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Controlling colloidal interactions continues to receive a great deal of attention due 

both to basic scientific interests as well as industrial applications. However, many 

aspects of interactions between microparticles remain poorly understood, including 

the attraction observed between particles with the same kind of charge (like-charge 

attraction). This situation hinders progress in the generation of colloidal self­

assembled structures. 

This thesis focuses on measurements of pair interactions of functionalized 

silica microspheres and the resulting insights into colloidal interactions. Silica 

microparticles were functionalized in two ways. For one method, each particle was 

coated with a lipid bilayer membrane. The charge density of the particle surface can 

thereby be easily tuned by controlling the type or amount of charged lipids. For 
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the other method, the cholera toxin subunit B protein (CTB) was bound to lipid­

functionalized microparticles. 

To measure pair interactions, we invented a line optical trap that enables nearly 

free one-dimensional Brownian motion of particles. Pair interaction energies of 

functionalized particles above the bottom of the experimental chamber can be 

extracted via a Boltzmann relationship. 

Both lipid-only and lipid-plus-protein functionalized microparticles show tunable, 

attractive pair interactions. For lipid-only coatings, the attraction becomes stronger 

by increasing the fraction of positively charged lipids. There is a linear relationship 

between pair potential and molar percentage of positively charged lipids. For lipid­

plus-protein coatings, attractive potentials were weakened monotonically by binding 

more CTB. Decompositions of potential curves allow identification of directly charge­

dependent and charge-independent contributions to colloidal like-charge attraction. 

Analysis shows that the correlations between attraction strength and range 

are opposite in these two sets of particles. Moreover, the correlations between 

particle-wall separation and attraction strength in lipid-only and lipid-plus-protein 

functionalized particles are also opposite. These comparisons show that like-charge 

attraction may result from more than one mechanism. 

Finally, we measured pair potential energies of lipid functionalized silica particles 

above a lipid functionalized glass chamber bottom, which exhibit a quadratic 

relationship between the attraction strength and the fraction of positively charged 
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lipids. Compared with the situation of particle functionalization only, this relation 

indicates that confinement-induced like-charge attraction can be modulated by 

altering electrostatic properties of the confining wall. 
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CHAPTER I 

INTRODUCTION 

1.1 Colloids 

1.1.1 Properties of Colloids 

1 

A colloid is a kind of mixture, in which one substance is distributed uniformly 

throughout another. The diameters of dispersed particle in colloidal system are 

usually in the range between lOnm and lOp,m, which are substantially larger 

than that of atom, ion or ordinary molecule. Colloidal systems are homogeneous 

mixtures, which means that particles are distributed uniformly in dispersion media. 

Considering all possible phase (gas, liquid, solid) combinations between dispersed 

particles and dispersion medium, there are eight categories of colloidal systems 

except gasjgas dispersion. for example, sol (i.e. ink, paint) is the system with solid 

particles dispersed in liquid. If immiscible liquid droplets are dispersed, an emulsion 

(i.e. mayonnaise, milk) can be formed, whereas gas particles in liquid are known as 

foam (i.e. soap foam). 

Due to the size of dispersed particles, colloidal systems have some important 

properties. Colloidal particles undergo Brownian motion, which was first studied 
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by Robert Brown when he observed pollen suspensions in 19th century. Brownian 

motion is a visible exhibition of the motion of solvent molecules, as colloidal particles 

gain kinetic energies by collision with surrounding molecules. Consider a colloidal 

particle with momentum jJ and mass m, its motion can be described by Langevin 

equation [1, 2]. 

djf { -- --- = --p+ f(t) 
dt m 

(1.1) 

The net force exerted on the particle is the sum of friction force _:!_if and a random 
m 

force l(t) due to collision. The time-average of the random force vanishes ([(t)) 0. 

For a particle of radius a, friction coefficient r 61rry0a, where ry0 is the viscosity of 

solvent. Deduced from Langevin equation, the mean squared displacement of particles 

can be expressed as 

(1.2) 

where Do is the diffusion coefficient which can be written by Einstein relation 

(1.3) 

The time 7 for a particle to diffuse over distance comparable to its radius a will 

be on the order of second. Colloidal particles are big enough to be observed under 

optical microscope. However, their Brownian motions imply that energy equipartition 

theorem can still be hold for them as well as for atoms or molecules. Therefore, 

colloidal systems can be visible models [3, 4] for nucleation, cystallization or phase 
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transition of atomic or molecular systems, imaging of colloids have provide some 

understandings of properties of glassy materials [5, 6]. 

Unlike a solution, if a light beam penetrates a colloidal suspension, it will trace a 

visible light path. Because the scale of colloidal particles are comparable with that 

of the wavelength of light, light will be scattered by particles in all directions. This 

is called Tyndall effect [7], which was used for ultramicroscope [8] to detect motions 

of small particles. Another consequence of the similarity between particle size and 

optical wavelength is that, colloidal particles can be used to create photonic band 

gap crystals [9, 10, 11]. In these periodic dielectric structures, there is a frequency 

of light, in which electromagnetic waves are forbidden to transmit. Therefore, such 

materials can guide and control light propagation. 

Another important property of colloidal systems is stability against aggregation. 

When immersed in an eletrolyte solution, most colloidal particles are electrically 

charged. Surface charges can come either from the ionization or dissociation of 

surface groups, or the absorption of ions in solutions. For example, surface of silica 

in water can be negatively charged by dissociation of silanol group [12] 

(1.4) 

Counterions in solvent can be attracted to form diffuse electrical double layers 

around charged particle surface. The resulting repulsive Coulomb interaction 

can compete with attractive Van Der Waals interaction to keep particles from 
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aggregation. This theory was first proposed and elaborated by Derjaguin, Landau, 

Verwey and Overbeek and named as DLVO theory [13, 14]. The potential energy 

of particles is the sum of the two mentioned interactions above. There are also 

some non-DLVO interactions between colloidal particles, such as steric interactions 

and hydration interactions, which also play important roles in stabilizing colloidal 

dispersions. Colloidal interactions can affect lots of industrial applications. For 

example, water can be purified by adding aluminum ion (Al3+) to attract negatively 

charged impurities, which will coagulate and be filtered out. Colloidal particles 

coated with certain hydrophilic polymers can escape the capture of body's immune 

system. Consequently, drugs, carried by such particles, can achieve longer blood 

circulation times and reach sick organs or tissues. 

1.1.2 Like-charge Attraction 

Colloidal interactions have been investigated intensively, not only due to their 

important roles in phase behaviors of colloidal suspensions, but also for their 

potentials in industrial applications. However, some interactions still remain unclear. 

According to DLVO theory, colloidal particles, with the same sign of charges 

(positive or negative) in monovalent electrolyte solutions, should always exhibit 

long-range repulsions due to electrolyte-mediated Coulomb interactions (In a short 

separation between particles, Van Der Waals attraction can be significant). In fact, 

unexpected attractions between such particles, called like-charge attraction, have 
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been observed not only in hard-sphere colloidal dispersions [15, 16, 17] but also 

between biomolecules in solutions [18, 19]. 

Like-charge attraction was first reported by Kepler and Fraden in 1994 [15]. In 

their experiments, polystyrene particles were confined between two glass plates in 

a H20/D20 (1:1) solution. Pair potentials, obtained from pair-correlation function, 

show a long-range (in {Lm scale) attractive intera.ction between particles, which is 

at least 100 times larger in magnitude than VanDer Waals attraction. Since then, 

various confined systems, in which, colloidal particles were confined by single [16, 20] 

or double [17, 21] charged glass walls, have been used to experimentally study like­

charge attraction. 

Confinement-induced like-charge attraction has also attracted attentions of 

theorists. The presence of a confining wall, often of the same charge sign as the 

particles, appears necessary to generate colloidal attractions. However, DLVO 

theory, which has successfully described interactions between isolated particles, failed 

to account for such mysterious colloidal attractions under confinements. Squire 

and Brenner (22] attributed like-charge attraction observed in Larsen's experiments 

[16] to hydrodynamic coupling. When one particle moves away from the wall, 

the surrounding liquid flow will pull the other particle nearby, which causes the 

appearance of the attractive well in the pair potential. However, this explanation 

cannot be applied to double-wall system, and since such hydrodynamic coupling 

relates with repulsive particle-wall interaction, the magnitude of resulting attraction 
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cannot be so large as they thought. Some calculations (23] also show stronger, 

long-range attractive interactions followed by the increased particle densities. In 

this case, such attraction was attributed to the coupling between charged particles 

and induced counterion distributions. It has been speculated that the densely 

packed particles can be analogous to the charged wall in the generation of colloidal 

attractions. However, no related theoretical work has been proposed to account 

for attractions between pair of like-charged colloidal particles under confinement in 

solutions with low salt concentrations. Grier, who thought this attraction wa.s due 

to the interaction between electrical double layers of charged wall and particles, 

suggested an phenomenological form [20, 24] to explain this wall-mediated attraction, 

in which, the experimentally observed attraction can be interpreted via a supposed 

charge density due to the nonuniform conterion distributions around particles. 

However, confinement-induced like-charge attraction is still an unsolved mystery in 

colloidal science. It should depend on the properties of particle, confining wall and 

surrounding solutions. These factors, especially the properties of particle itself, have 

not previously been systematically varied in experiments. An important biomaterial, 

lipid membranes, can provide a means of addressing these issues. 

1.2 Lipid Bilayer 

1.2.1 Properties of Lipids 

Lipids are the primary structural constituents of cell membranes. The structure 
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of lipid molecules shows them an amphiphilic nature, which can be broken down 

into two main components. One is a polar, hydrophilic head; the other is an 

apolar, hydrophobic tail. Hydrophilic head and hydrophobic tail are covalently 

linked by a glycerol group. Hydrophilic head may contain some charged groups, 

like phosphate, choline ... etc. There are a variety of lipids with various charge 

arrangements in their headgroup. Phosphatidylcholine (PC), sphingomyelin (SM) 

and phosphatidylethanolamine (PE) are the most common lipids in biological 

membranes, their heads have both positively charged and negatively charged groups 

without net charges. Such lipids are called ziwitterionic lipids. For other lipids, 

their headgroups maybe have net negative charges (e.g. phosphatidylserine (PS) 

), positive charges (e.g. sphingosine) or lack charged residues (e.g. diacylglycerol). 

Hydrophobic tails are composed of one or two fatty acid chains, on average, 14 to 20 

carbon atoms per chain. Fatty acid chains can be saturated or unsaturated. Lipid 

tails can be defined by the length and degree of saturation of hydrocarbon chain. 

Both PC and PE lipids have two fatty acid chains, each of which usually has an 

unsaturated carbon-carbon bond. The presence of unsaturated bond reduces the 

number of possible configurations of fatty acid chains, which yields an increased 

volume occupied by tails. 

When lipid molecules expose to aqueous environments, their headgroups show 

affinity to water molecules, whereas, non-polar fatty acid chains will repel water due 

to the high entropic cost of ordering water near the chains. At low concentrations, 
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micelle liposome 

FIGURE 1.1: Cross sections of a micelle and a liposome. Hydrophobic single-chain 
tails are enveloped in the center of micelle. For the liposome, an aqueous core is 
enclosed by lipid bilayer. In each plot, circles and lines represent hydrophilic heads 
and hydrophobic tails, respectively. 

lipid molecules will exist as monomers. Aggregation will be triggered by the reach 

of the critical concentration. The shape of aggregation is strongly influenced by the 

structure of lipid molecule. Single-chain lipids, with a critical concentration of 10-6M 

usually form micelles. In contrast, lipids with two fatty-acid chains have a lower 

critical concentration (about 10-10M) and usually form bilayers with a thickness of 

4rv5nm. Without confining surfaces, lamellar bilayers will form a closed structure to 

minimize the contact between hydrophobic core and water. The closed lipid body in 

three dimension is called lipid vesicle or liposome. The difference between micelle and 

lipid vesicles are shown in Fig.l.l. Instead of a hydrophobic core in micelle, there is 

an amount of solution trapped inside lipid vesicle. 

1.2.2 Supported Lipid Bilayers 

The real cell membrane is a complex structure, which is primarily composed 

of phospholipids and proteins with small amount of other molecules, such as 
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carbohydrates. Our current understandings of cell membrane are based on fluid 

mosaic model, proposed by Singer and Nicolson in 1972 [25]. Phospholipids are 

organized in the form of bilayers, which are fluid in the membrane plane. Various 

proteins can incorporate into lipid bilayer in different ways: Peripheral proteins 

are attached to the membrane surface, whereas transmembrane proteins penetrate 

through membranes and connect intra- and extra- cellular environments. Cell 

membrane exhibits heterogeneity across lipid bilayers. Unlike outer leaflet of bilayer, 

which mainly consists of zwitterionic lipids (e.g. PC, SM), many lipids in intracellular 

side are charged (e.g. PS). Such properties of cell membrane are very important to 

maintain cell functions. Lipid bilayer serves as a barrier to separate cell's interior 

from outer environments, proteins can make membrane selectively permeable to 

substances. In this way, cell machinery can transport stuff across membrane in a 

controlled way. 

(b) 

colloidal 
particle 

FIGURE 1.2: (a) The deposition of lipid bilayers on planar substrate. is a 
thin water layer (lnm) between substrate and hydrophilic heads of lipids. (b) Self­
assembly of lipid bilayers on colloidal particle. The type of lipid is denoted by the 
color of its hydrophilic head. 

Supported lipid bilayer has been widely used to model real cell membranes 
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since early 1980s [26, 27, 28, 29]. Harden McConnell's group [27] first developed a 

lipid bilayer system on an oxidized silicon. Lipid bilayers were usually deposited 

on substrates with hydrophilic surfaces, such as fused silica [27, 30], mica [31, 32], 

borosilicate glass [27, 33] or oxidized silicon [27]. Sometimes soft polymers were 

inserted between lipid bilayers and substrate to serve as a cushion to minimize 

membrane-substrate interactions [34] or keep transmembrane proteins from 

contacting with substrate [35, 36]. The fusion of small unilaminar vesicles (SUVs) 

[27, 37] is the most common method to form supported lipid bilayers. SUVs first 

adhere to the surface of substrates, then they will rupture [37] and self-assemble on 

the substrate to form supported lipid bilayer (Fig.1.2(a)). We will discuss the method 

to make supported lipid bilayer in later chapters. The process of vesicle deposition 

and rupture depend on properties of lipids, substrates and surrounding solutions 

{33, 38]. Interactions involved in this process include electrostatic, Van Der Waals 

as well as hydration interactions. Instead of being tightly bound, the lipid bilayer 

is separated from substrate by a thin layer (1nm) of water, which is very important 

to keep it fluid. The fluidity of supported lipid bilayer can be easily quantified 

by fluorescence recovery after photobleaching (FRAP) techniques [39]. An area of 

fluorescence-labeled lipid bilayers is photobleached, Brownian motion will made the 

fluorescent lipids outside diffuse in, finally, the fluorescence of the photobleached 

area can return. The fluorescence recovery time can be used to determine the 

diffusion coefficient of fluorescence-labeled lipids. The measured diffusion coefficients 
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of supported lipid bilayer are about 1rv10{lm2 js. Stabilized and confined by 

substrates, lipid bilayer is still a fluid with the feasibility of protein incorporation, 

and asymmetric lipid distributions can also be made [40]. Therefore, the environment 

of cell membranes can be mimicked. Such structure can make lipid bilayers be 

easily accessed by imaging systems, such as atomic force microscopy(AFM) [38, 41] 

and total internal reflection florescence microscopy(TIRFM) [42, 43]. Not only can 

molecular interactions [43, 44] happening on surfaces be precisely probed, but also 

some important processes in cell biology, such as membrane fusion [45, 46], cell 

adhesion and signaling [29, 47] can be studied. 

1.3 Research Motivation on Like-charge Attraction 

Despite of studies over last two decades, confinement-induced like-charge 

attraction is still poorly understood. The whole system consists of colloidal particles, 

confining wall and electrolyte solutions, which seems simple. However, the relations 

between attractive potentials and some properties of the system components are 

still not well investigated. For example, in Larsen's experiments [16], the interaction 

between 0.65{lm diameter polystyrene particles is purely repulsive when the distance 

between glass chamber bottom and particle is 9.5J-lm, instead, decreasing the 

distance to 2.5J-lm, there is an attractive interaction between particles. However, 

what does the interaction look like with particle-wall separations between 2.5J-lm 

and 9.5J-lm, which span several particle's diameters? what is the relationship 
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between the magnitude of attractive interaction and particle-wall separation? In 

previous experiments, controlled parameters were the ionic strength of solutions 

[20], particle-wall separation [16, 21], particle density [15, 48], and not intrinsic 

properties of particles themselves, such as surface charge density. We believe that 

this lack of particle control has contributed to the lack of satisfactory explanations 

for confinement-induced like-charge attraction. To provide more insights into such a 

mysterious phenomenon, we need an experimental system with tunable, attractive 

colloidal interactions. 

The lipid and protein functionalization can be a good candidate for our needs. 

Fluid lipid bilayers can self-assemble on the surface of a colloidal particle shown 

in Fig.1.2(b). Deposited on colloidal particles, lipid bilayers are more stable and 

uniform than liposomes, which makes this cell-like structure a good cell membrane 

model [49, 50], and it can also be applied in biosensing [51] and drug design [52]. The 

electrostatic properties of colloidal particles, i.e. surface charge density, can be easily, 

finely adjusted by tuning the lipid composition. Bound peripheral proteins on the 

surface can provide additional specific linkages between particles in addition to the 

adjustments of lipids distribution and surface fluidity. Moreover, Some experiments 

have already shown that lipid and protein functionalization can trigger phase 

transition [53, 54] in many-body colloidal dispersions, which implies that surface 

lipids and proteins can alter interparticle interactions. Therefore, lipid bilayers and 

bound proteins could be powerful tools to control colloidal interactions. 
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1.4 Dissertation Goals and Accomplishments 

This dissertation presents an experimental investigation of confinement-induced 

like-charge attraction. With an emphasis on modulation process, we attempt 

to provide more profound understandings about this question. Unlike previous 

experiments, we want to control attractive interactions by modifying surface 

properties of colloidal particles, i.e. particle functionalization. Biomolecules, 

especially protein and DNA, has been used for a while to control colloidal 

interactions due to their variety and binding specificity. However, such controls 

were either poor or only in a short range, which cannot meet our needs. Lipid 

bilayers supported by colloidal particle shed a new light on the control of colloidal 

interactions. Surface properties of colloidal particles can easily controlled by lipid 

and protein as mentioned above. 

In our experiments, two different kinds of functionalized particles were used, lipid­

only-coated silica particles, in which, colloidal surface charge density was modulated 

by the control of charged lipid compositions, and lipid-plus-protein-coated particles, in 

which, the amount of proteins bound on surface was controlled. Instead of quantifying 

interparticle interactions via many-body measurements, we want to determine the 

fundamental pair interactions of such particles under a confinement of single wall. 

Optical tweezers have long been used to characterize colloidal interactions. We 

invented a new set of tunable line optical tweezers via holographic optical tweezers 

(HOTs) technique to facilitate our pair interaction measurements. Pair interaction 
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can be deduced from the probability distribution of particle's center-to-center 

separations. The applicabilities of line trap setup and method to out true pair 

interaction energies were first demonstrated by measuring pair potentials of bare 

silica particles. 

Both lipid-only and lipid-plus-protein functionalized silica microparticles were 

found to show long-range, tunable, attractive pair colloidal interactions. The 

linear relation between attractive depth and molar percentage of charged lipids in 

lipid-only case allowed us to separate charge-dependent and -independent terms of 

pair potential, which yields a purely repulsive interaction for the charge-dependent 

terrrL A similar procedure of term separation was also applied to lipid-plus-protein 

case. 

We employed reflection interference contrast microscopy (RICM) to measure mean 

separations between particles and confining chamber wall. The revealed different 

relationships between attractive depth and mean height, or effective attractive range 

for the two particle types, imply that maybe not only one mechanism is in charge of 

confinement-induced like-charge attraction. 

Our data indicate that particle-wall interaction dominates pair potential 

measurements. To further quantify the of confining wall on colloidal pair 

potential measurements, we deposited lipid bilayers with different compositions on 

glass bottom of chamber. The subsequent experiments show these modifications can 

modulate like-charge attraction between two lipid-coated silica microparticles. 
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1.5 Dissertation Overview 

In Chapter II, after a short historical introduction of optical tweezers, we will first 

discuss the theory of optical trapping, Following that, studies of Brownian motion 

of a colloidal particle in a single point trap will be presented. Holographic optical 

tweezers (HOTs) technique will be discussed in the last part. 

The method to measure pair colloidal interactions will be discussed in Chapter III, 

we will first overview DLVO theory and analyze possible existing interactions between 

micron-size silica particles. Then the setup of line optical traps will be discribed after 

a short review of previous methods in pair interaction measurements using optical 

tweezers. Before we present our measured pair potentials of bare silica particles, we 

will analyze all the possible factors that will affect pair interaction measurements, and 

the corresponding methods or procedures to eliminate such effects. The generation of 

tunable line trap has been reported with G.T.Tietjen and R.Parthasarathy in Optics 

Express [55]. 

In Chapter IV, RICM technique will be introduced. The principle and the 

validation of the methods to measure particle-wall separation by single-wavelength 

RICM will be presented. 

Pair interaction energy measurements of lipid-only functionalized silica particles 

will be presented in Chapter V. Following the introduction of experimental methods, 

colloidal pair interactions tuned by lipid compositions will be shown. The linear 

relationship between the colloidal pair potential and the fraction of charged lipids 
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allows us to decompose interaction energy into charge-dependent and -independent 

terms, in which the interaction related with lipid charges is purely repulsive. Results 

shown in this chapter have been reported with R.Parthasarathy in a published 

paper[56]. 

In Chapter VI, we will first introduce tunable pair colloidal interactions by lipid­

plus-protein functionalization, Similar as lipid-only functionalized microparticles, pair 

interaction energies of CTB-bound particles can be also decomposed into CTB- and 

membrane-related terms. Then, two sets of tunable like-charge attractions by lipid­

only and lipid-plus-protein functionalization will be compared. We find that the 

relationships between the depth of attractive potential and effective attractive range 

are opposite. Furthermore, we measured particle-wall separations via RICM, the 

opposite relationships between the depth of attractive potential and mean height of 

particle in these two kinds of functionalization suggest that more than one mechanism 

may be in charge of confinement-induced like-charge attraction. Results shown in this 

chapter have been reported with R.Parthasarathy in a published papers [57]. 

In Chapter VII, we will introduce pair potential measurements of lipid-coated 

silica particle confined by electrostatically-modified chamber bottoms, which were also 

coated with lipid bilayers to tune charge densities. Our data indicate the modified 

electrostatic properties of confining wall can modulate like-charge attractions between 

colloidal particles. 
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We will draw the conclusion and give some directions for future work in Chapter 

VIII. 
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CHAPTER II 

OPTICAL TWEEZERS 

Most of experiments described in this dissertation are related with optical 

tweezers. In this chapter, we will first provide a basic overview emphasizing on 

the physics of optical trapping. Holographic optical tweezers (HOTs) is a recently 

developed technique to control positions of multiple point optical traps in three-

dimension, which were implemented by us and others using liquid crystal spatial 

light modulators (SLMs). Vve will describe the use of SLMs to modulate optical 

wavefronts and the method to generate phase masks. Finally, after a description of 

HOTs system setup in our lab, we will investigate the motions of a silica microparticle 

trapped in a single point trap. 

2.1 Introduction 

The origin of optical tweezers comes from the study of radiation pressure. 

According to quantum theory, light can behave like particles, each of which possesses 

a momentum p, 

h 
p=-

A 
(2.1) 

where h is the Planck constant, and ,\ is the light wavelength. Due to forces exerted by 

radiation pressure on objects, momentum will be transferred from photon to objects 
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upon their collision. Ashkin, the pioneer in laser-based optical trapping, designed a 

series of experiments to examine particles' motion under radiation pressure forces in 

the 1970s [58, 59]. In his experiments, he found an unexpected force acting on latex 

particles near a focused argon laser spot, which could pull the particle from the edge 

to the center of focus. This force, later known as the gradient force, leads to the 

development of optical tweezers. 

Optical tweezers are powerful tools to control and manipulate the motion of 

roughly micron-size objects. With lasers and couple of lens, by focusing laser beam 

through objective lens in an inverted microscope, a single-point trap system can be 

simply set up. Depending on laser power, optical trap can provide gradient forces 

that are large enough to suppress particle's Brownian motion and gravity. Motions of 

dielectric particles, as small as 25nm [60] in diameter, can be confined. Viruses [61], 

bacteria [61, 62] and cells [63, 64], which do not have regular, uniform geometries, 

can also be trapped without damage. The strength of trap can be modulated by 

laser power, whereas, beam steering systems, such as scanning mirrors, acoustic-optic 

deflector (AOD), can provide precise, real-time control of the trap position. Trapped 

objects can be easily manipulated and moved laterally in focusing plane. 

Combined with high-resolution imaging systems, the position of a trapped 

microparticle can be determined with nanometer precisions. Therefore, Forces 

applied on it, as small as several piconewtons, can be detected. This property makes 

optical tweezers useful for measuring forces related with motions of biomolecular 
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motors, or mechanical properties of biomolecules. One of such experiments was 

done by Svoboda et.al. [65], who found that single kinesin molecule walks along a 

microtubule with each step of 8nm. In these similar experiments, trapped beads 

were attached to molecules, real-time displacements of particle away from trapping 

center were tracked, which can reveal the subtlety of biomolecular motions. The 

hidden biomolecular interactions can thereby be easily probed. 

2.2 Optical '!rapping Physics 

The most common method to make optical trap is focusing a laser beam through 

an objective lens. Consider the Mie scattering regime [58], in which, the radius of 

particle a is much larger than wavelength ,\ (a » ,\). When a dielectric particle is 

near the focused spot, it will experience two kinds of forces due to momentum transfer 

from photon to it. When light is incident on the particle surface, photons involved 

in reflection will give a momentum to particle along light propagation direction, and 

the resulting force, scattering force F8 , will push the particle away from focus. Some 

of the light is also transmitted through the particle. Indexes of refraction are usually 

different between particle and outside environment, which will make propagation 

direction of transmitted light different from that of incident light. The resulting 

momentum change of photons after transmittance will also exert a force on particle, 

which is called gradient force, F9 . If index of refraction of particle is greater than 

that of surrounding medium, gradient force will be along the direction of intensity 
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gradient and pull particle to the center of focus, where the light intensity is the 

highest. Otherwise, it will push the particle away from focus. Propagating beam ray 

trajectories and resulting forces exerted on particles are shown in Fig 2.1. 

FIGURE 2.1: Interactions between a dielectric particle and beam rays near focus. 
The gradient force F9 originates from the refraction of light through particle. Light 
reflection on the surface of particle gives rise to scattering force F8 • b.p denotes the 
change of light momentum. 

Force analysis in the Rayleigh regime, in which particle's size is much less than 

light wavelength (a« .A), can offer the physical insight of optical trapping. Dielectric 

particles can be simplified as an induced point-dipole in electromagnetic fields. The 

dipole moment P(r, t), induced by electromagnetic fields E(r, t), can be expressed as 

[66, 67] 

(2.2) 

where Eo is the dielectric constant in vacuum, a is the radius of particle, and m = 
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ndn2 is the ratio of refractive index of particle and medium. Gradient force comes 

from the interaction between induce-dipole and electric field, which is similar to forces 

involved in dipole alignment in electrostatics. 

- - - m2 - 1 2 -# 

F9 (r, t) = [P(r, t) · V']E(r, t) = 27rn2E0a 
2 

\7 E(r, t) 
m +2 

(2.3) 

The force exerted on particle can be derived from the time-average of above equation. 

(2.4) 

where I(r) is the intensity of light. First, the above equation clearly shows the 

dependence between the magnitude of gradient force and the intensity gradient. 

Moreover, a particle can move towards or away from focus under gradient force, 

which is determined by the refractive index of particle relative to its surrounding 

medium. The induced dipole also follows the oscillation of external electric field, 

which results in the emissions of electromagnetic waves. The field generated by 

oscillating dipole will interact with external field, which gives rise to the scattering 

force, Fs [67] 

~ n2 
F8 (r) = -o1(r)i 

c 
(2.5) 

where c is light speed in vacuum, and O" is the scattering cross section, given by 

(2.6) 

The scattering force is along the direction of light propagation, and proportional to 

light intensity. 
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In the Mie regime, although above formula are not valid, trapped objects are still 

balanced by gradient force and scattering force. To stably trap micron-size objects, 

first, refractive index of objects should be higher than that of surrounding medium 

(n1 > n2), which guarantees that the direction of gradient force points to the focus 

center. Then, the gradient force must be greater than the scattering force F9 > F8 , 

which can keep the trapped object from escaping. In experiments, an objective lens 

with high numerical aperture (NA) is usually used. Due to its high convergence angle, 

the focused beam spot can have a steep gradient, which can overcome scattering force 

and make objects tightly trapped. 

2.3 Holographic Optical Tweezers 

Since their first demonstration in 1986 [60], optical tweezers have opened a new 

avenue for studying microscopic phenomena involved in cells, biomolecules and 

colloids. Some developments have enhanced the ability of optical tweezers to trap 

multiple objects and objects with non-standard geometries. Double-point optical 

tweezers [68] can be constructed by focusing two split beams from a laser through 

objective lens. With a beam steering system equipped in each optical path, these two 

traps can be separately controlled. Two trapped beads connected by biopolymers is 

a very common setup in biomolecular interaction measurements with high stability. 

One of dual trap setups reported by Moffitt et.al. [69] reaches an angstrom-scale 

spatial resolution. Moreover, the generation of multiple point optical traps can favor 
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studies involved in many-body systems, such as cell ensemble and colloidal dispersion. 

In these situations, a well-controlled ensemble can be achieved by introducing optical 

trap arrays. Each individuals are trapped simultaneously with a well-defined 

distribution, which can provide a reproducible, consistent initial ensemble state for 

study. Acoustic-optical deflector (AOD) is a widely used equipment to deflect a laser 

beam with a repetition rate of kilohertz. Particles at multiple spots can be trapped 

in a 'time-shared' style [70], if the timescale of laser beam deflection is much smaller 

than that of particles' Brownian motion. However, besides the complicated setup of 

optical trap array based on AOD , the increase of number of trapping sites requires 

a faster scanning speed, whereas, focused beam needs to spend sufficient time in 

each site to guarantee a stable trapping. Compromise of these two factors will limit 

the number of effective trapping sites. The need to generate optical trap array in a 

more effective way drove the development of Holographic Optical 

technique. 

The pioneer work in HOTs was done by Fouriner in 1995 [71] when he created 

multiple optical with a glass hologram. Glass-etched diffractive optical elements 

(DOE) [71, 72], encoded with spatial phase profiles, were directly illuminated by laser. 

With the wavefront modulated by DOE, incident beam, by transmission or reflection, 

can be diffracted to form desired intensity distribution (i.e. multiple optical traps) 

near the focal plane of objective lens. However, for each given spatial distribution of 

optical trap array, a hologram needs to be made with corresponding phase profile. A 
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hologram library is needed to perform desired control of trapping system, which is 

very inefficient, and such control are limited by hologram scanning rate. Therefore, in 

order to dynamically manipulate each individual traps, lately, computer-based DOEs 

[73, 74, 75], especially spatial light modulators (SLM) began to appear. 

Polarization 

X 

FIGURE 2.2: Refractive index ellipsoid of liquid crystal for a linear polarized light 
beam propagating along z-axis. See text for details of denotations. 

SLMs are devices that can modulate the wavefront of an incident light beam. 

Each pixel of SLM is made by nematic liquid crystal which is uniaxial. One axis, 

which is the director, is longer and preferred with index of refraction ne, the other 

two axis are equivalent with index of refraction of n0 • Therefore, when traveling inside 

liquid crystal, incident beam with certain polarization direction will break down into 

two components with different traveling speeds, which is called birefringence. Let us 

consider this situation shown in Fig.2.2. A linear polarized beam travels along z-

direction into a liquid crystal with an angle ¢ between its polarization direction and 

x-axis. The director of liquid crystal locates in y-z plane and forms an angle e with 
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z-axis. According to its polarization direction, the beam can be decomposed into 

two parts, x-components propagates with refractive index of n 0 , and y-component 

propagates with refractive index of n( e), which can be expressed by 

(2.7) 

Therefore, after these two components recombine together upon emerging from liquid 

crystal, not only the polarization state of the beam possibly has changed, but also a 

phase shift, which depends on the orientation of liquid crystal, happens 

(2.8) 

where A is the light wavelength and dis the thickness of liquid crystal sample. Note 

that if the polarization direction is parallel or perpendicular with the direction of 

director, no phase shift (birefringence phenomena) will happen. The possible phase 

shifts should be between 0 and 
2
; (ne -n0 )d. Therefore, to realize phase modulations 

in a full 21r range, first, SLM must be illuminated by a linear polarized beam. Second, 

its thickness needs to be appropriately selected. Usually, reflective SLM was adopted 

due to its efficiency, in which the contribution of thickness to phase shift is doubled 

due to reflection. 

A liquid crystal flows like ordinary liquid, but its orientation can be easily aligned 

by an external electromagnetic field. e mentioned above, can be set by applied voltage, 

which consequently can control phase shift of reflected light. For computer-based 

SLM control, voltage applied on each pixel depends on its grey level value assigned 
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by computer. The HOLOEYE 1080P SLM used in our experiments has a 1920 x 1080 

pixels resolution with a 8 pm pixel pitch, and it can provide 8-bit grey-level phase 

control. The possible gray-level values assigned to each pixel are integers between 

0 and 255, each of which can address different applied voltages , then the resulting 

phase shifts relevant to tilted angles of each pixel can be a series of discrete values at 

an interval of ~:in a full 27f range. Therefore, phase of reflected light can be finely 

manipulated pixel by pixel. The resulting phase shift distribution on SLM , which 

is encoded by gray-level value on each pixel, can modulate the wavefront of reflected 

beam to form a desired intensity distribution on the focal plane of objective lens. 

Strictly speaking, phase mask displayed on SLM should be calculated from inverse 

Fourier transform of the desired intensity distribution on focal plane. It is seldom 

that an analytic solution for corresponding phase distribution can be found, instead, 

iterative algorithms needs to be applied to numerically reconstruct wavefront. Luckily, 

only two simple, analytically solvable phase masks are often sufficient to generate 

multiple point traps in three-dimension. If the position of a pixel in SLM plane can 

be denoted by jJ = (J.Li , vk), the phase of a single point trap appearing at r'p = (xp 

, Yp) in focal plane can be expressed by a phase function that varies linearly with 

position [75]. 

(2.9) 

In this case, the function of SLM is similar to that of prism, which diffracts a beam to 

focus on any desired positions in focal plane. To move single point trap out of focal 
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plane, the phase of Fresnel lens needs to be applied 

(2.10) 

where Zp is the displacement of a trap away from focal plane. Phases of each single 

trap need to be added together to generate optical trap array. 

'P =I: 'P'JYf'izm(Xp, Yp) + 'Plens(zp) 
p 

(2.11) 

Due to the phase superposition, each individual trap can be controlled independently 

by modifying corresponding part of phase mask. 

Compared with AOD, the control of computer-based SLM to generate multiple 

point traps has two advantages. First, instead of single-beam scanning with AOD, 

each trapping generated by SLM is formed by a static focused spot. Due to the 

lack of time-sharing, more effective point traps can be generated with a relative low 

laser power. Second, optical array layers can be generated by AOD with a partial 

control in three dimension [70], which is based on a complicated optical design. In 

comparison, A true three-dimensional control of multiple point traps can be easily 

achieved by the input of phase masks on SLM. Phase superposition allows independent 

control of each individual trap. In addition, the nature of phase modulation enable 

SLM to generate some novel optical trap geometries. For example, optical vortex 

beams [76] carry orbital angular momentums, which can make trapped particles rotate 

around their axis. However, the dynamic control of SLM is limited by its relatively 

low refresh rate, which is about 60Hz. 
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FIGURE 2.3: A schematic diagram of HOTs system setup. See text for details 

2.4 System Setup 
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The schematic of our HOTs system setup is shown in Fig.2.3. Optical tweezers 

were powered by a diode laser (Meshtel RS655-70) with a wavelength of 655nm and 

maximum output power of 70m W. Its transverse beam profile is circular with a 

diameter of 2.5mm. In order to make the beam cover the maximum area of SLM, 

which is 16.6 x 10.2 mm2
, an 4X beam expander, consisting of two convex lens, 

with focal lengths of 15mm and 60mm, respectively, was inserted into optical path 

following a polarizer.- The laser beam illuminated SLM with such a small incident 

angle ( e < 10°) that the resulting additional phase shift can be neglected. Then the 
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beam with the modulated wavefront, steered by two mirrors M 1 and M 2 , was coupled 

through a telescope system, which is composed of two convex with the same 

focal length of 250mm and elevated by a periscope. After reflected by a 45° dichroic 

mirror, finally, it was focused by a water-immersion objective (Nikon, NA=l.2, 

60X) on an inverted optical microscope (Nikon TE-2000). Images were captured 

by a CCD camera ( Optronics Microfire). After calibration, we found that the ratio 

between the number of pixels and the actual spatial interval for this camera equals 

to 8.1 pixels/ p,rn. Phase masks were generated by horne-made MATLAB program, 

and via a monitor output splitter they can be simultaneously displayed on SLM as 

well as a monitor, which can make them visualizable. 

We want to further comment on our design. The front lens used in beam expander 

was an aspherical lens, which can help decrease spherical aberration due to its small 

focal length. In addition, large aperture lens can help decrease nonparaxial aberration. 

Lens with diameter of 2 inches were used in telescope system, which can· make beam 

be easily aligned to pass through their centers. A band pass filter was also put inside 

the eye side of microscope to protect eyes from laser damage. When SLM is not 

addressed, acting only as a conventional mirror, The efficiency of Oth order is about 

60%, which means 40% of the incident intensity is lost. By adding intensity losses 

from other optical elements (mainly from the polarizer and the dichroic filter), we 

roughly estimate that at most, 20% of the intensity emitted from laser is left on the 

focal plane of objective lens. 
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FIGURE 2.4: (a) Profiles of focused laser beam through objective lens show the
absence of focus drift in one hour. (b) Histogram of tracked positions for a stuck
particle with 3.2 f.-Lm in diameter. The red line is a Gaussian fit.

Stability is another experimental concern. For our later experiments, we usually

need to observe Brownian motion for hours, which requires a focal plane with high

mechanical stability in a long term. Our original stage (Nikon) had a large focal drift

and so we replaced it with an automated stage with feedback control of position(ASI

MS-2000, nominal 50nm resolution). To test the stability of this stage, we focused

a laser beam through a glass chamber bottom containing water, and observed time-

varying change of focus. The results are shown in Fig.2.4(a), no focus drift beyond

the tracked position of lOnm was detected after one hour.

In later experiments, particles' lateral positions were determined by image

analysis based on well-established particle tracking algorithms [77]. To characterize

their precision for our setup, first, the condenser of microscope was adjusted so that

a colloidal particle appeared as a bright central spot with symmetrical intensity
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distribution in the field of view. Then, positions of a stuck silica particle with 3.2J.Lm 

in diameter in a solution were tracked in a short period. The histogram of positions 

is shown in Fig.2.4(b), which gives a precision of lOnm in locating the center of 

particle. Note that this precision should be also related with vibration noise. 

(a) (b) 

FIGURE 2.5: (a)Phase mask incorporated in SLM to generate multiple point traps 
with a distribution of pentagon shape. (b )The consequent trapped 3.2J.Lm diameter 
silica particles on focal plane. The particle trapped in center is due to the undiffracted 
zero-order intensity. Coordinates p and f'p are defined in Eq(2.9). 

An example of holographic optical trapping in our system is shown in Fig.2.5. A 

phase mask of five point traps, distributed evenly around a circle with a radius of 

20J.Lm, was incorporated in SLM, which is illuminated by laser with output power 

of 60m W. Correspondingly, five 3.2J.Lm diameter silica particles were trapped in the 

focal plane. The intensity of focused spot from zero-order of diffraction is still strong 

enough to trap an additional particle in the center. In principle, the zeroth order 

spot can be blocked. In practice, we conduct our colloidal experiments with line 

traps generated away from this center trap. 
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2.5 Motions of Trapped Single Particles 

To characterize trapping ability of our system, we measured the stiffness 

coefficients of a single trap. For a trapped particle, its Brownian motion caused by 

collision with surrounding liquid molecules is confined. It can only fluctuate around 

the trapping position in three dimension. Consider positions along the x-axis, the 

force exerted on particle can be described by a harmonic oscillator. 

F = -a(x- xo) (2.12) 

where x is the displacement of particle away from the equilibrium position of x 0 , and 

k is the stiffness coefficient of trap which cannot be directly measured. However, 

the probability distribution of the trapped particle's positions can be described by a 

Boltzmann relationship 

U(x) la(x- x0 ) 2 

P(x) ex exp(- kBT) = exp(- 2 kBT ) (2.13) 

where kB is the Boltzmann constant and Tis the temperature. Suppose that P(x) 

obtained from experiment can be fitted with a standard gaussian function with a 

1 (x- x0 )
2

) 
width of (7, exp( Therefore, a can be determined from (]" with 
~ 2(72 . 

(2.14) 

In experiments, a single point trap was formed by directly focusing the laser 

beam on the focal plane of objective lens. Silica particles with diameters of 0.9p,m 

and 3.2p,m were put in a 8-well chambers with No.l.O borosilicate coverglass 
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FIGURE 2.6: (a) Displacement distributions of a trapped 3.2[tm diameter silica 
particle in x and y direction of focal plane,respectively (points), both of which can be 
fitted by Eq(2.13) (solid gray curves). (b) Plots of stiffness coefficent a versus laser 
power for 0.9t.tm and 3.2t.tm diameter silica particles, respectively (points). Solid lines 
are linear fits. 

bottoms (Lab-Tek, N alge Nunc International) surrounded by deionized (D I) water 

(Millipore,l8.2MD·cm). In each measurement, motions of trapped single particles 

were captured by the camera with a rate of 10 frames per second for 5 minutes. 

For 3.2[tm diameter silica particles under a laser power of 60m W, its displacement 

distributions in x and y directions are shown in Fig.2.6(a). Both P(x) and P(y) 

can be fitted by Gaussian forms with slightly different widths, which implies a 

dependence of trapping stiffness on the direction of focused spot on focal plane. 

Such dependence is related with the transverse intensity distribution of laser beam. 

Performing such measurements for different laser powers, We found that there is 

a linear relationship between laser power and stiffness coefficient (Fig.2.6(b)) for 
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particles of each size as expected. However, the stiffness coefficient depends on 

both laser power and particle size. Trapped with the same laser power, the smaller 

particle will be trapped more tightly. Note that each stiffness coefficient measured 

in Fig.2.6(b) is the result of averaging corresponding ax and ay. The smaller the 

particle is, the bigger the stiffness coefficient is on the trapped particle under the 

same applied laser power. However, the minimum laser power to provide stable 

trapping will be higher as the size of particle decreases. For example, as shown 

in Fig.2.6(b), 3.2,um diameter silica particles can be stably trapped with a laser 

power as low as 5m W, which is not high enough to stably trap 0.9f-Lm diameter silica 

particle. In order to stably trap a smaller particle, higher laser powers are needed 

to suppress collision forces by fluid molecules due to the low mass and low friction 

coefficient "! ("! ex: a, a is the radius of particle) of particle itself. Once particles are 

trapped, from Eq (2.4) and (2.5), F9 ex: a and Fs ex: a6
. Therefore, 3.2f-Lm diameter 

silica particles will experience much larger scattering force than 0.9 f-Lm diameter 

silica particles. Correspondingly, the measured stiffness coefficients of 0.9 diameter 

silica particles are larger than that of 3.2 diameter silica particles under the same 

applied laser power(Fig.2.6(b)). 

2.6 Summary 

In this chapter, we first reviewed the history, properties and applications of optical 

trapping in Sec.2.1. Then, in Sec.2.2, we analyzed the forces exerted on particles near 
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a focused light field in both Raleigh and Mie field, and gave the conditions for a stable 

optical trapping. Based on the review of techniques applied in optical tweezers in 

Sec.2.3, we gave an introduction of HOTs techniques, which focused on the mechanism 

of phase modulation in SLM, and the method to dynamic control optical trap array 

system. In Sec.2.4, we gave a description of the established HOTs system in our lab 

and analyzed several factors we considered in system design. The usability of our 

system was demonstrated by an example of holographic optical trapping. Finally, the 

trapping ability of our system were characterized by stiffness coefficient measurements 

in Sec.2.5 
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CHAPTER III 

COLLOIDAL PAIR INTERACTION MEASUREMENTS 

In this chapter, we will describe experimental methods to quantify colloidal pair 

interactions, specifically line trap generation. We will first give a brief introduction of 

methods that have been used in the past to characterize colloidal interactions, in which 

the motivation to make line traps will be presented. Then, following descriptions of 

some unsuccessful attempts we have tried, we will discuss the design of tunable line 

traps based on HOTs, which can make trapped particles experience nearly free, one­

dimensional Brownian motion. Finally, after introducing procedures to determine 

true pair interaction potentials from particles' trajectories, we will describe the test 

of our line traps involving the measurements of the pair potentials of bare silica 

particles. 

3.1 Introduction 

As pointed out in Chapter I, interactions between colloidal particles play 

important roles in colloidal stability, phase behavior and rheology. The experimental 

techniques used to quantify colloidal interactions depend on the size of particle. 

For particles less than about lj.im in diameter, it is difficult to isolate single 

particles due to vigorous Brownian motion and low optical scattering cross-sections. 
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Such colloidal systems can be studied by dynamic light scattering technique (DLS) 

[78, 79, 80), which is based on the Tyndall effect introduced in Chapter I. The 

measured intensity and angular dependence of scattered light can be used to calculate 

the particles' translational diffusion coefficient, which can be modeled as a function 

of particle density with several fitting parameters related with colloidal interactions. 

DLS is ideal for the study of particles with sizes of several tens nanometers, such 

as proteins [81]. As particle size increases to microns, the occurrence of multiple 

scattering hinders the investigation of colloidal interactions with DLS, which make 

other techniques take its place. 

With Atomic Force Microscopy (AFM) [82, 83], two colloidal particles immersed 

in a solution can be finely controlled to move towards each other. One particle is 

glued on the tip of cantilever as a probe, the other is mounted on a substrate attached 

with piezoelectric crystal, which can control the separation between particles in a 

range of lOOnm with a precision of lmn. As particles approach, the force between 

particles can be deduced from deflections of cantilever with a calibrated spring 

constant. AFM can provide a measurement of force in a range of 10-10,..._,10-8N with 

a high resolution. However, AFM is incapable of measuring long-range interactions 

due to the limited vertical moving range of piezoelectric crystal. Moreover, the 

existence of tip and substrate will interfere the measurement, because interactions 

among the tip, substrate and particles will also contribute to the final measured 

results, which will affect the determination of true particle interactions. 
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In colloidal suspensions, colloidal particles undergo Brownian motion and 

separations between them continuously fluctuate. In order to characterize such 

dynamic colloidal interactions, new techniques need to be developed to achieve 

non-intrusive measurements. For a particle larger than about lpm, its fluctuating 

position above transparent planar surface can be measured via total internal 

reflection microscopy (TIRM) [84, 85, 86]. When it is illuminated by evanescent 

waves, the scattering intensity due to the particle will decay exponentially with 

the distance from the surface. The histogram of measured scattering intensity can 

be related to the probability distribution of particle's height, which can be used 

to characterize the energy profile of particle-surface interaction via the Boltzmann 

relationship. Similarly, in reflection interference contrast microscopy (RICM), when 

a particle is illuminated by a conventional light source, its height can be analyzed 

from the interference pattern produced by lights reflected from the medium-particle 

and medium-substrate interfaces. We will investigate RICM technique in detail in 

the next chapter. TIRM (RICM) can detect weaker forces (lo-12N) than AFM 

due to the nature of the thermodynamic energy unit kBT. In such particle-surface 

systems, interaction measurements depend on the determination of particle heights. 

Even though TIRM (RICM) can only be used to characterize particle-substrate 

interaction, the underlying physics,...,.,Boltzmann relationship illuminates a way to 

measure particle-particle interactions. To characterize colloidal interactions, it is very 

important to precisely locate the position of each particle. Digital video microscopy 
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[77] can allow direct observation on a colloidal suspension. Illuminated by the 

condenser of microscope, each particle appears as a bright circular spot surrounding 

with dark rings in the field of view. Fitting the intensity of particle's image with 

a Guassian, the well-established algorithm allows the determination of the center 

of each particle with a precision of 20nm. With the tracked in-plane position of 

each particle in equilibrium, pair correlation function can be contructed and used 

to calculate the mean force of interacion via Boltzmann relationship , which can be 

reduced to pair potential if the suspension is very dilute. 

However, the pair potential calculated from pair correlation function of dilute 

suspension still depends on the distribution of particles. To characterize pair 

interaction energy only related with two particles, two colloidal particles need to be 

isolated to completely eliminate many-body effect. Due to their ability to manipulate 

colloidal particles, optical tweezers have been employed to measure colloidal pair 

interactions, first done by Crocker et.al. [87] using a 'blinking' optical trap setup. 

The separation between two particles was initially set by dual optical tweezers. 

Then, particles can be allowed to drift under interparticle interaction for a short 

period by switching off the optical traps('blinking'), after which the traps are again 

turned on. By Repeating this process for a range of separations, the energy profile 

of pair interactions can be obtained. An advantage of the 'blinking' trap setup is 

that measurements are only executed when optical traps are turned off so that no 

optically-induced interactions are possible. However, despite some modifications [88], 
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measurements of pair interaction using this method still require intensively sampling 

different separations, which will cost lots of time to acquire and analyze data. 

To a more efficient way to characterize colloidal pair interactions, let us 

reexamine the Boltzmann relationship. Considering two particles, the pair potential 

U(r) relates with probability distribution of separation between two particles P(r) 

by 

P(r) ex exp(- ~~~) (3.1) 

which can be used to determine pair interaction energy through position sampling 

of each particle in experiment. Because the range of interaction usually cannot 

exceed the length of several particle's diameters, only separations in a short range 

contribute to the interaction energy characterization. Therefore, pair potential can 

be determined more efficiently if particles are confined in a narrow space, which 

allows an intensive sampling of short separations between them. In our experiment, 

such confinements are achieved by line optical tweezers, in which colloidal particles 

can only diffuse in one dimension. 

3.2 Tunable Line Trap Generation 

In conventional optical tweezers, a beam is focused with intensity symmetrically 

distributed around center, which leads to similar trapping abilities along all directions 

on focal plane. In comparison, for a line trap, focused beam spot extends in one 

direction to form a line-shaped intensity distribution, which simultaneously allows 
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particle to move along this line and to be perpendicularly trapped. In the past, line 

traps were usually generated by rapidly scanning a point trap via an AOD [89, 90]. 

Line traps formed by non-scanned light were first reported by Biancaniello et.al. 

[91, 92]. In their experiments, short-range interactions between two DNA-grafted 

colloidal particles were measured in a line trap, which is constructed by redistributing 

laser intensity with a cylindrical mirror. 

Returning to our HOTs setup, to measure pair potentials of colloidal particles, we 

need to use the SLM to generate a line trap which has a fiat potential so that P(r) 

and U(r) are simply related by Eq(3.1). An example of such generations is given 

by Roichman et.al. [93], who made a line trap by means of the Fourier relationship 

between the optical intensity in the focal plane and the aperture function in the 

conjugate (SLM) plane. When light illuminates a rectangular aperture, the intensity 

of Fraunhofer diffraction pattern is given by a sine function via Fourier transform. 

Contrarily, if a phase mask encoded with a sine function in one dimension is input 

in SLM, it is possible to form a line-shaped intensity distribution on the focal plane. 

However, this method requires SLM to be modulated by amplitude as well as phase 

due to the sine-function aperture, which will make most power of the incident light 

not contribute to the line trap generation. The efficiency of this approach is extremely 

low [93]. Therefore, we need to develop other SLM-based methods in order to create 

useful line traps. 

A SLM, as a programmable di:ffractive optical element (DOE), can be also used 
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to redistribute intensity to form desired patterns on image plane. As we know, a line-

shaped pattern can be easily constructed by incorporating a cylindrical mirror phase 

mask in SLM and reshaping a fiat (planar) incident laser wavefront. The tranverse 

profile of laser used in our HOTs setup is not fiat. However, phase functions that map 

a Gaussian beam profile onto a fiat focal plane intensity function are known [94, 95] 

and can be easily applied. Suppose a Gaussian transverse intensity profile of incident 

beam, 

J} 
Io(if) =I exp( --

2 2 ) 
O'o 

(3.2) 

where p = (p,v) denotes the coordinate in SLM plane. O"o represents the width of 

gaussian profile, which can be determined by image analysis in experiment. A fiat 

line trap parallel to x-axis with a length of l can be formed by incorporating a phase 

mask in SLM, which corresponds to the phase distribution ¢(jl) [94] 

(3.3) 

where k is the wave vector of incident beam, fo is the focal length of objective lens, 

and SLM is illuminated with a rectangular area of AxB. 

In experiments, the transverse intensity profile of our laser is almost fiat so that 

a relatively large value was assigned to O"o in calculation. A phase mask (Fig.3.l(a)) 

encoded with above phase distribution was displayed in SLM with an area of 600x600 

pixels (4.8x4.8mm2
), which is illuminated by a laser with output of 60mW. The 

resulting line trap (Fig.3.1(b)inset) with a length of 25pm was focused through a 

glass-bottom chamber, which contained a dilute colloidal suspension. The captured 
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FIGURE 3.1: (a) Phase mask for a 25JJm line trap with flat intensity. (b) The 
consequent intensity distribution of focused line trap in focal plane, which shows a 
flat top. Inset: the image ofline trap. (c) The trajectory of a trapped 3.2,J,m diameter 
silica particle, which was initially put in the center of line trap. Inset: scattering force 
exerted on trapped particle to push it to the end of the line. The red line with arrow 
represents incident beam rays on particle. 

image of line trap was analyzed by imaging processing toolbox of MATLAB software 

with data plotted in Fig.3.1(b), which shows a uniform intensity distribution along 

the line. Then, a 3.2JJm-in-diameter silica particle was put on the center of line 

trap, and the motion of trapped particle was monitored for 5 minutes, which yields 

a trajectory of particle along line trap shown in Fig3.l(c). Surprisingly, instead of 

free Brownian motion, the particle heads irreveribly to an end of line. This is further 

quantified in [55], which includes measurements of the outward-directed force. A line 

trap with uniform intensity distribution can not provide a fiat trapping potential for 

particles to diffuse freely along it, which makes it impossible to simply measure pair 

interaction energy of colloidal particles via the Boltzmann relationship. 

To explain this observed phenomenon, let us re-examine the physical principle 

behind optical trapping. If a point trap can provide gradient force greater than 
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scattering force, a particle with refractive index greater than that of surrounding 

solution can be trapped. For a particle in a line trap, the situation is shown in 

Fig.3.1(c)inset. Once a particle departs away from center due to thermal collision 

with solution molecules, there is always a component of the scattering force exerted 

on it that is along the line, which is proportional to its displacement away from center. 

On the contrary, due to the uniform intensity distribution of the line trap(y I = 0), 

particle will not experience any gradient forces along the line. This situation will 

make particle be pushed toward the end of line, where the regained gradient force 

due to discontinuity of intensity can balance the scattering force to allow particle to 

be trapped there. Therefore, we need to tune the intensity of line trap to balance 

scattering force. 

telescope 

SLM plane laser 

objective 
lens 

X 

focal plane 

FIGURE 3.2: A schematic diagram of line trap generation and resulting forces exerted 
on trapped particles (solid light green circle) with intensity I(x). In SLM plane, the 
grey pattern is the phase mask of line trap. See text for details. 

Consider a line trap along x-axis and centered in origin as shown in Fig.3.2, the 
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scattering force Fs exerted on particle at position x is proportional to x and I: 

Fs(x) <X I(x)e <X xl(x) (3.4) 

which is along x direction. To balance it, a gradient force F9 needs to be added in 

the opposite direction by tuning intensity I(x) 

F ( ) di(x) 
9 x <X dx (3.5) 

Free Brownian motion of a particle in the line trap requires F9 = Fs, which yields an 

equation 

xi(x)- cdi(x) = 0 
dx 

(3.6) 

where C is a position-independent constant related to some optical factors such as 

particle size, index of refraction, wavelength, etc. The equation can be satisfied by 

an intensity profile with a Gaussian distribution 

x2 
I(x) =A exp( --

2
) 

2a 
(3.7) 

where A is a normalization factor. The balance of forces depends on a. If a 2 > C, 

scattering force will dominate the motion of particle to push it towards the end of 

line trap. On the contrary, particle may be confined in a small area near line trap 

center by an overbalanced gradient force. Eq(3.7) gives us the desired I(x). We are 

left with the question of how to realize this using the phase modulation of the SLM, 

as in [55]. Let us start from the diffraction of a single point trap. The coordinates of 

the SLM plane and focal plane are shown in Fig.3.2. A diffracted point trap can be 



47 

generated by modulating the wavefront of incident beam with a prism phase mask. 

If it focuses on (x, 0) in the focal plane, the corresponding phase distribution on SLM 

can be expressed by 

(3.8) 

X 
where A is the light wavelength, e = f and f is the focal length of objective lens. 

Beam rays reflected from all the illuminated pixels are transmitted to (x, 0) for the 

formation of single point trap, which gives rise to an independent relationship between 

the position of trap and the number of pixels used to generated it. However, this 

relation is changed when the focused spot is extended in one direction to form a line 

shape. If the intensity distribution of a line trap is uniform, each unit of the line dx 

should be illuminated by beam rays reflected from an equal small amount of pixels 

du du 2 du on SLM so that - = - =constant. Therefore, back to Eq(3.8), rp(JL) rv JL . For 
de dx 

a uniform line trap between x = ±~ along x-axis, the phase distribution on SLM can 

be expressed by 

(3.9) 

the range of pixels along JL-axis used for line trap generation is between ±J.Lmax. This 

is a cylindrical mirror phase which is similar as the first part of Eq(3.3). Analogously, 

for a line trap with a Gaussian intensity distribution I(x) in Eq(3.7), the number of 

pixels du on SLM used to generate a unit dx in line trap should vary with position 

x, in which, more pixels should be distributed to position with a higher intensity 

du . , dr.p 21!' . . 
based on dx = I(x). Accordmg to Eq(3.8), we have r.p = du = Ajx' which yields 



dx 
-, =constant. Therefore, from Eq(3.7), we have 
dcp 

t2 
du )..j 2 cp 
-, ""'exp[-(-) -] 
dcp 2~ 2~2 

which yields 
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(3.10) 

(3.11) 

where er f is the error function. A line trap with a Gaussian distribution along x axis 

with endpoints at x = ±~ can be obtained by integration 

I 2v12~~ f-l l 
cp (J-l) = )..j er finv[-er j( r.=; )] 

1-lmax 2v 2~ 
(3.12) 

where er finv is defined as the inverse of er f. As !._ -+ 0, it can be reduced to the 
~ 

cylindrical mirror phase function in Eq(3.9). 
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FIGURE 3.3: (a) Measured intensity profiles of Guassian line traps. Inset: images of 
line traps with ~ of 5j.lm, 10J-lm and 15J-lm repectively. (b) Trapping potential profiles 
of Gaussian line traps with ~ of 5J-lm and10j.lm. 

Because it is hard to calculate the constant C in Eq(3.6), the appropriate value 

of ~, which can provide a flat trapping potential to particles, cannot be theoretically 
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determined. In experiments, several values of cr have been tried to generate line 

traps with tunable Gaussian intensity distributions, each of which was about 60Jlm 

in length powered by laser power of 20m W. Motions of trapped single particle with 

3.2Jlm in diameter were captured with 16 frames per second in 50 minutes for each 

cr. For example, when a line trap was generated with cr = 5Jlm, Fig.3.3(a)inset shows 

its Gaussian intensity distribution with a narrow width. Correspondingly, the motion 

of the particle on it was confined in a small range near its center, which is about 

4Jlm as shown in Fig.3.3(b). The optimal value we found for cr is about 10,um, in 

which even though the resulting intensity distribution of line trap is still a Gaussian 

with a wider width instead of uniformity, the potential profile shows an almost flat 

potential well with a length of 9,um, which suggests the balance between and 

F9 . For cr values greater than 10Jlm, the position of the deepest trapping potential 

began to move to either end of the line. Finally when cr is fairly large (greater than 

17 ,urn), the behaviour of trapped particle will be similar as that in a line trap with 

uniform intensity distribution, in which particle will quickly drift to one end and stay 

there. The actual one-dimensional space, which can be sampled by the particle, is 

much smaller than the length of line trap set in phase mask calculation. Even in 

the condition of optimal cr value, the range of free diffusion is only about one fifth 

of the length of line trap for a silica particle with 3.2,um in diameter. However, 

this distance, which is about three times of particle's diameter, is still long enough 

to measure pair potential over a significant interaction range. The actual length 
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for free diffusion depends on particle size and laser power. Smaller particle with 

larger optimal (} values can provide a broader free diffusion range. We have tried 

particles with 2pm in diameter, which can give a maximum free distance of llpm 

with the same experimental conditions. However, with our weak laser power, such 

small particles are easy to escape from line trap. Therefore, for subsequent pair 

interaction measurements, we still use 3.2pm-in-diameter silica particles. 

3.3 Pair Potential Measurements of Bare Silica Particles 

So far, we have shown the generation of tunable line traps using a SLM, which 

can provide a flat trapping potential for particles in one dimension by balancing 

gradient and scattering forces. Next, we want to demonstrate its ability to measure 

pair interaction energies of colloidal particles. 

Colloidal Interactions in Electrolyte Solutions 

For a silica particle, when it is immersed in an electrolyte solution, its surface will 

be charged with SiO- due to the deprotonation of silanol group. Some counterions in 

solutions such as N a+, H+ will be attracted to tightly bind on the surface of particle, 

which yields an immobile counterion layer to partially balance the surface charge. Ions 

outside this layer form a diffuse layer, in which ions are under thermal motion with a 

distribution determined by the electric field around particle. When two silica particles 

approach each other, the repulsive Coulomb interaction between them is screeened by 

the diffuse layer. If the number of surface charge on each particle remains constant, 
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it can be described by [96] 

(3.13) 

where r is the center-to-center separation between particles, Z is the number of 

effective surface charge, e is the elementary charge, E is the dielectric constant of 

solution, a is the radius of particles and "' is the inverse Debye length, which is 

defined by 

(3.14) 

where pj is the number density of j-th ions with valency of Zj in electrolyte solution. 

For a solution with 1:1 electrolyte, such as NaCl, "'-1 can be expressed by [96] 

0.304 
"'-

1 = ----;c;===:=.=n m 
J[NaCl] 

(3.15) 

where [NaCl] denotes the molar concentration of salt in Min the solution. The range 

of Coulomb interaction is characterized by the Debye length, which only depends on 

the type and concenteration of counterions in the solution. 

Another kind of interaction between particles is Van Der Waals attraction, which 

comes from fluctuating electric dipoles. Motion of electrons in an atom can provide 

transient polarity. Even though such temporary change can disappear as quickly as it 

appears, the interaction between fluctuating electric dipoles can make atoms attract 

each other with a decay of ljr6
, where r is the separation between two atoms. Such 

attraction between two macroscopic particles should be derived from the summation 

of those between constituent atoms. For two particles with radius a, Van Der Waals 
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attraction between them can be expressed by [96] 

(3.16) 

where r is the center-to-center separation between particles, A is the effective Hamaker 

constant which depends on dispersion medium the material is immersed in. For silica 

in water,Asilica = 4.8 X 10-21 J [97]. 

According to DLVO theory, the total potential energy between colloidal particles 

should be the suppoposition of Coulomb repulsive potential Ue(r) and Van Der Waals 

attractive potential Uv(r) 

U(r) = Ue(r) + Uv(r) (3.17) 

By roughly observation of two silica particle on the line trap, we found that the 

minimum center-to-center separation sampled is about 4J-Lm. Two particles always 

separate from each other without aggregation, which implies the dominance of 

Colomb repulsion over VanDer Waals attraction. In addtion, the estimated VanDer 

Waals attraction at such separations is about 0.04kBT, which is small enough to be 

neglected. Therefore, we would expect the measured pair interaction energies of bare 

silica particles will be solely the screened Colomb repulsive potental. 

Nonuniform Line Trap Potential 

From Fig.3.3 we can see, even though the one-dimensional space for fre~ diffusion 

provided by a line trap with a Gaussian intensity distribution is long enough to 

sample particle's separation in the full interaction range, the trapping potential is 
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not quite flat, which usually happens due to the imperfection of optical alignment. 

In addition, in order to reduce sampling time, we wish to intentionally introduce a 

net gradient force to hold particles in short separations around the center of the line 

trap. Therefore, the measured separation distribution is related with not only the 

true pair potential between particles but also the uneven trapping potential, which 

needs to be accounted for. Considering two interacting particles in a line trap with 

length l available to sample between x = ±~, PI(xi) and P2(x2) denote probabilities 

of particle 1(2) as position XI (x2) respectively. Due to colloidal interactions, the 

position of one particle affects that of the other. The observed probability distribution 

of separation Pabs(r) along a line trap can be expressed by 

j
l/2-r 

Pobs(r) =A PI(xi)P2(XI I XI+ r)dxi 
-l/2 

(3.18) 

where A is a normalization constant, P2(xi I XI +r) denotes the probability of finding 

particle 2 at x2 = XI + r while particle 1 is at XI· For particle 2 at x = x2, it will 

feel interactions from particle 1 at x = XI and the trapping potential at x = x2. The 

total enerey is 

(3.19) 

The corresponding probability distribution can be denoted by 

p. ( I ) ( U2(x2)) ( Upair(r)) (- Uext(X2)) _ n . ( )P. ( ) 
2 XI XI+ r = exp - kBT = exp kBT exp kBT - rpatr r 2 x2 

(3.20) 

Returning to Eq(3.18), and considering that the trapping potential experienced by 

particle 2 at x 2 equals to that by particle 1 at XI + r, the observed probability 
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distribution of separation Pobs(r) is 

Finally, with P1(xr) replaced by P(x), the true pair distribution function, Ppair(r), is 

related to the observed pair distribution function, Pobs(r) by 

P, . ( ) _ Pobs(r) 
patr r - l/2 r 

J_11~ P(x)P(x + r)dx 
(3.22) 

To measure pair potential energy in experment, first, positions of single particle 

along a line trap need to be sampled to obtain P(x), which is related to the trapping 

potential profile. Then, Pobs(r) can be constructed by pulling another particle into 

line trap and sampling separations between particles. Finally, the true pair potential 

can be deduced from Eq(3.22) via the Boltzmann relationship. To guarantee that 

a particle samples all available space in a line trap, positions of particle need to be 

z2 
measured over a time much greater than 

2
D , where D is the diffusion coefficient 

of particle. For a 3.2pm diameter particle in water, its diffusion coefficient is about 

0.2pm2 js. Considering an available distance of lOpm in a line trap, we usually 

measure positions of particles in 50r-v60 minutes in experiments. 

Optical Binding 

The optical intensity of line trap can not only provide an uneven trapping 

potential to complicate the determination of true pair interaction energy, but can 

also in principle induce attractions between particles. Two trapped particle will 
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behave as two dipole ocillators, which are powered by the polarized optical field. 

The resulting Lorentz force due to the interaction between induced current in the 

two synchronized oscillators will make particles attract each other, which is more 

obvious when particles are aligned in the direction perpendicular to the polarization 

of laser beam. This so called optical binding effect was first investigated by Burns 

[98]. Such effect can add additional interactions between particles, which made the 

measured pair potential different from the true pair interaction energy of particles. 

In experiment, we made a line trap along the same direction as the polarization of 

laser beam to minimize orientation-dependent optical binding effect. Considering the 

dependence of such attractions on laser power, we will measure pair potential of the 

same two bare silica particles in line traps illuminated with different powers. 

Errors in Particle Localization 

When illuminated by the light from microscope condenser, a partiele appears as 

a bright central spot surrounding with series of dark rings, which can span a distance 

comparable to the radius of particle. By fitting the intensity distribution central 

spot with a Guassian, particle can be located at the position with the maximum 

intensity. However, when two identical particles apporach each other, dark rings of 

one particle maybe overlap with the bright spot of the other. The resulting changes 

in intensity distribution will affect the determination of particle's position, and hence 

the separation between particles. In order to calibrate the measured separation, we 

adopt the method reported by Baumgart! et.al. [99]. A stuck particle sitting on the 
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bottom of chamber serves as a reference at position (x0 ,yo), which is measured when 

it is isolated from other particles far enough so that no image ovevlap happens. Then, 

we manipulate another mobile particle by optical tweezers to approach to the stuck 

one step by step. During this process, the measured separation between two particles 

can be expressed by 

r(t) = V[x(t) - x~(t)J2 + [y(t) - y~(t)F (3.23) 

where (x(t), y(t)) denotes the measured positions of mobile particle, (x~(t),y~(t))are 

the measured positions of the stuck particle, which are different from (x0 ,y0 ) due to 

image overlap. The error in separation measurement can be characteraized by 

!:::.r(t) = r(t)- J[x(t)- xoJ2 + [y(t)- YoJ2 (3.24) 

With the time-averaged r(t) and !:::.r(t) denoted as r and !:::.r,respectively, and the 

consideration of symmetrical image distortion on both particles, the true separation 

can be given by 

rt = r- 2/:::.r (3.25) 

In experiments, the stuck particle was made by coating bare silica particle with 

excess amount of positively charged lipids, The resulting posively charged particle 

can be attracted to sit on the negatively charged glass bottom of chamber due to 

Van Der Waals attraction. The lipid-coated layer is so thin (5nm) that the change 

of particle size can be neglected. Each moving step of the optical trap towards the 
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FIGURE 3.4: (a) An experimental schematic of determining the error in separation 
measurements. Top: two particles were separate far enough to prevent their images 
from overlapping with each other. (x0 ,y0 ) denotes the true position of the stuck 
particle. Middle and bottom: the trapped particle was moved towards to the stuck 
particle step by step. (b) The plot of experimentally determined !::..r versus measured 
separation between particles r( t) in each step during the approach of two particles. 
The solid line is the binned data. 

stuck particle needs to be carfully controlled so that sampled positions of mobile 

particle can cover the whole range of separations which needs to be calibrated. To 

save time, the mobile particle was trapped with a laser power of 10m W, which allows 

it to sample positions in a relative wide range in each step due to the weak strength 

of optical trap. For silica particles with 3.2J..im in diameter, the relationship between 

the error in separation measurement l::..r and the measured separation r is plotted in 

Fig 3.4(b), which shows a maximum error of 15nm. Due to its similar magnitude as 
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FIGURE 3.5: The measured trapping potential profiles of a 60,um line trap with laser 
output power of 60mW and 14mW in direction of (a) along the line (b) perpendicular 
to the line. 

the precision of particle tracking algorithm, such errors in separation measurements 

due to image overlap can be neglected for a pair of 3.2,um diameter particles. 

Pair Interaction Measurements of Bare Silica Particles 

For pair interaction measurements, small amounts of dilute silica particle 

suspension were pipetted into deionized water, which is contained in an 8-well 

chamber with No.l.O borosilicate coverglass bottoms (Lab-Tek, Nalge Nunc 

International). A line trap with a length of 60,um was focused near the chamber 

bottom where particles were sedimented by gravity. In order to hold particles near 

the center of line, a = 7.5,um in Eq(3. 7) was used in line trap generation. Two 

particles were randomly selected for pair potential measurement, and their motions 

around line trap were captured at 16 frames per second over a lO,um x 40,um area. 

First, only single particle was pulled in the line trap to characterize its potential 
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profiles under laser powers of 14m W and 60m W, respectively, which are shown in 

Fig.3.5. The data show the dependence of potential profile on laser power. Along 

the line, U(x) under each laser power is not fiat. The available length of line trap is 

about lOJ1m for laser power at 14m W, which is twice as long as that with laser power 

of 60m W. Perpendicular to the line in focal plane, particle behaves as that trapped 

in a point trap, their motions can be described by harmonic oscillators with different 

stiffness coefficients. Particles will be confined more tightly with a higher laser 

power. Pair potentials U as a function of center-to-center separation r are plotted 

in Fig.3.6. The measured pair potentials Uabs(r), which are directly derived from 

Pabs(r), show a repulsive interaction in the short range and an attractive interaction 

in the long range for both laser power. However, the calculated true pair potentials 

U(r)s by Eq(3.22) under both laser powers are similar and purely repulsive, which 

can be fitted to Eq(3.13) with ""-l = 126nm and Z = 2200. The fitted Debye length 

corresponds to a salt concentration of 6J-tM, likely due to the dissolved carbon dioxide 

in water, which is consistent with other measurements of screening in water [100]. 

The similarity, especially in the short range, of pair potential curves measured 

under different laser powers demonstrates the lack of optical binding effect, which 

is not surprising due to the low laser power applied. In addition, we did not 

measure the separation of particles in the direction perpendicular to the focal plane. 

Considering the gravity of paricle, we neglect the contribution of its out-of-plane 

fluctuation to separation. The height measurement will be introduced in next 
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FIGURE 3.6: Pair interaction energies of 3.2 lun diameter silica particle. Both the
naive pair potential Uob.s, which is deduced from Pobs, and the true pair potential U
are plotted as a function of center-to-center particle separation r. The pair potential
measurements were performed under two different applied laser powers. The red dot
line is a fit to Eq(3.13).

chapter. More importantly, Our data do not show like-charge attraction between

bare silica particles.

3.4 Summary

In this chapter, based on the review of techniques to characterize colloidal

interactions, we introduced the experimental schemes to quantify pair interaction

energies of colloidal particles in suspensions. In 8ec.3.2, line trap generation by 8LM

was described. We first showed that line trap with flat intensity distribution can not

provide flat trapping potentials for particle due to the scattering force. After analyis

of forces exerted on trapped particle, we found that a line trap with a Gaussian

intensity distribution can make particle freely diffuse in one dimension. Then, the



61 

method to calculate the corresponding phase mask was investigated, which was 

focused on the relationship between intensity modulation and pixel distribution in 

SLM. We finally test our method by observing the motion of a single particle. With 

a proper Gaussian width () of line trap, a trapped particle can sample positions in 

one dimension, the range of which are enough to cover the full pair interaction range. 

In Sec.3.3, following with analysis of some factors related to the measurements of 

true colloidal pair potentials, the experimental scheme for U(r) measurements was 

described. At the end, as a demonstration, we measured the pair potential of bare 

silica particles, which shows a purely repulsive interaction. 
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In this chapter, we will first introduee the fundamentals of eonventional reflection 

contrast interference microscopy (Rl CM). Then, with a scheme to measure the 

particle-wall separation by contrast comparison, the separation between silica 

particles and a glass bottom of chamber in solutions are determined. 

4.1 Introduction 

In order to understand interactions between surfaces in aqueous environments, 

the distance between them needs to be accurately measured. For transparent 

surfaces, this ta.sk can be accomplished by total internal reflection microscopy 

(TIRM) or RICM as we have mentioned in a previous chapter, both of which can 

provide non-intrusive and high-precision separation measurements. Unlike TIRM, 

in which surfaces are illuminated by evanescent waves emitted from a laser, RlCM 

can employ a conventional light source to illuminate objects near a transparent 
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substrate surface in solutions, Beam rays reflected from surfaces of an object and 

a substrate interfere to form a RICM image of the object, so that inter-surface 

distance, related to the intensity distribution of the interference pattern in the RICM 

image, can be extracted without florescence labeling or staining. RICM was first 

introduced by Curtis in 1964 [101], when he measured the separation between a glass 

substrate and a cell adhering to it under water. Restricted by the contrast of image, 

RICM in its early stage could only offer qualitative separation measurements. With 

some improvements in optics, RICM now has been widely applied in studies of cell 

adhesion [102, 103, 104], membrane fluctuation [105, 106] and film wetting [107, 108] 

with an optimal precision of 1nm in separation determination. Interactions between 

colloidal particles and surfaces [100, 109} is another area intensively investigated 

using RICM. Its suitability to provide quantitative measurement of particle-surface 

separation has been demonstrated in various applications. The tracked trajectories 

of colloidal ensembles can serve as probes to map the topography of underlying 

substrate surfaces [110, 111]. The height correlation function of particle can be used 

to characterize viscoelastic properties of surfaces in rheology [112, 113]. 

In our experiments, there are two motivations to measure the separation between 

particle and chamber wall. First, as we have pointed out in previous chapters, we need 

to quantify the fluctuating range of particle out of the focal plane, which is neglected 

when we determined separations between particles in pair potential measurements. 

Second, the reported confinement-induced like-charge attraction [16, 21] is related to 
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the particle-wall interaction, and the strength of attractive interaction depends on 

the particle-wall separation. Therefore, the measurement of particle-wall separation 

can provide a fundamental understanding of wall-mediated colloidal pair interactions. 

Due to its simplicity of setup, high resolution, and suitability for measurements as 

we mentioned above, RICM was employed to measure particle-wall separation in our 

experiments. 

4.2 Fundamentals of RICM 

As is shown in Fig.4.l(a), a particle with a radius of R, which is illuminated by a 

monochromatic light, is observed by inverted microscopy. A RICM image is formed 

by the superposition of light waves reflected from the top layer of the glass chamber h 

and the bottom surface of the particle h Considering a minimum distance h between 

the particle and the surface of glass substrate , the intensity of interference pattern 

in the radial direction x is given by [111] 

rTT 47rn 
I(x) = h + 12 + 2y 1 11 2712cos{ T[g(x) + h] + 6} (4.1) 

where g(x) R - J R2 - x 2 describes the contour of particle, n is the refractive 

index of surrounding medium, A is the wavelength of illuminating light, o denotes the 

phase shift of light reflected from medium-particle interface, and ry12 is related to the 

coherence degree. For example, a stuck silica particle with 3.2 JLm in diameter on the 

glass chamber bottom was illuminated by light from a mercury arc lamp filtered by 

a 535±20nm band pass filter. Its RICM image is shown in Fig4.l(b ), which consists 
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(b) 

objective 

FIGURE 4.1:(a) A schematic diagram of interferogram formation. Lights hand / 2 , 

reflected from coverslip and particle, respectively, interfere at image plane to form 
RICM image.(b) RICM image of a stuck 3.2J.Lm diameter silica particle. The edge on 
the upper left corner is the aperture diaphragm. 

of a set of interference rings. I ( x) as a function of h can be calculated according to 

Eq(4.1), which yields a theoretically calculated library of RICM interferograms. The 

comparison of intensity distribution between a RICM image obtained in experiment 

and calculated RICM interferograms can give some information about corresponding 

height of particle above the bottom. However, absolute height still cannot be solely 

determined in this way, because h and / 2 are unknown and I(x) is a function of h 

modulo a factor of Aj2n. Without amplitude information, the intensity distribution 

of a RICM image can be fitted to Eq(4.1) with multiple values of h, which are at an 

interval of >..j2n corresponding to the same interference However, absolute 

height determination is possible when it is certain that the particle is close to glass 

surface in a range between 0 and A./2n. As is shown in Fig.4.2(a), the fitted RICM 
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intensity distribution of a stuck particle should give an absolute height around zero . 

.A 
For the green filter used in our experiments, D..h = 

2
n ~ 250nm. 

In order to reconstruct absolute height, dual-wavelength RICM (DW-RICM) 

technique [lll]has been developed to eliminate the ambiguity in height determination 

with single-wavelength RICM (SW-RICM). In which, RICM images are simultaneously 

recorded at two different wavelengthes with intensity distributions of I(.Aa)and I(.Ab), 

respectively. The ratio of ;~~:~ varies with h in a certain range so that h can be 

uniquely assigned with the additional introduced amplitude comparison. However, 

for DW-RICM, light from an arc lamp needs to be split to pass two band pass 

filters, the simultaneity of image capture from two wavelength channels complicates 

the optical setup and experimental control. In addition, ambiguity in height 

determination still exists, absolute height can be determined in a limit range, even 

though it is bigger than that using SW-RICM. 

4.3 Experimental Motivation 

In the above section, we have introduced the fundamentals of SW-RICM, which 

show its incapability of determining absolute height of particle above glass chamber 

bottom. With another periodicity introduced by additional wavelength in RICM 

intensity, the ambiguity in height determination can be eliminated by DW-RICM to 

some extent. However, considering the simplicity of SW-RICM system, we still want 

to figure out a way to use it to quantify the separation between silica particles and 



67 

charged glass bottom of chamber. 'f12 in Eq( 4.1) is almost ignored, which depends on 

the illumination numerical aperture (INA) of microscope 

sinO 
'!12 = (4.2) 

with INA nsina and (J = 
2
:h sin2 (~), where a is the half angle of illumination 

cone. Due to the phase term in 'Yr2 , periodicity of intensity is stretched. The same 

phase distribution of intensity recurs every elevation b.h ~ 250nm of particle with 

the green filter used in our experiments. Moreover, contrast of a RICM image is given 

by 

ITTsine 
D Imax - Imin = 4y 1112-

8
- (4.3) 

m which, if considering the unchanged separation between chamber bottom and 

objective lens, 11 is almost constant. As particle elevates, the amount of reflected 

beam rays from particle, which are collected to contribute to intensity / 2 , decreases 

due to the finite NA of the objective lens. The same situation happens with the 

'Yr2 related term in Eq( 4.2) as well. Therefore, followed by the of particle, 

even though the same phase distribution of intensity in its RICM images occurs 

periodically, the contrast will decrease monotonically. An example is shown in 

Fig.4.2(b). RICM images of a particle in DI water were selected at three different 

moments which exhibit the same phase distribution of intensity. The drop of 

contrast between adjacent curves implies a of b.h in particle's height between 

corresponding moments. To make use of such contrast differences, first, the position 

of focal plane must be fixed during RICM image acquisition. Therefore, the field 
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diaphragm, which is located on the conjugate focal plane, is partially closed to 

provide a sharp edge for focusing (upper left corner in Fig.4.1(b)). Second, an 

objective lens with high NA is preferred, because it can provide a short depth 

of image field, which gives rise to a sensitive response of contrast to changes in 

height. The NA=l.2 60X water-immersion objective lens was also used in RICM 

image acquisition. The contrast of RICM image can be maximized by adjusting the 

correction collar of the objective lens. To characterize absolute heights, contrast 

needs to be calibrated. 

40-r--------~ 

:(a) • tt:;;0.5s 

• tm1.6s 
• t=2.1s 

400 !lOO 1200 1000 

Radial position, nm 

FIGURE 4.2: Radial intensities of RICM images of 3.2Jim diameter silica particle.(a) 
Particle sticking on coverslip. (b) Particle in deionized water, in which it experiences 
vertical Brownian motion. The selected RICM images at three moments show the 
same phase distribution of intensity with different contrasts. In both plots, the colored 
dots are binned image intensities. Lines are fitting curves obtained from similar 
procedures as in Ref (100] 

The total energy of a colloidal particle above a charged glass plate can be 

calculated by the summation of gravity and electrostatic interaction potentials. Van 
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Der Waals interaction is ignored due to the large separation h between them. 

(4.4) 

where We(h) is the electrostatic potential energy between particle and wall due to 

the overlap of their electrostatic double layer. If Debye length k-1 is smaller than 

particle-wall separation (K,h > 1) and smaller than the radius of particle (K,a > 1), 

We(h) can be determined by DLVO theory [100]. For a 1:1 electrolyte solution, 

(4.5) 

with 

kBT 2 et.pp et.pw 
\[!0 = 64n:a(-) tanh( -k T) tanh( -k T) 

e 4 B 4 B 
(4.6) 

where E is the dielectric constant of water, e is the elementary charge, and t.pp and l.Pw 

denote surface potentials of particle and wall, respectively. The gravitational force to 

the particle is given by 

(4.7) 

where pp and Pw are densities of silica particle and water, respectively, g is 

gravitational acceleration. By taking the derivative of Eq( 4.5), The equilibrium 

height heq corresponding to minimum energy potential is 

-1 K,\[!0 
heq = K, ln (F) 

9 

(4.8) 

Assuming that t.pp and l.Pw are constant, there is a monotonic relationship between heq 

and K,-
1

, in which the particle will be repulsed further away from the charged glass 

bottom in solutions with weaker ionic strengths. 
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Based on above analysis of the RICM image contrast and the particle-wall 

interaction, we can see that the equilibrium height of silica particle varies with 

the ionic strength of solution, whereas the contrast of RICM image decreases 

monotonically with the elevation of particle. Therefore, in experiment, we should 

observe the contrast difference between RICM images of particle in solutions 

with different ionic strengths. Let us first examine height distributions of a silica 

particle in solutions with two different salt concentrations. Two adjacent wells of 

an 8-well chamber with No.l.O borosilicate glass bottom contain salt solutions with 

concentrations of 100pM and 1000pM, respectively. A single silica particle in a well 

was focused by objective lens, and its RICM images in a 12pmx 12pm field of view 

were continuously recorded by the camera at 48 frames per second over 5 minutes to 

form a movie. Then the objective lens was switched to another well with the same 

measurement repeated again. 

For each RICM movie, the height corresponding to each frame of a RICM movie 

was first determined in the range of [0, Llh]. As in [100], the center of interference rings 

was located first, then the intensity profile of each RICM image was compared with 

that of theoretically calculated RICM interferograms. The height can be determined 

in a precision of 10rv15nm. After this step, heights hi (i = 1, 2, ... , m m is the number 

of frame, hi E [0, Llh]) can be obtained for each frame in a RICM movie. 

A situation commonly happening during particle's Brownian motion was neglected 

in the first step, in which, a particle crosses Llh between two consecutive frames. To 
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address this situation, first, by the observation of the interference rings, the special 

frame j corresponding to the lowest height hi of the particle in a RICM movie can 

be located. Then the 'naive' height of particle corresponding to each frames should 

be equal or greater than hi, which can be denoted by 

(n = 0, 1, 2, ... Hi ~ hi , hi E [0, .6.h]) (4.9) 

Because particles can easily jump back and forth around the critical value .6.h, n is 

determined by the assumption that height difference between two consecutive frames 

should be minimum (min(Hi+l Hi)). In other words, we assume that the particle 

cannot move more than 250nm in height in one 20ms intervaL Since the average step 

is about lOOnm, this assumption is reasonable. The 'naive' height distribution is 

constructed based on the lowest height hi in the RICM movie instead of the absolute 

height value. 

The 'naive' height distribution of particles in salt solutions with concentrations 

of lOOOp.M, lOO;CtM and 50p;M are plotted in Fig.4.3. A height with maximum 

probability appears for each concentration. If we consider the height with maximum 

probability in 'naive' height distribution as the true equilibrium height, our data 

show that silica particle will be repulsed further away from charged glass bottom in 

salt solution of lOOO;CtM than that of lOO~tM, which contradicts with DLVO theory. 

Then, let us examine contrasts of RICM images, the contrast of each frame was 

obtained by subtraction Imin from Imax· Because two 'naive' height distributions 

overlap around H = 140nm, frames of RICM movies corresponding to 'naive' heights 
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in the range of 140 ± 10nm were selected to construct a contrast profile for each salt

concentration, which are shown in Fig.4.3 inset. Contrasts of RICM images with

salt concentration of 100fLM are lower than that of 1000fL.M. The noticeable contrast

decline implies the separation between particle and wall should be larger in salt

solution with concentration of 100fLM than that of 1000fLM.
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FIGURE 4.3: 'Naive' height distribution of a 3.2 fLm diameter silica particle in
solutions with sa.lt concentrations of 50fLM, 100fLM and 1000fLM, respectively. Inset:
Contrast profiles constructed from RICM images corresponding to the determined
'naive' heights in the range of 140 ± 10nm(grey box with dot line) for each solution.

4.4 Absolute Height Measurements

In the above section, we have shown the possible capability of contrast comparison

in absolute height determination by SW-RICM. However, the relationship between

contrast and absolute height still needs to be characterized. The ionic strength

of solution is a powerful tool to manipulate the separation between silica particle

and wall. In a solution with high ionic strengths ([NaCl] > 10mM), particle will
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stick on the surface of glass bottom with the separation between them around 

zero (Fig.4.1(b)), because VanDer Waals attraction between particle and wall will 

overcome the electrostatic repulsion between them. From this point, RICM images of 

particle in solutions with a series of salt eoncentrations in a descending order can be 

captured separately. Correspondingly, The equilibrium height of particle should be 

in an ascending order due to the nature of screened Coulomb repulsion. Discrete salt 

concentrations are carefully chosen so that particle in solutions of two adjacent salt 

concentrations each can sample absolute heights with a partially overlapped range, 

in which, RICM images of particles from two solutions should similar contrast 

profiles. For example, a..s is shown in Fig.4.3, another 'naive' height distribution of 

silica particles is measured in a solution with salt concentration of 50pM. Frames 

corresponding the same range of 'naive' height as above were picked to construct a 

contrast profile which is similar to that with salt concentration of lOOpM. Therefore, 

the shared 'naive' heights in salt concentration of 50pM and lOOpM represent a 

range of absolute heights which particle can sample in both solutions. In this way, 

as heights of particle in different solutions are lined up, each solution for which the 

particles cross the critical value b.h can be determined. Finally, the absolute height 

distribution of particle in each solutions can be determined from its 'naive' 

height distribution by 

(N = 0, 1, ... ) (4.10) 

In experiments, salt solutions with several concentrations were respectively pipette 
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into each well of a 8-well glass bottom chamber. Absolute height distribution of silica 

particle in each solution was characterized by above method. Curves are shown in 

Fig.4.4( a). To further evaluate this method, equilibrium heights of silica particle 

versus salt concentrations are plotted in Fig.4.4(b). Mean heights (h) were used 

especially for solutions with low ionic strengths. Assuming surface potentials <pp = 

<pw, equilibrium heights can be well fitted using Eq(4.8) to get an estimated surface 

potential of 127mV, which agrees with the result previously measured [114]. 
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FIGURE 4.4: (a) Absolute height distributions of 3.2 f-Lm diameter silica particle 
above glass bottom of chamber in solutions with a series of salt concentrations. Inset: 
Contrast profiles of RICM images corresponding to absolute heights.(b) Measured 
mean height (h) (blue dot) of 3.2f-Lm silica particles in salt solutions with different 
concentrations. (h) can be fitted with Eq(4.8) (grey line) with surface potential of 
127 ± 13 mY. 

With the constructed absolute distributions above, the relationship between 

contrast and absolute height of particle can be figured out. For example, frames 

corresponding to absolute heights in a series of ranges of (50 + N t:lh) ± lOnm 

(N = 0, 1, 2, 3, 4) are selected to construct contrast profiles, which are shown in 
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Fig.4.4(a) inset. For each increment fj.h of absolute height, contrasts decrease with 

an equal amount of intensity shift. The maximum contrast should be set by the 

RICM image of stuck particle. According to Eq(4.4), the magnitude of contrast 

depends on the absolute height of particle. Therefore, the amount of contrast shift 

may varies with the range of absolute heights selected to compare. For the particle 

in a given RlCM image, its relative height h (h E [0, jj.h]) can be determined by 

the fitting of image intensity. Image contrast will provide the number of periodicity 

N fj.h, which needs to be added to h to get the absolute height of particle. In this way, 

absolute height of particle in an unknown solution can be easily determined without 

the non-trivial deduction process among solutions with different ionic strengthes. 

To get a series of comparable contrasts between RICM images, the emitting 

intensity of arc lamp and the exposure time of camera should be fixed in all 

measurements. A silica particle with the diameter of 3.2J.tm experiences intense 

Brownian motions in solutions, especially in those with low ionic strengths, in which, 

between the interval of two consecutive frames (jj.t = 20ms), particle can jump up 

and down with a span of 150 nm, which is a challenge for fast image acquisition 

and the 'naive' height determination. As particle becomes higher above wall, its 

position sometimes can be almost out of the focus depth of the objective lens, which 

will lower the signal to noise ratio in its RICM image. Moreover, despite of the 

help from field diaphragm in focusing, positions of focal plane still vary between 

measurements. These factors will affect the magnitude of contrast and hence the 
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constructed contrast profiles. In addition, contrast profiles are constructed ba.'led 

on particle with specific properties, any changes in particle, such as material, size, 

surface roughness, etc may result in the reconstruction of contrast profiles for 

absolute height determination. For lipid and protein functionalized particles, even 

though the coated layer is only several nanometers in thickness, the modified surface 

may lower the amount of reflective intensity collected by objective lens, and hence 

the contrast of RICM image due to its absorption and roughness. The RICM image 

contrast of a stuck functionalized particle can be compared with that of a stuck 

bare silica particle. If the difference between them is negligible, the contrast profiles 

obtained from unfunctionalized particle can be still applied to characterize absolute 

heights of functionalized particles. Otherwise, if screened Couloumb repulsion still 

dominates the interaction between wall and functionalized particles, absolute heights 

in a solution with specific ionic strength can be deduced step by step using a series 

of solutions with an descending order of ionic strength, in which, the maximum ionic 

strength can make particle stuck on glass bottom and yield an absolute height of 

zero, while, the minimum ionic strength is set by the solution where the particles 

are in. However, if particle is surrounded by deionized water, solutions with more 

specific salt concentrations are needed to figure out its absolute height. This process 

is time consuming. 
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4.5 Summary 

In summary, we realized the mea.•surement of particle's absolute height above a 

charged glass bottom in a solution by SW-RICM. Due to the nature of screened 

Coulomb repulsion, particles will rise following the decrease of ionic strength in 

solutions. During this process, even though the same phase distribution of intensity 

in RICM image repeats, the contrast will be monotonically reduced, which can 

eliminate ambiguity in absolute height determination by SW-RICM. With initial 

ionic strength set by stuck particle which gives an absolute height of zero, several salt 

concentrations are carefully selected in a descending order, in which absolute height 

of particles in each solution can be determined step by step with the help of contra..'lt 

comparison. The method is demonstrated by the fit of measured absolute heights 

to the DLVO theory. Moreover, the relationship between contrast and absolute 

height ca.n be constructed. The resulting contrast profiles can simplify the height 

determination process and make it applicable to particles in a variety of experimental 

contexts. 
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CHAPTER V 

MODULATION OF COLLOIDAL PAIR INTERACTIONS 

BY LIPID FUNCTIONALIZATION 

5.1 Introduction 

Since 1994 [15], confinement-induced like-charge attraction has been intensively 

studied in experiments. In general, limitations in our understanding of this 

mysterious attraction contribute to the slow progresses in self-assembled microparticle 

superstructures. These difficulties arise in large due to the lack of experimental 

system with tunable, long-range, attractive interparticle interactions. 

Due to their varieties and specific interactions, Biornolecules provide a new 

way to control colloidal interactions. Strong attractions between colloidal particles 

can be achieved by coating biornolecules with high binding affinities, such as 

biotin and streptavidin [115]. However, such attractions are poorly controlled 

and will lead to irreversible aggregation of particles. DNA is another widely 

used biomolecule to control colloidal interactions [91]. Hybridization between 
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complementary DNA strands can make DNA-linked particles attract each other. In 

addition, the temperature-dependent binding of DNA molecules allows reversibility 

of particle-particle adhesion. But due to the highly charged phosphate backbone of 

DNA molecules, hybridization affinity needs to compete with electrostatic repulsion 

between strand DNA molecules. The resulting control of inter-particle 

interaction is only short-ranged, usually several tens of nanometers in scale. 

Recently, lipid bilayers, the ubiquitous bimolecular coating for cells, began to appear 

as a candidate for colloidal functionalization. Lipid vesicles can self-assemble on 

the surface colloidal silica particles to form a lipid bilayer, where surface charge 

density can be easily regulated by tuning lipid compositions. Also membrane 

proteins can be incorporated to provide specific inter-particle linkages. Recent 

studies by Baksh et.al. [53]and Winter et.al. [54] have shown that phase transitions 

of lipid functionalized microparticle ensembles can be triggered by peripheral protein 

binding. The underlying physics of such phenomena suggests the potential of lipid 

bilayers to control colloidal pair interactions, but these interactions still remain 

poorly quantified. 

In this chapter, we present pair potential measurements of lipid functionalized 

silica particles. energy U as a function of center-to-center separation r of two 

identical particles was mea..<Jured by our tunable line traps (Chapter III) near the glass 

chamber bottom . The adjustment of lipid composition gives rise to the modulation 

of charge density on particle surface, which results in tunable, long-range, attractive 
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colloidal pair interactions. The tunability of interactions allows the decomposition 

of pair potentials into charge-dependent and -independent terms, the former of 

which is found to be purely repulsive. The linear relationship between interaction 

energy and fraction of charged lipids suggests the influence of a confining wall as a 

dominant determinant on pair potential measurements. Finally, we will comment on 

the measured mysterious attractive colloidal interactions. 

5.2 Experimental Methods 

Silica Particles 

Silica particles with 3.2Jtm in diameter were purchased from Bang Laboratories 

(cat.no.SS05N, density ~ 2gjcm3
) as suspensions with 109 beads/ml. 30{-ll of bead 

suspension was diluted with 1ml DI water in a eppendorf tube followed by pulse 

vortexing. Centrifugation of the tube allowed particles to sediment on the bottom, 

the top supernatants were pipetted out. Then after the addition of fresh DI water 

and vortexing, the dispersed bead suspension in the tube were sonicated for 5 minutes 

in an ultrasound bath to detach stuck small impurities from particle surfaces. The 

surface roughness of particle was verified to be less than 10nm via scanning electron 

microscopy (Zeiss Ultra Scanning Electron Microscope) 

Lipid Functionalized Silica Particles 

The lipid~ listed below are purchased from Avanti Polar Lipids: 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC, cat.no.850375), 1 ,2-diachyl-sn-glycero-
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3-phosphoserine (DO PS, cat.no.840035), 1 ,2-dioleoyl-3-trimethylammonium-propane 

(DOTAP, cat.no.890890). Each kind of lipid is originally dissolved in chloroform. 

DOPC is a zitterionic (net neutral) lipid, whereas a net positive/negative charge 

exists in the headgroup of DOTAP /DOPS lipid molecule, respectively. Each 

kind of lipid has two unsaturated fatty acid chains, and is fluid in room 

temperature. The fluorophore-conjugated lipid Texas Red 1,2-dihexadecanoyl-sn­

glycero-3-phosphoethanolamine purchased from Invitrogen (Texas Red DHPE, cat.no. 

T-1395MP) is originally in the form of powder, which is dissolved in chloroform after 

arrival. Texas Red DHPE is used as fluorescent label to examine the intactness 

of coated lipid bilayers on the surface of silica particle. In addition, it is anionic, 

contributing a net negative charge per molecule to the mixture of lipids. Each kind of 

lipid is diluted with additional chloroform to desired stock concentrations and stored 

in a glass vial for later use. 

For each lipid composition, the total mass of mixed lipids was 1mg, and the volume 

of each lipid in chloroform was calculated according to its molar percentage in lipid 

mixture and its stock concentration. Lipids were mixed together in a pear-shaped 

flask which was cleaned by piranha solution and rinsed by chloroform before use. Each 

sample was dried in vacuum for 2 to 3 minutes and then evacuated for at least 2 hours 

to make chloroform evaporate completely. The dried lipid film in flask were hydrated 

with 1ml DI water and kept overnight at 4 oc in the dark to protect fluorophore from 

bleaching. 
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A lipex extruder (Northen Lipids) was used to generate small unilamellar vesicles 

(SUVs). Lipid suspension from previous day was pipetted into extruder with a lOOnm 

polycarbonate filter placed in its bottom. The pressure of flowing nitrogen gas inside 

extruder pushes lipid suspension to pass through the filter and the extruded sample 

was collected. SUVs with uniform size (about lOOnm in diameter) were formed by 

repeating this process at least 10 times. Before the extrusion of next sample, the 

filter was washed by extruding lml of DI water for several times to clean any lipid 

residue left from previous sample. 

A spreading solution was prepared by mixing 30,ul SUVs solution with 60,ul lX 

phosphate buffered saline (PBS) in an eppendorf tube. 30,ul bead suspension was 

pipetted into the spreading solution followed by pulse vortexing. Lipid bilayers 

self-assembled on the surface of silica particle after several minutes of incubation. 

Centrifugation of the tube allows the sediment of functionalized particle at its 

bottom, then the top fluid in the tube was exchanged with DI water, and particle 

suspension was vortexed to mix again. Unruptured SUVs were rinsed out by 

repeating these steps. 

Optical Line Traps 

Optical line traps were generated by the method introduced in chapter III. In brief 

A spatial light modulator (SLM) was illuminated by a diode laser(Meshtel RS655-

70, 655nm, maximum output 70m W)at a output power of 14m W. The diffracted 

beam with modulated wavefront was focused by aNA = 1.2, 60X water immersion 
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lens (Nikon) on a Nikon TE2000-S inverted microscope to create a 60ttm line trap in 

the focal plane. In order to hold particle near the line center to decrease the time 

of separation sampling, cr = 7.5 in Eq(3.7) was adopted in line trap generation to 

introduce a net gradient force exerted on particles. 

Pair Potential MeaBurementB 

A dilute lipid functionalized bead suspension was pipetted into a 8-well chamber 

with NO.LO borosilicate coverglass bottoms (Lab-Tek, Nalge Nunc International) 

containing DI water. Particles were allowed to sediment by gravity near the glass 

bottom of chamber with density of several particles per lOOttm x lOOttm field of view. 

Images of particles were captured in a lOttm x 40p.m area with a rate of 16 frames 

per second. For each set of measurement, examined by fluorescence appearance, two 

lipid-coated particles with uniform fluorescence intensity each were selected. First, 

a single particle was confined in a line trap with its motion captured in 60 minutes. 

Then the second particle was pulled in the trap, and the images of colloidal pair 

were recorded for 50 ""' 60 minutes. The true pair interaction was calculated based 

on the method described in Chapter III. For each lipid composition, 5 "' 10 sets of 

particle pair were selected with pair potential measured each and U ( r )s plotted in 

this chapter are typical curves. Supposing that the calculated interaction energy from 

Boltzmann relationship is U(r) plus an arbitrary offset, the offset can be determined 

by U(r--+ oo) --+ 0 with large-r limit of U evaluated by ~~ < O.lkBT / ttm. The well 

depth, b.U, was evaluated from a cubic fit of U(r) near the vicinity of minimum. 
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Particle Tracking 

Positions of particles were tracked by home-made MATLAB programs based on 

the well-established tracking algorithm [77]. The precision of locating particle center 

is about 20 nm as estimated by tracking the position of stuck particle. The error in 

separation determination due to image artifacts has been characterized in Chapter 

III, magnitude of such effect is negligible with a shift of observed separation 

about 15nm. Moreover, this error would be presented in all our measurements and 

so that it cannot affect the relative difference between U(r)s measured for different 

lipid compositions. 

5.3 Experimental Results 

Single, continuous lipid bilayers readily self-assemble on silica surfaces [116]. Lipid 

functionalized silica microparticles were made using established techniques [53, 54]. 

Membrane coatings consist primarily of the zwitterionic (neutral) phospholipid 

DOPC, with 0.5mol% anionic fluorescence probe Texas Red DHPE and various 

amounts of the negatively charged lipid DOPS or the positively charged DOTAP. 

See the experimental methods section for abbreviations and details of sample 

preparation. Silica microspheres coated by membranes with net molar percentages of 

positively charged lipids, Zlipid, between -4.5 and +3.5, were examined. Fluorescence 

microscopy shows the uniform fluorescence appearance of the particles. 

In experiments, we focused on pair interactions of lipid functionalized microparticles 
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near a confining wall, motivated by the mysterious confinement-induced like-charge 

attraction and by the triggered phase transitions in membrane-coated particle 

ensembles near a glass wall [53, 54]. 3.2pm diameter silica particles are massrve 

enough to settle near the glass chamber bottom by gravity, while still being small 

enough to undergo significant lateral Brownian motion. Therefore, we allowed a 

dilute beads suspension to settle near the vicinity of glass chamber bottom. As 

is shown in Fig.5.1(a), two particles coated by membranes with the same lipid 

composition were confined in a line trap. The interaction energy between them 

was characterized by the procedure described in the experimental methods section. 

At least 5 measurements were performed for each composition. The power of 

laser illuminating line trap (14m W) was too low to move the trapped particles 

perpendicular to focal plane followed by the shift of laser focus. The height of 

particles above the wall was still determined by the balanced between its gravity and 

electrostatic repulsion from the wall, with a small shift ( < 50nm) induced by the 

laser focus position, as measured by RICM. 

The measured pair potential curves are shown in Fig.5.1(b). We found that 

the pair interaction energies can be tuned over a wide range by altering the lipid 

compositions. The tuning range of attractive interactions is about lkBT. At short 

separations, the measured pair potential curves in all data sets are roughly parallel 

with each other, which suggests a similar screening length of electrostatic repulsion 

independent of lipid compositions. For highly negatively charged membranes 
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FIGURE 5.1:(a) A schematic diagram of pair interaction measurements of lipid-only
functionalized microparticles. Two membrane-coated microparticles are confined by
line trap near the vicinity of glass chamber bottom. Two silica particles were coated
with membrane with the same compositions.(b) Representative pair interaction
energies, U(r). The net molar percentage of ionizable lipids, Zlipid, was controlled
via the fraction of anionic DOPS (Zlipid < 0) and cationic DOTAP (Zl'ipid > 0) lipids
in the membrane. The overall particle charge is negative in all cases. The data points
are connected by lines as guides to the eye.

(4mol.% DOPS, ZliJYid= -4.5%), the pair interaction of particle is purely repulsive.

With increasing positive membrane, attractive minima in U(r) began to appear

and become deepest with ZliJYid= + 3.5% (4mol.% DOTAP). Particles coated with

membranes containing more than 4mol.% DOTAP stuck on the glass chamber bottom

without the exhibition of Brownian motion. Studies on lipid bilayer supported by

planar substrate have shown that Zlipid= 4% counterbalances the negative charge of

glass substrate [117]. Therefore, for particles coated by membranes with Zlipid= 4%,

it is most likely to be positively charged and immobilized on the negatively charged

glass bottom of chamber by electrostatic adhesion.
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5.4 Analysis and Discussion 

In the above section, we have shown that attractive pair colloidal interactions can 

be modulated by coated membranes. These results arouse our contemplation on one 

of deepest mysteries in colloidal science: attractions between likely charged colloidal 

particles near the vicinity of confining wall, which contradicts with the prediction of 

DLVO theory. Even though several theoretical explanations have been proposed, none 

of them can explain the mysterious attraction in all experimental conditions. Previous 

experiments were based on silica or polymer particles, which were chemically simple 

and the electrostatic properties of their surfaces cannot be readily altered. Here, the 

modulation process of attraction presented in our experiments is absent in previous 

studies, the dependence of attractive colloidal interaction on the amount of charged 

lipid in coated membrane can yield insights into like-charge attraction. 

Analysis of modulated U ( r )s allows the separation of various contributions to pair 

potential. As is shown in Fig.5.l(b) and 5.2, there is a dependence of pair potentials 

on Ztipid, the amount of charged lipids in coated membrane on rnicroparticle. There 

is a linear relationship between the depth of attractive potential, b..U and Zzipid (Fig 

5.2(a)). Considering the original charges on the surface of silica microsphere, which 

is related with an offset term Z0 , the total charges of lipid-coated particles can be 

denoted by Z = Zzipid + Zo. Then we can write U(r, Z) = f(Z)Ue(r) + Un(r), where 

f ( Z) is a function of Z. The pair interaction energy can be decomposed into two parts. 

Ue(r) is the potential of interactions between particles directly related to Z, whereas 
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FIGURE 5.2: (a) The depth of attractive potential b..U vs Ztipid· The points are 
averages of at le&'lt 5 data sets with each composition and the error bars indicate 
standard deviations. The solid line is a linear fit. (b) U ( r) versus Zupid for two values 
of r (points), with linear fits (lines). 

Un(r) includes indirect electrostatic and non-electrostatic interactions independent of 

lipid compositions. Carefully examining pair potential curves, we found that not only 

is the depth of attractive potential well, !:::.U linearly proportional to Zlipid (Fig.5.2( a)), 

but also, for any given separations r, U(r) alters linearly with Zlipid (Fig.5.2(b)). This 

suggests that f ( Z) is a linear function: f ( Z) = - Z = - ( Ztipi.d + Z0 ), the minus sign 

reflects the increasing of repulsion with the addition of negatively charged lipids. U (r) 

can therefore be denoted as 

(5.1) 

Therefore, by fitting U(Ztipid) linearly with Zlipid at each given separation r, Ue(r·) can 

be given by the slope, plotted in Fig5.3(a). At each r, the average of U(r)s from several 

data sets with each membrane composition were examined as a function of Ztipid 
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derived as U(Zlipid)l-r· Ue(r) was calculated from U(Zlipid)l-r for each composition. Two 

such data sets of U(Zlipid) are plotted in Fig.5.2(b) at r = 4.4 and 4.9fi.m, respectively. 

Note that f(Z)Ue(r) is a measure of energy; Ue(r) alone measures energy per unit Z. 

We find that Ue(r) is purely repulsive, in agreement with predictions of electrostatic 

interaction [96]. However, instead of a simple form of Coulomb screening repulsion, 

it can be well fitted with a superposition of two such forms (Fig.5.3(a)) 
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FIGURE 5.3: (a) Ue(r), the particle-charge-dependent contribution to the pair 
interaction energy per unit Zlipid· The error bars indicate uncertainties in the linear 
fits of U versus Zl-ipid· The solid line is a fit to the sum of two exponential curves, 
each term of which is indicated with dashed lines. (b) Un(r), the particle-charge­
independent contribution to U(r), derived with different assumed values of the offset 
charge Z0 . Distances are plotted in terms of the center to center distance r. 

(5.2) 

One screening length, K:} 1 = 0.13 ± O.Olfi.m, agrees with the fitted Debye screening 

length obtained from pair potential measurement of bare silica particles in Chapter 

III. The other, K:2 1 = 1.5 ± O.lJ-an, is fairly large and comparable to the radius of 
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particle. Both Z 0 and Un(r) contribute to the intercept of linear fit of U(Ztip·id) with 

Ztipid· Considering that membranes with more than 4 mol.% DOTAP coated on 

planar silica substrate will cancel out the original negative charges on silica surface, 

the offset term Z0 should be around -4. Un(r)s with Z0 = -4 to -6 are plotted in 

Fig.5.3(b). Even though the form of Un('r) cannot be determined, Un(T)s for all given 

values of Z0 are attractive with a similar depth of lkBT· 

The linear relationship between U and Ztipid is amazing. For the range of 

Zlipid investigated in our experiments, recent measurements of separation between 

individual lipid-coated silica microsphere and coverslip revealed a linear relationship 

between particle surface potential 'ljJ and Zzipid with 1'1/JI < 50rnV. Therefore, our 

observation implies U "' '1/J. For small surface potential 1'1/JI < 25mV, we would 

expect that the pair potential of identical spherical colloidal particles should increase 

quadratically with its surface potential, as U rv ¢ 2
. However, the linear scaling 

U ,......, ¢ implies that particle-wall interaction dominates pair colloidal interaction 

measurements, in which, u rv 1/)par-ticle '1/Jwau rather than U "" 1/Jparticle '1/Jparticle. If 

considering the constant surface potential of wall, particle-wall interaction can be 

characterized by U,......, '1/J. 

The actual charge density on the surface relates with Ztipid, but the scaling relation 

between them are complicated. Since the average separation between charges is on the 

order of lOnrn, less than the Debye screening length, interactions between charged 

groups of hydrophilic heads are significant. The molar percentage of lipids with 
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net charges in solution may be far less than Ztipid, so we cannot expect the actual 

charge density scales linearly with Zlipid· Further, we cannot conclude that 1./J is linear 

proportional to the actual charge density. 

For like-charge attractions examined in our experiments, we also attempted to fit 

pair potentials to some models, e.g. DLVO model. For example, The pair potential 

with maximum attractive well (4mol.% DOTAP) can be well fitted with Eq(3.17). 

If we take the attractive pair potential for granted as Van Der Waals interaction, 

the fitting yields a Hamaker constant 200 times larger than that of silica in aqueous 

solutions. This suggests that Van Der Waals interaction cannot account for this 

mysterious attraction between particles, in agreement with the conclusion made 

by Kepler in 1994 [15]. Even though the lipid bilayer is coated on silica particle 

surface, it is so thin that its contribution to Van Der Waals attraction between 

particles is negligible. Unruptured SUVs (lOOnm in diameter) have been rinsed 

out before pair potential measurements, and less than lpl beads suspension was 

pipetted into a well of chamber containing 400 pl DI water. Concentrations of small 

particles, such as SUV s or impurities originally on silica particles, are too low to 

provide prominent depletion attraction between particles. However, considering the 

structure of lipid-coated silica particle, the membrane on the silica surface is still 

a fluid, and ionized lipids can move around. With the presence of the negatively 

charged confining wall, the ionization of molecules in the area on particle surface 

close to the wall will be more strongly influenced than that in other areas. The 
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same situation also happens in the area of one particle close to the other. Such 

effects will give rise to an asymmetric charge distribution on particle, and hence 

an asymmetry in conunterion clouds around the particle. We speculate that the 

resulting dipolar or higher-order forces between microparticles may be important. 

The length scales of such interactions will be similar to that of charge inhomogeneity, 

on the order of particle radius. This scale is similar to the second screening length 

K.21 deduced above. Some studies [118, 119] have shown the existence of attraction 

between particles with inhomogeneous charge distributions. However, it is still 

unclear whether this explanation can be applied to confined colloidal particles. In 

addition, due to Brownian motion of particle, such asymmetric distributions 

on the surface of lipid-coated microspheres can be modulated by particle-particle 

and particle-wall separations, the resulting charge fluctuations further complicate 

the situation. Other factors, including the dynamics of local ion clouds and the 

rotational Brownian motion of the particles, may also contribute to the exact form 

and magnitude of these interactions. 

5.5 Summary 

In this chapter, following the introduction of experimental methods, we presented 

the pair potential measurements of lipid functionalized microparticles near the 

vicinity of a charged eonfining wall. By tuning lipid eompositions to modify 

the charge density on colloidal surfaces, attractive colloidal interactions can be 
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modulated in a range of lkBT, and the depth of attractive potential was found to 

be linearly proportional to Zzipid· Compared with previous results on confinement­

induced like-charge attraction, our data provided a set of U(r)s and showed the 

modulation process of attractive interactions, which makes it possible to separate 

factors contributing to interactions among the microparticle and the confining wall. 

The particle-charge-dependent term is purely repulsive, making it clear that the 

mysterious attraction is not simply due to charge. Moreover, the linear relationship 

between U(r) and Ztipid implies the domination of particle-wall interactions on 

colloidal pair interaction measurements. Even though our data cannot provide 

a solution of like-charge attraction, the control of colloidal interactions by lipid 

functionalization illuminates this long-standing unsolved puzzle in colloidal science. 



CHAPTER VI 

MODULATIONS OF ATTRACTIVE COLLOIDAL 

INTERACTIONS BY LIPID AND PROTEIN 

FUNCTIONALIZATION 

6.1 Introduction 
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In previous chapter, we have shown the modulation of attractive colloidal 

interactions by lipid functionalization. However, even though decomposition 

of pair potentials can remove the paradox inherent in like-charge attraction, as 

the attraction is not (directly) due to the order charge-charge interaction, the 

mystery of like-charge attraction is still unsolved. 

The functionalization of microparticles with lipid bilayer membranes been 

demonstrated as a powerful methodology for achieving control of particle properties. 

Surface charge density of particle can be readily altered by the control of lipid 

compositions, ability of which to mediate colloidal interactions has been shown 

in previous chapter. In addition, lipid bilayers with enhanced mechanical stability 
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offered by microparticles make it possible to simulate the real environments of 

cellular membranes. Surface of silica microparticles can be further modified by 

binding peripheral proteins on membrane coatings. Ionized groups in bound proteins 

can also modulate the surface charge density of particle, and the change of diffusion 

coefficient in supported lipid bilayers have been observed with the presence of bound 

proteins [53, 54]. Moreover, Recent studies have shown that binding peripheral 

proteins Cholera Toxin Subunit B (CTB) to lipid ligand monosialogangsolioside 

GM1 on the microsphere-supported membrane, can trigger dramatic transitions 

between condensed and dispersed phases in many-body systems. This suggests that 

protein binding can be another effective method to mediate interactions between 

microparticles. However, it is still unclear whether such transitions is governed by 

two-body or higher order interactions, and fundamental interactions between such 

functionalized particles, i.e. pair interactions, still remain unexplored. 

In this chapter, we will first report the measurements of pair interaction energies 

between lipid-plus-protein functionalized silica microparticles. Our data show the 

control of pair interactions can be achieved by binding different numbers of CTB to 

its ligand lipid GM1 coated on silica microparticles. Depths of attractive potentials 

are weakened followed by the increased number of CTB bound on G Ml, in a relation 

similar with that obtained in many-body measurements. Next, we will compare 

modulations of attractive colloidal interactions provided by lipid-only and lipid­

plus-protein functionalizations. Analysis from potential curves and measurements 
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of particle-wall separations show remarkably differences between these two systems. 

Besides the demonstration of a new biomimetic way to control colloidal interactions, 

our results imply that mechanisms underlying like-charge attraction may be not 

unique and several factors may account for its existence. 

6.2 Experimental Methods 

Materials 

The same silica particles with 3.2pm in diameter were used as those described in 

preparations of lipid-only functionalized particles. For lipid-plus-protein functionlized 

particle, coated membranes consist of 97.5 mol% 1,2-dimyristoleoyl-sn-glycero-3-

phosphocholine (DMOPC, zwitterionic), 1.5 mol % 1,2-dioleoyl-sn-glycero-3-

ethylphosphocholine (DOEPC, one net positive charge per lipid molecule), 0.5 

mol % Ganglioside GM1 (GM1 , one net negative charge per lipid molecule), 0.5 

mol % fluorophore-conjugated lipid TR-DHPE (one net negative charge per lipid 

molecule). For lipid-only functionalized particles, the compositions are the same as 

those described in the previous chapter. All lipids were purchased from A vanti Polar 

Lipids except for TR-DHPE, which was purchased from Invitrogen. FITC-labeled 

florescence CTB powder was purchased from Sigma-Aldrich. Initially, CTB powder 

was dissolved in 1X PBS solution for later use 

Sample Preparation 

Lipid functionalized microparticles were prepared by the procedures described 
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in previous chapter. For lipid-plus-protein functionalized particle, dilute lipid 

functionalized particle suspension were mixed with CTB solutions with various 

concentrations (1 to lOOOnM) which were diluted from stock concentration in PBS. 

These mixtures in eppendorf tubes were placed on a rotating rack in dark to incubate 

for about 45 minutes to 1 hour. After that, unbound CTB was removed by repeated 

rinsing steps of centrifugation and vortex mixing. 

Examination of FITC-labeled CTB on Particles 

Fluorescence of FITC-labeled CTB on particle was examined by florescence 

microscopy. For CTB incubation concentration, a fiuoresence image of a single 

particle was recorded over an area of 12 x 12p,m2
. Fluorescence intensities of 

particles were determined by subtracting the average intensity in background area 

from that in particle area. The plotted points in Fig.6.l(a) represent the averaged 

fluorescence intensity from 20 to 25 particles. 

Pair Potential Measurements 

Pair interaction energies U(r) were measured as described in detail in the previous 

chapter. 

Particle-wall Separation Measurements 

The separation between particle and confining glass chamber bottom was 

determined using RICM with a precision of lOnm. Light from a mercury lamp 

filtered by a 535 ± 20nm band-pass filter was used to illuminate particle. RICM 
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images of single particles were captured over a 12 x 12,um2 area with 48 frames per 

second. For composition or experimental configuration, 10 to 15 sets of RICM 

data were taken, The mean particle-wall separation (h) was calculated from the 

Brownian distribution of h. The detailed procedures of mean height measurement 

have been introduced in Chapter IV. 

6.3 Experimental Measurements 

FITC-labeled CTB was bound to lipid-functionalized silica microparticles by 

the procedures described above. Florescence images show uniform CTB binding 

(Fig.6.l(a)). normalized fluorescence intensity was plotted as a function of the 

incubated CTB concentration in Fig.6.1(b), which can be well fit to a langmuir 

isotherm with a dissociation constant of KD,fluor = 35±8nM. This result is consistent 

with other measurements of CTB binding to supported membranes [54], indicating 

that the protein binds to the lipid bilayer as expected. 

Two particles with the same incubated CTB concentrations were confined in a 

line trap. Pair potentials were measured near the vicinity of glass chamber bottom 

(Fig.6.2(a)). Interaction energies for microspheres prepared with varying [CTB] are 

shown in Fig.6.2(b) and exhibit tunable pair interaction energies that can be strongly 

attractive. The well depth of attractive potential, !:lU, decreases monotonically with 

incubated CTB concentration in a manner well fit by a Langmuir isotherm 

(6.1) 
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FIGURE 6.1: (a) Typical fluorescence images of lipid-plus-CTB functionalized 
silica microparticles with different CTB incubation concentrations. (b) Normalized, 
background-subtracted fluorescence intensity of CTB on particles versus CTB 
incubation concentration. Solid line is a fit to a langmuir isotherm with an effective 
dissociation constant of Kn,tluor=35±8 nM. 

where t;;.U0 is the depth of attractive potential as [CTB] --+ 0. The fitting gives 

Kn = 33 ± 6nM, which is identical within uncertainty to KD,fluor noted above. 

Measured mean separations between particle and glass chamber bottom, (h), 

are shown in Fig.6.3. For CTB-bound microparticles, (h) decreases as more CTB 

were bound on the surface of particle. The height of a particle is determined 

by a balanced between its gravity and electrostatic repulsion from the negatively 

charged glass bottom. Increasing the concentration of bound CTB leads to more 

positively charges to counterbalance original negative charges on silica microspheres 

so that particles will become closer to the charged walL The relation between (h) 

and [CTB] can be well fitted to a Langmuir isotherm with a similar dissociation 

constant, Kn,h = 33 ± 8nM. For lipid-only functionalized microparticles, {h) versus 

Ztipid, the net molar percentage of positively charged lipids, is plotted in Fig.6.3. As 
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FIGURE 6.2: (a) A schematic diagram of pair interaction measurements of lipid­
plus-CTB functionalized microparticles. (b) Representative pair interaction energies,
U(r). Pair interaction energies, U(r), for silica microspheres functionalized with lipid
membranes containing O.5mol% G /VII and incubated with different concentrations of
CTB. Inset: Attractive well depth, D,.U, versus [CTB]. The solid curve is a fit to a
Langmuir isotherm with an effective dissociation constant of K D=33±6 nl'vI.

expected, the more neutral the coated membrane is, the closer the particle is to the

wall. Particles with Zlipid > +3 (i.e. with membrane containing more than 3 mol%

DOTAP) adhered to the glass bottom.

6.4 Analysis and Discussion

The data show that lipid-plus-protein functionalization yields attractive pair

potentials between microparticles, which can be modulated by [CTB]. Properties

such as the fluorescence intensity of bound CTB on particle, the depth of attractive

potential D,.U and the particle-wall mean separation (h) each shows a dependence

on [CTB], well described by a Langmuir isotherm with K D ~ 33nl'vI. The common

Langmuir form reveals that both D,.U and (h) are simply linear proportional to

the amount of CTB bound on supported membrane. K D is also identical within
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FIGURE 6.3: Mean particle-wall separation, (h). For lipid-only particles, (h) is 
plotted as a function of the net molar percentage of ionizable lipids, Zlipidi the solid 
line is a linear fit. For CTB-bound particles, (h) is plotted as a function of the 
incubation concentration of CTB; the solid curve is a fit to a Langmuir isotherm with 
an effective dissociation constant of KD,h=33 8 nM 

uncertainty to the effective dissociation constant measured in many-body particle 

distribution function. This implies that previous reported CTB-triggered colloidal 

phase transitions[54] may be understood in the context of pairwise interaction. 

Both lipid-plus-CTB and lipid-only functionalizations examined in previous 

chapter lead to tunable, attractive pair interactions. Both lipid bilayers (thickness "" 

5nm) and CTB (a few nanometers in extent) provide molecular scale surface coatings 

for 3.2JLm diameter silica core. From the similar structures, we would expect the 

same mechanisms of regulating surface charge density of the composite particle. 

Therefore, we predicted that both functionalizations should yield similar forms of 
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colloidal pair interactions, and two sets of measurements could be simply mapped 

onto one another. Surprisingly, the analysis of the data shows this is not the case. 

The analysis of potential curves shows a fundamental difference in interacting 

forms between lipid-only and lipid-plus-CTB functionalization. Two properties that 

characterize U(r) are D.U and the effective range of attraction, (r), which is defined 

by 

fu<o rU(r)dr 
( r') = ~~-;-;--.,.-

fu<o U(r)dr 
(6.2) 

The data from measurements of lipid-only functionalized microparticles show a 

negative correlation between D.U versus (r) (Fig.6.4(a) circles), wherea..s for lipid-

plus-CTB functionalizaiton, the correlation is positive; the strongest attractions are 

the longest ranged. The lipid-only data show a linear dependence of D.U on the 

molar fraction of charged lipids, Ztipid, D.U varies with [CTB] in a form of Langmuir 

isotherm, as does the fluorescence intensity of bound CTB varies with [CTB]. The 

identical dissociation constant within uncertainty indicates the a linear dependence 

of D.U on the surface density of protein. However, the shared dependence of D.U 

on surface concentration for both charged lipids and CTB does not lead to shared 

behavior of the interaction range but rather the qualitatively different behavior 

plotted in Fig.6.4(a) 

Analogous to decomposition of lipid-only data into charge-dependent and 

-independent terms, pair potentials of CTB-bound microparticles can be decomposed 
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FIGURE 6.4: (a) Attractive well depth, b.U, versus the interaction range,(r), for 
lipid-only and lipid-plus-CTB membrane-functionalized particles. The solid lines are 
linear fits. (b) Attractive well depth, b.U, versus the mean particle height, (h), for 
lipid-only and lipid-plus-CTB membrane-functionalized particles. The solid lines are 
linear fits. 

into two parts. 

(6.3) 

where rY is the surface concentration of bound CTB and UcrB and Um are terms that 

do and do not depends on CTB coverage, respectively. The quantification of CTB 

fluorescence provides a measure of rY, and there is a roughly linear relationship between 

b.U and rY at each fixed r (Fig.6.5(b)inset). The slopes and intercepts give UcrB 

and Um respectively. As shown in Fig.6.5(a), UcrB is repulsive but not monotonic, 

whereas the CTB-independent term Um (Fig.6.5(b)) is similar to U(r) from lipid-

only particles. On the whole, the bound CTB gives rise to a long-range repulsive 

interaction between particles to conterbalance the induced attraction by lipid coating. 

However, we cannot provide qualitative explanations of this behavior but speculate 
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that CTB dissociating from the membrane forms a cloud of large macroions, which 

may induce nontrivial electrostatic or entropic interactions between particles. The 

very low off-rate of CTB binding to GM1 [120], koff = 10-5s-1
, indicates that such 

a cloud would be very dilute and would fluctuate greatly, and its effect are likely 

beyond the reach of mean-field theory. 
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FIGURE 6.5: (a) UcrB(r), the [CTB]- dependent contribution to the pair interaction 
energy. (b) Um(r), the [CTB]-independent contribution to U(r). The error bars 
indicate uncertainties in the linear fits. (Inset) U(r) versus the fluorescence intensity 
of bound CTB (proportional to the surface concentration of the protein) for two 
values of r (points), with linear fits (lines). 

The analysis of t::.U versus (h) provides further evidence of different behaviors from 

different biomolecular functionalizations. Both functionalization show dependence of 

(r) on composition(Zlipid or [CTB]), and give a range of t::.U ~ kaT corresponding 

to a range of (h) about 200nm. This indicates that like-charge attraction is sensitive 

to the particle-wall separation, as has been exhibited in previous experiments [16]. 

However, as shown in Fig.6.4(b), the correlation between t::.U and (h) is opposite 
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for the lipid-only and CTB bound microparticles. For CTB-bound particle with 

[CTB] = 1nM, it would be slightly positively charged. Correspondingly, its (h) is 

well located between that of Ztipid= -0.5 mol% and + 1.5 mol%. From this point, 

increa..sing the amount of negatively charged lipids will increase (h) and lower t::..U 

for lipid-only functionalized microparticles, whereas on CTB-bound side, more CTB 

bound on particle yields weaker attractions with larger particle-wall separations. 

This leads to an important conclusion that the particle-wall separation cannot be the 

primary determinant of like-charge attraction in colloidal systems. In other words, 

earlier studies [15, 16, 121] have demonstrated that the confining wall is important 

for the generation of attractive interparticle forces. In previous chapter, we have 

shown that pair interaction energies between lipid-only functionalized microparticles 

scale linearly with particle's surface potentials, which implies that the particle-wall 

interaction mediates pair interaction measurements between particles. With the 

comparison of attractive colloidal interaction modulations provided by two different 

functionalizations, we can further conclude that the wall is important, but its role 

cannot be solely characterized by (h). (h) does not uniquely specify the interparticle 

interaction energy. 

6.5 Summary 

In summary, we showed another effective way to control attractive colloidal 

interactions by lipid-plus-CTB functionalization. By altering the concentration of 



106 

CTB bound on microparticles, attractive interaction energies can be modulated 

in a range of 1kBT. Our demonstration of tunable attractive pair potentials in 

lipid- and CTB-functionalized particles reveals a new route to controlling colloidal 

interactions. The difference in the behaviors observed for lipid-coated and lipid­

plus-protein-coated silica microspheres shows that properties such as the attraction 

energy and interaction range can be controlled separately from one another. The 

former particles, for example, show b.U decreasing with (1') whereas the latter show 

the opposite behavior. The ability to influence particular aspects of interactions 

will be useful in many important contexts, for example, in controlling colloidal 

crystallization. 

More fundamentally, we provide quantitative measurements of a well-defined 

colloidal system that we hope will motivate deeper insights into the long-standing 

mystery of like-charge attraction in weak monovalent electrolytes. Unfortunately, 

we cannot at present solve this mystery. In fact, our results show that a solution 

may be more complex than has been previously suspected. Differently functionalized 

particles show radically different interaction properties. The separation distance 

between particles and the confining wall, although important, is not a simple 

determinant of attractive interaction strength. We note that CTB functionalization 

should alter the characteristics of the particles other than surface charge density, 

such as roughness, membrane fluidity [122] and local ion concentration that we 



107 

suspect alter interparticle and particle-wall interactions in ways that transcend 

simple mean-field theories. 



108 

CHAPTER VII 

MODULATIONS OF ATTRACTIVE COLLOIDAL 

INTERACTIONS BY LIPID FUNCTIONALIZED SILICA 

MICROPARTICLES AND GLASS CHAMBER BOTTOM 

7.1 Introduction 

In chapter V, analysis of modulated pair potentials reveals that there is a linear 

relationship between pair potential U(r) and molar percentage of positively charged 

lipids Ztipid at each separation r. From DLVO theory (Eq.(3.13)), we would expect 

that U(r·) should be quadratically proportional to Ztip·id, U rv Z1~pid· However, the 

linear relationship between U(r) and Zlipid indicates that particle-wall interaction 

may dominate pair colloidal interaction measurements since the charge density of the 

glass chamber bottom is constant C, and the linear relationship can be explained by 

U"' Ztipid ·C. Our data show that it is necessary to characterize the dependence of 

pair colloidal interaction on the charge density of chamber wall. 

In Chapter VI, we demonstrated that relationships between the magnitude of 
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attractive potential and particle-wall separation are oppositely different between 

lipid-only and lipid-plus-CTB functionalized silica microparticles. Our data indicate 

that particle-wall separation cannot be the only determinant of confinement-induced 

like-charge attraction. But we still need to emphasize that the presence of wall 

is important to the generation of like-charge attraction, because early studies [16] 

have shown that such mysterious attraction did not appear in isolated colloidal 

system. Moreover, in our experiments, for both lipid-only and lipid-plus-CTB 

functionalized silica microspheres, the magnitudes of attractive pair interaction 

energy !::.U is very sensitive to mean particle-wall separation (h). !::.U can be 

modulated in a range of 1kBT by change of (h) in 200 nm. However, the 

oppositely different modulation relations !::..U ""' (h) indicate that the modulation of 

like-charge attraction by confining wall is more complicated than has been previously 

thought. Characterization of particle-wall separation is not enough to understand 

confining wall modulated colloidal attractions. Therefore, we need to open a new 

avenue to further characterize the effect of confining wall on like-charge attraction. 

The electrostatic properties of the glass chamber bottom can be modified in a 

similar way as those of colloidal particles. In an electrolyte solution, the surface of wall 

is normally negatively charged due to the dissociation of silanol groups. The particle­

wall separation is mainly due to the long range electrostatic repulsion between particle 

and wall. Therefore, it is also possible to modulate particle-wall interaction by the 

modification of the electrostatic properties (e.g. charge density) of glass chamber wall. 
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Such active modifications may facilitate to understand the function of the confining­

wall on like-charge attraction. One such examples has been reported by Polin.et.al 

[20]: mysterious attraction between silica microparticles appears near the vicinity of 

the glass chamber bottom, whereas, pair colloidal interaction is purely repulsive under 

the confinement of gold coated chamber bottom which is almost uncharged. They 

proposed a phenomenological form to explain the wall-charge-dependent like-charge 

attraction, which suggested that the magnitude of attractive potential is linearly 

proportional to the charge density of chamber wall. Moreover, because the lack of 

charge on confining surface will decrease particle-wall separation, the resulting purely 

repulsive interaction with gold coated surface seems contradictory with experimental 

results obtained by Larsen et.al [16], in which like-charge attraction only appears in 

a short particle-wall separation. 

The lipid bilayer is also a good candidate to modify the electrostatic property 

of the planar substrate. Unlike gold coatings, lipid bilayers can self-assemble on 

the surface of planar glass surface to form uniform membrane coatings, and the 

charge density of glass chamber bottom can be easily tuned by lipid compositions. 

Recent studies [123] on many body colloidal systems, in which, lipid bilayers with 

the same composition functionalized both colloidal particles and the glass chamber 

bottom, revealed that the magnitude of like-charge attraction depends on the overall 

charge signs of particle and chamber bottom. Particles above the chamber wall, 

both of which were coated with negatively charged lipid bilayers, exhibited stronger 
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like-charge attraction than those coated with positively charged lipid bilayers. Even 

though the underlying modulation mechanism is not clear, at least it demonstrated 

that lipid bilayers can be used to modulate the electrostatic property of glass chamber 

bottom, and hence enable us to characterize the effect of particle-wall interaction 

on pair colloidal interactions. In this chapter, we will introduce pair interaction 

measurements of lipid functionalized silica particles above lipid functionalized glass 

chamber walls, as well as the measurements of mean particle-wall separations. The 

net amounts of negative charge on both particle and chamber wall were modulated 

by the composition of coated lipid bilayers, which is similar as those used in 

pair interaction measurements introduced in Chapter V. The data show that the 

control of the magnitude and range of attractive interparticle interactions can be 

achieved by modulating charge densities of confining wall. However, the modulation 

mechanism in this case is different from the situation in which only the particles 

were functionalized with lipid bilayers. Our results demonstrate that confining wall 

plays an important role in generating like-charge attraction. 

7.2 Experimental Methods 

Since most materials and experimental methods used are similar to those described 

in experimental methods sections in Chapter V and IV, in this section we will only 

focus on methods which were not introduced before. 
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Chamber 

The chamber holder was made by two pieces of PolyChloroTriFluoroEthyelene 

(KEL-F PCTFE), KEL-F PCTFE is a kind of pla.stic with a high chemical resistance 

and a high compression, impact and tensile strength. A coverslip was put at the 

bottom of lower part of chamber holder, then the upper part of chamber holder was 

inserted on the top of the lower part. The coverslip was then sealed by a viton 0-

ring on its top and tightened by plastic screws connecting upper and lower parts of 

chamber holder to prevent any leakages of solution. The clear aperture of the chamber 

on the microscope is about lOmm in diameter. The No.l.O borosilicate coverslip 

attached at the bottom of homemade chamber has similar electrostatic properties 

as the coverglass bottom of 8-well chambers (Lab-Tek, Nalge Nunc International) 

used in previous experiments. RICM measurments show that the difference of mean 

particle-wall separations for 3.2 J.-Lm diameter silica particles above these two kinds 

of coverslips in DI water was about 50 nm. Therefore, the effect of change of glass 

chan1ber bottom on pair interaction measurements can be neglected. 

Lipids 

Lipids used in experiments are the same as those described in the 

experimental method section of Chapter V, which include 1,2-dioleoyl-sn­

glycero-3-phosphocholine (DOPC), 1 ,2-diachyl-sn-glycero-3-phosphoserine (DOPS), 

1,2-dioleoyl-3-trirnethylarnmoniurn-propane (DOTAP) and fiuorophore-conjugated 

lipid Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Texas Red 
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DHPE). Texas Red DHPE is anionic, contributing to the Zlipid values stated in the 

text. 

Supported Lipid Bilayers on Glass Coverslips 

Supported lipid bilayers were formed on 25mm diameter circular coverslips, which 

are made from NO.l.O boroslicate glass. Coverslips were cleaned by piranha solution 

before use. To facilitate the rupture of Small unilamellar vesicles (SUVs) on the 

glass surface, smaller SUVs (30nm in diameter) with desired compositions were made 

following the procedure introduced in Chapter V. A spreading solution was prepared 

by mixing 1 : 5 SUV s : lX PBS buffer in an eppendorf tube. Then, 50 J.Ll spreading 

solution was pipetted in the center of the top of culture dish (Falcon, 35 rnm in 

diameter). A clean coverslip was held by a tweezer at a 45° angle with one edge 

touching the dish, over the drop of spreading solution but not touching it. The 

coverslip then was dropped quickly to ensure no bubbles trapped in the thin layer 

of spreading solution between coverslip and dish. After 15 minutes incubation in 

dark, the coverslip together with the dish was placed into a large beaker of distilled 

water. Unruptured SUVs were removed by picking up the coverslip and agitating 

it underwater for. about 10 seconds. This process can be repeated several times if 

necessary. Finally, the coverslip was mounted on the chamber holder underwater. To 

further make sure that all unruptured SUV s were gone, the water inside the chamber 

can be exchanged with deionized water (Millipore). Note that supported lipid bilayer 

should be never exposed to air. 
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Other Methods 

Preparations of SUVs and lipid functinoalized silica particles, particle tracking 

and measurements of pair interaction energies and particle-wall separations were 

performed and described in previous chapters. 

7.3 Experimental Results 

Single, continuous lipid bilayers readily self-assemble on surfaces of both silica 

particles and glass chamber bottoms using established techniques. Membrane 

coatings consisted primarily of zwitterionic (neutral) lipids DOPC, with 0.5 mol% of 

the anionic fluorescent probe Texas Red DHPE and various fractions of the acidic 

lipid DOPS or the cationic DOTAP. Membranes with net molar percentages of 

positively charged lipids, Ztipid, between -4 and +4 were examined. Overall, both 

particle and confining wall were negatively charged with the negative charge density 

modulated by membrane coatings. Fluorescence microscopy revealed uniformly 

membrane coatings on both silica microspheres and glass chamber bottom, and 

the fluidity of supported lipid bilayers on the glass chamber bottom was examined 

by fluorescence recovery after photobleaching (FRAP), which was introduced in 

Chapter I. 

Dilute lipid functionalized silica microsphere suspensions were pipetted into the 

chambers containing DI water. 3.2 11m diameter silica particles were sedimented by 

gravity near the vicinity of the lipid functionalized glass chamber bottom. Random 
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particle pairs were trapped in a line optical trap and pair interaction energies U(r)s

were measured (Fig. 7.1 (a)). At least 5 measurements were performed for each

combination of membrane compositions on the particles and chamber wall.
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FIGURE 7.1: (a) A schematic diagram of pair interaction measurements. (b)
Representative pair interaction energies, U(T), versus center-to-center particle
separation, r, varying with Zlipid. U(r)s were measured for 3.2 f..Lm diameter silica
particles above the glass chamber bottom. Both the particles and the chamber
bottoms were functionalized with lipids of the same composition. Inset: Attractive
well depth, I:::.U, versus Zlipid (points). The gray line is a quadratic fitting.

For the case in which both silica microspheres and the chamber bottom were

functionalized with membranes of the same composition, the data show that colloidal

pair interaction energies, especially attractive interaction energies, can be modulated

by altering lipid compositions (Fig.7.1(b)). At low interparticle separations, all

potential curves are almost parallel with each other which indicates a similar

electrostatic repulsion screening length independent of membrane compositions.

Particles coated with negative or neutral lipids (Zlipid ::; 0) exhibit very weak

attractive (::; O.lkB T) or purely repulsive pair interaction. Particles with positive
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charged membranes (Ztipid > 0) show strong attractive minima in U(r), the strongest 

attractive colloidal pair interaction appears for membranes with Ztipid = +4 ( 4.5 

mol% DOTAP). Studies [117) on planar supported lipid bilayers have shown that 

membranes with Ztipid +4 almost neutralize the negative charges of underlying 

silica. Therefore, both particles and chamber bottom coated with membranes 

consisting of more than 4.5 mol% DOTAP should be positively charged. Colloidal 

pair interactions in this condition are not discussed in this chapter. Instead of 

a linear relationship between the depth of attractive well, b..U and Ztipid, which 

we obtained from the pair potential measurements of lipid functionalized silica 

microspheres above a bare glass chamber bottom, b..U varies quadratically with Ztipid 

for membranes of the same composition functionalized on gla.ss chamber bottom as 

well (Fig.7.1(b)inset). 

Further, we picked two membrane compositions, Ztipid = (3.5 mol% DOPS) 

and Ztipid +2 (2.5 mol% DOTAP) to differently functionalize silica microspheres 

and the glass chamber bottom ( Ztipid on glass chamber bottom, Zupid = 

on silica particles or vice versa), and measured pair potentials of lipid functionalized 

silica particles. Combined with the data obtained above, the results showed that 

attractive colloidal pair interactions can be modulated by altering lipid compositions 

on glass chamber bottom. For particles coated with highly negatively charged 

membranes(Ztipid = -4), pair potentials are always purely repulsive no matter 

whether the chamber bottom was highly(Zupid = -4)or weakly(Ztipid = +2) 
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negatively charged (Fig.7.2(a)). However, particles with membranes of Zlipid = +2 

exhibit much stronger attractive pair interaction energy above chamber bottom 

coated with membranes of Z 1ipid = +2 than that of Zlipid = -4 (Fig.7.2(b)). 
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FIGURE 7.2: Comparisons of representative pair interaction energies,U(r) for lipid 
functionalized silica microspheres above lipid functionalized glass chamber wall. Silica 
particles and the glass chamber walls were coated with lipid bilayer of the same or 
d .ff t ·t· (Z ) ( ) zparticle 2 'th zwau + 2 d 4 (b) zparticle 1 eren compos1 wns lipid . a lipid = + WI lipid = an - . lipid 

= - 4 with Zlf;/J = + 2 and - 4. 

The mean particle-wall separations (h) were measured by the method introduced 

in Chapter IV for each combination of lipid compositions on silica microspheres and 

chamber bottom. As is shown in Fig 7.3, the more neutral the same membrane 

functionalization (overall less negatively charged) on both particle and chamber wall, 

the shorter the particle-wall separation is. There is a roughly linear relationship 

between (h) and Zlipid· From Zlipid=- 4 to Zlipid= + 4, the range of (h) is about 400 

nm, which is larger than that we measured with lipid functionalized particle above a 

glass chamber bottom. 



1300 • 

E 
ch110o • 
A 

.s;: 
v 

900 

-4 -2 0 
Znp;ct 

2 

118 

4 

FIGURE 7.3: Mean heights (h) of lipid functionalized silica microspheres above lipid 
functionalized glass chamber bottom. Both of them were functionalized with lipid 
bilayer of the same composition. 

7.4 Discussion and Analysis 

Pair interaction measurements of lipid functionalized silica microspheres above 

lipid functionalized glass chamber bottoms were performed with a homemade chamber 

system with NO.l.O borosilicate coverslip. 8-well chambers with NO.l.O borosilicate 

coverglass bottoms (Lab-Tek, Nalge Nunc International) used in previous experiments 

were not employed in this case. Unruptured SUVs can be trapped in the sealing gaps 

of the 8-well chambers and hard to flush out, which will change the Debye screening 

length of the solution inside the chamber. 

For lipid functionalized particle above bare glass chamber bottom, previous 

experiments have shown that followed by increasing the amount of positively charged 
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lipids coated on particle, particle become closer to the chamber wall and attractive 

colloidal pair interactions become stronger. There is a linear relationship (positive 

slope) between the depth of attractive potential well, b..U and Zlipid· For both 

silica particles and glass chamber bottom functionalized with lipids of the same 

composition, particles with less negatively charged membrane exhibit stronger 

attractive colloidal pair interactions. The closer the particle is to the chamber 

bottom, the stronger the attractive pair potential is. These two fundamental 

trends are consistent in both cases of functionalizations. However, the relationship 

between b..U and Ztipid is not linear when both surfaces are functionalized. When 

both particle and lipid were functionalized with neutral or negatively charged 

lipids (Zlipid ~ 0), colloidal pair interactions are purely repulsive or very weakly 

attractive (b..U ~ O.lkBT) in a long range. Obvious attractive minima appear in 

U(r) for positively charged lipids functionalization. For the same lipid composition, 

the magnitudes of b..U is comparable to that measured in the case of particle 

functionalized only. On the whole, b..U varies quadratically with Zlipid· Compared 

with previous experimental setup, the only difference introduced here is the 

functionalization of lipid membranes on glass chamber bottom, which mainly 

modifies the electrostatic properties (i.e. charge density) of confining coverslip. The 

different b..U rv Ztipid obtained in this experiment indicates that confinement-induced 

like-charge attraction can be modulated by altering the electrostatic property of 

confining wall. 
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For particles with Zlipid = 2, attractive colloidal pair potential is stronger when 

they are above a chamber wall with Zlipid = 2 than with Zlipid -4. This is another 

indication of modulation of like-charge attraction by confining wall, in which, !::::..U 

dramatically decrease by varying the chamber wall from slightly ( zlipid = 2) to 

highly (Zlipid = -4) negatively charged. Separations between particle with Zlipid = 2 

and chamber wall with Zlipid = -4 or vice versa are similar as that with (Zlipid = 0) 

for both particle and wall. Correspondingly, all three U(r)s only contain very 

weakly attractive minima (!::::..U ::; 0.2kBT) or purely repulsive. Obvious attractive 

interactions between lipid functionalized silica particles DI water only appear 

when particle-wall separation is less than lJ.tm. Compared with the results reported 

in Ref[20] in which highly charged chamber bottom yields like-charge attractions, our 

data show opposite relationship between !::::..U and (h). The weaker the electrostatic 

repulsion between particle and chamber wall is, the closer the particle is to the 

chamber wall, and the stronger the like-charge attraction is. 

7.5 Summary 

In this chapter, we extend our experiments introduced in Chapter V by 

additionally functionalizing lipid membranes on glass chamber bottom. The 

resulting modified electrostatic properties of chamber wall have experimentally 

demonstrated its ability to modulate attractive colloidal pair interactions. For 

the case in which both particles and chamber wall were functionalized with lipid 
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membranes of the same composition, the depth of attractive colloidal pair potential 

!}.U varies quadratically with Zzipid· Moreover, for particles with Zzipid = 2, !}.U 

can be decreased by varying the chamber bottom from slightly to highly negatively 

charged. Our data also show the dependence of !}.U on mean particle-wall separation 

(h), particles closer to the chamber bottom exhibit stronger attractive colloidal pair 

interaction, which is consistent with the results obtained in Chapter V. 
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In this final chapter, we first conclude the dissertation with a summary of our 

experimental accomplishments. Then, we give an outlook for possible future research 

directions on the mechanism of like-charge attraction modulated by lipid membranes 

and the application to generate colloidal self-assembly. 

8.1 Conclusions 

To accomplish the research presented in this dissertation, we first generated line 

traps via a new holographic optical tweezers (HOTs) technique. By incorporating 

phasemasks of line traps with Gaussian intensity distributions on a spatial light 

modulator (SLM), the intensity along the trap can be tuned to balance gradient and 

scattering forces exerted on trapped particles. Line traps with tunable Gaussian 

intensity distributions [55] can make particle almost freely diffuse in one dimension, 

which makes it possible to characterize colloidal pair interaction energy via a 

Boltzmann relationship. As a demonstration of our line trap design and our methods 

to measure colloidal pair interactions, pair potential of bare silica microparticles near 

the vicinity of a glass chamber bottom were measured, and the data show that the 
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pair potential of silica microsphere is purely repulsive and in agreement with DLVO 

theory [56]. 

Confinement-induced like-charge attraction has received much attention since 1994 

[15]. However, it is still an unsolved puzzle in colloidal science nowadays due to the 

lack of tunable, attractive long-range interparticle interactions. Furthermore, the 

modification of intrinsic electrostatic properties of colloidal particles and walls has 

been largely ignored as a route to investigate this topic. In this dissertation, we 

recruited lipids and proteins to functionalize silica microspheres and chamber bottoms 

to modify their electrostatic properties. By varying the type and amount of charged 

lipids in the lipid composition, charge densities of particle and chamber bottom can 

be easily modulated, and protein incorporated in the lipid membrane can provide 

additional functionalization. 

We measured the pair interaction of lipid and protein functionalized silica 

microspheres in three cases : lipid-only functionalized particles above bare glass 

chamber bottoms, lipid-plus-protein functionalized particles above bare glass 

chamber bottoms and lipid functionalized particles above lipid functionalized glass 

chamber bottoms. For each case, the data show tunable, long-range attractive pair 

interactions. Compared with previous studies, first, the results presented in this 

dissertation illuminates the control of confinement-induced like-charge attraction, 

instead of simply observing the appearance of such mysterious attraction. Second, 
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we also compared the attractive colloidal interactions obtained from each case, and 

provide insights into the mechanism of like-charge attraction. 

Our Major Experimental Findings are as follows 

1. We measured the pair interaction energies of lipid functionalized silica 

microspheres above bare glass chamber bottoms. Varying the molar percentage 

of positively charged lipid, Ztipid, the depth of attractive colloidal pair potential 

well, !::J.U, can be modulated in a range of approximately lkBT. The relationship 

between U(r) and Z 1ipid yields the separation of U(r) into charge-related term, 

which is purely repulsive, and a term not directly related to charge. The linear 

relationship between U(r) and Zzipid indicates that the pair potentials of lipid 

functionalized silica microspheres are mediated by the chamber wall near by. 

Our data provide the first ever characterization of the charge dependence of 

like-charge colloidal attraction. 

2. We measured the pair potentials of lipid-plus-protein functionalized silica 

microspheres near the vicinity of glass chamber bottom. Attractive colloidal 

pair interaction energies can also be tuned in a range of lkBT followed by 

varying the concentration of cholera toxin subunit B (CTB) bound on the 

surface of lipid functionalized silica microspheres containing the lipid ligand 

monosialogangsolioside GMl· The relationship between U(r) and incubation 

concentration of CTB, [CTB], also allow us to separate U(r) into CTB-related 
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term, which is repulsive, and a membrane-related term. Moreover, from 

potential curve analysis and mean particle-wall separation measurements, we 

found that the mechanisms of like-charge attraction modulation are different 

between lipid-only and lipid-plus-CTB functionalized silica microspheres. This 

indicates that the situation of like-charge attraction is more complicated than 

previously thought, and there are probably more than one mechanism to 

account for like-charge attraction. 

3. To quantify the effect of the chamber wall on like-charge attraction, we 

functionalized the glass chamber bottom with lipid bilayers, and measure 

pair potentials of lipid functionalized silica microspheres above it. For both 

particles and wall functionalized with lipids of the same composition, attractive 

colloidal interactions become stronger following the increase of Zzipid· However, 

unlike the case of only particles being functionalized, ~U varies quadratically 

with Zlipid· Moreover, varying the composition of lipid functionalized on 

the chamber bottom, ~U between particles changes dramatically. These 

results quantify the way that like-charge attraction can be controlled by the 

electrostatic properties of confining wall. 

8.2 Future Directions 

In this dissertation, the center-to-center separation r between two particles 

along the line trap was sampled for a period, then colloidal pair interaction energy 
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was calculated from the probability distribution of separations P(r) according to 

Boltzmann relationship (Eq.3.1). However, short separations between two particles 

cannot be sampled due to the strong electrostatic repulsion. Therefore, pair potential 

profile cannot be reconstructed in the whole interaction range between particles, 

especially in the range of short separations. 'Blinking' optical traps [87, 88] can be 

used to characterize such short-range interactions. Depending on the laser power, 

two particles can be stably trapped by two point optical traps close to each other. 

By repeating turning on and off the optical traps, pair interaction energy U ( r) can 

be characterized for each initial trap separation r. The drawback of 'blinking' traps 

is that they are time-consuming, and measurements need to be intensively performed 

for different separations. However, for future research, it is worth measuring colloidal 

pair interaction using 'blinking' traps, because first, it can provide short-range pair 

colloidal interaction energy mea..<Jurements which cannot be done by line traps; and 

second, we can compare the precisions offered by 'blinking' traps and line traps in 

colloidal pair interaction measurements. 

For functionalized silica microspheres, the coated lipid bilayers not only change 

the electrostatic properties (i.e. charge density) of particle surface, but also its 

fluidity. Unlike the charge originally on the surface of silica, the charged lipids can 

flow around the surface. Such charge mobility can lead to inhomogeneous charge 

distributions around particle surface and hence the inhomogeneous distribution 

of counterions around the particle. Such inhomogeneities can also depend on the 
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particle-particle or particle-wall separations. Therefore, it is worth investigating the 

effect of membrane mobility on like-charge attraction. First, we can try to use lipid 

monolayers to functionalize particles and measure colloidal pair interactions. The 

coated lipid monolayers is not fluidic around the surface of particle. Or second, we 

can use lipids with saturated carbon chains to functionalize particles. Because the 

critical temperature of such lipids is around room temperature, it will be easy to 

decrease their mobility by lowering the temperature to trigger phase transitions. We 

can measure pair potential interaction energies when the coating membrane is in an 

ordered as well as a disordered state (solid-like a,':l well a.s fluid-like). Both methods 

can decrease the mobility of membrane, and hence the measured pair potential will 

show the relevance of membrane fluidity on like-charge attraction. On the theoretical 

side, some studies [118] have shown that charge inhomogeneity can lead to attractive 

colloidal interactions. However, such theories can only be applied in the situation 

of short separations(nm range) between particles, and it may worth expanding such 

theoretical approaches to account for long-range attractive colloidal interactions. 

Many body interactions play an important role in generating colloidal self­

assembly. From colloidal pair interaction measurements, we can step by step increase 

the number of particles and measure interparticle interactions. Some studies [124] 

have shown strong changes in colloidal pair interactions in the presence of the third 

particle. Using 'blinking' traps, we can easily set a symmetric initial state for many 
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particles (i.e. equilateral triangle, square, .. ) and measure the resulting interaction 

energies. 
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