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DISSERTATION ABSTRACT 
 
Edward Whitney Elliott III 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
June 2014 
 
Title: Nanoparticles as Chemical Reagents: Synthesis, Characterization and Post-

synthetic Modification of Functionalized Monolayer Protected Gold Nanoparticle 
Building Blocks for the Construction of Advanced Nanomaterials 

 
The wide variety of novel properties provided by various nanomaterials has striking 

implications for future applications. However, adoption of new materials is hindered by 

challenges in material definition, reproducibility, and characterization. While a specific 

application will define a set of desired properties, the development of a new material that 

addresses each need often proves challenging particularly when addressed in a linear 

fashion. With the development of libraries of nanomaterial building blocks and chemical 

reagents it would be possible to develop a modular approach to the discovery phase. This 

dissertation describes the development of two such approaches and explores how the 

challenges of materials definition and characterization may be addressed through the 

development of characterization sets that afford both corroborative and commentary 

approaches. 

 The appropriate characterization of any nanomaterial is challenging regardless of 

the properties being investigated. Considering characterization during the design of new 

materials greatly benefits the speed at which new materials may be explored. In addition to 

addressing characterization challenges, issues of reproducibility are considered early in the 

discovery phase in order to maximize the utility of the materials produced. 

A modular method for the construction of new nanomaterials is illustrated in two 



 

v 

 

different approaches. The design and synthesis of functional gold nanoparticles that were 

water-soluble and contained tailored reactive group densities for use as chemical reagents is 

provided. These nanoparticle reagents are intended to take advantage of the benefits of 

“click” chemistry, namely the use of readily prepared modular reagents with appropriate 

functionality compatible with a wide range of synthetic conditions. The direct synthesis 

method demonstrated here allows for the one-step functionalization of the gold core with 

both an ethylene glycol diluent ligand for solubility and stability along with functional 

groups to be used in subsequent azide-alkyne coupling reactions. In the final illustrative 

approach, functionalized gold nanoparticles were used as building blocks in the 

construction of a functional nanomaterial assembly. A dilute ozone treatment to remove 

part of the ligand shell allows for the benefits of ligand-protected nanoparticles while still 

allowing the properties to the core to be utilized.  

This dissertation includes previously published and unpublished co-authored 

material. 
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INTRODUCTION: ACTUALIZATION OF FUNCTIONAL NANOMATERIALS 

 

 

Introduction 

 The study of nanoscience continues to garner the interest of multiple disciplines. 

As a crude measure one may look to the plethora of nanoscience research. While it is 

difficult to determine the exact number of annual publications, it is clear that there are 

tens of thousands of publications each year and that number continues to grow.1 

Nanomaterials are a broad collection of diverse materials that take advantage of the size 

dependent properties that manifest themselves on length scales below 100 nm. 

Nanomaterials research has captured the imagination of scientists and the public alike, 

with far reaching potential applications as diverse as improvements in biomedical 

applications, such as imaging2 and drug delivery3, as well as sensing4, nanoelectronics5 

and the functionalization of macroscale objects. The, often difficult to predict, size-

dependent properties that deliver such promise also impedes introduction to the 

marketplace. As research into the synthesis of new materials continues the field would do 

well to consider the words of George Hammond during his Norris award lecture, “The 

most fundamental and lasting objective of synthesis is not production of new compounds, 

but the production of properties.”6  

 One specific type of nanomaterial of interest is monolayer protected gold 

nanoparticles (AuNPs). The understanding and utilization of gold AuNPs began in fits 

and starts. While gold nanoparticles had been used unknowingly in decorative 
1



applications such as red stained glass for centuries, it was the materials first described by 

Faraday7 that marked the beginning of modern chemical research into nanoparticles. It 

was not until 100 years later that Turkevich’s synthesis and characterization of citrate 

stabilized gold nanoparticles >10 nm in diameter8 established a foundation for AuNP 

research. Nearly another 50 years passed before the method developed by Brust afforded 

the synthesis of alkanethiol monolayer protected nanoparticles below 2 nm in the early 

90s.9 Novel size-dependent properties were discovered in both size ranges. Large gold 

nanoparticles exhibit a size dependent optical absorbance from 500 - 530 nm. By 

absorbing the green wavelength of light suspensions of AuNPs, such as those embedded in 

stained glass, appear red when white light is passed through. The very small nanoparticles 

have an even more surprising property. While bulk gold is typically regarded as an inert 

metal, small AuNPs were found to exhibit catalytic activity similar to platinum.10 In 

addition to operating as a catalyst for the room temperature oxidation of carbon 

monoxide, some sizes of AuNPs in solution have also exhibited unprecedented selectivity 

for partial oxidation reactions.11,12 In addition to these novel size dependent properties 

AuNPs were found to be useful scaffolds for the assembly of functional organic ligands.13 

Gold nanoparticle research thus began a climb to prominence within the newly 

developing field of nanoscience. 

The promise of nanoscience has been touted for a number of years, yet there are 

difficulties in moving from proof-of-concept demonstrations to mass-produced materials. 

Given the rapid advance in the field this is not entirely unsurprising; however, it may 

serve to undermine the confidence that the public has in the ability of nanoscience to 

deliver projected benefits. This current state of affairs may still be regarded as a unique 

opportunity. As more precisely defined nanomaterials are developed we are afforded 
2



information about the properties of these materials, both desirable and deleterious. By 

iterating nanomaterial synthesis and the determination of structure-function relationships 

it may be possible to design in specific properties rather than working to change current 

materials. 

The objective of this dissertation is to identify the roadblocks to utilization of 

functional nanomaterials and develop methods to proactively address these challenges. 

After first enumerating the promise of harnessing the properties of functionalized 

nanoparticles, the issues surrounding reproducibility and characterization of well-defined 

nanomaterials will be introduced. Strategies will be provided that have been developed 

for addressing these hurdles. Finally, approaches for developing functional nanomaterials 

efficiently will be presented. 

 

Novel Properties and Applications of AuNPs  

Nanomaterials are of interest to chemists and materials scientists due to the 

multitude of unique properties that may be expressed, as well as the ability to tune those 

properties. Gold nanoparticles are a particularly versatile class of materials. AuNPs may 

be readily functionalized with organic ligands and are relatively stable. The size 

dependent optoelectronic properties may be varied across a range of materials sharing the 

same surface chemistry. AuNPs are particularly suitable for biomedical applications 

owing to their stability.14 Early studies on the toxicity of gold nanoparticles indicated that 

while the nanoparticles did enter cell bodies, they were not acutely cytotoxic.15 More 

recent advances in nanotoxicological testing has demonstrated that toxicity may be 

dependent on the nanoparticle size16 as well as the type of ligand shell.17,18 

In general a functionalized nanoparticle has properties relating to each part of its 
3





of cancer.20,21,22 The ligand shell greatly determines how a nanoparticle will interact with 

surrounding biomolecules in vivo.23,24 As a result, PEGylated nanoparticles are particular 

well suited for these types of applications as the ligand shell has been shown to increase 

the circulation time of the AuNPs within the blood.25,26 Very large or anisotropic AuNPs 

are of particular interest in the treatment of cancer using hyperthermia, the direct heating 

of a tumorous mass, because the plasmon absorbance may be shifted out into the near-IR 

region.27 The long wavelength of light in that region raises the possibility of irradiating 

the cancer through the skin once AuNPs have been transported into the tumor.28 

Interestingly in biomedical applications the size of the nanoparticle also seems to play a 

role in determining the transport and compartmentalization of AuNPs within the 

body.29,30 One study found that even when the AuNPs were functionalized with peptides 

known to promote cellular uptake, there were still a significant size-dependence for the 

ultimate intercellular destination. The largest AuNPs (16 nm) were unable to penetrate 

the cell membrane, while nanoparticles of 5.5 or 8.2 nm entered the cell and ended up in 

the cytoplasm, 2.4 nm AuNPs were localized to the nucleus.31 In the treatment of cancer, 

it may not be enough to simply enter the tumor cells, as a judicious choice of ligands to 

target the nucleus of the cell proved most effective for triggering cell death.32,33 

Ultimately precise control over the size of AuNPs as well as the appropriate 

mixture of ligands will be required to capitalize on these novel properties. Small changes 

in core diameter or the ligand shell may have large impacts on the efficacy for a specified 

application, or even toxicity of the nanomaterials produced. New functionality tends to be 

added only by layering on additional levels of complexity to the design of the desired 

nanomaterials, which means that ultimately the most useful particles may be the most 

difficult to define. 
5



 

Addressing the Challenges Facing the Adoption of Advanced Nanomaterials  

 A major barrier to the adoption of new nanomaterials for emerging applications is 

the difficulty of appropriately defining a given material. As the very nature of these 

materials means that properties will change with size and morphology it is challenging to 

know what the appropriate descriptors would be for a given nanomaterial. This in turn 

informs the characterization challenges, as determination of any given attribute of a new 

material tends to require development of appropriate methodologies (such as those 

described in Chapeter II) rather than routine analysis. This uncertainty in material 

definition leads to an increased economic burden, which is compounded as material 

complexity increases. Further, this uncertainly leads to difficulty in obtaining or assessing 

reproducibility as quality control challenges may be quite different from traditional 

materials, and will be highly dependent on the properties of a given material. As it is 

unrealistic to require complete characterization of every property of a nanomaterial in 

every case we are left with an additional regulatory challenge that is the converse of the 

characterization issue, that is how do we choose an appropriate attribute that 

encompasses the wide variety of possible nanomaterials. All of these issues, from material 

definition to reproducibility and characterization along with regulatory definition, must 

be addressed in order to further advance the field. 

 Nanoscience has provided the promise of imparting novel material properties and 

advancing the diagnosis and treatment of disease.34 It is curious then that although there 

are many proof-of-concept studies in the research literature the movement of these 

materials into applications is lagging. One question that must be solved before 

nanomaterials products can enter the mainstream market is how we define and thus 
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regulate this category of materials. This issue is many layered, even if we begin by 

categorizing all materials with at least one dimension under 100 nm as “nano-” we are 

still lumping together a disparate group of materials ranging from thin films, macro 

assemblies composed of small building blocks, to polydisperse and poorly defined 

powders, and relatively monodisperse nanoparticle distributions, or atomically defined 

macromolecules. Furthermore, the utility of each specific material may be related to very 

different physical or chemical properties of the material. Finally, we are still left with 

inconsistencies in the definition and determination of size that further confound the 

issue.35  

Regulatory challenges arise out of the definitions that we use to describe a 

nanomaterial sample. This will play an integral role in the public response to nanoscience 

as new regulations require product labeling on the basis of the regulator definition of 

nanomaterials. Even if we consider a relatively straightforward example, a polydisperse 

size distribution of spherical monolayer protected nanoparticles, the amount of material 

present in a product may be considered on the basis of surface area, volume, mass, or 

number count each relevant depending on the application. European regulators recently 

settled on a definition by number distribution35 as the European Commission moves 

forward with requirements for labeling of all nanomaterial containing products.36 

There is a great deal of debate within the scientific community as to which definition is 

acceptable from a research or regulatory standpoint. Some argue that there should not be 

a one-size-fits-all definition used in regulation.37 Others argue that size is an inappropriate 

attribute for discrimination, and rather an approach based on the appearance of novel 

size-dependent properties are in order, it has been argued that generally these new 

properties appear only below 30 nm.38 Of course any size cutoff for novel properties will 
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vary wildly on a material by material basis. In the end, these types of nanomaterial 

regulation may result in the same pitfall, described by K. B. Sharpless, that has plagued 

organic synthesis: “As it is now, most discovery endeavors suffer from being too invested 

in structure, when function is what is sought.”6 

Another reason for the delay in advancing adoption of nanomaterials for new 

applications has to do with these materials being a victim of their own success. 

Nanomaterials research is moving to design of materials with multiple specific properties, 

such as adding the capability for imaging or targeting to drug delivery vectors. As 

increasingly complex multifunctional nanomaterials are created in an attempt to improve 

upon the performance of current functional nanomaterials the cost of development can 

increase significantly.39 This is because as material complexity increases so too does the 

cost of synthesis and characterization as well as regulatory hurdles.40 In part this is due to 

the current method of introducing additional complexity, where each new material is a 

discrete one-off design. Taking advantage of more modular approaches to the design of 

new materials could substantially reduce the burden of complexity. 

The challenge now facing researchers is how to address the definition, 

reproducibility and characterization of new nanomaterials during the design phase rather 

than when trying to move to market. Reproducibility and characterization are in fact two 

facets of the same issue, namely that the products of typical nanoparticle syntheses are a 

polydisperse collection of particle sizes and morphologies. Research articles that neglect 

this facet of nanomaterial properties, choosing instead to report on an average idealized 

particle, further confound this problem.41 Indeed it is difficult to find standard methods of 

reporting on the size distribution of nanoparticles. Typically the distribution is provided 

with the assumption that the materials conform to a symmetric Gaussian distribution. 
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This assumption simplifies reporting by allowing for two parameters, the mean size and 

standard deviation, to describe an entire size distribution. Occasionally a polydispersity 

index (PDI), a term borrowed from polymer chemistry, is used. PDI is defined as the 

square of the standard deviation over the mean particle diameter. This seems needlessly 

complicated when other reports in the literature simply provide the size distribution in 

nanometers, or express the polydispersity as a percentage of the mean particle size. The 

same nanoparticle sample could be reported as being 10.0 ± 3.2 nm or 10.0 nm with a 

PDI = 0.1 or simply as 10.0 nm with 32% polydispersity. I contend that this final method 

is most intuitive. When reported in this way it is clear that a size distribution, and not an 

error, is being described, and it allows for a more useful comparison of nanoparticle 

distributions with different mean diameters. Further, the definition of a “monodisperse 

nanoparticle sample” varies from those materials that are defined with atomic 

precision42,43, to samples with a PDI < 0.1, or samples with < 10-15% polydispersity each 

considered by some to be monodisperse. This polydispersity introduces difficulties in 

characterization (how many particles must be imaged for statistical significance?) and in 

the definition of reproducible syntheses (must the mean particle diameter be identical, or 

the polydispersity, or both?). In addition, the wide variety of nanomaterials further 

confounds the issue, as it may be impossible to define a single set of standard 

characterization techniques that are appropriate for every sample. Addressing these 

challenges during the discovery phase will pay great dividends as new hybrid materials 

are developed for increasing complex applications utilizing the assembly of previous 

described nanomaterials.   
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Reproducibility of Nanomaterial Syntheses 

 Reproducibility in nanoparticle production is an important consideration owing in 

part to the interplay between unique size-dependent properties and the reality of a 

polydisperse size distribution that results from syntheses. The scale of nano materials may 

also introduce sensitivity to impurities that may be present during synthesis. Other 

synthetic considerations, owing to coupled thermodynamically and kinetically controlled 

processes in play during nanoparticle synthesis, mean unexpected experimental 

parameters (the ramp rate to a final reaction temperature for example) may affect size 

and shape control.44 In addition, reaction times for the formation of many nanoparticles 

occur on the time scale, or even orders of magnitude faster, than the time required for 

mixing. Typical addition of two reagents in equal volume can require mixing times on the 

order of 10’s of seconds.45,46 However, nanoparticle syntheses, for example the Bunte salt 

approach used in Chapters 3 and 4, form growing nanoparticles within 150 ms. Rates of 

mixing, when mixing time is on the order of the reaction time, can alter the cascade of 

reactions that makes up a nanoparticle synthesis.47 These effects are evident in the varied 

products of gold nanoparticle syntheses performed at different flow rates, and thus mixing 

times, in a microfluidic reactor (Figure 2). 

These complications are dealt with within Chapters III and IV by utilizing a 

simple microfluidic reactor. At high flow rates the microfluidic reactor described acts 

instead as a mesofluidic reactor, providing Reynolds numbers in the turbulent mixing 

regime (Re > 1000) where complete mixing would be expected to occur on the order of 1 

to 10 milliseconds.47,48, 49 It is also noted in Chapter III that the use of continuous flow 

systems helps mitigate the disparity in products produced when multiple researchers 

perform the same synthesis resulting in improved reproducibility.  
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Figure 2. Change in final diameter of nanoparticles produced with the same reagents (a 
1:5:2 ratio of Bunte salt ligand / Au(III) / NaBH4) mixed in a T-mixer at various flow 
rates within the microfluidic reactor described in Chapters III and IV 
 
 
 

A final issue with the reproducibility of nanoparticle syntheses is the lack of 

published data within literature reports, further confounding structure-function 

investigations.41 A discussion of the variability of a single synthetic method when 

performed by a single or multiple researchers is considered in Chapter III. Alternatively it 

would behoove researchers to simply report on the achieved reproducibility across more 

than a single batch of material such as the standard deviation in mean diameter during 

multiple syntheses, such as is illustrated in Chapter IV.  

 

Characterization of Complex Nanomaterials 

As described previously, the characterization of nanomaterials is not a trivial task. 
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Often the techniques that are well suited to nanomaterial analysis require extensive 

sample preparation, occur in ultrahigh vacuum, and are operating near their 

fundamental limits. Inadequate characterization may result in confusing or inconsistent 

experimental results. In addition, there are few techniques that can probe the materials in 

the environments in which they will be stored or used, such as in solution. A combination 

of corroborative and complementary techniques are examined, with careful attention 

paid to which size descriptor is being probed (Chapter II, Figure 2). In addition, it is good 

practice to utilize techniques that describe both individual nanoparticles as well as 

measuring bulk properties to ensure the novel properties being investigated do in fact 

arise from the nanomaterial being described. Indeed, this is becoming a requirement in 

scientific journals such as Chemical Communications. In the following sections the common 

techniques used throughout this work as introduced with a brief discussion on their 

relative merits and potential pitfalls. 

 

UV-visible Spectroscopy 

 One of the first size dependent properties observed in gold was the strong optical 

absorbance that results in a red color. UV-visible spectroscopy provides a way to quantify 

the strong plasmon absorbance between 500-530 nm. It has been shown that this UV-

visible spectrum may be used both for the determination of approximate concentration 

and AuNP size in nanoparticle solutions.50,51 While this is not the most information rich 

technique of those described herein, it does sample a large number of particle in the most 

expedient and least costly way and as such is often used as a first look into the properties 

of new nanoparticles. Analysis of UV-vis spectra can be used to reasonably approximate 

the size and concentration of many types of nanoparticles in solution. In addition, 
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qualitative information may be obtained regarding the stability of AuNPs over time as 

flocculation and aggregation both increase scattering and decrease overall absorbance as 

nanoparticles precipitate from solution. 

 

Transmission Electron Microscopy (TEM) 

Bright field TEM provides micrographs of individual nanoparticles by passing an 

accelerated electron beam though a thin sample, in much the same way as a typical light 

microscope.52 Given that the electron beam must pass through the sample in order to 

form an image samples must be deposited on substrates designed for use in the TEM. 

These substrates may be simple films of carbon or specialized substrates using tailored 

surface chemistry to tether nanomaterials to a surface for study.53 TEM is often used for 

the determination of nanoparticle size by using a CCD detector or film to capture 

micrographs that can then be analyzed by image processing software such as ImageJ.54 

TEM relies on a difference in electron density between the material being studied and the 

substrate used for imaging, as a result the nanoparticle core, but not the ligand shell, is 

typically observed. The size distribution defined by a TEM size analysis is a number 

weighted average of the core diameter of all nanoparticles observed. There are a number 

of considerations that must be made; in particular a TEM operator must be wary of 

biasing the resulting analysis because so few particles may be observed at once. In 

addition, TEM experiments require depositing samples that are then placed in an 

ultrahigh vacuum environment and then battered with high-energy electrons. As such, 

significant sample damage including aggregation and growth may occur either during 

sample preparation or measurement. Figure 3 illustrates the types of images that were 

acquired over the course of one hour during the determination of a nanoparticle size 
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determining a threshold for binary cutoff and distinguishing the cores of overlapping 

particles. Ideally, images such Figure 3 (B) would be used exclusively; however, due to the 

low number of particle counts, even though these types of images make up the majority of 

those collected they account for less than half of the particles analyzed. Artifacts due to 

either the substrate used or drying effects, such as those shown in Figure 3 (C) complicate 

analysis, but should not be excluded outright if operator bias is to be avoided. Ideally, the 

size distribution shown in Figure 3 (D) should be corroborated by some other method 

such as SAXS. 

Advances in sample holders for TEM imaging are now allowing for the use of 

liquid samples, at the expense of resolution. However, there are a number of challenges to 

be considered which introduce artifacts into the data that may skew analysis55 Other 

sophisticated sample holders are used for the measurement of a nanomaterials physical 

properties, such as electrical and mechanical properties, while the material or device is 

imaged.56 

Additional imaging modes are also available within a TEM column. Some 

instruments incorporate a STEM (Scanning Transmission Electron Microscope) for 

Annular dark-field (ADF) imaging. This technique provides z-contrast, so can be used to 

gauge thickness of a homogeneous features within a sample, the stacking of nanoparticles, 

or to show composition differences in nanomaterials composed of multiple elements.57,52 

TEM is one of few techniques that may be used for the direct observation of 

nanomaterial morphology. In particular the technique is compatible with nanomaterials 

that may consist of multiple elements, such as supported catalysts. This is in part due to 

the ability to perform additional experiments in the same instrument such as Energy 

Dispersive X-ray Spectrometry (EDX) or Electron Energy Loss Spectroscopy (EELS) in 
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intensity to the various components of the sample.60 

I(q) = c n(r) f (qr)[ ]2
0

∞

∫ S(qr)dr  

Where the intensity of scattering, I(q), is proportional to the contrast of the material being 

investigated relative to the surrounding medium, c, the size distribution of the particles, 

n(r) where r is the radius of the material, the shape of the particles also called the form 

factor, f(qr), and order introduced by interactions between neighboring particles 

described by the structure factor, S(qr).60 The smallest measureable feature in a SAXS 

experiment is related to the largest angle measured by the instrument through the 

equation:60 

Rmin ≈
π
qmax

 

A typical lab scale SAXS, such as a well-aligned Anton-Paar SAXScess, has a qmax = 0.6 

Å-1 which provides measurements down to R = 5.24 Å.  

In principle it is possible to determine structural information about the shape of 

nanomaterials using SAXS; however there are several obstacles to these experiments. The 

primary difficulty in analyzing SAXS data is that the integral that describes the scattering 

data can only be used to go from a geometric model to simulated data. A given scattering 

pattern does not uniquely describe a single physical model due to effects of averaging the 

position of nanomaterials over the course of data acquisition. Obtaining more 

information about the sample then requires one of two approaches, either it is necessary 

to acquire time-resolved scattering data or it is necessary to make assumptions about the 

sample that allows for various size distribution models to be simulated.62 The acquisition 

of time resolved SAXS data requires the use of incredibly high flux (several orders of 
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magnitude higher than is possible with lab-scale instruments) and detectors with 

improved resolution.63 Instead, in order to maximize the amount of information output 

from a SAXS pattern a variety of tools that can be used to iteratively fit models to the 

obtained scattering patterns. Fortunately, the work being performed at beamlines like the 

Advanced Photon Source has enabled the development of powerful modeling packages 

that have been used to describe a large range of nanomaterial types which can be used for 

the analysis of lab-scale SAXS data.64 

These modeling methods typically consist of solving a system of equations that 

describing the three morphological aspects of a nanomaterial: shape, size distribution and 

interparticle interactions.65 Solving these equations requires that assumptions are made 

about at least two of the three aspects. For proteins66,67,68 and other biological 

macromolecules69 generally the assumption is that the pure sample is monodisperse, that 

is contains many copies of identical molecules. Assuming the experiments are also 

performed under dilute conditions, this affords the ability to determine shape information 

as well as information about dynamic conformational changes.70 For nanoparticle 

samples assumptions are made about all three attributes in order to solve for specific size 

information. Generally three assumptions made for nanoparticle samples: that the 

nanoparticle solution is dilute enough to minimize contributes for interparticle scatter, 

that the nanoparticle size distribution can be described as a Gaussian-shaped size 

distribution of polydisperse scatterers (other probability distributions may also be used), 

and that the shape of the nanoparticles are known (and generally assumed to be 

anisotropic). These assumptions must be justified using other characterization techniques, 

such as TEM for morphology and UV-vis for concentration, in order to have confidence 

in the measurements provided by model fitting of the SAXS patterns.71 
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When these corroborative techniques are used the model fitting of SAXS data is 

generally very robust providing nanoparticle size distributions within < 0.1 nm. This may 

be demonstrated by comparing multiple measurements of aliquots from the same AuNP 

solution that was used in the previous TEM size analysis (Figure 4 (D)). As signal-to-noise 

doubles as acquisition times quadruple, five experiments were performed each doubling 

the signal to noise ratio (Figure 5).  

 

Figure 5. Stacked SAXS data showing the scattering data and corresponding model fits 
for aliquots of the same nanoparticle solution measured for various times. Acquisition 
times include the time required for obtaining a nanopure water background and the 
CCD dark current required for data processing. All models shown were determined by 
modeling a volume weighted histogram consisting of 200 bins between 0.1 and 10 nm 
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which was then iteratively compared to the scattering data using the NNLS (non-negative 
least squares) best fit. 

 
The goodness of fit between a SAXS model and the corresponding scattering data 

is typically described in terms of the reduced chi-squared (the chi-squared value over the 

number of data points). In general, a good fit may be broadly defined as a reduced chi-

squared value of less than 5. In practice noisy data may appear to provide a better fit, as 

larger error bars for each data point (not shown in Figure 5 for clarity) result in a given 

model fitting more points by default. For example the model fit the data acquired over 6 

minutes provides a reduced chi-squared value of 1 while the model fit for the data 

acquired over 6 hours 24 minutes provides a reduced chi-squared an order of magnitude 

higher. Another approach would be to consider the average magnitude of the residuals 

between models and scattering data. However, this type of analysis is poorly suited to 

SAXS data where the intensity measured varies by orders of magnitude from low to high 

q. Because SAXS scattering data is typically displayed on a log-log plot, the 

determination of relative goodness of fit by eye is misleading. Note that there are orders of 

magnitude differences between the intensity measured at low and high q and there are an 

order of magnitude more data points in the region of the data that appears most noisy!  

In addition, the simulation of scattering provided by a given model is not an 

arbitrary line, but rather each portion of the pattern corresponds to different, but 

interrelated properties of the nanoparticle size distribution. The high intensity data at low 

q serves to fix the mean size of the model, while the lower intensity region is related to the 

polydispersity. Because they are interrelated it is not possible to acquire meaningful 

information if one region is arbitrarily fit without the other.  In the end, an empirical 

determination of goodness of fit should be determined for a given class of sample (defined 
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by material and solvent type and mean size) by performing a similar study on the effects 

of changing signal to noise in the measurement. This type of analysis provides the 

researcher with confidence in the model fit to the data if two or more measurements are 

made at different acquisition times and the best-fit model converges on the same 

nanoparticle size distribution. As can be seen in the case illustrated in Figure 5, although 

the signal to noise ratio is 8 times higher at the longest acquisition times the model fits all 

agree within < 0.1 nm. The general trend is that noisier data produces a slight apparent 

increase in mean core diameter as well as an apparent increase in polydispersity. To 

address concerns of “over fitting” these data we can look to the trends which show that 

even for very noisy data the mean core diameter is well described, and the polydispersity 

is, if anything, overstated. An analysis of the uncertainty (also described as error) within 

the SAXS measurement itself may be obtained by adding Gaussian disturbed noise 

proportional to the error in each scattering intensity value for several (usually 20-40) 

iterations. When this analysis is performed on the data with a relative SNR of 2 the error 

was an order of magnitude below the reported value, with the data with a relative SNR of 

16 the error is two orders of magnitude lower. 

For further corroboration of the SAXS data we may look to the analysis of the 

same sample by another technique, such as TEM (Figure 6). When comparing size 

distributions determined by different techniques there are two consideration: do the 

techniques measure the same size property of the nanoparticle and do the techniques 

define the distribution in terms of number of nanoparticles or the volume of those 

nanoparticles. Both TEM and SAXS measure the core diameter of a nanoparticle 

sample; however the type of size distribution is a particularly important consideration 

when comparing TEM and SAXS. The volume distribution determined by SAXS 
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showed a core diameter of 3.1 ± 0.4 nm. This distribution can be converted to a number 

distribution using the total scattering volume for a number distribution corresponding to 

2.9 ± 0.4 nm. This agrees well with the TEM size analysis of several hundred particles, 

which fit to a Gaussian distribution of 2.8 ± 0.4 nm (Figure 4). 

 

Figure 6. Shows the difference between volume weighted distributions determined by 
SAXS (dcore = 3.1 ± 0.4 nm) and the calculated number distribution corresponding to an 
identical distribution of nanoparticles (dcore = 2.9 ± 0.6 nm). Note that SAXS data are 
typically modeled using nanoparticle radius as a parameter.  

 
 

 
Nuclear Magnetic Resonance (NMR) 

NMR is a powerful go-to technique in organic chemistry. Unfortunately 

quadrupolar broadening of peaks due to the slow movement of nanoparticle on the NMR 

timescale makes detailed analysis of the ligand shell of nanoparticles difficult. One benefit 

to this broadening is the ability to use NMR to quickly determine if there are free ligands 

present in a purified nanoparticle sample. Further, in the case of thiolate functionalized 

AuNPs, the challenges introduced by peak broadening may be overcome by using the 

strong affinity of I2 for a gold surface to release the ligand shell into solution as disulfides. 
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The composition of mixed ligand shell AuNPs may then be determined if characteristic 

peaks are isolated.   

 

Nuclear Magnetic Resonance - Diffusion Ordered Spectroscopy (NMR-DOSY) 

Diffusion weighted NMR may be used for the determination of diffusion rate of a 

nanomaterial within a solvent. For a spherical particle in a homogeneous solution, the 

hydrodynamic radius r can then be calculated by using the Stokes–Einstein equation 

r = kbT
6πηD

 

where kb is the Boltzmann constant, T is the temperature at which the experiment is 

performed, η is the viscosity of the solution, and D is the diffusion rate of the 

nanoparticle.72 Note that the hydrodynamic radius is a size dimension that will include 

the core, the ligand shell, and the surrounding organized solvent (Figure 1a), a very 

different descriptor than the core size distribution provided by SAXS or TEM. It is 

important to recognize that this radius will only be an approximation based on the 

assumption that the nanoparticle moves like a hard sphere through the solvent in 

question. Ligand type and resulting solvent interactions may invalidate this assumption 

resulting in a relative, rather than quantitative size determination unless standards are 

used. 

In nanoparticle characterization, DOSY has been used to complement TEM for 

size of AuNPs in organic solutions. While the technique may not be suitable for very large 

nanoparticles, 0.8 to 5.0 nm AuNPs have been successfully analyzed.73,74 This technique 

has also been shown to provide a realistic hydrodynamic radius for nanoparticles which 

may be useful for investigating behavior in solution.72 While DOSY is a useful technique 
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for nanomaterial size determination it is important to note that the hydrodynamic radius 

is often misrepresented in the literature, for example being inappropriately compared 

directly to sizes determined by TEM without a single caveat.75 This is of particular 

concern not only because it convolutes material definition, but also when comparing one 

type of nanomaterial to another. 

 

X-ray Photoelectron Spectroscopy (XPS) 

XPS is capable of providing elemental composition and information about the 

oxidation state of those elements.76 In addition, elemental mapping is possible with 

micron resolution.77 XPS is generally considered to be a surface sensitive technique 

because the low energy photoelectrons generated by the x-ray source are scattered as they 

travel though the sample. For planar materials this means that only electrons generated in 

the top few nanometers escape and are able to be detected. However, the electron 

attenuation length is on the order of typical nanoparticle sizes, which allows for the 

determination of elemental composition throughout the entire material. One concern is 

signal due to the underlying substrate when thin layers of small nanoparticles are 

measured. This can be mitigated either through the use of a conductive layer such as 

chromium or by sampling an identical substrate which may then be subtracted from the 

sample spectrum as described in Chapter V (Appendix C, Figure S4). 

The binding of sulfur with gold surfaces has been extensively studied.78There are 

differences in the binding energies associated with organic ligands bound to nanoparticle 

versus planar surfaces.79,80 With the proper use of standards, small shifts in binding energy 

may be used to explain to complex surface binding phenomenon.81 XPS cannot provide 

information about the absolute amount of any given element; however, it is possible to 
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perform high resolution scans of specific elements within a sample in order to get a ratios 

between various elements in different oxidation states. This type of analysis is complicated 

with nanomaterials due to attenuation effects as the excited photoelectrons travel through 

a sample. While there are geometric corrections that may be performed for 

deconvolution of these effects in a well-defined large sample, the organized spatial 

distribution of elements often present in nanomaterial samples further complicates 

determination of absolute ratios. These factors mean that complete analysis of 

nanomaterials may require extensive modeling and analysis of peak shape104, as well as 

the use of standards, to gain further information about nanomaterial morphology and 

composition.82  

 

Thermogravimetric Analysis (TGA) 

The ligand shell dictates many of the properties of interest in functionalized 

nanoparticles. While XPS can provide some information about the composition of a 

nanoparticle sample, quantification is often impossible. However, TGA is an ideal 

complementary technique that, when used together, can provide a direct measurement of 

the ligand shell. While the core material of typical nanoparticles is inorganic, either a 

metal or metal oxide, the ligand shell is composed of organic molecules that may be 

removed by heating. Alone TGA can provide ratio of the mass of the ligand shell, which 

is vaporized, and the mass of the core material, which is not. When used in concert with 

information about the design of the nanomaterials, the ratios of elemental composition 

(from XPS) and the size distribution of the nanoparticle (from either TEM or SAXS) it is 

possible for TGA to be used to determine the average number of ligands on a particle of 

the mean diameter.83 This in turn provides information on the packing density of the 
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ligand shell which has implications for nanoparticle stability in solution. TGA has also 

been used to investigate the behavior of nanoparticles as they are heated to induce 

sintering which has important implications for catalysis applications and the preparation 

of porous electrodes.81  

 

Gold Nanoparticles as Reagents in Chemical Synthesis 

Early research into new nanoparticles was driven solely by the discovery of novel 

properties arising at the nanoscale. Now multifunctional nanoparticles with additional 

layers of structural complexity are being developed for use in targeted drug delivery, 

imaging, and sensing applications. Increasingly these nanoparticles are being used as 

building materials for the additive design of more complex nanostructures. Using organic 

chemistry to functionalized AuNPs generates functional inorganic -biomolecule hybrid 

nanomaterials.84 Taking inspiration from the chemistry performed by biological systems, 

self-assembly processes for production of “higher-level hybrid structures” are also being 

developed.85,86 With additional complexity comes additional synthetic and 

characterization challenges. 

Nanoscientists are not alone in facing increasing complexity as their toolkit of 

synthetic techniques expands, organic chemists in the pursuit of synthetic strategies for 

the production of natural products face similar challenges. As such it would be wise to 

heed the wisdom of K. B. Sharpless who said: “If useful properties are our goal … then 

the use of complicated synthetic strategies is justified only if they provide the best way to 

achieve those properties.”6 Often linear synthetic routes are used as a research group 

builds upon previous work. Yet this strategy of synthesis at any cost, overlooking issues of 

process development, proves costly and time consuming. Instead during the discovery 
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phase syntheses may be designed to utilize efficient syntheses of various building blocks, 

which could then be used in the generation of complex nanomaterials via convergent 

syntheses. This would have the added benefit of not only saving time and money, but also 

in speeding the adoption of nanomaterials in the consumer market.  

The promised benefits of modular assembly in organic chemistry were realized 

with the advent of click chemistry. Click chemistry is defined broadly as a set of synthetic 

reactions that are thermodynamically driven and may be used for the efficient, modular 

construction of target molecules. With such an approach syntheses are designed with 

features amenable to scale up and rapid modification from the start. Thus the promise of 

click chemistry is not only an increased rate of development of new materials affording a 

broader parameter space in structure-function investigations, but also lowered costs. An 

ideal synthetic approach is one that adheres to a few basic principles such as being 

modular, wide in scope, insensitive to water and oxygen, as well as affording ease of 

purification with chromatographic techniques.6 Designing nanomaterial syntheses with 

these principles in mind will pay compounding dividends over time not only in money 

saved, but also by allowing for the rapid development of new materials for structure 

activity relationship studies.  

Modular assembly of specifically synthesized monomers, a concept explored at 

length within click chemistry, allows one to compartmentalize the challenging organic 

chemistry to a small molecule fragment before assembling these fragments (or 

substructures) into a larger structure. A similar approach can be taken in the synthesis of 

hybrid nanomaterials, performing troublesome organic chemistry steps on ligand 

precursors prior to nanoparticle synthesis or optimizing nanoparticle syntheses 

independent from the synthesis of complex targeting groups. For example, masked thiols 
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can be used in the preparation of thiolate protected AuNPs while avoiding some of the 

pitfalls of thiol reactivity, such as the formation of disulfides which react with very 

different kinetics to their thiol analogs. This have been demonstrated for thioacetates87, 

and S-alkylthiosulfuric acids, also known as Bunte salts88,89,90. The term Bunte salt is 

discourage as obsolete by the IUPAC;91 however, the term shows signs of continuing 

popularity even within the organic chemistry community.92 Bunte salts, in particular, 

have properties that are particularly of interested to the researcher in lab, namely their 

facile preparation from corresponding halides93,94, a lack of offensive odor owing to their 

low volatility, and their shelf stability95,63. In addition Bunte salts tend to be water soluble 

due to their charge, which allows for water to be used as a benign solvent. Purification is a 

necessary consideration as well, and by designing syntheses that use water as a solvent 

diafiltration can be used to allow for the effective and reproducible removal of 

impurities.96 Well designed, stable, nanoparticles may include functionality amenable to 

further coupling reactions following synthesis allowing them to be used as reagents in 

subsequent assemblies.97,98,99,100,101,102,103 Further, developing nanoparticle reagents would 

allow for scientists with diverse expertise to capitalize on nanoscience research. This 

would have similar impacts to the development of the automated syntheses of proteins 

and other biomolecules, which made it possible or a non-biochemist to incorporate these 

molecules into their research, greatly expanding the potential applications 

conceptualized. 

 

Thesis Overview 

 The intent of this dissertation is to provide a framework for the design, synthesis, 

modification, and characterization of functional nanomaterials. Chapter II describes the 
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challenge of defining a nanoscale material. For a well-defined inorganic nanoscale 

species, a size measurement can describe a number of different dimensions (core, shell, 

solvation sphere). Often these size parameters are reported out of context or even 

inadvertently misrepresented. Since many of the techniques used to measure size depend 

on significant and sometimes destructive sample preparation, an additional challenge is 

defining ”what size means” for a nanoscale species while still in solution. The distinction 

is drawn between complementary techniques that can be used together to unveil more 

information about the material in question, and corroborative techniques, which are used 

to make multiple measurements of the same property for verification. Additionally, 

corroborative techniques can be used to measure the same property in and out-of solution 

so as to reveal details about solution behavior. Various approaches to this 

characterization challenge are provided in the context of three case studies demonstrating 

the use of both complementary and corroborative techniques to elucidate the various 

size-properties of different types of inorganic nanoscale species in solution. This chapter 

was developed for publication with my co-authors Anna Oliveri, Matt Carnes, Jim 

Hutchison and Darren Johnson. 

 Chapter III describes a new method for the direct synthesis of functionalized gold 

nanoparticle that affords simultaneous control over the final core diameter independent 

from the functionality chosen. In addition a convenient, single-step synthesis is described 

that produces ligand-stabilized, water-soluble gold nanoparticles (AuNPs) with diameters 

in the range of 2-10 nm. The nanoparticles properties due to the surface chemistry and 

core size/structure can be simultaneously controlled. The method overcomes a 

traditional limitation to synthesis imposed by the fact that the ligands used have a direct 

impact on nanoparticle size during synthesis. As a consequence multifunction 
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nanoparticles required for biomedical and other applications can be easily and 

reproducibly synthesized. In the new synthesis, reduction of a Au(III) species with sodium 

borohydride in the presence of a functionalized alkyl thiosulfate (Bunte salt) yields 

monolayer-protected AuNPs. AuNP core size can be controlled by varying the pH of the 

gold salt solution because the speciation of Au(III), and the kinetics for its reduction, 

depend upon pH. The dependence of the core size on the pH was different for each 

ligand functionality studied.  However, a working curve can be plotted for each that can 

be used to identify conditions to synthesize particles with specific, targeted core diameters 

regardless of the influence of the specific ligand. Using this approach reaction conditions 

can be rapidly optimized using a combination of a microfluidic reactor and automated 

small-angle X-ray scattering (SAXS) size analysis. The synthetic method demonstrated 

here eliminates the need for ligand exchange with or without phase transfer catalysts and 

thus avoids complexity due to additional synthetic steps or the possibility of a change in 

nanoparticle core size during ligand exchange. This approach enables the development of 

libraries of related particles for rapid investigations into structure-function relationships. 

This work was submitted for publication with my collaborator Pat Haben under the 

guidance of Jim Hutchison. 

 Chapter IV demonstrates the realization of a gold nanoparticle reagent for use in 

the construction of complex nanomaterials. Small (Dcore < 5nm) water-soluble gold 

nanoparticles with tailored reactive group densities were developed to allow for direct 

synthesis and ease of purification and isolation. These nanoparticle reagents are intended 

to take advantage of the benefits of “click” chemistry, namely the use of readily prepared 

modular reagents with appropriate functionality. Typical synthetic approaches relied on 

the synthesis hydrophobic nanoparticles followed by ligand exchange reactions, which are 
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time intensive, often incomplete and may suffer from changes in core diameter or loss of 

material.  In contrast, the direct synthesis method shown here allows for the use of an 

ethylene glycol diluent ligand for solubility and stability along with varied numbers of 

functional groups to be used in subsequent azide-alkyne coupling reactions. The 

nanoparticles remain stable when purified using tangential flow filtration and are readily 

resuspended following lyophilization. The reactivity of the resulting nanomaterials is then 

demonstrated by coupling to a variety of hydrophobic and hydrophilic moieties with 

terminal functionality using a simple copper catalyst. Copper-free reaction conditions 

were also investigated using strained cyclooctynes. The diameter of the core was 

maintained throughout the reaction and particles remained soluble even after coupling 

was complete. These hybrid nanoparticle products retain properties of both the azide 

functionalized nanoparticle reagent, such as water solubility and optoelectronic 

properties, along with the properties introduced by the incoming moiety such as 

fluorescence. These AuNPs are of potential interest as reagents in the preparation of 

complex nanomaterials for biomedical applications where stable, precisely defined, 

biocompatible particles are required. The ease of synthesis of these materials along with 

their stability during coupling and purification provided access to a breadth of related 

materials that may be rapidly prepared and screened. This work was completed and is 

intended for publication by Zack Kennedy, Zhenshuo Feng, Jim Hutchison and myself. 

 Chapter V describes a method of gently removing the ligand shell of monolayer 

protected AuNPs in order to generate a reactive gold surface that may be exploited. The 

size dependent properties of surface-confined inorganic nanostructures are of interest for 

applications ranging from sensing to catalysis and energy production. Ligand-stabilized 

nanoparticles are attractive precursors for producing such nanostructures because the 
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stabilizing ligands may also be used to direct assembly of intact nanoparticles on the 

surface.  However, for applications requiring direct access to the core, these ligands block 

the active surface of the nanoparticle. Typical methods used to remove these ligands 

typically results in release of nanoparticles from the surface or causes undesired growth of 

the nanoparticle core. A mild chemical oxidation step using 50 ppm of ozone in nitrogen 

lowers the ligand’s affinity and permits the removal of the ligands at room temperature by 

rinsing with water.  XPS and TEM measurements conducted using a custom planar 

analysis platform were performed to assess changes in the ligand shell and nanoparticle 

core during treatment. Using dilute ozone it is possible control the amount of ligand 

removed by adjusting the treatment time.  The particles retain their original core size and 

remain tethered on the surface. Carbon monoxide oxidation was then used as a 

functional assay to demonstrated ligand removal from the gold surface for nanoparticles 

assembled on a high surface area support. This work was completed with Rick Glover 

and Jim Hutchison and is intended for future publication. 

 

Bridge to Chapter II 

 Before the design and synthesis of a nanoparticle reagent could be realized it was 

necessary to improve upon material definition. During my rotation in the Hutchison lab 

during my first year I was introduced to the synthesis of gold nanoparticles using 

biomolecules as ligands. Initial experiments quickly demonstrated some of the issues 

related to a lack of reproducibility and difficultly of characterization. As the CAMCOR 

facility at the University of Oregon grew I was presented with the opportunity to utilize 

additional characterization techniques (XPS) and cutting edge instruments (The FEI 

Titan Electron Microscope). It was during my work with Patrick M. Haben at the 
32



Advanced Light Source in the Lawrence Berkeley National Lab that I first saw the 

capabilities that SAXS could offer in the analysis of gold nanoparticles while in solution. 

With the acquisition of a lab-scale SAXS (the Anton-Paar SAXScess) new studies were 

suddenly viable. In Chapter II the multitude of instrumental techniques available at the 

University of Oregon are utilized to address the solution phase characterization of 

nanomaterials. The need for both complementary and corroborative techniques in the 

definition of novel materials is explored. In addition, the implications of appropriate (and 

inappropriate) definition of a given nanomaterial are considered. 
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CHAPTER II 

 

ELUCIDATING INORGANIC NANOSCALE SPECIES IN SOLUTION: 

COMPLEMENTARY AND CORROBORATIVE APPROACHES 

 

Note: Chapter II is reproduced with permission from Oliveri, A. F.; Elliott III, E. W.; 
Carnes, M. E.; Hutchison, J. E.; Johnson, D. W. ChemPhysChem, 2013, 14, 2655 – 2661. 
Copyright 2013, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 
 
 
 

Introduction 

Corroborating the solid-state structure to solution structure and elucidating 

solution dynamics have been challenging goals confronted by many researchers, 

particular in supramolecular chemistry and nanoscience. If a substance can be 

crystallized, solid-state structures can confidently be determined using single crystal X-ray 

diffraction (XRD), but what exists in the solid-state does not always reflect the relevant 

species in solution. Small molecule synthetic chemists have adopted a set of 

complementary techniques commonly used to identify and confirm a molecular structure 

in solution (NMR, UV-Vis, IR, and Mass Spec).[1] Inorganic clusters, nanoparticles, and 

related species, together referred to henceforth as “inorganic nanoscale species”, are not 

as easily structurally characterized using these techniques. In this Concept, the 

complementary combination of Small Angle X-ray Scattering (SAXS) and Diffusion 

Ordered Spectroscopy (DOSY NMR), as well as other analytical techniques, are 

reviewed and discussed for their use in the study of inorganic nanoscale species. 
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The dynamic behavior of inorganic nanoscale species in solution is of 

fundamental interest to inorganic, materials, and geological chemists; however, it is first 

necessary to identify the predominant species in solution before more thorough 

investigations can occur. One such inorganic nanoscale species which possesses 

interesting solution behavior is the cluster Ga7In6(µ3-OH)6(µ-OH)18(H2O)24](NO3)15 

(Ga7In6) (Figure 1). The solid-state structure of this discrete nanoscale cluster has been 

determined by single crystal X-ray diffraction. Researchers have discovered that these 

clusters make superb precursors for homogenous, smooth, defect free InGaO3 thin films 

when using a simple spin coating method from aqueous solution, followed by mild 

annealing.[2] This type of solution processing has then been used to produce transistors 

incorporated into a functioning prototype liquid crystal display (LCD).[3] This finding 

raises the question of how and why do these clusters form and subsequently condense to 

produce films of far superior quality than the corresponding simple inorganic salts? 

Similar questions can be asked about nanoparticle behavior in solution. How do reaction 

conditions drive nanoparticle formation and subsequent ligand passivation of the core? 

Also, how do functionalized nanoparticles undergo self-assembly into more complicated 

devices? Before these more challenging questions can be answered, we must first find or 

develop techniques that are able to detect and define the relevant inorganic nanoscale 

species in solution.[4]  

Some standard methods used to identify stable inorganic nanoscale species rely on 

significant sample preparation (SEM, TEM, AFM, XPS, and X-ray crystallography).  

These techniques each require species to be isolated from solution, which necessitates a 

large change in concentration and, in some cases, exposure to ultra-high vacuum (UHV). 

This makes it impossible to verify that the results of these experiments describe the 
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properties of the relevant species when in solution. For the analysis of the core dimensions 

of inorganic nanoscale species in solution, recent literature makes it clear that SAXS 

sells.[5–7] While powerful, this technique is not a stand-alone source for the identification 

and characterization of inorganic molecules and particles in solution. The best source of 

verification comes from a complement of solution analysis techniques. While NMR 

spectroscopy has been attractive to many fields, not until recently has interest in NMR 

resonated with inorganic cluster and nanoparticle researchers. Corroborative techniques 

such as DOSY NMR or DLS, which measure hydrodynamic radius, seem like ideal 

mates for SAXS analysis. 

 

 

Figure 1. Determining the fundamental solution behavior of inorganic nanoscale species 
allows for the design and control of the syntheses of new precursors used in the 
production of functional materials. In this specific example, understanding the 
fundamental dynamic behavior of the nanoscale cluster Ga7In6 in solution allows for 
better design of clusters for similar application cycles. 
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Solid-state analytical techniques are information rich, and would be even more 

powerful assets if related directly to complementary solution based characterization. In 

order to leverage the information available, the species in solution must first be observed. 

From there a combination of techniques can answer the more complicated questions of 

interest to researchers. In this Concept paper we illustrate how new strategies to elucidate 

the dimensions of inorganic nanoscale species in solution lead to significant advances in 

the understanding of solution structure and dynamics. These advances will, in turn, lead 

to better control and refinement of the chemistry and resultant materials properties. 

 

Complementary and Corroborative Solution Techniques 

This Concept will first review a variety of techniques commonly available for the 

analysis of size in solution (UV-Vis, ESI-MS, DOSY, SAXS, and DLS). Techniques that 

can provide complementary spectral signatures for the inorganic nanoscale species in 

solution are also discussed (NMR, Zeta-potential, UV-Vis, IR, and Raman). While there 

are a number of other information-rich techniques, the focus here is on those that are 

commonly available at a typical research institution. Although each of these techniques 

has an important function in the analysis of certain compounds, this Concept focuses on 

the characterization of clusters, nanoparticles, and other inorganic species in solution 

from the perspective of synthetic materials chemists.  

Given the limited literature precedence and the restrictions of the techniques used 

for the characterization of nanoscale inorganic species in solution, researchers must first 

be able to predict an expected size range for the stable species making this an iterative 

process. This necessity demonstrates that size actually does matter. In an ideal case, a 

solid-state technique such as crystallography can be used to guide the search in solution 
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while keeping in mind that the isolated solid-state species may not be the same as the 

relevant species in solution. There are several dimensions of well-defined nanoscale 

inorganic species that can be measured and described as size. The concept of size is 

fundamentally ambiguous as it may be related to the core, shell, or outer solvation 

sphere of the structure in question (Figure 2). While alone each technique is able to 

provide some indirect measure of size, the complete determination of the size-properties 

of any given material requires corroboration or the correlation of multiple 

complementary techniques. Once the size-properties have been determined, the material 

may be subjected to a multitude of techniques to determine more detailed structural 

properties. These techniques can be used in concert to elucidate more complex dynamic 

behavior in solution.  

 

 

 
Figure 2. Core, shell, and outer solvation sphere dimensions in inorganic 
nanoscale species. The multiple corroborative techniques capable of measuring the same 
dimension are grouped in columns by color. Techniques in separate columns 
complement one another by measuring different regions. 
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Small Angle X-ray Scattering (SAXS) uses the elastic scattering of 

monochromatic X-ray radiation to determine the size, shape, and volume of nanoscale 

particles in solution. For inorganic clusters and nanoparticles the technique is best suited 

to the measurement of the core, where the elements are of significantly higher or lower Z 

than the solvent. SAXS was developed for the determination of the shapes of large 

biomolecules using synchrotron radiation sources. Advances in X-ray generator 

technology and the use of line source collimation now enables this technique at the lab-

scale. While scattering data may be analyzed using model-independent approaches, much 

of the utility of SAXS for the analysis of small (< 5 nm) inorganic clusters is derived from 

direct modeling. The information that can be obtained from a SAXS experiment 

depends on the type of sample being analyzed as well as what is already known about the 

material.[8] For polydisperse materials, a size distribution can be determined if 

information about shape is known. If the material is well-defined and monodisperse, 

information about shape can be extracted along with size. For this reason it is important 

to couple SAXS analysis with another technique in order to maximize the information 

gained. The core size can be corroborated with solid-state measurements (XRD or 

TEM), or complementary techniques can be used to measure the shell or solvation 

sphere in solution in order to correlate with the core size (Figure 2). One obvious 

advantage of the use of SAXS for core size determination is the ability to characterize 

the material in solution without the risk of artifacts from sample preparation. SAXS also 

allows for the variation of sample parameters such as solvent, temperature, or pH. 

However, in order to produce scattering there must be a contrast in electron density 

between the material of interest and the solvent used.[9] Additionally, solvents with a very 

high X-ray absorbance, including many halogenated organic solvents such as chloroform 
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and dichloromethane, are not well suited to analysis by lab scale instruments because the 

majority of photons will not reach the X-ray detector.  

Nuclear Magnetic Resonance (NMR) spectroscopy can provide information 

about structure, concentration, dynamics, reaction rate, and chemical environment, 

among others. Using a magnetic field, NMR aligns the spin of nuclei in a molecule then 

measures their relaxation. Depending on the atom and its environment, the frequency of 

relaxation will result in a signal with a specific chemical shift. Structural information can 

be gained from NMR, but prior chemical shift information is necessary and not easily 

found for many inorganic species. To assign chemical shifts in molecules with no 

literature precedence, high-level computations are required. When working with 1H 

nuclei there can be sample-dependent solvent limitations due to exchange between the 

protons of the molecule in question and the solvent. This is usually not an issue when 

working with other NMR-active nuclei. Unfortunately, any paramagnetic metal will lead 

to severe broadening of NMR signals making it more difficult to gain useful information 

from the spectrum.[1,10] Two-dimensional NMR techniques have allowed for complex 

structural problems to be tackled more easily. By applying field gradients, Diffusion 

Ordered Spectroscopy (DOSY) has allowed for the measurement of the translational 

diffusion coefficient, caused by Brownian motion, of a molecule relative to the solvent. 

Once the viscosity of the sample is measured, the Stokes-Einstein equation can be used to 

approximate the solvation sphere of a spherical species.[11,12] This measurement can be 

corroborated in solution with DLS measurements and complemented with techniques 

measuring the core or shell (Figure 2).  

Electrospray Ionization Mass Spectrometry (ESI-MS) is capable of 

determining the molecular weight and fragmentation pattern of many discrete molecular 
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species. By charging a fine spray of a very dilute (10-5 M) solution of the species, the mass 

to charge ratio of the resulting fragments can be determined. This has recently been used 

to identify intermediates in order to infer assembly mechanisms in polyoxometallates.[13] 

ESI-MS is potentially very powerful for the characterization of suitably stable inorganic 

species especially when corroborative techniques are used (Figure 2). There are several 

drawbacks to using this technique for the investigation of inorganic nanoscale species with 

more dynamic speciation such as hydroxy-bridged aqueous clusters. Due to the low 

concentrations necessary for this measurement the species being investigated may not 

represent the species present at the higher concentrations relevant to materials scientists. 

In addition, this technique can lend itself to over interpretation due to the copious 

amounts of data that can be gathered from fragmentation patterns. Caution should be 

taken when applying information on charged particles in the gas phase to solvated 

inorganic nanoscale species.[14] These issues may be mitigated with complementary core 

and solvation sphere measurements. 

Dynamic Light Scattering (DLS) allows indirect measurement of the 

solvation sphere of a species by measuring changes in Rayleigh scattering. DLS uses 

the time dependent scattering intensity fluctuations to measure the same Brownian 

motion as DOSY NMR making them ideal corroborative techniques. DLS can determine 

the size and polydispersity of an inorganic nanoscale material and does not require the 

use of potentially expensive deuterated solvents. Many of the disadvantages of DLS result 

from the intensity weighing of the measurement. This means that the technique is biased 

to larger particles with more scattering. As a result, detection limits are inversely 

proportional to the size of the object being analyzed, and the largest objects in solution 

dominate the signal from samples with multiple populations.[15] DLS has a major 
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limitation in studying metal nanoparticles when the wavelength of the laser excites the 

surface plasmonic resonance (SPR). For instance, gold’s SPR absorbance overlaps with 

the wavelength of the green laser at 532 nm in some DLS instruments, reducing signal to 

noise. This can easily be resolved by choosing a different wavelength of laser, but finding 

a second instrument is not always an easy task and purchasing a second laser is costly. 

DLS instruments can also be used to measure zeta potential. The zeta potential is a way 

of characterizing the surface charge of the solvation sphere in a given solvent system.[16] 

This can then be related to the relative stability of the particles in the solvent of choice.  

UV-Visible Spectroscopy (UV-Vis) provides information about the 

wavelengths of light that a species absorbs. For inorganic cluster chemistry UV-Vis can 

provide information about the coordination of the atoms within a cluster. UV-Vis can 

also measure absorbance caused by the SPR of electrons in the metal core of a 

nanoparticle. This absorbance can be used indirectly to calculate the core size of metal 

nanoparticles and quantum dots, which can be corroborated by SAXS.[17] This also 

provides a handle for determining concentration, as well as, changes in speciation over 

time. However, this technique is limited to inorganic nanoscale species that absorb in the 

wavelengths of light accessible to the spectrometer. This is particularly well suited for the 

measurement of metal nanoparticles with a SPR in the visible range or clusters composed 

of transition elements because of well-known excitations involving d-orbitals. This limits 

the utility of the technique for main group elements containing closed d shells.[10] 

Infrared (IR) and Raman spectroscopy are techniques that can be used to 

complement the determination of size by providing structural information about a 

molecule based on rotational and vibrational frequencies. By using them in tandem, 

scientists are able to characterize both the symmetric and asymmetric vibrational modes 
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of bonds in inorganic species in the solid and solution phases. Although IR is the less 

expensive and more common technique, it is essentially impossible to collect usable data 

in aqueous solutions. This is due to the large dipole moment of water that causes an 

enormous signal across the entire spectrum. Useful IR data can be collected in an array of 

other solvents including alcohols and organics. On the other hand the Raman spectra are 

clearly visible in water, because water is not readily distorted by an external electric field 

(polarizability). IR and Raman cannot be used to identify inorganic species directly unless 

there are analogs in the literature. To assign vibrational modes in molecules with no 

literature precedence, high-level computations are necessary. These complementary 

techniques are best used to study the solution dynamics, formation, and exchange kinetics 

of a species that has been identified and characterized in solution. By using these 

techniques on inorganic nanoscale species one can gain structural information by 

characterizing the vibrational modes, as well as, study kinetics and dynamics of the 

inorganic species in solution.[1,10] 

 

Multiple Techniques Provide More Detailed Information 

The understanding of the dynamic behavior of inorganic nanoscale species in 

solution is rapidly evolving, and a gap exists in relating solid-state and solution structures. 

As a result, the literature tends to report size measurements in an inconsistent manner 

and rarely provides detail about which dimension is being defined. For inorganic 

nanoscale species the core can describe different size aspects.  For instance, “core” could 

describe the metal core of a ligand-stabilized nanoparticle or the kinetically stable 

covalently-bonded metal hydroxide/oxide portion of aqueous clusters or even the 

coordination network surrounding the hollow core of cage clusters (Figure 3). For solvated 
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species the shell comprises either well-defined organic capping ligands or tightly 

associated counter ions of an inorganic cluster. The outer solvation sphere of all of 

these species includes organized solvent and will be related to the solvent of choice. In 

much of the literature that reports size, these distinctions are often overlooked. 

 

 
Figure 3. Schematic diagram relating the various layers of inorganic nanoscale species 
to the generic regions referred to as the core, shell, and outer solvation sphere. Each 
of these examples is further explored in the case studies presented. 
 
 
 

Starting from the outside, the outer solvation sphere can be probed by 

techniques measuring the diffusion of the stable inorganic nanoscale species in solution 

such as DOSY and DLS (Figure 4). By varying the solvent system, changes in solvation 

can be probed. By identifying a weakly interacting solvent this diffusion information can 

also be used to approximate the outer dimensions of the shell. SAXS data can be 

modeled to provide core size and volume or thickness of a cage cluster. By subtracting the 
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core size from the shell or outer solvation sphere dimensions, thicknesses and 

volumes of these regions can be calculated.  

These types of inorganic nanoscale species represent examples of the need to use 

complementary characterization methods. More information can be gained by 

combining multiple techniques and using iterative investigations to observe dynamic 

behaviors in solution. The authors have chosen three examples that exemplify this 

approach in practice. 

 

Observing Ga13: More Complex than a Disappearing Spoon 

Similarly to the Ga7In6 example, Ga13(µ3-OH)6(µ-OH)18(H2O)24]-(NO3)15 (Ga13) 

can be used as a precursor to make high quality Ga2O3 thin films.[2] Until recently, very 

little was known about the existence or stability of this cluster in solution. Johnson, 

Hutchison, and co-workers were recently able to observe Ga13 in solution via 1H-NMR 

in the non-exchanging solvent d6-DMSO.[18] With no literature precedence it was 

impossible to confirm that the 1H signals observed in the spectrum belonged to the 

bridging hydroxo and capping aquo ligands of the cluster. After acquiring a DOSY 

spectrum with a corrected diffusion coefficient of  0.955x10-10 ± 0.064x10-10 m2s-1 in d6-

DMSO, a hydrodynamic radius of 11.2 ± 0.8 Å was assigned to the species in solution 

(Figure 4). This alone was not sufficient evidence to confirm the existence of Ga13 in 

solution because the radius is significantly larger than a cluster in the solid-state. 

However, SAXS data indicated a core radius of 5.5 ± 1.5 Å in solution, which 

corroborates the size measured in the solid-state via single crystal XRD (r = 5.6 Å). Thus, 

we were able to confidently report that Ga13 is stable in DMSO at a concentration of 2 

mM.  
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Figure 4. Representative 1H-DOSY NMR spectrum of a 2mM sample of Ga13 cluster 
in d6-DMSO (■) H2O peak and (●) DMSO peak. 
 
 
 

This confirmation allows for more complex studies to be initiated. Currently we 

are studying Ga13 in the solid and solution phase via Raman spectroscopy.[19] This 

research indicates that the cluster observed in solution has significantly different 

vibrational characteristics than the solid. These results support previous hypotheses that 

the clusters are very dynamic in solution. Using comparisons between NMR, Raman, 

SAXS, and DLS we seek to learn about the growth, stability, degradation, and 

aggregation of this cluster in solution. We hope to gain information on the mechanism of 

cluster formation and the pathway by which Ga13 becomes a thin film. 

 

Probing Nanoparticles: Worth More than Their Weight in Gold 

Gold nanoparticles (AuNPs) are of continued interested due to their unique size-

dependent optoelectronic properties. Characterization of these materials can be 

challenging as they are often polydisperse which complicates measurement. While high 
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vacuum techniques such as TEM are effective in determining the core size and 

polydispersity, the low number of particles sampled makes statistically significant 

population characterization difficult. In addition, there are concerns over the effect that 

sample preparation may have on the nanomaterials analyzed. Hutchison and co-workers 

have synthesized and isolated a well-defined particle with the formula Au11(PPh3)8Cl3 

(Au-11).[7]  

Early investigations into the properties of Au-11 led to the comparison and 

corroboration of TEM measurements with synchrotron SAXS data (Figure 5). The ability 

to perform these experiments with a lab scale SAXS followed and characterization was 

further corroborated with single crystal XRD.[7] While these experiments are a powerful 

way to confirm the stability of these nanoparticles in solution, they are only able to 

determine the size of the gold core. There have been conflicting reports in the literature 

about the solvation sphere of monolayer protected AuNPs. Early studies of AuNPs using 

DOSY NMR demonstrated the interdigitation of the ligand shell with neighboring 

particles when at high concentrations.[20] Other research groups have proposed that 

alkane thiol protected AuNPs in organic solvents may diffuse at a rate equivalent to the 

gold core alone.[21] This raises significant questions about the nature of solvated ligand-

protected AuNPs. 

In order to elucidate the behavior of the ligand shell, current studies aim to 

measure the effect of solvent interaction with these classes of AuNPs. Monodisperse 

particles with sharp NMR signals such as Au-11 enable the use of DOSY to determine 

the hydrodynamic radius, which we will discuss in more detail in a subsequent paper.[22] 

By varying the solvent and then complementing the measurement of the hydrodynamic 
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radius using DOSY with the determination of the core size by SAXS we aim to uncover 

information previously unavailable about the nature of the ligand shell.  

 

 
 
Figure 5. Schematic of Au11(PPh3)8Cl3 and SAXS scattering pattern from steady state 
flow measurements performed at the Advanced Light Source.[7] 
 
 
 
 
Depleting the Controversy Around Clusters Containing Uranium: A Glowing Review  

Widespread interest in the remediation of spent uranium fuel and other waste 

products has spurred recent research into the controlled growth and speciation of uranyl 

clusters.  Under appropriate conditions the Burns group has shown that uranyl salts form 

cage compounds including self-assembled core-shell clusters with fullerene topology.[23–26] 

Single crystals were isolated of a variety of these cage clusters including compounds with 

oxalate, pyrophosphate, and peroxide bridging ligands. SAXS data were collected and fit 

to a core-shell model allowing for the determination of the inner and outer dimensions of 

the cage cluster confirming the persistence of these species in solution. To follow the 

growth of these cage clusters in solution, ESI-MS and SAXS were used in tandem to 

measure the molecular weight and size of the species in solution over time.  ESI-MS 
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suggests that one of the isolated cluster fragments forms within an hour of mixing. After 

15 days the desired fullerene-like core-shell structure begins to form, a full 16 days before 

crystal formation! At the time of crystallization, ESI-MS showed that the solution still 

consists of a mixture of species.[23] However, these data alone are not sufficient to fully 

describe the growth of the clusters for the reasons outlined above. To bolster the ESI-MS 

findings, SAXS was used to follow the maximum vector length of particles in solution as a 

function of time. SAXS revealed a nearly linear increase in size from the initial cluster 

fragment to the final core shell structure (Figure 6).   

 

 
 
Figure 6. Structure of a uranyl cage and cluster growth monitored by SAXS in solution. 
Adapted with permission from J. Qiu, J. Ling, A. Sui, J. E. S. Szymanowski, A. Simonetti, 
P. C. Burns, J. Am. Chem. Soc. 2012, 134, 1810–1816.Copyright (2012) American 
Chemical Society.  
 
 
 

In a recent collaboration between the Burns and Casey labs, the structure and 

reaction dynamics of the pyrophosphate cage cluster[26] in solution were studied using 31P 

DOSY to obtain information about the hydrodynamic radius.[27] By using 31P instead of 

1H DOSY the issues associated with solvent and proton exchange are eliminated. Studies 
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of this type allow for the characterization of these inorganic nanoscale species in water, 

the solvent most pertinent to their potential applications in the environment. This 

demonstrates a potential expansion of this combined technique to a wider variety of 

materials. 

 

Conclusion 

While there are a number of techniques available to determine the size of 

inorganic nanoscale species, the dimensions measured are often misrepresented. By 

recognizing that these techniques measure different dimensions, a complementary 

approach can be utilized to map out the core, shell, and outer solvation sphere. 

Solid-state techniques can be used to characterize the core and shell of a material isolated 

from solution. To confirm that the relevant species in solution is the same as the solid-

state structure, related dimensions of the species must be measured in solution to 

corroborate the solid-state data. Once this has been verified, additional techniques can 

provide a wealth of information. The ability to confirm and observe these inorganic 

nanoscale species in solution is the essential first step towards the understanding of 

dynamic behavior. This allows inorganic, materials, and geological chemists to perform 

more complex investigations to determine the mechanisms of formation, pacification, 

degradation, polymerization, and aggregation of nanoscale species. 

 

Bridge to Chapter III 

 Addressing the challenge of nanomaterial definition is necessary for each stage of 

nanomaterial development. The design of a nanomaterial will inform the type of 

purification performed as well as the choice of characterization methods employed. 
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During the discovery phase of new materials corroborative methods are required in order 

to maximize the information output of each individual technique. Finally, as functional 

nanomaterials are developed experimental probes may be considered as functional assays 

for material properties, such as the demonstration of catalysis in Chapter V. Judicious 

choice of characterization techniques during experimental design has also been shown to 

address the nanomaterial characterization bottleneck. These benefits were illustrated 

during the development of a direct microfluidic synthesis of functional gold nanoparticles 

described in Chapter IV.  
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CHAPTER III 

 

SIMULTANEOUS CONTROL OF LIGAND FUNCTIONALITY 

AND CORE SIZE DURING DIRECT SYNTHESIS OF 2-10 NM  

WATER-SOLUBLE GOLD NANOPARTICLES 

 

Note: Material in Chapter III was submitted for publication in the journal Nano Letters 
in April, 2014. Patrick M. Haben contributed substantially to this work by assisting in 
experimental design, manuscript editing, nanoparticle batch syntheses and reproducibility 
studies. In addition, I contributed to optimization of reaction conditions and the 
microfluidic flow reactor, nanoparticle synthesis and characterization.  James E. 
Hutchison was the principle investigator for this work and provided experimental and 
editorial guidance. 
 
 
 

Multifunction nanoparticles with well-defined structures are key nanomaterials for 

fundamental studies and applications that require (1) specific control of optical or other 

properties through tuning of core size and (2) interfacing (e.g. chemical targeting or 

biocompatibility) through control of the ligand shell. Deliberate control of core and 

surface composition/structure is essential in a wide range of applications from 

biomedicine and toxicology to nanoelectronics and catalysis. For example, recent interest 

has been directed towards the diagnosis and treatment of cancer as targeted contrast 

agents for CT imaging7,8 and as agents for chemotherapy, hyperthermic therapy and 

radiotherapy.9,10 In these applications both the optoelectronic properties and the fate and 

transport in vivo depend strongly on the nanoparticle size and functionality.11,12 A recent 

study by Oh et al.13 showed that for small oligoethyleneglycol-functionalized AuNPs, 

particle diameter greatly influences localization to various cellular compartments.14 The 
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smallest AuNPs, dCORE = 2.4 nm, localized to the nucleus, while 5.5 and 8.2 nm AuNPs 

localized to the cytoplasm, and 16 nm AuNPs did not enter the cell. 

 Ligand-stabilized gold nanoparticles (AuNPs) are being widely investigated1-5 

because access to different core sizes is relatively straightforward and the surfaces can be 

modified with covalently anchored monolayer films. However, it remains challenging to 

simultaneously control both the core and surface attributes despite considerable effort to 

develop syntheses of thiolate-stabilized gold nanoparticles.6 Specific structural variants are 

often difficult or impossible to prepare and the preparation of each new structural variant 

typically requires a considerable amount of trial and error to identify conditions that lead 

to the desired size and coating.2 Here we describe a systematic approach to rapidly 

develop reaction conditions that produce water-soluble, functionalized AuNPs with 

specifically targeted core sizes over the range of 2-10 nm. 

The challenge to attaining simultaneous control over both targeted core size and 

ligand functionality is the strong influence of ligand functionality on the resulting core size 

during synthesis. Although two-step synthetic methods involving core formation followed 

by ligand exchange have shown success,2,15-17 each additional synthetic step adds 

complexity and introduces the potential for persistent impurities such as unexchanged 

ligands or surfactants.2 Thus, a direct (single-step) process to produce this range of 

targeted materials would minimize complexity if the core size and surface coating can be 

independently controlled during synthesis. 

Typical syntheses for sub-10 nm AuNPs are limited in the range of accessible core 

sizes and functionalities available, involve multiple steps, and/or utilize toxic surfactants 

during particle formation. In the well-known biphasic Brust preparation, 2-8 nm particles 

are synthesized with organic soluble ligands in the presence of tetraoctylammonium 
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bromide.18 Ligand exchange is necessary to obtain water-soluble particles from this 

synthesis. Unfortunately, these exchanges are often time-consuming,2,16 incomplete,19-21 

and may alter the core size of the particles.4,15 To circumvent these issues, single phase 

methods were developed; however the size range available is further restricted to 1-4 

nm.22 Oh, et al.23 employed specialized dithiol binding functionalities and large polymeric 

ligands to produce AuNPs over the range of 2-20 nm, utilizing ligand / gold ratio to 

control the core diameter. 

In the examples above, size is controlled by adjusting the ligand / gold / reducing 

agent ratio,24 however the size range available is typically constrained. In addition, the 

use of specialized ligands limits the types of functionality that can be introduced. We 

reasoned that it might be possible to control the reaction kinetics, and thus core 

formation, by taking advantage of the different reduction potentials of the Au(III) species 

that result from pH-dependent hydrolysis of HAuCl4.25,26 Initial attempts using this 

approach in the presence of thiol or disulfide ligands resulted in no significant variation in 

NP diameter (Figure S31), perhaps owing to the strong surface passivation of these 

ligands. Recent reports have demonstrated that AuNP diameter depends upon the Au(III) 

speciation in the presence of a weakly-passivating ligands such as citrate or 

benzenesulfonate.25,26 Thus, we explored the use of alkyl thiosulfates (Bunte salts) to 

control size through pH variation of the Au(III) solution while introducing desired 

functionality. Bunte salts are known to passivate the NP core weakly during nanoparticle 

growth, yet produce strong covalent linkages to the final AuNPs.27-30. 

 Specifically functionalized AuNPs with core sizes ranging from 2 to 10 nm can be 

easily prepared using this strategy. AuNPs were synthesized with three different Bunte salt 

ligands* in batch conditions. A Bunte salt, HAuCl4 and NaBH4 were combined (in a 1 : 5 
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: 2 ratio) in a round bottom flask stirred at moderate speed. NaBH4 was added to the flask 

first, followed by Bunte salt solution, and finally HAuCl4. Prior to addition, NaOH was 

added to both the HAuCl4 and NaBH4 solutions. The base added to the HAuCl4 solution 

controls the Au(III) speciation and thus AuNP size (Supporting Information). Base was 

added to the NaBH4 solution to maintain the same final pH between batches.  

Increasing the pH of the Au(III) solution produced larger particles as indicated by 

a shift in the plasmon λ-max in the UV/visible spectra.31 (Supporting Information). There 

appeared to be differences in the AuNP size dependence on pH when using different 

Bunte salt ligands, but the qualitative nature of optical spectroscopy and batch-to-batch 

variation precluded drawing definitive conclusions. Understanding this dependence on 

pH required quantitative size analysis, good reproducibility, and high throughput of 

synthesis and analysis. 

 In order to quantify how the size depends upon pH, TEM and small-angle x-ray 

scattering (SAXS) measurements were performed.32-34 TEM analysis confirmed that the 

particles were spherical but proved to be too time-consuming for size determination of 

the many experimental replicates.35 To avoid the possibility of deposition effects and poor 

statistical significance due to the small number of particles sampled by TEM, SAXS was 

used for determination of the AuNPs size distribution. A comparison of size 

determination by SAXS and TEM verified that SAXS model fitting is a viable approach 

to overcome these challenges.33 SAXS analysis made it possible to rapidly (within 

minutes) analyze the nanoparticles in solution and allowed us to quantify the batch-to-

batch variation in AuNP core size.  

When different researchers performed these syntheses, this variability was as high 

as 18% (Table S4). When a single researcher performed multiple syntheses in succession, 
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1.0 mM NaBH4 are used for a total reaction volume of 38 mL. To control the Au(III) 

speciation, NaOH was added to achieve a given salt solution pH. An appropriate amount 

of base was also added to NaBH4 solutions so that the final pH of each reaction was the 

same. Details of synthetic procedures are provided in Supporting Information. 

Combining the improvements from microfluidic reactor and automated SAXS 

analysis, we rapidly generated AuNPs with uniform, reproducible core sizes (Figure 2). 

There is a smooth, non-linear trend in AuNP core size as the pH of the Au(III) solution is 

scaled from ~ 3 to 7. From pH 3 to 5, a gradual increase in AuNP core size is observed. A 

more rapid rise in the slope of this trend occurs as the pH is increased, with the steepest 

slope observed as the pH approaches 7. The observed trend appears to correlate with the 

changing speciation of the Au(III) salt from HAuCl4 to HAuCl4-x(OH)x and finally to 

HAu(OH)4 as pH increases. Multiple species co-exist at each pH (Figure S30).26 The 

reduction potential of the Au species is most positive for the tetrachloro species and 

decreases as each chloride is substituted by a hydroxo ligand.26 Greater substitution by 

hydroxo ligands decreases the rate of reduction and, consequently, increases the final 

AuNP core size. The change in the observed sizes correlates to the changes in Au(III) 

speciation across the measured pH range. 

This synthetic method affords the ability to incorporate specific functionality on 

the AuNP surface while simultaneously maintaining control over core size. The NP size 

and surface chemistry were characterized using a complementary suite of analytical 

techniques41 described in detail in the Supporting Information. Briefly, XPS of the S2p 

region indicates the ligands are bound as thiolate, while TGA mass loss is consistent with 

a fully formed monolayer on the gold surface. Collectively these data indicate that the 

particles are thiolate-stabilized AuNPs. The particles exhibited long term (> 3 months) 
57





There is a different dependence of size on the pH for each of the three ligands 

examined in this study. At the highest pH, under the same reaction conditions, the 

identity of the ligand produces a change of over 2 nm in the core size. These findings are 

consistent with previous observations that ligands influence core growth during synthesis. 

In addition, at the extremes of pH, the dependence of size upon ligand type is reversed. 

At low pH, MEEE produces the largest NPs, whereas at high pH, MHA produces the 

largest cores. The combination of the ligand and pH effects upon core size makes it 

impossible to predict a priori what conditions are needed to produce a functionalized 

AuNP with a defined core size. 

Given the smooth trend of particle sizes as a function of pH, we examined 

whether a continuous curve drawn through these points (a working curve) could be used 

to generate AuNPs with targeted core sizes.†,42,45 These are particularly useful when 

describing complex trends or when mechanistic understanding is limited. Here the curves 

could be used to predict the pH needed to produce a particle with a specific core size for 

a selected ligand. 

Given the interest in producing functionalized particles with defined core sizes, we 

tested the utility of the working curve shown for MHA in Figure 3 by attempting to 

synthesize 3.0, 5.0, and 7.0 nm functionalized AuNPs. From the working curve, we 

determined the appropriate Au(III) solution pH for the targeted core sizes and then 

synthesized AuNPs at each of these conditions through addition of NaOH to the Au(III) 

solution (Table S3). Size distributions determined by SAXS show that these syntheses 

produced AuNPs with diameters of 3.0, 4.9 and 6.9 nm respectively, with < 1% average 

variation in size between three runs. Each synthesis produced core diameters within 3% 

of targeted value. It was possible to target specific nanoparticle sizes for each of the 
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Bridge to Chapter IV 

 The microfluidic syntheses performed in Chapter III were a product of several 

rounds of optimization of reagent amounts, flow geometry and mixing. These advances 

afforded the ability to reproducibly synthesize functionalized nanoparticles that were 

stable across a wide range of conditions. In addition, the direct synthesis demonstrated 

here afforded nanoparticles that could be synthesized and purified very rapidly, aiding in 

subsequent investigations. All of these properties presented the possibility of capitalizing 

on this method for the design of functional nanoparticles that could be readily used as 

chemical reagents in subsequent reactions.  

One challenge that remained was adapting the direct microfluidic synthesis for the 

production of mixed monolayer nanoparticles. An ideal nanoparticle reagent would make 

use of a mixed ligand shell to impart enhanced solubility and stability along with varying 

amount of additional functionality for the specific goals of a given application. The 

nanoparticles described in Chapter IV are the product of addressing these challenges and 

demonstrate the applicability of the design parameters uncovered in this chapter to other 

functional systems. 

 

Notes 

* Positively-charged nanoparticles were produced using this method; however, 100% 
positively-charged ligand shells yielded unstable particles susceptible to flocculation. This 
functionality was integrated in the ligand shell by including neutral diluent ligands during 
synthesis. 
 
† Note that working curves are often used in analytical chemistry to describe empirical 
relationships between parameters. 
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CHAPTER IV 

 

RAPID DIRECT SYNTHESIS OF WATER-SOLUBLE, MIXED MONOLAYER, 

AZIDE FUNCTIONALIZED GOLD NANOPARTICLES 

FOR USE AS CLICK CHEMISTRY REAGENTS 

 

Note: Portions of Chapter IV are expected to appear in an upcoming publication co-
authored with Zachary C. Kennedy, Zhenshuo Feng and James E. Hutchison. I designed 
the experiments and composed the manuscript corresponding to Chapter IV. In addition 
I performed the nanoparticle syntheses, purification, characterization by SAXS and 
fluorescence. Zachary C. Kennedy contributed substantially to the synthesis of functional 
ligands, NMR studies and aided in preparation of the manuscript; Zhenshuo Feng aided 
in ligand synthesis and click coupling reactions with AuNPs. James E. Hutchison was the 
principle investigator for this work and provided experimental and editorial guidance. 
 

 

Functionalized monolayer protected nanoparticles are of interest in biomedical 

applications ranging from targeted contrast agents for imaging1, to drug delivery2 and 

sensing.3 The current limitations of this class of materials is not related to their properties, 

but rather their cost / benefit ratio and reliable control of composition and structure.4,5 

Typically, a synthesis must be individually tailored to produce nanoparticles that possess 

the core and surface functionality needed for each application. An ideal nanoparticle 

building block (or reagent) would possess the desired core and stabilizing/solubilizing 

ligand shell, yet could be readily coupled to more complex building blocks to produce 

hybrid nanomaterials. This approach would be analogous to convergenet syntheses in 

organic chemistry where one uses a parallel convergent synthesis rather a linear strategy. 

Water-soluble AuNPs with terminal azides provide a stable versatile platform for further 

modification using the azide-alkyne cycloaddition (AAC) click reaction.6  
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 To address the synthetic challenge of creating a clickable nanoparticle reagent we 

aimed to adhere to the stringent criteria set forth by Sharpless when he coined the 

concept of click chemistry. When one considers applying these concepts to the design of 

functional nanomaterials, merely the presence of reactive groups is not enough. 

Additionally, the entire synthetic process ought to be rapid, efficient, modular, use readily 

available starting materials, use only benign solvents, be insensitive to air and water and 

do so in high yields while only requiring simple non-chromatographic techniques for 

purification and isolation.6 

 To date, there have been several approaches for the production of azide 

functionalized AuNPs. Large (14-15 nm) citrate stabilized AuNPs7 were prepared and the 

citrate exchanged with a thiolate ligand containing ω-azide functionality8,9. Click 

coupling was demonstrated, but inefficient, converting only 0.3% of the azide groups.8 

Several groups employed smaller (2-3 nm) AuNPs synthesized by the Brust-Schiffrin 

method.10,11,12,13,14,15 In two cases,10,11,12,14,15 hydrophobic alkane thiol-stabilized particles 

are first prepared, subjected to a time consuming ligand exchange, followed by a 

substitution reaction to introduce azides. This sequence of reactions takes approximately 

one week from start to finish. It was necessary to couple dendritic PEG chains to the 

terminal azides to impart water-solubility.12 Workentin employed methyl terminated 

tetraethylene glycol thiols to produce water soluble AuNPs that must be exchanged with a 

ω-azide containing thiol. This process requires extensive washing with organic solvents to 

remove excess ligand.13 In our hands similarly functionalized AuNPs could be suspended 

in water, but not without flocculation. Heroic efforts were needed to tailor reaction 

conditions to increase coupling efficiency with these azide terminated particles required 

the use of stoichiometric amounts of Cu(I)11 or development of a new catalyst10. Although 
63



these approaches produced functional materials in AAC reactions, none of these 

examples can be said to adhere to the principles of click chemistry. We sought a new 

approach where these considerations were integrated into the design of the synthesis. 

 Herein, we demonstrate a direct synthesis, purification, and isolation of water-

soluble AuNPs with tailored reactive group densities and small (< 5 nm) core diameters. 

The envisioned benefits of click chemistry lie in the use of readily prepared reagents to be 

used as modular building blocks. The primary design criteria of the azide functionalized 

AuNPs was water solubility, therefore the majority of the ligand shell is derived from the 

triethylene glycol terminated ligand which has the added benefit of biocompatibility.16 A 

triethylene glycol azide Bunte salt (EG3-azide BS) was used to introduce the reactive 

azide group because the identical tethering chain would afford comparable kinetics of 

incorporation into the ligand shell. We confirmed that the azide group is not reduced 

during nanoparticle synthesis under these mild synthetic conditions (in water at RT).17 

The direct synthesis method illustrated in Scheme 1 shows our approach to introduce a 

small amount of azide ligand within an PEG shell to ensure that the particles will be 

water soluble and azides are dilute enough for efficient coupling reactions.15 

 Azide functionalized AuNPs with a mixed monolayer ligand shell were prepared 

in a single step using Bunte salt ligand precursors in a microfluidic reactor previously 

described with minor modifications to allow for the incorporation of the second ligand 

type.18 Although the direct synthesis of AuNPs with Bunte salt precursors is compatible 

with traditional batch reactions, the formation of AuNPs occurs rapidly and mixing has 

been shown to have an effect on system dynamics in these cases.19 The microfluidic 

reactor affords excellent reproducibility (SD of core diameter < 0.1 nm) across multiple 

batches as well as low (< 15%) polydispersity of the AuNPs produced (†ESI Table Sx). 
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 The nanoparticle solution was then purified and isolated as a black powder as 

detailed in the ‡experimental. The complete removal of any unreacted DBCO-PEG4-

Alexa545 was verified by NMR, TLC and fluorescence measurements show that the 

coupling reaction was effective (Figure 1b). I2 decomposition and further NMR analysis 

also showed the presence of the coupled product (†ESI Figure Sx). The reactant and 

product AuNP solutions were visualized by TEM under identical experimental conditions 

(Figure 1c-d). The behaviour of the nanoparticles as deposited is indicative of the change 

in surface chemistry following the coupling reaction. To avoid any ambiguity caused by 

deposition effects in TEM imaging, the size of the AuNPs were determined by SAXS.22 

Unlike TEM, SAXS can rapidly determine nanoparticle size information while in 

solution in high statistics, probing the bulk of the material analogous to optical 

measurements in solution. The azide functionalized AuNPs were found to remain stable, 

with the average core diameter of EG3-triazole-DBCO-1 (3.4 ± 0.7 nm) the same as 

EG3-azide/EG3 (5:95)-AuNPs (3.4 ± 0.4 nm) in contrast to other azide functionalized 

AuNPs.10,12 

 The versatility of these AuNPs was further shown by coupling to a variety of 

hydrophobic and hydrophilic moieties with alkyne functionalities (Chart 1) including 

organometallic species and a modified thymidine analog using low loadings (~10 mol%) 

of a simple copper catalyst (CuBr) in air. These included species that are of interest for 

electrochemistry (5) as well as those that could be used for biological imaging23 (7) or 

coupling to biomacromolecules (3). In all cases, even when the incoming species was 

hydrophobic as is the case of (6) the AuNPs remained water-soluble, making the EG3-

azide/EG3 (5:95)-AuNP reagent of potential interest for other biomedical applications 

such as the delivery of hydrophobic drug molecules. 
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Bridge to Chapter V 

 The design of a AuNP reagent adhering to the principles of click chemistry built 

upon the advances in characterization of nanoparticles in solution, as described in 

Chapter II, along with improvements in reproducibility afforded by optimization of the 

micrcofluidic reactor used to perform the nanoparticle syntheses in Chapter III. The 

scalable syntheses developed for the production of functional nanoparticle reagents would 

be useful in the assembly of advanced nanomaterials for biomedical of sensing 

applications. However, these applications both harness properties of the nanoparticle 

ligand shell in addition to the nanoparticle core. Gold nanoparticle are also of interest for 

use as catalysts owing to unique size dependent reactivity. Although useful during 

synthesis for solubility as well as stability and obtaining a desired core diameter, in these 

applications the thiolate ligand shell proves to have deleterious effects on catalytic activity 

due to their passivation of the gold core. In these cases functionalized gold nanoparticles 

are still an attractive building block in the assembly of supported gold structures because 

ligand functionality can be designed to drive solution-based assembly. Chapter V 

describes a method of gently removing some of the ligands from supported gold 

nanoparticles while retaining nanoparticle stability. This approach further demonstrates 

some of the benefits of using monolayer protected gold nanoparticles as reagents in the 

construction of advanced nanomaterials. 

 

Notes 

‡ Experimental procedure: Synthesis of EG3-azide/EG3 (5:95)-AuNPs and EG3-
azide/EG3 (10:90)-AuNPs: Mixed monolayer protected AuNPs with a core diameter 
of 3.5 ± 0.4 nm (by SAXS) were synthesized using our previous described microfluidic 
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reactor with minor modifications.18 Briefly, aqueous solutions of each reagent were 
prepared in quantities to enable three successive syntheses using a single T-mixer. Thus, 1 
mM stock solutions of EG3 Bunte Salt and EG3-azide Bunte Salt were prepared and used 
in a ratio of 27:3 or 24:6 depending on the desired AuNP monolayer composition, for a 
total volume of 30 mL. Then, 30 mL of 5 mM HAuCl4 was prepared and 320 µL of 0.1 
M NaOH was added raising the pH to 5. Finally, 505 µL of 1M NaOH was added to 60 
mL of 1 mM NaBH4. Reagents were mixed in Teflon T-mixers at a total flow rate of 60 
mL / minute and the reaction mixture was purified using 30 volume equivalents of 18.2 
MΩ water passed through a 10 kDa Pall Minimate tangential flow filtration capsule. The 
AuNPs were then isolated as a black powder following lyophilization before use in 
subsequent AAC reactions. 
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CHAPTER V 

 

THE CONTROLLED REMOVAL OF THIOL LIGANDS FROM  

SURFACE-CONFINED, MONOLAYER PROTECTED GOLD NANOPARTICLES 

 

Note: Portions of Chapter V are expected to appear in an upcoming publication co-
authored by Edward W. Elliott III, Richard D. Glover, and James E. Hutchison. I 
designed the high surface area support assembly and catalysis assay and developed the 
manuscript.  Richard D. Glover developed the planar analysis platform and performed 
much of the XPS analysis; development of the ozone treatment apparatus and all other 
experiments were performed in collaboration. James E. Hutchison was the principle 
investigators for this work and provided experimental and editorial guidance. 
 

 

Due to their size-dependent properties supported nanoparticles continue to find 

applications in hybrid functional structures. As more complex nanomaterials are 

developed for use in advanced applications1 functional assemblies of gold nanoparticles 

(AuNPs) with unique catalytic activity2,3 continue to garner interest as new selectivity is 

demonstrated but synthesis of functional materials has proved challenging.2 Other recent 

applications of nanoparticles in renewable energy generation4,5 emphasize the importance 

of carefully controlling particle spacing and core dimensions, as the optoelectronic  

properties of nanoscale metal are highly sensitive to changes in size.6-10 There are several 

advantages to the use of functionalized monolayer protected nanoparticles as building 

blocks; careful synthesis affords the necessary size control before self-assembly, while the 

ability to tailor ligand chemistry allows for the directed attachment to a substrate. 

Although the use of ligands in synthesis and assembly provide many advantages the 

ligand shell is deleterious towards applications that aim to capitalize on the side 
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dependent properties of the core. It is particularly challenging to remove the ligand shell 

without changing the properties of the assembly through core growth and without loss of 

material from the support after assembly.11 To address this challenge, we developed a 

mild chemical treatment that decreased the affinity of the ligand shell for the surface of 

the nanoparticle core. This facilitated the removal of ligands at room temperature to 

expose an active nanoparticle surface without compromising tethering to the support. 

Parallel platforms were developed to aid in the characterization of this processes, and the 

functional gold core following ligand removal was assayed using catalysis. 

Several synthetic methods using coprecipitation or deposition-precipitation exist 

for the creation of supported gold assemblies without ligands, one significant limitation is 

the inability to finely tune the final gold particle size independently of the support 

material.3 Alternatively, approaches for the creation of supported gold clusters using pre-

synthesized AuNPs allow for precise control over the size and morphology of the gold 

core; however, in these cases the ligand shell must then be removed.15 A survey of the 

literature reveals three approaches, often used in concert, for the subsequent removal of 

the ligand shell: thermal,16 oxidative,17,18 or solution-based (Figure 1).15,17 Early 

approaches focused on heating the supported nanoparticles in order to vaporize the 

stabilizing ligands. These methods were effective for the removal of ligands, but induced 

varying degrees of particle growth during treatment.19-23, 43 This growth obviates the 

advantage in size control when compared with other methods of generating supported 

gold clusters.  

Solution-based approaches using thermal or oxidative treatments have also been 

investigated for the removal of ligands. These approaches make use of weakly passivation 

ligands, polyvinyl acetate (PVA) or triphenyl phosphine, to facilitate ligand shell removal; 
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Supported gold was chosen for a model system because precise control over gold 

nanoparticle (AuNP) synthesis provides the ability to design well-defined, water-soluble, 

functionalized building blocks for self-assembly. The careful selection of functionalized 

nanoparticles maximizes attraction to the oxide support allowing for the creation of both 

planar analysis platform and a high surface area assembly.12 Because the ligands are 

strongly bound it is possible to remove extraneous species following synthesis, which can 

complicate subsequent assembly steps.3,13 In addition, terminal functionality can be 

tailored for specific applications through a ligand exchange reaction following 

nanoparticle synthesis.14 

Herein, we report a general strategy for the removal of stabilizing ligands from 

nanoparticles assembled on a metal-oxide surface. Using the dual analysis approach we 

demonstrated the utility of gold monolayers as building blocks for self-assembly by 

tailoring the terminal functionality of the particles and the surface chemistry of the 

support. A mild chemical oxidation was then used to lower the affinity of the ligand for 

the surface of the nanoparticle facilitating removal at room temperature by water. In 

addition, the treatment decreases ligand coverage while maintaining core diameter 

providing access to an active metal core while retaining tethering to the surface. Given 

the success of this approach in removing these tightly bound ligands from metal 

nanoparticles we anticipate that the mild oxidative treatment outlined here may be 

applied to a wide variety of nanoassemblies. 
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Results and Discussion 

The objective of this study was the removal of ligand from a gold nanoparticle 

surface with inducing growth in core diameter due to instability. Due to the inherent 

difficulties in characterizing assemblies of gold nanoparticles on a support material we 

sought to develop parallel systems in order to afford the use of complementary 

characterization methods. These platforms allowed for the removal of the ligand shell to 

be monitored by XPS, the stability of the core to be investigated by TEM, and the 

accessibility of the gold surface to be assayed by catalysis. Finally the versatility of this 

method was demonstrated by controlling the degree of ligand removal in order to assess 

the limits of nanoparticle stability. 

AuNPs (dcore = 1.4 ± 0.4 nm) were functionalized with (2-

mercaptoethyl)phosphonic acid (2-MEPA) and extensively purified prior to assembly. 

Next, those nanoparticles were assembled on high surface-area fumed silica and the 

planar SiO2 windows of a silicon TEM grid.29 These two types of surfaces were used to 

examine changes in the functional and structural characteristics of the assemblies upon 

mild chemical treatment to weaken ligand binding and gently remove those ligands from 

the surface. The stability of the AuNPs during ligand removal was then investigated by 

TEM and ICP-OES confirming that the gold core did not grow nor were nanoparticles 

removed from the surface. Following the mild oxidative treatment for ligand removal, 

catalysis was used as a method of assaying the available of the gold surface. Finally, the 

process of ligand removal following assembly was further investigated by characterizing 

the step-wise removal of ligands from the supported gold, maximizing gold core exposure 

without compromising the ligand tether to the SiO2 surface. 
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We reasoned that the use of a mild chemical treatment to decrease the affinity of 

the ligand for the particle surface would facilitate the removal of ligand without changing 

the core size while keeping the attachment to the surface intact (Figure 1). To fully 

characterize ligand removal chemical transformation of the ligand shell, core size 

changes, any loss of material, and finally the existence of an active gold surface must all 

be tracked. SiO2 was chosen as an inert support material which would not complicate 

analysis by catalysis.28 High surface area supports may be used to facilitate experimental 

techniques that require enough material to demonstrate functional activity or to 

determine nanoparticle loading by inductively coupled plasma optical emission 

spectroscopy (ICP-OES). However, surface sensitive analytical techniques, such as X-ray 

photoelectron spectroscopy (XPS) or transmission electron microscopy (TEM), require an 

analysis platform with low surface roughness to fully characterize subtle changes to 

particle chemistry and morphology. XPS is an excellent complementary technique as it 

can determine the relative amounts of an element, such as sulfur, in various oxidation 

states. This allows for the characterization of the binding environment for the sulfur head 

groups of the ligand shell. Complete characterization of ligand removal therefore 

required the development of both a planar analysis platform as well as assembly of 

nanoparticles on a high surface area substrate with identical surface chemistry.  

 

Assembly of 1.4 nm 2-MEPA AuNP “Building Blocks” 

AuNPs (dcore = 1.4 ± 0.4 nm) were functionalized with (2-

mercaptoethyl)phosphonic acid (2-MEPA) using a previously described method and 

utilized for all experiments in this study.14 Nanoparticles were then extensively purified by 

diafiltration to ensure that free ligand and extraneous ions from the gold salt were 
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completely removed. Purification is important as the presence of free ligand would 

impede self assembly13 and the presence of halides during ligand removal has previously 

been shown to encourage growth of the gold clusters during ligand removal.30,31 Previous 

work by Hutchison and co-workers demonstrated the assembly of 1.4 nm 2-MEPA 

AuNPs on a Hf(IV) treated silica.12,32 By synthesizing the AuNPs independently of the 

support the same batches of precisely defined particles could be deposited on both planar 

and high surface area SiO2 surfaces. 

 

Assembly of 1.4 nm 2-MEPA AuNPs on Both Planar and High Surface Area SiO2 Supports  

We developed both a planar analysis platform and a high surface area support to 

act as dual characterization platforms (Figure 2). A high surface area to volume (200 

m2/g) support was readily available in the form of pyrogenic silica (cab-o-sil) to facilitate 

high gold wt. % loadings. To create a planar substrate with the same surface chemistry as 

pyrogenic silica a process similar to that described for the preparation of SMART TEM 

grids was used.29 Photolithography was used to create a silicon octagon, 3 mm in 

diameter, with one half covered in a grid of thermally grown SiO2 electron transparent 

windows with minimal surface roughness (Figure 2). The surface chemistry of fumed silica 

is known to contain a high density of hydroxyl groups; however, previous reports indicate 

silanol density at the surface of thermally grown silica may be an order of magnitude 

lower than that of the fumed silica.33 Thus, the planar substrates were treated with O2 

plasma prior to AuNP assembly in order to increase the silanol density at the surface. 
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address this we performed background subtraction from a sample without gold 

nanoparticles resulting in flatter baselines. Following baseline correction the peak area, 

representing relative amounts of bound reduced-sulfur (B.E. = 162 eV) and oxidized 

sulfur (B.E. = 168 eV) were determined.36-38 Changes to the type of sulfur species present 

before treatment, after 10 minutes of exposure to 50 ppm ozone, and finally after the 

subsequent water rinse were shown (Figure 5).  

 

 

Figure 5. Stacked plot of high resolution XPS spectra over the S2p binding energy 
range. Red trace (A) represents nanoparticles as assembled on the planar substrate. Green 
trace (B) represents nanoparticles after eight minutes of dilute ozone treatment. Blue trace 
(C) represents oxidized sample following an 11 minute nanopure water rinse. 
Contributions from sulfur bound to gold appear near 162 eV (Sred) while oxidized sulfur 
species have a binding energy near 168 eV (Sox). Each trace had the silicon loss feature 
removed via background subtraction using a the S2p trace from Hf(IV) treated substrate. 
 
 
 

These data are consistent with a portion of the ligand shell being oxidized, as 

evidenced by the presence of both bound thiolate and oxidized sulfur species following 

exposure to dilute ozone. Previous literature indicated that the oxidized sulfur may be 
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strongly associated with the gold surface18; however, these data suggest the majority of 

oxidized sulfur products are easily removed at room temperature by water following 

treatment. The residual bound thiolate suggests that some of the ligand shell may remain 

intact tethering the AuNPs to the support. 

 

Quantifying Nanoparticle Stability Over the Course of Ligand Removal 

Following ozone treatment and removal of oxidized ligand by soaking in water, 

TEM analysis of the planar substrate suggested no significant nanoparticle loss (Figure 

S1). To quantify the amount of gold that may have been lost the pyrogenic silica was used 

for analysis by ICP-OES. Given the much higher surface area and increased hindrance to 

accessing the surface compared to the planar system, the ozone treatment time was 

increased to 20 minutes. Following ozone treatment the high surface area support 

assembly was soaked in nanopure water for 11 minutes and the supernatant was collected 

and analyzed by ICP-OES. The supernatant recovered indicated a negligible amount of 

gold loss (< 0.2 wt %). These data are consistent with the thiolate ligand that remains 

after ozone treatment strongly tethering the AuNPs to the surface even preventing 

particle loss. 

Applications leveraging the size-dependent properties of supported AuNPs would 

be comprised by particle growth during treatment. To confirm the stability of the AuNPs 

during ligand removal we exposed planar assemblies to the dilute ozone stream for up to 

16 minutes. These samples were then soaked for 11 minutes in 20 mL of nanopure water, 

dried under a stream of argon, and finally analyzed by TEM (Table 1). The uniform 

surface of our planar system allowed us to capture micrographs from a large area in order 

to examine a large population of particles. For treatment times through 8 minutes 1.4 nm 
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2-MEPA AuNP size remained constant even after the removal of oxidized ligand. Only 

after the planar system was exposed to dilute ozone for twice that time did the particles 

exhibit slight growth following the water soak (from 1.4 ± 0.4 to 1.6 ± 0.6 nm). 

Treatments times of 8 minutes or below were successful for ligand removal without 

associated core growth that would jeopardize the size-dependent properties of the 

supported AuNPs. 

 

Table 1. 2-MEPA AuNP core diameter following ligand removal 

Ozone treatment Size following treatment and rinsea 

No Treatment 1.4 ± 0.4 nm 

4 Minutes 1.4 ± 0.3 nm 

8 Minutes 1.4 ± 0.4 nm 

12 Minutes 1.6 ± 0.6 nm 

a Gold nanoparticle diameter and polydispersity were determined by TEM analysis of the 
planar assembly during ozone treatment between 4 and 16 minutes, followed by an 11 
minute soak in nanopure (18.2 M) water to remove oxidized ligand. The particles size did 
not change during treatment. Limited growth was observed only after extended ozone 
exposure. 
 
 
 
Corroborating the Successful Removal of Ligands from AuNPs 

To confirm that an active gold surface is available, catalysis was used as a 

functional assay to corroborate the XPS analysis indicating successful ligand removal 

from the 1.4 nm 2-MEPA AuNPs following ozone treatment. Given the limited amount 

of material supported on the planar analysis platform, the high surface area substrate was 

used for this demonstration. The room temperature oxidation of CO(g) was chosen, as the 

reaction is sensitive to both the preparation method of the supported AuNPs as well as the 
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final gold cluster size.30 In addition, any catalytic activity observed is unlike to be 

influenced the SiO2, which is generally thought to be non-participating.3 Control 

experiments, using both bare pyrogenic silica and AuNP assemblies on the high surface 

area support before ozone treatment, were performed by adding 0.1 g to an IR gas cell 

flushed with N2(g) before the addition of equal molar concentrations of O2(g) and CO(g). 

Neither of these untreated samples demonstrated catalytic activity. Finally, the high 

surface area assembly was treated with dilute ozone and rinsed as described previously. 

Following lyophilization 0.1 g was added to the IR gas cell, flushed as before, and 

conversion of the CO(g) to CO2(g) was monitored until the reaction had gone to 

completion (Figure 6).  

 

 

Figure 6. FT-IR spectra from gas cell containing activated AuNP decorated fumed silica 
to which 3mL each O2(g) and CO(g) were added. The catalytic oxidation of CO(g) was 
monitored by the decreasing peaks at 2150 cm-1 to complete conversion to CO2(g) 
indicated by the increasing peak at 2450 cm-1. Spectra were y-shifted to normalize the 
baseline at 2600 nm-1 to correct for flow cell movement 
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Given the poisoning effect of thiols for gold catalysis, the catalytic activity 

observed confirms the availability of an active gold surface following the ozone treatment. 

These data provide a picture of the of the physical and chemical changes that occur over 

the course of ligand removal from supported AuNPs. A portion of the ligand shell is 

oxidized during treatment and we hypothesize that the ligands remaining may continue 

to tether the particles to the surface and the oxidized sulfur may be rinsed away with 

water in order to afford access to the active gold surface.  

The restoration of 2-MEPA ligand on the particles would corroborate the removal 

of ligands from the surface and suggests the utility of this treatment for the placement of 

ligands on the bare gold surface. To show the ease and rapid rate of ligand replacement 

on the surface, a sample of our planar analysis platform, containing particles that were 

ozone treated and rinsed, were placed in a 1mM 2-MEPA ligand solution for 1 and 10 

minutes and characterized using high resolution XPS scans of the S2p region (Figure S3). 

The results indicated an increase in reduced sulfur and loss of the small amount of 

oxidized sulfur remaining on the surface after ozone treatment, highlighting the success of 

the ligand replacement. As a corollary this replacement happened within 1 minute of 

placing the sample in the ligand solution and we observed no change in the S2p region 

after 10 minutes of soaking. In contrast, place exchange reactions of thiol typically reach 

equilibrium on the order of hours to days.39 This method may therefor afford a facile 

method for installation of other ligand functionalities without lengthy treatment times. 

  

Characterizing the Step-Wise Removal of Ligands from Supported 1.4 nm 2-MEPA AuNPs 

To further characterize the details of the ligand removal process over time we 

used the TEM and XPS analysis capability of the planar characterization platform to 
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treatment and a relatively steady 30% oxidized over the next 5 minutes. The removal of 

the oxidized ligands by rinsing with water was then tuned by exposing several samples to 

dilute ozone for 8 minutes. These samples were then placed in 20 mL of nanopure water 

and allowed to soak for between 1 to 20 minutes. The samples were removed one by one, 

dried under a dilute stream of argon, and then analyzed by XPS. Analysis of these 

samples showed that the amount of oxidized sulfur remaining leveled off after 11 minutes 

in water, so this was taken as the optimal rinse time (Figure 8). 

 

 

Figure 8. Percentage of oxidized ligand remaining on the gold nanoparticle surface 
versus the rinsing time, in minutes.  After 10 minutes the number of ligands remained 
stable at 10% as designated by the dashed line. The percentage of ligands was calculated 
from XPS ratios of oxidized to reduced sulfur 2p peaks. 
 
 
 

We were able to use the relative amounts of reduced and oxidized thiol 

throughout the treatment to determine the number of ligands involved in each process 

(Figure 9). 1.5 nm 2-MEPA functionalized AuNPs have previously been well 

characterized by the Hutchison lab showing that on average each has 35 ligands bound to 
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the surface of the gold core.14 Given confirmation that the average particle size does not 

change over the course of treatment (Table 1) we calculated the number and type of 

ligands involved in each treatment step. Initially, all 35 ligands are in the form of bound 

thiolate. Following 8 minutes of exposure to the 50 ppm ozone gas stream the average 

particle contains 52.6% oxidized sulfur and 47.4% bound thiolate indicating that 17 

ligands remain unchanged while 18 of the ligands have been oxidized. Although 

oxidation to sulfonate cannot be ruled out by XPS data alone, cleavage of the C-S bond 

resulting in sulfate and a remaining oxidized ligand fragment would be consistent with 

previous literature reports characterizing the removal of thiolate SAMS from planar 

gold.27,40 Additionally, reports using sum frequency spectroscopy on much larger AuNPs 

(>15 nm) the initial stages of AuNP oxidation were shown to result in the asymmetric 

ligand removal. Taken together with our data this suggests the preferential oxidation of 

ligand from the top half of gold nanoparticles.41 After 11 minutes of water soaking, the 

average particle was shown to consist of 33.1% oxidized sulfur and 66.9% bound thiolate. 

We assumed that the 66.9% thiolate signal comes from the same 17 bound thiolate 

ligands, that is no thiolate is rinsed away. It follows that there were still approximately 8 

oxidized sulfur atoms remaining following treatment. We can therefore reason that the 

mild ozone treatment followed by a room temperature water soak, was able to remove 10 

of the 35 thiols initially found in the ligand shell of a 1.5 nm 2-MEPA functionalized 

AuNP, revealing an active gold surface. 
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confirmed by using catalytic activity to demonstrate the availability of the gold core. The 

high activity of these supported AuNPs is indicative of the efficacy of the ligand removal. 

This study also showed the advantages of considering and addressing 

characterization challenges during experimental design. To this end, 1.4 nm 2-MEPA 

AuNPs were assembled on parallel, planar and high surface area, SiO2 substrates. This 

study utilized the benefits of using a multi-platform approach to apply complementary 

characterization techniques, which provided new insight into the chemical 

transformations of the ligand shell during oxidative ligand removal. We quantified the 

removal of ligand over time in order to expose an active gold surface. XPS analysis 

confirmed that some thiol remained on the AuNPs to act as a tether to the SiO2 surface 

even after oxidation and rinse. In addition TEM size analysis showed no particle growth 

and ICP-OES confirmed that AuNPs were not lost during treatment. Given the ability of 

this mild oxidative treatment to remove strongly binding thiolate ligands, this method is 

likely to be a successful general strategy for ligand removal following nanoparticle 

assembly with any ligand susceptible to oxidation.  

 

Methods 

Gold Nanoparticle Synthesis 

The nanomaterials used for experiments were all 1.4 nm gold nanoparticles 

(AuNPs). Synthesis of triphenyl phosphine stabilized particles was accomplished through 

a sodium borohydride reduction of HAuCl4, triphenylphosphine, and TOAB in water 

and toluene following literature preparation.14 Biphasic ligand exchange was performed 

with (2-mercaptoethyl)phosphonic acid (2-MEPA) ligand synthesized from a literature 

preparation.12 Exchanged particles were washed using a diafiltration membrane13 with 
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100 volume equivalents of nanopure water. Following washing 1.4nm 2-MEPA AuNPs 

were concentrated, lyophilized, and stored in the freezer until use.12 

 

Hafnium Decoration of Fumed Silica 

Two aliquots of 0.5 g fumed silica were each placed in a 20 mL centrifuge tube. A 

15 mL solution containing 5 mM HfOCl2, was added to the silica with a stir bar. This 

solution was stirred for two days. Hf decorated fumed silica was pelleted by centrifugation 

and resuspended in nanopure water this process was repeated three times to adequately 

rinse the sample. 

 

Gold Nanoparticle Assembly on Fumed Silica 

In each centrifuge tube of Hf(IV) functionalized silica 15mL of gold soak soution ( 

1.6 mg of 1.4 nm 2-MEPA AuNPs)/(1mL of 3/1 MeOH/H2O) were added and stirred 

for 2 days. The 2-MEPA AuNP decorated fumed silica was pelleted by centrifugation and 

resuspended in 15 mL nanopure water this process was repeated three times to rinse the 

sample. Material was lyophilized and stored in the freezer until use. 

 

Planar Analysis Platform Preparation 

To prepare a silica surface for TEM and XPS analysis a silicon wafer was diced 

into chips and an thermal oxide layer grown by heating to 1100°C in O2 for 13min. 

Positive photoresist used to establish window boundaries. Oxide was etched in diluted 

buffered oxide etch and unwanted silica was etched away soaking in 10% TMAH 

solution at 60°C for 8 hours to reveal windows.29 
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Tethering 1.4 nm 2-MEPA Gold Nanoparticles to Analysis Platform 

Grids were cleaned with oxygen plasma and soaked for 15 minutes in a dilute 

NH4OH and H2O2 solution to maximize surface silanol concentration. Grids were rinsed 

in nanopure water prior to soaking overnight in 5mM Hf(IV) to generate anchors. AuNP 

tethering was afforded with an overnight soak (1.6 mg-1.4 nm 2-MEPA AuNPs)/(1mL-

3:1 MeOH:H2O).12 

 

Ex situ Ozone Generation and Dilution 

Ozone was produced by pumping dry air into a corona generator. Undiluted 

ozone concentration was determined to be 500 ppm by an Ozone 10/a Draeger tube and 

UV-Vis absorbtion at 253.7 nm. By diluting ozone enriched gas stream with N2(g) 25 fold 

concentration was lowered to approximately approximately 50 ppm ozone measure by 

10/a Draeger tube and UV-Vis absorption at 253.7 nm. 

 

Removal of Ligand from 1.5nm Gold Nanoparticles Tethered to Fumed Silica  

To activate our material 0.9 g fumed silica was placed in a 50 mL crystallization 

dish with a stir bar inside a sealed ozone treatment chamber and stirred. Ozone was 

flowed into the chamber over 20 minutes. Following ozone treatment the chamber was 

flushed with N2(g). Material was removed from chamber and rinsed using nanopure water 

into a centrifuge tube and rinsed three times with 15 mL nanopure water. 

 

Assaying the Nanoparticle Surface 

To validate the bare gold surface, 0.1g dry activated fumed silica was added to a 

IR gas cell with CaF2 windows that had been flushed with N2(g), the IR sample chamber 
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was again flushed with N2(g) for 20 minutes and a background spectrum was taken. 3 mL 

O2(g) and 3 mL CO(g) were injected into the IR cell and the sample spectrum was shown 

with background subtracted. FT-IR spectra were collected using a Thermo Scientific 

Nicolet 6700 spectrometer at a resolution of 16 cm-1 to improve signal-to-noise for the 

determination of CO(g) 42 

 

XPS Chemical Characterization 

XPS spectra were taken at 20 eV pass energy with a ThermoFisher ESCALab 

250 with a monochromated Al K-alpha, using a 400 µm spot size. The number of scans 

was determined empirically to obtain optimal signal/noise. 

 

XPS Sulfur 2p Background Subtraction 

To quantify the oxidation of sulfur 2p peaks using XPS we adjusted for the 

presence of the silicon loss feature in our spectral window. Baseline correction was 

performed by taking spectra from Hf functionalized platform (blank) and subtracting 

these spectra from samples of interest. Gain correction was required to adjust for 

differences in peak intensity, but peaks were not shifted on the binding energy scale. 

Background subtraction was performed in the program Avantage for ease of comparison 

with other peaks (Figure S4). This technique facilitated quantification of a signal masked 

by the silicon shake up feature present due to our silica platform. 

 

TEM Microscopy and Nanoparticle Size Determination 

Bright-field TEM micrographs were taken using FEI Tecnai Spirit TEM operated 

at 120 kV or FEI Titan TEM operated at 300 kV. Size distributions were generated using 
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ImageJ to perform a bandpass filter on the samples and manually applying a threshold so 

that the final images were representative of the original scanned photos when overlaid.35 

 

Determination of Gold Loading 

Aqua regia was made from concentrated, high purity, 3/1 nitric/hydrochloric 

acid. Three samples, 6 mg AuNP decorated fumed silica were digested in 0.75 mL aqua 

regia. Samples were then diluted to 15 mL and analyzed by ICP-OES. 1 mL of the rinse 

solution following activation was digested in 0.3 mL aqua regia, then diluted to 15mL, 

and analyzed by ICP-OES. ICP-OES data was taken on a Teledyne Leeman Prodigy 

running with standard operating parameters in axial mode. 

 

Bridge to Chapter VI 

 The successful application of monolayer protected gold nanoparticle as reagents 

for the construction of a complex nanomaterial was demonstrated. The general strategy 

of utilizing already functionalized nanoparticles in a convergent synthesis, where synthetic 

challenges may be compartmentalized to either parallel branch, was further vindicated. 

While Chapter IV made use of the ligand shell to add additional properties to the 

nanoparticle building blocks, in Chapter V the novel size dependent properties of the 

metal core were utilized. Chapter VI will summarize the approach to this design strategy 

and enumerate some of the benefits therein. 
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CHAPTER VI 

 

CONCLUDING SUMMARY 

 

In this dissertation the concept of functionalized nanoparticles as reagents for use 

as building blocks in the design of complex nanomaterials was explored. The intent was 

to provide a framework planning the design, synthesis, modification, and characterization 

of functional nanomaterials in an efficient way. The roadblocks to the actualization of 

gold nanoparticles in new applications were identified including nanomaterial definition, 

characterization challenges and difficulty with reproducibility during synthesis. By 

considering these issues with a modular approach it was possible to utilize the unique 

properties of gold nanoparticles without further complicated the synthetic route required. 

The optimization of the microfluidic reactor described in Chapters III and IV, along with 

rapid solution phase characterization by SAXS, made it possible to rapidly explore the 

synthetic parameter space in order to maximize stability and function. This general 

design strategy was applied to the synthesis and utilization of gold nanoparticles for use as 

both chemical reagents (Chapter IV) and nanomaterial building blocks (Chapter V). 

These methods will allow for more rapid iterations through phases of new nanomaterial 

discovery, definition and characterization, and utilization for functional applications. 

Chapter II describes the challenge of defining a nanoscale material. Examples of 

corroborative and complementary characterization techniques applied to a multitude of 

different nanomaterials in solution were provided. The importance of careful definition of 

nanomaterial properties was also highlighted. By considering the challenges of 
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characterization during nanomaterial design significant savings in both cost and time may 

be realized. 

Chapter III demonstrated a new synthetic method for the direct synthesis of 

functionalized thiolate protected gold nanoparticles. Critically, the ability to tune the core 

diameter independently of the desired ligand functionality was made possible when Bunte 

salts were used as ligand precursors. The development and optimization of a microfluidic 

reactor also provided improvements in batch-to-batch reproducibility and scale up. 

Lessons learned during these studies made it possible to design a nanoparticle reagent 

that took advantage of the properties of the ligand shell as a scaffold for further organic 

coupling reactions. This synthetic approach is an analog of the convergent syntheses used 

in organic chemistry. By compartmentalizing the synthetic challenges to either building 

block many of the challenges faced by nanoscientists may be addressed. 

In Chapter IV an azide functionalized, water-soluble, gold nanoparticle chemical 

reagent was designed and synthesized according the parameters of click chemistry. Rapid 

synthesis and characterization previously developed afforded ease of investigations into 

how ligand shell composition affected solubility and reactivity. The reactivity of these 

nanoparticle reagents was demonstrated by coupling a variety of cyclooctyne terminal 

alkynes to the ligand shell.  Critically, the products of these coupling reactions remained 

stable in solution and could be readily purified using tangential flow filtration, and were 

subsequently isolated by lyophilization.  

The ligand shell of a nanoparticle provides control of final core diameter during 

synthesis and allows for the addition of new properties to the particle. However, one 

major draw to gold nanoparticles specifically is the existence of novel size-dependent 

properties such as catalytic activity. For these applications an in tact ligand shell is 
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detrimental to the utilization of the metal core. To address these challenges we developed 

a general method of the removal of ligands susceptible to oxidation form the core of 

nanoparticles. Using a dilute ozone treatment we were able to characterize the tunable 

removal of ligands from the nanoparticle surface, while maintaining the stability of the 

tethered nanoparticle more. 

The general strategies laid out will allow for new nanomaterials to be designed 

and synthesized rapidly. These methods are necessary as researchers continue to address 

specific needs by tailoring nanomaterial properties to address them. As libraries of 

nanoparticle reagents are developed there are likely to be compounded benefits to the 

field.	
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APPENDIX A 

!
SUPPORTING INFORMATION FOR CHAPTER III: 

SIMULTANEOUS CONTROL OF LIGAND FUNCTIONALITY AND CORE SIZE 

DURING DIRECT SYNTHESIS OF 2-10 NM WATER-SOLUBLE GOLD 

NANOPARTICLES 

!
!
Materials and Analytical Methods 

	 Hydrogen tetrachloroaurate hydrate (HAuCl4 • xH2O, 99.9%) was purchased from 

Strem and used as received.  Water used for syntheses was purified with a Barnstead 

NANOpure filtration system (18.2 MΩ resistivity).  Bunte Salt ligands were prepared 

using known procedures, or slight modifications thereof.1  Briefly, 1 molar equivalent of  

appropriate alkyl halide precursor was dissolved in nanopure water.  Sodium thiosulfate 

(0.8 molar equivalents) was added and the solution was refluxed for 3 hours.  Water was 

removed in vacuo, then the crude product was dissolved in ethanol and filtered to remove 

salt impurities.  All other reagents and solvents were purchased from Sigma-Aldrich or 

Macron Chemicals and used as received. 

	 The nanoparticle sizes in solution were determined by SAXS. Details are provided 

in our recent publication.2  Briefly, AuNP samples were analyzed as synthesized and 

exposed to monochromated X-rays from a Long Fine Focal spot (LFF) sealed X-ray tube 

(Cu 1.54 Å) powered by a generator at 2 kW focused by multilayer optics, measured with 

a Roper CCD in a Kratky camera.  The Anton Paar SAXSess, in line collimation mode, 
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was set to average 50 scans of  20 sec for all samples.  The corresponding dark current and 

background scans were subtracted from the data before desmearing was performed using 

the beam profile in Anton Paar SAXSQuant software.  The desmeared data were 

imported to IGOR Pro (v. 6.22A) software for modeling with 3rd party macros.  The size 

distribution of  the sample was determined by using the Modeling II macros in the 

IRENA package (v. 2.49).3  The SAXS patterns were fitted using least-squares fitting 

(LSQF), a size distribution model, a spheroidal form factor (Aspect Ratio = 1), a Gaussian 

distribution, and a dilute system (Structure Factor = 1). For each sample, reported 

polydispersity and average core size values were determined through optimization of  

volume, mean size, and distribution width values to produce the lowest χ2 value for the 

model fit to the data. 

	 Transmission electron microscopy (TEM) was performed on an FEI Tecnai Spirit 

instrument, operating at 120kV accelerating voltage.  Amine-functionalized SiO2 

SMART Grids (Dune Sciences) were used for all TEM analysis.  TEM grids were 

prepared by floating the grid on top of  a small droplet of  the as-synthesized AuNP 

sample for ~ 30 sec.  After removal from the droplet excess liquid was wicked away using 

a Kimwipe.  TEM images were processed using Fiji software as discussed previously.4  All 

AuNP samples were analyzed by UV/visible spectroscopy (Ocean Optics) for 

determination of  particle concentration and qualitative determination of  particle stability.  

Ligand precursors and final Bunte Salt products were analyzed by 1H NMR (300 MHz, 

Varian).  For XPS and TGA analysis, excess ligand and salts were removed from solution 

by diafiltration using a 75 kDa membrane (Pall).5  XPS spectra were taken at 20 eV pass 

energy on a ThermoFisher ESCALab 250 with a monochromated Al K-alpha, using a 
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400 μm spot size. Spectra were corrected to Au 4f  at 84.95 eV. Peak fitting was performed 

using ThermoFisher Avantage software.  TGA measurements were conducted on a TA 

Instruments Q500 TGA under nitrogen atmosphere.  Samples were run from 25oC to 

500oC at a ramp rate of  10oC/min.  Gold nanoparticle samples were prepared by placing 

~ 0.5 - 2 mg of  lyophilized nanoparticles into a tared pan. The sample was then 

immediately analyzed. 

!

&  

Figure S1.  NMR spectrum for MEE Bunte salt ligand.	  
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Figure S2.  NMR spectrum for MEEE Bunte salt ligand. 

!

Figure S3.  NMR spectrum for MHA Bunte salt ligand. !!
!
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Experimental Details for Microreactor Synthesis 

	 Three syringe pumps each equipped with 3-way distribution valves were 

purchased from Kloehn (Versa 6, 48k model with rotary valve).  All other microreactor 

components were purchased from IDEX Health and Science.  FEP tubing (1/16” outer 

diameter, 0.030” inner diameter), T-mixers (1/16”, 1/4-28, 0.020” Thru, ETFE), 15 psig 

check valves, and appropriate fittings (1/4-28) and ferrules were assembled with the 

syringe pumps as shown to enable microfluidic generation of  AuNPs.  Tubing and T-

mixers were swapped out if  material deposition occurred.  Solutions were pumped at a 

total flow rate of  60 mL/min, with tubing lengths selected to allow for sufficient mixing 

time in the microfluidic system. 

	 Aqueous solutions were prepared to enable three successive microfluidic syntheses 

at each reaction condition. Thus, 30 mL of  5.0 mM HAuCl4, 30 mL of  1.0 mM Bunte 

Salt ligand, and 60 mL of  1.0 mM NaBH4 were prepared.  A total of  0.825 mL of  1.0 M 

NaOH was added to these solutions, split between the HAuCl4 and NaBH4 solutions.  

The desired amount of  NaOH (ranging from 0.127 mL – 0.510 mL) was first added to 

the HAuCl4 solution, determining the initial Au(III) speciation and effectively controlling 

the final AuNP dimensions.  Corresponding Au(III) pH values and added volumes of  

NaOH are summarized in Table S1.  The remaining amount of  total NaOH  (ranging 

from 0.698 mL – 0.315 mL) was added to the NaBH4 solution to maintain final pH of  the 

system.  It is advantageous to prepare the HAuCl4 solution first, as it can take up to 20 

min to reach equilibrium at high pH.  Additionally, the NaBH4 solution should be 

prepared last, as this reagent also undergoes undesirable hydrolysis in water, albeit slowly.6  

Note that 0.012 mL of  additional 1.0 M NaOH was added to the 30 mL of  1.0 mM 
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MHA ligand solution to ensure the acid group was deprotonated at all conditions (a total 

of  0.837 mL base were added for these syntheses). 

!
!
Table S1.  Summary of  NaOH volumes added to precursor solutions to tune Au(III) pH 
and achieve AuNP size selectivity. 

!
Once the appropriate amount of  base was added to the respective solutions, each 

of  the three solutions was aspirated by the three syringe pumps as shown in Figure 1 in 

the manuscript.  The 20 mL of  NaBH4 solution was dispensed at 30 mL/min, mixed 

with a stream of  10 mL of  ligand solution flowing at 15 mL/min, mixed along a 1.64 m 

length of  tubing (1 second of  residence time), before introducing the third stream of  10 

mL of  Au(III) solution flowing at 15 mL/min.  Two simple T-mixers were used to mix the 

reagents.  15 psig check valves were utilized at each of  the 10 mL syringes to avoid 

backflow.  At a total flow rate of  60 mL/min, the final mixed solution is allowed to flow 

through the reactor for ~ 2 seconds (~ 5 m of  tubing) before being collected.  Small 

fractions at the beginning and end of  each reaction were discarded.  The microreactor 

Au(III) pH Au(III) pH 
Abbreviation

1M NaOH added 
to HAuCl4 

solution (mL)

1M NaOH added 
to NaBH4 

solution (mL)

2.97 ~ 3 0.127 0.698

3.93 ~ 4 0.225 0.6

4.9 ~ 5 0.325 0.502

5.87 ~ 6 0.42 0.405

6.76 ~ 7 0.51 0.315
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system was rinsed with nanopure water three times (full aspirate/dispense cycles of  the 

syringe pumps) after each synthesis.  Each synthesis was repeated another two times, using 

the remainder of  the prepared solutions, to determine reproducibility.  After each set of  

three syntheses, the downstream T-mixer that introduces the Au(III) solution was replaced 

with a clean mixer.  The used mixers are later cleaned with aqua regia and water to 

remove any plated Au material left behind.  If  any plated material was evident in the 

reactor tubing, it was discarded and replaced with fresh tubing. 

!
Nanoparticle Characterization 

Transmission electron microscopy.  TEM analysis was performed across the size range for 

each working curve shown to determine particle morphology.  AuNPs synthesized at all 

pH values were observed to be spherical.  The following are representative images for 

each AuNP working curve.  

&  

Figure S4.  TEM micrograph of  MHA-passivated AuNPs synthesized at Au(III) pH ~ 3. 
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&  

Figure S5.  TEM micrograph of  MHA-passivated AuNPs synthesized at Au(III) pH ~ 7. 

&  

Figure S6.  TEM micrograph of  MEE-passivated AuNPs synthesized at Au(III) pH ~ 3. 
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!

&  

Figure S7.  TEM micrograph of  MEE-passivated AuNPs synthesized at Au(III) pH ~ 7. 

&  

Figure S8.  TEM micrograph of  MEEE-passivated AuNPs synthesized at Au(III) pH  
~ 3. 
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!

&  

Figure S9.  TEM micrograph of  MEEE-passivated AuNPs synthesized at Au(III) pH  
~ 7. !
 

Thermogravimetric Analysis of  AuNPs.  TGA data were collected to determine the relative 

coverage of  ligand on AuNPs at the extremes of  the observed pH range.  Beginning and 

end of  ligand mass loss was determined by identifying when the derivative of  mass loss vs. 

temperature had a slope of  zero before and after the first major mass loss peak.  All values 

match well to expected values. 

!
!
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Table S2.  Comparison of  calculated expected mass loss and observed mass loss for 
thiolate-passivated AuNPs. 

	 a - Expected mass loss calculated for complete thiolate monolayer on AuNP 
surface !!!!!

&  

Figure S10.  TGA data for AuNPs synthesized at Au(III) solution pH ~ 3 using MEE 
Bunte salt ligand. !
!
!

Sample Expected Mass Loss Observed Mass Loss

MEE-AuNPs pH ~ 3 10.5% 11.4%

MEE-AuNPs pH ~ 7 4.2% 5.1%

MEEE-AuNPs pH ~ 3 11.9% 15.8%

MEEE-AuNPs pH ~ 7 6.1% 6%

MHA-AuNPs pH ~ 3 13.1% 13.1%

MHA-AuNPs pH ~ 7 4.4% 6.1%
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&  

Figure S11.  TGA data for AuNPs synthesized at Au(III) solution pH ~ 7 using MEE 
Bunte salt ligand. !!!!!

&  

Figure S12.  TGA data for AuNPs synthesized at Au(III) solution pH ~ 3 using MEEE 
Bunte salt ligand. !!!!!
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&  

Figure S13.  TGA data for AuNPs synthesized at Au(III) solution pH ~ 7 using MEEE 
Bunte salt ligand. !!!!

&  

Figure S14.  TGA data for AuNPs synthesized at Au(III) solution pH ~ 3 using MHA 
Bunte salt ligand. !!!!!
!
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&  

Figure S15.  TGA data for AuNPs synthesized at Au(III) solution pH ~ 7 using MHA 
Bunte salt ligand. !
!
X-ray Photoelectron Spectroscopy.  XPS spectra were collected to ensure that thiolate linkages 

had been formed on the AuNP surface for AuNPs from each of  the working curves.  

Peaks at ~163 eV correspond to thiolate linkages to the AuNP surface.  Peaks observed at 

~169 eV correspond to small amounts of  oxidized sulfur, either from atmospheric 

oxidation or residual thiosulfate trapped in the ligand shell.  These oxidized peaks 

comprise less than 10% of  the sulfur in all cases. 

!
!
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&  

Figure S16.  Representative XPS spectra for AuNPs synthesized using MEE Bunte salt 

ligand. 

!
!
!

&  

Figure S17.  Representative XPS spectra for AuNPs synthesized using MEEE Bunte salt 

ligand. 
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&  

Figure S18.  Representative XPS spectra for AuNPs synthesized using MHA Bunte salt 
ligand.  Signal-to-noise is lower for these samples than the MEE- or MEEE-functionalized 
AuNPs due to a shorter collection time on the XPS instrument. !!
!
Determining Au(III) pH Dependence 

UV/visible Spectroscopy.  UV/vis was performed to corroborate other analyses and ensure 

that particles were stable in solution without flocculation.  A plasmon lambda-max shift to 

higher wavelengths (~ 500 nm to ~ 520 nm across the range) as Au(III) solution  pH 

increases was observed in all sample sets.  This shift to higher lambda-max corresponds to 

observed increases in particle diameter by SAXS. 

!
!
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&  

Figure S19.  Representative UV/vis spectra of  AuNPs synthesized with MEEE Bunte 
salt ligands.  The samples shown were included in the sample set used to determine the 
MEEE Bunte salt working curve. !!!!!

&  

Figure S20.  Representative UV/vis spectra of  AuNPs synthesized with MEE Bunte salt 
ligands.  The samples shown were included in the sample set used to determine the MEE 
Bunte salt working curve. !
!
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&  

Figure S21.  Representative UV/vis spectra of  AuNPs synthesized with MHA Bunte salt 
ligands.  The samples shown were included in the sample set used to determine the MHA 
Bunte salt working curve. !!!!

&  

Figure S22.  Representative UV/vis spectra of  AuNPs synthesized with predictive sizes 
using MHA Bunte salt ligands.  The samples shown were not included in the working 
curve fit, but match well to the observed trend (Figure 3). !
!
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Raw SAXS Data. All working curves were based off  of  modeled SAXS data.  Below are 
representative SAXS patterns for each pH point on the three working curves shown in 
this study.  Data points in these graphs represent raw data while solid traces represent 
models from which size distributions were determined.  Traces are offset for clarity. !

Figure S23.  Raw SAXS data for the AuNP working curve using MEE Bunte Salt as 
ligand. !!
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&  
Figure S24.  Raw SAXS data for the AuNP working curve using MHA Bunte Salt as 
ligand. !

&  
Figure S25.  Raw SAXS data for the AuNP working curve using MEEE Bunte Salt as 
ligand. !!!
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&  
Figure S26.  Raw SAXS data for the predictive AuNP syntheses  (expected 3.0, 5.0, and 
7.0 nm) using MHA Bunte Salt as ligand. Modeled AuNP diameters were found to be 
3.0, 4.9, and 6.9 nm. !
Working Curve Functions. Nanoparticle core sizes were determined by SAXS for each sample 

produced for a given ligand across the range of  pH from 3 to 7.  Smooth working curves 

through these data were produced using a 3-variable polynomial function.  For the 

following, equation (1) corresponds to the MHA ligand working curve while equations (2) 

and  (3) correspond to MEE and MEEE ligand working curves, respectively: 

D = 0.486(x2) – 3.09e-2(x) + 7.12         	 (1)                      

D = 0.366(x2) – 2.26e-2(x) + 5.94         	 (2)                      

D = 0.0716(x3) - 0.722(x2) + 2.60(x) - 0.410   	 (3).            

D represents average AuNP core diameter as determined by SAXS.  The value x 

represents the Au(III) solution pH.  Interested readers should note that size trends using 

other ligands might fit functional forms other than the polynomial fits utilized here.  
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Fitted curves, however, should be smooth with no local minima or maxima between data 

points.  To determine the appropriate amount of  NaOH to add to a 30 mL solution of  

5.0 mM HAuCl4, a titration using 1.0 M NaOH was performed.  Corresponding Au(III) 

solution pH values for NaOH additions are listed below in Table S3.  Working curves 

were based on AuNP diameter vs. Au(III) solution pH.  This titration was used to 

determine appropriate volumes of  NaOH to add to adjust Au(III) solution pH to desired 

values. 

!
Table S3.  Titration of  1.0 M NaOH into 30 mL of  5.0 mM HAuCl4. 

Vol. 1M 
NaOH (uL)

Au(III) pH Vol. 1M 
NaOH (uL)

Au(III) pH Vol. 1M 
NaOH (uL)

Au(III) pH

0 2.47 140 3.09 280 4.53

10 2.47 150 3.16 290 4.64

20 2.5 160 3.24 300 4.78

30 2.53 170 3.33 310 4.87

40 2.57 180 3.43 320 4.98

50 2.6 190 3.54 330 5.04

60 2.64 200 3.68 340 5.17

70 2.68 210 3.76 350 5.26

80 2.72 220 3.87 400 5.75

90 2.77 230 3.98 450 6.17

100 2.82 240 4.09 500 6.59

110 2.88 250 4.2 550 7.02

120 2.94 260 4.31

130 3 270 4.42
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Individual working curves with polydispersities.  Here each working curve is shown individually 

to demonstrate predictive ability and observed polydispersities across the pH range.  

Working curve data points are solid and predictive data points are open.  For each data 

point, 3 syntheses were performed where corresponding SAXS size analyses were 

averaged to determine average diameters and standard deviations. 

 

!

&  

Figure S27. Combined SAXS data for AuNP working curve using MEEE Bunte salt as 
ligand. !
!
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&  

Figure S28. Combined SAXS data for AuNP working curve using MEE Bunte salt as 
ligand. 
 

!

&  !
Figure S29. Combined SAXS data for AuNP working curve using MHA Bunte salt as 
ligand. 
 
 !
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chloroform, then the organic layer was extracted with brine solution.  Chloroform was 

removed in vacuo.  A 1 mM solution of  MEEE thiol in sparged nanopure water was used 

as ligand solution in the described microfluidic synthesis (See Experimental Details 

above).  This solution was then left open to air at pH = 10 for 48 hours to generate a 0.5 

mM solution of  MEEE disulfide.  A second, 1 mM disulfide solution was also made in 

this fashion. 

!

&  

Figure S31.  SAXS data of  AuNPs synthesized in a microfluidic system across the 
Au(III) solution pH range of  interest. No size selectivity is observed across this pH range.  
All syntheses performed with 1 mM MEEE thiol or 0.5 mM MEEE disulfide produce 
dCORE  ~ 4.5 nm AuNPs, With a 1 mM ligand solution of  MEEE disulfide, smaller (dCORE 
~ 3.5 nm) AuNPs are generated than with 0.5 mM disulfide solution.  Note that AuNPs 
made with these ligands show no significant core size variation across this pH range while 
all Bunte salts investigated show significant differences in core diameters. !
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Figure S32.  Raw SAXS data for AuNPs synthesized with MEEE thiol across Au(III) pH 
range.  Models of  these patterns yield average AuNP diameters that are very similar 
across the pH range.  This result is surprising in comparison to AuNPs synthesized with 
analogous Bunte salt ligands where large differences in AuNP diameter are observed 
across this range. !!!!

&  

Figure S33.  UV/vis spectra for AuNPs synthesized with MEEE thiol across the range of  
Au(III) pH ~ 3 - 7.  Minimal differences in plasmon lambda max correlate well to similar 
observed AuNP sizes determined by SAXS. !
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&  
Figure S34.  Raw SAXS data for AuNPs synthesized with two different concentrations 
of  MEEE disulfide at two Au(III) pH values.  Models of  these patterns yield average 
AuNP diameters that are very similar at different pH values when the same ligand 
concentration is used. 
 
 !

&  

Figure S35.  UV/vis spectra for AuNPs synthesized with MEEE disulfide at Au(III) pH 
~ 3 and  7.  Minimal differences in plasmon lambda max correlate well to similar 
observed AuNP sizes determined by SAXS. !
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!
Comparison of  Batch and Microfluidic Syntheses 

!

&  !
Figure S36.  Selected UV/visible spectra for AuNPs synthesized in 80 mL batches using 
MHA Bunte Salt as ligand.  A clear size trend, evidenced by increasing wavelength of  the 
plasmon absorbance lambda-max, exists across the pH range, with higher Au(III) solution 
pH’s resulting in larger AuNPs. !
!
SAXS Working Curve for AuNPs Made in Batch 

SAXS data were collected for AuNPs synthesized in 80 mL batches.  For each data point, 

3 syntheses were performed where corresponding SAXS size analyses were averaged to 

determine average diameters and standard deviations. 

!

126



&  !
Figure S37.  Combined SAXS data for batch AuNP working curve using MHA Bunte 
salt as ligand.  These data correlate well to observed UV/vis trend.  Sizes determined by 
TEM show much larger error bars than analogous SAXS analyses. !
!
Comparison of  Variability in AuNP Core Size for Batch and Flow Syntheses 

AuNPs were synthesized in (1) batch reactions performed by a single researcher, (2) batch 

reactions performed by 3 different researchers, and (3) microfluidic reactions by multiple 

researchers.  AuNP size distributions were determined by SAXS.  Variability in core size 

is low when a single researcher performs batch syntheses in rapid succession, but rises 

dramatically when multiple researchers perform these batch syntheses.  When syntheses 

are performed in a microreactor and the same stock solutions are utilized, researcher-

dependent variables are eliminated and variability is much lower than for reactions 

performed in batch.  Microfluidic reactions performed by single or multiple researchers 

yield consistent results between syntheses. 

!
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Table S4.  Summary of  AuNP core sizes for 9 different AuNP syntheses, using he MHA 
ligand, as determined by SAXS 

!

Synthetic Method
SAXS AuNP Diameter 

(nm)
Diameter Standard 

Deviation

Single Researcher Batch 
Syntheses

A)  7.77

5%B)  7.45

C)  8.22

Multiple Researcher Batch 
Syntheses

A)  7.87

18%B)  5.71

C)  8.17

Microfluidic Syntheses

A)  5.73

2%B)  5.88

C)  5.92
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APPENDIX B 

 

SUPPORTING INFORMATION FOR CHAPTER IV: RAPID DIRECT 

SYNTHESIS OF WATER-SOLUBLE, MIXED MONOLAYER AZIDE 

FUNCTIONALIZED GOLD NANOPARTICLES FOR USE AS CLICK 

CHEMISTRY REAGENTS 

 

Materials 

All materials were used as received: HAuCl4･H2O (99.9%) (Strem); 2-[2-(2-

chloroethoxy)-ethoxy]ethanol (99%), sodium borohydride (98%, caplets), Copper(I) 

bromide (99.999%), 1-ethynyl-1-cyclohexanol (99%), (Aldrich); sodium hydroxide, 

sodium thiosulfate (anhydrous), (Mallickandrot); sodium L-ascorbate (powder, 

Bioreagent), dibenzocyclooctyne-PEG4-Fluor 545 (DBCO-PEG4-Alexafluor-545), 

phenylacetylene (98%), ethynylferrocene (97%), (Sigma-Aldrich); thionyl chloride (99.5%) 

(Acros), sodium azide (95%) (J.T. Baker); benzyltriethylammonium chloride (BTEAC, 

99%) (TCI America); DBCO-PEG4-OH, DBCO-NHS ester (Click Chemistry Tools). 

The Bunte salt analog of 2-[2-(2-mercaptoethoxy)-ethoxy)ethanol (EG3-BS) was 

synthesized as previously reported.x1 Column chromatography was performed using 40-

63 µM silia-P flash silica gel (Silicycle).  Deionized water (18.2 MΩ∙cm) was obtained 

using a Barnstead Nanopure Diamond system. Flow nanoparticle syntheses were driven 

using Kloehn syringe pumps (P/N 54022) and Kloehn 10 and 25 mL syringes. The flow 

system was created using IDEX Teflon tubing (0.75 mm ID, WO# 0554152) and Teflon 
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T-mixers. Lengths of tubing were used in assembling the reactor, to keep residence and 

mixing constant for all flow rates.   

Methods  

Nanoparticle Core Size Determination using Small Angle X-ray Scattering (SAXS). Nanoparticle sizes 

resulting from the direct syntheses performed were determined in solution at synthesis 

concentrations using small angle X-ray scattering (SAXS). Briefly, NP samples were 

exposed to monochromated X-rays from a Long Fine Focal spot (LFF) sealed X-ray tube 

(Cu 1.54 Å) powered by a generator at 2 kW focused by multilayer optics, measured with 

a Roper CCD in a Kratky camera. The Anton Paar SAXSess, in line collimation mode, 

was set to average a minimum of 50 scans of 40 s exposures. The corresponding dark 

current and background scans were subtracted from the data before desmearing using the 

beam profile in Anton Paar SAXSQuant software. The size distribution of the sample 

was then determined by using the size distribution macro in the IRENA package.[ca-

paper] The SAXS patterns were fit using the modeling II macro and best model fits were 

determined using a nonlinear least squares method, assuming spherical particles 

(confirmed with TEM), to yield a Gaussian size volume distribution binned by core 

diameter. For each sample, percent polydispersity was then also determined relative to 

the average core size. 

TEM microscopy of Purified EG3-azide / EG3 (5:95)-AuNPs and EG3-triazole-DBCO-1 / EG3 

(5:95)-AuNPs Samples for Analysis of Morphology. TEM analysis of purified nanoparticle 

samples was performed on a FEI Tecnai G2 Spirit TEM operating at 120 kV. AuNP 

samples were prepared for analysis by floating holey carbon TEM grids (Ted Pella) on 

top of a drop of diluted AuNP solution of either EG3-azide / EG3 (5:95)-AuNPs or 
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EG3-triazole-DBCO-1 / EG3 (5:95)-AuNPs for ~5 minutes. The grids were lifted 

from the drop and excess solution wicked away using a Kimwipe before being allowed to 

dry in ambient conditions prior to imaging. 

NMR Spectroscopy of Purified Nanoparticle Samples for Analysis of Purity and of Decomposed 

Nanoparticles for Quantifying Mixed Ligand Compositions. Approximately 7-10 mg of purified 

lyophilized nanoparticles were redispersed in 0.6 mL D2O or a D2O/DMSO-d6 mixture 

as specified in the experimental.  An initial spectrum was acquired at 600 MHz with 128 

scans and a relaxation delay of 1 s to confirm that all free ligands and synthetic 

byproducts were removed. The absence of sharp peaks (due to free ligands) and the 

presence of the broad peaks characteristic of quadrupolar broadening due to the size of 

the AuNPs indicated that all of the ligands were bound to the surface.  Characterization 

of the bound mixed ligands before and after coupling reactions was initiated by adding 

approximately 2 mg of I2 directly to the NMR tube. The mixture was shaken vigorously 

and allowed to react in ambient conditions for ~10-15 min.  The solid I2 was then 

removed from the NMR tube prior to acquiring another spectrum at 600 Mhz with 512 

scans. All AuNP NMR spectra showed that the ligands had been oxidized to form the 

corresponding disulfides. Identification of characteristic peaks attributed to the coupled 

product was then performed to verify successful reactions. 

UV-visible Spectroscopy of Purified EG3-azide / EG3 (5:95)-AuNPs and EG3-triazole-DBCO-1 / 

EG3 (5:95)-AuNPs. All measurements were performed using an HP 8453 UV-visible 

spectroscopy system. Absorbance of purified AuNPs solutions were measured in a quartz 

cuvette cleaned with aqua regia and rinsed copiously with nanopure water between all 

measurements.   
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Fluorescence Spectroscopy of Purified EG3-azide / EG3 (5:95)-AuNPs and EG3-triazole-DBCO-1 / 

EG3 (5:95)-AuNPs to Verify the Efficacy of the Strain Promoted AAC Reaction. Nanoparticle 

solutions were first diluted with nanopure water to give yield absorbance at λmax of 0.6.  

All fluorescence measurements were preformed using the Horiba Jobin Yvon Fluoromax-

4 spectrofluorometer with excitation at 525 nm and emission collected from 540-700 nm, 

slit widths were set to 5 nm. The quartz cuvette was cleaned with aqua regia and rinsed 

copiously with nanopure water in between all measurements.   

 

Experimental 

Synthesis of sodium S-(2-(2-(2-azidoethoxy)ethoxy)ethyl) sulfothioate (EG3-azide-BS) 

 

 

Scheme S1. Synthetic route to a PEG tethered azide functionalized Bunte salt 
 
 
 

1-azido-2-(2-(2-chloroethoxy)ethoxy)ethane (8).  2-[2-(2-chloroethoxy)-ethoxy]ethanol 

(4.00 g, 0.0237 mol) was dissolved in anhydrous DMF (100 mL) under N2.  Sodium azide 

(3.07 g, 0.0472 mol) was added and the mixture was heated to 100 °C for 20 h while 

stirring. The mixture was cooled down to r.t. and DMF removed under reduced pressure 
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in a rotary evaporator condensed over NaOH pellets to trap any HN3 potentially 

produced.1  The crude residue was then suspended in diethyl ether (100 mL), filtered 

through a medium fritted funnel, and concentrated in vacuo to yield 8 (3.85 g, 93%) as a 

colorless liquid. 1H-NMR (300 MHz, CDCl3): δ = 3.62-3.77 (m, 10H), 3.42 (t, 2H), 2.28 

(t, 1H). 

1-azido-2-(2-(2-chloroethoxy)ethoxy)ethane (9).2 A mixture of azide 8 (3.50 g, 0.0200 mol) 

and benzyltriethylammonium chloride (BTEAC) (0.137 g, 0.0600 mmol) were heated in a 

3-neck RB flask to 65 °C.  Thionyl chloride (4.78 g, 0.0402) was then added dropwise 

from an addition funnel equipped with a pressure-equalization arm, and the reaction 

mixture was further stirred at 65 °C for 1.5 h while maintaining a continuous N2 flow (to 

remove HCl generated).The mixture was let cool to r.t. and excess thionyl chloride 

removed by rotary evaporation.  The crude product was suspended in phosphate buffer 

(50 mM, pH = 7.0, 15 mL) and extracted with 1:1 EtOAc/hexane (15 mL total). The 

organic layer was washed with phosphate buffer (4 x 15 mL), dried with Na2SO4, filtered 

using a coarse fritted funnel, and concentrated in vacuo to yield 9 (3.02 g, 78 %) as a 

yellow liquid. 1H-NMR (300 MHz, CDCl3): δ = 3.64-3.81 (m, 10 H), 3.42 (t, 2H).  

S-(2-(2-(2-azidoethoxy)ethoxy)ethyl) sulfothioate (EG3-azide-BS). Chloro compound 9 

(2.51 g, 0.0130 mol) was dissolved in a 4:3 EtOH/H2O (70 mL total) mixture. Anhydrous 

sodium thiosulfate (2.47 g, 0.0156 mol) (dissolved in 10 mL deionized water) was added 

over ~ 2 min.  The resulting mixture was heated at 80 °C for 23 h. Upon letting cool to 

r.t., EtOH and H2O were removed by rotary evaporation.  The crude material was 

dissolved in CH3CN (20 mL) to precipitate salts which were subsequently removed by 

filtering using a medium fritted funnel. CH3CN was removed by rotary evaporation to 
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produce a crude yellow liquid which was then redissolved in deionized H2O (10 mL) to 

separate unreacted starting material as a yellow oily residue.  The water solution was 

decanted and subsequently filtered through a fine fritted funnel to remove residual trace 

starting material.  Concentration in vacuo produced EG3-azide-BS  (2.99 g, 79%) as an 

oily pale yellow solid. 1H-NMR (300 MHz, D2O): δ = 3.78 (t, 2H), 3.57-3.65 (m, 6H), 

3.39 (t, 2H), 3.18 (t, 2H).  

 

Figure S1.  1H-NMR spectrum of EG3-azide-BS (D2O). 
 
 
 

 

EG3-azide / EG3 (5:95)-AuNP and EG3-azide / EG3 (10:90)-AuNP characterization 

Calculation of moles of azide ligand for a given mass of EG3-azide / EG3 (5:95)-AuNPs.   For a 3.5 

nm AuNP, there are 1580 Au atoms (obtained from NAu = 10^((LOG(diameter-0.2177)-

LOG(0.225))/0.3639)3 and 180 EG3 ligands (#EG3 ligands = (surface 
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area*0.826(maximum packing density on a sphere))/(0.1775 nm2)(footprint of an EG3 

molecule)4. Therefore, the average molecular weight for 3.5 nm EG3-azide / EG3 (5:95)-

AuNPs [Au1580(EG3-azide)9(EG3)171] is 3.41 x 105 g/mol.  The moles of AuNPs can then 

be calculated from gAuNPs*(1 mol / 3.41 x 105 g AuNPs) .  For every mole of AuNPs, there 

are 9 molar equivalents of azide-ligand, therefore molAuNPs*9  = molazides. 

 

 

Figure S2. UV-vis of AuNPs before (EG3-azide / EG3 (5:95)-AuNPs) and after (EG3-
triazole-DBCO-1) coupling reactions. 
 
 
 

Table S1. EG3-azide / EG3 (5:95) – Multiple batches of AuNPs, core size determined by 
SAXS.  

 

Diameter (nm) Polydispersity (nm) % Polydispersity 

Batch 1 3.5 0.4 12% 

Batch 2 3.7 0.3 9% 
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Batch 3 3.5 0.4 13% 

Batch 4 3.4 0.5 14% 

Batch 5 3.5 0.5 14% 

Batch 6 3.5 0.5 13% 

Average 3.5 0.4 13% 

Std Dev 0.08 0.05 

  

Table S2. EG3-azide / EG3 (10:90) – AuNPs core size determined by SAXS 

 

Diameter (nm) Polydispersity (nm) % Polydispersity 

Batch 1 3.5 0.5 15% 

Batch 2 3.5 0.6 16% 

Batch 3 3.5 0.5 14% 

Batch 4 3.5 0.5 15% 

Batch 5 3.6 0.3 8% 

Batch 6 3.5 0.4 12% 

Batch 7 3.5 0.5 14% 

Batch 8 3.5 0.5 14% 

Batch 9 3.5 0.5 13% 

Average 3.5 0.5 13% 

Std Dev 0.04 0.07 
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Figure S5. Copper-free 1,3-dipolar cycloadditions involving EG3-azide / EG3 (5:95)-
AuNPs and strained alkynes (1-3) 

 

EG3-triazole-DBCO-1 / EG3 (5:95)-AuNPs. Lyophilized EG3-azide / EG3 (5:95)-

AuNPs (15.59 mg, 4.1 x 10-7 mol EG3-azide) were dissolved in H2O (1.72 mL) in a 

scintillation vial. DBCO-PEG4-Alexafluor-545 (1.40 mg, 1.5 x 10-6 mol) (dissolved in 0.28 

mL H2O) was added to the vial, capped, and the mixture was stirred at room 

temperature for 24 hours. The reaction mixture was then purified and lyophilized to 

isolate EG3-triazole-DBCO-1 / EG3 (5:95)-AuNPs as a black powder. Confirmation 

of the successful coupling reaction was obtained by I2 decomposition followed by NMR 

analysis. Diagnostic 1H-NMR (600MHz, D2O): δ 8.26 (d), 8.09 (m), 7.90 (d), 7.75 (m), 

7.58-7.62 (m), 7.44-7.52 (m), 7.31 (m), 7.23 (m), 6.65 (s), 6.30-6.32 (m), 6.06-6.11 (m), 

5.89 (m), 5.84 (m). 
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Copper-catalyzed 1,3-dipolar cycloadditions involving EG3-azide / EG3-

(5:95)-AuNPs and terminal alkynes (4-7) 

 

Figure S9. Copper catalyzed 1,3-dipolar cycloadditions involving EG3-azide / EG3 
(5:95)-AuNPs and various terminal alkynes (4-7) 
 

EG3-triazole-4 / EG3 (5:95)-AuNPs. Lyophilized EG3-azide / EG3 (5:95)-AuNPs 

(10.0 mg, 2.6 x 10-7 mol EG3-azide) were dissolved in H2O (489 µL) in a scintillation vial. 

Sodium ascorbate (38 µL, 0.01 M in H2O, 3.8 x 10-7 mol) was added to the vial, followed 

by tert-butyl alcohol as a co-solvent (985 µL), 1-ethynyl-1-cyclohexanol (15 µL, 0.1 M in 

tert-butyl alcohol, 1.5 x 10-6 mol), and CuBr (474 µL, satd., aq. 3.8 x 10-8 mol) The 

resulting solution was capped and stirred at room temperature for 48 hours. The reaction 

mixture was then purified and lyophilized to isolate EG3-triazole-4 / EG3 (5:95)-

AuNPs as a black powder. For 1H-NMR analysis, AuNPs were dissolved in 

D2O/DMSO-d6 (80:20, 500 µL total) to confirm successful purification and decomposed 

with I2. Diagnostic 1H-NMR (600MHz, D2O/DMSO-d6 (80:20)): δ 1.79-1.84 (m), 1.38-

1.66 (m). 
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Figure S10. NMR characterization of EG3-triazole-4 / EG3 (5:95)-AuNPs following 
I2 decomposition. Diagnostic peaks showing successful coupling shown enlarged for 
clarity. 

EG3-triazole-5 / EG3 (5:95)-AuNPs. Lyophilized EG3-azide / EG3 (5:95)-AuNPs 

(14.6 mg, 3.9 x 10-7 mol EG3-azide) were dissolved in H2O (489 µL) in a scintillation vial. 

Sodium ascorbate (37.5 µL, 0.01 M in H2O, 3.75 x 10-7 mol) was added to the vial, 

followed by tert-butyl alcohol as a co-solvent (985 µL), phenylacetylene (15 µL, 0.1 M in 

tert-butyl alcohol, 1.5 x 10-6 mol), and CuBr (474 µL, satd., aq. 3.8 x 10-8 mol). The 

resulting solution was capped and stirred at room temperature for 48 hours. The reaction 

mixture was then purified and lyophilized to isolate EG3-triazole-5 / EG3 (5:95)-

AuNPs as a black powder. For 1H-NMR analysis, AuNPs were dissolved in 

D2O/DMSO-d6 (80:20, 500 µL total) to confirm successful purification and decomposed 

with I2, then extracted into CD2Cl2 (500 µL) and the organic phase was washed with 

brine (500 µL). Diagnostic 1H-NMR (600MHz, CD2Cl2): δ 7.97-8.05 (m), 7.30-7.72 (m), 

7.20-7.29 (m).
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Figure S11. NMR characterization of EG3-triazole-5 / EG3 (5:95)-AuNPs following 
I2 decomposition. Diagnostic peaks showing successful coupling shown enlarged. 
 
 

EG3-triazole-6 / EG3 (5:95)-AuNPs. Lyophilized EG3-azide / EG3 (5:95)-AuNPs 

(14.5 mg, 3.8 x 10-7 mol EG3-azide) were dissolved in H2O (489 µL) in a scintillation vial. 

Sodium ascorbate (37.5 µL, 0.01 M in H2O, 3.8 x 10-7 mol) was added to the vial, 

followed by tert-butyl alcohol (985 µL), ethynylferrocene (15 µL, 0.1 M in tert-butyl 

alcohol, 1.5 x 10-6 mol), and CuBr (474 µL, satd., aq. 3.8 x 10-8 mol) The resulting 

solution was capped and stirred at room temperature for 48 hours. The reaction mixture 

was then purified and lyophilized to isolate EG3-triazole-6 / EG3 (5:95)-AuNPs as a 

black powder. For 1H-NMR analysis, AuNPs were dissolved in D2O/DMSO-d6 (80:20, 

500 µL total) to confirm successful purification, decomposed with I2, then extracted into 

CDCl3 (500 µL) and the organic phase was washed with brine (500 µL). Diagnostic 1H-

NMR (600MHz, CDCl3): δ 4.13-4.15 (ferrocene, m). 

 

Figure S12. NMR characterization of EG3-triazole-6 / EG3 (5:95)-AuNPs following 
I2 decomposition. Diagnostic peaks showing successful coupling shown enlarged for 
clarity. 
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EG3-triazole-7 / EG3 (5:95)-AuNPs.  Lyophilized EG3-azide / EG3 (5:95)-AuNPs 

(13.1 mg, 3.5 x 10-7 mol EG3-azide) were dissolved in H2O (489 µL) in a scintillation vial. 

Sodium ascorbate (37.5 µL, 0.1 M in H2O, 3.8 x 10-7 mol) was added to the vial, followed 

by tert-butyl alcohol (985 µL), 5-ethynyl-2’-deoxyuridine5 (15 µL, 0.1 M in tert-butyl 

alcohol, 1.5 x 10-6 mol), and CuBr (474 µL, satd., aq. 3.8 x 10-8 mol) The resulting 

solution was capped and stirred at room temperature for 48 hours. The reaction mixture 

was then purified and lyophilized to isolate EG3-triazole-7 / EG3 (5:95)-AuNPs as a 

black powder. For 1H-NMR analysis, AuNPs were dissolved in D2O/DMSO-d6 (91:9, 

550 µL total) to confirm successful purification and decomposed with I2. Diagnostic 1H-

NMR (600MHz, D2O/DMSO-d6 (91:9)): δ 8.76 (s), 8.07-8.13 (m), 6.12-6.34 (m), 5.82-

5.88 (m).  

 

Figure S13. NMR characterization of EG3-triazole-7 / EG3 (5:95)-AuNPs following 
I2 decomposition. Diagnostic peaks showing successful coupling shown enlarged for 
clarity. 
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APPENDIX C 

!
SUPPORTING INFORMATION FOR CHAPTER V: 

THE CONTROLLED REMOVAL OF THIOL LIGANDS FROM SURFACE-

CONFINED, MONOLAYER PROTECTED GOLD NANOPARTICLES  

!
!
!

Figure S1. TEM micrographs of  1.5 nm 2-MEPA AuNP nanoparticle assemblies treated 
with dilute ozone, each representative of  an individual sample removed from the ozone 
stream at incremental time points. The nanoparticles assemblies are visually similar 
through out treatment through 8 minutes. At 16 minutes larger aggregates appeared 
indicating particle growth and disruption to the nanoparticle assembly.  
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!  

Figure S3. Stacked XPS S2p traces of  assembled AuNPs (red), following ligand removal 
with ozone (orange) and after soaking in 1 mM 2-MEPA to restore the ligand shell (green 
and blue). The ligand shell shows restoration of  thiolate linkages after 1 minute (green) 
and little change after 10 minutes (blue). 

!
!
!
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Figure S4. 3 traces shown from planar analysis platform of  to illustrate the background 
subtraction process. The blue trace represents the average trace from three points on a 
sample treated with ozone for 8 minutes. The red trace represents the average trace from 
three points on the planar analysis platform substrate prior to nanoparticle assembly. The 
black is a result of  subtracting the red trace from the black trace to remove interference 
from the silicon shake-up feature.
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