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DISSERTATION ABSTRACT

Yan Guo

Doctor of Philosophy

Department of Physics

March 2012

Title: Nonlinear Surface Plasmon Polaritons: Analytical and Numerical Studies

This dissertation contains analytical and numerical studies of nonlinear

surface-plasmon polaritons (SPPs). In our studies, we consider SPP propagation

at the interface between a noble metal with a cubic optical nonlinearity and an

optically linear dielectric.

We first consider a sum-frequency generation process during the nonlinear

interaction, where a nonlinear polarization with tripled frequency is generated from

the incident fundamental SPP. Using the non-depletion approximation, the solution

of the nonlinear wave equation shows a third harmonic generation process from the

incident SPP wave. The solution is bound in the dielectric while freely propagating

in the metal. For realistic noble metals with absorption, we use silver for its

transparency window around the plasma frequency. In this window, absorption

losses are reduced and the resultant signal has a good transmittance within the

metal. The energy conversion efficiency from the incident SPP wave to the THG
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signal is about 0.1% for excitation using a standard continuous wave laser with

visible light intensity I = 103W/cm2. Once generated, the propagation angle of the

signal is fully determined by the optical properties of the dielectric and the metal

layers.

We next consider a nonlinear polarization with the same frequency as

the incident light. In this process the third order nonlinearity of the metal

is described by a nonlinear optical refractive-index. With the slowly varying

amplitude approximation, the nonlinear wave equation takes the form of a

nonlinear temporal Schrödinger (NLS) equation. The solution to the NLS equation

for the nonlinear SPP is a temporal dark soliton (TDS). In addition to analytical

studies, computational methods are also used. With no metal loss, the numerical

solution shows stable propagation of a TDS, when the initial pulse has a tanh

envelope satisfying the threshold peak amplitude. For an arbitrary input pulse,

instabilities such as background-oscillations and multi-peak breakups occur. With

metal loss, the input optical pulse decays while maintaining a single pulse shape

when the initial amplitude satisfies the same tanh envelope condition as in the

lossless case. For an arbitrary pulse, background-oscillations or pulse-breakups

occur after a short time of propagation.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

From Electronics and Photonics to Plasmonics

In the computer hardware industry, the well-known Moore’s Law predicts the

growth speed of chip technology. It states that the number of transistors that can

be printed per square inch on a chip doubles approximately every 18 months, shown

in Fig. 1.1.

This famous observation was made by Intel co-founder Gordon Moore in 1965

and has described the pace of silicon technology growth ever since then. Today,

decades later, Moore’s Law remains true. However Moore’s Law is also meeting

new challenges and slowing down [1]. The major challenges opposing further

improvements are the electronic thermal effect (Joule heating) and signal speed

delay within electronic interconnections [2]. The Joule heating effect is inherent

for conductors carrying electric current, and is caused by the interactions between

the moving electrons and the background atomic ions. The heating problem shows

more dramatically when the integrated circuits enter the sub-micron dimension

in size, for both more heat is generated per unit area and the heat is not able to

dissipate effectively. The temperature built up by Joule heat in turn deteriorates the

1



Figure 1.1 Moore’s sketch. In 1965, Gordon Moore sketched out his prediction of

the pace of silicon technology. It is still true today while facing new challenges.

The picture is taken from http://download.intel.com/museum/Moores_Law/

Printed_Materials/Moores_Law_2pg.pdf. The axis labels read: “Number

of Components Per Integrated Circuit” (x-axis), and “Relative Manufacturing

Cost/Component” (y-axis)

quality and the speed of the electronic interconnections. In a world where smaller

is better, today’s state-of-the-art micro chips shrink the dimension of circuit units

to the order of 50nm [3] and the bottleneck to the development of smaller and
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faster integrated circuit chips has become the fundamental conductivity properties

of electrons [4]. For electronic integrated circuits, the limiting factors also include

the distributed capacitance and the cross-talk between components factors which

are fundamentally caused by the finite mass of electrons, preventing the production

of electronic devices on yet smaller scales.

One of the possible solutions to the major problems in electronics is to use

photonics technology. Photons provide great data carrying capacity, and high

speed data processing photons operate at optical frequencies and travel at the

speed of light. Since direct interactions between photons are extremely weak, and

negligible in practice, photonics devices are robust to environmental photonic noise.

In addition, for a given data transmission rate, photonics devices exhibit much lower

power consumption than electronic devices and lose less energy as heat. Because

of these strengths in photonics, the invention of laser and fiber communication

technology has greatly enhanced information processing speed and accurate long

distance information relay. Presently, photonics is being investigated as a method

to connect electronic devices within sub-micron distance on a chip, as illustrated in

Fig. 1.2.

One of the fundamental limiting factors in photonics, however, is the diffraction

limit of optical waves. The typical operating wavelength in telecom optical fibers

is about 1.5µm [5], which sets the lower limit of optical devices and operation

dimension to be no smaller than hundreds of nanometers. More precisely, when the

3



Figure 1.2 Plasmonics is the bridge between electronics and photonics. It utilizes

metal/dielectric interfaces as optical wave guides and confines optical waves to

subwavelength dimensions. The operating speed of plasmonic devices is still

determined by the speed and bandwidth of light waves. Thus it takes advantage of

operating speeds of photonic devices and the small critical dimensions of electronics

devices. (Figure taken from ref. [4]).

operating wavelength of the light is λ ∼ 1500nm, the wave nature of the photons

gives the operation dimension, d, its lower bound according to Abbe diffraction

limit of light waves, d = λ/2n where n is the optical refractive index of the medium

in which the light travels. For example in glass, the operating dimension is roughly

530nm by the Rayleigh criterion since glass has a refractive index of n = 1.5. For

photons, the ability to store and transport data deteriorates when the device size

scale is under its half wavelength. Therefore photonic devices are at least one order

of magnitude larger than nano-scale electronic components.
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In order to facilitate both optical and electronic devices integrated onto the

same chip, a bridge of interfacing needs to be built to close the gap between the

two very different technologies. This bridge is afforded by the photonics-electronics

hybrid, i.e. plasmonics (see Fig. 1.2).

The fundamental element of plasmonics is the surface plasmon-polariton

(SPP). In 1956 Pines described oscillations of the free electron gas in a conducting

metal as “plasmons”, in analogy to earlier study on plasma oscillations in gas

discharges [6]. The term “polariton” was first used by Fano in the same year to

describe the particle-like coupled oscillation formed by interactions between light

and electrons in a metal [7]. Finally the term “surface plasmon-polariton” was

coined by Cunningham and his colleagues in 1974 [8].

The interactions between light waves and the free electrons in metal lead to the

SPP modes guided by the dielectric-metal interface. As a result, the electromagnetic

wave is bound on the metal surface, with only evanescent fields into the dielectric

and metallic media. Consequently, the planar metal surface acts as a waveguide

for the surface wave and confines the electromagnetic fields to within about half

a wavelength of the surface. Even though the penetration depth in the metal is

about 10nm for SPPs, the propagation distance of the SPP is limited by a gradual

energy dissipation from the SPP into the metal, as shown in Fig. 1.3. A typical

SPP propagation length in silver or gold is on the order of microns, and can be

5



extended to millimeters with proper structural preparation of the supporting metal

[3] [9].

Figure 1.3 A schematic of SPPs. SPPs at the interface between a metal

and a dielectric material formed from electromagnetic wave and surface charge

interactions. The magnetic field is transverse only (H is in the y direction) while

the electric field has both in-plane (x and z) components. The wave can propagate

in the x direction for a distance of more than ten wavelengths before the energy is

dissipated in the metal. (Figure taken from ref. [10]).

The simplest plasmonics are constructed by an electromagnetic wave

propagating along a vacuum-metal interface as illustrated in Fig. 1.3. For more

complicated applications with plasmonics, however, more complicated interface

geometries are built for different purposes. For example, optical wave guides

using metal nanostructures have sub-wavelength critical dimension, and thus allow

further reduction of the device size to below the diffraction limit of photonics in a

variety of geometries [11] [12].
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The scientific branch of plasmonics has been developing rapidly for decades.

Numerous applications and many variations of plasmonics design have been

explored and researched for more than fifty years. For example, a dielectric-metal-

dielectric structured stripe waveguide was designed for thermo-optic Mach-Zender

interferometric modulators and directionally-coupled switches, which utilize long-

range SPPs guided by the metal stripe [3] [13] [14] [15] [16]. In order to guide

SPPs around curvatures such as corners [12] [17] [18] without losing high efficiency

in energy transmission and switching, arrays of closely spaced metal nanoparticles

were proposed, where the arrays were used for coupled plasmon modes between the

metal particles [19]. Similarly, ultracompact modulators have been revolutionized

using plasmonics. Modulators with femtojoule switching energies and gigahertz

modulation frequencies were demonstrated using a field-effect modulation of

plasmon waveguide modes in a metal-oxide-semiconductor geometry [20] [21].

Additionally, ultrafast, broad bandwidth optical switching of SPPs has been

demonstrated. The all-optical switching of a propagating SPP signal can be

built on a metal-dielectric waveguide with direct optical modulations by optical

excitation of the metal as shown in Fig. 1.4 [22] [23] [24] .

The evanescent waves in the transverse direction of the SPPs, on the other

hand, provide sub-micron detecting sensitivities, and thus become a very important

method in gas detection, molecular optical chemical sensing and biosensoring [25]

[26] [27] [28] [29]. These sensors operate based on surface plasmon resonance (SPR)
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Figure 1.4 A schematic showing of ultrafast all-optical switching of SPP waves

along an aluminium/silica interface. The switching is modulated by optical pump

pulses. The set up uses the grating-coupling method to excite SPPs from a laser

and to decouple signals to detectors. (Figure taken from ref. [22]).

effects. They have the great advantage of highly sensitive to the variation of the

molecule layer and fast enough for real-time detection. These sensors also have

the great advantage of being ”label-free”, as they can function without a label on

a molecule (such as radioactivity or fluorescence). One layout of such sensors is

shown in Fig. 1.5. It positions the evanescent waves of the SPP excitation on top

of a metal film on the light-incident side and the optical detector underneath. The

binding of molecules, such as O2, CO2 or DNA to the film surface changes the

optical refractive index in the immediate vicinity of the surface layer, and produces

an easily observable shift of the resonance angle of the incident light source [25] [30]

[31].
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Figure 1.5 A schematic of a surface plasmon resonance biosensor. This biosensor

functions by monitoring the angle shift of minimum light reflection. The biosensor

operates at the critical angle that the surface plasmon resonance (SPR) condition

is satisfied and the reflection angle of the light from the surface is monitored. The

reflection angle shifts due to the change of the optical index on the flow channel

side by the amount of molecules attached at the surface. (Figure taken from ref.

[30]).

The strong confinement of the SPPs’ electromagnetic fields can greatly

enhance the nonlinearity of the host medium, and so the study of SPPs quickly

becomes also the study of nonlinear optics. Such nonlinear optical effects include

surface enhanced Raman scattering (SERS) when the localized SPP frequency is

in resonance with the incident laser frequency [32] [33]. In addition, the surface

enhanced harmonic generations, especially the second harmonic generations which

arise from the asymmetric surface profile of the SPP structure, are also observed

and demonstrated [34] [35] [36].
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Organization of This Dissertation

This dissertation is organized as follows. In Chapter II we first review the

optical properties of the noble metals. Based on the optical propertiesf of the noble

metals, the surface plasmon polaritons (SPPs) are introduced and derived from

Maxwell’s equations. The attributes of the linear SPPs are used and expanded in

later chapters. The material in this chapter is a review of several textbooks and

previous published articles by other authors, such as [37] and [38].

Chapter III gives a general introduction to nonlinear optics, especially the

case with third order susceptibility χ(3). The third order nonlinearity has two

major branches: sum frequency generation and nonlinear optical index. Those two

branches lead to our research interest as in SPP harmonic generation (Chapter IV)

and plasmonic solitons (Chapter V). This chapter is a review of several textbooks

such as [39] [40] and [41], with original work in theoretical derivation of nonlinear

wave equations and nonlinear polarization that are specified to our case of study,

which is previously coauthored and published with Miriam Deutsch in [42].

In Chapter IV, a solution of the nonlinear wave equations is given . The

steady-state solution shows a third harmonic generation (THG) induced by the

incident SPP and can radiate through the metal. For realistic metals, experimental

data adapted from the literature are used. The realistic metal is chosen to be silver

because silver has a transparency window around its plasma frequency and gives

good transmittance for the induced THG wave. The energy conversion efficiency
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from the incident SPP to the THG is calculated and shown to be consistent with the

assumptions and approximations made for the original nonlinear wave equations.

The propagation angle for the THG is also derived, using both an analytical model

of the metals and experimental data from the literature. The material in this

chapter was previously coauthored and published with Miriam Deutsch in [42] and

[43].

In Chapter V, we follow established approaches for our nonlinear SPP system

and achieve a temporal nonlinear schrödinger (NLS) equation. The solution to this

NLS equation gives a temporal dark soliton. Attributes such as stability is studied

under scenarios of both lossless and lossy metal, with standard numerical methods

and programming. The material in this chapter was previously coauthored with

Miriam Deutsch and has not yet unpublished
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CHAPTER II

INTRODUCTION TO PLANAR SURFACE PLASMON POLARITONS

Optical Properties of Noble Metals

The physics of plasmonics derives from electromagnetic modes called surface

plasmon polaritons (SPPs), which arise from the interaction between light and

mobile surface charges in the metal. The SPPs usually propagate along a

conductor-dielectric interface and the conductors are commonly metals with high

conductivities and low absorption such as Cu, Al and some noble metals (Ag and

Au) [10] [44] [45].

Before we dive into the world of surface plasmon polaritons, the optical model

of the main supporting medium, the noble metals, needs to be discussed in detail.

In the field of classic electromagnetism, Maxwell’s equations are the cornerstone

of all phenomena and analysis [38]. We start our analysis with the macroscopic

Maxwell’s equations in the following form:

∇ ·D = ρfree (II.1a)

∇ ·B = 0 (II.1b)

∇× E = −∂B
∂t

(II.1c)

∇×H =
∂E

∂t
+ Jtotal (II.1d)
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We use SI units, see Tab.2.1.

Table 2.1 Maxwell’s equations and units

Symbol Name Unit
E Electric Field V/m
B Magnetic Field T
D Electric Displacement Field C/m2

H Auxiliary Magnetic Field A/m
ε0 Vacuum Permittivity F/m
µ0 Vacuum Permeability N/A2

For the current density Jtotal, the most general expression [39] in terms of

multipole expansion is

Jtotal = Jc +
∂P

∂t
+∇×M− ∂

∂t
(∇ ·Q) + · · · (II.2)

where P is the electric dipole, M is the magnetic dipole, Q is the electric

quadrupole, and so on. In the absence of sources, ρfree = 0 the first term in (II.2),

the conducting current density, disappears, Jc = 0. In non-magnetic media, which

react only slightly to magnetic fields, the magnetization M in the third term of

(II.2) is considered negligible in optical interactions. Consequently, the relative

permeability of non-magnetic media, for our case the noble metals, is very close to

one in B = µ0µH and we can safely use µ = 1 in the context of optical properties

of the noble metals. This leads to a simple linear relation between the magnetic

induction and magnetic field: B = µ0H. For terms related to the electric charge

distribution in (II.2), the dipole term
∂P

∂t
dominates and the rest of the higher
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order terms - quadrupole Q and higher - are dropped. Thus the optical properties

in a medium are determined to the first order of the electric field E by the dipole

polarization P and are also represented in the dielectric displacement D as

D = ε0E+P (II.3)

The relationship between the dipole polarization P and the electric field E is

macroscopically determined by the dielectric susceptibility, χ, via

P = ε0χE (II.4)

where χ is a tensor but is often simplified to a scalar quantity for isotropic media,

such as noble metals.

In a certain frequency limit, usually around the ultraviolet frequency range,

the optical response of the metal permittivity can be described by the plasma

model, where a free electron gas with number density n̄ and charge e moves against

positive background made of ion cores. In the plasma model, the electron mass me

is corrected to an effective optical mass m due to the band structure of the medium

[46]. The fact that most metals possess very high electric conductivities is a direct

result of the plasma model and we can use the plasma model for most of our studies.

In the plasma model, the conduction electrons in the metal can respond and follow

the frequency of the external electric field up to a limit, and this cut-off frequency

ωp =

√
n̄e2

mε0
is known as the plasma frequency. For alkali metals where the single

conduction electron per primitive cell is simply treated as completely free, the
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plasma frequency ωp occurs above ultraviolet optical frequencies. For noble metals,

on the other hand, due to the presence of d−bands, the plasma frequency is in the

visible frequency range, where absorption from interband transitions dominates

[46]. We take this effect into account in later chapters. For the purposes of this

research, silver and gold are the best candidates to support SPPs. Silver and gold

are members of the noble metals family. They are chosen for both their chemical

stability and electric conductivity. Henceforth the “noble metals” referred to in

this document are silver or gold unless otherwise stated.

The electric permittivity, or dielectric function, is the primary determining

factor of optical properties of the noble metals. Here we follow the classic electron

gas model for the dielectric function [47], known as the Drude-Lorentz model for

dielectrics. The electrons in silver and gold take the effective mass, m = 1.1me

where me is the mass of an electron. They obey Newton’s second law of motion in

the presence of an external electric field E(x, t):

−eE = m[ẍ + γpẋ+ ω2
0x] (II.5)

In the Drude model for metals, the restoring force is considered zero for

mobile electrons such that ω0 = 0. The motion of the free electrons in the noble

metals is damped via collisions with crystal impurities and is characterized by

a phenomenological damping constant γp = 1/τrelax ∼ 100 THz where τrelax is

the relaxation time of the free electron gas on the order of femtosecond at room

temperature [46].
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A harmonic solution x(t) = x0e
−iωt can be written down for (II.5) with an

electro-magnetic field of the form E(x, t) = E(x)e−iωt, where x0 is a complex

amplitude representing the phase shift between x and E. With the solution

x(t) =
e

m(ω2 + iγpω)
E(t) (II.6)

it is straightforward to show the macroscopic polarization has the form

P = −Nex = − Ne2

m(ω2 + iγpω)
E (II.7)

where n̄ is the electron density in metal. Using the expression for electric

displacement (II.3) yields

D = ε0

(
1−

ω2
p

ω2 + iγpω

)
E (II.8)

where ω2
p ≡

Ne2

ε0m
. So the dielectric function for a noble metal is

ε(ω) = 1−
ω2
p

ω2 + iγpω
(II.9)

The positive background of the ion cores in the metal induces a residual polarization

for ω → ∞, therefore a dielectric constant ε∞ is introduced to the Drude-Lorentz

model and the dielectric function for metal is written as

εm(ω) = ε∞ −
ω2
p

ω2 + iγpω
. (II.10)

Empirically, gold and silver exhibit much stronger optical absorption than the

Drude model predicts due to the effect of the actual band structures in the metals

[48] [49] and the skin depth change in the measured experiment data [50] [51].
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Consequently an effective absorption term i
σ

ε0ω
is added to better fit the model

where σ is the effective AC conductivity at optical frequencies [52] [53]. In this

dissertation, when absorption is important to the results, the modified Drude model

is used

ε(ω) = ε∞ −
ω2
p

ω2 + iγpω
+ i

σ

ε0ω
. (II.11)

For silver, we mostly follow [54] and the parameters are listed in Table[2.2].

Table 2.2 Parameters in Modified Drude Model [37].

Symbol Value Unit
ε∞ 5.1 −
ωp 8.6 eV
γp 45 meV
σ 23.35 (Ω · µm)−1

The Drude model represents the optical properties of silver very well below the

plasma frequency ωp, whose wavelength equivalent is about 320nm for wavelength

equivalence, but fails for frequencies above ωp. A comparison of the real and

imaginary parts of ε taken from both data and the theoretically predicted values

given by the modified Drude model is given in Fig. 2.1. The experimental data and

theoretical results from the Drude model agree well over all wavelengths except

those approaching the plasma frequency. The difference between the experimental

data and the Drude model will be discussed in Ch.IV.
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Figure 2.1 The modified Drude model (lines, from (II.11)) vs experimental data

(dots, taken from [37]) for silver. For wavelengths greater than 320nm, the

Drude model correctly represents the optical properties of silver. For wavelengths

shorter than 320nm, however, the increasing absorption due to inter-band transition

dominates and the Drude model is invalid.

Planar Surface Plasmon Polaritons

Introduction

The supportive structure of surface plasmon polaritons requires at least one

interface formed by a metal and a dielectric, as shown in Fig. 2.2. The y direction

is extended to infinity in our model so that the planar SPPs discussed here are

essentially two-dimensional, with only x and z dependence.

The SPPs, which are EM waves that are guided by a metal surface, have

a larger propagation wavevector than the wavevector in vacuum for the same

frequency. Therefore additional momentum is required to excite an SPP wave
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x

z y

Dielectric

Metal

Figure 2.2 Sketch of an SPP-supporting interface. x is the direction of

propagation, z is the normal to the interface pointing from the metal to the

dielectric, and y is the transverse direction extended to infinity.

along a metal surface as seen in Fig. 2.3. There are two classical experimental

configurations used to excite the SPP from light in free space, the Kretschmann

configuration and the Otto configuration (see Fig. 2.4). Both configurations utilize

the fact that the wavevector of light is larger in a high index prism than in free

space, so when the total internal reflection condition is satisfied, the evanescent

wave tunnels out and excites SPPs on the metal surface.

There are also ways to excite SPPs without a high index prism, such as by

scattering light over a rough surface, or by using manufactured gratings to match

the missing momentum between light in free space and the SPP on a planar metal

surface, as shown in Fig. 1.4. Recently it was also demonstrated that one may excite

the SPP directly from free space by optical nonlinearities in the SPP supporting

dielectric or metal [55] [56].

The simplest geometry layout that supports surface plasmons is shown in

Fig. 2.2. The surface plasmon polaritons supported by this layout are therefore
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Figure 2.3 The dispersion relation of SPPs. There is a momentum mismatch (red

arrow) between the SPP wavevector (blue solid curve) and the vacuum light line

(black solid line). Therefore, some special techniques are needed to compensate for

the missing momentum, such as using a high index prism (green dashed line) to

alter the light line to intersect (red dot) with the SPP dispersion curve.

called planar SPPs, differentiating from SPPs supported by other geometrical

structures such as nanoshells [57]. In photonics and plasmonics, the planar surface

layout is frequently used in chemical and biological applications such as biosensing

and nanoscale waveguides [27] [29] [30] [25].

Derivation of SPPs Using Maxwell’s Equations

We start the discussion with the Maxwell equations:

Combining the two curl equations (II.1c) and (II.1d) gives

∇×∇×E = −µ0
∂2D

∂t2
(II.12)
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Kretschmann Otto

Figure 2.4 Prism coupling methods. Prism coupling to SPPs using attenuated

total internal reflection. The Kretschmann configuration (left) is arranged as:

prism-metal-dielectric and the Otto configuration (right) is arranged as: prism-

dielectric-metal.

in which we use the fact that the spatial and temporal derivatives are interchangeable.

Next, for linear media, optical properties can be described by the relative

permittivity ε giving D = εε0E. Considering the fact that ε0µ0 = 1/c2, then

(II.12) is

∇×∇× E = − ε

c2
∂2E

∂t2
(II.13)

Since we have 0 = ∇ ·D = ε0∇ · (εE) = ε0E · ∇ε + ε0ε∇ · E, where the term ∇ε

is negligible when the spatial variance of ε is small over one optical wavelength, we

have in general

∇2E− ε

c2
∂2E

∂t2
= 0 (II.14)

Since the time dependence of the eigensolution is e−iωt, we write E(x, y, z, t) =

E(x, y, z)e−iωt to obtain the Helmholtz equation

(∇2 + k2
0ε)E(x, y, z) = 0 (II.15)
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where k0 ≡ ω/c is the wavevector of the light with frequency ω in vacuum. Next,

as depicted in Fig. 2.2, x is the direction of propagation, z points in the direction

normal to the metal surface and y is the metal surface transverse extension such

that E has no dependence on y, i.e. ∂yE = 0. The electric field can be written as

E(x, y, z) = E(z)eiβx where β is the propagation constant. Along the transverse

direction, the form of the eigensolution satisfies ∂zE(z) = −ikzE(z). Since ∇2 =

∂2
x + ∂2

y + ∂2
z , so it holds that

k2
z + β2 = k2

0ε (II.16)

Here we summarize the eigenvalues of spatial derivatives:

∇2E = −k2
0εE

∂xE = iβE

∂yE = 0

∂zE = ikzE

Now the dielectric function ε = ε(z, ω) is written explicitly as a piecewise constant

function with a discontinuity at the dielectric-metal interface z = 0,

ε(z, ω) =





εd(ω) when z > 0

εm(ω) when z < 0

(II.17)

where subscripts d and m denote dielectric and metal respectively. The wavevector

along the direction of propagation must be continuous across the interface, so β
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remains the same for both media. The z component of the wavevector, however,

differs in the two media

kz(z) =





kdz when z > 0

kmz when z < 0

(II.18)

The electric field can now be written in the form

E(x, y, z, t) = E0e
iβxeikzze−iωt (II.19)

The physical attributes of the SPPs are clearly represented by the wavevectors (β

and kz), and the wavevectors can be determined in terms of the EM wave frequency

ω via the medium’s optical response - the dielectric function. Since the dielectric

function ε(ω) is a function of wave frequency too, essentially we are looking for

the dispersion relation of the eigensolution in the form of k = k(ω). To get the

SPP dispersion via a relatively straightforward path, we step back to the general

source-free Maxwell equations and then consider the boundary conditions with a

specific medium structure.

The Maxwell equations in vector form are

∇ ·D = 0 (II.20a)

∇ ·B = 0 (II.20b)

∇× E = −∂B
∂t

(II.20c)

∇×H =
∂D

∂t
(II.20d)
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The first two divergence equations provide the boundary conditions which will be

used shortly and the last two curl equations provide the relations between different

field components. To implement the SPP geometry layout, the last two equations

can be rewritten separately by their Cartesian components in frequency ω domain

iωBx = ∂yEz − ∂zEy (II.21a)

iωBy = ∂zEx − ∂xEz (II.21b)

iωBz = ∂xEy − ∂yEx (II.21c)

−iωDx = ∂yHz − ∂zHy (II.21d)

−iωDy = ∂zHx − ∂xHz (II.21e)

−iωDz = ∂xHy − ∂yHx (II.21f)

In order to separate the 12 field components into two separate mode groups: we

distinguish transverse electric (TE) modes and transverse magnetic (TM) modes.

The SPP supporting media have linear susceptibilities with scalar response

so that D ‖ E and H ‖ B. Further, the linearity dictates that the Cartesian

components in the electric displacement D field are solely determined by the

corresponding electric E field components, as indicated by the out-going arrows

(black) in Fig. 2.5. Similarly the Cartesian components in the H field are solely

determined by the corresponding B components, as indicated by the in-going arrow

(black) in Fig. 2.5. Formally speaking, this linear dependency between the field

pairs D − E and H − B need not be assumed. In such instances, the dielectric
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∇×E = −∂B
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(outer hexagon)

∇×H =
∂D

∂t
(inner hexagon)

Figure 2.5 TE and TM mode separation. The outer hexagon shows that every B

component is determined by two E components (blue arrows) and the inner hexagon

shows that every D component is determined by two H components (pink arrows).

The out-going and in-going arrows (black) indicate linear relations in D − E and

H−B field pairs. The independence of all the fields in the y direction separate the

field components into two mode sets: the Transverse Electric (TE) mode and the

Transverse Magnetic (TM) mode with x the direction of propagation.

permittivity takes a diagonal tensor form. For this study, however, the chosen

dielectric and the metal are isotropic media, so a scalar ε suffices.

For our SPP geometry choice, a geometrical constraint of the system is that the

derivatives of the fields respect to y are zero. Since every component of the magnetic

field, B, is determined by two components in the electric field E, and similarly every

component of the electric displacement field D is determined by two components
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of the auxiliary magnetic field H, via partial derivatives, as indicated by the outer

arrows (blue) and inner arrows (pink), the condition ∂yE = 0 essentially detaches

the x ↔ z dependency in E → B and H → D as depicted by the dashed line in

Fig. 2.5.

The eigenmode involving fields By, Ex and Ez is called Transverse Magnetic

(TM) because the magnetic field By (or Hy) is in the transverse direction relative

to the propagation direction x, and the eigenmode involving fields Ey, Hx and Hz

is called Transverse Electric (TE) for Ey transverse to x:

TM mode:(Hy, Ex, Ez)

TE mode:(Ey, Hx, Hz)

The general boundary conditions from Maxwell’s equations are

n · (D2 −D1) = ρe (II.22a)

n · (B2 −B1) = 0 (II.22b)

n× (E2 − E1) = 0 (II.22c)

n× (H2 −H1) = Ke (II.22d)

where n = ẑ is the normal direction on the surface pointing from the metal into

the dielectric.

Again, for the SPP configuration we consider, the surface charge density ρe

and the surface current density K are zero. The boundary conditions in terms of
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Cartesian components at boundary z = 0 are:

Ddz −Dmz = 0 (II.23a)

Bdz − Bmz = 0 (II.23b)






Edx −Emx = 0

Edy − Emy = 0

(II.23c)






Hdx −Hmx = 0

Hdy −Hmy = 0

(II.23d)

here all fields marked with a subscript “d” are evaluated at z = 0+ (the vacuum

side) and all fields marked with subscript “m” are evaluated at z = 0− (the metal

side).

Explicitly using (II.20) and (II.23) we derive that:

Bx : kdzEy = kmzEy (II.24a)

By : kdzEx − βEdz = kmzEx − βEmz (II.24b)

Bz : βEy = βEy (II.24c)

Dx :
kdzHy

εd
=

kmzHy

εm
(II.24d)

Dy :
kdzHx − βHz

εd
=

kmzHx − βHz

εm
(II.24e)

Dz : βHy = βHy (II.24f)

To satisfy (II.24) requires Ey = 0 (for example (II.24a)), so the eigenmode can only
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be TM with Hz, Ex, Ey non-zero. The relation turns out:

kdz
εd

=
kmz

εm
(II.25)

With the relation (II.16) β2 + k2
z = k2

0ε, the dispersion relation is derived:

β2 = k2
0

εdεm
εd + εm

(II.26a)

k2
dz = k2

0

ε2d
εd + εm

(II.26b)

k2
mz = k2

0

ε2m
εd + εm

(II.26c)

We also note the following relations between the field components from (II.24b):

Edz = −
kmz

β
Ex (II.27a)

Emz = −
kdz
β

Ex (II.27b)

Using the relations above, we see that the SPP profile is completely determined

by its frequency (or wavelength) and the optical response of the supporting

dielectric-metal.

In the ideal case, the metal is non-absorptive and so the dielectric function is

a real negative number. Thus the propagation factor β is real and positive while

the transverse decay factors kdz and kmz are purely imaginary. In reality, due to

the finite absorption in a metal, the dielectric function of the metal has a non-zero

imaginary component, therefore all quantities are complex numbers. For a laser

source with wavelength λ = 800nm, the corresponding SPP propagation length

Lspp and penetration lengths in the dielectric δd, and in the metal δm can be easily
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derived from the expressions of SPP wavevectors derived above. This is shown

schematically in Fig. 2.6a for the following values:

Lspp = 1/Im[β] = 80µm

δd = 1/Im[kdz] = 635nm

δm = 1/Im[kmz] = 25nm

A real-time snapshot of the SPP field profile is shown in Fig. 2.6b, calculated

using a Finite-difference time-domain (FDTD) simulation.

Figure 2.6 The penetration depths and a snapshot of the SPPs. (a) Penetration

depth of an SPP in a dielectric and metal (Figure taken from ref. [10]) (b) The

SPP instantaneous profile snapshot, represented by the magnetic H = ŷHy field

only. This picture is achieved by an FDTD simulation written by the author, and

the source code is attached in Appendix E.
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CHAPTER III

INTRODUCTION TO NONLINEAR MEDIA AND NONLINEAR WAVE

EQUATIONS

Introduction to Nonlinear Optics

This work was published in APS March Meeting in 2010. Dr. Miriam Deutsch

set up the proposed frame of the work I was the primary contributor to all the

derivations and analysis of the results.

Before the invention of the laser, light sources used in laboratories were

of relatively low intensity, therefore most optical phenomena observed in labs

were linear, and most experimental results could be explained simply by the

superposition principles. In reality, however, The optical properties of a material

system can be modified by the presence of high intensity light. This light-induced

modification was first demonstrated in the second harmonic generation experiment

by Franken et al. in 1961 [58]. This experiment, which occurred only one year

after the demonstration of the first working laser in 1960, marked the birth of a

new field of research in physics: nonlinear optics.

A lot of materials can show nonlinearity at different thresholds of light

intensity. Even in vacuum photons can interact via vacuum polarizations and show
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a certain level of nonlinearity in the context of wave mixing [59]. In practice, certain

dielectric media are preferred such as glass and semiconductors [60] to observe

nonlinear optical effects. This is because nonlinear effects are greatly enhanced by

the medium polarization. Numerous new nonlinear optical phenomena have been

discovered in vast types and states of materials [61] [62] [63] [64]. The microscopic

origin of the nonlinearities in materials is classically illustrated in the nonlinear

oscillator model [39] [40].

Metals, contrary to our intuition, possess very high values of intrinsic

nonlinearity even compared to fiber glasses (SiO2) [41]. It is rare to notice the

metallic nonlinearities, however, due to the limited penetration depth of light into

the bulk metals which is typically less than one tenth of a wavelength of the light

wave. Therefore the nonlinear interactions between the light and metals are very

weak because the volume of material available to interact with the light is small.

The SPP waves, on the other hand, can concentrate high intensity of light onto the

metal surface. The SPPs also greatly increase the interaction volume between the

light and the metal by the guided nature of the SPP waves. Therefore, the SPPs

are one of the best candidates to observe nonlinearity of the metals. There have

been already different orders of metal nonlinearities demonstrated by harmonic

generations [65] [66] and by four wave mixing [56] [67].
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Wave Equations in a Nonlinear Medium

The nonlinearity of medium can be directly expressed by means of the

macroscopic polarization P, which appears in the definition of electric displacement

D, as shown in (II.3). Under the dipole approximation, which is the lowest order

expression of P which neglects the magnetic terms, the polarization P can be

expressed as an expansion of the electric field E in polynomial orders. The

relations between polarization P(ω), electric displacement D and electric field

E(ω) are

P(ω) = ε0(χ
(1)E+ χ(2)EE+ χ(3)EEE+ · · · ) (III.1a)

D(ω) = ε0E+P = ε0(E+ χ(1)E+ χ(2)EE+ χ(3)EEE+ · · · ) (III.1b)

where the χ(n)(ω) terms are the susceptibilities of different orders. The first two

terms, E and χ(1)E are recognized as the linear parts and can be merged and

expressed by the dielectric function:

ε(ω) = 1 + χ(1)(ω) (III.2)

and the rest is named as nonlinear polarization:

PNL(ω) = ε0(χ
(2)EE+ χ(3)EEE+ · · · ) (III.3)

Gather the equations above, together with (II.12), and the nonlinear wave equation

in a nonlinear medium is achieved with the form:

∇×∇× E+
ε

c2
∂2E

∂t2
= −µ0

∂2PNL

∂t2
(III.4)
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In general, PNL = PNL(E) is a function of electric fieldE expanded with polynomial

terms. In order to simplify and solve the nonlinear wave equation, the detailed

nonlinear properties of the material in which the light propagates needs to be

discussed and expressed in a specific form of a response function.

For noble metals such as silver and gold which possess inversion symmetry,

the even orders of χ(n) vanish and the dominating nonlinear term is then χ(3) [39].

The nonlinear polarization is now simplified to

PNL(ω) = ε0χ
(3)(ω : ωα, ωβ, ωγ)E(ωα)E(ωβ)E(ωγ) (III.5)

where subscripts α, β and γ denote the input electric field distinguishable by their

angular frequencies ω or input momentum vectors k, and the resultant polarization

frequency is a linear combination of ωα, ωβ and ωγ, for the energy is conserved.

This is generally known as a parametric process.

In our study, we use degenerate input with the same frequency, i.e. ωa = ωb =

ωc = ω. Among several possibilities, there are two possible resultant frequencies:

3ω(= ω + ω + ω) Fig. 3.1 and ω(= ω + ω − ω) Fig. 3.2. The first case with 3ω is

introduced as tripled frequency in section .1 and discussed in details in Chapter IV

as third harmonic generation. The second case with ω is introduced as nonlinear

optical index in section .2 and the details of the resultant soliton solution are

discussed in Chapter V.

Sum Frequency - Harmonic Generation

One of the resultant nonlinear polarizations has a frequency that comprises
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ωα

ωβ

ωγ

ω = ωα + ωβ + ωγ

χ(3)

(a)

ωα

ωβ

ωγ

ω

(b)

Figure 3.1 Sum frequency generation. (a) Sum frequency generation via nonlinear

material. Three incident beams with frequencies ωα, ωβ and ωγ interact within the

nonlinear medium with third order susceptibility χ(3). A resultant sum frequency

signal ω = ωα + ωβ + ωγ is generated.(b) Schematic illustration of energy levels for

the sum frequency process. Three photons at lower frequency are destroyed and a

photon is generated at a the frequency of sum of the destroyed photons.

the summation of the frequencies of the input light waves, known as the sum

frequency process, where three photons are converted into a new photon with much

higher energy (or frequency) Fig. 3.1b. For a sum frequency process with the same

degenerate frequency 3ω = ω + ω + ω, the nonlinear polarization term is now:

Pi(3ω) = ε
∑

jkl

χ
(3)
ijkl(3ω)Ej(ω)Ek(ω)El(ω) (III.6)
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ωα

ωβ

ωγ

ω = ωα + ωβ − ωγ

χ(3)

(a)

ωα

ωβ ωγ

ω

(b)

Figure 3.2 Difference frequency generation. (a) Difference frequency generation

via nonlinear material. Three incident beams with frequencies ωα, ωβ and ωγ

interact within the nonlinear medium with third order susceptibility χ(3), a resultant

difference frequency signal ω = ωα+ωβ−ωγ is generated.(b) Schematic illustration

of energy levels for the difference frequency process.

and this special case of the general sum frequency processes is also called third

harmonic generation.

Now the electric field E in (III.4) has two frequency components and may be

written in the form:

E = E(ω)e−iωt + E(3ω)e−3iωt (III.7)

Therefore the nonlinear equation (III.4) is Fourier transformed into the frequency

domain by t→ ω:

∇×∇× [E(ω)e−iωt + E(3ω)e−3iωt]− ε

c2
[ω2E(ω)e−iωt + (3ω)2E(3ω)e−3iωt]

= µ0[ω
2PNL(ω)e−iωt + (3ω)2PNL(3ω)e−3iωt]

(III.8)

It is obvious that the electric and polarization fields dependent on ω and
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3ω are coupled via (III.6) and (III.8), but the two equations can not be solved

simultaneously with exact analytical methods. In order to further simplify the

equations, the fields with the same frequency dependence are grouped together and

separated from other frequency components. Therefore the non-depletion (ND)

approximation is used to decouple the equations with different frequencies. The

ND approximation states that the nonlinear polarization drains very little energy

from the input source and that essentially the change of the input field is negligible.

The ND approximation is valid only for high input with low efficiency output. The

ND approximation insures the nonlinear polarization is solely determined by (III.6)

and will not affect the input electric field E(ω). This essentially eliminates the

dependence of between the 3ω and ω components of the fields in (III.6). Now (III.6)

can be written as two separate equations by matching the oscillation frequencies.

The one with 3ω frequency is

∇×∇×E(3ω)− ε

c2
(3ω)2E(3ω) = µ0(3ω)

2PNL(3ω) (III.9)

After the nonlinear polarization PNL(3ω) is determined from the input fields

E(ω), the generated harmonic fields E(3ω) are solved from (III.9). The incident

linear SPP wave preserves its longitudinal and transverse profiles within the ND

approximation, thus we are looking for a steady-state solution for the output field

in the form E(r, t) = E(r)eωst with a steady-state solution frequency ωs = 3ω0.

We ignore the transient solutions. The validity and standard procedure of the

steady-state solution approach are discussed in Appendix A.
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Difference Frequency - Nonlinear Optical Index

The optical refractive index of many materials depends on the intensity of the

incident light and can described by the relation

n = n0 + n2|E|2 (III.10)

where n0 is the linear refractive index and n2 is the nonlinear index of refraction

[41]. The phenomena of a light intensity dependent optical index is sometimes

referred to as the optical Kerr effect. The nonlinear polarization in the nonlinear

Kerr effectis determined by

PNL(ω) = 3χ(3)(ω = ω + ω − ω)|E(ω)|2E(ω) (III.11)

where the intensity I ∼ |E|2.

The expression of the nonlinear polarization is a special case of (III.5) in

difference frequency generation Fig. 3.2 when the frequencies of the incident light

degenerate ωα = ωβ = ωγ = ω. Since the resultant nonlinear polarization has

the same frequency of the incident electric fields, the ND approximation for the

frequency decoupling method from last section is not applicable, no matter how

small the nonlinear polarization. The induced and original electric fields are

indistinguishable and the original beam is treated as it undergoes a nonlinear

refractive index. A new approach is needed to solve the nonlinear wave equation

and we turn to some other approximations and techniques, known as the Nonlinear
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Schödinger (NLS) Equation, which will be introduced and discussed in detail in

Chapter V.

Simplifications of the Nonlinearities in an SPP System

In the previous sections, the temporal property of the third order susceptibility

χ(3) was separated into two different frequency cases - sum and difference frequency

processes. In this section we discuss the spatial attributes of the third order

susceptibility χ(3). This discussion will be based on the sum frequency process, but

the same theory can be applied to the difference frequency process straightforwardly.

The third order susceptibility χ(3) has a general form of a rank 4 tensor with 81

components. For example, the sum frequency polarization component in Cartesian

coordinates is written:

Pi(ω : ωa, ωb, ωc) = ε0
∑

jkl

∑

(abc)

χ
(3)
ijkl(ω : ωa, ωb, ωc)Ej(ωa)Ek(ωb)El(ωc)

= ε0g
∑

jkl

χ
(3)
ijkl(ω)E

a
jE

b
kE

c
l (III.12)

The subscripts i, j, k, l represent the permutations of Cartesian axis x, y and z,

with the distinguishable input fields labeled with a, b and c. The g factor is

the degeneracy factor for all different frequency combinations and contains all the

information about frequency mixing discussed in previous sections. For example in

the degenerate case ωα = ωβ = ωγ = ω, g(3ω) = 1 since there is only one way to
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produce the third harmonic generation

3ω = ω + ω + ω (III.13)

while g(ω) = 3 since there are three ways to produce the same frequency of ω:

ω = ω + ω − ω

ω = ω − ω + ω

ω = −ω + ω + ω

(III.14)

There ar many independent tensor elements in χ(3). Fortunately, many of

these tensor elements can be eliminated by symmetry and proper choice of the

coordinate system. Since the crystal structures of gold and silver are both face

centered cubic (FCC), the independent elements in the tensor is reduced to 21

nonzero elements with only 4 of them independent [68] [69]: χ1111, χ1122, χ1212, χ1221,

where the subscripts 1 and 2 stand for any two orthogonal Cartesian axis parallel to

the optical axis of the crystal lattice, for example χxxyy = χyyzz = χzzyy = χzzxx =

· · · = χ1122.

There are three different coordinate systems in which the electric field is

represented: the coordinates attached to the optical axis of the cubic crystal lattice

(cubic, labeled by Greek symbols α, β and γ), the orientation of the crystal lattice

(crystal, labeled by letters with a prime ′), and the lab coordinates (lab, labeled

by letters) where actual experimental measurement occurs. A simple illustration of

the coordinate systems in 2-dimension is presented in Fig. 3.3.
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α (cubic)

γ (cubic)
x′ (crystal)

z′ (crystal)

E

Eα

Eγ

x (lab)

z (lab)

Figure 3.3 Three coordinate systems are illustrated here. The components of the

electric field E are represented relative the optical axis (cubic). For each coordinate

system, only two axes are shown for clarity.

The nonlinear polarization PNL can be written in component form, in both

cubic and lab Cartesian coordinate systems:

PNL = α̂Pα + β̂Pβ + γ̂Pγ = x̂Px + ŷPy + ẑPz (III.15)

The nonlinear polarization PNL and the electric field E have straightforward

relations in the cubic coordinate system:

PNL
α = χ1111E

a
αE

b
αE

c
α

+ χ1122E
a
α(E

b · Ec)− χ1122E
a
αE

b
αE

c
α

+ χ1212E
b
α(E

c ·Ea)− χ1212E
a
αE

b
αE

c
α

+ χ1221E
c
α(E

a ·Eb)− χ1221E
a
αE

b
αE

c
α

(III.16a)
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PNL
β = χ1111E

a
βE

b
βE

c
β

+ χ1122E
a
β(E

b ·Ec)− χ1122E
a
βE

b
βE

c
β

+ χ1212E
b
β(E

c · Ea)− χ1212E
a
βE

b
βE

c
β

+ χ1221E
c
β(E

a ·Eb)− χ1221E
a
βE

b
βE

c
β

(III.16b)

PNL
γ = χ1111E

a
γE

b
γE

c
γ

+ χ1122E
a
γ (E

b · Ec)− χ1122E
a
γE

b
γE

c
γ

+ χ1212E
b
γ(E

c · Ea)− χ1212E
a
γE

b
γE

c
γ

+ χ1221E
c
γ(E

a · Eb)− χ1221E
a
γE

b
γE

c
γ

(III.16c)

Together, in cubic coordinates (in terms of α, β, γ)

PNL = χ1122E
a(Eb · Ec) + χ1212E

b(Ec ·Ea) + χ1221E
c(Ea ·Eb)

+ χd(α̂E
a
αE

b
αE

c
α + β̂Ea

βE
b
βE

c
β + γ̂Ea

γE
b
γE

c
γ)

(III.17)

where the first three terms are invariant under crystal rotations, while the last term

with χd ≡ χ1111 − χ1122 − χ1212 − χ1221 shows anisotropy under crystal rotations.

Expressing the polarization in a compact form under lab coordinate yields:

PNL = χ1122(E
b ·Ec)Ea + χ1212(E

c · Ea)Eb + χ1221(E
a · Eb)Ec + χdM :: EaEbEc

(III.18)

Therefore the tensor M , also known as the rotation matrix, takes different

values for different crystal orientations and should be considered in separate

cases which are detailed in Appendix C. The simplest case, which we apply

to our nonlinear SPP structure is oriented along the (100) crystal orientation
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with no rotation. In this simplifying case, together with the degenerate input

approximation, the nonlinear polarization (III.18) is simplified to

χdM :: EaEbEc = χd(x̂E
a
xE

b
xE

c
x + ŷEa

yE
b
yE

c
y + ẑEa

zE
b
zE

c
z) (III.19)

In the following chapters we are going to use this simplest configuration to illustrate

nonlinear SPP properties without the cumbersome geometry distractions.
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CHAPTER IV

HARMONIC GENERATION IN SURFACE PLASMON POLARITONS

Theoretical Development of Third Harmonic Generation of Nonlinear SPPs

This work was published in volume 696 of Frontiers in Optics (FiO)/Laser

Science XXVI (LS) conference in 2010. Dr. Miriam Deutsch set up the proposed

frame of the work I was the primary contributor to all the derivations and analysis

of the results.

In this chapter, we theoretically demonstrate that it is possible to utilize the

effect of third order susceptibility χ(3) in noble metals to induce third harmonic

generation (THG) from an SPP wave. The research on second harmonic generation

(SHG) on the metal surface by SPPs can be traced back more than two decades ago

on and it has been explored on a variety of metals, e.g. gold, silver and aluminum

[70] [71], as well as on different geometric configurations, e.g. bulk, grating an film

[71] [72] [73], all based on second order susceptibility χ(2). The effect of the intrinsic

third order susceptibility χ(3) of metals, however, were not covered until recently

by Novotny and et. al. [56] [67] in the SPP four wave mixing experiments.

We start our study under the non-depletion approximation as stated in
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previous chapter. The wave equation (III.4) is

∇×∇× E+
ε

c2
∂2E

∂t2
= −µ0

∂2PNL

∂t2
(IV.1)

The steady-state solution of this wave equation has the form

E(r, t) = E(r)e−iωst (IV.2)

The spatial part of the field, E(r), can be written as the sum of the transverse

and longitudinal components

E = E⊥ + E‖ (IV.3)

where the transverse component relative to the propagation wavevector is labeled

by ⊥ and the longitudinal component by ‖ . Using the Helmholtz theorem in

Appendix B, the equation can be transformed according to:

∇×∇× E(r)⇒ −(ik)2E⊥(k) (IV.4)

while the temporal part, by Fourier transformation into frequency domain, is given

by

∂2

∂t2
E(r)⇒ −ω2

sE(ω) (IV.5)

where ωs represents steady-state solution frequency. Now the nonlinear wave

equation(III.4) can be written as

−(ik)2E⊥(ω,k)− ε
ω2
s

c2
E(ω,k) = µ0ω

2
sP

NL(ωs,k) (IV.6)
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The transverse ⊥ and longitudinal ‖ components of the equation can be

achieved by respectively applying k× and k· on (IV.6) which produces the two

separate equations:

−(ik)2E⊥ − ε
ω2
s

c2
E⊥ = µ0ω

2
sP

NL
⊥ (IV.7a)

−εε0k ·E‖ = k ·PNL
‖ (IV.7b)

Performing an inverse Fourier transform on the equations above gives the

equations in component form [40]:

∇2E⊥(r, ω) + ε
ω2
s

c2
E⊥ = −µ0ω

2
sP

NL
⊥ (IV.8a)

∇ ·
[
εε0E‖ +PNL

‖

]
= 0 (IV.8b)

These are the central equations we are going to focus on.

To solve (IV.8a) and (IV.8b), first the explicit expression of PNL is needed.

Continuing from the discussion in last chapter, here a cubic medium (noble metal)

in (100) orientation with ϕ = 0 rotation is constructed for the geometry setup, so

that (III.18)

PNL = χ1122(E
b·Ec)Ea+χ1212(E

c·Ea)Eb+χ1221(E
a·Eb)Ec+χdM :: EaEbEc (IV.9)

where χd = χ
(3)
1111 − χ

(3)
1122 − χ

(3)
1212 − χ

(3)
1221, is now simplified to

Pi = 3χ
(3)
1212Ei(E ·E) + (χ

(3)
1111 − 3χ

(3)
1212)E

3
i (IV.10)

where i = x, y, z is the Cartesian component index.
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We define two constant factors A ≡ χ
(3)
1111 and B ≡ 3χ

(3)
1212, and only include

terms of third harmonic generation:

Pi = BEi|E|2 + (A− B)E3
i (IV.11)

The incident SPP wave form is predetermined as

E = (x̂Ex0 + ẑEz0)e
−iω1t+ik1·r (IV.12)

The subscript 0 denotes amplitude value of the field at the interface, ω1 is the carrier

frequency and k1 = k(ω1) is the propagation wavevector of the SPP. Consequently

the components of PNL are written explicitly as

PNL
x = BEx|E|2 + (A− B)E3

x = Ex0(A|Ex0|2 +B|Ez0|2)e−iω3t+iq·r (IV.13a)

PNL
y = 0 (IV.13b)

PNL
z = BEz|E|2 + (A− B)E3

z = Ez0(A|Ez0|2 +B|Ex0|2)e−iω3t+iq·r (IV.13c)

We the ω3 = 3ω1 frequency, the triple wavevector is defined q ≡ 3k1, as well

as the wavevector at triple frequency K ≡ k(ω3). Since the nonlinear polarization

has the dependency factor e−iω3t+iq·r, the steady-state frequency is determined by

ωs = ω3 = 3ω1, and the solution to (IV.8b) and (IV.8a) can be solved separately

in the dielectric and metal. Using the method of undetermined coefficients, and

considering the fact that PNL = 0 in the linear dielectric, the solutions take the
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forms:

in dielectric: Ed = Ed0e
iKd·r (IV.14a)

in metal: Em = Em0e
iKm·r +Q0e

iq·r (IV.14b)

The subscript 0 denotes that the amplitude values are taken on the interface

between the dielectric d and the metal m. Here the Em0 term is a free wave

term that represents a radiating electro-magnetic field from the interface, while Q0

term is a driven term that represents an oscillating field acting as the secondary

source to the generated radiating wave. The interface amplitudes Ed0 and Em0, as

well as the wavevectors Kd, Km, which depend on the tripled frequency ω3, are

determined by boundary conditions. The interface amplitude Q0 = Q⊥ + Q‖, on

the other hand, is solved directly from the nonlinear polarization PNL. By solving

(IV.8a) and (IV.8b) we get

Q⊥ =
µ0ω

2
3P

NL
⊥

K2
m − q2

(IV.15a)

Q‖ = −
PNL

‖

εmε0
(IV.15b)

thus Q0 = Q⊥+Q‖ is determined. The longitudinal and transverse components of

a field are defined relative to the wavevector k according to Helmholtz theorem in

Appendix A. For example the polarization has the components defined as

P‖ =
P · k∗

|k|2 k (IV.16a)

P⊥ =
k∗ × (P× k)

|k|2 = P−P‖ (IV.16b)
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For the next step, we need to determine all the wavevectors Kd, Km and

q. As stated above, q is already known and solely determined by form of the

nonlinear polarization PNL so that q = 3k1 where k1 = kspp(ω1) is the incident

SPP propagation wavevector at frequency ω1. Since we are looking for a steady-

state solution, all the wavevectors have to match along the x direction, so that

Kdx = Kmx = qx (IV.17)

With the relations that in the media K2
dx+K2

dz = εd(ω3)
ω2
3

c2
and K2

mx+K2
mz =

εm(ω3)
ω2
3

c2
, the z components of the wavevectors are now determined too. Thus

all the wavevectors in the 3ω frequency regime are determined at this point. The

imaginary part in Kd dominates, which indicates that the THG on the dielectric

side is still bound onto the surface, shown in Fig. 4.1. In the metal, the real part

in Km dominates, which indicates that the THG in the metal is able to radiate to

distance, shown in Fig. 4.2.

Next, to achieve all the field amplitudes, it is convenient to define the

wavevector angle θ by wavevector components:

tan θ ≡ kz
kx

(IV.18)

Also for the electric fields Ed0 and Em0, it is convenient to define an assistant

angle ϕ that ϕ = θ +
π

2
because k ·E = 0 and it satisfies

tanϕ =
Ez

Ex

(IV.19)

48



Figure 4.1 A graph of the THG solution in vacuum. The THG solution in vacuum

is still bounded on the surface. Here the E-field component Ex is used in the graph.

Figure 4.2 A graph of the THG solution in metal. The THG solution in metal is

a propagating wave. The propagation angle is determined by the wavevector Kd.

Here the E-field component Ex is used in the graph.

Now we can find out all the field amplitudes on the interface by matching the

boundary conditions: The boundary condition for E along x direction at z = 0 is

x̂ · Ed = x̂ · Em + x̂ ·Q (IV.20)
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from here we will talk about the field amplitudes on the interface and the subscript

0 is dropped for conciseness. This boundary condition leads to

Edx = Emx +Qx (IV.21)

or equivalently

Ed cosϕd = Em cosϕm +Q⊥ cosϕq +Q‖ cos θq (IV.22)

where the subscripts d, m and q denote the angles are calculated using wavevectors

Kd, Km and q respectively.

Similarly, the boundary condition for B along y direction at z = 0 is

ŷ ·Bd = ŷ ·Bm (IV.23)

which give

EdKd = EmKm + qQ⊥ (IV.24)

Together with the two equations (IV.22) and (IV.24) from boundary conditions,

the amplitude of electric fields on the interface can be solved

Ed =
Q⊥(Km cosϕq − q cosϕm) +KmQ‖ cos θq

Km cosϕa −Kd cosϕm

(IV.25a)

Em =
Q⊥(Kd cosϕq − q cosϕd) +KdQ‖ cos θq

Km cosϕa −Kd cosϕm

(IV.25b)

On the other hand, the Cartesian components of the electric fields on the interface

can be achieved using the boundary conditions while considering the conversion
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that

Qx = Q‖ cos θq +Q⊥ cosϕq (IV.26a)

Qz = Q‖ sin θq +Q⊥ sinϕq (IV.26b)

then the equation (IV.24) is now

KdzEdx −KdxEdz = KmzEmx −KmxEmz + qzQx − qxQz (IV.27)

which leads to

Edx(tan θa − tanϕa) = Emx(tan θm − tanϕm) + (Qx tan θq −Qz) (IV.28)

The equations of the boundary conditions (IV.21) and (IV.28) can be solved to get

the x components of the fields:

Edx =
Qx(tan θq − tan θm + tanϕm)−Qz

(tan θd − tanϕd)− (tan θm − tanϕm)
(IV.29a)

Emx =
Qx(tan θq − tan θd + tanϕd)−Qz

(tan θd − tanϕd)− (tan θm − tanϕm)
(IV.29b)

And the z components of the electric field can be achieved via the relations that

Ez = Ex tanϕ accordingly. Up to this point, we achieved the solutions of the third

harmonic generation problem to the differential equations (IV.8a) and (IV.8b).

Conversion Efficiency and Propagation Angles

The propagation direction, the angle of propagation ϑ relative to the x axis,

of the free wave in the THG is determined by its wavevector Km via

tanϑ =
Re[Kmz]

Re[Kmx]
(IV.30)
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When the imaginary part of Km is small, the two angles θ and ϑ are approximately

the same since |Km| ∼ Re[Km].

For quantitative illustration as well as for simplicity, we use the metal dielectric

function for silver given by the Drude model as an example,

ε(ω) = ε∞ −
ω2
p

ω2 + iγpω
. (IV.31)

where for silver [54] the background dielectric constant ε∞ = 5.1, the plasma

frequency ωp = 8.65eV and the damping constant γp = 0.0045eV . Then the

expression of the propagation angle can be written explicitly in terms of the incident

frequency ω of the SPP wave:

tanϑ =
Kmz

Kmx

=

√
K2

M − q2x
qx

=

√
K2

M − (3kx(ω1))2

3kx(ω1)

=

√
ω2
3εm(ω3)− 9ω2

εm(ω1)

εd(ω1) + εm(ω1)

3ω

√
εm(ω1)

εd(ω1) + εm(ω1)

=

√√√√√√√ε∞ −
ω2
p

9ω2
1 + 3iω1γp

−
ε∞ −

ω2
p

ω2
1 + iω1γp

εd(ω1) + ε∞ −
ωp

ω2
1 + iω1γp√√√√√√√√

ε∞ −
ω2
p

ω2
1 + iω1γp

εd(ω1) + ε∞ −
ω2
p

ω2
1 + iω1γp

(IV.32)

here ω1 is the incident SPP wave frequency and ω3 = 3ω1 is the tripled frequency.

When the incident SPP frequency ranges within the optical range, e.g. 400nm ∼

700nm, the radiation angle of the THG ranges from 46◦ to 56◦, pointing off from
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the interface into the metal, as indicated in Fig. 4.3.

Figure 4.3 A plot of the propagation angle. The propagation angle of the THG

v.s. the incident SPP wavelength. The angle is analytically determined by (IV.32).

With all the field strength relations available, we may now discuss the

conversion efficiency from the incident SPP wave to the propagating THG signal

wave. Here we choose the incident SPP to have a field amplitude of Ex = 104V/m,

which is proven to not violate the non-depletion approximation as we will see later.

This amplitude also corresponds to a 1W continuous laser focused onto a 1mm2

spot. The incident wavelength of the SPP is chosen to be 690nm for convenience

in later calculations.

First, we get the magnetic field for SPPs considering they are TM mode[74]

Hy =
By

µ0
= ε0c

2By =
ε0c

2

ω
(kzEx − kxEz), (IV.33)

The energy density of the SPPs are given in [74]. In the dielectric, there is no
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dispersion, so on the surface of the interface,

ud =
1

4
[ε0E · E∗ + µ0H ·H∗] (IV.34)

where

E · E∗ = E0e
−i(ωt−k·r) · E∗

0e
+i(ωt−k∗·r) = (ExE

∗
x + EzE

∗
z )e

−2[Im(kx)x+Im(kz)z] (IV.35)

and

H ·H∗ = HyH
∗
ye

−2[Im(kx)x+Im(kz)z] (IV.36)

The total energy (per unit area) associated with the surface polaritons is determined

by integration over z, the energy per unit surface area being

Ud =

∫ ∞

0

uddz =
ud

8Imkaz
=

1

8Imkaz
[ε0(ExE

∗
x + EzE

∗
z ) + µ0HyH

∗
y ] (IV.37)

For SPPs in a metal, the effective energy density on the surface is

um =
1

4
Re

[
d(ωε)

dω

]

ω

E(x) · E∗(x) +
1

4
µ0H(x) ·H∗(x) (IV.38)

And the total energy density in the metal (per unit area) is

Um =

∫ 0

−∞

umdz (IV.39)

The total energy over all space is

Utotal = Um + Ud (IV.40)

The third harmonic wave has the same expressions for the energy densities except

for a tripled frequency ω3.
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Assuming the metal/dielectric interface is between silver and vacuum such

that εd = 1, then the conversion efficiency from SPP to THG wave is

ηeff =
Um(ω3)

Utotal(ω1)
∼ 0.1% (IV.41)

This result is consistent with the non-depletion approximation that the energy

drained from SPP wave by THG signal is small enough that the SPP wave remains

relatively unaltered.

Adjustment to Realistic Noble Metals

According to the Drude model, silver is absorptive at wavelength λ = 690nm,

but it would be transparent when frequency is tripled at wavelength λ = 230nm,

which is known as the ultraviolet transparency for metals. However, the noble

metals have increasingly strong absorption due to interband transitions, as seen in

Fig. 2.1b.

For the case of silver, however, we found in literature data a very narrow

transparency window just above the plasma frequency in the wavelength range of

293nm ∼ 314nm, so that within this wavelength, the real part of the dielectric

function is positive (transparent) while the imaginary part (absorption) is not

dominating so a portion of the generated THG wave can still penetrate and

propagate [37]. In order to have the THG wave result in the transparency

window, the incident SPP wavelength should be tuned to the infrared range
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of 880nm ∼ 941nm. This corresponding frequency range of the SPPs and the

resultant transparency window frequency range are shown in Fig. 4.4.

Figure 4.4 Drude model vs realistic metals. Close agreement is shown between

Drude model and real data for the dielectric function of silver. The shaded

green represents the transparency window and the (dense) shaded pink represent

corresponding suggested wavelength of the incident SPPs. The literature data is

cited from [37].

To reduce the absorption of the THG wave in silver, a metal film can be used.

When a silver film of 50nm thickness is used, the generated THG wave has 35% of

the amplitude (10% of the intensity) transmitted through the metal film.

The interband transition of silver also alters the calculation in the propagation

angle of the THG in metal, via the realistic data of εm(ω). The ϑ− λspp curve has

an obvious red shift but keeps the basic shape similar to the analytical one in Drude
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model. The resultant THG wave can be easily separated from the incident SPPs

since the radiation direction of the THG wave clearly steers away at a rather large

angle relative to the SPPs, as shown in the shaded area in Fig. 4.5.

Figure 4.5 A plot of propagation angle with silver data. The angle of propagation

for the THG in metal is altered from the case with the Drude model. The solid

line is the angle predicted with the Drude model and the dotted curve is angles

calculated from literature data of silver. The shaded area indicates the suggested

wavelength for the incident SPP. Using the suggested wavelength, the resultant

THG will fall into the transparency window of silver and the radiation angle is

shown in dots in the graph.

Conclusions

This chapter demonstrated that a third harmonic generation (THG) wave is

induced by SPPs in a nonlinear noble metal. The energy conversion efficiency is
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calculated to be about 0.1% with the intensity of a common used laser in labs,

e.g. with amplitude E ∼ 104V/m. When the frequency of the induced THG wave

is above the plasma frequency of the metal, the THG wave is predicted to radiate

through the metal if the Drude model is adapted for optical properties of the metal.

For realistic metals, however, the radiation of the THG wave in the metal is strongly

absorbed at and above the plasma frequency. A special case among the noble metals

is silver. Silver, according to the experimental data in the literature, has a narrow

ultraviolet transparency window around the plasma frequency. Our calculation for

silver shows reasonable transmittance of the THG wave through a 50nm film and

the direction of THG radiation is clearly separated from the incident SPPs by its

propagation angle.
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CHAPTER V

PLASMONIC SOLITONS

Introduction to Optical Solitons

This work was unpublished. Dr. Miriam Deutsch set up the proposed frame

of the work I was the primary contributor to all the derivations and analysis of the

results.

A solitary wave, often referred to as a soliton, describes a special kind of

nonlinear wave, which keeps its wave properties unchanged, such as the pulse shape

or beam diameter, during propagation in a medium. This kind of stable solitary

wave can exist only with the presence of nonlinearities in the host medium. The

spatial properties of a wave are changed because of the wave nature: a wave always

diffracts during propagation. The temporal properties of a wave are changed, such

as pulse broadening, if there is any dispersion present in the host dispersive medium.

The spatial diffraction and temporal broadening, however, can be compensated in a

medium with nonlinear response. Thus it is possible to achieve a stable wave form,

a soliton, when the broadening and the diffraction are completely counteracted by

nonlinear effects [75]. The fundamental mathematical models of solitons were built
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in the 1960s [76] [77], and the concept of solitons has since evolved to a much

broader range in different areas of physics [78][79][80][81][82][83].

In the context of nonlinear optics, one very important example of optical

solitons, which is widely used in the field of modern communication technology, is

a stable optical pulse guided in an optical fiber [84]. This stable optical pulse is

formed by the balance of the (nonlinear) optical Kerr effect in the fiber and the

material’s (linear) chromatic dispersion [85][86]. The optical Kerr effect is a direct

result from the third order susceptibility χ(3) of the glass, and this optical Kerr

effect in the fiber is represented by the change of the optical refractive index ∆n,

which is proportional to the light intensity, I.

Optical solitons are classified as being temporal or spatial according to the

confinement types of the optical waves. For light with temporal confinement such

as an optical pulse, the chromatic dispersion, e.g. high frequency wave components

travel faster than low frequency components, introduces a frequency chirp and

therefore leads to broadening in the pulse. Due to different phase velocities of

frequencies in the optical pulse, frequency components are redistributed such that

higher frequencies are in the leading half of the pulse and lower frequencies in the

trailing half. In a nonlinear medium, this chirp may be compensated by the optical

Kerr effect, because the nonlinear interaction between the electric field and the

medium causes a down-shift of the frequencies in the leading half of the pulse, and

an up-shift in the trailing half. These two opposing effects, in some special cases,
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can be balanced and thus the pulse keeps its amplitude envelope unchanged in time

and this is called an optical temporal soliton, as shown in Fig. 5.1.

For an optical beam in space, an analogy to the pulse can be used, where

the confinement now is in one or more transverse spatial dimensions instead of

in time for an optical pulse. A light beam is usually diffracted, spreading the

beam diameter during the wave propagation. The nonlinear refractive index here

acts as a focusing lens and induces a self-focusing (or self-defocusing) effect with a

positive (or negative) Kerr coefficient [83]. When the self-focusing counteracts and

cancels the effect of diffraction, the light beam may maintain its diameter during

propagation in space, and it is called an optical spatial soliton as shown in Fig. 5.2

[40].

(a) (b)

Figure 5.1 A schematic of a temporal soliton formed by the balance between linear

dispersion and optical Kerr effect. (a) The optical pulse is chirped and broadened

by dispersion in a linear medium. (b) The dispersion can be balanced to form an

unchanged wave packet by the optical Kerr effect.
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Figure 5.2 A schematic of a spatial soliton formed by the balance between the

diffraction and self-focusing. (a) The optical beam diffracts in a linear medium

while propagating along x−axis. (b) The diffraction is counteracted by the self-

focusing effect since the refractive index is higher towards the center of the optical

beam. (Figure taken from ref. [83])

The first experimental observation of optical temporal solitons were discovered

in optical fibers in 1980 by Mollenauer et al. using pico-second laser pulses [84].

When an optical pulse propagates in an optical fiber, the chromatic dispersion

induces a group-velocity dispersion (GVD) and the nonlinear refractive index leads

to a self-phase modulation (SPM). The GVD is the group velocity dependency on

angular frequencies, namely the derivative of the inverse group velocity, vg, with

respect to the angular frequency, ω:

GVD ≡ ∂

∂ω

1

vg
=

∂2β

∂ω2
(V.1)

where β is the propagation wavevector. The SPM is a nonlinear phase delay, ∆φ(t),

which arises from the varying optical refractive index ∆n(I), where I is the optical
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intensity. In an optical pulse, this phase delay leads to a change of the instantaneous

frequency, ω(t), according to ∆ω(t) =
d∆φ(t)

dt
. Consequently the change of the

instantaneous frequency is relative to the pulse instantaneous intensity by [87]:

∆ω(t) ∼ −∂∆n(I(r, t))

∂t
(V.2)

For a medium with optical Kerr effect such that ∆n ∝ I, (V.2) gives ∆ω(t) < 0

for the leading half of the pulse where the instantaneous intensity I(t) is ramping

up, and ∆ω(t) > 0 for the trailing half. At the communication wavelength, 1.55µm,

the silica-glass fiber has an anomalous GVD (GVD< 0) and a positive Kerr effect

(χ(3) > 0). An anomalous GVD means the group velocity is faster for higher

frequencies and slower for lower frequencies in an optical pulse. The anomalous

GVD gives the optical pulse a down-chirp, namely the instantaneous frequency

of the pulse decreases with time, as indicated in Fig. 5.1(a). At the same time,

according to (V.2), the SPM will tune down frequency when the intensity increases,

which is the case for the leading half of the optical pulse, and tune up frequency

when the intensity decreases, which is the case for the the trailing half. With a

carefully chosen pulse envelope (a sech function), the two competing effects over

the frequencies can completely cancel each other and a temporal soliton is achieved,

as shown in Fig. 5.1(b).

A spatial soliton is formed in a scenario similar to a temporal soliton. On

one hand, the wave nature of an optical beam tends to diffract the beam diameter

during propagation in a medium, as indicated in Fig. 5.2(a). On the other hand,
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with the presence of the positive Kerr effect (χ(3) > 0), the center of the beam,

which of high optical intensity, a induces larger optical refractive index than the

rim area of the beam. This index inhomogeneity works in a similar way to a convex

lens that focuses a light beam, thus results a self-focusing effect of the light beam,

as shown in Fig. 5.2(b). For a beam with a properly chosen initial shape and

intensity, the self-focusing of the beam may exactly counteract the diffraction so

that the optical pulse remains a confined, self-trapped beam. Thus a spatial soliton

is achieved [88] [89].

The traditional wave-packet (temporal) solitons discussed in previous sections

are called bright solitons since they are positive energy packages against background

of zero field intensity, as shown in Fig. 5.3a. When the GVD is normal (GVD> 0),

however, a bright soliton is not supported by the nonlinear optical fibers discussed

above. Instead, a special “dark” pulse, which exists as an absence of energy on a

continuous wave (CW) background, turns out to be stable and thus called a dark

soliton, as shown in Fig. 5.3b. With a positive Kerr effect (χ(3) > 0), the bright

temporal solitons can be achieved in a nonlinear medium with an anomalous GVD

(GVD< 0) while that the dark temporal solitons can be achieved with a normal

GVD (GVD> 0). For the case of spatial optical beams, diffraction plays a role

similar to the GVD in the temporal soliton case: the self-focusing nonlinearity from

positive Kerr effect (χ(3) > 0) gives bright spatial solitons and the self-defocusing

nonlinearity from negative Kerr effect (χ(3) < 0) gives dark spatial solitons.
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(a) Bright soliton (b) Dark soliton

Figure 5.3 A bright soliton and a dark soliton. (a) A bright temporal soliton is

an optical wave packet which maintains the envelope against zero background. It

can be achieved when the nonlinear medium has an anomalous GVD (GVD< 0).

The envelope function for the intensity envelope function of the bright soliton is a

|sech|2 function. (b) A dark temporal soliton is a stable “dark” hole which keeps its

shape against non-zero background. It can be achieved when the nonlinear medium

has a normal GVD. The intensity of a dark soliton is a |tanh|2 function.

The general theory on solitons has been developed long before the observation

of the optical solitons and applied to a variety of different nonlinear systems [76]

[90] [77]. There are a number of partial differential equations (PDEs) with soliton

solutions in different forms and a few may be solved exactly, such as the Kortveg-de

Vries (KdV) equation, the sine-Gordon equation and the nonlinear Schrödinger

(NLS) equation [75][91]. For a light-wave packet traveling in a waveguide, the

evolution of the envelope is commonly described by a NLS equation [86], which
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results in an optical temporal soliton solution. The general solutions of the NLS

equation can be achieved by the inverse scattering transform [92], a method for

nonlinear systems similar to the Fourier transform in linear systems and the

solutions are known to be solitons.

In this dissertation, we discuss nonlinear SPPs guided by a planar structure,

which is an interface between a semi-infinite metal with Kerr nonlinearities and a

semi-infinite linear dielectric. We focus on the temporal equation for the envelope

of an SPP pulse, and find the conditions for a soliton-type solution. Early works

on spatial SPP solitons are discussed in detail by pioneer researchers in [83], and

the solitons on the surface comprised of a nonlinear dielectric and a linear metal

are discussed in [93]. The early works about SPP solitons focused on the dielectric

nonlinearity but by and large ignores the metal nonlinearity. However, as we stated

in previous chapters, the metal nonlinearity is comparable to or even greater than

the nonlinearity in many dielectrics such as glass. With the negative permittivity

of a metal, nonlinearities in the metal may lead to different phenomena than

nonlinearities in a dielectric. In this chapter, our research is presented to reveal the

soliton properties while the metal nonlinearity is taken into account.

The Temporal Nonlinear Schrödinger Equation of SPPs

The linear SPP is a two-dimensional guided wave propagating at the interface
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between a dielectric and a metal. In this section we study the new features of the

nonlinear SPPs when the metal nonlinearity is taken into account.

We consider only the third order nonlinear susceptibility χ(3) in the metal,

but ignore its sum frequency effect, such as was discussed in Ch.IV in the sections

concerning THG, because the sum frequency effect occurs at very low efficiency.

Therefore the metal is regarded as a Kerr medium and the nonlinear polarization

PNL in (III.5) has the same frequency as the original incident light E

PNL(ω) = ε0χ
(3)(ω = ω + ω − ω)E(ω)E(ω)E(ω) (V.3)

Combining the time derivatives in the nonlinear wave equation(III.4) gives

∇×∇×E+
1

c2
∂2

∂t2
εME = 0 (V.4)

where εM = εm+εNL is the total dielectric function of the metal, including both the

linear contribution εm = 1+χ(1), and the nonlinear contribution εNL = χ(3)|E|2, at

response frequency ω. Here we prefer using the optical dielectric function ε of the

metal instead of the optical refractive index n even when n is commonly used in the

analysis for nonlinear fiber optics [86] [94]. We do this because ε can be negative

or complex in our discussion and the traditional definition of n =
√
ε often leads

to inconvenience and confusion.

The divergence free equation ∇·E = 0 holds inside the isotropic metal except

at the interface, such that ∇ × ∇ × E = −∇2E. Consequently the Cartesian

components are not coupled in (V.4) with the chosen coordinates shown in Fig. 2.2
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and (V.4) can be written in component form:

x̂ : − (∂2
x + ∂2

y + ∂2
z )Ex +

1

c2
∂2

∂t2
εMEx = 0 (V.5a)

ẑ : − (∂2
x + ∂2

y + ∂2
z )Ez +

1

c2
∂2

∂t2
εMEz = 0 (V.5b)

where ε0µ0 = 1/c2. Considering the TM nature of linear SPP profile, Ex and Ez

have a fixed relation Ex = ζEz where ζ is a piecewise constant in the dielectric

and in the metal. Since the two equations are linearly dependent, we may consider

Ez first under the scalar approximation to eliminate the complexity of the vector

nature of the nonlinear wave equation. The equation derivation process for Ex is

identical to Ez. Apply Fourier transform

Ez(r, t) =
1√
2π

∫
Ẽz(r, ω − ω0)e

−i(ω−ω0)tdt (V.6)

upon equation (V.5b), with ω0 being the central frequency of the incident SPP

wave, and it gives

∇2Ẽz +
ω2

c2
εMẼz = 0 (V.7)

The tilde “∼” represents that the quantity is a function of frequency ω instead

of time t. Separating the propagation factor eiβ0x from Ẽz (where β0 being the

propagation constant to be determined from the eigensolution of the equation) the

electric field Ẽz can be written as

Ẽz(x, y, z, ω − ω0) = Fm(y, z)Ãz(x, ω − ω0)e
iβ0x (V.8)

Here Fm(y, z) and Ãz(x, ω − ω0) are the transverse and longitudinal functions
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respectively. The differential equation (V.7) is now

Ãz(∂
2
y + ∂2

z )Fm + Fm(∂
2
xÃz + 2iβ0∂xÃz − β2

0Ãz) +
ω2

c2
εMFmÃz = 0 (V.9)

For a long, smooth optical pulse the slowly varying amplitude approximation

|∂2
xÃz| ≪ |β0∂xÃz| is satisfied so that the higher order term ∂2

xÃz ≃ 0 is ignored.

Applying the standard method of variable separation to the partial differential

equation (V.9) yields

(∂2
y + ∂2

z )Fm

Fm

+ εM
ω2

c2
= −2iβ0∂xÃz − β2

0Ãz

Ãz

≡ β̃2 (V.10)

where β̃ is an undetermined coefficient and it can be a function of ω.

The differential equation for Ez in the dielectric medium has a similar

expression:

(∂2
y + ∂2

z )Fd

Fd

+ εd
ω2

c2
= −2iβ0∂xÃz − β2

0Ãz

Ãz

≡ β̃2 (V.11)

with Ãz, β0 and β̃ the same as required by the boundary conditions, but with a

different transverse functions Fd and a different dielectric function εd. We can

make the further assumptions that the SPP wave extends to ±∞ along the y

axis, and that the derivatives with respect to y are negligible Therefore we have a

reduced 2-dimensional problem with x and z dependencies only. Consequently Fd

and Fm are functions of z only and the partial derivatives against z become total

derivatives. The two equations (V.10) and (V.11) on different sides of the interface

69



can be combined by writing F and εT as piecewise functions

F (z) ≡






Fd(z) z > 0 (Dielectric)

Fm(z) z < 0 (Metal)

(V.12)

εT (z, ω) ≡






εd(ω) z > 0 (Dielectric)

εM(ω) z < 0 (Metal)

(V.13)

Here εM is the nonlinear dielectric function of the metal and possesses the property

that ReεM < 0 and |ReεM | ≫ |ImεM |. The parameter εd is the dielectric

constant, which is close to unity and |εM | ≫ |εd| & 1. For partial differential

equations, the standard procedure to achieve the common coefficient β̃ is to solve

the eigenfunctions:

d2F

dz2
−
[
β̃2 − εT

ω2

c2

]
F = 0 (V.14a)

2iβ0
∂Ãz

∂x
+ (β̃2 − β2

0)Ãz = 0 (V.14b)

We obtain the linear solution of function F by letting εM = εm and use it as the

first order approximation for the nonlinear case to achieve the function Ãz and thus

the first equation in (V.14) is written explicitly as a piecewise eigenequation

d2F

dz2
=






(
β̃2 − εd

ω2

c2

)
F z ≥ 0

(
β̃2 − εm

ω2

c2

)
F z < 0

(V.15)

where εm is the linear dielectric function for the metal.
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Now consider the physical restrictions that the waves from both sides match

at the boundary and decay at ∞. When εm < 0, this is possible only if β̃2 > εd
ω2

c2
.

Thus the boundary condition for Ez gives the transverse solution:

F (z) =





εme
−z

√
β̃2−εd

ω2

c2 z ≥ 0

εde
+z

√
β̃2−εm

ω2

c2 z < 0

(V.16)

which is exactly the linear solution for SPP stated in previous chapters.

The boundary condition for Ex, on the other hand, leads to

dF

dz

∣∣∣∣
z=0+

=
dF

dz

∣∣∣∣
z=0−

(V.17)

resulting again in the linear SPP dispersion relation

β̃2 =
ω2

c2
εmεd

εm + εd
≡ β̃2

L (V.18)

For the the nonlinear case, an ansatz is achieved by perturbing β̃, to the first

order, from the linear β̃L such that now β̃ ≡ β̃L +∆β̃. The two photon absorption

effect of bulk noble metals is not fully studied but known to be very weak[95], and

it is not directly related to our topic. To keep the physics simple and succinct,

we ignore the two photon absorptions related to the χ(3) and keep χ(3) a pure real

number. The discussion, however, can be extended to a χ(3) with both real and

imaginary parts with nontrivial conversions [96].

It is useful to Taylor expand β̃L about the carrier frequency ω0

β̃L(ω) = β0 + (ω − ω0)β1 +
1

2
(ω − ω0)

2β2 +
1

6
(ω − ω0)

3β3 + · · · (V.19)

71



and keep terms up to the second order, where the constant β0 = β̃L|ω=ω0
is the

propagation constant at carrier frequency ω0 and the other coefficient constants are

defined as

βn ≡
dnβ̃L

dωn

∣∣∣∣∣
ω=ω0

(V.20)

where β1 = 1/vg is the inverse of the group velocity, and β2 is known as the group

velocity dispersion, or GVD.

With approximation to the first order, the right hand side of (V.14b) is

β̃2 − β2
0 ⋍ 2β0(β̃ − β0) (V.21)

and the equation is written as

∂Ãz

∂x
= i
[
β̃L(ω) + ∆β̃ − β0

]
Ãz (V.22)

Now using the Taylor expansion of β̃L and keeping second order accuracy,

∂Ãz

∂x
= i

[
(ω − ω0)β1 +

1

2
(ω − ω0)

2β2 +∆β̃

]
Ãz (V.23)

Using an inverse Fourier transform

Az(x, t) =
1√
2π

∫ +∞

−∞

Ãz(x, ω − ω0)e
−i(ω−ω0)tdω (V.24)

on the equation above leads to the nonlinear schrödinger equation (NLS) equation

for the longitudinal slowly varying amplitude A

∂Az

∂x
= −β1

∂Az

∂t
− i

2
β2

∂2Az

∂t2
+ i∆βAz (V.25)

72



A similar equation can be derived for the Ax component, too. Using the linear

relation that Ex = ζEz, the combination of the equations for Az and Ax gives the

NLS equation for the amplitude A

∂A

∂x
= −β1

∂A

∂t
− i

2
β2

∂2A

∂t2
+ i∆βA (V.26)

where A = |A| and A = ẑAz + x̂Ax.

This is the equation that governs the evolution of the amplitude of the SPP,

taking into account the Kerr effect of the supporting metal. It is the starting point

of plasmonic solitons and gives temporal soliton solutions. The coefficients β1 and

β2 are approximated to the first order by derivatives of the linear β̃L with respect

to angular frequency. ∆β is the perturbation to the linear wave factor with the

presence of χ(3) nonlinearity. It is under further consideration in next section. In

addition the attributes of the soliton solutions are discussed in detail in the following

sections.

Nonlinear SPP Dispersion Relations

In this section, we are going to determine the general properties of the

coefficients β1, β2 and ∆β in the NLS equation (V.26) from the last section. For

a TM wave guided along the x direction with propagation factor e−i(ωt−β̃x), the

nonlinear dispersion relation is derived from the field relation with the nonlinear
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dielectric function, εM , in the nonlinear metal [83] [97] [98]:

dEx

dz
= − i

β̃
(
ω2

c2
εM − β̃2)Emz (V.27a)

d

dz
(εMEmz) = −iβ̃εMEx (V.27b)

Hy = −
ωε0εM

β̃
Emz (V.27c)

We can get a first integral from the above relation equations:

(
dEx

dz

)2

=
ω2

c2

[
(εM −

c2β̃

ω2
)E2

mz − εME2
x − χ(3)(ExEmz)

2 +
χ(3)

2
(E4

x + E4
mz)

]

(V.28)

In the next step we aim to obtain the nonlinear SPP dispersion relation. Using

(V.27a) for the left-hand side in equation (V.28) above:

(1− εMc2

β̃2ω2
)E2

mz = (εM−
c2β̃

ω2
)E2

mz−εME2
x−χ(3)(ExEmz)

2+
χ(3)

2
(E4

x+E4
mz) (V.29)

To eliminate εM , the transverse profile and boundary conditions of the E field

are applied. In the dielectric, the transverse dependency is E(z) ∼ e−κdz where

the decay factor κd =

√
β̃2 − εd

ω2

c2
, while the subscript d labels components in the

dielectric. Then the divergence free equation for the displacement field ∇ ·D = 0

gives Edz = iβ̃Ex/κd.

Considering components of the electric displacement, Ddz = Dmz, leads to

εdEdz = εMEmz . On the interface it gives

εM = iεd
β̃

κd

Ex

Emz

(V.30)
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Using the expression for εM , (V.29) is now

χ(3)

2
E4

x −
(
εM +

cεd
ωκd

)
E2

x − i
εdβ̃

κ
ExEmz −

χ(3)

2
E4

mz = 0 (V.31)

where all the E fields here take the values at the surface (z = 0). This equation

determines the nonlinear SPP dispersion relation since β̃ is implicitly determined

by ω,Ex and Emz . It is easy and straightforward to verify that it complies with

the linear dispersion relation by letting χ(3) = 0 and εM = εm.

For a general nonlinear dispersive metal, an additional relation may be required

between Ex and Emz . We first consider an ideal case that the losses in the metal

are small and negligible. This gives a π/2 phase shift between Emz and Ex, thus

we can define a real-valued total amplitude ET > 0 with

E2
T = |ET |2 ≡ |Emz|2 + |Ex|2 = E2

mz − E2
x (V.32)

since the total filed has the form ẑEmz + ix̂Ex. Together with

εM = i
εdβ̃

κd

Ex

Emz

(V.33)

the first two relations are achieved by squaring (V.33), and gives the third relation

is given by multiplying (V.33) with E2
mz :

E2
x = −E2

T

(εM)2κ2
d

ε2dβ̃
2 + (εM)2κ2

d

(V.34a)

E2
mz = E2

T

ε2dβ̃
2

ε2dβ̃
2 + (εM)2κ2

d

(V.34b)

ExEmz = −iE2
T

εdεM β̃κd

ε2dβ̃
2 + (εM)2κ2

d

(V.34c)
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Finally we express all field components in terms of E2
T . We use κ2

d = β̃2 − εd
ω2

c2
in

(V.31) to solve for the nonlinear dispersion relation of β̃:

β̃2 =
ω2

c2

εMεd

(
εM − εd −

E2
Tχ

(3)

2

)

[(εM)2 − ε2d]−
E2

Tχ
(3)

2
[(εM)2 + ε2d]

(V.35)

The nonlinear dielectric function of the metal εM = εm+χ(3)E2
T can be inserted

into (V.35) for a more explicit expression. Care must be taken when one tries to

achieve β̃ and operates a square root on the right hand side, because the square

root operation requires a proper cut in the complex plain so that the condition

Reβ̃ > 0 holds [99]. Using a Taylor expansion identity with respect to the small

quantity δ = χ(3)E2
T :

(εm + δ)

√
a− δ

gx+ b
=

√
a

b

[
εm +

(
1− εm

2a
− gεm

2b

)
δ
]
+O(δ2) (V.36)

where the intermediate notations a = 2(εd−εm), b = 2εm(ε
2
m+ε2d) and g = 3ε2d−5ε2m

are used. To the first order of χ(3)E2
T we have

β̃ =
ω

c

√
εdεm

εm + εd
− ω

c
χ(3)E2

T

εd
4(εm + εd)

√
εd

εm(εm + εd)
(V.37)

The expression of εm is often known from tabulated data, or an analytic model,

e.g. Drude model as discussed in Ch.II, and we can calculate

∆β ≡ (β̃ − β̃L)|ω=ω0
=

ω0

c
χ(3)E2

T

√
ε3m

16εm(εm + εd)3

∣∣∣∣∣
ω=ω0

(V.38)

For simplicity, we define the nonlinear factor

ν =
ω0

c
χ(3)

√
ε3m

16εm(εm + εd)3

∣∣∣∣∣
ω=ω0

(V.39)
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Considering that ET ∼ Ae−iωteiβx, the NLS equation (V.26) is now written as

∂A

∂x
= −β1

∂A

∂t
− i

2
β2

∂2A

∂t2
+ iν|A|2A (V.40)

The other coefficients β1 and β2 are given by evaluating to the first order using the

linear dispersion relation at ω = ω0

β1 ≡
dβ̃L

dω

∣∣∣∣∣
ω=ω0

and β2 ≡
d2β̃L

dω2

∣∣∣∣∣
ω=ω0

(V.41)

Analytical and Numerical Solutions of Dark Solitons

Dark Soliton Solutions

In a lossless metal, the expression for εm from the Drude model is

εm =
ω2
p

ω2
− ε∞ (V.42)

where ε∞ is the background dielectric constant at low frequency. All coefficients in

the NLS equation are real quantities and explicitly they are written as functions of

frequency ω:

β̃L =
ω

c

√
εd

√
ω2
p/ω

2 − ε∞

ω2
p/ω

2 − ε∞ − εd
(V.43a)

∆βL =
ω0

c
χ(3)E2

T

√
ε3d

16(ω2
p/ω

2 − ε∞)(ω2
p/ω

2 − ε∞ − εd)3
(V.43b)

It is clear that ∆βL > 0 if χ(3) > 0, which is consistent with the fact that the

larger (nonlinear) refractive index leads to a bigger wavevector. The β1 and β2

are calculated and graphed as in Fig. 5.4. Note that below the plasma frequency
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ωp, the quantities β1, β2 and ∆β are all positive real numbers with lossless Drude

model (V.42).

ΩΒ1

Ω2 Β2

ΒL

Ω/c

0.0 0.2 0.4 0.6 0.8
Ω�ΩSPP0

1

2

3

4
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Figure 5.4 The coefficients in the NLS equation. The coefficients β1 and β2 in the

NLS equation are calculated from the linear SPP dispersion relation using lossless

Drude model. β1 and β2 are positive below plasma frequency ωp. The vertical

dashed line is the asymptote of β̃L, which represents the frequency limit of a linear

SPP wave.

To solve the NLS equation (V.40) analytically, we transform A(x, t) =
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A(ξ(x), τ(x, t)) by defining

τ = (t− β1x)/T0 (V.44a)

ξ = x/LD (V.44b)

u = A
√
|ν|LD (V.44c)

where T0 is the duration of the incident SPP pulse, LD = T 2
0 /|β2| is the SPP

dispersion length due to GVD and |ν| is the absolute value of ν. Then we have a

NLS equation with standard form

i
∂u

∂ξ
− 1

2

β2

|β2|
∂2u

∂τ 2
+

ν

|ν| |u|
2u = 0 (V.45)

For SPPs on noble metal surface, χ(3) ≡ Re[χ(3)] > 0 so that ν > 0. Also, with

normal group-velocity dispersion GVD≡ ∂2β

∂ω2
> 0 so that → β2 > 0. We have now

i
∂u

∂ξ
− 1

2

∂2u

∂τ 2
+ |u|2u = 0 (V.46)

and this standard form of a NLS equation has a dark temporal soliton solution [86].

It is conventional to use a slightly different standard form with a positive second

order derivative term [92] [86]. By defining X = −ξ and U(X, τ) = u(ξ, τ), the

NLS equation turns to

i
∂U

∂X
+

1

2

∂2U

∂τ 2
− |U |2U = 0 (V.47)

The most general form of the solution is

U(X, τ) = U0B2 tanh[U0B2(τ − B1U0X)] + iB1e
−iV 2

0 X+iθ0 (V.48)
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where B1, B2 and θ0 are arbitrary constants which depend on initial conditions. For

a dark soliton, the boundary condition is

|U |ξ→±∞ = U0 (V.49)

where U0 is the background wave amplitude.

The coefficients B1 and B2 have a constraint that B2
1 +B2 = 1. Thus we may

write B1 = sinφ and B2 = cosφ where the variable φ represents the “darkness”

of the soliton. For example when sin φ = 0 the minimum intensity of the solution

goes to 0 and we call it a “dark” soliton. When sin φ 6= 0, the minimum intensity

of the soliton is greater than 0 and the solution forms a “gray” soliton.

Switching back to the lab frame of reference with parameters t and x , the

solution is

A(x, t) =

A0

{
cosφ tanh

[
A0

√
ν cos φ√
β2

t−
(√

νβ1 −A0ν sinφ√
β2

)
A0 cosφx

]
+ i sin φ

}
eiA

2
0νx+iθ0

(V.50)

And the normalized intensity is

∣∣∣∣
A(x, t)

A0

∣∣∣∣
2

= 1− cos2 φ sech2

[
A0

√
ν cosφ√
β2

t− A0 cosφ

(√
νβ1√
β2

+ A0ν sinφ

)
x

]

(V.51)

To satisfy this eigenfunction, the pulse duration, pulse length and group velocity
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are required to be

τ0 =

√
β2

A0

√
ν cosφ

(V.52a)

L0 =

√
β2

(
√
νβ1 − A0ν sin φ

√
β2)A0 cosφ

(V.52b)

vg =
1

β1 −A0

√
ν sinφ

√
β2

(V.52c)

To illustrate the core physics, the simplest case is chosen, i.e. φ = 0 and θ0 = 0 in

(V.50) so the dark soliton has an amplitude and intensity equations

A(x, t) = A0 tanh

[
A0

√
ν√

β2

(t− β1x)

]
eiA0νx (V.53a)

|A|2 = |A0|2
{
1− sech2

[
A0

√
ν√

β2

(t− β1x)

]}
(V.53b)

Here A0 is the peak amplitude of the optical soliton. For the soliton, the peak

amplitude is not a free parameter but determined by the duration τ0 and other

constants as in (V.52a). In fact, (V.52a) determines the fundamental amplitude of

a soliton for a given duration τ0 by

A0 =

√
β2

τ0
√
ν cosφ

. (V.54)

Given a pulse duration, if the initial peak amplitude is slightly different to

the fundamental amplitude in (V.54), then the pulse will adjust itself during

propagation and eventually reach the stable soliton amplitude given by (V.54).

If the initial peak amplitude is very low, the nonlinear effect can not counteract

the linear dispersion and the pulse will be simply linearly dispersed. If the initial
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peak amplitude is very high, complicated behaviors such as high-order soliton and

soliton break-up could occur [92] [91] [75].

Numerical Analysis with and without Metal Loss

The existence of the dark SPP soliton for the nonlinear SPP is demonstrated

by the numerical solution to the NLS equation (V.46) where the amplitude of the

electric field is already normalized to the stable soliton solution amplitude A0, and

in the initial condition we also set the arbitrary phase φ = 0. As shown in Fig. 5.5,

where the loss in the metal is ignored, the SPP pulse propagates along the x-

direction on the metal surface while its temporal intensity profile is conserved over

distance.

When the amplitude-duration relation in (V.54) is not satisfied, the optical

pulse is not an eigensolution to the NLS equation. We show numerically it will

either break down to separate pulses for an initial pulse with larger amplitude,

as shown in Fig. 5.6a, or oscillate during propagation for a pulse with smaller

amplitude, as shown in Fig. 5.6b. In the case of larger amplitude, two small “gray”

pulses appear symmetrically on each side of the main “dark” pulse, with the main

pulse width narrowed down. In the case of small amplitude, small continuous

oscillations propagate out of the center pulse on both sides. The initial shape of

the fundamental “dark” pulse is a tanh function, which is an odd function, or

odd symmetry. Therefore, the main pulse keeps “dark”, i.e., center intensity being
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Figure 5.5 The stability of the soliton presented by numerical calculations. The

temporal profile of the SPP pulse does not change while propagating along the

x-direction on the nonlinear metal surface. Thus a stable dark soliton is achieved.

zero, regardless of the initial conditions. For reference numerical values, the SPP

related material constants used in the numerical calculation are listed in Tab.D.1

(for vacuum/silver) [41].

In our numerical solution for the lossless metal model, an SPP pulse with 10ps

duration is chosen at the communication wavelength 1.55µm. The peak amplitude

is calculated by the threshold equation (V.52a), which may be attained using a
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(a) (b)

Figure 5.6 A schematic of pulse propagation when the soliton condition is not

satisfied. (a) The optical pulse breaks up when the initial amplitude is greater

than the threshold. [100] (b) The optical pulse has an oscillation when the initial

amplitude is less than the threshold.

pulsed laser at an average power of 0.5W with 80 MHz repetition value. The pulse

evolution for different initial amplitudes is shown in Fig. 5.5 and Fig. 5.6, and the

numerical parameters are shown in Tab.D.1.

We now turn to the more realistic case of a noble metal with Ohmic loss. The

noble metal has finite absorption in optical range, thus a linear lossy term is added

into the lossless NLS equation:

i
∂U

∂X
+

1

2

∂2U

∂τ 2
− |U |2U = iΓU (V.55)

where Γ ≡ LD/(2β1) is a linear loss parameter representing the loss effect in the
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metal [86]. Here LD is the SPP dispersion length and β1 is the inverse of the SPP

wavevector.

For weak absorption where Γ ≪ 1, it is common to use perturbation method

to analytically approximate the result [101]. For the case of an SPP pulse on a

silver surface, however, the loss term can not be always regarded weak and the

numerical solution is the only way to demonstrate the evolution of the SPP pulse.

The numerical recipe of Crank Nicolson (CN) is used and for details one can refer

to Appendix D for the numerical algorithm and Appendix E for the source code

written in MatLab®.

To account for the metal loss more precisely, we use here a modified Drude

model for silver:

εm(ω) = ε∞ −
ω2
p

ω2 + iγpω
+ i

σ

ε0ω
(V.56)

where γp is the damping coefficient and σ is the AC conductivity constant at optical

frequency. The physical meanings of all symbols and their values for silver are

summarized in table Tab.D.2 in Appendix D.

The SPP pulse duration is chosen to be 8fs so that the SPP linear dispersion

effect, represented by LD, and the nonlinear effect, represented by LNL, are

comparable to each other, both about 700µm. The repetition rate is tuned down

to 1Hz to avoid inadvertent heating caused by high peak intensities, in possible

experimental setups. The distance in the simulation is x = 2LD and when the

initial pulse is set to be exactly the soliton threshold for the lossless case, the pulse
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Figure 5.7 The evolution of a dark SPP pulse with loss. The dark SPP pulse

travels on a metal surface with linear loss. Starting with a soliton profile, which

is a stable solution in lossless case, the pulse decreases smoothly with no internal

oscillations or break-ups.

is damped while propagating, but keeps a single pulse as shown in Fig. 5.7. With

other input amplitude distribution, a pulse break-up or internal oscillation occurs,

as shown in Fig. 5.8, due to the multiple breakup of high-order solitons and soliton

modulation instability [86] [102]. When the initial pulse amplitude is greater than

the soliton threshold, obvious pulse break-up occurs, similar to the lossless case in

Fig. 5.6a. After a short propagation distance, however, the amplitude of the pulse
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decreases due to the loss, and the pulse break-up gradually turns into oscillations

as shown in Fig. 5.8a. When the initial pulse amplitude is less than the soliton

threshold, small oscillations propagate on both sides of the main pulse as shown in

Fig. 5.8b, similar to the lossless case in Fig. 5.6b.

(a) (b)

Figure 5.8 A schematic of pulse propagation with loss when the initial soliton

condition is not satisfied. (a) The optical pulse breaks up when the initial amplitude

is greater than the threshold. The pulse break-up is diminished during propagation

and gradually turns into oscillations because of the amplitude decrease due to the

loss (b) The optical pulse oscillates when the initial amplitude is less than the

threshold.

The damping of the dark SPP pulse may be compensated to keep a stable

soliton, by adding optical gains in the dielectric layer. Another possible way to
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avoid the loss is by coherently coupling the dark SPP pulse to other plasmon modes,

with an effect similar to Electromagnetically induced transparency (EIT) [103].

Conclusions

In this chapter, we achieved a nonlinear Schrödinger (NLS) equation for a

temporal SPP pulse. The nonlinear dispersion relation of the temporal SPP pulse

was derived. This SPP pulse was supported by a nonlinear metal and a linear

dielectric. In the analytical studies, the nonlinear metal was dispersive and lossless,

while the linear dielectric was chosen to be vacuum. An analytical solution of the

NLS equation was achieved and was a temporal dark soliton for the nonlinear SPP

pulse. The soliton was infinitely stable during propagation for the ideal case. To

form this stable dark soliton, the relations among pulse peak amplitude, pulse

amplitude outline, pulse duration and background amplitude were achieved. For

a realistic metal with finite loss, numerical calculations were performed. With the

initial pulse satisfying the lossless soliton condition, the pulse maintained a single

recognizable peak when the amplitude was damped during propagation. With the

initial pulse not satisfying the lossless soliton condition, the pulse suffered internal

oscillation or pulse break-up for intensities too low or too high.
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CHAPTER VI

CONCLUSIONS

The study of plasmonics has been drawing increased attention in recent

years. The physics of surface plasmon polaritons offers new and efficient ways

to guide light signals in nano-scale dimensions and at terahertz operation speeds

using metallic nanostructures. It also brings new technologies, such as chemical

sensing and biological sensing, to the other fields of science. To fully explore the

potential advantages of SPPs with respect to fast operation speed, broad bandwidth

and nanometer scale size, fundamental research into the nonlinear properties of

SPPs has become an active field, with its own challenges and excitements. This

dissertation serves to reveal a small tip of the iceberg.

We started this dissertation with a review of the history and recent

developments of plasmonics. In Chapter II, we presented a complete and detailed

derivation of major properties of linear surface plasmon polaritons (SPPs), such

as the dispersion relations. This derivation is the starting point of the following

chapters and it lays the foundation for our research. The SPPs were shown as a

guided wave between a dielectric and a metal surface. The optical properties of

the metals were analytically described by the Drude model when the frequencies of

the light waves were below the plasma frequency. A simple layout of planar SPPs
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was used and the vacuum was used for the dielectric layer. The SPP dispersion

relations and the key dimensions of the SPPs were achieved.

In Chapter III, we introduced nonlinear optics in general then applied the

nonlinear wave equations to our specific nonlinear SPP system. The noble metals

in the SPP system possess third order nonlinearity, denoted with the third order

susceptibility χ(3). This χ(3) lead to the nonlinear polarization term PNL and then a

nonlinear wave equation for the metals was derived. In order to solve the nonlinear

wave equation, two specific cases were considered: sum frequency generation and

difference frequency generation. In the sum frequency generation case, the non-

depletion approximation was used to decouple the tripled frequency components

from the original frequency components. In the difference frequency generation

case, a nonlinear diffractive index was introduced to take into account the fact that

the generated frequency was indistinguishable from the original source frequency.

For both cases, a designated orientation of the metal crystal lattice was chosen to

reduce the nonlinear response of χ(3) to a scalar.

In Chapter IV, the steady-state solution of the nonlinear wave equation with

sum frequency generation was achieved. The solution showed third harmonic

generation in the nonlinear SPP process. The induced tripled frequency signal

from the SPPs is still bounded in the dielectric side of the interface. When the

optical properties of the metal are described by the classical Drude model, this

tripled frequency signal is able to propagate inside the metal with an obvious angle
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of about 40◦ relative to the interface. The energy conversion efficiency from the

SPP to the tripled signal was analytically calculated. The efficiency is about 0.1%

using a standard continuous wave laser with visible light intensity I = 103W/cm2.

This low conversion efficiency complies with the non-depletion approximation made

when solving the nonlinear wave equations. The propagation angle of the tripled

signal was also calculated and found to have a dependency on the permittivity of

the metal and the incident wavelength of the SPP, and the signal is well separated

in space by its propagation direction from the original SPP waves. The angle ranges

from about 46◦ to about 56◦ when the incident wavelength is in the optical range.

For realistic metals, such as noble metals with interband transitions, absorption

above the plasma frequencies had to be considered. Tabulated data in literature

shows a transparency window around the plasma frequency for silver, with reduced

absorption, and consequently we used this transparency data to show possible

improvements for experimental setups, e.g. we considered a silver film with finite

thickness instead of a semi-infinite bulk. Within this transparency window, the

tripled signal has a transmittance of about 10% for a 50nm silver film, and the

propagation angle is about 40◦.

In Chapter V, we investigated the temporal properties of nonlinear SPPs

by considering the nonlinear Kerr effect in silver. First we derived the nonlinear

dispersion relation from the boundary conditions involving metal nonlinearities.

With the nonlinear dispersion relation, we applied slowly the varying amplitude
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approximation and perturbed the wavevectors in the wave equations, and a

temporal nonlinear Schrödinger (NLS) equation for the nonlinear SPP propagation

was achieved. Given the values of the coefficients in the NLS equation, we found

that the stable solution is a SPP pulse, and that the shape of the pulse possesses

the form of a dark temporal soliton. The ideal dark soliton solution, when the

metal is lossless, was also demonstrated by a numerical calculation. When losses in

the metal accounted for, the numerical calculation showed that the evolution of the

pulse depends strongly on its shape. When the initial shape of the pulse satisfies

the same conditions of a soliton in the lossless case, the pulse propagated with only

broadening and damping. Otherwise, the pulse suffered background oscillations or

multi-peak breakups within a short distance after being launched.

The topics discussed in this dissertation are nonlinear plasmonics with the

consideration of the metallic nonlinearities. Nonlinear SPPs have many more

interesting properties to be explored. For future studies, we propose several

improvements and directions of efforts. For the THG of nonlinear SPPs, the energy

conversion efficiency can be increased by an incident SPP with higher intensity. The

power draining effect of the source SPP has to be considered when the efficiency

goes up where the non-depletion approximation is no longer valid, and the coupled

wave equations with both fundamental and tripled frequencies have to be solved

numerically. Without the non-depletion approximation, the propagation angle of

the tripled frequency signal can have dependency on the input optical intensity. In
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addition, both the conversion efficiency and the propagation angle of the tripled

signal can be tunable if the dielectric layer is optically nonlinear or possesses

optical gain. Different structures are worth attention too. The proposed dielectric-

metal-dielectric (DMD) and metal-dielectric-metal (MDM) [104][105][106] layered

structures, in which each layer may be linear or nonlinear, may add exciting new

nonlinear effects in addition to what we have discussed in this dissertation. For

instance, the dispersion relation of the tripled signal in the dielectric side within

a single metal-dielectric interface may be altered by a nonlinear DMD or MDM

structure due to the coherence and interference of the optical waves in different

layers.

As for the SPP solitons, the main problem for achieving stable and long

distance SPP solitons is material loss. Loss compensation has been a major

direction of study in recent years, mostly in linear plasmonics [107]. A gain

dielectric medium may be capable of compensating for the metal loss. When the

dielectric layer has gain, the nonlinear boundary conditions are changed and thus

leads to a revised dispersion relation of the SPP. It is possible, with a gain medium

compensating the metal loss, that the nonlinear SPP solitons are stable and can

propagate long distance. It may even be possible that the dark soliton solution is

converted to a bright soliton solution, such as when the overall GVD is changed

from normal to anomalous, by the gain dielectric medium.

Nonlinear plasmonics provide us powerful tools to manipulate and guide
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optical signals. For instance, devices with nanometer scale and terahertz operation

speed, as well as sub-wavelength digital signal transmission, may be utilized by

nonlinear SPP processes discussed in this dissertation. For the full potential of

the nonlinear plasmonics, it is necessary to carry out further systematic studies of

the nonlinear plasmonics, in both theory and experiment. The future studies of

the nonlinear plasmonics include, but not limited to, multi-layer structures such as

MDM and DMD, patterned guiding surfaces and supporting dielectric materials

with different optical properties such as optical nonlinearity and gain. Research on

nonlinear plasmonics not only improves understanding of the fundamental nature

of SPPs, it will also contribute novel methods to the fast growing technology world.
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APPENDIX A

SOLUTION OF INHOMOGENEOUS SECOND ORDER ORDINARY

DIFFERENTIAL EQUATIONS

In the section, we solve an inhomogeneous second order ordinary differential

equation [108].

A second-order (inhomogeneous) ordinary linear differential equation of

function q(τ) encountered often has the form

d2q

dτ 2
+ 2ζ

dq

dτ
+ ω2

0q = Beiωsτ (A.1)

where B is an arbitrary constant and ωs is the driving frequency.

The characteristic equation reads

r2 + 2ζr + ω2
0 = 0 (A.2)

The full solution of (A.1) comprises two parts: q = qt + qs where qt is the

general solution of the homogeneous equation, a.k.a the transient solution, while qs

is a particular solution, a.k.a. the steady-state solution.

For small damping |ζ | ≪ 1, the discriminant ∆ = (2ζ)2 − 4ω2
0 < 0, so the

characteristic equation has two solutions that are complex conjugate of one another:

r1 = −ζ + i
√

ω2
0 − ζ2 (A.3a)

r2 = −ζ − i
√

ω2
0 − ζ2 (A.3b)
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Then the general (transient) solution to the homogeneous differential equation

is

qt(τ) = e−ζτ
(
C1e

−iτ
√

ω2
0
−ζ2 + C2e

iτ
√

ω2
0
−ζ2
)

(A.4)

where C1 and C2 are determined by initial conditions. Note that qt → 0 when

t→∞ no matter how small the damping ζ is.

The particular (steady-state) solution qs can be found by the method of

undetermined coefficients. By making ansatz qs(τ) = A eiωsτ where A is a complex

amplitude to be determined. By substituting qs back to (A.1) one finds A =

B/(−ω2
s + 2iζωs + ω2

0). The particular solution thus is oscillatory

qs(τ) =
Beiωsτ

−ω2
s + 2iζωs + ω2

0

(A.5)

In a real experiment, the damping coefficient is always finite, which gives

q(τ)
τ→∞
=⇒ qs(τ) (A.6)

Therefore, in the long time limit, only the steady-state solution is detected since

the general solution dies out soon.
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APPENDIX B

HELMHOLTZ THEOREM AND HELMHOLTZ EQUATION

The Helmholtz theorem states [109]:

Any sufficiently smooth, rapidly decaying vector field can be resolved into

irrotational (curl-free) and solenoidal (divergence-free) component vector fields.

Given such a vector field V(r) satisfying

[∇ ·V]∞ = 0 (B.1a)

[∇×V]∞ = 0 (B.1b)

then there exist a scalar potential φ and a vector potential A such that

V(r) = −∇φ+∇×A

≡ V‖(r) +V⊥(r) (B.2)

where V‖ is the longitudinal (irrotational, curl-free) part that

∇×V‖ = 0 (B.3)

and V⊥ is the transverse (solenoidal, divergence-free) part that

∇ ·V⊥ = 0 (B.4)

Applying Fourier transformation on vector field V from r to k:

Ṽ(k) = F [V(r)] =
1

(√
2π
)3
∫∫∫

r

V(r)eik·rd3r (B.5)
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gives

k× Ṽ‖(k) = 0 (B.6a)

k · Ṽ⊥(k) = 0 (B.6b)

and consequently

∇×∇×V(r) =⇒

ik×
[
ik× Ṽ(k)

]

=ik×
[
ik× Ṽ⊥(k)

]

=ik
[
ik · Ṽ⊥(k)

]
− (ik)2Ṽ⊥(k)

=− (ik)2Ṽ⊥(k) (B.7)
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APPENDIX C

THE ROTATION MATRIX

The nonlinear polarization is induced by the incident fields via the nonlinear

susceptibility χ(3) tensor as in (III.18). The first three terms on the right hand of

(III.18) are invariant under rotation thus independent of spatial coordinates and

the sum is labeled as PI where the superscript indicates “isotropic”. The last term

on the right hand of (III.18) is where the tensor nature of the χ(3) imbedded. It is

labeled as PA indicating “anisotropy” which is coordinate specific and defined as

PA
i ≡ (M :: EaEbEc)i =

∑

jkl

M i
jklE

a
jE

b
kE

c
l (C.1)

y

x
ϕ

ϕ

β
α

Eα = Ex cosϕ+ Ey sinϕ
Eβ = −Ex sinϕ+ Ey cosϕ

and
PA
x = PA

α cosϕ− PA
β sinϕ

PA
y = PA

α sinϕ+ PA
β cosϕ

Figure C.1 The rotation matrix for (simplified 2-D) crystal - lab coordinates

conversion. The conversion relations for E and P are explicitly represented.
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where ijkl represent any set of orthogonal coordinate axes. Now the nonlinear

polarization is separated to isotropic and anisotropic parts:

PNL = PI +PA (C.2)

Practically it is convenient to write both P and E in lab reference frame, so the

explicit form of tensor M in the lab coordinate frame is desired, and our central

goal of this section is to find the expressions for the tensor M .

Firstly we deal with the rotation part in the tensor M and add the effect of χ(3)

later. It is easier to break the total rotation matrix K between the cubic and the

lab frames to two steps: the rotation matrix T between the cubic and the crystal

frames, and the rotation matrix R between the crystal and the lab frames:

Ex′y′z′ = RExyz (C.3a)

Eαβγ = T−1Ex′y′z′ (C.3b)

Px′y′z′ = TPαβγ (C.3c)

Pxyz = R−1Px′y′z′ (C.3d)

Here E is the electric field vector, Exyz is the vector E expressed in lab frame, Ex′y′z′

is the vector E expressed in the crystal frame, and Eαβγ is the vector E expressed

in the cubic frame. The the rotation matrix R between lab and crystal frames with

rotation angle ϕ is defined as

R =




cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


 (C.4)
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while the representation of rotation matrix T between the cubic and the crystal

frames depends on the orientation of cubic symmetry axes:

T(111) =




√
2

3
− 1√

6
− 1√

6

0
1√
2
− 1√

2
1√
3

1√
3

1√
3




(C.5a)

T(110) =




− 1√
2

1√
2

0

0 0 1
1√
2

1√
2

0




(C.5b)

T(001) =



1 0 0

0 1 0

0 0 1


 (C.5c)

The subscripts here indicate the orientation of the crystal, e.g. the direction of

the crystal z′ axis, while the actual crystal “cut” or “shearing plane” is in a plane

normal to this chosen axis, indicated as the shaded planes in Fig. C.4 Fig. C.3 and

Fig. C.2. The T is derived by simple geometric relations, for example the (111)

orientation gives:

x̂′ =

√
2

3
x̂− 1√

6
(ŷ + ẑ)

ŷ′ =
1√
2
(ŷ − ẑ)

ẑ′ =
1√
3
(x̂+ ŷ + ẑ)

(C.6)

where we have chosen this definition so that the new x axis is projected on to the

original crystal axis in the plane of the crystal surface, shown in Fig. C.2.
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x

z

y


x′

y′

z′


 =

1√
6




2 −1 −1
0
√
3 −
√
3√

2
√
2
√
2






x

y

z




Figure C.2 The relation between (111) crystal “cut” (shaded) and the lab

coordinates. The direction of the crystal orientation, z′, is defined as the normal

to the shaded surface, while the other axes x′ and y′ are chosen with a degree of

freedom as long as the three axes comprise a right handed coordinate system. The

cubic coordinates are not shown here.

For the (110) surface we have

x̂′ =
1√
2
(ŷ − x̂)

ŷ′ = ẑ

ẑ′ =
1√
2
(x̂+ ŷ)

(C.7)

and the matrix form is expressed in Fig. C.3. And finally for the (001) orientation

we simply choose the z′ axis to align normal to the surface which coincides with the

z axis, while x′ and y′ coincide with x and y in the lab frame. To directly connect

the cubic and lab coordinates, the compound matrix K ≡ R−1T is defined:

K(001) =



cosϕ − sinϕ 0

sinϕ cosφ 0

0 0 1


 (C.8a)
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z′
x′

y′

x

z

y


x′

y′

z′


 =




− 1√
2

1√
2

0

0 0 1
1√
2

1√
2

0






x

y

z




Figure C.3 The relation between (110) crystal “cut” (shaded) and the lab

coordinates. The direction of the crystal orientation, z′, is defined as the normal to

the shaded surface, shown in dotted line as well as x′ axis, while y′ points straight

up. The cubic coordinates are not show here.

K(111) =




√
2

3
cosϕ −cosϕ√

6
− sinϕ√

2
−cosϕ√

6
+

sinϕ√
2√

2

3
sinϕ −sinϕ√

6
+

cosϕ√
2
−sinϕ√

6
− cosϕ√

2
1√
3

1√
3

1√
3




(C.8b)

K(110) =




−cosϕ√
2

cosϕ√
2
− sinϕ

−sinϕ√
2

sinϕ√
2
− cosϕ

1√
2

1√
2

0




(C.8c)

The relation in the lab coordinate systems between the E and the P fields are

achieved by three steps:

1) From Exyz to Eαβγ by the rotation matrix:

Eαβγ = K−1Exyz (C.9)
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x

z

y


x′

y′

z′


 =



1 0 0

0 1 0

0 0 1






x

y

z




Figure C.4 The relation between (100) crystal “cut” (shaded) and the lab

coordinates. The direction of the crystal orientation coincides with the axes of

the lab frame thus renders an identity matrix.

2) From Eαβγ to Pαβγ by χ(3).

3) From Pαβγ to Pxyz by the rotation matrix:

Pxyz = KPαβγ (C.10)

and it is used to derived the explicit form of tensor M .

PA
αβγ ≡



PA
α

PA
β

PA
γ


 =



Ea

αE
b
αE

c
α

Ea
βE

b
βE

c
β

Ea
βE

b
βE

c
β


 =



(K ′Ea

xyz)α(K
′Eb

xyz)α(K
′Ec

xyz)α

(K ′Ea
xyz)β(K

′Eb
xyz)β(K

′Ec
xyz)β

(K ′Ea
xyz)γ(K

′Eb
xyz)γ(K

′Ec
xyz)γ


 (C.11)

and then in lab coordinates,



PA
x

PA
y

PA
z


 ≡ PA

xyz = KPA
αβγ = K



PA
α

PA
β

PA
γ




= K



(K ′

ααE
a
x +K ′

αβE
a
y +K ′

αγE
a
z )(K

′
ααE

b
x +K ′

αβE
b
y +K ′

αγE
b
z)(K

′
ααE

c
x +K ′

αβE
c
y +K ′

αγE
c
z)

(K ′
βαE

a
x +K ′

ββE
a
y +K ′

βγE
a
z )(K

′
βαE

b
x +K ′

ββE
b
y +K ′

βγE
b
z)(K

′
βαE

c
x +K ′

ββE
c
y +K ′

βγE
c
z)

(K ′
γαE

a
x +K ′

γβE
a
y +K ′

γγE
a
z )(K

′
γαE

b
x +K ′

γβE
b
y +K ′

γγE
b
z)(K

′
γαE

c
x +K ′

γβE
c
y +K ′

γγE
c
z)



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= K



(KααE

a
x +KβαE

a
y +KγαE

a
z )(KααE

b
x +KβαE

b
y +KγαE

b
z)(KααE

c
x +KβαE

c
y +KγαE

c
z)

(KαβE
a
x +KββE

a
y +KγβE

a
z )(KαβE

b
x +KββE

b
y +KγβE

b
z)(KαβE

c
x +KββE

c
y +KγβE

c
z)

(KαγE
a
x +KβγE

a
y +KγγE

a
z )(KαγE

b
x +KβγE

b
y +KγγE

b
z)(KαγE

c
x +KβγE

c
y +KγγE

c
z)




(C.12)

where again PA
xyz is the nonlinear polarization in lab frame and PA

αβγ is the

nonlinear polarization in the cubic frame, with the superscript A representing the

anisotropic part of the polarization only. So we see, for instance we can determine

the elements of Mx
xxx,M

x
yyy,M

x
zzz, · · · ,Mx

xyz, · · · ,Mz
xyz by

PA
x =KααP

A
α +KαβP

A
β +KαγP

A
γ

=(K4
αα +K4

αβ +K4
αγ)EEE|abcxxx

+ (KααK
3
βα +KαβK

3
ββ +KαγK

3
βγ)EEE|abcyyy

+ (KααK
3
γα +KαβK

3
γβ +KαγK

3
γγ)EEE|abczzz

+ (K3
ααKβα +K3

αβKββ +K3
αγKβγ)EEE|abcxxy,xyx,yxx

+ (K3
ααKγα +K3

αβKγβ +K3
αγKγγ)EEE|abcxxz,xzx,zxx

+ (K2
ααK

2
βα +K2

αβK
2
ββ +K2

αγK
2
βγ)EEE|abcxyy,yxy,yyx

+ (K2
ααK

2
γα +K2

αβK
2
γβ +K2

αγK
2
γγ)EEE|abcxzz,zxz,zzx

+ (KααK
2
βαKγα +KαβK

2
ββKγβ +KαγK

2
βγKγγ)EEE|abcyyz,yzy,zyy

+ (KααKβαK
2
γα +KαβKββK

2
γβ +KαγKβγK

2
γγ)EEE|abcyzz,zyz,zzy

+ (K2
ααKβαKγα +K2

αβKββKγβ +K2
αγKβγKγγ)EEE|abcxyz,xzy,yxz,yzx,zxy,zyx

(C.13)
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where shorthand notations are used for the summations of terms with permutation

subscripts, for example

EEE|abcxxz,xzx,zxx ≡ Ea
xE

b
xE

c
z + Ea

xE
b
zE

c
x + Ea

zE
b
xE

c
x (C.14)

The other two components of PA are written in the same way as

PA
y =KβαP

A
α +KββP

A
β +KβγP

A
γ

=(KβαK
3
αα +KββK

3
αβ +KβγK

3
αγ)EEEabc

xxx

+ (K4
βα +K4

ββ +K4
βγ)EEE|abcyyy

+ (KβαK
3
γα +KββK

3
γβ +KβγK

3
γγ)EEE|abczzz

+ (K2
ααK

2
βα +K2

αβK
2
ββ +K2

αγK
2
βγ)EEE|abcxxy,xyx,yxx

+ (KβαK
2
ααKγα +KββK

2
αβKγβ +KβγK

2
αγKγγ)EEE|abcxxz,xzx,zxx

+ (KααK
3
βα +KαβK

3
ββ +KαγK

3
βγ)EEE|abcxyy,yxy,yyx

+ (KβαKααK
2
γα +KαβKββK

2
γβ +KβγKαγK

2
γγ)EEE|abcxzz,zxz,zzx

+ (K3
βαKγα +K3

ββKγβ +K3
βγKγγ)EEE|abcyyz,yzy,zyy

+ (K2
βαK

2
γα +K2

ββK
2
γβ +K2

βγK
2
γγ)EEE|abcyzz,zyz,zzy

+ (KααK
2
βαKγα +KαβK

2
ββKγβ +KαγK

2
βγKγγ)EEE|abcxyz,xzy,yxz,yzx,zxy,zyx

(C.15)

PA
z =KγαP

A
α +KγβP

A
β +KγγP

A
γ

=(KγαK
3
αα +KγβK

3
αβ +KγγK

3
αγ)EEE|abcxxx
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+ (KγαK
3
βα +KγβK

3
ββ +KγγK

3
βγ)EEE|abcyyy

+ (K4
γα +K4

γβ +K4
γγ)EEE|abczzz

+ (KγαK
2
ααKβα +KγβK

2
αβKββ +KγγK

2
αγKβγ)EEE|abcxxy,xyx,yxx

+ (K2
ααK

2
γα +K2

αβK
2
γβ +K2

αγK
2
γγ)EEE|abcxxz,xzx,zxx

+ (KγαKααK
2
βα +KγβKαβK

2
ββ +KγγKαγK

2
βγ)EEE|abcxyy,yxy,yyx

+ (KααK
3
γα +KαβK

3
γβ +KαγK

3
γγ)EEE|abcxzz,zxz,zzx

+ (K2
βαK

2
γα +K2

ββK
2
γβ +K2

βγK
2
γγ)EEE|abcyyz,yzy,zyy

+ (KβαK
3
γα +KββK

3
γβ +KβγK

3
γγ)EEE|abcyzz,zyz,zzy

+ (KααKβαK
2
γα +KαβKββK

2
γβ +KαγKβγK

2
γγ)EEE|abcxyz,xzy,yxz,yzx,zxy,zyx

(C.16)

Now as a simple example for (100) symmetry axes, we can find the relation for

the representations of E and P fields the lab frame. Let us firstly evaluate PA
x (the

shorthand notation for products of fields is used, such that Exyy ≡ ExEyEy):

PA
x = PA

α cosϕ− PA
β sinϕ

= Ea
αE

b
αE

c
α cosϕ−Ea

βE
b
βE

c
β sinϕ

= (Ea
x cosϕ+ Ea

y sinϕ)(E
b
x cosϕ + Eb

y sinϕ)(E
c
x cosϕ+ Ec

y sinϕ) cosϕ

− (−Ea
x sinϕ+ Ea

y cosϕ)(−Eb
x sinϕ+ Eb

y cosϕ)(−Ec
x sinϕ+ Ec

y cosϕ) sinϕ

= Ea
xE

b
xE

c
x cos

4 ϕ+ Ea
xE

b
xE

c
y cos

3 ϕ sinϕ+ Ea
xE

b
yE

c
x cos

3 ϕ sinϕ+ Ea
xE

b
yE

c
y cos

2 ϕ sin2 ϕ

+Ea
yE

b
xE

c
x cos

3 ϕ sinϕ+ Ea
yE

b
xE

c
y cos

2 ϕ sin2 ϕ+ Ea
yE

b
yE

c
x cos

2 ϕ sin2 ϕ + Ea
yE

b
yE

c
y cosϕ sin3 ϕ
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− [−Ea
xE

b
xE

c
x sin

4 ϕ+ Ea
xE

b
xE

c
y cosϕ sin3 ϕ+ Ea

xE
b
yE

c
x cosϕ sin3 ϕ− Ea

xE
b
yE

c
y cos

2 ϕ sin2 ϕ

+Ea
yE

b
xE

c
x cosϕ sin3 ϕ− Ea

yE
b
xE

c
y cos

2 ϕ sin2 ϕ− Ea
yE

b
yE

c
x cos

2 ϕ sin2 ϕ

+Ea
yE

b
yE

c
y cos

3 ϕ sinϕ]

= Eabc
xxx(cos

4 ϕ+ sin4 ϕ) + Eabc
xxy(cos

3 ϕ sinϕ− sin3 ϕ cosϕ) + Eabc
xyx(cos

3 ϕ sinϕ− cosϕ sin3 ϕ)

+Eabc
xyy(cos

2 ϕ sin2 ϕ+ cos2 ϕ sin2 ϕ)

+ Eabc
yxx(cos

3 ϕ+ cosϕ sin3 ϕ) + Eabc
yxy(cos

2 ϕ sin2 ϕ+ sin2 ϕ cos2 ϕ)

+Eabc
yyx(cos

2 ϕ sin2 ϕ− cos2 ϕ sin2 ϕ)

+Eabc
yyy(cosϕ sin3 ϕ− cos3 ϕ sinϕ) (C.17)

then we get the matrix elements for M in (100) crystal face,

x, xxx(PA
x ← Exxx) : cos

4 ϕ+ sin4 ϕ =
1

4
(3 + cos 4ϕ) (C.18)

x, yyy(PA
x ← Eyyy) : cosϕ sin3 ϕ− cos3 ϕ sinϕ = −1

4
sin 4ϕ (C.19)

and they agree with the expression derived from the general discussion:

Mx
xxx = K4

αα +K4
αβ +K4

αγ = cos4 ϕ+ sin4 ϕ =
1

4
(3 + cos 4ϕ) (C.20)

Mx
yyy = KααK

3
βα +KαβK

3
ββ +KαγK

3
βγ = cosϕ sin3 ϕ+ (− sinϕ) cos3 ϕ+ 0 = −1

4
sin 4ϕ

(C.21)

Similarly, as another example, for (111) crystal symmetry axes,

Mx
xxz = K3

ααKγα +K3
αβKγβ +K3

αγKγγ

=

(√
2

3
cosϕ

)3
1√
3
+

(
−cosϕ√

6
− sinϕ√

2

)3
1√
3
+

(
−cosϕ√

6
+

sinϕ√
2

)3
1√
3
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=
1√
3

[
2

3

√
2

3
cos3 ϕ+ 2

(
−cosϕ√

6

)3

+ 6

(
−cosϕ√

6

)(
sinϕ√

2

)2
]

=
1√
3

[
4√
6
cos3 ϕ− 3√

6
cosϕ

]

=
1√
18

cos 3ϕ (C.22)

And finally for (110) axes,

Mx
xxx = K4

αα +K4
αβ +K4

αγ

=

(
−cosϕ√

2

)4

+

(
cosϕ√

2

)4

+ (− sinϕ)4

=
1

2
cos4 ϕ+ sin4 ϕ

=
3

16
cos 4ϕ+

1

16
(9− 4 cos 2ϕ) (C.23)

Mz
zzz = K4

γα +K4
γβ +K4

γγ

=

(
1√
2

)4

+

(
1√
2

)4

+ 04

=
1

2
(C.24)

My
xxy = K2

ααK
2
βα +K2

αβK
2
ββ +K2

αγK
2
βγ

=

(− cosϕ√
2

)2(− sinϕ√
2

)2

+

(
cosϕ√

2

)2(
sinϕ√

2

)2

+ (− sinϕ)2(cosϕ)2

=
3

16
(1− cos 4ϕ) (C.25)

My
xxx = KβαK

3
αα +KββK

3
αβ +KβγK

3
αγ

=

(
−sinϕ√

2

)(
−cosϕ√

2

)3

+

(
sinϕ√

2

)(
cosϕ√

2

)3

+ cosϕ(− sinϕ)3

=
sinϕ cos3 ϕ

2
− sin3 ϕ cosϕ

=
3

16
sin 4ϕ− 1

8
sin 2ϕ (C.26)
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Finally the tensorM , representing the cubic rotation relative to the lab coordinates,

is determined for different forms for different cubic symmetry axe choices, i.e.

〈100〉, 〈111〉, 〈110〉

〈100〉 (C.27)

M i
jkl xxx yyy zzz

x
3 + cos 4ϕ

4
−3 + sin 4ϕ

4
0

y
sin 4ϕ

4

3 + cos 4ϕ

4
0

z 0 0 1

(continued)

M i
jkl xxy xxz xyy xzz yyz yzz xyz

x
sin 4ϕ

4
0

1− cos 4ϕ

4
0 0 0 0

y
1− cos 4ϕ

4
0 −sin 4ϕ

4
0 0 0 0

z 0 0 0 0 0 0 0

〈111〉 (C.28)

M i
jkl xxx yyy zzz

x
1

2
0 0

y 0
1

2
0

z
cos 3ϕ√

18
−sin 3ϕ√

18

1

3

(continued)

M i
jkl xxy xxz xyy xzz yyz yzz xyz

x 0
cos 3ϕ√

18

1

6

1

3
−cos 3ϕ√

18
0

sin 3ϕ√
18

y
1

6

sin 3ϕ√
18

0 0 −sin 3ϕ√
18

1

3
−cos 3ϕ√

18

z
sin 3ϕ√

18

1

3
−cos 3ϕ√

18
0

1

3
0 0

110



〈110〉 (C.29)

M i
jkl xxx yyy zzz

x
9− cos 2ϕ+ 3 cos 4ϕ

16

−2 sin 2ϕ− 3 sin 4ϕ

16
0

y
−2 sin 2ϕ+ 3 sin 4ϕ

16

9 + 4 cos 2ϕ+ 3 cos 4ϕ

16
0

z 0 0
1

2

(continued)

M i
jkl xxy xxz xyy

x
−2 sin 2ϕ+ 3 sin 4ϕ

16
0

3(1− cos 4ϕ)

16

y
3(1− cos 4ϕ)

16
0

−2 sin 2ϕ− 3 sin 4ϕ

16

z 0
1 + cos 2ϕ

4
0

(continued)

M i
jkl xzz yyz yzz xyz

x
1 + cos 2ϕ

4
0

sin 2ϕ

4
0

y
sin 2ϕ

4
0

1− cos 2ϕ

4
0

z 0
1− cos 2ϕ

4
0

sin 2ϕ

4

For the special angle value ϕ = 0, M takes simple forms

〈100〉

M i
jkl xxx yyy zzz xxy xxz xyy xzz yyz yzz xyz

x 1 0 0 0 0 0 0 0 0 0

y 0 1 0 0 0 0 0 0 0 0

z 0 0 1 0 0 0 0 0 0 0

(C.30)
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〈111〉

M i
jkl xxx yyy zzz xxy xxz xyy xzz yyz yzz xyz

x
1

2
0 0 0

1√
18

1

6

1

3
− 1√

18
0 0

y 0
1

2
0

1

6
0 0 0 0

1

3
− 1√

18

z
1√
18

0
1

3
0

1

3
− 1√

18
0

1

3
0 0

(C.31)

〈110〉

M i
jkl xxx yyy zzz xxy xxz xyy xzz yyz yzz xyz

x
1

2
0 0 0 0 0

1

2
0 0 0

y 0 1 0 0 0 0 0 0 0 0

z 0 0
1

2
0

1

2
0 0 0 0 0

(C.32)

where the simplest case for (100) surface placed crystal with no rotation, the tensor

M takes the form:

M i
jkl =





1 when jkl = xxx, yyy or zzz

0 otherwise

(C.33)

where i = x, y or z. So the anisotropic term in (III.18) is simplified to

χdM :: EaEbEc = χd(x̂E
a
xE

b
xE

c
x + ŷEa

yE
b
yE

c
y + ẑEa

zE
b
zE

c
z) (C.34)

and we are going to use this simplest configuration in (C.33) or (C.34) to illustrate

the nonlinear SPP properties, without the cumbersome geometry distraction, in all

the related chapters.
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APPENDIX D

NUMERICAL ALGORITHM FOR NLS EQUATIONS

The NLS equation with a loss term (V.55) is prototyped in the class

of convection-diffusion equations for the Finite difference method for partial

differential equations [110]. For both accuracy and efficiency in computation,

the implicit Crank-Nicolson scheme is adapted for the NLS equation [111]. For

notational convenience and comparison to heat equation, the NLS equation (V.55)

is rewritten with space-time variables switched, with first derivative on the left side

and other terms on the right side:

i
∂u

∂t
= −1

2

∂2u

∂x2
= |u|2u+ iΓu (D.1)

To discretize the equation, we use forward-time and central-space meshes and label

the time-mesh interval ∆t and the space-mesh interval ∆x. For example, the time

derivative term on the left side of (D.1) is

∂u

∂t
≃ un+1

k − un
k

∆t
(D.2)

where the superscripts n + 1 and n label the time step with n(= 1, · · · , N) as the

current time step, and the subscript k(= 1, · · · , K) labels the central space point.

The last term on the right hand side of (D.1) is represented by its central space
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point, but average of forward time steps:

u ≃ un+1
k + un

k

2
(D.3)

and similarly the second term:

|u|3 ≃ |u
n+1
k |3 + |un

k |3
2

(D.4)

As for the second spatial derivative term
∂2u

∂x2
, we firstly write the standard central-

space derivative at current time step n:

∂2u

∂x2
≃ un

k+1 − un
k + un

k−1

∆x2
(D.5)

then replace every term un by its forward time average (un + un+1)/2:

∂2u

∂x2
≃ un

k+1 − un
k + un

k−1

2∆x2
+

un+1
k+1 − un+1

k + un+1
k−1

2∆x2
(D.6)

Define the diffusion number, which is dimensionless and positive

λ =
∆t

∆x2
(D.7)

and collect all discrete expression for (D.1), we have now

2i(un+1
k − un

k) =−
λ

2
(un+1

k+1 − un+1
k + un+1

k−1) + ∆t
(
|un+1

k |3 + iΓun+1
k

)

− λ

2
(un

k+1 − un
k + un

k−1) + ∆t
(
|un

k |3 + iΓun
k

)
(D.8)

Group the linear forward time steps n+1 to one side, while the current time steps

n and higher orders of n+ 1 to the other side:

λ

2
un+1
k−1 +

[
2i−

(
λ

2
+ iΓ∆t

)]
un+1
k +

λ

2
un+1
k−1

=− λ

2
un
k−1 +

[
2i+

(
λ

2
+ iΓ∆t

)]
un
k −

λ

2
un
k−1 +∆t

(
|un+1

k |3 + |un
k |3
)

(D.9)
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To update all spatial points k = 1, · · · , K for time step n + 1, the previous time

step n values are used, as illustrated in Fig. D.1. Define 2Λ ≡ λ

2
+ iΓ∆t and use

x

t

n+ 1
Unknown

n
Known

n− 1
Known

k − 1 k k + 1

Figure D.1 Crank-Nicolson scheme illustrated with every point representing a

value of un
k at time step n and position k. The circles are grid points that are

known at current time step and the squares are unknown points. The forward time

step point, indicated as a solid square (red), is determined by known points with

previous time step, indicated as shaded circles (blue), and unknown grid points,

indicated as hollow squares (red), at the same time step using an implicit method.
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the matrix form:



2(i− Λ)
λ

2
0 · · · 0 0 −λ

2
λ

2
2(i− Λ)

λ

2
· · · 0 0 0

0
. . .

. . .
. . . 0 0

0 · · · λ

2
2(i− Λ)

λ

2
· · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · 0
λ

2
2(i− Λ)

λ

2

−λ
2

0 · · · 0 0
λ

2
2(i− Λ)







u1

...

uk−1

uk

uk+1

...

uK




n+1

=




2(i+ Λ) −λ
2

0 · · · 0 0
λ

2

−λ
2

2(i+ Λ) −λ
2

· · · 0 0 0

0
. . .

. . .
. . . 0 0

0 · · · −λ
2

2(i+ Λ) −λ
2

· · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · 0 −λ
2

2(i+ Λ) −λ
2

λ

2
0 · · · 0 0 −λ

2
2(i+ Λ)







u1

...

uk−1

uk

uk+1

...

uK




n

+∆t







|u1|3
...

|uk−1|3
|uk|3
|uk+1|3

...

|uK |3




n

+




|u1|3
...

|uk−1|3
|uk|3
|uk+1|3

...

|uK|3




n+1


(D.10)

where the common time step stamps n and n+1 are labeled out side of the column

vectors in the matrix expression. Accordingly we can define matrix A, column
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vector U and matrix B to simplify the notation such that (D.10) is written as

AUn+1 = BUn +∆t
(
|Un+1|3 + |Un|3

)
(D.11)

where the superscripts n and n + 1 label time steps while 3 means to the third

power. Now the Un+1 update formula is

Un+1 = A−1BUn + A−1∆t|Un|3 + A−1∆t|Un+1|3 (D.12)

The right side of the update scheme, however, contains a forward time term |Un+1|3.

Therefore, an implicit iteration method is used to determine the new time step value

for Un+1. Namely, to achieve the next time step Un+1, we start with a current time

step value Un for all U terms on the right side and get a tentative value Un+1(i = 0)

on the left side for the i = 0 iteration. Then the Un+1(i = 0) value is used back

on the right side to get an improved result for the left side Un+1(i = 1). Keep the

iteration to improve the forward time Un+1 term until i = ∞ or the accuracy is

within a small range of tolerance.

The expected solution is a dark soliton and it is a hole imbedded in a non-zero

background. Thus the boundary condition for the numerical method, instead

of commonly used periodic boundary condition [110] or transparent boundary

condition [112], an inverse-periodic boundary condition is used, which has a pi

phase shift between the left end and right end of the grid. This inverse-periodic

boundary condition is represented in the matrix A and B by the off-diagonal corner
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Table D.1 Numerical solution with lossless metals.

c = 3× 108(m/s) Speed of light in vacuum
ε0 = 8.8542× 10−12(F/m) Vacuum permittivity
εd = 1 Dielectric constant of vacuum
ωp = 1.3814× 1016(rad/s) Plasma frequency of metal
ε∞ = 5.1 Background dielectric of metal
λ0 = 1500(nm) Laser wavelength

k0 =
2π

λ0
= 4.18879× 106(rad/m) Laser wavevector in vacuum

ω0 =
2πc

λ0
= 1.25664× 1015(rad/s) Angular frequency of laser

β0 = β(ω0) = 4.21013× 106(rad/m) SPP wavevector(∼ kspp)
β1 = β ′(ω0) = 3.38631× 10−9(s/m) Inverse of SPP group velocity (1/vg)
β2 = β ′′(ω0) = 9.27626× 10−26(s2/m) SPP GVD

χ = χ(3) = 2.8× 10−19(m2/V 2) Nonlinear susceptibility of metal

ν =
k0χ

(3)
√

ε3d√
16|εm0|(|εm0| − εd)3

Nonlinear SPP wavevector variant

= 2.95× 10−17(m/V 2)
Area= 0.01(mm2) Laser spot size
τ0 = 10(ps) Laser pulse duration
L0 = τ0/β1 = 2.95× 10−3(m) Pulse length, 2.95mm
LD = τ 20 /β2 = 1078(m) SPP Dispersion length
frep = 80(MHz) Pulsed laser repetition value

A0 =

√
β2√

ντ0 cos φ
= 5.6× 106(V/m) Threshold amplitude for fundamental soliton

Pave = 0.338(W ) Average power (pulsed laser)

elements, which possess an additional negative sign comparing to their ”neighbor”

elements.

The parameters used in the numerical calculation and the results are tabulated

in Tab.D.1 and Tab.D.2
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Table D.2 Numerical solution with lossy metals.

ωp = 1.3814× 1016(rad/s) Plasma frequency of silver
γp = 6.857× 1013(rad/s) Damping coefficient
ε∞ = 5.1 Background dielectric of metal
λ0 = 1500(nm) Laser wavelength
τ0 = 8(fs) Laser pulse duration
L0 = τ0/β1 = 2.36(µm) Pulse length
Lspp = 641(µm) SPP propagation length
LD = 741(µm) SPP Dispersion length

LNL =
1

Reν|A|2 = 679(µm) Nonlinear effect length

frep = 1(Hz) Pulsed laser repetition value

A0 =

√
β2√

ντ0 cos φ
= 7420(V/m) Threshold amplitude for fundamental soliton

Pave = 5.77(µW ) Pulse power
Γ = 2.31 Loss coefficient

%MatLab source code ;

%Source Code f o r Crank Nico l son Method − Crank Nico l son .m

c l e a r a l l ;

c l c ;

%c l f ;

%%

%Parameters

mesh_size = 1000;

total_step = 2000;

dx = 0 . 0 2 ;

dt = dx * dx / 5 . 0 ;

amplitude = 4 . 0 ;

%v e l o c i t y = 0 . 1 0 ;

grid_mem = 3 ;

Gamma = −0.0;%damping

%%

lambda=dt/dx/dx ;
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diag_ele = lambda − 1i*dt*Gamma ;

off_ele = −0.5* lambda ;

% diagna l −1sub +1super

i=[1: mesh_size 2 : mesh_size 1 : mesh_size −1] ;

j=[1: mesh_size 1 : mesh_size−1 2 : mesh_size ] ;%( i , j )−>s

s=[diag_ele *ones (1 , mesh_size ) off_ele *ones (1 , mesh_size−1) . . .

off_ele *ones (1 , mesh_size−1) ] ;

imagi = 1i* speye ( mesh_size ) ;

major = spar se (i , j , s ) ;

leftA = imagi + major ;

leftA (1 , mesh_size ) = −off_ele ;

leftA ( mesh_size , 1 ) = −off_ele ;

rightB = imagi − major ;

rightB (1 , mesh_size ) = off_ele ;

rightB ( mesh_size , 1 ) = off_ele ;

c l e a r diag_ele off_ele i j s ;

invA=inv ( leftA ) ;

%%

%Graph Options

n_lines = 10;

line_skip = max(1 , uint32 ( total_step / n_lines ) ) ;

n_points = 100 ;

point_skip = max(1 , mesh_size / n_points ) ;

%%

%I n i t i a l Condit ion

x = (−mesh_size /2+1: mesh_size /2) *dx ;

init_line = amplitude * tanh ( x ) ;

%i n i t l i n e = −2 i * amplitude *exp(−2 i * v e l o c i t y *x) .* sech (2* amplitude *x ) ;
%%

%Grid prepare

grids = [ init_line ; init_line ; init_line ] ;

%
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f o r time_step = grid_mem : 2* grid_mem
t3 = mod ( time_step − 1 , grid_mem ) + 1 ;%3

t2 = mod ( time_step − 2 , grid_mem ) + 1 ;%2

t1 = mod ( time_step − 3 , grid_mem ) + 1 ;%1

%FTCS

u2C = double ( grids (t2 , : ) ) ;%Center

u2L = double ( [ grids ( t2 , 1 ) grids ( t2 , 1 : end−1) ] ) ;%Lef t abrupt boundary cond i t i on

u2R = double ( [ grids ( t2 , 2 : end ) grids (t2 , end ) ] ) ;%Right

grids (t3 , : ) = double (1 i*lambda *(2* u2C−(u2L+u2R ) ) + . . .

(1+2i*dt*u2C .* conj ( u2C ) ) .* u2C ) ;
end

c l e a r t3 t2 t1 u2C u2L u2R

water = abs ( grids ( grid_mem , 1 : point_skip : mesh_size ) ) ;

%%

%evo l u t i on

f i g u r e (1) ;

c l f ;

p l o t (x , abs ( grids ( grid_mem , : ) ) )

hold on ;

f o r time_step = grid_mem : total_step

t3 = mod ( time_step − 1 , grid_mem ) + 1 ;%3 today

t2 = mod ( time_step − 2 , grid_mem ) + 1 ;%2 yes terday

t1 = mod ( time_step − 3 , grid_mem ) + 1 ;%1 the day be f o r e yes te rday

u2 = grids ( t2 , : ) ;

%Du Fort

% alpha = double (1 i /2/ dt + 1/dx/dx ) ;

% beta = double (1 i /2/ dt − 1/dx/dx ) ;

% u2L = double ( [ g r i d s ( t2 , 1 ) g r i d s ( t2 , 1 : end−1) ] ) ;%Lef t −

% u2R = double ( [ g r i d s ( t2 , 2 : end ) g r i d s ( t2 , end ) ] ) ;%Right

% u2C = gr i d s ( t2 , : ) ;

% u1C = double ( g r i d s ( t1 , : ) ) ;%Center

% gr i d s ( t3 , : ) = double ( ( beta *u1C + (u2L+u2R) /dx/dx − . . .
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%2*u2C .* conj (u2C) .*u2C ) / alpha ) +1 i *Gamma*u2C/alpha ;

%

%Crank Nicol son

rightF1 = u2*rightB . ' ;
rightF2 = 0*dt .* u2 .* conj ( u2 ) .* u2 ;

rightFixed = rightF1+rightF2 ;

% vnewU=[u2 ; u2 ] ;% dimension r e s e r v a t i o n

% t o l e r = 1e−12;% to l e r ance

% i t e r o l d = 1 ;

% i t e r new = 2 ;

% e r r t = 1 ;

% whi le ( e r r t > t o l e r )

% oldU = vnewU( i t e r o l d , : ) ;

% rh s i d e = r ightF ixed + dt *oldU .* conj ( oldU ) .* oldU ;

% vnewU( i te r new , : ) = invA* rhs ide ' ;
% e r r t = max( abs ( (vnewU ( 1 , : )−vnewU ( 2 , : ) ) ) ) ;

% i t e r n ew = 3 − i t e r n ew ;

% i t e r o l d = 3 − i t e r o l d ;

% end

% gr i d s ( t3 , : ) = vnewU( i te r new , : ) ;

% f o r i t e r = 1 :3

rhside = rightFixed + 0*dt*u2 .* conj ( u2 ) .* u2 ;

u2 = rhside *invA . ' ;
% end

grids (t3 , : ) = u2 ;

i f ( mod ( time_step , line_skip ) == 0)

d i sp ( time_step ) ;

f i g u r e (1) ;

p l o t (x , abs ( grids (t3 , : ) ) ) ;

water = [ water ; abs ( grids ( t3 , 1 : point_skip : mesh_size ) ) ] ;
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end

end

f i g u r e (2) ;

w a t e r f a l l ( water ) ;

hold off ;

%end
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APPENDIX E

C/C++ SOURCE CODE FOR FDTD METHOD

FDTDmain.cpp

#include <cstdlib>

#include <iostream>

// This program is a simulation f o r SPP propagation on a metal s u r f a c e .

// The simulation f o r linear metal is stable

// The simulation f o r nonlinear metal is not stable f o r large nonlinear

// susceptibilities , because metal has negative dielectric constant

//which does not compatible with a Kerr nonlinear index .

// Reference Book : Allen Taflonve , Susan C . Hagness , Computational electrodynamics ,

//The f i n i t e −difference time−domain method , 3rd edition , page 203

//This program is f o r : Complex vs Real calculation optional .

//This program is ALL r e a l valued . Complex numbers are computed by separating

// r e a l and imaginary parts

//Unit : D=H*k/omega
//unit : SI ( modified )

#include ”math . h”

#include ”stdio . h”

#include ”stdlib . h”

#include ”algorithm ”

124



#include ”time . h”

#include ”FDTDarray . h”

#include ”FDTDcubic . h”

#include ”FDTDtime . h”

#define SQR2 1.414216562373// sq r t (2)

#define PI 3.1415926535898

using namespace std ;

// parameters definition , caution : only constants are defined as extern variables

/*
Naming convention notes :

1 . upper case f o r grids values

2 . ” _0” f o r constants

3 . ” _func ” f o r functions

4 . ” _r” f o r relative , dimensionless values

5 . prefix ”d” means difference

6 . prefix ”C” f o r factors

7 . postscript ”c” f o r complex values*/ //

/*−−−−−−−−−−−−−−−−−−−−Universal Constants−−−−−−−−−−−−−−−−−−−−−*/
double const epsilon_0 =8.854187817 e−3;

//unit : nF/m , dielectric constant in vacuum . 1E−12−−>F/m

double const mu_0=0.4e3*PI ;

//unit : nH/m , permeability constant in vacuum . 1E−6−−>H/m

double const c_0=1/ sq r t ( epsilon_0 *mu_0 ) ;
//==0.29 , unit : nm/attosec , speed of light in vacuum . 1E−9/1E−18=1E9−−>m/s

double lambda_0=800;

//unit : nm , center optical wavelength . 1E−9−−>m

double const omega_0=2*PI*c_0/ lambda_0 ;

//unit : rad/attosec , central angular frequency , ( 1 E9*1E9=1E18−−>Hz ) ;

double const k_0=omega_0 /c_0 ;

//unit : /nm , wavevector . 1E9−−>/m

// typical optical (500 nm ) ˜ 2PI ( 0 . 0006 ) GGHz=2PI ( 6 . ( ( E−4) ) ) GGHz −>2PI ( 6 . E14 ) Hz
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double const epsilon_inf =5.1;

// f o r silver , use relative values !

//−−−−−−−−−−For Debye Model ( Optional )−−−−−−−−−−−−−

double const epsilon_sp =1;

//−16643.2* epsilon_0 ; // pF/m . static response , −16643.2 f o r silver

// double const epsilon_inf =1;//5.1* epsilon_0 ; // infinite response , 10 .9866 f o r silver

double const depsilon_p =0;

// epsilon_sp−epsilon_inf ; // difference

double const tau_p=9076.707;

// relaxation time : attosec ; 9 . 076707 e−15 s f o r silver

//−−−−−−−−For Lorentz Model ( Optional )−−−−−−−−−−−

double const delta_p=0;

//1E−4*omega_p ; // damping coefficient , TBA

//−−−−−−−−−−−For Drude Model ( in use )−−−−−−−−−−−−−−

double const omega_p=1.3814E−2;

// frequency of pole pair , GGHz

double const gamma_p=3.18786E−6;

// relaxation time , unit GGHz

//−−−−−−−−Kerr Nonlinearity ( optional )−−−−−−−−

//ref . Nonlinear Optics by Rober W . Boyd , 3rd Edition , Page 222 ,212

// double const N_atom=4e22 ; / / ( cm )−3 atom number density

// double const e_charge=1.6e−19;// Coulomb , unit charge

// double const m_atom=1;

double const alpha=1;// alpha=1 f o r All Kerr and None Raman

double const chi3M=2.8e−19;//2.8e2 ; / / 2 . 8 ;

//unit ( m2/V2 )−−−−−Ag : 2 . 8 e−19 ( m2/V2 ) , Au 7 . 6 e−19

//−−−−−−−−Raman Effect ( Optional )−−−−−−−−

//ref . Nonlinear Optics by Rober W . Boyd , 3rd Edition , Page 222

double const a0_bohr =0;//0 . 05 ; // unit : nm , Bohr radius ,

double const v_electron =0;// c_0 /137;// nm/attosec , typical electronic velocity

double const tau1=0;

//2*PI*a0_bohr / v_electron ; //143 attosec , or 1E−16 second ;
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//a single Lorentzian l i n e centered on the optical phonon frequency 1/t1 , TBA

double const tau2=0;// tau1 /1E4 ;

//and having a bandwidth of 1/t2 , the reciprocal phonon lifetime , TBA

double const omega_raman =0;// sq r t ( tau1*tau1+tau2*tau2 ) /tau1/tau2 ;

double const delta_raman =0;//1/tau2 ;

//−−−−−−−SPP parameters−−−−−−−−−−−−

double const drudedenom=(pow ( omega_0 , 4 )−pow ( omega_0 *gamma_p , 2 ) ) ;

double const epsilon_R=epsilon_inf−pow ( omega_p *omega_0 , 2 ) /drudedenom ;

// r e a l part of dielectric constant

double const epsilon_I=omega_0 *omega_p *omega_p *gamma_p /drudedenom ;

// imaginary part of dielectric constant

double const epsilon0R2=(1+epsilon_R ) *(1+ epsilon_R ) ; // squared

double const kx_R=k_0 *sqrtReal ( epsilon_R , epsilon_I ,1+ epsilon_R , epsilon_I ) ;

// wavevector , unit : 1/nm

double const kx_I=k_0 *sqrtImag ( epsilon_R , epsilon_I ,1+ epsilon_R , epsilon_I ) ;

double const ky0_R=k_0*sqrtReal (−1 ,0 ,1+ epsilon_R , epsilon_I ) ;

// decay constant , kappa , in air

double const ky0_I=k_0*sqrtImag (−1 ,0 ,1+ epsilon_R , epsilon_I ) ;

// oscillation in air

double const ky2_R=k_0*sqrtReal ( epsilon_I *epsilon_I−
epsilon_R *epsilon_R ,−2* epsilon_R *epsilon_I ,1+ epsilon_R , epsilon_I ) ;

// decay in metal

double const ky2_I=k_0*sqrtImag ( epsilon_I *epsilon_I−
epsilon_R *epsilon_R ,−2* epsilon_R *epsilon_I ,1+ epsilon_R , epsilon_I ) ;

// oscilation in metal

double const lambda=2*PI/kx_R ; // SPP wavelength along x ( propagation direction )

// double mu_r=1;// dimensionless , relative permeability constant to mu_0 ;

// double impedance_0 =376.730;// units : Ohm , s q r t ( epsilon_0 /mu_0 )

/*−−−−−−−−−−−−−−−−−−−−−−−−−FDTD parameters−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
int const Ntotal=100000;
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//100000;// time steps number>3 41 ,141 ,241

int filestep=Ntotal /10 ;

//file written every ”filestep ” steps . Max=Ntotal , Min=1

int const halfgridsI =500;

//just f o r convienence , half incident area

int const gridsI=halfgridsI *2 ;
// simulation fields area

int const halfgridsJ =150;

// simulation fields area

int const gridsJ=halfgridsJ *2 ;
// simulation fields area−−−−−−−−−−−>x ( propagation direction )

int const CPML_n=30;

// Perfect Match Lay GRIDS width (30 GRIDS on each side )

int const TFSF_n=2;

//Total−Field/Scattered−Field technique layer width

int const SII=gridsI+CPML_n*2+TFSF_n *2 ;
// space GRIDS number , x ax i s

int const SJJ=gridsJ+CPML_n*2+TFSF_n *2 ;
// space GRIDS number , y ax i s

//int SKK=SII ; // space GRIDS nubmer , z ax i s ( only f o r 3D , not in use )

//z (H−field direction f o r TM mode , dependency not in use f o r 2D case )

int const centerI=SII /2 ;

int const centerJ=SJJ /2 ;

int const metalJ=SJJ /2;// metal−air boundary f o r y

int const SFt=SJJ−CPML_n ; // Top boundary f o r Scattered fields

int const SFb=CPML_n ; // Bottom , Scattered Fields

int const SFl=CPML_n ; // Left , Scattered fields

int const SFr=SII−CPML_n ; // Right boundary f o r Scattered fields

int const TFt=SFt ; // centerJ+halfgridsJ ; // top , Total fields

int const TFb=SFb ; // centerJ−halfgridsJ ; // bottom , T fields

int const TFl=SFl+TFSF_n ; // centerI−halfgridsI ; // left

int const TFr=SFr ; // centerI+halfgridsI ; // right
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int const Fileoffset=0*TFSF_n+0*CPML_n ; // writing index

int const nonlinearM =100;// iteration loop number f o r nonlinear case 3 ;

double const ss_0=1/SQR2 ;

// stablity constant f o r 2D case , dt half index shall be considered

// double const omega_0=2*PI *1000E−6;

// double const lambda_0=2*PI*c_0/omega_0 ;

short Nlambday=50;// grids sampling density , at least 20 ,

short Nlambdax=200;// related to dt calculation , at least 50

double dymax=lambda_0 /Nlambday ;

double dxmax=lambda_0 /Nlambdax ;

double maxVSmin=lambda_0 *ky2_R ;

// ratio of dmax : dmin , wavelength / penetration in metal , ˜10

int varygrade_n =40;// number of vary nonuniform grids f o r metal

int mingrade_n =50;// number of minimun grids

double dxmin=dxmax ; //* pow ( gradeRatex , gradeMinLeft−gradeLeft ) ;

double dymin=dymax /maxVSmin ; //* pow ( gradeRatey , gradeMinDown−gradeDown ) ;

double gradeRatex =1;

double gradeRatey=pow ( maxVSmin , 1 . 0 / varygrade_n ) ;

//make sure adjacent cells width ratio between 0.5˜2

double const dt=1.0/(c_0 * s q r t (1/ dxmin/dxmin+1/dymin/dymin ) ) ;

//unit : atto second , use the smaller cell value , maximum dt value

double const phi=0;

//unit : radian , angle of incidence wave vector to x−axi s ,

//−90˜90 degree f o r this program

//******* FDTD extern parameters end here *******************/
// f o r units , c : 0 . 3 nm/attosecond , dt : attosec , dx : nm , f : 1 MTHz

double const a_debye=0;//(2* tau_p−dt ) /(2* tau_p+dt ) ;

double const b_debye=0;// epsilon_0 *depsilon_p *dt /(2* tau_p+dt ) ;
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double const a_lorentz=0;//(2− omega_p *omega_p *dt*dt ) /( delta_p *dt+1) ;

double const b_lorentz =0;//( delta_p *dt−1) /( delta_p *dt+1) ;

double const c_lorentz=0;

//( epsilon_0 *depsilon_p *omega_p *omega_p *dt*dt ) /( delta_p *dt+1) ;

double const drudeFDTDdenom=2+dt*gamma_p ; // denominator in P [ n+1] calculation

double const a_drude=4/drudeFDTDdenom ;

double const b_drude=(dt*gamma_p −2)/drudeFDTDdenom ;

double const c_drude=epsilon_0 *2* omega_p *omega_p *dt*dt/drudeFDTDdenom ;

// epsilon_0 included !

double const a_raman=0;//(2− omega_raman *omega_raman *dt*dt ) /( delta_raman *dt+1) ;

double const b_raman=0;//( delta_raman *dt−1) /( delta_raman+1) ;

double const c_raman=0;

//((1− alpha ) *chi3* omega_raman * omega_raman *dt*dt ) /( delta_raman *dt+1) ;

int SFflag ( int ii , int jj ) ;

// Boolean f l a g . True 1 : ii , jj in scattered fields area . False 0 : not

int TFflag ( int ii , int jj ) ;

// Boolean f l a g . True 1 : ii , jj in total fields area . False 0 : not

int CPMLflag ( int ii , int jj ) ;

// Boolean f l a g . True 1 : ii , jj in CPML area . False 0 : not

int Metalflag ( int ii , int jj ) ;

int Airflag ( int ii , int jj ) ;

/** MAIN ********************************************************/
int main ( ) {// r eturn value=1: e r r o r . r e turn value=0: normal exit .

int nn=0;

int ii=0;

int jj=0;//ii , jj f o r space , nn f o r time

int pp=0;// f o r pole loops

int np0=0,np1=1,np2=2;// parity of nn , as time index f l a g

double nT=2*PI/omega_0 /dt ; // period of plane wave , in terms of time steps .

int FileFlag=0;
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double ydis=0;// abs distance to orgin point x=0,y=0

// double xdis=0;

double ** Hzin=array2D (2 , SJJ+1) ; / / 1 . Incident wave source , ADE

double ** Eyin=array2D (2 , SJJ+1) ; / / 2 . Incident wave source , ADE

double *** Hz=array3D (3 , SII+1,SJJ+1) ;

//3 . space cell [ 2 ] [ x−g r i d index ] [ y−g r i d index ] f o r Hz which takes the edges

double *** Ey=array3D (3 , SII+1,SJJ+1) ; / / 4 . space cell [ 2 ] [ x ] [ y ] f o r Ey ,

double *** Ex=array3D (3 , SII+1,SJJ+1) ; / / 5 .

double *** Dy=array3D (3 , SII+1,SJJ+1) ; / / 6 . 2 Displacement y

double *** Dx=array3D (3 , SII+1,SJJ+1) ; / / 7 . 2 Displacement x

double *** Hzx=array3D (3 , SII+1,SJJ+1) ; / / 8 . Hz component

double *** Hzy=array3D (3 , SII+1,SJJ+1) ; / / 9 . Hz component

double *** Px_Debye=array3D (3 , SII+1,SJJ+1) ;//10 , polarization terms

double *** Px_Lorentz=array3D (3 , SII+1,SJJ+1) ;//11

double *** Px_Drude=array3D (3 , SII+1,SJJ+1) ;//12

double *** Py_Drude=array3D (3 , SII+1,SJJ+1) ;//13

double *** Px_Kerr=array3D (3 , SII+1,SJJ+1) ;//14

double *** Px_Raman=array3D (3 , SII+1,SJJ+1) ;//15

double *** Py_Debye=array3D (3 , SII+1,SJJ+1) ;//16

double *** Py_Lorentz=array3D (3 , SII+1,SJJ+1) ;//17

double *** Py_Kerr=array3D (3 , SII+1,SJJ+1) ;//18

double *** Py_Raman=array3D (3 , SII+1,SJJ+1) ;//19

double *** Sp=array3D (3 , SII+1,SJJ+1) ;//20

double ** epsilon=array2D ( SII+1,SJJ+1) ;

//21. dimensionless , relative dielectric constant

double **mu=array2D ( SII+1,SJJ+1) ;

//22. dimensionless , relative permeability

double *aax=array1D ( SII+1) ; double *bbx=array1D ( SII+1) ;
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double *ccx=array1D ( SII+1) ;//23 CPML coefficients

double *aay=array1D ( SJJ+1) ; double *bby=array1D ( SJJ+1) ;

double *ccy=array1D ( SJJ+1) ;//24 CPML coefficients

// double *a_Hz=array1D ( SII+1) ; double *b_Hz=array1D ( SII+1) ;

// double *c_Hz=array1D ( SII+1) ;// CPML coefficients

double *kkx=array1D ( SII+1) ; double *kky=array1D ( SJJ+1) ;

// double *k_Hz=array1D ( SII+1) ;//25 CPML coefficients

double *sigmax=array1D ( SII+1) ; / / 2 6 . conductivity component , CPML terms

double *sigmay=array1D ( SJJ+1) ; / / 2 7 . conductivity component

// double ** sigmastarx=array2D ( SII+1,SJJ+1) ;

//27 . 1 . magnetic loss component ( fictional )

double *** psi_dyHz=array3D (3 , SII+1,SJJ+1) ; / / 2 8 . CPML

double *** psi_dxHz=array3D (3 , SII+1,SJJ+1) ; / / 2 9 . CPML

double *** psi_dxEy=array3D (3 , SII+1,SJJ+1) ; / / 3 0 . CPML

double *** psi_dyEx=array3D (3 , SII+1,SJJ+1) ; / / 3 1 . CPML

double *dx=array1D ( SII+1) ;

//32. units : nm , grids s i z e , 1/ Nlambday of wavelength 500nm ,

// typical optical value (500 nm ) ˜ 25nm

double *dy=array1D ( SJJ+1) ;//33

double *hxi=array1D ( SII+1) ;//340 dual edge

double *hyj=array1D ( SJJ+1) ;//35

double *xx=array1D ( SII+1) ;//36 abs x−ax i s value

double *yy=array1D ( SJJ+1) ;//37

double * HsourceAmp=array1D ( SII+1) ; / / 3 8 . output terms

double *EHphase=array1D ( SII+1) ; / / 3 9 . shift phase to match E

double ** HzAmp=array2D ( SII+1,SJJ+1) ;

//40. Average intensity of Hz , 2 periods average after being in steady state

double ** ExAmp=array2D ( SII+1,SJJ+1) ; / / 4 1 .

double ** EyAmp=array2D ( SII+1,SJJ+1) ; / / 4 2 .
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double *** ET2=array3D (3 , SII+1,SJJ+1) ; //43 . 4 | E |ˆ2

double ** DetectorsR4=array2D (6* ( int ) nT+2,SJJ+1) ;

// Detectors in r e a l time one Rightside 4/4 of SII

double ** DetectorsT=array2D (6* ( int ) nT+2,SII+1) ;// Detectors on Top

double ** DetectorsB=array2D (6* ( int ) nT+2,SII+1) ;// Detectors on Bottom

double ** DetectorsR1=array2D (6* ( int ) nT+2,SJJ+1) ;

// Detectors in r e a l time one Rightside 1/4 of SII position

double ** DetectorsR2=array2D (6* ( int ) nT+2,SJJ+1) ;

// Detectors in r e a l time one Rightside 2/4 of SII position

double ** DetectorsR3=array2D (6* ( int ) nT+2,SJJ+1) ;

// Detectors in r e a l time one Rightside 3/4 of SII position

FullCubicFormula cubicRoot ; // to solve f o r E from D analytically

FILE *fp_Hz ; /* declare a File Pointer f o r Hz */
FILE *fp_Ey ; /* declare a File Pointer f o r Ey */
FILE *fp_Ex ;

FILE* fp_ADE ;//1−D auxiliary grids ;

FILE *fp_info ; // additional i n f o file

FILE* fp_Spectrum ;

short file_importflag=1;//1 f o r import data to continue

short file_exportflag=0;//1 f o r ready to export a l l final fields data

short file_fullflag=0;//1 f o r additional files output

double Hup , Hdown , Hleft , Hright ; // f o r r e a l values : up , down , right , left

double Eup , Edown , Eleft , Eright ;

// substitution f o r Hz and E ' s in Yee formulae ,

// especially f o r TFSF_n calculation

int distance_n =0;

// distance in terms of cell number , from a point to bottom left corner of TF
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/*** Startline of main program body−−−−−−−−−−−−−−−−−−−−−−*/
/***** Startline of ALL cell value initialization−−−−−−−*/
/******* Startline of nonuniform cell generator−−−−−−−−*/
i f ( ( gradeRatey >=1.4) | | ( gradeRatey <=0.6) ){

cout<<gradeRatey<<endl ;

cout<<

”Varying cell step too big ! Verify parameters f o r \

non−uniform grids !\ n\n ” ;

cout<<”Press 'q ' to quit , or others to continue .\ n\n ” ;

char gradequit ;

cin>>gradequit ;

i f ( gradequit== 'q ' )
exit (0) ;

}

f o r ( ii=0;ii<=SII ; ii++){//dx , hxi initialization to uniform g r i d value

dx [ ii ]=dxmax ; // dx , dy are dividing Hz field

}

f o r ( jj=0;jj<=SJJ ; jj++){//dy , hyj initialization to uniform g r i d value

dy [ jj ]=dymax ;

}

/* i f (0 ) {// nonuniform g r i d mesh , x

f o r ( ii=gradeLeft ; ii<gradeMinLeft ; ii++){// grade down

dx [ ii ]=dxmax *pow ( gradeRatex , ii−gradeLeft ) ;

}

f o r ( ii=gradeMinLeft ; ii<gradeMinRight ; ii++){//min basin

dx [ ii ]=dxmin ;

}

f o r ( ii=gradeMinRight ; ii<gradeRight ; ii++){// grade up

dx [ ii ]=dxmax *pow ( gradeRatex , gradeRight−ii ) ;

}
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}// i f , x*/ int levelYcenter=centerJ ; // basin valley center

int levely0=levelYcenter−mingrade_n−varygrade_n ; // varying low limit

int levely1=levelYcenter−mingrade_n ; // basin low edge

int levely2=levelYcenter+mingrade_n ; // basin high edge

int levely3=levelYcenter+mingrade_n+varygrade_n ; // varying high limit

i f (1 ) {// nonuniform grids , y

f o r ( jj=levely0 ; jj<levely1 ; jj++){// low , dy decreasing

dy [ jj ]=dymax *pow ( gradeRatey , levely0−jj ) ;

// cout<<jj<<”\t”<<dy [ jj]<<endl ;

}

f o r ( jj=levely1 ; jj<levely2 ; jj++){// middle , , dy const

dy [ jj ]=dymin ;

// cout<<jj<<”\t”<<dy [ jj]<<endl ;

}

f o r ( jj=levely2 ; jj<levely3 ; jj++){// high , dy increasing

dy [ jj ]=dymax *pow ( gradeRatey , jj−levely3 ) ;

// cout<<jj<<”\t”<<dy [ jj]<<endl ;

}

}// i f y

f o r ( ii=1;ii<=SII ; ii++){//dx , hxi initialization to uniform g r i d value

hxi [ ii ]=( dx [ ii ]+dx [ ii−1]) /2;// hxi , hyj are dividing Ex , Ey fields

xx [ ii ]=xx [ ii−1]+dx [ ii ] ;

}

hxi [ 0 ]= dx [ 0 ] ;

f o r ( jj=1;jj<=SJJ ; jj++){//dy , hyj initialization to uniform g r i d value

hyj [ jj ]=( dy [ jj ]+dy [ jj−1]) /2 ;

yy [ jj ]=yy [ jj−1]+dy [ jj ] ;

}

hyj [ 0 ]= dy [ 0 ] ;
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double dxTFl=dx [ TFl ] ; / / f o r Hz correction

double hxiTFl_1=hxi [ TFl −1] ;// f o r Dy correction

/*−−end of nonuniform cell generator ***********************/
/***** start of CPML parameters−−−−−−−−−−−−−−−−−−−−−−−*/
double sigma_max =0.0005;//0.08 −0.0003

double kkx_max =1.50;//s=1/(k_w+sigma_w /( a_w+j omega epsilon_0 ) ) , w=x , y , z

double aax_max =0.001;//keep this term zero f o r most cases !

f o r ( ii=0;ii<=SII ; ii++){

i f ( ii<=SFl ) {// CPML left side

double powerleft=pow ( ( double ) ( SFl−ii ) /CPML_n , 2 ) ;

kkx [ ii ]=1+(kkx_max −1)*powerleft ;

sigmax [ ii ]=powerleft * sigma_max ;

aax [ ii ]=aax_max *pow ( ( ( double ) ii ) /CPML_n , 2 ) ;

bbx [ ii ]=exp(−dt *( sigmax [ ii ] / epsilon_0 /kkx [ ii ]+aax [ ii ] / epsilon_0 ) ) ;

ccx [ ii ]=( bbx [ ii ]−1) /( kkx [ ii ]+kkx [ ii ]* kkx [ ii ]* aax [ ii ] / sigmax [ ii ] ) ;

i f ( sigmax [ ii ]==0)

ccx [ ii ]=0;

}

e l s e i f ( ii>=SFr ) {// CPML right side

double powerright=pow ( ( double ) (ii−SFr ) /CPML_n , 2 ) ;

sigmax [ ii ]=powerright *sigma_max ;

kkx [ ii ]=1+(kkx_max −1)*powerright ;

aax [ ii ]=aax_max *pow ( ( double ) ( SII−ii ) /CPML_n , 2 ) ;

bbx [ ii ]=exp(−dt *( sigmax [ ii ] / epsilon_0 /kkx [ ii ]+aax [ ii ] / epsilon_0 ) ) ;

ccx [ ii ]=( bbx [ ii ]−1) /( kkx [ ii ]+kkx [ ii ]* kkx [ ii ]* aax [ ii ] / sigmax [ ii ] ) ;

i f ( sigmax [ ii ]==0)

ccx [ ii ]=0;

}

e l s e {//0

sigmax [ ii ]=0;

kkx [ ii ]=1;
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aax [ ii ]=0;

}

}// f o r ii

double kkxTFl=kkx [ TFl ] ; / / f o r Hz , E correction

f o r ( jj=0;jj<=SJJ ; jj++){

i f ( jj<=SFb ) {// CPML bottom

double powerbottom=pow ( ( double ) ( SFb−jj ) /CPML_n , 2 ) ;

sigmay [ jj ]=powerbottom *sigma_max ;

kky [ jj ]=1+(kkx_max −1)*powerbottom ;

aay [ jj ]=aax_max *pow ( ( ( double ) ( SFb−1)−jj ) /CPML_n , 2 ) ;

bby [ jj ]=exp(−dt *( sigmay [ jj ] / epsilon_0 /kky [ jj ]+aay [ jj ] / epsilon_0 ) ) ;

ccy [ jj ]=( bby [ jj ]−1) /( kky [ jj ]+kky [ jj ]* kky [ jj ]* aay [ jj ] / sigmay [ jj ] ) ;

i f ( sigmay [ jj ]==0)

ccy [ jj ]=0;

}

e l s e i f ( jj>=SFt ) {// CPML top

double powertop=pow ( ( double ) ( jj−SFt ) /CPML_n , 2 ) ;

sigmay [ jj ]=powertop *sigma_max ;

kky [ jj ]=1+(kkx_max −1)*powertop ;

aay [ jj ]=aax_max *pow ( ( double ) ( SJJ−jj ) /CPML_n , 2 ) ;

bby [ jj ]=exp(−dt *( sigmay [ jj ] / epsilon_0 /kky [ jj ]+aay [ jj ] / epsilon_0 ) ) ;

ccy [ jj ]=( bby [ jj ]−1) /( kky [ jj ]+kky [ jj ]* kky [ jj ]* aay [ jj ] / sigmay [ jj ] ) ;

i f ( sigmay [ jj ]==0)

ccy [ jj ]=0;

}

e l s e {

sigmay [ jj ]=0;

kky [ jj ]=1;

aay [ jj ]=0;

}

}// f o r jj
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double chi3 [ SII+1]={0};

f o r ( ii=TFl ; ii<=SII ; ii++){

chi3 [ ii ]=chi3M ;

//(1− exp(−(ii−TFl ) *( ii−TFl ) /1.0/ Nlambdax /Nlambdax ) ) *chi3M ;

// chi3 ramp up

}

f o r ( ii=0;ii<=SII ; ii++){

f o r ( jj=0;jj<=SJJ ; jj++){

epsilon [ ii ] [ jj ]=1 .0 ; // medium initialization , relative values

mu [ ii ] [ jj ]=1 . 0 ;

}// f o r ( jj )

}// f o r ( ii )

/*−−−−−end of CPML parameters ************************/
/*−−−−−Endline of ALL cell initialization ***********/
/****** Startline of FDTD major loops−−−−−−−−−−*/
double smoothupHc =0.001;

// unit : V/m artificial factor to tune up H field slowly

double smoothupEc=smoothupHc ;

// together with chi (3) m2/v2 , the intensity unit is W/m2

double smoothupH =0;// ini .

double smoothupE =0;// ini .

double decayfacy =1;// ini . along y−axi s , decay term f o r SP

double phase_kx=atan2 ( kx_I , kx_R ) ;

// phase difference due to wavevector Qx between H and E fields

double abs_kx=sqr t ( kx_I*kx_I+kx_R*kx_R ) ;
// absolute value of wavevector Qx

short rampup=4;// total time steps to ramp up the fields

double *chi3ii ; // nonlinear susceptibility

double *Exnp1 ,* Hznp1 ,* Eynp1 ; // temp variables to speed up loop calculation

double *Exnp2 ,* Hznp2 ,* Eynp2 ; // temp variables to speed up loop calculation
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double *Dxnp2 ,* Dynp2 ; // temp variables to speed up loop calculation

double *Px_Drudenp2 ,* Py_Drudenp2 ;

double *ET2np1 ,* ET2np2 ;

double *psi_dyHznp1 ,* psi_dxHznp1 ;

double *psi_dyHznp2 ,* psi_dxHznp2 ;

double *hyjjj ,* hxiii ,* dxii ,* dyjj ;

double *Px_Kerrnp1 ,* Py_Kerrnp1 ;

double *psi_dxEynp0 ,* psi_dyExnp0 ;

double yymetalJ=yy [ metalJ ] ;

//*************************************************
f o r ( nn=1;nn<=Ntotal ; nn++){// time loop

np0=(nn−1)%3 ; np1=nn%3;np2=(nn+1)%3;// pa r i t y convert ion , 3−based f o r ADE

smoothupH=smoothupHc *(1−exp(−(double ) nn/rampup /nT ) ) ;

// f o r 1W laser on 2mmx2mm spot , field strength ˜1000 V/m

smoothupE=smoothupEc *(1−exp(−(nn+0.5)/rampup /nT ) ) ;

//Boyd , Nonlinear Optics , Page3 E=5.14 x10 ˆ11 V/m

f o r ( jj=0;jj<=metalJ ; jj++){// SPP source , in Metal

ydis=yy [ jj ]−yymetalJ ; // ydis<0

decayfacy=exp ( ky2_R*ydis ) ;
//Hz and Ey have the same y coordinates position

Hzin [ nn%2 ] [ j j ]=smoothupH* s i n ( omega 0*nn*dt ) *decayfacy ;

//Hz , at step n , position i//

Eyin [ nn%2 ] [ j j ]=smoothupE* s i n ( omega 0 *( nn+0.5)*dt+kx R*dxTFl*0.50−
phase_kx ) * decayfacy *abs_kx /omega_0 /epsilon_0 / epsilon_inf ;

//Dy , at step n+1/2 , position i−1/2

}

f o r ( jj=metalJ+1;jj<=SJJ ; jj++){// SPP source , in Air

ydis=yy [ jj ]−yymetalJ ; //

decayfacy=exp(−ky0_R*ydis ) ;
Hzin [ nn%2 ] [ j j ]=smoothupH* s i n ( omega 0*nn*dt ) *decayfacy ;
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//Hz , at step n , position i

Eyin [ nn%2 ] [ j j ]=smoothupE* s i n ( omega 0 *( nn+0.5)*dt+kx R*dxTFl*0.50−
phase_kx ) * decayfacy *abs_kx /omega_0 /epsilon_0 ;

//Dy , at step n+1/2 , position i−1/2

}

f o r ( ii=0;ii<=SII−1;ii++){// Terms w/o E [ n+1]

f o r ( jj=0;jj<=SJJ−1;jj++){

Hup=Hz [ np2 ] [ ii ] [ jj+1] ;//H , named relative to E

Hdown=Hz [ np2 ] [ ii ] [ jj ] ;

Hright=Hz [ np2 ] [ ii+1] [ jj ] ; / / H , named relative to E

Hleft=Hz [ np2 ] [ ii ] [ jj ] ;

chi3ii=&chi3 [ ii ] ;

ET2np1=&ET2 [ np1 ] [ ii ] [ jj ] ;

Exnp1=&Ex [ np1 ] [ ii ] [ jj ] ;

Eynp1=&Ey [ np1 ] [ ii ] [ jj ] ;

Px_Drudenp2=&Px_Drude [ np2 ] [ ii ] [ jj ] ;

Py_Drudenp2=&Py_Drude [ np2 ] [ ii ] [ jj ] ;

Px_Kerrnp1=&Px_Kerr [ np1 ] [ ii ] [ jj ] ;

Py_Kerrnp1=&Py_Kerr [ np1 ] [ ii ] [ jj ] ;

/*−−−Polarization calc starts−−−−−−−−−−−−−−*/
i f ( ( jj<=metalJ ) ) {// in metal

//−−−−−−terms include E [ n]−−−−−−−−−−−−−−* Px_Drudenp2=a_drude *Px_Drude [ np1 ] [ ii ] [ jj ]+b_drude *
Px_Drude [ np0 ] [ ii ] [ jj ]+c_drude *(* Exnp1 ) ;

// c_drude includes Epsilon_0 already* Py_Drudenp2=a_drude *Py_Drude [ np1 ] [ ii ] [ jj ]+b_drude *
Py_Drude [ np0 ] [ ii ] [ jj ]+c_drude *(* Eynp1 ) ;

// Px_Lorentz [ np2 ] [ ii ] [ jj ]=0;

// a_lorentz *Px_Lorentz [ np1 ] [ ii ] [ jj ]+b_lorentz *
// Px_Lorentz [ np0 ] [ ii ] [ jj ]+c_lorentz *Ex [ np1 ] [ ii ] [ jj ] ;

// Py_Lorentz [ np2 ] [ ii ] [ jj ]=0;
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// a_lorentz *Py_Lorentz [ np1 ] [ ii ] [ jj ]+b_lorentz

//* Py_Lorentz [ np0 ] [ ii ] [ jj ]+c_lorentz *Ey [ np1 ] [ ii ] [ jj ] ;

// Sp [ np2 ] [ ii ] [ jj ]=0;// a_raman *Sp [ np1 ] [ ii ] [ jj ]+b_raman *
//Sp [ np0 ] [ ii ] [ jj ]+c_raman *( Ex [ np1 ] [ ii ] [ jj ]* Ex [ np1 ] [ ii ] [ jj ]+

// Ey [ np1 ] [ ii ] [ jj ]* Ey [ np1 ] [ ii ] [ jj ] ) ;

//−−−−−−−−−−−terms include E [ n+1]−−−−−−−−−−−−−−−−−−−−−−

// Px_Debye [ np1 ] [ ii ] [ jj ]=0;

// a_debye * Px_Debye [ np0 ] [ ii ] [ jj ]+b_debye *( Ex [ np1 ] [ ii ] [ jj ]+

//Ex [ np0 ] [ ii ] [ jj ] ) ;

// Py_Debye [ np1 ] [ ii ] [ jj ]=0;

// a_debye * Py_Debye [ np0 ] [ ii ] [ jj ]+b_debye *( Ey [ np1 ] [ ii ] [ jj ]+

//Ey [ np0 ] [ ii ] [ jj ] ) ;* Px_Kerrnp1=alpha*epsilon_0 *(* chi3ii ) *(* ET2np1 ) *(* Exnp1 ) ;
// epsilon_0 included* Py_Kerrnp1=alpha*epsilon_0 *(* chi3ii ) *(* ET2np1 ) *(* Eynp1 ) ;

// Px_Raman [ np1 ] [ ii ] [ jj ]=epsilon_0 *Ex [ np1 ] [ ii ] [ jj ]*
//Sp [ np1 ] [ ii ] [ jj ] ;

// Py_Raman [ np1 ] [ ii ] [ jj ]=epsilon_0 *Ey [ np1 ] [ ii ] [ jj ]*
//Sp [ np1 ] [ ii ] [ jj ] ;

}// metal

e l s e {// in air

//−−−−−−−−−−terms include E [ n ]

// * Px_Drudenp2 =0;

// * Py_Drudenp2 =0;

// Px_Lorentz [ np2 ] [ ii ] [ jj ]=0;

// Py_Lorentz [ np2 ] [ ii ] [ jj ]=0;

// Sp [ np2 ] [ ii ] [ jj ]=0;

//−−−−−−−−−−−terms include E [ n+1]

// Px_Debye [ np1 ] [ ii ] [ jj ]=0;

// Py_Debye [ np1 ] [ ii ] [ jj ]=0;

// * Px_Kerrnp1 =0;
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// * Py_Kerrnp1 =0;

// Px_Raman [ np1 ] [ ii ] [ jj ]=0;

// Py_Raman [ np1 ] [ ii ] [ jj ]=0;

}// air

}

}

/*−−−−−−−Polarization calc ends−−−−−−−−−−−−−−−−−−−−−*/
/*−−−−−−−−−Displacement field starts−−−−−−−−*/
f o r ( ii=0;ii<=SII ; ii++){// Dx loop−−−−−−−−−−−−−−−−

f o r ( jj=0;jj<=SJJ−1;jj++){

Hup=Hz [ np2 ] [ ii ] [ jj+1] ;//H , named relative to E

Hdown=Hz [ np2 ] [ ii ] [ jj ] ;

psi_dyHznp1=&psi_dyHz [ np1 ] [ ii ] [ jj ] ;

psi_dyHznp2=&psi_dyHz [ np2 ] [ ii ] [ jj ] ;

hyjjj=&hyj [ jj ] ;*psi_dyHznp2=bby [ jj ]* (* psi_dyHznp1 )+ccy [ jj ] * ( Hup−Hdown ) /(* hyjjj ) ;
// CPML term , 0 unless in CPML layer

Dx [ np2 ] [ ii ] [ jj ]=Dx [ np1 ] [ ii ] [ jj ]+dt*
( ( Hup−Hdown ) /(* hyjjj ) /kky [ jj ]+(* psi_dyHznp2 ) ) ;

}// f o r ( jj )

}//E loop ( ii )

f o r ( ii=0;ii<=SII−1;ii++){// Dy loop−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r ( jj=0;jj<=SJJ ; jj++){

Hright=Hz [ np2 ] [ ii+1] [ jj ] ; / / H , named relative to E

Hleft=Hz [ np2 ] [ ii ] [ jj ] ;

psi_dxHznp2=&psi_dxHz [ np2 ] [ ii ] [ jj ] ;

psi_dxHznp1=&psi_dxHz [ np1 ] [ ii ] [ jj ] ;

hxiii=&hxi [ ii ] ;
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*psi_dxHznp2=bbx [ ii ]* (* psi_dxHznp1 )+

ccx [ ii ] * ( Hright−Hleft ) /(* hxiii ) ; // CPML term

Dy [ np2 ] [ ii ] [ jj ]=Dy [ np1 ] [ ii ] [ jj ]−dt*
( ( Hright−Hleft ) /(* hxiii ) /kkx [ ii ]+(* psi_dxHznp2 ) ) ;

}// f o r ( jj )

}//E loop ( ii )

f o r ( jj=SFb ; jj<=SFt ; jj++){// Dy TFSF source correction , Hz : TF−>SF

Hright=Hz [ np2 ] [ TFl ] [ jj ]−Hzin [ nn%2 ] [ j j ] ; / /H, named r e l a t i v e to E

Hleft=Hz [ np2 ] [ TFl −1] [ jj ] ;

Dy [ np2 ] [ TFl −1] [ jj ]=Dy [ np1 ] [ TFl −1] [ jj ]+dt *( Hleft−Hright ) / hxiTFl_1 ;

// Dy [ np2 ] [ TFl −1] [ jj ]=( exp(−tau *0.5* dt ) *Dy [ np1 ] [ TFl −1] [ jj ]+

//dt *( Hleft−Hright ) /hxi [ TFl−1]) /( exp ( tau *0.5* dt ) ) ;
}

f o r ( ii=0;ii<=SII ; ii++){

//Ex Ey loop−−−−−−−−t=n+1/2−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r ( jj=0;jj<=SJJ ; jj++){

Exnp2=&Ex [ np2 ] [ ii ] [ jj ] ; / / to be calc

Eynp2=&Ey [ np2 ] [ ii ] [ jj ] ; / / to be calc

Dxnp2=&Dx [ np2 ] [ ii ] [ jj ] ; / / f i x , from H

Dynp2=&Dy [ np2 ] [ ii ] [ jj ] ; / / f i x , from H

i f ( Metalflag ( ii , jj ) ){

ET2np2=&ET2 [ np2 ] [ ii ] [ jj ] ;

// ET2np1=&ET2 [ np1 ] [ ii ] [ jj ] ;

Px_Drudenp2=&Px_Drude [ np2 ] [ ii ] [ jj ] ;

Py_Drudenp2=&Py_Drude [ np2 ] [ ii ] [ jj ] ;

chi3ii=&chi3 [ ii ] ;

double cubic_a0 , cubic_a , cubic_b , cubic_c , AA ; // AA=E*E
cubic_a0=square (* chi3ii ) ;
cubic_a=2*epsilon_inf *(* chi3ii ) ;

cubic_b=epsilon_inf *epsilon_inf ;
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cubic_c=−(square (* Dxnp2−*Px_Drudenp2 )+square (* Dynp2−*Py_Drudenp2 ) ) /( epsilon_0 *epsilon_0 ) ;

cubicRoot . setFormula ( cubic_a0 , cubic_a , cubic_b , cubic_c ) ;

AA=r ea l ( cubicRoot . cubicRoot1 ( ) ) ;*ET2np2=AA ;

// cout<<”a , b , c\t”<<cubic_a<<cubic_b<<cubic_c<<endl ;

// cout<<AA<<endl ;*Exnp2=((* Dxnp2 )−(*Px_Drudenp2 ) ) /epsilon_0 /

( epsilon_inf+(*chi3ii ) *AA ) ;*Eynp2=((* Dynp2 )−(*Py_Drudenp2 ) ) /epsilon_0 /

( epsilon_inf+(*chi3ii ) *AA ) ;
// *ET2np2=*ET2np1 ;

// f o r ( int mm=1;mm<=nonlinearM ; mm++){

//Ex nonlinear iteration , f o r P (w=w+w−w ) only

// double Dynp2compare ;

// Dynp2compare=*Dynp2 ;

//// f o r ( mm=0;fabs ( Dynp2compare−*Dynp2 ) >=0.0000; mm++){

// *Exnp2=(*Dxnp2/*−a_debye *Px_Debye [ np1 ] [ ii ] [ jj ]−

// b_debye *Ex [ np1 ] [ ii ] [ jj ]−Px_Lorentz [ np2 ] [ ii ] [ jj ]*/−
//(* Px_Drudenp2 ) ) /( epsilon_0 *epsilon_inf /*+b_debye*/+
//alpha *epsilon_0 *(* chi3ii ) *(* ET2np2 )/*+
// epsilon_0 *Sp [ np2 ] [ ii ] [ jj ]*/ ) ;

// *Eynp2=(*Dynp2/*−a_debye *Py_Debye [ np1 ] [ ii ] [ jj ]−

// b_debye *Ey [ np1 ] [ ii ] [ jj ]−Py_Lorentz [ np2 ] [ ii ] [ jj ]*/−
//(* Py_Drudenp2 ) ) /( epsilon_0 *epsilon_inf /*+
// b_debye*/+alpha*epsilon_0 *(* chi3ii ) *(* ET2np2 )/*+
// epsilon_0 *Sp [ np2 ] [ ii ] [ jj ]*/ ) ;

// *ET2np2=(*Exnp2 ) *(* Exnp2 )+(*Eynp2 ) *(* Eynp2 ) ;
// Dynp2compare=*Eynp2 *( epsilon_0 * epsilon_inf+

//alpha *epsilon_0 *(* chi3ii ) *(* ET2np2 ) )+

//* Py_Drudenp2 ;

//compared , back calc value
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// i f ( ( nn>500)&&(jj==metalJ )&&(ii==TFl+10) ){

// cout<<”nn , ii , jj==”<<nn<<”\t”<<ii<<”\t”<<jj<<endl ;

// // system (” pause ”) ;

// cout<<”Ex , Ey”<<*Exnp2<<”\t”<<*Eynp2<<endl ;

// cout<<”Dynp2compare==”<<Dynp2compare<<endl ;

// cout<<”*Dynp2==”<<*Dynp2<<endl ;

// cout<<”Differ==”<<Dynp2compare−*Dynp2<<”\tOR \t”

//<<(Dynp2compare /(* Dynp2 )−1)*100<<”%”<<endl<<endl ;

// }// i f nn

// }// f o r ( mm iteration )

}// i f metalflag

e l s e i f ( Airflag (ii , jj ) ) {// in air*Exnp2=(*Dxnp2 ) /epsilon_0 ;*Eynp2=(*Dynp2 ) /epsilon_0 ;

}// e l s e i f Airflag

}// f o r ( jj )

}//E loop ( ii )

f o r ( ii=1;ii<=SII−1;ii++){// Hz loop−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r ( jj=1;jj<=SJJ−1;jj++){

Eright=Ey [ np2 ] [ ii ] [ jj ] ;

Eleft=Ey [ np2 ] [ ii−1] [ jj ] ;

Eup=Ex [ np2 ] [ ii ] [ jj ] ;

Edown=Ex [ np2 ] [ ii ] [ jj−1] ;

psi_dxEynp0=&psi_dxEy [ np0 ] [ ii ] [ jj ] ;

psi_dyExnp0=&psi_dyEx [ np0 ] [ ii ] [ jj ] ;

dxii=&dx [ ii ] ;

dyjj=&dy [ jj ] ;*psi_dxEynp0=bbx [ ii ]* psi_dxEy [ np2 ] [ ii ] [ jj ]+
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ccx [ ii ] * ( Eright−Eleft ) /(* dxii ) ; // CPML term*psi_dyExnp0=bby [ jj ]* psi_dyEx [ np2 ] [ ii ] [ jj ]+

ccy [ jj ] * ( Eup−Edown ) /(* dyjj ) ; // CPML term

Hz [ np0 ] [ ii ] [ jj ]=Hz [ np2 ] [ ii ] [ jj ]−

dt/mu_0 *((1/ kkx [ ii ] * ( Eright−Eleft ) /(* dxii )−
1/kky [ jj ] * ( Eup−Edown ) /(* dyjj )+*psi_dxEynp0−*psi_dyExnp0 ) ) ;

}// f o r ( jj )

}// Hz loop ( ii )

i f (1 ) {// Hz correction

f o r ( jj=SFb ; jj<=SFt ; jj++){// Hzx TFSF correction , Ey : SF−>TF

Eright=Ey [ np2 ] [ TFl ] [ jj ] ;

Eleft=Ey [ np2 ] [ TFl −1] [ jj ]+Eyin [ nn%2 ] [ j j ] ;

Eup=Ex [ np2 ] [ TFl ] [ jj ] ;

Edown=Ex [ np2 ] [ TFl ] [ jj−1] ;

Hz [ np0 ] [ TFl ] [ jj ]=Hz [ np2 ] [ TFl ] [ jj ]−

dt/mu_0 *((1/ kkxTFl *( Eright−Eleft ) /dxTFl−

1/kky [ jj ] * ( Eup−Edown ) /dy [ jj ]+psi_dxEy [ np0 ] [ TFl ] [ jj ]−

psi_dyEx [ np0 ] [ TFl ] [ jj ] ) ) ;

}

}

double *ExAmpii ,* EyAmpii ,* HzAmpii ;

i f ( nn>Ntotal−2*nT ){
// amplitude search , 2 period of time whi le being in steady state

f o r ( ii=0;ii<=SII ; ii++){

f o r ( jj=0;jj<=SJJ ; jj++){

ExAmpii=&ExAmp [ ii ] [ jj ] ;

EyAmpii=&EyAmp [ ii ] [ jj ] ;

HzAmpii=&HzAmp [ ii ] [ jj ] ;

// HsourceAmp [ jj ]=max( HsourceAmp [ jj ] , abs ( Hzin [ ( nn+1)%2 ] [ j j ] ) ) ;
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*ExAmpii=max( fabs ( Ex [ np2 ] [ ii ] [ jj ] ) ,* ExAmpii ) ;*EyAmpii=max( fabs ( Ey [ np2 ] [ ii ] [ jj ] ) ,* EyAmpii ) ;*HzAmpii=max( fabs ( Hz [ np0 ] [ ii ] [ jj ] ) ,* HzAmpii ) ;

}// jj

}// ii

}// amplitude search loop ends

i f ( nn>Ntotal −6*(int ) nT ) {// spectrum data detector

f o r ( jj=0;jj<=SJJ ; jj++){

DetectorsR4 [ nn−Ntotal+6*(int ) nT ] [ jj ]=Hz [ np0 ] [ TFr −1] [ jj ] ;

DetectorsR1 [ nn−Ntotal+6*(int ) nT ] [ jj ]=Hz [ np0 ] [ SII / 4 ] [ jj ] ;

DetectorsR2 [ nn−Ntotal+6*(int ) nT ] [ jj ]=Hz [ np0 ] [ SII / 2 ] [ jj ] ;

DetectorsR3 [ nn−Ntotal+6*(int ) nT ] [ jj ]=Hz [ np0 ] [ SII * 3 / 4 ] [ jj ] ;

}

f o r ( ii=0;ii<=SII ; ii++){

DetectorsT [ nn−Ntotal+6*(int ) nT ] [ ii ]=Hz [ np0 ] [ ii ] [ SFt −1] ;

DetectorsB [ nn−Ntotal+6*(int ) nT ] [ ii ]=Hz [ np0 ] [ ii ] [ SFb+1] ;

}

}

/*−−−−−Endline of FDTD major loops *************************/
/******* Startline of . dat file writing−−−−−−−−−−−−−−−*/
static clock_t lasttimeclock=clock ( ) ;

i f ( nn%10==0) {

cout<<”Time Step = ”<<nn<<endl ; // step screen display monitor

i f ( nn%50==0){

timer_yan ( Ntotal , nn , 5 0 , lasttimeclock ) ;

lasttimeclock=clock ( ) ;

}

}

FileFlag=((nn%f i l e s t e p==0)&&(nn!=0) ) ;

147



char namenumber [ 1 8 ] ; / / extension of output files

i f ( FileFlag ) {// Hz auto file writing

_itoa ( nn , namenumber , 1 0 ) ;

// convert time step into file name string , 10 based

strcat ( namenumber , ” . dat ”) ;

char file_Hz [ 18 ]=” Hz ” ;

strcat ( file_Hz , namenumber ) ; // define output ( data ) Hz

fp_Hz = fopen ( file_Hz , ”w ”) ;

// f p r i n t f ( fp_Hz , ” x−ax i s \ty−ax i s \tHz\n ”) ;

// f p r i n t f ( fp_Hz , ” nm\tnm\tA . U .\ n ”) ;

//Hz , column out put starts

f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii+=2){

f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj+=2){

f p r i n t f ( fp_Hz , ”%f \ t%f \ t%f \n” , xx [ i i ] , yy [ j j ] , Hz [ np2 ] [ i i ] [ j j ] ) ;

// column output format

}// f o r jj

}// f o r ii//Hz column output ends

//Hz output , matrix output format starts

/* f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj++){//

f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii++)

{

f p r i n t f ( fp_Hz , ”%f \ t ” ,Hz [ np2 ] [ i i ] [ j j ] ) ;

}// f o r ii

f p r i n t f ( fp_Hz , ”\ n ”) ;

}// f o r jj// matrix output end*/ printf (”\ t\t\tFile written :%s \n” , f i l e H z ) ;

//step indicator on screen

f c l o s e ( fp_Hz ) ;

}// file Hz writing ends ( i f )
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i f ( FileFlag ) {// Ey auto file writing

itoa (nn , namenumber , 1 0 ) ;

// convert time step into file name string , 10 based

strcat ( namenumber , ” . dat ”) ;

char file_Ey [ 18 ]=” Ey ” ;

strcat ( file_Ey , namenumber ) ; // define output ( data ) Ey

fp_Ey = fopen ( file_Ey , ”w ”) ;

// f p r i n t f ( fp_Ey , ” x−ax i s \ty−ax i s \tEy\n ”) ;

// f p r i n t f ( fp_Ey , ” nm\tnm\tA . U .\ n ”) ;

f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii+=2){

f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj+=2){

f p r i n t f ( fp_Ey , ”%l f \ t%l f \ t%l f \n” , xx [ i i ] , yy [ j j ] , Ey [ np2 ] [ i i ] [ j j ] ) ;

// column output format

}

}

// f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj++){// Ey output

// f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii++)

// {

// f p r i n t f ( fp_Ey , ”%f \ t ” ,Ey [ np2 ] [ i i ] [ j j ] ) ;

// }

// f p r i n t f ( fp_Ey , ”\ n ”) ;

//}

f c l o s e ( fp_Ey ) ;

}// file Ey writing ends ( i f )

i f ( FileFlag ) {// Ex auto file writing

itoa (nn , namenumber , 1 0 ) ;

149



// convert time step into file name string , 10 based

strcat ( namenumber , ” . dat ”) ;

char file_Ex [ 18 ]=” Ex ” ;

strcat ( file_Ex , namenumber ) ; // define output ( data ) Ex

fp_Ex = fopen ( file_Ex , ”w ”) ;

// f p r i n t f ( fp_Ex , ” x−ax i s \ty−ax i s \tEx\n ”) ;

// f p r i n t f ( fp_Ex , ” nm\tnm\tA . U .\ n ”) ;

f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii+=2){

f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj+=2){

f p r i n t f ( fp_Ex , ”%l f \ t%l f \ t%l f \n” , xx [ i i ] , yy [ j j ] , Ex [ np2 ] [ i i ] [ j j ] ) ;

// column output format

}

}

// f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj++){// Ex output

// f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii++)

// {

// f p r i n t f ( fp_Ex , ”%f \ t ” ,Ex [ np2 ] [ i i ] [ j j ] ) ;

// }

// f p r i n t f ( fp_Ex , ”\ n ”) ;

//}

f c l o s e ( fp_Ex ) ;

}// file Ex writing ends ( i f )

i f (0 ) {// output dx stucture

fp_Hz=fopen (” dxminmax . dat ” ,” w ”) ;

f o r ( ii=0;ii<=SII−1;ii++){

f p r i n t f ( fp_Hz , ”%d\ t%l f \n” , i i , dx [ i i ] ) ;

}
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f c l o s e ( fp_Hz ) ;

}

i f ( FileFlag&&0) {// ADE file writing

itoa (nn , namenumber , 1 0 ) ;

// convert time step into file name string , 10 based

strcat ( namenumber , ” . dat ”) ;

char file_ADE [ 18 ]=” ADE_Hz ” ;

strcat ( file_ADE , namenumber ) ;

fp_ADE=fopen ( file_ADE , ” w ”) ;

// f p r i n t f ( fp_ADE , ” x ax i s \tWave\n ”) ;

// f p r i n t f ( fp_ADE , ” ( cell )\t ( AU )\n ”) ;

f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii++){

f p r i n t f ( fp_ADE , ”%d\ t%l f \n” , i i , Hzin [ nn%2][ i i ] ) ;

}

f c l o s e ( fp_ADE ) ;

}// file ADE writing ends ( i f )

}// f o r ( nn ) *** Time loop ends **********************/
printf (”\ nFinishing Program . . . \ n\n ”) ;

i f (1 ) {// Hz Amplitude output

fp_Hz = fopen (” HzAmp . dat ” , ”w ”) ;

// f p r i n t f ( fp_Hz , ” x−ax i s \ty−ax i s \tHzAmp \n ”) ;

// f p r i n t f ( fp_Hz , ” nm\tnm\tA . U .\ n ”) ;

f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii+=2){

f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj+=2){

f p r i n t f ( fp_Hz , ”%l f \ t%l f \ t%l f \n” , xx [ i i ] , yy [ j j ] ,HzAmp[ i i ] [ j j ] ) ;

// column output format

}

}
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/* f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj++){

f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii++)

{

f p r i n t f ( fp_Hz , ”%f \ t ” ,HzAmp[ i i ] [ j j ] ) ;

// Hzshift [ ii ] [ jj ]=Hz [ np0 ] [ ii ] [ jj ] ;

}// matrix output format

f p r i n t f ( fp_Hz , ”\ n ”) ;

}*/ f c l o s e ( fp_Hz ) ;

}

i f (1 ) {// Hz Time profile ( f o r Fourier DetectorsR4 Analysis ) output , Right Side

fp_Spectrum=fopen (” DetectorsR_Full . dat ” ,” w ”) ;

f p r i n t f ( fp_Spectrum , ” Time ”) ;

f o r ( jj=TFb+1;jj<=metalJ ; jj+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ” Metal ”) ; // column output format

}

f o r ( jj=metalJ+1;jj<=TFt−1;jj+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ” Air ”) ; // column output format

}

f p r i n t f ( fp_Spectrum , ”\ n ”) ;

f o r ( int iin=1;iin<=6*(int ) nT ; iin++){// dont change iin++

f p r i n t f ( fp_Spectrum , ”%l f ” , i i n *dt /2/PI ) ;

// 1/(2 PI ) so that the units f o r FFT is rad /attosec

//( omega angular frequency rather than frequency )

f o r ( jj=TFb+1;jj<=TFt−1;jj+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ”%l f ” , DetectorsR4 [ i i n ] [ j j ] ) ;
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// column output format

}

f p r i n t f ( fp_Spectrum , ”\ n ”) ;

}

f c l o s e ( fp_Spectrum ) ;

}

i f (1 ) {// Hz Time profile ( f o r Fourier DetectorsR4 Analysis ) output , Right Side

fp_Spectrum=fopen (” DetectorsR_Quarter . dat ” ,” w ”) ;

f p r i n t f ( fp_Spectrum , ” Time ”) ;

f o r ( jj=TFb+1;jj<=metalJ ; jj+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ” Metal ”) ; // column output format

}

f o r ( jj=metalJ+1;jj<=TFt−1;jj+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ” Air ”) ; // column output format

}

f p r i n t f ( fp_Spectrum , ”\ n ”) ;

f o r ( int iin=1;iin<=6*(int ) nT ; iin++){

f p r i n t f ( fp_Spectrum , ”%l f ” , i i n *dt /2/PI ) ;

// 1/(2 PI ) so that the units f o r FFT is rad /attosec

//( omega angular frequency rather than frequency )

f o r ( jj=TFb+1;jj<=TFt−1;jj+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ”%l f ” , DetectorsR1 [ i i n ] [ j j ] ) ;

// column output format

}

f p r i n t f ( fp_Spectrum , ”\ n ”) ;

}

f c l o s e ( fp_Spectrum ) ;

}
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i f (1 ) {// Hz Time profile ( f o r Fourier DetectorsR1 Analysis ) output , Right Side

fp_Spectrum=fopen (” DetectorsR_Half . dat ” ,” w ”) ;

f p r i n t f ( fp_Spectrum , ” Time ”) ;

f o r ( jj=TFb+1;jj<=metalJ ; jj+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ” Metal ”) ; // column output format

}

f o r ( jj=metalJ+1;jj<=TFt−1;jj+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ” Air ”) ; // column output format

}

f p r i n t f ( fp_Hz , ”\ n ”) ;

f o r ( int iin=1;iin<=6*(int ) nT ; iin++){

f p r i n t f ( fp_Spectrum , ”%l f ” , i i n *dt /2/PI ) ;

// 1/(2 PI ) so that the units f o r FFT is rad /attosec

//( omega angular frequency rather than frequency )

f o r ( jj=TFb+1;jj<=TFt−1;jj+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ”%l f ” , DetectorsR2 [ i i n ] [ j j ] ) ;

// column output format

}

f p r i n t f ( fp_Spectrum , ”\ n ”) ;

}

f c l o s e ( fp_Spectrum ) ;

}

i f (1 ) {// Hz Time profile ( f o r Fourier DetectorsR2 Analysis ) output , Right Side

fp_Spectrum=fopen (” DetectorsR_ThreeQuarters . dat ” ,” w ”) ;

f o r ( jj=TFb+1;jj<=metalJ ; jj+=2){

f p r i n t f ( fp_Spectrum , ” Metal\t ”) ; // column output format

}

f o r ( jj=metalJ+1;jj<=TFt−1;jj+=2){

f p r i n t f ( fp_Spectrum , ” Air\t ”) ; // column output format
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}

f p r i n t f ( fp_Hz , ”\ n ”) ;

f o r ( int iin=1;iin<=6*(int ) nT ; iin++){

f p r i n t f ( fp_Spectrum , ”%l f ” , i i n *dt /2/PI ) ;

// 1/(2 PI ) so that the units f o r FFT is rad /attosec

//( omega angular frequency rather than frequency )

f o r ( jj=TFb+1;jj<=TFt−1;jj+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ”%l f ” , DetectorsR3 [ i i n ] [ j j ] ) ;

// column output format

}

f p r i n t f ( fp_Spectrum , ”\ n ”) ;

}

f c l o s e ( fp_Spectrum ) ;

}

i f (1 ) {// Hz Time profile ( f o r Fourier DetectorsT Analysis ) output , Top Edge

fp_Spectrum=fopen (” DetectorsT . dat ” ,” w ”) ;

f o r ( int iin=1;iin<=6*(int ) nT ; iin++){

f p r i n t f ( fp_Spectrum , ”%l f ” , i i n *dt /2/PI ) ;

// 1/(2 PI ) so that the units f o r FFT is rad /attosec

//( omega angular frequency rather than frequency )

f o r ( ii=centerI ; ii<=SFr ; ii+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ”%l f ” , DetectorsT [ i i n ] [ i i ] ) ;

// column output format

}

f p r i n t f ( fp_Spectrum , ”\ n ”) ;

}

f c l o s e ( fp_Spectrum ) ;

}
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i f (1 ) {// Hz Time profile ( f o r Fourier DetectorsB Analysis ) output , Bottom Edge

fp_Spectrum=fopen (” DetectorsB . dat ” ,” w ”) ;

f o r ( int iin=1;iin<=6*(int ) nT ; iin++){

f p r i n t f ( fp_Spectrum , ”%l f ” , i i n *dt /2/PI ) ;

// 1/(2 PI ) so that the units f o r FFT is rad /attosec

//( omega angular frequency rather than frequency )

f o r ( ii=centerI ; ii<=SFr ; ii+=2){

f p r i n t f ( fp_Spectrum , ”\ t ”) ;

f p r i n t f ( fp_Spectrum , ”%l f ” , DetectorsB [ i i n ] [ i i ] ) ;

// column output format

}

f p r i n t f ( fp_Spectrum , ”\ n ”) ;

}

f c l o s e ( fp_Spectrum ) ;

}

i f (1 ) {// Ey Amplitude output

fp_Ey = fopen (” EyAmp . dat ” , ”w ”) ;

// f p r i n t f ( fp_Hz , ” x−ax i s \ty−ax i s \tEyAmp \n ”) ;

// f p r i n t f ( fp_Hz , ” nm\tnm\tA . U .\ n ”) ;

f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii+=2){

f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj+=2){

f p r i n t f ( fp_Ey , ”%l f \ t%l f \ t%l f \n” , xx [ i i ] , yy [ j j ] ,EyAmp[ i i ] [ j j ] ) ;

// column output format

}

}

/* f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj++){// Ey Intensity output

f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii++)

{
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f p r i n t f ( fp_Ey , ”%f \ t ” ,EyAmp[ i i ] [ j j ] ) ;

}

f p r i n t f ( fp_Ey , ”\ n ”) ;

}*/ f c l o s e ( fp_Ey ) ;

}

i f (1 ) {// Ex Amplitude output

fp_Ex = fopen (” ExAmp . dat ” , ”w ”) ;

// f p r i n t f ( fp_Ex , ” x−ax i s \ty−ax i s \tEx \n ”) ;

// f p r i n t f ( fp_Ex , ” nm\tnm\tA . U .\ n ”) ;

f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii+=2){

f o r ( jj=Fileoffset ; jj<=SJJ−Fileoffset ; jj+=2){

f p r i n t f ( fp_Ex , ”%l f \ t%l f \ t%l f \n” , xx [ i i ] , yy [ j j ] ,ExAmp[ i i ] [ j j ] ) ;

// column output format

}

}

/* f o r ( jj=0+Fileoffset ; jj<=SJJ−Fileoffset ; jj++){// Ex Intensity output

f o r ( ii=0+Fileoffset ; ii<=SII−Fileoffset ; ii++)

{

f p r i n t f ( fp_Ex , ”%f \ t ” ,ExAmp[ i i ] [ j j ] ) ;

}

f p r i n t f ( fp_Ex , ”\ n ”) ;

}*/ f c l o s e ( fp_Ex ) ;

}

i f (0 ) {// PML e r r o r test

double error1=0;

double error2=0;

f o r ( ii=SFl+1;ii<=SFr−1;ii++){

error1+=(HzAmp [ ii ] [ centerJ ]−1) *( HzAmp [ ii ] [ centerJ ]−1) ;
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error2=

error2>abs ( HzAmp [ ii ] [ centerJ ]−1)? error2 : abs ( HzAmp [ ii ] [ centerJ −1]−1) ;

}

cout<<”Total e r r o r=\t”<<s q r t ( error1 )<<endl ;

cout<<”Max e r r o r=\t”<<error2<<endl ;

}

i f (0 ) {// ADE source Amplitude output

fp_Ex = fopen (” HsourceAmp . dat ” , ”w ”) ;

f o r ( ii=SFl+1;ii<=SFr−1;ii++){

f p r i n t f ( fp_Ex , ”%d\ t%l f ” , i i , (HzAmp[ i i ] [ c enterJ ]−1) *100) ;
f p r i n t f ( fp_Ex , ”\ n ”) ;

}

f c l o s e ( fp_Ex ) ;

}

i f (0 ) {// ADE source wave output

fp_Ex = fopen (” Hzin . dat ” , ”w ”) ;

f o r ( jj=CPML_n+Fileoffset ; jj<=SJJ−CPML_n−Fileoffset ; jj++)

{

f p r i n t f ( fp_Ex , ”%d\ t%l f ” , yy [ j j ] , Hzin [ nn%2][ j j ] ) ;

// EHphase [ ii ]=( Hzin [ ( nn+1)%2 ] [ i i ] ) ;//+Hzin [ nn%2][ i i ] ) / 2 . 0 ;

// time average

f p r i n t f ( fp_Ex , ”\ n ”) ;

}

f c l o s e ( fp_Ex ) ;

}

i f (0 ) {// phase i n f o , test

fp_Hz = fopen (” EHphase . dat ” , ”w ”) ;

f p r i n t f ( fp_Hz , ” ii\tEy\ tEyPhase \tHz\tHzPhase \n ”) ;

f p r i n t f ( fp_Hz , ” time\tA . U .\ tDegree \tA . U .\ tDegree \n ”) ;
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f o r ( ii=Fileoffset ; ii<=SII−Fileoffset ; ii++)

{

}// matrix output format

f p r i n t f ( fp_Hz , ”\ n ”) ;

f c l o s e ( fp_Hz ) ;

}

i f (1 ) {// program i n f o output

fp_info=fopen (” i n f o . txt ” ,” w ”) ;

f p r i n t f ( fp_info , ”\ n−−−−−−−−−−−−−−−−−−−−−−−−−−−Physics \

parameters−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n ”) ;

f p r i n t f ( fp_info , ” epsilon_0=%f (nF/m) \n” , e p s i l o n 0 ) ;

f p r i n t f ( fp_info , ” mu_0=%f (nH/m) \n” ,mu 0) ;

f p r i n t f ( fp_info , ” c_0=%f (nm/ at to s e c ) \n” , c 0 ) ;

f p r i n t f ( fp_info , ” lambda_0=%f (nm) \n” , lambda 0 ) ;

f p r i n t f ( fp_info , ” omega_0=%f ( rad / a t to s e c ) \n” , omega 0 ) ;

f p r i n t f ( fp_info , ” Frequency f_0=%e (GGHz) \n” , omega 0 /2 ./PI ) ;

f p r i n t f ( fp_info , ” k_0=%f (/nm) \n” , k 0 ) ;

f p r i n t f ( fp_info , ” epsilon_inf=%f \n\n” , e p s i l o n i n f ) ;

f p r i n t f ( fp_info , ” ( Debye )\ tdepsilon_p=%f \n” , d ep s i l on p ) ;

f p r i n t f ( fp_info , ” ( Debye )\ttau_p=%f \n” , tau p ) ;

f p r i n t f ( fp_info , ” ( Lorentz )\tdelta_p=%f \n” , d e l t a p ) ;

f p r i n t f ( fp_info , ” ( Drude )\ tomega_p=%f \n” , omega p ) ;

f p r i n t f ( fp_info , ” ( Drude )\ tgamma_p=%f \n” ,gamma p) ;

f p r i n t f ( fp_info , ” ( Kerr )\talpha=%f \n” , alpha ) ;

f p r i n t f ( fp_info , ” ( Kerr )\tchi (3)=%e (m2/V2) \n” , chi3M) ;

f p r i n t f ( fp_info , ” ( Raman )\ttau1=%f \n” , tau1 ) ;

f p r i n t f ( fp_info , ” ( Raman )\ttau2=%f \n” , tau2 ) ;

f p r i n t f ( fp_info , ” ( Raman )\ tomega_raman=%f \n” , omega raman ) ;

f p r i n t f ( fp_info , ” ( Raman )\ tdelta_raman=%f \n\n” , del ta raman ) ;

f p r i n t f ( fp_info , ” For metal , Re ( epsilon )=%f \tIm ( ep s i l o n )=%f \
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\n ” , epsilon_R , epsilon_I ) ;

f p r i n t f ( fp_info , ” Hz input amplitude :\ t%E (A/m) \n” , smoothupHc ) ;

f p r i n t f ( fp_info , ” SPP wave l ength in medium lambda=%f (nm) \n” , lambda) ;

f p r i n t f ( fp_info , ” SPP wave vector Re ( kx )=%f (1/nm) \tIm (kx )=%e (1/nm) \n\

\n ” , kx_R , kx_I ) ;

f p r i n t f ( fp_info , ” Evanescece wave in air \t Re ( ky0 )=%f (1/nm) \ t \tIm ( ky0 )=%e\

(1/ nm ) \n Or penetration depth\t 1/Re ( ky0 )=%f (nm) \ t \ t1 /Im\

( ky0 )=%f (nm) \n” , ky0 R , ky0 I , 1 . / ky0 R , 1 . / ky0 I ) ;

f p r i n t f ( fp_info , ”\ nEvanescece wave in metal\t \

Re ( ky2 )=%f (1/nm) \ t \tIm ( ky2 )=%e (1/nm) \n \

Or penetration depth \t 1/Re ( ky2 )=%f (nm) \ t \ t1 /Im( ky2 )=\

%f (nm) \n” , ky2 R , ky2 I , 1 . / ky2 R , 1 . / ky2 I ) ;

f p r i n t f ( fp_info , ” Ey input amplitude (V/m ) :\ t ( in air ) %E\

\t ( in metal ) %E\n” ,\

smoothupEc *abs_kx /omega_0 /epsilon_0 /epsilon_inf ,

smoothupEc *abs_kx /omega_0 /epsilon_0 ) ;

f p r i n t f ( fp_info , ” Incident wave period :%d time s t ep s (=%f f s ) \n\n” ,

int ( nT ) , nT*dt /1000) ;
f p r i n t f ( fp_info , ”\ n\n\n−−−−−−−−−−−−−−−−−−−−−−−−−−−FDTD \

parameters−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n ”) ;

f p r i n t f ( fp_info ,

”Total time simulated : steps=%d (=%f f s ) \n” , Ntotal , dt *Ntotal /1000 . ) ;

f p r i n t f ( fp_info , ” dt=%f attosecond\n” , dt ) ;

f p r i n t f ( fp_info , ” File written every %d time s t ep s (=%f f s ) \

\twith ( ABC frame ) offset=%d\n\n\n” ,

filestep , dt*filestep /1000 . , Fileoffset ) ;

f p r i n t f ( fp_info , ” Total cell numbers along x : %d\ t \ ty : %d\n” , SII , SJJ ) ;

f p r i n t f ( fp_info , ” Grids ( coarse ) sampling density : ( x )%d\ t ( y )%d\n” ,
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Nlambdax , Nlambday ) ;

f p r i n t f ( fp_info , ” dxmax=%f nm\ tdxmin=%f nm\tx−(d i s t ance ) t o t a l=%f nm\n” ,

dxmax , dxmin , xx [ SII ] ) ;

f p r i n t f ( fp_info , ” dymax=%f nm\ tdymin=%f nm\ty−(d i s t ance ) t o t a l=%f nm\n” ,

dymax , dymin , yy [ SJJ ] ) ;

f p r i n t f ( fp_info , ” Air−Metal interface at y ( J )=%d(+) ˜ %f (nm) \n” ,

metalJ , yy [ metalJ ] ) ;

f p r i n t f ( fp_info , ” Total field frame :\ t ( Left , Right , Bottom , Top )=\

(%d,%d,%d,%d) ( c e l l ) ˜(% f ,%f ,%f ,% f ) (nm) \n” ,

TFl , TFr , TFb , TFt , xx [ TFl ] , xx [ TFr ] , yy [ TFb ] , yy [ TFt ] ) ;

f p r i n t f ( fp_info , ” Scattered field frame :\ t \

( Left , Right , Bottom , Top )=\

(%d,%d,%d,%d) ( c e l l ) ˜(% f ,%f ,%f ,% f ) (nm) \n” ,

SFl , SFr , SFb , SFt , xx [ SFl ] , xx [ SFr ] , yy [ SFb ] , yy [ SFt ] ) ;

f p r i n t f ( fp_info , ” CPML layer width CPML_n=%d\n” ,CPML n) ;

f p r i n t f ( fp_info , ”\ nTotal nonuniform s i z e numbers :\

x %d\ t y %d\n” ,0 , varygrade n ) ;

f p r i n t f ( fp_info , ” s i z e ratio of max to min cell maxVSmin=%f \n” ,maxVSmin) ;

f p r i n t f ( fp_info , ” s i z e ratio of adjacent cells : %f or %f \n” ,

gradeRatey , 1 . 0 / gradeRatey ) ;

f p r i n t f ( fp_info , ” nonuniform area ( y ) : %d\\%d %d/%d\

( cell ) \t˜\t%f\\% f %f/%f (nm) \n” ,

levely0 , levely1 , levely2 , levely3 , yy [ levely0 ] ,

yy [ levely1 ] , yy [ levely2 ] , yy [ levely3 ] ) ;

f p r i n t f ( fp_info , ” Field Ramp Up %d ˜wavelength ( s ) \n\n” ,

( int ) s q r t ( ( double ) rampup ) ) ;

f p r i n t f ( fp_info , ”\ n\ndebye model FDTD parameters : a=%f \ tb=%f \

\n ” , a_debye , b_debye ) ;

f p r i n t f ( fp_info , ” lorentz model FDTD parameters : a=%f \ tb=%f \ tc=%f \

\n ” , a_lorentz , b_lorentz , c_lorentz ) ;

f p r i n t f ( fp_info , ” drude model FDTD parameters : a=%f \ tb=%f \ tc=%f \
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\n ” , a_drude , b_drude , c_drude ) ;

f p r i n t f ( fp_info , ” Raman model FDTD parameters : a=%f \ tb=%f \ tc=%f \n\

\n ” , a_raman , b_raman , c_raman ) ;

f p r i n t f ( fp_info , ” CPML factors : sigma_max=%f \ tkkx max=%f \taax max=\

%f \n\n” , sigma max , kkx max , aax max ) ;

f p r i n t f ( fp_info , ” Nonlinear iteration loop number : nonlinearM=\

%d\n\n” , nonl inearM) ;

f p r i n t f ( fp_info , ”\ n\n\n−−−−−−−−−−−−−−−−−−−−−−−−−−−CPML \

parameters−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n ”) ;

f p r i n t f ( fp_info , ” sigma_max=%f \n” , sigma max ) ;

f p r i n t f ( fp_info , ” kkx_max=%f \n” , kkx max ) ;

f p r i n t f ( fp_info , ” aax_max=%f \n” , aax max ) ;

f p r i n t f ( fp_info , ”\ n\n\n−−−−−−−−−−−−−−−−−−−−−−−−−−−Time/Date \

i n f o−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n ”) ;

time_t rawtime ;

struct tm * timeinfo ;

time ( &rawtime ) ;

timeinfo = localtime ( &rawtime ) ;

f p r i n t f ( fp_info , ”\ nThis file was written at ( date /time ) %s ” ,

asctime ( timeinfo ) ) ;

f c l o s e ( fp_info ) ;

}

printf (”\ t\t\tFile written f o r %s \n” ,” Average I n t e n s i t y ”) ;

// step indicator on screen

/*−−−−Endline of . dat file writing ***************************/
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/*−−−−−−−−−−−−−−−−−−−−−−−−clean up−−−−−−−−−−−−−−−−−−−−−−−*/
free3D (Hz , 3 , SII+1) ;//1

free3D ( Hzx , 3 , SII+1) ;//2

free3D ( Hzy , 3 , SII+1) ;//3

free3D (Dy , 3 , SII+1) ; / / 2 . 2 Displacement y

free3D (Dx , 3 , SII+1) ; / / 3 . 2 Displacement x

free3D ( ET2 , 3 , SII+1) ; / / 3 . 4 | E |ˆ2

free3D (Ey , 3 , SII+1) ;//4

free3D (Ex , 3 , SII+1) ;//5

free3D ( Px_Debye , 3 , SII+1) ;

free3D ( Px_Lorentz , 3 , SII+1) ;

free3D ( Px_Raman , 3 , SII+1) ;

free3D ( Px_Kerr , 3 , SII+1) ;

free3D ( Px_Drude , 3 , SII+1) ;

free3D ( Py_Drude , 3 , SII+1) ;

free3D ( Py_Debye , 3 , SII+1) ;

free3D ( Py_Lorentz , 3 , SII+1) ;

free3D ( Py_Kerr , 3 , SII+1) ;

free3D ( Py_Raman , 3 , SII+1) ;

free3D (Sp , 3 , SII+1) ;

// cout<<”11”<<endl ;

free2D ( epsilon , SII+1) ;//6

free1D ( sigmax ) ; //8

free1D ( sigmay ) ; //9

free2D (mu , SII+1) ;//7

// free2D ( sigmastarx , SII+1) ;//10

free3D ( psi_dyHz , 3 , SII+1) ;//11

free3D ( psi_dxHz , 3 , SII+1) ;//

free3D ( psi_dxEy , 3 , SII+1) ;//

free3D ( psi_dyEx , 3 , SII+1) ;//

free1D ( aax ) ; free1D ( bbx ) ; free1D ( ccx ) ;

free1D ( aay ) ; free1D ( bby ) ; free1D ( ccy ) ;
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// free1D ( a_Hz ) ; free1D ( b_Hz ) ; free1D ( c_Hz ) ;

free1D ( kkx ) ; free1D ( kky ) ; // free1D ( k_Hz ) ;

free2D ( Hzin , 2 ) ;//18

free2D ( Eyin , 2 ) ;//19

free2D ( HzAmp , SII+1) ;//20

free2D ( ExAmp , SII+1) ;//21

free2D ( EyAmp , SII+1) ;//22

free2D ( DetectorsR4 , 6* ( int ) nT+2) ;

free2D ( DetectorsR1 , 6* ( int ) nT+2) ;

free2D ( DetectorsR2 , 6* ( int ) nT+2) ;

free2D ( DetectorsR3 , 6* ( int ) nT+2) ;

free2D ( DetectorsT , 6* ( int ) nT+2) ;

free2D ( DetectorsB , 6* ( int ) nT+2) ;

free1D ( HsourceAmp ) ;//23

free1D ( EHphase ) ;//24

//

free1D ( dx ) ;//38

free1D ( dy ) ;//39

free1D ( hxi ) ;//40

free1D ( hyj ) ;//41

free1D ( xx ) ;

free1D ( yy ) ;

printf (”\ n ”) ;

printf (” File written successfully . Now closing it . . . \ n ”) ;

printf (”\ n ”) ;

// system (” PAUSE ”) ;

r e turn EXIT_SUCCESS ; / / ( main )

}// end main ( )

/*** Endline of main program body **************************************/
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double Ex_pml_func ( double Ex_previous , double Hzup , double Hzdown , double sigma ,

double epsilon , double d_x ) {// general E ( n+1)calc in CPML_n layer

double CE=(epsilon−(sigma*dt *0.5/ epsilon_0 ) ) /( epsilon+

( sigma *dt *0.5/ epsilon_0 ) ) ; // factor f o r E

double CH=(dt/ epsilon_0 ) /( epsilon+sigma*dt *0.5/ epsilon_0 ) /d_x ; // factor f o r H

double Ex=CE*Ex_previous+CH *( Hzup−Hzdown ) ;

//H_2 has larger space index than H_1

r e turn Ex ;

}// Ex_pml_func

double Ey_pml_func ( double Ey_previous , double Hzright , double Hzleft ,

double sigma , double epsilon , double d_y ) {// general E (n+1)calc in CPML_n layer

double CE=(epsilon−(sigma*dt *0.5/ epsilon_0 ) ) /( epsilon+

( sigma *dt *0.5/ epsilon_0 ) ) ;

double CH=−(dt/epsilon_0 ) /( epsilon+sigma *dt *0.5/ epsilon_0 ) /d_y ;

double Ey=CE*Ey_previous+CH *( Hzright−Hzleft ) ;

r e turn Ey ;

}// Ey_pml_func

double Hzx_func ( double H_previous , double Eyright , double Eyleft , double sigmastar ,

double mu , double d_x ) {// gneral H ( n+1) calc in CPML_n layer

double CH=(mu−sigmastar *dt *0.5/ mu_0 ) /(1+ sigmastar *dt *0.5/ mu_0 ) ;
double CE=−(dt/mu_0 ) /( mu+sigmastar *dt *0.5/ mu_0 ) /d_x ;

double Hz=CH*H_previous+CE *( Eyright−Eyleft ) ;

r e turn Hz ;

}// Hzx_func

double Hzy_func ( double H_previous , double Exup , double Exdown , double sigmastar ,

double mu , double d_y ) {// gneral H ( n+1) calc in CPML_n layer

double CH=(mu−sigmastar *dt *0.5/ mu_0 ) /( mu+sigmastar *dt *0.5/ mu_0 ) ;
double CE=(dt/mu_0 ) /( mu+sigmastar *dt *0.5/ mu_0 ) /d_y ;
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double Hz=CH*H_previous+CE *( Exup−Exdown ) ;

r e turn Hz ;

}// Hzy_func

void Hz_contour_func ( double *** Hz , double *** Ex , double *** Ey , int time , int ii ,

int jj , double area , double Fn , double Fs , double Fw , double Fe ){

//North , South , West , East ; Integral Form of Maxwell Equations , contour calc

int pretime=(time+2)%3 ;

double En=Ex [ pretime ] [ ii ] [ jj ] ;

double Es=Ex [ pretime ] [ ii ] [ jj−1] ;

double Ew=Ey [ pretime ] [ ii−1] [ jj ] ;

double Ee=Ey [ pretime ] [ ii ] [ jj ] ;

Hz [ time ] [ ii ] [ jj ]=Hz [ pretime ] [ ii ] [ jj ]+dt/mu_0/area * ( ( En*Fn−Es*Fs ) *dxmax+
( Ew*Fw−Ee*Fe ) *dymax ) ;

}// Hz_contour_func

int SFflag ( int ii , int jj ){

int f l a g=(ii<=SFr )&&(ii>=SFl )&&(jj<=SFt )&&(jj>=SFb ) ;

// Boolean f l a g , 1 f o r in Scattered fields area , 0 f o r NOT .

r e turn f l a g ;

}

int TFflag ( int ii , int jj ){

int f l a g=(ii<=TFr )&&(ii>=TFl )&&(jj<=TFt )&&(jj>=TFb ) ;

// Boolean f l a g , 1 f o r in Total fields area , 0 f o r NOT .

r e turn f l a g ;

}

int CPMLflag ( int ii , int jj ) {

int f l a g=(ii<SFl )&&(ii>SFr )&&(jj<SFb )&&(jj>SFt ) ;

// Boolean f l a g , 1 f o r in CPML area , 0 f o r NOT .

r e turn f l a g ;
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}

int Metalflag ( int ii , int jj ) {// determine i f (ii , jj ) is in metal

int f l a g=(jj<=metalJ ) ; / / ( ii<=SFr )&&(ii>=SFl )&&(jj<=metalJ )&&(jj>=SFb ) ;

r e turn f l a g ;

}

int Airflag ( int ii , int jj ) {// determine i f (ii , jj ) is in air

int f l a g=(jj>metalJ ) ; / / ( ii<=SFr )&&(ii>=SFl )&&(jj>metalJ )&&(jj<=SFt ) ;

r e turn f l a g ;

}

FDTDarray.h

#ifndef FDTDarray_h

#define FDTDarray_h

double * array1D ( int n ) ;

double ** array2D ( int narrows , int ncolumns ) ;

double *** array3D ( int narrows , int ncolumns , int nz ) ;

void free1D ( double * p1 ) ;

void free2D ( double ** p2 , int nx ) ;

void free3D ( double *** p3 , int nx , int ny ) ;

double array_max ( double * p , int from , int to ) ;

double array_min ( double * p , int from , int to ) ;

double array_amp ( double * p , int from , int to ) ;
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double Dx_func ( double Dx_previous , double Hzxdown , double Hzxup , double hyj , double dt ) ;

double Dy_func ( double Dy_previous , double Hzyleft , double Hzyright ,

double hxi , double dt ) ;

double sqrtReal ( double a , double b , double c , double d ) ;

double sqrtImag ( double a , double b , double c , double d ) ;

double sqrtReal ( double a , double b ) ;

double sqrtImag ( double a , double b ) ;

double square ( double a ) ;

double cube ( double a ) ;

#endif
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FDTDarray.cpp

/* Malloc_multi_array */
/* malloc to defined a 2 or 3 dimensional array */
#include <stdio . h>

#include <iostream>

#include <stdlib . h>

#include <cmath>

#include ”FDTDarray . h”

using namespace std ;

/*−−−−−−−−−−−−−−end #include−−−−−−−−−−*/
/*−−−−−−−−−−−−−−start array1D f unc t i on definition−−−−−−*/
double * array1D ( int n )

{

int i=0;

double * p1 ;

p1=(double *) malloc (n*sizeof ( double ) ) ;
i f ( p1==NULL ){

f p r i n t f ( stderr , ” out of memory \n ”) ;

r e turn 0 ;

}// i f

f o r ( i=0;i<=n−1;i++){

p1 [ i ]=0;

}// f o r ( i )

r e turn ( p1 ) ;

}// array1D ( )

169



/*−−−−−−−−−−−−−−end array1D f unc t i on definition−−−−−−*/
/*−−−−−−−−−−−−−−−−−−−Start array2D f unc t i on definition−*/
double ** array2D ( int nrows , int ncolumns )

{

int i=0;

int j=0;

double **p2 ;

p2 = ( double **) malloc ( nrows * sizeof ( double *) ) ;
i f ( p2 == NULL ) {

f p r i n t f ( stderr , ”out of memory \n ”) ;

r e turn 0 ;

}//( i f )

f o r ( i = 0 ; i <= nrows−1; i++){

p2 [ i ] = ( double *) malloc ( ncolumns * sizeof ( double ) ) ;

i f ( p2 [ i ] == NULL ){

f p r i n t f ( stderr , ”out of memory \n ”) ;

r e turn 0 ;

}//( i f )

}// ( f o r ( i ) )

f o r ( i=0;i<=nrows−1;i++){

f o r (j=0;j<=ncolumns−1;j++){

p2 [ i ] [ j ]=0;

}//( f o r ( i ) )

}//( f o r ( j ) )

r e turn ( p2 ) ;

}// array2D

/*−−−−−−−−−−−−−−−−−−−end array2D definitino−−−−−−−−−−−−−−−−*/
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/*−−−−−−−−−−−−−−−−−−−Start array3D f unc t i on definition−*/
double *** array3D ( int nrows , int ncolumns , int nz )

{

int i=0;

int j=0;

int k=0;

double *** p3 ;

p3 = ( double ***) malloc ( nrows * sizeof ( double **) ) ;
i f ( p3 == NULL ) {

f p r i n t f ( stderr , ”out of memory \n ”) ;

r e turn 0 ;

}//( i f )

f o r ( i = 0 ; i <= nrows−1; i++){

p3 [ i ] = ( double **) malloc ( ncolumns * sizeof ( double *) ) ;
i f ( p3 [ i ] == NULL ){

f p r i n t f ( stderr , ”out of memory \n ”) ;

r e turn 0 ;

}//( i f )

}

f o r ( i = 0 ; i <= nrows−1; i++)

f o r ( int j=0;j<=ncolumns−1;j++){

p3 [ i ] [ j ] = ( double *) malloc ( nz * sizeof ( double ) ) ;

i f ( p3 [ i ] [ j ] == NULL ){

f p r i n t f ( stderr , ”out of memory \n ”) ;

r e turn 0 ;

}//( i f )

}// ( f o r ( i ) )
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f o r ( j=0;j<=nrows−1;j++)

f o r (i=0;i<=ncolumns−1;i++)

f o r (k=0;k<=nz−1;k++){

p3 [ j ] [ i ] [ k ]=0;

}

r e turn ( p3 ) ;

}// array3D

/*−−−−−−−−−−−−−−−−−−−end array3D definitino−−−−−−−−−−−−−−−−*/
/*−−−−−−−−−−−−−−−−−−free alloc memory−−−−−−−−−−−−−−−−−−*/
void free1D ( double * p1 ){

free ( p1 ) ;

// printf (”\ nMemory is freed . . . \ n ”) ;

}

void free2D ( double ** p2 , int nx ){

f o r ( int i=0;i<=nx−1;i++){

free ( p2 [ i ] ) ;

}

free ( p2 ) ;

// printf (”\ nMemory is freed . . . \ n ”) ;

}

void free3D ( double *** p3 , int nx , int ny ){

f o r ( int i=0;i<=nx−1;i++)

f o r ( int j=0;j<=ny−1;j++)

free ( p3 [ i ] [ j ] ) ;

f o r ( int k=0;k<=nx−1;k++)

free ( p3 [ k ] ) ;
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// printf (”\ nMemory is freed . . . \ n ”) ;

free ( p3 ) ;

}

/*−−−−−−−−−−−−−−−−−−−array member operation−−−−−−−−−−−−−−*/
double array_max ( double * p , int from , int to ){

double maxx=0;

f o r ( int i=from ; i<=to ; i++){

maxx=maxx>p [ i ] ? maxx : p [ i ] ;

}

r e turn maxx ;

}

double array_min ( double * p , int from , int to ){

double minn=0;

f o r ( int i=from ; i<=to ; i++){

minn=minn<p [ i ] ? minn : p [ i ] ;

}

r e turn minn ;

}

double array_amp ( double * p , int from , int to ){

double amp=0.0;

f o r ( int i=from ; i<=to ; i++){

amp=amp>fabs ( p [ i ] ) ?amp : fabs ( p [ i ] ) ;

}

r e turn amp ;

}

/*−−−−−−−−−−−FDTD Displacement vector functions−−−−−−−−−−−−−−−*/
double Dx_func ( double Dx_previous , double Hzxdown , double Hzxup , double hyj ,
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double dt ) {

double Dx=0;

Dx=Dx_previous+dt/hyj *( Hzxup−Hzxdown ) ;

r e turn Dx ;

}

double Dy_func ( double Dy_previous , double Hzyleft , double Hzyright , double hxi ,

double dt ) {

double Dy=0;

Dy=Dy_previous+dt/hxi *( Hzyleft−Hzyright ) ;

r e turn Dy ;

}

/*−−−−−−−−−−−−−−caculate Real and Imag parts−−−−−−−−−−−−−−−−*/
/* assume (x+yi ) ˆ2=(a+bi ) /(c+di ) , and x , y unknow whi le a , b , c , d

given−positive root only , which means −PI<arg (z )<=PI−−*/
double sqrtReal ( double a , double b , double c , double d ){

double e=(a*c+b*d ) /( c*c+d*d ) ; // r e a l part after squared

double f=(b*c−a*d ) /( c*c+d*d ) ; // imag part after squared

r e turn sq r t ( 0 . 5 * ( e+sqr t ( e*e+f*f ) ) ) ;
}

double sqrtImag ( double a , double b , double c , double d ){

double e=(a*c+b*d ) /( c*c+d*d ) ; // r e a l part after squared

double f=(b*c−a*d ) /( c*c+d*d ) ; // imag part after squared

r e turn sq r t (0.5*(−e+sqr t (e*e+f*f ) ) ) ;
}

double sqrtReal ( double a , double b ){

r e turn sq r t ( ( a+sqr t ( a*a+b*b ) ) *0 . 5 ) ;
}

double sqrtImag ( double a , double b ){

r e turn sq r t ((−a+sqr t ( a*a+b*b ) ) *0 . 5 ) ;
}
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FDTDcubic.h

#ifndef FDTDcubic_h

#define FDTDcubic_h

#include <complex>

using namespace std ;

double square ( double a ) ;

double cube ( double a ) ;

complex<double> cbrt ( complex<double>) ; // reload cubic root f unc t i on

complex<double> cartesian ( double x , double y ) ; // complex number assign

complex<double> cartesian ( complex<double> z ) ;

class LinearFormula{// generic Linear Equation

double _k , _b , _root ; // kx+b=0;

public :

LinearFormula ( ) ; // default constructor

LinearFormula ( double , double ) ; // constructor

int setFormula ( double , double ) ; // change _k , _b i f necessary

int realRootNumber ( ) ;

// f i nd how many r e a l r oo t s exit , reload f o r 1st , 2 nd and 3rd order

double linearRoot ( ) ; // r eturn solution

} ;

class QuadraticFormula {// generica Quadratic Equation , axˆ2+bx+c==0 with a=1;

double _b , _c ; // xˆ2+bx+c==0,generic form f o r quadratic functions

double _delta ; // discriminant , = bˆ2−4ac f o r a=1

complex<double> _root1 , _root2 ;

public :
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QuadraticFormula ( ) ; // default constructor

QuadraticFormula ( double , double ) ; // constructor

int setFormula ( double , double ) ; // change , _b , _c , _delta

int realRootNumber ( ) ;

complex<double> quadraticRoot1 ( ) ;

complex<double> quadraticRoot2 ( ) ;

} ;

class FullQuadraticFormula {// general Quadratic Equation , axˆ2+bx+c=0

//with the option that a==0;

double a_ , b_ , c_ ; // xˆ2+bx+c==0,generic form f o r quadratic functions

double delta_ ; // discriminant , = bˆ2−4ac f o r a=1

int isQuadratic_ ; // f l a g to show i f a !=0( isQuadratic=1,true )

complex<double> root1_ , root2_ ;

public :

FullQuadraticFormula ( ) ; // default constructor

FullQuadraticFormula ( double , double , double ) ; // constructor

int setFormula ( double , double , double ) ;

//change , a_ , b_ , c_ , delta_

int realRootNumber ( ) ;

complex<double> quadraticRoot1 ( ) ;

complex<double> quadraticRoot2 ( ) ;

} ;

class CubicFormula{

protected :

double _p , _q ; // xˆ3+ px+ q=0, canonic form

double _discriminant ; // discriminant , = (p /3) ˆ3+(q /2) ˆ2 ,

//d<0 : 3 r e a l r oo t s ;

//d==0: 3 r e a l r oo t s and at least 2 are equal

//d>0 : 1 r e a l root and 2 complex r oo t s

complex<double> _sqrtD ;
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// square root of the discriminant , which is the source f o r complex r oo t s

complex<double> _uu , _vv ; // intemedium variables , part of _u and _v

complex<double> _u , _v ; // intemedium variables , x=u+v

complex<double> CROOT2 ; // prefactor , −1/2+i* s q r t (3) /2
complex<double> CROOT3 ;

public :

CubicFormula ( ) ; // default constructor

CubicFormula ( double , double ) ;

// constructor to initialize canonic cubic formula

int setFormula ( double , double ) ;

int realRootNumber ( ) ;

complex<double> cubicRoot1 ( ) ;

complex<double> cubicRoot2 ( ) ;

complex<double> cubicRoot3 ( ) ;

} ;

/*Full cubicFormula*/
class FullCubicFormula {// a0*xˆ3+axˆ2+bx+c=0; general form

protected :

double a0_ , a_ ; //

double p_ , q_ ; // xˆ3+ px+ q=0, canonic form

double discriminant_ ; // discriminant , = (p /3) ˆ3+(q /2) ˆ2 ,

double isCubic_ ; // f l a g a0 !=0 ( true , 1)

//d<0 : 3 r e a l r oo t s ;

//d==0: 3 r e a l r oo t s and at least 2 are equal

//d>0 : 1 r e a l root and 2 complex r oo t s

complex<double> sqrtD_ ;

// square root of the discriminant , which is the source f o r complex r oo t s

complex<double> uu_ , vv_ ; // intemedium variables , part of _u and _v

complex<double> u_ , v_ ; // intemedium variables , x=u+v

complex<double> CROOT2 ;

complex<double> CROOT3 ;
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complex<double> root1_ ;

complex<double> root2_ ;

complex<double> root3_ ;

public :

FullCubicFormula ( ) ; // default constructor

FullCubicFormula ( double , double , double , double ) ;

// constructor to initialize canonic cubic formula

int setFormula ( double , double , double , double ) ;

int realRootNumber ( ) ;

complex<double> cubicRoot1 ( ) ;

complex<double> cubicRoot2 ( ) ;

complex<double> cubicRoot3 ( ) ;

} ;

#endif

179



FDTDcubic.cpp

#include <cmath>

#include <iostream>

#include <complex>

#include ”FDTDcubic . h”

using namespace std ;

double square ( double a ){

r e turn a*a ;
}

double cube ( double a ) {

r e turn a*a*a ;
}

complex<double> cbrt ( complex<double> z ) {

r e turn pow (z , 1 . 0 / 3 ) ;

}

/* Cartesian Cast Function , overloaded */
complex<double> cartesian ( double x , double y ) {

r e turn complex<double> (x , y ) ;

}

complex<double> cartesian ( complex<double> z ) {

r e turn complex<double> ( r e a l ( z ) , imag ( z ) ) ;

}

//kx+b==0;

/* linearFormular Class , to get the slope ( root ) ************************/
LinearFormula : : LinearFormula ( ) {// default constructor , pascal ' s triangle
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_k=1;

_b=1;

// default solution = −1

}

LinearFormula : : LinearFormula ( double k , double b ) {

setFormula (k , b ) ;

}

int LinearFormula : : realRootNumber ( ) {

i f ( _k !=0){

_root=−_b/_k ;

r e turn 1;//1 root

}

e l s e {

r e turn 0 ; // no root

}

}

double LinearFormula : : linearRoot ( ) {

i f ( _k !=0){

r e turn (−_b/_k ) ;

}

e l s e {

r e turn (−1) ;

}

}

int LinearFormula : : setFormula ( double k , double b ){

_k=k ;

_b=b ;

i f (_k>0)

r eturn 1 ;

e l s e i f ( _k<0)

r eturn −1;

e l s e {
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cout<<”Warning : Slope is zero , no f i n i t e root !\ n”<<endl ;

r e turn 0 ;

}

}

//xˆ2+bx+c==0;

/* QuadraticFormula Class , 2 roots , double r oo t s or complex r oo t s *************/
QuadraticFormula : : QuadraticFormula ( ) {// default constructor

// using Pascal ' s triangle as coefficients , which gives two identical r oo t s −1;

setFormula ( 2 , 1 ) ;

}

QuadraticFormula : : QuadraticFormula ( double b , double c ) {

setFormula (b , c ) ;

}

int QuadraticFormula : : realRootNumber ( ) {// number of r e a l r oo t s

i f ( _delta>0)

r eturn 2 ;

e l s e i f ( _delta<0)

r eturn 0 ;

e l s e

r e turn 1 ;

}

int QuadraticFormula : : setFormula ( double b , double c ) {//xˆ2+bx+c==0

_b=b ;

_c=c ;

_delta=_b*_b−4.0* _c ;

i f ( _delta>0)

r eturn 1 ;

e l s e i f ( _delta<0)

r eturn −1;

e l s e

r e turn 0 ;

}
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complex<double> QuadraticFormula : : quadraticRoot1 ( ) {

i f ( _delta>=0)

_root1=(−_b+sqr t ( _delta ) ) / 2 . 0 ;

e l s e

_root1=cartesian (−_b /2 . 0 , s q r t (−_delta ) /2 . 0 ) ;

r e turn ( _root1 ) ;

}

complex<double> QuadraticFormula : : quadraticRoot2 ( ) {

i f ( _delta>=0)

_root2=(−_b−s q r t ( _delta ) ) / 2 . 0 ;

e l s e

_root2=cartesian (−_b /2.0 ,− s q r t (−_delta ) /2 . 0 ) ;

r e turn ( _root2 ) ;

}

//axˆ2+bx+c==0;

/* FullQuadraticFormula Class , 2 roots , double r oo t s or complex r oo t s *************/
/* taking account f o r the case a=0*/
FullQuadraticFormula : : FullQuadraticFormula ( ) {// default constructor

// using Pascal ' s triangle as coefficients , which gives two identical r oo t s −1;

setFormula ( 1 , 2 , 1 ) ;

}

FullQuadraticFormula : : FullQuadraticFormula ( double a , double b , double c ){

setFormula (a , b , c ) ;

}

int FullQuadraticFormula : : realRootNumber ( ) {// number of r e a l r oo t s

i f ( delta_>0)

r eturn 2 ;

e l s e i f ( delta_<0)

r eturn 0 ;

e l s e

r e turn 1 ;

}
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int FullQuadraticFormula : : setFormula ( double a , double b , double c ) {// axˆ2+bx+c==0

isQuadratic_=1;

a_=a ;

i f (a==0){

// cout<<”Warning : Quadratic term vanishes !”<<endl ;

LinearFormula linearTemp (b , c ) ;

root1_=linearTemp . linearRoot ( ) ;

root2_=root1_ ;

isQuadratic_=0;

r eturn −1;

}

e l s e {

b_=b/a ;

c_=c/a ;

delta_=b_*b_−4.0* c_ ;

i f ( delta_>=0)

r eturn 1 ;

e l s e

r e turn 0 ;

}

}

complex<double> FullQuadraticFormula : : quadraticRoot1 ( ) {

i f ( isQuadratic_ !=0){

i f ( delta_>=0)

root1_=(−b_+sqr t ( delta_ ) ) / 2 . 0 ;

e l s e

root1_=cartesian (−b_ /2 . 0 , s q r t (−delta_ ) /2 . 0 ) ;

}

r e turn ( root1_ ) ;

}

complex<double> FullQuadraticFormula : : quadraticRoot2 ( ) {
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i f ( isQuadratic_ !=0){

i f ( delta_>=0)

root2_=(−b_−s q r t ( delta_ ) ) / 2 . 0 ;

e l s e

root2_=cartesian (−b_ /2.0 ,− s q r t (−delta_ ) /2 . 0 ) ;

}

r e turn ( root2_ ) ;

}

/* CubicFormula Class , 3 r oo t s in total ***********************************/
CubicFormula : : CubicFormula ( double p , double q ){

CROOT2=cartesian (−0.5 ,0 .8660254037844386) ;//−1/2+i* s q r t (3) /2
CROOT3=cartesian (−0.5 ,−0.8660254037844386) ;//−1/2−i* s q r t (3) /2
setFormula (p , q ) ;

}

int CubicFormula : : setFormula ( double p , double q ) {

_p=p ;

_q=q ;

int returnValue =0;

_discriminant=cube ( _p /3 . 0 )+square ( _q /2 . 0 ) ;

// http : // en . wikipedia . org/wiki/ Cubic_equation

i f ( _discriminant==0){

_sqrtD=0;

_uu=cbrt(−_q /2 . 0 ) ;

_vv=cbrt(−_q /2 . 0 ) ;

returnValue =0;

}

i f ( _discriminant >0){

_sqrtD=sqr t ( _discriminant ) ;

_uu=cbrt ( r e a l (−_q/2.0+ _sqrtD ) ) ;

_vv=cbrt ( r e a l (−_q/2.0− _sqrtD ) ) ;
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returnValue =1;

}

e l s e {

_sqrtD=cartesian (0 , s q r t (−_discriminant ) ) ;

_uu=cbrt(−_q/2.0+ _sqrtD ) ;

_vv=cbrt(−_q/2.0− _sqrtD ) ;

returnValue=−1;

}

r e turn returnValue ;

}

int CubicFormula : : realRootNumber ( ) {

i f ( _discriminant <0)

r eturn 3 ;

e l s e

r e turn 1 ;

}

complex<double> CubicFormula : : cubicRoot1 ( ) {

_u=_uu ; _v=_vv ;

r e turn ( _u+_v ) ;

}

complex<double> CubicFormula : : cubicRoot2 ( ) {

_u=_uu*CROOT2 ;

_v=_vv*CROOT3 ;

r e turn ( _u+_v ) ;

}

complex<double> CubicFormula : : cubicRoot3 ( ) {

_u=_uu*CROOT3 ;

_v=_vv*CROOT2 ;

r e turn ( _u+_v ) ;

}

/*Full cubicFormula **************************************/
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FullCubicFormula : : FullCubicFormula ( ) {

// default , Pascal ' s triangle , a0 xˆ3+a xˆ2+b x+c==0;

CROOT2=cartesian (−0.5 ,0 .8660254037844386) ;//−1/2+i* s q r t (3) /2
CROOT3=cartesian (−0.5 ,−0.8660254037844386) ;//−1/2−i* s q r t (3) /2
setFormula ( 1 , 3 , 3 , 1 ) ; // solution x=−1 ( triple )

}

FullCubicFormula : : FullCubicFormula ( double a0 , double a , double b , double c ){

//a0 xˆ3+a xˆ2+b x+c==0;

CROOT2=cartesian (−0.5 ,0 .8660254037844386) ;//−1/2+i* s q r t (3) /2
CROOT3=cartesian (−0.5 ,−0.8660254037844386) ;//−1/2−i* s q r t (3) /2
setFormula ( a0 , a , b , c ) ;

}

int FullCubicFormula : : setFormula ( double a0 , double a , double b , double c ){

int returnValue =0;

isCubic_=1;

i f ( a0==0){

isCubic_=0;// f l a g

// cout<<”Warning : Cubic term vanishes !”<<endl ;

FullQuadraticFormula fullQuadraticTemp (a , b , c ) ;

// degenerate to xˆ2 formular

root1_=fullQuadraticTemp . quadraticRoot1 ( ) ;

root2_=fullQuadraticTemp . quadraticRoot2 ( ) ;

root3_=root2_ ;

returnValue=−1;

}

e l s e {

a/=a0 ; // normalize

b/=a0 ;

c/=a0 ;

a_=a /3 . 0 ; // convert to canonic form

p_=b−a*a / 3 . 0 ;
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q_=c+(2.0* cube (a ) −9.0*a*b ) / 2 7 . 0 ;
discriminant_=cube ( p_ /3 . 0 )+square ( q_ /2 . 0 ) ;

// http : // en . wikipedia . org/wiki/Cubic_equation

i f ( discriminant_==0){

sqrtD_=0;

uu_=cbrt(−q_ /2 . 0 ) ;

vv_=cbrt(−q_ /2 . 0 ) ;

returnValue =0;

}

i f ( discriminant_ >0){

sqrtD_=sqr t ( discriminant_ ) ;

uu_=cbrt ( r e a l (−q_/2.0+ sqrtD_ ) ) ;

vv_=cbrt ( r e a l (−q_/2.0− sqrtD_ ) ) ;

returnValue =1;

}

e l s e {

sqrtD_=cartesian (0 , s q r t (−discriminant_ ) ) ;

uu_=cbrt(−q_/2.0+ sqrtD_ ) ;

vv_=cbrt(−q_/2.0− sqrtD_ ) ;

returnValue =3;

}

r e turn returnValue ;

}

}

int FullCubicFormula : : realRootNumber ( ) {

i f ( isCubic_ ){

i f ( discriminant_ <0)

r eturn 3 ;

e l s e

r e turn 1 ;

}
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e l s e

r e turn −1;

}

complex<double> FullCubicFormula : : cubicRoot1 ( ) {

i f ( isCubic_ ){

u_=uu_ ; v_=vv_ ;

r e turn ( u_+v_ )−a_ ;

}

e l s e

r e turn root1_ ;

}

complex<double> FullCubicFormula : : cubicRoot2 ( ) {

i f ( isCubic_ ){

u_=uu_*CROOT2 ;

v_=vv_*CROOT3 ;

r e turn ( u_+v_ )−a_ ;

}

e l s e

r e turn root2_ ;

}

complex<double> FullCubicFormula : : cubicRoot3 ( ) {

i f ( isCubic_ ){

u_=uu_*CROOT3 ;

v_=vv_*CROOT2 ;

r e turn ( u_+v_ )−a_ ;

}

e l s e

r e turn root3_ ;

}
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FDTDtime.h

#ifndef FDTDtime_h

#define FDTDtime_h

/* Estimate finishing time of the simulation program */
int FDTDtimer ( int total_I , int current_i , int inc_i , clock_t previous_clock ) ;

#endif
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FDTDtime.cpp

#include ”FDTDarray . h”

#include <ctime>

#include <iostream>

using namespace std ;

/*−−−−−−−−−−−−−−−−−−−−Timer and/or estimated time f unct i on−−−−−−−−−−−−*/
int FDTDtimer ( int total_I , int current_i , int inc_i , clock_t previous_clock ) {

int i=current_i ;

int totalII=total_I ;

time_t ptimer2 ;

time_t ptimer3 ;

clock_t clock1=previous_clock ;

clock_t clock2=clock ( ) ; // current c l ock

clock_t clock3 ;

clock_t clock_diff ;

clock_t clock_total ;

struct tm *timeinfo2 ;

struct tm *timeinfo3 ;

int second_total ;

int second_frac ;

int hour_total ;

int minute_total ;

cout<<endl ;

//cout<<”i=”<<i<<endl ;
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time(&ptimer2 ) ;

//cout<<”ptimer2===”<<ptimer2<<endl ;

//cout<<”clock1===”<<clock1<<endl ;

//cout<<”clock2===”<<clock2<<endl ;

clock_diff=clock2−clock1 ;

clock_total=(int ) ( totalII−(double )i ) /inc_i*clock_diff ;

//cout<<”clock_total tick remaining . . . ( clock_t )”<<clock_total<<endl ;

second_total=clock_total /CLOCKS_PER_SEC ;

second_frac=second_total ;

//cout<<”second_total remaining . . . ( s ec )”<<second_total<<endl ;

minute_total=second_frac /60 ;

second_frac−=minute_total *60 ;
hour_total=minute_total /60 ;

minute_total−=hour_total *60 ;
cout<<”Total time estimated : ”<<hour_total<<” hours , ”<<

minute_total<<” mintes and ”<<second_frac<<” seconds˜˜”<<endl ;

//cout<<”c l ock loop d i f f ( s ec )=”<<(double ) clock_diff /CLOCKS_PER_SEC<<endl ;

//cout<<”current time ( time_t )=”<<ptimer2<<endl ;

//cout<<endl ;

clock3=clock2+clock_total ;

//cout<<”c l ock now ( clock_t )=”<<c l ock ( )<<endl ;

//cout<<”finishing time ( clock_t )”<<clock3<<endl ;

//cout<<endl ;

ptimer3=second_total+ptimer2 ;

//cout<<”finishing timer ( time_t )===”<<ptimer3<<endl ;

192



timeinfo2=localtime (&ptimer2 ) ;

//cout<<”current asctime===”<<asctime ( timeinfo2 )<<endl ;

timeinfo3=localtime (&ptimer3 ) ;

cout<<”Finishing asctime :\ t”<<asctime ( timeinfo3 )<<endl ;

cout<<endl<<endl ;

r e turn 0 ;

}
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