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DISSERTATION ABSTRACT

Jacob Searcy

Doctor of Philosophy

Department of Physics

December 2012

Title: Measurement of the Top Quark Pair Production Cross Section in p − p
Collisions at

√
s=7 TeV in the ℓ+ τ Channel with ATLAS

The measurement of the cross section of top quark pair production in

proton−proton collisions at a center-of-mass energy of 7 TeV recorded with the

ATLAS detector at the LHC is reported. The data sample used corresponds to an

integrated luminosity of 2.05 fb−1. Events with an isolated electron or muon and a

tau lepton decaying hadronically are used. In addition, a large missing transverse

momentum and two or more energetic jets are required. At least one of the jets

must be identified as originating from a b-quark. The measured cross section,

σtt̄ = 178± 12 stat.± 18 sys. ± 7 lumi. pb, is in good agreement with the Standard

Model prediction.
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CHAPTER I

INTRODUCTION

The Standard Model (SM) of particle physics [1–3] is a quantum field theory

developed in the 1960s to explain the behavior of the known fundamental particles.

At this time the observed fermions were classified into two different particle

generations. The first particle generation is familiar and makes up everyday

matter. It contains two quarks, one carrying a +2/3 charge (the up quark) and

one carrying a −1/3 charge (the down quark), a charged lepton carrying a −1

charge (the electron), and finally a neutral lepton (the electron neutrino). The

up quark and the down quark bind together through the strong force to form

protons and neutrons. With the electron these form atoms which compose the

visible mass of the universe. The electron neutrino interacts very weakly, but is

ever present as a by-product of fusion in stars. The second generation of particles

is less familiar. It contains one counterpart for each first generation particle, but

at a heavier mass 1. The heavier second generation particles can readily decay into

the lighter first generation particles which makes them unstable, and therefore

rare in nature. This generation contains the charmed quark ( +2/3 charge; un-

observed until 1974), the strange quark (−1/3 charge), the muon (−1 charge) and

the muon neutrino (neutral). Together the SM and the two generation model did

an excellent job describing almost all the experimental data available at the time.

While the two generation model succeeded in describing much of the

available data, it failed to predict certain decay properties of the neutral kaon

1This is true for all the known masses, but the mass of the muon neutrino and electron
neutrino are currently unknown.
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(a particle made up of a down quark and an anti-strange quark or vice versa).

These decays violated charge parity (CP) symmetry which was conserved in the

two generation model. In 1973 Kobayashi and Maskawa proposed the existence

of a third generation containing an additional pair of quarks to explain the

observed CP violation [4]. This theory sparked significant experimental efforts

to find evidence of these third generation quarks which became known as the

top quark and the bottom quark. In 1975 the third generation’s charged lepton,

the tau, was discovered at SLAC [5], and in 1977 the −1/3 charged quark of the

third generation, the bottom quark, was discovered at Fermilab [6]. With the

observation of these two particles, the discovery of the top quark appeared to

be just around the corner. However, almost two decades would pass without any

evidence of its existence.

It wasn’t until 1995 that the top quark was discovered in 1.8 TeV center-

of-mass p − p collisions at the TeVatron [7, 8]. The twenty-two year long delay

between prediction and discovery was due mainly to the top quark’s unexpectedly

large mass. The top quark with a mass of 173 GeV [9] is just slightly lighter

than a gold atom, and significantly heavier than its third generation partner,

the bottom quark, which has a mass of about 4 GeV. This incredibly large mass

makes the top quark uniquely interesting to study for several reasons. The top

quark has the largest coupling to the theoretical Higgs boson which generates mass

in the SM 2. It is the only quark that decays weakly through a W boson before

2A particle consistent with the SM Higgs boson was observed at CMS and ATLAS and
announced on July 4, 2012 [10, 11]. However, at this time not all of the new particle’s properties
have been fully determined, and therefore, it is not yet possible to assert that this particle is, in
fact, the SM Higgs boson.
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hadronizing, and not all of the top quark properties are perfectly understood 3.

It is clear that the top quark plays a critical role in our understanding of

particle physics, and precise measurements may lead to unexpected discoveries.

Unfortunately, the high energies required to produce the top quark have only been

obtained at two laboratories, only one of which is currently operational.

With the TeVatron shutdown in 2011, the only accelerator capable of the

producing top quarks is the Large Hadron Collider (LHC) at the European

Organization for Nuclear Research (CERN). The LHC began operation in 2010,

colliding protons at a center-of-mass energy of 7 TeV. With a higher center-of-mass

energy than the TeVatron, the LHC is ideally suited for producing top quarks.

The ATLAS [14] and CMS [15] detectors quickly observed top quarks using about

3 pb−1 of data [16, 17] (compared to 50-67 pb−1 used for the discovery at the

TeVatron). The LHC has continued running, and has delivered 5.55 fb−1 of 7 TeV

data to the detectors. With almost two thousand times the data required to re-

observe the top quark, it is possible to make higher precision measurements of the

top quark than ever before.

1.1. The Standard Model

The Standard Model (SM) is a theory that predicts the top quark production

and decay properties as well as the behavior of all other fundamental particles.

It provides a unified picture of three fundamental forces: electromagnetism, the

weak force, and the strong force. In addition, it provides an explanation for how

particle masses are created through the Higgs mechanism. This section will give an

introduction to the particles of the SM and how they interact. These interactions

3For example, studies of top quark pairs at the TeVatron find a significant forward-backward
asymmetry [12, 13] that has not been fully explained.
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are described formally with Lagrangians that are described after the particles are

introduced.

1.1.1. Standard Model Particles

Fermions

The SM consists of twelve spin-1/2 fermions and their corresponding anti-

particles. The fermions are grouped together by their interactions. Fermions which

carry a color quantum number, and therefore interact with the strong force, are

labeled as quarks. Fermions which do not interact this way are labeled as leptons.

Both leptons and quarks can be further categorized by their electric charges. All

quarks will have either a −1/3 or +2/3 charge. The +2/3 charged quarks are

referred to as up type quarks, and the −1/3 type quarks are referred to as down

type quarks. Leptons carry either a −1 charge or no charge at all. Leptons with no

charge interact very weakly and are referred to as neutrinos. Leptons with charge

are simply referred to as charged leptons. These categories define a generation

which contains one particle of each type; an up type quark, a down type quark, a

charged lepton, and a neutrino. Three such generations exist, these generation are

each characterized by additional flavor quantum numbers, which govern the weak

force. All of the standard model fermions are summarized in Table 1.1 with their

abbreviations, which will be used in the sections that follow.

Hadrons

Another classification scheme that will be referred to occasionally throughout

this analysis describes the bound states of quarks. As a result of the strong force,

quarks must exist in bound states. For example, the proton consists of two up
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TABLE 1.1. Standard Model fermions and their properties [9].

Particle Abbreviation Type Charge Colored Mass(MeV)
1st Generation

up u up +2/3 yes 1.5-3.0
down d down -1/3 yes 3 - 7

electron e charged lepton -1 no 0.51
electron neutrino νe neutrino 0 no ≈ 0

2nd Generation
charm c up +2/3 yes 1,250
strange s down -1/3 yes 70 - 120
muon µ charged lepton -1 no 105

muon neutrino νµ neutrino 0 no ≈ 0
3rd Generation

top t up +2/3 yes 173,000
bottom b down -1/3 yes 4,200
tau τ charged lepton -1 no 1,777

tau neutrino ντ neutrino 0 no ≈ 0

quarks and a down quark (uud) 4, and a neutron consists of two down quarks and

an up quark (ddu). States of three bound quarks are referred to as baryons. More

exotic baryons exist such as the ∆++ = (uuu), which was the first evidence that

quarks must carry an extra quantum number (otherwise it would violate the Pauli-

exclusion theorem). Another type of particle can be formed from a quark anti-

quark pair. The lightest of these are the pions, π+ = ud, π0 = 1√
2
(uu + dd),

π− = du. Particles such as these are called mesons. Finally, all such bound states

are referred to collectively as hadrons, which is where the LHC derives its name.

4Quantum effects complicate this picture, since they allow for a “sea” of quark anti-quark
pairs to exist in addition to the three “valance” quarks.
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Bosons

The fermions by themselves don’t describe the interactions between particles.

In the SM, interactions are introduced by integer spin bosons. The standard model

has five such bosons (γ,W±, Z, g, h). The five bosons and their properties are

summarized in Table 1.25. The most familiar boson is the photon (γ). The photon

is a massless spin 1 particle that mediates electricity and magnetism. The fact

that the photon is massless has interesting implications. Charged particles create

fields, and the potentials of those fields are related to the mass of the boson that

mediates it through the Yukawa potential 6,7.

VY ukawa(r) = −g2 · e
−mr

r

where g is a referred to as the coupling constant. In the zero mass limit this

becomes the familiar Coulomb potential where

VY ukawa(r) = −g2 · e
−mr

r
→ −g2 · 1

r

From the above equation it can be seen that any field mediated by a massive

boson exponentially decays, whereas massless particles have infinite 1/r potentials.

The effect of mass on a force is best seen in the weak bosons of the standard

model.

5ATLAS finds a mass of 126.0±0.6 [10] for the Higgs boson, and CMS finds a mass of 125.3
±0.6 [11].

6All the equations in this dissertation will be presented in terms of natural units where c=1
and h̄ = 1.

7This equation does not generalize to fields that have self interaction such as the strong force.
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TABLE 1.2. Standard Model bosons and their properties [9].

Particle Abbreviation Spin Charge Colored Mass(GeV)
photon γ 1 0 no 0
gluon g 0 0 yes 0

W± boson W± 1 ± 1 no 80
Z boson Z 1 0 no 91

Higgs boson h 1 0 no 126

The weak interactions, which are mediated by the heavy spin 1 W± and

Z bosons, interact over a very limited range. The mass of these bosons prevent

infinite range “weak” fields. Therefore, the effects of the weak force are seen

only at short distance scales (or equivalently high energies). The weak force is

responsible for radioactive decay, and is the only force that can change the flavor

of a quark.

The strong force binds quarks together into hadrons. This field is mediated

by the gluon. The gluon is a massless spin 1 particle, however, unlike the

electrically neutral photon the gluon itself carries a color charge. Since the gluon is

charged, it interacts strongly with surrounding particles. These self interactions

cause the strong force to exhibit asymptotic freedom. This counter intuitive

phenomena causes an increase in force with increasing distance (decreasing

energy). Conversely, the strong force asymptotically approaches zero as distances

decrease (energies increase).

The final boson in the standard model is not a spin 1 particle, but a spin 0

particle. This particle is the Higgs boson, and it is required in order to give mass

to the other fundamental particles in the SM. This process referred to as electro-

weak symmetry breaking will be discussed in section 1.1.6.

7



1.1.2. Formalism of the Standard Model

The Standard Model is a quantum field theory (QFT). It describes particles

and their interactions as quantum fields. A spin 1/2 particle can be represented as

a spinor field ψ.

ψ =



















ψ1

ψ2

ψ3

ψ4



















where the four components of ψ can represent either a particle or anti-

particle with ±1/2 spin. For a free spinor with mass m the Lagrangian8 is given

by

L = iψγµdµψ −mψψ

where ψ is the adjoint spinor ψ = ψ†γ0 where here γ represents the Dirac

matrices (see appendix B). The first term can be identified as the kinetic term

similar to the classical one (1/2mv2), and the second term can be identified with

the energy associated with the mass of a particle. This simple Lagrangian will help

illustrate one of the most powerful tools used in deriving the standard model, the

application of symmetries. The above Lagrangian is invariant (symmetric) under a

simple U(1) rotation.

ψ → eiφψ

8This is technically the Lagrangian density, but for convenience we will refer to it as just the
Lagrangian.
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Specifically under the above transformation

L = iψγµdµψ −mψψ → L′ = iψe−iφγµdµe
iφψ −mψe−iφeiφψ

= iψγµdµψ −mψψ = L.

However, if this symmetry is “localized” meaning that we require it must

hold at every point in 4-space, we make φ a function of the variables ~x the

transformation becomes.

ψ → eiφ(~x)ψ

the derivative now acts on the rotation and gives us one additional term.

du(e
iφ) = i(duφ(~x))e

iφψ + eiφ(~x)duψ

The “locally” rotated Lagrangian becomes

L′ = iψγµdµψ −mψψ − ψγuψ(duφ(~x))

If we wish the Lagrangian to remain invariant under these local

transformations an additional term must be added which cancels the term pulled

out by the derivative. duφ(~x) is a vector so to cancel it we define a new vector field

Au and modify the Lagrangian

L = iψγµdµ −mψψ − (ψγuψ)Au.
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requiring Au → Au + duφ under a U(1) transformation makes our original

Lagrangian invariant again. Therefore, in order to maintain invariance under this

simple symmetry a new interaction must exist between the initial fermion and a

new vector field. This case can be directly mapped to a fermion interaction with

a photon. This symmetry thus generates electricity and magnetism. To make this

theory consistent we must also include the kinetic and mass terms for our new

vector field (photon).

Lγ = F uvFuv −m2
aA

νAν

However, we can see that the mass term transforms as

m2
aA

νAν → m2
aA

νAν +m2
aduφd

uφ

which is not invariant unless ma = 0. This requires that the photon be

massless. This simple U(1) rotation can be generalized to all the fermions in the

SM, and this directly generates the Lagrangian of quantum electro-dynamics

(QED). The weak force is generated in the same way under an SU(2) rotation

and the strong force through and SU(3) rotation. Since the locality of a symmetry

affects the final Lagrangian only through a derivative, it is conventional to define

the convarient derivative.

Du ≡ du − ieAu

.

The additional constant “e” can be absorbed into the rotation above, but is

convenient for use later on.
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1.1.3. The Electromagnetic Force

The electromagnetic force as shown above arises from making the U(1)

symmetry of the SM “local”. It results in the following Lagrangian for the

fermions.

LQED = ψ(iγµdµ −m)ψ − F uvFuv + eψγuAuψ

This Lagrangian can be “read” in the following way. The kinetic terms

and the mass terms are common to free particles, but this term eψγuAuψ is an

interaction term. It can be represented by a Feynman diagram seen in Figure 1.1

with two fermions (one for each ψ ) and one photon from Au. These vertices can

be connected together to form physical interactions (left panel in Figure 1.1). In

this Lagrangian the interaction term couples with a strength e. (This represents

a charged lepton, quarks will have a −1/3 or +2/3 factor multiplying e). All the

Lagrangians in this section can be “read” in the same way. Any term that contains

more than one kind of field can be interpreted as a vertex with one particle for

each of the fields in the interaction term. The vertices can be combined to form

Feynman diagrams. Each Feynman diagram represents one term in a perturbative

expansion, and summing all such diagrams calculates physical processes. A

discussion of Feynman diagrams and their calculation can be found in [18]. The

SM has several charged fermions, and every one will have a copy of the QED

Lagrangian above (with the proper charge). The SM contains the sum of all such

Lagrangians.
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FIGURE 1.1. Vertex for QED, and an example of a physical process combining
two vertices.

1.1.4. Electroweak Theory

The next symmetry that can be localized in the SM is an SU(2) symmetry.

This symmetry is simply a rotation described by a 2x2 matrix. Any unitary 2x2

matrix can be described by a set of numbers (a) times the Pauli matrices (τ ; see

appendix B), and a global phase. Such a matrix can be expressed as

U = eiφeia·τ

The global phase generates the electromagnetic force as seen before, and

the matrix transformation will generate the weak force. Together this is referred

to as electro-weak theory. In the standard model fermions in each generation

come in pairs, such as the up quark and down quark 9, or the electron and the

electron neutrino. We can arrange these into SU(2) doublets. For these fields the

free Lagrangian looks like.

9This symmetry is not exact as the up type quarks actually couple to a super-position of the
down type quarks given by the CKM matrix, but the illustrative symmetry still holds exactly for
leptons in the SM.
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L =

(

ψu ψd

)

γνdν







ψu

ψd






−
(

ψu ψd

)

M







ψu

ψd







M =







Mu 0

0 Md







This Lagrangian is invariant under the SU(2) rotation







ψu

ψd






→ U







ψu

ψd






.

Requiring that this Lagrangian is locally invariant (a → a(~x) ) under

SU(2) rotations generates three fields; one for each Pauli matrix. As will be shown

in 1.1.6 these fields become the W± and Z fields, after they acquire mass through

the Higgs mechanism. While the details of generating the weak fields will be left

for latter, the phenomenological aspects of the weak interactions will be important

for this analysis.

The Z and W bosons have a rich set of interactions, that include interactions

with each other and the Higgs boson. While these other interactions are interesting

they play little role in this analysis. The most relevant weak interactions are those

between fermions. Both the Z and the W interact with pairs of fermions. The Z,

having no charge, decays into particle anti-particle pairs. The Z decay to leptons

(Z → e−e+, µ−µ+, τ−τ+) is frequently used to check detector performance, as the

properties of the Z have been well studied previously at LEP. The W boson on the

other hand, does carry charge, and, therefore, decays into charge conserving SU(2)

partners. For leptons this is simply a charged lepton and a neutrino. However,

for quarks, the families are not exact. An up-type quark will couple to a super-
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position of down type quarks. These super-position partners of the up type quarks

are given by the couplings in the CKM matrix [9]













Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

























d

s

b













=













0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015
−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046

























d

s

b













where the numerical values above represent only the magnitudes of each

term. The parameters of the CKM matrix are free in the standard model, and

have been determined experimentally. The diagonal terms are the largest. This

results in most W decays to be into a quark and an anti-quark of the same family

W+ → ud, cs, tb (decays to tb are strongly suppressed because of the top quark’s

large mass). However, occasionally the family symmetry is broken since the off

diagonal terms are not zero. This is in contrast to the leptonic W decays in the

SM which only couple to leptons of the same family.

Of particular interest to this analysis is the term Vtb as can be seen above

its value is approximately 1. Because of this the SM predicts that top quarks will

decay primarily into a b-quark and a W boson. Another consequence of this term

is the long lifetime of the b-quark. b-quarks will hadronize into B-mesons. The b-

quark couples strongly only to the top quark, but cannot decay into it because the

b-quark’s mass is much less than top quark’s mass. Since the strongest coupling

of the b-quark violates conservation of energy, the B-mesons are stable enough

to traverse a measurable distance after they are produced. This property is the

foundation of b-tagging which allows for b-quarks to be identified in a particle

detector. This will be discussed further in Chapter III.
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1.1.5. The Strong Force

The final symmetry group in the standard model is SU(3). When localized

this gives rise to the strong force. The quarks in the SM carry a color quantum

number. There are three colors which are referred to as red, blue, and green. A

quark can thus be described as

Ψ =













ψr

ψb

ψg













An SU(3) transformation is described by a general 3x3 unitary matrix.

This transformation acts on the colored quarks. A general SU(3) matrix can

be described by a set of 8 numbers multiplying the Gell-Mann matrices (see

appendix B), and a global phase. As before, we identify the global phase as the

U(1) symmetry of the electromagnetism. The remaining 8 degrees of freedom

become the gluons. Whereas the quarks carry only one color, these eight fields

can be thought of as states with two color charges. Specifically the gluon fields

have states














































|1 >= 1√
2
(rb+ br)

|2 >= −i√
2
(rb− br)

|3 >= 1√
2
(rr − bb)

|4 >= 1√
2
(rg + gr)

|5 >= −i√
2
(rg − gr)

|6 >= 1√
2
(bg + gb)

|7 >= −i√
2
(bg − gb)

|8 >= 1√
6
(rr + bb− 2gg)














































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All of the fields are massless, and are generally collectively described as just

one particle (g). As mentioned above, massless particles can be identified as having

an infinite range. The strong force, however, is a short range interaction limited to

a nucleon. The reason for this is that the gluon fields themselves carry color. This

is in stark contrast to the photon which doesn’t carry an electric charge. Because

of this the strong force has very different phenomenology. It exhibits asymptotic

freedom, which means that as the distance between two color charges decreases

the force between them goes to zero. In the other case as two color charges move

further apart the force between them gets larger! The result of this is that no

free color charges exist in nature. When colliding particles the quarks that are

produced hadronize. This means that the quark produces a spray of hadrons,

which are color neutral particles. These particles are often referred to as jets.

The one exception to this rule is the top quark. The top quark is heavy, and has

a large coupling to the b-quark. Because of this fact, the top quark will decay

into a W boson and a b-quark before hadronization takes place. The strong force

completes the U(1)xSU(2)xSU(3) symmetry of the standard model. However, these

symmetries alone do not allow for the existence of massive particles. In order to

explain the observed masses, an additional mechanism is needed.

1.1.6. The Higgs Mechanism

As mentioned before, generically adding a mass term to a boson can spoil the

local invariance of the Lagrangian. These terms, however, can be generated with

the Higgs mechanism [19–21]. Starting with the three (massless) bosons introduced

by SU(2) invariance, and the one from the U(1). The kinetic term is
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L = W i
uvW

uvi − BuvB
uv.

where i represents one of the SU(2) fields and runs from 1-3, and

W i
uvW

uvi = dvW
i
u − duW

i
v + gǫijkW

j
uW

k
v

and

Buv = dvBu − duBv

Here each field is massless, and explicitly adding mass terms violates gauge

invariance. However, if we introduce a new complex scalar doublet field.

Φ =







Φ+

Φ0







and a potential given by

V = −µ2Φ†Φ + λ(Φ†Φ)2

we get the new Lagrangian

L = W i
uvW

uvi − BuvB
uv + (DuΦ)†DuΦ− V.

Since this potential depends only on the magnitude of Φ we can rotate Φ to

be
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Φ =







0

η






.

This convenient choice is referred to as the unitary gauge. Adding this

scalar doublet doesn’t spoil the original gauge invariance, but now we have the

interesting property that the minimum of the potential is not at Φ = (0, 0). Its at

Φ =







0
√

−µ2

2λ






≡ 1√

2







0

v







where v is defined as the vacuum expectation value (vev). Now lets redefine

Φ in terms of a scalar field h that does have its minimum at 0.

Φ =







0

h+ v






, h = η − v

The kinetic term term for Φ in this new theory including the convarient

derivatives required by the U(1) x SU(2) symmetry is

(DuΦ)†DuΦ = Φ†(du − ig
2
τ ·W u − ig

′

2
Bu)(du + ig

2
τ ·Wu + ig

′

2
Bu)Φ

= duΦ†duΦ + Φ†(
g

2
τ ·W u +

g′

2
Bu)

2Φ

Expanding the second term yields (Where we have dropped the implicit

summations over the index u for convenience)

=
(v + h)2g2

4
((W 1)2+(W 2)2+(W 3)2−2i(W 1W 2))− (h+ v)2g′g

2
(W 3B)+(v+h)2B2
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The above Lagrangian now has terms that are difficult to interpret

physically. For example the term W 3B does not make sense in terms of Feynman

diagrams. These fields are thus not the physical ones of the theory. If we make the

redefinition

W 1 =
1√
2
(W+ +W−)

W 2 =
i√
2
(W+ −W−)

W 3 =
g′A+ gZ
√

g2 + g′2

B =
gA− g′Z
√

g′2 + g2

we see that the Lagrangian becomes

−1

4
g2(v + h)2(W+2 +W−2)− 1

4
(g2 + g′2)(v + h)2Z2

These are the physical fields which are associated with Z and W bosons

directly. The terms proportional to v2 are now generating mass for each of the

gauge bosons except for the photon which remains massless.

Lmass = −1

4
g2v2(W+2 +W−2)− 1

4
(g2 + g′2)v2Z2

From the above you can see that the mass of the W± Boson and the Z boson

are given by.

MW =
1

4
g2v2
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MZ =
1

4
(g2 + g′2)v2

This process of creating massive fields by assuming a non-zero vev is referred

to as the Higgs mechanism. It requires the existence of a physical scalar field h.

Recent results from the ATLAS and CMS experiment have shown the existence of

a particle consistent with a Higgs Boson, though not all of its properties have yet

been verified [10, 11].

The existence of an scalar h has other profound consequences. As mentioned

earlier a mass term for a fermion looks like

Lmass = mψψ.

It is convenient to write this in terms of the left handed and right handed

components of the spinor

ψR,L =
1

2
(1± γ5)ψ

The mass term becomes

Lmass = −m(ψLψR + ψRψL)

Experimentally, we know that W bosons don’t couple to right handed

fermions, but do couple to left handed fermions. This suggests that we can write

left handed fermions as SU(2) doublets, and right handed fermions in terms of

SU(2) singlets. The first generation quarks (u, d). Can be written as
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ΨL =







ψuL

ψdL







ΨuR =

(

ψuR

)

ΨdR =

(

ψdR

)

Since a new scalar field was introduced to generate the mass of the bosons,

we can introduce couplings between the fermions and this new field. These terms

are known as Yukawa couplings.

Ld = −λdΨLΦΨdR + h.c.

for the down type quarks, and

Lu = −λuΨLΦ
cΨuR + h.c.

for the up type quarks (Where Φc = −iτ2Φ∗ is the charge conjugated of Φ).

After spontaneous symmetry breaking Φ acquires a vev, and the following terms

appear in the Lagrangian.

Ld = − 1√
2
(λdψdLvψdR + λdψdRvψdL) = −λdvψdψd)

and likewise for the up quark.

Lu = − 1√
2
(λuψuLvψuR + λuψuRvψuL) = −λuvψuψu)

The mass of the quarks are then given by

mi =
1√
2
λiv
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The Higgs mechanism allows the fermions to have gauge invariant mass

terms. However, the coupling strengths λi are free parameters. This means that

the SM does not yet have an explanation for the masses of the particles. The top

quark, with its high mass must, therefore, couple strongly to the Higgs boson.

Why is yet unknown, which is a reason for studying the properties of the top

quark in detail.

1.2. Top Quark Production and Decays

The LHC collides protons, which are themselves very complicated objects. A

proton is composed of three valance quarks, two up quarks and one down quark.

The valance quarks are bound by the strong force which is carried by the gluon.

The gluons that bind a proton are themselves capable of splitting into quark

anti-quark pairs. The result is three valance quarks and a much larger number

of gluons and so called sea quark pairs. Therefore, in each high-energy p − p

interaction, the initial interacting particles are unknown. However, the probability

that two given particles interact in a p − p collision is known experimentally.

These probabilities are referred to as parton distribution functions and can be used

to predict on average what the initial state particles and momenta will be [22].

From these initial parton distribution functions production cross sections can

be calculated theoretically using perturbative quantum-chromodynamics(QCD).

At a p − p collider such as the LHC top quarks are produced primarily through

gluon fusion. This process, as well as the secondary quark anti-quark scattering

is illustrated in Figure 1.2. Each of these processes produces a top anti-top pair

referred to collectively as a tt event. The tt production cross section has been
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calculated at next-to-next-to-leading order in perturbative QCD, and is expected

to be 165 pb [23].

FIGURE 1.2. Tree level diagrams for top production [24]. At the LHC, modes
with gluons in the initial state are dominant.

Top quarks, once produced, decay immediately, and can only be detected

through their decay products. The SM predicts that the top quark will

overwhelmingly decay into a bottom quark and a W boson [9]. W bosons decay

primarily to pairs of quarks (∼67% of the time), but also to a charged lepton

and a neutrino ( ∼33%) [9]. A pair of top quarks can thus decay into a final

state with zero, one, or two charged leptons originating from a W. The tt decay

channels greatly influence the experimental techniques used to study them. The

final states most often produced by a pair of top quarks are the ones where both

the W bosons decay to quark pairs. This is known as the all hadronic channel.

While the all hadronic channel has the largest branching fraction its final state is

very similar to strongly produced multi-jet events, which have a large cross section.
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This large multi-jet background makes the hadronic channel difficult to study.

Events with one lepton, the lepton+jets channel, have a smaller total branching

fraction than the all hadronic channel, but have the benefit that requiring one

identified lepton greatly decreases the amount of multi-jet background. Finally,

states with two identified leptons, or the di-lepton channel, have the smallest

branching fraction but, also, the smallest multi-jet backgrounds. Experimentally,

studies of final states containing tau leptons are generally considered separately

from those containing an e or a µ since tau leptons decay into hadrons 65% of the

time, and these decays are difficult to separate from particles produced from quark

or gluon jets. The other 35% of the time the tau will decay into a lighter charged

lepton. These leptonic decays of the tau lepton are difficult to separate from a

direct decay of a W boson to an electron or muon, therefore, these events are

often experimentally considered to belong to the other di-lepton or signal lepton

channels. A summary of the top quark decay channels and branching fractions is

shown in Figure 1.3, where the size of each box represents its branching fraction.

Measurements of the top quark production cross section for each of the above

channels (with the exception of events with two tau leptons in the final state)

have been performed with the detectors at the Tevatron. Results from the D0

collaborations are summarized in Figure 1.4, and are similar in value and precision

to those by its fellow detector CDF. The measurements currently all agree with

SM predictions, but it is worth noting that some of the errors are notably large.

Due to the experimental difficulties mentioned above the total uncertainties on the

cross section measurement in the lepton+tau (l + τ ) channel 10 channel is 23%

10Here l refers to an e or µ and a hadronically decaying tau.
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FIGURE 1.3. Final states of the W+W− system produced in tt events. Boxes
with the same color are the tt cross section channels traditionally measured
simultaneously.

and 28% for the all hadronic channel (All Jets). In comparison, the lepton+jets 11

channel has a total uncertainty of 8%. Due to the large current uncertainties,

and the fact that the top quark is of great interest, the l + τ channel is an ideal

candidate for study at ATLAS.

1.3. Two Higgs Doublet Models

The currently large experimental errors on the l+τ channel make it an

interesting subject for further experimental study. The primary emphasis of this

study is to test the SM, and therefore, be sensitive to any potential discrepancy

11Here lepton refers to an e or a µ.
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FIGURE 1.4. Top quark results by channel from the D0 collaboration.

which could signal new physics. It is, however, worth pointing out one class of

theories that could lead to an observable discrepancy with the SM. In the SM the

mass of fundamental particles is generated through the Higgs mechanism by a

single Higgs doublet. This mechanism and the SM has been extremely successful

in predicting the phenomenology observed at colliders. However, the SM leaves

several questions unanswered. For example, the observation of dark matter and

the particle anti-particle asymmetry of the universe. There are also theoretical

problems. The mass of the Higgs boson itself in the SM isn’t stable with respect

to quantum fluctuations, and extremely large corrections must cancel with high

accuracy for its mass to be consistent with the known W and top quark masses.
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This is known as the hierarchy problem. Since the SM has enjoyed great success, it

is natural to consider simple extensions that could solve these problems. A priori

there is no reason to limit a theory to a single Higgs doublet, and introducing

a second Higgs doublet, can provide potential solutions to the above mysteries.

These two Higgs doublet models (THDM) are most commonly discussed in

conjunction with supersymmetry [25], a theory that solves the hierarchy problem

and can explain dark matter. Additionally, THDMs could introduce additional

CP-violation that can reproduce the observed matter anti-matter asymmetry [26].

The potential for describing some of the unsolved mysteries in physics, and its

relatively simple extension of the SM make THDMs interesting to search for. If

a second Higgs doublet exists then one observable consequence would be a new

fundamental scalar that carries charge, known as the charged Higgs boson H±.

Direct searches for this boson have been performed at LEP, and these experiments

limit the mass region where a charged Higgs boson could exist to MH± > 78.6

GeV [27]. If a charged Higgs boson exists it will couple strongly to massive

particles. If it is lighter than the top quark mass then the top quark could have

a significant branching fraction to charged Higgs t → H+b [28]. In this case the

charged Higgs will likely decay primarily to tau final states 12. The existence of

such a charged Higgs boson would add additional possibilities for a tt event to

decay into, for example, tt → W+H−bb (Figure 1.5). For a charged Higgs that

decays primarily to a tau lepton this will produce an excess in the l + τ channel

over the other dilepton channels, giving the l + τ channel direct sensitivity to the

the existence of a charged Higgs boson. The D0 has made similar searches and

finds that this branching ratio must be below 36% [29].

12There is some parameter space allowed in THDMs where the charged Higgs boson would
have a small branching fraction to τν.
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FIGURE 1.5. Diagram showing the decay of a top quark to a theoretical charged
Higgs boson.

Additional constraints on the existence of charged Higgs production exist,

some of which put the charged Higgs mass above that of the top quark’s mass.

These constraints have been derived from the absence of virtual effects in B-decays

through b → sγ. This limit derived from BaBar data shows at MH+ > 295

GeV [30]. However, this limit is derived assuming a very specific THDM. In this

model each Higgs doublet couples to either the up type fermions or the down

type fermions, with no mixing in between. This model, referred to as type-II, is

of particular interest. At tree level the simplest realization of supersymmetry, the

minimal super-symmetric model(MSSM), falls into the type-II category of THDMs.

However, it has been shown in [28] that the b → sγ fails to constrain more generic

models. In addition, recent results from BaBar show an anomalously large tau

branching fraction to taus B → D(∗)τν. This anomaly, which disagrees with

the SM a the 3.4 sigma level (∼ 1/1000), would be sensitive to a virtual charged

Higgs boson with a branching fraction to τν. This anomaly, however, cannot be

explained by a type-II THDM [31]. Finally, it has been commented that even the

MSSM does not generically fall into the type-II category, as loop corrections can
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induce a mixing between the two Higgs doublets and it is critical to search for all

THDM [32]. With the anomalous results from BaBar, and the lack of constraining

bounds, it is worth looking directly for t → H+b. Since the anomaly at BaBar is in

a tau final state, and generically the charged Higgs is expect to have a significant

tau branching fraction when lighter than the top quark mass the top cross section

in the l + τ channel becomes even more interesting. This cross section could show

excess if t→ H+b occurs.

1.3.1. Summary

The top quark was predicted in 1973, but a great deal of time would pass

before its observation in 1995 at the TeVatron. Only recently in 2010 was the LHC

able to reproduce the Tevatron’s measurements at a higher center-of-mass energy.

Currently, there are significant uncertainties on the tt cross section in the l + τ

channel which can be improved upon using the capabilities of the ATLAS detector.

This channel has sensitivity to THDMs which are theoretically attractive for being

simple and powerful for understanding physics beyond the standard model. In

addition, there exists a 3.4 σ excess in BaBar data that could be explained by a

charged Higgs boson which exists in all THDMs. Together these arguments make

the tt cross section in the l + τ , an interesting final state to explore.

The measurement of the l + τ channel requires the entire ATLAS detector as

well as the large source of top quarks that is provided by the LHC. The process

of producing and recording high energy collisions is discussed in Chapter II.

Chapter III summarizes how particles are identified from the data in each recorded

collision. The remaining chapters are dedicated to the analysis of the data, and the

results of the top pair production cross section the l + τ channel.
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CHAPTER II

EXPERIMENTAL SETUP

2.1. The Large Hadron Collider

Throughout 2011 the Large Hadron Collider (LHC)[33] at the European

Organization for Nuclear Research (CERN) collided protons at a center-of-mass

energy (
√
s) of 7 TeV; the highest energy ever obtained at a collider. Previously,

this record was held by the Tevatron which collided protons and anti-protons

at
√
s = 1.96 TeV. CERN creates this record-breaking center-of-mass energy

with a chain of accelerators. The LHC is the final stage of this chain and was

designed with the capability of reaching
√
s = 14 TeV. However, during a 2008

high energy test, a critical failure occurred in the interconnections between the

LHC’s dipole magnets. This failure created significant damage to a section of the

LHC and delayed its initial running. While the damage was repaired, additional

faulty interconnections were identified. The remaining faulty connections currently

prevent the LHC from colliding at the full 14 TeV center-of-mass energy1.

Exploring rare and new physics processes at LHC, however, requires more

than just high energies. The probability of producing rare SM processes or

hypothetical new particles in any given proton-proton (p − p) interaction is tiny,

so the LHC must also be able to produce p − p interactions at an extremely high

rate. The interaction rate is proportional to the instantaneous luminosity, which

is the density of incident proton pairs in a given time. In 2011 the LHC reached a

peak p− p luminosity of 3.65x1033 cm−2s−1, about 10 times higher than the proton

1In 2012 the LHC is running at 8 TeV. After this run the LHC will shutdown to repair the
faulty connections.
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anti-proton luminosities routinely produced at the Tevatron. The LHC is designed

to reach instantaneous luminosities on order of 1034 cm−2s−1, by colliding proton

bunches with 1011 protons every 25 ns. With its high energy and luminosity, the

LHC produces the ideal environment for discovering physics beyond the SM.

2.1.1. Collisions

As described in reference [33], bringing protons into high energy collisions is

a complex process that starts with creating the protons themselves. To create the

protons a duoplasmotron is used to ionize hydrogen gas. The resulting protons are

transferred and accelerated to 50 MeV using a linear accelerator (LINAC2). The

proton bunches created by LINAC2 are injected into the the Proton Synchrotron

(PS) system. The PS is a series of two synchrotrons that accelerate protons to

25 GeV. The PS system injects into the 7 km Super Proton Synchrotron (SPS),

which further accelerates the proton bunches to 450 GeV. Finally, the SPS injects

into the LHC ring. The full acceleration chain can be seen in Figure 2.1. The

LHC main ring is 27 km in circumference and is built with a total of 9300 super

conducting magnets which keep the proton beams circulating. Each magnet is

constructed from niobium-titanium wires, and is designed to create fields up to

8.36 T. To reach these high magnetic fields the magnets must be able to carry

15,000 amps without exceeding the critical current for superconductivity. This is

achieved by bringing the magnets to a temperature of 1.9 K with a cooling system

that circulates super fluid helium. To accelerate and maintain the proton bunches,

the LHC uses an RF system which provides 16 MV at 400 MHz. Together, these

systems accelerate two counter circulating beams to their final energy of up to 7

TeV per beam. Each beam collides head-on creating the energy densities needed
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FIGURE 2.1. The accelerator complex at CERN [34].

to discover new physics. The LHC is an engineering feat; however, creating the

collisions is just the first step in a long process. Measuring and understanding the

collisions requires its own sophisticated technology.

2.2. The ATLAS Detector

The ATLAS detector is the result of a collaboration between approximately

3,000 physicists and engineers from 174 institutes in 38 countries. At 44 meters

long, 25 meters high, and about 7,000 tons, ATLAS is the largest particle detector

ever built for an accelerator. The full assembly is shown in Figure 2.2. It is

designed as a general purpose detector, capable of searching for as many new
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physics scenarios as possible. To detect the signatures of new physics, the ATLAS

detector must accurately identify and measure particles originating from the high

energy p − p collisions produced by the LHC. To do this it uses three distinct

sub-systems: a tracking system to measure the trajectories of charged particles,

a calorimeter to measure the energy of interacting particles, and finally a muon

tracking system which measures high energy muons. The detector captures

as many of the outgoing particles as possible, and is capable of inferring the

production of non-interacting particles through conservation of momentum.

The LHC can collide proton bunches at a maximum rate of once every 25

ns, with each colliding bunch having on average more than 20 p − p interactions.

This high interaction rate means that saving the information from every collision

is impractical. The total inelastic p − p cross section at 7 TeV is approximately 70

mb [35], which is many orders of magnitude larger than, for example, the expected

top quark pair production cross section of 165 pb [23]. Since the processes of

interest have small cross sections, the majority of interactions at the LHC are not

interesting for analysis. In order to record data at a manageable rate, the ATLAS

trigger system must make a decision on whether or not an event is interesting

enough to save on a very short time scale. This trigger system reduces the event

rate from the original 40 MHz (once every 25 ns) to a few hundreds of Hz. Even

after this initial filtering, the final volume of saved information is immense and

requires petabytes of storage. Dealing with this volume of data requires a large

and complex distributed computing system known as the grid. The following

sections will describe in detail the collection and management of data from

ATLAS. Except for where otherwise noted, the information and graphics provided

in the following sections were published in [14] and references therein.
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FIGURE 2.2. The ATLAS detector and its sub-components.



2.2.1. ATLAS Coordinate System

In order to describe the detector, it will help to define a standard coordinate

system. The ATLAS detector can be described as a right handed Cartesian

coordinate system with the x-axis pointing toward the center of the LHC ring,

the y-axis pointing up, and the z-axis pointing along the beam direction. The

origin is defined at the center of the ATLAS detector. Typically, however, it is

more convenient to express this in terms of the variables r, φ, and η where φ is

the angle in the xy plane measured with respect to the x axis, and r is the radial

distance from the origin. η or pseudo-rapidity is a coordinate commonly used in

hadron colliders and is motivated by the variable rapidity (y). For a particle with

momentum along the beam line pz and energy E rapidity is given by

y =
1

2
ln(

E + pz
E − pz

)

.

To understand why this variable is useful it is worth looking at how it

transforms under a Lorentz boost in the z direction with magnitude β = v
c
.

E ′ = γ(E − βpz)

p′z = γ(pz − βE)

y′ =
1

2
ln(

E ′ + p′z
E ′ − p′z

) =
1

2
ln(

E − βpz + pz − βE

E − βpz − pz + βE
)

=
1

2
ln(

(E + pz)(1− β)

(E − pz)(1 + β)
) =

1

2
(ln(

E + pz
E − pz

) + ln(
1− β

1 + β
))
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= y + const.

Since Lorentz boosts are linear in rapidity, the rapidity difference between

two particles (∆y) transforms under a boost in the z direction as

∆y = y1 − y2 → y′1 − y′2 = y1 + const.− y2 − const.

= y1 − y2 = ∆y

. Therefore, rapidity differences are always invariant under boosts in the z

direction. Since the initial pz of a particle system created by an LHC collision is

unknown, quantities invariant with respect to it are helpful. Since rapidity is a

function of a particle’s energy, it is not directly useful as a coordinate. However,

we know that most of the particles detected by ATLAS will have very high

momentum |p| ≫ m. In this high energy limit we define η

E2 = m2 + p2 ≈ p2

pz = |p| · cos(θ)

y ≈ 1

2
ln(

1 + cos(θ)

1− cos(θ)
)

=
1

2
ln(

cos2( θ
2
)

sin2( θ
2
)
)

= −ln(tan(θ
2
)) ≡ η

.

Where θ is the angle in the yz plane measured from the z axis. As can be

seen above, η approximates y for high energy particles and is only a function of θ.

36



This property makes η a convenient choice for the ATLAS coordinate system. The

choice of η and φ as angular variables also defines the commonly used measure for

angular separation between two points a and b, ∆R(a, b).

∆R(a, b) ≡
√

(ηa − ηb)2 + (φa − φb)2 (2.1)

ATLAS is built to be as symmetric in φ as possible. Therefore, η alone is

commonly used to label the regions covered by a given detector. Large values of

|η| are close to the beam line, and are often referred to as the forward part of the

detector, and likewise smaller values of |η| are perpendicular to the beam and are

often referred to as central. The following sections will make extensive use of this

coordinate system.

2.2.2. Commonly Used Variables

In order to understand some of the reasons why detector design choices

were made, it is important to describe two variables that are commonly used at

hadron colliders. The LHC collides protons which are composed of quarks and

gluons, and in a high energy collision it is impossible to tell exactly which particles

initially interacted. Also, while the head-on proton system has zero net momentum

in the detector’s reference frame, this is generally not true for any given pair of

partons in the colliding protons. Furthermore, the remnants of the proton (the

spectator partons) after the hard scatter tend to be undetectable since they

continue mainly down the beam pipe. Because of this, it is impossible to know

the initial momentum in the z direction of an interaction captured by the detector.

This problem motivated the choice of η over other more common coordinates, and

also motivates us to define the transverse momentum of a particle (pT ).

37



pT =
√

p2x + p2y (2.2)

Particles with high transverse momentum are marked as interesting for

new physics, because they represent a significant transfer of energy during a

collision. In addition, since the protons in the beam have an insignificant amount

of transverse momentum, conservation states that the vector sum of the transverse

momenta of every particle must be zero. Experimentally the energy observed in

the detector does not always follow this rule. This is because weakly interacting

neutral particles (such as neutrinos) traverse the detector undetected. Since a

neutrino’s momentum cannot be captured often there is a measured imbalance in

an event’s total pT . The combined transverse momentum of all the particles that

escape is referred to as missing transverse energy ( /ET ), where

~/p = −
∑

i

~pi (2.3)

/ET =
√

/p2x + /p2y (2.4)

Together pT and /ET are used extensively to define and select events, and the

importance of their measurement influences the design of the detector.
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2.2.3. Tracking

The ATLAS tracking system is composed of three sub-detectors, and it

provides the ability to measure the trajectories of charged particles with an

|η| > 2.5 as they move through a uniform 2 T magnetic field. Closest to the

interaction point is the pixel detector, a finely segmented silicon detector used

to reconstruct vertices. Located further from the interaction point, the semi-

conductor tracker (SCT) with a larger radius provides additional precision to

track momentum measurements. At the largest radius is the transition radiation

tracker (TRT), which provides additional tracking information using straw tubes

and is capable of discriminating electrons from heavier charged hadrons using

transition radiation. The full tracking system is shown in Figure 2.3. Together

these sub-detectors are designed for measuring a track’s transverse momentum

to the precision of σ(pT )/pT = 0.05%pT ⊕ 1%. The first term is proportional

to pT and reflects the fact that charged particles with a high pT bend less in the

tracker. The constant term arises from multiple scattering in material, which alters

the trajectory of a charged particle from its ideal path. The inner detector was

designed to give precise position measurements of charged particles. Each sub-

detector is different and will be explained below. All of them must work together

in order to obtain the final resolution goal.

Solenoid Magnet

The solenoid magnet [36] is located between the tracking system and the

calorimeter. It must provide a strong magnetic field for precision tracking and be

as transparent as possible to incoming particles in order to minimize interactions

before the calorimeter. To accomplish these goals a single-layer of Al-stabilized
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NbTi superconducting wire is coiled inside a 12 mm thick Al supporting cylinder.

At the nominal 7.730 kA operation this magnet produces a 2 T axial field. The

solenoid magnet shares the cryostat and vacuum vessel with the liquid argon

calorimeter which also helps to minimizes material and is used to obtain an

operating temperature of 4.5 K. The entire solenoid assembly contributes ≈ 0.66

additional radiation lengths and ≈ 0.13 additional interaction lengths [37]. The

solenoid is designed for efficient use of materials, vacuum vessels and cooling,

which creates the maximum magnetic field with a minimum amount of material.

Pixel Detector

The pixel detector is the inner-most tracking detector. It is composed of

about 80 million silicon pixels, which measure the ionization created by high

energy charged particles. The detector is built with three concentric cylinders

(barrel layers) at 5 cm, 9 cm and 12 cm (seen in Figure 2.5), from the interaction

point, and two sets of three concentric disks in each of the forward regions (see

Figure 2.4). The pixel detector covers the region with |η| <2.5. The sensors used

FIGURE 2.3. Computer generated graphic of the ATLAS inner detector.
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for the pixel detector [38] are n-type wafers with n+ implants. These sensors are

designed for maximum radiation hardness, though due to the proximity to the

interaction point the first pixel layer is only expected to function for approximately

three years at design luminosity, and afterward will be replaced. The remaining

layers are expected to last 10 years. In the pixel detector 90% of these sensors are

50x400x250 µm2, the remaining 10% are 50x600x250 µm2, and operate between

150-600 V depending on the radiation dose of the sensor. Each sensor is bump

bonded to the front end electronics. This electronics design allows the entire pixel

system to be read out at a rate of about 7.5 kHz assuming a 1% occupancy. The

pixels provide a two dimensional measurement with high resolution, which is vital

for reconstructing vertices from p− p interactions, as well as from secondary decays

coming from particles such as tau leptons or B-mesons.

FIGURE 2.4. The ATLAS Pixel tracker.

Semi-Conductor Tracker

The semi-conductor tracker(SCT) is a silicon tracker, like the pixel detector,

but instead uses 12 million long thin silicon strips. These so called micro-strips
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have a width of 80 µm and a length of 12 cm. The SCT is composed of four

cylindrical layers to cover the barrel region, and two sets of nine disks in the

forward region with a total coverage of |η| < 2.5. At a larger radii charged

particles will have larger separation as they move outward from the interaction

point, and will have moved further under the influence of the magnetic field. This

allows for a very precise measurement of pT and location. However, the SCT

also requires a significantly larger volume of active silicon sensors than the pixel

detector. For this reason the larger micro-strips were chosen. Each micro-strip

provides a precision position measurement of two coordinates: the r coordinate

from the layer’s position, and the coordinate constrained by the thin area of

the strip. In order to extrapolate full three-dimensional information, each layer

is composed of two sensors with strips oriented in different directions (at a 40

mrad tilt). Ideally, a charged particle will cross eight strips (two for each SCT

layer) giving four localized space points. The SCT’s location further from the

interaction point and its larger sensor size also allows for more traditional p-in-n

type sensors [38] to be used. The sensors will operate at between 150-350 V, based

on radiation doses.

Transition Radiation Tracker

The transition radiation tracker (TRT) is the final tracker starting 0.5

meters from the interaction point. Unlike the silicon tracking components, the

TRT is composed of straw tubes (see Figure 2.5). Each of the 300,000 4 mm in

diameter straws [39] are composed of a reinforced polyimide tube which contains

a gold plated tungsten wire and is filled with a 70% Xe, 27% CO2 and 3% O2

gas mix. The straw is kept at -1530 V. When a charged particle ionizes the gas
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mixture, the resulting electron avalanches are collected at the anode. In addition,

the polyimide layer of the tube serves as a dielectric which when crossed by a

relativistic charged particle will induce radiation inversely proportional to the

particles mass (transition radiation). The radiated photons are absorbed by the

gas mixture and induce a large current yield. Large current pulses induced by

transition radiation are called high threshold hits, whereas smaller signals from

standard ionization are referred to as just hits. Comparing high threshold hits to

all hits helps identify electrons from other heavier charged particles. The total

TRT coverage is |η| < 2.0.

FIGURE 2.5. Cross section of the inner detector.
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2.2.4. Calorimeter

The ATLAS calorimeter is designed to distinguish and measure electrons,

photons, and hadrons (usually in QCD jets). As a secondary purpose, it prevents

these particles from penetrating into the muon tracking system. To do this a series

of sampling calorimeters are used. Sampling calorimeters operate by layering

absorbers and active material. The absorbers are made from a dense material that

has a high likelihood of interacting with an incoming particle. The active material

is made of materials that are sensitive to ionization caused by charged particles. A

sampling calorimeter is designed in such a way that interactions between incoming

particles and the absorbers produce particles that can be measured in the active

material. The total number of secondary particles produced by an interaction with

an absorber is proportional to the interacting particle’s energy. The amplitude

of the signal measured by the calorimeter in the active material is proportional

to the number of charged particles that traverse it. Therefore, the energy of

the incoming particle can be inferred from the signals originating in the active

material. The ATLAS calorimeter uses two different active materials and three

different absorbers: liquid argon (LAr) with lead/copper-tungsten and scintillation

tiles with steel.

Calorimeters also have particle discrimination power. High energy (E > 10

MeV) electrons primarily lose energy through bremsstrahlung, and high energy

photons convert through pair production. The rate of both these processes is

inversely proportional to the radiation length. While traversing one radiation

length an electron will lose all but 1/e of its energy to bremsstrahlung. This

distance is also 7/9 of the mean free path for photon pair production. Hadrons can

only be measured with hadron-nucleon interactions. This process is characterized
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by a hadron’s mean free path known, as the nuclear interaction length. ATLAS

uses two calorimeter stages to measure incoming particles. The first stage is

an initial electromagnetic (EM) calorimeter for photons and electrons, which is

about 25 radiation lengths, and only about 2 nuclear interaction lengths. Thus

electron and photon showers are contained in the EM-calorimeter and can be

identified. Further from the interaction point outside of the EM calorimeters, the

hadronic calorimeters contribute about 9 additional nuclear interaction lengths (see

Figure 2.10) to contain hadronic showers. ATLAS uses five sampling calorimeter

systems, which provide a total coverage for particles produced with an |η| < 4.9.

Particle production in the absorbers is a stochastic process. Therefore, there

is an intrinsic statistical uncertainty inversely proportional to the square root of

the number of particles produced ( 1√
N
). A higher energy particle will produce a

larger number of secondary particles when interacting with the absorbers, so this

statistical uncertainty can be expressed in terms of the measured energy and is

proportional to 1√
E
. The constant of proportionality is a function of how well the

secondary particles can be measured and how much energy is lost in the absorbers.

The design resolution for EM calorimetry is σE/E = 10%/
√
E ⊕ 0.7%, and for

the hadronic calorimetry σE/E = 50%/
√
E ⊕ 3% in the barrel and end-cap,

and σE/E = 100%/
√
E ⊕ 10% in the forward region. The additional constant

term in the error reflects the ability to determine the global calibration of the

calorimeter. It is worth noting that the calorimeter measurements compliment the

measurements from the inner detector which have uncertainties that grow with pT .

The full calorimeter can be seen in Figure 2.6. The following sections will describe

the five calorimeter systems utilized by ATLAS in further detail.
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Liquid Argon Electromagnetic Calorimeter

The liquid argon electromagnetic calorimeter (LAr-EM) is used mainly

to contain and measure electromagnetic particle showers produced by photons

and electrons. As seen in Figure 2.8, LAr-EM is designed with accordion-shaped

absorbers and electrodes, placed in three layers segmented in η and φ. This

accordion shape yields a uniform response to particles in φ. The absorbers are

made of lead which has a short radiation length. To add additional mechanical

strength the lead plates have steel sheets glued to both sides. The area between

the absorbers and the electrodes is filled with liquid argon that serves as the active

material. The electrodes are composed of three copper-tungsten sheets separated

by insulating polyimide layers. The outer two electrodes are kept at 2000 V to

produce electron avalanches from the ionization created by charged particles

traversing the liquid argon. The center electrode reads out current pulses through

capacitive coupling. In addition, a pre-sampler layer sits between the solenoid

magnet and the first lead accordion. This pre-sampler is built to compensate for

FIGURE 2.6. Computer generated graphic of the ATLAS calorimeters.
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the material in the inner detector before the calorimeter. This material, which acts

like a passive absorber, is shown in radiation lengths in Figure 2.7. The LAr-EM

calorimeter covers a range of |η| <1.475.

FIGURE 2.7. Material as a function of η and averaged over φ before the
EM-calorimeters in radiation lengths.
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Tile Calorimeter

The tile calorimeter, located just outside the LAr-EM calorimeter, provides

hadronic energy measurements in the barrel region (|η| < 1.7). It is a sampling

calorimeter, which uses steel as the absorber medium and scintillating tiles to

sample particle showers. The structure of the tile calorimeter can be see in

Figure 2.9. Light from each scintillating tile is collected in wavelength shifting fiber

optic cables. The cables are grouped together to form a three dimensional cell that

provides three sampling depths. Each fiber group is fed into two photo-multipliers,

one for each end of the cell. Hadronic showers are measured by the amount of

scintillating light produced in each tile cell. Since the LAr-EM calorimeter is 2
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interaction lengths, most hadronic showers originate in one of its absorbers and

propagate through the tile calorimeter. Therefore, the total energy of a hadronic

shower is calculated by adding the energy deposited in the LAr-EM calorimeter

and the tile calorimeter.

Forward Calorimeters

The ATLAS calorimeters have the ability to cover the entire range |η| <

4.9. The LAr-EM and tile calorimeters which cover the low η regions have been

discussed, but in the high η regions high particle flux adds to the challenges that

must be faced by detectors. In order to cover this area ATLAS employs three

additional calorimeters: the electromagnetic end-cap calorimeter (EMEC), the

forward calorimeter (FCal), and the hadronic end-cap calorimeter (HEC). EM

showers are contained by the FCal and the EMEC, and hadronic showers are

FIGURE 2.8. LAr module showing the accordion design.
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FIGURE 2.9. Tile module showing scintillating tile structure.
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FIGURE 2.10. Material as a function of η in interaction lengths.
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contained by the HEC. All of the forward calorimeters are sampling calorimeters

that use liquid argon as the active material. This is a change from the scintillating

tiles used by hadronic calorimetry in the central region, which, due to high rates,

would degrade in the forward region. The absorbers for the FCal and EMEC as

in the LAr-EM calorimeter are made of lead because of its short radiation length.

The HEC, however, uses copper-tungsten absorbers which is optimal because of its

short nuclear interaction length. Together these calorimeters cover the full high η

range.

2.2.5. Muon Tracking System

Muons are the only detectable SM particles that regularly traverse the

calorimeters. Since muons are charged they can easily be measured with a tracking

system. Operating on the same principles of the inner detector, the muon tracking

system is composed of a magnet and elements to measure the trajectory of each

charged particle. In the muon system the magnetic field is supplied by two sets

of toroid magnets. Precision position measurements are obtained using monitored

drift tubes (MDTs) except in the forward region where the layer nearest to the

interaction point requires different technology. Here, due to the high rate of

incident particles, cathode-strip chambers (CSCs) are used. Both the MDTs

and CSCs suffer from long drift times (up to 700 ns), so these systems must be

augmented with fast reacting, thin gap chambers (TGCs), and resistive plate

chambers (RPCs), which provide information at a rate fast enough to be used by

the trigger system. Together these systems provide the ability to measure the pT of

a 1 TeV muon to an accuracy of 10%.
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FIGURE 2.11. Computer generated graphic of the ATLAS muon tracking system.

Toroid Magnet

The toroid magnet seen in Figure 2.11 consists of two sets of toroid magnets:

one set in the central region just outside of the calorimeter known as the barrel

toroid, and one set in the forward region known as the end-cap toroid. The barrel

toroid produces a field of 0.5 T and the end-cap toroid produces a field of 1 T. The

magnet field is produced by coiling super conducting wire made from a Nb/Ti/Cu

alloy around each ring segment. Each ring segment nominally operates with a

current of 20.5 kA and at a temperature 4.5 K. The ATLAS superconducting

toroid magnet is the largest ever built.

Monitored Drift Tube Chambers

As seen in Figure 2.11, the monitored drift tube chambers (MDTs) in the

barrel region are placed before, inside, and outside of the toroid magnets in three

cylinders. In the end-cap the two MDT wheels cover higher rapidity. Each drift

tube contains a central tungsten-rhenium wire held at 3080 V, and is filled with an
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Ar/C02 (93%/7%) gas mixture. Muons passing through a tube will ionize the gas

mixture, and the resulting electron avalanche is measured at the anode wire. As

shown in Figure 2.12, drift tubes are stacked in layers of three or four tubes. Each

MDT chamber contains two such layers separated by mechanical spacers, which

allows for multiple precise measurements of each muon track. The drawback of

this system is that the maximum drift time for the electron signal is ∼700 ns. This

long drift time makes using this system too slow for triggering. Therefore, it must

be augmented with the faster detectors describe below.

FIGURE 2.12. Structure of a MDT chamber.

Cathode-Strip Chambers

In the innermost layer at high η, MDT technology cannot be used because

of the high rate of incident particles. Here the precision measurements of the

MDT are augmented by cathode-strip chambers (CSCs) arranged in a wheel (see

Figure 2.11). Each CSC is a multi-wire proportional chamber with wires parallel to

a central wire that points toward the beam line. The anode wire is held at 1900 V
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to induce electron avalanches in Ar/CO2 (80%/20%). However, unlike the MDT,

the electrical signal is read off from the segmented cathode layer. This read out

system is illustrated in Figure 2.13. Each muon is located by interpolating the

charges on neighboring cathodes.

FIGURE 2.13. Diagram of a CSC showing the cathode charge readout.

Resistive Plate Chambers

Resistive plate chambers (RPCs) provide rapid information for triggering

on muons in the barrel region. The RPCs are mounted like the MDTs in three

concentric cylinders. Each chamber contains two detector layers allowing for up

to six measurements of a traversing muon. The detector layer is composed of

two parallel resistive plates separated by 2 mm and made of phenolic-melaminic

plastic laminate. In between the plates a gas mixture of C2H2F4/iso-C4H10/SF6

(94.7%/5%/0.3%) is kept in an electric field of 4.9 kV/mm. Passage of a muon

ionizes the gas mixture, creating electron avalanches, which are measured at each

anode. The structure of a chamber can be seen in Figure 2.14

53



FIGURE 2.14. Diagram of a RPC.

Thin Gap Chambers

Thin gap chambers (TGCs) provide rapid information for the triggering of

muons in the forward region. Each TGC is a multi-wire proportional chamber,

where a single line of wires is placed between two graphite cathodes. Each wire

is located 1.4 mm from the cathode read out just closer than the inter-wire

distance of 1.8 mm. A diagram of the TGC setup can be seen in Figure 2.15.

The gap between the cathodes is filled with a mixture of CO2 and NC5H12 (n-

pentane). Anode wires are kept at 2900 V, again allowing for the measurement of

electron cascades caused by the passage of a charged particle. The TGCs complete

the description of the muon system’s fast triggering devices. Together with the

precision MDTs and CSCs this system can accurately trigger and measure high

energy muons.
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FIGURE 2.15. Diagram of a TGC.
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2.2.6. Forward Detectors and Luminosity

In order to measure a cross section, it is vital to have an accurate

measurement of the integrated luminosity delivered to the detector. The ATLAS

luminosity measurement is discussed in full in [40], and will be summarized below

along with the forward detectors used for its measurement. For normal runs,

ATLAS relies on event counting to determine the luminosity. Event counting uses

the number of observed “events” in a given bunch crossing (BC), and relates this

to the luminosity. An event, in this case, refers to ionization creating a signal in

one of the forward detectors. At a hadron collider with revolution frequency fr and

with nb bunches crossing at the interaction point, the luminosity can be calculated

as

L =
µnbfr
σinel

=
µvisnbfr
εσinel

=
µvisnbfr
σvis

. (2.5)

where ε is the efficiency for one inelastic p−p collision to satisfy the event-selection

criteria, and µvis ≡ εµ is the average number of visible events per BC (i.e. the
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mean number of p−p collisions per BC that pass an “event” selection). The visible

cross section σvis ≡ εσinel is the calibration constant that relates the measurable

quantity µvis to the luminosity L. This quantity can also be directly measured

using a method proposed by Van der Mer [41]. The absolute luminosity can also

be directly calculated from the beam parameters with the equation

L =
nbfrn1n2

2πΣxΣy.
(2.6)

Here Σx/y are the widths of the beam in orthogonal directions, and n1/2

are the number of protons in each beam. Σx/y is measured in special runs at the

LHC, where the beams are separated in both the x and y plane. The LHC can

configure n1/2, so σvis can be calculated from Equation 2.5. Once σvis is known

the luminosity can be calculated from the events recorded. Ideally, every p − p

scattering event would be measured. However, due to the high rates that dominate

the total p − p cross section, detectors placed at large |η| must be very resistant to

radiation damage. To capture as many of these events as possible (for high σvis)

special detectors are used which cover the high |η| regions. These detectors are

described below.

Beam Conditions Monitor

The Beam Conditions Monitor (BCM) was designed to give rapid feedback

to the accelerator and dump the beam in the event of critical radiation doses

appearing in ATLAS. Such a radiation dose could, for example, occur if the beam

hits a collimator near the detector. The BCM consists of two stations with 4

diamond sensors that are located 184 cm from the center of the detector (pictured

in Figure 2.16) and 5.5 cm from the beam pipe. Each sensor measures ionization
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caused by high energy charged particles. While the BCM’s primary purpose is

detector safety, its proximity to the beam and fast read-out time make this a

detector valuable for luminosity monitoring.

FIGURE 2.16. BCM detectors.

LUCID Detector

LUCID (Luminosity measurement Using Cherenkov Integrating Detector), is

the only detector specifically designed to measure luminosity at ATLAS. LUCID

is constructed of twenty aluminum tubes, which surround the beam-pipe and

are oriented toward the interaction point. Each tube is filled with C4F10, which

produces Cherenkov radiation. This radiation is amplified by photo multipliers

located at the end of each tube. LUCID is installed ±17 m from the interaction
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point, 10 cm from the beam pipe at |η| = 5.8. LUCID and the BCM provide rapid

hit counting ideally suited for Luminosity measurements.

2.2.7. Trigger and Data

At design specifications, the LHC is capable of colliding proton bunches

every 25 ns. ATLAS stores approximately 1.5 Mb of data per event it saves.

Saving every event would require 60 Tb per second or over an exa-byte a year.

Storing this data volume is impractical, so ATLAS makes use of a sophisticated

data reduction system called the trigger. The goal of the trigger is to reduce the

number of saved events from 40 MHz to a manageable 400 Hz while not sacrificing

any potential for new physics discoveries. This is accomplished by a three tiered

system. The Level 1 (L1) trigger is a hardware system that operates at the full 40

MHz rate and makes a decision on whether or not to pass an event to the level 2

(L2) trigger. L1 accepts events and feeds them to L2 at a rate of 75 kHz. The L2

trigger and final high level trigger (HLT) are run on computing farms; they reduce

rates from 75 kHz to 3.5 kHz to 400 Hz2 respectively. Each system is described in

more detail in the following sections.

Level 1 Trigger

The Level 1 trigger system makes the initial decision on whether an event

is interesting enough to record. For speed it is implemented with custom-built

electronics. The L1 decision is made using only a subset of the ATLAS detectors.

Calorimeter information is used to find high pT jets, electrons, photons, and tau

leptons. The muon triggering system (TGCs/RPCs) is used to find high pT muon

2The final rate is configurable based on the available storage, and can vary during a run.
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candidates. This information is combined in the central trigger processor where

a decision is made. The decision process for an event has a latency of 2.5 µs,

therefore, events must be pipelined in order to accommodate the shorter bunch

crossing interval of 25 ns. This is the first of several data reduction systems

required to analyze ATLAS data.

Level 2 and High Level Trigger

The L2 and HLT systems serve to further reduce the event rate. Unlike L1,

these trigger systems are not run with custom built electronics. Both L2 and HLT

utilize a computing farm containing approximately 10,000 CPU cores. The L2

computers have to make decisions at a much higher rate then the HLT (75 kHZ),

therefore, a limited amount of information is utilized. The information used comes

from regions of interest (ROI’s) that were determined by the L1 system to be

worth further investigation. L2 gains rejection power by using additional detector

information, and more sophisticated algorithms for each ROI. Events accepted

by the L2 system are passed to the HLT. The HLT, which can spend more time

processing each event, has full access to all detector quantities. Therefore, the

most sophisticated algorithms are run here to define a final selection. Events which

pass the HLT algorithms are saved to a mass storage device at CERN.

2.3. Computing

After events have been stored in CERN mass storage, there are still a

number of challenges that must be overcome in order to analyze the data. While

the trigger selects only a special set of events, the entire ATLAS dataset is still on

the order of several petabytes. It is impractical to repeatedly replicate or analyze
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such a large dataset. Therefore, the ATLAS computing system [42] must perform

a series of data reduction steps that produce successively smaller datasets. Beyond

data processing and storage, the ATLAS computer system must also provide the

processing power and storage space to accurately simulate the detector’s response

to different physics processes. ATLAS is also a large collaboration and must

maintain access to both data and simulations to members around the world. Each

of these challenges require specialized software and hardware that utilize a grid

computing infrastructure.

The ATLAS grid is composed of a series of interconnected computing sites

around the world. Each site provides mass storage, computing farms, and fast data

transfer. Sites are organized into tiers by their size and function. The computing

center at CERN is the only tier-0 site. Here the full RAW (unprocessed) data is

stored and the very first processing of it occurs on local computing farms. Eleven

tier-1 sites provide a significant amount of mass storage and maintain backups

for a fraction of the full dataset. Finally, there are over 160 tier-2 sites that are

utilized by physicists all over the world to manipulate the ATLAS physics data.

Distributed computing offers many advantages. Resources can easily be

shared across the collaboration, computing problems are located to single grid

sites, and huge processing power is available through cost effective commercial

computers. However, the size of the ATLAS dataset is a significant challenge for

data transfer between grid sites. To deal with the large data size a series of data

reduction steps are used. These steps gradually reduce the ATLAS dataset to sizes

reasonable to transfer around the world.

The data reduction system is designed to provide optimal access to the

needed information, while minimizing data transfer. This processes starts
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at CERN where the tier-0 site performs the first reconstruction of the data.

Reconstruction is the process of taking the detector signals and converting them

into objects that are interesting for physics; for example, identifying electrons.

These algorithms are described in greater detail in Chapter III. The output of the

reconstruction is saved to files in various degrees of detail. It is advantageous to

have access to as much information as possible. However, too much information

can become a problem since the time it takes to transfer, open, or manipulate

the files within a dataset is proportional to its size. The ideal situation would

occur if the only information saved was the information needed for a specific

task. That being said, due to the large number of tasks this would require huge

numbers of potentially redundant datasets. The ATLAS collaboration thus tries

to provide small files to accommodate common tasks, and larger files that can be

used for more complicated analyses. The largest dataset format in use is the Event

Summary Data (ESD). This format stores significant information about the raw

detector signals, and is used for groups developing and validating algorithms for

identifying particles. Smaller than the ESD, the analysis object data (AOD) stores

the output of the algorithms developed from studies performed on the ESD. This

data format is typically ∼100 Kb per event a factor of 10 smaller than the raw

data, and it is the starting point for many physics analyses. The final and most

commonly used data type is the Derived Physics Data or (DPD) format. This

format is usually derived from the AOD and is customized to meet the needs of

individual physics groups. It has a typical size of ∼ 50 Kb per event. The DPD

and AOD datasets are stored on all grid sties around the world, whereas, ESDs are

stored mainly on the large tier-1 sites.
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Since local file access is significantly faster than file transfer, algorithms

written for specific analysis are often sent directly to the grid sites. After receiving

an algorithm a grid site’s computing farm will execute it and store the resulting

data. Final user datasets vary widely, but are small enough to easily transfer to

small clusters at universities or even to laptops. Every dataset produced on the

grid is made available to the entire collaboration to investigate. Through this

process peta-bytes of data are distilled into interesting physics results that can

summarized in a graph or even a single number.

To study the process tt → W+W−bb → lνlτντbb millions of events need

to be analyzed. Each one of these events is the result of of several cutting-edge

technological systems. They start with the high energy collisions produced by the

LHC and the CERN accelerator complex. Particles from the interaction point

pass through the largest particle accelerator ever built. One in ten-thousand are

saved, and the few left are then passed through three stages of data reduction

on computing sites all over the world. Finally, these events can be explored to

understand the fundamental principles of physics.

2.4. Monte Carlo and Simulation

The ATLAS detector does not cover the full solid angle, and because of

trigger requirements can only save events with particle energies above a certain

threshold. Not every event of interest will fall within the detector’s acceptance,

and in order to relate the number of events measured in the detector to the

number of events actually produced this has to be accounted for. The most

common way this is accomplished is by computer modeling. Monte Carlo

algorithms are used to simulate the particles produced in an LHC collision. Monte
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Carlo programs generate random “events” with outgoing particles based upon

probabilities predicted by theory calculations. Each event is composed of a process

of interest, for example a tt event, and in addition several “soft” processes that

simulate the effects of multiple p − p interactions in the same bunch crossing.

Together these outgoing particles simulate an actual event produced by the LHC.

Once the outgoing particles have been produced the effect of the detector itself

must be modeled. This requires propagating the particles through the detector’s

magnetic field, modeling the interactions they have with matter in the detector,

and finally modeling the detector’s response itself. Several specialized programs

are used to accomplish each of these tasks from event generation to detector

simulation. Together these programs fully simulate the data recorded by ATLAS.

Since the initial hard process is known in these simulations, the probability of

events being captured by the detector can be easily calculated. The end result

of this simulation is a data-set in the same format as the recorded data. Besides

correcting for events lost in the detector the simulated data is extremely useful

in planning an analysis, and estimating possible uncertainties. Data is often

compared to the simulation as a test of its robustness, and Monte-Carlo simulation

is shown in addition to the data in most of the plots in this thesis. Because of its

central role in understanding the experiment this section will briefly summarized

the programs used by ATLAS and this measurement.

2.4.1. Monte Carlo Generators

After events have been recorded, they must be understood. Some of the most

powerful tools used to investigate the ATLAS data are Monte Carlo generators.

Monte Carlo generators are used to simulate the particles produced in LHC
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p − p collisions. Several factors are important for accurately simulating an event.

First, the hard scatter, which produces the outgoing partons is calculated using

perturbative Quantum Field Theory (QFT). Available generators can calculate

perturbative series to leading order (LO) or next to leading order (NLO) precision.

Due to the difficulty of higher order calculations not all processes are available at

the highest precision.

The hard scatter process creates events with “bare” outgoing quarks.

However, this is not physical since quarks hadronize into jets of particles. Since

hadronization is not a perturbative process it cannot be fully calculated from

first principles. To approximate this a parton shower scheme is used, which is

implemented using one of two different approaches: either color clusters or color

strings [43]. Both approximations are considered to determine systematics. In

addition the spectator partons of the proton that contained the partons which

underwent the hard scatter must be simulated (including effects of additional

scattering by partons in the proton), this so called underlying event (UE) also

must be modeled. The UE modeling is done either by the generator itself or a

secondary program such as Jimmy. Finally, the effects of pile-up must be included.

Monte-Carlo events used for this analysis were generated with a random number

of “soft” interactions that follow a Poisson distribution with an average of 8

interactions per bunch crossing. The “soft” events where simulated with the

Pythia [44] generator. All the generators and programs used by this analysis are

summarized with their properties below.

– Pythia [44] is a LO general purpose generator. It uses a string model parton

shower, and simulates the UE. Pythia can only simulate processes with two

initial state particles to two final state particles.
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– Jimmy [45] is a set of libraries that is used in conjunction with Herwig to

model the UE.

– Herwig [46, 47] is an additional LO general purpose generator. Unlike Pythia

it uses a cluster based parton shower model, and uses Jimmy to generate its

UE.

– Alpgen [48] is a LO generator, but unlike Pythia it can be used to generate

processes that have more than two particles in the final state. Hadronization

is provided by Herwig, and the UE is generated by Jimmy.

– ACERMC [49] is an additional LO generator, that can be used to estimate

the uncertainties caused by initial state and final state radiation. It uses

Pythia to implement its parton shower and UE.

– MC@NLO [50–52] is a NLO generator. Its parton shower model is

implemented by Herwig with Jimmy modeling the UE. This generator

produces events that have weights of ± 1, where negative weights represent

a subtraction of events that would otherwise be double counted in NLO

calculation of this algorithm.

– POWHEG [53–55] (Positive Weight Hardest Emission Generator) is another

NLO generator, which generates only positive weighted events, and is used to

check and assign systematics to the MC@NLO samples.

All the above generators are used in this analysis, and the datasets created

by them are summarized in Chapter IV.
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2.4.2. Simulation

Once the outgoing particles are generated the response of the detector must

be simulated. This is accomplished using the GEANT tool kit [56]. The outgoing

particles are propagated through a detailed model of the ATLAS detector,

which includes a description of ATLAS’s magnetic field. GEANT simulates

the energy deposits throughout the material in each of the detectors, including

particle showers in the calorimeters. These energy deposits are then “digitized”.

Digitization involves running a simulation of ATLAS’s electronic read out system

on the energy deposits created by GEANT. Together this turns the simulated

event into a RAW data file that is treated in the same fashion as the data samples.

Having discussed the full method of measuring, saving, and simulating data at the

ATLAS detector we can now turn to the analysis of the data itself.
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CHAPTER III

PARTICLE IDENTIFICATION

The ATLAS detector, as described in Chapter II, records energy deposits

and charged particle trajectories. This information, however, must be interpreted

in order to identify what particles were created inside the detector. To do this

several algorithms are employed that exploit the different behavior of each particle

as it passes through the combined ATLAS detector. For example, an electron will

shower in the LAr-EM calorimeter whereas a hadron will not. A photon will also

shower in the LAr-EM calorimeter, but it can be distinguished from an electron

because it will not create a track in the inner detector. These algorithms are not

perfect, and the performance of an identification algorithm can be characterized

by two properties. Each algorithm has an efficiency, which is the probability of

correctly identifying a given particle. In addition, each algorithm has a fake rate,

or the probability of incorrectly labeling another particle or detector signature

as the particle we are trying to identify. The goal of any particle identification

algorithm is to maximize its efficiency while minimizing its fake rate.

The diverse set of particles in the decay chain of interested tt → W+W−bb →

lνlτντbb provides significant challenges for the ATLAS detector. With the

exception of photons, a precise measurement of this final state requires every

particle identification algorithm to work and be well understood. ATLAS has

algorithms to identify electrons, photons, muons, tau leptons, jets initiated

from b-quarks, and neutrinos inferred through conservation of momentum. Jets

initiated from lighter quarks or gluons are also reconstructed, but the original

particle is not identified. Each of these algorithms utilizes special multi-variate
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analysis techniques to categorize the detector’s signatures. These algorithms were

developed using Monte Carlo, so validation of each algorithm’s performance in

data essential. These topics are discussed in the following sections for each of the

particle identification techniques used by this analysis.

3.1. Tracking

One of the most basic inputs to the particle identification algorithms are the

tracks found by the inner detector. These tracks are formed by “hits” either in

the silicon sensors of the pixel or SCT, or in the drift tubes of the TRT. Each hit

localizes a charged particle to a given area called a space point. Reconstructing

these space-points into charged particle trajectories requires specialized algorithms.

ATLAS track finding starts from track seeds found by the pixel detector.

The so called inside-out algorithm [57] uses the space-points from the pixel

detector to both determine possible vertices and create initial estimates of possible

track trajectories (only trajectories with pT > 100 MeV are considered). Each

trajectory is defined by the following track parameters:

– d0: the transverse impact parameter, which is the closest extrapolated

distance to the interaction point in the xy-plane.

– z0: the longitudinal impact parameter, which is the closest extrapolated

distance to the interaction point in the z-plane.

– φ0: the angle of the track’s momentum in the xy-plane at the point closest to

the interaction point.

– θ: the polar angle of the momentum in the zy-plane.

– q
|p| : The charge of the track divided by its total momentum.
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FIGURE 3.1. Tracks (highlighted) reconstructed from inner detector space points
(gray points). Many visible tracks have pT too low to be considered by ATLAS’s
algorithm [58].

The initial estimates of the above parameters are updated with a Kalman

filter as space points from the SCT layers are included. The track trajectory

predictions include effects from scattering in material and the passage through

ATLAS’s magnetic field. Not all track seeds can be successfully extrapolated into

the SCT. The smaller number of successfully extrapolated tracks are re-fitted

with a more detailed material model for better accuracy. The updated tracks

are then extrapolated into the TRT. The TRT extensions continue to update the

track’s parameter estimates. Figure 3.1 shows an example of tracks found in a

low luminosity event at ATLAS. In this figure, several tracks with large curvature

can be identified by eye, but are not identified by the tracking system. These

tracks are in general not considered by the algorithm because their pT is too low

to be interesting for physics analysis. High luminosity events can have hundreds of

identified tracks.
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The reconstructed tracks include errors on their track parameters, and a

total χ2 representing the difference between the space-points and the extrapolated

tracks. Depending on the requirements of an object reconstruction technique,

different quality cuts are made to select good tracks.

3.2. Jet Finding

Jets are one of the most fundamental objects reconstructed at ATLAS. They

are simply collections of energy deposited into the calorimeter. Jets are used as

inputs to more complicated particle identification algorithms, and independently

for identifying quarks and gluons. Quarks and gluons, due to their color charge,

cannot exist as free particles, and any quark or gluon that is scattered out of the

proton will hadronize into a spray of color neutral particles. These particles are

measured by ATLAS and can be gathered to approximate the properties of the

initial outgoing parton. Collections of energy deposits are created using the jet

finding algorithm anti-kt [59, 60] with an R parameter equal to 0.4.

The anti-kt algorithm finds neighboring energy collections and gathers them

in a manner that is motivated by knowledge of QCD. This is done by defining the

relationships between calorimeter objects i and j,

∆Ri,j =
√

∆η2i,j +∆φ2
i,j

di,j = min(
1

k2T,i
,

1

k2T,j
)
∆R2

i,j

R2

dB,i =
1

k2T,i
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FIGURE 3.2. Jets identified by the ATLAS detector [58].

where kt is the transverse momentum of the object in question (pT ). From

these relationships the algorithm starts from the highest pT object i. It then

considers particle j with the smallest ∆R . If di,j is found to be smaller, the dB,i,

the four vectors of i and j are added, and the new combined object becomes i.

If dB,i is smaller, then i is labeled as a jet and removed from the objects being

considered. The processes is iterative until no objects are found. An example of

jets found in the ATLAS detector is shown in Figure 3.2.

The anti-kt algorithm takes topological energy clusters as its input.

Topological clusters are groups of calorimeter cells defined by the 4-2-0

scheme [61]. This scheme starts with seed cells, which are defined as cells with a

signal to noise ratio greater than four. From each seed cell all contiguous cells with

a signal to noise ratio above 2 are added to the cluster (it is possible for clusters to

merge). Finally, all cells adjacent to the cluster with a signal to noise ratio greater

than zero are included.
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During jet clustering, each cluster is calibrated at the electromagnetic (EM)

scale. This scale is appropriate for the energy deposited by electrons or photons.

The resulting jets are then calibrated with Monte Carlo based pT and η dependent

correction factors to account on average for energies lost during nuclear interaction

in the calorimeter. For such calibration, a Monte Carlo sample of inclusive QCD

jet events was used to determine the calibration factors. This energy calibration is

known as the jet energy scale (JES) [62].

Since jets are defined as energy deposits inside the calorimeter, the only

source of fake jets are those caused by detector noise or particle signatures that

are left over from previous bunch crossings. Jet quality criteria [63] are applied

to identify jets not associated to real energy deposits in the calorimeters. These

so called “bad” jets can be caused by various sources ranging from hardware

problems in the calorimeter to the LHC beam conditions; even atmospheric

cosmic-ray induced showers can occasionally appear as a jet. The effect of these

quality cuts on real jets originating from a p− p collision is very small.

With the jets identified and calibrated it is necessary to determine how

well the calibration works in data and how accurately the energy resolution and

efficiency are described. The JES uncertainty is based on the estimation performed

in [62] except for the pile-up contribution which has been re-evaluated with 2011

data. Pile-up, which was significantly larger in 2011 than in 2010, describes

the effects of multiple p − p interactions in the same event. These additional

interactions can lead to extra particles, which can increase the energy of a jet.

Corrections are used to remove the additional energy coming from pile-up, and

this correction adds a small additional uncertainty on the JES. In addition to pile-

up, other activity in the event can have similar effects. Since we are interested in
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the properties of jets in tt events, additional contributions to the JES uncertainty

must be considered: the top multi-jet environment, the flavor composition, and the

proximity of jets to one another. Each of these uncertainties are considered for this

analysis, and are included in the JES uncertainty.

The calorimeter jet reconstruction efficiency was derived relative to jets

built from charged tracks reconstructed in the inner detector. The reconstruction

efficiency was defined as the fraction of track jets that could be matched to a

calorimeter jet. The observed difference between data and MC was applied to MC

by randomly dropping a fraction of jets within this uncertainty range.

With the jet energy scale and efficiency evaluated, we turn to the jet energy

resolution. The jet energy resolution is measured with the di-jet balance and bi-

sector techniques. These techniques look at events that have two jets in them that

are back to back in the transverse plane (∆φ ≈ π). Because of conservation of

momentum, these jets are expected to have the same pT . The differences between

them are sensitive to the jet energy resolution. The agreement between these

events in data and MC is within 2%. This uncertainty was propagated to MC by

smearing each jet’s transverse momentum.

All energy deposits in the the ATLAS calorimeter can be identified as jets,

however, some of these deposits are likely to come from other particles such as

electrons or tau leptons. Discriminating these jets from other jets is critical to

understanding each event.

3.3. Tau Lepton Identification

The tau lepton is the only lepton with a lifetime short enough to decay inside

the detector. Fortunately, the tau lepton’s decay products have been well studied.
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It is known that the tau will decay into an electron or muon with an appropriate

neutrino about 35% of the time, and into hadrons the reaming 65% of the time [9].

Most processes in the SM couple equally to all lepton types 1. Because of this

lepton universality, the leptonic decays of the tau are difficult to distinguish from

the direct production of electrons and muons in the same process. Thus, it is

important to identify tau leptons using their hadronic decays. It is convenient

to divide these hadronic tau decays into two categories based on the number of

charged hadrons in the tau’s decay products. Final states with 1-charged hadron

make up 50% of tau decays and are referred to as 1-prong or as τ1. Final states

with three charged hadrons make up the remaining 15% of the tau decays, and are

referred to as multi-prong or as τ3. States with more than three charged hadrons

are possible but occur less than 1% of the time; therefore, they are not considered.

The decay products of a tau lepton form particle jets, and can easily be

found by the anti-kt jet algorithm described above. While finding each particle jet

is a simple process, determining whether a jet was the result of a tau or the result

of a colored particle hadronizing is quite challenging. To do this ATLAS employs

a two step method for tau finding [64]. First tau candidates are found, and second

a multi-variate technique is applied to further distinguish each tau candidate from

backgrounds. Tau candidates are found using the anti-kt algorithm with an R

value of 0.4. Each candidate is then assigned all tracks found within a ∆R< 0.2

of the core axis of the tau candidate. Tau candidates with exactly one track are

called 1-prong (τ1), and all other candidates are referred to as multi-prong (τ3).

This process is illustrated in Figure 3.3.

1The notable exception is the Higgs boson which couples more strongly to tau leptons because
of their higher mass.
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FIGURE 3.3. A diagram of a 1-prong tau candidate. The yellow cone represents
the R=0.4 jet, and the blue cone represents the R=0.2 central cone. This is only
one of several possible decay modes.

Once this initial tau candidate finding has been completed, multi-variate

analysis is used to discriminate between tau leptons and strongly produced

particle showers. One further complication is that electrons are also identified

as jets, but have very different shower properties and must be rejected using an

additional multi-variate technique. This measurement uses two boosted decision

trees (BDTs). The first BDT separates taus from strongly produced jets. The

second BDT separates taus from electrons. ATLAS supports two other multi-

variate techniques: one based on a likelihood and the other based on a series of

Et-dependent cuts. Since these methods provide worse rejection power, they were

not considered for this study.
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3.3.1. Boosted Decision Trees

There exist many variables that show discrimination between jets resulting

from tau leptons and jets resulting for other sources. However, none of the existing

variables are completely unambiguous. For a given variable there is always some

chance that a jet resulting from a strong interaction will have the same or similar

values to a jet resulting from a tau decay. The challenge of multi-variate analysis

is to find the best way to utilize several different variables to give the maximum

discrimination. In the ideal case, the Neyman-Pearson lemma [65] states that the

most powerful discriminator between two different hypotheses H0 and H1 given a

series of variables ~x, is given by the likelihood ratio.

Λ =
L(H0|~x)
L(H1|~x)

(3.1)

For tau identification this theorem requires the full multi-dimensional

probability distribution function for all variables given a jet, and a similar

distribution for all variables given a tau. If both of these are known then the best

discriminator for telling a jet and a tau apart is the ratio of the likelihood that

a given set of variables comes from a tau over the likelihood that the same set of

variables comes from a jet. Unfortunately, this theorem requires precise knowledge

of the total combined probability distribution function. In practice this is often

impossible to obtain, since our knowledge of jets and tau leptons is limited by

the number of events recorded in data or simulated with MC. To deal with the

the limited information available, several methods exist to approximate the ideal

discriminator; one such method is the boosted decision tree (BDT) [66].
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A BDT is based on a simple strategy for categorizing data called a decision

tree. A decision tree finds the optimal series of “cuts” to separate two differing sets

of data. For convenience we can call one set of data s for signal and the other set

of data b for background and assume both contain the same number of events.

Both s and b are characterized by the variables ~x, but have events disturbed

according to different probability distribution functions. A decision tree scans

the one dimensional projections of each probability distribution function to find

the cut value and variable that minimizes the gini. The gini is defined as p(1-

p) where p is the purity defined as sc/(sc+bc), where sc, bc are the number of

events that pass a cut from the signal and background data sets respectively. The

gini index has a minimum of 0. This minimum occurs if p=1 (all signal) or p=0

(all background). Once the best cut to divide s from b is found, the data set is

split into two nodes: one with values greater than the cut value and one with

values smaller than the cut value. Each node, which now contains a different set

of data points, scans its data set for the smallest gini again. This process repeats

at each subsequent node until a predefined minimum number of events is reached

(Illustrated in Figure 3.4).

Each final node represents a small range in the hyperspace of ~x. Each range

contains a number of signal and background events that defines the purity of a

node. A decision tree is utilized by checking what node an event falls into, and

returning the purity of that node. The decision tree is simple and efficient. It

returns one number to describe how “signal”-like an event is, but a single decision

tree can be unstable to statistical fluctuations. As the number of nodes increases,

the number of events available in each node decreases, making it more likely that

statistical fluctuations will cause the tree to branch in a way that does not truly
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FIGURE 3.4. Diagram of a BDT. Each split is made by the cut that maximizes
the gini (labeled by dummy variables on the left). Once a minimum number of
events is reached, the processes stops. This is performed iteratively, by adjusting
the weights of mis-categorized events (boosting). The final discriminator is the
sum of all the trees.

represent the underlying distribution. This can be mitigated to some extent by a

technique known as boosting.

Boosting is an iterative process that applies the concept of a simple decision

tree iteratively to build a set, or forest, of classifiers. For tau identification, the

adaptive boosting algorithm Ada-Boost is used [67]. This algorithm starts with a

simple decision tree; however, since the separation isn’t perfect some signal events

will be classified as background and vice versa. The rate at which this occurs can

be labeled err. From this we can quantify the discrimination of a tree by the boost

weight α.

α =
1− err

err

β

(3.2)
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This weight multiplies the event weight of every event that was miss-

classified, and a new decision tree is trained on the resulting data (β is a tunable

parameter that is set to 0.2). This causes the next decision tree to pay more

attention to the miss-classified events. The resulting tree again has a different

err and different set of miss-classified events, so the process can be repeated. The

number of iterations is set to 50. The final discriminator is determined from a

weighted sum of each tree

yBoost(~x) =
1

Ncollection

Ncollection
∑

i

ln(αi) · hi(~x) (3.3)

where hi is the result of each individual tree.

3.3.2. Final Identification

To create the final tau identification two BDTs are trained. The variables

used as inputs to the BDT are described in appendix C. Each BDT is trained to

reject a specific background. The BDTj is designed to reject strongly produced

jets faking taus, and the BDTe is designed to reject electrons faking taus. To train

each BDT a signal sample of real taus is needed, as well as a sample of fake taus

originating from the background of interest. The set of real taus was obtained from

Pythia simulation of Z → τ+τ−, W → τν, and Z ′ → τ+τ− processes. These

three samples provide a good mix of tau leptons from low to high energies. For

the BDTe background sample electrons from Pythia simulated Z → ee events are

used. The jet background, however, is not expected to be accurately simulated by

MC; therefore, di-jet events were selected directly from the recorded data. These

events were required to have at least two tau candidates separated by ∆φ > 2.7.

The leading tau candidate is required to have a pT > 30 GeV and the sub-leading
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FIGURE 3.5. Jet fakes versus real taus for the BDTj (left), and electron fakes
versus real taus for the BDTe (right).
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candidate with a pT > 15 GeV. Each event is collected by a L1 jet trigger. In

order to reduce the biases that are introduced by the jet trigger, only the sub-

leading candidate is used for training.

Each sample is then split into two groups: a training group and an evaluation

group. One potential pitfall of multi-variate techniques is over-training. Over-

training occurs when the decision tree optimizes on statistical fluctuations. In

the extreme case, a tree could be produced with one node per event, giving

perfect identification in a training sample. To check for over-training, the BDT’s

identification is also assessed in the evaluation group. If similar rejection is seen

in the training and evaluation group, then the risk of over-training is low. The

evaluation group can also be used to give an unbiased estimate for the final fake

rate and efficiencies. The BDT shapes for real taus along with the BDT shapes for

jet and electron fakes are shown in Figure 3.5. The BDTe is required to be greater

than 0.51 for all tau candidates, and the BDTj distribution itself is used later in

this analysis for estimating the magnitude of the fake jet background.
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3.3.3. Tau Energy Scale

Tau lepton decays can be composed of both EM and hadronic energy

deposits. Therefore, a tau candidate cannot be calibrated at the EM-scale. Such

a calibration would underestimate the energy contribution from hadrons. Nor

can a tau be calibrated at the jet energy scale, as this would overestimate the

contribution of photons. Therefore, an additional scale, the tau energy scale must

be determined. For the tau energy calculation only clusters located within an inner

cone with ∆R < 0.2 are used. This small cone size gives some immunity to pile-up,

while still capturing most of the tau’s decay products. The final tau energy scale

is determined from MC studies, which compare the true visible energy (all particle

energies with the exception of neutrinos) of the tau as simulated to the detector’s

response. The detector’s response is binned in total energy, η, and by prong (1-

prong and multi-prong). Tau candidates are corrected by the tau energy scale to

recover the expected true visible energy.

The tau is a complicated object to identify and use for physics, but it

is essential to this study. It relies on using multi-variate techniques to isolate

real taus from jets and electrons. The multi-variate technique chosen was the

boosted decision tree. The boosted decision tree output will be a key factor in

the remainder of this analysis.

3.4. Electron Identification

Electron identification is a key tool for distinguishing rare physics processes.

Since electrons have several identifying characteristics, they can be well separated

from strongly produced jets. As mentioned in chapter II, electrons lose 1/e of

their energy when traversing a radiation length of material. The EM-calorimeters,
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which are about 25 radiation lengths deep, are designed to contain the full showers

produced by a high energy electron. This distinguishes them from hadronic

particles which often penetrate the EM-calorimeter. In addition, electrons as

charged particles have tracks in the inner-detector that distinguish them from

photons. ATLAS uses the information from these combined systems to identify

electrons with algorithms described below, and in further detail in [68].

Electron identification starts from energy deposits in the EM-calorimeter.

Energy deposits in the cells of the calorimeter are built into clusters using a sliding

window algorithm [61]. This algorithm starts from calorimeter towers, which are

created by summing all the energy in cells contained in fixed ∆η x ∆φ areas. A

window of 5 towers by 5 towers is then slid across the calorimeter in fixed ∆η and

∆φ steps. When the total transverse energy in the window is at a local maximum

and larger than 3 GeV, a pre-cluster is formed. The pre-cluster’s location is

defined using the cells corresponding to the tower with the maximum energy. Final

clusters are built by adding all cells in each layer that are contained in a fixed

sized rectangle centered on the pre-cluster. After clusters have been built, tracks

within a ∆η < 0.2 and within a ∆φ < 0.2 of the cluster are considered. The track

with the smallest distance to the barycenter of the energy deposits in the middle

layer of the cluster is considered to be the best match. These clusters form electron

candidates, and final discrimination is obtained by analyzing the track and cluster

information.

The final electron requirements are defined by rectangular cuts on several

quantities. This analysis uses “tight” quality electrons, which have the lowest fake

rates, and lowest efficiencies. This definition uses:
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– The ratio of the ET in the 1st sampling of the hadronic calorimeter to the

ET of the EM cluster (used to veto jets which will have hadronic activity).

– The ratio of cell energies in a 3x7 window versus a 7x7 window. This is used

because electron clusters tend to be smaller than hadronic clusters.

– The total lateral shower width.

– The ratio between the largest and second largest energy deposits.

– Tracks with at least 1 pixel hit, at least 1 b-layer hit, and at least 7 SCT hits.

– A transverse impact parameter less than 5 mm.

– The ∆φ between the cluster and the track in the middle layer of EM-

calorimeter.

– The total number of hits in the TRT.

– The ratio of the number of high-threshold hits to the total number of TRT

hits.

The cuts on these variables are optimized to produce an efficiency of 75%.

Electrons passing the ID selection are additionally required to have ET > 25 GeV,

where the ET is constructed from the energy of the electron’s cluster and the

direction of the track (ET = Eclus/cosh(ηtrack)). Electrons inside the “crack”

region, where the barrel calorimeter meets the end-cap calorimeter, are excluded

(1.37 < |ηcluster| < 1.52).

Electrons from prompt W boson decays tend to be isolated from jet activity

unless there is an accidental overlap with one of the jets in the event. This is in

direct contrast to electrons from heavy-flavor decays, which will tend to occur
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inside a jet. In order to best identify a top event with a leptonically decaying

W , it is convenient to consider leptons coming from heavy flavor decays as a

background. In order to suppress the background from these sources, we require

that there is little jet activity in the space surrounding the electron. To quantify

the jet activity in the vicinity of the election, a variable referred to as isolation

is used. In this case, isolation is defined as the sum of Et in the calorimeter cells

within a cone of ∆R = 0.2, known as EtCone20. To account for the energy of

the electron, the energy deposited in a rectangular window of 5x7 calorimeter

cells centered on the electron candidate is subtracted from the total energy in the

isolation cone. Occasionally, electron energy will leak out of the 5x7 cell window.

This “leakage” is corrected for on average using a factor derived from MC. This

isolation quantity, however, can introduce dependencies on multiple interactions,

which deposit additional energy throughout the detector. The extra energy can

fall into the isolation cone, despite there being no real jet activity from the hard

scatter. This additional energy can cause a reduction in efficiency as a function of

the number of additional interactions. This is corrected for on an event by event

basis, by extrapolating the average energy per area seen in the calorimeter into

the electron’s cone and subtracting it. The final cut on the leakage and pile-up

corrected isolation is EtCone20 < 3.5 GeV.

The efficiency of finding an electron passing all of the above cuts is measured

with Z→ ee events in both data and MC. To accomplish, this a “tag and probe”

method is used. This method selects events triggered by an electron that passes

the tight quality cuts (“tag”). If a second electron candidate without quality cuts

is found in the event (“probe”), then an invariant mass can be formed from the

two electron candidates. If this mass is consistent with a decay of a Z boson,
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then it is very likely that both selected electrons are real. The probe electron

can then be used to determine how often a real electron fires a trigger or passes

the final quality selections. The MC is generally seen to model the data well.

Scale factors are derived to parameterize any differences in efficiency between

data and MC. The electron reconstruction efficiency is measured in three |η|

regions and the scale factor is found to be consistent with 1 except for |η| > 2.37,

where it is ≃ 0.97. The efficiency and scale factors associated with the isolation

requirement is measured separately as a function of ηcluster with respect to the

electron identification, again using Z → ee events. An additional systematic

uncertainty of 2% is applied to the data measurement for top quarks to account for

the fact that only Z events are used in the efficiency measurements. The measured

scale factors are applied directly to the MC, and varied within their uncertainties

to determine systematics on the electron acceptance. The small scale factors,

and high rejection for the electron identification makes it a very useful tool for

identifying the leptonic decays of the W bosons produced in top quark pair events.

3.5. Muon Identification

Muons, like electrons, are very useful tools for triggering and identifying

rare processes. Muons, which traverse the entire detector, produce clean signals

in the muon system. Muon identification starts with hits in the muon system

(section 3.5), and uses them to form tracks which are extrapolated back into the

inner detector. Tracks from the inner detector are associated with the extrapolated

muon system tracks with a minimum χ2 method. The hits of the inner detector

track with the smallest χ2 with respect to the extrapolated muon track are

associated with that muon track. To form the best measurement possible, the
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final track is refitted using the combined hits from both the inner detector and

the muon system. Muons identified with good inner detector tracks are labeled

combined. Only combined muons are considered for this analysis. This selection

produces a pure set of real muons. Only muons with enough transverse energy to

cause the trigger system to fire at high efficiency (pT (µ) > 20 GeV) are considered.

This selection alone, however, is not enough to reduce backgrounds caused by

strongly produced jets. As with electrons, many real muons are produced by heavy

flavor decays. Since we are interested in isolating leptons from the t → Wb → bµν

decay, an isolation cut is used to reduce muons from other sources. However,

unlike electrons, isolation is defined in the following way. First there is an explicit

veto for muons near jets. If a reconstructed jet (see section 3.2) lies within

∆R(µ, closest reconstructed jet) < 0.4 the muon is rejected. In addition, an

explicit isolation cone is used ETcone30(µ) < 4 GeV and pT cone30(µ) < 4 GeV,

where ETcone30 is the sum of calorimeter cells within a ∆R < 0.3, and pT cone30 is

the sum of all pT s from charged tracks in the inner detectors within a ∆R < 0.3.

As with the electron identification, the muon efficiency was measured with

a tag and probed technique utilizing Z → µµ events. To account for any muon

inefficiencies with respect to MC, MC events containing a reconstructed muon

passing all the above selections are weighted directly by the trigger efficiencies

measured in data. Final isolation cuts are also accounted for by applying scale

factors to the MC, as is done for electrons.

3.6. b-tagging

One of the most important selection criteria for the analysis of events

containing top quarks is the identification of jets initiated from b-quarks. The

86



FIGURE 3.6. b-tagged jet, which a good reconstructed secondary vertex (red
circle) [58].

discrimination of b-jets from light quark jets originates mainly in the relatively

long lifetime of b-flavored hadrons. This long lifetime results in a significant flight-

length, which leads to measurable secondary vertices and impact parameters of the

B-hadron’s decay products.

This analysis utilizes the CombNN b-tagger which combines two b-tagging

algorithms with a neural network to extract a tagging decision for each jet. One

of the two combined b-taggers, JetFitter, exploits the topology of weak b-hadron

decays into c-hadrons inside a jet. The discrimination between b-jets and light jets

is based on a likelihood using the masses, momenta, flight-length significances,

and track multiplicities of the reconstructed vertices as inputs. An example of a

b-tagged jet with a good identified secondary vertex is seen in 3.6.
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To further increase the flavor discrimination power, a second b-tagger is

run that does not attempt to directly reconstruct decay vertices. Instead, this

tagger (IP3D) uses the transverse and longitudinal impact parameter significances

of each track within the jet to determine a likelihood that the jet originates

from a b-quark. The IP3D and JetFitter tagger results are combined using an

artificial neural network to produce a single discriminant variable that is used to

make tagging decisions. The result of this combination is known as the CombNN

algorithm. For further details about these taggers please consult reference [69].

This analysis cuts on the CombNN output to accept b-jets with

approximately 70% efficiency in tt decays. The corresponding rejection rate is 5

for charm jets and 99 for light flavor jets. The performance estimates of the b-

jet taggers are derived on specific data samples. These performance estimates

are propagated into tt MC using scale factors for the tagging and mis-tagging

efficiencies.

3.7. Missing Transverse Momentum

Properly calculated, the missing transverse energy ( /ET ; see Section 2.2.2)

represents the combined transverse momentum of all particles that escape

detection. However, the calculation of this quantity is complicated because the

energy deposited in the detector must be calibrated, and this calibration depends

on which particles are identified. The /ET in this analysis is calculated directly

from clusters which are corrected to the energy scale appropriate for the objects

associated with them. The calibration of each cluster is done in a fixed order to

avoid double counting clusters associated to more than one object. First, muons,

which are not primarily measured by the calorimeter, are included using their
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momentum as measured from their track. Next, the topological clusters that are

associated to electrons are calibrated at the EM-scale. Clusters belonging to jets

(but not to electrons) are divided into those that belong to high pT jets (pT > 20

GeV) and soft jets (pT < 20 GeV). High pT jets are calibrated at the JES, whereas

low pT jets (SoftJets) are calibrated at the EM-scale. The remaining clusters not

associated to any object are included at the EM-scale in what is called the CellOut

term. The low pT jet terms and the unassigned clusters are calibrated in the same

manner and are functionally equivalent. The low pT jets, however, are required for

assessing systematics on the JES since varying the JES can push jets over/under

the pT cut used for deciding their calibration. Using the above terms the /ET is

calculated using 3.4 and 3.5:

/p
Miss = /p

Electrons + /p
Jets + /p

SoftJets + /p
Muon + /p

CellOut (3.4)

/ET =

√

(

/pMiss
x

)2

+
(

/pMiss
y

)2

(3.5)

All objects used for calibration apply the same quality selection as discussed

above in order to be consistent with the rest of the analysis. However, to improve

the /ET resolution, the objects have lower pT cuts. For example electrons with a

pT > 10 GeV are used. In addition, the isolation cuts for electron and muon

identification are not applied, since these cuts are designed to reject actual

electrons and muons (those coming from heavy flavor decays) that should be

included at their proper scale in the /ET calculation.

The most significant sources of uncertainty related to /ET come from the scale

and resolution of the objects used. Each of the objects in the /ET calculation have
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an uncertainty related to its energy scale and energy resolution. For electrons, high

pT jets, and muons these uncertainties are propagated into the /ET . For the high

pT jets, the /ET uncertainty also takes into account the jet efficiency uncertainty

by reducing the jet contribution to the /ET to the EM-scale and properly includes

the transition between EM-scale and JES at the pT = 20 GeV boundary. For the

SoftJet and CellOut terms, the main uncertainty comes from the energy scale of

the topological clusters.

ATLAS identifies several different particle types, and these particles can be

combined to find the /ET of an event. The /ET represents the neutrinos that escape

the detector. With the ability to identify electrons, muons, b-jets, tau leptons, and

neutrinos, we are ready to measure the tt cross section in the l + τ channel.

90



CHAPTER IV

MEASUREMENT OF THE TOP PAIR CROSS SECTION

The tt cross section (σtt) is an expression of the probability of producing a tt

event in a p − p collision. For a given integrated luminosity(L), the mean number

of events produced (Ntt ) is

Ntt = σtt̄L.

As discussed in section 1.2 only about 5% (BR) of these events decay into

an e/µ + τ final state, and of that 5%, only some of the events can be captured

by the ATLAS detector (Nsignal). Since the detector does not cover the entire

η range, and since some selection must be applied to isolate the signal events,

there is an acceptance probability (A) that gives the probability of a signal event

being detectable. Even if the event is detectable, only a fraction of them (ǫ) will be

correctly identified. The number of identified signal events can therefore be related

to the total number of produced events by

Ntt =
Nsignal

BR · A · ǫ .

However, the actual number of events observed in the data (Nobs) will include

all other background physics processes that can mimic the signal process Nb.

Nobs = Nsignal +Nb

A “cut and count” analysis is performed to measure the tt cross section in

the l + τ channel from Nobs. This type of analysis selects signal-like events (cuts)
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and then relates the total number of observed events to the cross section (counts)

by subtracting the expected background and dividing by the integrated luminosity,

acceptance, branching fraction, and efficiency.

σtt̄ =
Ntt

L =
Nobs −Nb

BR · A · ǫ · L (4.1)

The analysis follows a flow shown in Figure 4.1. The initial data is collected

with the trigger, and the MC simulation is matched to describe it. This is detailed

in section 4.1. This initial data-set is reduced by requiring that each event has

the properties expected for a signal event. These cuts were optimized using MC,

and are explained in section 4.2. Using this preselected data, the signal events are

separated from background events. This stage is critical to the analysis, so two

different methods are applied to act as cross checks. This is shown in section 4.3.

Due to differences in their fake rates, 1-prong taus (τ1) and multi-prong taus (τ3)

are treated separately. This leaves eight cross section measurements; one for each

background method in four different channels: e + τ1, µ + τ1, e + τ3, µ + τ3. Some

of these measurements are highly correlated, so they must be properly combined

to assess whether the cross checks are reasonable, and to get a final result. This

combination is done with a best linear unbiased estimator (BLUE) in section 4.7.

S

4.1. Datasets and Simulations

This measurement uses an integrated luminosity of 2.05 fb−1 collected from

March 2011 to August 2011. In August 2011 the LHC began running with a higher

number of protons in each colliding bunch. While this increases the instantaneous

92



FIGURE 4.1. The steps required to go from the initial LHC collisions to the final
cross section measurement.
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TABLE 4.1. Data periods defined by ATLAS.

Period Data Recorded Peak Inst. Lumi. Max µ Detector Comments
(pb−1) (1030cm−2s−1) (Avg. Int.)

B 12 247 8.1
D 167 719 7.3
E 48 838 7.9 6 LAr FEBs non-operational
F 132 1113 7.8
G 508 1278 8.0
H 259 1276 6.9 1 Muon Algorithm Update
I 337 1874 9.0 4 LAr FEBs recovered
J 226 2023 9.8
K 590 2356 11 Trigger Algorithm Update

Total 2279
Total w/ Det. Qual. 2053

luminosity, it also increases the number of p − p interactions in each bunch

crossing. These additional interactions are referred to as pile-up. Pile-up results

in additional energy depositions throughout the detector. This excess energy can

affect the resolution of jets and tau candidates. Since this measurement could be

performed with high sensitivity without the high pile-up data, only part of the full

5.25 fb−1 2011 dataset was used.

The ATLAS data is divided into periods. Each period represents a significant

change in the performance of either the LHC or ATLAS. The periods used are

listed in Table 4.1. The total recorded data in these periods is 2279 pb−1, but

during ATLAS’s data recording, problems with the detector, such as bursts of

noise or power trips can cause subsystems to become temporarily unreliable. Since

this analysis requires all of ATLAS’s subsystems to be functioning correctly, the

data recorded during these problems is excluded from the analysis. The data with

detector quality (Total w/Det. Qual.) is a subset of the total data that contains

2053 pb−1 of the recorded data from 2279 pb−1.

In addition to small noise problems, at the end of period D a significant

number of LAr front end electronics boards (FEBs) failed. These electronics

boards transmit data from the calorimeter, and without them a region of the
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FIGURE 4.2. The Electron multiplicity throughout the detector during the LAr
FEB failure (left) and after the LAr FEBs were recovered (right).
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LAr calorimeter was unusable. The region of the calorimeter serviced by the non-

operational FEBs can easily be seen in the number of reconstructed electrons

shown in Figure 4.2. Most of these FEBs where recovered during a technical stop

before the start of period I. Since this problem existed for a substantial period

of time, the affected region of the calorimeter was excluded while the FEBs were

not functioning. This procedure was performed to both data and to an equivalent

fraction of the MC.

Besides the ATLAS detector problems, periods are also triggered by changes

in the ATLAS trigger menu. The LHC continuously increased the instantaneous

luminosity throughout 2011 (See Figure 4.3). As instantaneous luminosity

increases so does the rate of events that pass triggers. Since ATLAS must maintain

a reasonable rate of saved events, this increase in rate must be accounted for by

adjustments in trigger algorithms to reject more events. This analysis starts from

the events collected by a single electron or muon trigger. In order to accommodate

the increasing rate, these triggers can be adjusted in two ways. The first is to raise

the pT threshold for accepted electrons. This reduces the rate of lepton triggers,
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but at a cost of reducing the acceptance. The second way is to increase the quality

requirements of the trigger object. This reduces the number of triggers coming

from fake leptons, but also reduces the efficiency for real leptons. The triggers used

by this analysis are listed with their quality and pT thresholds in Table 4.2.

FIGURE 4.3. Peak instantaneous luminosity per fill in 2011.

TABLE 4.2. Triggers used for electron and muon channels by LHC data-taking
period.

Period Electron Muon
pT Quality pT Quality

B-I 20 medium 18 loose
J 20 medium 18 medium
K 22 medium 18 medium

In addition to increasing the trigger rate, changes in luminosity often come

with increased pile-up. The MC samples used by this analysis are simulated with,

on average, 8 interactions per bunch crossing distributed with Poisson statistics.
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To account for the differences between the recorded data and the simulated MC,

scale factors where applied to the MC as a function of the number of expected

interactions. Finally, the trigger efficiencies, which are measured from the data as

described in Chapter III, are directly applied to the MC. With the data collected,

and corrections applied to MC, the tt events can be further isolated.

4.2. Event Selection

After the events were recorded with a single lepton trigger, we defined

a series of event level selections that reject detector and physics backgrounds.

These selections start with the reconstructed objects described in chapter III, and

try to isolate the event topology of our signal events. To do this it is important

to understand the differences between the signal events and the other physics

backgrounds. The signal events (Figure 4.4 left) are characterized by a real tau,

a real e or µ, two real b-jets, and /ET from the neutrinos. The backgrounds

to this process can be divided into two main categories. The first category of

events contain a fake tau, which include: W boson production with associated

jets, semi-leptonic tt , and multi-jet events. The second category of events are

those that contain a real tau lepton. These include Z → τ+τ− + jets, and single

top production. Each of these processes, except for multi-jet production, were

simulated by the MC generators listed in Table 4.3. The multi-jet production was

measured from data as described in the following section.

Each background process has defining characteristics that can help

discriminate between signal and background. Multi-jet production has a large

cross section, but can be greatly reduced by requiring an isolated lepton. Multi-

jet events also tend to have low /ET because the only neutrinos produced are
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FIGURE 4.4. Diagram showing the signal final state(left) and dominant
background(right). Both channels have an e/µ, /ET from the neutrino(s), and two
b-jets. The distinguishing trait the presence of the tau lepton in the signal.

TABLE 4.3. Generators used to simulated physics processes.

Physics Process Generator
tt (Not full hadronic) McAtNlo

W + jets → e/µ/τ + νe/µ/τ + jets Alpgen
Z + jets → ee/µµ/τ+τ− + jets Alpgen

Single top McAtNlo
ZZ,WW,WZ Herwig

Wbb Alpgen

those from secondary decays inside the resulting jets. Direct W + jets →

lν + jets production, however, has a real lepton, and /ET from the neutrino. This

background can be reduced by requiring the presence of two additional jets, and

requiring one to be b-tagged. In addition, the large top quark mass contributes

significant boost to its decay products. One way of observing this is through Ht;

the scalar sum of lepton pT , jet pT , tau pT (calibrated at the Jet Energy Scale),

and /ET . Ht is lower in W+jets events, and can be used for further discrimination,

making its final contribution small. The dominant background after cuts comes
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from events with very similar event topology; in this case semi-leptonic tt decays

(tt → lνbbqq) shown in Figure 4.4 (right). These events have a real lepton, real b-

jets, and real /ET . The only discriminator between this background and the signal

is the tau identification. Backgrounds with real taus, similarly, are reduced to a

small level by requiring a b-jet and /ET . The final event selection is:

– one and only one isolated µ (e), coming from a W decay.

– at least one loose tau candidate, coming from a W decay.

– at least two jets with pT > 25 GeV not overlapping with a tau

candidate. The overlapping jet is the closest jet to the tau candidate within

∆R(τ, jet) < 0.4. In the case of two or more tau candidates at least 1 jet is

required to not overlap with any tau candidate, and all candidates are kept

until a tight selection is made.

– /ET > 30 GeV, arising because of the neutrinos from the leptonic W decays.

– HT + /ET> 200 GeV, to reduce W+jets background.

– at least one jet identified as b-jet (≥ 1 b-tag). The CombNN tagger is used

by requiring ≥ 0.35 (70% efficiency point) as described in Chapter III.

/ET and Ht are continuous variables, and the cut which best discriminates

signal from background was found by maximizing the statistical significance

Nevents−Nb√
Nevents

in MC. Two additional requirements were added to reject backgrounds

not resulting directly from p− p collisions and detector noise to negligible levels.

– an event is required to have a primary vertex with at least five tracks in

order to reject beam backgrounds and cosmic rays.
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– events are discarded if any jet with pT > 20 GeV fails jet quality selections

designed to reject jets arising from out-of-time activity or calorimeter

noise [63].

FIGURE 4.5. τ1 (top) and τ3 (bottom) muon channel. Data/MC comparison for
each of the variables used in the preselection, before the respective cut is made.
Left: /ET before /ET cut, Middle: HT + /ET before HT + /ET cut, Right: CombNN of
the leading jet before b-tag.
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The /ET , Ht, and the b-tagging (CombNN) output of the leading jet are

shown for both the e + τ channel and the µ + τ channel in figures 4.5,4.6. The

number of observed events after each cut for an integrated luminosity of 2.05 fb−1

is shown in Table 4.4 (µ+ τ channel) and Table 4.6 (e+ τ channel) for events with
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FIGURE 4.6. τ1 (top) and τ3 (bottom) electron channel. Data/MC comparison
for each of the variables used in the preselection, before the respective cut is made.
Left: /ET before /ET cut, Middle: HT + /ET before HT + /ET cut, Right: CombNN of
the leading jet before b-tag.
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τ1 candidates, and Table 4.5 (µ + τ channel), and Table 4.7 (e + τ channel) for

events with τ3 candidates.

As mentioned above, after the /ET > 30 GeV requirement reduces the Z

background, the remaining backgrounds are from W+jets and tt̄ → l+jets. The

b-tag requirement then reduces the W+jets background significantly. In tables 4.4-

4.7 the data entries contain more events than the MC expectation, especially in

the first several selections (prior to the /ET cut). These differences are attributed

to strongly produced multi-jet events, which are not included in the above MC

expectations, because their high cross sections makes simulating 2 fb−1 worth of
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events computationally impractical. As the available multi-jet events is limited, the

multi-jet contribution is derived from data.
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TABLE 4.4. µ+ τ cut flow for τ1 candidates. tt̄(ℓℓ′) are tt̄ dilepton events with only one lepton reconstructed as a lepton and a
lepton or jet reconstructed as a τ . The last two rows show the numbers individually for opposite signed (OS) and same signed
(SS) events (described in Section 4.3.1) which pass the final b-jet selection. The errors are the statistical uncertainties.

Cut tt̄(µ, τ) tt̄(ℓ+ jets) tt̄(ℓℓ′) W+jets Z+jets Single top Diboson Total Data
Isolated µ 3967 ± 14 24598 ± 35 3724 ± 14 9921753 ± 10876 748768 ± 704 11662 ± 57 12038 ± 60 10726510 ± 10899 15309495

≥ 1 τ candidate 822 ± 6 3170 ± 13 172 ± 3 131828 ± 1015 23793 ± 125 721 ± 13 1197 ± 19 161704 ± 1023 258209
Njet ≥ 2 673 ± 6 3017 ± 12 139 ± 3 13179 ± 140 2265 ± 35 378 ± 8 287 ± 9 19938 ± 146 28114

Emiss
T > 30 GeV 584 ± 5 2418 ± 11 126 ± 3 9428 ± 114 1003 ± 24 302 ± 7 203 ± 8 14064 ± 118 15624

HT + /ET > 200 GeV 578 ± 5 2405 ± 11 125 ± 3 7896 ± 93 808 ± 21 289 ± 7 177 ± 7 12278 ± 97 12954
≥ 1 b−jet 498 ± 5 1988 ± 10 100 ± 2 552 ± 20 55 ± 6 204 ± 6 16 ± 2 3414 ± 25 3804

≥ 1 b−jet (OS) 460 ± 5 1414 ± 8 56 ± 2 336 ± 16 37 ± 5 147 ± 5 10 ± 2 2460 ± 20 2472
≥ 1 b−jet (SS) 38 ± 1 574 ± 5 44 ± 2 215 ± 13 19 ± 3 57 ± 3 6 ± 1 954 ± 15 1332

TABLE 4.5. µ+ τ cut flow for τ3 candidates. tt̄(ℓℓ′) are tt̄ dilepton events with only one lepton reconstructed as a lepton and a
lepton or jet reconstructed as a τ . The last two rows show the numbers individually for opposite signed (OS) and same signed
(SS) events (described in Section 4.3.1) which pass the final b-jet selection. The errors are the statistical uncertainties.

Cut tt̄(µ, τ) tt̄(ℓ+ jets) tt̄(ℓℓ′) W+jets Z+jets Single top Diboson Total Data
Isolated µ 3967 ± 14 24598 ± 35 3724 ± 14 9921753 ± 10876 748768 ± 704 11662 ± 57 12038 ± 60 10726510 ± 10899 15309495

≥ 1 τ candidate 650 ± 6 7809 ± 20 534 ± 5 331968 ± 1591 32055 ± 145 1867 ± 21 2245 ± 26 377129 ± 1598 699465
Njet ≥ 2 501 ± 5 7359 ± 19 425 ± 5 33893 ± 228 3916 ± 46 891 ± 13 568 ± 13 47553 ± 234 70909

Emiss
T > 30 GeV 441 ± 5 5899 ± 17 383 ± 4 24443 ± 185 1597 ± 29 705 ± 11 397 ± 11 33864 ± 189 38981

HT + /ET > 200 GeV 435 ± 5 5864 ± 17 380 ± 4 20838 ± 151 1348 ± 27 679 ± 11 347 ± 10 29893 ± 155 32901
≥ 1 b−jet 364 ± 4 4878 ± 16 305 ± 4 1603 ± 35 107 ± 8 477 ± 9 42 ± 3 7776 ± 41 9386

≥ 1 b−jet (OS) 244 ± 4 3183 ± 13 155 ± 3 914 ± 26 51 ± 5 309 ± 7 28 ± 3 4884 ± 31 5703
≥ 1 b−jet (SS) 120 ± 2 1695 ± 9 150 ± 3 690 ± 23 56 ± 6 168 ± 6 14 ± 2 2893 ± 26 3683
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TABLE 4.6. e+ τ cut flow for τ1 candidates. tt̄(ℓℓ′) are tt̄ dilepton events with only one lepton reconstructed as a lepton and a
lepton or jet reconstructed as a τ . The last two rows show the numbers individually for opposite signed (OS) and same signed
(SS) events (described in Section 4.3.1) which pass the final b-jet selection. The errors are the statistical uncertainties.

Cut tt̄(e, τ) tt̄(ℓ+ jets) tt̄(ℓℓ′) W+jets Z+jets Single top Diboson Total Data
Isolated e 3602 ± 14 22464 ± 34 3345 ± 13 6981152 ± 9181 804696 ± 737 9845 ± 51 9958 ± 54 7835060 ± 9211 10996886

≥ 1 τ candidate 740 ± 6 2881 ± 12 152 ± 3 99502 ± 884 24853 ± 128 626 ± 12 947 ± 17 129701 ± 893 229635
Njet ≥ 2 610 ± 6 2741 ± 12 123 ± 3 10358 ± 120 4010 ± 47 343 ± 8 270 ± 8 18454 ± 131 29333

Emiss
T > 30 GeV 526 ± 5 2145 ± 10 111 ± 2 6997 ± 97 1405 ± 28 255 ± 7 166 ± 7 11604 ± 102 14052

HT + /ET > 200 GeV 521 ± 5 2135 ± 10 110 ± 2 5907 ± 72 1240 ± 26 247 ± 6 148 ± 6 10308 ± 78 11957
≥ 1 b−jet 447 ± 5 1761 ± 9 87 ± 2 423 ± 16 68 ± 6 172 ± 5 14 ± 2 2972 ± 21 3384

≥ 1 b−jet (OS) 409 ± 5 1245 ± 8 48 ± 2 240 ± 12 50 ± 5 122 ± 4 9 ± 1 2122 ± 17 2277
≥ 1 b−jet (SS) 38 ± 1 516 ± 5 39 ± 1 184 ± 10 18 ± 3 49 ± 3 5 ± 1 850 ± 13 1107

TABLE 4.7. e+ τ cut flow for τ3 candidates. tt̄(ℓℓ′) are tt̄ dilepton events with only one lepton reconstructed as a lepton and a
lepton or jet reconstructed as a τ . The last two rows show the numbers individually for opposite signed (OS) and same signed
(SS) events (described in Section 4.3.1) which pass the final b-jet selection. The errors are the statistical uncertainties.

Cut tt̄(e, τ) tt̄(ℓ+ jets) tt̄(ℓℓ′) W+jets Z+jets Single top Diboson Total Data
Isolated e 3602 ± 14 22464 ± 34 3345 ± 13 6981152 ± 9181 804696 ± 737 9845 ± 51 9958 ± 54 7835060 ± 9211 10996886

≥ 1 τ candidate 590 ± 5 7101 ± 19 492 ± 5 252674 ± 1386 36633 ± 156 1607 ± 20 1937 ± 24 301035 ± 1395 632837
Njet ≥ 2 459 ± 5 6697 ± 19 391 ± 5 27341 ± 212 8343 ± 69 840 ± 12 537 ± 12 44608 ± 225 73547

Emiss
T > 30 GeV 401 ± 5 5244 ± 16 347 ± 4 18631 ± 170 2674 ± 38 638 ± 11 328 ± 10 28264 ± 176 34498

HT + /ET > 200 GeV 397 ± 4 5220 ± 16 346 ± 4 16327 ± 148 2468 ± 37 622 ± 11 294 ± 9 25672 ± 154 29962
≥ 1 b−jet 335 ± 4 4346 ± 15 274 ± 4 1346 ± 36 155 ± 9 438 ± 9 32 ± 3 6924 ± 42 8225

≥ 1 b−jet (OS) 219 ± 3 2821 ± 12 137 ± 3 752 ± 25 86 ± 7 274 ± 7 17 ± 2 4307 ± 30 5033
≥ 1 b−jet (SS) 115 ± 2 1525 ± 9 137 ± 3 594 ± 26 69 ± 6 164 ± 5 14 ± 2 2618 ± 29 3192



4.2.1. Multi-jet Background

The multi-jet background is a process too computationally expensive to

simulate. In order to include it in control plots, it must be derived from data.

This is done by measuring a multi-jet template and fitting it throughout the cut-

flow. The multi-jet template events are selected using the same event selections as

the µ + τ(e + τ) events, but with the isolation requirement on the µ(e) inverted

(see sections 3.4 3.5). Inverting this isolation selection produces events that are

dominated by fake leptons. Since these events pass the same selection cuts, they

are expected to be kinetically similar to the multi-jet events with a fake lepton

that do pass the isolation cut. Therefore, the shapes of these non-isolated multi-

jet events can be used to model multi-jet events in the isolated region (regular

µ+τ/e+τ selection). As the number of fake leptons passing the isolation cut will

be significantly smaller than the number of non-isolated fake leptons, the overall

normalization of the events is derived using a fit.

Fitting is performed on the transverse mass of the events (MT( /ET , ℓ)). This

variable is formed by taking the magnitude of the four vector formed by the lepton

and the the missing transverse momentum (| /E + ℓ|), forcing the mass and the z

component of the momentum to be zero. Component-wise it equals

MT( /ET , ℓ) = 2 · ( /ET · lT − /Ex · lx − ly · /Ey)

Here the subscript T refers to the transverse component of the momentum

(lT =
√

p2x + p2y). This variable has the property that if a lepton and the only

neutrino in the event come from the same decay (for example a W boson), then

the transverse mass will never be greater than the parent mass (MW ). Multi-jet
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events tend to have low MT( /ET , ℓ) because the /ET , is often small, making this

variable a good discriminator between multi-jet events, and other processes.

The fit floats the normalization of the multi-jet model and the non-QCD

processes (MC) individually to the data using a χ2 minimization. The fitting is

performed after each event selection cut, and individually for τ1 and τ3 and the µ

and e channels. Additionally, the fits are performed separately on the distributions

where the tau and lepton have an opposite sign (OS) charge or a same sign

(SS) charge. The motivation for splitting samples into OS and SS distributions

is explained in Sections 4.3.1. An uncertainty of 30% is applied to the QCD

distributions, which was evaluated in [70]. The resulting multi-jet normalization

for each fit is shown in Table 4.8. The multi-jet plus MC normalization is also

compared to the data and agrees well, as can be seen in Figure 4.7,4.8.
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TABLE 4.8. Number of multi-jet events estimated in data using a fit on the
MT( /ET , ℓ) distribution at each cut stage and individually for OS and SS, τ1 and
τ3, and the µ and e channels. The total background estimation, shown in the 4th
column, is given by the addition of the multi-jet(OS+SS) normalization and the
total MC from tables 4.4-4.7. This is compared to the data in the last column.
The uncertainty on the multi-jet normalization is 30%.

µ+ τ1 OS multi-jet SS multi-jet multi-jet+MC Data
Njet ≥ 2 4693 4368 28999± 1923 28114

Emiss
T > 30 GeV 1119 1056 16239 ±476 15624
HT > 200 GeV 687 582 13547 ± 287 12954

≥ 1 b−jet 117 146 3677 ± 61 3804
µ+ τ3 OS multi-jet SS multi-jet multi-jet+MC Data

Njet ≥ 2 13191 12724 73468 ± 5503 70909
Emiss

T > 30 GeV 2810 2702 39376 ± 1185 38981
HT > 200 GeV 1539 1478 35927± 659 32901

≥ 1 b−jet 464 401 9506 ± 188 9386
e+ τ1 OS multi-jet SS multi-jet multi-jet+MC Data

Njet ≥ 2 5701 5594 29749 ± 2400 29333
Emiss

T > 30 GeV 1375 1310 14289 ± 579 14052
HT > 200 GeV 901 860 12069 ± 382 11957

≥ 1 b−jet 165 135 3272 ± 67 3384
e+ τ3 OS multi-jet SS multi-jet multi-jet+MC Data

Njet ≥ 2 17708 17854 80170 ± 7547 73547
Emiss

T > 30 GeV 4268 4150 36682 ± 1795 34498
HT > 200 GeV 3011 2861 31544 ± 1256 29962

≥ 1 b−jet 690 606 8220 ± 279 8225
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FIGURE 4.7. τ1 (top) and τ3 (bottom) muon channel. Data/MC comparison for
the transverse mass distribution for each stage of the preselection. Left: before /ET

cut; middle: after HT + /ET but before b-tag; right: after b-tag.
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FIGURE 4.8. τ1 (top) and τ3 (bottom) electron channel. Data/MC comparison
for the transverse mass distribution for each stage of the preselection. Left: before
/ET cut; middle: after HT + /ET but before b-tag; right: after b-tag.
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4.3. Data Driven Background Estimate

As can be seen in tables 4.4-4.7, the dominant background events remaining

after cuts originate from semi-leptonic tt events. In these events, a jet initiated by

a quark or a gluon has been mistakenly identified as a tau candidate. In order

to understand this dominant background, the tau fake rate from jets must be

precisely known. While MC provides an estimate of this fake rate this estimate

depends on the jet fragmentation model, which is not precisely understood. To

avoid relying on MC, the tau fake rate will be determined from data, and used to

estimate the total number of fake events in the signal region.

In order to estimate the number of fake tau events in the signal region, a

matrix method is used. The matrix method divides tau candidates into two regions

based on a BDTj cut (see chapter III). All taus are considered loose, and all taus

with BDTj > 0.70 are additionally considered tight. In a given region the number

of events in the loose sample (N loose
data ) is given by

N loose
data = N loose

fake +N loose
real

where the real subscript denotes events with a real tau and the fake superscript

denotes events with a fake tau. The probability that the loose selection passes the

tight cut for both real and fake taus is defined as

ǫreal =
N tight

real

N loose
real

; ǫfake =
N tight

fake

N loose
fake

.
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The number of observed tight events is given by

N tight
data = N tight

fake +N tight
real

This system of equations can be solved to give a background prediction (see

appendix A).

N tight
fake =

ǫfake
ǫreal − ǫfake

(N loose
data · ǫreal −N tight

data ) (4.2)

and for the signal prediction.

N tight
real = N tight

data −N tight
fake (4.3)

In order to apply this method we must accurately determine ǫfake and ǫreal.

ǫreal is the result of well understood tau decays, and is therefore taken from MC.

Uncertainties on ǫreal are estimated from data driven methods. ǫfake, as mentioned

before, is a function of jet fragmentation which has large uncertainties associated

with it and must therefore be determined directly from data.

4.3.1. Opposite Sign Minus Same Sign Shape Subtractions

Measuring the tau fake rate in data presents significant challenges. In the

events created by the LHC, it is impossible to identify the partons that initiate

an observed jet. Unfortunately, the tau identification is not equally performant

against all jet types. Quark jets tend to be narrower with lower multiplicity then

gluon jets [43], which means quark jets look significantly more tau-like. Therefore,

the exact flavor composition (which is not known in data) can strongly influence

the fake rate. Similar measurements at other experiments find that estimating
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this flavor composition is the dominant uncertainty in their analysis [71]. In

order to avoid the problems involved in estimating flavor composition a shape

subtraction is used. The subtraction, which is described below, is used to strongly

increase the purity of fake taus originating from quark-jets by greatly reducing the

contributions of fake taus coming from gluons and b-jets.

Signal events contain an isolated lepton and a tau with opposite charge.

An opposite sign (OS) requirement is therefore applied. After pre-selection, the

dominant backgrounds are tt̄ → l+jets and W → (µ/e)ν+jets; these both

contain a jet faking a tau. MC studies shown in Table 4.9 find that that light

quark jets (u, d, s, c) form the largest contribution of tau fakes in the OS sample,

but contributions from gluon and b-jet fakes are not negligible. The corresponding

percentages for tau candidates in the signal region in which the tau and lepton

have the same sign (SS) are strikingly different, with a significantly higher gluon-

jet content.

The reason for classifying the data into OS and SS is that gluons are neutral

and b-jet tau fakes are produced from processes that are charge symmetric.

Therefore, gluon and b-jet fakes appear in equal quantities in the OS and SS

distributions. Performing a subtraction on all relevant distributions such that the

SS shapes are subtracted from the OS shapes almost cancels out the gluon and b-

jet contributions (up to statistical fluctuations), which can be seen in Figure 4.9.

Measurements can then be performed on the signal region with the assumption

that all tau fakes are light-quark jet in origin. Likewise, the light quark fake rate

can be measured in control regions after applying the OS-SS technique.
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TABLE 4.9. Parton/Particle origin of all τ candidates in MC events after
requiring the selections detailed in the text. OS (SS) stands for the opposite
(same) charge sign between e or µ and τ candidate (which is a jet selected as τ in
this study). The first column lists the event regions. tt b-tag is the signal region.
W+ 1 jet and 0 b-tag, are control regions

Jet Parton/Particle Origin of Jet-to-τ Fake Candidates

τ1 gluon quark(u, d, s, c) b τ e µ
W+1 jet (OS) 10% 90% 0% 0% 0% 0%
W+1 jet (SS) 29% 71% 0% 0% 0% 0%
W+jet (OS − SS) 1% 99% 0% 0% 0% 0%
tt̄ b-tag (OS) 13% 64% 5% 17% 1% 0%
tt̄ b-tag (SS) 33% 55% 12% 0% 0% 0%
tt̄ b-tag (OS − SS) 0% 71% 0% 28% 1% 0%
tt̄ 0 b-tag (OS) 28% 64% 1% 6% 1% 0%
tt̄ 0 b-tag (SS) 50% 48% 2% 0% 0% 0%
tt̄ 0 b-tag (OS − SS) 1% 83% 0% 14% 2% 0%
τ3 gluon quark b τ e µ
W+1 jet (OS) 17% 83% 0% 0% 0% 0%
W+1 jet (SS) 34% 66% 0% 0% 0% 0%
W+jet (OS − SS) 3% 97% 0% 0% 0% 0%
tt̄ b-tag (OS) 24% 66% 8% 2% 0% 0%
tt̄ b-tag (SS) 39% 49% 12% 0% 0% 0%
tt̄ b-tag (OS − SS) 2% 92% 0% 6% 0% 0%
tt̄ 0 b-tag (OS) 42% 55% 2% 1% 0% 0%
tt̄ 0 b-tag (SS) 58% 40% 2% 0% 0% 0%
tt̄ 0 b-tag (OS − SS) 2% 96% 0% 2% 0% 0%
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FIGURE 4.9. Left: BDTj distribution for b-tag region by truth type of the
reconstructed τ1 object. OS events are on the positive y-axis and SS events are on
the negative y-axis. Right: BDTj distribution for b-tag region by truth type of the
reconstructed tau object after OS-SS subtraction. Remaining τ1 fake contributions
are almost completely light quark.
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In addition, the matrix method can easily be adapted to use the OS-SS data

directly.

N loose
data:OS−SS = N loose

data:OS −N loose
data:SS

= N loose
tau:OS +N loose

quark:OS +N loose
gluon/b:OS −N loose

quark:SS −N loose
gluon/b:SS

= N loose
tau:OS +N loose

quark:OS−SS

= N loose
real +N loose

fake:OS−SS

and like-wise

N tight
data:OS−SS = N tight

real +N tight
fake:OS−SS

we define a new fake rate

ǫfake:OS−SS =
N tight

fake:OS−SS

N loose
fake:OS−SS

Equation 4.2 becomes see (appendix A).

N tight
fake:OS-SS =

ǫfake:OS-SS

ǫreal − ǫfake:OS-SS

(N loose
data:OS-SS · ǫreal −N tight

data:OS-SS) (4.4)

The new efficiency term ǫfake:OS−SS equals the original efficiency ǫfake when

the quark fake rate in OS events is equivalent to the quark fake rate in SS events.

This equality is not guaranteed, but N tight
fake:OS-SS will be accurately predicted as long

as ǫfake:OS−SS is equivalent in the signal region and the control region in which

it is measured. The accuracy of this assumption is tested in section 4.3.5. In

addition to eliminating the gluon and b-jet components, the OS-SS technique is

also expected to remove the multi-jet background.
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Multi-jet OS-SS Subtraction

If the argument in Section 4.3.1 regarding OS and SS distributions is

valid, the multi-jet contribution derived from the fits (see Section 4.2.1) should

contain equal numbers of OS and SS events because the jet production is charge

symmetric. The fits were therefore performed on the OS and SS MT( /ET , ℓ)

distributions individually in order to test the assumption. The results are

summarized for the ≥ 1 b-tag and 0 b-tag control regions in Table 4.10 and

Table 4.11. The assumption that QCD contributes almost equally to OS and SS

appears to be valid. An uncertainty of 30% is applied to the QCD distributions,

which is consistent with [70]. This cancellation can also be seen in the OS-SS

distributions shown in figures 4.11, 4.10

TABLE 4.10. Predicted number multi-jet events in the µ+ τ channel. The
systematic uncertainty on the number of multi-jet events is 30%.

µ+ τ cut OS τ1 SS τ1 OS τ3 SS τ3
Njet ≥ 2 4693 4368 13191 12724

Emiss
T > 30 GeV 1119 1056 2810 2702
HT > 200 GeV 687 582 1539 1478

TABLE 4.11. Predicted amount of multi-jet in the e+ τ channel. The systematic
uncertainty on the number of multi-jet events is 30%.

e+ τ cut OS τ1 SS τ1 OS τ3 SS τ3
Njet ≥ 2 5701 5594 17708 17854

Emiss
T > 30 GeV 1375 1310 4268 4150
HT > 200 GeV 901 860 3011 2861
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FIGURE 4.10. OS-SS for τ1 (top) and τ3 (bottom) for muon channel. Data/MC
comparison for the transverse mass distribution for each stage of the preselection.
Left: before /ET > 30 GeV cut, Middle: after HT + /ET but before b-tag, Right:
after b-tag.
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4.3.2. Approach of the Matrix Method

The last sections describe the basic principle of the matrix method, and how

it can be used in OS-SS data. From these basic points we approach separating the

signal from background in the following manner, shown in Figure 4.12. ǫfake:OS−SS

is measured in a control region which contains dominantly fake tau candidates.

ǫreal is taken from MC directly. The accuracy of both these terms are then checked

with either MC or data to assess possible uncertainties. This process is described

in the following sections. After ǫfake:OS−SS and ǫreal have been established, these
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FIGURE 4.11. OS-SS for τ1 (top) and τ3 (bottom) for electron channel. Data/MC
comparison for the transverse mass distribution for each stage of the preselection.
Left: before /ET > 30 GeV cut, Middle: after HT + /ET but before b-tag, Right:
after b-tag.
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terms are applied to the preselected data to determine the final number of signal

and background events.

4.3.3. Determining ǫfake:OS−SS

Measuring ǫfake:OS−SS in data requires a large number of tau candidates

known to originate from jets. The events must have a real lepton in addition to

the fake tau candidate in order to apply the OS-SS technique, and ideally this

selection should be as quark pure as possible to prevent large statistical errors

when subtracting OS and SS numbers. These requirements can be obtained by a
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FIGURE 4.12. This flow chart shows the steps used to derive each term used in
the final signal and background extraction with the matrix method.

sample of W+1 jet events. The events are dominantly produced with the diagram

shown in Figure 4.13

The produced final state is W−q → lνq. Events are collected with the

same single lepton triggers as the rest of the analysis and require exactly one tau

candidate. However, the control region is selected with the following criteria: /ET >

30 GeV , 40 GeV < MT( /ET , l) < 100 GeV , and the event cannot contain any jets

in addition to the tau candidate. This selection eliminates signal contamination for

Z → τ+τ− where one tau decays leptonically, as these events will have low MT and

/ET . This selection also reduces multi-jet events where a jet fakes an e or a µ, since

these events also have low MT and /ET . b-tagged jets are automatically vetoed by

the tau candidate definition, which performs a tau/b-tagged jet overlap removal

that serves to reduce the very small signal contamination in this control region

originating from tt → lτντbb events. tt → lτντbb events are further reduced by
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FIGURE 4.13. The dominant W+1 jet production mechanism.

the upper limit on MT. MC studies have shown that this sample yields tau fakes

which are ∼90% quark jets and ∼10% gluon jets in the case of the τ1 selection for

OS events, and similarly ∼60% quark jets and ∼40% in the SS sample. This, as

well as the cancellation of the gluon component is shown in Table 4.9.

Each W+1 jet event, by definition, has exactly one tau candidate. As

described above, when applying the matrix method, each tau candidate belongs

to a loose selection, and those with a BDTj > 0.7 are additionally labeled tight.

ǫfake:OS−SS can be determined by

N tight
OS −N tight

SS

N loose
OS −N loose

OS

≈
N tight

quark:OS-SS

N loose
quark:OS-SS

≡ ǫfake:OS−SS

The last step follows from the fact that we have selected a region with very

small signal contamination, and the gluon components cancel in the subtraction.

Unfortunately, the OS-SS distributions of the fake taus from W+1 jet events

are not identical to those of the signal region. This is due to dependencies on the

the total particle multiplicity, which is much higher in tt events than W + 1 jet
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events. The additional particle multiplicity affects the tau identification variables,

and this effect must be accounted for. To address this, the background can be

measured as a function of the tau identification variables that are affected by the

different tt event conditions.

The BDT used for tau identification is completely defined by its set of input

variables (see Appendix C). However, measuring ǫfake as a function of every

input variable is not useful. Every point in the combined variable space has a

defined BDT score, implying that ǫfake will equal either 0 or 1 at each point.

However, this also implies that ǫreal=ǫfake={0,1}, which causes the matrix method

equation (Equation 4.2) to diverge. In order to account for the changing event

environment, we need to choose a parameterization that uses as little information

as possible, while still accounting for the differences between the W + 1 jet region

and the signal region. Using as little information as possible is ideal because more

information remains at each point to significantly differentiate ǫfake from ǫreal. The

variable that does this best in MC studies is EM-fraction: the ratio of the energy

in the EM calorimeter to the total energy in the calorimeter associated with the

tau candidate. This variable is sensitive to the particle multiplicities because of its

large cone size of 0.4, and directly impacts the BDT.

Comparisons of the W+1 jet distributions with the ≥ 1 b-tag background in

MC in bins of EM-fraction are shown in figures 4.14 and 4.15. A closure test using

the matrix method while binning by EM-fraction is described in Section 4.3.5 and

summarized in Table 4.14. The τ1 distributions show good agreement over the

full BDTj range. The τ3 distributions show some significant differences at low

BDTj score, but agrees well in the BDTj > 0.70 region (the relevant region for
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FIGURE 4.14. OS-SS BDTj from MC for fake τ1s for W+1 jet control region
(black) and ≥ 1 b-tag background (blue) in bins of EM-fraction. Once binned by
EM-fraction, the W+1 jet distribution agrees well with the signal region
background.
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the matrix method). The bins of EM-fraction shown in the plots are the same ones

used for the background modeling.

The final ǫfake is thus measured in three bins of EM-fraction in W + 1

jet events. The results for this ǫfake rate are shown in Figure 4.16, and are well

separated from the corresponding ǫfake values. The accuracy of this fake rate is

examined in greater detail in the sections that follow.
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FIGURE 4.15. OS-SS BDTj from MC for fake τ3s for W+1 jet control region
(black) and ≥ 1 b-tag background (blue) in bins of EM-fraction. Once binned by
EM-fraction, the W+1 jet distribution agrees well with the signal region
background for BDTj > 0.70, although some discrepancies are present in the low
BDTj region.
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FIGURE 4.16. ǫreal from MC for the ≥ 1 b-tag signal region, and ǫfake measured in
the W+1 jet data. Left is τ1 and right is τ3.
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4.3.4. Testing ǫreal

The matrix method requires two terms to be modeled accurately: ǫreal and

ǫfake. Testing ǫreal is of particular importance, since it is taken solely from MC.

This section describes the use of a Z → τ+τ−+ 0 jet selection to assess the

reliability of ǫreal.

Z → τ+τ−+ 0 Jet Selection

Z → τ+τ−, where one tau decays to a lepton, is selected from data by

requiring exactly one lepton and one tau candidate. It is required to have 0 jets.

Additionally, the transverse mass of the lepton and is required to be MT( /ET , ℓ) <

20 GeV to reject W+jet processes. This selection is very similar to the W+1 jet

selection; however, the tau candidate is in this case highly likely to be real. The

fake taus resulting from the W+1 jet background with low MT( /ET , ℓ) < 20 GeV,

are very kinematically similar to those of the W + 1 jet region. Due to the high

signal purity, and the expected accuracy of ǫfake from the W + 1 jet region we

attribute any error when applying the matrix method to this region as an error on

the tau acceptance described in Section 4.6.1.

To apply the matrix method, N loose
data and N tight

data values were measured in the

Z → τ+τ−+ 0 jet data as a function of EM-fraction after performing the OS-SS

subtraction. The ǫreal term was derived using the MC expectation for real taus

surviving the Z → τ+τ−+ 0 jet selection, while ǫfake was taken from the W+1 jet

background model in data. Each term was measured as a function of EM-fraction.

The terms used and results of the matrix method applied in this region are shown

after integrating over EM-fraction in Table 4.12.
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TABLE 4.12. Combined e, µ event yields in the Z → τ+τ− + 0 jet control region.
Events are integrated over bins of EM-fraction.

τ1
Events (N tight

data ) 9178

Measured background (N tight
fake ) 906 ± 48

Measured signal (N tight
real ) 8272 ± 147

MC expected signal 8474
τ3

Events (N tight
data ) 945

Measured background (N tight
fake ) 161 ± 11

Measured signal (N tight
real ) 784 ± 36

MC expected signal 872

The τ1 results (N tight
real ) are within 3% of MC expectation, which is well within

the expected tau uncertainty of 5.0% (see tables 4.19 and 4.20). The τ3 events

agree within 10% which is statistically compatible with τ3 uncertainty of 7.1%

from III (see tables 4.19 and 4.20). The effect on the background prediction in

the signal region caused by varying ǫreal by ± 3% and ± 10%, is small and shown

in Table 4.13. Since this affect is completely covered by the tau uncertainty, no

additional systematic is applied.

TABLE 4.13. Background measured in the ≥ 1 b data region with the matrix
method after varying ǫreal within uncertainty. The 3% and 10% uncertainty was
measured using the Z → τ+τ−+ 0 jet selection, as shown in Table 4.12.

τ1 +3% 0 -3%
Jet Background 239 ± 19 236 ± 19 230 ± 19

τ3 +10% 0 -10%
Jet Background 61 ± 4 61 ± 4 60 ± 4
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4.3.5. Testing the Matrix Method in the Signal Region

The ǫfake:OS-SS term was measured with data from the W+1 jet control

region utilizing the OS-SS BDTj distributions of the tau fakes. As discussed in

Section 4.3.3, the W+1 jet fake rate shows good agreement with the fake rate

expected from MC of the ≥ 1 b-tag region when binned by the EM-fraction of the

tau candidate. This binning was applied to ǫfake/real:OS−SS for the matrix method.

To test the effectiveness of the matrix method and estimate the size of any

bias arising due to remaining tau BDT shape differences between the W + 1 jet

control region and the signal region closure tests were performed in MC. A MC

closure test is a simple procedure. MC data sets are used to create a collection

of simulated data. This simulated data is treated as if it were actual data, with

the advantage that the true number of background and signal events are known.

The matrix method was applied to this simulated dataset and checked to see if the

results predicted agree with the known inputs.

Table 4.14 shows the measured background in this MC sample, where the

observed 6% bias for τ1 is well below the expected statistical error. For τ3 the

large number of loose events gives a smaller statistical error on the expected

background, and a larger bias is seen. This bias is expected from the larger

disagreement seen in the BDTJ shape in Table 4.15. However, it is important to

note that the error quoted is only on the prediction of the mean number of the

background events. The actual statistical error will be proportional to
√
Nb. This

additional statistical error of 1/
√
41 = 16% well covers any observed bias, so again

no additional systematic is applied.
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TABLE 4.14. MC test of the matrix method in the ≥ 1 b-tag signal region.
Events are integrated over bins of EM-fraction. Error is with respect to the actual
background.

Channel Measured Background Actual Background Error (%)
τ1

µ+ τ 74 ± 12 78 -5
e+ τ 64 ± 14 69 -7
comb. 138 ± 17 147 -6

τ3
µ+ τ 19 ± 2 21 -9
e+ τ 16 ± 2 20 -20
comb. 35 ± 2 41 -15

4.3.6. Results of the Matrix Method

Results for the integrated signal (N tight
real ) extracted by the matrix method

in the >1 b-tagged region are shown in Table 4.15. Both results are consistent

with MC expectations. The results of the matrix method gives the total number

of events that don’t have a tau coming from a fake jet. The second class of

backgrounds, those that do have a tau (or an electron fake which look very tau-

like to the BDTj), must be subtracted to get the expected number of signal events.

These backgrounds are small, and therefore, are estimated directly with MC. A

detailed breakdown of event counts using ǫfake from this control region is shown

in Table 4.16 and Table 4.17. The expected tau and e backgrounds (mainly from

tt̄ → ℓℓ+jets and Z → ττ) listed in the tables are subtracted from the measured

signal before obtaining the final number of signal events Nsignal from 4.1 the cross

sections in Section 4.6.
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TABLE 4.15. Number of signal events (BDTj > 0.7) obtained with the matrix
method. Third column shows the extracted signal with the background derived
from W + 1 jet. The uncertainties are statistical only. The MC expectation is the
number of events expected from the OS-SS signal template assuming the
theoretical tt̄ cross section (165 pb).

W + 1 jet MC
µ+ τ τ1 295 ± 29 288 ± 10

τ3 34 ± 10 41 ± 10
e+ τ τ1 232 ± 28 254 ± 10

τ3 39 ± 10 35 ± 10
combined τ1 527 ± 40 542 ± 14

τ3 73 ± 14 76 ± 14

TABLE 4.16. Event yields in the signal region for τ1. The “Expected tau
background” and “Expected e background” are taken from MC and are subtracted
from the “Total Signal” to obtain the final “Measured tt→ ℓ+ τ signal” result.
Events are integrated over bins of EM-fraction. Expected tt→ ℓ+ τ is normalized
to the theoretical tt̄ cross section (165 pb).

µ+ τ e+ τ Comb.

Events (N tight
data ) 401 362 763

Measured jet background (N tight
fake ) 106 ± 12 130 ± 14 236 ± 17

Total Signal (N tight
real ) 295± 29 232 ± 28 527 ± 40

Expected tau background 24 24 48
Expected e background 5 9 14

Measured tt→ ℓ+ τ signal 266 ± 29 199 ± 28 465 ± 40
Expected tt→ ℓ+ τ signal 259 221 480
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TABLE 4.17. Combined e, µ event yield for τ3 The “Expected tau background”
and “Expected e background” are taken from MC and are subtracted from the
“Total Signal” to obtain the final “Measured tt→ ℓ+ τ signal” result. Events are
integrated over bins of EM-fraction. Expected tt→ ℓ+ τ is normalized to the
theoretical tt̄ cross section (165 pb).

µ+ τ e+ τ Comb.

Events (N tight
data ) 67 67 134

Measured jet background (N tight
fake ) 33 ± 2 28 ± 2 61 ± 4

Total Signal (N tight
real ) 34± 10 39 ± 10 73 ± 14

Expected tau background 4 3 7
Expected e background 0 0 0

Measured tt→ ℓ+ τ signal 30 ± 10 36 ±10 66 ± 14
Expected tt→ ℓ+ τ signal 37 32 70
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Since the matrix method is solved independently in bins of EM-fraction it

is possible to check whether the observed shapes agree with MC expectation.

The results as a function of EM-fraction are displayed with the SM prediction

(assuming σtt = 165 pb) in Figure 4.17 and Figure 4.18. All curves agree within

errors.

FIGURE 4.17. τ1 results of the matrix method in the signal region (e, µ). Yellow
MC prediction is normalized to the matrix method prediction (red).

µ+ τ e+ τ

EM-fraction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
S

-S
S

 E
ve

nt
s

0

50

100

150

200

250

300

MC sig. + MM back.

Data

MM back.

MC. back

-1
 L = 2.05 fb∫

ATLAS

EM-fraction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
S

-S
S

 E
ve

nt
s

0

50

100

150

200

250

300

MC sig. + MM back.

Data

MM back.

MC. back

-1
 L = 2.05 fb∫

ATLAS

combined

EM-fraction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
S

-S
S

 E
ve

nt
s

0

100

200

300

400

500

600

MC sig. + MM back.

Data

MM back.

MC. back

-1
 L = 2.05 fb∫

ATLAS

130



FIGURE 4.18. τ3 results of the matrix method in the signal region (e, µ). Yellow
MC prediction is normalized to the matrix method prediction (red).
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4.4. Fits to BDTj Distributions

In addition to the matrix method, another data driven method was

performed. This method will be briefly summarized here. This method estimates

the signal and background of the signal region using a χ2 fit to a OS−SS BDTj

distribution with a background template and a signal template. The parameters of

the fit are the amount of background and the amount of signal. The shapes of the

templates are fixed.

Unlike the matrix method, this fitting procedure requires significant

information, and a significant number of events to build templates for the full

BDT shape. Because of this requirement this method in not parameterized as a

function of EM-fraction. Instead, it uses a control region that is kinematically

similar to the signal region. The 0 b-tag region is defined by reversing the > 1 b-

jet requirement of the final selection, which enforces that 0 b-tagged jets appear

in the event. This provides an environment with many high energy objects with

similar kinematics as the signal region, while being completely orthogonal. As

before, an OS-SS subtraction is performed on variable shapes in order to obtain

a relatively pure quark jet tau fake sample. The expected jet compositions before

and after OS-SS subtraction are shown in Table 4.9. As can be seen, there is a

significant contribution of real tau leptons in this region. Since the fit method

requires a background pure sample for its fake template, these contributions must

be subtracted. Figure 4.19 shows the BDTj (OS-SS) distributions of ℓ + τ events

with 0 b-tag, and the 0 b-tag background template after subtracting the expected

number of tau leptons and applying the MC corrections. The tau signal is mostly

Z → τ+τ− events with a small contamination of electrons faking tau leptons (from

tt→ ℓ+ e+X and Z → e+e−) and a small contribution from tt→ ℓ+ τ +X. The
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uncertainty on the background template includes the statistical uncertainty of the

correction, the statistical uncertainty from MC and the 0 b-tag data uncertainty.

FIGURE 4.19. BDTj (OS-SS) distributions of ℓ+ τ (e and µ combined) events in
the 0 b-tag data (black points). The expected contributions from tan and e (solid
red line) and the derived background templates (dashed histogram with statistical
uncertainty bands) are used for the fits to the ≥ 1 b-tag distributions. Top is for
τ1, bottom for τ3.
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Figure 4.20 shows the result of the fit to the ≥ 1 b-tag samples. The

tau lepton signal is mostly tt → ℓ + τ + X with a small contamination of

misidentified electrons and small contributions from Z → τ+τ− events and

single top-quark events. These contributions are subtracted from the number of

signal events before calculating the cross section. The fit results obtained using

the background templates derived from 0 b-tag data are shown in Table 4.18.

The BDTj distributions for τ1 and τ3 are fitted separately. The combined ℓ + τi

results are obtained by fitting the sum of the distributions. The fitted number of

signal events is shown in Table 4.18. Note that the fit uncertainty is dominated by

the uncertainty on the background template; thus the statistical uncertainties of

the results with the two different background templates are not fully correlated.
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Also, note that the fit method measures the total number of tau candidates, not

just those with a BDTj > 0.7. In order to compare the the two results, these

differences must be accounted for.

FIGURE 4.20. BDTj (OS-SS) distributions of ℓ+ τ in the ≥ 1 b-tag sample. The
normalization of each template is derived from a fit to the data and are shown as
the light/red (signal), dashed/blue (background derived from 0 b-tag) and
dark/black (total) lines. Shaded/blue bands are the statistical uncertainty of the
background template.
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4.5. Data Driven Background Summary

Two methods were applied to estimate the number of fake tau leptons

originating from jets. The remaining backgrounds from electrons and real taus

were estimated withe MC. While both methods used the same signal data, their

background models were derived with different datasets. The matrix method

uses a W+ 1 jet selection that has to be parameterized to account for kinematic

differences. The fit method uses the 0 b-tag region which has to be corrected for

signal contamination. Each method uses a different technique, and can be used

to cross check the other one. However, each method measures a slightly different
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TABLE 4.18. Results of template fits to µ+ τ , e+ τ and the combined BDTj

distributions. The first column gives the channel and the second the tau type. The
third column shows the extracted signal (sum of tau leptons and electrons
misidentified as tau leptons) with the background template derived from 0 b-tag
data distributions. The uncertainties are from the uncertainties in the fit
parameters and do not include the systematic uncertainties.The MC columns give
the expected tau signal and the expected number of tt→ l + τ events after
subtracting the contribution from non-tt events to the signal, assuming the
theoretical tt cross section (165 pb).

Background template MC
0 b-tag Signal tt

µ+ τ τ1 490 ± 40 432 388
τ3 135 ± 33 126 116

e+ τ τ1 440 ± 50 388 338
τ3 116 ± 32 114 101

Combined τ1 930 ± 70 820 726
τ3 260 ± 60 239 217

number. The matrix method measures the signal events containing a tau with

BDTj > 0.7, and the fit measures all signal events. Therefore, to check if the

methods agree it is natural to directly compare the final cross section obtained

from each prediction, since this number corrects for the difference in acceptance.

The following sections will discuss the derivation of the cross section for both

methods, and the comparison between the two.

4.6. The tt̄ Cross Section

The cross section is derived from the number of observed signal events after

requiring a b-tag in both the matrix method and the template fitting method using

the standard definition given by Equation 4.1:

σtt̄ =
Ntt

L =
Nobs −Nb

BR · A · ǫ · L
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In practice, the MC signal model, which has been corrected to replicate the

data as accurately as possible, provides most of the terms in Equation 4.1. The

number of expected events in MC (NMC) is given by:

NMC = BR · A · ǫ · L · σtt(SM), (4.5)

where NMC is the number of signal events expected by MC, as shown in

tables 4.21 and 4.22, and σtt̄(SM) is the standard model tt̄ cross section (165

pb). The actual cross section results from each method and channel can then be

calculated by

σtt̄ =
Nsignal

NMC

· σtt(SM). (4.6)

However, there are several factors that influence the acceptance and the

efficiency terms. For example, the jet energy scale is not known perfectly, which

means the actual jet acceptance could be slightly mis-modeled. The efficiency to

find b-jets is also not perfectly known, and could effect the efficiency of tagging a

signal event. This and other sources of errors are treated below, before the final

cross section is presented.

4.6.1. Systematics

Systematic uncertainties represent the possible sources of error that have not

been fully constrained by the data. The source of the systematic uncertainties arise

from

– MC expectation on acceptance of the signal template (fits) and tight tau

candidates which pass BDTj > 0.7 (matrix method).

– The MC acceptance of leptonic and non-signal tau processes.
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– In the case of the fitting method, background shape uncertainty coming from

the MC acceptance uncertainties in the signal subtraction.

The above sources can be accounted for at once by varying parameters of the

MC model within their uncertainties, and recalculating the contributions from

all tau and e matched to tau candidates. Each uncertainty was derived by

varying each parameter by ±1 standard deviation of its mean value, and re-

performing the fitting and matrix methods. The uncertainty quoted is the percent

difference between the cross section measured with the varied sample, and the

cross section measured with the nominal sample. The uncertainties on both the

fitting and matrix methods are shown in Table 4.19 and Table 4.20. Each source of

uncertainty comes from dedicated studies which will be briefly discussed below.

Lepton trigger, reconstruction, and selection efficiencies are assessed by

comparing Z → ℓℓ events selected with the same object criteria as used for the

tt analysis to MC. Scale factors are evaluated by comparing these efficiencies

with those determined with simulated Z boson events. The scale factors are

applied to MC samples when calculating acceptances to account for any differences

between predicted and observed efficiencies. Systematic uncertainties on these

scale factors are evaluated by varying the selection of events used in the efficiency

measurements and by checking the stability of the measurements over the course of

the run.

The modeling of the lepton momentum scale and resolution is studied using

reconstructed ℓ pair invariant mass distributions of Z/γ∗ candidate events, and is

used to adjust the simulation accordingly.

The jet energy scale (JES) and its uncertainty are derived by combining

information from test-beam data, LHC collision data and simulation [62]. For jets
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within the acceptance, the JES uncertainty varies in the range 4–8% as a function

of jet pT and η. The jet energy resolution and jet reconstruction/identification

efficiency measured in data and in simulation are in good agreement. The

statistical uncertainties on the comparisons, 10% and 1–2% for the energy

resolution and the efficiency, respectively, are taken as systematic uncertainties

associated with these effects. The uncertainty in the efficiency of the b-tagging

algorithm has been estimated to be 6% for b-quark jets, based on b-tagging

calibration studies using inclusive lepton final states [72].

The uncertainty in the kinematic distributions of the tt signal events gives

rise to systematic uncertainties in the signal acceptance, with contributions

from the choice of generator, the modeling of initial- and final-state radiation

(ISR/FSR) and the PDFs. The generator uncertainty is evaluated by comparing

the MC@NLO predictions with those of Powheg, interfaced to either Herwig

or Pythia. The uncertainty due to ISR/FSR is evaluated using the AcerMC

generator interfaced to the Pythia shower model, and by varying the parameters

controlling ISR and FSR in a range consistent with experimental data [73].

Finally, the PDF uncertainty is evaluated using a range of current PDF sets [73].

The dominant uncertainty in this category of systematics is the modeling of ISR

and FSR.

The tau ID uncertainty is derived from a template fit to a Z → ττ data

sample selected with the same µ and tau candidate requirements as the sample

for this analysis, but with less than 2 jets and MT(µ, /ET ) < 20 GeV (to remove

W+jets events). It includes the uncertainty in the number of electrons faking

taus (< 0.5%, determined from Z → ee data). Further details for each object’s

uncertainty can be found in Chapter III.
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The effect of pileup was evaluated by changing the pileup scale factors by

the uncertainty of the the luminosity. The uncertainty on the cross section ranged

from -.07% to +1.6% for the muon and electron channels. These uncertainties are

not included in tables, as pileup mis-modeling is included in the tau ID systematic.

Furthermore, the performance of the BDTj was assessed using a MC sample which

had no pileup simulation. The signal efficiency on this sample deviated by 2% from

MC which contained pileup simulations [64].

TABLE 4.19. Systematic uncertainties for on the total cross section (∆σ/σ)
measurement for fit and matrix methods in % for µ+ τ channel.

µ+ τ
Source Fit method MM
µ pT res. −0.3% / +0.3% −.2% / +.2%
µ (ID/Trig.) −1.1% / +1.5% −1.1% / +1.5%
e pT res. 0.0% / 0.0% −0.0% / +0.0%
e (ID/Trig.) 0.0% / 0.0% −0.0% / +0.0%
Jet E scale −2.0% / +2.2% −1.6% / +2.5%
Jet E res. −1.0% / +1.0% −0.1% / +.1%
Jet ID eff. −0.2% / +0.2% −0.1% / +0.1%
ISR/FSR −4.8% / +4.8% −5.1% / +5.1%
Generator −2.1% / +2.1% −2.1% / +2.1%
b−tag −7.7% / +9.0% −4.8% / 6.1%
τ1 ID −3.0% / +3.2% −5.0% / +5.0%
τ3 ID −3.1% / +3.4% −7.1% / +7.1%
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TABLE 4.20. Systematic uncertainties for on the total cross section (∆σ/σ)
measurement for fit and matrix methods in % for the e+ τ channel.

e+ τ
Source Fit method MM
µ pT res. 0.0% / 0.0% −0.0% / +0.0%
µ (ID/Trig.) 0.0% / 0.0% −0.0% / +0.0%
e pT res. -0.3% / 0.4% −0.5% / +0.7%
e (ID/Trig.) -3.0% / 2.9% −3.0% / +3.0%
Jet E scale -1.9% / +2.8% −2.7% / +3.6%
Jet E res. -1.2 % / +1.2% −.3% / +.3%
Jet ID eff. −0.0% / +0.0% −0.3% / +0.3%
ISR/FSR −3.5% / +3.5% −5.1% / +5.1%
Generator −2.1% / +2.1% −2.1% / +2.1%
b−tag −7.7% / +9.0% −4.3% / +5.7%
τ1 ID −2.7% / +3.0% −5.0% / +5.0%
τ3 ID −2.9% / +3.2% −7.1% / +7.1%
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4.6.2. The tt̄ Cross Section: Fits and Matrix Method

The values of both the measured (Nsignal) and expected (NMC) signal are

shown for both the matrix and fit methods in Tables 4.21 and 4.22. The expected

contributions from non tt̄ → τℓ+jets events are subtracted from that number of

signal events extracted to derive Smeas

SMC
.

TABLE 4.21. Measured and MC numbers of tau and e objects in the ≥ 1 b-tags
region from the fit method using the 0 b-tags background template. The
“Measured tau and e” is the total number of tau and e objects found by the fits,
including those from processes other than tt̄→ τ + ℓ, such as tt̄→ e+ ℓ and
Z → ττ . The “MC Signal” is the expected number of taus from tt̄→ τ + ℓ, while
the “Background tau and e” are the number of objects from these non tt̄→ τ + ℓ,
estimated from MC. Smeas

SMC
is the ratio of measured to MC signal after subtracting

these background tau and e numbers from the measured signal. All numbers are
for OS-SS distributions.

Channel Measured τ and e MC Signal MC Background τ and e Smeas

SMC

µ+ τ1 489 388 44 1.15
µ+ τ3 135 116 10 1.08
e+ τ1 443 338 52 1.16
e+ τ3 116 101 11 1.04

The resulting cross sections are given separately for τ1 and τ3 in Tables 4.23

and 4.24.

With the cross section in each of the four channels measured two different

ways, it is useful to know whether each measurement is consistent, and what

precision can be gained by combining all the results.
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TABLE 4.22. Measured and MC numbers of tau and e objects in the ≥ 1 b-tags
region from the matrix method using the W+1 jet background model. The
“Measured tau and e” is the total number of tau and e objects found by the
matrix method, including those from processes other than tt̄→ τ + ℓ, such as
tt̄→ e+ ℓ and Z → ττ . The “MC Signal” is the expected number of taus from
tt̄→ τ + ℓ, while the “Background tau and e” are the number of objects from
these non tt̄→ τ + ℓ, estimated from MC. Smeas

SMC
is the ratio of measured to MC

signal after subtracting these background tau and e numbers from the measured
signal. All numbers are for OS-SS distributions.

Channel Measured τ and e MC Signal Background τ and e Smeas

SMC

µ+ τ1 295 259 29 1.02
µ+ τ3 34 37 4 0.92
e+ τ1 232 221 33 0.90
e+ τ3 39 32 3 1.23

TABLE 4.23. Measured cross section in the τ1 and τ3 channels, as well as the
combination using the fit method.

µ+ τ
τ1 189± 17 (stat.)±19

20 (syst.)
τ3 177± 43 (stat.)± 21 (syst.)

e+ τ
τ1 190± 20 (stat.)±19

20 (syst.)
τ3 171± 47 (stat.)± 21 (syst.)

TABLE 4.24. Measured cross section using the matrix method in the τ1 and τ3
channels, as well as the combination.

µ+ τ
τ1 169± 18 (stat.)± 17 (syst.)
τ3 134± 45 (stat.)± 15 (syst.)

e+ τ
τ1 148± 20 (stat.)± 16 (syst.)
τ3 181± 51 (stat.)± 21 (syst.)
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4.7. Combining Fit and Matrix Methods

In order to combine the cross sections and simultaneously determine how

well each measurement agrees with each other, a best linear unbiased estimator

(BLUE) technique [74] is used. In this section, y will be used to represent

the cross-sections, to prevent confusion with the standard deviations of each

measurement traditionally also referred to as σ. The BLUE technique is simply

a weighted average of all the observed data points.

yavg =

∑

iwi · yi
∑

iwi

The weights(wi) for each measurement (yi) are calculated to minimize the

error on the combined measurement (yavg). It is shown in [74] that the optimal

weights are given by

~w = ~U E−1~U−1

where U is a vector with all entries equaling one (Ui=1), and E is the

combined error matrix given by.

Eij = σi · σj · aij

where aij is the co-variance between measurements i and j, and σi is the standard

deviation of measurement i.

Correlations between measurements appear in off diagonal terms in E. In

the event of completely uncorrelated measurements, the weights simply reduce to

wi = 1
σ2
i

. The combined error matrix also allows us to calculate the uncertainty
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on the best estimator. Since the two background methods have correlated errors

through systematics, and common signal data regions, it is important to take this

into account. The combined error is calculated as

σ2
y =

∑

i,j

wi · wj · Eij

Here, fully uncorrelated measurements have no off diagonal terms in the error

matrix, and the equation simply adds the errors in quadrature since Eii = σ2
i . The

opposite case, where all the errors are completely correlated, results in all errors

being added linearly.

Despite the name, applying the BLUE method directly to the cross section

measurements can introduce a bias. The reason for this is that the statistical

error is proportional to
√

Nsignal and the cross section is directly proportional

Nsignal . By necessity a lower cross section (lower Nsignal) results in a smaller

absolute error. Therefore the largest weights will be given to the cross sections

with statistical downward fluctuations. The systematic errors themselves are also

directly proportional to Nsignal. To prevent any possible bias arising from using

the observed results, the weights wi are derived from the expected statistical and

systematic errors evaluated from MC. The expected errors are derived from the

MC closures tests in section 4.3.5, and similar studies performed by the fitting

method. These errors are shown in Table 4.25. The correlations between these

measurements, however, are independent of Nsignal. These correlations are taken

directly from data using pseudo experiments described below. Taking these

correlations directly from data prevents any mis-modeling of correlations which

could falsely enhance or degrade the final measurement’s resolution.
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TABLE 4.25. The expected cross section errors for both the matrix method and
the fit method.

Matrix Method
µ+ τ

τ1 165± 19 (stat.)± 17 (syst.)
τ3 165± 48 (stat.)± 18 (syst.)

e+ τ
τ1 165± 21 (stat.)± 18 (syst.)
τ3 165± 49 (stat.)± 19 (syst.)

Fit Method
µ+ τ

τ1 165± 14 (stat.)± 17 (syst.)
τ3 165± 41 (stat.)± 20 (syst.)

e+ τ
τ1 165± 15 (stat.)± 18 (syst.)
τ3 165± 45 (stat.)± 20 (syst.)

Eweights
ij = σMC

i · σMC
j · aData

ij

Correlations are treated separately for each systematic source. The tau

acceptance for multi-prong taus is treated as uncorrelated to the uncertainty on

τ -acceptance from one prong taus. All other systematic uncertainties are treated

as fully correlated between all measurements. Any additional information from the

combination comes from the fact that each method has different statistical errors

in their background models.

4.7.1. Ensemble Tests of the Statistical Error

One of the most important elements of the combination is the calculation

of the statistical correlations between the fit and matrix method. Each method

uses a different background sample to derive its fake rate. The fit uses the 0 b-

tag region to derive its template, and the matrix method derives ǫfake from the

W+1 jet control region. A drawback of the 0 b-tag region is that it has significant

statistical errors. Since the template error contributes significantly to the total

error of the fit method, it is expected that the fit method and the matrix method
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do not have fully correlated statistical errors. To confirm this prediction we use an

ensemble test. The observed data was binned in a two dimensional histogram of

BDTj versus EM-fraction. For each bin, the data was varied within Poisson errors,

and this process was repeated to make 10,000 pseudo datasets for each channel

(e + τ1, e + τ3, µ + τ1, µ + τ3). The fit method and matrix method were then

applied to each pseudo data set. The results for the measured cross section for

each pseudo-data set (trial) are shown in Figure 4.21. All of these errors are well

fit by a Gaussian distribution. In addition, the correlation coefficients between

each pair of measurements was calculated from the same set of pseudo data. The

results are shown below.
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As expected, the correlation is less than one for the fit method and the

matrix method when applied to same channel. It is also worth noting the small

correlation between the e and µ channels for the fit method. This correlation arises

from the template errors that are common between the e and µ channels. The

same correlation is not observed in the matrix method because the large number

of events in the W+1 jet region yields negligible statistical errors. The unique two

dimensional scatter plots from which this table is derived are shown in Figure 4.22.
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FIGURE 4.21. Cross section results for each pseudo-data set, displayed with a
Gaussian fit.
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FIGURE 4.22. Correlation plots for every pair of channels.
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4.7.2. Combination Results

The expected uncertainties and the above correlation matrix yield the

following Error Matrix.

Expected E




















































Fitµ+τ1 MMµ+τ1 Fitµ+τ3 MMµ+τ3 Fite+τ1 MMe+τ1 Fite+τ3 MMe+τ3

Fitµ+τ1 485.0 461.9 245.74 216.72 358.6 301.06 252.6 225.0

MMµ+τ1 461.9 650.0 247.79 210.0 304.0 311.98 257.1 225.0

Fitµ+τ3 245.74 247.79 2081.0 1725.92 256.0 247.39 916.6 343.82

MMµ+τ3 216.72 210.0 1725.92 2644.0 231.2 213.92 368.0 330.48

Fite+τ1 358.6 304.0 256.0 231.2 545.0 537.35 249.25 232.65

MMe+τ1 301.06 311.98 247.39 213.92 537.35 761.0 246.55 229.71

Fite+τ3 252.6 257.1 916.6 368.0 262.75 246.55 2425.0 2015.7

MMe+τ3 225.0 225.0 424.18 377.52 240.0 229.71 2015.7 2770.0





















































The weights derived from the expected errors are












































Fitµ+τ1 0.42

MMµ+τ1 0.11

Fitµ+τ3 0.03

MMµ+τ3 0.05

Fite+τ1 0.21

MMe+τ1 0.12

Fite+τ3 0.01

MMe+τ3 0.06













































The weights are dominated by the more precise 1-prong measurements, and

due to the slightly smaller expected statistical error, the fit methods are given a

slightly higher weight. These weights are unbiased with respect to the measured

values. However, the final measurement must come from the experimentally

observed errors. These, which are quite comparable to the expected sensitivity,

give the measured error matrix to be.
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Measured E




















































Fitµ+τ1 MMµ+τ1 Fitµ+τ3 MMµ+τ3 Fite+τ1 MMe+τ1 Fite+τ3 MMe+τ3

Fitµ+τ1 694.0 540.9 312.8 224.5 493.4 311.6 323.0 306.0

MMµ+τ1 540.9 613.0 262.2 180.0 342.0 273.2 273.0 255.0

Fitµ+τ3 312.8 262.2 2033.0 1692.0 306.0 230.0 993.0 392.2

MMµ+τ3 224.5 180.0 1692.0 2725.0 226.0 158.0 312.0 286.5

Fite+τ1 493.4 342.0 306.0 226.0 805.0 591.0 296.0 295.8

MMe+τ1 311.6 273.2 230.0 158.0 591.0 645.0 228.0 227.8

Fite+τ3 323.0 273.0 993.0 312.0 316.0 228.0 2933.0 2320.0

MMe+τ3 306.0 255.0 473.8 337.5 306.0 227.8 2320.0 3034.0





















































Using the expected weights and the measured cross section values, and

including the 3.7% luminosity uncertainty we find:

yavg = 178± 12 stat.± 18 sys. ± 7 lumi. pb

The agreement between the measurements can now be estimated. To do

this we use the the central value above (yavg). If the data does come from the

same underlying distribution, and if the errors are accurately reported, then the

deviations from the central value should follow a χ2 distribution. This is calculated

as

χ2 =
∑

i,j

(yavg − yi)(yavg − yj) · E−1
ij

For all measurements the χ2 is 11.7 for 7 degrees of freedom. The probability

of seeing these discrepancies or larger is about 11%; well within the realm

of possibility. Since the data is in reasonable agreement, we take the above

combination as the final measurement of the tt cross section.
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CHAPTER V

CONCLUSIONS

In the previous chapter the tt cross section was found to be

σtt = 178± 12 stat.± 18 sys. ± 7 lumi. pb

This is the most precise measurement of the tt cross section in a final state

including a tau ever performed. The total uncertainty of 12% greatly exceeds the

sensitivity of the best measurements from CMS (18%) and the TeVatron (25%)

in this channel. The presented cross section has a slight improvement over the

measurement published by ATLAS [75] (13%) which reports the results described

here, without combining the background methods. We can use this new precision

to gain a better insight into physics beyond the SM. The SM calculation of the tt

pair production cross section is predicted to be 165+16
−11 at approximate NNLO [23].

The observed value and the SM expectation agree well within errors, and therefore,

we cannot make any claims of new physics. However, it is useful to discuss what

physics scenarios would have been observable if they existed.

As mentioned in the introduction, recent BaBar results have found evidence

for an anomalous excess over the SM in the branching fraction of B → D(∗)τν.

This excess could possibly be attributed to quantum effects caused by the

existence of a charged Higgs boson [31]. Like other Higgs bosons, a charged Higgs

boson couples most strongly to the more massive SM particles. In the case that

would produce an anomalously high tau production rate, the charged Higgs boson

dominantly couples to the most massive lepton the tau.
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If the mass of the charged Higgs boson is larger than the top quark mass

then it is likely the branching fraction to the most massive particle, the top quark,

will dominate over that of taus. However, if we constrain ourselves to the charged

Higgs bosons below the top quark mass, then the process t → H+b could lead

to an observable excess over the SM prediction in this measurement. Since no

observable signs of anomalous tau excess are seen, we can constrain the rate of

such a process. To do this we add a hypothetical charged Higgs boson signal to the

MC model. We assume that the top quark decays some fraction of the time (B)

through t → H+b. Then the tt final state branching ratios would be adjusted in

the following ways:

– tt→ bbW+W− = σtt · (1− B)2

– tt→ bbH±W± = σtt · 2B(1−B)

– tt→ bbH+H− = σtt · B2

For this study we neglect contributions from tt → bbH+H−, since they are

second order in B which must already be small to avoid being detected. As before

with the tt events, we need to know how often a tt → bbH±W± event falls within

our cuts and is detectable. Unlike the tt events, the mass of the H+ is unknown.

Therefore, Pythia was used to model the probability of accepting an event with a

charged Higgs boson as a function of the charged Higgs boson’s mass. Using this

information we can form two hypotheses. The background only hypothesis that

assumes that B=0 and the expected number of signal events Nsignal is just equal

to the number of background (tt ) events.

Nsignal = bevts = σtt→bW+W− · ǫWW→l+τ
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where ǫWW→l+τ is efficiency of the signal region cuts for a tt event. The

background plus signal hypothesis has B 6= 0. For simplicity it is assumed that

the charged Higgs boson will decay into a tau lepton 100% of the time.

Nsignal = bevts + sevts

= σtt→bbW+W− · ǫWW→l+τ · (1−B)2 + σtt→bbH±W± · ǫWH→l+τ · (1−B) ·B

Since the cross section measured is given by

σtt =
Nsignal

NMC

σtt(SM).

we can ask how large B can be and still be consistent with the data. To

answer this question we must also include one additional systematic. We now

are assuming any excess over the SM prediction comes from a theoretical charged

Higgs boson. This means that the number of SM tt events is being taken from a

theory calculation, so we must include the theoretical errors on this production

which adds an additional 10% uncertainty to the original systematics.

The simplest scheme for determining whether the data is compatible with

the signal plus background hypothesis is to calculate the probability of seeing

the measured value, assuming the signal plus background hypothesis is true. If

the probability of seeing the observed data is less than 5% we say that the signal

plus background hypothesis is excluded. This method, while simple and straight

forward has some problems that occur when the observed value happens to be less

than the background hypothesis predicts. If the background hypothesis is true this

will happen 50% of the time. In rare circumstances the background can fluctuate

very low. For example, in 5% of cases, the background model will fluctuate low
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enough to exclude the background model + 0 signal events at the 95% level. In

our case this would exclude B=0, or very small values of B that this experiment

has no sensitivity to. This is clearly not desirable.

To prevent unrealistic exclusions the CLS method [76, 77] is used. This

method scales the probability of excluding our example by the probability that

the data is consistent with the background. Specifically a point is excluded if

∫ N

0
P (n; s+ b)dn

∫ N

0
P (nb; b)dnb

= 0.95

if the background fluctuates low then the poor compatibility with the

background hypothesis pushes up the limit and no longer excludes abnormally

small signal events.

In our experiment, at each mass point B is increased until the above

equation is satisfied. The results of this are shown in Figure 5.1. Also included in

this plot is the expected sensitivity; the sensitivity one would expect to measure if

the MC with the SM hypothesis correctly models the background only hypothesis.

The one and two sigma bands represents the limits that would be obtained

by random fluctuations within 1 and 2 standard deviations of the expected

uncertainties. The observed measurement is slightly worse than expected because

of a small upward fluctuation in the measured cross section, but is still consistent

within errors, falling less than one standard deviation away from the expected

value.

Some key points are worth mentioning. This analysis was optimized to

measure the tt cross section, which assumed the top decayed to a W boson;

because of this, the limit is best at low mass where the boost given to the b-quark

by the charged Higgs boson’s decay is similar to that of a W decay. At high mass
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FIGURE 5.1. Upper limit on the Branching ratio of t→ bH+.
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the b-quark has very little boost from the top quark decay and can often be lost.

Events with a lost b-quark have a lower acceptance, and this degrades the limit

at high mass. Previous measurements for charged Higgs production have focused

on trying to identify the differences in mass between H+ and the W boson. The

best current limits are given in [78], and range from 5% at low mass and 1% at

high mass. These analyses degrade as the H+ mass approaches the W boson mass.

This analysis, which was designed as a SM measurement, produces the world’s best

limit at lower masses, and improvements adopting the OS-SS strategy and matrix

method background techniques are currently being combined with the methods

used in [78] to provide even better sensitivity.

5.1. Summary

The LHC is the most powerful collider ever built, and ATLAS is the largest

detector ever constructed. Together they provide a new window into the energy

frontier. Since the LHC’s start in 2010, it has produced well over a million top

quark pairs, far surpassing the TeVatron. With this incredible data set we have

measured the tt cross-section in the l + τ channel to a precision that has never
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been obtained before. This channel has sensitivity to potential signs of new

physics. Since we find no disagreement with the standard model, we constrain

the branching fraction of top to a charged Higgs boson. The LHC and ATLAS

continue to take data, and while the many mysteries of matter in the universe still

elude particle physicists, hopefully some won’t for much longer.
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APPENDIX A

DERIVATION OF DATA DRIVEN TECHNIQUE

The matrix method used to estimate the background in this analysis is

defined by the following equations. In a given set of data defined by a set of cuts

the number of events (N loose
data ) is the sum of the signal events (N loose

real ) of interest

and background events (N loose
tight ).

N loose
data = N loose

real +N loose
fake (A.1)

In order to separate the signal from background we define a cut on a

quantity that distinguishes between the two. (In the case of this analysis it is

BDTj > 0.7). The events that pass this cut are a subset of the total data labeled

“tight”, the original data is labeled loose.

N tight
data = N tight

real +N tight
fake (A.2)

In order for the method to work the cut made must have different efficiencies

for signal and background. More background events must fail the cut than signal

events. These efficiencies for background (ǫfake) and signal (ǫloose) events are

defined as:

ǫreal =
N tight

real

N loose
real

(A.3)

ǫfake =
N tight

fake

N loose
fake

(A.4)
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The data and efficiencies can be measured directly leaving 4 equations

with 4 unknowns. This system of equations can be solved to give a background

prediction. The number of loose events can be solved for in equations A.3 A.4.

N loose
real =

N tight
real

ǫreal
(A.5)

N loose
fake =

N tight
fake

ǫfake
(A.6)

Substituting these equations into Equation A.1

N loose
data =

N tight
real

ǫreal
+
N tight

fake

ǫfake
(A.7)

=
N tight

real ǫfake +N tight
fake ǫreal

ǫfakeǫreal
(A.8)

The number of real tight events is given from Equation A.2

N tight
real = N tight

data −N tight
fake (A.9)

Substituting

N loose
data =

(N tight
data −N tight

fake )ǫfake +N tight
fake ǫreal

ǫrealǫfake
(A.10)

N loose
data =

N tight
fake (ǫreal − ǫfake) +N tight

data ǫfake

ǫrealǫfake
(A.11)
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Solving for N tight
fake yields.

N tight
fake =

ǫfake
ǫreal − ǫfake

(N loose
data ǫreal −N tight

data ) (A.12)

A signal prediction can be obtained from

N tight
real = N tight

data −N tight
fake . (A.13)

A.1. Matrix Method in OS-SS Data

The initial particle origin of a fake tau candidate can dramatically affect

its final fake rate. In order to reduce the systematics that arise because of this,

when estimating the total fake rate in a sample an OS-SS technique is used. This

technique subtracts the same sign events from the opposite sign ones. The loose

sample is then given by

N loose
data:OS−SS = N loose

data:OS −N loose
data:SS (A.14)

The fake events in the OS and SS loose samples are given by the sum of fake

taus coming from light quarks (u, d, s, c), gluons, and b-quarks. The signal process

is always OS, since the charge mis-identification is negligibly small. The OS-SS

loose events can be written as

N loose
data:OS−SS = N loose

tau:OS +N loose
quark:OS +N loose

gluon/b:OS −N loose
quark:SS −N loose

gluon/b:SS (A.15)
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Since gluons have no charge, and b-quarks are produced in charge symmetric

pairs their contributions cancel, leaving

N loose
data:OS−SS = N loose

tau:OS +N loose
quark:OS −N loose

quark:SS (A.16)

.

For convenience we define:

N loose
fake:OS−SS ≡ N loose

quark:OS −N loose
quark:SS. (A.17)

Substituting this definition gives

N loose
data:OS−SS = N loose

real +N loose
fake:OS−SS. (A.18)

The exact same technique can be applied to the tight events (in the above

steps loose→ tight).

N tight
data:OS−SS = N tight

real +N tight
fake:OS−SS (A.19)

Now we identify a new fake rate that relates the number of OS-SS events in

the loose and tight samples.

ǫfake:OS−SS ≡
N tight

fake:OS−SS

N loose
fake:OS−SS

(A.20)
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The signal events are all OS, so Equation A.3 is still valid. Proceeding as

above equations A.3,A.18,A.19,A.20 form a system of equations that can be solved.

Solving for the number of loose fake events in Equation A.20 yields:

N loose
fake:OS−SS =

N tight
fake:OS−SS

ǫfake:OS−SS

(A.21)

Substituting A.21 and A.3 into A.18 gives

N loose
data:OS−SS =

N tight
real

ǫreal
+
N tight

fake:OS−SS

ǫfake:OS−SS

. (A.22)

=
N tight

real ǫfake:OS−SS +N tight
fake:OS−SSǫreal

ǫrealǫfake:OS−SS

. (A.23)

Solving Equation A.19 for N tight
real yields

N tight
real = N tight

data:OS−SS −N tight
fake:OS−SS (A.24)

Substituting into Equation A.23

=
(N tight

data:OS−SS −N tight
fake:OS−SS)ǫfake:OS−SS +N tight

fake:OS−SSǫreal

ǫrealǫfake:OS−SS

. (A.25)

=
N tight

data:OS−SSǫfake:OS−SS −N tight
fake:OS−SS(ǫreal − ǫfake:OS−SS)

ǫrealǫfake:OS−SS

. (A.26)
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the analog of Equation A.13 becomes.

N tight
fake:OS-SS =

ǫfake:OS-SS

ǫreal − ǫfake:OS-SS

(N loose
data:OS-SSǫreal −N tight

data:OS-SS) (A.27)

With the signal prediction now given by

N tight
real = N tight

data:OS-SS −N tight
fake:OS-SS. (A.28)

This equation is used for the final separation of signal from background.

A.2. Remarks on ǫfake:OS-SS

It is important to determine if fake rates measured in control regions are

equivalent to those in the signal region; therefore, we investigate the dependencies

of epsilonfake:OS-SS. In its expanded form

ǫfake:OS-SS =
N tight

quark:OS −N tight
quark:SS

N loose
quark:OS −N loose

quark:SS

. (A.29)

Assuming that we would measure the signal in the OS signal region we

identify

ǫfake =
N tight

quark:OS

N loose
quark:OS

. (A.30)

In the most general case the fake rate in the SS events does not necessarily

equal the fake rate in the OS events.

ǫfake:SS =
N tight

quark:SS

N loose
quark:SS

(A.31)
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Dividing the top and bottom of Equation A.27 by N loose
quark:SS we get

ǫfake:OS-SS =

Ntight
quark:OS

N loose
quark:SS

− Ntight
quark:SS

N loose
quark:SS

N loose
quark:OS

N loose
quark:SS

− 1
=

N loose
quark:OS

ǫfake

N loose
quark:SS

− ǫfake:SS

N loose
quark:OS

N loose
quark:SS

− 1
(A.32)

where equations A.30,A.31 were used to simplify the Equation A.32. We can

now identify a useful quantity we define as the OS/SS ratio.

R =
N loose

quark:OS

N loose
quark:SS

(A.33)

Substituting into A.32

ǫfake:OS-SS =
ǫfakeR− ǫfake:SS

R− 1
= (A.34)

Here it is easy to see that in the case where R is large or when ǫfake =

ǫfake:SS then ǫfake:OS-SS = ǫfake. Otherwise it is important that R is approximately

equivalent in a control region and the signal region for ǫfake:OS-SS to be equivalent.

In this analysis R is approximately equivalent and ǫfake ≈ ǫfake:SS making this

potential discrepancy negligibly small.
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APPENDIX B

QFT MATRICES

B.1. Pauli Matrices

Any unitary 3x3 matrix (U) can be described in terms of a generic phase,

and a set of numbers (a) times the Pauli matrices τ .

U = φI + a · τ

where τ is given by

τ1 =







0 1

1 0






τ2 =







0 −i

i 0






τ3 =







1 0

0 −1







B.2. Gell-Mann Matrices

Similarly this is also true of 3x3 matrices except eight Gell-Mann matrices

must be used instead of the three Pauli matrices.

λ1 =













0 1 0

1 0 0

0 0 0













λ2 =













0 −i 0

i 0 0

0 0 0













λ3 =













1 0 0

0 −1 0

0 0 0













λ4 =













0 0 1

0 0 0

1 0 0













λ5 =













0 0 −i

0 0 0

i 0 0













λ6 =













0 0 0

0 0 1

0 1 0












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λ7 =













0 0 0

0 0 −i

0 i 0













λ8 =
1√
3













1 0 0

0 1 0

0 0 −2













B.3. Dirac Matrices

Otherwise known as the gamma matrices, are frequently used in QFT.

γ0 =



















1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



















γ1 =



















0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0



















γ2 =



















0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0



















γ3 =



















0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



















While not strictly a gamma matrix the following matrix appears frequently

enough to be label similarly

γ5 =



















0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



















It often appears as part of a projection operator that will project the right-

handed or left handed components of a spinor.
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ψL =
1− γ5

2

ψR =
1 + γ5

2
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APPENDIX C

TAU IDENTIFICATION VARIABLES

The reconstruction of tau candidates provides very little rejection against

the multi-jet background to hadronically decaying tau leptons. This rejection is

provided by a boosted decision tree (BDT), using discriminating variables that are

calculated during the reconstruction. The reconstructed variables used by ATLAS

are defined in [64] they are:

Track radius (Rtrack): the pT weighted track width:

Rtrack =

∑∆Ri<0.4
i pT,i ∆Ri
∑∆Ri<0.4

i pT,i

, (C.1)

where i runs over all core and isolation tracks of the tau candidate, and pT,i

is the track transverse momentum. Note that for candidates with only one

track, Rtrack simplifies to the ∆R between the track and the tau candidate

axis.

Leading track momentum fraction (ftrack):

ftrack =
ptrackT,1

pτT
, (C.2)

where ptrackT,1 is the transverse momentum of the leading pT core track and

pτT is the transverse momentum of the tau candidate, calibrated at the EM

energy scale. Note that for candidates with one track, ftrack is the fraction

of the candidate’s momentum attributed to the track, compared to the
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total momentum of the candidate, which can have contributions from the

calorimeter deposits from π0s and other neutrals.

Core energy fraction (fcore): the fraction of transverse energy within (∆R < 0.1)

of the tau candidate:

fcore =

∑∆Ri<0.1
i∈{all} ET,i

∑∆Rj<0.4

j∈{all} ET,j

, (C.3)

where i runs over all cells associated to the tau candidate within ∆R < 0.1

and j runs over all cells in the wide cone. The calorimeter cells associated

to a tau candidate are those which are clustered in the topological clusters

that are constituents of the jet that seeded tau reconstruction. ∆Ri

is defined between a calorimeter cell and the tau candidate axis. ET,i

is the cell transverse energy, calibrated at the EM scale. Note that an

unconventional definition of the core cone is used for fcore, as it provides

better discrimination.

Number of isolation tracks (N iso
track): the number of tracks in the isolation annulus.

Calorimetric radius (RCal): the shower width in the electromagnetic and

hadronic calorimeter weighted by the transverse energy of each calorimeter

part.

RCal =

∑∆Ri<0.4
i∈{all} ET,i ∆Ri
∑∆Ri<0.4

i∈{all} ET,i

, (C.4)

where i runs over cells in all layers of the EM and hadronic calorimeters.

Only cells in the wide cone are considered.

Ring isolation (fiso):

fiso =

∑0.1<∆R<0.2
i∈{EM 0−2}ET,i

∑∆R<0.4
j∈{EM 0−2}ET,j

, (C.5)
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where i runs over cells in the first three layers of the EM calorimeter in the

annulus 0.1 < ∆R < 0.2 around the tau candidate axis and j runs over EM

cells in the wide cone.

Cluster mass (meff. clusters): the invariant mass computed from the constituent

clusters of the seed jet, calibrated at the LC energy scale.

meff. clusters =

√

√

√

√

(

∑

clusters

E

)2

−
(

∑

clusters

p

)2

(C.6)

To minimize the effect of pileup, only the first N leading ET clusters

(effective clusters) are used in the calculation, defined as

N =
(
∑

iETi)
2

∑

iET
2
i

, (C.7)

where i runs over all clusters associated to the tau candidate, and N is

rounded up to the nearest integer.

Track mass (mtracks): the invariant mass of the track system, where the tracks

used for the invariant mass calculation use both core and isolation tracks:

mtracks =

√

√

√

√

(

∑

tracks

E

)2

−
(

∑

tracks

p

)2

(C.8)

Transverse flight path significance (Sflight
T ): the decay length significance of the

secondary vertex for multi-prong tau candidates in the transverse plane:

Sflight
T =

Lflight
T

δLflight
T

, (C.9)
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where Lflight
T is the reconstructed signed decay length, and δLflight

T is its

estimated uncertainty. Only core tracks are used for the secondary vertex

fit.

Leading track IP significance (Slead track): the impact parameter significance of

the leading track of the tau candidate:

Slead track =
d0
δd0

, (C.10)

where d0 is the distance of closest approach of the track to the reconstructed

primary vertex in the transverse plane, and δd0 is its estimated uncertainty.

First 2(3) leading clusters energy ratio (f2 lead clusters(f3 lead clusters)): the ratio of

the energy of the first two (three) leading clusters (highest energy first) over

the total energy of all clusters associated to the tau candidate.

Maximum ∆R (∆Rmax): the maximal ∆R between a core track and the tau

candidate axis.

Electromagnetic fraction (fEM): the fraction of transverse energy of the tau

candidate deposited in the EM calorimeter:

fEM =

∑∆Ri<0.4
i∈{EM 0−2} ET,i

∑∆Rj<0.4

j∈{all} ET,j

, (C.11)

where ET,i (ET,j) is the transverse energy deposited in cell i (j), and i runs

over the cells in the first three layers of the EM calorimeter, while j runs over

the cells in all layers of the calorimeter.
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TRT HT fraction (fHT): the ratio of high-threshold to low-threshold hits

(including outliers hits), in the transition radiation tracker (TRT), for the

leading pT core track.

fHT =
High-threshold TRT hits

Low-threshold TRT hits
(C.12)

Since electrons are lighter than pions, and therefore have higher Lorentz γ

factors, they are more likely to produce the transition radiation that causes

high-threshold hits in the TRT. This variable can be used to discriminate

hadronic 1-prong tau candidates from electrons.

Hadronic track fraction (E leak
T,Had): the ratio of the hadronic transverse energy

over the transverse momentum of the leading track:

E leak
T,Had =

∑∆Ri<0.4
i∈{Had} ET,i

ptrackT,1

, (C.13)

where i runs over all cells in the hadronic calorimeter within the wide cone.

Maximum strip ET (Estrip
T,max): the maximum transverse energy deposited in a

cell in the pre-sampler layer of the electromagnetic calorimeter, which is not

associated with that of the leading track.

Electromagnetic track fraction (E leak
T,EM): the ratio of the transverse energy

deposited in the electromagnetic calorimeter over the transverse momentum

of the leading track:

E leak
T,EM =

∑∆Ri<0.4
i∈{EM} ET,i

ptrackT,1

, (C.14)

where i runs over all cells in the EM calorimeter within the wide cone.
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Hadronic radius (RHad): the transverse energy weighted shower width in the

hadronic calorimeter

RHad =

∑∆Ri<0.4
i∈{Had,EM3} ET,i ∆Ri
∑∆Ri<0.4

i∈{Had,EM3} ET,i

, (C.15)

where i runs over cells associated to the tau candidate in the hadronic

calorimeter and also layer 3 of the EM calorimeter. Only cells in the wide

cone, defined as ∆R < 0.4 from the tau candidate axis, are considered.

Corrected cluster isolation energy (E iso
T,corr): the transverse energy of isolated

clusters:

E iso
T,corr = E iso

T − δE iso
T =

0.2<∆Ri<0.4
∑

i

ET,i − δE iso
T (C.16)

where i runs over all clusters associated to the tau candidate. ∆Ri is defined

between the cluster and the tau candidate axis. The pileup correction term

is defined as δE iso
T = (1 − fJVF) ×

∑

pT,trk, where fJVF is the jet vertex

fraction of the jet seed of the tau candidate, calculated with respect to the

primary vertex and
∑

pT,trk the sum of the transverse momentum of the

tracks associated to that jet.

Electromagnetic radius (REM): the transverse energy weighted shower width in

the electromagnetic (EM) calorimeter:

REM =

∑∆Ri<0.4
i∈{EM 0−2} ET,i ∆Ri
∑∆Ri<0.4

i∈{EM 0−2} ET,i

, (C.17)

where i runs over cells in the first three layers of the EM calorimeter

(pre-sampler, layer 1, and layer 2), associated to the tau candidate. The
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description of REM is included only for reference, as the variable is no longer

used by the identification algorithms.
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FIGURE C.1. Distributions of a selection of jet discriminating variables for MC
simulated Z → τ+τ− and W → τν signal samples and a di-jet background sample
selected from 2011 data. The distributions are normalized to unity.
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FIGURE C.2. Distributions of a selection of identification variables for MC
simulated Z → τ+τ− signal and Z → ee background events. The distributions are
normalized to unity.
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