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DISSERTATION ABSTRACT 
 
Timothy Michael Sweeney 
 
Doctor of Philosophy 
 
Department of Physics 
 
September 2011 
 
Title: Coherent Control of Electron Spins in Semiconductor Quantum Wells 
 
Approved:  _______________________________________________ 

Dr. Hailin Wang 
 

Electron spin states in semiconductors feature long coherence lifetimes, which 

have stimulated intense interest in the use of these spins for applications in spin based 

electronics and quantum information processing (QIP).  A principal requirement for these 

spins to be viable candidates in QIP is the ability to coherently control the spins on 

timescales much faster than the decoherence times.  The ability to optically control the 

spin state can meet this requirement. The spin states of electrons exhibit strong radiative 

coupling to negatively charged exciton (trion) states, and this radiative coupling makes 

coherent optical control of spin states possible. 

This dissertation presents experimental demonstration of coherent control of an 

electron spin ensemble in a two-dimensional electron gas in a CdTe quantum well.  We 

present two complimentary techniques to optically manipulate these electron spins using 

a Raman transition. The first demonstration is with a single off-resonant ultrafast optical 

pulse.  This ultrafast pulse acts like an effective magnetic field in the propagation 

direction of the optical pulse.  The second experiment utilizes phase-locked Raman 

resonant pulse pairs to coherently rotate the quantum state, where the relative phase of 
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the pulse pair sets the axis of rotation.  The Raman pulse pair acts like a microwave field 

driving the spin states. 

This research demonstrates two significant contributions to the field of coherent 

optical interactions with semiconductors.  First, we have advanced the potential use of 

electron spin ensembles in semiconductors for optics based quantum information 

processing hardware through our demonstration of coherent spin flips and complete 

coherent control.  Second, we have experimentally realized full coherent control through 

the use of phase-locked Raman pulse pairs that overcomes inherent limitations of the 

single-pulse optical rotation technique, which is the current standard technique used in 

coherent control.   

This dissertation includes previously published and unpublished co-authored 

material. 
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CHAPTER I 

INTRODUCTION 

A particularly powerful optical process at the heart of many active areas of research 

from biology (1, 2), to chemistry (3, 4), to physics (5-9) began with an optics experiment in 

1928 (10), at the University of Calcutta.  The experiment showed that light, when passing 

through a sample liquid, can be shifted in frequency as a result of inelastic scattering.  This 

previously unknown mechanism for light scattering was soon named the “Raman effect” 

after the experimentalist, Sir C. V. Raman, who was awarded the Nobel Prize for his 

discovery in 1930.  At the root of the Raman effect is a two-photon, or “Raman,” transition 

between two states that are not directly coupled via a dipole optical transition.   

The Λ-type three-level system shown in Figure 1.1, where the three energy levels 

are labeled |0〉 , |1〉  and |e〉, illustrates a Raman transition.  Transitions to the excited state 

|e〉 from either of the ground states (|0〉 or |1〉) are dipole-allowed.  The transition between 

|0〉 and |1〉, however, is dipole forbidden.  Instead, states |0〉 and |1〉 are coupled via a two- 

 

Figure 1.1. An energy level diagram for a three-level Λ-type system with highlighted 
ground states responsible for Raman coherence. ! 
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photon transition through radiative coupling to a common excited state. The Raman 

transition can be driven resonantly when the frequency difference between two driving 

fields matches the energy difference of the lower states, as illustrated in Figure 1.1.  By 

using two Raman-resonant laser beams, one can transfer populations between dipole-

forbidden states and establish coherent superpositions known as Raman coherences. It is 

often the case that the exploitation of off-resonant coupling to the excited state is most 

beneficial, as it avoids decoherences associated with populating the real excited state |e〉. 

Figure 1.1 illustrates resonant Raman coupling, with off-resonant dipole coupling to the 

excited state. 

 

1.1. Raman Coherences: Applications and Processes 

Raman coherences have been exploited in a number of different physical systems.  

Examples include the vibrational states of molecules, the electronic states of atoms, as well 

as spin states in semiconductors.  Exploitation of these coherences has resulted in various 

applications, such as powerful biological imaging techniques (1, 2) and proposals toward 

quantum information processing (QIP) (11-17).  In optical imaging based on Coherent anti-

Stokes Raman spectroscopy (CARS) (1), the beat frequency of two lasers is used to drive 

coherent superpositions of vibrational states in Raman-active molecules in biological 

systems.  Inelastic scattering of the laser light by the molecules results in coherent scatter of 

light that is frequency shifted by the frequency of the molecular vibration. Collecting only 

the most blue anti-Stokes photons, one can generate 3-dimensional images of the density 

distribution of particular molecules found throughout a biological organism (1).  

In QIP, Raman coherences can be used for the storage, manipulation, and retrieval 
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of quantum information. Quantum information can be stored as a coherent superposition of 

a two-level system, or qubit.  The two lower state of a Λ-system can serve as a qubit. A 

particular benefit of Λ-type systems is that non-radiative Raman coherence can far out live 

two-level systems that are coupled via dipole optical transitions.  For example, a Raman 

coherence in trapped ions can last for as long as 15 seconds (18) before it is lost, which is 7 

orders of magnitude longer than a typical radiative coherence. For these long-lived 

coherences to be useful in QIP, it is necessary to implement full quantum control by 

exploiting the Raman transition, which is the primary focus of this dissertation.  

 

1.2. Raman Coherence and Electron Spins in Semiconductors 

This dissertation centers on the study of coherent optical processes of Raman 

coherence in semiconductors, more specifically Raman coherence associated with electron 

spin coherence.  The optical processes responsible for interacting with electron spins result 

from band edge optical excitations in semiconductors that are characterized by excitons.  

An exciton is a Hydrogen-like bound state of an electron in the conduction band and a hole 

in the valence band. An exciton can be bound to an excess electron or hole, forming a 

charged exciton, or trion.  In a semiconductor with an excess electron population, these 

electrons can be radiatively coupled to a (negatively-charged) trion state.  The dipole 

optical transitions involved are specific to the spin states of the excess electron population.  

The radiative coupling of electron spins to an excited state can result in a Λ-type three-level 

system, similar to Figure 1.1, in which the spin state forms the two ground states and the 

trion state is the excited state.  The resulting Λ-type system can then be used for the study 

of Raman coherence (15-17).  The Raman coherence in this context is the electron spin 
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coherence. 

Most forms of quantum coherences (i.e. superposition of quantum states) in 

semiconductors are fragile because of the interactions of the quantum states with the 

surrounding semiconductor environment (19), which result in coherence times on the order 

of picoseconds.  In contrast, the spins of electrons in the conduction band of a 

semiconductors are only weakly coupled to the semiconductor environment, which leads to 

coherence times on the order of nanoseconds or longer (20).  The dominant mechanism for 

the spin decoherence is the relatively weak coupling of electron spins to nuclear spins.  

Recent work to negate the decoherence effects of electron spins coupling to nuclear spins 

has resulted in coherence times extendable to 3 microseconds in modest magnetic fields 

(21, 22), and 0.3 seconds in the absence of an external magnetic field (23).  

The long lifetime of electron spin coherence in semiconductors has stimulated 

intense interest in exploiting electron spins for applications in spin-based electronic or 

photonic devices as well as QIP (24-27).  The spin of a single electron could be used as a 

stationary qubit for a quantum computer (27).  Spin ensembles can also play an important 

role for information storage in a distributed quantum network (28).  Other uses for spins 

and spin ensembles in QIP include quantum repeaters and the generation of entangled 

photon pairs (13, 29).  Central to the goal of using electron spins in QIP is the ability to 

initialize and control electron spins. 

Recently, significant advances have been made toward the optical initialization of 

the electron spins to a fiduciary state, with state preparation efficiency of (98.9+/- 0.4) % 

(30).  However, the ability to control spins has proven to be more challenging.  In early 

studies (2001) researchers had initially attempted to rotate the polarization of electron spin 
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ensemble systems using optical pulses (31).  However, only partial rotations of spin 

polarization had been observed, while complete control had remained elusive.  The 

principal limitation in the ability to control spins optically was the high degree of 

decoherence induced by the optical excitation (31).   

While optical control of electron spins posed a significant hurdle, researchers in 

2005 were able to bypass the optical control approach and manipulate an electron spin in a 

more direct manner (32).  They fabricated a gate-defined double quantum dot, with one 

electron confined to each dot.  The control of one electron spin was obtained through 

exchange interactions with the spin of the electron in the neighboring gate-defined dot. 

 Within the next year the same group used a radio frequency pulse to drive the 

electron spin directly (33), arguably the most straightforward approach to control a two-

level system.  For this experiment, a magnetic field was used to impart an energy, or 

“Zeeman,” splitting between the two spin states, and a radio frequency (RF) pulse was 

tuned into resonance with the Zeeman splitting.  Complete control of the spin state was 

obtained by way of control over the phase and the area of the RF pulse.  The control of the 

electron spins in gate-defined quantum dot research is limited by conventional electronics 

that result in control times on the order of a nanosecond (32-34).  The relatively slow 

control times, when compared to the spin coherence time, result in a maximum of ~103 

operations before the spin decoheres.  This ratio is not sufficient to perform the large 

number of quantum gates required for reasonably complex quantum algorithms. 

The ability to coherently control the state of the spins in timescales much shorter 

than the decoherence time is imperative to using these spins for QIP.  Recent theoretical 

proposals have suggested the use of ultrafast optical pulses to control spins, which could 
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conduct ~105 operations within the decoherence time of an electron spin (15-17).  These 

proposals exploit a Raman transition, in which the two spin states of an electron couple to a 

charged exciton state, via dipole-allowed optical transitions.  Coherent rotations with 

optical pulses can take advantage of ultrafast laser technology, thus performing control 

rotations on time scales several orders of magnitude faster than those achieved with 

conventional electronics. A second and equally valuable advantage to optically addressing 

the electron spins is the potential for coherent exchange of a matter qubit state with a 

photon state, which is important for the use of these spins in quantum networks (12, 13, 29) 

and in some quantum computation protocols (35).   

Significant progress has been made within the last several years (2008-present) 

toward using a single ultrafast optical pulse to control electron spins, following the 

proposed technique by Economou, et al. (15). Examples of this progress include complete 

control of a single electron spin (36), electron spin echoes in a single charged quantum dot 

(22) and an ensemble of singly charged quantum dots (37), and the ultrafast control of 

entanglement between electron spins in an InAs quantum dot molecule (38).  These 

demonstrations have firmly placed electron spins in semiconductors as potential candidates 

for spin-based devices and for QIP.   

The fidelity obtained in studies using the single-pulse control technique in InAs 

quantum dots is ~90% for a π pulse (36), which is far from what is required to maintain 

coherence over ~105 operations.  The degradation of the fidelity is, to large extent, due to 

unintended excitations induced by the strong ultrafast optical control pulses.  These 

excitations can not only complicate the coherent spin rotation process, but they can also 

lead to excessive decoherence.  Optical control techniques such as the phase-locked pulse 



 

 
 

 

7 

pair approach, which drive the Raman transition resonantly (16, 17), can minimize or 

circumvent these unintended excitations, leading to improved fidelity for optical spin 

control. 

 

1.3. Dissertation Outline 

The research presented in this dissertation demonstrates optical control of an 

ensemble of electron spins in a semiconductor using two different but closely related 

approaches (15-17).  For the first approach, we used an ultrafast optical pulse that featured 

a spectral bandwidth large compared to the electron Zeeman splitting, to impulsively drive 

the Raman transition associated with the electron spins.  The ultrafast optical pulse induces 

an additional energy splitting between the two electron spin states, thus acting like an 

effective magnetic field along the propagation direction of the optical pulse.  The optical 

pulse generates a coherent spin rotation about the optical axis (15, 39).  This technique is 

similar to that used in the InAs quantum dot experiments discussed above. 

For the second approach, we used a pair of phase-locked laser pulses to resonantly 

drive the Raman transition.  In this approach, a Raman-resonant pulse pair acts like an 

effective radio frequency field with a phase determined by the relative optical phase of the 

pulse pair, mapping the relative optical phase directly onto the phase of the electron spin 

polarization.  The relative initial phase of the pulse pair sets the axis of rotation, and the 

effective pulse area determines the angle of rotation.  Arbitrary spin rotation can thus be 

realized with this approach.  Our work represents the first experimental demonstration of 

optical spin control with phase-locked Raman pulse pairs.  

Among various semiconductor spin systems, optical spin control in two-
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dimensional electron gases (2DEGs) is especially challenging. 2DEGs do not feature 

atomic-like, spectrally sharp optical transitions such as those in epitaxially-grown quantum 

dots.  In addition to the rapid decoherence associated with relevant dipole optical 

transitions, coherent optical processes in 2DEGs are also complicated by inherent 

manybody interactions between optical excitations.  In this regard, the successful 

experimental demonstration of optical spin control in a 2DEG indicates the feasibility of 

extending optical spin control to most semiconductor systems, including gate-defined 

quantum dots that do not feature atomic-like optical transitions.  We have thus chosen to 

explore optical spin control in a 2DEG formed in a modulation-doped quantum well.  For a 

proof-of-principle demonstration, we have used CdTe quantum wells because optical 

transitions in CdTe quantum wells are accessible with the ultrafast Ti:Sapphire laser system 

in our laboratory and also because of the availability of high quality modulation-doped 

CdTe samples.   

In addition to the experimental studies, we have also developed a detailed 

theoretical model for optical spin control based on the use of the optical Bloch equations.  

The experimental results are in good agreement with the theoretical calculations. 

 This dissertation is organized as follows.  Chapter II discusses fundamentals of 

optical interactions in a direct band gap semiconductor -including band structures, excitons, 

and trions -and introduces the optical polarization selection rules that lead to a three-level 

Λ-type system for the electron spin states. 

Chapter III develops the theoretical description of optical spin control using the 

optical Bloch equations (OBE).  The three-level Λ-type system is reduced to an effective 

two-level system in the limit of the adiabatic approximation.  This chapter also presents the 
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detailed physical processes and mechanisms for optical spin control based on a single off-

resonant laser pulse and on a pair of Raman resonant laser pulses.   

Chapter IV describes in detail pertinent experimental setups and techniques, 

including the detection of electron spin orientation with a transient pump-probe technique 

and the generation of phase-locked laser pulse pairs with an optical pulse-shaper based on 

the use of a liquid-crystal spatial light modulator.  Optical pulse-shaping techniques are 

also analyzed in the context of a time-invariant linear filtering process.  

Some of the research presented in Chapter V has been published (39) and was co-

authored by Carey Phelps.  Chapter V presents the experimental realization of optical spin 

rotations of electron spins in a 2DEG with the use of a single off-resonant ultrafast laser 

pulse.  Complete electron spin flips are demonstrated via a comparison of coherent spin 

dynamics before and after the arrival of the control pulse.  Detailed comparisons between 

the experimental results and theoretical calculations are also discussed.   

Some of the research presented in Chapter VI was co-authored by Carey Phelps.  

Chapter VI presents the experimental realization of optical spin control of electrons in a 

2DEG with the use of a pair of phase-locked Raman-resonant laser pulses.  In contrast to 

single-pulse optical spin control, which features a fixed spin-rotation axis, manipulation of 

the initial relative phase of the pulse pair enables us to control the axis of the optical spin 

rotation.  The Raman pulse pair maps the relative optical phase onto the phase of the 

electron spin polarization, making ultrafast, all-optical, and full quantum control of the 

electron spins possible.  Detailed comparison between the experimental results and the 

theoretical calculations highlights several special features of the Raman pulse pair 

approach.   
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Chapter VII summarizes the research described in this dissertation and proposes a 

future project using chirped optical pulses to enhance control fidelity.  It also discusses an 

extension of this work for applications in cavity QED, which can enable the coherent 

coupling between distant electron spins, is also discussed.  
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CHAPTER II 

OPTICAL EXCITATIONS IN SEMICONDUCTORS: FUNDAMENTALS 

The radiative coupling of electron spins to an excited state allows for coherent 

manipulation of spins via a Raman transition.  To better understand the physical 

environment and optical processes associated with electron spin coherence we discuss the 

fundamentals of optical interactions in a direct band gap semiconductor.   

We begin with a description of the semiconductor band gap, followed by the band 

structure.  From the band structure we discuss optical excitations that lead to the creation of 

electrons and holes. We discuss two static interactions that alter the energy eigenstates of 

electrons and holes: one is confinement and the other is a magnetic field.  We present the 

formation of bound states called excitons and trions, including the optical polarization 

selection rules associated with their optical excitation.  We end the chapter with a 

description of how a three-level Λ-type system for the electron spin states is established 

with the aid of a magnetic field. 

Please note: Only in Sections 2.2-2.4, in the development of optical interactions 

with semiconductors, do we follow the conventional method for labeling the optic axis and 

growth axis as the z-axis.  In the rest of this dissertation we define the optic axis and 

growth axis as the x-axis because the eigenstates of interest, the electron spin states, are 

perpendicular to the optic axis with a transverse magnetic field present.  Therefore, we 

define the z-axis to be in the plane of the sample, and the optic axis is defined as the x-axis, 

as illustrated in Figure 2.6. 
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2.1. Band Gap 

The energy band gap is crucial to a theoretical description of semiconductors 

because it differentiates insulators and semiconductors from metals.  Energy bands arise 

from the overlap of electronic states for a large number (1020) of atoms, and gaps between 

allowed energy bands are called band gaps.  To understand the behavior of a large number 

of atoms in a solid, we begin with the electronic structure of an individual, isolated, atom.  

A single atom will have allowed atomic orbitals, which form discrete energy levels.  One 

such level is diagrammed in Figure 2.1a.  When two atoms are brought together to form a 

molecule, each allowed energy level splits.  Each additional atom to the molecule will 

contribute another allowed energy level; therefore, the total number of allowed energy 

levels will be equal to the total number of atoms.  In the case of a solid where the number 

of atoms brought together is on the order of Avogadro’s number, the very large number of 

energy levels becomes densely packed into a finite window of allowed energies.  This 

dense packing effectively merges to form continuous bands of allowed energies, rather than 

the discrete energy levels observed for atoms and molecules.  This is illustrated in Figure 

2.1b.  

Depending on the particular atoms that are brought together to form a solid, 

allowed energy bands may overlap or may be separated by energy band gaps.  In 

semiconductors and insulators, electrons are confined to a number of allowed bands of 

energy and forbidden from other energy regions, as shown in Figure 2.1c.  The term “band 

gap” refers to the energy difference between two allowed energy bands, typically the 

valence band and the conduction band.  The structure of these bands determines to a large 

extent the optical and electronic properties of a semiconductor. 
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Figure 2.1. The transformation from discrete energy levels to a continuum of states is 
shown in (a).  With an increased number of atoms, the number of allowed energy states 
becomes densely packed into a finite window of allowed energies until the discrete energy 
states merge into a band of states, as diagrammed in (b).  Semiconductors and insulators 
have bands of electronic energy states that are forbidden, called band gaps shown, in figure 
(c). 

 

2.2.  Band Structure 

To understand the optical properties of semiconductors, one must know the 

electronic structure and wave functions for the various bands.  Optical transitions near band 

edges in direct band gap materials are predominately used in optical devices and are of 

particular interest to this dissertation.  An example of the band structure for a direct band 

gap semiconductor, CdTe, is shown in Figure 2.2, where the blue line indicates the 

conduction band of CdTe, and the red curves are the heavy- and light-hole valence bands.  

An extremely useful method for modeling the band structure bands is the k•p method. 
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Figure 2.2. The band structure for CdTe.  Direct band gap transitions of interest occur at the 
Γ-point. 
 

2.2.1.  Band Structure: k•p Method 

The k•p method is developed from the Schrödinger equation of a single electron in 

a periodic potential 

V (!r ) =V (!r +
!
R) ,        (2.1) 

which is invariant under crystal translation. Hence, 
!
R  is an integer distance between lattice 

sites inside the crystal.  The Schrödinger equation for the single electron is then given by 

 H!(!r ) = "2

2m0

!2 +V (!r )
"

#
$

%

&
'!(
!r ) = E(

!
k )!(!r ) .     (2.2) 

 The general solution for the above Hamiltonian with a periodic potential is given by 

the Bloch wave function 

 !n
!
k (
!r ) = ei

!
k •!run!k (

!r ) ,        (2.3) 

where un!k (
!r ) = un!k (

!r +
!
R)  is a periodic wavefunction.  Plugging the Bloch wave function 
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(2.3) into the Schrödinger equation (2.2), one can arrive at the equation in which the k•p 

method begins, namely 

 p2

2m0

+
!
m0

"
k • "p+V ("r )

!

"
#

$

%
&un"k (

"r ) = E(
"
k )' !

2k2

2m0

!

"
#

$

%
&un"k (

"r ) .   (2.4) 

 For a full description of the bands, numerical solutions to equation 2.4 are required 

to calculate the general energy band along the different 
!
k  directions.  Our research focuses 

on dynamics near small values of 
!
k near 

!
k = 0 , the Γ point, shown in Figure 2.2.  

Assuming that Bloch wave equations and energies for bands at 
!
k = 0  are known, we can 

treat the terms !
m0

"
k • "p  and !

2k2

2m0

 as perturbations in either degenerate or non-degenerate 

perturbation theory to calculate the wave equations and energies near 
!
k = 0 . In general, the 

k•p method can be applied to calculate the band dispersion near any point 
!
k =
!
k0  by doing 

a perturbative expansion around 
!
k0 , provided that the wave functions and the energies at 

!
k0  are known. 

 Calculations of the conduction band dispersion near the Γ point can be performed in 

a fairly straightforward manner using the k•p method.  By exploiting symmetry properties 

of the conduction band near 
!
k = 0 , the energy dispersion calculated in the k•p method to 

second order in k is 

 Ec (
!
k ) = Eg !

"2k2

2m*
e

,        (2.5) 

where m*
e  is the effective mass of the electron and  Eg  is the energy band gap.  The 

effective mass is given by 
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 m*
e ! Eg

m0
2

2P2
,         (2.6) 

where m0 is the electron mass and 

 P = !i !
m0

c pz v         (2.7) 

is the Kane’s parameter, which is the momentum matrix element between the conduction 

band, c, and the valence band, v.  The fact the P is nearly identical for group IV, III-V, and 

II-VI materials results in a useful ratio for calculation the effective mass of conduction 

band electrons: 2P
2

m0

! 20meV .  

 

2.2.2.  Band Structure: Kane’s Model 

In order to describe the valence bands of a direct band gap semiconductor, it is 

imperative to account for the effects of spin-orbit coupling.  The spin-orbit interaction is a 

result of torque exerted on the spin of the electron by a magnetic field generated by a 

positively charged nucleus, as viewed from the rest frame of the electron.  

 The Kane’s model for calculating band structure incorporates the spin orbit 

interaction into the k•p method.  One simply adds the spin orbit interaction Hamiltonian 

 HSO =
!

4m0
2c2

!V " !p( ) •! ,       (2.8) 

where σ is the Pauli-spin matrix, to the Schrödinger equation (2.4).  Then one uses the 

interaction Hamiltonian  

 H int =
!
m0

!
k • !p+ !

4m0
2c2

!V " !p •! ,      (2.9) 
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as a perturbation. 

The wave functions that are used as basis functions in the Kane’s model are based 

on atomic s-like and p-like wave functions.  In addition to orbital angular momentum, the 

spin angular momentum of charges in the conduction and valence bands must also be taken 

into account.  The basis functions are chosen as 

 iS! , X " iY
2

# , Z! , " X + iY
2

#       (2.10) 

and  iS! , " X + iY
2

# , Z! , X " iY
2

# ,      (2.11) 

where the first term is the conduction band state (s-like), followed by the three p-like 

valance band states, represented in terms of spherical harmonics.  The eigen energies for 

the unperturbed Hamiltonian, 

 H0 =
p2

2m0

+V (!r ) ,        (2.12) 

are degenerate for the two conduction band states, and are six fold degenerate for the 

valence band states.  We use these basis functions to obtain the matrix elements to the 

interaction Hamiltonian (2.9), and thus to obtain the energy and wave function corrections.  

After diagonalizing the resultant Hamiltonian to obtain the new eigen energies for the 

bands, we find that the spin-orbit coupling term results in an energy offset, -∆, for the split 

off band.  

 The energy dispersion calculated from the k•p method, with spin orbit coupling 

included, is summarized below: 
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 Conduction band: Ec (k) = Eg +
!2k2

2me
*      (2.13) 

 Heavy-hole band: Ehh (k) = !
!2k2

2mhh
*      (2.14) 

 Light-hole band: Elh (k) =
!2k2

2m0

!
2P2k2

3Eg

= !
!2k2

2mlh
*    (2.15) 

 Split-off band:  Eso(k) = !!+
!2k2

2m0

!
2P2k2

3(Eg +!)
= !!! !

2k2

2mso
* ,  (2.16) 

where P is Kane’s parameter, Eg is the band gap, and ∆ is the split-off energy.  Each 

dispersion curve can be represented with an energy offset: either the band gap or the split 

off energy and a parabolic function with curvature defined by an effective mass. The 

effective mass for an electron in the conduction band of CdTe is mc*=0.1 m0, where m0 is 

the mass of an electron.  The heavy hole and light hole effective masses are mhh*=0.45 m0 

and mlh*=0.1 m0 respectively (40). 

With these energy corrections, we then obtain the new eigen functions for the 

different bands.  We present them below in terms of the spherical-harmonic and spin-state 

vector and the total angular momentum and its z-projection |J,  Jz>:  

 Conduction band: iS! =
1
2
, "1
2

     (2.17) 

    iS! =
1
2
, 1
2

      (2.18) 

 Heavy-hole band: !
X + iY
2

" =
3
2
, 3
2

     (2.19) 

    X ! iY
2

" =
3
2
, !3
2

     (2.20) 
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 Light-hole band: 1
6
X ! iY
2

" +
2
3
Z# =

3
2
, !1
2

   (2.21) 

    !1
6
X + iY
2

" +
2
3
Z# =

3
2
, 1
2

   (2.22) 

 Split-off band  1
3
X ! iY
2

" +
1
3
Z# =

1
2
, !1
2

   (2.23) 

    1
3
X + iY
2

! +
1
3
Z" =

1
2
, 1
2

.   (2.24) 

From the Kane’s model we are able to obtain the eigen functions for the conduction 

band and valence bands, and the energy shift for the split-off band, shown as -∆ in Figure 

2.3.  The solution based on these four bands does not give the correct curvature for the 

heavy-hole valence band.  However, incorporation of higher bands corrects this.  A 

diagram for the dispersion curves is shown in Figure 2.3. 

 

Figure 2.3.  Energy dispersion curves near k=0 for the conduction, heavy-hole, light-hole, 
and split-off band. 
 

2.3.  Effects of Confinement 

The energy level structures of semiconductors can be engineered or tailored with 
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heterostructures.  This can be illustrated with the classical “particle in a box” problem. The 

energy eigenstates for the solution to the Schrödinger equation for a particle in a 1D box 

with infinite barriers is 

En = n
2 !2! 2

2mL2 ,         (2.25) 

where n is an integer, m is the mass of the particle, and L is the width of the well.  The first 

few wave functions are plotted at their corresponding energy levels in Figure 2.4. 

 

Figure 2.4. The energy levels and wave functions for a particle in a one-dimensional 
infinite well for n=1, 2, 3 and 4.  The black dashed lines are at the eigen energies, and the 
red curves are the wave functions at the respective energy level. 

 

Confinement of electrons and holes in a semiconductor is possible by layering 

materials with different energy band gaps, and it can be one dimensional, two-dimensional 

or three-dimensional.  The corresponding structures are called quantum wells (QW), wires, 

and dots.  Of interest to this dissertation is confinement due to a QW; therefore, the 

discussion of semiconductor heterostructures here will be limited to one-dimensional 

confinement.  

A semiconductor QW features finite barrier height.  For a given barrier and well 
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material the lowest energy state for an electron or hole in a semiconductor QW is 

determined by its mass and the well width. The energy of a particle within a well is 

inversely proportional to the mass of the particle.  Therefore, the more massive a particle is 

the lower its energy within a well.  The different effective mass for heavy and light holes 

results in a lifting of the energy degeneracy at k=0, shown in Figure 2.2 and 2.3.   

  

2.4.  Optical Excitations 

 To understand how electrons are promoted from the valence band to the conduction 

band, it is useful to consider the wave functions for the various bands of interest, which are 

the conduction, heavy-hole, and light-hole bands.  The split-off band is energetically far 

removed due to spin-orbit interactions; therefore, it will be ignored for the remainder of this 

dissertation.  The dipole matrix elements governing the interband optical excitations are 

given by 

 µcv = e c
!r v ,        (2.26) 

where v represents the various valence band states, c represents the conduction band states, 

e is the electron, and !r is the position operator.   

 The allowed optical transitions for circularly polarized light propagating in the 

growth direction of the QW are presented graphically in Figure 2.5.  The states are labeled 

according to total angular momentum, J, and z-component of the angular momentum (or 

spin) as J, Jz . The heavy-hole states are 3
2
,± 3
2

, the light-hole states 3
2
,± 1
2

, and the 

conduction band states are 1
2
,± 1
2

.  Notice the light- and heavy-hole states are 

diagrammed as energetically split due to confinement. 
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Figure 2.5. Polarization selection rules for coupling electron states in the valence band to 
the conduction band for a CdTe QW.  The states are labeled by their total and z-component 
(spin) of angular momentum |J, Jz>.  Hole states have total angular momentum J= 3/2, and 
conduction band states have total angular momentum J=½.  Dipole coupling with circular 
polarized light is indicated by red arrows, solid for σ+ and dotted for σ -. 
 

 

2.5.  Magnetic Field Effects on Spins in QWs 

Experiments presented in this dissertation are focused on transitions between the 

heavy-hole band and the conduction band in the presence of a magnetic field in the Voigt 

geometry (Figure 2.6c).  The Voigt configuration defines the optic axis as normal to the 

growth direction of the sample and a magnetic field applied transverse to optic axis (i.e. in 

the plane of the QW). For the conduction band, electron spins are aligned parallel or anti-

parallel to the magnetic field, as a result of the Zeeman effect.  The interaction Hamiltonian 

between an electron and an external magnetic field is given by 

,         (2.27) 

where  is the magnetic field,  is the magnetic moment (  being the Bohr 

magneton), 
!
J  being the total angular momentum, and g is the effective electron g-factor.  

Here the energy eigenstates of the electrons are defined by the magnetic field , which is 

perpendicular to the optic axis. 

 In descriptions of band structure, Section 2.3, and optical interactions in 
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semiconductors, Section 2.4, we have followed conventional labeling practices for optical 

interactions with semiconductors, which defines the optic axis as the z-axis.  We are now 

defining the optic axis the x-axis.  This is because we are primarily interested in the 

eigenstates of electron spins, which are defined by the magnetic field axis. Experiments in 

this dissertation were performed in the Voigt geometry, with the magnetic field axis 

perpendicular to the optic axis.  Therefore, for the rest of this dissertation we define the 

magnetic field axis as the z-axis and the optical axis as the x-axis, as shown in Figure 

2.6(c). 

 

Figure 2.6.  Sample geometry (a) and the polarization selection rules for coupling heavy-
hole bands (Jx=+/- 3/2) to conduction bands (sx=+/- 1/2) in the absence of a magnetic field 
(b).  The sample geometry with an in-plane magnetic field (Voigt geometry) is diagrammed 
(c) with the modified polarization selection rules (d) due to electron spin quantization along 
the magnetic field axis (sx=+/- 1/2).  
 

 Conduction band electrons are immune to the effects of spin-orbit coupling. 

Therefore, they can readily align with a magnetic field.  However, valance band electrons 

are strongly influenced by spin-orbit coupling.  In semiconductors with an in-plane 
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compressive strain or heterostructures resulting in quantum confinement, like a QW, the 

growth direction becomes a preferred quantization axis for heavy-hole spins.  This results 

in the heavy-hole spins being constrained to project normal to the quantum well plane (41, 

42).   

 The confinement potential orients the hole spins in the growth direction of the QW 

and scales with energy splitting between the heavy-hole and light-hole bands (43).  In 

essence there are two competing factors in defining the eigenstates for the holes: one is the 

confinement potential (x-axis), and the other is the transverse magnetic field (z-axis).  In 

our experiments, the confinement energy is greater than 10 meV while the Zeeman energy 

is ~0.5meV.  As a result, the hole states defined by the growth direction of the sample 

remain a good quantization axis (41-43). 

 The external magnetic field in the plane of the QW modifies the optical selection 

rules presented earlier. The heavy-hole spin states in the growth direction, Jx, remain good 

quantum numbers, while sx electron spin states are mixed by the in-plane magnetic field.  

As a result, sz becomes a good quantum number for electron spins.  The mixing of the 

electron spin states allows for radiative coupling of each hole state to both electron spin 

states, as diagrammed in Figure2.6d. The modification of the optical selection rules in the 

presence of a transverse magnetic field is essential in the optical control of electron spins 

and will be presented in Section 2.9. 

 

2.6.  Excitons  

The optical processes of interest to this dissertation result from band edge optical 

excitations in semiconductors.  Band edge optical excitations are characterized by excitons. 
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An exciton is a Hydrogen-like bound state of an electron in the conduction band and a hole 

in the valence band.  The effective mass description of electrons and holes allows one to 

model the electron-hole interaction in the same way one models a Hydrogen atom. In 

semiconductors, electric field screening, due to a large dielectric constant, reduces the 

Coulomb interaction between electrons and holes.  Along with the screened Coulomb 

interaction, the small effective masses of electrons and holes result in a binding energy 

~10meV, which is 3 orders of magnitude weaker than the hydrogen atom.  The resultant 

excitons are called Wannier-Mott excitons, which have a Bohr radius of ~10nm.  

In the effective mass approximation, we only need to consider the solution to the 

Schrödinger equation for the Hydrogen atom,  

 !2

2mr

!2 +V ("r )
"

#
$

%

&
'!(
!r ) = E(

!
k )!(!r ) ,      (2.28) 

to model the Coulomb interaction between an electron and a hole, where mr is the reduced 

effective mass of the electron hole pair, and  is the coulomb potential.  The binding 

energy of an exciton in a bulk system, modeled in three-dimensions (3D), is given as 

 En
3D =

!Ry

n2
,         (2.29) 

where Ry is the Rydberg energy, and n is an integer. In CdTe the Rydberg energy is 12meV 

(44).  The confinement along the growth direction of a QW reduces the degrees of freedom 

for electrons and holes to two-dimensions.  The binding energy for a two–dimensional (2D) 

exciton is 

 En
2D =

!Ry

n! 12( )
2 .        (2.30) 

 The strongest exciton absorption is due to the creation of 1s excitons (n=1), and the 
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binding energy for 1s excitons is four times greater in 2D than in 3D.  The exciton binding 

energy results in a well-defined spectral resonance that is removed from the band edge. The 

absorption spectra for the CdTe QW sample used in the experiments presented in this 

dissertation is shown in Figure 2.7.  The heavy-hole exciton resonance is indicated at 771 

nm and to the red of the exciton resonance is another absorption peak labeled trion.  

 

 

Figure 2.7.  Absorption spectra showing exciton and trion peaks. 
 

2.7.  Trions 

An exciton can be bound to an excess electron or hole, forming a charged exciton, 

or trion, as diagrammed in Figure 2.8b.  A negatively charged trion is composed of a hole 

and two electrons of opposite spin.  Just as one can model an exciton using the Schrödinger 

equation for the Hydrogen atom, it is possible to estimate the binding energy of a charged 

exciton by modeling it in the same way one models the Helium atom. That is, using the 

variational method. The variational method uses a trial wavefunction that has one or more 

adjustable parameters to calculate the expectation value of the energy.  The parameters are 
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adjusted to minimize the expectation value of the Hamiltonian.  To estimate the binding 

energy of a negatively charged exciton, a first approach is to use the exciton wavefunction 

as a trial function with the charge of the hole an adjustable parameter.  The treatment of the 

hole charge as a variable is a reasonable one, as it accounts for the effect hole screening by 

the second electron. There are more sophisticated ways to obtain more accurate estimates 

for the binding energy, which typically involve more complex trial wavefunctions (45-47).   

 

 

Figure 2.8.  Diagram of an exciton (a), where an electron hole pair forms a hydrogenic 
quasi-particle.  The trion diagrammed in (b) is made up of two electrons and a single heavy 
hole.  Note the radius of the trion is much larger than that of the exciton, a result of the 
relatively weak binding energy.  

 

The theoretical analysis of trion binding energy demonstrates that the binding 

energy of trions increases with confinement, from about 10% of the exciton binding energy 

in 3D to about ~50% in the 2D limit (46, 47).  Also, there is no theoretical or experimental 

evidence for an excited state for trions (47).  A simple relation that can be used to estimate 

the binding energy of trions in quantum wells is given as 

EB
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,        (2.31) 

where  is the exciton Bohr radius, L is the well width, and Ry is the exciton Rydberg 
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energy.  For our system, the calculated binding energy from the above equation is ~3 meV, 

and it is experimentally measured to be ~2.5 meV. Since the binding of an exciton to a 

charge (forming a trion) is energetically favorable, it is possible to observe a well defined 

spectral resonance associated with trion formation below the exciton resonance, as seen in 

Figure 2.7, with the trion 2.5 meV below the exciton.   

To form a negatively charged trion there must be excess electrons present to which 

an exciton may be bound.  A semiconductor quantum well with donor atoms in the barrier 

can supply the well region with excess electrons by shifting the Fermi energy, thus 

allowing for trion creation. 

 

2.8. CdTe Quantum Well Structure 

 Our experiments used a high quality n-doped CdTe QW grown by molecular beam 

epitaxy on a Cd0.88Zn0.12Te substrate that is transparent near the band edge.  The sample 

consists of 10 periods of 10 nm CdTe wells and 45 nm Cd0.84Zn0.16Te barriers (48).  One 

QW period is diagrammed in Figure 2.9. By modulation doping with Indium, with a 

density estimated to be 3x1010=cm2, excess electrons tunnel into the QW and form a two-

dimensional electron gas (2DEG).  In this sample, trion absorption is shown in Figure 2.7 

and is characterized by a linewidth of 0.8 nm (1.6 meV) and a trion binding energy of 2.5 

meV (1.25 nm).  By tuning a laser to the trion resonance, it is possible to directly couple 

the spin states of the electrons in the 2DEG to trion states. 
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Figure 2.9.  A single period of the 10 period QW sample used in our research. The sample 
consists of 10 nm CdTe wells and 45 nm Cd0.84Zn0.16Te barriers. Indium is doped in the 
barriers at 3x1010=cm2. 
 

2.9.  Polarization Selection Rules for Trions 

In a semiconductor with an excess electron population, these electrons can be 

radiatively coupled to a (negatively-charged) trion state.  The dipole optical transitions 

involved are specific to the spin states of the electrons.  This is graphically shown in Figure 

2.10, with electron spins as the lower states and trion states as the excited states. We know 

from the polarization selection rules for exciting carriers from the heavy-hole band that σ + 

circularly polarized laser light will create an electron with spin |-1/2> and a hole with spin 

|3/2>.  These two particles, in the presence of excess electrons with spin |+1/2>, can form a 

trion. Thus, σ+ couples electrons of spin |+1/2> to the heavy-hole trion state with hole spin 

|3/2>, labeled as |T+>, in Figure 2.10.   
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Figure 2.10. The polarization selection rules for coupling electron spins to a trion.  
 

 With the application of a magnetic field in the z-direction (Voigt geometry, Figure 

2.6c), the energy eigenstates for spins are no longer along x but along the z-axis.  With 

regard to the trion states, a trion state is defined by the eigenstates of its heavy hole because 

the two electrons are in a singlet state.  Therefore, the trion states remain quantized in the 

growth direction of the sample because heavy holes in a QW are confined to orient normal 

to the well plane even with a modest transverse magnetic field.  The polarization selection 

rules are thus modified to include the new eigenstates for the electrons but maintain the 

eigenstates of the trions. Figure 2.11 illustrates the modified polarization selection rules. 

  

Figure 2.11.  The modified polarization selection rules for coupling electrons spins to trion 
states in the presence of a magnetic field oriented along the z-axis (Voigt geometry). 

 

The radiative coupling of the two electron spin states to an excited state thus results 
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a) b) 

CdTe QW 

!"

#"

! 

T +

! 

T "

! 

" +

! 

+1/2 x

! 

"1/2 x

! 

" #

! 

+1/2 z

! 

"1/2 z   

! 

!"B
! 

" +

! 

" #

! 

T +

! 

T "
a) b) 

!"

CdTe QW 

#"

$"

!+"



 

 
 

 

31 

states and the trion states define the excited state.  By selecting σ+ polarized laser radiation 

it is possible to address a single Λ-type system for the study of electron spin coherence in 

semiconductors through the exploitation of a Raman transition (15-17).   

 

2.10.  Chapter Summary  

In this chapter we describe the fundamentals of optical interactions in a direct band 

gap semiconductor.  We introduced neutral excitons and charged excitons (trions), and 

discussed the radiative processes responsible for coupling electrons in a 2DEG to the trion 

excited state.  We described how to establish, with the aid of a magnetic field, a three-level 

Λ-type system for the electron spin states.  
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CHAPTER III 

OPTICAL SPIN CONTROL: THEORY 

 In this chapter we develop the theoretical description of optical control of electron 

spins.  By exploiting a Raman transition we are able to decouple the two ground states of a 

Λ-type three-level system from the excited state, resulting in an effective 2-level system.  

We present the Λ-type system that describes the radiative coupling of electron spins to a 

common trion state and reduce it to an effective two-level system. 

  This chapter begins with a review of the dynamics of two-level systems as 

described by the Rabi problem.  Then we introduce the Λ-type three-level system, which is 

described by dipole optical transitions that couple the two ground states to a common 

excited state. The three-level Λ-type system is then reduced to an effective two-level 

system in the limit of the adiabatic approximation.  We then investigate the resultant 

approximate description of the evolution of the spins with two sets of polarization selection 

rules.  

 We show that particular limits are observed governing the effectiveness of control 

in systems where the two dipole transitions have the same polarization selection rule, 

which is the case for our electron-trion Λ-system.  These limitations are not present for 

Raman transitions with orthogonal polarization selection.  We end the chapter by 

introducing the optical Bloch equations (OBE) to account for decays and decoherences.  
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3.1.  Two-Level System 

Coherent control of quantum systems refers to the ability to reversibly manipulate 

an initial quantum state to a final state, .  To control the state of the 

system we design an interaction Hamiltonian .  In a two-level system, 

this can be accomplished using a resonant or off-resonant driving field. Figure 3.1 depicts a 

two-level atom coupled by a field of frequency ω. 

 

Figure 3.1 A schematic of a two-level atom with energy difference ω1 and a coupling field 
ω, detuned by Δ. 

 

The Hamiltonian for the two-level system driven by an oscillating field in the 

1 , 0{ }  basis is written as  
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After making the rotating wave approximation (RWA) and only keeping the slowly 

oscillating terms, the Hamiltonian is 

.     (3.2) 

We can further simplify the Hamiltonian by going into the rotating frame of the field, 
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where the rotating frame state vector is written as 

| !!(t) =C1 exp(!i"t) |1 +C0 | 0

= !C1 |1 +C0 | 0
.       (3.3) 

and the rotating frame Hamiltonian after the RWA is 

,        (3.4) 

where ! !! "!1  is the detuning of the coupling field from the excited state energy, and 

!" #µ E / !  is the Rabi frequency.  This is the frequency of population oscillation 

between the two states as a result of the driving field E.  These simplifications eliminate the 

explicit time dependence of the Schrödinger equation, leaving us with 

.       (3.5) 

Now we can solve the coupled equations for the probability amplitudes in the 

rotating frame and observe the dynamics of the two-level system.  We will begin with the 

population at time t=0 in the lower state |!(0) =| 0 .  We first obtain the solution in the 

case of exact resonance, followed by the more general, nearly resonant case.   

 

3.1.1.  Rabi Oscillations with Resonant Coupling Field 

In the case of zero detuning and the population initially in the lower state the 

probability amplitudes are 
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and !C1(t) = !isin
1
2
"t

#

$
%

&

'
( .        (3.7) 

From the probability amplitudes we know the excited and ground state populations are 

P0 (t) = C0 (t)
2
=
1
2
1! cos "t( )( )       (3.8) 

and  P1(t) = !C1(t)
2
= C1(t)

2
=
1
2
1+ cos !t( )( ) .     (3.9) 

 The solution to the Schrödinger equation shows the complete population transfer 

from |0〉 to |1〉 when Ωt =π. This is a completely coherent process of population transfer 

between the two states.  The probability of finding the atom in the excited state as a 

function of time, following the solution above (3.9), is shown in Figure 3.2. 

 

Figure 3.2.  Rabi oscillations for a two-level system driven on resonance, ignoring decay.  
The vertical axis is the probability of finding the atom in state |1〉. The horizontal axis is in 
units of the Rabi period. 
 

3.1.2.  Nearly Resonant Dynamics 

Now we extend the solution to the wave equation for the two-level system driven 

by an arbitrarly detuned monochromatic field.  Again, the population is initially in the 

lower state.  The probability amplitudes are 

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

!t(") 

P
ro

ba
bi

lit
y 

P
1 



 

 
 

 

36 
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where !!" !2 +#2  is the generalized Rabi frequency.  

Figure 3.3 shows the probability of finding the system in the excited state as a 

function of Ωt for several detunings.  Figure 3.3 shows increased detuning (in units of Rabi 

frequency) results in a decrease in the maximum probability of the system being in the 

excited state result. 

 

 

Figure 3.3.  Probability of a population being in state |1〉 is plotted as a function of time, in 
units of Rabi period, for a series of detunings. 
 
  

3.1.3.  Two-Level Control and Summary 

 The Rabi problem shows us that the probability of finding the system in the excited 

state, for a resonant field, occurs when Ωt=(2n+1)π.  For pulsed fields, the probability of 

the system being in the excited state after a driving pulse is determined by the time integral 
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of the Rabi frequency, or “pulse area.”  For example, a π pulse is ! = !(t)" dt  and results 

in population transfer from |0〉 to |1〉.  

 The Rabi problem demonstrates that population can be coherently transferred 

between states.  However, complete control of the two-level system requires the ability to 

generate arbitrary superpositions with arbitrary phase.  Control over the area and phase of 

the driving field results in complete control of the two-level system.  To show this we allow 

for the phase of the driving field φ to be incorporated in the probability amplitudes in the 

rotating frame. The rotating frame state vector is 

  

.      (3.12)

 

 To show the ability to generate arbitrary rotations we simply take the solution for 

the on-resonance case with the state initialized to |0〉 at t=0.  The state of the two-level 

system can thus be written as 
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(3.13)

  in the laboratory frame.  With control over φ and ! ! "(t)# dt , full quantum control of a 

two-level system is possible.  

 

3.2.  Three-Level System 

 We now describe the dynamics of a Λ-type three-level system and the limits 

required to reduce the Λ-type system to a more compact description. Figure 3.4 diagrams 

the Λ−type system and the effective two-level system obtained by reducing the Λ-system to 

an effective two-level system. The Hamiltonian that describes optical interactions in this 
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three-level system can be written in the T , + , !{ } basis as  

,      (3.14) 

where V+ and V- are the matrix elements for the relevant dipole optical interactions.  The 

two ground states |+〉 and |-〉 are not directly coupled.  They are only coupled through the 

excited state |T〉.  To maintain generality, no assumptions are made at this point with 

respect to the polarization selection rules of the dipole transitions.   

 
Figure 3.4.  Schematic of a three-level system where the two lower spin states couple to the 
common excited state via two dipole optical transitions. Through the adiabatic elimination 
of the trion state, the dynamics of the system can be reduced to an effective two-level 
system for the spins. 
 

 In the rotating frame, the state vector of the three-level system can be written as  

,     (3.15) 

where ! ! (!1 +!2 ) / 2  is the average frequency of the two external optical fields.  Within 

the rotating wave approximation, the Schrödinger equation for the state vector is given by 
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where ! "!e #!  is the average detuning for the dipole transition, and we define 

V+ ! !"+ exp(#i!t)   and V! " !#! exp(!i!t) .   

For detuning much larger than the linewidth of the excited state, the dynamics of 

the excited state adiabatically follow the external optical fields as well as the two lower 

level spin states (16). The adiabatic approximation assumes that the dynamics associated 

with coupling to the excited state quickly reach steady state when compared to the 

dynamics of the system.  Therefore, in this adiabatic limit, we have	
  

,      (3.17) 

where the change in the probability amplitude of the excited state is approximated as zero. 

The three-level system can then be reduced effectively to a two-level system,  

,        (3.18) 

with an effective Hamiltonian given by  

,     (3.19) 

where  is the optical Stark shift induced by the external fields on the eigenstates 

of the system.  We will now apply polarization selection rules to the Λ-type system and 

investigate the dynamics of the effective two-level system when driven on Raman 

resonance. 

 

3.2.1.  Three-Level System with Orthogonal Polarization Selection Rules 

 For a three-level system where the two dipole transitions have orthogonal 
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polarization selection rules, two optical fields, with amplitude E1 and E2  and frequency ω1 

and ω2, couple to two separate dipole transitions, respectively.  In this case, we have  

 

and   ,       (3.20) 

where µ+ and µ- are the respective dipole matrix elements (assumed to be real), φ is the 

initial phase difference between the two optical fields, and ! !"1 ""2 .  The effective two-

level Hamiltonian is given by 

,	
   	
   	
   	
   (3.21)	
  

where  is the effective Rabi frequency for the spin-flip Raman 

transition.    

 To control this effective two-level system we consider two scenarios. First we 

consider a single pulse that couples to only one transition, for example  and  

.  Then we consider a pair of Raman resonant pulses with equal Rabi frequencies 

!+ =!"  and identical temporal profiles.  

 When  and , the effective Hamiltonian reduces to 
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where the effect of the optical pulse is an optical Stark shift of one of the energy eigenstates 

of the system.  This results in control over the phase of coherent superposition states. 
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 In the limit of equal optical Stark shifts, !+ =!" =! , the resultant effective 

Hamiltonian is identical to the Rabi problem: 
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The Raman resonance condition is met when the frequency difference of two laser fields 

equal to the ground state energy difference δ=ωB, and coherent Rabi oscillations between 

ground states are possible.  With control over the two-photon Rabi frequency and the 

relative phase φ of the optical fields, complete control of the lower two states of a Λ-type 

system is possible.  For a system with the initial state |-〉 the final state is determined by the 

phase and the time-integrated two-photon Rabi frequency.  There is no explicit dependence 

on the duration of the pulse, only the area.  This is not the case for Λ-type systems where 

both ground states couple to a common excited state with the same polarization selection 

rule. 

 

3.2.2.  Three-Level System with the Same Polarization Selection Rule 

The electron-trion three-level system presented in this dissertation demonstrates the 

same polarization selection rule coupling two electron spin states to a common excited 

state, a trion.  Therefore, a single optical field can couple to both dipole transitions.  Figure 

3.5a illustrates the three-level system with one coupling field of frequency ω1.  Figure 3.5b 

illustrates how the Raman resonance condition can be met with two fields with frequencies 

ω1 and ω2.  
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Figure 3.5.  (a) Illustrates one field coupling both ground states to a common excited state. 
(b) Illustrates two fields with frequency difference equal to the ground state energy 
splitting, meeting the Raman resonance condition. 
  

 To meet the Raman resonance condition with two monochromatic fields we 

introduce a general Raman-resonant pair of fields.  We will show that both a single pulse 

and a pulse pair can result in coherent rotations and can be derived from the same 

expression.  In this case, we define the coupling to have  

	
  	
       (3.24) 

and . 	
   	
   	
   	
   (3.25) 

The effective two-level Hamiltonian is now given by 

.	
  	
     (3.26)	
  

The first term in the effective Hamiltonian is identical to the results obtained for orthogonal 

polarization selection rules (equation 3.21).  However, there is a second term in the 
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Hamiltonian, which is responsible for an optical Stark shift of state defined by the optical 

axis (15).  We now investigate how this effective Hamiltonian determines the dynamics of 

the two-level system.  

  

3.2.2.1.  Single-Pulse Raman Resonance with Same Polarization Selection Rule 

The effective Hamiltonian (equation 3.24) when E2=0 and  describes the 

dynamics of the effective two-level system driven by a single optical pulse, which reduces 

to 
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In this Hamiltonian, an effective DC field couples the two states.  The off-diagonal matrix 

element acts as an optical Stark shift of the superposition state |x〉=½ (|-〉+|-〉), which can 

also be thought of as an effective DC magnetic field coupling the spin states.  

The effect of ωB is to induce precession about the z-axis, the axis of the Bloch 

sphere defined by the energy eigenstates of the two-level system.  The effect of  is 

to induce precession about the x-axis.  To use the coupling field to effectively drive Rabi 

oscillations, the temporal duration of the coupling field must be much faster than the 

precession about the z-axis.  Therefore E1 should be a pulse with a duration much faster 

than the precession time about the z-axis.   

To understand the limitations of how fast a pulse must be, relative to the precession 

time, we conducted a numerical simulation of the two-level system.  The pulse used in the 
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simulation had a Gaussian temporal profile 

 E1(t) ~ exp[!(t ! t0 )
2 / 2! 2 ] ,       (3.28) 

where t0 set the arrival time of the pulse and σ is the standard deviation.  The temporal full 

width half maximum of a Gaussian pulse is .  Figure 3.6 plots the probability 

of transferring population from |-〉 to |+〉 for a pulse area of ! = µ 2

4!2!
| E1 (t) |

2" dt  as a 

function of the pulse duration in units of the precession time .  Figure 3.6 

illustrates an important limitation to the single pulse rotation technique: the effectiveness of 

the single-pulse in transferring population degrades with an increase in its pulse duration.  

In other words, to meet the Raman resonance condition the pulse bandwidth must be far 

larger than the ground state splitting.  Once the pulse duration is comparable to the 

precession time, the pulse has virtually zero effect on the system, as shown in Figure 3.6.   

 

 

Figure 3.6.  Numerical simulation of the probability of population transfer after a pulse of 
area π but with variable pulse duration.  The probability of the excited state is plotted 
against the pulse duration normalized by the ground state energy splitting. 
 
 Given the high accuracy in the short pulse limit Tsp/TωΒ<<1, it is advantageous to 

consider how rotations about the optical axis may look.  Now we present examples of 
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single pulse rotations for several rotation angles. Figure 3.7 presents the evolution of the 

state vector on the Bloch sphere, along with its x-projection of the coherence for varied 

rotation angle, set by pulse area.  Rotations of π/2 about the x-axis when the state vector is 

aligned with the y-axis result in the state vector being rotated into the z-direction, indicated 

by the sx projection being zero after the rotation.  Again, the x-axis is the optic axis, and 

this technique only rotates the state vector about the x-axis.  

Figure 3.8 presents the effect of a π rotation about the optical axis at different 

phases of coherence.  A rotation about the x-axis has no effect on the state vector when the 

vector points along the x-axis, as indicated by the state vector evolution diagrammed in the 

top-most Bloch sphere and x-projection shown in Figure 3.8.  A particular feature of this 

rotation technique is the symmetry of the oscillations about the arrival time of the rotation 

pulse when applied at various phases of coherence.  This symmetry is also observed in 

experiments presented in Chapter V.   
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Figure 3.7.  Rotations about the x-axis when the state vector is aligned with the y-axis.  The 
paths drawn on the Bloch spheres indicate the path of the state vector before, during, and 
after the rotation pulse, while the curves represent the projection of the state vector along 
the x-axis.  The rotation pulse areas are, from top to bottom, 0, π /4, π/2,  3 π /4 and π. 
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Figure 3.8.  Rotations about the x-axis by π for various phases in precession.  (Left) Bloch 
spheres are displayed with the temporal evolution of the state vector drawn. (Right) The x-
projections of the π rotations with t=0 the rotation pulse arrival time.  Notice the x-
projections are symmetric about the arrival time of the rotation pulse.  No change is 
observed for precession when the state vector is aligned with the x-axis at t=0. 
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3.2.2.2.  Pulse-Pair Raman Resonance with Same Polarization Selection Rule  

Now we consider a pair of pulses that are Raman resonant with the spin-flip 

transition.  The effective Hamiltonian given in equation 3.26 reduces to  

.  (3.29) 

with µ+= µ- =µ and E2= E1 = E. 

 One term in the off-diagonal matrix elements represents an oscillating field 

coupling the two states, while the second term represents a DC component.  As explained 

above, the DC term is responsible for single pulse rotations.  The AC coupling term is 

identical to the off-diagonal matrix element present in the Rabi problem.  

 To better understand the relative contributions of the two components we 

performed numerical simulations to test how effective Raman resonant pulses are at 

transferring population from |-> to |+>.  In our simulations we defined the temporal profile 

for the pair of pulses to have the same duration and amplitude.  The fields were defined as 

 E(t) = E1(t) = E2 (t) ~ exp[!(t ! t0 )
2 / 2! 2 ] .     (3.30) 

 Figure 3.6 plots the probability of transferring population from |-〉 to |+〉 for a 

Raman resonant pulse-pair  with an area of ! = !R (t)" dt  as a function of the 

pulse duration Tpp normalized by the precession time .  Figure 3.9 illustrates an 

important feature of the Raman pulse pair rotation technique: when the duration of the 

pulse pair becomes longer than the precession time the effectiveness of the rotation 

improves.  The poor effectiveness of population transfer with short pulses is due to 

contributions from the single pulse rotation terms present in the Hamiltonian.  As shown in 
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Figure 3.9, when the duration of the pulses become long compared to the Larmor period the 

single pulse contributions become negligible. 

 

 

Figure 3.9. Probability of finding the system in the excited state as a function of pulse pair 
duration compared to the Larmor period. 

 

The Raman pulse pair approach is quite effective in making accurate rotations when 

Tsp/TωB>>1.  In other words, the effects of the individual laser fields become negligible 

when the ground state splitting ωB is large compared to the spectral bandwidth of the 

individual laser pulses.  

 

3.2.2.2.1.  Complete Control with Phase-Locked Pulse Pairs 

In the long pulse limit, we can neglect the DC components in equation 3.29 and 

write the effective Hamiltonian for the two-level system driven by phase-locked pulse pairs 

as  
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.     (3.29) 

The reduced Hamiltonian is equivalent to the Rabi problem presented earlier.  The relative 

phase of the pulse pair in the effective two-level system is equivalent to the overall phase of 

the driving field in the Rabi problem.  With control of the relative phase and amplitude of 

phase-locked Raman pulse pairs, complete quantum control of the ground state dynamics 

of a Λ-system is possible. 

 

3.3.  Numerical Solutions based on the Optical Bloch Equations 

Until this point, the discussion of light-matter interactions has centered on solutions 

to the Schrödinger equation.  The intuitive results obtained in this approach do not, 

however, account for decays and decoherence. To include realistic decay rates for 

populations and coherences, it is helpful to use the optical Bloch equations (OBEs).  Here 

we develop the set of equations that model the dynamics of our system.   

The three-level system on which we model our experiments has the same 

polarization selection rule for both transitions, as discussed in Section 3.2.2.  Therefore, to 

model the system we use equation 3.14 and coupling fields from equation 3.24 and 3.25.  

The Bloch equations can be written in the matrix form as,  

    

! 

i!
d
dt
" = H,"[ ] +#(")

 ,       (3.30) 

where ρ is the density matrix, H is the Hamiltonian, and Γ(ρ) is a matrix containing the 

phenomenological decay and decoherence terms.  The density matrix ρ, written in the  

T , + , !{ }  basis, is 
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To incorporate phenomenological decays we define the matrix 
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where γe is the dipole decoherence rate, Γ is the population decay rate of trions to the two 

spin states, and γ+- is the spin decoherence rate.  

 To illustrate the spin dynamics governed by the OBE, with realistic decoherence 

and decay rates included, we present two figures: one with experimental parameters for 

decoherence and decay, Figure 3.10, and another where decoherence and decay are 

ignored, Figure 3.11.  The figures plot spin coherence versus time, for the electron-trion 

Λ−type three-level system, driven by phase-locked Raman pulse pairs.  The initial state of 

the system is polarized in the |-〉 spin state.  At time t=0 the pulse pair arrives and drives the 

electron spin coherence. For a pulse area of π, the electron spin beats nearly vanish, 

corresponding to the spins being rotated near the |+〉 spin state.  The spin beats do not 

vanish, however, because the pulse duration was set to  Tsp/TωB=2 in the simulation, which, 

in Figure 3.9, reveals the maximum probability of transferring to the |+> state is ~0.8.   

 The effects of decay are represented by decrease in beat amplitude with increased 

pulse area (rotation angle), in Figure 3.10, due to radiative coupling to the trion state.  

These decays are not represented in Figure 3.11, where the decays are ignored.  Further 

simulations based on the OBE are incorporated in the experimental sections, and the code 
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for the simulations is included in appendix A.   

 

 

Figure 3.10. Simulation of spin coherence driven by a Raman transition.  The pulse 
duration used is two times the Larmor period Tsp/TωB=2. Dipole decoherence rate is 2 ps. 
Population decay rate is 1 ns.  Spin decoherence time is set to 10 ns. The detuning is set to 
1.5nm. 
 
  

 
 

Figure 3.11. Simulation of spin coherence driven by a Raman transition. The pulse duration 
used is twice the Larmor period Tsp/TωB=2.  Decoherence rates are ignored. 
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3.4.  Chapter Summary 

We developed the theoretical description of optical control of the ground states in 

Λ-type three-level systems via the adiabatic elimination of the excited state.  Specific 

attention was given to the polarization selection rules present in the electron-trion Λ-type 

system.  We showed that a single detuned pulse generates rotations about the optic axis, 

and it must be short compared to the relative dynamics of the ground states (electron spin 

states).  We then presented complete control with phase-locked pulse pairs of a Λ-type 

system, representative of the electron-spin trion system, and showed it could be reduced to 

the Rabi problem.  The effectiveness of the phase-locked Raman pulse pairs was shown to 

improve in the simulations with longer pulses. We ended the chapter by introducing the 

optical Bloch equations, which we used to account for decoherence and decay in modeling 

the experimental results presented in Chapters V and VI. 
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CHAPTER IV 

EXPERIMENTAL SETUP 

In this chapter we introduce the essential components used in the transient pump-

probe experiments presented in this dissertation, and we briefly describe the pulsed laser 

systems, pulse-shaping techniques, and geometries for two-pulse and three-pulse transient 

pump-probe experiments. 

 

4.1.  Laser Systems 

The transient dynamics of the electron spins investigated in this work require 

ultrafast optical pulses.  These optical pulses come from one of two mode-locked 

Ti:Sapphire lasers, the selection of which is specific to the experiment being performed.  A 

(Spectra-Physics Tsunami) Ti:Sapphire laser that uses prisms for dispersion compensation 

and is pumped by a 532 nm 7 W diode pumped solid state laser (Coherent Verdi V-10) was 

employed for experiments that require optical pulses with large spectral bandwidth (7-8 

nm).  For experiments that required spectrally narrow laser pulses (~0.5 nm) and are 

tolerant of a slightly longer pulse duration (2 ps), we used a (Spectra-Physics Tsunami) 

Ti:Sapphire laser that uses a Gires-Tournois Interferometer (GTI) for dispersion control, a 

birefringent filter for wavelength selection, and is pumped by a 532 nm 5W diode pumped 

solid state laser (Spectra-Physics Millennia).  Both laser systems have repetition rates near 

80MHz and an average output power of approximately 1 W at 770 nm. 
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4.2.  Spectral Pulse-Shaping 

The temporal and spectral profiles of the optical pulses output by the Ti:Sapphire 

lasers are not optimal for coherent control experiments. We have used spectral pulse 

shaping to design laser pulses with spectral and temporal profiles optimized for coherent 

control.  Spectral pulse-shaping is a time-invariant linear filtering process (49).  A linear 

filter converts an input pulse, ein(t), to a desired output pulse, eout(t), by convolving the 

input pulse with an impulse response function, h(t), of the filter.  The linear filtering 

process can be written as  

! 

eout (t) =
1
2"

H(#)
$%

%

& Ein (#)e
i#tdt

,      
(4.1) 

where Ein(ω) and H(ω) are the Fourier transform of ein(t) and h(t), respectively.  In the limit 

that ein(t) is sufficiently short and can be approximated as a delta function, eout(t) is 

approximately given by the impulse response function, with )()( thteout ! .   

 

To generate a single 2 ps optical pulse from a 150 fs pulse we use a single 

 

Figure 4.1. (a) Input intensity spectrum, Iin(ω), is plotted along with the output intensity 
spectrum, Iout(ω). (b) The temporal line-shape of the input and output pulse, 
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Gaussian-like linear filter function  

! 

H(") = exp[#
(" #$)2

2w2 ],
       

(4.2)  

where w is the spectral width of the window, ω  is the center frequency of the input pulse, 

and  δ is the center frequency of the shaped pulse relative to ω.  The spectra of a short input 

pulse and the corresponding output pulse are shown in Figure 4.1a.  Figure 4.1b plots

2|)(| tein and 2|)(| teout . 

To generate phase-locked pulse pairs, we have used a linear filter with two 

Gaussian-like windows centered at 2/!" ± :   

 

! 

H(") = exp[#
(" #$ /2)2

2w2 # i
%
2
]+ exp[#

(" +$ /2)2

2w2 + i
%
2
]
,   

(4.3) 

where w is the spectral width of the window, and φ  is the phase difference or the relative 

phase between the two windows.  Figure 4.2a plots H(ω) for δ = 1, w = 0.1, and φ = 0.  The 

spectra of a short input pulse and the corresponding output pulse are shown in Figure 4.2b.  

Figure 4.2c plots 2|)(| tein and 2|)(| teout .  Figure 4.2d shows the dependence of the output 

pulse on the relative phase of the impulse response function. 
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Figure 4.2.  (a) H(ω) for δ = 1, w = 0.1, φ = 0. (b) The spectra of a short input pulse and (c) 
the corresponding output pulse 2|)(| tein  and 2|)(| teout .  The same parameters are used for 
(a) to (c).  (d) 2|)(| teout  at various relative phases, φ, for the impulse response function.   
 

In order to generate the simple single Gaussian-like pulses involved with single 

pulse rotations discussed in Chapter V we used a grating based pulse-shaper (49) that is 

diagrammed in Figure 4.3.  This pulse-shaper uses a 1200 line/mm blazed diffraction 

grating, a 30 cm spherical lens, and a mirror.  The masking function H(ω) is defined by 

razor blades at the Fourier plane (directly in front of the mirror).  The masking function is 

the convolution of a Rect function, defined by the razor blades, and a Gaussian-like 

function resulting from the resolvance of the diffraction grating.  The number of diffraction 

lines addressed by the optical beam determines the resolvance of the diffraction grating,   
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R =
"
#"

$ mN ,
         

(4.4) 

where 

! 

"  is wavelength, 
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"#  is the m is the order of diffraction, and N is the number of lines 
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addressed on the diffraction grating. It is possible to resolve two wavelengths of separation 

! 

"#  when 

! 

"# $ #mN .  Therefore, to shape spectrally narrow pulses one must address more 

of the diffraction.  

 

Figure 4.3. Schematic of a razor blade based pulse-shaper, shown with broad input spectra 
and narrow output spectra. 
 

To generate the more intricate pulse designs required for coherent control with 

phase-locked pulse pairs we use a programmable liquid crystal spatial light modulator 

(LCSLM) in a grating-based spectral pulse-shaper similar to the one shown in Figure 4.3.  

However, the design requires a cylindrical lens and a grating with higher groove density in 

order to spread the laser pulse over more of the LCSLM surface.  The LCSLM-based 

pulse-shaper is shown schematically in Figure 4.4: an input pulse is dispersed by a 

diffraction grating into its constituent frequency components, which are then focused to the 

filtering plane by a cylindrical lens.  The LCSLM, positioned at the filtering plane, 

attenuates and phase-shifts each frequency component of the input pulse according to the 

response function H(ω).  To generate a phase-locked Raman pulse pair, the LCSLM 

diffracts two portions of the input spectra, shown as red and green in Figure 4.4, toward the 

top of the diffraction grating.  The rest of the input pulse spectra is terminated at a beam 

stop (not shown).  The relative phase difference of the two pulses in the pulse pair is set by 
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their optical path length difference.  The two diffracted spectral components are collimated 

and combined by the lens and diffraction grating into a single output beam, shown as the 

color yellow.   

 

Figure 4.4.  Schematic of a spectral pulse-shaper with a liquid crystal spatial light 
modulator at the filtering plane. 
 

For our experimental setup, we use a 2200 line/mm blazed grating, a 1 m focal 

length cylindrical lens, and a phase-only LCSLM from Holoeye Inc.  The transform-limited 

input pulse featured is 2 ps in duration and has a central wavelength near 773 nm.  

 

4.3.  Cryostat and Magnetic Field 

 In order to extend the lifetime of the spins and more easily address them optically, 

one must freeze out the effects of phonons, which broaden the optical transitions and 

increase spin decoherence rates.  Freezing out of phonons is possible by cooling the 

semiconductor sample to cryogenic temperatures.  To achieve this we have used two 

cryostats to maintain sample temperatures near 5K.  The selection of a cryostat is 

dependent on the magnitude of the magnetic field required for a given experiment.  One 

cryostat is equipped with a liquid-helium cooled superconducting magnet that can be 

operated safely up to 5.5T, and is used to generate large Zeeman splittings essential to the 
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control experiments presented in Chapter VI.  A second cryostat was used for experiments 

that are suited for magnetic fields less than 0.5T, in which a rare earth magnet is sufficient 

to generate the required magnetic field.  For these experiments a neodymium magnet was 

placed inside the cryostat and directly below the sample.   

 

4.4.  Transient Pump-Probe 

To monitor the dynamics of the electron spins in the experiments presented in this 

dissertation we used optical pump-probe techniques that detect spin coherence.  In our 

experiments, the absorption of the probe pulse is highly sensitive to the polarization of the 

electron spin ensemble. The pump pulse induces a spin polarization that evolves in time, 

and we use the probe to monitor the polarization of the spin ensemble as it evolves.  The 

sensitivity of the probe to the effects of the pump allows us to conduct transient differential 

transmission (DT) measurements where the transmission of the probe pulse is monitored as 

a function of delay relative to the pump pulse. DT compares the transmission of the probe 

pulse through a sample when the pump pulse is on, to the transmission of the probe when 

the pump pulse is off.  Typically this difference is very small.  Therefore, to increase the 

sensitivity of our measurement we use a lock-in amplifier that monitors the DT signal at the 

chopping frequency of the pump laser.  Figure 4.5 shows a schematic of a two-pulse 

experiment. 



 

 
 

 

61 

 

Figure 4.5.  A schematic of a pump probe experiment. BS refers to beam splitter and M 
refers to mirror.  
 

In Figure 4.5, the output pulse from a mode locked Ti:Sapphire laser is sent to a 

beam splitter where one path defines the probe pulse and the other defines the pump path.  

The pump path sends the laser through a pulse-shaper and a chopper before a lens focuses 

the laser on the sample.  The probe pulse is retro-reflected from a mechanical delay stage 

before it is sent through the sample to the spectrometer.  The intensity of the probe pulse is 

measured at a particular wavelength inside the spectrometer by a photo-detector that is 

connected to a lock-in amplifier. The relative delay between the two optical paths is varied 

by computer control of the mechanical delay stage. 

In the event that a third pulse is required either for state preparation or for control of 

electron spins, the experimental setup is changed slightly from that in Figure 4.5.  The 

three-pulse schematic diagram is shown in Figure 4.6, where the third beam is labeled 

control.  The control beam path passes the beam through a pulse-shaper.  The pump and 

probe both have delay stages to set the relative arrival times of the three pulses.  Again, the 

pump pulse passes through a chopper, and the probe pulse is sent to the spectrometer where 

the signal is then measured through lock-in detection.   

 The probe pulse focused on the sample has a typical beam diameter of 30 µm while 
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the pump/control pulse has a focused beam diameter of roughly 150 µm.  The control of 

electron spins is highly dependent on the intensity of the control pulse; therefore, the probe 

spot size must be significantly smaller than the control or pump in order to interact with as 

uniform an intensity profile as possible.  The intensity variation within the pump pulse 

sampled by the probe pulse is less than 10%, given the approximate spot sizes for the 

pump, control, and probe pulses stated above. 

 Circular polarized light monitors the electron spin polarization in the propagation 

direction of the optical pulse.  Therefore, to monitor spin polarization we have used 

circularly polarized laser pulses in all our experiments.  The output of the laser is linear; 

therefore, a quarter wave plate was placed in each of the beam paths between the lens and 

the sample to change the polarization of the laser pulses to make them circular.  The quarter 

wave plates are not shown in Figure 4.5 or Figure 4.6. 

 

 

Figure 4.6.  A schematic of a three-pulse pump probe experiment. BS refers to beam 
splitters and M refers to mirrors. 
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4.5.  Chapter Summary 

In this chapter we introduced two-pulse and three-pulse transient pump-probe 

experiments.  We discussed the laser systems and the pulse-shaping techniques used to 

design optical pulses for our experiments, and we briefly described the magnetic and 

cryogenic systems used.  
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CHAPTER V 

OPTICAL SPIN CONTROL WITH A SINGLE ULTRAFAST PULSE 

Some of the work reported in this chapter was co-authored by Carey Phelps.  In this 

chapter, we report the experimental demonstration of complete electron spin flips in a 2D 

electron gas (2DEG) using a single off-resonant ultrafast optical pulse.  The pulse is 

designed to drive a stimulated Raman transition between Zeeman split electron spin states 

s=|±1/2>z, while avoiding the excitation of excitons and trions.  The pulse may be 

equivalently understood as inducing an optical Stark shift of the s=|±1/2>x electron spin 

states (31).   

By monitoring electron spin dynamics via differential transmission (DT), we show 

that the complete spin flip leads to spin precessions that are symmetric with respect to the 

arrival time of the effective π-pulse, described in Section 3.2.2.1. This symmetry also 

demonstrates the feasibility of using the ultrafast optical pulse for electron spin echoes (21, 

22, 37).  The experimental results on the electron spin flip agree with separate 

measurements of optical Stark effects and with theoretical analysis based on optical Bloch 

equations (OBE).   

The experimental studies were carried out at 5 K in the high quality n-doped CdTe 

quantum well (QW) discussed in Chapter II.  The linear absorption spectra in Figure 5.1 

show well resolved heavy-hole exciton and trion resonances.  An in-plane external 

magnetic field oriented along the z-axis (see Figure 2.6) sets the energy eigenstates for the 

electron spins where a σ+ (or σ−) polarized optical field couples the two electron spin 

states with s=|±1/2>z to a common trion state |t+〉 (or |t−〉).  These optical dipole selection 
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rules are diagrammed in Figure 2.11. 

The chapter begins by introducing the rotation pulse and demonstrates the spin-

selective optical Stark shift induced by the rotation pulse.  Next, we present the technique 

used to initialize spin coherence, and then we employ the control pulse to manipulate the 

spin polarization while monitoring the spin coherence.  We end the chapter with numerical 

simulations based on the OBE for the electron-trion system detailed in Chapter III.  The 

simulations are in strong agreement with the experimental results. 

 

5.1.  Rotation Pulse  

From our theoretical description of single pulse rotations in Section 3.2.2.1, we 

know the pulse duration needs to be much shorter than the Larmor precession time for the 

electrons.  The pulse also needs to be sufficiently short (compared with the dipole 

decoherence time) to avoid decoherence during the optical pulse.  However, the duration 

also needs to be long enough that a rotation angle θ = π can be achieved at a relatively 

small optical Rabi frequency.  As described in Chapter III, the optically induced spin 

rotation is proportional to the pulse area  

! ! E(t)"
2
dt  ,        (5.1) 

where E(t) is the temporal profile of the rotation pulse. For comparable pulse durations, a 

greater degree of spin rotation can be achieved with larger optical field amplitude. 
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Figure 5.1. Absorption spectrum of the CdTe quantum well and the spectra for the control 
pulse (in red) and the pump and probe pulses (in blue). 

 

For our experimental studies, we have chosen a spin-rotation pulse, or a control 

pulse, which features a duration τc = 2 ps (bandwidth 0.5 nm) and is detuned 2 nm (4 meV) 

below the trion resonance.  The control, absorption, and pump/probe pulse spectra are 

shown in Figure 5.1.  All laser pulses were derived from the same femtosecond mode-

locked Ti:Sapphire laser (repetition rate of 82 MHz).  The control pulse was spectrally 

shaped by a razor blade based linear pulse-shaper discussed in Chapter IV and diagrammed 

in Figure 4.3.   

 

5.2.  Optical Stark Shift 

The demonstration of spin-selective optical Stark shifts is an experiment that 

complements electron spin control with a single-pulse. The off-resonant coupling of the 

control pulse with polarization set to σ+ generates an optical Stark shift for |sx=1/2〉, 

inducing a frequency separation, δω(t), between |sx=1/2〉 and |sx=-1/2〉.  The overall phase 
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shift θ  between these two spin states is given as 

 ! ! E(t)"
2
dt! "#(t)dt" .       (5.2) 

This phase shift corresponds to a spin rotation of an angle θ around the x-axis of the Bloch 

sphere.  A diagram of the Bloch sphere, in Figure 5.2, shows the initial state vector oriented 

along the y-axis as it is rotated by an angle of θ=π about the x-axis, landing the state vector 

pointing in the  -y-direction. 

 
Figure 5.2.  A Bloch sphere with a rotation of the state vector from y to –y, about the x-
axis. 
 

 

To demonstrate spin-selective optical Stark shifts with our 2 ps control pulse, we 

conducted a two-pulse experiment, similar to that diagrammed in Figure 4.5.  However, the 

chopper was positioned in the probe path in order to directly observe the Stark shift in the 

absorption spectra.  Optical Stark shifts are shown in the absorption spectra in Figures 5.3a 

and 5.3b.  The absorption spectra were obtained with a spectrally broad (150 fs) probe that 

had the same circular polarization as the control pulse, σ+ circular polarization.  
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Figure 5.3. Stark shift of trion and exciton by 10 mW (a) and 20 mW (b) rotation pulse is 
shown with absorption spectra before (-20ps), during (0ps), and after (20ps) the rotation 
pulse.  The absorption spectra during an optical pulse for cross-circular (c) and co-circular 
(d) is plotted (in red) along with the absorption spectrum without the optical Stark shift 
pulse. 

 

Figure 5.3a shows three absorption spectra for various delays relative to the control 

pulse arrival time: -20 ps, 0 ps, and 20 ps.  At zero delay the probe overlaps in time with 

the peak of the control Ic = 20 mW, and optical Stark shifts for the trion resonance become 

nearly comparable to the control pulse linewidth.  As expected, the optical Stark shifts 

vanish when the probe arrives at 20 ps after the control, as shown in blue in Figures 5.3a 

and 5.3b.  It should be noted that the shift in energy, shown in Figures 5.3a and 5.3b, due to 

the optical Stark shift is linear with rotation pulse intensity, which is consistent with 

equation 3.27. 

Figure 5.3b also reveals minor bleaching for the exciton resonance and a noticeable 
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amount of bleaching for the trion resonance, indicating an appreciable excitation of trion 

population by the control.  No significant broadening of either the exciton or trion 

resonances is observed in Figures 5.3a and 5.3b.  Under these modest intensities, excitonic 

excitations and resultant manybody effects remain relatively small.  With Ic = 20 mW, the 

estimated peak optical Rabi frequency is of the order of 2 meV.   

Spin-selective optical Stark shifts are demonstrated in Figures 5.3c and 5.3d.  This 

is indicated by the absence of an optical Stark shift when the control and probe are cross-

circularly polarized (Figure 5.3c) but are revealed when the pulses are co-circularly 

polarized (Figure 5.3d).  The energy splitting between spin states induces an overall phase 

shift between these two spin. This is the phase shift that corresponds to a spin rotation of 

angle θ around the x-axis (equation 5.2). 

 

5.3.  Optical Spin Initialization  

Spins can be initialized through thermal relaxation or optical pumping.  Net thermal 

polarization is a strong effect when the energy splitting of the spin states is large compared 

to the thermal energy; however, at 0.4 T the energy splitting of the electron spin states in 

CdTe is small in comparison to kBT.  The net thermal electron spin polarization is ~0.05 

(where 1 is perfect polarization) in CdTe, given the experimental conditions (0.4 T and at a 

temperature of 4.5 K). Therefore, optical pumping was used to initialize a small net spin 

polarization. 

The sx electron spin states are energetically degenerate, and the steady state 

population distribution of electron spins in the x-basis is equal.  As shown in earlier studies 

(50, 51), the excitation of |T+〉 by a σ+ polarized pump leaves a net electron spin population 
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in the    –x-direction s=|-1/2〉x.  The creation of |T+〉 trions depletes the s=|1/2〉x electron 

population, which is diagrammed in Figure 5.4.  This results in a maximum initial net spin 

polarization of ~0.5; however, the radiative decay of a trion results in the reintroduction of 

an electron back into the net spin population, degrading the spin polarization induced by 

the pump pulse.  

 

Figure 5.4. Polarization of spins by optically pumping.  In (a) an optical pulse arrives that is 
resonant with the trion |T+〉 and has σ+ polarization. Population is transferred to the trion 
state in (b) because of the optical pulse, leaving a spin polarization in the –x direction.  The 
population decay rate (Γ) from |T+〉, shown in (c), is much slower than the Larmor 
precession frequency (ωB). 

 

 Our experiments were performed in the Voigt geometry (Figure 2.6c).  Therefore, 

when the pump initializes an electron spin polarization along the x-axis via the trion 

creation (50-52), a transverse magnetic field applied along the z-axis induces precession of 

the polarized spins around the external magnetic field axis.  The precession about the z-axis 

has a frequency ωB and is known as Larmor precession.  In the event the Larmor period is 

much shorter than the population decay rate, the population decay from |T+〉 will contribute 

electron spins throughout the precession process, resulting in a maximum net polarization 

of ~0.25, ignoring spin decoherence.   
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5.4.  Electron Spin Beats 

The precession of electron spins about the magnetic field axis results in population 

oscillation between the s=|±1/2〉x spin states. The absorption of σ+ polarized light at the 

trion resonance is dependent on the population of s=|1/2〉x spins.  As a result, the absorption 

of a σ+ laser pulse at the trion transition is greater when the spin population is in the 

s=|1/2〉x, than when the spins are in the s=|-1/2〉x. Therefore, monitoring the transmitted 

intensity of a σ+ polarized laser pulse tuned to the trion resonance will detect spin beats 

that correspond to spin precession about the z -axis.   

To observe spin precession we derived an initialization laser pulse (pump) and the 

detection laser pulses (probe) from a femtosecond mode-locked Ti:Sapphire laser 

(repetition rate of 82 MHz).  The probe was spectrally resolved in a spectrometer after 

propagating through the sample.  The change in the probe transmission, as a result of spin 

precession initiated by the pump, was measured at the trion resonance with lock-in 

detection.  This two-pulse experiment is diagrammed in Figure 4.5. 

In the presence of a transverse external magnetic field (B=0.4 T), periodic 

oscillations, or spin beats, with 2π/ωB=116 ps were observed at the trion resonance when 

monitored in transient differential transmission (DT) (52), as shown in Figure 5.5.  The 

phase of the oscillation also indicates the direction of the spin polarization in the x-y plane.   

The probe monitors the spin polarization along the x-axis. Thus, the maximums in 

Figure 5.5 correspond to population in s=|-1/2〉x  (-x direction), and the troughs correspond 

to population in s=|1/2〉x (+x direction). The polarization along the y-axis is inferred as the 

midpoints between the peaks and troughs, as shown in the inset of Figure 5.5.   
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Figure 5.5. Quantum beats observed for σ+ polarization of pump and probe in a magnetic 
field of 0.4T. The beats correspond to the x-projection of the spin in the Bloch sphere, 
pictured to the right.  The inset indicates the orientation of the spins in the Bloch sphere 
picture as it relates to the phase of the beats. 
 

5.5.  Electron Spin Flip: Intensity Dependence 

To demonstrate coherent rotations of the electron spin ensemble we include the 

control pulse used in the optical Stark shift experiments in the spin beats pump-probe 

experiment.  This three-pulse experiment is diagrammed in Figure 4.6.  The control, 

applied at a fixed delay after the pump, induces an electron spin rotation about the x-axis. 

Therefore, timing of the control pulse is crucial to observe rotations.  A rotation about the 

x-axis for a spin polarization along the x-axis should not result in a rotation of the spin 

state.  However, when the spin polarization is along the y-axis, as shown in the Bloch 

sphere in Figure 5.2, a rotation is possible.   

We set the arrival time of the control pulse to 5π/2ωB after the pump pulse, which 

corresponds to the spin polarization along the y-axis.  We set the pulse duration to 2 ps and 

varied the intensity of the control pulse, and monitored the amplitude of the spin beats to 
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infer the degree of rotation obtained for a given pulse power.   

For the experimental results presented here, the pump and probe have the opposite 

circular polarization, and the control and probe have the same circular polarization.  The 

trion density excited by the pump is kept below ~2x109/cm2. The spot sizes for the pump, 

probe, and control are estimated at 3x10-5, 1x10-6, 2x10-5 cm2, respectively.  An average 

control power, Ic=1 mW, corresponds to an energy flux per pulse of 0.6 µJ/cm2. 

 

Figure 5.6.  Dependence on the intensity of the control pulse for pulse arrival set to 5π/2ωB. 
The vertical line positioned at 0.6 ns is meant as a guide to the eye. 

 

As shown in Figure 5.6, the rotation of the spin polarization about the x-axis by a 

30 mW rotation pulse results in a near absence of spin beats and corresponds to the spin 

polarization along the magnetic field axis, the z-axis, and a rotation of π/2.  As the rotation 
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pulse power is increased from 30 mW to 60 mW we observe a revival of the spin beats; in 

this case, the beats are out of phase by π, which corresponds to a rotation greater than π/2.  

The pulse area corresponding to 60 mW is considered a π-pulse.  Increasing the power to 

90 mW the beats vanish once again, which corresponds to a rotation of 3π/2.   

Because of the increasing control power, the spin-beat amplitude after the control 

pulse exhibits an oscillatory behavior, corresponding to the Rabi oscillation of the spin 

population. With the exception of the DT response obtained with the highest control 

intensity in Figure 5.6, the phase of the spin beats remains either unchanged or changed by 

π, as we expect from the spin rotations about the x-axis when spin is initially polarized 

along the y-axis. 

 The spin rotations observed in Figure 5.6 are in general agreement with the separate 

measurement of optical Stark shifts shown in Figure 5.3.  The fidelity of the spin rotation 

and the non-π phase shift in the spin precession will be discussed in detail later.  It should 

be noted that optical Stark effects, and thus the degree of spin rotation, are no longer 

proportional to the control intensity when the optical Rabi frequency for the control 

becomes comparable to the control detuning.   

 

5.6.  Timing of the Control Pulse 

 As explained above, the arrival time of the control pulse relative to the pump pulse 

plays a significant role in observing coherent rotations. Figure 5.7 shows the temporal 

evolution of the spin polarization when the control pulse, with pulse area π, arrives at four 

different delays, which correspond to a control pulse arrival time when the spin polarization 

is in +x (Figure 5.7a), -x (b), +y (c), and –y (d).  Clearly shown in Figures 5.7a and b, the 
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beat phase remains unchanged when the control is applied at a delay of 3π/ωB  and 4π/ωB  

after the pump, when the spins are aligned along the x-axis.  In contrast, as shown in 

Figures 5.7c and 5.7d, when the control pulse is applied at a delay of 7π/2ωB and 5π/2ωB 

after the pump (when the polarization is along the y-axis) the control induces a π rotation, 

changing the beat phase by π. 

 

 
 
Figure 5.7.  The beats with the control pulse (red) and with out (black) are plotted for four 
different control pulse arrival times. Control pulse arrival time when spins are in +x (a), -x 
(b), +y (c), and –y (d).  The beat phase remains unchanged when the control arrives when 
the spins are aligned along the x axis (a and b), while the phase of the beats changes by π 
when the control pulse arrives when the spins are aligned along the y axis (c and d). 
 

 A unique signature of a complete electron spin flip is that the spin precession is 

symmetric with respect to the arrival time of the spin-flip pulse, as illustrated in Figure 

5.8a.  It is this symmetric spin evolution that leads to the formation of spin echoes.  Figure 

5.8a shows transient DT responses obtained with a control pulse, with a pulse area of π, at 
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various fixed pump-control delays.  For clarity, the DT responses are plotted as a function 

of the control-probe delay instead of the pump-probe delay.  As shown in the figure, the 

phase of the spin precession is symmetric with respect to the control-probe delay, 

regardless of the arrival time of the control.  This symmetric spin dynamic induced by the 

control pulse not only represents a direct and remarkable manifestation of the complete 

spin flip, it also demonstrates the feasibility of using an ultrafast optical pulse for electron 

spin echoes (22, 37).   

 
Figure 5.8.  (a) Transient differential transmission as a function of the control-probe delay, 
obtained at various fixed delays between the pump and a π-control pulse. The phase of the 
spin precession is symmetric with respect to the arrival time of the control, demonstrating 
that the control pulse induces a complete spin flip with respect to the x-axis. (b) A Bloch 
sphere representing rotations about the x-axis for various vectors in the x-y plane.  

 
5.7.  Comparison with Theory 

 We have theoretically analyzed the electron spin rotation via an off-resonant 

control pulse by using the OBE associated with the energy level structure shown in Figure 

2.11 (53).  For the calculation, the system is initialized such that the spin population at t=0 

is at s=|-1/2〉y.  A control pulse with a temporal Gaussian line shape and a duration of 2 ps 
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is then applied at a detuning of 4 meV below the trion resonance.  For simplicity, we have 

ignored inhomogeneous broadening.  Other parameters include dipole decoherence rate γ= 

2 ps-1, spin decoherence rate γs= 0.005 ps-1, and excited state population decay rate Γ= 

0.001 ps-1. 

Figure 5.9 shows the calculated temporal evolution of the population difference 

between the s=|±1/2〉x spin states.  The calculation describes well all the important features 

of the experiment results presented in Figure 5.6.  Figure 5.9 plots the dependence of the 

spin dynamics on the intensity of a control applied at tcontrol=9π/2ωB.  Because dipole 

decoherence is enhanced during the optical interaction, the control not only induces a spin 

rotation via optical Stark effects, but it also excites a residual trion population that persists 

after the passage of the control.  It is this residual trion population that leads to the 

reduction in the fidelity of the spin rotation in Figure 5.6 and Figure 5.7 and also to the 

small bleaching of the trion absorption in Figure 5.3.  The excitation of the residual trion 

population also initializes an additional spin-polarization, which precesses in the x-y plane 

with a phase determined by ωB(t-tcontrol).  A control with a relatively high intensity can thus 

induce a pronounced phase shift (other than π) in the spin precession, as shown in Figure 

5.6.   
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Figure 5.9.  Theoretical calculation of intensity dependence of rotation pulse for single 
pulse rotations. Vertical line is a guide for your eye which helps show that beats nearly 
vanish for rotations of π/2 and 3 π /2.  

 
Figure 5.10 plots the dependence of the spin dynamics on the timing of the spin-flip 

control pulse.  In contrast to Figure 5.8, it shows a slight asymmetry with respect to the 

arrival time of the control.  This asymmetry arises from the phase shift in the spin 

precession induced by the control-initialized spin polarization, as discussed above.  The 

phase shift depends on the timing of the control, leading to the slightly curved pattern in 

Figure 4b.  Note that the asymmetry is more pronounced in the theory than in the 

experiment, since, to underscore the effects of the residual trion population, we have used a 

dipole decoherence rate in the calculation that significantly exceeds the actual decoherence 

rate (near 1 ps-1).  The asymmetry of the spin evolution provides a sensitive measurement 

of the fidelity of the spin flip.   
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5.8.  Magnetic Field Dependence 

In order to observe the effectiveness of a control pulse as a function of Zeeman 

splitting, we conducted a series of pump-probe experiments on the CdTe QW in a 

superconducting magnet cryostat.  The transient differential transmission experiments were 

designed to monitor spin beats induced by a single control pulse, which was designed to tip 

the spin polarization away from the magnetic field axis (z-axis) into the x-y plane. 

The steady state polarization of the spin ensemble was assumed to have a net 

thermal polarization, as derived from Boltzmann statistics, and plotted in Figure 6.2. The 

temperature of the sample was kept at 4.5 K, and the magnetic field magnitude was stepped 

from 1 T to 5 T.  The rotation pulse used was detuned by 2 nm, had a duration of 3 ps, and 

a pulse area of π/2.  Figure 5.11a shows two transient differential transmission traces.  The 

spin beat frequency and amplitude at 5 T is measurably larger than at 1 T.  The frequency 

of the spin beats is proportional to the Zeeman splitting, where EZeeman= hν, and ν is the 

beat frequency.  Figure 5.11b plots the Zeeman splitting versus the applied magnetic field, 

 
Figure 5.10.  Numerical simulations of spin coherence based on the OBEs. The arrival time 
of the pump pulse is linearly varied relative to the control pulse, which arrives at zero delay.  
The spin beats after the control pulse show decreased amplitude, as a result of coupling to 
the excited state and are mirrored about the control arrival time. 
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obtained from analyzing the spin beat period at 5 different magnetic field strengths.  We 

see the Zeeman splitting increases linearly with the magnetic field strength, which is 

expected from equation 2.27.   

 

Figure 5.11.  The spin beat dependence on magnetic field strength for a rotation pulse of 3ps 
duration, detuned from the trion state by 2nm, and a pulse area of π/2. (a) The transient DT 
signal in a magnetic field of 1T and 5T. (b) The frequency of the beats in units of energy 
versus magnetic field strength. (c) The beat amplitude as a function of energy splitting.  

 

The second important feature observed in the spin beat data is the amplitude of the 

beats. Figure 5.12c plots the average amplitude of the spin beats, measured between a delay 

of 50 ps and 125 ps after the rotation pulse.  The spin beat amplitude at 5 T is lower than 

the spin beat amplitude at 4 T, which is counterintuitive when one assumes that the spin 

beat amplitude should follow Boltzmann statistics.  This assumption is flawed; it does not 

consider the effectiveness of the rotation pulse when the pulse duration becomes 
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comparable to the Larmor precession time.  From Figure 3.6, we know that when the pulse 

duration becomes comparable to the precession time the effectiveness of the rotation is 

degraded.  

 

Figure 5.12.  Theoretical model of spin beat amplitude as a function of Zeeman splitting for 
a rotation pulse of 3ps duration, detuned from the trion state by 2nm, and a pulse area of π/2. 
The blue dashed trace is theoretical thermal polarization. The dashed cyan curve is the 
theoretical amplitude of the spin beats for the given pulse.  The green curve is the maximum 
polarization in x-y plane given the initial polarization and rotation pulse.  The red dots are 
the experimentally measured beat amplitude at various Zeeman splittings, scaled to overlap 
with the green curve. 

 

In order to account for the effectiveness of a pulse rotation into the x-y plane, we 

modeled the spin beat amplitude for a pulse with area π/2 and a duration of 3ps, as a 

function of Zeeman splitting.  The red dots are the spin beat amplitudes taken from Figure 

5.11c and plotted in units of the Zeeman splitting instead of the magnetic field strength.  

Shown in Figure 5.12, the cyan dashed line plots the theoretical amplitude of the 

spin beats for the 3 ps rotation pulse as a function of Zeeman splitting, assuming all spins 

are initially polarized along the z-axis and neglecting decoherence. The effectiveness of the 

spin polarization after the tipping pulse is theoretically high at small energy splittings E< 

0.1 meV, because polarization in the x-y plane is near unity.  However, the effectiveness of 
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the rotation pulse degrades when the Zeeman splitting becomes greater than the spectral 

bandwidth of the 3 ps pulse, which is ~0.6 meV.  The dashed blue curve is the assumed 

initial thermal polarization of the spins based on Boltzmann statistics.  The product of the 

initial polarization (blue) with the effectiveness of the rotation (cyan) results in the 

maximum spin polarization in the x-y plane as a function of Zeeman splitting and is plotted 

in green in Figure 5.12.  

The measured x-y polarization (red dots) follows the theoretical prediction for 

polarization (green curve), when scaled appropriately.  Based on the theoretical model, the 

green curve in Figure 5.11c shows that the spin beat amplitude at an energy splitting of 0.5 

meV (or 5 T) should be smaller than the beat amplitude at 0.4 meV (or 4 T). 

We clearly observe a dependence on the effectiveness of a rotation pulse when the 

period becomes comparable to the Larmor precession time.  The decrease in the beat 

amplitude at 5T is a result of a 3ps pulse attempting to rotate the spin population away from 

the z-axis.  The Larmor period at 5 T is ~8 ps; with this precession period a 3 ps pulse is 

too slow to effectively rotate the spin population about the x-axis because the spin 

precession during the pulse is non-negligible.  However, the 3 ps rotation pulse is able to 

rotate the spin polarization quite effectively at the lower magnetic field strength of 1 T, 

where the Larmor period is ~40 ps.  

 

5.9.  Summary 

By employing an off-resonant control pulse that induces an optical Stark shift for 

the trion resonance but avoids the excitation of excitons, we have successfully realized the 

complete spin flip of electrons in a 2D electron gas.  The spin flip experiments are well 
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described by a theoretical analysis based on the OBE.  We showed that the effectiveness of 

the single pulse rotation degrades when the pulse duration becomes comparable to the 

Larmor precession time.  The complete spin flip leads to spin precessions that are 

symmetric with respect to the arrival time of the control, demonstrating the feasibility of 

using the ultrafast optical pulse for electron spin.   
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CHAPTER VI 

OPTICAL SPIN CONTROL WITH PHASE-LOCKED  

RAMAN PULSE PAIRS 

Some of the work reported in this chapter has been peer reviewed and will be 

published in a Physical Review B, and was co-authored by Carey Phelps.  In this chapter, 

we report the experimental demonstration of complete control of electron spins in a 2D 

electron gas (2DEG) using a pair of detuned, phase-locked Raman resonant pulses.  With 

full control of the intensity and the relative phase of the pulse-pair, we are able to drive a 

spin-flip Raman transition and completely control the electron spin polarization  

Monitoring electron spin dynamics via differential transmission (DT), we show that 

the phases of the spin beats are determined by the relative phase of the phase-locked 

Raman pulse pairs.  Also, we show coherent Rabi oscillations of the electron spins, which 

result from the phase-locked Raman pulse pairs acting like an effective RF field driving the 

electrons resonantly.  

Complete control of electrons was performed in a 2DEG in a modulation-doped 

CdTe quantum well (QW), which is discussed in Chapter II. The experimental studies were 

carried out in a liquid helium superconducting magnet cryostat, and the CdTe QW sample 

was kept at 5 K.  The linear absorption spectra in Figure 6.1 shows well resolved heavy-

hole exciton and trion resonances.  The field of the superconducting magnet was applied in 

the Voigt configuration to generate an in-plane magnetic field oriented along the z-axis.  

The magnetic field thus sets the energy eigenstates for the electron spins in the field 
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direction, where a σ+ (or σ−) polarized optical field couples the two electron spin states 

with s=|±1/2〉z to a common trion state |T+〉 (or |T−〉).  These optical dipole selection rules are 

diagrammed in Figure 2.11. 

For our experimental studies, σ+ circularly-polarized Raman pulse pairs were used 

to drive two s=|±1/2〉z electron spin states by coupling to a virtual excited state detuned 

from the trion resonance |T+〉, as shown schematically in Figure 3.5(b).  At low 

temperature, the trion resonance in the CdTe QW sample is characterized by an 

inhomogeneously broadened linewidth of 1.6 meV (0.8 nm) and a trion binding energy of 

2.5 meV (1.25 nm), as shown in Figure 6.1.  Experimental studies presented here were all 

carried out at a temperature of T= 5 K and a magnetic field strength of B=5 T, unless 

otherwise specified.  Under these conditions, )/( BBTk !! = 0.8, a net spin polarization along 

the magnetic field axis is present at thermal equilibrium. 

The chapter begins by introducing the phase-locked Raman pulse pairs, followed by 

a description of thermal polarization of the electron spins at modest magnetic fields.  We 

then demonstrate the mapping of the relative optical phase onto the phase of the electron 

spin coherence.  We end the chapter with the demonstration of coherent Rabi oscillations 

between spin states driven by phase-locked Raman pulse pairs, which act like an effective 

RF field driving the spins directly.  The experimental results of coherent control of the 

electron spins are in good agreement with theoretical analysis based on optical Bloch 

equations (OBE). 

 

6.1.  Phase-Locked Raman Pulse Pairs  

We have used a grating-based optical pulse-shaper to generate phased-locked 
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Raman pulse pairs, which is diagrammed in Figure 4.4.  A programmable spatial light 

modulator controls the spectral bandwidth, spectral separation, and relative phase of the 

two optical pulses.  In principle, the intensity of the pulse pairs may be controlled with the 

spatial light modulator; however, the intensity of the pulse pair was controlled with an 

attenuator positioned on the input of the pulse-shaper.  Figure 6.1 shows a typical spectrum 

of a Raman pulse pair used in the spin rotation experiments.  The two pulses feature nearly 

the same intensity and spectral width (0.1 nm), and the spectral separation of the two pulses 

(0.25 nm or 0.5 meV) is set to match the spin splitting at 5T.   

 

6.2.  Thermal Spin Initialization  

A net thermal polarization of the electron spins is possible if the Zeeman splitting is 

sufficiently large compared to the thermal energy.  The spin polarization of a 2DEG in 

CdTe at 4.5 K was calculated based on Boltzmann statistics and is plotted in Figure 6.2. 

The relatively large electron g-factor for CdTe, which is roughly three times larger than 

that of GaAs, results in the energy splitting of the electron spins of 0.5meV for a magnetic 

 

Figure 6.1.  Absorption spectrum of the CdTe quantum well (in blue) and the spectra for 
the phase-locked Raman pulse pair (in red). 
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field strength of 5T. At 5T the net thermal spin polarization is ~0.6, where a polarization of 

1 corresponds to complete spin polarization, as indicated by a red arrow in Figure 6.2.   

 

Figure 6.2.  Calculated polarization of electron spins from Boltzmann statistics. 
 

6.3.  Driven Electron Spin Coherence 

With the spin polarization thermally initialized along the z-axis, the phase-locked 

Raman pulse pairs (control pulse) were used to coherently rotate the spin ensemble away 

from the z-axis.  As in the two-pulse experiments discussed in Chapter V, we use the 

absorption of σ+ polarized light at the trion resonance to detect the population of spins in 

the s=|1/2〉x state.  When the spin population is polarized in the s=|-1/2〉x direction, the 

σ+ laser pulse is absorbed less than when the spin polarization is in the s=|1/2〉x.  Therefore, 

oscillations in the transient differential transmission (DT) signal monitored at trion 

resonance will correspond to spin precession about the magnetic field axis, the z-axis.  The 

control and detection laser pulses (probe) are derived from a 2 ps mode-locked Ti:Sapphire 

laser (repetition rate of 82 MHz).  After propagating through the sample, the probe is 

spectrally resolved in a spectrometer.  The change in the probe transmission induced by the 

phase-locked Raman pulse pair is measured at the trion resonance with lock-in detection, as 
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diagrammed in the two-pulse experiment in Figure 4.5. 

 

Figure 6.3.  Spin beats measured in transient Differential Transmission at the trion 
resonance.  The beats are measured as a function of delay between a phase-locked Raman 
pulse pair and a probe pulse. 
 

A pair of phase-locked Raman pulses set to generate a rotation of θ = π/2, with a 

detuning 1 nm below the trion resonance, resulted in the spin beats shown in Figure 6.3. 

The Larmor precession of the electron spin polarization around the external magnetic field 

(B=5 T) resulted in periodic oscillations, or spin beats, with a period of 2π/ωB=8 ps in the 

transient DT response monitored at the trion resonance, as shown in Figure 6.3.  The phase 

of the oscillation is directly related to the relative phase of the Raman pulse pair.   

 

6.4.  Mapping Optical Phase onto Spin Polarization 

An important feature of resonantly driving any two-level system is that the phase of 

the coherence is determined by the phase of the driving field.  In a Raman transition, the 

relative phase of the optical fields sets the phase for the effective driving field.  Here we 

demonstrate the mapping of the relative phase of the optical pulses onto the phase of the 

electron spin coherence.  First in Figure 6.4, we show the results for two different sets of 
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pulses pairs: one with the relative phase of the optical pulses set to zero, and the second 

with a relative phase set to π.  When the phase difference between the two pulses is set to π, 

the spin beats generated are π out of phase with the beats generated by a effective driving 

field with relative phase equal to zero.  This is consistent with the Rabi problem, as 

discussed in Chapter III. 

 

Figure 6.4.  Transient DT measurement shows spin precession about z-axis (magnetic field 
axis) induced by spin rotations from phase-locked Raman pulse pairs with relative phase 
equal to 0 (blue) and π (red). 
 

Figure 6.5 shows the dynamics of Sx, the electron spin polarization projected along 

the x-axis, as the relative phase of the pulse pair φ is stepped incrementally from -2π to 2π.  

The area of the Raman pulse pairs was set to generate a rotation of θ = π/2, with the pulse 

detuned 1 nm below the trion resonance.  Figure 6.5 shows a clear linear dependence of the 

phase of the spin coherence on the relative phase φ of the phase-locked Raman pulse pairs, 

while the amplitude of the spin beats remains independent of φ.  Also shown in Figure 6.5, 

the spin beats driven by pulse pairs with relative phase -2π , 0, and 2π, present the phase 

and amplitude, as is expected.  
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Figure 6.5.  Measurement of the spin coherence induced by spin rotations from phase-
locked Raman pulse pairs with relative phase stepped from -2 π to 2 π. 
 

 

Figure 6.6.  Theoretical model of spin coherence induced by spin rotations from phase-
locked Raman pulse pairs with relative phase stepped from -2 π to 2 π. 

 

Figure 6.6 shows the result of a theoretical calculation using the optical Bloch 

equations for the three-level system without the adiabatic approximation, where 

experimentally determined dipole and spin decoherence times, spin splitting, and pulse 
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duration were used.  The experimental results are in excellent agreement with the theory 

and demonstrate that the phase-locked Raman pulse pair maps the relative optical phase 

directly onto the phase of the electron spin polarization.  This, in essence, is equivalent to 

an optical spin rotation about an axis in the x-y plane in the precessing frame with the axis 

set by the initial relative phase of the Raman pulse pair. 

 

6.5.  Rabi Oscillations with Raman Pulse Pairs 

Figure 6.7 shows the dynamics of Sx as a function of the average power of the 

Raman pulse pairs with a fixed initial relative phase of zero and an average detuning of 

Δ=0.75 nm. The x-projection of the spin polarization is measured, resulting in characteristic 

spin beats when the net polarization is away from the z-axis.  The spin beat amplitude 

vanishes at ~20 mW control power, which corresponds to a rotation of the spin polarization 

from –z to +z, a rotation angle of π.  For a rotation greater than π, the phase of the spin 

beats change phase by π but then shift linearly as the pulse power increases from 20 mW to 

90 mW.   

At a relatively small detuning compared with the linewidth of the trion absorption 

resonance, the high power of the rotation pulse results in the excitation of excitons and 

trions.  As a result, new spin beats are created and the new carrier population increases the 

decoherence rate of the electron spins (51).  The simulation of the electron spin dynamics 

presented in Figure 6.8 is based on the OBE and does not include manybody effects.  

Therefore, the theoretical model does not accurately simulate the dynamics of the spins at 

high pulse power.  However, for powers less than 25 mW, when excitation of trions and 

excitons is relatively small, the theoretical model is in good agreement with the experiment. 



 

 
 

 

92 

 
Figure 6.7.  Spin polarization projected along the x-axis as a function of the delay between 
the probe and the Raman pulse pair, with increasing average power for the Raman pulse 
pair with Δ=0.75 nm.   
 

 
Figure 6.8.  Theoretically calculated spin polarization at ∆=0.75 nm detuning, for various 
pulse areas, given sample parameters. 

 

To avoid exciting populations of excitons and trions we performed experiments 

with larger detunings.  Figure 6.9 shows the dynamics of Sx as a function of the average 

power of the Raman pulse pairs, obtained at an average detuning of Δ=1.05 nm.  The spin 

beat amplitude vanishes at 35 mW (70 mW) control power, which corresponds to a rotation 

of the spin polarization from –z to +z (-z), a rotation angle of π (2π).  Not only is the 

coherent transfer of population indicative of coherent Rabi oscillations, so is the phase of 
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the beats.  The π phase difference in the beats shown in Figure 6.9 for the pulses with 

power of ~17 mW and ~50 mW, indicates rotations of π/2 and at 3π/2.  

 

  
Figure 6.9.  Spin polarization projected along the x-axis as a function of the delay between 
the probe and the Raman pulse pair, with increasing average power (from 0 to 85 mW) for 
the Raman pulse pair with Δ=1.05nm.   
 

 

Figure 6.10.  Theoretically calculated spin polarization at ∆=1.05 nm detuning, for various 
pulse areas, given sample parameters. 

 

Several key features of spin rotations at ∆=1.05nm detuning are reproduced in the 

numerical simulation shown in Figure 6.10.  We observe a π change in the spin beats 

between pulses with pulse areas of π/2 and 3π/2 and an overall decrease in the beat 
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amplitude for increased pulse area.  However, the spin beats for rotations of π and 2π do 

not vanish in the theoretical model.  In Figure 6.10, near π and 2π, the simulated amplitude 

of the spin beats decreases while the phase of the beats gradually shifts.  The jog in the 

phase clearly visible at π and 2π in the model is not present in the experimental data and is 

believed to be obscured by the weak signal resulting from the increased decoherence from 

coupling to the excited state.  

 

 

Figure 6.11. (a) Spin polarization projected along the x-axis as a function of the delay 
between the probe and the Raman pulse pair, with increasing average power for the Raman 
pulse pair with Δ=1.7 nm.  (b) Theoretically calculated spin polarization as discussed in the 
text. 

 

At a detuning of 1.7 nm, excitation of excitons and trions is greatly minimized 
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when compared to detunings of 0.75nm and 1.05nm.  Figure 6.11a shows a jog in the phase 

at a rotation angle of π, which is clearly reproduced in the theoretical model shown in 

Figure 6.11b.  The only tunable variable used in the theoretical model of the spin dynamics 

presented in Figure 6.8, 6.10 and 6.11b is the detuning.  Our model ignores manybody 

interactions, and uses a fixed spin decoherence time, while in the experiments, the spin 

decoherence time also depends on the level of optical excitation. 

 

Figure 6.12.  Damped Rabi oscillations of electron spins driven by phase-locked Raman 
pulse pairs.  The amplitude of the spin beats for the fourth period as a function of the 
average power of the Raman pulse pair normalized to the detuning, with the detuning 
indicated in the figure.  The inferred rotation angle is indicated on the top horizontal axis. 
 

Figure 6.12 plots the amplitude of the spin beats after the rotation pulse.  The 

amplitude of the spin beats is obtained from the fourth period of the spin beats (from the 

center of the Raman pulse pair) as a function of the average power obtained at three 

different detunings.  The power dependence of the beat amplitude shows clearly damped 

Rabi oscillations of the electron spins.  In Figure 6.12, the average power is normalized to 

the detuning, demonstrating that the effective pulse area is inversely proportional to the 

detuning, which is consistent with the effective Rabi frequency defined in equation 3.21.  

Optical excitations of trions or excitons in a 2DEG can lead to a large increase in the spin 
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and dipole decoherence rates (51). As shown in Figure 6.12, the fidelity of the optical spin 

rotation deteriorates with increasing optical power, especially when the Raman pulse pair is 

tuned close to the trion resonance.  Nevertheless, with phase-locked Raman pulse pairs, 

optical spin rotations with a pulse area as large as 2.5π are still clearly observable, as 

shown in Figure 6.9.   

 

6.5.1.  Contributions from Single Pulse Rotation 

Spin beats that do not go to zero for a pulse area of π (P/Δ=34 mW/nm) are show in 

Figure 6.11a and reproduced in the theoretical model (Figure 6.11b).  These residual beats 

are a result of the contributions from a single pulse rotation, which act like an effective DC 

magnetic field.  Single pulse contributions can significantly affect the optical spin rotation 

driven by a Raman pulse pair.  Experiments in which the polarization selection rules for the 

two dipole transitions are orthogonal, a Raman pulse pair with θ = π is expected to rotate 

the spin polarization from the –z to the +z axis, at which no spin precession would be 

observed.  Figure 6.11a, however, shows prominently that the spin beat amplitude does not 

vanish; furthermore, the phase of the spin beats varies gradually, instead of flipping by π, 

as the effective pulse area goes through π. These behaviors are not as prominent in Figure 

6.9 due to the degradation in the fidelity of spin rotation at the relatively small detuning.  

The non-vanishing spin beats and the gradual phase variation of the spin beats near θ = π 

are a direct result of the effective DC magnetic field, which is induced in a single-pulse 

spin rotation about the x-axis in the non-precessing frame.   

To illustrate the contribution of the single-pulse spin rotation, Figure 6.13 shows the 

calculated trajectory of a spin Bloch vector due to a Raman-pulse pair with θ = π.  The 
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trajectory of the Bloch vector in the right sphere includes both the effective DC and AC 

fields, as discussed in Chapter III, but does not include effects of spin decoherence.  For 

comparison, the trajectory shown on the left in Figure 6.13 excludes effects of single-pulse 

spin rotation induced by the effective DC magnetic field.   

 

Figure 6.13. Trajectory of a Bloch spin vector initially along the –z axis driven by a Raman 
pulse pair with θ = π and φ = 0.  The trajectory is calculated with the effective two-level 
Hamiltonian discussed in Chapter III, and is in shown in the figure.  Effects of the effective 
DC magnetic field are included in the Bloch sphere to the right but not in the sphere to the 
left. 
 

It should be pointed out that the effective DC magnetic field does not lead to 

decoherence and therefore does not degrade the fidelity of the spin rotation.  In the limit 

that the electron spin splitting far exceeds the spectral width of individual pulses in the 

pulse pair, as well as the spin decoherence rate, effects of the single-pulse spin rotation 

become negligible.  Also, the effects of single-pulse rotation can, in principle, be 

compensated with a proper choice of a second set of Raman pulse pairs.  

 

6.6.  Pulse Pair Rotations During Spin Precession 

A unique signature of a Raman spin-flip is that the flip of precessing spins should 
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then be symmetric with respect to the arrival time of the Raman spin-flip pulse, as 

illustrated in Figure 6.11.  It is this symmetric spin evolution that leads to the formation of 

spin echoes.  Figure 5.8 shows transient DT responses obtained with a control pulse, with a 

pulse area of π, at various fixed pump-control delays.  For clarity, the DT responses are 

plotted as a function of the control-probe delay instead of the pump-probe delay.  As shown 

in the figure, the phase of the spin precession is symmetric with respect to the control-probe 

delay, regardless of the arrival time of the control.  This symmetric spin dynamic not only 

represents a direct and remarkable manifestation of the complete spin flip induced by the 

control pulse, it also demonstrates the feasibility of using an ultrafast optical pulse for 

electron spin echoes (22, 37).   

 

6.7.  Summary 

 We have successfully demonstrated the quantum control of electron spins in 

semiconductors with phase-locked Raman pulse pairs.  The phase-locked Raman pulse 

pairs behave effectively like an RF pulse with a phase determined by the relative optical 

phase.  This all-optical spin control takes advantage of well-developed laser technologies, 

especially optical pulse-shaping techniques, for fast and full quantum control of spins in 

semiconductors.  This technique avoids direct on-chip applications of microwave pulses 

and provides a nearly ideal and highly versatile approach for universal single-qubit 

operations in spin-based quantum information processing. 
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CHAPTER VII 

CONCLUSIONS 

 The spin states of conduction band electrons in direct band gap semiconductors 

exhibit strong radiative coupling to negatively charged exciton (trion) states, and this 

radiative coupling makes coherent optical control of spin states possible.  This dissertation 

has presented the experimental demonstration of coherent control of an electron spin 

ensemble in a two-dimensional electron gas (2DEG), in a CdTe quantum well.  We have 

presented two optical techniques and described the theoretical constraints of both. 

The first optical control technique presented used a single off-resonant ultrafast 

laser pulse.  The control pulse was designed to induce an optical Stark shift for the trion 

resonance and avoid the excitation of excitons. This ultrafast pulse acts like an effective 

DC magnetic field applied in the propagation direction of the optical pulse.  With this 

pulse, we have successfully realized complete spin flips of electrons in a 2DEG.  The 

spin-flip experiments are well described by a theoretical analysis based on the OBE.  The 

complete spin flip leads to spin precessions that are symmetric with respect to the arrival 

time of the control, which paved the way for this technique to be used for electron spin 

echoes (22, 37). 

The second experiment utilized phase-locked Raman resonant pulse pairs to 

coherently rotate the electron spin state, where the relative phase of the pulse pair sets the 

axis of rotation.  The Raman pulse pair acts like a RF field driving the spins resonantly.  

The Raman pulse pair approach enables spin rotation about two orthogonal axes, with 



 

 
 

 

100 

control of pulse area, and relative phase of the pulse pairs, which is essential for arbitrary 

spin rotation.   

 Optical spin rotations with phased-locked Raman pulse pairs overcomes inherent 

limitations of single-pulse optical spin rotations.  The single pulse technique only rotates 

the spins about the optic axis and must rely on other mechanisms for complete control, 

while full quantum control of electron spins with the Raman pulse pair technique is 

obtained though the control of the optical field.  Also, the effective operation of the single-

pulse approach generally requires the use of an ultrafast pulse with a short duration 

compared with the Larmor precession period. The large spectral bandwidth and peak power 

of the rotation pulse can lead to undesired excitations and increased decoherence. In 

contrast, the longer pulses in the Raman pulse pair approach have an overall lower peak 

power and are spectrally narrow, thus avoiding decoherence associated with the spectrally 

broad ultra-fast pulses.   

The research presented in this dissertation demonstrates two significant 

contributions to the field of coherent optical interactions with semiconductors.  First, 

through our demonstration of coherent spin flips and complete coherent control we have 

advanced the potential use of electron spin ensembles in semiconductors for optics based 

quantum information processing hardware.  Second, our work represents the first 

experimental demonstration of optical spin control with phase-locked Raman pulse pairs. 

The Raman pulse pair technique overcomes inherent limitations of the single-pulse optical 

rotation technique, which is the current standard technique used in coherent control. 
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7.1.  Future Work 

The immediate continuation of this research involves two separate projects that are 

related to coherent optical interactions with electron spins exploiting Raman transitions in 

semiconductors.  Work in Hailin Wang’s lab at the University of Oregon will seek to 

improve the fidelity of coherent rotations of electron spins by expanding upon the Raman 

pulse pair technique.  Research at the Naval Research Lab, in partnership with Dan 

Gammon, will investigate the coherent transfer of a single electron spin state to a photon 

state in a cavity-coupled quantum dot system. 

 

7.1.1.  Chirped Raman Pulse Pairs 

In Hailin Wang’s lab, we plan to increase the fidelity of electron spin control by 

exploiting advanced pulse-shaping techniques.  To improve the fidelity we plan to generate 

a pair of Raman resonant pulses that are much longer than were experimentally feasible in 

prior studies, where longer pulses increase the effectiveness of the rotation pulse, as shown 

in Figure 3.9.  We also plan to exploit further detunings, which will decrease the excitation 

of trions and excitons.  To fulfill the requirements of long pulses and large detuning, we 

plan to generate a pair of chirped phase-locked pulses. 

By chirping a pulse we can make arbitrarily long pulses with out any loss of power, 

which is in stark contrast to the pulse-shaping technique used in our prior work.  In the 

phase-locked Raman pulse pair experiments, the design of temporally long pulses resulted 

in decreased pulse power.  Using chirped pulses, we should be able to generate temporally 

long control pulses without loss in power.  With greater power we can move to greater 

detunings, thus limiting the excitation of excitons and trions.  
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Figure 7.1 diagrams two identical linearly chirped pulses.  The intensity of the 

pulses is plotted against time and frequency, and both exhibit a linear chirp of Δω/Δt.  At 

any given moment in time the chirped pulses show a narrow spectral bandwidth, while the 

time integrated spectral bandwidth of the pulse is broad.   

 

Figure 7.1. A computer generated plot of two identical chirped Gaussian pulses that 
delayed relative to one another.  The two pulses with a linear chirp Δω/Δt delayed by a time 
τ resulting in a relative frequency difference of δ. 

 

The frequency difference of the two linearly chirped pulses, delayed in time by τ, 

can be Raman-resonant with the ground state of a Λ-type system.  That is, if the frequency 

difference of the chirped pulses,  

 δ=τ(Δω/Δt), 

matches the energy splitting of the ground state.  As this pulse pair propagates through a 

sample, the relative frequency difference of the pair remains constant, even as the 

instantaneous frequency of each pulse shifts by Δω/Δt. 

In order to meet the Raman-resonance condition, the spectral bandwidth of the laser 
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pulse must exceed the energy splitting of the two ground states of interest.  This condition 

is met in our system where the Zeeman splitting for the electrons in CdTe in a magnetic 

field of 5T is ~0.5meV, and the bandwidth of the 2 ps laser is ~1 meV.  The chirped pulse 

technique will allow for large detuning and long pulses, resulting in further decoupling 

from the trion state and the minimization of single pulse effects present in temporally short 

Raman pulses.  Therefore, this technique should result in an increased fidelity for rotations 

in the 2DEG system. 

 

7.1.2.  Solid-State Light-Matter Quantum Interface 

Proposed research activities at the Naval Research Lab involve the exploitation of a 

stimulated Raman transition to development a solid-state light-matter quantum interface 

that should coherently and reversibly map quantum information between light and matter. 

We plan to develop a waveguide-coupled, photonic crystal optical resonator with an 

embedded, charged Indium Arsenide (InAs) quantum dot.  Coherent operations resulting in 

a change of the electron spin trapped in the quantum dot should result in a single photon 

emitted into the cavity.  

The Λ-type system investigated in this dissertation is nearly identical to what has 

been observed for a single electron trapped within an InAs quantum dot.  In the Voigt 

configuration, the two ground states radiatively couple to a common excited state, forming 

a Λ-type system.  We plan to drive a spin-flip Raman transition with two fields: one field 

defined by a laser with specific bandwidth and center frequency, and a second field defined 

by the vacuum field of a photonic crystal cavity.  Figure 7.2 schematically steps through 

how this device should work.  A laser at frequency ωinitialize pumps the spin into the state 
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|�〉, at which point a laser pulse and the cavity field will drive the spin-flip transition.  The 

laser pulse is labeled ωpump, and the vacuum field is labeled ωcavity.  The resultant flip of the 

spin correlates with the scattering of a photon into the cavity mode, thus resulting in the 

coherent transfer of a matter state (the spin) to a photon state. 

 

Figure 7.2.  Optical pumping scheme in steps.  Step 1) Spin polarization by optical 
pumping.  Step 2)  Drive the Raman transition with a pump field and the vacuum field of 
the cavity.  Step 3) The population after adiabatic passage is now in the spin down state.  
Step 4)  Reinitialize the state by the optical pumping. 

 

The demonstration of coherent transfer of quantum information from a matter state 

to a photon state by generating a single photon as a result of a cavity assisted spin flip will 

be an important milestone on the road to a solid-state quantum network.  The success of 

this work could open the door to experimental studies of entanglement between light and 

matter.  Since the photon emitted into the cavity is primarily determined by the optical 

cavity, which can be controlled, this will allow for the establishment of entanglement 

between distant matter qubits by single photons paving the way to a scalable quantum 

network. 
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APPENDIX  

MATHEMATICA CODE 

 
 

ClearAll

ClearAll

ClearAll�H, G, �, Ρgg, Ρ, �Ρ, Ω, a, b, c, d, e, f, g1, g2, h, i, j, k, �, t, efield�
y � ��1 � 2 , 1 � 2 , 0�, �1 � 2 , �1 � 2 , 0�, �0, 0, 1��;
Hf :� I ��0, 0, ��a�t� � � 2�,� 0, 0, �b�t� � 2�,�Conjugate��a�t�� � 2, Conjugate��b�t�� � 2, 0 ��;
Ha :� I ��wb � 2, 0 , 0�,� 0, �wb � 2, 0�,� 0, 0, � ��;
H :� Ha � Hf;

�Ρ :� ��G � 2 Ρgg�t�, �g2 Ρud�t�, �g1 Ρug�t��,��g2 Ρdu�t�, G � 2 Ρgg�t�, �g1 Ρdg�t��,��g1 Ρgu�t�, �g1 Ρgd�t�, �G Ρgg�t���;
Ρ :� ��Ρuu�t�, Ρud�t�, Ρug�t��,�Ρdu�t�, Ρdd�t�, Ρdg�t��,�Ρgu�t�, Ρgd�t�, Ρgg�t���;
DtΡ :� �t Ρ

� :� �1.5� 4 wb; ��nm detuning��
per � 1;

A :�
per 2 Π �

1.2231404787462234`
;

NormO�c_� :� .5 ��
1

4
c2 ∆2�� Φ 1 � 2 �

c2 ∆2

4
�� Φ � �2 � Φ

�a�t_� :� 1

NormO�c� A � �c 2 � Exp� ��t�2
2 c2

� Exp��� ∆ t � 2 � � Φ
2
� � Exp�� ∆ t � 2 � � Φ

2
� ;

�b�t_� :� �a�t�;
G :� 1 � 1000;
g1 :� 1 � 1000 ;
g2 :� .00001;
eid :� .00
wb :� 2 Π � 7.8;
c :� 2 FWHM � 2.355
FWHM � 20;
Φ � 0 Π ;
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∆ � wb;
end � 40;

list5 � Table�0, �i, 1, end��;
list4 � Table�0, �i, 1, end��;
list3 � Table�0, �i, 1, end��;
list2 � Table�0, �i, 1, end��;
list1 � Table�0, �i, 1, end��;
Do��b � per � 3.5 �i � .999� � � end�;

s � NDSolve��
DtΡ��1, 1�� � �Ρ.H � H.Ρ � �Ρ���1, 1��,
DtΡ��1, 2�� � �Ρ.H � H.Ρ � �Ρ���1, 2��,
DtΡ��1, 3�� � �Ρ.H � H.Ρ � �Ρ���1, 3��,
DtΡ��2, 1�� � �Ρ.H � H.Ρ � �Ρ���2, 1��,
DtΡ��2, 2�� � �Ρ.H � H.Ρ � �Ρ���2, 2��,
DtΡ��2, 3�� � �Ρ.H � H.Ρ � �Ρ���2, 3��,
DtΡ��3, 1�� � �Ρ.H � H.Ρ � �Ρ���3, 1��,
DtΡ��3, 2�� � �Ρ.H � H.Ρ � �Ρ���3, 2��,
DtΡ��3, 3�� � �Ρ.H � H.Ρ � �Ρ���3, 3��,
Ρuu��1000� � 0, Ρud��1000� � 0, Ρug��1000� � 0,
Ρdu��1000� � 0, Ρdd��1000� � 1, Ρdg��1000� � 0,
Ρgu��1000� � 0, Ρgd��1000� � 0, Ρgg��1000� � 0�,�Ρuu�t�, Ρud�t�, Ρug�t�,
Ρdu�t�, Ρdd�t�, Ρdg�t�,
Ρgu�t�, Ρgd�t�, Ρgg�t��,�t, �1000, 100�,

Method �� �"StiffnessSwitching"�, MaxStepSize � .1, MaxSteps � Infinity�,
list1��i�� � Table��t, b, Re�Evaluate�Ρ��1����1��� �. s���1�� �. s��1���, �t, �20, 40, .2��;
list2��i�� � Table��t, b, Re�Evaluate�Ρ��2����2��� �. s���1�� �. s��1���, �t, �20, 40, .2��;
list3��i�� � Table��t, b, Re�Evaluate�Ρ��1����2��� �. s���1�� �. s��1���, �t, �20, 40, .2��;
list5��i�� � Table��t, b, �a�t� Conjugate��a�t�� � �a�0�2�, �t, �20, 40, .2��;
list4��i�� �
Table��t, b, Im�Evaluate�Ρ��1����2��� �. s���1�� �. s��1���, �t, �20, 40, .2��;�,�i, 1, end��

theory1 � Flatten�Table�list1��i��, �i, 1, end��, 1�;
theory2 � Flatten�Table�list2��i��, �i, 1, end��, 1�;
theory3 � Flatten�Table�list3��i��, �i, 1, end��, 1�;
theory4 � Flatten�Table�list4��i��, �i, 1, end��, 1�;
theory5 � Flatten�Table�list5��i��, �i, 1, end��, 1�;
Theory1 � ListDensityPlot�theory5, AspectRatio � 1 � 2, InterpolationOrder � 2,

FrameLabel � �"Control�Probe Delay �ps�", "Control Intensity �arb.�"�,
ColorFunction � "GrayTones", FrameStyle � Directive�Black, 16��

Theory2 � ListDensityPlot�theory4, AspectRatio � 1 � 2, InterpolationOrder � 2,
FrameLabel � �"Control�Probe Delay �ps�", "Control Intensity �arb.�"�,
ColorFunction � "GrayTones", FrameStyle � Directive�Black, 16��;

Theory3 � ListDensityPlot�theory3, AspectRatio � 1 � 2, InterpolationOrder � 2,
FrameLabel � �"Control�Probe Delay �ps�", "Rotation Angle �Π�"�,
ColorFunction � "GrayTones", FrameStyle � Directive�Black, 16��

2   Raman reasonance intens.nb

Raman reasonance intens.nb   3
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