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Abstract

We show that if policy-makers compute the optimal unconstrained
interest-rate rule within a Taylor-type class, they may be led to rules
that generate indeterminacy and/or instability under learning. This
problem is compounded by uncertainty about structural parameters
since an optimal rule that is determinate and stable under learning for
one calibration may be indeterminate or unstable under learning under
a different calibration. We advocate a procedure in which policy-
makers restrict attention to rules constrained to lie in the determinate
learnable region for all plausible calibrations, and that minimize the
expected loss, computed using structural parameter priors, subject to
this constraint.

JEL classification: E52, E32, D83, D84.

Keywords: Monetary policy, Taylor rules, indeterminacy, learning, E-
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1 Introduction

The development of tractable forward looking models of monetary policy,
together with the influential work of [38], has lead to considerable interest
in the performance of Taylor-type interest rate rules.! These rules take the
nominal interest rate as the policy instrument and direct the central bank to
set this rate according to a simple dependence on current, lagged or expected

'For a recent survey and extended analysis, see [35].



inflation and output gap, and possibly on a term generating interest rate
smoothing. Extended Taylor-type rules would allow for a dependence on all
these variables and also on observable exogenous shocks.

While these simple policy rules have clear advantages, it has been noted
by a number of authors, e.g. [4], [43], [36] and [10], that the corresponding
models exhibit indeterminate steady-states for large regions of the reasonable
parameter space. This is undesirable because associated with each indetermi-
nate steady-state is a continuum of equilibria depending on extraneous vari-
ables known as “sunspots”, and the particular equilibrium on which agents
ultimately coordinate may be suboptimal.

A distinct and equally troubling concern, which can arise whether the
steady state is determinate or indeterminate, is the possibility that the choice
of interest rate rule results in the intended equilibrium being unstable under
least-squares learning by private agents; see [6], [7], [15], [16] and [17]. In such
cases, the economy under learning would fail to deliver the intended equi-
librium and might either follow a divergent path or converge on a sunspot
equilibrium. The issue of whether sunspot solutions can be stable under
learning, in New Keynesian models, is also of interest and has recently re-
ceived some attention.?

The current paper examines these issues for the New Keynesian model
in greater detail. [6] and [17] show that indeterminacy and instability under
learning can arise for plausible but ad hoc Taylor rules. Here we assess the
hazards of indeterminacy and instability under learning when policy-makers
choose a Taylor-type rule optimally in the sense that they minimize their loss
function. One might anticipate that optimized Taylor rules would generate
determinate steady-states and learnable equilibria, but we show that this
is not the case: unstable indeterminacy, stable indeterminacy and unstable
determinacy are all possibilities.?

2[42] demonstrated the possibility of sunspot solutions being stable under learning in
simple overlapping generations models. For local stability conditions in purely forward-
looking models see [11] and [14]. [19] provide corresponding stability conditions for models
with a predetermined variable. For the possibility of stable sunspots in the New Keynesian
Monetary model, see [25] and [17]. Results on PPP rules in a small open-economy set-up
are given in [45].

3Some partial results along these lines have already been obtained. [32] evaluated
optimal policy for several classes of Taylor-type rules and found cases in which the optimal
rule lay within the indeterminate region. However, they did not investigate stability under
learning. [15], [16] showed that certain types of rules designed to be fully optimal can be
unstable under learning, but their examples are restricted to “fundamentals-based” rules



Similar analysis can be conducted on extended Taylor-type rules that de-
pend on exogenous shocks as well as endogenous variables. Such rules are
sufficiently general that they are in principle able to implement unconstrained
optimal policy, i.e. minimize the government loss function. However, there
is a multiplicity of “optimal” rules of this type, and we find that optimal
rules consistent with both stable and unstable indeterminacy abound. A
numerical search algorithm, if left unconstrained, would not distinguish be-
tween a rule leading to stable determinacy and a rule subject to instability
and/or indeterminacy problems. The clear conclusion from the first part of
our analysis is therefore that, whether one is considering plausible “ad hoc”
rules or rules that aim to implement optimal policy, unconstrained policy
can yield undesirable outcomes and it is crucial to explicitly impose both
determinacy and stability under learning constraints.

Having established this point, we turn to the issue of parameter uncer-
tainty. Alternative calibrations of the New Keynesian model differ greatly
both in terms of the structural parameters controlling the interest elasticity of
demand and output elasticity of inflation, and in terms of the degree of iner-
tia. Are optimal constrained policies obtained under one specification robust
to alternative calibrations? Our second main conclusion is that parameter
uncertainty greatly compounds instability and indeterminacy concerns: a
rule that is constrained optimal with respect to one calibration may result in
stable sunspots, instability or even explosiveness under another calibration.
This point holds regardless of the true degree of inertia in the structural
model.

To address the additional problems arising from parameter uncertainty,
we consider the existence of “robust” policy. At issue here is whether there
exist policy rules that yield stable determinacy across calibrations. Strikingly
we find that such rules do exist, and thus we can search for the optimal rule
within this class. That is, given a prior distribution over structural parame-
ters, we can use a “Bayesian” approach to compute the optimal interest-rate
rule subject to the requirement that it generate determinate stable solutions
across all calibrations which obtain with positive probability.*

that depend only on exogenous shocks or lagged endogenous variables. Our analysis also
goes beyond these papers in investigating policy across calibrations and in the presence of
structural parameter uncertainty.

4Our approach is similar in spirit to the one advocated by [5], but our sense of robustness
is different: they use a Bayesian approach that incorporates a minimax element placing
additional weight on worst-case outcomes, whereas we guard against indeterminacy and



Our concrete numerical results are easily summarized. We use a prior
with subjective weights that reflects the wide diversity of opinion on appro-
priate parameter values. The robust optimal constrained Taylor-type rule
has heavy interest-rate smoothing and places substantial weight on expected
future, expected current, and lagged inflation and output, and on observed
exogenous shocks. However, we also provide a quite simple robust Taylor-
type rule, which has only a 1.3% deterioration in performance, and we further
find that fairly satisfactory results can even be obtained using simple Taylor-
rules with interest-rate smoothing and well-chosen coefficients.

Our results are derived within a standard but very simple linearized New
Keynesian model. However, our approach has general applicability and could
in principle be applied to more detailed and realistic models. The key steps
are, first, to obtain the set of policies that are robust in the specific sense
that they yield a model that is determinate and an equilibrium that is stable
under learning, and then to obtain the policy that maximizes the expected
value of the policy-maker objective subject to this constraint.

The paper is organized as follows. Section 2 summarizes the monetary
policy framework and the tools for analyzing determinacy and stability under
learning. Section 3 presents the basic issues in the context Taylor-type rules
and summarizes the analogous results for extended Taylor rules. Section 4
extends our analysis of optimal constrained policy to allow for parameter
uncertainty, and Section 5 concludes.

2 Framework

We study optimal policy using several variants of the New Keynesian Mon-
etary model that have in common the following forward-looking linearized
IS-AS curves:

IS L Ty = —¢(Zt — EﬂTH_l) + 5Et$t+1 + (]. — 5)%’15_1 + gt (1)
AS : my=B(vEme + (1 —y)m—1) + Az + wg. (2)

Here z; is the proportional output gap, m; is the inflation rate, i; is the
nominal interest rate, and ¢, and wu; are independent, exogenous, stationary,
zero mean AR(1) shocks with damping parameters 0 < p, < 1land0 < p, < 1
respectively.

instability under learning. [5] also address estimation issues.
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The first equation is a formulation of the forward-looking IS curve amended
to include inertia. This functional form may be obtained from a linearized
model of optimizing behavior on the part of consumers. In some cases we
also allow for an inertial term x,_ 1, which is present due to habit formation:
see for example [34]. The second equation is the forward-looking Phillips
curve. When v = 1, equation (2) is the pure forward-looking New Keynesian
“AS” relationship based on “Calvo pricing,” and employed in [9] and Ch.
3 of [44].> Here 0 < 3 < 1 is the discount factor. Again, this equation is
obtained as the linearization around a steady state.® The specification of the
AS curve in the case 0 < v < 1 incorporates an inertial term and is similar in
spirit to [20], the Section 4 model of [21], and the Ch. 3, Section 3.2 model of
[44], each of which allows for some backward looking elements. Models with
0 < v < 1 are often called “hybrid” models, and we remark that in some
versions, such as [20], 5 = 1, so that the sum of the forward and backward
looking components is one, while in other versions 3 < 1 is possible.”

The structural model is closed by specifying a policy rule describing how
interest rates are set. The indeterminacy and instability regions depend
critically on the specification of this policy rule. We analyze a number of
policy rules, which we parameterize as follows:

PR1 . it = Oéﬂ—Etﬂ't + OémEth’t (3)
PR2 . it = QM1 + Qg1 (4)
PR3 . it = O[ﬂ—Etﬂ'H_l + O[mEtl'H_l. (5)

We previously studied the determinacy and stability properties of this set
of rules (as well as others) in [17], but here we consider the issue of optimal
policy. PRy, PRy, and PR3 are the rules examined by [6]. We have omitted
the intercepts for convenience, and in each policy rule 7; can be interpreted
as the deviation of inflation from its target. These are all Taylor-type rules in
the spirit of [38]. We assume throughout that oy, a,, > 0 and thus the o, By,
term in PR; indicates the degree to which monetary policy authorities raise
1; in response to an upward deviation of E;m; from its target.

For the version with mark-up shocks see [44] Chapter 6, Section 4.6.

6One limitation of our approach is that our set-up employs a linearized structural
model. When non-linearities are present other REE may exist even if the linearized model
is locally determinate, a point emphasized in [2]. When nonlinearities are important it
may be desirable to strengthen the constraints on policy rules that we advocate.

"To remain consistent with the work of [20], when we include inertia in our analysis,
we set 8 = 1. For cases without inertia we use the standard calibration value 5 = 0.99.



Taylor’s original formulation specified dependence on current values of
endogenous variables, but the assumption that current data on inflation and
the output gap are available to policymakers when interest rates are set has
been met with criticism: see for example [28]. [6] look at three natural al-
ternatives: a slight modification of Taylor’s formulation yields PR, in which
policy makers condition their instrument on expected values of current infla-
tion and the output gap®; in PRy policy makers respond to the most recent
observed values of these variables; and in PR3 they respond instead to fore-
casts of future inflation and the output gap.

This list of rules is far from exhaustive. In particular, it is quite natural
to include dependence on fundamental shocks and to analyze more general
rules that nest PRy - PR3 as special cases; in fact, some forms of these more
general rules allow for the implementation of the best possible equilibrium
as measured by the government’s objective. We consider some of these more
general rules below, but to provide better context, we put off their discussion
until Section 3.3.

The model is said to be determinate if there is a unique nonexplosive
REE and indeterminate if there are multiple nonexplosive solutions.” The
determinacy of a model can be analyzed by writing the reduced form equation
as a difference equation with the associated extraneous noise terms capturing
the errors in the agents’ forecasts of the free variables. If the nonexplosive
requirement of a rational expectations equilibrium pins down the forecast
errors, that is, if the dimension of the unstable manifold is equal to the
number of free variables, then the model is determinate. The methodology
for assessing determinacy in linearized models is well known, and we refrain
from presenting the details. For the monetary models and interest rate rules
considered in this paper the specifics are given in our earlier paper [17].

If the model is indeterminate, there exist multiple stationary solutions,
including those that depend on extrinsic fluctuations or “sunspots” as well as
solutions that “over-react” to intrinsic shocks. Furthermore, a given sunspot
solution has alternative representations, a point that is important if one is
interested in whether sunspot solutions are stable under learning. Again,
these issues are discussed at length in [17].

8The time ¢ expectations of ¢ + s-dated endogenous variables (s = 0,1) are assumed
conditioned on t-dated exogenous variables, and all ¢ — 1-dated information.

By “nonexplosive” we mean that for each ¢ the conditional expectations F |z, | and
Ey;|mys| are uniformly bounded over s. For a detailed discussion of this and related
concepts see [19].



We now discuss the issue of stability under learning. If the model is deter-
minate, so that there is a unique non-explosive REE (rational expectations
equilibrium), it is desirable that the solution be stable under learning. By
this we mean that there is convergence to the solution if private agents in
the economy estimate and update the coefficients of their forecast functions
using least squares regressions. Because the models are self-referential, i.e.
the evolution of the economy depends on how agents form expectations, the
stability of an REE under least squares learning cannot be taken for granted.

More specifically, the structural model combined with the interest rate
rule can be written in reduced form as follows:

yt = AE:yt+1 + BE:yt + Cyt—l + Dg?b (6)

where y; = (zy,m) and §; = (g4, ur). We now write E; to indicate that we
no longer impose rational expectations. Thus we are treating the IS and
AS equations (1)-(2) as arising from the aggregation of individual decisions,
which depend on expected and lagged output and inflation.!? At issue is how
agents form their time ¢ expectations E;. In the determinate case the unique
nonexplosive solution takes the form

Y = a+ by, 1 + €0y, (7)

for particular values @, b and é.

Under least squares learning (7) is treated as the econometric specification
of a forecasting rule, the parameters of which are estimated by the private
agents. The specification is often referred to as a Perceived Law of Motion
(PLM). Combining the regressors into the vector X, = (1,v;_;, g;) and writ-
ing the parameters as ©' = (a,b, ¢), the PLM can be written as y; = 0'X;.
Under learning agents obtain least squares estimates O} = (ay, by, ¢;) using
data through time ¢ and then use the estimated PLM to form their forecasts
Efyi1 and E}y,, which in turn influence the path of y;. The question is then
whether or not (ay, by, ¢;) — (a,b, €) as t — oo. If so, we say that the solution
is stable under learning.

We use expectational stability as our criterion for judging whether agents
may be able to coordinate on specific solutions, including in particular sunspot
equilibria. This is because, for a wide range of models and solutions, E-
stability has been shown to govern the local stability of REE under least

WFor detailed discussion on this point for the New Keynesian model, see [16].



squares learning. In many cases this correspondence can be proved, and in
cases where this cannot be formally demonstrated the “E-stability princi-
ple” has been validated through simulations. For a thorough discussion of
E-stability see [12].

The E-stability technique is based on a mapping from the PLM to the
corresponding Actual Law of Motion (ALM) parameters. For the case at
hand, if agents believed in the PLM (a, b, ¢) then their corresponding forecasts
would be given by Efy.1 = a + bE}y; + cEfgi1. Let p denote the 2 x 2
diagonal matrix with elements p,, p,. Using Efy, = a + by, 1 + cg, and
assuming for convenience that p is known, so that E;§,.1 = pg, yields

Efyi1 = (Io + b)a + 0*ye1 + (be + cp) g

Inserting Efy; and E}y,.q into (6) and solving for y; as a linear function of
an intercept, y; 1 and g; yields the corresponding ALM parameters induced
by the PLM.

a — A(ly+b)a+ Ba (8)
b — A+ Bb+C (9)
¢ — A(bc+cp)+ Be+ D. (10)

Equations (8)-(10) define a mapping from PLM parameters O to the ALM
parameters T'(0). The REE O’ = (a, b, €) is a fixed point of this map and is
said to be E-stable if it is locally asymptotically stable under the differential
equation

do

I =T(0) - 0. (11)
The E-stability principle tells us that E-stable representations are locally
learnable for Least Squares and closely related algorithms. That is, if Oy
is the time t estimate of the coefficient vector ©, and if ©, is updated over
time using recursive least squares, then © is a possible convergence point,
ie. locally ©; — O, if and only if © is E-stable. Computing E-stability
conditions is often straightforward, involving computation of eigenvalues of
the Jacobian matrices of (11).

Determinacy and stability under learning are both clearly desirable prop-
erties for a policy rule. If a policy rule yields indeterminacy then in addi-
tion to the intended REE there exist other solutions depending on sunspot
variables that may be substantially inferior, in terms of the policy-maker ob-
jective function. If the policy rule yields determinacy but is unstable under

8



learning, then the economy will fail to converge to the intended solution.
The earlier literature has shown that these are independent properties and
so both must be checked.

A further issue of interest is whether, in the case of indeterminacy, sunspot
solutions are stable under learning. Recent research has found that sunspot
solutions can in some cases be stable under learning in monetary models of
the type considered here, and that stability can depend on the particular
representation of the solution that forms the basis of the agents’” PLM. We
examine different representations when considering the stability properties
of sunspot equilibria, and we will say that an equilibrium is learnable (or
stable) if it is E-stable for at least one representation. The representations
used for our stability analysis are discussed in detail in [17].

Above we stated that the model is closed with an instrument rule for
the interest rate. However, we can treat the parameters of the policy rule
as assessed, or pinned down, by imposing optimizing behavior on the part
of the government. As is common in the literature, we assume, for the
government’s criterion, a loss function that is quadratic in 7 and x.'* The
government chooses its policy parameters to minimize this criterion subject to
the structural model of the economy. For example, suppose the government
faces the problem

inian YVar(x|a) + Var(r|a) (12)
where equations (1) and (2) hold and the interest rate is determined by, say,
PR;. 1 is the relative weight assigned to the variance of the output gap, and
Var(-|a) is the unconditional variance of “-” given the policy parameters.
Here the government has only two choice variables, a, and a;, but for the
more general rules considered below this number may increase to nine. An
interest rate variance term is sometimes included in the loss function (12).
This is omitted in our formulation in part for simplicity, but also because
neither its inclusion nor its specific form are widely agreed upon.

The value of the government’s objective can be computed by determin-
ing the rational expectations equilibrium associated with the relevant policy
parameters «. In the indeterminate case, this value is not well defined due
to the presence of multiple equilibria. For the analysis in this paper we ex-
amine the “minimal state variable” (MSV) solution, i.e. a solution of the

!This is consistent with a second order approximation to expected average utility: see
[44]. There are, however, deeper issues involved when comparisons are made across model
type, as discussed below.



form (7), and if there are multiple such solutions, we take the loss to equal
the minimum across solutions of this form.!? We make this choice because
MSYV solutions are the ones normally computed in optimal policy exercises
and because policy-makers are aiming to minimize expected loss.'?

We will refer to the government’s problem just described as being “un-
constrained.” It is unconstrained in the sense that the government, when
choosing its optimal policy, does not restrict attention to the region corre-
sponding to stable determinacy. Our first contention is that when uncon-
strained the solution may be a policy that yields instability under learning,
indeterminacy, or both.

3 Results for Taylor-type Rules

Our central concern in this section is to investigate the possibility that uncon-
strained optimization may result in undesirable outcomes. More specifically,
we examine whether choosing the policy that yields an MSV solution mini-
mizing the government’s loss function can lead to indeterminacy, instability,
or even the presence of stable sunspots. Here, and throughout the remainder
of the paper, we use the terms “stability” and “instability” to refer to stabil-
ity under least squares learning, as discussed above.'* We will find that for
forward-looking specifications of the model, all of these outcomes can indeed
arise. We conclude that it is essential that the optimal policy problem be ex-
plicitly constrained to deliver both stability under learning and determinacy.

Analytic results are not tractable and so we proceed numerically. We
begin with Taylor rules of the form (3)-(5) and analyze each policy with
respect to three different calibrations of the parameters in the IS-AS curves,
due to [43], [10], and [29], as well as a fourth Variant calibration given by the
largest values of ¢ and A across the three calibrations: the relevant parameter

values are given in Table 1.'5 All calibrations have in common Pg = Py =9

12If no lagged variables are present in the structural model or in the policy rule then
the (unique) minimal state variable solution takes the form y; = a + cg.

13[37] actually suggested that, in the presence of indeterminacy, a plausible selection
criterion might be the solution delivering the minimum variance.

14 All solutions examined in this Section are stochastically stationary, since otherwise the
variances being minimized by policy would be infinite. Explosive nonstationary solutions
arise in Section 4 when policy-makers face structural parameter uncertainty.

15The calibrations are for quarterly data with 7, and 7, measured as quarterly changes.
The CGG parameters have been adjusted accordingly.
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Table 1: Calibrations

Name [0) A
W | 1/.157 | .024
CGG 4 075

MN 164 3

\Y 1/.157 | .3

In this Section we mainly focus on purely forward-looking specifications in
which g = .99 and § = v = 0. Finally, we set the conditional variance of ¢
and u each at 0.1.1¢

For each policy rule and calibration, and for policy objective function
weights ¢ € {.1,1,10}, a lattice was analyzed in the region of policy space
given by 0 < a,,a; < a. Unless otherwise stated we set @ = 5. The sta-
bility and determinacy properties of the model corresponding to each lattice
point were computed, and the value of the government’s objective function
(expected loss) was determined. These values were then used to numerically
compute contours, and hence a graphical representation of the government’s
indifference curves was obtained. Finally, a numerical optimization algorithm
was used to compute the optimal policy parameters within the specified a x &
benchmark policy space.

3.1 Results for Forward-looking Model

Table 2 presents a complete summary of the results obtained in our numerical
analysis for the non-inertial specification. This table gives the value of the
government’s loss function (12) assuming the numerically computed optimal
policy is used, together with the associated stability and determinacy prop-
erties of the equilibrium, for all permutations of policy rules, calibrations,
and policy weights 1. To identify the stability and determinacy properties,
we use the notation SD (stable determinacy), UD (unstable determinacy),
ST (stable indeterminacy), and Ul (unstable indeterminacy).

For example, under the W calibration, using PR;, and assuming ¢ = 1,

16 Altering the value of the conditional variance appears only to change the value of the
government’s objective at the optimum, and not the parameter values corresponding to
optimal policy or the stability and determinacy properties of the associated economy.
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Table 2: Forward-Looking Model

Calibration | PR =1 =1 =10

1 | 29.84* SD | 42.25* SD | 44.09* SD

W 2 | 31.39 Ul | 134.22 UI | 1094.03 Ul
3 | 29.84* SI | 42.25* SI | 44.09* SI

1 |7.73 SD | 30.07* SD | 42.31* SD

CGG 2 |6.22* SD | 40.73 SD | 295.25 Ul
3 | 7.73 ST | 30.07* ST | 42.31* SI

1 | 1.70 (32%) SD | 6.17 (13%) SD | 28.40 (8%) SD

MN 9 | 1.52* 49%) SD|5.99* 12%) SD | 28.54 (4%) SD
3 1203 (7%) SD|6.46 (16%) SD | 28.99 (9%) SD

1 |.58" SD | 5.17 SD | 25.21% SD

\Y% 2 |.59 SD' | 4.59* UI | 38.02 UD
3 | .58* SI | 5.17 SI | 25.21* SI

the optimal policy yields a stable determinate equilibrium and results in an
objective value of 42.25. An objective value marked with an asterisk indicates
that across rules it is the smallest value associated with that calibration and
objective weight: see Section 3.2.3 below. The symbol T indicates a solution
that is very near the origin. In this case there is a solution not near the origin
and within the 5 x 5 space that yields a value for the objective function close
to the optimum. In many cases, the artificial constraint that a, and a; be in
the 5 x 5 benchmark space was binding. When this occurred, the boundary
was extended to 10 x 10 and the optimal policy again computed. If the new
optimal policy resulted in an objective value that differed by more than 0.1%
from the value originally obtained, the percentage difference was recorded in
parentheses.!'”

This table illustrates the first result of this paper: unconstrained optimal
policy can yield SD, UD, SI, or UL. Thus, not only do regions of UI, UD,
and SI exist, but optimization algorithms may seek them out; against this
possibility policy makers must stand guard.

'TIn Table 1 a significant difference arises only in the MN calibration. The contours
have the same general shape as in other calibrations (i.e. appear to form a valley: see
Figure 1) but for MN the flat part of the objective is not near the origin.
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It is useful to discuss briefly some of the specific results. The stability and
determinacy properties of the purely forward-looking New Keynesian model
(1) and (2) closed with PR; have been characterized analytically by [6].
They found that the regions in policy space corresponding to determinacy
and stability coincide — in particular, there are no stable sunspots — and
this desirable feature inclined the authors to recommend this rule.'® Their
argument is strengthened by the results in the table. Under PRy, for all
calibrations and governmental objectives concerned, the resulting optimal
policy is stable and determinate; and, this is the only rule for which SD always
obtains. Figure 1 presents our numerical analysis under the W calibration
with ¢» = .1. For Figures 1 — 3, the contours represent policy indifference
curves and regions corresponding to SD, SI, UI and UD are separated by
bold curves. The large black dot represents the location of the optimal policy
parameters as determined by the search algorithm.

Figure 1 Here

Optimal policy chosen by the search algorithm (and consistent with the con-
tours) lies on the eastern boundary of our artificially constrained 5 x 5 pol-
icy space, and continues to be near the boundary (and again, is SD) for a
100 x 100 grid with a difference of only 0.001% in the objective function.

In practice many Central Banks are believed to use forward-looking rules
of the form PR3. Since under learning expectations are not fully rational,
we interpret this rule as 7y = a, Ef 1111 + o £} 71 and note that one can in
principle distinguish between the forecasts of the private sector, which enter
the IS and AS curves, and the forecasts of the Central Bank, which enter
policy rule PR3. We adopt the simplest assumption for studying stability
under learning, which is that the forecasts for the private sector and the
Central Bank are identical, either because private agents and the Central
Bank use the same least squares learning scheme or because one group relies
on the others’ forecasts. In the latter case, for example, the Central Bank
might be setting interest rates as a reaction to private sector forecasts, as in
[4] or [13]. For further discussion, see [6], [26], [17] and [13].

From Table 2 we see that optimizing policy makers may choose forward-
looking rules that result in SI, which implies the existence of sunspot equi-
libria that are stable under learning. Indeed, only the MN calibration is

18]17] extended the result of Bullard and Mitra to include inertia in the Phillips Curve,
thus further strengthening the argument for rules of PR, form.
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free of this possibility. Figure 2 presents the results for PR3 under the same
calibration, etc. as was used in Figure 1. All of the features, including the
shape and values of the level curves, and the location of and value at the
optimum, are essentially identical. However, much of the region which, in
Figure 1 corresponded to SD, here corresponds to SI.

Figure 2 Here

Our finding that unconstrained optimizing policy choice can lead to stable in-
determinacy, under interest-rate rules of the form PRg, is particularly striking
and argues forcefully against the view that stable sunspots are not a serious
concern.

Finally, consider the lagged Taylor rule, PRy, which gives interesting
results not seen with PRy or PR3. As noted by Bullard and Mitra, under PRy
there exist determinate cases for which the REE is not stable under learning.
We find that such cases might even be selected by optimizing policy makers.
As an example, Figure 3 illustrates an optimum within the region of unstable
determinacy for the V calibration with ¢ = 10.

Figure 3 Here

While this calibration and choice of i are perhaps relatively implausible,
the example does forcefully illustrate our point that policy optimization does
not automatically deliver a solution that is stable under learning, even if the
solution is determinate.

3.2 Further Discussion
3.2.1 Flatness of the objective

As mentioned above in our discussion of Figure 1, there is a tendency for
the government’s objective function to be very flat near the optimum. This
has the potential benefit of rendering precision irrelevant when attempting
to determine the optimal policy, but flatness can also make it difficult to pin
down an appropriate optimal rule in the presence of multiple nearly optimal
rules.

As an example, consider the W calibration with either PR; or PR3 and
with ¢» = 0.1. Figure 2 suggests that the objective is nearly flat for a non-
empty sub-region of the benchmark space, and perhaps even constant along a
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positively sloped line. To analyze this more closely, we had the optimization
algorithm solve the policy problem twice, yielding two different optimal poli-
cies (both with essentially the same value for the objective). These two points
were used to construct a line with the specification a, = 0.433a,; — 0.365.
We then allowed «,; to vary from 1 to 5, used our constructed line to choose
a,, and computed the value of the government’s objective.

The result is plotted in Figure 4, assuming PR3 is used. Here a dashed
line indicates the corresponding model is SD and a solid line indicates SI.
The government’s objective is almost constant across these parameters.'?

Figure 4 here

One implication of these results is that imposing determinacy and stabil-
ity requirements in the policy optimization problem can in some cases have
negligible cost in terms of the policy objectives.

3.2.2 Inertial specifications

We also considered inertial specifications with § =1 and § = v = .5, which
is broadly consistent with [34]. For this specification the results from the
forward-looking model are greatly mitigated: optimal policy results in SD
for all calibrations except V. For the V calibration, however, PRy results in
UI for ¢ = 10 and PRy is SI for ¢» = 0.1 or v = 1. Furthermore, low levels of
inertia yield results similar to those obtained in the purely forward-looking
case, e.g. optimal policy may be consistent with stable sunspots under W
and CGG calibrations. We consider inertial specifications more thoroughly
below, when we also allow for structural parameter uncertainty

3.2.3 Optimum across rules

Thus far we have considered the implications of policy making via uncon-
strained optimization for a given form of the policy rule. Can indeterminacy
or instability arise if policy-makers can choose across the rules? This issue
is also addressed in Table 2: for fixed calibration and objective weight, the
rule(s) yielding the lowest loss value are marked with an asterisk.

We see that even optimizing across rules does not avoid the difficulties
we have identified. For example, for the variant calibration V, the optimum

YExtending the line to a; = 100 does not alter this finding.
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across rules yields UI for ¢ = 0.1. Also, for both the W and CGG specifi-
cations, PR; and PR3 can produce the same or nearly the same minimum
value of the government’s loss function, but with PR; yielding SD while PR3
results in SI, i.e. stable sunspots.?’

3.3 Some Results on Extended Taylor-type Rules

So far, we have restricted attention to policy rules that depend only on the
model’s endogenous variables; however, such a restriction is not necessary.
If policy makers can observe fundamental shocks, and if these shocks con-
tain information orthogonal to that provided by the endogenous variables,
then policy makers would do well to condition their policy accordingly. Fur-
thermore, as shown by [16] (EH), it may be possible for the overall policy
optimum — that is, the REE yielding the minimum value of the loss function
over all possible policy rules: see equation (15) below — to be implemented by
a rule (which we call an “Extended Taylor-type rule”) that depends also on
fundamental shocks. In our companion paper [18|, we consider in detail the
stability and determinacy issues surrounding optimal extended Taylor-type
rules; because of the close connection between those issues and the subject
of this paper, we briefly summarize some of the results here.

For ease of presentation, consider the non-inertial specification of the
New-Keynesian model. Following EH and the related literature, we vary
slightly from the government’s criterion presented in Section 2, and assume
that monetary policy minimizes?!:

Et Z Bs(ﬂ-?—i—s + wx%—i—s)‘ (13)
5=0

As shown by Woodford (and others), the “timeless perspective” optimal pol-
icy with commitment must satisfy

Ay = —)(xp — 24 1) (14)

20Table 2 never indicates an absolute preference for PR3, but when inertial specifications
are considered, any of the rules PR; — PR3 can dominate, depending on the calibration and
objective weight (and, this holds regardless of whether the MN calibration is considered).

21Qur original objective is equivalent to the expected value of (13) across initial condi-
tions, provided the asymptotic distribution of the state variables is used to compute the
expected value.
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This dynamic equation may be combined with the AS curve to obtain a
representation of the unique optimal REE taking the form

Y = Aytfl + Bgt, (15)

where both the second column of A and the first column of B are zero (see
EH for details).

EH note that the optimal REE is consistent with two different interest
rate rules: one, which they call the “fundamentals based rule,” specifies a
dependence on lagged output gap and current exogenous shocks; the other,
which we will call the EH-rule, includes an additional dependence on expec-
tations of future 7 and z. EH find that the fundamentals based rule may lead
to indeterminacy and is always unstable under learning, while the EH-rule
always generates stable determinacy.??

That there are two possible policy rules consistent with the optimal REE
raises the question, “what does the collection of all policy rules consistent
with the optimal REE look like, and what are the associated stability and
determinacy properties?” In the companion paper, we address this question
by characterizing the collection of all policy rules (restricted within a certain
class) that are capable of implementing the optimal REE (15). We postulate
a general policy rule of the form

i = o Byypr + oy 1 + oGy, (16)

where of = (of, af), o = (af, ak), and of = (af, af). We define the “opti-

mal policy manifold” to be the subset of R® corresponding to the collection
of all policy parameters « yielding rules capable of implementing the optimal
REE. We show that the optimal policy manifold is two dimensional, that is,
it is a 2-manifold in 6-space.

We here consider briefly the implications of choosing different rules from
the optimal policy manifold. By finding two policy rules with distinct deter-
minacy and stability properties, EH have already shown that the stability
and determinacy properties vary across the manifold. To study the impact on
stability and determinacy of using alternate optimal policy rules we specify a
calibration and project the optimal policy manifold onto the (af, af)-plane,

22The approach followed in EH and here is to look for rules that are optimal under
rational expectations and that are stable under learning. [22] consider the implications
of a Central Bank solving its dynamic optimization problem while explicitly taking into
account the least squares learning rule of private agents.
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and restrict attention to the 5 x 5 benchmark square. We then compute the
stability and determinacy properties of the model closed with the correspond-
ing optimal policy: see Figure 5. For this figure, the V parameterization was
used, with the modification that A = 1; admittedly this is a value of A that is
larger than estimates found in the literature, but it is consistent with certain
theoretical models: see for example [8]. We use this calibration for empha-
sis and note that while less dramatic, the same conclusions apply to other
calibrations. The large dot is the location of the EH-rule.?

Figure 5 Here

Figure 5 demonstrates that while rules capable of implementing the op-
timal REE abound, a large proportion of these rules have associated with
them either stable or unstable indeterminacy. This result is punctuated by
the location of the EH-rule: while it does lie in the region of stable determi-
nacy, this region is a small oasis surrounded by a sea of trouble. Because all
policies represented in this figure are consistent with the optimal REE, an
unconstrained optimizer cannot distinguish between the oasis and the sea.

4 Robust Optimal Constrained Policy

4.1 The Dangers of Model Uncertainty

The results of the previous section warn of the need to impose both stability
under learning and determinacy. When we allow for model uncertainty, these
potential hazards become even more acute. Our second main result is that a
policy that is optimal, stable and determinate for a given calibration, can be
UI, SI or explosive (E), under alternate calibrations. These possibilities are
shown in Tables 3.1 and 3.2, which give the outcomes under Taylor-rules PRy
or PR3 for various alternative calibrations (labeled “Truth”) given policy rule
parameters chosen as constrained optimal (i.e., constrained to yield stable
determinacy) for the perceived calibration. These tables are computed for
1 = 1 and both purely forward-looking (6 =~ =0 and 5 = 0.99) and “lag”
specifications (0 =y = 0.5 and 5 = 1) are considered.

Z3Note that in contrast to the exercises producing the figures in the previous section,
when producing Figure 5 the policy parameters not referenced in the figure (such as al,
etc) are allowed to vary; in fact, they are required to vary in order to maintain a rule

consistent with the optimal REE.

18



Although policy rule PR; does always yield SD, both PRy or PR3 en-
counter problems under various alternative calibrations. Specifically, PR3
in some cases leads to stable indeterminacy and PR, can generate either

unstable indeterminacy or explosive outcomes.

Similar analysis can be conducted using the extended Taylor-type rules
discussed in section 3.3, and we find that similar results obtain. For example,
the EH-rule, specified under a perceived calibration, which necessarily yields
stable determinacy with respect to that perception, can produce UI, SI or E
outcomes under alternate calibrations.

Table 3.1: Model Uncertainty: Policy Rule PR»

Perception Truth
W | CGG | MN | V | W-Lag | CGG-Lag | MN-Lag | V-Lag
W - Ul UI | UI Ul Ul Ul Ul
CGG SD - SD | SD SD SD SD SD
MN E E - E E E SD E
A% SD| SD | SD | - SD SD SD SD
W-Lag SD| SD | SD | SD - SD SD SD
CGG-Lag |SD| SD | SD | SD SD - SD SD
MN-Lag | E E SD | E E E — E
V-Lag SD| SD | SD | SD SD SD SD -
Table 3.2: Model Uncertainty: Policy Rule PRy
Perception Truth
W | CGG | MN | V | W-Lag | CGG-Lag | MN-Lag | V-Lag
W - SD | SD | SI SD SD SD SI
CGG ST - SD | SI SI SD SD SI
MN ST ST - | SI SI SI SD SI
A% SD| SD | SD | - SD SD SD SD
W-Lag SD| SD | SD | SD - SD SD SD
CGG-Lag | SI | SD | SD | SI SI - SD SI
MN-Lag |SD| SD | SD | SI SD SD - SI
V-Lag SD| SD | SD | SD SD SD SD —
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4.2 Robust Optimal Constrained Policy

The results in Tables 3.1 and 3.2, together with the range of estimates of
structural parameters available in the literature, indicate the need for a pol-
icy that is robust to model uncertainty. The method of robust analysis we
describe is a Bayesian technique, similar in spirit, but more elementary than
the method prescribed by [5]. Put simply, we have policy makers assign a
distribution over possible models and the policy maker’s objective may then
be computed as the expected value of the objective conditional on this prior
distribution.?* However, we now add the constraint that policy be determi-
nate and stable under learning for all parameter values that have positive
probability.?®

Put more formally, we consider a set of structural model parameters w € S
and assume that we have a prior probability distribution over their possible
values with support S C S. We examine a specified class of interest-rate
rules parameterized by £ € X and determine the set P C X defined by

P = {5 € X : determinacy and learning stability hold for all w € S } )

Given a policy loss function £(§,w) that is well-defined for all £ € P and

w € S, and assuming that P is non-empty, the robust optimal constrained
policy is defined by

£ = in £L

¢ = argmin (& w),

where the expectation is taken over the prior distribution on S.

We illustrate how this method can be implemented by assigning prob-
abilities to the various calibrations, parameterized by the key parameters
w = (¢, \,7,0). Thus we allow for uncertainty with respect to both the
structural parameters and the degree of inertia. For the structural parame-
ters ¢, A we set the conditional probability weights at:

Table 4.1: Structural Parameter Specifications

Calibration | W | CGG | MN | V
Probability | 0.3 | 0.3 0.3 0.1

24[5] further advise incorporating a minimax technique to guard against very bad out-
comes.

25[1] also impose determinacy requirements in their study of inflation-forecast-based
rules. However, they do not address the issue of stability under learning.
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For the inertial parameters 7, ) we set the conditional probability weights at:

Table 4.2: Inertial Specifications

v=20 1 1075(0.5]0.25]0.01
Probability | 0.1 | 0.2 [ 04 ] 0.2 | 0.1 |

The two sets of probability weights are treated as independently distributed.
We refer to this prior as the “full prior”. For comparison we also look at the
case of “non-inertial prior” in which the structural parameter calibrations
receive the above probability weights but v = § = 0 is assumed.?® We
consider both simple and extended Taylor-type interest rate rules.

4.3 Robust Taylor Rules

We begin by considering robust rules that depend only on endogenous vari-
ables. Specifically, we consider PR; — PR3, with the additional possibility
of including an interest rate smoothing term parameterized by 6. Thus PR,
with smoothing takes the form

it = OZﬂ—EﬂTt + O[mEtl't + eit—ly (17)

and PRy — PR3 are modified accordingly. In terms of the definition of robust
optimal constrained policy just given, for these policy rule classes we are
setting & = (aur, i, 0). Tt is straightforward to verify numerically that for
both policy rules PRy and PR3 there is a policy £ such that the associated
model is stable determinate for all calibrations and all inertial specifications
on which the prior places positive weight. Thus the constraint set P of our
optimization problem is non-empty for the policy rules classes PR; and PRs.
On the other hand, PRy does not deliver feasible robust policies, i.e. for this
class of rules P is empty.

Using Matlab to perform the optimization subject to stability, determi-
nacy, and a,, o, € [0,5], 0 € [0,2], we obtain the results presented in Table
5, corresponding to @ = 1. We report the results for PR; and PR3 both for
the case in which the interest-rate smoothing term is restricted to # = 0 and

20There is sharp disagreement on the extent of inertia in the economy. For example, [33]
employ a set-up that is fully inertial, while [34] estimates the degree of inertia at one-half
and [30] provides evidence that apparent persistence may be due to adaptive learning in
a fully forward-looking model.
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the case in which it is allowed to vary freely. Results are given both for the
full prior described above and for the non-inertial prior.?”

Table 5.1: Taylor-type Rules, Non-inertial Prior

Policy Rule | Restriction | ay o7 0 Value
0 = ) — | 27.05¢
PR, 0 5 | 3.78 7.05
0€0,2] |1.54]| .82 | 1.09 | 25.42
=0 27 [ 131 - 52.34

PR3
6 € [0,2] D8 | .92 | .80 | 32.74

Table 5.2: Taylor-type Rules, Full Prior

Policy Rule | Restriction | ay o7 0 Value
=0 243 | 5 | — | 141.82¢
PR,
6€0,2] |1.76 | 3.02 | .88 | 140.83
= 24 114 — | 166.52
PR, 0=0 7 66.5
6 € 0,2] D5 | 1.34 | .83 | 143.36

Here 1 indicates that the optimum lies on the boundary of the policy region
considered.

Notice that, when the smoothing term 6 is set equal to zero then PR, per-
forms much better than PRj3. This reflects the prevalence of indeterminacy
when policy rules depend on forward expectations (e.g. compare Figures 1
and 2). However, the inclusion of the interest-rate smoothing term 6 > 0
significantly mitigates this effect, and in the case of PR3 the benefits of a
large 6 are considerable.

Note that the expected loss is much higher when full priors are considered.
This reflects the much smaller extent of control available to policy-makers
when economic outcomes are more heavily determined by lagged inflation
and output than by expected future macroeconomic conditions. We remark
that in evaluating policy we continue to use the policy loss function (12). We
think this is realistic, but we should point out that in New Keynesian models

2TWith the non-inertial prior PRy was also feasible but its performance was substantially
worse than the other two rules.
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with inertia, the expected utility of the representative agent would dictate
different forms of objective function, and that the precise form would in fact
depend on the specific source of inertia. This raises deep issues, since in
principle the appropriate policy objective would depend on whether inertia
is present and on the reason for inertia. By using (12) to evaluate results
across models we side-step this issue, but in a way that seems realistic from
the viewpoint of practical policy-making.

4.4 Robust Extended Taylor-type Rules

Precisely the same method can be employed to obtain robust optimal con-
strained extended Taylor-type rules. We now consider the class of interest-
rate rules

iy = 0iy_1 + o By + a°Euyy + oy + 94, (18)

For this exercise, we again set 1 = 1.

Table 6: Extended Taylor-type Rules, Full Prior

c a’ L L

af | aof 6 | of c af | ok | o2 | of | Value
0 298 | 1.07| 5 0 -4.31 | -1.89 | -.04 | 3.91 | 132.03
23111262 | 1.08 | 5.15 | -12.74 | -5.95 | 2.61 | .35 | 9.8 | 130.37

Table 6 reports two policy rules for the full prior. The first row imposes
that policy parameters lie in the range o, a, € [=5,5], 6§ € [0,2], which
turns out to be a constraint for a$. In the second row we give the results for
expanding the box for a,, a, to [—100,100]. This provides some additional
though limited improvement in the expected loss function, consistent with
our previous findings that the objective function is quite flat near the optimal
policy.

As with the robust Taylor rules, the smoothing parameter 6 is chosen to be
large. Here 6 is actually larger than one (giving “superinertial” rules), though
the value is close to one (this is also the case when the non-inertial prior is
used). This suggests that while fully optimal policy may be implemented
without an interest rate smoothing term when parameter values are known
with certainty (as we saw in Section 3.3), a strong smoothing term appears
indicated when parameter uncertainty is present.

23



4.5 A Simple Nearly Optimal Rule

Given the flatness of the objective function, it is of interest to ask whether
simpler rules can be devised that meet our requirements that the rule be
determinate and stable across all specifications that receive positive weight
in the prior, and which come close, in terms of minimizing the expected loss
function, to the performance of the optimal rule just computed. A search
across simpler rules yields the following specification:

Ait = EﬂTH_1 + Q(Etﬂ-t—&—l — 7Tt_1) + O.6Et9§'t + 45(Etl't — xt—l) + 4Ut. (19)

This interest-rate rule is stable and determinate for all calibrations and in-
ertial specifications with positive prior probability, and yields an objective
value of 132.22, which represents slightly less than a 1.3% increase over the
expected loss achieved by the optimal rule.

The rule (19) is easily interpretable, taking an “integral” form in which
interest rates are increased in response to higher levels of the expected future
inflation rate and its increase relative to last period’s inflation rate, to the
expected current output gap and its increase relative to last period’s output
gap, and to observed exogenous inflation shocks.

Remarkably, even simpler rules lead to only modest reductions in perfor-
mance. Returning to simple Taylor rules with inertia of the form (17), given
earlier, we see that specification a, = 1.76, a, = 3.02, and ¢ = 0.88 leads
to an objective value of 140.83, which is an additional 6.5% loss over that
achieved by (19).

4.6 Discussion

Given the wide range in the literature for structural parameter and iner-
tial calibrations of New Keynesian models, a variety of calibrations should
be considered when searching for a good policy rule. To simultaneously
consider multiple calibrations, we employed a simple “Bayesian” procedure,
weighting each calibration according to a specified prior probability. We
then computed, within a given class of rules, the optimal policy parameters
subject to the constraint that the economy be stable under learning and
determinate for all calibrations with positive probability.

An important finding of this exercise is that the constraint set is not
empty, despite allowing for a very wide range of calibrations that received
positive weight. This suggests that our procedure may provide a feasible and
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fruitful way to think about the optimal choice of interest-rate rules in serious
applied models, while imposing determinacy and stability constraints and
allowing for structural parameter uncertainty.

We also found that a relatively simple rule, specifically (19), is capable
of simultaneously yielding stability and determinacy, as well as producing an
objective value within 1.3% of the optimum. Admittedly, we have only con-
sidered a range of simple, stylized models. These results, however, suggest
that the technique advanced above may provide similarly simple nearly opti-
mal robust rules in more general and more realistic modeling environments.?®

We conclude this Section by noting that the existence of a non-empty
constraint set is a requirement that may not be met in future applications
of the technique and thus warrants further discussion. Although various
modifications would be possible in this case, our preference would be to
extend the procedure in the following way. Given 0 < n < 1, let P(n) denote
the set

wes

P(n) = {f € X : Pr(determinacy and stability under learning) > 1 — n} ,

and let 7 be the smallest value for which P(_n) is nonempty. For any given
n > 7 the robust optimal constrained policy £(n) would then be defined by

= i E~I£7 ’
£(n) = arg i (& w)

where E denotes expectation now computed conditional on parameters for
which the equilibrium is determinate and stable. We think of 7 as a parameter
chosen by policy makers and representing the largest acceptable probability
that the assessed constrained optimal policy will yield an outcome that is
not SD.

Policy-makers could then either specify a sufficiently low value for n > 7
that they consider acceptable, or be presented with the trade-off between 7

28We emphasize that our policies are robust in a very specific sense. We do not consider
unstructured model uncertainty in the sense of [24], robust optimality to exogenous dis-
turbances in the sense of [23], or robustness to qualitatively different structural models,
as in [27]. Furthermore, our learnability constraint concerns local stability under learning
under a fixed structure. Other relevant concerns are maximizing the basin of attraction
for least-squares learning, one of the issue addressed in [41], and policy choice with struc-
tural shifts and perpetual learning, which is the focus of [31]. Clearly a number of these
approaches are complementary in the sense that they could be combined with our analysis.
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and minge pey) EL(€,w). Indeed, even in the case found here in which 7 = 0,
one could examine the potential gains, in terms reduced expected loss, from
permitting n > 0. We refrain from presenting these results on the assumption
that policy-makers would prefer to be maximally robust.

5 Conclusion

We have demonstrated the potential for policy makers, attempting to choose
the optimal rule within a class, to be directed towards rules that lie in the
indeterminacy and/or learning instability regions. Taylor-type rules have
an appealing simplicity, with the key inflation and output coefficients tradi-
tionally chosen based on plausible rules of thumb. One might expect that
improved performance would be obtained by choosing these policy parame-
ters optimally for a given calibrated model. Paradoxically this may not be
the case, because searching for the optimal policy rule within a given class
may fail to deliver a rule that produces a determinate equilibrium that is
stable under learning. It is therefore imperative that the search for optimal
policy rules be constrained to the determinate stable region. Considering a
class of extended Taylor rules sufficiently general that it includes fully opti-
mal solutions does not avoid this problem since it will contain some “fully
optimal” rules that are subject to indeterminacy and/or instability problems.

These problems are compounded by structural parameter uncertainty.
Policy rules that lead to determinacy and stability under learning and that
are fully optimal for one set of structural parameters can lead to indeter-
minacy, instability or even explosiveness, for another set of parameters. We
therefore advocate a “robust” optimization procedure, in which policy makers
select the optimal constrained rule. Such a rule is computed as the one which
minimizes the policy-makers expected loss, based on prior probabilities for
the structural parameters, but which is constrained to satisfy the condition
that it lies within the region of stable determinacy for every calibration that
has positive probability.

Our key points about the hazards of an unconstrained search for opti-
mal policy have been developed in the context of the basic New Keynesian
framework and hybrid versions incorporating inertia, and we have used this
framework to show how to compute the robust optimal constrained interest-
rate rule. However, the approach is quite general and could be applied to
more elaborate structural macroeconometric models.
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