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Abstract 
 
The standard differentiated-product model with Nash-equilibrium price setting 
suggests that the density of sellers in a market can affect both a seller’s price 
elasticity of demand and a competitor’s reaction to a price change.  Using field 
experiment data collected around a series of exogenously imposed price changes, we 
are able to demonstrate that a gasoline retailer’s price elasticity of demand is directly 
related to seller density, where density is measured by the number of sellers within a 
given geographical area.  This finding appears to be one potential source for 
observed persistent price differences.  The data also allow us to examine the reaction 
of rivals to exogenous price changes.  Consistent with the theory, we find that 
competitors’ price reactions are in the same direction, with the magnitude of the 
competitors’ reactions being inversely related to the market’s density of sellers. 
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 This paper draws upon a field experiment that was conducted in three urban areas of 

California.  We were provided limited ability to fix retail prices at 54 company-operated gasoline 

stations of a major retailer over a three month period in early 1999.  In particular, at the start of 

each week we were allowed to set prices at a subset of stations and then hold the prices constant 

for the week’s remaining days.  The result was to create exogenous deviations in prices at 

“control” stations away from what they otherwise would have been.  During this period, we 

collected information on the daily volumes of each grade of gasoline sold at control stations, as 

well as the daily prices at every competitor-station within two miles of any of the 54 control 

stations.1 

The motivation for this field experiment arose out of events that began in 1995, when 

surveys in California revealed significant geographic differences in retail gasoline prices.  The 

average retail price of a gallon of regular grade, self-serve gasoline in the Los Angeles area was 

higher than either the San Francisco (Bay) or the San Diego areas, and the difference 

substantially exceeded the cost of shipping gasoline from one area to another.  Legislative 

hearings were held at both the state and local levels and the price differences were initially 

written off as merely market aberrations: short term deviations from text book equilibrium where 

geographic price differences for a homogeneous product would eventually equal the cost of 

transporting the product between markets. 

 However, the observed price differences did not go away and by early 1999 the California 

attorney general, as well as the Federal Trade Commission, began investigations.  The “short-run 

                                                 

1 The actual procedure, discussed in more detail in the text, involved increasing or decreasing the prices at a subset 
of the stations (typically by 2 cents) from the price on the prior day and then fixing this new price for one week.  We 
thank the owner of these stations for recently giving us permission to use these data. 
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aberration” theory no longer seemed plausible and many legislators suggested that there was 

something wrong.  New hearings were held and remedial legislation, including divorcement, 

open supply and outright price controls were proposed. 

 Standard differentiated-product models with Nash-equilibrium price setting suggest 

differences in the number of sellers in a market as one reason for price differences, with an 

increase in the number of sellers in a market resulting in lower prices as each seller faces a more 

elastic demand.  Given that the density of gasoline stations in the LA area is greater than that in 

either San Diego or the Bay areas, this offers one potential explanation for persistent geographic 

price differences.  A major petroleum retailer, interested in this possibility, provided us limited 

control of retail prices for a small number of stations stratified by the number of rival gasoline 

retailers each station had within two miles. 

 Although individual sellers’ price elasticities of demand are critical in determining pricing 

strategy and price-cost mark-ups in many economic models, including standard differentiated-

product models, estimates of such elasticities are not common.  What is common are estimates of 

market demand elasticities for a variety of products, including gasoline.2  While not directly 

applicable to the questions addressed in this paper, these estimates do highlight a common issue 

in estimating elasticities, namely the importance of identifying price changes that are exogenous 

to changes in consumers’ demand behavior.  Although our sample size of control stations is 

small (54) and the time period over which price movements were tracked is short (79 days), the 

field experiment creates such exogenous price changes, and thus provides the rare opportunity to 

test for differences in sellers’ price elasticities across markets with different numbers of sellers. 

                                                 

2 For recent examples of such studies of the market price elasticity of demand for gasoline, see Kayser (2000), 
Graham and Glaister (2002), Nicole (2003), and Oladosu (2003) as well as the references cited in these papers. 
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 As prices at every competing station within two miles of each control station were also 

surveyed, these data allow us to perform a second test.  Namely, to the extent we were successful 

in posting prices at control stations that differed from what relevant competitors expected prices 

to be at these stations, we can test for reactions to a rival’s exogenous price change, as well as for 

differences in the extent of the reaction based on the direction of the price change, the number of 

rivals in the market (seller density), the station’s type of ownership, distance from the rival 

station and brand type. 

 A great deal of empirical work has focused on retail gasoline markets as a suitable proving 

ground for theories of price wars, dynamic pricing patterns and collusive behavior.  For example, 

building on the earlier price-war studies of Porter (1983) and Bresnahan (1987), Slade (1992) 

collects price-war data on ten competing service stations in Vancouver over an apparent 

punishment phase to assess firm’s responses to exogenous shocks “of an unusual magnitude.”3  

Also analyzing dynamic pricing behavior, Noel (2001) considers a panel of 22 competing 

stations in Toronto, identifying Edgeworth Cycles similar to those of Maskin and Tirole (1988), 

where, in a dynamic Bertrand duopoly model, focal prices and cyclical prices are both Markov 

perfect Nash equilibria.  Eckert (2003) also provides evidence of retail price cycles across many 

Canadian markets.4 

One clear difference between our approach and this earlier work is that any variation in price 

or reaction of a competing station to price changes is necessarily endogenous to the pricing 

behaviors of the collective stations in the sample.  In contrast, our dataset incorporates truly 

                                                 

3 Slade (1992) also finds that firms respond asymmetrically to rival-price increases and decreases – sellers 
responding more quickly to price increases by “major” firms than to price decreases.  This asymmetry is in the 
opposite direction for responses to independent firms’ price changes. 
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exogenous price shocks imposed as we arbitrarily changed prices charged by stations located in a 

number of different markets.  Previous studies have not had this luxury of identifying exogenous 

price changes at specific stations.5 

 The paper is divided into four sections.  Section 1 introduces a well-known monopolistic 

competition model of price determination in order to motivate a fundamental claim, namely that 

an increase in the number of sellers in a market reduces market prices by raising individual 

sellers’ price elasticities of demand.  Section 2 presents an empirical test regarding the link 

between seller density and a seller’s price elasticity of demand using the field experiment data.  

A key finding is that, as predicted by theory, in markets where consumers have a higher number 

of alternative sellers, individual sellers face a higher price elasticity of demand.  We illustrate 

how this finding can explain price differences between the LA, San Diego, and Bay areas.6 

                                                                                                                                                             

4 Among other topics considered in the literature concerning gasoline markets are the wholesale-price response to 
crude-price fluctuation (e.g. Borenstein and Shepard, (2002), Bachmeier and Griffin (2002)) and vertical 
relationships (e.g. Hastings (2002)). 
5 There are a number of laboratory experiments that have empirically examined strategic behavior.  Recent examples 
of experiments adopting a Cournot framework are Rassenti, Reynolds, Smith and Szidarovszky (2000) and Cox and 
Walker (1998).  Other experiments have focused more on pricing behavior, such as those examining the 
implications of the Bertrand-Edgeworth model (e.g., Kruse, Rassenti, Reynolds and Smith (1994)) and the use of a 
posted-offer pricing mechanism (e.g. Ketcham, Smith and Williams (1984)). 
6 Note that our focus here is on explaining price differences across markets, not price differences at different sellers 
in the same market.  A number of studies have considered price dispersion within particular markets.  For instance, 
using city-level data, Marvel (1976) finds support for increased frequency of search (proxied by a larger volume of 
purchases) and lower search costs (measured by greater correlation of successive prices in the price distribution) 
reducing prices and price dispersion.  Png and Reitman (1994), using station-level data from Massachusetts, find 
evidence that stations differentiate themselves on the basis of consumers’ willingness to wait in line to buy gasoline.  
Contrary to Marvel’s results, however, they find that prices are more dispersed in markets with a greater number of 
competitors, supporting their service-time differentiation hypothesis.  Adams (1997), using a sample of 20 
convenience stores that sell gasoline, finds that grocery items sold in the convenience stores have a higher degree of 
price dispersion than gasoline.  Adams attributes this difference to the higher search costs associated with 
purchasing convenience store items relative to those search costs incurred when shopping for gasoline.  Barron, 
Taylor, and Umbeck (2003) contrast the predictions of search theoretic models concerning price dispersion with 
variants of the monopolistic competition model adopted in this paper and find support for the monopolistic 
competition approach.  For empirical studies of other industries that have investigated the link between search costs 
or market structure and the resulting price distribution consult Sorensen (2000), Walsh and Whelan (1999), Giulietti 
and Waterson (1997), Borenstein and Rose (1994), Dahlby and West (1986). 
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 Section 3 retains the simple monopolistic competition view of retail gasoline markets, and in 

that context identifies the role of seller density in determining the extent of the reaction of 

competitors to an exogenous price change by one seller.  We then develop measures of 

unexpected price changes by the control station and examine the relationship between competitor 

reaction to these changes and seller density.  Empirical tests indicate that, as predicted by theory, 

the reactions of stations to a price change at another station are partial and the extent of the 

reaction is greater in lower-density markets.  Section 4 explores further issues, including 

additional evidence of differences between the Los Angeles area and the San Diego and Bay 

areas. 

1. A Simple Model of Monopolistic Competition 

 To provide a simple theoretical framework for considering the effect of station density on 

prices and competitor reactions, we postulate a market for a good that involves L consumers, 

each purchasing one unit of the good.  Let N be the total number of sellers in the market 

( 2≥N ), such that sales of the representative seller equal L/N.  For seller i, the production of iq  

units of output has a common fixed cost component, K, and a constant marginal cost component, 

α .  That is, 

(1)    ( )i iC q K qα= +  , 

where 0K >  and 0>α . 

 In general, the demand function faced by seller i will depend on the number of consumers 

and sellers in the market (L and N, respectively), the price charged by seller i, ip , and the vector 

of prices charged by the other sellers, ip− .  In addition, the demand function depends on 

consumers’ common consumption value of the good, r, and consumers’ costs to visiting sellers.  

Let v denote the cost to a consumer of visiting a seller.  By assumption, a consumer’s cost to 
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visiting a particular seller is the realization of a random variable drawn from the continuous 

distribution )(vF  with lower and upper bounds a and b, respectively.7 

We assume that each consumer knows the prices and visiting costs of all sellers at the time 

of their decision to purchase.  As such, a consumer with realized visiting costs Nivi ,...,1, =  

purchases from seller i only if ][min kkikii vpvp +≤+ ≠  and ii vpr +≥ .  Thus, given the 

second condition holds, the probability that consumer j buys from seller i is given by 

(2)    [1 ( )] ( )
bj

i k i i ka
q F p v p dF v≠= ∏ − + −∫ . 

Summing across L consumers who each purchase one unit of the good, the expected demand for 

seller i becomes 

(3)    
1

L j
i ij

q q
=

= ∑ . 

 Each period, each seller chooses a pricing strategy that maximizes expected profit taking as 

given the pricing strategies of other sellers.  Specifically, each seller sets a unique price that 

maximizes profits given the resulting level of expected demand.  Such a pure-strategy 

equilibrium means that for seller i, the maximization problem is: 

(4)    ( )iiiip
qCqp

i

−=π   max , 

where (1) and (3) define the cost and demand functions, respectively.  Seller i’s profit-

maximizing price satisfies the standard first-order condition: 

(5)    αii mp = , 

                                                 

7 This leads to realized product differentiation, the key assumption that provides a rationale for a finite price 
elasticity of demand, as illustrated by Perloff and Salop (1985) and Anderson and Renault (1999), among others. 
 
 



 7

where ( ) 11 >−= iii eem , and )/)(/( iiiii qppqe ∂∂−=  is firm i’s price elasticity of demand.  Eq. 

(5) is the familiar expression stating that the optimal price equals the firm’s marginal cost 

multiplied by a markup factor, im , which, in turn, is decreasing in the firm’s price elasticity of 

demand, ie .  That is, where consumers are more responsive to adjustments in ip , firm i will 

optimally choose a smaller markup over marginal cost. 

 As Perloff and Salop (1985) have shown, given identical marginal costs and demands for 

each seller, the market equilibrium has all firms charging the same price, with expected sales by 

each seller equal to L/N.  This common price in the market is simply 

(6)    αmp =  . 

The zero-return condition then determines the number of sellers, with the resulting equilibrium 

characterized by a price set by all sellers that is equal to the common marginal cost α  plus 

average fixed cost K/(L/N).  We assume in equilibrium that the consumption value of the good, r, 

exceeds the upper bound of the distribution of visiting costs plus equilibrium price, such that all 

consumers purchase from one of the N sellers. 

 As we will develop more fully below, the model suggests that the increase in the number of 

sellers (N) that would accompany either an increase in the market size (L) or reduction in the 

fixed costs (K) affects not only the price elasticity of demand faced by an individual seller, and 

thus the optimal price level, but also the reaction of other sellers to a price change by one seller 

in the market.  To test these implications for gasoline stations requires a measure of the number 

of other sellers in a station’s market. 

To create such a measure, we adopt the convention of identifying other sellers in a station’s 

market by their proximity to the station.  In particular, we count as other sellers those stations 

within a two-mile radius of each station.  The density of competitors faced by a particular seller 
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is then simply the number of such stations that meets this proximity requirement.  The choice of 

two-mile circular “markets” is, in part, due to the sample data available.  However, we note that 

two-mile radii markets are often assumed in the literature even in the absence of data availability 

issues and that the results reported in Table 1 are generally robust to permutations of this two-

mile radius.  An alternative measure of density that includes information on the average distance 

to a control station’s competitor is discussed following our presentation of empirical results and 

the results using this alternative measure are provided in Appendix B.8 

 To determine the density of sellers for stations located in our three geographic areas in 

California (Los Angeles, San Diego, and the San Francisco areas), three data sources are used.  

From Lundberg, Inc., we obtained a census of stations in San Diego and the Los Angeles areas 

taken in 1996.  Lundberg also provided 1997 census data for the San Francisco and San Diego 

areas.  From Whitney-Leigh, we obtained an annual census of stations for the San Diego, Los 

Angeles, and San Francisco areas for the years 1995 to 1998.  A third company, MPSI, provided 

a census of specific areas in the Los Angeles and San Diego areas taken in 1999.9  

                                                 

8 Our goal is to define each station’s market in such a way as to include most of the station’s competitors.  While a 
two-mile-radius circle around a station likely defines the station’s rivals in most cases, we note that even where two 
stations are across the street from each other, traffic patterns may impede effective competition.  For example, a 
consumer’s access to both stations may depend on which side of the road the consumer is traveling on.  
Alternatively, one might argue that driving time between stations, as opposed to the distance is a more appropriate 
measure.  Unfortunately, such data are unavailable for our sample of stations and we rely on our two measures of 
density, acknowledging their imperfections. 
 
9 The stations recorded in each census from these three companies were matched to each other and to a list of 
proprietary station data provided to us by a large gasoline retailer using a variety of matching algorithms based on 
street address, intersection, city, and brand.  Substantial care was taken in the matching process to make sure that the 
same station identified by two different sources would not be counted as two separate stations.  The time-consuming 
process of matching stations across the three censuses was done for a variety of reasons.  First, all three censuses 
contain some stations in areas not included in the other two censuses, so each census provides additional 
observations.  Second, while the Lundberg census provides key information on location (latitude and longitude) not 
contained in the Whitney-Leigh census, the 1998 Whitney-Leigh census provides more current information on 
existing stations than the Lundberg 1996 census.  Finally, matching stations from different censuses allows us to 
check the validity of key data, in particular the latitude and longitude data provided in the MPSI and Lundberg 
censuses.  Additional data checks were also made as described in Appendix A.  The resulting merged dataset 
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We use this information in two ways.  First, it allows us to determine the average density of 

sellers for the San Francisco, San Diego, and Los Angeles areas.  The average for LA, 22.2 

stations within a two-mile radius, is above both the average of 17.5 stations for the San Diego 

area and 18.2 stations for the San Francisco area.  Second, it allowed us to stratify the sample of 

stations chosen as control stations to assure differences in seller density. 

2. Seller Density and the Responsiveness of Consumers 

 We now explore the link between seller density and a seller’s price elasticity demand.  For 

the monopolistically competitive model presented in Section 1, Perloff and Salop (1985) show 

that either a larger market size or lower fixed costs can explain why one market has a higher 

number of sellers.  The theory predicts that accompanying this increase in the number of sellers 

will be an increase in the price elasticity of demand for individual sellers, and thus, according to 

(6), a lower equilibrium price.10  Intuitively, the higher price elasticity of demand arises as an 

increase in the number of sellers in the market, or what we term the density of sellers, introduces 

more “close substitutes” for buyers.  We thus have the following two predictions: 

Hypothesis 1:  A seller’s price elasticity of demand will be higher where the 
density of sellers is higher. 
 
Hypothesis 2:  The market equilibrium price will be lower where the density of 
sellers is higher. 
 

                                                                                                                                                             

provides a simple way to calculate the number of alternative stations within a two-mile radius of each station in the 
Los Angeles, San Diego, and San Francisco areas in early 1999. 
10 Note that in the limiting case price approaches marginal cost.  Of course, the reason for the larger number of 
sellers has implications for the ratio of buyers to sellers.  If the increase in number of sellers is due to an increase in 
market size, then the zero-return constraint suggests that there will not only be a lower equilibrium price but also an 
increase in the number of consumers per seller.  On the other hand, if the increase in the number of sellers is due to 
lower fixed costs, then the number of consumers per seller will fall. 
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One focus of this paper is to directly test Hypothesis 1.  We then combine the estimated price 

elasticity results and information on station density across different areas to predict differences in 

price levels across areas and compare these predictions to actual price differences across areas. 

A. Field experiment data 

 It is well known in the econometric literature that obtaining estimates of the price elasticity 

of demand is a difficult task.  The reason for this is that to estimate the price elasticity of 

demand, we must isolate the effect of changes in prices on sales holding constant other factors 

that can influence the level of demand.  But often a price change occurs precisely because of a 

change in one of the factors affecting the level of demand, and it is thus difficult to be sure that 

observed price changes occurred independently. 

 The above discussion highlights the unique and valuable character of our field experiment.  

In particular, a large gasoline retailer allowed us to randomly change the prices charged at some 

of its company-operated stations.  The company permitted us to control and survey prices at 54 

stations of our choosing over a three-month period from February 8, 1999 to April 27, 1999.  The 

54 stations chosen for this field experiment consisted of 9 stations from the San Francisco area, 

25 stations from the Los Angeles area, and 20 stations from the San Diego area.  In choosing 

stations, an attempt was made to stratify these 54 stations by the number rival sellers. 

 Once the sample of stations was chosen, a procedure for instituting price changes at the 

individual stations was devised.  The sample of 54 stations was divided into two groups.  At the 

start of each week, the prices at stations in one of these two groups were increased or decreased 

by two cents from their respective prices on the prior day.  To assure that company personnel 

would not know ahead of time the direction of a price change, the exact identity of the stations in 

terms of the direction of its price change was known only to us until the price change was 

implemented.  This new price was then maintained for one week, after which control of the price 
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at the station would revert to the company for a week and standard company procedures 

determined the price.  The process would then be repeated.  Thus, for each station, a week of 

price control would be followed by a week of “normalizing.”11 

 During the three-month period of the experiment, daily volumes sold at each of the 54 

stations were collected.  In addition, the company sent out surveyors each weekday to record the 

prices charged by other stations within a two-mile radius of the station.12  We thus have a dataset 

that includes daily prices and quantities of 54 control stations as well as the prices at stations 

surrounding each control station over a period of 79 days.  An important feature of this dataset is 

that one can be reasonably confident that the price changes are largely the result of exogenous 

“supply-side” factors rather than due to changes in factors affecting demand.13  We refer to this 

dataset as the 1999 Proprietary Price Survey. 

B. Estimating seller price elasticity of demand  

 To estimate the price elasticity of demand at a station for a given grade of gasoline, we 

specify a log-linear form for the demand equation of a particular station in a market of density d 

such that  

(7)    ln( ) ln( ) ln( ) ln( )it d it d it it i itS P P Xδ β γ λ υ ε= − + + + +    , 

                                                 

11 There was one exception to this pattern.  A major explosion at a San Francisco area refinery (Tosco’s Avon 
refinery, 23 February, 1999), followed by lesser problems at other refineries resulted in a substantial supply 
disruption in the middle of the experiment period.  Control of stations was suspended for approximately three weeks 
after this event although we continued to collect the relevant market data from our survey.  In our subsequent 
analysis of competitor reaction to our imposed changes, concern for the potential asymmetry in how this affected the 
three geographic areas of concern is addressed by interacting day and county in the first-stage estimation. 
12 Prices during weekends at competitor stations were interpolated linearly from the prices charged on Friday and 
Monday. 
13 Even the refinery explosions noted in footnote 10 turned out to be fortuitous for our study because the large 
relative price increases were attributable to supply changes. 
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where itS  denotes the sales of gasoline of a particular grade by control station i during the period 

(day) t, itP  denotes the price of the ith control station, itP  denotes the average price of the other 

sellers in the market of control station i, and itX  denotes a vector of station characteristics.14  

The parameters dβ  and dγ  denote the own and cross-price elasticities of demand respectively 

for a station in a market of density d, iυ  is a station-specific residual representing the extent to 

which the intercept of the ith control station differs from the overall intercept and itε  is the error 

term.  As such, Eq. (7) implicitly allows a unique intercept term for each control station to 

account for differences in average sales across stations independent of price differences. 

 In the initial empirical treatment, we divide stations in our sample into three approximately 

equally sized groups, those with a low density (strictly fewer than 19 other stations within a two-

mile radius, d = l), those with a mid-level density of stations (at least 19 and less than 27 other 

stations within a two-mile radius, d = m), and stations with a high density of other sellers (27 or 

more other stations within a two-mile radius, d = h).  Our discussion of the role of density as 

directly influencing the price elasticity of demand leads to the predictions that in estimating 

separate price coefficients for each group, we expect ˆ ˆ ˆ
h m lβ β β> >  and ˆ ˆ ˆh m lγ γ γ> > .  That 

is, we expect these estimated elasticities to be greater at stations in markets where consumers 

face a higher density of alternative sellers.15 

                                                 

14 As we have defined markets as two-mile circles around each control station, in ten instances control stations are 
within two miles of each other and appear in each other’s market.  We do not use these stations in the calculation of 
average market prices.  However, estimates are robust to their inclusion. 
15 With respect to the potential endogeneity of station density, any bias is likely to be against finding evidence in 
support of Hypothesis 1.  That is, we would expect to see the highest station densities in markets where demand is 
least elastic, suggestion that any bias would be toward finding low elasticities in high-density markets. 
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Eq. (7) is estimated using a random-effects model controlling for a first-order autoregressive 

disturbance term.  First-order autocorrelation can be detected through calculation of the Durbin-

Watson statistic as generalized for use with panel data in Bhargava, Franzini, and 

Narendranathan (1982), which provides tables for testing the significance of the null hypothesis 

that no autocorrelation exists.  For the models fit in this study, first-order autocorrelation does 

exist.16 

The estimation results for the three grades of gasoline are reported in columns 1, 4 and 7 of 

Table 1.17  To control for potential within-station substitution between grades of gasoline, we 

also include controls for the relative price(s) of neighboring grade(s) at the control station.  We 

expect the estimated elasticities to fall with the inclusion of controls for the relative prices of 

other grades since changes in sales volumes should, in part, be due to changes in the relative 

prices of these substitute grades.  The results of estimating seller-level price elasticity across the 

three grades of gasoline with the addition of the relative prices of other grades at the control 

station are reported in columns 2, 5 and 8 of Table 1.18  Finally, columns 3, 6, and 9 provide a 

continuous estimate of the effect of seller density on elasticity by including price and price 

interacted with the log of the number of sellers in the market.  As with earlier specifications, 

results provide support for the influence of station density on a seller’s price elasticity of 

demand. 

                                                 

16 As our panel is unbalanced, we adopt the procedure of Baltagi and Wu (1999). 
17 Note that lβ  corresponds to the coefficient on the price variable alone, mβ  corresponds to this coefficient plus the 
coefficient on the price variable interacted with the mid-level density indicator, and hβ  corresponds to the sum of the 
coefficient of the price variable and the price variable interacted with the high density indicator. 
18 Controlling for own-grade prices, as the ratio of mid-grade price to regular-grade price rises, sales of mid-grade 
gasoline decrease.  Further, as the ratio of premium-grade price to mid-grade price rises, sales of mid-grade grade 
gasoline increase.  Also of note is that the point estimates of elasticity or regular and mid-grade do generally fall 
with the inclusion of such controls for within-station substitution. 
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*** Insert Table 1 here. *** 

Our tests provide strong support for the hypothesis that the density of sellers in a market 

directly affects the price elasticity of demand faced by individual sellers.  For instance, according 

to Column 2 of Table 1, a one percent increase in a station’s regular-grade price, other things 

equal, reduces sales of regular-grade gasoline by 1.4 percent at stations with low density of rivals 

(i.e. small number of other sellers in the market), 2.1 percent at stations with mid-level density 

and 4.4 percent at stations with a high density.  Results are comparable for mid-grade and 

premium-grade gasoline.  From Column 5, a one percent increase in a station’s mid-grade price, 

other things equal, reduces sales of mid-grade gasoline by 1.5 percent at stations with low 

density of rivals, 2.0 percent at stations with mid-level density, and 3.8 percent at stations with a 

high density.  The corresponding elasticities for premium-grade gasoline, from Column 8, are 

ˆ
lβ = -2.8, ˆ

mβ =-3.5 and ˆ
hβ =-4.9, respectively.  Note that, unlike our finding for regular-grade 

gasoline, the estimates for low and mid-level density markets are not significantly different for 

mid- and premium-grade gasoline. 

While theory suggests that the number of rivals a particular station faces is an appropriate 

measure of what we call “station density,” it may well be argued that such a measure allows for 

the miss-classification of markets according to their true “competitiveness.”  For example, 

consider two stations, one with a single competitor located immediately across the street and the 

other with two competitors, each located one mile down the street.  A simple station-count would 

suggest that the second station (the one with more competitors) is in a more competitive market.  

Yet this may not be the case.  As such, we adopt an alternative representation of density to that 

reported in Table 1 which goes beyond this simple station-count to include information on the 
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distance of each competitor from the control station.  Results indicate the robustness of our 

findings to this alternative specification.19 

 It is important to recognize that the estimated price elasticities of demand derive from 

customers’ responses to a price change over relatively short periods of time.  Thus, while 

suggestive, these estimated magnitudes probably are below the true levels of sellers’ price 

elasticities of demand.20  However, for our purposes, it is not so much the levels of the price 

elasticities of demand as it is the differences in the price elasticities of demand across stations of 

different types that is important for the analysis to follow.  In this regard, any influence of the 

limited time period over which we consider customers’ responses is of less concern.   

C. Seller density and prices 

 As reported in the introduction, a substantial price difference emerged between retail 

gasoline prices in the Los Angeles area compared to prices in the San Diego and San Francisco 

areas during the latter part of the 1990s.  Using Lundberg, Inc. bi-monthly price surveys, Figure 

1 plots monthly Los Angeles self-serve regular prices for the period 1995 to 1999.21  Also plotted 

in Figure 1 are differences between the prices in the San Diego and San Francisco areas and the 

average price in the Los Angeles area. 

*** Insert Figure 1 here. *** 

 We can combine our estimates of the sellers’ price elasticities in markets that vary in the 

number of sellers as reported in Table 1 with the average number of sellers per station for the 

three areas to obtain a rough measure of the average seller price elasticity of demand by area.  

                                                 

19 Specifically, Table B2 of Appendix B reports the results of an estimation of Eq. (7) using an index of competition 
for each control station defined as the ratio of the number of stations within two miles of the respective control 
station to the average distance to stations within two miles of the respective control station. 
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The first column in Table 2 reports this predicted average price elasticity of demand for the 

typical station in each of the three areas.  Immediately one notes that this average price elasticity 

of demand is higher in LA than in San Diego or the San Francisco areas. 

 Given these average prices elasticities, Eq. (6) provides us with the predicted ratios of price 

to marginal cost for each area.  The second column in Table 2 reports this calculation.  From 

these predicted price-marginal cost ratios, the third column in Table 2 shows the predicted prices 

in the San Francisco and San Diego areas relative to the Los Angeles area under the assumption 

of common marginal costs.  These predictions support the notion that differences in demand 

conditions arising from differences in the density of stations and thus the price elasticity of 

demand may be one source of the observed higher prices of regular-grade gasoline in San Diego 

and the San Francisco areas relative to the Los Angeles area.  Note however that the predicted 

differences for regular-grade gasoline are significantly above the actual price differences, while 

the predicted differences in premium-grade gasoline are significantly less than the actual price 

differences.22 

*** Insert Table 2 here. *** 

 One caveat should be noted at this point regarding our discussion of the source of price 

differences.  Eq. (6) reveals two types of asymmetry across markets that can result in differences 

in prices between markets.  The one we have focused on is heterogeneity across markets in price 

                                                                                                                                                             

20 Of course, these estimates are not comparable to the standard market demand elasticities that are common in the 
literature, which are typically below one. 
21 The 1999 data are through the end of May 1999. 
22 One reason for the too large predicted differences for regular-grade gasoline could be that our short-run estimates 
of price elasticity of demand vary systematically with density from the true long run price elasticity of demand.  For 
instance, if one postulated that consumers respond more quickly to price changes in markets with higher seller 
density, then this would imply less of a difference in long-run price elasticities between L.A. and San Diego than is 
implied by our elasticity estimates, and thus a lower predicted price difference. 
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elasticities of demand and thus mark-ups, a heterogeneity that can arise from differences in the 

number of sellers in a market.  But heterogeneity across markets in the marginal production cost 

can also lead to differences, although probably not of the magnitudes observed.23 

3. Seller Density and Competitor Reactions to Exogenous Price Changes 

 The unique character of the data set, with the price of one seller in each of a number of 

markets being exogenously changed, has allowed us to examine how seller density can affect the 

reaction of consumers to a price change by a seller as summarized by a seller’s price elasticity of 

demand.  However, these data also allow us to examine the reaction of sellers to an exogenous 

change in price by one of its competitors.  In this regard, to provide a framework for our 

analysis, let us return to the simple Bertrand differentiated product model of Section 1, but now 

with the focus on the reaction of other competitors in a market to an exogenous price change by 

one seller. 

A. Competitor reaction 

 Denote cp  as the price at the control station.  For non-control station i, we obtain from (2) 

and (3) the following expected market demand across the L consumers given the common price 

*p  for the other N-2 sellers: 

(8)    * 2( / ) (1 ( )) (1 ( )) ( )
b N c

i i ia
q L N N F p v p F p v p dF v−= − + − − + −∫ . 

Rewriting (5), the resulting optimal price at non-control station i will satisfy: 

                                                 

23 As there are no refineries in the San Diego area, San Diego County receives about 92 percent of its gasoline from 
a pipeline that runs from the Los Angeles refining center to distribution terminals located in the Mission Valley and 
San Diego Harbor.  The rest of the gasoline (about 8 percent) is delivered to the area by tanker trucks.  The shipping 
cost by pipeline from the Los Angeles refineries to the San Diego terminals is about 1 cent more per gallon than the 
cost to ship to the Los Angeles area terminals from the same refineries.  Shipping gasoline to the San Diego region 
by tanker truck costs 2 to 4 cents per gallon (Rohy, (1996)). 
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(9)    /( / )i i i ip q q p= α − ∂ ∂ , 

where (8) determines the magnitude of the term /( / )i i iq q p∂ ∂ . 

 Assume initially that all sellers including seller i and the control station c set the common 

price *p , with *p  set such that (9) is satisfied for all sellers.  At these equilibrium prices, let 

( *( /( / ))i i iq q p∂ ∂  denote the corresponding ratio of seller i’s output to the derivative of output 

with respect to a change in seller i’s price, i = 1, … , N.  We now consider station i’s reaction to a 

change in the price at the control station.  To examine this issue, let the control station’s price be 

*cp p x= +  with x > 0, such that control station c sets its price above the original market price 

*p . 

 There are two types of reactions for seller i that one might consider theoretically.  One is a 

deviation in seller i’s price from *p  that satisfies (9) given the deviation x in the control station’s 

price and the belief that the other N-2 sellers will maintain their prices at the original equilibrium 

level, *p .  However, except in the case when there are only two sellers, this reaction is based on 

an incorrect belief of inaction on the part of the other N-2 sellers.  Thus, we focus instead on the 

reaction in terms of the deviation in seller i’s price from *p  that satisfies (9) given the deviation 

x in the control station’s price and the correct anticipation of the reactions of the other N-2 

sellers.  In other words, we focus on the equilibrium deviation from the original price *p  such 

that Eq. (9) remains satisfied for the other N-1 sellers at the new exogenous price for the control 

station. 
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 Not surprisingly, at the original price *p  for the N-1 sellers, an increase (decrease) in the 

price at the control station alone induces each of the other sellers to change their prices in the 

same direction.24  However, these price changes will be less than the amount of the imposed 

deviation, x.  The reason for this is that, at the original price, the increase (decrease) in demand at 

the N-1 non-control stations reduces (increases) the price elasticity of demand, leading to a 

higher (lower) price satisfying Eq. (9).  However, were the non-control stations to match the 

increase (decrease) in the price of the control station, then demand would be identical to before, 

but the price elasticity would be higher (lower).  Of course, Eq. (9) would not be satisfied if the 

prices at the N-1 non-control stations were to increase (decrease) by x.  Thus we have: 

Hypothesis 3:  An exogenous deviation in price from the equilibrium price by 
one of N sellers in a market will result in a deviation in the prices of the other N-1 
sellers from the equilibrium price in the same direction, but by a lesser absolute 
amount. 
 

 A natural question that arises is whether the price increase of competitors in response to an 

exogenous increase in the price of a single seller in the market will be affected by seller density.  

While the general form of demand makes analytical results difficult to calculate, Table 3 presents 

simulations of the analysis under the assumption of a uniform distribution for visiting costs, F(v).  

For illustrative purposes, we consider markets with 2, 4, and 6 sellers, with the number of sellers 

                                                 

24 Note that for the case when *c
ip p p= = ,

* 1

2

(1 ( )) ( )

/ ( 1)(1 ( )) ( ) ( )

N
i

N
i i

F v dF vq
q p N F v f v dF v

−

−

− −
− = ∂ ∂ − − 

∫
∫

   .  On 

the other hand, if *
ip p=  but * 0cp p x− = > , we have: 

' 2

3 2

(1 ( )) (1 ( )) ( )

/ ( 2)(1 ( )) (1 ( )) ( ) (1 ( )) ( ) ( )

N
i

N N
i i

F v F v x dF vq
q p N F v F v x f v F v f v x dF v

−

− −

− − − −
− = ∂ ∂ − − − − + − − 

∫
∫

.  

Comparing these two equations, it follows that */( / ) ' ( /( / ))i i i i i iq q p q q p− ∂ ∂ > − ∂ ∂ , and thus the reacting 
station’s optimal price increases with an increase in the control station price. 
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reflecting either differences in market size (Panel A) or differences in the fixed costs of entry 

(Panel B).  Note that, consistent with Hypothesis 2, the equilibrium price is lower in markets 

with higher seller density.  More relevant for the current discussion, however, are the final two 

columns of the table which indicate that for an identical price deviation by the control station, the 

magnitude of the reaction of the N-1 sellers falls with an increase in seller density. 

*** Insert Table 3 here. *** 

For instance, for the 4-seller case, if one of the four sellers, the control station, increases its 

price by two cents, the deviation in the equilibrium price for the other three sellers is 0.15 cents.  

Note that the same deviation from the initial equilibrium price by the control station leads to 

larger deviation in the price at the other sellers where the total number of sellers is reduced to 

two, but a smaller deviation where the total number of sellers is increased to six.  Such results are 

robust to a variety of parameter values and are similar in magnitude for a price decrease by the 

control station. 

 Our simulation results thus lead to the following hypothesis: 

Hypothesis 4:  An exogenous deviation in price from the equilibrium price by 
one of N sellers in a market will result in a deviation in the prices of the other N-1 
sellers from the equilibrium price that is decreasing in seller density. 
 

The intuition behind Hypothesis 4 is straightforward.  As the number of sellers in a market 

increases, the effect of an exogenous change in price by any one seller on the other sellers’ 

demands is less.  As such, their reactions to exogenous price changes by rivals are muted as 

seller density increases. 
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B. A test of competitor reactions 

 The simplest measure of the reaction of a competing station to an exogenous price change at 

a corresponding control station would consider the change in price at the reacting station in the 

period subsequent to the imposed change.  Of course, one could also consider more complete 

responses to a price shock introduced in one period by following changes in the prices of 

competitors over multiple periods.  Unfortunately, we are limited to analyzing only the single-

period reaction due to data restrictions that result in substantial reductions in sample sizes if we 

were to consider lengthier reaction periods.25 

With this in mind, we adopt a two-stage procedure to test the reaction of competing stations 

to an exogenous price change by the control station, as suggested by hypotheses 3 and 4.26  The 

first stage estimates a model of prices that enables one to predict what equilibrium prices would 

have been for individual stations in the absence of exogenous deviations from equilibrium-prices 

by the control stations.  Recall that as part of the experimental design, we staggered periods of 

control across market areas and time such that, for any day within the entire sample period, 

approximately one half of all stations were not within two miles of a control station at which 

price was being controlled.  Using only this sub-sample of prices at stations in markets during 

the time periods when all stations in the market (and the control station in particular) were freely 

able to set their prices allows us to estimate a model of prices in the absence of exogenously 

                                                 

25 Later we discuss in more detail these data limitations that preclude us from fully testing for such rates of response. 
26 Recall that our data consists of all stations within two linear miles of 54 control stations.  Thus, each non-control 
station in our sample has a corresponding station within two linear miles at which we are changing prices.  It is to 
the closest control station that we will measure each non-control station’s reaction. 
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imposed changes and therefore predict what prices would have been for periods when a market’s 

control station was, in fact, being controlled.27 

For the periods when a market had no station with a controlled price, we regress gasoline 

prices (separately by grade) of the various stations in the market on the log-number of competing 

stations within two miles, the average distance to these competitors, the minimum distance to 

these competitors, brand indicators, indicator variables corresponding to each day within our 

sample period alone and interacted with county indicators, controls for city and station 

characteristics such as hours of operation, car washes, convenience stores and number of nozzles, 

as well as an indicator to capture whether the station is company operated.  In order to exploit 

both time-series and cross-sectional variation, this first stage adopts a random-effects model.  

Given the nature of our price data, we again account for first-order autocorrelation. 

 The second stage focuses on the sample of prices at stations in markets during periods when 

the price at the control station was set exogenously.  For a non-control station i, Hypotheses 3 

and 4 suggest the following price equation, where itη  is an error term: 

(10)    * *( )it it d ct ct itp p p pβ η= + − +  

with Hypothesis 3 predicting 0 1dβ< <  and Hypothesis 4 predicting that dβ  be decreasing in 

seller density.  This empirical categorization of markets mirrors that of columns 3, 6 and 9 of 

Table 1.  However, to estimate (10) requires knowledge of what the equilibrium prices ( *
itp  and 

*
ctp ) would have been during these periods when a market’s control station’s price was fixed.  

                                                 

27 Note that while the first-stage does not include stations on days during which the corresponding market’s control 
station was being controlled, our experimental design ensures that we have a control group for every day and each 
geographic of the three geographic areas during our entire sample period. 
 



 23

For this we rely on the first-stage regression. That is, as the observed control-period prices do not 

contribute to the first-stage estimation procedure, we use the first-stage regression to make out-

of-sample predictions of prices during control periods.28 

Note that it is, in fact, possible for spurious correlation to exist between a control-station’s 

deviation from predicted prices and reactions of a non-control-station in the second stage 

because the two stations are in the same market.  However, any such correlation will only occur 

if there is some unobserved factor that influences prices specifically in this market and not in 

other markets, and in a way that is specific only to periods of control.  Further, this factor must 

influence prices commonly across stations within this market.  Finally, for this to matter with 

respect to our key interest in the role of density in affecting reactions, this factor must also be 

correlated with density.  Assuming this is not the case, the predicted out-of-sample prices for the 

non-control and control stations, *ˆ itp  and *ˆctp , provide measures of the prices that would have 

existed in the absence of price setting at the control station.  That is, we assume: 

(11)    * *ˆ it it i itp p v ε= + +  

(12)    * *ˆct ct c ctp p v ε= + +  

where iv  and cv  are station-specific residuals in predicting each sellers’ equilibrium price in the 

absence of market intervention and itε  and ctε  are i.i.d. error terms.   

                                                 

28 Note that as long as the influence of the above regressors is not systematically different across control and non-
control periods, deviations from these predicted prices should also be independent of the above station and market 
characteristics.  If we regress deviations of actual prices from these out-of-sample predictions (i.e. if we regress 
“out-of-sample errors” of sorts) on the same set of first-stage regressors (where R2 was .95), we find little predictive 
power remaining (R2 = .06), suggesting that our model provides reasonable out-of-sample predictions on average 
and that the effect of these regressors has been netted out reasonably well. 
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 Equations (10) through (12) link deviations in the control station price from its projected 

market equilibrium to deviations in a reacting station’s price from its projected market 

equilibrium.  To see how this is accomplished, we substitute (11) and (12) into (10) and 

rearrange to obtain: 

(13)    it ic d ct itα β υ∆ = + ∆ + . 

where *ˆit it itp p∆ = − , *ˆct ct ctp p∆ = − , ic d c iv vα β= −  and it it it d ctυ η ε β ε= − + .29 

Given the form of Eq. (13), it is natural to estimate a fixed-effects model on the underlying 

variables, it∆  and ct∆ .  Recall that these variables reflect the differences between actual and 

predicted prices for non-control and control stations, respectively.  To ensure that the deviation 

in an actual price from that predicted at one station can be legitimately interpreted as a “reaction” 

to a deviation at a second station, we lag the deviation for the control-station by one day.30  

Motivated by Hypothesis 4, we allow reactions to differ across station density by including the 

interaction of seller density with the differences between actual and predicted prices for control 

stations. 

C. Empirical results 

The results reported in columns 1, 4 and 7 of Table 4 clearly support our discussion of 

hypotheses 3 and 4 above.  First, we find that sellers do respond to the exogenously imposed 

                                                 

29 Note that Eq. (13) is an example of the classic problem of measurement error as the regressor is correlated with 
the disturbance.  Recall that our approach is to generate a proxy for unobservable equilibrium prices, that is prices 
that would have existed had the price at one station in the market not been fixed.  As such, coefficient estimates are 
inconsistent, with a bias toward zero.  This measurement error is more severe where the true coefficient is higher.  
Thus, the bias makes it more difficult to find a clear relationship between market density and the price reaction of a 
competing seller to an exogenous change in the price of another seller in the market. 
30 While our price changes were typically imposed at 10:00am, the survey of a particular competitor’s price may 
have been made as early as 9:00am in some cases.  Thus, by lagging the control station deviations from expected 
prices by one day, we ensure that the imposed price change was strictly before surveyed prices at competitors.  As 
such, we implicitly allow competing stations one day to react before observing their prices. 
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changes by changing their own prices, and by amounts less than the imposed changes across all 

grades.  Second, we find that in markets with higher seller density, sellers respond less to the 

imposed change in the control station’s price, again across all grades.  From the estimated 

coefficients in Column 1 of Table 4, the mean reaction of non-control station regular-grade 

prices is 18.7 percent of the deviation imposed at corresponding control stations.31  Consistent 

with the prediction of Hypothesis 4, regular-grade reactions are, on average, 23.6 percent of the 

imposed shocks in a low-density market and only 11.7 percent of the imposed shocks in a high-

density market.  These figures define low and high density markets as seller density equal to the 

25th or 75th percentile of station density, respectively, for our sample.  We also find that average 

reactions to control-station price changes are monotonically decreasing in grade of gasoline.  

Finally, the pattern of stations in high-density markets reacting less is also found in mid- and 

premium-grade gasoline prices.32 

*** Insert Table 4 here. *** 

Columns 2, 4, and 6 of Table 4 introduce two interaction terms to investigate the possibility 

that reactions differ depending on the direction of the imposed shock to control-station prices.  

While alone, the point estimate on the interaction term for positive deviations (in Column 2) 

suggests that the reaction of a station to a positive price shock is less than the reaction to a 

                                                 

31 Results reported in the text are statistically significant unless otherwise noted.  This figure is the net of the 
predicted effect of a price shock at the control station that takes into account both the direct effect (coefficient on the 
lagged control-station price difference) as well as the indirect effects of this difference interacted with the density of 
sellers surrounding the non-control station.  Recall the earlier discussion of the bias (toward zero) in estimating the 
reaction coefficient.  While this is of little concern for our analysis of the potential difference across markets of 
different seller density, the average estimated reactions may be properly thought of as lower bounds on the true 
reactions of stations to exogenously imposed changes at our control stations. 
32 The mean reactions of non-control station mid- and premium-grade prices are 14.0 percent of the deviation 
imposed at corresponding control stations and 11.7 percent of the deviation imposed at corresponding control 
stations, respectively.  Comparing again the upper and lower quartiles of station density suggests that the 
corresponding reactions in mid- and premium-grade markets are 7.7 percent and 18.4 percent for mid-grade and 7.2 
percent and 15.0 percent for premium-grade markets. 
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negative shock, this does not take into account the additional interaction term that includes the 

effect of seller density.  Doing so, we find that, in fact, stations react more to positive shocks, 

matching positive shocks to control stations’ regular-grade-prices by increasing prices by 25.5 

percent of the imposed shock, on average, while matching negative shocks by decreasing prices 

by only 12.2 percent of the imposed shock.  This pattern for regular grade gasoline also appears 

to hold for mid-grade and premium grade gasoline.  Further, note that due to the significance of 

seller density on competitor reactions, our results suggest that this asymmetry in reactions is 

more extreme in high density markets.33 

Columns 3, 6 and 9 in Table 4 introduce five additional interaction terms to investigate 

whether station characteristics affect the extent of reaction to imposed deviations.  Recall that the 

theory has characterized differences across markets solely in terms of the number of competitors 

in the market, which implies that the reaction to a price change by one of the N-1 other sellers in 

the market is the same regardless of which of the other sellers changes price.  However, if 

“higher density” merely signifies a higher proportion of stations that are “close, but not close 

enough to react to our imposed changes,” reactions might be less, on average, where reacting 

stations are in more densely competitive markets.  Therefore, the first interaction is the distance 

the station is from the corresponding control station where the shock was introduced.  In 

addition, as the response of the “reacting station” may differ if the reacting station is the same 

brand as the control station we introduce controls for same-brandedness.  Further, as Noel (2001) 

                                                 

33 Allowing for asymmetric reactions, at the upper quartile of station density, the average reactions to positive and 
negative shocks are, on average, 24.2 percent and 4.9 percent of imposed shocks, respectively.  At the lower quartile 
of station density, the average reactions to positive and negative shocks are, on average, 29.2 percent and 20.0 
percent of imposed shocks, respectively.  Recall that our simulation does not suggest an asymmetry in the response 
of seller-price to an exogenous change in a rival’s price.  This suggests that further investigation may be warranted.  
In separate estimations (not reported) we allow for non-linear responses to our imposed deviations.  We cannot 
reject the null of linear responses. 
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finds some evidence of differences in response rates across station types, we include a measure 

of the stations’ ownership and a control for whether the station is a major brand.34  In all cases, 

we allow the influence of these characteristics to differ for positive and negative shocks. 

Interestingly, while one might suppose that the distance from the particular seller that 

changes price may affect the magnitude of the reaction, this appears not to be the case.  Another 

interesting finding from the inclusion of additional interaction terms with respect to regular-

grade gasoline is that company-operated stations are more responsive to negative shocks than are 

stations of other ownership types.  Major-branded stations are also different in their 

responsiveness to positive shocks than are independent stations, their regular-grade prices being 

58.8 percent less responsive to positive shocks than non-major retailers, on average.35 

As noted above, extending the above analysis to consider reactions over time, rather than 

our simple one-day reaction, would be interesting.  Unfortunately, the nature of the field-

experiment as well as limitations in data collection vitiates the usefulness of such an exercise.  In 

particular, our week-on, week-off rule for imposing price changes ultimately yields a fairly short 

time-series over which one can analyze reactions.  Combined with data on competing stations 

being collected on weekdays only, the potential number of reacting days is further reduced.  

Specifically, note that even with only one additional lag included, the sample size is cut by 43 

percent.  If we include a third lag, the sample size is cut by 83 percent from our original sample.  

                                                 

34 Noel (2001) follows endogenous price changes and station “responses” for a sample of 22 retail stations as 
opposed to our method of measuring deviations from predicted prices during periods when we set control station 
prices exogenously.  Our sample includes nine major brands: 76, ARCO, BP, Chevron, Exxon, Mobil, Shell, Texaco 
and Unocal.  All other sellers are considered independent, or non-major, retailers. 
35 Major retailers respond by 22.6 percent of the positive shock, on average, while non-major retailers respond by 
54.9 percent of the imposed shock. 
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As such, results of estimating equations similar in form to Eq. (13), but with the addition of 

multiple lagged terms for the underlying variable, it∆ , are not instructive. 

4. Conclusion and Further Remarks 

A substantial literature developed following Maskin and Tirole’s 1988 article that presented 

a dynamic Bertrand duopoly model where two firms alternate in the setting of prices.  Notably, 

the model demonstrates that both rigid prices and cyclical prices can exist in equilibrium.  A 

number of papers have adopted this approach in empirical work, including analyses of retail-

gasoline markets.36  For our empirical analysis, we adopt instead the theoretical framework of the 

standard differentiated-product model that considers simultaneous pricing equilibria for N firms, 

and then consider the implications of a single deviant seller.  One reason for adopting this view 

of pricing is to focus on the effect of the number of sellers on buyer behavior, as this has 

important implications for equilibrium prices.  A second reason is to isolate how the number of 

sellers affects reactions by competitors to exogenous deviations by a single station in the market.  

This focus is possible given our access to a unique data set.  Rarely can economists obtain field 

data with known, self-imposed exogenous price changes.  A key feature of this paper is a dataset 

that collected prices and volumes over a period of time for a sample of retail gasoline stations 

stratified by the number of rivals within two miles, plus prices at these rival stations when prices 

at a sub-sample of the “control” stations were intermittently determined exogenously. 

 Although there are limitations – a small number of control stations, a short period of time for 

price collection, restricted data collection during weekends, the existence of other shocks in the 

retail gasoline market during this period – the dataset still presents the ability to test two key 

                                                 

36 Recent examples include Castanias and Johnson (1993), Noel (2001) and Eckert (2003). 
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implications of the differentiated-product model, namely that an increase in the number of rivals 

increases the price elasticity of demand of an individual seller and that the reaction of rivals to an 

exogenous price change by one seller in the market will decrease with an increase in the number 

of rivals. 

 Our findings confirm both implications.  With respect to the elasticity findings, the direct 

link we find between the number of sellers in a market and the individual seller’s price elasticity 

of demand supports the premise for a key folk theorem, namely that an increase in the number of 

competitors in a market will reduce prices.  With respect to our reaction findings, our empirical 

findings are also important, as they indicate that station responses are partial.  This finding of 

only a partial response to a price deviation by one seller contrasts with the simple two-firm 

sequential pricing model of Maskin and Tirole, a model that suggests a rival firm would “over-

react” to an exogenous price decrease, leading to a price war.37  Our finding that rival-responses 

depend inversely on the number of sellers in the rival’s market reinforces the importance of 

considering the role of the number of sellers in price-setting behavior.  Finally, as our control 

stations were all “major” sellers, the evidence of asymmetry in the responses of other sellers to 

exogenous deviations from the equilibrium price by one station provides support for an earlier 

finding by Slade (1992) which finds firms more responsive to “major” firm price increases than 

to decreases. 

 The preceding analysis suggests that the higher prices in San Diego and the San Francisco 

area relative to the Los Angeles area reflect to some extent lower price elasticities of demand 

                                                                                                                                                             

 
37 A word of caution is in order, as the Maskin and Tirole analysis presumes a homogeneous good and our elasticity 
results argue in favor of a differentiated-product environment for retail gasoline markets.  
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arising from lower station density.  Other things equal, such price differences should translate 

into a lower return to stations in the Los Angeles area relative to the other two areas.  Economic 

theory suggests that in the long run these differences in returns will be dissipated.  There are 

several potential avenues through which this could occur.  One way would be a decrease in the 

number of stations in the Los Angeles area relative to the San Francisco and San Diego areas.  

Figure 2 indicates that this in fact did occur.  Using Whitney-Leigh annual censuses of the three 

areas, evidence indicates a decrease in the number of stations in the Los Angeles area between 

1995 and 1998 relative to the number in both the San Francisco or San Diego areas. 

 Further, there also exists evidence of entry restrictions in the San Diego and San Francisco 

areas.  Note that if entry into these two areas were restricted we would expect to see the existing 

stations being utilized more intensively than stations in the LA area.  From the Whitney-Leigh 

census data we can construct a measure of the capacity utilization of gasoline stations.  This 

capacity measure uses information on hours of operation, monthly gasoline volume and number 

of fueling position to calculate the capacity utilization of a station in terms of the quantity of 

gasoline pumped per hour per fueling position. 

*** Insert Table 5 here. *** 

 Table 5 indicates the average capacity utilization of stations across the three areas.  As the 

numbers reported in Table 5 make clear, stations in the San Diego and San Francisco areas were 

more heavily utilized relative to stations in Los Angeles during the 1995 to 1998 period.  This 

observation is consistent with there being factors in the San Diego and San Francisco areas that 

limit the entry of new stations relative to the Los Angeles area.  If there are such restrictions to 

entry in the San Francisco and San Diego areas, then competition for the relatively restricted 

number of prime service station locations in the San Diego and San Francisco areas will result in 

higher utilization rates and higher “fixed” costs for the station operators. 
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Table 1: Gasoline Sales at Stations with Different Seller Density. 
All equations are random-effects models with first-order autoregressive disturbance terms.  Absolute values of z-statistics are in parentheses.  Coefficients are not reported for six day-of-week indicator variables 
that were included in the estimation of all equations.  Mid-level density corresponds to markets of at least 19 and less than 27 stations, while high density corresponds to markets of 27 or more stations.  Sample 
means are reported in Table B1 of Appendix B. 

 Log of sales volume (self-serve gasoline) at control station 

Independent variable Regular-Grade  Mid-Grade  Premium-Grade 

 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 
Log of self-serve price -1.465 -1.445 3.436 -1.750 -1.485 1.425 -2.749 -2.763 -0.398 
 (5.94)*** (5.69)*** (4.14)***  (5.56)*** (4.60)*** (1.32)  (8.70)*** (8.68)*** (0.38) 
Log of self-serve price interacted with:            
     Mid-level density indicator -0.659 -0.665   -0.380 -0.496   -0.716 -0.703  
 (1.91)* (1.93)*   (0.82) (1.07)   (1.50) (1.47)  
     High  density indicator -2.920 -2.930   -2.253 -2.357   -2.175 -2.176  
 (8.31)*** (8.33)***   (5.13)*** (5.39)***   (4.89)*** (4.89)***  
     Log of number of stations within 2 miles   -2.032    -1.313    -1.132 
   (7.44)***    (3.69)***    (3.25)*** 
            
Log of market-average self-serve price 1.612 1.593 -3.028  0.863 0.598 -2.485  1.083 1.109 -1.418 
 (6.14)*** (5.93)*** (3.47)***  (2.41)** (1.63) (2.06)**  (2.97)*** (2.98)*** (1.20) 
Log market-average price interacted with:            
     Mid-level density indicator 0.701 0.709   0.444 0.568   0.826 0.814  
 (1.90)* (1.92)*   (0.85) (1.09)   (1.52) (1.49)  
     High density indicator 2.841 2.853   2.466 2.569   2.370 2.374  
 (7.48)*** (7.49)***   (4.90)*** (5.12)***   (4.60)*** (4.61)***  
     Log of number of stations within 2 miles   1.938    1.403    1.221 
   (6.71)***    (3.53)***    (3.10)*** 
            
Mid-level density indicator -0.205 -0.206   -0.067 -0.069   -0.260 -0.260  
 (2.33)** (2.35)**   (0.56) (0.59)   (1.77)* (1.78)*  
High-level density indicator -0.425 -0.426   -0.449 -0.449   -0.626 -0.627  
 (4.95)*** (4.98)***   (3.85)*** (3.90)***   (4.37)*** (4.40)***  
Log of number of stations within 2 miles   -0.344    -0.259    -0.431 
   (5.07)***    (2.66)***    (3.68)*** 
San Diego area indicator 0.065 0.065 0.082  -0.065 -0.065 -0.052  0.136 0.135 0.159 
 (0.90) (0.90) (1.15)  (0.68) (0.69) (0.52)  (1.14) (1.14) (1.30) 
San Francisco indicator 0.228 0.230 0.247  0.252 0.242 0.240  0.442 0.441 0.448 
 (2.39)** (2.41)** (2.62)***  (2.00)** (1.95)* (1.79)*  (2.82)*** (2.84)*** (2.79)*** 
Log of Mid-to-Regular price ratio  0.085 0.066   -0.866 -0.830     
  (0.34) (0.26)   (2.91)*** (2.76)***     
Log of Premium-to-Mid price ratio      1.007 0.921   0.178 0.130 
      (1.95)* (1.78)*   (0.34) (0.25) 
Constant 8.491 8.484 9.295  7.159 7.174 7.767  7.057 7.039 8.019 
 (118.59)*** (114.20)*** (44.69)***  (74.14)*** (65.83)*** (25.72)***  (59.24)*** (54.49)*** (22.20)*** 
Observations / number of control stations 4,073 / 54 4,073 / 54 4,073 / 54  4,073 / 54 4,073 / 54 4,073 / 54  4,073 / 54 4,073 / 54 4,073 / 54 

 Wald χ2(17) = 
1,365.6 

Wald χ2(18) = 
1,365.9 

Wald χ2(18) = 
1,334.1 

 Wald χ2(17) = 
2,021.3 

Wald χ2(19) 
= 2,060.8 

Wald χ2(19) 
= 2,002.1 

 Wald χ2(17) = 
5,312.5 

Wald χ2(18) = 
5,311.9 

Wald χ2(18) 
= 5,229.8 

Mean of dependent variable 8.380 8.380 8.380  6.718 6.718 6.718  6.207 6.207 6.207 
Results are robust to dropping all observations corresponding to Saturday and Sunday.  * significant at 10% level.     ** significant at 5% level.    *** significant at 1% level. 
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Table 2: Differences in Price Elasticity, Predicted Prices, and Actual Prices 
Across Areas 

Regular-Grade Gasoline 

Area 

Predicted 
average price 
elasticity of 
demand a 

Predicted 
price/marginal 

cost ratio 
(m) 

Predicted 
percentage 

difference from 
LA area price 

Actual percentage 
difference from LA 

area price 
(Lundberg 1995-99)

San Francisco  2.46 1.69 9.8% higher 7.7% higher 
San Diego  2.37 1.73 12.5% higher 6.3% higher 
Los Angeles  2.86 1.54 --- --- 

Mid-Grade Gasoline 

Area 

Predicted 
average price 
elasticity of 
demand a 

Predicted 
price/marginal 

cost ratio 
(m) 

Predicted 
percentage 

difference from 
LA area price 

Actual percentage 
difference from LA 

area price 
(Lundberg 1995-99)

San Francisco  2.38 1.72 7.2% higher 6.6% higher 
San Diego  2.33 1.75 9.0% higher 6.2% higher 
Los Angeles  2.65 1.61 --- --- 

Premium-Grade Gasoline 

Area 

Predicted 
average price 
elasticity of 
demand a 

Predicted 
price/marginal 

cost ratio 
(m) 

Predicted 
percentage 

difference from 
LA area price 

Actual percentage 
difference from LA 

area price 
(Lundberg 1995-99)

San Francisco  3.68 1.37 2.2% higher 6.7% higher 
San Diego  3.63 1.38 2.7% higher 6.0% higher 
Los Angeles  3.90 1.34 --- --- 
a  Calculated from the own-price coefficients estimated in Table 1, columns 3, 6, and 9, and the average number of 
stations in each market area (22.2 in LA; 17.5 in the San Diego area and 18.2 in the San Francisco area). 
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Table 3: Simulations of Reaction Deviation to Control Station Deviation, by Station Density 
Panel A: Differences in Market Size 

 
 

Parameter Values (zero profits, markets differ by number of 
buyers) 

   

Number 
of sellers 

(N) 

Number 
of 

buyers 
(L) 

Fixed 
costs 
(K) 

Marginal 
cost  
(α ) 

Lower 
bound on 
uniform 

distribution 
of visiting 

costs 

Upper 
bound on 
uniform 

distribution 
of visiting 

costs 

Initial 
Equilibrium 

price 

Control station’s 
deviation 

(increase) from 
initial equilibrium 

price 

Reacting sellers’ 
(N-1) deviation in 
price from initial 
equilibrium price  

 
2 

 
5,000 

 
50,000 

 
100 

 
0 

 
40 

 
120.0 

 
2.0 

 
1.0 

4 20,000 50,000 100 0 40 110.0 2.0 .15 
6 
 

45,000 50,000 100 0 40 106.7 2.0 .06 

Panel B: Differences in Fixed Entry Costs 

 
 

Parameter Values (zero profits, markets differ by size of fixed 
cost) 

   

Number 
of sellers 

(N) 

Number 
of 

buyers 
(L) 

Fixed 
costs 
(K) 

Marginal 
cost  
(α ) 

Lower 
bound on 
uniform 

distribution 
of visiting 

costs 

Upper 
bound on 
uniform 

distribution 
of visiting 

costs 

Initial 
Equilibrium 

price 

Control station’s 
deviation 

(increase) from 
initial equilibrium 

price 

Reacting sellers’ 
(N-1) deviation in 
price from initial 
equilibrium price  

 
2 

 
20,000 

 
2,000,000 

 
100 

 
0 

 
40 

 
120.0 

 
2.0 

 
1.0 

4 20,000 50,000 100 0 40 110.0 2.0 .15 
6 
 

20,000 22,222 100 0 40 106.7 2.0 .06 

 

 



 34

Table 4: Reactions to Exogenous Changes in Control-Station Gasoline Prices. 
All equations are fixed-effects models with first-order autoregressive disturbance terms.  Absolute value of t-statistic is in parentheses. 
  

Non-control station self-serve price:  (Actual – predicted) 
 

 
Independent variable 

 
Regular-Grade 

  
Mid-Grade 

 

  
Premium-Grade 

 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

Lagged control-station price deviation:            
  (Actual – predicted) 0.908 1.065 0.991  0.791 0.706 0.659  0.586 0.568 0.606 
 (3.88)*** (3.07)** (2.78)***  (3.54)** (2.17)** (1.95)*  (2.87)*** (1.87)* (1.89)* 
  (Actual - predicted); positive deviations only  -0.454 -0.123   0.127 0.511   0.060 0.201 
  (0.88) (0.23)   (0.22) (0.87)   (0.12) (0.40) 
Lagged control-station price deviation interacted with:            
     Log of number of stations within 2 miles -0.233 -0.301 -0.296  -0.210 -0.195 -0.169  -0.151 -0.169 -0.148 
 (3.10)*** (2.75)** (2.66)***  (2.88)** (1.86)* (1.58)  (2.29)** (1.69)* (1.45) 
     Distance from control station   0.041    -0.046    -0.001 
   (0.44)    (0.45)    (0.01) 
     Same (major) brand as control station   0.125    0.178    0.174 
   (0.95)    (1.22)    (1.22) 
     Ownership indicator (Company   0.298    0.206    0.242 
          operated = 1)   (1.87)*    (1.21)    (1.43) 
     Major-brand indicator (Major   -0.055    -0.063    -0.207 
          brand = 1) a   (0.48)    (0.51)    (1.63) 
Lagged control-station price deviation: (positive deviations only)            
     Log of number of stations within 2 miles  0.185 0.198   -0.015 -0.051   0.022 0.062 
  (1.11) (1.15)   (0.08) (0.26)   (0.14) (0.37) 
     Distance from control station   -0.085    0.162    -0.076 
   (0.59)    (0.98)    (0.49) 
     Same (major) brand as control station   0.037    0.170    0.076 
   (0.18)    (0.75)    (0.34) 
     Ownership indicator (Company   -0.294    -0.174    -0.340 
          operated = 1)   (1.17)b    (0.64)    (1.35) 
     Major-brand indicator (Major   -0.269    -0.492    -0.143 
          brand = 1) a   (1.45)c    (2.40)**    (0.73) 
Constant 0.005 0.002 0.002  0.006 0.003 0.004  0.004 -0.001 -0.000 
 (17.76)*** (5.28)** (5.00)***  (17.56)* (6.93)** (7.13)***  (12.13)** (1.12) (0.71) 
Observations / number of unique control stations 3,090 / 566  3,063 / 561  3,077 / 563 

 

F(2,2522)  
= 24.67 

F(4,2520
) = 13.31 

F(12,251
2)  

= 5.61 
 

F(2,2500
) 

= 15.96 

F(4,2498
)  

= 8.26 

F(12,2490)  
= 5.07  F(2,2512)  

= 11.46 
F(4,2510)  

= 6.50 
F(12,2502)  

= 3.79 

Mean of dependent variable 0.000  0.001  0.001 
a Our sample includes nine major brands: 76, ARCO, BP, Chevron, Exxon, Mobil, Shell, Texaco and Unocal.  All other sellers are considered independent, or non-major, retailers. 
b The net effect of company ownership on reactions to positive shocks is statistically insignificant (i.e. company operated stations react more only to negative shocks). 
c The net effect of major-brandedness on reactions to positive shocks is statistically significant (i.e. major branded stations react less only to positive shocks). 
* significant at 10% level, ** significant at 5% level, *** significant at 1% level. 
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Table 5: Capacity Utilization by Area 
Year San Francisco Area 

average gasoline sales per 
fueling position per hour 

Los Angeles Area average 
gasoline sales per fueling 

position per hour 

San Diego Area average 
gasoline sales per fueling 

position per hour 
1995 29.4 24.6 28.3 
1996 29.1 26.7 25.5 
1997 30.0 26.4 27.5 
1998 31.4 26.8 30.8 
Source: Whitney-Leigh census 
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Figure 1
Los Angeles Self-Serve Regular Price and Difference Between 

Prices in the San Diego and Bay Areas and the Los Angeles Area
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Figure 2
Ratios of the Number of Stations in the Los Angeles Area to the 

Number in the San Diego and Bay Areas, 1995-1998
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Appendix A: Census Data and Station Density 

 

 This Appendix provides further detail on the merging of the Census data and other data 

sources to generate a dataset used to calculate station densities for the San Francisco, Los 

Angeles, and San Diego areas.  Once the census data were matched as described in the text, the 

data were then matched to the 721 stations contained in the 1999 Proprietary Price Surveys as 

well as to a listing of California company-operated stations provided by the large, major brand 

gasoline retailer.38  Table A1 reports the various types of matches of the census data with each 

other and with the Proprietary Price Survey.  The source of the 1999 Proprietary Price Survey is 

discussed in Section 2 of the text. 

 

Table A1: Identification of Stations From Various Censuses 

Source or Sources of Station Information 
Stations not in 1999 

Proprietary Price 
Survey 

Stations in 1999 
Proprietary Price 

Survey 

Total number of 
stations 

Lundberg, MPSI, and Whitney-Leigh census 3,312 501 3,813 

Lundberg and MPSI census only 35 1 36 

Lundberg and Whitney-Leigh census only 2,384 212 2,596 

MPSI and Whitney-Leigh census only 113 1 114 

Whitney-Leigh and company stations only 1  1 

Lundberg census only 676 5 681 

MPSI census only 131 1 132 

Whitney-Leigh census only 142  142 

Company-operated stations only 4  4 

 
Total Number of Stations 

 
6,798 

 
721 

 
7,519 

 

                                                 

38 As mentioned above, the researchers controlled the retail prices at 54 control stations.  To measure the impact of 
these price changes, we surveyed each day of the week all of the other stations within a two-mile radius around the 
control station.  We call this survey of 721 stations the Proprietary Price Survey. 
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 Our next step was to delete stations in our combined dataset that appear not to have been in 

operation during the period of our price survey (Spring, 1999).  First, we deleted 36 stations only 

found in the Whitney-Leigh census that were reported in that census as “not in operation.”  Next, 

we deleted 10 stations in the various Lundberg censuses that could not be matched with any 

other census and that the 1999 Proprietary Price Survey specifically identified as “not in 

operation” at the time of the survey.  Third, we deleted 125 stations in the Lundberg census that 

could not be matched with either of the other two censuses and that the Lundberg census cited as 

“not in operation.”  Fourth, we deleted 148 stations that were in both the Lundberg and Whitney-

Leigh census and were cited as stations “not in operation” at the time of the census. 

 Next, we dropped 20 stations that were in both the Whitney-Leigh census and Lundberg, but 

for whom the match to the Whitney-Leigh census was not to the most recent (1998) Whitney-

Leigh census.  The presumption was that these stations were missing from the most recent 

Whitney-Leigh census because they had gone out of operation.  We also dropped 44 stations 

with the brand CFN that only appeared in the Lundberg census.  Apparently stations selling this 

brand closed down subsequent to Lundberg’s 1996 census, and thus did not appear in either the 

Whitney-Leigh or the MPSI census.  Finally, we dropped 4 company-operated stations of the 

gasoline retailer that were not in any of the areas covered by the census and 20 Whitney-Leigh 

stations that were in counties outside those covered by the Lundberg and MPSI surveys. 

 Among the stations left, a number were in both the Lundberg census and the MPSI census.  

We thus had two sets of latitudes and longitudes for these stations, and could check the accuracy 

of these location data.  If the two censuses indicated locations that differed by more than one 

fifth of a mile, an independent assessment of location was made using the most recent mapping 

programs and address information taken from the matched data in order to determine the correct 
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latitude and longitude data.  This mapping process was also used to fill in missing latitude and 

longitude data, especially for the Whitney-Leigh stations that did not match with either the 

Lundberg or MPSI census stations.  There remained, however, 67 stations for which a latitude 

and longitude could not be computed.  These were typically stations in rural areas with addresses 

that provided neither a street number nor a crossing street.  Without such exact location data, 

these stations had to be excluded from the calculations of the density of other sellers. 

 The outcome of the above elimination of stations not in operation as of 1999 or without 

location data is the identification of 7,045 stations across the three areas (Los Angeles, San 

Diego, and the San Francisco areas).  Table A2 reports the various types of matches for these 

stations.  One important item to note is that all 721 stations in the 1999 Proprietary Price Survey 

are contained in the census data analyzed. 

Table A2: Stations in Operation in 1999 From Various Censuses 

Source or Sources of Station Information 
Stations not in 

1999 Proprietary 
Price Survey 

Stations In 1999 
Proprietary Price 

Survey 

Total number of 
stations 

Lundberg, MPSI, and Whitney-Leigh census 3,312 501 3,813 

Lundberg and MPSI census only 35 1 36 

Lundberg and Whitney-Leigh census only 2,185 212 2,397 

MPSI and Whitney-Leigh census only 113 1 114 

Whitney-Leigh and company stations only 1  1 

Lundberg census only 479 5 484 

MPSI census only 131 1 132 

Whitney-Leigh census only 68  68 

 
Total Number of Stations 

 
6,324 

 
721 

 
7,045 

 

Table A3 reports the results of an estimation of Eq. (7) using an alternative representation of 

density to that reported in the paper which goes beyond the simple number of competitors 

suggested by the theory.  Specifically, the index of competition for each control station is defined 

as the ratio of the number of stations within two miles of the respective control station to the 

average distance to stations within two miles of the respective control station.  



 4

 

Appendix B: Supplementary Tables 

 

Below we provide two supplementary tables.  The first, Table B1, provides sample means 

for Table 1.  The second, Table B2, replicates Table 1, but uses the alternative measure of 

density that incorporates an adjustment for the average distance to competitors. 

 
Table B1: Descriptive Statistics 

Numbers represent mean values of variables in Table 1.  Standard errors are in parenthesis. 

Independent variable Regular-Grade Mid-Grade Premium-Grade 

Log of sales volume (self-serve gasoline) at  8.38 6.718 6.207 
     control station (.344) (.451) (.593) 
Log of self-serve price .230 .320 .391 
 (.168) (.162) (.154) 
Price interacted with:    
     Mid-level density indicator .076 .106 .128 
       (.145) (.178) (.205) 
     High  density indicator .079 .112 .138 
       (.147) (.178) (.205) 
     Log of the number of stations within  .694 .967 1.181 
      two miles (.525) (.519) (.506) 
    
Log of market-average self-serve price .265 .355 .421 
 (.157) (.144) (.136) 
Log of market-average price interacted with:    
     Mid-level density indicator .087 .116 .136 
       (.154) (.187) (.213) 
     High density indicator .092 .125 .149 
       (.155) (.187) (.214) 
     Log of number of stations within 2 miles .799 1.072 1.270 
 (.493) (.468) (.458) 
Mid-level density indicator (index) .319 .319 .319 
       (.466) (.466) (.466) 
High  density indicator (index) .362 .362 .362 
       (.481) (.481) (.481) 
Log of (number of stations within 2 miles) 3.015 3.015 3.015 
       / (average distance from control) (.502) (.502) (.502) 
San Diego area indicator .370 .370 .370 
 (.483) (.483) (.483) 
San Francisco area indicator .165 .165 .165 
 (.371) (.371) (.371) 
Log of Mid-to-Regular price ratio .090 .090  
 (.019) (.019)  
Log of Premium-to-Mid price ratio  .071 .071 
  (.012) (.012) 
Observations / number of unique control 
stations 

4,073 / 
54 

4,073 / 
54 

4,073 / 
54 
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Table B2: Gasoline Sales at Stations with Different Seller Density using Average Distance to Competitors. 
This table reports estimated elasticities across market densities using an index of competitiveness for each control station, defined as the ratio of the number of stations within two miles of the control station to the 
average distance to a station within two miles of the control station.  Like Table 1, markets are designated low, mid and high-density according to whether the market’s index falls below the 33rd percentile in the 
sample, between the 33rd and 67th percentiles, or above the 67th, respectively.  All equations assume that the disturbance term is first-order autoregressive.  Absolute values of z-statistic are in parentheses.  
Coefficients for six day-of-week indicator variables are included in the estimation of all columns.  Further, note that where one includes a separate measure of average distance to competitors within 2.0 miles, the 
estimated coefficient is insignificant. 
 Log of sales volume (self-serve gasoline) at control station 

 
Independent variable 

 
Regular-Grade 

  
Mid-Grade 

 

  
Premium-Grade 

 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

Log of self-serve price -1.935 -1.937 4.558 -1.991 -1.759 2.710 -3.173 -3.187 -0.323 
 (8.26)*** (7.98)*** (4.20)*** (6.34)*** (5.48)*** (1.96)* (10.05)*** (10.03)*** (0.24) 
Log of self-serve price interacted with:          
     Mid-level density indicator (index) 0.094 0.095  -0.246 -0.335  0.054 0.061  
       (0.27) (0.28)  (0.55) (0.75)  (0.12) (0.13)  
     High  density indicator (index) -2.318 -2.318  -1.873 -1.929  -1.824 -1.825  
       (6.70)*** (6.68)***  (4.14)*** (4.28)***  (3.96)*** (3.96)***  
     Log of (number of stations within 2    -2.513   -1.816   -1.204 
       miles) / (average distance from control)   (6.68)***   (3.80)***   (2.58)*** 
          
Log of market-average self-serve price 2.079 2.082 -4.059 1.078 0.854 -3.821 1.558 1.585 -1.429 
 (8.34)*** (8.11)*** (3.53)*** (3.04)*** (2.37)** (2.46)** (4.32)*** (4.31)*** (0.93) 
Log of market-average price interacted with:          
     Mid-level density indicator (index) -0.032 -0.033  0.433 0.525  -0.033 -0.040  
       (0.09) (0.09)  (0.86) (1.04)  (0.06) (0.08)  
     High density indicator (index) 2.189 2.189  2.060 2.108  1.980 1.983  
       (5.83)*** (5.82)***  (3.98)*** (4.09)***  (3.72)*** (3.73)***  
     Log of (number of stations within 2    2.381   1.927   1.272 
       miles) / (average distance from control)   (5.95)***   (3.57)***   (2.38)** 
          
Mid-level density indicator (index) -0.157 -0.157  0.018 0.016  -0.064 -0.065  
       (1.79)* (1.79)*  (0.16) (0.13)  (0.43) (0.43)  
High  density indicator (index) -0.338 -0.338  -0.351 -0.348  -0.492 -0.493  
       (3.82)*** (3.83)***  (2.92)*** (2.94)***  (3.26)*** (3.29)***  
Log of (number of stations within 2 miles)   -0.350   -0.283   -0.487 
       / (average distance from control)   (3.70)***   (2.16)**   (3.07)*** 
San Diego area indicator 0.073 0.073 0.064 -0.048 -0.048 -0.063 0.156 0.155 0.129 
 (0.97) (0.97) (0.84) (0.48) (0.49) (0.61) (1.23) (1.23) (1.03) 
San Francisco area indicator 0.192 0.191 0.212 0.223 0.215 0.218 0.388 0.387 0.416 
 (1.95)* (1.95)* (2.14)** (1.72)* (1.69)* (1.63) (2.35)** (2.37)** (2.55)** 
Log of Mid-to-Regular price ratio  -0.009 0.035  -0.798 -0.864    
  (0.04) (0.14)  (2.68)*** (2.88)***    
Log of Premium-to-Mid price ratio     0.995 0.956  0.193 0.077 
     (1.93)* (1.84)*  (0.37) (0.15) 
Constant 8.444 8.444 9.281 7.081 7.089 7.808 6.931 6.911 8.141 

 (115.49)*** (111.37)*** (33.51)*** (72.22)*** (64.41)*** (20.28)*** (55.93)*** (51.82)*** (17.48)*** 
   

Observations / number of unique control 4,073 / 4,073 / 4,073 / 4,073 / 4,073 / 4,073 / 4,073 / 4,073 / 4,073 /
 Wald χ2(17) 

= 1,365.6 
Wald χ2(18) = 

1,365.9 
Wald χ2(18) 

= 1,334.1 
 Wald χ2(17) = 

2,021.3 
Wald χ2(19) = 

2,060.8 
Wald χ2(19) 

= 2,002.1 
 Wald χ2(17) 

= 5,312.5 
Wald χ2(18) = 

5,311.9 
Wald χ2(18) 

= 5,229.8 
Mean of dependent variable 8.380 8.380 8.380  6.718 6.718 6.718  6.207 6.207 6.207 
Results are robust to dropping all observations corresponding to Saturday and Sunday and to the inclusion of controls for number of nozzles, hours of operation and C-store existence.  
* significant at 10% level.     ** significant at 5% level.    *** significant at 1% level. 

 


