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DISSERTATION ABSTRACT

Xianghui Luo

Doctor of Philosophy

Department of Physics

June 2011

Title: Symmetries of Cauchy Horizons and Global Stability of Cosmological Models

Approved:
James Isenberg

This dissertation contains the results obtained from a study of two subjects

in mathematical general relativity. The first part of this dissertation is about

the existence of Killing symmetries in spacetimes containing a compact Cauchy

horizon. We prove the existence of a nontrivial Killing symmetry in a large class of

analytic cosmological spacetimes with a compact Cauchy horizon for any spacetime

dimension. In doing so, we also remove the restrictive analyticity condition and

obtain a generalization to the smooth case. The second part of the dissertation

presents our results on the global stability problem for a class of cosmological

models. We investigate the power law inflating cosmological models in the presence

of electromagnetic fields. A stability result for such cosmological spacetimes is

proved.

This dissertation includes unpublished co-authored material.
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CHAPTER I

INTRODUCTION

General relativity is a theory of space, time and gravity. A spacetime is a

pair (M, g) such that M is a 4-dimensional manifold and g is a Lorentzian metric1

on M . Einstein’s equations for the gravitational field are the focus of general

relativity; they relate a spacetime (M, g) to its matter and non-gravitational fields

content

Rµν −
1

2
Rgµν = 8πGTµν , (I.1)

where Tµν is the energy momentum tensor of the matter and non-gravitational

fields. To study the theory of general relativity, one can study the solutions

of Einstein’s equations coupled to various matter and non-gravitational fields.

Spacetimes allowed by general relativity can exhibit a variety of exotic behaviors,

such as singularities (causal geodesic incompleteness) and causality violation

(closed world-lines). The question of spacetime singularities has led physicists to

the singularity theorems of R. Penrose and S. Hawking [1, 2, 3, 4, 5] and to the

conjecture of the BKL picture of cosmological singularities [6, 7]. Physicists now

believe that a singularity can happen in a spacetime satisfying Einstein’s equations

under rather generic situations. The nature of singularities is still not clear to us.

One possible picture is that given by Belinskii, Khalatnikov and Lifshitz (the BKL

picture) [6, 7]. Determining the nature of singularities remains one of the more

important research subjects in general relativity.

1The definition is given in the glossary
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The fact that there exist large numbers of spacetimes consistent with general

relativity theory that violate causality surprises people. These spacetimes include

the Taub-NUT spacetime [8] and large families of Taub-NUT-like spacetimes [9].

On the other hand, all of the known causality violating spacetimes are symmetric

in some sense. Hence it is still possible to save predictability of generic spacetimes

satisfying Einstein’s equations at the classical level. This is the conjecture of strong

cosmic censorship (SCC), which claims that the measure of the set of causality

violating spacetimes is zero; i.e., generic spacetimes developed from non-singular

initial data do not violate causality. SCC remains one of the main unsolved

problems in general relativity. Chapter II and III are about our work in support

of SCC.

Along with studying the properties of generic solutions of Einstein’s

equations, one can also use general relativity as a tool to study the specific

spacetimes of interesting systems in nature. The important and interesting subjects

of this kind include black hole formation, gravitational wave production and

propagation in astrophysics and the whole universe. The universe as a cosmological

system is among the most interesting subjects to which general relativity is applied.

It is also one of the few arenas in physics in which general relativity plays a major

role. The universe has been observed to be highly spatially isotropic on a very large

scale. It has also been observed to be expanding. Cosmological models together

with expansion-driving mechanisms are proposed to match the observation. Many

forever expanding cosmological models have the property of future completeness.

Future completeness means every object exists forever. One interesting question

about future completeness of cosmological models is whether this property is stable

2



under the perturbation of its initial data. Progress has been made for inflationary

cosmological models. Chapter IV is about such a stability theorem.

I.1. Cauchy Problem in General Relativity

In the first few decades after the birth of general relativity, very few results

on the evolution of spacetimes satisfying Einstein’s equations were obtained. Only

the special cases were studied, such as the FRW model of the universe. Relativists

were trying to find explicit model solutions to Einstein’s equations and draw

physical implications from those model solutions. These models play an important

role in our understanding of general relativity and properties of spacetimes. In

trying to understand the spherically symmetric Schwarzschild solution, people

discovered important physical concepts such as event horizons and singularities.

The singularity theorems of R. Penrose and S. Hawking [1, 2, 3, 4, 5] say that

under some rather generic conditions, a singularity must occur in spacetimes

satisfying Einstein’s equations. However, the singularity theorems do not say

what the singularities are like or how they develop from a Cauchy surface2. Much

has been discovered by studying explicit solutions to Einstein’s equations and

the causal structures of them, but not much insight regarding the dynamical

pictures and general solutions has been gained. Some dynamical pictures have

been obtained for the propagation of gravitational waves, but this is done by weak

field approximation. To investigate the evolution of general solutions to Einstein’s

equations, we must have some initial value formulation for generic initial data.

It was not until 1952 that Y. Choquet-Bruhat [10] first showed that the initial

value formulation of general relativity is well-posed. An initial value formulation

2Definition is given in the glossary
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is well-posed if i) a small change in initial data only induces a small change in the

solution; ii) a change in the initial data in a region S of the initial data surface

should not produce any change in the solution outside the future set of S. In

particular, i) implies that there exists a unique solution corresponding to an

initial data set. The reason it took so long to develop a well-posed initial value

formulation is because the gravitational field couples to itself causing the Einstein’s

equations to be nonlinear. The other reason is that there is a lot of redundancy in

Einstein’s equations. A solution to Einstein’s equations is really a diffeomorphism3

class of Lorentzian manifolds. Only by choosing a coordinate system can Einstein’s

equations be cast into a hyperbolic system of equations. After proving the well-

posedness of the initial value formulation of general relativity, Y. Choquet-Bruhat

and R. Geroch [11] further showed that given initial data, there is a unique

maximal Cauchy development (MCD)4 up to diffeomorphism. MCD is the largest

development that can be obtained by evolving initial data.

An initial data set (Σ, h, k) of the vacuum Einstein’s equations consists

of an initial “spacetime slice” (Σ, h), which is a Riemannian 3-manifold with a

Riemannian metric h, and a symmetric 2-tensor k on Σ, which roughly speaking,

corresponds to the first time derivative of the initial “spacetime slice”. The initial

data set (Σ, h, k) can not be chosen arbitrarily. Instead (Σ, h, k) has to satisfy the

Einstein constraints equations for it to qualify as an initial data set of the vacuum

Einstein’s equations. If some non-gravitational fields are considered, an initial

data set of the Einstein-Source field equations consists of (Σ, h, k) together with

initial data of the non-gravitational fields on (Σ, h, k). Again the initial data set

3See the definition in the glossary

4See the definition in the glossary
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has to satisfy the Einstein-Source constraints equations. The details of the initial

value formulation of the Einstein-Maxwell-scalar equations is presented in the

introduction of Chapter IV. Much research involving initial data has been carried

out since 1952. A. Rendall [12] proved an alternative initial value formulation

with the initial data prescribed on null hypersurfaces5 instead of on spacelike

Cauchy surfaces. Construction of initial data is one of the hot research areas today.

Progress has been made in constructing new initial data from two given initial data

sets. Various gluing techniques have been developed to construct new initial data.

Recently, gluing of asymptotically hyperbolic initial data and the construction of

N-body initial data have been obtained [13, 14]. Another important research topic

in initial value problem is the global stability of solutions to Einstein’s equations,

which will be discussed in Section I.3..

One recent exciting result involving the initial value problem is the study

of black hole formation by D. Christodoulou [15]. One version of the singularity

theorem proved by R. Penrose says that a spacetime (M, g) must be null

geodesically incomplete6 if i) RµνN
µNν ≥ 0 for any null vectors N ; ii) (M, g)

contains a non-compact Cauchy hypersurface; and iii) there is a closed trapped

surface. The question of how such a trapped surface forms out of initial data not

containing a trapped surface and whether a generic initial data set can produce a

trapped surface is unsolved. D. Christodoulou [15] proved the existence of an open

set of initial data that develop a trapped surface in the Cauchy development.

Perhaps the greatest unsolved problems in mathematical general relativity

are the weak cosmic censorship (WCC) and strong cosmic censorship (SCC)

5The definition of a null hypersurface is given in the glossary

6Definition is given in the glossary
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conjectures. SCC is not a stronger version of WCC as the names seem to imply.

Both WCC and SCC can be rigorously formulated in terms of an initial value

problem. The WCC applies to isolated gravitational systems, and says that generic

singularities have no effects on distant observers because of the formation of an

event horizon. In other words, the measure of the set of spacetimes satisfying

Einstein’s equations and containing a naked singularity (a singularity that is not

hidden inside an event horizon) is zero. On the other hand, SCC says that causality

violation does not happen in a generic spacetime developed from nonsingular initial

data. Progress on SCC is presented in the next section.

I.2. Strong Cosmic Censorship

According to a theorem of Y. Choquet-Bruhat and R. Geroch [11], there

exists a unique maximal Cauchy development (MCD) to a given initial data set of

Einstein’s equations coupled to well-behaved matter fields. An interesting question

to ask is the following: what is the end of the MCD like? By the end of the MCD,

we mean the boundary of the MCD to which we evolve initial data until we can

not continue. The end of the MCD can exhibit roughly three different behaviors

or a mixture of these. The first possibility is that there is no such end. Every

time-like curve has infinite proper time; i.e., the MCD is future complete. The

second possibility is geodesic imcompleteness. That is, an object ceases to exist

in some finite time as it approaches the end of the MCD. The usual notion of

singularity is defined as geodesic incompleteness. The singularity theorems of R.

Penrose and S. Hawking tell us that singularities are generic. However, there are

two possibilities of geodesic incompleteness. The first one is that the curvature

blows up. In this case, everything approaching the singularity is destroyed by the

6



infinite tidal force. The second possibility is that the curvature does not blow

up, but there is a Cauchy horizon7 where causal curves become closed. A Cauchy

horizon of the MCD is defined as the boundary of the region of spacetime that

is uniquely determined by the initial data. The MCD can generally be smoothly

extended as a solution to the Einstein’s equations coupled to well-behaved matter

fields by attaching another spacetime at the Cauchy horizon. As one approaches

the Cauchy horizon, the light cones tip. At the Cauchy horizon, light cones become

tangent to the Cauchy horizon and closed null curves form on the horizon. Hence

the Cauchy horizon is the boundary across which closed time-like curves form.

Causality violation happens as one crosses the Cauchy horizon. Since the usual idea

of physical phenomena is to favor causality, the strong cosmic censorship conjecture

is proposed, which roughly speaking, says that causality violation is non-generic.

SCC was first proposed by R. Penrose in [16]. It was rigorously formulated

by V. Moncrief and D. Eardley [17]. The following statement is a mathematical

formulation of SCC essentially due to V. Moncrief and D. Eardley:

Consider the collection of initial data of an Einstein-matter system

with the initial data manifolds being compact or the initial data being

asymptotically flat. There is an open dense subset of initial data whose

MCDs are inextendible provided the matter fields are well behaved.

Attempts at proving SCC have been carried out in two directions. One direction

is to find an open dense subset of initial data whose MCDs are inextendible. Due

to the complexity of the conjecture, the easier thing to do is to first prove SCC

for some classes of spacetimes. Most progress in this direction has been on Gowdy

7Definition is given in the glossary.
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spacetimes [18, 19]. The other direction is to prove by “contradiction”. The proof is

to show that the spacetimes containing a Cauchy horizon are non-generic. One way

to do this is to find a symmetry in the spacetimes containing a Cauchy horizon.

Progress in this direction has only been achieved on compact Cauchy horizons [20,

21]. The first part of this dissertation (Chapter II and Chapter III) is about some

extensions of the results of [20].

I.3. Cosmological Models and Global Stability

Explicit solutions to Einstein’s equations are interesting not only because of

their simplicity, but also because of the physical reality they may represent and

approximate. Minkowski spacetime represents flat spacetime and approximates

local weak gravitational field metrics, while the Schwarzschild and the Kerr

spacetimes represent the gravitational field around an isolated body. The

Schwarzschild metric is a better approximation of the gravitational field around the

Earth than the Minkowski metric. Of equal interest to physicists are the metrics

modeling the whole universe. These are the expanding spatially homogeneous and

isotropic Robertson-Walker metrics

g = −dt2 + a2(t)γ, (I.2)

where γ is a maximally symmetric 3-metric and a(t) is the scale factor. The metric

g satisfies Einstein’s equations coupled to non-gravitational fields. The form of

the scale factor a is determined by astronomical observations to be expanding and

the expansion is accelerated. The question of why the metric is expanding leads

8



cosmologists to construct many cosmological models that include matter fields that

could drive such an expanding metric.

Stability is an essential property that should be tested for any explicit

solution expected to have some relevance to the description of physical reality.

There are many notions of stability - the meaning of stability differs in different

theories. For a future complete spacetime, stability can be interpreted to mean

that the perturbed spacetimes stay close to the original spacetime and are future

complete.

The Minkowski metric and certain expanding cosmological metrics are future

complete. One of the first global stability results is [22], in which H. Friedrich

shows that the De Sitter spacetime is globally stable for Einstein’s equations with

a cosmological constant. The proof of global stability of the Minkowski metric [23]

is one of the most important results in global stability. Alternative approaches to

the proof and extensions of the stability result have also been obtained thereafter

[24, 25]. More recently, L. Andersson and V. Moncrief [26] have proven that the

Milne spacetimes8 are globally stable solutions of the vacuum Einstein equations.

H. Ringström [27, 28] has very recently shown that certain solutions of the

Einstein-scalar field equations with accelerating expansion are globally stable. He

does this for both exponentially expanding background solutions with fairly general

scalar field potential functions V (φ) [27], and for power law expanding background

solutions with a certain set of exponentially-decaying scalar potential functions

[28]. In Chapter IV, we show that the power law expanding solutions considered by

Ringström in [28] are globally stable with respect to the Einstein-Maxwell-scalar

field equations.

8These expanding spacetimes are constructed by spatially compactifying the mass hyperboloids
in Minkowski spacetime
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I.4. Organization

This dissertation consists of two main parts. The first part is presented in

Chapter II and III, and the second part is contained in Chapter IV. Each main

part of the dissertation contains the work accomplished under the supervision

of James Isenberg. The results contained in the first part are in preparation for

publication and co-authored by James Isenberg; and the results in the second part

are going to be published and co-authored by James Isenberg. I made primary

contributions in both main parts.

Chapter II and III are about the symmetries of Cauchy horizons. The

goal is to prove the existence of a non-trivial Killing vector field9 in a spacetime

neighborhood of the Cauchy horizon, that is, to show spactimes with Cauchy

horizons are not generic. In Chapter II, we consider spacetimes of any dimensions

with the presence of a electromagnetic field, a scalar field and particles describe

by the Boltzmann-Vlasov equation. This is a generalization of the work done by

J. Isenberg and V. Moncrief [20], which only considers 3+1 dimensional electro-

vacuum spacetimes. Like [20], we also impose the analyticity condition.

In Chapter III we try to remove the restrictive analyticity condition. We

notice the relationship between spacetimes containing a compact Cauchy horizon

and the stationary black hole spacetimes [29]. We also notice the smoothness result

[30] on stationary black hole spacetimes. By applying these results we remove the

analyticity condition.

Chapter IV is about our work on global stability of a class of inflationary

cosmological spacetimes. We generalize a result of H. Ringström [28] to the

case with electromagnetic fields. In doing so, we need to consider extra field

9See the definition of a Killing vector field in the glossary
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equations (Maxwell equations) and more general perturbations (perturbations

with electromagnetic field). We obtain the stability result by following the same

procedure carried out by H. Ringström: i) reformulations of field equations; ii)

energy functionals; iii) bootstrap assumptions; iv) differential inequalities; v) global

existence; vi) geodesic completeness and vi) asymptotic expansions.

11



CHAPTER II

SYMMETRIES OF CAUCHY HORIZONS

In [20] V. Moncrief and J. Isenberg prove that 3+1 dimensional analytic,

vacuum or electrovacuum spacetimes containing compact null hypersurfaces with

closed null geodesics necessarily have a Killing symmetry. Their result requires the

assumption that the spacetime is analytic, that the embedded null hypersurface is

compact with closed null geodesics and that it has the structure of local product

bundle1. J. Isenberg and V. Moncrief [21] later removed the assumption of a local

product bundle structure. Some progress in removing analyticity is made in [29].

J. Isenberg and V. Moncrief are presently working on removing the condition of

closedness of null geodesics.

We generalize the results of [20] to higher dimensional spacetimes and also

obtain similar results of spacetimes with the presence of scalar fields and matter

fields that can be described by the Boltzmann-Vlasov equations. For the higher

dimensional versions of spacetimes studied in [20], our theorem says that there is

a non-trivial Killing symmetry. Our result concerning the Einstein-Boltzmann-

Vlasov system implies that for any analytic spacetime containing a compact null

hypersurface with closed null geodesics, the distribution function f(xµ, pi) for

particles must vanish. In other words, such spacetimes do not allow the existence of

particles modeled by the Boltzmann-Vlasov theory. A more general result is proven

in [31]2, which says that if the future Cauchy horizon of a partial Cauchy surface

is compact, and if the energy momentum tensor satisfies a slightly stronger energy

1The definition of a product bundle is given in the glossary

2See p. 295 - p. 298.
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condition than the dominant energy condition (DEC)3, then the energy momentum

tensor must vanish.

This chapter includes the work completed by me under the supervision of

James Isenberg. The result is in preparation for publication and co-authored by

James Isenberg. I made primary contribution to the work.

II.1. Preliminaries

The spacetime we investigate has the structure V (n+1) = Mn×R, where Mn is

a closed (compact without boundary) n dimensional analytic manifold. Let g be an

analytic Lorentzian metric on V (n+1). We assume V (n+1) has a compact embedded

null hypersurface N which has closed null geodesics and is diffeomorphic to Mn.

Furthermore, we assume N has a local product bundle structure. That is, if γ is a

closed geodesic of N , then there exists a neighborhood Uγ of γ in V (n+1) such that

1. Uγ ∩ N is diffeomorphic to Bγ × S1 for some (n − 1)-manifold Bγ and some

diffeomorphism φγ : Uγ ∩N → Bγ × S1.

2. There exists a smooth surjective map πγ : Bγ × S1 → Bγ, such that for any

p ∈ Bγ, Bγ × S1 ≈ Bγ × π−1γ (p) and the fiber π−1γ (p) is diffeomorphic to a

closed null geodesic in Uγ ∩N via φ−1γ .

We call such submanifolds Uγ ∩ N elementary regions of N . By compactness,

N can be covered by finitely many elementary regions. We introduce coordinates

on a spacetime neighborhood of an elementary region Uγ ∩ N by the same method

that is used in [20]. First introducc coordinates {xa, xn}, a = 1, · · · , n − 1, on

Bγ × S1 such that xa are constant along the fibers and xn is the coordinate on the

3Statement of the definition is given in the glossary
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fibers with period 2π. Hence we can use {xa, xn}, a = 1, · · · , n− 1 as coordinates on

Uγ ∩N via φγ. We now construct coordinates in a neighborhood Ũγ ≈ R× (Uγ ∩N)

of Uγ ∩ N . To do this, we define a null vector field k̃|N throughout the elementary

region by the algebraic conditions

k̃µk̃νgµν |t=0 = 0, k̃µgµn|t=0 = 1, k̃µgµa|t=0 = 0. (II.1)

It follows that k̃|N is analytic, nowhere zero and everywhere transversal to

the elementary region. Now for each point p in the elementary region, construct

the unique, affine, null geodesic through p with the initial condition (p, k̃(p)).

Define coordinates in a neighborhood of the elementary region by the requirements

that the “spatial” coordinates {xn′
, xa

′} are constant along the null geodesics so

constructed and that the “time” coordinate t′ vanishes on N and coincides with the

affine parameter along each of the transversal null geodesics.

In such a coordinate system, which we call Gaussian null coordinates, the

metric takes on the form

g = 2dt′dxn
′
+ φ(dxn

′
)2 + 2βadx

a′dxn
′
+ µabdx

a′dxb
′
, (II.2)

where µab is positive definite near t′ = 0 and

φ|t′=0 = βa|t′=0 = 0. (II.3)

II.2. Field Equations

We present here the Ricci tensor, the Maxwell field equations, the scalar

field equations and the Boltzmann-Vlasov equations in a Gaussian null coordinate

14



chart {t, xn, xa} with primes removed. Choose the sign convention ηµν =

diag(−1,+1,+1,+1) and set G = c = 1. We have the components of the Ricci

tensor in the form as follows:

Rtt =− 1

2
µabµab, tt +

1

4
µacµbdµab, tµcd, t , (II.4)

Rtn =
1
√
µ

[
√
µ

(
1

2
φ, t −

1

2
βaβa, t

)]
, t

+
1
√
µ

[
√
µ

(
µab

2
βa, t

)]
, b

− 1

2
µabµab, tn +

1

4
µacµbdµab, tµcd, n, (II.5)

Rtb =
1
√
µ

[
√
µ

(
1

2
βb, t −

1

2
βaµab, t

)]
, t

+ (n−1)∇c

(
1

2
µacµab, t

)
− (n−1)∇b

(
1

2
µcdµcd, t

)
, (II.6)

Rnn =
1
√
µ

[
√
µ

(
1

2
φ, n +

1

2
φφ, t +

1

2
βaφ, a − βaβa, n −

1

2
βaβaφ, t

)]
, t

+
1
√
µ

[
√
µµac

(
−φ, a

2
+ βa, n +

βa
2
φ, t

)]
, c

− 1
√
µ

[
√
µ
φ, t
2

]
, n

− 1

2
µabµab, nn +

1

4
µacµbdµab, nµcd, n

− 1

2
(φ, t − βaβa, t)2 +

1

4
µacµbd (βa, b − βb, a) (βc, d − βd, c)

− 1

2
µdcβc, t (2φ, d + φβd, t − 2βa (βa, d − βd, a)− 2βd, n

− βaβaβd, t) , (II.7)
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Rnb =
1
√
µ

[
√
µ

(
1

2
φ, b +

1

2
φβb, t −

1

2
βa(βa, b − βb, a)−

1

2
βaβaβb, t

−1

2
βaµab, n

)]
, t

+ (n−1)∇c

[
µac

2
(βa, b − βb, a) +

1

2
βcβb, t

+
1

2
µacµab, n

]
− 1
√
µ

[
√
µ
βb, t
2

]
, n

− 1

2
µcd (n−1)∇bµcd, n

− 1

2
(βb, t − βaµab, t)(φ, t − βcβc, t)

− 1

2
µcdµbc, t (φ, d + φβd, t − βa(βa, d − βd, a)− βd, n − βaβaβd, t)

− 1

2
µacβa, t(−µbc, n + (n−1)∇cβb), (II.8)

Rab =
1
√
µ

[
√
µ

(
−1

2
µab, n +

1

2
((n−1)∇bβa + (n−1)∇aβb) +

φ

2
µab, t

−1

2
βcβcµab, t

)]
, t

+ (n−1)∇c

[
βc

2
µab, t

]
− 1
√
µ

[√
µ
µab, t

2

]
, n

+ (n−1)Rab −
1

2
(βa, t − βcµac, t)(βb, t − βdµbd, t)

− 1

4
µdfµfb, t

(
−2µad, n + 2 (n−1)∇dβa + (φ− βgβg)µad, t

)
− 1

4
µdfµfa, t

(
−2µbd, n + 2 (n−1)∇dβb + (φ− βgβg)µbd, t

)
. (II.9)

where µab is the inverse of µab, β
a = µabβb,

(n−1)Rab is the Ricci tensor of µab

and (n−1)∇a represents the Riemannian covariant derivative with respect to µab. In

applying (n−1)∇a, one treats φ, φ, t, φ, n as scalars, βa, βa, t, βa, n as covariant vectors

and µab, µab, t, µab, n as second rank tensors respectively. Finally, µ = det(µab).

The Lagrangian for a scalar field is given by

L = −1

2
gµνψ, µψ, ν − V (ψ), (II.10)

from which we have the scalar field equation

gµνψ;µν −
dV

dψ
= 0, (II.11)
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where “;” represents the covariant derivative with respect to the spacetime metric,

and the stress energy tensor related quantities

T Sµν = ψ, µψ, ν − gµν
(

1

2
gρσψ, ρψ, σ + V (ψ)

)
, (II.12)

T S =
1− n

2
gµνψ, µψ, ν − (n+ 1)V (ψ), (II.13)

T Sµν −
1

n− 1
T Sgµν = ψ, µψ, ν +

2

n− 1
gµνV (ψ). (II.14)

The Boltzmann-Vlasov equation for charged particles is

pµ
∂f

∂xµ
+ (qF i

ν
pν

m
− Γi αβ

pαpβ

m2
)
∂f

∂pi
= Q(f, f) , (II.15)

where F µ
ν is the Faraday tensor, f(xµ, pi) is the distribution function4 of charged

particles, and Q(f, g) represents the collision operator due to some short range

interaction, such as the strong interaction between nuclei in the center of Sun. F µ
ν

satisfies the Maxwell equations with charged fluid source

F[µν, σ] = 0, F µν
; ν = 4πJµ, Jµ =

q

m

∫
fpµ
√
−g dp1dp2 · · · dpn

dp0
, (II.16)

4In kinetic theory, the distribution function f(xµ, pi) represents the number density of particles
with momentum pi at the spacetime point xµ.
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where

F tβ
;β =

1
√
µ

(
√
µβaFta), n +

1
√
µ

(
√
µFnt), n +

1
√
µ

[
√
µ((βaβa − φ)µbcFtc

+ βbFtn + µabFna + βaβbFat + µbcβaFca)], b, (II.17)

F nβ
;β =

1
√
µ

(
√
µβaFat), t +

1
√
µ

(
√
µFtn), t +

1
√
µ

(
√
µµabFta), b, (II.18)

F aβ
;β =

1
√
µ

[
√
µ((µacFcn + µacβdFdc + µac(βdβd − φ)Fct + βaFnt + βaβcFtc)], t

+
1
√
µ

[
√
µµacFct], n +

1
√
µ

[
√
µ(µacµbdFcd + µacβbFtc + βaµbcFct)], b. (II.19)

The stress energy tensor related quantities of the electromagnetic field are given by

TEMµν =
1

4π
(FµσFν

σ − 1

4
gµνFαβF

αβ), (II.20)

TEM =
1

4π

3− n
4

FαβF
αβ, (II.21)

TEMµν −
1

n− 1
TEMgµν =

1

4π
FµσFν

σ − 1

8π

1

n− 1
gµνFαβF

αβ, (II.22)

and the stress energy tensor related quantities of the particles are

T Pµν =

∫
fpµpν

√
−g dp1dp2 · · · dpn

dp0
, (II.23)

T P = −m2

∫
f

√
−g dp1dp2 · · · dpn

dp0
, (II.24)

T Pµν −
1

n− 1
T Pgµν =

∫
f

(
pµpν +

m2

n− 1
gµν

) √
−g dp1dp2 · · · dpn

dp0
. (II.25)

If a scalar field, electromagnetic fields and charged particles are all present, we

have

Tµν = T Sµν + TEMµν + T Pµν , T = T S + TEM + T P , (II.26)
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and

Tµν −
1

n− 1
gµνT = ψ, µψ, ν +

1

4π
FµσFν

σ +

∫
fpµpν

√
−g dp1dp2 · · · dpn

dp0

+
1

n− 1
gµν

(
2V (ψ)− 1

8π
FαβF

αβ +m2

∫
f

√
−g dp1dp2 · · · dpn

dp0

)
.

(II.27)

II.3. Construction of a Killing Symmetry

We prove the main theorem in this section, which says that any analytic

vacuum, scalar-vacuum and electro-vacuum spacetime of dimension n+1 ≥ 4

containing a compact null hypersurface with closed geodesics must have a nontrivial

Killing symmetry and that such a spacetime does not allow any existence of

particles.

Local Arguments

Before starting our local arguments, we present the following simple version

of strong elliptic maximum principle, which will be used many times during the

analysis.

Lemma II.1 (Maximum Principle). If u(θ) satisfies the following differential

inequality on S1

∂2θu(θ) + λ(θ)∂θu(θ) ≥ 0, (II.28)

where θ is the coordinate on S1, then u(θ) is a constant function on S1.

Proof. Suppose u(θ) is not constant. Then there exists a point θ0 such that u(θ0) is

a local maximum. It follows that ∂θu(θ0) = 0 and ∂2θu(θ0) < 0. This contradicts the

assumption. Thus u(θ) is a constant function on S1.
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The Einstein equation in n+ 1 dimensions can be written as

Rµν = 8π(Tµν −
1

n− 1
gµνT ) . (II.29)

Restricting Rnn = 8π(Tnn − 1
n−1gnnT ) to the null hypersurface N , t = 0, yields

−
[
(ln
√
µ), nn +

1

2
φ, t(ln

√
µ), n +

1

4
µacµbdµab, nµcd, n

]∣∣∣∣
t=0

= 8π

[∫
pnpnf

√
−g dp1dp2 · · · dpn

dp0
+

1

4π
µabFanFbn + ψ, nψ, n

]∣∣∣∣
t=0

.

(II.30)

Considering the above equation as an elliptic equation for − ln
√
µ on S1 and

applying the maximum principle, we obtain µ, n|t=0 = 0. Applying this result back

to the above equation, we get

8π

[∫
pnpnf

√
−g dp1dp2 · · · dpn

dp0
+

1

4π
µabFanFbn + ψ, nψ, n

]∣∣∣∣
t=0

+
1

4

[
µacµbdµab, nµcd, n

]∣∣
t=0

= 0.

(II.31)

Since each term is nonnegative, all the terms must be zero. It follows that

ψ, n|t=0 = 0, µab, n|t=0 = 0, Fna|t=0 = 0, f |t=0 = 0. (II.32)

Using (II.32), we get from F tβ
;β|t=0 = 4πJ t|t=0 = 0 the result

Fnt, n|t=0 = 0 . (II.33)

Combining (II.32), (II.33) with F[ab, n]|t=0 = 0, one obtains

Fab, n|t=0 = 0 . (II.34)
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We now restrict Rnb = 8π(Tnb − 1
n−1gnbT ) to N , t = 0, and we use the above

results to obtain

(φ, tb − βb, tn)|t=0 = 0. (II.35)

If we integrate (II.35) along the fiber, by periodicity, we derive

∂

∂xb

∫
φ,t|t=0dx

n = 0. (II.36)

Thus, we have ∫
φ,t|t=0dx

n = 2πk, (II.37)

for some constant k.

Next we construct new Gaussian null coordinates {t′, xn′
, xa

′} in a

neighborhood of the elementary region by the same argument in [20] (in our case,

the dimension is higher, but this does not introduce any difference), such that

φ′, t′|t′=0 = k in the elementary region without changing the results obtained so

far. To begin, assume there is a new coordinate system (xn
′
, xa

′
) of the elementary

region related to our old coordinates through the following transformation

xn
′
= h(xn, xa), xa

′
= xa. (II.38)

Construct coordinates (t′, xn
′
, xa

′
) on a neighborhood of the elementary region

by the same method that our old coordinates (t, xn, xa) on a neighborhood of the

elementary region is constructed. It follows that t = t′ = 0 on N .
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Write out the transformation equations and express φ′, t′|t′=0 in terms of φ,t|t=0

and h(xn, xa); we therefore derive the following Riccati equation for ∂h
∂xn

2
∂

∂xn
∂h

∂xn
+

∂h

∂xn
φ,t|t=0 −

(
∂h

∂xn

)2

φ′,t′|t′=0 = 0. (II.39)

Set φ′,t′|t′=0 = k and u = ∂h
∂xn

to obtain the following equation

∂u

∂xn
+

1

2
(φ,t|t=0)u−

k

2
u2 = 0. (II.40)

To find a solution to the above equation, we need to consider the non-degenerate

case (k 6= 0) and the degenerate case (k = 0) separately. First consider the non-

degenerate case. For simplicity, assume k > 0 (if k < 0, we can reduce it to the case

k > 0 by the change of Gaussian null coordinates: t → −t, xn → −xn, xa → xa)

and define the following analytic function

p(xn, xa) = exp

(
−1

2

∫ xn

0

dy(φ,t|t=0)(y, x
a)

)
. (II.41)

From (II.37), p(xn, xa) has the following property

p(xn + 2π, xa) = exp(−πk)p(xn, xa), (II.42)

where we consider φ,t|t=0(x
n, xa) as a periodic function of xn.

We claim that the following function

u(xn, xa) =
∂h

∂xn
= −2

k

∂

∂xn
ln

(∫ 2π

0
dy p(y, xa)

1− e−πk
−
∫ xn

0

dy p(y, xa)

)
(II.43)
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is an analytic, nowhere vanishing solution of (II.40). To show this, note that by

(II.42), the quantity

D(xn, xa) :=

∫ 2π

0
dy p(y, xa)

1− e−πk
−
∫ xn

0

dy p(y, xa), (II.44)

satisfies

D(xn + 2π, xa) = eπkD(xn, xa), xn ∈ R. (II.45)

Hence D(xn, xa) never vanishes. It is easy to verify that (II.43) satisfies (II.40) by

straightforward computation. Thus, it follows that (II.43) is an analytic, nowhere

vanishing solution of (II.40). Furthermore, (II.43) is periodic in xn and have the

integral property h(xn + 2π, xa) − h(xn, xa) = 2π. To verify, straightforward

computation using (II.42) and (II.45) gives us the results.

With the above analysis, we find that the transformation of coordinates

xn
′
= g(xa)− 2

k
lnD(xn, xa), xa

′
= xa, (II.46)

where g(xa) is an analytic function, gives us the desired new coordinates on a

neighborhood of the elementary region such that φ′,t′ |t′=0 = k in the elementary

region.

For the degenerate case (k = 0), solve (II.40) directly to obtain

u(xn, xa) =
2πp(xn, xa)∫ 2π

0
dy p(y, xa)

, (II.47)

where p(y, xa) is given by (II.41). It is easy to show that the above function is an

analytic, 2π-periodic, nowhere vanishing solution of (II.40) with k = 0 and has

the integral property that h(xn + 2π, xa) − h(xn, xa) = 2π. Thus, coordinate
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transformations of the form

xn
′
= g(xa) +

2π
∫ xn
0
dy p(y, xa)∫ 2π

0
dy p(y, xa)

, xa
′
= xa, (II.48)

with g(xa) an analytic function give us a new coordinate system on a neighborhood

of the elementary region such that φ′,t′ |t′=0 = 0 in the elementary region.

To keep notation clean, we remove the primes. With the new Gaussian null

coordinates, we have

φ, t|t=0 = k, βb, tn|t=0 = 0 , (II.49)

where k is a constant. Next, restrict the scalar field equation (II.11) to t = 0 and

make use of the results (II.32) and (II.49) to show that

[
2ψ, tn + µabψ, ab − φ, tψ, t − 2µabβb, tψ, a − µab(n−1)Γc abψ, c −

dV

dψ

]∣∣∣∣
t=0

= 0. (II.50)

Taking the derivative with respect to xn, we have

(2ψ, tnn − kψ, tn)|t=0 = 0. (II.51)

Applying the maximum principle yields

ψ, tn|t=0 = 0. (II.52)

Now combining F aβ
;β|t=0 = 4πJa|t=0 = 0 (since f(xµ, pi) = 0), F[an, t]|t=0 = 0

and taking the derivative with respect to xn, we have

(−φ, tFct, n + 2Fct, nn)|t=0 = 0. (II.53)
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By the maximum principle, we find

Fct, n|t=0 = 0. (II.54)

Taking the derivative of Rab|t=0 = 8π(Tab − 1
n−1gabT )|t=0 with respect to xn

gives

(−µab, tnn +
k

2
µab, tn)|t=0 = 0. (II.55)

Again it follows from the maximum principle that

µab, tn|t=0 = 0. (II.56)

Finally, restrict the Boltzmann-Vlasov equation (II.15) to t = 0 to derive

f, t|t=0 = 0. (II.57)

So far, we have obtained (II.32), (II.33), (II.34), (II.49), (II.52), (II.54),

(II.56), (II.57). To summarize, we list these results in the following

µab, n|t=0 = 0, φ, t|t=0 = k, βb, tn|t=0 = 0, µab, tn|t=0 = 0,

Fna|t=0 = 0, Fnt, n|t=0 = 0, Fab, n|t=0 = 0, Fct, n|t=0 = 0,

ψ, n|t=0 = 0, ψ, tn|t=0 = 0, f |t=0 = 0, f, t|t=0 = 0. (II.58)

We also have

φ|t=0 = βa|t=0 = 0. (II.59)
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Note that (II.15) and f |t=0 = f, t|t=0 = 0 imply that f vanishes identically.

Indeed, by taking the time derivative of (II.15) and restricting to t = 0 repeatedly,

one obtains ∂m

∂tm
f = 0, for m = 0, 1, 2, · · · . Thus the spacetime we consider does

not allow the existence of particles that are described by the Boltzmann-Vlasov

equation.

We show that ∂
∂xn

is a local Killing field by showing that any time derivative

of the metric coefficients and the fields is independent of xn at t = 0. To do this, we

proceed inductively. Assume that

(
∂kφ

∂tk

∣∣∣∣
t=0

)
, n

=

(
∂kβa
∂tk

∣∣∣∣
t=0

)
, n

=

(
∂kµab
∂tk

∣∣∣∣
t=0

)
, n

=

(
∂kψ

∂tk

∣∣∣∣
t=0

)
, n

=

(
∂k−1Fµν
∂tk−1

∣∣∣∣
t=0

)
, n

= 0, 0 ≤ k ≤ m. (II.60)

Differentiating Rtn = 8π(Ttn − 1
n−1gtnT ), m − 1 times with respect to t and restrict

to t = 0, we get

[
1

2

∂m+1

∂tm+1
βb −

1

2
βa

∂m+1

∂tm+1
µab + {terms independent of xn}

]
t=0

= 0. (II.61)

Then taking the derivative with respect to xn, we obtain

(
∂m+1βa
∂tm+1

∣∣∣∣
t=0

)
, n

= 0 (II.62)

Similarly, by differentiating Rta = 8π(Tta − 1
n−1gtaT ), m − 1 times with respect to t

and setting t = 0, we get

[
1

2

∂m+1

∂tm+1
φ− 1

2
βa

∂m+1

∂tm+1
βa + {terms independent of xn}

]
t=0

= 0. (II.63)
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And taking the derivative with respect to xn gives us

(
∂m+1φ

∂tm+1

∣∣∣∣
t=0

)
, n

= 0 (II.64)

Now differentiate F[ab, t] = 0, F[an, t] = 0 and F nβ
;β = 0, m − 1 times with

respect to t and set t = 0 to show

(
∂mFab
∂tm

∣∣∣∣
t=0

)
, n

=

(
∂mFan
∂tm

∣∣∣∣
t=0

)
, n

=

(
∂mFtn
∂tm

∣∣∣∣
t=0

)
, n

= 0. (II.65)

Next, differentiating Rab = 8π(Tab − 1
n−1gabT ), F aβ

;β = 0 and the scalar field

equation (II.11) m times with respect to t and restricting to t = 0, we get

−
(
∂m+1

∂tm+1
µab

∣∣∣∣
t=0

)
, nn

+
k

2

(
∂m+1

∂tm+1
µab

∣∣∣∣
t=0

)
, n

= 0,

(II.66)(
∂m

∂tm
Fat

∣∣∣∣
t=0

)
, n

+
m+ 1

2
k
∂m+1

∂tm+1
µab

∣∣∣∣
t=0

+ {terms independent of xn} = 0,

(II.67)

2

(
∂m+1ψ

∂tm+1

∣∣∣∣
t=0

)
, n

+ (mgtt , t − gµνΓt µν)|t=0
∂m+1ψ

∂tm+1

∣∣∣∣
t=0

+ {terms independent of xn} = 0.

(II.68)

If we differentiate (II.67) and (II.68) with respect to xn and apply the maximum

principle to the resultant equations and (II.66), we derive

(
∂m+1µab
∂tm+1

∣∣∣∣
t=0

)
, n

=

(
∂mFat
∂tm

∣∣∣∣
t=0

)
, n

=

(
∂m+1ψ

∂tm+1

∣∣∣∣
t=0

)
, n

= 0. (II.69)
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Thus (II.60) holds for k up to m + 1, which completes the inductive

arguments. It follows from analyticity that ∂
∂xn

is a local Killing field in a

neighborhood of the corresponding elementary region.

Global Arguments

We have constructed a Killing vector field in a neighborhood of an elementary

region. Since the null hypersurface N is compact, it can be covered by finitely

many such elementary regions. For each elementary region, we can construct a

Killing field in a neighborhood of the corresponding elementary region. We want to

construct a Killing vector field in a neighborhood of the whole null hypersurface N .

To do this, we only need to show that if two elementary regions have an overlap,

then the two corresponding Killing fields coincide in a neighborhood of the overlap.

Assume that K = ∂
∂xn

and K̃ = ∂
∂x̃n

are two Killing fields constructed

in the neighborhoods of two elementary regions which have an overlap N∩ in N .

Suppose that {t, xn, xa} and {t̃, x̃n, x̃a} are the Gaussian null coordinates defined

in neighborhoods of the two elementary regions. By construction, φ, t|t=0 = k and

φ̃, t̃|t̃=0 = k̃ for some constants k and k̃. Without loss of generality, assume that

∂x̃n

∂xn

∣∣
N∩

> 0.

Let γ(λ) be an affine null geodesic in N∩. Then t ◦ γ(λ) = t̃ ◦ γ(λ) = 0,

xa ◦ γ(λ) =constant, x̃a ◦ γ(λ) =constant, and we have

0 =
d2xn

dλ2
− k

2

(
dxn

dλ

)2

=
d2x̃n

dλ2
− k̃

2

(
dx̃n

dλ

)2

. (II.70)
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First consider the nondegenerate case for which k 6= 0, k̃ 6= 0. The solutions are

xn(λ) = xn(0)− 2

k
ln

[
1− k

2
λ
dxn(0)

dλ

]
,

x̃n(λ) = x̃n(0)− 2

k̃
ln

[
1− k̃

2
λ
dx̃n(0)

dλ

]
.

(II.71)

The initial values satisfy

dx̃n(0)

dλ
=
∂x̃n

∂xn
(xµ(0))

dxn(0)

dλ
. (II.72)

Assume dx̃n(0)
dλ

> 0 and let λm be the value of λ after m full cycles so that

xn(λm) = xn(0) + 2πm,

x̃n(λm) = x̃n(0) + 2πm.

(II.73)

Combining (II.71) and (II.73), we have

1− k

2
λm

dxn(0)

dλ
= e−mπk,

1− k̃

2
λm

dx̃n(0)

dλ
= e−mπk̃.

(II.74)

From (II.72), we obtain for n 6= 0,

∂x̃n

∂xn
(xµ(0)) =

k(1− e−mπk̃)
k̃(1− e−mπk)

. (II.75)

Since the left hand side does not depend on m and the right hand side does not

depend on xµ(0), equality holds only if k = k̃ and ∂x̃n

∂xn

∣∣
N∩

= 1. Thus we have

∂

∂xn

∣∣∣∣
N∩

=

(
∂x̃α

∂xn
∂

∂x̃α

)∣∣∣∣
N∩

=
∂

∂x̃n

∣∣∣∣
N∩

. (II.76)
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which establishes K|N∩ = K̃|N∩ . An analogous argument applies in the degenerate

case k̃ = k = 0.

K and K̃ are both Killing fields in a neighborhood of N∩ and coincide on N∩.

It follows that X = K− K̃ is a Killing field in a neighborhood of N∩ which vanishes

on N∩. By the Killing equation

Xµ, t +Xt, µ − 2(n+1)Γν µtXν = 0, (II.77)

X vanishes through its domain of definition. Thus K = K̃. Therefore, we have

proved that K is a Killing field in a neighborhood of the entire compact null

hypersurface N .

Theorem II.1. Every analytic electro-scalar-vacuum spacetime ((n+1)V , g) of

dimension n + 1 ≥ 4 containing a compact null hypersurface N ruled by closed

null geodesic geodesics with the structure of a local product bundle has an analytic

Killing field K in a neighborhood of N in (n+1)V , and K has closed integral curves

in this neighborhood. K|N is null and tangent to the geodesics of N . Furthermore

such a spacetime does not allow the existence of particles that can be described by

Boltzmann-Vlasov equation in this neighborhood of the null hypersurface N .

II.4. Conclusion

Now we have obtained the conclusion that a very large class of spacetimes

containing a cosmological Cauchy horizon must have a nontrivial Killing symmetry

in a neighborhood of the cosmological Cauchy horizon. To prove the Strong Cosmic

Censorship, one still need to prove a Killing symmetry for any cosmological Cauchy

horizon that is generated by non-closed null geodesics.
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Theorem II.1 contains the restrictive analyticity condition. In the next

chapter we discuss why the analyticity condition is not desired and how it can be

removed.
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CHAPTER III

SYMMETRY WITHOUT ANALYTICITY

Analyticity is not a desired condition to be imposed. In mathematics,

analytic functions are the most regular functions. In physical applications, some

functions used by physicists are much less regular, such as the Dirac delta function.

Furthermore, physical measurements always introduce some errors. The more

important reason is that the unique continuation property of analytic functions

is not physical. For an analytic function, the value in an open subset determines

not only the value of the function in the domain of dependence, but also the value

of the function in the regions that are not causally connected. Hence analytic

functions should not be used to describe a spacetime. Any theorems of general

relativity expecting to have some physical applications should not contain the

analyticity condition.

Hawking’s local rigidity theorem of black hole spacetimes is proven in a

small neighborhood of the bifurcate sphere without the analyticity condition

in a paper [30] by S. Alexakis, A. Ionescu and S. Klainerman. We realize that

together with the results of [20], [21] and that of [29], we can actually remove the

analyticity condition in the theorem of symmetries of compact Cauchy horizons

with closed orbits by a simple argument. Thus, we obtain a Killing symmetry in a

neighborhood of a compact Cauchy horizon with closed null geodesics without the

analyticity assumption.

This chapter includes the work completed by me under the supervision of

James Isenberg. The result is probably going to be published and coauthored by

James Isenberg. I made primary contribution to the work.
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III.1. Preliminaries

We consider a smooth vacuum spacetime (M4, gab). We assume M has a

compact null hypersurface N0 which has closed null geodesics. For simplicity, we

assume N0 has a local product bundle structure1. That is, for each closed null

geodesic γ of N0, there exits a neighborhood Nγ of γ in N0 such that

1. Nγ is diffeomorphic to Bγ × S1 for some 2-manifold Bγ and some

diffeomorphism φγ.

2. There exists a smooth surjective map πγ : Bγ × S1 → Bγ, such that for any

p ∈ Bγ, Bγ × S1 ≈ Bγ × π−1γ (p) and the fiber π−1γ (p) is diffeomorphic to a

closed null geodesic in Nγ via φ−1γ .

We shall call the class of spacetimes described above Isenberg-Moncrief

spacetimes. Choose a tubular spacetime neighborhood Uγ of Nγ with topology

Bγ × R × S1. Let Oγ denote the universal covering space of Uγ and let ψγ :

Oγ → Uγ ⊂ M be the projection map. Let Ñγ = ψ−1γ (Nγ). We call (Oγ, ψ∗γgab)

an elementary spacetime region.

III.2. Theorems

We present here the theorems from [20], [21], [29] and [30] that are needed

for our conclusion. The first theorem needed is proved in [20]. In [29] the same

theorem is stated in a slightly different way. The following theorem corresponds to

Theorem 3.1 in [29].

1For N0 having exceptional orbits, we can consider its covering space which is of the above
type. See [21, 29].
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Theorem III.1 (Moncrief and Isenberg). Let (M, gab) be a smooth Isenberg-

Moncrief spacetime and let (Oγ, ψ∗γgab) be an elementary spacetime region. Then

there exists an Eddington-Finkelstein-type coordinate system (also called Gaussian

null coordinates in [20, 29]) (u, r, x3, x4) covering a neighborhood O′γ of Ñγ in Oγ

such that

1) the range of u is (−∞,∞) whereas the coordinate range of r is (−ε, ε) for

some ε > 0, with the surface r = 0 being Ñγ.

2) In O′γ, the projection map ψγ : Oγ → Uγ is obtained by periodically

identifying the coordinate u with some period P ∈ R. Thus the components of ψ∗γgab

in these coordinates are periodic functions of u with period P .

3) Writing gab instead of ψ∗γgab for convenience, we have

g = −r · fdu2 + 2drdu+ 2r · hAdudxA + gABdx
AdxB, (III.1)

where gAB are smooth functions of u, r, x3, x4 in O′γ such that gABdx
AdxB is a

Riemannian metric, and where

f |Ñγ = −2κ0, κ0 ∈ R. (III.2)

4) On Ñγ, the r-derivatives of the metric components up to any order are

u-independent; i.e.

∂

∂u

[
∂n

∂rn
{f, hA, gAB}

]∣∣∣∣
Ñγ

= 0, (III.3)

for all n ∈ N ∪ {0}.

Remark III.1. In [20], analyticity is assumed. Given that assumption, the above

theorem immediately implies that k = ∂/∂u is a Killing field in a neighborhood
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of Ñγ. Since the projection map ψγ is obtained by periodically identifying the

coordinate u, it follows that k projects to a Killing field in a neighborhood of Nγ.

Remark III.2. If the constant κ0 vanishes, then the corresponding null geodesics of

the null hypersurface are complete in both direction. We call the Isenberg-Moncrief

spacetimes with κ0 = 0 degenerate. On the other hand, if κ0 6= 0, then the null

geodesics are incomplete in one direction and complete in the other direction. We

call the Isenberg-Moncrief spacetimes with κ0 6= 0 non-degenerate. For a non-

degenerate Isenberg-Moncrief spacetime, we can always assume κ0 > 0, since

otherwise, the coordinate transformation t → −t, xn → −xn, xa → xa gives

us a positive κ0. In the rest of this chapter, we shall only consider non-degenerate

Isenberg-Moncrief spacetimes.

The next theorem we need corresponds to Proposition 4.1 in [29]:

Theorem III.2 (Friedrich, Rácz and Wald). Let (Oγ, gab|Oγ ) be an elementary

spacetime region associated with a smooth Isenberg-Moncrief spacetime with κ0 > 0.

Then, there exists an open neighborhood O′′γ of Ñγ in Oγ such that (O′′γ , gab|O′′
γ
) can

be extended to a smooth vacuum spacetime (O∗, g∗ab) that possesses a bifurcate null

hypersurface N∗γ – i.e., N∗γ is the union of two null hypersurfaces, N∗γ1 and N∗γ2,

which intersect on a 2-dimensional spacelike surface S – such that Ñγ corresponds

to the portion of N∗γ that lies to the future of S and I+[S] = O′′γ ∩ I+[Ñγ].

Furthermore, the expansion and shear of both N∗γ1 and N∗γ2 vanish.

Before presenting the last theorem, we introduce some notation. Let S be a

smooth spacelike 2-manifold embedded in a smooth vacuum spacetime. Let N1, N2

be the null boundaries of the causal set of S (the union of the future and past sets
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of S). Fix Ø to be a small neighborhood of S such that both N1, N2 are regular,

achronal, null hypersurfaces in Ø spanned by null geodesics orthogonal to S. We

call (S,N1, N2) a local, regular, bifurcate, non-expanding horizon in Ø if both N1

and N2 are expansion free and shear free.

Now we define Kruskal-type coordinates in Ø. Fix a smooth future-directed

null pair (L1, L2) along S, satisfying

g(L1, L1) = g(L2, L2) = 0, g(L1, L2) = −1. (III.4)

such that L1 is tangent to N1 and L2 is tangent to N2. In a small neighborhood

of S, we extend L1 (resp. L2) along the null geodesics of N1 (resp. N2) by parallel

transport; i.e. ∇L1L1 = 0 (resp. ∇L2L2 = 0). We define the function U (resp.

V ) along N1 (resp. N2) by setting U = V = 0 on S and solving L1(U) = 1

(resp. L2(V ) = 1). Let SU (resp. SV ) be the level surfaces of U (resp. V ) along

N1 (resp. N2). We define L2 at every point of N1 (resp. L1 at every point of N2) as

the unique, future directed null vector-field orthogonal to the surface SU (resp. SV )

passing through that point and such that g(L1, L2) = −1. We now define the null

hypersurface NU to be the congruence of null geodesics initiating on SU ⊂ N1 in

the direction of L2. Similarly we define NV to be the congruence of null geodesics

initiating on SV ⊂ N2 in the direction of L1. Both congruences are well defined in

a sufficiently small neighborhood of S in Ø, which we continue to call Ø. The null

hypersurfaces NU (resp. NV ) are the level sets of a function U (resp V ) vanishing

on N2 (resp. N1). By construction

L1 = −gab∂aV ∂b, L2 = −gab∂aU∂b. (III.5)
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The following theorem corresponds to Theorem 1.1 in [30].

Theorem III.3 (Alexakis, Ionescu and Klainerman). Given a local, regular,

bifurcate, non-expanding horizon (S,N1, N2) in a smooth vacuum spacetime (O, g),

where S is a 2-sphere, there exist an open neighborhood O′ ⊂ O of S and a non-

trivial Killing vector field K in O′, which is tangent to the null geodesics of N1

and N2. In other words, every local, regular, bifurcate, non-expanding horizon is a

Killing bifurcate horizon.

Remark III.3. In Theorem III.3, S is assumed to be a 2-sphere. The proof is carried

out by first proving the conclusion for a neighborhood S ′(x) of x in S and then

using the compactness of S to obtain the result. We shall only need the result on

a neighborhood S ′(x) of a given point x in S in proving our conclusion. Hence we

present below a weaker version of Theorem III.3 which will be applied to prove our

main result of this chapter.

Theorem III.4. Assume (S,N1, N2) is a local, regular, bifurcate, non-expanding

horizon in a smooth, vacuum spacetime (O, g), where S is a 2-manifold of any

topology. Given a point x in S, there exist a neighborhood S ′ of x in S, a spacetime

neighborhood O′ ⊂ O of S ′ and a non-trivial Killing vector field K in O′, such that

K is tangent to the null geodesics of N1 and N2.

We present here the main ideas used in constructing the Killing field K. For

details, See [30].

Step 1 Define a smooth vector field K in the domain of dependence of N1 ∪N2 by

solving the following characteristic initial value problem,

�gK = 0, K = UL1 − V L2 on (N1 ∪N2) ∩Ø. (III.6)
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Due to the well-posedness of the characteristic initial value problem in the

domain of dependence [12], K is well-defined and smooth in the domain of

dependence of N1 ∪N2 in Ø.

Step 2 Show that πab = ∇aKb + ∇bKa vanishes in the domain of dependence of

N1 ∪N2 in Ø, by using the following characteristic initial value problem in the

domain of dependence

�gπab = 2Rc
ab
dπcd, (III.7)

and by showing that πab vanishes initially on (N1 ∪N2) ∩ Ø. The Killing field

K obtained has the property that [L2, K] = −L2.

Step 3 Define a vector field K ′ in Ø\D(S) by solving the ODE

[L2, K
′] = −L2, K ′ = UL1 on N1 ∩Ø. (III.8)

Let K denote the extended vector field.

Step 4 Let g′ = Ψ∗t (g) for some small t, where Ψt is the flow generated by K. By

construction, we have ∇′L2
L2 = 0 in a small neighborhood of S. Now consider

Proposition 4.3 of [30], which asserts the following:

Proposition III.1. Assume that g′ is a smooth Lorentzian metric on Ø, such

that (Ø, g′) is a smooth vacuum spacetime. Assume that

g′ = g in Ø\D(S) and ∇′L2
L2 = 0 in Ø.

Then g′ = g in a small neighborhood Ø′ ⊂ Ø of S.
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From this proposition, it follows that K is a Killing field in a small

neighborhood Ø′ ⊂ Ø of S.

The proof of Proposition III.1 requires a Carleman estimate obtained by two of the

authors of [30] in a previous paper [32]. Since it is much more complicated, we do

not present it here.

III.3. Main Result

Corollary III.1. Every smooth non-degenerate Isenberg-Moncrief spacetime

(M4, g) with a null hypersurface N0 has a smooth Killing field K defined on some

neighborhood of N0 in M , and K has closed integral curves in this neighborhood.

Furthermore, K|N0 is null and thus tangent to the null geodesics of N0.

Proof. Let Oγ denote the elementary spacetime region obtained by “unwrapping”

a neighborhood of Nγ. It is shown in [20] that from the non-degeneracy the

geodesic γ is incomplete in one direction and complete in the other. Without loss

of generality, we assume that γ is past incomplete, so consequently we have κ0 > 0.

Then from Theorem III.2, (Oγ, g) can be extended to a smooth vacuum spacetime

(O∗γ, g∗ab) that possesses a bifurcate null hypersurface N∗γ , such that Ñγ corresponds

to the portion of N∗γ that lies to the future of S and I+[S] = O∗γ ∩ I+[Ñγ]. As well

the expansion and shear of both N∗γ1 and N∗γ2 vanish.

Choose an arbitrary point x ∈ S. By Theorem III.4, there exist a

neighborhood S ′ of x in S and a smooth Killing vector field K in a small spacetime

neighborhood of S ′. Instead of considering the extended spacetime (O∗γ, g∗ab)

associated with S, we restrict to the extended spacetime associated with S ′. To

keep notation easy to read, we still denote the extended spacetime associated with

S ′ by (O∗γ, g∗ab) and remove the prime of S ′. Thus there is a smooth Killing vector
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field K in a small neighborhood {p ∈ O∗γ : |U(p)| < ε, |V (p)| < ε} of S. By

restricting to Oγ, we have a Killing field K in {p ∈ Oγ : |U(p)| < ε, |V (p)| < ε} =

{p ∈ Oγ : 0 < U(p) < ε, |V (p)| < ε}. Both K and k = ∂/∂u are tangent to the null

geodesics of Ñγ, so we have K = φk on Ñγ for some function φ. Notice that on Ñγ,

we have LKg = 0 and Lkg = 0. It follows that ∇aφ = 0. We may rescale u so that

K = k on Ñγ. Since the construction of k = ∂/∂u is the same as that of a Killing

field, it follows that K = k on their common domain of definition. Thus K = k is a

Killing field in {p ∈ Oγ : 0 < U(p) < ε, |V (p)| < ε}.

Near Ñγ, K has the form

K = U(1 + V f)
∂

∂U
− V (1 + Ug)

∂

∂V
+ UV hiei , (III.9)

where f , g and hi, i = {1, 2}, are functions. Along each integral curve of K = k =

∂/∂u on or near Ñγ, we have

dU

du
= U(1 + V f),

dV

du
= −V (1 + Ug). (III.10)

It follows that

dU

U
= (1 + V f)du,

d(UV )

UV
+ (g dU + f dV ) = 0. (III.11)

Thus, we have

u = (1 + o(ε)) lnU + u1, UV = δ(1 + o(ε)), (III.12)

where δ is a small constant. As U varies from (δ/ε)(1 + o(ε)) to ε, u varies from

[1+o(ε)] ln(δ/ε)+u1+o(ε) to [1+o(ε)] ln ε+u1. Thus if we choose |δ| < ε2 exp(−P +

o(ε)), u varies through a full period P . Since (Oγ, g) is periodic in u, k = ∂/∂u is
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a Killing field in a full neighborhood of Ñγ. The projection map ψγ then projects k

to a well-defined Killing field in full neighborhood of Nγ.

Since N0 is compact, it can be covered by finitely many elementary spacetime

regions Uγi . It then remains to show the Killing fields kγi coincide on their overlap

of domain of definition, which is easy to show.

III.4. Conclusion

Recently, P. Yu generalized [30] to the charged case [33]. We expect that

analyticity can be removed for electrovacuum spacetimes also along with the results

for electrovacuum spacetimes in [29, 20]. Our argument can also be applied to

stationary black hole spacetimes of class (A) in [29], which can be compactified

to a cosmological spacetime of this paper according to Proposition 3.1 of [29]. Thus

Hawking’s local rigidity theorem can be proved to hold in spacetimes of class (A)

without analyticity.
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CHAPTER IV

GLOBAL STABILITY

The well-posedness of the Einstein vacuum equations, the Einstein-Maxwell

equations, and other related field equation systems has been established for

many years [10, 34]. Specifically, it is known that for any given set of initial data

satisfying the constraint equations, there exists a unique solution to the Einstein

(or Einstein-Maxwell, etc.) equations for some amount of time to the future. Well-

posedness also establishes that small perturbations to an initial data set only lead

to small changes to the corresponding solution in finite time, and that if those

changes to the data are confined to a subset of the initial hypersurface then the

changes in the solution occur strictly in the domain of dependence of that subset.

However, well-posedness gives no information about global-in-time behavior of the

development.

One way to formulate this issue for Einstein’s and other relativistic equations

is in terms of global future causal stability (“GFC-stability”) which addresses the

following question: Given a particular set of initial data for which the maximal

Cauchy development (MCD) is future causally geodesically complete, if one

makes small perturbations to that initial data set, is the resulting MCD also

future causally geodesically complete? Note that while the property of well-

posedness generally characterizes a PDE system together with all (or none) of its

solutions, GFC-stability pertains to a particular solution or family of solutions of

the system. Note also that GFC-stability concerns the full nonlinear PDE system

(Einstein, Einstein-scalar, etc.), not a linearization of the system, and in referring

to “perturbations to the initial data set”, we mean new data sets suitably near the
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original given set of initial data (which, for convenience here, we will refer to as the

“background” data set).

Global stability (GFC-stability or other related varieties) has been studied

extensively for Einstein’s theory, but has been established for only a very small

number of solutions: The epic work of Christodoulou and Klainerman [23] (see also

the later generalizations and simplifications in [25, 24]) proves the global stability

of Minkowski spacetime for the vacuum and Einstein-Maxwell equations, while that

of Friedrich [22] shows that the DeSitter spacetime is globally stable for Einstein’s

equations with a cosmological constant. More recently, Andersson and Moncrief [26]

have proven that the Milne spacetimes are globally stable solutions of the vacuum

equations.

One feature of the DeSitter and the Milne solutions which makes it a bit

easier to establish global stability for them is the fact that they are expanding

solutions. In a rough sense, this property acts to inhibit the concentration of

curvature, so that perturbations do not tend to lead to singularity forming. Hence

in searching for solutions expected to be globally stable, one is led to consider

expanding solutions.

Motivated both by this consideration and by the recent astrophysical evidence

[35] that our universe is likely expanding at an accelerated rate, Ringström has

very recently shown that certain solutions of the Einstein-scalar field equations

with accelerating expansion are GFC-stable. He does this for both exponentially

expanding background solutions with fairly general scalar field potential functions

V (φ) [27], and for power law expanding background solutions with a certain set of

exponentially-decaying scalar potential functions [28].
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In this work, we show that the power law expanding solutions considered by

Ringström in [28] are globally stable with respect to the Einstein-Maxwell -scalar

field equations. By choosing the electromagnetic fields to vanish, we may consider

Ringström’s solutions from [28] to be solutions of the Einstein-Maxwell-scalar

system. To prove stability of these background solutions in the larger PDE system

of course requires us to allow the perturbation solutions to include non vanishing

electromagnetic fields. This paper shows that this can be done, and that GFC-

stability holds.

A key feature of background solutions with accelerated expansion is that

the analysis can be strongly localized. This is because the entire future of a small

subset in the initial hypersurface is determined completely by the initial data on

a small neighborhood of that subset. Effectively then, the topology of the Cauchy

slices of the background solutions being tested for stability and of the perturbed

solutions is irrelevant.

The general structure of our proof is very similar to that of [28]: i) localizing

the analysis to the development of data sets on open sets in the initial Cauchy slice,

with the formal extension of such local data sets to spatial tori; ii) establishing the

well-posedness of the Cauchy problem for the field perturbations relative to the

background solutions (with appropriate handling of the gauge choice); iii) defining

energy-type functionals for the perturbation fields and their derivatives, and (with

the help of bootstrap assumptions) proving monotonicity estimates for them; iv)

using the energy estimates together with bootstrap arguments to prove long time

existence, regularity, and global estimates for the MCDs of the perturbed initial

data; v) using the global estimates to analyze the dynamics of causal paths in the

perturbed spacetimes, and thereby verifying future causal completeness. The theme
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of this paper is showing that all of these steps work for the Einstein-Maxwell-scalar

field equations (with exponentially-decaying scalar field potentials).

This chapter includes the work completed by me under the supervision of

James Isenberg. The result is going to be published and coauthored by James

Isenberg. I made primary contribution to the work.

IV.1. Introduction

Field Equations and Background Solutions

Before stating our main results and then proceeding to prove them, we

wish to set up the field equations for the parametrized set of Einstein-Maxwell-

scalar field theories which we work with here, and we wish to also state what the

background solutions are, explicitly.

The field variables for the Einstein-Maxwell-scalar field theories include the

spacetime metric g, the electromagnetic vector potential A, and the scalar field φ.

Letting Rµν and R denote the Ricci tensor and the scalar curvature for g, letting

F denote the electromagnetic tensor for A, and choosing the scalar field potential

to take the form V (φ) = V0e
−λφ (for constants V0 and λ), we can write the field

equations for this theory (for n+ 1 dimensional spacetimes) in the following (index)

form:

Rµν −
1

2
Rgµν = Tµν , (IV.1)

∇µ∇µφ− V ′(φ) = 0, (IV.2)

∇µFµν = 0. (IV.3)
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Here the stress-energy tensor for this system is given by

Tµν = ∂µφ∂νφ− gµν(
1

2
gρσ∂ρφ∂σφ+ V (φ)) + (FµσFν

σ − 1

4
gµνFρσF

ρσ), (IV.4)

and V ′(φ) = −λV (φ). Note that (IV.1) can be rewritten as

Rµν = ∂µφ∂νφ+
2

n− 1
V (φ)gµν + FµσFν

σ − 1

2(n− 1)
gµνFρσF

ρσ. (IV.5)

Note also that three parameters characterize these systems of field equations: the

spatial dimension n ≥ 3, the scalar potential scale V0 > 0 and the scalar potential

decay λ > 0; hence for convenience, we shall denote a particular choice of these

theories by “Einstein-Maxwell-scalar{n,V0,λ}”. Finally, note that the form of the field

equations (IV.1)-(IV.4) is consistent with the assumption here that the scalar fields

are not charged, and so the interaction between the electromagnetic and the scalar

fields is indirect (through the gravitational fields).

We now wish to specify the background fields (ĝ, φ̂, Â), which i) are solutions

of the system (IV.1)-(IV.4), ii) have accelerating expansion, and iii) (as we shall

show) are GFC-stable. The fields are defined on the manifold Mn+1 = Tn × R+,

on which we choose the time coordinate t > 0 and the global periodic spatial

coordinates xi. If we now choose the constant parameters t0 > 0, p > 1, c0, and

κ, we write the following:
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ĝ = −dt2 + e2κ(t/t0)
2pδijdx

idxj, (IV.6)

φ̂ =
2

λ
ln t− c0

λ
, (IV.7)

Âµ = 0. (IV.8)

These fields do not generally satisfy the field equations (IV.1)-(IV.3).

However, if we require the field equation parameters {n, V0, λ} and the field

parameters {t0, p, c0, κ} to satisfy the constraining relations

λ =
2

[(n− 1)p]1/2
, (IV.9)

c0 = ln

[
(n− 1)(np− 1)p

2V0

]
, (IV.10)

then indeed the fields (ĝ, φ̂, Â) do constitute a solution. Note that for a fixed

spatial dimension n, (IV.9) expresses a one-to-one correspondence between the

solution coefficient of expansion p, and the scalar potential exponent λ. So in effect,

once one fixes the three field equation parameters {n, V0, λ}, there remains a two

parameter family of these background solutions. Note also that these solutions

are identical to those appearing in [28], with the simple addition of the condition

(IV.8). For convenience, we shall denote by “(ĝ, φ̂, Â){t0,p,c0,κ}” a particular choice of

the background solution to the Einstein-Maxwell-scalar{n,V0,λ} field theory; in using

this notation, we presume that the conditions (IV.9)-(IV.10) hold.

One of the key properties of any of the background spacetimes (Tn ×

R+, ĝ){t0,p,c0,κ} corresponding to the solutions (IV.6)-(IV.8) is the accelerated

expansion they exhibit, and the somewhat peculiar causal structure which
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consequently characterizes them. In particular, one finds that if one fixes a time t0

and the corresponding Cauchy slice Tn
t0

in a background spacetime with expansion

parameter p, and if for any point q ∈ Tn
t0

one considers a pair of coordinate balls

B`0(q) and B3`0(q) in Tn
t0

for the characteristic length `0 := t0
p−1 , then the causal

future of B`0(q) is contained in the future domain of dependence of B3`0(q); in

terms of standard notation (see, e.g., Wald [36]), one has

J+[B`(t0)(q)× {t0}] ⊆ D+[B3`(t0)(q)]× {t0}]. (IV.11)

The basis for this result is the fact that, if one considers any future causal

path with starting point (q, t0) on the t0 Cauchy surface Tn
t0

, and if one calculates

the projected spatial distance (relative to the induced metric) that the path can

stray from q on Tn
t0

, a straightforward calculation1 (see also [28]) shows that it is

bounded from above by `0. Hence no causal path starting inside B`0(q) can reach

a spacetime point for which there are inextendible past directed paths which avoid

B3`0(q); the result follows.

Relying on this result, we can spatially localize the study of the GFC-stability

of our background spacetimes, since in analyzing the future causal behavior of

the spacetime evolved from perturbed data in B`0(q), we need not consider the

influence of the development of any data outside of B3`0(q). Note that there is a

small simplification of the proof of our results below if we work with an exterior

ball of radius 4`0 rather than 3`0. Also, it is convenient to rescale the spatial metric

in our background solutions by choosing the constant κ = ln[4`(t0)]. Doing this, we

1It follows from the expression (IV.6) for the metric that any causal path γ(s) satisfies the
condition −(γ̇t)2 + e2κ( tt0 )2pδij γ̇

iγ̇j ≤ 0, which can be rewritten as e2κ( tt0 )2pγ̇iγ̇j ≤ ( t0t )2p(γ̇t)2.

One then calculates the projected displacement as
∫ s1
s0

[e2κ( tt0 )2pγ̇iγ̇j ]1/2ds ≤
∫ t1
t0

( t0t )pdt =
tp0

1−p t
1−p|t1t0 ≤ `0.
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have the slightly simpler causal condition J+[B 1
4
(q) × {t0}] ⊆ D+[B1(q)] × {t0}],

which we can exploit in stating and proving our results here.

Initial Value Formulation of the Field Equations

The statement of our results, as well as the proof, rely strongly on a

formulation of the field equations (IV.1)-(IV.4) as an initial value problem. The

standard n + 1 ADM-type initial value formulation is as follows: The initial data

consist of a choice of (i) a spatial manifold Σn, (ii) a Riemannian metric hab and

a symmetric tensor Kcd on Σn which together comprise the gravitational initial

data, (iii) a pair of scalar fields ϕ and π on Σn which provide initial data for the

scalar field, and (iv) a two-form B and one-form E on Σn which make up the

electromagnetic initial data. The initial data set (Σn, h,K, ϕ, π,B,E) satisfies the

Einstein-Maxwell-scalar constraint equations (consisting of certain components of

the field equations (IV.1)-(IV.4)) if the following hold 2

R−KijK
ij + (trK)2 = π2 +∇iϕ∇iϕ+ 2V (ϕ) + (EjE

j +
1

2
BijB

ij), (IV.12)

∇jKji −∇i(trK) = ϕ∇iϕ+ EjB
j
i , (IV.13)

∇iE
i = 0, (IV.14)

Here ∇ is the Levi-Civita connection of h, R is its scalar curvature, and the indices

are raised and lowered using h.

Note that if we choose one of the natural t = const. Cauchy surfaces (say,

t = t1) of the background solution (ĝ, φ̂, Â){t0,p,c0,κ}, then the initial data on this

2Here and throughout the paper, Latin indices run from 1 to n (space only) while Greek
indices run from 0 to n (space plus time)
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Cauchy surface is ĥ = e2κ(t1/t0)
2pδijdx

idxj, K̂ = −pe2κ(t1/t0)2p−1δijdxidxj, ϕ̂ =

2
λ

ln t1 − c0
λ
, π = 2

λ
1
t1
, B̂ = 0, and Ê = 0.

Given a choice of initial data satisfying the constraint equations, one seeks

a Cauchy development of the data, which is a set (Mn+1, g, φ, A) such that the

following hold true: (a) (Mn+1, g) is a globally hyperbolic spacetime, with Mn+1

diffeomorphic to Σn ×R+; (b) (Mn+1, g, φ, A) satisfies the Einstein-Maxwell-scalar

field equations (IV.1)-(IV.4); (c) there exists an embedding i : Σn → Mn+1

such that i(Σn) is a Cauchy hypersurface for (Mn+1, g), with first and second

fundamental forms h and K, with φ ◦ i = ϕ and ∇e⊥φ ◦ i = π (for e⊥ the future-

directed unit normal vector field on i(Σn)), and with B = i∗F and E = i∗F (e⊥, ) for

F = dA.

With small modifications (to generalize from the vacuum Einstein equations

to the Einstein-Maxwell-scalar field equations), the well-known results of Choquet-

Bruhat [10] (see also [34]) and of Choquet-Bruhat and Geroch [11] guarantee that

for any smooth set of initial data satisfying the constraint equations (IV.12)-(IV.14)

there exists a Cauchy development; moreover, for such data there exists a maximal

Cauchy development (MCD) unique up to isometry, which is maximal in the sense

of containment (with appropriate isometry map). The existence and uniqueness

of MCDs plays a crucial role in the statement of our results, and in the proof of

GFC-stability.

While it is useful to state our main theorem (below) in terms of initial data

sets of the form (Σn, h,K, ϕ, π,B,E), in carrying out the proof of our results we are

led to work with modified specifications of initial data sets, which include quantities

such as g0i and 1 + g00. Inclusion of these quantities is closely tied with the need to

control gauges in the analysis, as we see below.
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Main Results

The standard idea of a stability theorem is that one fixes a solution of the

field equations, noting certain important properties of the solution, one considers

certain classes of perturbations of the solution, and one shows that the properties

of interest remain true for the perturbed solutions. As a consequence of the

localized character of the causal structure of the expanding solutions under study

here, following [28] we state our main theorems here in a slightly different way

(which effectively leads to slightly stronger results). We consider sets of initial

data (Σn, h,K, ϕ, π,B,E) for an Einstein-Maxwell-scalar{n,V0,λ} field theory

which in local regions are small perturbations of local initial data for one of our

background solutions, and proceed to prove that the future development of the

data restricted to a somewhat smaller region has the desired properties (causal

geodesic completeness, etc.). In stating our results this way, they apply to solutions

which may only locally be a small perturbation of one of the (ĝ, φ̂, Â){t0,p,c0,κ}

solutions, or may be a perturbation of one of them in one region, and a different

one in another region. This allows the results to hold for solutions with unrestricted

topologies (unlike the background solutions, which are assumed to have the

topology Tn ×R+).

To measure the degree to which initial data for the perturbed solutions

locally deviate from that of the background solutions, we need to work with a

set of norms. Since the proof here depends on control of these norms via energy

functionals, we are led to work with Sobolev norms; since the analysis is essentially

local, we work with local Sobolev norms. In particular, for an open set U ∈ Σn

diffeomorphic to a ball in Rn and therefore covered by Euclidean coordinates

(x1, ...xn), for a tensor field Ψ on Σn with xj coordinate-basis components Ψ
i1···iq
j1···jr ,
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and for a non-negative integer m, we work with Sobolev norms defined as follows

‖Ψ‖Hm(U) =

 n∑
i1,··· ,iq=1

n∑
j1,··· ,jr=1

∑
|α|≤m

∫
x(U)

|∂αΨ
i1···iq
j1···jr ◦ x

−1|2dx1 · · · dxn
1/2

.

Here the collective multi-index notation “∂α” is used for the partial derivatives, all

of which are calculated using the xj coordinate basis.

In comparing (locally) a given set of initial data (Σn, h,K, ϕ, π,B,E) for a

perturbed solution with the data of a background solution, it is useful to find the

“closest” background solution for the comparison. Presuming that the parameters

n, V0, and λ have been chosen–thereby fixing the field theory and also thereby

fixing (via (IV.9) and (IV.10)) p and c0–it remains to determine t0 and κ. As

discussed above, it is convenient to choose (as a scaling) κ := ln[4`(t0)]. Hence,

one needs only to determine t0.

The idea for determining the appropriate choice of t0 is based on equation

(IV.7), which (for a given λ and c0) gives the time dependence of the background

scalar field φ̂. Roughly speaking, to determine t0 one calculates from the given

(perturbed) data a local average of the scalar field, and then setting φ(t0) equal

to this average and inverting (IV.7), one obtains t0. More precisely, one chooses an

open set U ∈ Σn, together with a diffeomorphism ζ : U → B1(0) ∈ Rn. Then, one

calculates 〈ϕ〉 := 1
ωn

∫
B1(0)

ϕ ◦ ζ−1 dx, where ωn is the volume of the unit ball in Rn

with respect to the Euclidean metric. Finally, one sets

t0 := exp

[
1

2
(λ〈ϕ〉+ c0)

]
. (IV.15)
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We note that for a given set of initial data, this procedure for mapping to a

comparison background solution depends only on the choice of the open set U and

on the choice of the map ζ : U → B1(0); once that choice is made, t0 (and therefore

the comparison solution) is uniquely determined, regardless of whether the initial

data is indeed close to a background solution. To simplify the discussion below, we

use the notation Θ{U,ζ}(Σ
n, h,K, ϕ, π,B,E) to denote the map taking the indicated

data set to t0, as defined above.

We are now ready to state our main theorem:

Theorem IV.1. Let (Σn, h,K, ϕ, π,B,E) be a set of initial data satisfying the

constraint equations (IV.12)-(IV.14) for a fixed choice of the Einstein-Maxwell-

scalar{n,V0,λ} field theory. There exists an ε > 0 (depending only on n and p) such

that if for some open set U ∈ Σn and for some diffeomorphism ζ : U → B1(0) ∈ Rn

the data satisfy the smallness condition

‖e−2κh− δ‖Hm0+1(U) + ‖e−2κt0K − pδ‖Hm0 (U)

+‖ϕ− 〈ϕ〉‖Hm0+1(U) + ‖t0π − t0
2

λ
‖Hm0 (U)

+
∑
i

‖t0Ei‖Hm0 (U) +
∑
i

‖Bikx
k‖Hm0+1(U) + ‖t0δij∂iBjkx

k‖Hm0 (U) ≤ ε, (IV.16)

with t0 = Θ{U,ζ}(Σ
n, h,K, ϕ, π,B,E), with κ chosen as above, and with m0 the

smallest integer satisfying m0 > n/2 + 1; then the MCD (Σn × R+, g, φ, A)

of (Σn, h,K, ϕ, π,B,E) has the property that if i : Σn → M labels the

embedding corresponding to the initial data, then all causal geodesics starting in

i{ζ−1[B1/4(0)]} are future complete.

This theorem shows that for a data set which in a local region is sufficiently

close to data for one of the background solutions, geodesic completeness holds.
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If this holds for data in a neighborhood of every point in Σn, then clearly the

entire MCD of the data set is future geodesically complete. It follows as a

special case that if one chooses a Cauchy surface Tn
t0

for one of the background

solutions (ĝ, φ̂, Â){t0,p,c0,κ}, and if one considers sufficiently small Einstein-Maxwell-

scalar{n,V0,λ} field perturbations of the data on Tn
t0

, then the MCD of that data

is future geodesically complete; hence the solutions (ĝ, φ̂, Â){t0,p,c0,κ} are all GFC-

stable.

One might ask if, in addition to the property of future geodesic completeness,

the MCD of a set of perturbed data has the property that its fields in some sense

approach those of the corresponding background solution. This is in fact the case,

in a certain weak sense:

Theorem IV.2. Let (Σn, h,K, ϕ, π,B,E) be a set of initial data satisfying the

constraint equations (IV.12)-(IV.14) for a fixed choice of the Einstein-Maxwell-

scalar{n,V0,λ} field theory, and also satisfying the ε-smallness condition (IV.16)

from Theorem IV.1. Let (Mn+1, g, φ, A) denote the MCD of this data. There are

constants t− ∈ (0, t0), a > 0, and αm > 0 for all non-negative integers m, there is

a smooth map Ψ : (t−,∞) × B5/8(0) → Mn+1 which is a diffeomorphism onto its

image and satisfies Ψ(0, q) = i ◦ ζ−1(q) for q ∈ B5/8(0), and there is a Riemannian

metric Hab on B5/8(0) such that the following are true:

All causal paths that start in i{ζ−1[B1/4(0)]} remain in Imag{Ψ} for all of the

future.

Letting ‖ · ‖Cm denote the Cm norm on B5/8(0), letting (g, φ,A) denote the

pullback of the MCD fields via Ψ, and letting (ĝ, φ̂, Â) denote the corresponding
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background fields, we have, for t ≥ t0, the following decay estimates:

‖φ(t, ·)− φ̂(t)‖Cm + ‖(t∂tφ)(t, ·)− (t∂tφ̂)(t)‖Cm ≤ αm(t/t0)
−a , (IV.17)

‖Ei‖Cm = ‖∂iA0 − ∂0Ai‖Cm ≤ αme
κ(t/t0)

p (t/t0)
−1−a, (IV.18)

‖Bij‖Cm = ‖∂iAj − ∂jAi‖Cm ≤ αme
2κ(t/t0)

2p (t/t0)
−1−a, (IV.19)

‖(1 + g00)(t, ·)‖Cm + ‖(t∂tg00(t, ·)‖Cm ≤ αm(t/t0)
−a , (IV.20)

‖1

t
g0i(t, ·)−

1

(n− 2)p+ 1
Hjlγjil‖Cm + ‖t∂t(

1

t
g0i)(t, ·)‖Cm

≤ αm(t/t0)
−a , (IV.21)

‖(t/t0)−2pe−2κgij(t, ·)−Hij‖Cm + ‖(t/t0)−2pe−2κ(t∂tgij)(t, ·)− 2pHij‖Cm

≤ αm(t/t0)
−a , (IV.22)

‖(t/t0)2pe2κgij(t, ·)−H ij‖Cm ≤ αm(t/t0)
−a , (IV.23)

‖(t/t0)−2pe−2κtKij(t, ·)− pHij‖Cm ≤ αm(t/t0)
−a . (IV.24)

Here γjil are the (lowered index) Christoffel symbols for the metric H on B5/8(0),

and Kij is the (evolving) second fundamental form for the hypersurface B5/8(0)× t.

We remark that while most of these inequalities clearly indicate decay, two

of them appear not to do so: the second and the third, involving electromagnetic

fields. We note, however, that the electromagnetic fields are vector components

relative to coordinates in which the metric is expanding. If one considers locally

measured fields (factoring out the expansion), then these fields do decay.

We also remark that these decay results do not show that the developments of

the perturbed data sets decay to the original background metrics directly. Rather,

one obtains decay only if one adds a diffeomorphism, and also adds the fiducial
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metric H on B5/8. It may be that sharper and more direct decay rates can be

proven. We do not pursue this question here.

Finally, we note that while the results we prove here are generalizations of

Theorem 2 in [28], we have not gone on to prove a generalization of Ringström’s

Theorem 3, which applies his Theorem 2 to prove global stability for a class of

locally spatially homogeneous spacetimes. Such results likely could be obtained

for spatially homogeneous spacetimes containing electromagnetic fields; we do not,

however, consider that issue here.

Outline of the Proof

A key feature of the proofs of Theorems IV.1 and IV.2 is the spatial

localizability of the analysis, noted above. This allows the analysis to be carried

out independently on each open set U satisfying the hypotheses of Theorem IV.1.

However in order to avoid working on regions with free boundaries, it is useful to

patch the data set on U into a set of background solution data on Tn \ U , and

then study the development of the patched-together data on Tn. The expansion

behavior of the background solutions as well as their perturbations guarantee that

the development of the data on sufficiently small subsets of U is independent of

the externally patched-in data; hence the proof can be done via analysis on these

patched data sets.

In general, the patched initial data sets violate the constraints in an annular

region around U . It is thus necessary to formulate a global stability analysis that

works for initial data sets which violate the constraint equations. We begin to set

up such an analysis in Section IV.2.. To start, we modify the field equations by

introducing gauge source functions Dµ and G, and using them to hyperbolize the
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field equations. The gauge source function Dµ, if it is zero, replaces the contracted

Christoffel symbols of the perturbed unknown metric by that of the background

metric we perturb around and therefore is related to the “wave coordinate gauge”,

while G = 0 corresponds to the Lorentz gauge of electromagnetism. For handling

a global stability problem, hyperbolization of the field equations is not enough. We

also need to add to the field equations some correction quantities that are expressed

in terms of the gauge source functions. The purpose of these correction terms is

to partially decouple the field equations to linear order in the field perturbed, and

to insert damping terms in these equations. These features are helpful in proving

stability for the modified system. Since we are interested in global stability of the

original field equations, we reformulate the equations in such a way that the gauge

source functions satisfy a system of homogeneous hyperbolic equations, and so that

it is possible to prepare initial data for the modified equations so that the gauge

source functions and their first order time derivatives vanish initially. Thus, the

gauge source functions vanish identically and by proving global stability for the

modified equations, we obtain global stability for our original field equations.

We express our reformulated equations as PDEs for variables which are

essentially the differences between the perturbed fields and the corresponding

background fields. More specifically, we work with u := 1 + g00, ui := g0i,

ψ := φ − φ̂, A0, and Ai, all of which vanish for the background solution, and also

hij := (t/t0)
−2pgij which is time independent for gij = ĝij. We further make a

change of time coordinate from t to τ , such that t∂t = ∂τ , by defining τ = ln(t/t0).

The reason for doing this is to eliminate the time dependences of the linear terms.

Thus we obtain a system of equations (IV.63) - (IV.68) such that each equation

is in the form of a hyperbolic equation with dissipation and dispersion, plus some

57



extra terms. Note that in the modified system, the equations for u, ψ and A0 are

decoupled to first order from the equations for the other field variables.

In Section IV.3., we define a sequence of energy functionals for the field

variables, and in Section IV.4. we specify the bootstrap assumptions which we

use to prove global existence in τ . The bootstrap assumptions state that for all

τ ∈ I = [0, s) for some unspecified s, we have solutions to the field equations,

and the energy functionals are controlled by some small number ε. Note that

the specific bootstrap assumptions we use here are not optimal; they are chosen

because they are sufficient to carry out the global existence argument, and because

they make the estimation of the nonlinear terms (following the algorithm for

estimates introduced in [27]) applicable in our case.

One of the key tools for proving global existence is the set of differential

inequalities (IV.122) - (IV.126) for the energy functionals. We derive these in

Section IV.5., and we also show that as a consequence of the hierachical structure

of the equations, the differential inequalities exhibit an hierachical structure as

well. Relying on these inequalities, we prove global existence in Section IV.3 using

a bootstrap argument. The main work needed to carry through this proof is that

of improving the bootstrap assumption; this can be done as a consequence of the

hierachical structure of the differential inequalities. Once the improvement has

been demonstrated, one proceeds to show via an “open-closed” type argument that

indeed the interval I is non empty and extends to s =∞.

The remaining work in proving our two theorems is first to show that the

geodesics which start from a subset of the domain U×t0 are complete (we do this in

Section IV.7.), and then to verify the asymptotic expansions (i.e., the decay results)

(IV.155) - (IV.162) for the fields in MCD of our initial data, as stated in Theorem
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IV.2; we do this in Section IV.8.. We conclude our proof with remarks in Section

IV.9..

IV.2. Field Equation Reformulation

As noted in Section IV.1., as a consequence of the accelerated expansion of

the background solutions, we can carry out the analysis in spatially local regions,

which for convenience are patched into data for a background solution on Tn.

We defer discussion of the details of the patching to Section IV.9.. For now, we

presume that the patching has been done, and that we are consequently working

with data on Tn which satisfies the hypotheses of Theorem IV.1, but does not

necessarily satisfy the constraints everywhere. The MCD of the data consists of

fields defined on the spacetime manifold Tn × I for some interval I. Working on

Tn × I, and working with fields which are small perturbations of the background

fields, we can always choose coordinates (xi, t) with xi global periodic spatial

coordinates.

The aim of the reformulation of the field equations (IV.1)-(IV.4) we carry out

here is to replace them by alternative equations which are manifestly hyperbolic

and lead to well-posedness even if the constraints are not satisfied, and also

to make sure that the reformulated equations can be used to develop a set of

energy functionals which are controlled in time and lead to global existence. The

replacement equations are obtained by adding terms to equations (IV.1)-(IV.4)

which can be made to vanish via gauge choice. We carry out the reformulation in

two steps. In the first step, we add gauge terms which result in equations which are

manifestly hyperbolic for the fields gµν , φ and Aµ (with components defined using

the coordinate basis (xi, t) defined above). In the second step, we add further gauge
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terms and we rewrite the field equations in terms of the variables u, ui, γij, ψ, A0,

and Ai in a certain semi-decoupled form which is very useful for the analysis.

Reformulation I: Hyperbolization

The gauge functions we use to carry out the first stage of reformulation of the

field equations (IV.1)-(IV.4) are

Dµ := Γ̂µ − Γµ, (IV.25)

G := ∇µAµ, (IV.26)

where Γµ := 1
2
gαβgµν(∂αgβν + ∂βgνα − ∂νgαβ) is the contracted Christoffel symbol for

the metric gαβ, where Γ̂µ := Γµ(ĝ) = np
t
δµ0 is the same for the background metric ĝ,

and where ∇ is the covariant derivative compatible with gαβ. Note that Dµ is not

covariant. However, we define Dν := gνµDµ, and also ∇µDν := ∂µDν − Γµ
γ
νDγ.

Using these gauge quantities, we define modified versions of the Ricci and

Faraday tensors

R̃µν = Rµν +∇(µDν), (IV.27)

F̃µν = Fµν + gµν(G − DγAγ), (IV.28)
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and we also define certain arrays of correction terms

M [g]
µν :=

2p

t

 −D0 Di

Di 0

 , (IV.29)

M [φ] := −gµνDµ∂νφ, (IV.30)

M [A]
ν := −gαβDαFβν +

2p

t
g0ν(DγAγ − G). (IV.31)

We then construct the following set of “gauge-modified” Einstein-Maxwell-

scalar{n,V0,λ} field equations

∂µφ∂νφ+
2

n− 1
V (φ)gµν + FµσFν

σ − 1

2(n− 1)
gµνFρσF

ρσ = R̃µν +M [g]
µν , (IV.32)

gαβ∂α∂βφ− Γµ∂µφ− V ′(φ) +M [φ] = 0, (IV.33)

∇µF̃µν +M [A]
ν = 0, (IV.34)

noting the following properties: (i) If the gauge quantities Dµ and G vanish,

then this system (IV.32)-(IV.34) is satisfied if and only if the Einstein-Maxwell-

scalar{n,V0,λ} system (IV.1)-(IV.4) is satisfied. (ii) The gauge modified system

(IV.32)-(IV.34) is manifestly (second order) hyperbolic for the fields (g, φ, A), so

long as the gauge quantities vanish.

In view of these two properties of the gauge-modified system, our goal now is

to show that for any given set of initial data (Tn, h̃, K̃, ϕ̃, π̃, B̃, Ẽ) for the Einstein-

Maxwell-scalar{n,V0,λ} system (IV.1)-(IV.4), there is a corresponding set of initial

data (g, ∂tg, ϕ, ∂tϕ,A, ∂tA) for (IV.32)-(IV.34) which enforces the condition that the

gauge quantities Dµ and G vanish for as long as the solution exists. We show in the

next subsection that this can be done.
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Initial Data and Gauge Choice

There are many choices of the data (g, ∂tg, ϕ, ∂tϕ,A, ∂tA) which are

consistent with a given set of initial data (h̃, K̃, ϕ̃, π̃, B̃, Ẽ) specified on Tn; this

is a manifestation of the gauge freedom in the Einstein-Maxwell-scalar field

system. The following choice restricts this freedom, and in so doing, it enforces

the condition that the gauge functions Dµ and G vanish at the initial time3 t0:

gij(t0, ·) = h̃(∂i, ∂j), g00(t0, ·) = −1, g0j(t0, ·) = 0, (IV.35)

∂tgij(t0, ·) = 2K̃(∂i, ∂j), (IV.36)

∂tg00(t0, ·) = 2Γ̂0(t0, ·)− 2 trK̃, (IV.37)

∂tg0l(t0, ·) =
1

2
h̃ij(2∂ih̃jl − ∂lh̃ij)(t0, ·), (IV.38)

φ(t0, ·) = ϕ̃, ∂tφ(t0, ·) = π̃, (IV.39)

A0(t0, ·) = 0, Ai(t0, ·) = −1

2
B̃ikx

k, (IV.40)

∂tA0(t0, ·) = h̃ij∂iAj(t0, ·), ∂tAi(t0, ·) = −Ẽi. (IV.41)

The vanishing of the first time derivatives of Dµ and G on (portions of) the

initial surface follows not from further restrictions on the gauge choice, but rather

from the constraint equations (IV.12)-(IV.14). The constraints are not satisfied

everywhere (recall the consequences of the patching of the initial data) but they do

hold on a subset S of the initial hypersurface. To see that ∂tDµ and ∂tG vanish on

S, we first calculate the quantity Gµν − Tµν , assuming that the gauge-modified field

3Note that D0 = 0 corresponds to (IV.37), Di = 0 corresponds to (IV.38), and G = 0
corresponds to the first part of (IV.41).
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equations hold, rather than the original system (IV.1)-(IV.4); we obtain

Gµν − Tµν = −∇(µDν) +
1

2
(∇ρDρ)gµν −M [g]

µν +
1

2
(gαβM

[g]
αβ)gµν . (IV.42)

If we now let e⊥ be the unit normal to the initial surface and let X be any vector

tangent to the surface, and if we contract (IV.42) with e⊥ and X while assuming

that the constraints (IV.12)-(IV.14) hold on S, then we obtain

−1

2
(e⊥)µXν(∂µDν + ∂νDµ) = 0. (IV.43)

Setting t = t0, and noting that since Di(t0, ·) = 0 we must have Xν∂νDµ(t0, ·) = 0,

it follows that

∂tDi(t0, ·) = 0 on S ⊆ Tn. (IV.44)

Arguing similarly, but now contracting (IV.42) twice with e⊥ while assuming that

the constraints hold at t0, we obtain

∂tD0(t0, ·) = 0 on S ⊆ Tn. (IV.45)

Finally, if we contract (IV.34) with e⊥, then (setting t = t0) we may use the

constraint (IV.14) to argue that eν⊥∇µFµν(t0, ·) = 0; combining this with the

vanishing of Dµ(t0, ·), G(t0, ·) and ∂tDµ(t0, ·) (as shown above), we are left with

∂tG(t0, ·) = 0 on S ⊆ Tn. (IV.46)

Now that we have determined that for any choice of initial data we may

choose a gauge so that G, Dµ, and their first time derivatives vanish on the subset
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S of the initial slice, if we wish to show that G and Dµ vanish in a spacetime

neighborhood of S (within its domain of dependence) it is sufficient to show that

these quantities satisfy homogeneous wave equations. To do this, we first take the

divergence of equation (IV.42), noting that

∇µTµν = −M [φ]∂νφ− Fν σ(M [A]
σ + ∂σ(G − DγAγ)). (IV.47)

It follows that, presuming the gauge-modified equations have smooth solutions, we

obtain

gαβ∂α∂βDµ +Qµ
αβ∂αDβ + Sµ

ν∂νG + Vµ
νDν +WµG = 0 (IV.48)

for smooth functions Qµ
αβ, Sµ

ν , Vµ
ν and Wµ. Similarly, taking the divergence of

(IV.34), we obtain

gαβ∂α∂βG +Hµ∂µG + Iαβ∂αDβ + JG + LµDµ = 0. (IV.49)

for smooth functions Hµ, Iαβ, J and Lµ. This pair of equations together constitute

the desired homogeneous hyperbolic system for G and Dµ.

Reformulation II: Perturbation Variables and First Order Semi-Decoupling

The system of PDEs (IV.32)-(IV.34) for the field variables (gµν , Aµ, φ)

together with the system (IV.48)-(IV.49) for the gauge quantities (Dµ,G) constitute

a coupled PDE system which could be used to argue local existence of solutions.

To be able to show long time existence, however, it is advantageous to replace the

variables (gµν , Aµ, φ) by others which are closely related to perturbations of the
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background solution; following [28], we choose to work with u := 1 + g00, ui :=

g0i, hij := (t/t0)
−2pgij, ψ := φ− φ̂, A0, and Ai.

In deriving (from (IV.32)-(IV.34)) the evolution PDEs for these new

variables, we wish to segregate those terms which are linear in perturbations of

the background solution (i.e., linear in u := 1 + g00, ui := g0i, hij := (t/t0)
−2pgij,

ψ := φ − φ̂, A0, and Ai) from those which are higher order. Doing this, we obtain

the following

−gµν∂µ∂νu+
(n+ 2)p

t
∂tu+

2p[n(p− 1) + 1]

t2
u

− 8

λt
∂tψ −

2λp(np− 1)

t2
ψ + ∆′00 = 0, (IV.50)

−gµν∂µ∂νui +
np

t
∂tui +

p(n− 2)(2p− 1)

t2
ui

− 4

λt
∂iψ −

2p

t
glmΓlim + ∆′0i = 0, (IV.51)

−gµν∂µ∂νhij +
np

t
∂thij +

2p

t2
(λ(np− 1)ψ − u)hij + ∆′ij = 0, (IV.52)

−gµν∂µ∂νψ +
np

t
∂tψ +

2(np− 1)

t2
ψ − 2

λt2
u+ ∆′ψ = 0, (IV.53)

−gµν∂µ∂νA0 +
(n+ 2)p

t
∂tA0 +

np(2p− 1)

t2
A0 + ∆′e = 0, (IV.54)

−gµν∂µ∂νAi +
(n− 2)p

t
∂tAi +

2p

t
∂iA0 + ∆′b,i = 0. (IV.55)

Here, the quantities ∆′µν , ∆′ψ, ∆′e and ∆′b,i are all of quadratic order or higher in

the perturbations variables (u, ui, hij, ψ, A0, Ai), and their first derivatives4 . More

4We include the primes on these ∆′ quantities here because below, we replace them by slightly
changed ∆ quantities without primes.
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specifically, one can write

∆′µν = ∆̃µν − 2

[
FµσFν

σ − 1

2(n− 1)
gµνFαβF

αβ

]
, (IV.56)

∆′ψ = ∆̃ψ, (IV.57)

∆′e = 2
[
(gµρΓ0

σ
µ −

p

t
gρσ)∂ρAσ −

p

t
∂tA0 −

p

t
u(Γ̂µAµ − gρσ∂ρAσ)

]
, (IV.58)

∆′b,i = 2
[p
t
F0i + gρσΓi

µ
ρ∂σAµ −

p

t
g0i(Γ̂

µAµ − gρσ∂ρAσ)
]
, (IV.59)

where ∆̃µν and ∆̃ψ are written out explicitly in the work of Ringström; see

equations (51), (52), (55) and (56) in [28], together with equations (82)-(87) and

(92)-(93) in [27].

We note that the parameters n, p, and λ appear in (IV.50)-(IV.55) because

the new variables (u, ui, hij, ψ, A0, Ai) are defined in terms of the background

solution (ĝ, φ̂, Â){t0,p,c0,κ}. We also note that the quantity gµν as well as other

metric and Christoffel quantities appearing in (IV.50)-(IV.55) may be viewed as

functions of u, ui, and hij.

The calculations leading from the PDEs (IV.32)-(IV.34) to (IV.50)-(IV.53) are

essentially the same as those done in proving Lemma 3 in [28]. To derive (IV.54)
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and (IV.55), we calculate as follows:

0 = ∇µF̃µα +M [A]
α

= gρσ(∂ρFσα − Γσ
γ
ρFγα − Γα

γ
ρFσγ) + ∂α(∇µAµ)

−Dµ∂µAα − Aµ∂αDµ +
2p

t
g0α(Γ̂µAµ − gρσ∂ρAσ)

= gρσ∂ρ∂σAα − gρσ∂α∂ρAσ − Γµ(∂µAα − ∂αAµ)

− gρσΓα
µ
ρ∂σAµ + gρσΓα

µ
ρ∂µAσ + ∂α(gρσ∂ρAσ)

− ∂α(ΓµAµ)−Dµ∂µAα − Aµ∂αDµ +
2p

t
g0α(Γ̂µAµ − gρσ∂ρAσ)

= gρσ∂ρ∂σAα − Γ̂µ∂µAα − Aµ∂αΓ̂µ − gρσΓα
µ
ρ∂σAµ

+ gρσΓα
µ
ρ∂µAσ + (∂αg

ρσ)∂ρAσ +
2p

t
g0α(Γ̂µAµ − gρσ∂ρAσ)

= gρσ∂ρ∂σAα − Γ̂µ∂µAα − Aµ∂αΓ̂µ − 2gρσΓα
µ
ρ∂σAµ

+
2p

t
g0α(Γ̂µAµ − gρσ∂ρAσ) (IV.60)
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For α = 0, we obtain

0 = ∇µF̃µ0 +M
[A]
0

= gρσ∂ρ∂σA0 − Γ̂µ∂µA0 − Aµ∂0Γ̂µ − 2gρσΓ0
µ
ρ∂σAµ

+
2p

t
g00(Γ̂

µAµ − gρσ∂ρAσ)

= gρσ∂ρ∂σA0 −
np

t
∂tA0 +

np

t2
A0 − 2gρσΓ0

µ
ρ∂σAµ

− 2p

t
Γ̂µAµ +

2p

t
gρσ∂ρAσ +

2p

t
(1 + g00)(Γ̂

µAµ − gρσ∂ρAσ)

= gρσ∂ρ∂σA0 −
np

t
∂tA0 −

np(2p− 1)

t2
A0

+

[
−2gρσΓ0

µ
ρ∂σAµ +

2p

t
gρσ∂ρAσ +

2p

t
u(Γ̂µAµ − gρσ∂ρAσ)

]
= gρσ∂ρ∂σA0 −

(n+ 2)p

t
∂tA0 −

np(2p− 1)

t2
A0

+ 2
[
(
p

t
gρσ − gµρΓ0

σ
µ)∂ρAσ +

p

t
u(Γ̂µAµ − gρσ∂ρAσ) +

p

t
∂tA0

]
(IV.61)

For α = i, we obtain

0 = ∇µF̃µi +M
[A]
i

= gρσ∂ρ∂σAi − Γ̂µ∂µAi − Aµ∂iΓ̂µ − 2gρσΓi
µ
ρ∂σAµ

+
2p

t
g0i(Γ̂

µAµ − gρσ∂ρAσ)

= gρσ∂ρ∂σAi −
(n− 2)p

t
∂tAi −

2p

t
∂iA0

+ 2
[
−p
t
F0i +

p

t
g0i(Γ̂

µAµ − gρσ∂ρAσ)− gρσΓi
µ
ρ∂σAµ

]
. (IV.62)

The evolution PDEs (IV.50)-(IV.55) involve a number of factors of t−1. These

can be conveniently removed by multiplying all of the equations (IV.50)-(IV.55) by

t2, and by replacing t by τ := ln(t/t0) (so that consequently ∂τ = t∂t); we then

obtain the following system of PDEs, to be solved for (u(x, τ) = 1 + g00(x, t0e
τ ),
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ui(x, τ) = etc...):

�̃gu+ [(n+ 2)p− 1]∂τu+ 2p[n(p− 1) + 1]u

−8

λ
∂τψ − 2λp(np− 1)ψ + ∆00 = 0, (IV.63)

�̃gui + (np− 1)∂τui + p(n− 2)(2p− 1)ui

−eτ+τ0 [ 4

λ
∂iψ + 2pglmΓlim] + ∆0i = 0, (IV.64)

�̃ghij + (np− 1)∂τhij + 2p (λ(np− 1)ψ − u)hij + ∆ij = 0, (IV.65)

�̃gψ + (np− 1)∂τψ + 2(np− 1)ψ − 2

λ
u+ ∆ψ = 0, (IV.66)

�̃gA0 + [(n+ 2)p− 1]∂τA0 + np(2p− 1)A0 + ∆e = 0, (IV.67)

�̃gAi + [(n− 2)p− 1]∂τAi + 2peτ+τ0∂iA0 + ∆b,i = 0. (IV.68)

Here we define the hyperbolic operator �̃g via

�̃g := −g00∂2τ − 2eτ+τ0g0i∂τ∂i − e2(τ+τ0)gij∂i∂j,

and we define the nonlinear remainder terms ∆µν , ∆ψ, ∆e and ∆b,i via

∆00 := (1 + g00)∂τu+ e2(τ+τ0)∆′00, (IV.69)

∆0i := (1 + g00)∂τui + e2(τ+τ0)∆′0i, (IV.70)

∆ij := (1 + g00)∂τhij + e2(τ+τ0)∆′ij, (IV.71)

∆ψ := (1 + g00)∂τψ + e2(τ+τ0)∆′ψ, (IV.72)

∆e := (1 + g00)∂τA0 + e2(τ+τ0)∆′e, (IV.73)

∆b,i := (1 + g00)∂τAi + e2(τ+τ0)∆′b,i. (IV.74)
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Our stability analysis in the rest of the paper focuses on the evolution PDEs

(IV.63)-(IV.68). We note that, if we ignore the ∆ terms in these equations and also

ignore (for the moment) the dependence of the wave operator �̃g on the metric,

then we have the following semi-decoupled setup: (i) Equation (IV.67) involves

A0 alone. (ii) Equation (IV.68) involves only Ai and A0. (iii) Equations (IV.63)

and (IV.66) together form a coupled system for u and ψ, independent of the other

variables. (iv) Equation (IV.65) involves only hij and u andψ. (v) Equation (IV.64)

involves ui and u and ψ and hij, but not the electromagnetic variables. This semi-

decoupled structure plays an important role in the analysis we carry out below.

IV.3. Energy Functionals

The key tool for proving global existence for solutions to a Cauchy problem

for a hyperbolic PDE system is the set of energy functionals for the system. For

a general (nonlinear) system, these functionals are neither canonically determined

nor unique. However they may be obtained, the necessary properties are (i) that

(perhaps assuming certain a priori conditions on the field) their future evolution is

bounded, and (ii) that they control appropriate norms of the field variables. In this

section, we obtain energy functionals for the PDE system (IV.63)-(IV.68).

The field equations (IV.63)-(IV.68) all involve the differential operator �̃g,

which of course involves the metric g. By definition of the field variables u, ui, and

hij, the metric g is closely tied to them, and consequently g evolves with them.

This fact (a key feature of Einstein’s gravitational field equations) must be taken

into account in setting up the energy functionals and verifying their evolution

properties.
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However, we start our discussion of the energy functionals by artificially

decoupling the metric as it appears in �̃g and elsewhere in coefficients of (IV.63)-

(IV.68) from the evolving fields u, ui, and hij. We do this, in this section, by

fixing a (generally time dependent) spacetime metric g, basing �̃g and the

other coefficients on this fixed g, and treating u, ui, and hij as independent. We

recouple g and the field variables in the next section, with the help of bootstrap

assumptions.

In defining the energy functionals, it is useful to treat the field variables in

blocks, according to the semi-decoupling of the (linearized) evolution equation,

noted above. So we start by working with just u and ψ, which we write collectively

as the 2-vector

u =

 u

ψ

 . (IV.75)

The evolution PDEs (IV.63) and (IV.66) then take the form

�̃gu + C∂τu + Ju + ∆ = 0, (IV.76)

where J and C are the constant matrices

J =

 2p[n(p− 1) + 1] −2λp(np− 1)

−2/λ 2(np− 1)

 ,
C =

 (n+ 2)p− 1 −8/λ

0 np− 1

 ,
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and ∆ is the vector of nonlinear terms

∆ =

 ∆00

∆ψ

 . (IV.77)

Since the only effect of the electromagnetic field on the evolution of u is via

the ∆ term, the form of the energy functionals we use for u and the calculation

of their evolutions are formally very similar to that of Ringström in [28] (Section

4). Following that narrative, we first obtain a matrix T (see equation (76) in [28])

which diagonalizes the matrix J , and then setting ũ = T−1u, ∆̃ = T−1∆, J̃ =

T−1JT = diag{λ−, λ+} and C̃ = T−1CT , we have

�̃gũ + C̃∂τ ũ + J̃ũ + ∆̃ = 0. (IV.78)

We next define the base energy functional we shall use for ũ. Letting cLS ,

b1, and b2 be any set of positive definite constants, and using the notation g̃ij =

e2(τ+τ0)gij, we define

E [ũ] :=
1

2

∫
Tn

(−g00∂τ ũt∂τ ũ + g̃ij∂iũ
t∂jũ− 2cLSg

00ũt∂τ ũ + b1ũ
2 + b2ψ̃

2)dx, (IV.79)

where the superscript t on ũ indicates the transpose. We then verify the following:

Lemma IV.1. Let g be a fixed Lorentz metric on the spacetime I × Tn for some

interval I, and let u be a solution to equation (IV.78) on I × Tn for some choice

of the constants p > 1 and n ≥ 3 characterizing an Einstein-Maxwell-scalar field

theory. There exist positive constants ηLS , ζLS , b1, b2 and cLS (depending on n and
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p) such that if we define E with these constants and so long as

|g00 + 1| ≤ ηLS , (IV.80)

then

E [ũ] ≥ ζLS

∫
Tn

(∂τ ũ
t∂τ ũ + g̃ij∂iũ

t∂jũ + ũtũ)dx (IV.81)

and

dE [ũ]

dτ
≤ −2ηLSE +

∫
Tn

[−(∂τ ũ
t + cLSũ

t)∆̃ + ∆E[ũ]]dx, (IV.82)

where ∆E[ũ] is a function quadratic in u and its derivatives, defined in equation

(IV.83).

Proof. First, we want to choose constants cLS , b1 and b2 such that (IV.81) holds for

some constant ζLS . This implies c2LS < bi for i = 1, 2. Let

b1 = λ− + cLSC̃11, b2 = λ+ + cLSC̃22.

Then c2LS < bi is satisfied if we choose cLS to be small enough. Thus (IV.81) holds

for some constant ζLS , provided g00 is close enough to −1. Differentiating E [ũ], we
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get

dE
dτ

=

∫
Tn
{−1

2
∂τ ũ

t(C̃ + C̃t)∂τ ũ− ∂τ ũtJ̃ũ− ∂τ ũt∆̃

− (p− 1 + cLS)g̃ij∂iũ
t∂jũ + cLS |∂τ ũ|2 − cLSũtC̃∂τ ũ− cLSũtJ̃ũ

− cLSũt∆̃ + b1ũ∂τ ũ+ b2ψ̃∂τ ψ̃ + ∆E[ũ]}dx,

∆E[ũ] =− cLS(g00 + 1)∂τ ũ
t∂τ ũ− 2cLS(g̃0i∂iũ

t∂τ ũ + (∂ig̃
0i)ũt∂τ ũ)

− cLS(∂j g̃
ij)∂iũ

tũ− 1

2
∂τg

00∂τ ũ
t∂τ ũ +

[
1

2
∂τ g̃

ij + (p− 1)g̃ij
]
∂iũ

t∂jũ

− ∂ig̃0i∂τ ũt∂τ ũ− ∂j g̃ij∂τ ũt∂iũ− cLS∂τg00ũt∂τ ũ. (IV.83)

With our choice of cLS , b1 and b2, we obtain

dE
dτ

=

∫
Tn
{−1

2
∂τ ũ

t(C̃ + C̃t)∂τ ũ + cLS |∂τ ũ|2 − (p− 1 + cLS)g̃ij∂iũ
t∂jũ

− cLS
[
λ−ũ

2 + λ+ψ̃
2
]
− cLS

[
C̃21ψ̃∂τ ũ+ C̃12ũ∂τ ψ̃

]
}dx,

+

∫
Tn

[−(∂τ ũ
t + cLSũ

t)∆̃ + ∆E[ũ]]dx, (IV.84)

By Lemma 5 of [28], C̃ + C̃t is positive definite. Thus provided that g00 is close

enough to −1 and that we choose cLS to be small enough, we get (IV.82) for some

constant ηLS .

It is important to note that the differntial inequality (IV.82) is useful for

controlling the evolution of E only if we can establish estimates for ∆(∆̃) and ∆E.

We do this below, using the bootstrap assumptions.

Since we need to control derivatives of u as well as u itself, it is very useful

to work with energy functionals which involve higher spatial derivatives. For that
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purpose, we define the following sequence of energy functionals

ELS,k =
∑
|α|≤k

E [∂αũ], (IV.85)

where ∂α indicates the usual multi-index spatial derivate, of order |α|. It follows

readily from this definition of ELS,k and from Lemma IV.1 that the following

differential inequality holds:

Corollary IV.1. Presuming the hypotheses of Lemma IV.1, ELS,k satisfies

dELS,k
dτ

≤− 2ηLSELS,k

+
∑
|α|≤k

∫
Tn

[(∂α∂τ ũ
t + cLS∂

αũt)(−∂α∆̃ + [�̃g, ∂
α]ũ) + ∆E[∂αû]]dx.

(IV.86)

Thus far, we have developed a sequence of energy functionals only for the pair

of field variables u and ψ (with artificially fixed g). To obtain a similar sequence of

energy functionals for ui, hij, A0, and Aj, again with the metric g fixed, it is useful

to work with solutions of a model PDE

�̃gv + α∂τv + βv = F (IV.87)

for the scalar function v, where α > 0 and β ≥ 0 are constants, g is a fixed Lorentz

metric on the spacetime manifold Tn × I (for n ≥ 3), and F is a fixed function on

the spacetime. We have the following:
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Lemma IV.2. Let v be a solution of equation (IV.87) on Tn × I, with g, α, β and

F be as stated above. There are constants ηc, ζ > 0 and γ, δ ≥ 0, depending on α

and β, such that if the given metric satisfies

|g00 + 1| ≤ ηc, (IV.88)

and if we define the energy functional via

Eγ,δ[v] :=
1

2

∫
Tn

(−g00(∂τv)2 + g̃ij∂iv∂jv − 2γg00v∂τv + δv2)dx, (IV.89)

then Eγ,δ[v] bounds the following quadratic integral

Eγ,δ[v] ≥ ζ

∫
Tn

[(∂τv)2 + g̃ij∂iv∂jv + ιβv
2]dx, (IV.90)

where ιβ = 0 if β = 0 and ιβ = 1 otherwise, and Eγ,δ[v] satisfies the differential

inequality

dEγ,δ
dτ
≤ −2ηcEγ,δ +

∫
Tn

[(∂τv + γv)F + ∆E,γ,δ[v]]dx, (IV.91)

where ∆E,γ,δ[v] is given by (IV.92). If β = 0, then δ = γ = 0.

Proof. If β > 0, choose γ = α/2, δ = β + α2/2 and if β = 0, simply let γ = δ = 0. It

is easy to check that there exists a constant ζ such that (IV.90) holds provided g00
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is close enough to −1. Differentiate Eγ,δ[v], we get

dEγ,δ[v]

dτ
=

∫
Tn
{−(α− γ)(∂τv)2 + (δ − β − γα)v∂τv − βγv2

− (p− 1 + γ)g̃ij∂iv∂jv + (∂τv + γv)F + ∆E,γ,δ[v]}dx,

∆E,γ,δ[v] =− γ(∂ig̃
ij)v∂jv − 2γ(∂ig̃

0i)v∂τv − 2γg̃0i∂iv∂τv − (∂ig̃
0i)(∂τv)2

− (∂j g̃
ij)∂iv∂τv −

1

2
(∂τg

00)(∂τv)2 +

(
1

2
∂τ g̃

ij + (p− 1)g̃ij
)
∂iv∂jv

− γ∂τg00v∂τv − γ(g00 + 1)(∂τv)2. (IV.92)

In the case β > 0, we have

dEγ,δ[v]

dτ
=− 1

2

∫
Tn
{α(∂τv)2 + αβv2 + (2(p− 1) + α)g̃ij∂iv∂jv}dx

+

∫
Tn
{(∂τv + γv)F + ∆E,γ,δ[v]}dx.

Use the opposite of (IV.90), we obtain the differential inequality for some constant

ηc. Similar for the case β = 0.

As with the energy functionals for u, discussed above, it is useful to proceed

from Eγ,δ to a sequence of energy functionals involving higher derivatives of v:

EV,k[v] :=
∑
|α|≤k

Eγ,δ[∂αv]. (IV.93)

One then proves the following differential inequality result:
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Corollary IV.2. Presuming that the hypotheses of Lemma IV.2 hold, the sequence

of higher order energy functionals EV,k satisfy the following inequalities:

dEV,k
dτ

≤ −2ηcEV,k +
∑
|α|≤k

∫
Tn
{(∂τ∂αv + γ ∂αv)(∂αF + [�̃g, ∂

α]v) + ∆E,γ,δ[∂
αv]}dx.

(IV.94)

Proof. If one differentiates equation (IV.87) and then applies Lemma IV.2, the

corollary immediately follows.

To obtain the energy functionals for the fields ui, hij, A0, and Aj, we

now manipulate the evolution equations for these fields so that, with varying

specifications of the function F and of the constants α and β, these evolution

equations (for each of the components of ui, hij, etc.) match with the model

equation (IV.87). For present purposes, we presume that g is a fixed Lorentz

metric.

For ui, we work with equation (IV.64). If we set α = np − 1 > 0 and

β = p(n − 2)(2p − 1) > 0, and if we set F equal to the negative of all except

the first three terms 5 in (IV.64), then we have an equation of the form (IV.87)

for each of the components of ui. It then follows from Lemma IV.2 and Corollary

IV.2 that there exists a set of positive constants γSH, δSH, ηSH and ζSH such that

the conclusions of Lemma IV.2, including the bounding condition (IV.90) and the

differential inequality (IV.91), hold for ui. Hence we define the following energy

5We note that, according to this construction, the function F includes information–terms
depending on hij , on Ai, etc.–which is not known. The formal derivation of the differential
inequalities of the form (IV.82) or (IV.86) still works, however.
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functional

ESH,k :=
∑
i

Eui,k =
∑
i

∑
|λ|≤k

EγSH,δSH [∂λui]. (IV.95)

For hij, we work with equation (IV.65). In this case, we set α = np− 1, β = 0,

and F = −∆ij − 2p(λ(np − 1)ψ − u)hij; we then have an equation of the form

(IV.87) for the components of hij. Lemma IV.2 and Corollary IV.2 now imply that

there exist constants ηM > 0 and ζM > 0 (with γM = 0 and δM = 0) such that

a bounding condition of the form (IV.90) and a differential inequality of the form

(IV.91) hold for hij. We define the energy funtional

EM,k :=
1

2

∑
i,j

∑
|λ|≤k

(
EγM,δM [∂λhij] +

∫
Tn
e−2aτaλ(∂

λhij)
2dx

)
, (IV.96)

with aλ = 0 for |λ| = 0 and aλ = 1 for |λ| > 0 (a > 0 is a constant to be

determined below, by (IV.107)). We note the inclusion in this expression (IV.96)

of the unfamiliar second term (with coefficient aλ).The reason we include this extra

term is that some terms are missing in EγM,δM [∂λhij] because of the vanishing

of γM and δM. We need to include this extra term in order for EM,k to control

some norm of hij. As discussed in Section 7 of [27], this term is consistent with

the conclusions we derive from Lemma IV.2 and Corollary IV.2, and also enforces

the condition that the sequence of energies EM,k all vanish for fields which are the

same as the background fields (ĝ, φ̂, Â){t0,p,c0,κ}.

We proceed to the energy functionals for the electromagnetic fields. For A0,

we work with the evolution equation (IV.67). It takes the desired form if we set

α = (n + 2)p − 1, β = np(2p − 1), and F = −∆e. Applying Lemma IV.2 and

Corollary IV.2, we determine that there are positive constants γSP , δSP , ηSP and

ζSP such that results of the form (IV.90) and of the form (IV.91) hold. Hence we
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define

ESP,k =
∑
|λ|≤k

EγSP ,δSP [∂λA0], (IV.97)

as the energy functional for A0.

Finally for Aj, we work with equation (IV.68). To match the form of equation

(IV.87), we set α = (n − 2)p − 1, β = 0, and F = −∆b,i − 2peτ+τ0∂iA0. Then from

Lemma IV.2 and Corollary IV.2, we determine that there are constants ηVP > 0

and ζVP > 0 (with γVP = 0 and δVP = 0) such that a bounding condition of the

form (IV.90) and a differential inequality of the form (IV.91) hold. We define the

following energy functional for Ai

EVP,k =
∑
i

∑
|λ|≤k

(
EγVP ,δVP [∂λAi] +

∫
Tn
e−2aτ (∂λAi)

2dx

)
, (IV.98)

with a > 0 a constant to be determined below, by (IV.107). The role of the second

term in this expression for EVP,k is much the same as that of the equivalent term in

the expression (IV.96) for EM,k.

For each of the energy functionals ELS,k, ESH,k, EM,k, ESP,k, and EVP,k, there

is a corresponding differential inequality of the form (IV.91 ) which could be used

to control the evolution of that energy functional if one knew the enough about

the corresponding function F . In the next section, we use bootstrap assumptions to

establish this knowledge. Bootstrap assumptions also play a role in controlling the

nature of the evolving metric g which appears in the differential operator �̃g as well

as elsewhere in the evolution equations (IV.63)-(IV.68), once we restore the relation

between g and the evolving field variables u, ui, and hij. We also discuss this in the

next section
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IV.4. Bootstrap Assumptions

In this section we state our bootstrap assumptions. The idea of bootstrap

assumptions is that one assumes that the evolving fields satisfy certain conditions

for t ∈ I ⊂ R1, one uses those conditions to prove that certain estimates

consequently hold (on I), and then one uses these estimates together with

the evolution equations to argue that the solutions (satisfying the bootstrap

assumptions) exist for all time t ∈ R1.

We use two bootstraps assumptions here. The first (which, following

Ringström. we call the “primary bootstrap assumption”) essentially says that

the evolving metric stays Lorentzian for t ∈ I. The second (called the “main

bootstrap assumption” ) says that the energy functionals for the fields evolving

from the perturbed initial data set remain small for t ∈ I. We now state these more

precisely, and discuss their immediate consequences.

To state the primary bootstrap assumption, it is useful to work with the

following notation: Let g be a real valued (n + 1) × (n + 1) matrix, with

components gµν for µ ∈ {i, 0} and i ∈ {1, ...n}. We use g[ to denote the n × n

submatirix with components gij, and we write g[ > 0 if this matrix is positive

definite. We use g−1 to denote the inverse of g and we use g] to denote the n × n

submatirix with components gij, presuming that these inverses exist. As before,

we let u[g] := 1 + g00, and we write v[g] := (g01, g02, · · · , g0n). We recall that g is

defined to be a Lorentz metric if it is symmetric, has n positive eigenvalues and 1

negative one. Noting that if u[g] < 1 and if g[ > 0, then g is Lorentzian we call g a

canonical Lorentz metric if these two inequalities hold. We use Ln to denote the set

of canonical n× n Lorentz metrics.
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Now, given a symmetric positive definite n × n matrix M with components

Mij, and given a vector w ∈ Rn, we write (presuming the Einstein summation

convention)

|w|M :=
(
Mijw

iwj
)1/2

.

If M is the identity matrix, we simply write |w| := |w|Id. We can now state the

following:

Definition IV.1. Let a > 0, c1 > 1, η ∈ (0, 1), κ0 and τ0 be real numbers. We say

that a function g : I × Tn → Ln, satisfies the primary bootstrap assumption

PBA{a, c1, η, κ0, τ0} on an interval I if

1

c1
|w|2 ≤ e−2pτ−2κ|w|2g[ ≤ c1|w|2, (IV.99)

|u[g]| ≤ η, (IV.100)

|v[g]|2 ≤ ηc−11 e2pτ−2aτ+2κ, (IV.101)

for all w ∈ Rn and all (τ, x) ∈ I ×Tn, where κ = τ0 + κ0.

The following lemma follows from Lemma 7 of [27].

Lemma IV.3. Assume g : I × Tn → Ln satisfies PBA{a, c1, η, κ0, τ0} on I. There

is a constant η0 ∈ (0, 1/4) such that if η ≤ η0, then

|v[g−1]| ≤ 2c1e
−2pτ−2κ|v[g]|, (IV.102)

|(v[g], v[g−1])| ≤ 2c1e
−2pτ−2κ|v[g]|2, (IV.103)

|u[g−1]| ≤ 4η, (IV.104)

2

3c1
|w|2 ≤ e2pτ+2κ|w|2g] ≤

3c1
2
|w|2, (IV.105)
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hold for all w ∈ Rn and all (τ, x) ∈ I ×Tn, where (v[g], v[g−1]) = g0ig
0i.

From now on, we assume that g satisfies PBA{a, c1, η, κ0, τ0} on an interval I,

where we define η and a by

η := min{η0, ηLS/4, ηSH/4, ηM/4, ηSP/4, ηVP/4}, (IV.106)

a :=
1

4
min{p− 1, ηLS , ηSH, ηM, ηSP , ηVP}. (IV.107)

As a consequence, the conclusions of Lemma IV.1 and Lemma IV.2 hold for the

energies of interest. Note that a and η only depend on n and p. Furthermore, we

define the following rescaled energies

ẼLS,k = e2aτELS,k, ẼSH,k = e−2pτ−2κ+2aτESH,k,

ẼM,k = e−4κ+2aτEM,k, ẼSP,k = e2aτESP,k, ẼVP,k = e−2pτ−2κ+2aτEVP,k,

and

Ẽk = ẼLS,k + ẼSH,k + ẼM,k + ẼSP,k + ẼVP,k.

Define the notation

‖f‖Hk =

∑
|α|≤k

∫
Tn

(∂αf)2dx

1/2

for the Sobolev norms. By definition, we have the following lemma

Lemma IV.4. Let c1 > 1, κ0 and τ0 be real numbers. Let η and a be defined by

(IV.106) and (IV.107) respectively and assume that g : I × Tn → Ln satisfies
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PBA{a, c1, η, κ0, τ0} on a time interval I. Then

eaτ [‖ψ‖Hk + ‖∂τψ‖Hk + e−(p−1)τ−κ0‖∂iψ‖Hk ] ≤ CẼ
1/2
LS,k, (IV.108)

eaτ [‖u‖Hk + ‖∂τu‖Hk + e−(p−1)τ−κ0‖∂iu‖Hk ] ≤ CẼ
1/2
LS,k, (IV.109)

e−pτ−κ+aτ [‖um‖Hk + ‖∂τum‖Hk + e−(p−1)τ−κ0‖∂ium‖Hk ] ≤ CẼ
1/2
SH,k, (IV.110)

e−2pτ−2κ+aτ [‖∂τgij − 2pgij‖Hk + e−(p−1)τ−κ0‖∂lgij‖Hk ] ≤ CẼ
1/2
M,k, (IV.111)

e−2pτ−2κ‖∂αgij‖2 ≤ CẼ
1/2
M,k, 0 < |α| ≤ k, (IV.112)

eaτ [‖A0‖Hk + ‖∂τA0‖Hk + e−(p−1)τ−κ0‖∂iA0‖Hk ] ≤ CẼ
1/2
SP,k, (IV.113)

e−pτ−κ+aτ [‖∂τAi‖Hk + e−aτ‖Ai‖Hk + e−(p−1)τ−κ0‖∂lAi‖Hk ] ≤ CẼ
1/2
VP,k , (IV.114)

hold on I, where κ = τ0 + κ0 and the constants depend on c1, n and p.

Now we define the main bootstrap assumption that we use in our proof of

global existence.

Definition IV.2. Let c1 > 1, κ0 and τ0 be real numbers and k0 > n/2 + 1 be an

integer. Let η and a be defined by (IV.106) and (IV.107) respectively. We say that

(g, ψ,A) satisfy the main bootstrap assumption MBA{a, c1, η, κ0, τ0, ε} on I, if

1. g : I ×Tn → Ln, ψ : I ×Tn → R and Aµ : I ×Tn → R are C∞,

2. g satisfies PBA{a, c1, η, κ0, τ0} on I,

3. g, ψ and A satisfy

Ẽ
1/2
k0

(τ) ≤ ε, (IV.115)

for τ ∈ I, where κ = τ0 + κ0.
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IV.5. Estimates and Differential Inequalities

In this section we derive estimates to control nonlinear terms (such as those

contained in the ∆ terms) and prove the differential inequalities which, so long as

the bootstrap assumptions hold, control the evolution of the energy functionals.

The differential inequalities (IV.122) - (IV.126) are crucial in our proof of global

existence.

First we show some estimates that we need in order to derive the differential

inequalities.

Lemma IV.5. Assume that (g, ψ,A) satisfies MBA{a, c1, η, κ0, τ0, ε} on I. Then

‖∆e‖Hk ≤ Cεe−2aτ Ẽ
1/2
k , (IV.116)

‖∆b,i‖Hk ≤ Cεepτ−2aτ+κẼ
1/2
k , (IV.117)

hold on I, where the constant coefficients depend on n, p, k and c1, and

‖∆E,γSP ,δSP [∂αA0]‖L1 ≤ Cεe−aτESP,k , (IV.118)

‖∆E,γVP ,δVP [∂αAi]‖L1 ≤ Cεe−aτEVP,k , (IV.119)

hold on I for |α| ≤ k, where the constant coefficients depend on n, p, k, c1 and an

upper bound on e−κ0. If we further assume that (IV.67) and (IV.68) are satisfied,

then for 0 < |α| ≤ k,

‖[�̃g, ∂
α]A0‖L2 ≤ Cεe−2aτ Ẽ

1/2
k , (IV.120)

‖[�̃g, ∂
α]Ai‖L2 ≤ Cεepτ−2aτ+κẼ

1/2
k , (IV.121)

85



hold on I, where the constant coefficients depend on n, p, k, c1 and an upper bound

on e−κ0.

Proof. Note that the algorithm for estimating nonlinear terms used in [28] applies

in our case. (IV.116) - (IV.121) follow by the same arguments as that in Lemma 11,

Lemma 15 and Lemma 13 of [27].

Lemma IV.6. Assume that (g, ψ,A) satisfies MBA{a, c1, η, κ0, τ0, ε} on I. If

(IV.63) – (IV.68) are satisfied, then

dẼLS,k
dτ

≤ −2aẼLS,k + Cεe−aτ Ẽ
1/2
LS,kẼ

1/2
k , (IV.122)

dẼSH,k
dτ

≤ −2aẼSH,k + CẼ
1/2
SH,k(Ẽ

1/2
LS,k + Ẽ

1/2
M,k) + Cεe−aτ Ẽ

1/2
SH,kẼ

1/2
k , (IV.123)

dẼM,k

dτ
≤ Ce−aτ ẼM,k + CẼ

1/2
LS,k0ẼM,k + CẼ

1/2
LS,kẼ

1/2
M,k + Cεe−aτ Ẽ

1/2
M,kẼ

1/2
k , (IV.124)

dẼSP,k
dτ

≤ −2aẼSP,k + Cεe−aτ Ẽ
1/2
SP,kẼ

1/2
k , (IV.125)

dẼVP,k
dτ

≤ −2pẼVP,k + Ce−aτ ẼVP,k + Cεe−aτ Ẽ
1/2
VP,kẼ

1/2
k + CẼ

1/2
VP,kẼ

1/2
SP,k, (IV.126)

hold on I, where the constants depend on n, p, k, c1 and an upper bound on e−κ0.

Proof. Notice that the equations (IV.63), (IV.64) and (IV.65) for u, ui and hij

differ from that in [28] only in the quadratic terms, which can easily be shown

to have the same estimates as those in [28]. The equation (IV.66) is exactly the

same as that in [28]. Thus the differential inequalities (139), (140) and (141) (with

Ĥ replaced by Ẽ and the subscripts ls, s and m replaced by LS, SH and M

respectively) of [28] hold without any change for our case.
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Thus we only need to show (IV.125) and (IV.126). Applying Corollary IV.2 to

equation (IV.67), we obtain

ESP,k
dτ

≤ −2ηSPESP,k +
∑
|α|≤k

∫
Tn

(∂τ∂
αA0 + γSP∂

αA0)(−∂α∆e + [�̃g, ∂
α]A0)d x

+
∑
|α|≤k

∫
Tn

∆E,γSP ,δSP [∂αA0]d x

≤ −2ηSPESP,k + C
∑
|α|≤k

(‖∂τ∂αA0‖2 + ‖∂αA0‖2)(‖∂α∆e‖2 + ‖[�̃g, ∂
α]A0‖2)

+ C
∑
|α|≤k

‖∆E,γSP ,δSP [∂αA0]‖1

≤ −2ηSPESP,k + C(‖∂τA0‖Hk + ‖A0‖Hk)(‖∆e‖Hk + Cεe−2aτ Ẽ
1/2
k )

+ Cεe−aτESP,k

≤ −2ηSPESP,k + Ce−aτ Ẽ
1/2
SP,kεe

−2aτ Ẽ
1/2
k + Cεe−aτESP,k (IV.127)

thus

−2ae−2aτ ẼSP,k + e−2aτ
dẼSP,k
dτ

≤ −2ηSPESP,k + Cεe−3aτ Ẽ
1/2
SP,kẼ

1/2
k + Cεe−aτESP,k.

and equation (IV.125) follows.
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To show (IV.125), note that γVP = δVP = 0. Applying Corollary IV.2 to

equation (IV.68), we obtain

EVP,k
dτ

≤ −2ηVP
∑
i

∑
|α|≤k

EγVP ,δVP [∂αAi] +
∑
i

∑
|α|≤k

∫
Tn

∆E,γVP ,δVP [∂αAi]d x

+
∑
i

∑
|α|≤k

∫
Tn
∂τ∂

αAi
[
−∂α(2peτ+τ0∂iA0 + ∆b,i) + [�̃g, ∂

α]Ai
]
d x

+ 2
∑
i

∑
|α|≤k

e−2aτ
∫
Tn

[
(∂αAi)(∂τ∂

αAi)− a(∂αAi)
2
]
d x

≤ −2aEVP,k + Cεe−aτEVP,k

+
∑
i

∑
|α|≤k

∫
Tn
∂τ∂

αAi
[
−∂α(2peτ+τ0∂iA0 + ∆b,i) + [�̃g, ∂

α]Ai
]
d x

+ 2
∑
i

∑
|α|≤k

e−2aτ
∫
Tn

(∂αAi)(∂τ∂
αAi)d x

≤ −2aEVP,k + Cεe−aτEVP,k + 2e−2aτ‖Ai‖Hk‖∂τAi‖Hk

+ ‖∂τAi‖Hk(Cεepτ+κ−2aτ Ẽ
1/2
k + Ceτ+τ0‖∂iA0‖Hk + ‖∆b,i‖Hk), (IV.128)

thus

2(p− a)e2pτ+2κ−2aτ ẼVP,k + e2pτ+2κ−2aτ dẼVP,k
dτ

≤ −2aEVP,k + Cεe−aτEVP,k

+Ce2pτ+2K−3aτ ẼVP,k + Cεe2pτ+2κ−3aτ Ẽ
1/2
VP,kẼ

1/2
k + Ce2pτ+2κ−2aτ Ẽ

1/2
VP,kẼ

1/2
SP,k,

and (IV.126) follows.

IV.6. Global Existence

We are now ready to prove that the solutions of (IV.63) - (IV.68) with small

data exist for all τ ≥ 0. First we need to relate initial data for (IV.32) - (IV.34)
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to that for (IV.63) - (IV.68). Before we do so, we need to determine initial time t0

from the given initial data (h̃, K̃, ϕ̃, π̃, Ẽ, B̃) on Tn. Since we assume ϕ̃ to be close

to the background solution, it is natural to determine the initial time by

〈ϕ̃〉 =
2

λ
ln t0 −

1

λ
c0,

where 〈ϕ̃〉 denotes the mean value of ϕ̃ over Tn,

〈ϕ̃〉 =
1

(2π)n

∫
Tn
ϕ̃d x.

Thus we define the initial data for (IV.63) - (IV.68) as follows

Definition IV.3. Let V0 > 0, p > 1 and let n ≥ 3 be an integer. Define λ by

(IV.9), V = V0e
−λφ and let c0 be given by (IV.10). Let (h̃, K̃, ϕ̃, π̃, Ẽ, B̃) be given

on Tn, where h̃ is a Riemannian metric, K̃ is a symmetric covariant 2-tensor, ϕ̃ and

π̃ are smooth functions, Ẽ is a 1-form and B̃ is a 2-form on Tn. Define the initial

time associated with (h̃, K̃, ϕ̃, π̃, Ẽ, B̃) as

t0 = exp

[
1

2
(λ〈ϕ̃〉+ c0)

]
, (IV.129)
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and define the initial data for (IV.63) - (IV.68) associated with

(h̃, K̃, ϕ̃, π̃, Ẽ, B̃) to be

u(0, ·) = 0, (∂τu)(0, ·) = 2np− 2t0(trK̃), (IV.130)

ui(0, ·) = 0, (∂τui)(0, ·) =
1

2
t0h̃

kl(2∂kh̃li − ∂ih̃kl), (IV.131)

hij(0, ·) = h̃ij, (∂τhij)(0, ·) = 2t0K̃ij − 2ph̃ij, (IV.132)

ψ(0, ·) = ϕ̃− 〈ϕ̃〉, (∂τψ)(0, ·) = t0π̃ −
2

λ
, (IV.133)

A0(0, ·) = 0, ∂τA0(0, ·) = −1

2
t0h̃

ij(B̃ji + ∂iB̃jkx
k), (IV.134)

Ai(0, ·) = −1

2
B̃ikx

k, ∂τAi(0, ·) = −t0Ẽi. (IV.135)

where all the indices are with respect to the standard coordinates on Tn.

Before we prove global existence, we define

κ = ln[4`(t0)]. (IV.136)

Since we defined κ = τ0 + κ0, we have

κ0 = ln
4

p− 1
. (IV.137)

Theorem IV.3. Let η and a be given by (IV.106) and (IV.107) respectively and

let k0 > n/2 + 1 be an integer. Let (h̃, K̃, ϕ̃, π̃, Ẽ, B̃) be given on Tn, where h̃ is

a Riemannian metric, K̃ is a symmetric covariant 2-tensor, ϕ̃ and π̃ are smooth

functions, Ẽ is a 1-form and B̃ is a 2-form on Tn. Define the initial data for

(IV.63) - (IV.68) by (IV.130) - (IV.135), where τ0 = ln t0 and t0 is given by
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(IV.129). Let κ be given by (IV.136). Assume there is a constant c1 > 2 such that

2

c1
|v|2 ≤ e−2κhij(0, x)vivj ≤ c1

2
|v|2 (IV.138)

holds for any v ∈ Rn and x ∈ Tn. There exist constants ε0 > 0 and cb ∈ (0, 1),

which should be small enough and depend on n, k0, p and c1, such that if

Ẽ
1/2
k0

(0) ≤ cbε, (IV.139)

holds for some ε ≤ ε0, then there is a global solution to (IV.63) - (IV.68).

Furthermore, (IV.99) - (IV.101) together with

Ẽ
1/2
k0

(τ) ≤ ε, (IV.140)

hold for all τ ≥ 0.

Proof. Let 0 < ε ≤ 1 and let A denote the set of s ∈ [0,∞) such that i) (g, ψ,A)

satisfy the main bootstrap assumption MBA{a, c1, η, κ0, τ0, ε} on I = [0, s); ii)

(g, ψ,A) is a solution to (IV.63) - (IV.68) on I × Tn with initial data specified by

(IV.130) - (IV.135).

Note that the initial value problem (IV.63) - (IV.68) with initial data (IV.130)

- (IV.135) is equivalent to that of (IV.32) - (IV.34) with initial data defined by

(IV.35) - (IV.41). Applying Proposition 1 of [27] to (IV.32) - (IV.34) with initial

data (IV.35) - (IV.41), we obtain a unique smooth solution to (IV.32) - (IV.34) on

some time interval (Tmin, Tmax). Hence we also obtain the same unique smooth

solution to (IV.63) - (IV.68) on the same interval. Assuming cb ≤ 1/2, then

(IV.140) is satisfied with a margin for τ = 0, so it is satisfied on an open time
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interval containing 0. It follows from (IV.138), u(0, ·) = 0 and ui(0, ·) = 0 that

(IV.99) - (IV.101) are satisfied on an open time interval containing 0. Thus a

solution of (IV.63) - (IV.68) exists and MBA{a, c1, η, κ0, τ0, ε} is satisfied on an

open time interval containing 0.

So far, we have shown that A is nonempty. In order to show A = [0,∞), we

need to show that it is closed and open. Assume 0 < T < ∞ and T ∈ A. From

the bootstrap assumptions and the equations, u, ui, hij, ψ and Aµ do not blow up

in C2. Due to (IV.99) and (IV.100), g00 and the eigenvalues of {hij} are bounded

away from zero . It follows from Proposition 1 of [27] that T < Tmax. Thus there is

a smooth solution beyond T , and the bootstrap assumption MBA{a, c1, η, κ0, τ0, ε}

holds on [0, T ]. This proves that A is closed.

We still need to prove that A is open. Let T ∈ A. There is a smooth solution

beyond T from the above arguments. To prove that A is open, wee need to show

that we can improve the bootstrap assumptions in [0, T ). Note that Lemma IV.6

applies on the interval [0, T ). Thus (IV.122) - (IV.126) hold on [0, T ). It has been

shown in the proof of Theorem 4 of [28] that (replace “Ĥ” by “Ẽ” and “lp” by

“LS”)

Ẽ
1/2
LS,k0(τ) ≤ CLS(cbε+ ε2)e−aτ/2, (IV.141)

ẼM,k0(τ) ≤ CM(cbε+ ε2)ε, (IV.142)

Ẽ
1/2
SH,k0 ≤

CSH
2a

(c
1/2
b ε+ ε3/2), (IV.143)

Ẽ
1/2
SP,k0(τ) ≤ CSP(cbε+ ε2)e−aτ/2, (IV.144)
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assuming cb ≤ 1. We only need to deal with ẼVP,k0(τ). Note that with k = k0,

(IV.126) differs from (IV.124) only by the decaying term −2pẼVP,k0 , thus

ẼVP,k0(τ) ≤ CVP(cbε+ ε2)ε (IV.145)

assuming cb ≤ 1. By assuming cb and ε to be small enough, depending on CLS , CM,

CSH, CSP and CVP , we conclude that

Ẽ
1/2
k0

(τ) ≤ 1

3
ε

holds in [0, T ). Thus A is open and the theorem follows.

Theorem IV.4. Consider a solution to (IV.63) - (IV.68) constructed in Theorem

IV.3. For every integer k ≥ 0, the inequality

Ẽ
1/2
k (τ) ≤ Ck. (IV.146)

holds for all τ ≥ 0 and for some constant Ck.

Proof. As a result of Theorem IV.3, we have (IV.122) - (IV.126) for all τ ≥ 0.

Define

Ẽs,k = e−aτ/2ẼSH,k, Ẽls,k = eaτ/2ẼLS,k .

From (IV.122) and (IV.123), we obtain

dẼls,k
dτ

≤ −aẼls,k + Cεe−3aτ/4Ẽ
1/2
ls,kẼ

1/2
k ,

dẼs,k
dτ
≤ −2aẼs,k + Cεe−aτ/4Ẽ

1/2
s,k (Ẽ

1/2
LS,k + Ẽ

1/2
M,k) + Cεe−5aτ/4Ẽ

1/2
s,k Ẽ

1/2
k .
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Due to (IV.124), (IV.125) and the above inequalities, we obtain

dEk
dτ
≤ Ce−aτ/4Ek + CẼ

1/2
LS,k0ẼM,k , (IV.147)

where

Ek = Ẽls,k + Ẽs,k + ẼM,k + ẼSP,k + ẼVP,k .

Since ẼM,k0 is bounded for all τ ≥ 0 and due to (IV.147), we have

dEk0
dτ
≤ Ce−aτ/4Ek0 .

Thus Ek0 is bounded and consequently, Ẽ
1/2
LS,k0 ≤ Ce−aτ/4. Together with (IV.147),

this inequality yields

dEk
dτ
≤ Ce−aτ/4Ek .

Thus Ek is bounded for all k and this leads to ẼLS,k, ẼM,k, ẼSP,k and ẼVP,k being

bounded. Applying this fact to (IV.123), we conclude that

dẼSH,k
dτ

≤ −2aẼSH,k + Ce−aτ ẼSH,k + CẼ
1/2
SH,k .

Assuming τ to be large enough, the second term can be absorbed into the first

term. Thus, ẼSH,k is bounded since it decays as soon as it exceeds certain value.

This proves the theorem.

IV.7. Causal Geodesic Completeness

Proposition IV.1. Consider a solution to (IV.63) - (IV.68) constructed in

Theorem IV.3. Let γ be a future directed causal curve on [s0, smax) with γ0(s0) = t0
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(t0 is given by (IV.129)). If the ε in Theorem IV.3 is small enough (depending only

on n, p and c1), then γ̇0 > 0 and

∫ smax

s0

[gij(t0, γ[)γ̇
iγ̇j]1/2ds ≤ d(ε)`(t0), (IV.148)

holds, where d(ε) is independent of γ, d(ε) → 1 as ε → 0, and where γ[(s) =

(γ1(s), γ2(s), · · · , γn(s)). Furthermore, assuming that γ is future inextendible, we

have γ0(s)→∞ as s→ smax.

Proof. Since γ is a future directed causal curve, we have the following inequalities

gµν γ̇
µγ̇ν ≤ 0, (IV.149)

g00γ̇
0 + g0iγ̇

i < 0. (IV.150)

Due to (IV.101), we obtain

|2g0iγ̇0γ̇i| ≤ η1/2|γ̇0|2 + η−1/2|g0iγ̇i|2 ≤ η1/2|γ̇0|2 + η1/2c−11 e2pτ+2κ−2aτδij γ̇
iγ̇j.

From (IV.99), the last term is bounded by η1/2gij γ̇
iγ̇j. Applying (IV.100) and

(IV.149), we find that

gij γ̇
iγ̇j ≤ c(η)γ̇0γ̇0, (IV.151)

where c(η)→ 1 as η → 0+. (IV.99) yields

δij γ̇
iγ̇j ≤ c1c(η)e−2pτ−2κγ̇0γ̇0 = c1c(η)(t/t0)

−2pe−2κγ̇0γ̇0. (IV.152)
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Due to (IV.140) and Sobolev embedding, we obtain, cf. (IV.111),

eaτ−2κ‖∂τhij‖∞ ≤ Cε.

Consequently,

‖(t/t0)−2pe−2κgij(t, ·)− e−2κgij(t0, ·)‖∞ ≤ Ca−1ε,

where C only depends on n, p and c1. Combining this with (IV.152), we obtain

|e−2κgij(t0, γ[)γ̇iγ̇j − (t/t0)
−2pe−2κgij γ̇

iγ̇j| ≤ Ca−1εc1c(η)(t/t0)
−2pe−2κγ̇0γ̇0.

Note that η in (IV.100) and (IV.101) can be replaced by Cε, where C only depends

on n, p and c1, due to (IV.109), (IV.110) and (IV.140). The above inequality

together with (IV.151) yields

e−2κgij(t0, γ[)γ̇
iγ̇j ≤ d2(ε)(t/t0)

−2pe−2κγ̇0γ̇0, (IV.153)

where d(ε) → 1 as ε → 0+. Consider (IV.150). Due to (IV.101) and (IV.152), we

find that

|g0iγ̇i| ≤ [e−2pτ−2κδijg0ig0j]
1/2[e2pτ+2κδij γ̇

iγ̇j]1/2 ≤ ξ(ε)|γ̇0|,

where ξ(ε) → 0 as ε → 0+. By making ε small enough (depending only on n, p and

c1), we find that γ̇0 > 0. Combine this result with (IV.153), we obtain (IV.148).

Finally, assume that γ is future inextendible and suppose that γ0 does not tend to

∞. Since γ̇0 > 0, γ0 has to converge to a finite number. Due to (IV.152), γ[ must

converge to a point on Tn. We have a contradiction.
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Proposition IV.2. Consider a solution to (IV.63) - (IV.68) constructed in

Theorem IV.3. If we assume that the ε in Theorem IV.3 is small enough (depending

on n, p and c1), then the spacetime is future causally geodesically complete.

Proof. Let γ be a future directed causal geodesic and assume that (smin, smax) is

the maximum range of the proper parameter. Let t = γ0(s). The geodesic equation

for γ′′ = 0 yields

γ̈0 + Γµ
0
ν γ̇

µγ̇ν = 0. (IV.154)

Due to (IV.140) and the algorithm of Subsection 9.1 of [27], we have the estimates

|Γ0
0
0| ≤ Cε(p/t)e−aτ ,

|Γ0
0
i| ≤ Cε(p/t)epτ+κ−aτ ,

|Γi 0 j − (p/t)gij| ≤ Cε(p/t)e2pτ+2κ−aτ .

Consequently, for t large enough or ε small enough, we have Γi
0
j γ̇

iγ̇j ≥ 0.

Combining these estimates with (IV.152), we conclude that

|Γ0
0
0γ̇

0γ̇0|+ 2|Γ0
0
iγ̇

0γ̇i| ≤ Cε(p/t)e−aτ |γ̇0|2,

where C only depends on n, p and c1. From these conclusions and (IV.154), we find

that

γ̈0 ≤ Cε(p/t)e−aτ γ̇0γ̇0 = Cε(p/t)(t/t0)
−aγ̇0γ̇0,
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for s ≥ s1. Note that γ̇0 > 0 and assume that ε is small enough (depending only on

n, p and c1). If we divide this equation by γ̇0 and integrate, we find that

ln
γ̇0(s)

γ̇0(s1)
≤ Cεp

∫ s

s1

t−1(t/t0)
−aγ̇0ds = Cεp

∫ γ0(s)

γ0(s1)

t−1(t/t0)
−adt ≤ Cεp/a,

where we let s1 be large enough such that γ0(s1) ≥ t0 if necessary. It follows that

γ̇0 is bounded away from 0. Hence we have

γ0(s)− γ0(s1) =

∫ s

s0

γ̇0(s)ds ≤ C|s− s0|,

for some constant C. Since γ0(s) → ∞ as s → smax, we conclude that smax = ∞.

Thus γ is future complete.

IV.8. Asymptotic Expansions

We obtain some detailed information about the asymptotic behavior in the

following proposition.

Proposition IV.3. Consider a spacetime constructed in Theorem IV.3. If the ε

in Theorem IV.3 is small enough (depending only on n, p, c1 and k0), then there is

a smooth Riemannian metric H on Tn and for every integer l ≥ 0, a constant αl

(depending only on n, l, p and c1) such that for all t ≥ t0, we have the following
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asymptotic expansions

‖φ(t, ·)− 2

λ
ln t+

c0
λ
‖Cl + ‖(t∂tφ)(t, ·)− 2

λ
‖Cl ≤ αl(t/t0)

−a, (IV.155)

‖Ei‖Cl = ‖∂iA0 − ∂0Ai‖Cl ≤ αle
κ(t/t0)

p (t/t0)
−1−a, (IV.156)

‖Bij‖Cl = ‖∂iAj − ∂jAi‖Cl ≤ αle
2κ(t/t0)

2p (t/t0)
−1−a, (IV.157)

‖(1 + g00)(t, ·)‖Cl + ‖(t∂tg00)(t, ·)‖Cl ≤ αl(t/t0)
−a, (IV.158)

‖1

t
g0i(t, ·)−

1

(n− 2)p+ 1
Hjmγjim‖Cl + ‖t∂t(

1

t
g0i)(t, ·)‖Cl

≤ αl(t/t0)
−a , (IV.159)

‖e−2κ(t/t0)−2pgij(t, ·)−Hij‖Cl

+‖e−2κ(t/t0)−2p(t∂tgij)(t, ·)− 2pHij‖Cl ≤ αl(t/t0)
−a , (IV.160)

‖e2κ(t/t0)2pgij(t, ·)−H ij‖Cl ≤ αl(t/t0)
−a , (IV.161)

‖e−2κ(t/t0)−2ptKij(t, ·)− pHij‖Cl ≤ αl(t/t0)
−a , (IV.162)

where γjim are the Christoffel symbols associated with the metric H and Kij(t, ·) are

the components of the second fundamental form induced on the hyperspace {t} ×Tn

by gµν with respect to the standard coordinates on Tn. In the above inequalities

‖ · ‖Cl denotes the C l norm on Tn.

Remark IV.1. Although it seems that the electromagnetic field grows exponentially

from (IV.156) and (IV.157), the electromagnetic field really decays. From our

asymptotic expansions, the observed electric field and magnetic field decay as

(t/t0)
−(1+a). Much stronger decay rate can be expected with further analysis.

Proof. (IV.146) combined with (IV.108), (IV.109), (IV.113) and (IV.114) gives us

(IV.155) - (IV.158). From (IV.111), the Cl norm of e−2κ∂τhij decays as e−aτ . Thus
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there exist some smooth functions Hij such that for every integer l ≥ 0,

‖e−2κhij(τ, ·)−Hij‖Cl ≤ αle
−aτ

holds for some αl and for all τ > 0. As a consequence, we obtain (IV.160).

Consider

e2κ∂τ (e
2pτgij) = 2pe2pτ+2κgij − e2pτ+2κgiµgjν∂τgµν .

The Cl norm of the right hand side of the above decays as e−aτ . It follows that

there exist some smooth functions H ij on Tn such that (IV.161) holds for all τ > 0.

We also conclude from above that H ijHjk = δik, which implies Hij is a Riemannian

metric on Tn and H ij is the inverse.

To obtain (IV.159) and (IV.162), we need to the apply the argument of [28].

The same argument applies here with one more term to be estimated, i.e. F0σFi
σ −

1
2(n−1)g0iFαβF

αβ, which has good decay property. We refer reader to pages 119 –

203 of [28] for details.

IV.9. Proof of the Main Theorem

Now we prove our main results Theorem IV.1 and Theorem IV.2.

Proof. Since most of the proof is the same as that of the corresponding proof in

[28, 27], we briefly sketch the ideas in the following steps.

Step 1: construction of a global in time patch. We construct a patch of

development of the data on U , of which we have control. To apply Theorem IV.3

to the piece of initial data on U , we need to construct initial data on Tn. Define

a cutoff function fc(x) ∈ C∞0 (B1(0)) such that fc(x) = 1 for |x| ≤ 15/16 and
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0 ≤ fc(x) ≤ 1. Define initial data (h̃, K̃, ϕ̃, π̃, Ẽ, B̃) on Tn as follows

h̃ij = fc(hij ◦ x−1) + (1− fc)e2κδij, (IV.163)

K̃ij = fc(Kij ◦ x−1) + (1− fc)
p

t0
e2κδij, (IV.164)

ϕ̃ = fcϕ ◦ x−1 + (1− fc)〈ϕ〉

− 1− fc
1− 〈fc〉

[〈fc(ϕ ◦ x−1)〉 − 〈fc〉〈ϕ〉], (IV.165)

π̃ = fc(π ◦ x−1) + (1− fc)
2

λt0
, (IV.166)

Ẽ = fc(E ◦ x−1), (IV.167)

B̃ = fc(B ◦ x−1), (IV.168)

where t0 and κ are as in the statement of Theorem IV.1. The indices on the right

hand side are with respect to the coordinates on U defined by x : U → B1(0)

and that on the left hand side are with respect to the standard coordinates on Tn.

Note that the last term in (IV.165) is to ensure that t0 defined in Theorem IV.3

equals that defined in Theorem IV.1. From the initial data set (h̃, K̃, ϕ̃, π̃, Ẽ, B̃)

constructed above, we further define the initial data for (IV.63) - (IV.68) according

to (IV.130) - (IV.135).

From (IV.16), we conclude, cf. Section 11 of [28], that

Ẽ
1/2
k0

(0) ≤ Cε,

where the constant depends on n and p. We also have (IV.138) for some c1 > 2, κ0

only depending on p and k0 only depending on n. As a consequence, by assuming

ε to be small enough depending on n, p and applying Theorem IV.3, we obtain a
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solution (g′, ψ′, A′) on (t−,∞) × Tn for some 0 < t− < t0. Due to Proposition IV.3,

we also have the asymptotic expansions (IV.155) - (IV.162).

Thus, we obtain a solution (g′, φ′, A′) to the modified field equations (IV.32),

(IV.33) and (IV.34). Furthermore, since the constraints (IV.12) - (IV.14) are

satisfied on B15/16(0) and the initial data are constructed such that Dµ(t0, ·) =

∂tDµ(t0, ·) = 0 and G(t0, ·) = ∂tG(t0, ·) = 0, by local existence and uniqueness of

solutions to hyperbolic equations, cf. Proposition 1 of [27], the solution (g′, φ′, A′)

satisfies the original Einstein-Scalar-Maxwell system of equations (IV.1) - (IV.3).

By assuming ε to be small enough, we get from Proposition IV.1, cf. Section 11 of

[28], that

(t−,∞)×B5/8(0) ⊆ D[{t0} ×B29/32(0)], (IV.169)

where we increase t− if necessay. Define the sets

U0,exc = D[{t0} ×B15/16(0)], U1,exc = D[{t0} ×B29/32(0)],

U2,exc = D[{t0} × B̄29/32(0)],

and Wi,exc = (Id× x−1)Ui,exc for i = 0, 1, 2.

Step 2: construction of a reference metric. To show that the patches of

spacetime development fit together to give a Cauchy development, we construct

a reference metric

g̃ = (1− fc ◦ x)(−dt2 + h) + (fc ◦ x)(Id× x)∗g′,

which is Lorentzian on (t−,∞)× Σ, cf. Section 11 of [28].
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Step 3: construction of local in time patches. To obtain a Cauchy

development of the initial data on Σ, we also need patches that are developments

of initial data on subsets of Σ that are not contained in U . Let p ∈ Σ be a point.

Consider an open subset S of Σ such that we have coordinates {y1, · · · , yn} on S

and p ∈ S. Define coordinates {y0, y1, · · · , yn} on R × S with y0 = t. Consider the

equations

∇α∇αφ− V ′(φ) = 0, ∇µF̃µν = ∇µFµν + ∂ν(G − DγAγ) = 0,

R̃µν = ∂µφ∂νφ+
2

n− 1
V (φ)gµν + FµσFν

σ − 1

2(n− 1)
gµνFρσF

ρσ,

where

R̃µν = Rµν +∇(µDν), Dµ = Γ̃µ − Γµ, Γ̃µ = gµνg
αβΓ̃α

ν
β,

G = ∇µAµ, F̃µν = Fµν + gµν(G − DγAγ).

In the above equations, Γ̃α
ν
β is the Christoffel symbol of the reference metric

g̃. Let Dµ = G = 0 on S. Since the constraints (IV.12) - (IV.14) are satisfied

on S, we have ∂tDµ = ∂tG = 0 on S. By local existence and uniqueness

results and arguments similar to that of [28, 27], we obtain a piece of development

(Wp, gp, φp, Ap) satisfying (IV.1) - (IV.3), where Wp is a spacetime neighborhood

containing p.

Step 4: gluing together of patches and embedding into a maximal Cauchy

development. Finally we glue the global in time patch W1,exc and the local in time

patches Wp together to get a Cauchy development (M, g, φ,A) of the initial data on

Σ. For details, see corresponding arguments of Section 16 of [27].
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IV.10. Conclusion

In this chapter we proved the asymptotic stability of the following inflationary

cosmological model

ĝ = −dt2 + (t/t0)
2pδijdx

idxj,

φ̂ =
2

λ
ln t− c0

λ
,

Âµ = 0,

as a solution to the Einstein-Maxwell-Scalar field equations

Rµν −
1

2
Rgµν = Tµν ,

∇µ∇µφ− V ′(φ) = 0,

∇µFµν = 0,

where

λ =
2

[(n− 1)p]1/2
, c0 = ln

[
(n− 1)(np− 1)p

2V0

]
, V (φ) = V0e

−λφ,

Tµν = ∂µφ∂νφ− gµν(
1

2
gρσ∂ρφ∂σφ+ V (φ)) + (FµσFν

σ − 1

4
gµνFρσF

ρσ).

There are other models where one might be able to obtain similar conclusions.

These other models include charged scalar fields and multiple scalar fields. Along

with considering various fields coupled to the Einstein equations, one can also

consider the models with non-flat spatial slices.
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CHAPTER V

CONCLUSION

This dissertation has presented the results of a study in two subjects

of mathematical general relativity. The first subject is on the properties of

cosmological Cauchy horizons. The existence of a cosmological Cauchy horizon

signals causality violation. The Strong Cosmic Censorship (SCC) conjecture is

that causality violation is non-generic. Hence the study of cosmological Cauchy

horizons is important to the understanding of SCC. Our results on cosmological

Cauchy horizons support SCC. We proved the existence of a Killing vector field

in the spacetime neighborhood of a Cauchy horizon for a large class of spacetimes

(Theorem II.1). This shows that the class of spacetimes considered, which contain

a compact Cauchy horizon with closed null geodesics, are non-generic. Theorem

II.1 is a generalization of a theorem obtained by V. Moncrief and J. Isenberg

[20] to higher dimensions. In their theorem, only 4 dimensional spacetimes with

electromagnetic fields have been considered. Along with extending the theorem of

V. Moncrief and J. Isenberg, we also remove the restrictive analyticity condition

(Corollary III.1) for vacuum spacetimes.

The second subject is on the stability of inflationary cosmological models. We

proved asymptotic stability for the model

ĝ = −dt2 + (t/t0)
2pδijdx

idxj,

φ̂ =
2

λ
ln t− c0

λ
,

Âµ = 0,
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as a solution to the Einstein-Maxwell-Scalar field equations. The precise statement

of the result is contained in Theorem IV.1 and IV.2. Theorem IV.1 says that

the perturbed spacetimes are also future causally geodesically complete if the

perturbation is small and Theorem IV.2 says that the perturbed spacetimes of

Theorem IV.1 aymptotically decay to the model spacetime. Our result generalizes a

theorem obtained by H. Ringström [28] to include electromagnetic fields.
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APPENDIX

GLOSSARY

Cauchy horizon A Cauchy horizon is the boundary of the domain of dependence of

a given spacetime subset.

Cauchy surface A Cauchy surface is a spacelike hypersurface of a spacetime such

that the spacetime is an evolution of the data given on that hypersurface.

Diffeomorphism A diffeomorphism φ : M → N between two smooth manifolds M

and N is a smooth bijective map such that there exists a smooth inverse.

Dominant energy condition (DEC) The energy momentum tensor Tµν satisfies the

dominant energy condition (DEC) if for all future directed timelike vector V ,

−T µ νV ν is a future directed timelike or null vector. It can be interpreted as

the condition that the speed of energy flow is always less than the speed of

light.

Fiber bundle (locally trivial) A (locally trivial) fiber bundle is a four-tuple

(E,B, F, p), where E, B and F are topological spaces and are called the total

space, the base space and the fiber respectively, and that p : E → B is a

map, such that for each point x ∈ B, there is a neighborhood U ⊂ B of x,

such that p−1(U) is homeomorphic to U × F . Moreover, the homeomorphism

ϕU : p−1(U) → U × F satisfies P ◦ ϕU = p : p−1(U) → U (local triviality),

where P : U × F → U is the projection map.

Killing vector field A Killing vector field is a vector field on a smooth manifold

with a metric such that the flow generated by the vector field leaves the

metric invariant.

107



Lorentzian metric A Lorentzian metric is a metric such that if expressed with

respect to any given basis, the matrix of metric coefficients has one negative

eigenvalue and all the other eigenvalues are positive.

Maximal Cauchy development (MCD) A maximal Cauchy development (M, g) of

initial data (Σ, h, k) is a spacetime development of the initial data (Σ, h, k)

such that any other spacetime development of the same initial data can be

isometrically mapped into a subset of (M, g).

Null geodesically incomplete A spacetime is null geodesically incomplete if there

exists an inextendible null geodesic with a finite proper parameter range.

Null hypersurface A hypersurface of a spacetime is null if the normal vector of the

hypersurface is null at every point on the hypersurface.

Product bundle A product bundle (also called a trivial bundle) (E,B, F, p) is a

fiber bundle such that E is homeomorphic to B × F .
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