)
−1

 . (Equation 2.25)
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The current density Jx is simply related to the current I and Hall bar width

A as I = JxW , and the electric field components Ex and Ey are related to the

respective voltage drops Vxx and Vyx and the Hall bar dimensions as Ex = Vxx/L and

Ey = Vyx/W . We may thus express Equation 2.25 as:

Vxx =
L

W

I

ensµ
, (Equation 2.26)

Vyx =
IB

ens
. (Equation 2.27)

Therefore, the electron sheet density ns and the electron mobility µ may be

determined through measurements of the longitudinal voltage drop Vxx and the

transverse voltage drop Vyx as a function of B and at a given current I.

The above derivations of ns and µ predict that Vxx is constant with respect

to magnetic field and that Vyx increases linearly with magnetic field. While these

classical arguments are true to good approximation at low magnetic field, higher

magnetic fields uncover the quantum mechanical nature of the electron energy levels

through the previously discussed Landau levels. Consider Fig. 2.3; while the locations

in energy space and the densities of states represented by the Landau levels vary with

the magnetic field B, the Fermi energy EF remains at a constant value. In the context

of the filling factor ν, we may say that the density of states at the Fermi energy is a

minimum when ν is an integer, while the density of states at EF is a maximum at

half-integer values of ν (i.e., ν = n+ 1/2 where n is an integer), such that EF lies in

the middle of a half-filled Landau level. Because conduction occurs from states very

near the Fermi energy, the longitudinal resistivity ρxx falls to zero when the density of

states at the Fermi energy is zero, and reaches a maximum when the density of states

at EF is maximized. Thus, as an applied magnetic field is increased, a measurement
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of ρxx will exhibit oscillations that fall to zero at magnetic fields corresponding to

integer values of ν; this phenomenon is known as the Shubnikov-de Haas (SdH) effect

[17].

Indeed, whereas the Hall effect as described by Equation 2.27 provides a

measurement of the electron sheet density ns based on purely classical arguments,

the periodicity of the SdH oscillations provides a quantum mechanical probe of this

quantity: From Equation 2.24, we see that a plot of ν vs 1/B is expected to be

linear with a slope corresponding to ns. In practice, it is simpler to determine this

electron density by employing the Hall effect, as this measurement does not require

high magnetic fields. Nonetheless, measurements of SdH oscillations are valuable for

identifying the presence of conduction via a plane parallel to the intended plane of

electrons—if parallel conduction is present, a nonzero longitudinal resistivity ρxx will

remain at magnetic fields corresponding to integer values of ν.

The transverse resistivity ρyx also exhibits a quantum mechanical structure at

high magnetic fields: Comparing Equation 2.27 to Equation 2.24, we may write

R−1
yx = ν

2e2

h
; (Equation 2.28)

that is, the transverse conductance increases in steps of the conductance quantum

2e2/h as ν is increased (which corresponds to a decrease in magnetic field), such that

a plot of Rxy vs B will exhibit plateaus of constant resistance centered on values of B

corresponding to integer filling factors, separated by steps in resistance of h/2e2. This

phenomenon is known as the (integer) quantum Hall effect [17]. Figure 2.5 provides

examples of the Shubnikov-de Haas and integer quantum Hall effects as measured in

an AlGaAs/GaAs heterostructure.
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FIGURE 2.5. Shubnikov-de Haas (blue, left axis) and Hall effect (red, right
axis) measurements performed on a 2DEG in a Hall bar geometry. Measurements
performed by Drs. Andrew See and Adam Micolich at the University of New South
Wales using the AlGaAs/GaAs heterostructure featured in the studies described in
Chapters IV and V. From Ref. [18].

2.6. Semiconductor Heterostructures and Electron Billiards

When semiconductor materials with different band gaps are brought together in

an atomically smooth planar interface, electrons from the larger band gap material

migrate to the lower conduction band of the smaller band gap material, establishing

an electric potential difference that serves to bend the conduction and valence bands.

The result is a roughly triangular potential well whose one-dimensional bound state

energies may be calculated; see Fig. 2.6. If the first bound state is the only state

whose energy lies below the Fermi energy EF , electrons will be confined to this energy

state and will only be free to move in the two dimensions of the interfacial plane; such

a system is known as a two-dimensional electron gas (2DEG), as the electrons in the

plane may be approximated as noninteracting and freely-propagating particles [17].

The electron density in the 2DEG may be increased by doping the higher-band-

gap material with an electron-donor species. However, this increase in electron density
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FIGURE 2.6. Schematic of the band bending that occurs at the interface between
aluminum gallium arsenide and gallium arsenide. The vertical axis represents energy;
the horizontal axis represents the distance z in the heterostructure growth direction.
The difference in the band gaps of these materials leads to bending of the conduction
and valence bands so as to preserve a constant Fermi energy throughout the material,
resulting in the formation of a potential well in which electrons may collect.

comes at the cost of a decrease in the electron mobility, due to increased Coulombic

scattering off the ionized donor atoms which lie in close proximity to the plane of

the 2DEG. This issue may be mitigated by introducing an undoped spacer layer of

the higher-band-gap material between the doped layer and the plane of the 2DEG.

This technique, known as modulation doping [19] (see Fig. 2.7), results in a decrease

in the carrier density in the 2DEG, but does succeed in significantly increasing the

mobility of those electrons in the 2DEG.

2.7. Electron Billiards

Having confined a system of electrons to two kinetic degrees of freedom, we may

further confine the electrons within the plane of the 2DEG by defining potential

barriers. In particular, the electronic systems considered here typically involve

confining electrons to an approximately 1 µm× 1 µm square within a Hall bar channel;
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such devices are known as electron billiards. Electrons enter and exit such devices

through narrow constrictions known as quantum point contacts (QPCs), which serve

to further confine electrons to one-dimensional quantum modes [20, 21]. In this

dissertation, we primarily investigate electron billiards fabricated in two distinct

material systems, the aluminum gallium arsenide/gallium arsenide (AlGaAs/GaAs)

heterostructure and the indium gallium arsenide/indium phosphide (InGaAs/InP)

heterostructure, in which electron billiards are defined using distinct techniques.

2.7.1. AlxGa1−xAs/GaAs Electron Billiards

The study of electron billiard devices has its roots in the aluminum

gallium arsenide/gallium arsenide heterostructure system, commonly denoted

AlxGa1−xAs/GaAs, where x denotes the mole fraction of aluminum arsenide in the

AlAs/GaAs alloy. Studies of 2DEGs in AlGaAs/GaAs heterostructures frequently

employ a value x = 0.33, which ensures that the AlGaAs band gap is direct (as is

the case for x < 0.45) and that the AlGaAs and GaAs lattice parameters are closely

matched while maintaining the band gap difference necessary for the formation of a

2DEG [22].

The AlGaAs/GaAs devices discussed in this dissertation were fabricated on a

single wafer labeled C2275 grown at the Cavendish Laboratory by Drs. Ian Farrer

and David Ritchie. The wafer was grown using molecular beam epitaxy (MBE) and

consists of (in order of deposition) a GaAs base layer, a 20 nm undoped Al0.33Ga0.67As

spacer layer, a 40 nm n-Al0.33Ga0.67As layer doped with silicon at a concentration of

1.20×1018 cm−3, and a 10 nm GaAs cap layer; see Fig. 2.7. This heterostructure

results in a 2DEG electron density ns of 2.4×1011 cm−2 and electron mobility of

3.89×105 cm2/Vs, as reported by the fabrication facility. The resulting conduction
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band profile, provided by Dr. Alex Hamilton of the University of New South Wales,

is modeled using a one-dimensional Poisson solver program1, and is displayed in Fig.

2.8. The electron billiards studied in this work were fabricated on this wafer at

the Semiconductor Nanofabrication Facility (SNF) by Drs. Andrew See and Adam

Micolich.

FIGURE 2.7. Schematic of the AlGaAs/GaAs heterostructure. A 2DEG (white)
forms at the interface between the undoped AlGaAs spacer layer and the GaAs layer.
The doped AlGaAs layer (red) contains a Si donor density of 1.2 × 1018 cm−3. The
billiard walls (light blue) are electrostatically defined by surface gates (yellow). From
Ref. [2].

In the AlGaAs/GaAs heterostructure, a conducting region is defined within the

2DEG by depositing patterned metallic gates on the surface. Applying a negative

voltage to these gates results in a depletion of the 2DEG in the regions under the

gate, allowing for the formation of billiards of arbitrary size. Furthermore, since the

precise profile of the electrostatic depletion depends on the magnitude of the negative

bias applied to the surface gates, adjustment of this bias allows for the fine-tuning of

the size of a billiard on a given device. Figure 2.9 displays the patterned gates defining

a square electron billiard on one of the two nominally identical devices studied here

as imaged using a scanning electron microscope.

1These data were produced using the software package HETMOD, an internal IBM Poisson solver.
Similar software is available as freeware at Dr. Gregory Snider’s Web site at www3.nd.edu/ gsnider/.
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FIGURE 2.8. Modeling the conduction band structure of the AlGaAs/GaAs
modulation-doped heterostructure. The vertical axis represents energy; the horizontal
axis represents the distance z in the heterostructure growth direction. Data produced
using a one-dimensional Poisson solver and provided by Dr. Alex Hamilton.

FIGURE 2.9. Scanning electron micrograph of Ti/Au gates deposited on the
AlGaAs/GaAs heterostructure used in this work. The gaps separating the gates
form the quantum point contacts that serve as entry and exit ports for electrons in
the 2DEG. The lithographic dimensions of the electron billiard are 1.09 µm × 1.06
µm. The gate deposition consisted of 10 nm Ti and 30 nm Au. Scale bar is 0.5 µm.
From Ref. [18].

Because the surface gates which serve to define the conducting region are spatially

removed from the conducting plane, the electrostatic potential profile edge is not

perfectly normal to the conducting plane; instead, the confinement potential exhibits

‘soft’ walls; see Fig. 2.12 below. Additionally, because the billiard is only defined
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when a negative voltage is applied to the surface gates, it is necessary to calibrate

this voltage prior to measurement. With increasing (negative) voltage, the area of the

billiard will shrink in such a way that the QPCs serving as entry and exit ports for

the billiards will eventually ‘pinch off’ and the billiard will become nonconducting.

In practice, our measurements on the AlGaAs/GaAs electron billiards described in

Chapter V employed a gate voltage corresponding to a zero-field conductance through

the device of 3× 2e2/h, such that the QPCs contain six transverse modes.

2.7.2. In1−xGaxAs/InP Electron Billiards

The indium gallium arsenide/indium phosphide (denoted InGaAs/InP) devices

discussed in this dissertation were fabricated by Dr. Ivan Shorubalko at the University

of Lund in Lund, Sweden. The fabrication process employed metal-organic vapor

phase epitaxy (MOVPE) on a substrate of semi-insulating InP:Fe and consist of (in

order of deposition) a 50 nm buffer layer of InP, a 9 nm In0.75Ga0.25As layer which

forms a quantum well, a 20 nm undoped InP spacer layer, a ∼1 nm layer of n-InP

doped with silicon at a concentration of ∼ 5 × 1018 cm−3, and a 20 nm undoped

InP cap layer. Additionally, the heterostructure is capped with a 1 µm thick layer

of photoresist used in defining the electron billiard (see below) and finally a uniform

Ti/Au top gate; see Fig. 2.10

The band diagram for the InGaAs/InP system is displayed in Fig. 2.11. Unlike

the AlGaAs/GaAs system, in which the 2DEG is formed in the triangular potential

well near the AlGaAs/GaAs interface, the InGaAs/InP system supports a 2DEG in

the quantum well resulting in the InGaAs layer sandwiched by the larger-band-gap

InP layers. At sufficiently low temperature and a sufficiently narrow InGaAs layer,

there exists only one bound state with energy lower than the Fermi energy, allowing
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FIGURE 2.10. Schematic of the InGaAs/InP heterostructure. A 2DEG (white) forms
in the InGaAs layer. A 1 nm thick δ-doped InP layer (red) contains a Si donor density
of 5× 1018 cm−3. The billiard walls (light blue) are defined by etched trenches. From
Ref. [2].

for the formation of a 2DEG in which electrons are prohibited from propagating in

the transverse direction.

FIGURE 2.11. Band diagram for the InGaAs/InP heterostructure. The vertical axis
represents energy; the horizontal axis represents the distance z in the heterostructure
growth direction.

The lattice constant of In1−xGaxAs varies with the mole fraction x and

matches that of InP at x = 0.47, such that many studies are performed on the

In0.53Ga0.47As/InP system to avoid mechanical strain. By contrast, the In0.75Ga0.25As

alloy used in this work was chosen to optimize low-temperature electron mobility [23].
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Due to the InGaAs/InP lattice mismatch, the InGaAs layer is highly strained, and its

heterostructure thickness of 9 nm matches the critical thickness above which lattice

dislocations will form [24].

The material content of the InGaAs/InP heterostructure system allows for the

fabrication of electron billiards using techniques other than electrostatic depletion of

the 2DEG. Specifically, unlike the AlGaAs/GaAs system, whose aluminum content

quickly oxidizes when exposed to atmosphere, the InGaAs/InP system allows for

billiard formation using chemical etching techniques. Using a combination of electron

beam lithography and a non-selective, 70 nm deep, HBr-based wet etching, electron

billiards may be formed by physically removing material at the plane of the 2DEG.

To electrically isolate the heterostructure from the Ti/Au top gate, the etched

trenches are subsequently filled in with a 1 µm thick insulating layer of Shipley 1813

photoresist, which is deposited onto the heterostructure and hard-baked for stability.

This procedure results in a potential gradient at the plane of the 2DEG that is an

order of magnitude steeper than in the AlGaAs/GaAs heterostructure due to the

2DEG’s proximity of surface charges on the etched boundary relative to the spatially

separated surface gates in the AlGaAs/GaAs architecture [25]; see Fig. 2.12.

Unlike the AlGaAs/GaAs electron billiards, no calibration procedure is necessary

to ensure that the electron billiard dimensions and conducting profile are constant

between experimental runs on the InGaAs/InP system. While properties of the

InGaAs/InP heterostructure such as 2DEG electron density and conduction band

profile may be modified via a voltage applied to the top gate, our studies described

in Chapter V are performed with this top gate held at ground.
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FIGURE 2.12. Comparison of the confinement potential profiles created using
electrostatic depletion in the AlGaAs/GaAs system (dashed line) and wet etching
in the InGaAs/InP system (solid line). The vertical axis represents electrostatic
potential energy; the horizontal axis represents the spatial location relative to the
billiard’s center. The profiles are based on simulations of the potential energy in a
cross section through the billiard’s central region. From Ref. [25].

2.7.3. Electron Billiards in Undoped AlGaAs/GaAs Heterostructures

As a means to further reduce the effect of remote ionized impurity scattering on

electron dynamics in a 2DEG, it is also possible to create a 2DEG in a semiconductor

heterostructure without relying on dopants to provide the conduction electrons.

While there exist a variety of heterostructure architectures which accomplish this,

the devices discussed in this work follow the design described in Ref. [26] as studied

by Drs. Andrew See and Adam Micolich at the University of New South Wales

[18, 27]. In this architecture, a n+-GaAs cap layer, degenerately doped at a density

of 3.3 × 1018 cm−3 so as to exhibit metallic conductivity at low temperature, serves

as a gate at low temperatures to induce electrons to populate the potential well at

an Al0.33Ga0.67As/GaAs interface deeper in the heterostructure; see Fig. 2.13.

The application of a positive bias to the n+-GaAs gate allows for the tuning

of electron density and mobility, with typical values of roughly 2 × 1011 cm−2 and
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FIGURE 2.13. Schematic of the undoped Al0.33Ga0.67As/GaAs heterostructure. A
positive bias applied to a degenerately doped n+-GaAs cap (orange) induces the
formation of a 2DEG (dashed line) at the AlGaAs/GaAs interface. The NiGeAu
Ohmic contact (yellow) must be formed such that it is overlapped by the n+-GaAs
gate but is electrically isolated from the gate. The heterostructure is grown on a
semi-insulating (100) GaAs substrate. Figure from Ref. [18].

300× 103 cm2/Vs, respectively. The electron density in the cap layer is sufficient to

screen the 2DEG from the electrostatic forces of the ionized donors in the cap [28].

The undoped AlGaAs/GaAs electron billiard devices described in this work were

fabricated by Dr. See at the Semiconductor Nanofabrication Facility (SNF) and the

University of New South Wales node of the Australian National Fabrication Facility

(ANFF). The AlGaAs/GaAs wafer, labeled NBI30, was grown by Drs. Martin

Aagesen and Poul Lindelof at the Niels Bohr Institute in Copenhagen, Denmark.

Scanning electron micrographs of the devices studied here, labeled AS57N and AS61N,

are provided in Fig. 2.14.

2.7.4. Summary of Electron Billiard Properties

Table 2.1 lists typical values for the parameters characterizing the electron

billiards discussed in this dissertation. Electron density and mobility are determined

using a measurement of the Hall voltage as described by Equation 2.27; electron
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FIGURE 2.14. Scanning electron micrographs of the undoped electron billiard devices
labeled AS57N (left) and AS61N (right). The devices are identical aside from the
billiard dimensions: AS57N has billiard dimensions 1.33 µm × 1.23 µm; AS61N has
billiard dimensions 0.74 µm × 0.66 µm. Both scale bars are 0.5 µm. From Ref. [18].

phase coherence length is determined using a correlation field analysis as described

in Section 2.81 and Ref. [29]; mobility mean free path is determined through the

relation `µ = vF τµ, where vF is the Fermi velocity and τµ is related to the mobility

through τµ = µm∗/e.

2.8. Magnetoconductance Fluctuations

Recall from Section 2.4 that the Hamiltonian of an electron in a nonzero magnetic

field may be written as

Ĥ =
(~p+ e ~A)2

2m∗
, (Equation 2.29)

where the magnetic vector potential ~A is defined through ~B = ~∇× ~A. In addition to

the aforementioned quantization of energy levels in a magnetic field, this leads to an

electronic wave function whose phase φ evolves as

∆φ = − e
~

∫
~A · ~d`. (Equation 2.30)
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Quantity Units Modulation-Doped Modulation-Doped Undoped
AlGaAs/GaAs InGaAs/InP AlGaAs/GaAs

EF meV 8.2 41 8.2
ns cm−2 2.3× 1011 6.8× 1011 2.3× 1011

µ cm−2/Vs 3.3× 105 3.3× 105 3.7× 105

`µ µm 2.7 4.5 3.4
`φ µm 3.5 5.9 10.4

m∗/me — 0.067 0.040 0.067

TABLE 2.1. Summary of typical values of physical quantities characterizing electron
billiards in the three material systems. The quantities tabulated include the Fermi
energy EF , the 2DEG electron density ns, the electron mobility µ, the mobility mean
free path `µ, the electron phase coherence length `φ, and the electron effective mass
m∗.

That is, an electron propagating in the presence of a magnetic field ~B with a nonzero

component normal to the direction of propagation will acquire a phase shift ∆φ which

depends on the magnitude of the field ~B and the orientation of the field with respect

to the direction of motion. However, since the effect of the magnetic field on the

electron’s phase is conveyed through the magnetic vector potential ~A, the electron

need not even travel through a region of nonzero magnetic field in order to exhibit

such a phase shift. As was noted by Aharonov and Bohm in 1959 [1], this remarkable

result could be confirmed experimentally by directing a coherent electron beam to

pass on either side of a solenoid and recombining the electron beams (see Fig. 2.15).

Since the magnetic field is essentially confined to the interior of the solenoid, neither

electron path passes through a region of nonzero magnetic field; however, the magnetic

field inside the solenoid has an associated vector potential field in the plane of the

electron propagation, such that
∫
~A · ~d` is nonzero. Specifically, the differences in the
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accumulated phases of electrons traversing the top and bottom paths will be

φ2 − φ1 =
e

~

∮
~A · ~d`

=
e

~

∫
S

~B · ~dS

=
e

~
BS

=
e

~
Φ, (Equation 2.31)

where S is the area enclosed by the two paths and Φ is the total magnetic flux enclosed

in this area.

FIGURE 2.15. Schematic of the experimental setup proposed in [1] to demonstrate
the effect of the magnetic vector potential on the phase of the electronic wave function.
An electron traveling from point A to point F via point B or point C will experience a
phase shift due to its interaction with the magnetic vector potential ~A corresponding
to the magnetic field ~B inside the solenoid. For a given magnetic field, the paths
ABF and ACF will yield distinct phase shifts, such that the interference at point F
will depend on the magnitude of ~B. From Ref. [1].

This result, known as the Aharonov-Bohm (A-B) Effect, is significant for its

revelation of a measurable quantum mechanical effect of electromagnetic potentials

on particles even in regions where no force acts on the particles. The A-B Effect

is of course also present in systems in which electrons pass directly through a

perpendicularly applied magnetic field, as is the case for the electron billiard devices

studied in this work. Specifically, consider an electron traversing a square electron
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billiard device: if we let the electron traverse the billiard from left to right as in

Fig. 2.16, an electron may travel from the entry QPC to the exit QPC via a single

bounce off the top wall or the bottom wall with equal probability. These two possible

trajectories enclose some area S, and in the presence of a magnetic field ~B applied

perpendicular to the plane of the 2DEG, the area S will enclose a magnetic flux

Φ = BS. The magnitude of ~B will thus determine the phase relation between

electrons that traverse the left and right paths such that these electrons will fall

in and out of phase with a periodicity proportional to the flux quantum h/e and

inversely proportional to the area S; see Fig. 2.16. Such an interference pattern may

thus be experimentally observed by measuring the conductance through the billiard

at a constant bias voltage as a function of the magnitude of the perpendicular field ~B:

this conduction will reach a maximum value when the electron wave functions arrive

at the exit QPC in phase, and will reach a minimum value when these wave functions

fall out of phase. The period in magnetic field of these oscillations is related to the

total area enclosed by the phase-coherent trajectories as

∆B =
h

eA
. (Equation 2.32)

Of course, an electron billiard device supports many more than the two electron

trajectories shown in Fig. 2.16, and each of these trajectories lends a unique

contribution to the total conductance through the billiard resulting from the sum

of the electron interference processes. This results in a trace of conductance as a

function of magnetic field with a spectral content reflecting a wide range of areas

enclosed by phase-coherent trajectory loops; see Fig. 2.17.

The resulting plot of conductance as a function of applied magnetic field is

known as a magnetoconductance fluctuation (MCF) trace, and provides a wealth of
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FIGURE 2.16. Sweeping the magnitude of a magnetic field applied perpendicular
to an electron billiard which supports two distinct electron trajectories results in an
interference pattern with a periodicity inversely related to the enclosed area S. From
Ref. [30].

FIGURE 2.17. Sweeping the magnitude of a magnetic field applied perpendicular to
an electron billiard which supports very many distinct electron trajectories results
in an interference pattern with a spectral content reflecting the wide range of areas
enclosed by phase-coherent electron trajectory loops. From Ref. [30].

information regarding the dynamics of electrons within an electron billiard device.

Although it would be practically impossible to use an MCF trace to determine

the precise configuration of electron trajectories within the billiard, the extreme

sensitivity of the precise form of the MCF to that distribution of trajectories makes

the MCF a valuable tool for probing electron dynamics in these devices.
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In practice, it is customary to restrict an analysis of an MCF trace to the

magnetic field range |B| < Bcyc, where the cyclotron field Bcyc is the field at which

the electron’s cyclotron diameter matches the billiard width. At fields greater than

Bcyc, electron transport through the billiard enters a ‘skipping orbit’ regime in which

electrons traverse the billiard by skipping along the boundary; see Fig. 2.18. As

the magnetic field strength increases and the cyclotron radius decreases, the electron

trajectories through the billiard become less sensitive to the billiard geometry, and

the MCF cease to be an effective probe of the dynamics influencing these trajectories.

The cyclotron fields for the AlGaAs/GaAs and InGaAs/InP billiards, each of which

has a width of 1 µm, are 160 mT and 280 mT, respectively.

FIGURE 2.18. Visualizing the skipping orbit regime of electron transport. When
the applied magnetic field exceeds the cyclotron field Bcyc, electrons enter a regime
of transport in which trajectories skip along the billiard edge.

2.8.1. Phase Coherence Measurements

Although the skipping orbit regime of electron transport through an electron

billiard is avoided for studies of electron trajectory distributions, measurements in

this regime provide an effective probe of the electron’s phase coherence length `φ. In

the technique proposed by J. P. Bird et al. [29], a MCF trace g(B) is measured at

magnetic fields greater than roughly twice the cyclotron field Bcyc. They then define
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the correlation function

F (∆B) = 〈[g(B)− 〈g(B)〉][g(B + ∆B)− 〈g(B)〉]〉, (Equation 2.33)

and define the ‘correlation field’ Bc as the value of the magnetic field which satisfies

F (Bc) = F (0)/2. The value of the correlation field increases with increasing magnetic

field B in the skipping orbit regime: in this regime, the total area enclosed by an

electron trajectory which makes Nc phase coherent bounces with the billiard wall is

Ac = Nc
πr2

c

2
, (Equation 2.34)

where rc = ~
√

2πns/eB is the cyclotron radius. The quantity Nc is related to the

phase coherence length as

`φ = Ncπrc, (Equation 2.35)

so we may rewrite Equation 2.34 as

Ac =
`φh

2eB

√
ns
2π
. (Equation 2.36)

Finally, noting that Ac is related to Bc through Equation 2.32, we may solve Equation

2.36 for `φ and simplify to arrive at

`φ =
2

(Bc/B)

√
2π

ns
, (Equation 2.37)

where Bc/B is the gradient of a plot of Bc against B in the appropriate field range.

An example plot of Bc vs B is shown in Fig. 2.19.
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FIGURE 2.19. Correlation field Bc vs magnetic field B for determination of phase
coherence length, following Ref. [29]. Analysis was performed on the AlGaAs/GaAs
electron billiard device Ca and returned a fit line (blue) with a gradient of Bc/B =
0.02985, corresponding to a phase coherence length of 3.5 µm.

2.9. Low-Temperature Measurement

All low-temperature experiments described in this dissertation conducted at the

University of Oregon were performed using an Oxford Instruments Low Loss Dewar

(LLD) with a 3He Heliox-VL Insert, which allows for cooling electronic devices to a

base temperature of 240 mK and holding these temperatures for many days at a time.

Electrical contact is made between the electron billiard device and a semiconductor

chip using wire bonding; the chip is then mounted on a connection header on the

insert, and may subsequently be referred to as the ‘sample’. The cryostat, shown

schematically in Fig. 2.20, consists of a 90 L main bath for liquid 4He surrounded by

a 65 L liquid nitrogen (LN2) jacket and outer vacuum canister (OVC) at a pressure

of roughly 10−6 mbar to minimize radiative heat transfer with the surroundings. The

experimental sample is mounted to the bottom of a sample insert containing a fixed

amount of 3He, which is gaseous above 3.2 K. Prior to insertion into the liquid helium

main bath, the lower portion of the sample insert is enclosed in an inner vacuum
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canister (IVC), which is pumped down to a pressure of roughly 10−3 mbar before

introducing a few mL2 of 4He exchange gas.

FIGURE 2.20. Schematic of the Oxford Instruments LLD and 3He Heliox-VL Insert.
(a) A liquid nitrogen jacket (red) surrounds a liquid helium bath (blue) which houses
a superconducting solenoid (gray). (b) Insert onto which the electrical device is
mounted and which is lowered into the liquid helium bath. The inner vacuum
chamber (IVC; tan) encloses the sample and the apparatus which allows sub-Kelvin
temperatures to be reached.

Sub-Kelvin temperatures are achieved in the 3He cryostat as follows: The liquid

4He bath cools the IVC to 4.2 K, which is in turn brought into thermal equilibrium

with the experimental sample via the exchange gas inside the IVC. A roughing pump

attached to the top of the sample insert draws liquid 4He into a pickup tube located

near the bottom of the sample insert and through a coil in thermal contact with

a metal plate. The helium in the tube undergoes evaporative cooling, bringing the

temperature of the plate (known as the 1 K plate) to roughly 1.5 K. An activated-

2Colloquially, a sparrow’s fart.
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carbon sorption pump removes the exchange gas from the IVC, while a 3He sorption

pump is heated to introduce gaseous 3He to the interior of the insert. The 3He then

condenses at the 1 K plate and collects in a 3He pot in thermal contact with the

sample, bringing the sample temperature down to approximately 1.5 K. Finally, the

3He sorption pump heater is switched off such that the pump evaporatively cools the

liquid 3He in the 3He pot, bringing the pot and sample down to a temperature of

roughly 240 mK.

Electrical measurements of the electron billiard devices are performed using

either a constant-current or a constant-voltage configuration. In the constant-current

configuration, a Stanford Research Systems SR830 lock-in amplifier supplies a 0.1 V

(peak-to-peak voltage) electrical signal at 37 Hz or 73 Hz, which is then passed

through a 100 MΩ ballast resistor in series with a 10 kΩ resistor and the sample

to yield a current of 1 nA. The lock-in amplifier frequencies are chosen so as to

avoid any harmonics with the 60 Hz frequency of the electrical mains to mitigate

unwanted noise. The role of the ballast resistor is to provide a known, constant

resistance several orders of magnitude higher than any other resistance in the signal

path such that the current through the circuit remains very nearly constant. It is

necessary to restrict the applied current to the order of nanoamps so as to ensure

that eV � kBT to avoid electron heating effects. The 10 kΩ resistor provides a

known resistance across which we measure a voltage drop to extract a precise value

for the current passed through the sample. Measuring the voltage drop across the

sample, in conjunction with the measured current, then provides a measurement of the

conductance through the sample. Voltage measurements are performed using SR830

lock-in amplifiers phase-locked to the source amplifier, such that voltage signals on

the order of microvolts can be distinguished.
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In the constant-voltage measurement configuration, the source SR830 lock-in

amplifier provides a 1 V signal which is passed through a voltage divider to drop the

voltage to 100 µV, which is then applied across the device. An additional SR830

lock-in amplifier phase-locked with the source then measures the current through the

device, which is on the order of hundreds of nA. The actual voltage drop across the

device is also measured with a lock-in amplifier, such that the conductance through

the billiard is calculated from measured values of both voltage and current.

FIGURE 2.21. Schematic of the constant-current electrical measurement setup. A
current of 1 nA enters the device at lead 1 and exits to ground at lead 6. In
this example, the red SR830 lock-in amplifier provides the driving current and also
measures the voltage drop across the 10 kΩ resistor to measure the current supplied
to the device, while the green SR830 lock-in amplifier measures the longitudinal
voltage drop across the left billiard, and the blue SR830 lock-in amplifier measures
the transverse voltage drop Vyy.
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FIGURE 2.22. Schematic of the constant-voltage electrical measurement setup. A
voltage of 100 µV is applied to the device at lead 1 and exits to ground via an
ammeter through lead 6. In this example, the red SR830 lock-in amplifier provides
the driving voltage and also measures the current passed through the device, while
the green SR830 lock-in amplifier measures the longitudinal voltage drop across the
left billiard, and the blue SR830 lock-in amplifier measures the transverse voltage
drop Vyy.
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CHAPTER III

FRACTALS

As a means to probe the phase space of electrons in electron billiard devices,

we employ a fractal analysis of MCF traces measured on these billiards. Before

discussing the analysis methods which may be applied to the variety of fractals we

seek to observe, let us begin with a general description of fractal patterns, their

analysis, and the difficulties presented by such analyses.

3.1. On Self-Similarity and Dimension

As we shall see, there are several different kinds of structures which we may call

‘fractals’. Although the precise nature of the fractals differs from case to case, we may

generally define a fractal structure as one which preserves some measurable quantity

across many of its scales. For instance, a mathematically-generated spatial fractal

such as the Sierpinski Carpet (Fig. 3.1) is an example of a structure whose patterns

repeat exactly at all length scales that are an integer factor of 1/3 the scale of the

entire structure.

However, this exact repetition of features is not a necessary quality of fractals—

spatial fractals can also exist as statistically self-similar fractals, in which the

preserved measurable quantity is a statistical property such as coverage density.

All spatial fractals, whether statistical or exact in nature, may exist as structures

embedded in one, two, or three spatial dimensions—for instance, the Cantor Set (Fig.

3.2) is an exactly self-similar fractal structure embedded in one spatial dimension

(though necessarily visualized in two), whereas the branching structures of lung
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FIGURE 3.1. The Sierpinski Carpet exhibits spatial exact self-similarity. Image
released into public domain by Wikipedia user Joshi1983.

bronchioles and tree branches are examples are statistically self-similar spatial fractals

embedded in three dimensions.

FIGURE 3.2. The initial six iterations of the construction of the Cantor set. The
Cantor set is an example of an exact self-similar fractal structure embedded in one
dimension. The set is constructed as follows: Beginning with the interval [0, 1], remove
the middle third of the set to produce the set

[
0, 1

3

]
∪
[

2
3
, 1
]
. Repeating this process

on the remaining segments yields increasingly fine, nonempty sets; the limit of these
sets is the Cantor set. Image released into public domain by Wikipedia user Sarang.

When speaking of the dimensionality of fractal structures, we have thus far

only discussed the dimensionality of the structure comprising the object. In most

contexts familiar to everyday life, it suffices to equate this ‘topological dimension’

with the dimension of the object in question—we are familiar with a wide range of
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two-dimensional geometric shapes on the plane and three-dimensional solids in space,

and in these cases restricting possibilities for spatial dimensions to the integers zero,

one, two, and three is quite reasonable. In the case of fractal structures, however,

this familiar conception of dimensionality breaks down: By employing generalized

geometrical analysis techniques that return the expected integer dimension values

for standard, ‘Euclidian’ shapes, we find that fractal structures are generally

characterized by non-integer dimensions. To understand why this is so, it is instructive

to reflect on what is meant when we speak of an object’s ‘dimension’.

It is perhaps tempting to define the dimension of a structure as the number

of unique coordinates needed to specify any point on the structure. For instance,

a point on a plane may be specified by its x and y coordinates, while a point on a

solid is identified using three distinct coordinates. Such a definition is mathematically

imprecise, however—since the cardinality of the set <n is the same for all n ∈ Z, it is

possible to define a one-to-one mapping between the points in any two sets <n1 and

<n2 (n1, n2 ∈ Z), and thus, any point in <n can in principle be uniquely identified

with a single number.

A more precise and general definition of dimension may be obtained by

considering the properties of a space-filling curve. In general, we may consider a curve

to be any continuous function whose domain is the unit interval [0, 1]. It is possible,

then, to construct a curve by iteration such that the limiting curve visits every point

in some area of the plane, hence “filling” the space. Such a curve thus provides an

example of a function that maps an interval in <1 (the domain of the function) to

an area in <2—that is, using a one-dimensional line to fill a two-dimensional space.

Figure 3.3 displays the first-studied space-filling curve, known as the Peano curve.
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The limiting state of this iterative construction process is a structure comprised only

of piecewise linear curves and yet it passes through every point in the unit square.

FIGURE 3.3. The first three iterations in the generation of the Peano curve. The
Peano curve is constructed as follows: Beginning with the initial figure in the unit
square (left panel), a new iteration is formed by dividing the unit square into nine
subdivisions, each of which is replaced by the figure of the prior iteration, scaled
and flipped such that the resulting figure remains a single continuous line. The
Peano curve, as the limit of this iterative process, is a figure which is comprised of a
single line but visits every point in the unit square. Image licensed under Creative
Commons CC BY-SA 3.0 (creativecommons.org/licenses/by-sa/3.0/us) by Wikipedia
contributor To Campos1.

In the case of a space-filling curve, we find that a one-dimensional object can

apparently fill a two-dimensional area. To understand the nature of this space filling,

it is thus necessary to assign titles to these evidently distinct conceptions of dimension.

Since the curve is exploring the area of a two-dimensional plane, we say that the curve

has an ‘embedding dimension’ of two; since the elements of the curve itself are one-

dimensional, we say that the curve has a ‘topological dimension’ of one. That is, the

embedding dimension, DE, describes the space in which an object exists, while the

topological dimension, DT, describes the basic elements constituting the structure.

3.2. Motivating the Fractal Dimension

For familiar, Euclidian forms, it is generally the case that DT = DE ∈ Z.

However, the case of the space-filling curve demonstrates that an object may occupy
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a higher-dimensional space than its constituent elements. In fact, the dimensionality

of a structure need not be limited to its topological or embedding dimensions—it

is possible to create a structure that is, for instance, more space-filling than a one-

dimensional line but does not entirely fill a two-dimensional area. To quantitatively

evaluate the degree to which a general curve fills space, we introduce the concept of

a fractal dimension.

The concept of a fractional, or fractal, dimension is often traced back to an

early work by the mathematician Benoit B. Manedelbrot, who, in 1967, provided

mathematical rigor to the question: “How long is the coast of Britain?” [31]. In fact,

the question had been discussed by Lewis Fry Richardson six years prior in the General

Systems Yearbook [32]. Richardson, a pacifist and mathematician (among other

titles), sought evidence for the hypothesis that the probability of two neighboring

nations engaging in war is related to the length of their shared border. The difficulty

in evaluating this statement, Richardson and Mandelbrot note, is evident in the fact

that various reports of the length of the west coast of Britain yield values spread

over a remarkable range, differing by up to a factor of three. Indeed, more precise

measurements of the coastline length—that is, measurements done with a smaller

“ruler” relative to the size of the map—invariably produce greater values for the total

length (see Fig. 3.4). This quality reflects the fact that this profile is an example of

a ‘self-similar’ structure—that is, a structure which, upon magnification, appears to

possess the same statistical qualities (if not exact details) at a wide range of length

scales.

Mandelbrot notes that Richardson had indeed supplied an empirical relation

between a measured coast length L and the smallest unit of measurement G:
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FIGURE 3.4. Evaluating the length of the coastline of Britain at different levels of
precision. When the length of the “ruler” used to measure the profile is reduced, the
number of rulers needed to encompass the profile increases at a greater rate, yielding
a greater number for the measured total length. Image licensed under Creative
Commons CC BY-SA 3.0 (creativecommons.org/licenses/by-sa/3.0/us) by Wikipedia
contributor Avsa.

L(G) = MG1−D, where M is a positive constant and D ≥ 1—but points out that

“unfortunately it attracted no attention” [31].

In light of this apparent fundamental indeterminacy, Mandelbrot notes that

familiar geometrical metrics such as length are inadequate to describe the complexity

found in nature. To this end, Mandelbrot expands upon Richardson’s empirical

parameter to introduce the concept of a fractional, or fractal,1 dimension to

characterizes the rate at which the number of rulers needed to encompass the coastline

“outpaces” the rate at which the individual rulers are shrunk when viewing the

structure with increasing precision.

To generalize the concept of dimension, Mandelbrot notes, it is instructive to

examine the scaling behavior of trivially self-similar objects such as a line, a square,

and a cube. Consider a line segment of length L, which can be decomposed into

N non-overlapping subsets of length L/N , each of which is identical to the whole

1Though Mandelbrot discusses the concept of fractional dimension in this 1967 paper, he did not
introduce the term ‘fractal’ until 1975 [33].
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segment save for a scaling factor r(N) = 1/N . Similarly, a square with side length L

can be decomposed into N2 facsimiles of side length L/N , which are each scaled down

by a factor r(N) = 1/
√
N , and a cube of side length L can be decomposed into N3

copies of side length L/N with corresponding scaling ratio r(N) = 1/ 3
√
N ; see Fig.

3.5. This result can be generalized by noting that the scaling ratio r(N) follows the

relationship r(N) = 1/N1/D, where D = − log(N)/ log(r(N)) is called the similarity

dimension of the figure in question.

L0

L = L0/3

L = L0/2

L = L0

D = 1 D = 2 D = 3

N = 1 N = 1 N = 1

N = 2 N = 4 N = 8

N = 3 N = 9 N = 27

FIGURE 3.5. Defining the similarity dimensions of trivially self-similar Euclidian
shapes. A Euclidian shape in D dimensions contains N = (L/L0)−D exact copies of
itself scaled by ε = L/L0. Image provided by Rick Montgomery.

This formulation of a ‘similarity dimension’ is easily extended to exact self-similar

figures that can be built by iteration. For instance, consider the Koch curve, whose

construction is displayed in Fig. 3.6. The Koch curve is constructed as follows:

Beginning with a line segment of unity length, append onto the segment an equilateral

triangle whose base corresponds to the middle third of the line segment; then remove
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this segment. The resulting figure consists of four line segments, each of which has

been scaled down by a factor of 1/3. The concept of a similarity dimension does

not yet apply to such a shape, since no nontrivial subset of the shape is identical to

the whole; however, repeating the above process by iteration produces figures with

increasingly fine detail, such that the limiting state of this series exhibits exact self-

similarity. Since this final figure is decomposable into four exact copies of itself, each

scaled down by a factor of 1/3, we can apply the above relation to find that the Koch

curve has a similarity dimension of D = − log(4)/ log(1/3) ≈ 1.26. We may also

use the example of the Koch curve to understand the evidently divergent perimeter

of self-similar objects. Note that at every iteration in the construction of the Koch

curve, the total length of the curve increases by a factor of 4/3. Thus, the Koch

curve, as the limiting case of this process, has infinite perimeter!

FIGURE 3.6. The Koch Curve is an example of an exact self-similar figure with a non-
integer similarity dimension. From fractalfoundation.org/resources/fractivities/koch-
curve/

The similarity dimension described above is only one of many dimensions that

can be defined and calculated for a given figure. Indeed, its scope of usefulness is
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rather limited, as it can only treat figures that exhibit exact self-similarity, whereas

the complexity seen in natural systems such as coastlines exhibit self-similarity only

in the statistical sense. To approach this more general class of fractal systems, we

introduce the (roughly self-explanatory) ‘box-counting dimension’, also known as the

‘covering dimension’. For a structure embedded in two dimensions2, the box-counting

dimension is calculated as follows: First, overlay a square grid with total size L× L

and boxes of size `×` over the figure in question, and count the number of boxes N(`)

in which some portion of the figure in question is found (see Fig. 3.7). Repeat this

procedure for a variety of box sizes ` and construct a plot of log(N(`)) vs log(1/`);

the gradient of the best-fit line to these data then corresponds to the box-counting

dimension D.

FIGURE 3.7. Applying the box-counting method to the Koch Curve. Koch Curve
image released into public domain by Wikipedia user Quackor.

2While the box-counting method is most often applied to structures embedded in two dimensions,
it is straightforward to generalize the technique to higher- or lower-dimensional systems.
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Another means of conceptualizing the box-counting method is to observe that the

set of all counted boxes at a given length scale ` serves to constitute an approximation

of the total structure as observed at the length scale `. In general, however, the

boxes covering the analyzed structure will not correspond well to the shape of the

structure at any length scale—see, for instance, Fig. 3.7, in which it is evident that the

incommensurability of the square boxes and the Koch curve leads to a markedly rough

representation of the structure at all length scales. By contrast, there exists a subset

of fractal structures for which a box-counting method returns exactly the similarity

dimension of the structure. For instance, consider the Sierpinski carpet (Fig. 3.1): the

rectilinear exact self-similar nature of this structure leads to a correspondence between

the structure and its covering boxes for all length scales ` = L/3n, n = 1, 2, 3, . . ..

Such a circumstance is referred to as a ‘commensurability’ between the structure

and its covering boxes, such that a box-counting analysis that operates only at these

specific length scales provides an exact measurement of the similarity dimension of

the structure.

The box-counting method for the estimation of fractal dimension is appealing in

its simplicity, but several considerations must be made to optimize its utility. First,

it is necessary to choose an appropriate range of box sizes ` over which to examine

the scaling trend. It is clear that a fractal scaling trend cannot extend over all length

scales—if it is possible to encompass a structure of interest in a box of size L × L,

applying the box-counting method with boxes of size ` ≥ L will always return a

value N(`) = 1, such that the apparent fractal dimension is zero in this regime.

Also, in a length scale range where ` ≈ L, it will be the case that nearly all boxes

are filled, such that the box count N(`) will scale as the square of the inverse box

size 1/`, returning an apparent fractal dimension of D = 2. In this case, we may
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say that the pattern “looks two-dimensional” when examined at the coarse scale.

The opposite extreme of possible length scales merits consideration as well. For a

mathematically-generated fractal figure, taken as the limiting case of an iterative

generating procedure, the figure may extend to arbitrarily fine scales such that the

scaling trend revealed by the box-counting method can be witnessed at arbitrarily

small box sizes `. The fractal structures that appear in nature, however, necessarily

exhibit a smallest length scale at which a scaling trend may be supported: certainly,

the trend must break down as the scope of examination reaches the molecular and

atomic scales, but the fractal structure typically “bottoms out” at length scales many

times larger than this. In practice, when the box-counting method is applied at length

scales ` that are smaller than the minimum feature size observed in the structure,

the number of filled boxes N(`) scales linearly with the inverse box size 1/`, and the

figure “looks one-dimensional” to the analysis at these scales.

How, then, do we account for this limited range of length scales when assessing

the fractal dimension using a box-counting method? This determination may be made

either empirically, by observing the range of length scales over which the scaling plot

is sufficiently linear, or by convention, based on statistical arguments. In practice,

it is generally not known a priori whether a structure under consideration should

be expected to be a fractal, and hence whether it should exhibit a linear scaling

relation on a logarithmic plot between cutoffs defined by physical and measurement

limitations. Therefore, it is common to adopt the following convention: The coarse-

scale measurement limit of the range of length scales is tied to the physical coarse-scale

limit and is set at ` = L/5, where L is the side length of the smallest square that

can entirely enclose the structure, to ensure that the grid consists of no fewer than

25 boxes. Hence, the coarse-scale analysis cutoff corresponds to this measurement
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limit. On the fine scale, the physical limit corresponds to the minimum physical

feature size observed in the structure, while the measurement limit corresponds to

the requirement that each box contain no fewer than five data points; in practice,

the more restrictive of these two limits is chosen (i.e., the limit corresponding to the

larger length scale).

Another consideration in the optimal execution of the box-counting method

regards the precise position and orientation of the grid. Inasmuch as the box-

counting method seeks to probe an inherent quality of a structure, the observed fractal

dimension should not be affected by a spatial translation of the grid with respect to the

structure. However, consider the case shown in Fig. 3.8, in which the box-counting

method is applied to a profile. In the “traditional” box-counting scheme, all boxes

that contain any portion of the figure under examination are counted toward the total,

and we find that 35 boxes are filled using this box size `. Suppose, however, that

one is able to reposition the boxes semi-independently of one another, by translating

contiguous `× ` boxes within columns of width `—in this case, we find that, through

a careful repositioning of the boxes, the box count N(`) has dropped to 29. This

discrepancy serves to motivate an amendment to the box-counting method described

above known as the variational box-counting method, in which the boxes are shifted in

columns as described above so as to minimize the number of boxes needed to entirely

cover the figure in question. The variational box-counting method thus provides a

means of breaking the ambiguity seen in the traditional box-counting method. Note

that some ambiguity remains in this amended method, in the sense that the rotational

orientation of the columns with respect to the figure remains unspecified. To address

this ambiguity, one may repeat the above-described variational method at a variety

of rotation angles of the grid with respect to the figure and choose the case that
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minimizes N(`) for each value of `, but in practice, this residual variation is typically

negligible for practical purposes.

FIGURE 3.8. Visualizing the effect of shifting box locations. In this example, when
the boxes are fixed to a grid, we find a box count N(`) = 50; however, when the `× `
boxes are allowed to shift vertically in columns of width `, the box count N(`) drops
to 47.

3.3. Time-Series Fractal Structures

The above discussion of fractal structures considers spatial fractal figures—that

is, figures whose fractal characteristics are manifest in their spatial form. Another

important class of structures to which fractal analysis may be directed is that of ‘time-

series’ structures—that is, structures that take the form of a single-valued function of

a single variable. As suggested by their name, time-series structures may be graphs

of some quantity—say, stock market prices, or atmospheric pressure—that fluctuates

in time, but for the purposes of this document we take the term to refer to any plot

of a dependent variable as a single-valued function of an independent variable.

As with spatial structures, time-series structures may exhibit fractal

characteristics, either in the statistical or exact sense. Furthermore, as with
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spatial fractals, time-series structures may be quantitatively described using a fractal

dimension; however, the box-counting method described above for determining this

dimension is no longer suitable. Simply put, the reason for this is the fact that

the box-counting method assesses the fractal dimension of a shape in space, and the

“shape” of a time-series structure is ill-defined. That is, since the two axes of a plot of

a time-series structure generally represent fundamentally incommensurate variables,

the aspect ratio of a plot to be analyzed is effectively arbitrary. For instance, consider

the fractal structure displayed in Fig. 3.9, which plots the daily closing price of a

certain technology stock over a period of roughly 16 years. This figure displays three

versions of the same data, with their respective y-axes scaled by different factors.

Qualitatively, it may be said that the data in the top panel appear the most linear,

with the trend becoming more space-filling as the dependent variable range is reduced.

Thus, since a box-counting fractal analysis technique effectively assesses the extent

to which a figure fills a plane, such an analysis would yield distinct results for each

of these plots.

The difficulty here lies in the fact that a box-counting fractal analysis necessarily

treats a figure as a spatial entity whose orthogonal components are commensurate.

A time-series trace such as the one displayed in Fig. 3.9 lacks this property, for

the aforementioned reasons, but may still exhibit fractal characteristics in the form

of either statistical or exact self-affinity. Exact and statistical self-affinity refer to

structures whose precise details or statistical properties, respectively, are repeated as

its two orthogonal dimensions are resized by independent quantities, in contrast with

exact and statistical self-similarity, in which the rescaling must be isotropic [34]—due

to the incommensurability of the orthogonal axes defining a time-series trace, such

structures cannot exhibit self-similarity, only self-affinity. As an example, see Fig.
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FIGURE 3.9. Daily closing prices for a single stock from December 1980 to October
1996. Each of the three plots displays the same data, but with their respective y-axes
scaled by different amounts. Therefore, a box-counting fractal analysis would return
unique results for each plot.

3.10, in which these same data are displayed alongside a subset of the data. When

this subset is appropriately rescaled in the y-axis, the resulting plot shares the general

statistical properties of the original trace, and hence exhibits statistical self-affinity.

It is also possible, albeit less common, for a time-series trace to exhibit exact self-

affinity. Take for example the magnetoconductance fluctuation traces shown in Fig.

3.11, in which rescaling the x- and y-axes of the traces about the zero-field resistance

peak by carefully chosen factors reveals structures which share the characteristics of

the original trace [8].

3.4. Fractal Analysis of Time-Series Traces: Beyond Box-Counting

Because the fractal character of a time-series trace as analyzed by a box-counting

method depends on the aspect ratio chosen to plot the data, which is in turn

an arbitrary choice, it is necessary to utilize fractal analysis techniques that are
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FIGURE 3.10. Statistical self-affinity in a fractal time-series trace. Choosing a subset
of the stock price data shown in Fig. 3.9 and rescaling the y-axis yields a trace that
shares statistical properties with the original.

FIGURE 3.11. Magnetoresistance fluctuations recorded in an electron billiard device
can provide examples of exact self-affinity in time-series structures. From Ref. [8].

insensitive to this geometric parameter. Below is a discussion of a sampling of the

techniques proposed in the literature.
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Early fractal analyses of MCF traces were performed using the variational box-

counting method described above [22, 35], which does indeed offer performance

improvements over the traditional fixed-grid box-counting method, but still suffers

from a fatal flaw. To see why this is the case, consider the trace shown in Fig. 3.12,

in which the variational box-counting method is assessing the stock data mentioned

above at some length scale `.

FIGURE 3.12. Visualizing a variational box-counting method applied to the stock
price data shown above at a “length” scale ` = 200 trading days. When the data are
displayed with a price range from 0-100 USD, the box count at this value of ` is 37;
when the price range is expanded to 0-1000 USD, the box count shrinks to 20.

In Fig. 3.12, we see the stock price data displayed at two different scalings of the

price axis, and a variational box-count method is applied at a “length” scale ` = 200

trading days. When the prices shown range from 0-100 USD, we find that it takes a

minimum of 37 boxes to entirely cover the trace. However, when the price range is

expanded to 0-1000 USD (effectively increasing the domain:range aspect ratio of the

data), we find that we only need 20 boxes to cover the trace. Indeed, it should be
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apparent that the number of boxes N(`) needed to cover the compressed data trace

will be proportional to 1/` for all values of ` that yield boxes taller than the data

range in any of its L/` columns—that is, as long as the boxes are “taller” than the

data within each column, the trace will look 1-dimensional to this method.

The problem here, of course, is that the concept of an `×` “box” on a time-series

trace is meaningless, since the enclosed “area” has units of (in this case) days times

dollars. Whereas it was entirely reasonable in the case of a box-counting analysis

of a spatial fractal to tile the figure with boxes of a well-defined area, the concept

of a square drawn on a plot with incompatible and independently-scaleable axes is

nonsensical. One possible resolution to this difficulty is to adopt a convention in

which all time-series traces under consideration are rescaled in their x- and y-axes

such that the plot domain and range each run from 0 to 1, and the figure sent

through a box-counting analysis is a square plot that just encloses the trace—while

such a standardization procedure may provide a means for comparing the scaling

properties of a set of similar time-series traces, the dimensions returned would remain

meaningless in an absolute sense.

To develop a fractal analysis technique that effectively treats the character of

time-series traces, one may effectively take one of two approaches: to treat a time-

series trace as a geometric figure without a defined aspect ratio, or as a record of

a process whose degree of randomness can be quantified. The latter approach was

that taken by Harold Edwin Hurst who, in a 1951 paper on the long-term storage

capacity of water reservoirs [36], laid the foundation for a quantitative understanding

of complex time-series structures. The impact of Hurst’s paper is survived by the

‘Hurst exponent’ H, which characterizes the nature of the randomness present in a

time-series trace by means of an autocorrelation measurement. Specifically, a Hurst
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exponent of H = 0.5 corresponds to a process that is perfectly random—that is,

the value of the trace at time ti is entirely uncorrelated with the value at time tj,

i 6= j—while Hurst exponents in the range 0.5 < H < 1 represent traces exhibiting

positive autocorrelations, and Hurst exponents in the range 0 < H < 0.5 represent

traces exhibiting negative autocorrelations. Simply put, a positive autocorrelation

can be understood to mean that a ‘high’ value (say, relative to the mean) is more

likely to be followed by further “high” values, while a negative autocorrelation refers

to a process which is more prone to rapid switching between “high” and “low” values

at short time scales; see Fig. 3.13.

FIGURE 3.13. Time-series traces with Hurst exponents of H = 0.25, 0.50, and 0.75.
A trace with H = 0.5 represents purely random process, whereas traces with H =
0.25 and H = 0.75 represent processes whose subsequent increments are negatively
and positively correlated, respectively.

In practice, the Hurst exponent is calculated by means of examining the

scaling properties of the ‘rescaled range’ of the data. Let the set of values {xt}

(t = 1, 2, 3, . . . , T ) represent the time-series trace under consideration, and let

65



{xi, xi+1, . . . , xi+τ}, τ ≤ T , i = 1, 2, 3, . . . , T − τ represent any sequence of τ + 1

points within the data set. The rescaled range (R/S) statistic is then defined as:

(
R

S

)
τ

=
1

sτ

[
sup

i≤t≤i+τ

t∑
k=i

(xk − xi,τ )− inf
i≤t≤i+τ

t∑
k=i

(xk − xi,τ )

]
, (Equation 3.1)

where xi,τ = (1/τ)
∑τ

t=i xt is the sample mean and si,τ =
[
(1/τ)

∑τ
t=i (xt − xi,τ )

2]1/2
is the sample standard deviation. The quantity

〈(
R
S

)
τ

〉
i

is then proportional to τH ,

such that the gradient of a plot of log
(〈(

R
S

)
τ

〉
i

)
vs log(τ) corresponds to the Hurst

exponent H.

A more direct means of evaluating the Hurst exponent characterizing a time-

series traces is known as the ‘variance method’, which directly probes the scaling

properties of the trace’s autocorrelation as a function of time interval3. Specifically,

the variance method calculates the quantity V (∆t) =
〈
[xt+∆t − xt]2

〉
t

for a range of

values of ∆t; since the Hurst exponent characterizes the long-range correlations of a

time-series trace as V (∆t) ∝ (∆t)2H , a plot of log(V (∆t)) vs log(∆t) should be linear

(over an appropriate range) with slope 2H. In practice, however, the variance method

is an imprecise estimator of a trace’s Hurst exponent, in part because it suffers from

the diminished statistics of only examining the endpoints of each ∆t ‘window’ rather

than any of the points contained therein.

The next fractal analysis technique to be discussed is that proposed by Benoit

Dubuc in a 1989 paper [37] on the fractal dimension of profiles. Dubuc’s proposed

‘variation method’ shares many similarities with the variational box-counting method

described above, but avoids the fundamental inconsistencies that arise when using a

box-counting method that insists on counting an integer number of boxes. In short,

3In all discussions of time-series traces, I will refer to the independent variable as “time” if it is
not otherwise specified.
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Dubuc’s variation method probes the space-filling properties of a time-series trace by

assessing the scaling behavior of the amplitude of the trace in an ε neighborhood as

ε is varied.

The practical implementation of Dubuc’s algorithm is as follows: Consider a

time-series trace {xt} (t = 1, 2, 3, . . . , T ). For a given value of ε, we define the

functions uε(t) and bε(t) as follows:

uε(t) = sup
t′∈Rε(t)

xt′ , (Equation 3.2)

bε(t) = inf
t′∈Rε(t)

xt′ , (Equation 3.3)

where Rε(t) = {s : |t− s| ≤ ε and s ∈ [1, T ]}. That is, for a given value of ε and for

each point ti in the trace, examine the set of points {xt′} within ε data points of ti, and

let uε(ti) and bε(ti) be (respectively) the maximum and minimum values of xt′ found

in this range. Thus, uε(t) and bε(t) can be understood to represent (respectively)

the upper and lower envelopes of oscillation of a trace at a particular scale set by ε.

At large values of ε, uε(t) and bε(t) will be slowly varying relative to the variation

present in the trace; reducing the value of ε will produce curves uε(t) and bε(t) that

each resemble the trace under consideration with increasing fidelity (see Fig. 3.14).

Having constructed the curves uε(t) and bε(t), we then find vε(t) = uε(t)− bε(t)

and calculate V (ε) = 1/ε2
∑

t vε(t). In this sense, V (ε) may be understood to be

analogous to the (vitally, not necessarily integer) number of ε × ε “boxes” required

to fill the “area” between uε(t) and bε(t)—though, of course, the concept of “area”

is ill-defined for a plot of a time-series trace. As with the box-counting method, the

fractal dimension of the trace is then assessed by the relationship V (ε) ∝ (1/ε)D, such
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FIGURE 3.14. Visualizing the application of Dubuc’s variance method at two distinct
values of ε. The trace under consideration is a fractional Brownian motion (fBm),
whose properties are discussed below.

that a plot of log(V (ε)) vs log(1/ε) is expected to be linear with a slope corresponding

to the fractal dimension D.

The final fractal analysis technique to be considered is known as ‘adaptive fractal

analysis’ (AFA) [38], and shares many similarities with Dubuc’s variation method.

Whereas Dubuc’s variation method can be understood as examining the generalized

“area” needed to cover a time-series trace at different time scales, AFA probes the

scaling of the fidelity of approximations to the trace itself at a range of time scales.

As an illustration of the AFA algorithm, we again consider a time-series trace x(t)

(t = 1, 2, 3, . . . , T ). Next, we choose an odd integer window width w = 2n+1, w < T ,

and partition the data trace into subsets of length w which overlap by n + 1 data

points. Within each window, we fit the data with a polynomial of order M = 1 or 2;

the result is a series of disconnected lines (for M = 1) or parabolas (for M = 2)

overlapping such that each value of t on the original trace corresponds to a point on
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each of two subset fit lines (except for the n data points at either end of the trace).

In practice, using M = 1 is sufficient to obtain accurate estimates of H, as described

below, so we shall limit our discussion to this case. Next, we “stitch” these fit lines

together to create an approximation to the trace x(t) as follows: Label the windows

spanning the trace with consecutive integers, and their corresponding best-fit lines

y(j)(l) (l = 1, 2, . . . , n+ 1). Then, choosing a window j, construct the trace

y(w)(l) = w1y
(j)(l + n) + w2y

(j+1)(l), l = 1, 2, . . . , n+ 1, (Equation 3.4)

where w1 =
(
1− l−1

n

)
and w2 = l−1

n
. That is, each point y(c)(l) is the weighted

average of the values of the two best-fit lines at that point, weighted such that the

weights decrease linearly with the distance separating the point from the window’s

midpoint. Repeating this procedure across all windows yields a trace y(w)(t) which

is continuous and differentiable, and which serves as an approximation to the trace

x(t) at a length scale defined by w (see Fig. 3.15).

As w is decreased, y(w)(t) will become a better approximation to x(t); the scaling

behavior of this fidelity as w is varied is used to determine the Hurst exponent.

Specifically,

F (w) =

[
1

T

T∑
i=1

(
y(w)(ti)− x(ti)

)2

]1/2

∝ wH , (Equation 3.5)

such that a plot of log(F (w)) vs log(w) will be linear with slope H.

3.5. Evaluating Fractal Analysis Techniques

Each of the above fractal analysis techniques is best understood as providing

an estimate of the fractal dimension or Hurst exponent of a time-series trace.
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FIGURE 3.15. Visualizing the adaptive fractal analysis method. The light blue trace
is a 16384-point fractal trace with H = 0.375, while the red, green, and purple traces
represent approximations produced by the AFA technique at N = 1000, 500, and 50,
respectively. Traces are vertically offset for clarity. Note that lower values of N create
approximations that better represent the trace under consideration.

The sections that follow present a method for evaluating the fidelity of these

estimates developed and applied by myself to the fractal analysis techniques under

consideration. In order to probe the robustness of these techniques, it is necessary

to compare their performance on traces with a known Hurst exponent or fractal

dimension. To introduce a method for producing such traces, we begin with a general

discussion of noise traces.

3.5.1. Colored Noises

There are a variety of means of quantifying the character of a noise trace.

In addition to the aforementioned metrics of space-filling character and long-range

correlations, an analysis of the spectral content of a noise trace leads to a natural

quantification of the trace’s statistical properties. An important and wide-ranging
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class of noise traces is that of power-law noise, whose power spectral density

P (f) ∝ 1/fβ. Noise characterized by β = 0 thus represents noise whose spectral

power density is a constant across all frequencies, while β = 1 corresponds to the ‘1/f

noise’ often found in natural systems, and β = 2 corresponds to a so-called ‘brown

noise’. While β can, in principle, assume any value, we begin our investigation by

considering the β = 2 case.

A noise trace characterized by a power spectral density with β = 2 is termed

‘brown noise’ owing to its relation to Brownian motion, which describes the net

motion of a particle whose individual steps are random and independent. A Brownian

motion may exist as a structure in a system of any dimension, but for our purposes,

we consider a brown noise as a plot of the position of a particle undergoing Brownian

motion in one dimension as a function of time (in the discussion that follows,

‘Brownian motion’ and ‘brown noise’ will be used interchangeably to describe a

Brownian motion in one dimension). In this sense, given that a Brownian motion

represents the cumulative sum of random, independent steps, a Brownian motion

trace is readily generated as a cumulative integral of a white noise trace, which for

our purposes we can define as a series of values with zero mean taken from a normal

distribution (i.e., a Gaussian noise trace; see Fig. 3.16). As a result, a brown noise

trace is characterized by a Hurst exponent of H = 0.5.

If we relax the restriction that the Gaussian noise trace consist of independent

increments, such that consecutive increments are positively or negatively correlated,

the trace formed by its cumulative sum is then characterized by a Hurst exponent

that deviates from H = 0.5—such a trace is then known as ‘fractional Brownian

motion’ (fBm). Mandelbrot and Van Ness [39] provide a formalism to such structures

as follows: First, consider an ordinary Brownian motion B(t, ω), where t denotes
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FIGURE 3.16. The cumulative sum of Gaussian white noise results in Brownian
motion.

time and ω denotes the set of values corresponding to the random function that gives

way to the specific realization of a Brownian motion (i.e., the series of random steps

whose cumulative summation results in a Brownian motion). A Brownian motion

B(t, ω) is a real-valued function whose increments B(t2, ω)−B(t1, ω) have zero mean

and variance |t2− t1|, and whose non-overlapping increments B(t2, ω)−B(t1, ω) and

B(t4, ω)−B(t3, ω) are independent. A ‘reduced fractional Brownian motion’ BH(t, ω)

then, is further characterized by the parameter H, 0 < H < 1, and satisfies

BH(0, ω) = b0,

BH(t, ω)−BH(0, ω) =
1

Γ(H + 1
2
)

{∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dB(s, ω)

+

∫ t

0

(t− s)H−1/2dB(s, ω)

}
. (Equation 3.6)
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A fractional Brownian motion trace is thus self-affine in the sense that

{BH(t0 + τ, ω)−BH(t0, ω)} , {h−H [BH(t0 + hτ, ω)−BH(t0, ω)]}, (Equation 3.7)

where {X(t, ω)} , {Y (t, ω)} indicates that two random functions X(t, ω) and Y (t, ω)

have the same finite joint distribution functions [39]. That is, on average, when

an interval on an fBm trace is expanded by a factor of h, the difference of the

values bounding the interval BH(t0 + hτ, ω)− BH(t0, ω) increases by a factor of hH .

This is thus an example of statistical self-affinity, as it represents a transformation

in which the x and y axes need to be scaled by distinct factors (viz., h and hH ,

respectively) in order to observe the preservation of statistical properties. By contrast,

a statistically self-similar structure is one whose statistical properties are preserved

upon an isotropic rescaling [34].

This definition of self-affinity in terms of the Hurst exponent then allows us to

draw a parallel between the Hurst exponent and the fractal dimension. Following the

argument of Voss [34], consider an fBm trace VH(t) covering a time span ∆t = 1 and

a vertical range ∆VH = 1. If the time span is divided into n increments each of width

1/n, then we expect each interval to contain a portion of the trace whose vertical range

is ∆tH = 1/nH (see Fig. 3.17). Then, we would further expect the portion of VH(t)

present in each interval to be covered by ∆VH/∆t = (1/nH)/(1/n) = n/nH square

boxes of side length 1/n. Hence, the total number of square boxes of side length 1/n

required to cover the entire trace is expected to be n(n/nH) = n2−H . Recall that

the box-counting method of estimating fractal dimension finds the number of square
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boxes of side length ` needed to cover a trace follows N(`) ∝ (1/`)DF ; comparing

these results leads to the relationship4 DF = 2−H.

FIGURE 3.17. Deriving a relationship between the Hurst exponent and fractal
dimension. A Brownian motion trace VH(t) (H = 0.5) is rescaled to fit inside a
unit square, and is divided into n intervals of width 1/n. The self-affine nature of an
fBm trace leads to a prediction for the number of square boxes needed to cover the
trace at a given length scale, leading to a relationship between H and DF . See text
for details.

In spite of the ubiquity of the relation DF = 2−H found in the literature, Voss

is quick to note the inherent difficulty in assigning a fractal dimension to a self-affine

structure, as this argument requires fixing a scaling between distinct coordinates.

Mandelbrot, too, notes the apparent relation DF = 2 − H [40], and clarifies that

this relation holds in the fine-scale limit. Indeed, this disparity highlights a general

distinction between the Hurst exponent and the fractal dimension as descriptors of a

4Note that this relation only applies to time-series fractals, since the notion of a Hurst exponent
is undefined for spatial fractals.
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time-series trace; namely, the former is a descriptor of global correlations, while the

latter describes a trace’s local fine-scale structure [41].

3.6. Relationship between Fractal Dimension and Spectral Exponent

We now return briefly to the spectral exponent β as a means of describing

the nature of a fractal trace. In practice, it is uncommon to describe the fractal

properties of a time-series structure by means of a spectral analysis, owing to the

imprecision (relative to the aforementioned fractal analysis techniques) of fitting

a spectral decomposition of a trace using a power law. Nonetheless, it remains

instructive to observe the relationship that exists between the spectral exponent β,

the fractal dimension DF , and the Hurst exponent H. The spectral exponent is

typically said to relate to the Hurst exponent at β = 2H+1, implying the relationship

DF = (5 − β)/2. This relationship derives from the observation that the two-point

autocorrelation function

GV (τ) = 〈V (t)V (t+ τ)〉 − 〈V (t)〉2 ∝ τβ−1 (Equation 3.8)

for a trace V (t) is related to the quantity 〈|V (tτ )− V (t)|2〉 as

〈|V (tτ )− V (t)|2〉 = 2[〈V 2〉 −GV (τ)]; (Equation 3.9)

comparing this result to the variance method for the determination of the Hurst

exponent

〈|V (t+ τ)− V (t)|2〉 ∝ τ 2H (Equation 3.10)

75



leads to the expression β − 1 = 2H [42]. However, systematic study [43] has shown

that such a relationship does not generally hold. In analogy to the investigation

performed by Ref. [43], we investigated this relationship by generating a collection

of 20 noise traces with a length of 16384 points at each of 40 evenly spaced values

of β between 0 and 2. The results of fractal analyses on these traces are displayed

in Fig. 3.18, and demonstrate that the relationship DF = (5− β)/2 breaks down for

DF close to 1 or 2.

FIGURE 3.18. Results of fractal analysis on colored noise traces generated with a
specified power spectral density β. Each data point represents the average value of
DF measured for the set of 20 traces at the corresponding value of β. Error bars
represent one standard deviation from the mean value of DF recorded for each set of
traces. Lines connecting the data points are provided as a guide to the eye.

3.7. Generating and Characterizing Fractional Brownian Motions

A variety of methods exist for generating a random realization of a fractional

Brownian motion trace with arbitrary Hurst exponent, including Fourier filtering
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of white noise, random midpoint displacement, and the summation of independent

jumps [42]. The randomly generated fBm traces discussed in this dissertation are

created using a Matlab program that creates a fractional Gaussian noise trace via a

Fourier transform, and takes the cumulative sum of the noise trace to yield a fractional

Brownian motion trace with a specified well-defined Hurst exponent.

While these computer-generated fBm traces are created using a well-defined

Hurst exponent, they may realistically only be considered to be approximations to

true fractal fractional Brownian motions—as with any structure that appears in the

physical world, generated fBm traces necessarily exhibit a fine-scale resolution limit

(time intervals shorter than the fundamental interval ∆t are undefined) as well as

a coarse-scale size limit (time intervals longer than the total length of the trace are

undefined). Nonetheless, given a generated fBm trace whose total length exceeds

its minimum step by several orders of magnitude, the effects of these limitations on

analytical estimates of the underlying Hurst exponent characterizing the trace may

be considered negligible.

We therefore assume that a fBm trace generated with a Hurst exponent Hin and

with a total length well in excess of its resolution limit is a suitable representative

of a true fractal structure characterized by Hin, and may therefore be used as a

test case against which the fidelity of the above-mentioned analysis techniques may

be evaluated. The procedure for evaluating these analytical procedures is thus as

follows: We first generate a set of 50 16384-point fBm traces at each of 39 input Hurst

exponents Hin between 0.025 and 0.975. Next, each of these traces is passed through

the analysis method in question, which returns either a measured Hurst exponent Hout

or a measured fractal dimension Dout. In the case of the Dubuc variation analysis,
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which returns a fractal dimension, this value is “converted”5 to a Hurst exponent via

Hout = 2 −Dout. For each fractal analysis method, the respective scaling plots were

assessed between length scales corresponding to five points on the trace and 1/5 of

the trace’s entire length.

Having extracted these values of Hout for each sample fBm trace, we may produce

a plot of Hout vs Hin for each analysis technique; these results are displayed in Figs.

3.19 and 3.20 for randomly-generated fBm traces with lengths of 16384 points and

512 points, respectively. In the ideal case of a perfectly fractal fBm trace subjected

to an analysis technique that produces a precise and accurate of the Hurst exponent,

such a plot is expected to be linear with unity slope. Based on the results of these

analyses, we may note that in general, the variational box-counting method tends

to over-estimate H except in the case of high H values; the variance analysis tends

to under-estimate H; the Dubuc variation analysis performs well only for H ∼ 0.5;

and the adaptive fractal analysis provides an accurate estimate of H throughout the

range of H values. These deviations are more pronounced in the case of the shorter,

512-point traces, and the precision of the estimated H values suffer in these cases as

well, as evidenced by the increases in the error bars on the data points corresponding

to the shorter traces.

We may also investigate the effect on the measured H values of another common

deviation from ideal fractal behavior; namely, the behavior of traces whose finest-scale

features are significantly larger than their resolution limit. Such is very often the case

for fractal structures observed in nature such as magnetoconductance fluctuations,

whose finest features are often an order of magnitude larger than the point-wise

5As discussed above, such a conversion is not rigorously motivated, but it does allow for a self-
consistent means of evaluating the behavior of this analysis technique on fBm traces of a known
Hurst exponent, as well as deviations from this behavior.
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FIGURE 3.19. Results of a Monte Carlo analysis of the fidelity of the four fractal
analysis methods in determining the H value for randomly-generated 16384-point
fBm traces. Fifty fBm traces were generated at each of 39 input Hurst exponents Hin

between 0.025 and 0.975 and analyzed using the variational box-counting method
(yellow points), adaptive fractal analysis (green points), Dubuc’s variation analysis
(red points), and the variance analysis (blue points). Each data point represents the
average Hout value measured for each analysis method using cutoffs corresponding
to five data points and 1/5 of the entire trace; the error bars represent one standard
deviation in the measured values. The dashed black line represents the relation Hout =
Hin, such that data points representing traces whose measured Hout values exactly
match their generating Hin values would fall on this line.

resolution of the trace. To probe the nature of this effect, we repeat the above

technique on a set of randomly-generated 512-point fBm traces which have been

subjected to a Fourier filter which eliminates all frequency components corresponding

to periods shorter than 10 data points, such that the resultant traces have a minimum

feature size of 10 points. Figure 3.21 demonstrates the result of this filtering procedure

by comparing the original and filtered versions of an fBm trace with Hin = 0.5.

A fractal analysis of time-series traces with limited spectral content such as

these requires a reassessment of the length scales over which one expects to find the

fractal scaling properties. Whereas our analysis of fBm traces whose spectral content

79



FIGURE 3.20. Results of a Monte Carlo analysis of the fidelity of the four fractal
analysis methods in determining the H value for randomly-generated 512-point fBm
traces. Fifty fBm traces were generated at each of 39 input Hurst exponents Hin

between 0.025 and 0.975 and analyzed using the variational box-counting method
(yellow points), adaptive fractal analysis (green points), Dubuc’s variation analysis
(red points), and the variance analysis (blue points). Each data point represents the
average Hout value measured for each analysis method using cutoffs corresponding
to five data points and 1/5 of the entire trace; the error bars represent one standard
deviation in the measured values. The dashed black line represents the relation Hout =
Hin, such that data points representing traces whose measured Hout values exactly
match their generating Hin values would fall on this line.

extended down to the resolution limit examined scaling properties to a minimum

length scale of five data points, we now cannot expect to see such scaling properties

at length scales smaller than our minimum feature size of 10 data points. It may

seem reasonable, then, to expect that we should be able to set our fine-scale analysis

cutoff at 10 data points and observe the desired scaling properties at all length scales

greater than this; in practice, however, the effect of a significant minimum feature

size is manifest in a fractal analysis even at length scales greater than that minimum

feature size. The results of passing the 512-point Fourier filtered fBm traces through

our fractal analysis techniques are displayed in Figs. 3.22 and 3.23, in which the fine-
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FIGURE 3.21. Comparison of a 512-point fBm trace with Hin = 0.5 before (red) and
after (blue) Fourier filtering to a minimum feature size of 10 points.

scale cutoffs for the analysis are 10 data points (the traces’ minimum feature size)

and 20 data points, respectively.

Examples of the scaling plots from which the data in Figs. 3.20, 3.22, and 3.23

were taken are provided in Figs. 3.24, 3.25, 3.26, and 3.27. These figures show the

scaling plots resulting from fractal analyses of an fBm trace with Hin = 0.5 before and

after Fourier filtering (viz., the pair displayed in Fig. 3.21) using the variational box-

counting method, the variance method, the Dubuc variation method, and adaptive

fractal analysis, respectively. These figures demonstrate the difficulty in identifying

an appropriate fine-scale cutoff for fractal analysis of a time-series trace, even when

the minimum feature size found in the trace is easily identifiable. Unlike spatial

fractals, for which it is often reasonable to expect fractal scaling behavior between

the length scales corresponding to physical constraints (and in particular at length

scales sufficiently far from these cutoffs), the effect of imposing a minimum feature size

on a time-series trace is found at all scales, not just those smaller than the minimum

observed period.
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FIGURE 3.22. Results of a Monte Carlo analysis of the fidelity of the four fractal
analysis methods in determining the H value for randomly-generated 512-point fBm
traces Fourier filtered to a minimum feature size of 10 points. The analyses are
performed over 1.01 orders of magnitude in length scale. Fifty fBm traces were
generated at each of 39 input Hurst exponents Hin between 0.025 and 0.975 and
analyzed using the variational box-counting method (yellow points), adaptive fractal
analysis (green points), Dubuc’s variation analysis (red points), and the variance
analysis (blue points). Each data point represents the average Hout value measured
for each analysis method using cutoffs corresponding to 10 data points and 1/5 of the
entire trace; the error bars represent one standard deviation in the measured values.
The dashed black line represents the relation Hout = Hin, such that data points
representing traces whose measured Hout values exactly match their generating Hin

values would fall on this line.

The trends displayed in Figs. 3.22 and 3.23, as contrasted with those displayed in

Figs. 3.19 and 3.20, highlight the difficulty in assessing the fractal properties of time-

series structures that suffer from limited length, limited spectral content, or both.

The effect on a time-series trace of a minimum feature size significantly in excess of

its resolution limit necessitates restricting a fractal analysis to length scales larger still

than the minimum feature size, which often leads to an analysis of scaling properties

over few orders of magnitude in length. For instance, restricting the fractal analysis of

the 512-point Fourier filtered traces between cutoffs corresponding to 10 data points
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FIGURE 3.23. Results of a Monte Carlo analysis of the fidelity of the four fractal
analysis methods in determining the H value for randomly-generated 512-point fBm
traces Fourier filtered to a minimum feature size of 10 points. The analyses are
performed over 0.71 orders of magnitude in length scale. Fifty fBm traces were
generated at each of 39 input Hurst exponents Hin between 0.025 and 0.975 and
analyzed using the variational box-counting method (yellow points), adaptive fractal
analysis (green points), Dubuc’s variation analysis (red points), and the variance
analysis (blue points). Each data point represents the average Hout value measured
for each analysis method using cutoffs corresponding to 20 data points and 1/5 of the
entire trace; the error bars represent one standard deviation in the measured values.
The dashed black line represents the relation Hout = Hin, such that data points
representing traces whose measured Hout values exactly match their generating Hin

values would fall on this line.

and 1/5 of the trace length yields an analysis over barely more than one order of

magnitude in length scale; attempting to increase the accuracy of the measurement

by raising the fine-scale cutoff to 20 data points reduces the scaling range to 0.71

orders of magnitude. Given that it is difficult to make a compelling argument for the

presence of fractal behavior when examining such a narrow range of length scales, one

must take care when applying these analysis techniques to data sets limited in length

or spectral content. Nevertheless, it is instructive to examine the behavior of fractal
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FIGURE 3.24. Comparison of scaling plots produced by the variational box-counting
method applied to a 512-point fBm trace with Hin = 0.5 before (red) and after
(blue) Fourier filtering to a minimum feature size of 10 points. The vertical dashed
lines indicate the cutoffs between which the scaling plot is fitted with a straight line
whose slope yields DF (and is then converted to Hout): For both traces, the coarse-
scale cutoff is given by the line labeled ‘1/5 of trace’. The fine-scale cutoff for the
unfiltered trace (red points) is given by the line labeled ‘5 points’ (corresponding to
the data in Fig. 3.20), while the fine-scale cutoff for the filtered trace (blue points)
may be chosen as 10 data points (corresponding to the data in Fig. 3.22) or 20 data
points (corresponding to the data in Fig. 3.23).

analysis applied to legitimate fractal structures such as fBm traces which have been

artificially subjected to such constraints.
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FIGURE 3.25. Comparison of scaling plots produced by the variance method applied
to a 512-point fBm trace with Hin = 0.5 before (red) and after (blue) Fourier filtering
to a minimum feature size of 10 points. The vertical dashed lines indicate the cutoffs
between which the scaling plot is fitted with a straight line whose slope yields Hout:
For both traces, the coarse-scale cutoff is given by the line labeled ‘1/5 of trace’. The
fine-scale cutoff for the unfiltered trace (red points) is given by the line labeled ‘5
points’ (corresponding to the data in Fig. 3.20), while the fine-scale cutoff for the
filtered trace (blue points) may be chosen as 10 data points (corresponding to the
data in Fig. 3.22) or 20 data points (corresponding to the data in Fig. 3.23).
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FIGURE 3.26. Comparison of scaling plots produced by the Dubuc variation method
applied to a 512-point fBm trace with Hin = 0.5 before (red) and after (blue) Fourier
filtering to a minimum feature size of 10 points. The vertical dashed lines indicate the
cutoffs between which the scaling plot is fitted with a straight line whose slope yields
DF (and is then converted to Hout): For both traces, the coarse-scale cutoff is given
by the line labeled ‘1/5 of trace’. The fine-scale cutoff for the unfiltered trace (red
points) is given by the line labeled ‘5 points’ (corresponding to the data in Fig. 3.20),
while the fine-scale cutoff for the filtered trace (blue points) may be chosen as 10 data
points (corresponding to the data in Fig. 3.22) or 20 data points (corresponding to
the data in Fig. 3.23).
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FIGURE 3.27. Comparison of scaling plots produced by the adaptive fractal analysis
method applied to a 512-point fBm trace with Hin = 0.5 before (red) and after
(blue) Fourier filtering to a minimum feature size of 10 points. The vertical dashed
lines indicate the cutoffs between which the scaling plot is fitted with a straight line
whose slope yields Hout: For both traces, the coarse-scale cutoff is given by the line
labeled ‘1/5 of trace’. The fine-scale cutoff for the unfiltered trace (red points) is
given by the line labeled ‘5 points’ (corresponding to the data in Fig. 3.20), while the
fine-scale cutoff for the filtered trace (blue points) may be chosen as 10 data points
(corresponding to the data in Fig. 3.22) or 20 data points (corresponding to the data
in Fig. 3.23).
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CHAPTER IV

FRACTAL ANALYSIS OF MCF TRACES

As discussed in the introduction, a fractal analysis of MCF traces may provide

insights regarding the phase space characterizing electron trajectories within the

billiard. Specifically, the presence of fractal patterns is understood to be suggestive

of a mixture of chaos and stability in this phase space [14]. Although electron

billiards fabricated on the gated AlGaAs/GaAs heterostructure generally exhibit

soft confinement potentials which may serve to introduce chaotic trajectories [14],

it remains an open question whether the electrostatic potential landscape introduced

by the modulation doping fabrication technique is itself sufficient to affect the fractal

content.

With this in mind, we now turn our attention to a fractal analysis of MCF traces

taken on electron billiards in the modulation-doped and undoped AlGaAs/GaAs

heterostructure systems. These billiards share a nominally square shape and a soft-

walled confinement potential from the electrostatic gates which serve to define the

billiard; however, the undoped device is free of the ionized dopants which serve to

impact the distribution of electron trajectories in the modulation-doped structures. Is

this difference substantial enough to yield an observable effect on the fractal properties

of the MCF? In particular, could the existence of small-angle scattering sites in the

modulation-doped structures introduce chaotic dynamics that serve to amplify the

fractal behavior of the MCF?
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4.1. Generating Simulated Traces

4.1.1. MCF and fBm

Figure 4.1 displays the representative MCF traces from the modulation-doped

and undoped AlGaAs/GaAs electron billiards whose relative fractal properties we

seek to assess1. All 12 MCF were measured at a temperature of 240 mK. For the

purposes of this analysis, we refer to the MCF traces produced by modulation-doped

electron billiards as ‘MD-MCF’ and those produced by undoped electron billiards

as ‘UD-MCF’. For each family of traces, we restrict our analysis to the magnetic

field range 0 ≤ B ≤ Bcyc, where the cyclotron fields Bcyc for the modulation-doped

and undoped electron billiards are 160 mT and 210 mT, respectively. Also note

that the traces represented in Fig. 4.1 have each been vertically rescaled to have

an RMS amplitude of 1 and have had any linear trend removed by subtracting a

best-fit line from the trace. The vertical rescaling has no effect on the results of

the fractal analyses, but allows for a clear and consistent visualization of the traces’

fluctuations. The removal of a linear trend ensures that our analysis treats only the

quantum fluctuations resulting from phase-coherent electron transport through the

billiards; see Section 5.3 for a discussion of this linear trend.

As we saw in Chapter III, the accuracy and precision of a fractal analysis of a

time-series trace suffer when the trace’s total length does not significantly exceed the

smallest feature size found in the trace. Such is the case for the MCF traces under

consideration here: the MD-MCF traces each consist of 320 points at a resolution

of 0.5 mT and exhibit a minimum feature size of roughly 4 mT (1.3 percent of the

total length), while the UD-MCF traces each consist of 420 points at a resolution

1The MCF traces measured on the induced AlGaAs/GaAs heterostructure were measured by
Drs. Andrew See and Adam Micolich and published in Ref. [27].
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FIGURE 4.1. Magnetoconductance fluctuations measured on modulation-doped
(left) and induced (right) electron billiards. All traces have been rescaled to have an
RMS amplitude of 1. The six MD-MCF were each measured on different cooldowns
from room temperature, while the six UD-MCF were measured in a single cooldown
at different top gate voltages. All traces have been vertically offset for clarity.

of 0.5 mT and exhibit a minimum feature size of roughly 8 mT (1.9 percent of the

total length). We therefore expect that a straightforward application of the analysis

techniques described in Chapter III may not be sufficient to discriminate between the

fractal characteristics of each family of MCF traces. Instead, we seek to examine the

relative fractal characteristics of these MCF traces through a comparison against the

behavior of simulated fractal traces which have been artificially smoothed.

We have at our disposal a technique for generating fractional Brownian motion

(fBm) traces with arbitrary length and specified Hurst exponent, whose response

to our fractal analysis techniques are documented in Chapter III. These fBm traces

90



exhibit clear fractal scaling properties when their length far exceeds their minimum

feature size, but the robustness of these properties is observed to diminish when the

fBm traces are passed through a Fourier filtering algorithm. It may be claimed,

however, that the filtered fBm traces represent fractal structures whose analyses are

impeded by constraints which limit their spectral content.

With this in mind, let us propose by analogy that the measured MCF traces

under consideration represent true fractal structures whose fractal analyses are

impeded by a lack of spectral content owing to a physical constraint such as a finite

phase-coherence length. To explore the validity of this hypothesis, we seek to compare

the responses of our measured MCF traces and appropriately prepared fBm traces to

our fractal analysis techniques. Because we wish to test the hypothesis that each MCF

trace represents a fractal structure which has had its spectral content diminished, we

seek to pair each MCF trace with a fBm trace whose basic properties upon Fourier

filtering closely match those of the MCF, and subsequently examine the response of

each trace to each fractal analysis method.

Our investigation thus proceeds as follows: For each of the 12 total MCF traces

under consideration, we generate a set of fBm traces which are then resized and

Fourier filtered so as to match the MCF’s total length and minimum feature size

(measured in numbers of data points). From this set of fBm traces, we identify the

fBm trace whose measured Hout values most closely match those of the corresponding

MCF trace. The scaling plots from which the Hout values are taken are then examined

under the assumption that a scaling plot that is better fit by a straight line (in the

appropriate scaling range) may be said to correspond to a trace that is more fractal.

Under the hypothesis that the MCF traces are “as fractal” as their corresponding fBm

traces, we would expect scaling plots for the MCF and fBm traces to yield similar
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deviations from linearity. If, on the other hand, one family of MCF traces are shown

to yield scale plots that are consistently less linear than those of their corresponding

fBm traces, we may say that that set of MCF traces is “less fractal” than the other

set.

4.1.2. Trace Generating and Processing Procedure

It has been shown in Section 3.7 that Fourier filtering affects the measured

fractal dimension or Hurst exponent of a trace in a largely unpredictable manner:

our simulations demonstrate that a set of fBm traces generated using a given Hurst

exponent Hin and subsequently passed through a Fourier filter will yield measured

Hurst exponents Hout with a significant range of values; see Figs. 3.22 and 3.23.

Thus, in order to identify the filtered fBm traces which most resemble our measured

MCF, it is necessary to generate several fBm traces using a variety of “seed” Hurst

exponents Hin and select from that batch those traces whose measured properties

after filtering most closely match those of our MCF. To this end, we have generated

500 fBm traces with lengths of 512 points at each H value from 0.1, 0.2, . . ., 0.9 for

each family of MCF, producing 4500 fBm candidate traces to compare with the six

MCF in each family.

The Fourier filter smoothing is then performed on each trace as follows: Compute

the FFT spectrum of the “raw” 512-point fBm trace, and set equal to zero all

frequency components corresponding to periodicities smaller than the minimum

desired period. Next, compute the inverse-FFT of this spectrum, and crop this

reconstituted trace to the desired length (i.e., the same number of data points as

the corresponding MCF) by removing points symmetrically from the beginning and

end of the trace. Choosing a central selection of points in this way serves to eliminate
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any undesired artifacts found at either end of the filtered trace resulting from the

FFT operations. Finally, compute the best-fit line to the remaining trace using a

least-squares algorithm, and subtract this line from the trace, yielding a trace with

no overall linear trend.

4.2. Analyzing the Simulated Traces

Each of these 4500 smoothed and cropped traces is then subjected to each of three

time-series fractal analysis techniques: the Dubuc variation method, the variance

method, and adaptive fractal analysis (AFA). Each of these methods is described in

detail in Chapter III.

4.2.1. Identifying the valid scaling region

Before we may extract Hurst exponents or fractal dimensions using these analysis

techniques, we need to identify the range in the scaling variable over which we expect

the scaling behavior to persist. For this analysis, we have chosen a fine-scale cutoff

length corresponding to the minimum feature size observed in the trace—eight points

for the MD-MCF and 16 points for the UD-MCF—since we do not see any meaningful

variation in the trace at smaller length scales. As a coarse-scale cutoff, we have chosen

to use one-fifth of the total length of the trace—64 points for the MD-MCF and

84 points for the UD-MCF. This leads to analyzed scaling ranges of 0.90 orders of

magnitude for the MD-MCF and 0.72 orders of magnitude for the UD-MCF.

4.3. Identifying Correspondences

In spite of the inherent limitations of a fractal analysis on a time-series trace

with limited spectral content, it should be possible to employ the above analyses to
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identify smoothed fBm traces whose scaling properties match those of our measured

MCF so as to subsequently compare their respective scaling properties. That is,

given a collection of filtered fBm traces which respond similarly to the above analyses

as our measured MCF, we hope to compare the scaling plots of the MCF to their

corresponding filtered fBm counterparts as a means of assessing the relative ‘fractality’

of the MD-MCF and UD-MCF.

The representative filtered fBm are chosen in a one-to-one correspondence with

the 12 measured MCF as follows: For each of the 9000 fBm generated and processed

(500 at each of the nine seed Hurst exponents, for each family of MCF), each of the

three analyses is performed and their respective measured Hurst exponents recorded.

(Note that the Dubuc variation method returns a fractal dimension DF ; this is

converted to an ‘effective’ Hurst exponent via the relation H = 2 −DF .) The same

analyses are performed for each of the six MCF in each set, each of which has also

had a linear trend subtracted. We are thus left with three H values for each MCF

and fBm corresponding to the three analyses, which can be thought of as a point in a

three-dimensional ‘H-space’. Since we are concerned with identifying the fBm trace

whose three measured H values most closely match those of the MCF, we can recast

the task as identifying the fBm trace whose point in H-space lies closest to that of

the MCF. Specifically, let Ha, Hd, and Hv represent the Hurst exponents measured

by AFA, the Dubuc method, and the variation method, respectively, and let the

superscripts 1 and 2 label parameters describing an MCF and fBm, respectively; we

then seek to minimize the quantity

d =
√

[(H1
a −H2

a )2 + (H1
d −H2

d)2 + (H1
v −H2

v)2]. (Equation 4.1)
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Having done so, we arrived at fBm corresponding to each of our six MD-MCF with

an average d of 0.0127, and fBm corresponding to each of our six UD-MCF with an

average d of 0.0254. Visual comparisons of the MCF and their corresponding chosen

fBm counterparts are shown in Figs. 4.2 and 4.3 (for the MD-MCF and UD-MCF,

respectively).

FIGURE 4.2. A comparison of the six MD-MCF traces under consideration (left)
and their simulated counterparts (right), chosen such that both traces in a given pair
return nearly identical Hurst exponents/fractal dimensions in three separate fractal
analyses. All traces consist of 320 data points. The fBm traces have been Fourier
filtered to exhibit a minimum feature size of 8 data points as is found in the MCF.
All traces have been rescaled to exhibit an RMS amplitude of 1 and are offset for
clarity.
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FIGURE 4.3. A comparison of the six UD-MCF traces under consideration (left)
and their simulated counterparts (right), chosen such that both traces in a given pair
return nearly identical Hurst exponents/fractal dimensions in three separate fractal
analyses. All traces consist of 420 data points. The fBm traces have been Fourier
filtered to exhibit a minimum feature size of 16 data points as is found in the MCF.
All traces have been rescaled to exhibit an RMS amplitude of 1 and are offset for
clarity.

4.4. Assessing Scale Plot Pairs

Generally speaking, a structure may be considered to be a fractal if an

appropriate scaling plot exhibits a linear trend when plotted logarithmically with

a slope corresponding to a non-integer dimension and this linear trend persists over

an appreciable range of length scales. Fractal character becomes more difficult to

evaluate, however, when one or both of these criteria are broken—when significant

curvature appears in the scaling plot, for instance, or when a scaling behavior persists

over a short range. This is frequently the case for our measured MCF, where a finite
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maximum frequency component and short total length tend to distort the results

of a fractal analysis. How, then, are we to compare the fractal properties of our

two groups of MCF to one another? Given that a direct comparison is unlikely to

be informative, we choose to instead compare the fractal character of each group of

MCF to groups of filtered fBm traces—traces which were constructed as true fractals

but were processed so as to resemble the structures we observe in nature. If we then

define a parameter q to capture the fractality of a given trace, then comparing the q

values of MCF and their respective fBm across the two groups of MCF should help

shed light on the respective fractal character of those two groups.

We choose to define a fitness parameter q that measures the extent to which a

scaling plot deviates from perfect linearity within a given range on the scaling plot.

Specifically, q represents the standard deviation of the list of differences between the

data points and the best-fit line within this range. However, given that scaling plots

for the three fractal analyses will exhibit different ranges along the y-axis and the two

families of MCF will exhibit scaling trends across different ranges along the x-axis,

it is necessary to standardize these scaling plots so that the q values for all plots will

be comparable to one another.

As a technique for standardizing the scale plots, we can rescale and translate the

data in both dimensions such that the best-fit line through the data is a constant for

all the plots considered. In practice, this was implemented as follows: For a given

scale plot yi = f(xi), cropped to the valid scaling region, with corresponding fit line

f(x) = mx + b, first translate and rescale the graph along the x axis such that the

x-values range between 0 and 1. Next, translate the graph down along the y axis

by an amount b + m/2 such that the fit line passes through the x axis at x = 0.5.

97



MCF Trace 〈qMCF〉 fBm Trace 〈qfBm〉 ∆〈q〉 = 〈qMCF〉 − 〈qfBm〉
MD1 0.0402 FF8–1 0.0347 0.0054
MD2 0.1056 FF8–2 0.0857 0.0199
MD3 0.0395 FF8–3 0.0319 0.0076
MD4 0.0349 FF8–4 0.0555 -0.0206
MD5 0.0218 FF8–5 0.0172 0.0046
MD6 0.0621 FF8–6 0.0727 -0.0106

Averages: 0.0507 0.0496 0.0011

MCF Trace 〈qMCF〉 fBm Trace 〈qfBm〉 ∆〈q〉 = 〈qMCF〉 − 〈qfBm〉
UD1 0.0484 FF16–1 0.0353 0.0130
UD2 0.0484 FF16–2 0.0494 -0.0010
UD3 0.0363 FF16–3 0.0316 0.0047
UD4 0.0824 FF16–4 0.0628 0.0195
UD5 0.0646 FF16–5 0.0474 0.0172
UD6 0.1610 FF16–6 0.2383 -0.0773

Averages: 0.0735 0.0775 −0.0040

TABLE 4.1. Collecting and averaging the q values found based on the three fractal
analyses.

Finally, divide all the data points by the value m such that the fit line runs from

(x, y) = (0,−0.5) to (1, 0.5) with unity slope.

Having transformed the scale plots as described, we then subtract the fit line

from the transformed data points and calculate the standard deviation q of these

residuals; the average of the standard deviations of the three scale plots for a given

trace is then calculated. The results of these analyses are listed in Table 4.1. (The

naming convention for the Fourier filtered fBm traces is as follows: the first number

following “FF” indicates the minimum fluctuation period specified by the FF routine,

and the second indexes the traces.)

By subtracting the q value for a given fBm trace from the q value for its

corresponding MCF trace, we arrive at a metric for evaluating the extent to which

the MCF’s scaling properties resemble those of a true fractal. That is, given that a

trace’s q value represents the extent to which its scaling plots are nonlinear within
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the expected scaling range, if an MCF’s q value significantly exceeds that of its

corresponding smoothed fBm trace, we may conclude that the MCF is in a sense “less

fractal” than the fBm. If, on the other hand, an MCF and its corresponding fBm

trace exhibit similar q values, we may take that as evidence of the MCF’s fractality,

given that it responds similarly to our fractal analyses as a trace which was generated

as a pure fractal and processed in analogy to the physical constraints present in our

experimental systems. In short, we interpret a greater ∆q value to correspond to an

MCF that is less fractal.

Of all the numbers listed in Table 4.1, the two highlighted in boldface may be

interpreted as summarizing the results. Specifically, given that the UD-MCF and

their corresponding fBm traces exhibit a lower overall average ∆q value than the

MD-MCF do, one may at first be led to conclude that the UD-MCF are more fractal

than the MD-MCF. Note, however, that this interpretation relies on the notion that

negative ∆〈q〉 values are meaningful and may contribute to this average. An alternate

interpretation is as follows: Given that the fBm traces are the ‘true’ fractal structures

against which we are comparing the fBm, we should be interested only in the absolute

value ∆2〈q〉 = |〈qMCF〉 − 〈qfBm〉|, such that all negative entries in Table 4.2 become

positive. Under this interpretation, the 〈∆2〈q〉〉 values for the MD-MCF and UD-MCF

become 0.0115 and 0.0221, respectively, with the implication that the MD-MCF are

marginally more fractal. Under each interpretation, however, the standard deviations

of the values from which each average 〈∆〈q〉〉 is calculated are comparable to or

larger than the differences between the ∆〈q〉 values for the MD-MCF and UD-MCF,

suggesting that no clear trend may be identified.

We may also investigate the ∆〈q〉 values that result from averaging over all six

traces in each family for each analysis technique, displayed in Table 4.2. We thus
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Trace Group 〈∆q〉 (AFA) 〈∆q〉 (Dubuc) 〈∆q〉 (Variance)
MD-MCF / FF8 0.0105 -0.0002 -0.0071
UD-MCF / FF16 0.0048 0.0022 -0.0189

TABLE 4.2. Average values for ∆q found by averaging across all traces in each trace
group, listed by fractal analysis technique.

see that the variance method analyses are largely responsible for the instances of

negative values for ∆〈q〉 shown in Table 4.1. If we repeat the analysis presented in

Table 4.1 but disregard all q values resulting from variance analyses, we arrive at

values of 〈∆〈q〉〉 of 0.0051 and 0.0035 for the MD-MCF / FF8 and UD-MCF / FF16

trace families, respectively. Repeating this analysis under the interpretation that the

∆〈q〉 values should be nonnegative yields values of 〈∆2〈q〉〉 of 0.0074 and 0.0054 for

the MD-MCF / FF8 and UD-MCF / FF16 trace families, respectively. These results

again support the prior conclusion that the neither family of MCF traces may be

considered to be more fractal than the other.

Overall, these results may be seen as confirming Ketzmerick’s claim [14] that the

addition of small-angle scatterers has no effect on the phase space within electron

billiards. Additionally, this investigation demonstrates the difficulty in evaluating

the fractal character of traces limited in length, in spectral content, or (especially)

both. Under various interpretations of the data, fractal analysis of the UD-MCF

and MD-MCF trace sets may suggest that either the MD-MCF or UD-MCF exhibit

more pronounced fractal behavior, though the differences between the magnitudes

of these quantitative metrics are comparable to the uncertainties in each. In short,

these conflicting results may be understood as representative of the limitations of

fractal analysis applied to limited data sets, such that no clear distinction may be

drawn between the relative fractality of MCF taken from induced and modulation-
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doped electron billiard devices. This limitation could in principle be alleviated by

increasing the length of the MCF traces relative to their minimum feature size. Given

that the length of the trace is limited by the cyclotron radius of electron orbits with

the electron billiard, this may in principle be accomplished by employing smaller

billiard devices or by increasing the phase coherence length of electrons within the

billiard. However, as the size of the billiard device is decreased toward the Fermi

wavelength of the electrons, one risks departing the semiclassical regime of electron

transport which is crucial for MCF studies.

The normalized scaling plots for all the traces analyzed and for all the analysis

techniques utilized are displayed in the Appendix.
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CHAPTER V

THERMAL STABILITY OF ELECTRON CONDUCTION

5.1. Description of Experiment

The results of Chapter IV demonstrate that the presence of small-angle scattering

sites in the AlGaAs/GaAs heterostructure does not significantly alter the phase

space of electrons within an electron billiard, based on a fractal analysis of MCF

traces. Although the small-angle scattering sites introduced by the modulation-

doping technique are not seen to affect the chaotic properties of electron trajectories in

a measurable way, we may still investigate the sensitivity of the precise distribution of

these trajectories, and hence of the specific features of the MCF traces, to the precise

form of the potential landscape induced by remote ionized donors.

Claims of true ballistic electron transport in electron billiard devices imply that

the distribution of electron trajectories in the billiards are insensitive to the precise

form of this potential landscape. Indeed, the small-angle scattering introduced by the

remote ionized donors is traditionally considered to be negligible with respect to the

trajectories of electrons within electron billiard devices [6–9, 13, 44]. To test these

claims, we seek to investigate the effect on MCF traces of a reorganization of ionized

dopants in modulation-doped heterostructures by means of thermal excitation. Our

experimental evidence suggests that in fact, conductance through electron billiard

devices is highly sensitive to the precise form of the slowly-varying potential landscape

introduced by these donors.

It has been shown [7] that features of an MCF trace measured on an electron

billiard device may be attributed to the billiard geometry—indeed, claims of true
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ballistic electron transport in electron billiards imply that device geometry alone

is responsible for the details of an MCF trace. Under this reasoning, an MCF

trace taken at a given temperature would be altered only by actions that serve to

reconfigure the device geometry. However, we find that when a modulation-doped

electron billiard device with a constant geometry is brought to a temperature in excess

of ∼150 K between MCF measurements at a base temperature of 240 mK, the MCF

are significantly altered, indicating that the electron trajectories within the billiard

have been redistributed. We attribute this reconfiguration of electron trajectories to

a redistribution of the charge states of the remote ionized donors whose collective

electrostatic potential influences electron propagation through small-angle scattering

events.

To demonstrate that the thermal instability of electron interference as measured

by MCF is generic to the modulation doped heterostructure architecture and not

unique to a specific heterostructure system, these experiments were performed on

electron billiard devices in both the Al0.33Ga0.67As/GaAs and In0.75Ga0.25As/InP

material systems.

The MCF measurements on the InGaAs/InP material system discussed in this

chapter were performed by Dr. Billy Scannell, and the MCF measurements on the

undoped AlGaAs/GaAs material system were performed by Dr. Andrew See. The

MCF measurements on the modulation-doped AlGaAs/GaAs material system were

performed by myself with the assistance of Rick Montgomery and in collaboration

with Dr. Billy Scannell. The 2DEG electron density and mobility measurements on

the InGaAs/InP material system described in Section 5.8 were performed by myself.

In the experimental procedure that follows, all MCF traces were measured at

a base temperature of 240 mK and recorded with a resolution of 0.5 mK over a
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range |B| > Bcyc; correlation analyses of the MCF traces are performed only over

the field range |B| < Bcyc. Recall from Section 2.8 that the cyclotron fields for the

AlGaAs/GaAs and InGaAs/InP billiards are 160 mT and 280 mT, respectively. All

MCF measurements on the AlGaAs/GaAs and InGaAs/InP billiards were performed

with six transverse modes in the QPCs. Figures 5.1 and 5.2 display the robust

reproducibility of the MCF traces when the billiard is held at base temperature.

FIGURE 5.1. MCF traces recorded on the AlGaAs/GaAs electron billiard back-to-
back while the billiard is held at T = 240 mK. The blue trace was recorded following
the red trace, and is offset vertically by 0.1 × 2e2/h for clarity. The green trace
represents the pointwise difference between the two MCF traces, and is vertically
offset by 3×2e2/h. The MCF traces are measured with a resolution of 0.5 mK. MCF
measurements performed by myself in collaboration with Dr. Billy Scannell.

Following the MCF measurement, the device is then warmed to a temperature

Ti, which is held for 30 minutes before returning the sample to 240 mK and repeating

the MCF measurement. We find that the precise form of the MCF measured after the

thermal cycle relative to that measured before the thermal cycle is highly dependent

on the temperature Ti; see Figs. 5.3 and 5.4.
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FIGURE 5.2. MCF traces recorded on the InGaAs/InP electron billiard back-to-
back while the billiard is held at T = 240 mK. The blue trace was recorded following
the red trace, and is offset vertically by 0.1 × 2e2/h for clarity. The green trace
represents the pointwise difference between the two MCF traces, and is vertically
offset by 3×2e2/h. The MCF traces are measured with a resolution of 0.5 mK. MCF
measurements performed by Dr. Billy Scannell.

By inspection of Figs. 5.3 and 5.4, it is clear that pairs of MCF taken on either

side of a thermal cycle to Ti = 115 K are nearly indistinguishable, while a thermal

cycle to room temperature significantly alters the fine-scale structure of the measured

MCF. This result is suggestive of a thermally activated mechanism which serves to

reconfigure the distribution of electronic trajectories within the billiard, and hence

the details of the measured MCF, characterized by a threshold temperature between

115 K and 300 K. To probe the nature of this thermal activation mechanism, we

measured pairs of MCF separated by thermal cycles to temperatures Ti and quantified

the similarity between the two MCF as a function of Ti. To quantify the correlation

between two MCF traces g1(B) and g2(B), we introduce the correlation function

F =

√
1− 〈[g1(B)− g2(B)]2〉B

N
, (Equation 5.1)
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FIGURE 5.3. Comparison of MCF from the InGaAs/InP billiard measured at T =
240 mK after being warmed to three intermediate temperatures Ti. Top to bottom,
the Ti values of the pairs of traces are 300 K, 115 K, and 240 mK. The traces are
vertically offset for clarity. Top: Magnified comparison of traces taken with Ti = 115
K (lower [black] and middle [green]) and Ti = 300 K (lower [black] and upper [red]).
The MCF traces are measured with a resolution of 0.5 mK. MCF measurements
performed by Dr. Billy Scannell.

where

N = 〈[gx(B)− gy(B)]2〉B. (Equation 5.2)

The average 〈〉B represents an average over all MCF data points in the range

|B| ≤ BC . The traces gx(B) and gy(B) represent a pair of traces that are thought

to be “completely” decorrelated, such that the normalization constant N is taken

to be the average of the mean-squared differences between several such pairs of

traces. In our preliminary analyses, it was assumed that a room temperature thermal

cycle was sufficient to completely decorrelate the MCF. In later studies (see below),

this assumption was abandoned in favor of a normalization scheme which averaged
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FIGURE 5.4. Comparison of MCF from the AlGaAs/InP billiard measured at T =
240 mK after being warmed to three intermediate temperatures Ti. Top to bottom,
the Ti values of the pairs of traces are 300 K, 115 K, and 240 mK. The traces are
vertically offset for clarity. Top: Magnified comparison of traces taken with Ti = 115
K (lower [black] and middle [green]) and Ti = 300 K (lower [black] and upper [red]).
The MCF traces are measured with a resolution of 0.5 mK. MCF measurements
performed by myself in collaboration with Dr. Billy Scannell.

the de-correlation between pairs of computer-generated MCF traces, such that any

correlations between the generated traces were purely random. Simply put, the

correlation function F provides a measure of the similarity of two traces such that a

pair of mathematically identical traces returns a correlation F = 1, while a pair of

“completely decorrelated” (i.e., randomly related) traces will return F = 0.

Having collected the data F (Ti) for each heterostructure system, we may devise

a physically-motivated fit function in order to quantify the mechanisms responsible

for the MCF decorrelation. Specifically, we attribute MCF decorrelation to the

thermally-activated relocation of charge among the silicon donor atoms in the doped
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layer of the heterostructure, which reconfigures the electrostatic potential landscape

through which electrons propagate and hence also the precise distribution of electronic

trajectories.

5.2. Preliminary Results

We first modeled the fit function to the correlation measure F as

Ffit = exp(−t/τ), (Equation 5.3)

where t is the time spent at an intermediate temperature Ti and τ(Ti) describes

the temperature-dependent characteristic time scale for a decorrelation event to

take place. This characteristic time may be described by 1/τ = P/τ0, where

P (Ti) = exp(−β/kBTi) represents the probability that a thermally-activated process

with activation energy β occurs at a temperature Ti, and where τ0 represents the

characteristic time for the process to occur given infinite thermal energy. Combining

these expressions yields a fit function [45]

Ffit = exp

[
−η exp

(
− β

kBTi

)]
, (Equation 5.4)

where η = t/τ0.

Figure 5.5 displays the results of fitting Equation 5.4 to the MCF correlation data

from the AlGaAs/GaAs and InGaAs/InP billiards as well as for previously reported

measurements taken on a GaAs wire [45, 46]. The insets in Fig. 5.5 display the effect

on the fit function of varying the activation energy β and the normalized time constant

η: an increase in β has the primary effect of shifting the onset of MCF decorrelation

to higher temperatures, while an increase in η has the primary effect of creating a
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steeper fall-off in F following the onset of decorrelation. The wire was 10 µm long,

50 nm high, and 90 nm wide, and was heavily doped with silicon (n = 5× 1024 m−3,

EF = 128 meV) distributed uniformly through the wire’s cross section. These fits

return values for the activation energy β of 350± 100 meV, 45± 20 meV, and 80± 20

meV for the AlGaAs/GaAs, InGaAs/InP, and GaAs wire systems, respectively, with

respective η values of 3× 1010, 45, and 80. These results were published in [2]; before

we discuss a physical interpretation of these values, we shall first discuss our later

refinements of these analyses.

FIGURE 5.5. Fitting the functional form of Equation 5.4 to the MCF correlation
data taken on the modulation-doped AlGaAs/GaAs billiard (green diamonds), the
modulation-doped InGaAs/InP billiard (blue squares), and a uniformly-doped GaAs
wire (red circles). The insets display the response of the fit function to changes in the
activation energy β (top) and the normalized time constant η (bottom). From Ref.
[2].
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5.3. Refinement of Correlation Analysis of AlGaAs/GaAs Billiards

In the time since the publication of Ref. [2], we have performed several

refinements to the above analysis. Given the relative wealth of MCF correlation data

for the AlGaAs/GaAs material system, the refinements described below primarily

pertain to this system; the challenges presented by the InGaAs/InP data, and our

refined interpretation of the data at hand, are discussed later.

The first refinement of the above analysis as presented in Ref. [2] pertains to

the form of Equation 5.1. Näıvely, we would require a correlation function to do

the following: compare the “difference” between two MCF traces to the maximum

“difference” we could expect to find; then, flip this normalized decorrelation into

a normalized correlation by subtracting from 1. Why, then, did we subtract from 1

prior to evaluating the square root in Equation 5.1? The answer is primarily historical:

this was the form of the decorrelation function reported in the original discussion of

thermal MCF decorrelation in GaAs wires [46]. Alternately, historical precedent also

exists in support of a correlation function in which the square root is evaluated prior

to subtraction from unity [9], such that the correlation function becomes

F2 = 1−
√
〈[g1(B)− g2(B)]2〉B

N2
. (Equation 5.5)

Although the correlation function represented by Equation 5.1 was chosen for

publication in [2], the functional form of Equation 5.5 is more mathematically sensible:

Noting that the fraction under the radical sign of Equation 5.1 is a ratio of mean-

squared difference, we should evaluate the square root immediately, such that this

becomes a ratio of root-mean-square (RMS) difference, which may then be subtracted

from unity as in Equation 5.5. Note that Equation 5.5 expresses the normalizing
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factor as N2 rather than as N (as was the case in Equation 5.1), such that we may

consider the quantity N to be an average of RMS differences for consistency with the

numerator.

Another consideration in refining our analysis of MCF correlation data pertains

to the fact that measured MCF, especially those taken on the AlGaAs/GaAs system,

consistently exhibit a strong linear background trend upon which the conductance

fluctuations due to electron interference are superimposed; see Fig. 5.4. This linear

trend may be understood as resulting from the depopulation of Landau levels in

the electron billiard. In the Landauer-Büttiker formalism, the resistance through an

electron billiard supporting NQPC subbands in the QPCs and Nbill subbands in the

billiard will take the form [21, 47]

R =
h

2e2

[
1

NQPC

− 1

Nbill

]
. (Equation 5.6)

At low magnetic fields, NQPC is nearly constant, while Nbill decreases linearly with B

as the Landau levels are depopulated, such that the conductance through the billiard

will increase with magnetic field. Also present in the invariant background trend of

the MCF is a structure resulting from the classical focusing of trajectories through the

billiard. At certain magnitudes of the applied magnetic field, and hence curvatures

of the classical electron trajectories, electrons entering the billiard will be directed

through the billiard or reflected to the entrance, corresponding to local maxima and

minima in measure conductance, respectively.

Since we expect (and observe) that this background trend is unaffected by

thermal cycles, we would like our correlation function to measure the differences

in the electron interference fluctuations superimposed upon this background, which

are made more visually apparent by removing the background trend. Provided we
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subtract the same background trend from all MCF, the correlation value describing

a given pair of MCF will be unaffected, so this may seem a moot point—but in fact,

this procedure of ‘line-subtracting’ the measured MCF is a vital step in employing

the next refinement in our analysis procedure, which pertains to the normalization

procedure.

Normalizing MCF decorrelation values by the maximum decorrelation value

observed in measured MCF assumes that a room-temperature (RT) thermal cycle

is sufficient to maximally decorrelate the MCF. In reality, we do not know a priori

if such an assumption is justified—perhaps even higher temperatures are needed to

alter the configuration of small-angle scattering sites to the extent necessary to realize

a maximum reconfiguration of electronic trajectories. To test this, we sought to

generate mathematically random simulations of MCF using a computer program,

such that the pairwise comparisons of these simulated traces may provide a realistic

measure of the average correlation between two fully independent traces.

Owing to the well-studied fractal nature of MCF traces (see Chapter IV),

our randomly generated simulations of MCF traces were created using the

fractional Brownian motion generation algorithm described in Chapter III. Several

considerations are necessary, however, before it is possible to compare a generated

fBm trace to a measured MCF trace. For instance, we would like to create fBm traces

which exhibit similar spectral content to the measured MCF; but because the fractal

scaling properties of the MCF do not extend to the resolution limit of the MCF, this

entails matching both the measured fractal dimension DF (or Hurst exponent H) as

well as the minimum feature size observed. The minimum size of features observed in

MCF taken on the AlGaAs/GaAs system is approximately 4 mT, as determined by a

visual inspection and confirmed by a Fourier analysis. (Note that this size scale is a
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full order of magnitude larger than the MCF resolution limit of 0.5 mT.) Also, a fBm

trace will not exhibit a consistent background trend as is seen in the measured MCF

traces, as it is intended to model only the conductance fluctuations due to electron

interference within the electron billiard. Thus, it is necessary to match fBm traces to

MCF traces which have been stripped of any persistent background trends.

To produce and process the fBm traces to be used for MCF correlation

normalization, we first selected a set of six MCF traces, each recorded on a

separate cooldown from room temperature, to serve as representative of the statistical

properties desired in our simulated traces. (The 15 pairwise correlations of these six

room-temperature-separated MCF traces provided the value for the normalization

constant N as depicted in [2].) We then generated a set of fBm traces whose nominal

fractal dimensions (as determined by their seed H value through the relation DF =

2 − H) roughly match the fractal dimensions observed in the MCF (as determined

using a variational box-counting method). To impose the desired minimum feature

size observed in the MCF, the fBm traces were Fourier filtered by computing a fast

Fourier transform (FFT), setting all frequency components higher than the frequency

corresponding to this minimum observed size, and returning the trace to real space

via an inverse FFT. At this point, the fractal dimensions of the resultant filtered fBm

traces were measured, and fBm traces whose measured values of DF closely matched

those of the MCF traces (to within ±0.01) were selected from the group. That is,

since the representative MCF traces exhibit some variation in DF , each of these six

traces was individually matched to a fBm trace with the same statistical properties

(viz., minimum feature size and measured DF ). These fBm traces were then vertically

rescaled to match the RMS amplitude of its (line-subtracted) partner MCF; see Fig.

5.6 for a visual comparison of the pairs of MCF and fBm.
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FIGURE 5.6. Left: MCF measured on the AlGaAs/GaAs billiard on six distinct
cooldowns from room temperature. Each MCF trace has had a common linear
background trend removed. Right: Six fractional Brownian motion traces, processed
and selected to share statistical properties with the corresponding (i.e., similarly-
colored) MCF. Traces are vertically offset for clarity.

Equipped with a revised correlation function in Equation 5.5 and a more

physically meaningful normalization constant N , we may reassess the correlation data

for MCF recorded on the AlGaAs/GaAs system. Fig. 5.7 displays the correlation

data represented in Fig. 5.5 after reassessing the MCF correlations using Equation

5.5 and a normalization constant N as determined using fBm traces.

Figure 5.7 displays several notable features. First, note that the form of Equation

5.4 has been replaced by the following fit function:

Ffit = A exp

[
−η exp

(
− β

kBTi

)]
, (Equation 5.7)

where the prefactor A is introduced to accommodate those MCF pairs separated by

low values of Ti whose measurement noise brings their normalized correlations slightly

below unity, such that Equation 5.7 may be used to adequately fit these points. The
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FIGURE 5.7. A plot of F2 vs Ti for MCF recorded on the AlGaAs/GaAs system
(data points) and a fit to the data (red line) based on a slight alteration to Equation
5.4. The displayed η value results from a fit to the data, weighted by their respective
error bars, with β = 350 meV and A = 0.92 fixed. Note that all data points plotted at
Ti = 300 K represent actually MCF data, not simulated traces. See text for discussion
error bars and parameter values.

reported value of A was chosen “by eye” to satisfy the requirement that the fit line

pass through the error bars for all data with Ti <100 K. Next, note that the fit

function of Equation 5.7 remains a compelling fit to the data when the value of β is

kept at 350 meV, as reported in [2], suggesting that our reported interpretations of

these values remain valid.

The error bars that now appear on the data points reflect our uncertainty in

the value of the normalization constant N rather than an uncertainty in the RMS

difference between the MCF traces under comparison. In particular, note that

Equation 5.7 is of the form F2 = 1 −∆/N, where ∆ is the RMS difference between

two MCF traces separated by a thermal cycle and N is a normalization constant

(ideally, the largest possible value of ∆). In practice, we have taken N to be the
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mean pairwise RMS difference between members of a set of randomly-generated and

filtered fBm traces. This collection of RMS differences between the fBm traces taken

pairwise also exhibits a nonzero sample standard deviation, δN , such that we may

derive the uncertainty in F2 given the (fixed) magnitude of δN :

F2 = 1− ∆

N
δF2

δN
=

∆

N2

δF2 =

(
∆

N

)(
δN

N

)
= (1− F2)

δN

N
. (Equation 5.8)

Since the quantity δN/N is a constant (for a given set of pairwise correlations from

which N was calculated), the quantity δF2 depends only on the value of F2 found for

a given pair of measured MCF traces, and varies between zero (for F2 = 1) and the

full ratio δN/N (for F2 = 0).

5.4. Interpreting τ and η

Recall that our MCF correlation data are fit using

Ffit = A exp

[
−η exp

(
− β

kBTi

)]
,

η =
t

τ0

, (Equation 5.9)

where t is the time spent at the intermediate temperature Ti and τ0 is a characteristic

time for charge transfer. Thus, this model accounts for the decorrelation of MCF

traces due to holding the electron billiard at Ti for a given length of time (30 minutes),

but fails to account for any charge transfer between donor sites that takes place during
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the finite (and often lengthy) time needed to warm the billiard to Ti and cool it back

down to our base temperature. However, since the approximate heating and cooling

rates T (t) are known, it is straightforward to generalize the form of Equation 5.7 to

account for charge transfer events that take place during heating and cooling cycles

(see Appendix). The result is a fit function with three terms, one of which is simply

Equation 5.7, and the remaining two being integrals representing the heating and

cooling cycles:

Ffit(Ti) =A exp

[
− 1

τ0

∑
k=1,2,3

∫ Ti

Tj=0

dTj

(
dt

dTj

)
k

exp

(
− β

kBTj

)]
(Equation 5.10)

=A exp

{
− 1

τ0[
0.0214

∫ Ti

Tj=0

dTjTj exp

(
− β

kBTj

)
+ t(T ) exp

(
− β

kBTi

)
+ 0.41

∫ Ti

Tj=0

dTj exp

(
− β

kBTj

)]}
. (Equation 5.11)

Despite the significantly altered form of this revised fit function, it is in fact

possible to fit this function to our data with negligible variation from the fit provided

by Equation 5.7 using the same value of β = 350 meV as before and a revised τ0

value; see Fig. 5.8.

The value of τ0 needed to obtain this correspondence is roughly twice as large

as the value suggested by Equation 5.7 (using t = 30 minutes, β = 350 meV, and

η as determined by fitting Equation 5.7 to the data). This is a sensible result, as

accounting for the additional time spent at temperatures above the base temperature

should return a larger characteristic time scale needed to observe a given degree of
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FIGURE 5.8. A plot of F2 vs Ti for the AlGaAs/GaAs billiards. The red data points
and fit line are identical to those shown in Fig. 5.7. The blue fit line represents a
fit of the form Equation 5.11 and uses the same value of β = 350 meV, returning a
value of τ0 = 1.1 ns.

MCF decorrelation. It is also worth noting, however, that the uncertainty in the

best-fit value of η is typically at least 25 percent of the total value.

5.5. Refining the Data Set

An examination of Fig. 5.7 suggests that the fit provided by Equation 5.11 would

be more compelling if not for the presence of a handful of data points which serve

as outliers to the trend. For instance, two data points in the vicinity of Ti = 130 K

lie conspicuously below the fit line, and at least one point at Ti = 215 K is similarly

removed from the trend.

As noted above, MCF taken from a given AlGaAs/GaAs billiard are observed to

exhibit slightly different fractal dimensions DF (as determined using a variational box

counting method) ranging roughly from DF = 1.15− 1.39. While the precise nature
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of this evolution of DF remains an open question, the existence of this discrepancy

offers a means to asses the relative validity of the data points in Fig. 5.7.

Figure 5.9 displays the same data and fit curve as Fig. 5.7, with several key

differences. First, the shapes of the data point markers are now reflective of which of

the two nominally identical AlGaAs/GaAs billiards provided the data point—circles

represent MCF taken on the device labeled “Ca”, and squares represent MCF taken

on the device labeled “Cb”. Also, the plot has been edited such that the size of

each data point marker is proportional to the difference between the measured DF

values of the two MCF whose normalized RMS difference provides the data point in

question. Thus, to the extent that we may expect DF to change minimally due to a

thermal cycle, we may regard the larger data point markers in Fig. 5.9 to represent

data that are more likely to be erroneous.

FIGURE 5.9. A plot of F2 vs Ti for the AlGaAs/GaAs billiards. Here, the size of each
data point marker is proportional to the difference between the DF values for the two
MCF represented by the data point. Also, the shapes of the data point markers now
illustrate which of the two nominally identical AlGaAs/GaAs billiard devices, Ca and
Cb, provided the data point.
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The expectation that DF should remain unchanged after a thermal cycle is well-

supported. As discussed in prior publications [25, 35], the fractal dimension of a MCF

trace is found to depend on the dimensionless quantity Q, which represents the ratio

of the billiard’s electron energy level spacing to the thermal energy level broadening:

Q =
∆ES
∆EB

=
(2π~2)/(m∗A)√
(~/τφ)2 + (kBT )2

. (Equation 5.12)

In this expression, m∗ is the electron effective mass in the billiard, A is the

billiard area, and τφ is the phase coherence time, related to the phase coherence

length through `φ = vF τφ. Figure 5.10 displays the empirical relationship between

the fractal dimension and theQ value for MCF taken on seven different AlGaAs/GaAs

electron billiards.

FIGURE 5.10. A plot of fractal dimension DF vs the quantity Q for seven
different billiard devices labeled ’a’ through ’g’ fabricated in the AlGaAs/GaAs
heterostructure. This plot is known as the ‘Q Curve’. See Refs. [25, 35] for more
information. From Ref. [35].
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Of the quantities embedded in the definition of Q, the only value which could

be expected to vary between nominally identical measurements of a given billiard is

the effective billiard area A. While our experimental procedure made an effort to

keep this value constant (through appropriate gate-voltage calibration), it is possible

that this was not always the case, and we hypothesize that a slight variation in A is

responsible for the observed variation in DF . Thus, since we seek to isolate the effect

of a thermal cycle on the MCF recorded on a billiard with a given geometry, we are

justified in excluding from our analysis data points that are suggestive of a variation

in device geometry, as indicated by an observed drift in the MCF’s fractal dimension.

Excluding data points based on a maximum acceptable drift in observed fractal

dimension of 0.05 returns the data shown in Fig. 5.11, which reveals a closer

agreement between the data and fit line.

FIGURE 5.11. A plot of F2 vs Ti for the AlGaAs/GaAs billiards. This figure displays
the same data as Fig. 5.9 after omitting those data points (red) which represent MCF
pairs in which the fractal dimension DF is observed to vary by more than 0.05. Fitting
this data set with Equation 5.11 (red line) with the value β = 350 meV yields a slightly
lower value of η.
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5.6. Adding Data from Induced Billiard Devices

Armed now with a correlation normalization scheme which places no

requirements on the behavior of MCF taken on distinct cooldowns from room

temperature, we may add to these plots the data representing MCF taken on induced

electron billiard devices. Drs. Andrew See and Adam Micolich have demonstrated

[18, 27] that MCF obtained on billiards free of ionized dopants are remarkably robust

to thermal cycles, even up to room temperature. This result may be seen qualitatively

in Fig. 5.12, displayed in Ref. [27], which displays MCF measured on an electron

billiard in an undoped AlGaAs/GaAs heterostructure.

FIGURE 5.12. Comparison of MCF traces taken on an electron billiard device in the
undoped Al0.33Ga0.67As/GaAs heterostructure (a) before and (b) after a thermal cycle
to room temperature. In each panel (a) and (b), the sequence of traces represents
MCF taken with top gate voltages ranging in 5 mV increments between +0.93 V
(bottom) to +0.955 V (top). Traces are sequentially offset vertically for clarity. From
Ref. [27].
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Given the analysis presented in [2], which assumed that a room-temperature

thermal cycle is sufficient to completely decorrelate the MCF, it would have

been impossible to display this thermal insensitivity on Fig. 5.5. While we

have demonstrated that a room-temperature thermal cycle is indeed sufficient to

completely decorrelate the MCF taken on modulation-doped systems, this is clearly

not the case for induced electron billiards, and hence we must rely on randomly-

generated fBm traces to provide a normalization constant against which the pairwise

differences between MCF traces may be compared.

To generate and modify fBm traces adequate for comparison to MCF taken on

induced devices, it is necessary to match the spectral content, depth of fine structure,

and RMS amplitude of the MCF. However, this method is only appropriate if we may

assume that MCF from induced devices exhibit similar fractal scaling characteristics

as MCF from modulation-doped devices. Prior variational method box-counting

fractal analysis performed in our group by Dr. Billy Scannell concluded that the

MCF from induced devices are not fractal. However, upon revisiting this analysis and

comparing scale plots (see Chapter IV), we have found that we cannot conclusively

say that MCF from induced devices are any less fractal than those from modulation-

doped devices.

Given that MCF from induced devices appear to exhibit similar scaling properties

as those taken from modulation-doped devices, we repeated the above method of

generating fBm traces, Fourier filtering the traces to obtain the desired minimum

feature size, and rescaling vertically to match the RMS amplitudes found in the

MCF. Fractional Brownian motion traces were generated to resemble each of the 12

MCF traces displayed in 5.12 representing pairs of MCF taken at each of six unique

top-gate voltages before and after room-temperature thermal cycles. These MCF are
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observed to exhibit fractal dimensions between 1.20 and 1.35, and contained fine-scale

features down to a minimum period of 8 mT, well in excess of their resolution limit

of 0.4 mT.

Because the measured fractal dimension is seen to vary with the applied top-gate

voltage, a batch of fBm traces was generated which exhibited the range in DF seen

at each top-gate voltage. That is, for each top-gate voltage, a number of fBm traces

were generated whose fractal dimensions are similar to those of the corresponding

MCF. The number of fBm traces simulated for each gate voltage range from four to

16, providing between six and 120 pairwise combinations from which normalization

constants may be extracted for each pair of MCF. Although fractal dimension appears

to generally increase with the applied top-gate voltage, the average N value obtained

for each gate voltage varies little with gate voltage, such that the variation among the

N values used for each gate voltage is smaller than the uncertainty (viz., standard

deviation) in calculating each value of N .

Also available for analysis are MCF traces taken on the induced device labeled

AS57N, which were measured at the University of Oregon in the summer of 2010

by myself in collaboration with Drs. Andrew See and Adam Micolich. These traces

include MCF measured on several cooldowns from room temperature at the same six

top-gate voltages used in [27]. A new batch of fBm traces was needed to simulate these

MCF, since these MCF are found to exhibit a different fractal dimension, minimum

feature size, and cyclotron field than those measured on AS61N. In further contrast

to the MCF measured on AS61N, those measured on AS57N are found to have fractal

dimensions that do not vary systematically with changes in gate voltage, such that a

single normalization constant may be applied to the entire data set. Eight fBm traces,
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with measured DF between 1.13 and 1.15, were used to calculate this normalization

constant.

FIGURE 5.13. A plot of F2 vs Ti for the AlGaAs/GaAs billiards (red), the induced
device AS57N (green), and the induced device AS61N (purple). The blue fit line is
identical to the fit line displayed in Fig. 5.11. The room-temperature-cycle-separated
data taken from AS61N are horizontally offset by -5 K for clarity. The horizontal
green dashed line is intended to serve as a guide to the eye to demonstrate that MCF
decorrelation due to a room-temperature thermal cycle is on par with the noise level
at base temperature.

Normalized correlations from both induced devices are displayed in Fig. 5.13.

This plot serves as a quantitative confirmation that billiards formed using induced

heterostructure architectures are significantly more thermally stable than their

modulation-doped counterparts. Indeed, inspection of Fig. 5.13 indicates that a

room temperature thermal cycle does not induce any additional decorrelation of the

MCF from induced devices relative to the noise signal differentiating back-to-back

measurements at base temperature.
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5.7. Interpretation of Fit Parameters

We hypothesize that the observed thermally-activated decorrelation of MCF

measured on modulation-doped electron billiard systems results from the fact that

the distribution of electron trajectories within the billiard is highly sensitive to small-

angle electron scattering events induced by the remote ionized dopants’ electrostatic

potential. That is, these ionized dopant atoms, though removed from the plane of

the 2DEG, collectively create an electrostatic potential landscape in the plane of

the 2DEG (see Fig. 5.14), such that an electron’s trajectory through the billiard is

dependent upon the precise configuration of this potential landscape. We thus expect

that the conditions needed to reconfigure the recorded MCF traces will match the

conditions needed to rearrange the charge states of the ionized dopants.

FIGURE 5.14. A schematic of the slowly-varying electrostatic potential landscape
(blue) induced in the plane of a 2DEG by ionized dopant atoms (red) located above
the plane of the 2DEG. The black line indicates a sample electron trajectory through
such a potential landscape. From Ref. [48].

If it were the case that all dopant atoms are ionized at low temperature,

we would not expect to see any thermally-activated MCF decorrelation—since the

individual dopant atoms are fixed in place in the crystal lattice at all temperatures,

the electrostatic potential induced by these ions would then also remain unchanged.
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Instead, only a fraction of the dopant atoms are ionized at low temperature—

simulations suggest that only 50 percent of donors in the AlGaAs/GaAs system are

ionized, and it is similarly likely that not all donors in the InGaAs/InP system are

ionized at low temperature1—and the form of their collective electrostatic potential

depends on precisely which of the atoms are ionized. We now consider the kinetics of

such charge transfer events for each material system in turn.

5.7.1. Charge Transfer in the AlGaAs/GaAs Heterostructure

We hypothesize that charge transfer to and from the donor atoms must take place

via communication with the 2DEG, given that the doped layer of the heterostructure

is not populated with free electrons. At first glance, however, the observed activation

energy of 350 meV for MCF-decorrelating charge transfer in the AlGaAs/GaAs

heterostructure seems incommensurate with the 220 meV potential barrier separating

the 2DEG from the doping plane; see Fig. 5.15.

However, it is well-known that the Si-doped n-AlxGa1−xAs alloy supports a deep

donor trap state known as the DX center when x ≥ 0.22 [49, 50]. The DX center is

so named as it was originally believed to be formed by a substitutional donor atom

(D) together with an unknown lattice defect (X). More recent investigations [50, 51]

suggest that the DX center is properly understood as a highly-localized center with

negative charge formed when an ionized silicon donor atom DX+ captures a single

electron to reach the unstable state DX0, which may then capture a second electron

with a higher binding energy than the first to reach the negatively-charged DX− state.

Because the DX center traps the second electron more strongly than the first, the

center is said to have negative-U properties, in reference to the Hubbard correlation

1We acknowledge Drs. Alex Hamilton and Theodore Martin for fruitful discussions regarding the
ionization rates of donors in the AlGaAs/GaAs and InGaAs/InP systems, respectively.
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FIGURE 5.15. Conduction band diagram for the AlGaAs/GaAs heterostructure
system. The vertical axis measures energy; the horizontal axis measures depth into
the heterostructure. The 2DEG (gray) forms at the interface between the spacer
AlGaAs layer and the GaAs layer.

energy U . Figure 5.16 presents a configuration coordinate diagram indicating the

energy levels characterizing the DX center.

A notable property of the DX center is the observed energy barrier to both

electron capture and emission. Deep-level transient spectroscopy (DLTS) studies

reveal a thermal activation energy for electron emission from the DX center of

440 meV. Electron capture by the DX center is found to be characterized by a

thermally activated capture cross section of the form σ = σ∞ exp(−Ecap/kBT ) with

a capture energy (with respect to the conduction band minimum) of Ecap = 200 meV

[52]. Although the DX center may be photoionized (with a threshold energy of

800 meV), the capture cross section for optically-activated electron capture is zero.

Many studies [53–57] of the thermal activation energy for electron capture by the

DX center involve persistent photoconductivity (PPC) measurements, in which the

DX centers are photoionized, and the temperature-dependent rate at which electrons

are recaptured is observed. Such studies report that this decay of PPC follows a
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FIGURE 5.16. Configuration coordinate diagram for the DX center in Si-doped
n-Al0.33Ga0.67As. The parabolas centered at Q0 and QT represent the sum of the
electronic and lattice energies for electrons in the conduction band and trapped in the
DX center, respectively. The energies EL and EΓ represent the L and Γ conduction
band minima, respectively. Ed represents the donor binding energy, and Eb represents
the DX capture barrier with respect to the L minimum of the conduction band. Ee
and EO represent, respectively, the activation energy for emission of an electron from
the DX center and the optical ionization energy. Figure based on diagram provided
in Ref. [49].

stretched-exponential decay law of the form

n(t) = n0 exp

[
−
(
t

τ

)α]
, (Equation 5.13)

where τ represents the characteristic time scale for PPC decay and the stretching

exponent2 α ≤ 1. Ghosh and Kumar [57] report that the time constant τ is

temperature-dependent as τ = τ0 exp[∆EB/kBT ], such that substituting the value

α = 1 into Equation 5.13 yields an expression of the same form as Equation 5.3,

2Note that the literature typically gives the stretching exponent as β; it is relabeled here as α to
avoid confusion with our MCF decorrelation energy β.
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suggesting a correspondence between the decorrelation fit function and the kinetic

of trapping by DX centers. However, fitting our MCF decorrelation data using a

stretched-exponential model fails to return a reasonable fit for α < 1.

The literature offers a variety of interpretations for the stretching parameter

α in systems characterized by stretched exponential behavior, including material-

dependent factors such as time-dependent barriers to electron capture [58]; a

distribution of capture activation energies [52] or of binding energies [53]; as well

as more geometrical arguments such as hierarchically constrained dynamics [59] and

hopping-transport models [60].

Despite the preponderance of stretched-exponential models describing charge

transport among DX centers, there are several factors suggesting that we need not

be concerned that the observed MCF decorrelation can instead be described by simple

exponential functions. For instance, studies of PPC decay due to recombination with

DX centers typically treat systems of bulk Si-doped n-AlGaAs so as to probe these

kinetics directly; by contrast, we are concerned with communication of electrons

between a 2DEG and an n-AlGaAs layer separated by a potential barrier, and it

is reasonable to assume that electron tunneling through this barrier will play an

important role in shaping these dynamics. In particular, He et al. [55] provide

compelling evidence that our observed MCF decorrelation kinetics are closely related

to the capture kinetics of DX centers. They derive an effective activation energy and

time constant for electron capture by DX centers from the 2DEG as follows: With

the capture lifetime for an electron in an n-AlGaAs layer to be trapped by a DX

center with capture barrier EDX given by

τ = τ0 exp(EDX/kBT ) (Equation 5.14)
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(with τ0 ∼ 10−11 s), the capture lifetime for an electron in the 2DEG to be captured

due to tunneling becomes

τ = [τ0 exp(EDX/kBT )]/P, (Equation 5.15)

where P represents the temperature-dependent tunneling probability

P = P0 exp

(
− Et
kBT

)
. (Equation 5.16)

In this expression, P0 = 1 in the high-temperature limit and Et is an activation energy

for tunneling through the barrier. Hence, the tunneling lifetime for an electron to be

captured by a DX center from the 2DEG is

τ = τ ∗0 exp

[
EDX + Et
kBT

]
, (Equation 5.17)

where τ ∗0 = τ0/P0 and EDX + Et = E ′c is an effective capture energy. Transient

photocurrent (TPC) measurements on an n-Al0.3Ga0.7As/GaAs sample with a 30 nm

AlGaAs layer doped to 1× 1018 cm−3 separated from the 2DEG by a 10 nm undoped

AlGaAs layer yielded a measurement of E ′c = 340 ± 40 meV and τ0 ∼ 10−9 s [55].

These results are in excellent agreement with our fit values of β = 350±100 meV and

τ0 ∼ 10−9 s, strongly suggesting that electronic communication between DX centers

in the n-AlGaAs layer and the 2DEG in our electron billiards is responsible for the

observed decorrelation of MCF traces.

As a quantitative demonstration of the temperature sensitivity of electron

transfer between the 2DEG and donor layer in our model, Table 5.1 displays
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T (K) τ(T )
4 K ∼ 10424 years
77 K 2.8 million years
150 K 10.5 minutes
300 K 0.8 ms

TABLE 5.1. Values of the thermally-activated characteristic time for electron
migration τ at several temperatures. These figures are based on applying the model
τ = τ0 exp(β/kBT ) with τ0 = 1.1 ns and β = 350 meV, as suggested by our
experimental results from MCF taken on AlGaAs/GaAs electron billiards.

the characteristic time for MCF decorrelation τ(T ) = τ0 exp(β/kBT ) at several

temperatures.

5.8. Charge Transfer and MCF Correlation in the InGaAs/InP

Heterostructure

Having demonstrated a correspondence between the temperature-dependent

decorrelation of MCF from the AlGaAs/GaAs system and the energetics of deep-

level donor sites in that system, we turn our attention to the behavior of charge

trapping in the InGaAs/InP system. Unlike the deep-level trap states in AlGaAs, Si

donors in InP are understood to be shallow hydrogenic traps with a capture energy

of 5.6 meV [61]. This lack of deep-level traps is commensurate with the lower MCF

decorrelation activation energy of 45 ± 20 meV in this system as reported in Ref. [2].

For comparison, the InP conduction band edge is roundly 250 meV above the Fermi

energy, while the conduction band edge at the δ-doping layer is roughly 75 meV above

EF (see the band diagram reproduced in Fig. 5.17).

Before investigating the relationship between MCF decorrelation and the

energetics of the InGaAs/InP heterostructure system, let us first consider the effects of

the aforementioned refinements to the MCF analyses pertaining to the AlGaAs/GaAs
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FIGURE 5.17. Band diagram for the InGaAs/InP heterostructure. The vertical axis
represents energy; the horizontal axis represents the distance z in the heterostructure
growth direction. (Note: This figure is identical to Fig. 2.11 displayed in Chapter
II.)

system as applied to the InGaAs/InP system. First, regarding the recalculation of the

normalization constant N against which temperature-dependent MCF correlations

are measured: The MCF correlation data under investigation were normalized using

pairs of measured MCF separated by room-temperature thermal cycles as opposed

to the computer-generated traces used to normalize MCF correlations from the

AlGaAs/GaAs devices. We may expect this analytical difference to have a negligible

effect on our efforts to fit the data, however, given that the studies of MCF from

the AlGaAs/GaAs devices suggest that a room-temperature thermal cycle is indeed

sufficient to “completely” decorrelate the MCF in that system, and the InGaAs/InP

system is observed to exhibit a lower threshold temperature for the onset of MCF

decorrelation.
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Given that we may retain the value of N used in our initial analysis of the

InGaAs/InP MCF data, it is a straightforward matter to revisit the plot of MCF

correlation vs intermediate temperature using the correlation metric F2 given by

Equation 5.5. A comparison of the MCF correlation data provided in Ref. [2] using

Equation 5.1 and the same data described by Equation 5.5 is provided in Fig. 5.18.

FIGURE 5.18. Comparison of the MCF correlation data for the InGaAs/InP billiards
using the correlation functions given by Equation 5.1 (red) and Equation 5.5 (blue).
The lines connecting the data points are provided as a guide to the eye.

To fit the correlation data computed using the correlation metric F2, it is again

necessary to adopt the revised fit function Equation 5.4 which includes an overall

scaling term A to allow for data points that fall short of F2 = 1 for low Ti. In

this case, A is computed by taking the mean of the data points corresponding to

Ti ≤ 115 K. Figure 5.19 displays a comparison of the MCF correlation data using

both correlation metrics, and the fit line published in Ref. [2] as well as the same fit

line scaled by the factor A.

It is evident from Fig. 5.19 that the previously published fit parameters do

a poor job of representing the dynamics that serve to decorrelate the MCF at an
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FIGURE 5.19. Comparison of the MCF correlation data for the InGaAs/InP billiards
using the correlation functions given by Equation 5.1 (red) and Equation 5.5 (blue),
as well as the fits provided by Equation 5.4 (red) and Equation 5.7 (blue) using the
parameters η = 12.9, β = 45 meV published in Ref. [2], and (for the blue curve)
A = 0.809. The dotted lines connecting the data points are provided as a guide to
the eye.

intermediate temperature of ∼ 120 K. That is, we should expect an accurate fit

function to effectively model the threshold temperature at which the MCF begin to

decorrelate, while the best fit provided by the automated fitting routine falls off well

in advance of this temperature. Indeed, the lack of correlation data points in the

vicinity of the steep decline in normalized correlation observed near 120 K serves to

significantly impede our efforts to fully understand the nature of MCF decorrelation

in the InGaAs/InP system. This limitation is due in large part to the excessive cost

of performing MCF decorrelation experiments—at the time of this writing, the cost

of liquid helium is approximately $14/Liter, and it is not uncommon for a modest

experimental run to consume 500 L of liquid helium. In spite of these shortcomings,

however, we may use these data—and in particular, the steep decline in normalized
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MCF correlation between Ti = 115 K and Ti = 130 K—to gain several insights

regarding the mechanism for MCF decorrelation in the InGaAs/InP billiard.

In order to further probe the relation between MCF decorrelation and electronic

communication between the 2DEG in the quantum well and the dopant layer, we

employed the following illumination experiment: After cooling to base temperature

in the dark, the 2DEG carrier density was measured using low-field Hall effect

measurements, and the InGaAs/InP billiard was illuminated using a series of pulses

from a red LED until the carrier density saturated. This illumination typically

increased the measured 2DEG density from 6.8 × 1011 cm−2 to 7.8 × 1011 cm−2.

At this point, the billiard was gradually heated (in the dark) and the carrier density

was recorded as a function of temperature for temperatures between 240 mK and 190

K (the maximum sustainable temperature in the cryostat). These density data were

then normalized as

nnorm =
n− nmin

nmax − nmin

, (Equation 5.18)

where nmin and nmax are the minimum and maximum density values recorded on

a given cooldown from room temperature, respectively. These data are displayed

alongside the MCF correlation data (represented using the initial correlation function,

Equation 5.1) for this system in Fig. 5.20. The corresponding mobility measurements

are provided in Fig. 5.21.

The red line connecting the MCF correlation data in Fig. 5.20 is intended to

serve as a guide to the eye. Note that the MCF correlation data presented in 5.20 are

plotted using the original version of the correlation function given by Equation 5.1.

This is because, rather than attempting to use these correlation data to determine

precise values for the parameters β and η for this system, we may instead compare the

qualitative form of these data (specifically, the temperature at which the MCF begin
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FIGURE 5.20. Green: Normalized 2DEG density (left axis) vs billiard temperature
before and after illumination. Red: MCF correlation data (right axis) vs intermediate
temperature for the InGaAs/InP billiard. The MCF correlation function used was
that given in Equation 5.1, as published in Ref. [2]. See text for explanation.

to decorrelate) to the decay of PPC observed on the same system. This comparison

is more easily made when the correlation data are presented in such a way that low

values of Ti return near-unity correlation values.

The lower green curve in Fig. 5.20, labeled n1(T ), represents the temperature-

dependent 2DEG density in the dark and is well characterized by an activation

energy of 40.5 meV. This trend is readily understood as the temperature-dependent

occupation of the 2DEG based on the Fermi energy; using EF = 40.5 meV yields

an effective electron mass in the InGaAs layer of m∗ = 0.040me, which closely

matches the value of m∗ = 0.038me reported elsewhere [62]. The upper green

curve, labeled n2(T ), represents a fit of the post-illumination 2DEG density data

using the fit function Equation 5.4; the temperature-dependent occupation of the

2DEG is accounted for by simply adding the trend n1(T ) to this fit. As is the case

for persistent photoconductivity studies of the AlGaAs/GaAs system, the decay of

PPC in the InGaAs/InP system has been described [63] using a stretched-exponential
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FIGURE 5.21. Mobility as a function of temperature for the InGaAs/InP billiard
device. The order in which the measurements were taken is clockwise from the lower
right. Note that the low-temperature mobilities reported in this figure are significantly
lower than the value of 3.3×105 cm2/Vs reported in Chapter II. Each of these figures
represents a mobility measurement made on the same electron billiard device on
separate cooldowns from room temperature; the source of this discrepancy is not fully
understood, but is likely related to an artifact of the ohmic contacts. Nonetheless,
these data reveal a systematic trend with temperature before and after illumination,
and are included here for completeness.

model with a stretching exponent of α ∼ 0.4. Such a model is similarly effective in

describing the PPC decay shown in Fig. 5.20, as displayed in 5.22.

The fit line displayed in Fig. 5.22 was performed by eye using the value α =

0.4 suggested by Ref. [63] and an activation energy β = 75 meV that matches

the potential barrier at the InGaAs/InP heterojunction; these parameters led to a

value of t/τ0 = 180. Also note that the fit line intentionally meets the error bars

displayed nearer to their lowest points: These error bars result from the fact that

when the billiard was held at a temperature greater than that necessary to induce

PPC decay (roughly 80 K), the 2DEG density was observed to decrease on subsequent

measurements at the same temperature over the course of several hours. See Fig.
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FIGURE 5.22. Normalized 2DEG density vs billiard temperature after illumination.
The fit to the data represents a stretched exponential function of the form of
Equation 5.13, using α = 0.4 (after Ref. [63]), t/τ0 = 180, and an activation
energy β = 75 meV. Note that this fit was performed by eye and is intended to
demonstrate the plausibility of a stretched-exponential PPC decay characterized by
a previously-reported stretching exponent and an activation energy commensurate
with the heterojunction barrier height. See text for a discussion of error bars.

5.23 for an example of this constant-temperature density decay as a function of time.

Owing to the time constraints imposed by the operating costs of this experiment,

most data points represent the density measured immediately upon reaching the

temperature in question and not the final density that would be reached at that

temperature. The error bars are placed on those data points taken at temperatures

at which several density measurements were made; the tops and bottoms of these

error bars correspond to the initial and final densities recorded, respectively.

The intent of the PPC experiment was to fully ionize all Si donor atoms, such

that the increase in 2DEG density would be due to this ionization; by tracking the

decay of this PPC as the device was gradually heated, it was hoped that the activation

energy β and/or characteristic time scale τ0 for the observed decline in 2DEG density
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FIGURE 5.23. Post-illumination 2DEG density (red) as a function of time at a
constant temperature of T = 120 K. The blue fit curve represents an exponential
decay: n(t, T ) = n0(T ) + n1(T ) exp(−(t− t0)/τ0) with n0(120 K) = 7.45× 1015 m−2,
n1(120 K) = 1.51× 1014 m−2, t0(120 K) = 33.2 minutes, and τ0 = 227 minutes.

would correspond to those for the mechanism that induces MCF decorrelation. If such

a correspondence could be identified, then the observed delay between the decay of

PPC and the decorrelation of MCF as temperature is increased could serve as evidence

that a certain threshold of charge relocation in the doped layer is necessary to induce

sufficient change in the potential profile in the 2DEG to decorrelate the MCF. Such

a study would grant us a means to compare our results to the prediction [64] that

the motion of a single strong scattering site is sufficient to completely decorrelate

the MCF, as it remains to be determined how much charge rearrangement in the

donor layer is necessary to correspond to the motion of a ‘strong scattering site’ in

the 2DEG.

In actuality, the illumination source used in this experiment was a red LED,

with a (room-temperature) photon energy of roughly 1.9 eV, significantly in excess

of the band gaps of both materials in this heterostructure. Furthermore, given the
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shallow nature of the Si donor trap states, it is reasonable to expect the vast majority

of these donors to be ionized even at liquid helium temperatures [65], such that it is

very unlikely that the 2DEG density increase of roughly 15 percent may be attributed

solely to the full ionization of Si donors.

Although the phenomenon of persistent photoconductivity in the InGaAs/InP

heterostructure is well studied [63, 66, 67], the precise nature of the phenomenon we

observe here is unclear. The onset of PPC is often attributed to the excitation of

electrons across the band gap of either the InGaAs or the InP layers, such that the

heterostructure’s built-in potential spatially separates the electrons in the conduction

band from the holes in the valence band. Such an explanation necessitates a band

structure wherein the 2DEG resides at a minimum in the conduction band that is

spatially separated from a maximum in the valence band at which holes are trapped.

In the case of the heterojunction system described by Wei et al. [66], which lacks a

quantum well layer, this is simply accomplished because the conduction and valence

bands are nowhere flat in the vicinity of the 2DEG. Kane et al. [67] discuss a PPC

effect in InGaAs/InP quantum well systems, in which electrons excited across the

band gap in the InGaAs layer cannot be spatially separated from the remaining holes,

as is the case in our devices. Kane et al. cite this fact, along with the wavelength-

dependent nature of the PPC, as evidence that electron-hole pair production and

separation in the InP layer is responsible for the observed effect. However, given that

we expect the bands in the InP buffer layer in our system to be relatively flat (see

Fig. 2.11), it is unclear whether this mechanism may account for the effect observed

in our devices.

Indeed, it is reasonable to expect that our InGaAs/InP heterostructure system

supports a variety of trap states which are to date poorly understood. Specifically, we

141



may expect such trap states to exist at the interfacial planes of the heterostructure:

at the interface of the InP cap and the photoresist, in the δ-doping layer, and at

the interface between the InP spacer layer and the quantum well. The potential

profile in the plane of the 2DEG may be expected to be influenced by the charge

distribution in any of these interfaces; however, it is difficult to probe the nature of

each layer individually. It is nonetheless reasonable to expect that charge relocation

in those layers nearer to the InGaAs quantum well will have a greater impact on this

potential profile and thus on the MCF measured on the billiard. We may thus seek

to interpret the trends witnessed in Fig. 5.20—namely, the onset of PPC decay at a

lower temperature than that needed to decorrelate the MCF—as evidence that this

excess charge is preferentially migrating to interfaces farther from the 2DEG. We thus

hypothesize that electron migration to the more remote surface states exhibits a lower

activation energy and affects small-angle scattering sites, while electron migration to

interface states nearer to the 2DEG requires a greater activation energy and results

in a redistribution of large-angle scatterers. A proposed experiment to help elucidate

the nature of these trap states, developed in collaboration with Dr. Theodore Martin,

is described in Chapter VI.
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CHAPTER VI

CONCLUSIONS

The development of epitaxial semiconductor fabrication techniques, especially

paired with conduction band engineering employing the modulation doping technique,

has allowed for the development of electronic devices exhibiting remarkable electron

mobility. Electron billiard devices fabricated in such heterostructures provide a novel

test bed for semiclassical phenomena in the ballistic regime of electron transport.

Claims of true ballistic electron transport, however, rely on the assumption that the

slowly varying potential landscape at the plane of the 2DEG that results from remote

ionized donors in the modulation doping technique are negligible with respect to

conduction dynamics through such billiard devices.

In this dissertation, we sought to test two hypotheses regarding the role of remote

ionized donors in shaping electron dynamics in billiard devices: first, that the presence

of a slowly-varying potential may affect the general phase space in a soft-walled

electron billiard in a manner detectible by a fractal analysis of MCF; and second,

that the individual features present in MCF traces are sensitive to the precise form

of this potential landscape.

To summarize our findings, Chapter IV has demonstrated that the existence

of small-angle scattering sites in electron billiards employing the modulation-doped

architecture do not measurably alter the electron phase space within the billiards as

revealed by a fractal analysis. We have shown that MCF traces from modulation-

doped electron billiards are not significantly more fractal than MCF traces measured

on undoped electron billiards, which exhibit a similar soft-walled confinement

potential but lack the ionized donors of the modulation-doped heterostructure. These
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results may be seen as providing an experimental verification of the prediction of Ref.

[14] that soft-walled billiards generally exhibit fractal MCF, regardless of the presence

of a slowly-varying potential in the billiard. It remains an open question, however,

whether this slowly-varying potential landscape may be sufficient to yield a mixed

phase space in an otherwise stable system. Future work directed toward rigorously

modeling the phase space of a hard-walled square electron billiard both with and

without ionized donors would be of great value in addressing this question.

In Chapter V, we demonstrated that the small-angle scattering sites produced

by the modulation doping technique cannot be neglected in asserting claims of true

ballistic electron transport. Through an investigation of the thermal stability of

MCF measurements, we have confirmed our hypothesis that the precise distribution

of electron trajectories through a modulation-doped billiard is highly sensitive to the

configuration of the remote ionized donors in the doped layer. We have further

demonstrated that the redistribution of trapped charge in the doped layer of a

heterostructure is attributable to a thermally-activated transfer of charge between

the 2DEG and the doped layer.

While the nature of charge trapping in the DX centers that populate n-AlGaAs

is well understood, further experimentation is necessary to understand the nature of

the trap states in the InGaAs/InP heterostructure and their relative effects on the

potential landscape in the 2DEG. A proposed experimental technique to probe these

states, developed in collaboration with Dr. Theodore Martin, is described as follows:

First, it is necessary to establish whether the observed increase in 2DEG density

upon illumination and subsequent PPC decay may be attributed to electron excitation

across the band gap in either the InGaAs or the InP layers. This would be

straightforward to accomplish by employing an illumination source whose photon
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energy does not exceed either band gap; given that In0.25Ga0.75As is the smaller band

gap material with a band gap of 644 meV, this corresponds to using an illumination

source with a wavelength of at least 1.93 µm. Next, we may utilize the top gate

on the device to probe the behavior of the charge traps. Note that the application

of a negative voltage to this top gate will have the effect of moving the conduction

band up with respect to the Fermi energy; since the binding energy of the Si donors

is fixed with respect to the conduction band edge, we would expect to find donor

reoccupation at higher temperatures as the gate is made more negative. Applying

an increasing (negative) bias to the gate will also have the effect of increasing the

energy level of the other interfacial trap states relative to the Fermi energy, although

to varying degrees: since the cap/photoresist interface is twice as far from the 2DEG

as the donor layer, and the 2DEG is held at 0 V with respect to the gate, we may

expect that the conduction band moves up by twice as much at the interface than

at the donor layer. Thus, by repeating the aforementioned density vs temperature

measurements after illumination and at a range of negative applied gate biases, it may

be possible to distinguish between charging of the donor sites and of the interfacial

trap states.
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APPENDIX A

GENERALIZING MCF CORRELATION FIT FUNCTION

The correlation between two MCF measured on modulation-doped electron

billiard devices due to thermally-activated charge transfer among dopant atoms is

modeled by

Ffit = exp

[
− t

τ0

exp

(
− β

kBTi

)]
, (Equation A.1)

where t is the time interval spent at intermediate temperature Ti. Note that, for a

time interval t = t1 + t2 (held at a constant temperature Ti), we may write

F (Ti, t1) · F (Ti, t2) = F (Ti, t1 + t2) = F (Ti, t). (Equation A.2)

Given a situation in which t =
∑

j tj, but where the temperature varies as a function

of time (i.e., T = T (tj)), the simplification is not so elegant, but we may still compute

Ffit as the product of terms F (Tj,∆tj):

F (Tj, t) =
∏
Tj≤Ti

exp

[
−∆t(Tj)

τ0

exp

(
− β

kBTj

)]
(Equation A.3)

= exp

− 1

τ0

∑
Tj≤Ti

∆t(Tj) exp

(
− β

kBTj

) . (Equation A.4)

Now, we let the time interval ∆t shrink to the infinitesimal dt such that we may

replace
∑

Tj
with

∫
dt (note that summing over Tj is identical to summing over the

corresponding time intervals ∆t, so that we may replace a sum over temperatures
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with an integral over corresponding times):

F (Ti, t) = exp

[
− 1

τ0

∫ t(Ti)

t=0

dt exp

(
− β

kBTj(t)

)]
(Equation A.5)

= exp

[
− 1

τ0

∫ Ti

Tj=0

dTj
dt

dTj
exp

(
− β

kBTj

)]
. (Equation A.6)

To compute this integral, we need to know how the temperature varies with time. In

practice, when heating a sample in the cryostat, temperature is empirically found to

rise roughly with the square root of time as

Tj(t) = 9.67 · t1/2, (Equation A.7)

such that

t(Tj) = 0.0107T 2
j (Equation A.8)

and

dt

dTj
= 0.0214Tj. (Equation A.9)

On the other hand, when cooling a sample, temperature falls roughly linearly with

time at a rate of 2.4 K/min, such that dt/dTj ≈ 0.41 min/K. Figure A.1 displays the

temperature data from which these rates were inferred.

Finally, if the sample is held at some temperature Ti for total time t(Ti) we know

that Equation A.6 must collapse to the form of Equation A.1, so we may say that in

this case, dt/dTj = t(Ti)δ(Tj − Ti).

If we index these three stages of temperature variation—heating the sample,

holding the sample at a temperature Ti, and cooling the sample back to a base

measurement temperature—as k = 1, 2, and 3, respectively, we may then write the
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FIGURE A.1. Characterizing the heating and cooling rates for an electrical sample
in the cryostat. Left: Final temperature of the sample plotted against the total time
required to reach that temperature (solid red) and fit line demonstrating T ∝

√
t

(dashed red). Right: Initial temperature of the sample plotted against the total time
required to cool to 240 mK (solid blue) and fit line demonstrating T ∝ t (dashed
blue).

total contribution to Ffit as:

Ffit(Ti) = exp

[
− 1

τ0

∑
k=1,2,3

∫ Ti

Tj=0

dTj

(
dt

dTj

)
k

exp

(
− β

kBTj

)]
(Equation A.10)

= exp

{
− 1

τ0[
0.0214

∫ Ti

Tj=0

dTjTj exp

(
− β

kBTj

)
+ t(T ) exp

(
− β

kBTi

)
+ 0.41

∫ Ti

Tj=0

dTj exp

(
− β

kBTj

)]}
. (Equation A.11)
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APPENDIX B

NORMALIZED SCALE PLOTS FROM CHAPTER IV ANALYSIS

The normalized scaling plots for all the traces analyzed and for all the analysis

techniques utilized in Chapter IV are displayed in the following six pages. In these

figures, the MD-MCF traces (red) are denoted MDx and their corresponding fBm

traces (blue) denoted FF8x; the UD-MCF traces (red) are denoted UDx and their

corresponding fBm traces (blue) denoted FF16x. Also included in these plots are the

best-fit lines to each data set; however, since these correspondences are chosen so as

to minimize the differences between each pair of best-fit lines, these fit lines are nearly

indistinguishable in all cases.
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