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DISSERTATION ABSTRACT 
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March 2011 
 

Title: Linear Stability Analysis of Nonaxisymmetric Instabilities in Self-gravitating 

Polytropic Disks 

 

Approved:  _______________________________________________ 

Dr. James N. Imamura 
 

An important problem in astrophysics involves understanding the formation of 

planetary systems. When a star-forming cloud collapses under gravity its rotation causes 

it to flatten into a disk. Only a small percentage of the matter near the rotation axis falls 

inward to create the central object, yet our Sun contains over 99% of the matter of our 

Solar System. We examine how global hydrodynamic instabilities transport angular 

momentum through the disk causing material to accrete onto the central star.  

 We analyze the stability of polytropic disks in the linear regime. A power law 

angular velocity of power q is imposed, and the equilibrium disk structure is found 

through solution of the time-independent hydrodynamic equations via the Hachisu self-

consistent field method. The disk is perturbed, and the time-dependent linearized 

hydrodynamic equations are used to evolve it. If the system is unstable, the characteristic 

growth rate and frequency of the perturbation are calculated. We consider modes with 

azimuthal e
imυ

 dependence, where m is an integer and υ is the azimuthal angle. We map 

trends across a wide parameter space by varying m, q and the ratios of the star-to-disk 

mass M*/Md and inner-to-outer disk radius r-/r+. 
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We find that low m modes dominate for small r-/r+, increasing to higher r-/r+ as 

M*/Md increases, independent of q. Three main realms of behavior are identified, for  

M* << Md, M* ≈ Md and M* >> Md, and analyzed with respect to the I, J and P mode 

types as discussed in the literature. Analysis shows that for M* << Md, small r-/r+ disks 

are dominated by low m I modes, which give way to high m J modes at high r-/r+. Low m 

J modes dominate M* ≈ Md disks for small r-/r+, while higher m I modes dominate for 

high r-/r+. Behavior diverges with q for M* >> Md systems with high q models 

approximating M* ≈ Md characteristics, while low q models exhibit m = 2 I modes 

dominating where r-/r+ < 0.60. 
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CHAPTER I 

INTRODUCTION 

1.1. Background of Astrophysical Disks 

Disks play important roles in the structure and evolution of a variety of 

astrophysical systems including spiral galaxies (e.g., Binney & Tremaine 1994), accretion 

disks about white dwarfs, neutron stars and black holes (e.g., Shapiro & Teukolsky 1983) 

as well as protostellar and protoplanetary systems (Stone, Gammie, Balbus & Hawley 

2000). Star formation begins when a dense pocket in a Giant Molecular Cloud contracts, 

triggered by an external stimulus such as a shock wave. Without some overall spin, a 

protostellar system would collapse under gravity into a spherical object. However, typical 

cloud cores are known to rotate. This rotation, coupled with the large dynamic range of 

the collapse, leads to a strong enhancement of the spin rate. Centrifugal force works 

against gravitational force and the collapsing object tends to form into a flattened disk. 

Material near the spin axis, however, suffers little rotational support and falls inward to 

form a small central object, typically a few percent of the matter of the system. However, 

in a Solar System like ours, up to 99% of the original mass ends up forming the star. This 

means that some mechanism caused the matter of the disk to flow inward.  

If angular momentum is transported from an inner region to an outer region of the 

disk, the azimuthal fluid speed decreases in the inner region and fluid flows inward to the 

star. The outer part of the disk will tend to move further out. Molecular viscosity alone 

turns out to be very ineffective at transporting angular momentum in a disk. We consider 

a plausible mechanism of efficient redistribution of angular momentum and energy across 

the disk via global nonaxisymmetric hydrodynamic instabilities driven by rotation.  

Analysis of astrophysical disks has been considered since the late nineteenth century, 

when Dyson (1893) investigated what he called “anchor rings.” Tohline (1980) 

investigated the collapse of rotating protostellar clouds resulting in the formation of rings. 

As with many systems in physics, the stability analyses began with simplified models, 

adding increasing complexity over time. 
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Serious attempts at stability analysis of non-self-gravitating disks began with 

Papaloizou & Pringle (1984, I and II) studying isentropic disks with power law 

differential rotation specified by 0

0

( )

q

R






 
    

 
with variables as defined in section 

3.1. They found the disks to be dynamically unstable to nonaxisymmetric global modes. 

In their first paper, they treated disks of constant specific angular momentum, where q = 

2.0, especially focusing on the special cases of a thin cylindrical shell and a thin 

isothermal ring. In their second paper, they included varying values of q and m. In 

spherical harmonics, the angular dependence of the Laplacian is proportional to 

ΣYl,m(θ,φ) Pl
m
(φ)e

imφ
. In linearized systems, the azimuthal dependence of the perturbation 

takes a related form, proportional to e
imφ

 (see Eqn. 3.2.1). A threshold of stability was 

found for low-m modes and slender tori such that disks were found to be unstable for a 

range of angular momentum profiles 3 2.0q  .  A Kelvin-Helmholtz-like instability 

was found to dominate disks for low q while sonic instability dominates systems near a 

constant specific angular momentum profile. These modes were later called P modes. 

These models included only the gravitational potential due to the central star, neglecting 

the self-gravity of the disk. In their third paper, Papaloizou & Pringle (1987) included 

work with higher order modes and looked at modes trapped at the inner and outer 

boundaries by an evanescent region around corotation, where the fluid speed equals the 

speed of the perturbation (Eqn. 3.2.12). 

Kojima (1986, 1989) analyzed non-self-gravitating isentropic thick disks for  

q = 2.0 and n = 0, 1.5, and 3.0 where n is defined as one-half the degrees of freedom of a 

particle, using a polytropic equation of state where
1

1
nP k



  where P is pressure, ρ is 

mass density, and k is the polytropic constant. Kojima found the tori were unstable for 

almost all cases calculated and that the growth rate decreased for either sufficiently large 

or small radial widths, and also decreased with q. The growth rates showed little 

difference between his n = 1.5 and n = 3.0 calculations. The reported growth rates were 

higher for n = 0, m = 2 models. Kojima also introduced work integrals as valuable tools 

of analysis. We compare our non-self-gravitating models with his results in Section 5.1.2.  
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The important effect of self-gravity was first included in the analytic and 

numerical investigations of Goldreich, Goodman & Narayan (1986) of long wavelength 

modes found in slender, incompressible tori. Their simplified theory used a thin ribbon 

approximation to investigate the two-dimensional (2-D) incompressible limit of the 

narrow torus. They showed that two modes emerged, one with corotation at the density 

maximum, called the J mode (for the Jeans instability) and a second with corotation 

outside the ribbon, called the I mode (intermediate between P and J modes). We will 

discuss this further in the hydrodynamic instabilities section. Goodman & Narayan 

(1987) investigated the nonlinear evolution of the disk into planets. Goodman & Narayan 

(1988) further investigated I modes and J modes, adding self-gravity to their calculations 

for the cases of 3-D slender incompressible tori with q = 2.0 and 2-D slender 

incompressible tori with varying q. For their simplified models, they found that these disk 

instabilities were greatly influenced by self-gravity and were shown to be different in 

character from the P modes in that they were qualitatively independent of compressibility 

and vortensity, defined as vorticity normalized by surface density.  

Lin & Papaloizou (1989) used a variational principle approach to study thin (flat) 

self-gravitating disks. They found modes which fell into three categories determined by 

the distribution of vortensity. One kind of mode is associated with extrema in vortensity, 

corresponding to a disk where corotation is located at the radius of the maximum density. 

A second mode depicts modes generated by the gradient of vortensity on the disk 

boundaries, corresponding to the existence of the corotation radius outside the disk. A 

third mode is associated with internal variations in the vortensity gradient. These modes 

show corotation inside the disk, but not necessarily at the density maximum. 

An important development in the study of disks occurred in the late 1980’s; it 

involved allowing the central star to move. For azimuthal mode numbers m = 2 and 

above, the m-fold symmetry of the disk allows it to be perturbed and evolve without the 

star moving off center. For the m = 1 case, typically the star is free to move in response to 

the disk, to hold the center of mass of the system fixed. Adams, Ruden & Shu (1989) 

included this effect in their calculation for infinitesimally thin disks. They found that  

m = 1 modes were unstable when M*/Md < 1.0, where M*/Md is the ratio of mass of the 

central star to the mass of the disk. Taga & Iye (1998) found 2-D disks with n = 3.0 to be 
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unstable to m = 1 modes for disks with masses lower than those of the central stars. Their 

emphasis was on modeling disks with no outer boundary. Noh, Vishniac & Cochran 

(1992) studied m = 1 modes in q = 1.5 disks for high and low disk masses with emphasis 

on sensitivity to the outer disk boundary conditions. They found that low mass disks, up 

to M*/Md ≈ 2.0, were only instable to m = 1 modes for a reflecting outer boundary, with 

growth rates increasing rapidly with an increase in disk mass. 

Self-gravitating equilibrium disks were analyzed by Eriguchi & Hachisu (1983) 

and Hachisu & Eriguchi (1985). Tohline & Hachisu (1990) performed nonlinear 

calculations for n = 1.5, varying q, for extremely small mass stars, 10
-9

 < M*/Md < 10
-6

, 

making these disks fully self-gravitating. Their analysis included eight models but was 

extended in a second paper, Woodward, Tohline & Hachisu (1994) where a more 

extensive study was performed, this time including models where the star to disk ratio 

was much larger. We present a detailed comparison with this work in Section 5.1.4.  

Nonlinear calculations on thin disks were done by Papaloizou & Savonije (1991), 

investigating I modes in disks which contain a small fraction of the total mass of the 

system. Papaloizou, Savonije & Heemskirk (1992) performed linear and nonlinear 

analysis on thin-self-gravitating disks for the m = 1 case with n = 1.0, finding that they 

were dynamically unstable for approximately M*/Md ≤ 1.0.  

Christodoulou & Narayan (1992) investigated I and J modes in linear and 

nonlinear 2-D slender, self-gravitating annuli. These were idealized models of thick 

disks, in that they were compressible and pressure-supported. Christodoulou (1993) 

continued to study annuli, relaxing the assumption of thinness, extending the annuli to 

include large radial thickness. This analysis showed that the I modes survived in-self-

gravitating systems with no central mass, whereas they did not survive in the slender 

approximation. J modes were shown to survive only in slender annuli. 

A review of angular momentum transport processes was compiled by Lin & 

Papaloizou (1995) summarizing mechanisms including magnetohydrodynamic 

instabilities as well as hydrodynamic processes including transport of angular momentum 

via propagating waves and the effects of self-gravity torque. A review concerning 

concepts underlying angular momentum transport in star formation by Bodenheimer 

(1995) includes discussion of transport mechanisms during evolutionary stages including 
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the creation of molecular cloud cores, protostars, and young stars with disks and binary 

companions. 

Toman et al. (1995) investigated secular instabilities in polytropes driven by 

coupling of a perturbed star to a circumstellar disk. Andalib, Tohline & Christodoulou 

(1997) present a survey of P, I and J modes in a linear stability analysis of slender, 

incompressible tori with circular cross-sections for q = 2.0. We present a comparison 

with their findings in Section 5.1.1. 

A review of fluid mechanics involved in young stellar objects by Shariff (2009) 

includes a summary of observed characteristics of various classes of objects, as well as 

discussions of various mechanisms involved, focusing on magnetic field effects, radiation 

transport and turbulence. 

Hadley & Imamura (2010) performed linear stability analysis on-self-gravitating 

disks where M*/Md = 0.0. We include those models as the low-mass boundary of our 

parameter space survey and include them in our present analysis. We found that m = 2, I 

modes dominate for 0.16 < T/|W| < 0.25. There is a small region where m = 1 modes 

dominate at slightly higher T/|W|, but higher T/|W| models are dominated by m = 3 and 4 

modes. There was good quantitative agreement of these results in that the linear and 

nonlinear eigenvalues agreed to within 5 - 10% and the eigenfunctions nearly overlaid 

each other on the scale of the plots. Our quasi-linear analysis indicated that self-gravity 

torque provided significant angular momentum transport, leading to mode saturation in 

the nonlinear regime. We did not see prompt fission in any toroids. This investigation 

raised questions. For example, we would like to know how adding a small mass to the 

system changes the evolution of the system, especially in the m = 1 case. What kinds of 

modes are excited as we increase M*/Md for slender and wide disks? What predictions do 

our linear calculations make for the nonlinear regime? 

 

 

1.2. Present Work 

 
The preceding section describes the work done on star-disk systems that are most 

relevant to our present study. Mathematically simple systems, such as infinitesimally thin 
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disks, self-gravitating annuli and tori with constant mass density and circular cross-

sections, have been extensively studied. In our present study, we perform an extensive 

study of nonaxisymmetric global instabilities in thick, three-dimensional  

(3-D), self-gravitating, linear star-disk systems where the star is treated as a point mass. 

What we do here to further the progress of the field is to compile an extensive mapping 

of parameter space by calculating linear, self-gravitating, star-disk systems for n = 1.5,  

q = 1.5, 1.75 and 2.0, for 0.0 ≤ M*/Md ≤ 100.0 for slender and wide disks with a range 

0.05 ≤ r-/r+ ≤ 0.70 where r-/r+ is the ratio of the inner edge to the outer edge of a disk. 

We discuss how the trends found in the non-self-gravitating disks of Kojima 

(1989) and thin disks systems carry over to self-gravitating thick disks, as well as how the 

extra degrees of freedom may excite new behaviors. We compare our findings with the 

slender incompressible tori studied by Andalib, Tohline and Christodoulou (1997) and 

with the infinitesimally thin, m = 1 models of Adams, Ruden & Shu (1989). We also 

make a detailed comparison with the nonlinear results of Woodward, Tohline, & Hachisu  

(1994).  

We address many questions raised by our previous work on M*/Md = 0.0 disks. 

We perform quasi-linear analysis on a few linear models, representative of various mode 

types. We compare our quasi-linear modeling results with nonlinear results to gain 

insight about what will carry over from the linear to the nonlinear regime. We then use 

our linear results to develop a quasi-linear theory to model the development of disks 

unstable to nonaxisymmetric instabilities. Nonlinear models are computationally 

expensive to run. In future work, we will use our extensive linear database, coupled with 

the insight gained from our quasi-linear theory, to construct a sequence of nonlinear 

models to run which will provide a rich understanding of the behavioral trends over the 

nonlinear regime. 

 

 

1.3. Organization of Dissertation 

The remainder of the dissertation is organized as follows. In Chapter II, we 

present a short background of the physical problem and discussion of modes involved 
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with hydrodynamic gravitational disk instabilities. Chapter III introduces our 

mathematical methods and concepts. Chapter IV presents our results with Section 4.1 

containing equilibrium model results, Section 4.2 presenting the results of the time-

evolved models with subsections 4.2.1, 4.2.2, and 4.2.3 on q = 1.5, 1.75 and 2.0 results, 

respectively. Chapter V contains discussion with comparison of our results with those of 

previous studies and applications, a summary of our results and conclusions.   
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CHAPTER II 

 

THE PHYSICAL PROBLEM 

 

2.1. Disks and Disk Formation in Protostellar Systems 

 

  Star formation begins in Giant Molecular Clouds that extend for several tens of 

parsecs with masses between 10
5
 and 3 x 10

6
 solar masses (Shu, Adams & Lizano 1987), 

in small, internal clumps triggered toward contraction by external mechanisms such as 

shock waves or stellar winds. For the model of a spherically symmetric isothermal 

protostar, the free-fall time scale for the system to undergo gravitational collapse is on the 

order of 10
5
 to 10

6
 years (Tassoul 1978). If the angular velocity of the system is roughly 

equal to that of the galactic rotation, then a one solar mass cloud with a radius of 1000 

AU would have a specific angular momentum h ≈ 1.4 x 10
17

 m
2
/s. Observations show 

that the specific angular momentum of a molecular cloud core is estimated to be 10
18

 

m
2
/s (Bodenheimer 1995). The angular momentum of the protostellar cloud is far too 

high to allow it to collapse directly into a star (Larsen 1971), with only a few percent of 

the matter falling into the central object and the rest forming a surrounding disk (Tohline 

2002). We can make a simple estimate of the radial extent of a disk formed from a 

uniformly spherical cloud core by assuming that gravitational collapse halts when the 

gravitational potential energy equals the rotational kinetic energy: 

2

2 2

GM J

r M r
     where M is the mass of the system and 

J

M
is the specific angular 

momentum. If we estimate the mass of a cloud core to be one solar mass, we calculate the 

radius of the disk to be 2000 AU.  

In our Solar System, over 99% of the matter of the system is contained in the 

central star, not in the planets. There must be a process or a collection of processes that 

provide angular momentum transfer through the disk allowing matter to accrete onto the 

star. Various mechanisms under investigation include turbulence, global hydrodynamic 

and magnetohydrodynamic instabilities (Balbus & Hawley 1998), and secular 

hydrodynamic instabilities.  
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2.2. Hydrodynamic Instabilities 

 
Dynamical instabilities grow on a timescale on the order of the rotation of the 

disk, or equivalently the sound crossing time between the boundaries when the thermal 

energy and rotational energy are comparable, whereas secular instabilities grow on a 

dissipative timescale. In this work, we focus on modes of oscillation that generate 

dynamical instabilities. Several kinds of modes are possible in star/disk systems as a 

result of different driving mechanisms. Pressure, differential rotation and self-gravity all 

play roles as driving mechanisms in varying degrees for any given disk. The ratios of 

these quantities change as a result of the varying mass density configuration and angular 

momentum profile of the equilibrium structure. It may be that several modes are unstable 

in an evolving disk but that one with a much faster growth rate dominates the disk after a 

relatively short time.  

What we have done here is an extensive mapping of parameter space to determine 

how modes are distributed, that is, how their driving mechanisms depend on the dynamic 

geometry of the disks. We find that sometimes boundaries between mode types are 

abrupt. In other regions of parameter space, thresholds between modal types are wider 

and exhibit characteristics such as beating as the waves of the different modes vie for 

global domination. In this section, we will provide a foundation for understanding 

different mode types. 

The initial angular momentum profile of the disk sets the stage for the ultimate 

evolution of the disk because the angular momentum distribution probably plays a major 

role in the initial stability properties of the disk. Understanding what sort of mode will 

dominate this evolution is key to determining angular momentum transport. We currently 

have no a priori way of determining what velocity profile a disk should have. Turbulent 

viscosity in a disk is what causes it to deviate from Keplerian rotation, and we presently 

do not understand how to quantify it. Therefore, to model a differentially rotating disk, 

we impart a velocity profile and vary it as a parameter. We use a velocity profile 

specified by a power law 0

0

( )

q

R






 
    

 
with variables as defined in Section 3.1. A 

Keplerian rotation profile corresponds to the case where q = 3/2 and constant specific 
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angular momentum corresponds to q = 2.0. Pressure gradients in the disk cause the 

rotation to depart from Keplerian. Rayleigh (1916) showed that disks become locally 

axisymmetrically unstable if the pressure gradients are so large that q > 2.0, indicating the 

specific angular momentum decreases outward.   

One of the mechanisms responsible for hydrodynamic instabilities in disks is a 

Kelvin-Helmholtz-like shear instability. It comes about when two fluid regions move 

with respect to each other, creating a velocity shear. Differential rotation in a disk 

provides the necessary velocity gradients for a Kelvin-Helmholtz instability to occur.  

 

 

Fig. 2.1. Kelvin-Helmholtz instability diagram. 

 

The Kelvin-Helmholtz instability produces rotations in a fluid, increasing 

localized vorticity, where vorticity is defined as the curl of the velocity. Vortensity is 

defined as mass column density divided by vorticity. Locations where the gradient of 

vortensity equals zero are likely sites for resonant instabilities to occur (Papaloizou & 

Savonije 1991). 

The first type of mode identified in disks was the P mode, first reported by 

Papaloizou and Pringle (1984, I and II; 1986 III) in isentropic, non-self-gravitating disks 

with differential rotation. They found that disks are subject to Kelvin-Helmholtz-like 

shear instabilities for 3q  and sonic instabilities near the upper limit of q = 2.0. Sonic 

instabilities involve the transport of energy and angular momentum via sound waves. The 

local speed of sound varies depending on the disk geometry because of pressure and 

density gradients in the disk. Goodman & Narayan (1988) and Christoudoulou & 

Narayan (1992) found the P modes exist in only a very narrow range of parameter space 

V1 

V2 
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in slender, self-gravitating tori. They claimed these modes were due to edge waves at the 

inner and outer edges which coupled across a forbidden zone surrounding the corotation 

radius. These edge waves are similar to surface waves in water but modified by shear and 

rotation. Christodoulou (1993) discussed the nature of “edge modes” that result from the 

interaction of two acoustic waves. It resembles a P mode in that they both exhibit trailing 

arms in the inner disk region but switch to leading after crossing the corotation radius. 

The edge modes have a more pronounced trailing spiral character in the outer region of 

the disk.   

Goodman and Narayan (1986) included self-gravity in their study of 

hydrodynamic instability.  The models they analyzed were slender 3-D incompressible 

annuli with constant specific angular momentum and 2-D incompressible slender annuli 

with arbitrary linear angular momentum profile (thin ribbon approximation). Their 

simplified mathematical models allowed them to look at the limits of low and high self-

gravity. They found that self-gravity greatly influenced the behavior of the systems, 

inhibiting the P mode and establishing two other modes, called the J mode (for modes 

related to the Jeans instability) and the I mode (modes intermediate between P and J 

modes). The Jeans instability occurs when the radial free-fall time is shorter than the 

radial sound crossing time. When this is the case, pressure support cannot happen fast 

enough to counteract gravitational collapse. An identifying characteristic of these two 

modes for this simple case is the location of the corotation radius, where the angular 

speed of the perturbation wave equals that of the fluid in the disk. For P and J modes, the 

corotation radius falls exactly on the radius where the mass density of the disk is at a 

maximum. For I modes, the corotation radius is found outside the disk, either at a smaller 

radius than that of the inner edge, or outside the outer edge. Goodman and Narayan 

showed that I and J modes were qualitatively independent of compressibility and 

vortensity, so they could not be sonic or Kelvin-Helmholtz instabilities.  

We tend to see J modes in disks that have small cross-section. The physics of our 

disks is more complicated than the thin ribbon approximation, and we do not strictly see 

corotation falling on the density maximum for J modes, or necessarily outside the disk for 

I modes. J modes are driven by the merger of two waves which use self-gravity as a 

restoring mechanism, and carry equal and opposite amounts of angular momentum. I 
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modes are also driven by the merger of two waves, but in this case the waves have 

different driving mechanisms. One wave is driven by self-gravity which causes azimuthal 

compressions and the other is driven by epicyclic motions of the fluid. These waves 

couple across corotation and may be damped by the Q-barrier (Eqn. 3.1.13). 

Besides I and P modes, disks with m = 1 exhibit another kind of mode, called an 

A mode (Woodward, Tohline, & Hachisu 1994). This mode occurs in a narrow range of 

parameter space for small r-/r+ and M*/Md ≤ 1.0. A modes are characterized by a single 

trailing arm with an angular extent of at least 2 π radians. It has no phase shift in its 

|δρ|/ρ0 eigenfunction near the radius of the maximum density or near corotation, nor does 

it show any sign of change as it crosses those radii. It is thought to be related to the 

motion of the central star. Adams, Ruden & Shu identified the mechanism responsible for 

the instability as SLING amplification (Stimulation by the Long-range Interaction of 

Newtonian Gravity). Sling amplification is characterized by a long, trailing, spiral density 

wave which reflects at the outer Lindblad resonance (Eqn. 3.2.13) and consequently 

becomes incident at the corotation radius. These findings were disputed by Woodward, 

Tohline & Hachisu who found similar long, trailing, spiral density waves in disks where 

q = 2.0, which by definition, have the Lindblad resonance at corotation. A more thorough 

discussion of the amplification mechanism will be given in Section 5.1.3. 
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CHAPTER III 

METHODS 

3.1. Equilibrium Methods 

 

We analyze star/disk models by calculating equilibrium models and using the 

resulting mass density and angular momentum structures as initial conditions for the 

time-evolving models. We assume axisymmetry with rotation on cylinders and mirror 

symmetry across the equatorial plane for the equilibrium models. We use an isentropic 

energy conservation equation, which implies a polytropic equation of state, i.e., the 

relationship between pressure and density is defined as 1 1/nP k   where P is pressure, 

  is mass density, 2n equals the degrees of freedom and k is the polytropic constant. We 

investigate models with n = 3/2. The velocity field is defined using a power law angular 

velocity distribution 0

0

( )

q

R






 
    

 
where R0 is the radius of the density maximum, 

0 is the frequency of the fluid at R0,   is the cylindrical radial coordinate and q is a 

parameter. “Keplerian” disks refer to the case where q = 1.5, and constant specific 

angular momentum is the limiting case of q = 2. We investigate models with q = 1.5, 1.75 

and 2.0.  

Unless otherwise noted, all quantities presented are in polytropic units in which  

G = k = M* = 1, where M* is defined as the star mass. Conversion between polytropic 

units and physical units can be done using the transformations given in Williams & 

Tohline (1987). 

Equilibrium calculations were done using inviscid hydrodynamic equations: 

  

   0t     v  ( 3.1.1 ) 

  t gP         v v  ( 3.1.2 ) 

 
2 4g G     ( 3.1.3 ) 
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in steady state. Equilibrium solutions are found by setting time derivatives equal to zero 

in Equations (3.1.1-3.1.3), assuming axial symmetry, rotation about the z-axis, and 

rotation on cylinders, and following the self-consistent field approach of Hachisu (1986). 

This is an iterative approach, outlined below. In equilibrium, for a flow with axisymmetry 

which rotates on cylinders the mass continuity equation is identically zero. The 

momentum conservation equation becomes: 

 

 
2 0gH d     

   ( 3.1.4 ) 

 

Where H is the enthalpy given by 
1

where 1
1

P
H

n




 
  


. This implies: 

 

 
2

gH d C       (3. 1.5 ) 

 

where C is an integration constant determined by the boundary conditions. Since we use 

polytropic units, two free parameters need to be defined in order to find C. It is 

convenient to define the inner and outer edges of the disk, r- and r+, because mass density 

equals zero at these locations, simplifying our equation. Since all terms in the right-hand 

side of this equation depend only on mass density, we can make a guess for H using an 

arbitrary density distribution. We then solve the independent enthalpy equation for the 

mass density and then compare our results to the guessed density.  

 

 
1 (1 )

n

P H
H and

k n




 

 
   

  
 ( 3.1.6 ) 

 

We outline the steps used in Eqns. 3.1.7 - 3.1.11. 

 

 

1 1/
2 2 2*
0 0 0

1

n
q q

d

GMk
R d C

 
  

  


     

   ( 3.1.7 ) 
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Converting to dimensionless units: 

 

  
1

2 2 2 2 1 2*

0 0 0 0

0

0
1

q q q
n

d

GM
k R R d C

R


   

 

     
   ( 3.1.8 ) 

 

2 2

0 0 0 0 0 02

0

1
where / . Using 4 ,d G G G R

R
               

 

  
1 2 2

0 0 0*

1/ 1/ 1/ 1/

0 0 0 0 0

1
0

1
n

n n n n

RGM C

k R k k k


 

    

 
     


 ( 3.1.9 ) 

 

We define: 

 

2 2

20 0 0* *

01/ 1/ 1/ 1/

0 00 0 0 0 0

, 1, ,
n n n n

RGM GM C
C h

Rk R k k k   

 
   


 ( 3.1.10 ) 

 

To get our final form: 

 

  
1

2*

0

0 0

1
1 0

1
n

GM
h C

R


 

 
     

 
 ( 3.1.11 ) 

 

We make new guesses until a predetermined tolerance is met. We test for 

convergence by monitoring the change in the constants 2

0 and ,h C so the test is global in 

nature. We quantify the accuracy of our result using the virial theorem which states that 

the total kinetic energy, both rotational and thermal, plus one half the gravitational 

potential energy equals zero or 2T + W = 0. In practice, this quantity does not equal zero, 

and we discard models which do not satisfy the virial equation better than about 10
-4

 

times the total energy of the system. 

 The discretized equations are solved on a cylindrical grid of uniformly sized 

cells, as shown qualitatively in Fig 3.1.1. Scalar quantities are defined at cell centers 

while vector quantities are defined at cell vertices.  
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Fig. 3.1.1. Qualitative grid layout. 

 

Equilibrium models of axisymmetric, differentially rotating, self-gravitating 

inviscid disks were calculated on a cylindrical coordinate system with uniformly spaced 

grids of 512x512. 

The location of the mass density maximum in the equilibrium disk is important 

for understanding the character of the disk. Another radius that indicates the nature of the 

equilibrium disk is that of the vortensity extremum Rλ. We define vortensity λ as the 

mass column density divided by the local vorticity. Vorticity is the curl of the velocity 

field, so this quantity indicates the rotation of the fluid about the point in question. For 

our power-law velocities, vortensity is defined as: 

 

 
 

ˆ
2

z
q





 

 ( 3.1.12) 

 

where Σ is the mass column density. Toomre (1964) calculated that thin disks suffer 

axisymmetric instability when the Q parameter falls below unity. Q is defined as: 

 

 sc
Q

G







 ( 3.1.13) 

 

where sc is the local sound speed and   is the epicyclic frequency given by 

 2 22 2 q     for power-law rotation. For our thick disks, this restriction becomes 



17 

 

more complicated, and we may see an evanescent region surrounding the corotation 

radius through which waves may not propagate. We define the inner and outer boundaries 

as the Q- and Q+ respectively, at the radii where Q = 1. For some disks the inner or outer 

Q boundary may lie outside the disk. The width of the Q-barrier is a strong determining 

factor as to what type of mode dominates a disk. If it is wide, it can serve as a reflecting 

boundary for waves. If it is narrow the waves may penetrate the barrier. Plots depicting 

the Q-barrier results can be found in Fig. 4.1.6, with discussion included. Discussion 

involving the Q-barrier is also found in Section 5.1.3. 

Figures 3.1.2 - 3.1.4 show equilibrium mass density contours in meridional slices 

of representative models to illustrate effects of varying M*/Md, q and r-/r+ where r-/r+  is 

the ratio of inner to outer edge of the disk. The contour levels show ten divisions between 

the maximum density for the model and an arbitrary small number, 10
-30

. The horizontal 

and vertical axes depict the grid cells. We include approximate positions of Q- and Q+. In 

Fig. 3.1.2 we fix q = 1.5 and r-/r+ = 0.20 while increasing star to disk mass ratio M*/Md. 

Here we show models with M*/Md = 0.0, 1.0 and 10.0 respectively for models (a), (b) and 

(c). Increasing M*/Md has an effect of generally flattening the disk, making some models 

considerably harder to resolve computationally.  

 

 

M*/Md = 0.0

 
a. 

 

 

M*/Md = 1.0

 
b. 

 

M*/Md = 10.0

 
c. 

 

Fig. 3.1.2. Mass density contours for models of varying values of M*/Md. Models a, b and 

c have M*/Md = 0.0, 1.0 and 10.0 respectively. 

 

 

    |                | 

    Q-          Q+ 

     |      | 

    Q    Q+ 

  |                 

  Q+                 
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Increasing the ratio of inner to outer disk radius r-/r+, while keeping other 

parameters fixed, has an effect of generally giving a more circular cross section. We 

illustrate this in Fig. 3.1.3 where r-/r+ = 0.10, 0.30 and 0.50 for models (a), (b) and (c) 

respectively. Interestingly, increasing the mass of the star has qualitatively the same 

effect on the shape of the disk as decreasing r-/r+. The models in Fig. 3.1.3 each have the 

parameters q = 1.5 and M*/Md = 1.0. 

 

 

r-/r+ = 0.10

 

a 

 

r-/r+ = 0.30 

 

b 

 

r-/r+ = 0.50

 

c 

 

Fig.3.1.3. Mass density contours for models with q = 1.5 and M*/Md = 1.0, of varying  

r-/r+. Models a, b and c have r-/r+ = 0.10, 0.30 and 0.50, respectively. 

 

Holding other parameters fixed and decreasing rotational power q has the effect of 

generally flattening the disk while moving the radius of the maximum density outward, as 

illustrated in the models of Fig. 3.1.4 using r-/r+ = 0.40, M*/Md = 25.0. Here, q = 1.50, 

1.75 and 2.00 for models (a), (b) and (c) respectively. Increasing q makes the disks “puff 

up.” This can be illustrated using the virial theorem, 2(Trot + Tthermal) + W = 0. As q 

approaches 1.5, Trot / Tthermal increases, and the disk flattens.  

Equilibrium mass density contours for selected models can be found in the 

appendices. Contour plots are shown at the beginning of Appendix A for q = 1.5 for the 

sequence M*/Md = 0.0, 0.01, 0.1, 1.0, 5.0, 10.0, 25.0, 50.0 and 100.0; with plots of  

r-/r+ = 0.05, 0.10, 0.20, 0.30, 0.40, and 0.50 for each value of M*/Md. Appendix B and 

Appendix C begin with contour plots for q = 1.75 and 2.0, respectively for  

     |  | 

   Q-Q+ 

     |            | 

    Q-            Q+ 

     |         | 

    Q-       Q+ 
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M*/Md = 0.0, 0.01, 0.1, 1.0, 5.0, 10.0, 25.0, 50.0 and the non-self-gravitating model, for 

the same sequence in r-/r+. Results and discussion of the equilibrium models can be 

found in Section 3.1. Equilibrium contour plots for characteristic mode types are shown 

in Fig. 3.2.5. 

 

 

q = 1.5

  

  
 

a 

 

q = 1.75 

  

  
B 

 

q = 2.0

  

  
c 

 

Fig. 3.1.4. Mass density contours for models with r-/r+ = 0.20, M*/Md = 0.0 for varying 

values of q. Models a, b and c have q = 1.50, 1.75 and 2.0, respectively. 

 

3.2. Methods for Time Dependent Calculations 

 

We linearized the hydrodynamic equations to use in calculation of the time 

evolving models. Because time, t, and the azimuthal angle, φ, do not explicitly appear in 

the equations, we expect a solution where perturbed quantities, namely, mass density and 

velocities, take the form: 

 

  0 , ,Q Q Q z t    ( 3.2.1 ) 

 

 where 0 ( )Q   is the equilibrium solution, ( , , )Q z t   is the perturbed amplitude in the 

meridional plane, with quantum number m. In cylindrical coordinates, the linearized 

hydrodynamic equations are: 

    |         

   Q+       

    |         

   Q+      
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0
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
          

 

 
             

 

 

( 3.2.2 ) 

   

  0
02 2

0 0

2 2t g

P
v im v v P     


      

 
              ( 3.2.3 ) 

   

  2 0

2

0

1
t g

Pim im
v im v v        

   
           ( 3.2.4 ) 

   

  0
02 2

0 0

2t z z z z z g

P
v im v P


     

 
            ( 3.2.5 ) 

   

 
2 4g G      ( 3.2.6 ) 

 

The perturbed quantities are complex, so each of the equations (3.2.1-3.2.6) represents a 

pair of equations.  

Equilibrium values of mass density and angular momentum are used as the 

background for the temporally evolving, linearly perturbed equations. The initial values 

are the randomly perturbed linear values. Equations are solved using a finite difference 

scheme on the same grid as the equilibrium models and advanced in time using a fourth 

order Runge-Kutta method. The numerical code is described in detail in Toman et al. 

(1998) and Hadley & Imamura (2010). We used grid sizes of 512x512 for calculated 

models, and grid sizes of 256x256 and 1024x1024 for our convergence test. Boundary 

conditions consist of mirror symmetry about the equatorial plane. All perturbed velocities 

are set to zero on the surface of the disk while the mass density perturbation is 

unconstrained. Gravitational potential is set at the outermost grid boundaries, through the 

solution of: 
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3

g

x

G d x


   
 r r

 ( 3.2.7 ) 

  

Care was taken to ensure that momentum was conserved in the case of m = 1 

mode models; specifically, the point mass star was allowed to move, recalculating its 

position at each time step according to the force exerted on it from the perturbed disk. 

The gravitational potential due to the star’s motion was added as a perturbation to the 

perturbed self-gravity of the disk to give the total perturbed gravity of the system.  

We followed the growth of instability by monitoring |δρ|/ρ0 at three points in the 

equatorial plane of the disk. Typical plots of this behavior are shown in Fig. 3.2.1 for two 

unstable models (a) and (b) and a model (c) that was deemed stable. These models have 

parameters m = 2, q = 1.5, with M*/Md = 0.0, r-/r+ = 0.40 for (a), M*/Md = 0.0,  

r-/r+ = 0.30 for (b), and M*/Md = 1.0 with r-/r+ = 0.10 for model (c). 

We monitor the growth of the perturbation at three radii to insure that the 

instability is global in nature. Mass density amplitudes are shown for radii near the inner 

edge of the disk, the center of the disk and near the outer edge of the disk. We determine 

a model to be stable if there is no discernable global growth after 30 - 40 MIRP’s 

(rotations at the radius of the density maximum). For unstable models, the amplitudes 

fluctuate early in the evolution until the mode sets in and starts to dominate the disk and 

grow. We monitor the growth rate until it has remained constant to 3 significant figures 

for at least two of the three radii for 2500 iterations, then halt the model for analysis.  

A comparison of the unstable plots shows that the model in (a) with r-/r+ = 0.40 is 

growing faster, reaching 3.27x10
-9

 in 4 MIRPs at the inner and outer edges of the disk 

while the model in (b) with r-/r+ = 0.30 in has reached 3.81x10
-10

 at the inner edge and a 

slightly lower amplitude at the outer edge. The growth rates are calculated to be and 

0.356 and 0.305 for (a) and (b) respectively. 

The phase plot shown in Fig. 3.2.2 is calculated using the real part of the density 

perturbation, depicting the phase angles as a function of time for the same three radial 

locations for the unstable model shown in Fig. 3.2.1 ( a). The perturbation frequency in 

the model shown in (a) is calculated to be 1.73 while the frequency in (b) is calculated to 

be 1.04. We note that the inner and outer edges are approximately π radians out of phase,   
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r-/r+ = 0.30, M*/Md = 0.0 

 
a                Time (MIRP) 

 

r-/r+ = 0.40, M*/Md = 0.0 

 
b                Time (MIRP) 

 

r-/r+ = 0.10, M*/Md = 0.1 

 
c                Time (MIRP) 

 

Fig. 3.2.1. Temporally evolving mass density perturbation amplitudes for unstable 

models a and b and a stable model c. Amplitudes are shown in red, green and blue for the 

inner edge, center, and outer edge of the disk, respectively. 

 

 

r-/r+ = 0.30, M*/Md = 0.0 

 

a                                  Time (MIRP) 

 

Fig. 3.2.2. Temporally evolving phase angle of the density perturbation for the unstable 

model shown in Fig.3.2.2 a. Phase angles are shown in red, green and blue for the inner 

edge, center, and outer edge of the disk, respectively. 

 

and that the middle of the disk in phase with the outer edge. This indicates that an abrupt 

phase shift happened between the inner edge and the center of the disk. 

For further analysis, we examine the dispersion relation, obtained from Equations 

3.2.2 - 3.2.6 via substitution. The form of the equation suggests that a combination of the 
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perturbed enthalpy and the perturbed gravitational potential 
gW H    is a more 

physical eigenfunction than δρ, 
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 ( 3.2.8) 

 

where D  σ
2
 - κ

2
 , σ  ω + mΩ, and κ is the epicyclic frequency, defined as:  
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In the case of constant specific angular momentum (q = 2), 
2 0   so

2D  .  

For our convention, the real part of ω refers to the frequency of the perturbation 

while the imaginary part refers to the growth rate. We define the normalized eigenvalues: 
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The corotation radius is defined as the radius where the real part of the 

perturbation frequency equals the frequency of the fluid. For power-law rotation, the 

corotation radius is calculated as: 
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For higher frequency perturbations, the corotation moves toward a smaller radius. 

Qualitatively this can be understood because the fluid rotational speed decreases outward, 

thus a higher pattern frequency would match the fluid frequency at a smaller radius. If 

corotation lies inside R0,  1 0y m  and if corotation lies outside R0,  1 0y m  . The 

inner and outer Lindblad resonances are located where the real part of the perturbation 

frequency equals ± κ. For power law angular velocity, the locations of the inner and outer 

Lindblad resonances are related to the corotation radius by: 
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 ( 3.2.13 ) 

 

The perturbation frequencies and corotation radii offer clues as to what kind of 

modes are present. For a J mode, corotation lies near R0 and for I modes, corotation radii 

lie near the edge of the disk. Other distinctions in various parts of parameter space are not 

as clear, as we shall see. We wish to identify what driving mechanisms are responsible 

for the traits we see in the various modes. To gain insight, we examine plots showing the 

eigenfunctions and their phases. In Figs 3.2.3 - 3.2.5, we show representative plots of 

these functions for models representative of the different mode types. 

Once the model has settled into a mode, the phase remains intact. We can plot an 

arbitrary phase to show the pattern that the perturbation forms as it sweeps around the 

disk. In Fig. 3.2.3 we show phase plots of |δρ|/ρ0 (blue) and W (red) amplitudes 

calculated along a radius in the equatorial plane for models representative of various 

modes.  In the phase plots, the inner and outer edges of the disk are shown in blue, while 

the corotation radii are shown in turquoise and the radii of the equilibrium density 

maxima are plotted in pink. The equilibrium fluid flow is taken to be in the 

counterclockwise direction. Note that all radii shown in the figures are normalized by R0.  

Model (a) illustrates a typical I
+
 mode, with m = 2, q = 1.5, r-/r+ = 0.30 and 

M*/Md = 0.0. Rco is near the outer edge of the disk. In some models, it lies outside the 

disk entirely. There is a trailing π/m phase shift in |δρ|/ρ0 that lies close to R0; in some 

cases the phase shift is seen to be leading. Outside the phase shift, |δρ|/ρ0 approaches the 
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outer edge in a barlike fashion. W is in phase with |δρ|/ρ0 near the inner edge of the disk 

and with a leading arm that retains its sense as it crosses Rco, becoming out of phase for  

 > R0. In this model, W sweeps prograde, but in some models it is nearly barlike. 

Model (b) in Fig. 3.2.3 depicts a typical I
-
 phase plot, with m = 2, q = 1.5,  

r-/r+ = 0.60 and M*/Md = 0.1. Rco lies near the inner edge of the disk, and in some cases 

falls at a smaller radius than that of r-. Similarly to the I
+
 modes, there is a trailing π/m 

phase shift in |δρ|/ρ0 which in some cases is seen to be leading. The phase shift in I
-
 

modes lies slightly outside R0. W is out of phase with |δρ|/ρ0 at the inner edge, with a 

short leading arm that switches to trailing at Rco, coming into phase with |δρ|/ρ0 at the 

outer edge.  

Model (c) in Fig. 3.2.3 shows the phase plot of a typical J mode, with m = 2,  

q = 1.5, r-/r+ = 0.40 and M*/Md = 0.0. Rco is near R0 and can be seen at radii that are 

slightly smaller or larger than R0. The |δρ|/ρ0 phase exhibits a trailing arm that extends for 

π/m radians and tracks along R0 but not as tightly as the phase shift seen in the I modes. 

W is in phase with |δρ|/ρ0 at the inner edge, though this is somewhat relaxed in some 

models.  

Model (d) in Fig. 3.2.3 is a typical P mode, with m = 2, q = 2.0, r-/r+ = 0.50 and 

M*/Md = 100.0; with Rco near R0. P modes are found in disks with high M*/Md ratios with 

weak self-gravity, as evidenced by the similarity of the |δρ|/ρ0 and W phases. Rco is 

slightly outside R0 in these disks. The phases exhibit a bar near the inner edge with a 

short leading phase shift along R0, switching to a short trailing arm outside R0.   

Model (e) in Fig. 3.2.3 is an edge mode, with m = 2, q = 2.0, r-/r+ = 0.20 and 

M*/Md = 100.0. Like the P modes, edge modes occur in disks with high M*/Md but they 

persist to smaller M*/Md than the P modes. Rco lies slightly inside R0. In the inner part of 

the disk, edge modes are similar in structure to P modes but in the outer part of the disk 

they exhibit a trailing arm that extends very much farther, sometimes wrapping around 

the disk many times. 

Model (f) in Fig. 3.2.3 illustrates behavior typical of an A mode, with m = 1,  

q = 1.75, r-/r+ = 0.05 and M*/Md = 0.1. Rco lies somewhat outside R0, and the |δρ|/ρ0 

phase is a long, trailing spiral arm with no apparent change as it crosses R0 or Rco. W is in 

phase with |δρ|/ρ0 at the inner edge but rapidly diverges into a leading arm that typically 
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changes to a trailing arm smoothly across the middle part of the disk, coming back into 

phase with |δρ|/ρ0 near the outer edge. 

 

 

Fig. 3.2.3. W and |δρ|/ρ0 phases shown in red and blue, respectively, plotted in the 

equatorial plane for representative models of mode types  I
+
, I

-
, J, P, Edge and A. 

 

In Fig. 3.2.4, we show W and |δρ|/ρ0 amplitudes of the eigenfunctions defined in 

Eq. 3.2.8, plotted radially across the equatorial plane of the disk for the same models 

highlighted as representative for mode types in Fig. 3.2.3. In the I
+
 mode plot, we note a 

dip in the amplitude of |δρ|/ρ0 slightly inside R0 , corresponding to the |δρ|/ρ0 phase shift 

in the I
+
 phase plot. In a mathematical sense, this probably corresponds to the 

denominator of the dispersion relation approaching zero, forcing the numerator to 

approach zero faster than the denominator to avoid singularity. This typically indicates a 

resonance of some sort. The denominator may never strictly go to zero in parameter 
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space because the perturbations are complex quantities and the real and imaginary parts 

may not approach zero at the same time. The W amplitude has a shallow dip at a radius 

close to Rco.  

The sharp dip in the |δρ|/ρ0 amplitude plot of the I
-
 mode lies somewhat outside 

R0, tracking the phase shift in |δρ|/ρ0. The W amplitude is nearly constant across the disk 

with a slight, shallow dip near the inner edge. The J mode amplitude plot has a dip in 

|δρ|/ρ0 near R0. The dip is not as sharp as that in the I mode plot, corresponding to the 

looser phase shift in the J mode. The dip in the W amplitude lies near Rco. The dips in 

|δρ|/ρ0 and W in the P mode plot are located near each other at slightly higher radii than 

R0, as would be expected, since |δρ|/ρ0 and W nearly coincide in the phase plot. The dip in 

W is slightly sharper than that of the I
+
 mode, corresponding to the phase shift in W being 

slightly longer and more closely tied to Rco. The dip in |δρ|/ρ0 falls a little farther out than 

that of W, seemingly not corresponding to R0, but rather to the center of the leading arm. 

The amplitude plot for the edge mode shows several distinct dips, with the inner one 

corresponding to R0 while the outer two roughly correspond to the trailing spiral. 

The A mode amplitude has a dip near /R0 = 2.0, though there is no discerning 

feature of the phase plot to distinguish that radius. It may be, however, that it corresponds 

to a resonance in the dispersion relation. W has a dip close to the outer edge of the disk, 

but again, there is no discernable feature of the phase plot that correlates to that radius. 

In Fig. 3.2.5 we present the equilibrium mass density contour plots for the models 

shown in Fig. 3.2.3, including the locations of the inner and outer edge of the Q-barrier, 

Q- and Q+. The I modes and the J mode plots are all relatively symmetric compared to the 

other mode types, with density contours plotted as nearly concentric circles, harboring 

wide Q-barriers which span most of the inner parts of the disks. The I
-
 mode disk is very 

narrow compared to the rest of the mode types. The P mode and edge mode models do 

not have Q-barriers, since by definition, Q = 0 for q = 2.0 (see Eqns. 3.1.13 and 3.2.9). 

The P mode contour plot is asymmetric compared to the I and J modes, with the 

relatively large central star mass pulling the density maximum of the disk inward. The 

edge mode contour is even more skewed inward than the P mode. It also has a relatively 

massive central star, and the disk is wider, so that the inner edge of the disk is close to the 

star. The density maximum of this disk is displaced very far to the left of the geometric 
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Fig. 3.2.4. W and |δρ|/ρ0 amplitudes in red and blue, respectively, plotted radially across 

the disk for the representative models introduced in Fig.3.2.3.  

 

center of the disk. The A mode equilibrium disk is thick in vertical height and R0 is very 

close to the inner edge of the disk. The inner edge of the disk is very close to the central 

star, but the star mass is relatively small. The mass of the opposite side of the disk pulls 

R0 inward. 

 We continue analysis of these characteristic mode plots in later sections. The 

work integrals and stresses for these characteristic models are shown in Figs. 3.3.1 and 

3.3.2, respectively. The self-gravity torques and perturbed angular momenta are shown in 

Fig. 3.4.1. In Section 5.2, we revisit these models in a discussion of the transport of 

angular momentum, and present plots showing the total angular momentum and the 

angular momentum transport time for the I and J modes in Fig. 5.2.1 and for the P, edge 

and A modes in Fig. 5.2.2. We estimate trends of the future evolution of the disks, and 
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Fig. 3.2.5. Mass density contours along a meridional slice for the representative models 

introduced in Fig.3.2.3, with approximate locations of Q- and Q+. 

 

present plots of the angular momentum evolution and the angular velocity evolution in 

Figs. 5.2.3 and 5.2.4 respectively. 

 

3.3. Work Integrals 

For analysis purposes, we calculate the work done locally by the perturbed kinetic 

energy, and the perturbed enthalpy which accounts for the perturbation in the acoustic 

energy (see Kojima 1989). The perturbed kinetic energy and acoustic energy are 

designated as Ek and Eh respectively and, for a polytrope, are given by: 
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Here, the Q  brackets represent time-averaged perturbed quantities and are obviously 

second order. The total energy of the mode is the sum of the two. 
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The time derivative of the energy is the sum of the stresses involved: 

 

 R h Gσ +σ +σ
d

E
dt

  ( 3.3.4 ) 

 

where σR is the Reynolds stress, σh is the acoustic stress and σG is the work done by the 

perturbed gravitational forces. The Reynolds stress measures the energy arising from 

shear stress of the equilibrium structure which affects the perturbed model. Reynolds 

stress is defined as: 
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 ( 3.3.5 ) 

 

The acoustic wave flux carried by the perturbation redistributes energy within the disk. It 

is defined as: 

 

 hσ P    v  ( 3.3.6 ) 
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The work done by the perturbed gravity contains input from the self-gravity of the disk as 

well as motion of the central star in the m = 1 case and is defined as: 

 

  G 0 *σ d         v  ( 3.3.7 ) 

 

where Φd is the gravitational potential of the disk and Φ* is the gravitational potential of 

the star. The energy equation thus contains driving terms as well as damping terms. The 

growth time in terms of the work and stresses is given by: 
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The acoustic wave stress integrates to zero over the disk so it is not included here.  

Fig. 3.3.1 shows plots of the work integrals for the representative models 

introduced Fig. 3.3.1. The perturbed acoustic energy (Eh) is plotted in brown and the 

perturbed kinetic energy (Ek) is plotted in blue. Eh has two peaks in the I modes and the J 

mode plots, with the inner peaks considerably higher than the outer peaks, while Ek has 

one peak. The peak in Ek for the I
+
 mode lies within the inner Eh peak, while for the I

-
 

mode, it lies at the zero between the two Eh peaks. The minimum of the J mode Eh does 

not go to zero, lying between R0 and Rco, similar to features in the eigenfunction plots as 

well as the δj and torque plots. This value agrees with the dip in the |δρ|/ρ0 eigenfunction 

since it is linear with δρ
2
/ρ0

2
. The perturbed kinetic energy shows a peak very close to the 

minimum in the torque.  

The P mode work integral plot has two peaks in Eh lying close to the inner and 

outer edges with a broad valley between them. Ek has a peak which lies inside the inner 

Eh peak, with a shoulder across the central region, going to zero at the outer edge of the 

disk. The edge mode work integral plot also has a narrow Eh peak near the inner edge 

which contains the peak in Ek, but both functions have very low amplitudes except near 

the inner edge. The A mode work integrals have very low amplitude, negligible in the 

outer region. Every kind of mode pictured here shows work done by acoustic energy flux 



32 

 

dominant at the inner edge of the disk, with some inner region dominated by work done 

by kinetic energy. The P mode has the largest central region dominated by kinetic energy, 

compared to the other mode types.  

 

 

Fig. 3.3.1. Work integral plots are for representative models shown in Fig.3.2.3. Work 

done by kinetic energy is plotted in blue and work done by enthalpy is plotted in brown. 

 

Fig. 3.3.2 shows stress plots for the models introduced in Fig. 3.2.1. The Reynolds 

stress (σR) arises from the fluid mass carrying the perturbed velocities. It is plotted in 

black, while the work done by the perturbed gravity (σG) is shown in red and the acoustic 

flux (σh) is plotted in blue. The stress plots of the I and J modes are similar to each other 

in that the inner and outer edges of the disk are dominated by σh while the middle of the 

disks have positive peaks in σG nearly coinciding with negative peaks in σh. The I
+
 mode 

has a minimum in σh at a slightly smaller radius than that of σG, while the I
-
 mode shows 

the minimum in σh at a slightly larger radius than that of σG. The I and J mode plots also 
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have positive peaks in σR. The I
+
 mode has a small region where σR dominates the other 

stresses, with the peak skewed toward the inner edge of the disk. There is no region of 

either the I
-
 or the J mode plot that is dominated by σR. The acoustic flux near the  

 

 

Fig. 3.3.2. Stress plots are given for the representative models shown in Fig.3.2.3. 

Reynold’s stress, work done by gravity, and acoustic flux are plotted in black, red and 

blue respectively. 

 

minimum of the I
+
 mode shows difficulty in resolution. This is because it depends on 

spatial derivatives which may have small fluctuations. 

 The stress plots of the P and edge modes are similar in that they have very 

narrow spikes of σh dominating the inner edges with broad regions of positive σR which 

are offset by negative σh of lesser amplitude. The behaviors of σh in the P and edge 

modes diverge near the outer edge of the disk where the edge mode displays its typical 

wavy nature but the P mode has a positive peak. Both of these models have negligible σG, 
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since their self-gravity is negligible. The A mode stress plot is qualitatively unlike the 

other modes in that it has negative σR and σh is dominated by σG. As seen in the torque 

and perturbed angular momentum plots, all major effects happen near the inner edge for 

the A mode.  

 

 

3.4. Quasi-linear Theory 

We next examine the self-gravity torque, τ, and the perturbed angular momentum, 

δj, plots of the models introduced in Fig. 3.2.3. We calculate the time-averaged quasi-

linear torque involving the density perturbation amplitude and the perturbed gravitational 

potential. For m = 1 modes, the perturbed gravity includes the perturbation caused by the 

star motion as well as that of the self-gravity of the disk. We define the torque as: 

 

  τ m sin dz         ( 3.4.1 ) 

 

For details of the torque derivation, see Section 5.2. 

The torque is normalized by the product of total angular momentum and the 

equilibrium rotational period at R0 and the perturbed angular momentum is normalized by 

total angular momentum. We also normalize both quantities, and the following work 

integral and stress plots by the amplitude of the density perturbation summed over the 

disk.  

In Fig. 3.4.1, we present torque plots for the representative models introduced in  

Fig. 3.2.3. For the I and J modes, the torque plots show character similar to each other, 

with negative τ for the inner part of the disk and positive τ for the outer part of the disk, 

crossing zero between R0 and Rco. It should be noted that the phase plots for all three of 

these models also have inner bars with trailing arms in the inner disk region with a 

change in concavity outside R0. The value of τ for the P mode is positive in the inner 

region of the disk, switching to negative, then positive again near the outer edge. The 

corresponding P mode phase plot, shown in Fig. 3.2.3, has an inner bar, with a prograde 

shift switching to trailing in the outer disk region. The τ plot for the edge mode is similar 
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to that of the P mode in the inner disk region, but crosses zero more often in the outer 

region, corresponding to the wrapping of the spiral arms and the dips in the 

eigenfunctions amplitude plot shown in Fig. 3.2.4. The A mode τ plot is different in 

nature, with a steep negative spike in the inner disk region, probably corresponding to the 

motion of the central star. Fig. 3.4.1 also presents the perturbed angular momentum plots 

for the representative models of Fig. 3.2.3. The I and J mode plots are similar to each 

other in nature to their corresponding τ plots in that they are negative for the inner disk 

regions and positive for the outer regions.  

There are some qualitative differences in the shapes of the plots. The I
+
 mode, δj 

plot is narrower in the inner negative region, crossing zero at a smaller radius than the 

corresponding I
+
 mode τ plot, such that δj and τ have different signs in the region around 

R0; specifically, τ is negative while δj is positive. The outer region of the δj plot is 

broader and lower amplitude than the τ plot. The I
-
 mode, δj plot is more similar in 

overall shape to its corresponding τ plot, but there is also a region around R0 where τ and 

δj have opposite sign. In this case, τ is positive and δj is negative. For the J mode, δj and τ 

cross zero near each other, at 1.036 and 1.047 respectively. The τ plot is more symmetric 

than the δj plot, in that the maximum and minimum values are about the same in absolute 

value, while the δj plot has a greater absolute value for its minimum than its maximum.  

The P mode δj plot and τ plot are different in nature, exhibiting a sharp negative 

spike in the inner disk region for δj, opposite in sign from τ. The values of δj and τ agree 

in sign only for a small region near the outer edge of the disk. The edge mode δj also has 

a sharp, negative spike near the inner edge, opposite in sign from τ. It has a very low 

amplitude, positive region in the outer part of the disk. The A mode δj exhibits a negative 

spike near the inner edge and is negligible elsewhere. 

Quasi-linear analysis may also prove to be important for investigating 

supercritical instability. In the nonlinear regime, another type of behavior has been noted, 

a class of disks whose growth saturates at a low amplitude (Woodward et al. 1994). It is 

plausible that Landau supercritical stability is the mechanism responsible for this 

behavior, hence the term “L modes.” The mechanism responsible for the low amplitude 

saturation of the instability involves interference of the dominant mode by harmonics 
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Fig. 3.4.1. Self-gravity torque plotted in blue and δj plotted in red for the representative 

models shown in Fig.3.2.3.  
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which are generated near a critical stability threshold, distorting the flow. Landau derived 

the following equation describing the instability: 

 

 
2 2 4

2
d

A A l A
dt

   ( 3.4.2 ) 

 

where A is the amplitude of the dominant mode, σ is the perturbation frequency and l is a 

constant, known as Landau’s constant (Drazin & Reid, 2004). This is a logistical 

function, which, when used in hydrodynamic stability calculations, indicates truncation. 

If l  = 0, it reduces to the equation used to calculate linear growth. For l  > 0, the second 

term on the right-hand side of the equation determines the amplitude at which the 

nonlinear growth of the mode will saturate. The L modes are not distinct modes per se, 

but rather a specific behavior seen within other mode types. We will discuss L modes 

more fully in section 5.1.4. 
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CHAPTER IV 

RESULTS 

4.1. Equilibrium Results 

Our main goal is to understand how angular momentum transport affects 

evolution of disks over a large sampling of parameter space. Since any small random 

perturbation away from equilibrium will eventually result in the same temporally evolved 

model for a given equilibrium disk, the geometry and angular momentum structure must 

dictate what this result will be. Visual inspection of the mass density contour plots 

reveals little qualitative difference for small changes in the radial extent of the disk or in 

the star to disk mass ratio, yet as evidenced in the temporally evolved models, sometimes 

a very small change can result in a qualitatively different outcome. We calculated an 

extensive library of over 7700 equilibrium disk models in order to make detailed plots of 

quantities which may help to determine how an equilibrium disk will evolve. We monitor 

the virial error as an indication of the reliability of our results. Since angular momentum 

transport is of crucial importance, we plot the equilibrium total angular momentum. We 

are specifically studying global rotational and gravitational instabilities, so it is 

informative to know how T/|W| varies over parameter space. We show plots of the 

maximum mass density and its radius as indications of the disk geometry.  We map the 

Q-barrier to understand how this evanescent region plays a part in mode development. 

We present our equilibrium results here, and refer to them in later sections.  

We present results for equilibrium models for q = 1.50, 1.75 and 2.00 for  

0.070 < r-/r+ < 0.632 and 0.007 < M*/Md < 128.5. Since the M*/Md are given on a 

logarithmic axis, we will present the M*/Md = 0.0 separately. Two models for q = 1.50 

with small r-/r+ and high M*/Md are missing because they did not converge to the 

required tolerance within 1000 iterations. We will refer to Figs A.1.0, B.1.0 and C.1.0 for 

tables of representative mass density contour plots, shown for meridional slices above the 

equatorial plane. The density contours represent 10% relative change in density. We 

show results of our equilibrium calculations in Figs. 4.1.1 - 4.1.8. In these semilog plots, 
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the domain of the horizontal axis is 3.0 x 10
-3

 < M*/Md < 1.5 x 10
2
 while the range of the 

vertical axis is 0.0 < r-/r+ < 0.70. 

We track the virial error of the models as shown in plots in the upper panels of 

Fig. 4.1.1. Virial error for q = 1.5, 1.75 and 2.0 increases for high r-/r+ and low M*/Md. It 

seems to track the Maximum Initial Rotation Period (MIRP) which is the equilibrium 

period at the radius of the maximum mass density ρ0 as shown in the lower panels of  

Fig. 4.1.1. Qualitatively, we would expect that the MIRP should increase as r-/r+ 

increases since the disks become narrower and have subsequently higher T/|W|. We also 

see in Eqn. 3.1.10 that 2 2 2 / 3

0 0 0 .R     This indicates that as the MIRP increases, the 

distance between the disk and the central star increases, and the mass density decreases. 

This would inherently tend to make the disk less stable, since the disk would be very far 

away from the star, rotating rapidly with low density, producing a higher virial error. 

 

 

Virial error  q = 1.5 

     

 

 Virial error q = 1.75 

 

 

 Virial error q = 2.0 

 

 

MIRP  q = 1.5                      
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MIRP  q = 2.0 

 
M*/Md 

 

Fig. 4.1.1. Virial error (upper panels) and MIRP (lower panels) for q = 1.50, 1.75 and 2.0. 
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Fig. 4.1.2 shows plots for total angular momentum Jtotal as q varies. We see that  

q = 1.5 disks exhibit larger total angular momentum for small r-/r+ and large M*/Md. The 

range of the color bars for the q = 1.5, 1.75 and 2.0 plots are 0 - 60, 0 - 18 and 0 - 12, 

respectively. From Figs A.1.0, B.1.0 and C1.0, it is obvious that the q = 1.5 disks are 

flattener than q = 1.75 and 2.0 disks, and R0 is higher, increasing total angular 

momentum. Self-gravitating disks with q = 1.5 must have pressure gradients present to 

balance the self-gravity to support a Keplerian profile. For large M*/Md the frequency at 

R0 approaches Keplerian frequency, since self-gravity is negligible in these disks. The 

pressure support is therefore also small, so the disks are flattened.  

 

 

Jtotal q = 1.5 

     
M*/Md 

 

Jtotal q = 1.75 

 
M*/Md 

 

Jtotal q = 2.0 

 
M*/Md 

 

Fig. 4.1.2. Total angular momentum for q = 1.50, 1.75 and 2.0. 

 

We normalize various radii in the disk using the radius of the maximum density 

R0, so it is useful to plot R0 as well as the values of ρ0 as shown in polytropic units in 

Figs. 4.1.3 and 4.1.4. In the upper panels we see that R0 increases as r-/r+ since a 

narrower disk has the effect of the inner edge moving away from the central star. 

Examining mass density contour plots in Figs A.1.0, B.1.0 and C.1.0, it is obvious that 

for high r-/r+ and high M*/Md, smaller q lowers angular velocity toward the inner edge of 

the disk and increases it toward the outer edge which moves R0 outward, giving 

qualitatively different results for q = 1.5 compared to those for q = 1.75 and 2.0. The 

color bars for q = 1.75 and 2.0 reach maximum values of 16, each. In Fig. 4.1.4, we again 

r-/r+ 
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see qualitatively different results for q = 1.5 as compared to q = 1.75 and 2.0. The color 

bars next to the plots indicate that ρ0 reaches maximum values 4 orders of magnitude 

higher for q = 1.75 and 2.0 than for q = 1.5. 
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Fig.4.1.3. Location of R0 for M*/Md vs. r-/r+ for q = 1.50, 1.75 and 2.0. 
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Fig.4.1.4. Maximum mass density ρ0  for M*/Md vs. r-/r+  for q = 1.50, 1.75 and 2.0. 

 

Since our focus is on rotational and gravitational instabilities, one of the main 

parameters we use for analysis of equilibrium disks is the ratio of the rotational kinetic 

energy versus the gravitational potential energy, T/|W|. In Fig. 4.1.5 we show semilog 

plots of T/|W| for M*/Md vs. r-/r+ for q = 1.50, 1.75 and 2.00. The higher Jtotal of the  

r-/r+ 

r-/r+ 
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q = 1.50 disks is evident in the higher values of T/|W| for large M*/Md. The color bar 

indicates rotational kinetic energy shows a maximum of ~0.5 as we would expect from 

the virial theorem for the largest M*/Md and r-/r+. We see that varying q has little effect 

for large r-/r+. T/|W| decreases as r-/r+ decreases for high M*/Md models.  

The lower panels in Fig. 4.1.5 shows T/|W| vs. M*/Md for varying q. The color 

bars represent varying r-/r+ here. We see that is more variance in T/|W| for low star mass 

models than high star mass models. As shown in Fig. 3.1.4, we see that the  

q = 1.5 models are considerably flatter than q = 1.75 and 2.0 models for large M*/Md. 

Their azimuthal velocities are higher toward the outer edge, displacing mass further out 

in the disk and increasing T/|W|.   

The Q-barrier is defined as the region where the Toomre Q parameter is less than 

unity (eqn. 3.1.13). We see that Q  > 1.0 in all of the models at r-/R0 and also at r+/R0.   
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Fig. 4.1.5. T/|W| for q = 1.5, 1.75 and 2.0. In the upper panels, the color bar indicates 

T/|W|. In the lower panels, the color bar indicates the value of r-/r+. 
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We define Q- as the lowest value of /R0 where Q < 1.0. Q+ is defined as the right side of 

the region where Q < 1.0. If Q > 1.0 everywhere in the disk, Q- = 0.0 and Q+ = r-/R0.  

Fig. 4.1.6 displays Q- and Q+ for q = 1.50 and 1.75. There are no plots included for  

q = 2.0 since Q- = Q+ = 0 for q = 2.0. We see qualitatively similar behavior for q = 1.5 

and 1.75 but note the higher magnitudes shown on the color bars. The range of the Q- plot 

for q = 1.5 is 0.0 < Q-  < 1.5, whereas the range of the Q-  plot for q = 1.75 is  

0.0 < Q-  < 3.5. The dark blue areas on the right-hand side of the Q- indicate the region of 

parameter space where there is no part of the disk in which Q < 1.0. In that region, Q+ 

becomes the radius of the inner edge of the disk. The range of the Q+ plot for q = 1.5 is 

0.25 < Q+ < 3.0, whereas the range of the Q+ plot for q = 1.75 is 0.5 < Q+ < 5.5. 
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Fig. 4.1.6. Q-, Q+ and Q+ - Q- for q = 1.5 and 1.75. 
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The region where Q < 1.0 is wide, in general, for small M*/Md and decreases in 

width monotonically with M*/Md until it disappears. The minimum width of the Q  < 1.0 

region increases as r-/r+ decreases. Fig. 4.1.7 includes plots of the width of the Q-barrier, 

specifically, the difference of Q+ and Q-. We see that the width of the Q-barrier decreases 

as M*/Md increases, up to the division where the Q-barrier no longer exists in the disk. 

 

 

Q+ - Q- for q = 1.5 
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Q+ - Q-  for q = 1.75 
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Fig. 4.1.7. Q+ - Q- for q = 1.5 and 1.75. 

 

  Next we examine how the effect of pressure compares with the effect of self-

gravity in a disk.  We follow the analysis of Christodoulou and Narayan (1992) who 

defined two self-gravity parameters for analysis of their self-gravitating slender annuli. 

To measure the strength of self-gravity compared to pressure, we define p, shown in  

Fig. 4.1.7: 
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To measure the strength of the self-gravity of the disk as compared to the gravity of the 

central star, we define η, shown in Fig. 4.1.8: 
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Fig. 4.1.8. Self-gravity parameter p for q = 1.5, 1.75 and 2.0. 

      

We will compare η and p plots with the general trends of behavior for the q = 1.5, 1.75 

and 2.0 models in Sections 4.2.2, 4.2.3 and 4.2.4, respectively. 
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Fig. 4.1.9. Self-gravity parameter η for q = 1.5, 1.75 and 2.0. 
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4.2. Linear Results 

 
Here we present results for the time dependent models. We have calculated and 

analyzed over 2100 temporally evolved models in total.  We begin by discussing 

similarities in trends for dominance of various m. In particular for small M*/Md low order 

modes dominate for small r-/r+  and higher order modes dominate as r-/r+ increases, 

regardless of q. As M*/Md increases, m = 3 and 4 become stable, or at least have very low 

growth rates and the lower m modes dominate to higher values of r-/r+. We will more 

closely examine the relationship between q and the regions of dominance for values of m 

in Figs. 4.2.1 and 4.2.2. 

Three main realms of behavior become evident as we plot y2 vs. r-/r+ for  

M* << Md, M* ≈ Md and M* >> Md and will examine characteristic plots for each realm 

in some detail, namely, the M*/Md = 0.0, 1.0 and 10.0 plots for q = 1.5. Fig.4.2.6 presents 

the y2 values of M*/Md models in general, indicating the growth rates as functions of m. 

Fig. 4.2.7 presents the y1 values of  the same sequence of models. We have not included 

figures for M*/Md  > 10.0 due to the sparse nature of the data, but do indicate modal 

dominance in Figs 4.2.1 and 4.2.2. 

The perturbation frequencies that generate the y1 values also allow us to calculate 

the corotation radii, Rco, for the given models. It is informative to map behavioral trends 

of regions of parameter space for given m and q. Figs 4.2.8 - 4.2.11 indicate general 

trends found as well as stability regions. We will give more detailed maps of the m, q 

slices of parameter spaces in the following subsections where q = 1.5, 1.75 and 2.0 are 

addressed separately. The main interest of this research is to understand how disks 

evolve, in particular, how torque causes angular momentum transport which modifies the 

structure of the disk. The behaviors of perturbed angular momentum and torque for 

different portions of parameter space are discussed. Trends in the stresses and work 

integrals for various parts of parameter space are also investigated.  

We begin by charting which m modes dominate the disks for a given q, r-/r+ and 

M*/Md. Fig. 4.2.1 indicates which m values are unstable, in order of growth rates listed 

highest to lowest. For example, for q = 1.5, M*/Md = 0.01, r-/r+ = 0.30, the growth rate 

for m = 2 was the highest, followed by m = 1 and m = 3, while m = 4 was stable. The cells 
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of the table are colored by the dominant mode, with m = 1, 2, 3 and 4 shown in blue, 

green, yellow and red, respectively. Table 4.2.1 gives the modal dominance for q = 1.5 

disks. The general trend is that higher m modes dominate as r-/r+ increases, with disks 

becoming stable as M*/Md increases. Smaller r-/r+ models become stable at lower ratios 

of M*/Md. As for modal dominance, there are a few outliers which can be understood by 

examining the y2 plots in Fig. 4.2.6. For example, m = 2 dominates the models for  

M*/Md = 1.0 where r-/r+ = 0.65, where we would expect to see m = 4 dominance. 

Investigation of the y2 values indicates that the m = 2 growth rate is slightly higher than 

that of the m = 3 mode, which can barely be discerned in the growth rate plots since the  

m = 3 data point lies near the m = 2 data point. The modal dominance tables are meant to 

be a quick reference of the overall trends of modal domination, with a clearer picture 

emerging as one investigates the data plots and tables. Note that some models have been 

omitted from the tables due to resolution issues. Similarly, the q = 1.75 table in Fig. 4.2.2 

indicates that models for M*/Md = 0.0 and r-/r+ < 0.20 are stable while those models for  

 

 

q = 1.5 

r-/r+ 
M*/Md   

0.0 0.01 0.1 1.0 5.0 10.0 25.0 50.0 100.0 

0.65 4 3 2 1 4 3 2 1 4 3 2 1 2 3 4 1 4 2 1 4 2 3 4 2 4 stable 

0.60 4 3 2 1 4 3 2 1 4 3 1 2 4 3 2 1 3 4 2 1 3 2 4 3 4 2 3 4 2 stable 

0.55 4 3 2 1 4 3 2 1 4 3 1 2 4 3 2 1 3 2 4 2 3 4 4 3 2 3 4 stable 

0.50 4 3 1 2 4 3 1 2 4 3 1 2 3 4 2 1 2 3 4 1 2 3 4 3 4 1 3 4 2 stable 

0.45 3 4 1 2 3 4 1 2 4 1 2 3 3 2 4 1 2 3 4 1 2 3 4 2 3 4 stable stable 

0.40 3 4 1 2 3 4 1 2 2 1 3 4 2 3 1 4 2 3 4 1 2 3 4 1 3 4 2 stable stable 

0.35 1 3 4 2 1 3 2 4 2 3 1 4 2 1 3 4 2 3 1 4 2 3 4 2 3 stable stable 

0.30 2 1 2 1 3 2 1 3 1 2 3 4 2 1 3 4 2 3 4 3 2 stable stable 

0.25 2 1 2 1 2 1 3 1 2 3 2 1 2 3 stable stable stable 

0.20 2 1 2 1 1 2 1 2 3 2 1 2 stable stable stable 

0.15 2 1 1 2 1 2 1 2 2 1 3 2 stable stable stable 

0.10 1 1 1 1  1 2 2 stable stable stable 

0.05 1 1 1 2 3 1 1 2 stable stable stable 

 

 

Table 4.2.1. Approximate modal dominance regimes for q = 1.5 for m = 1, 2, 3, and 4. 
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q = 1.5 are unstable to m = 2 modes, but it should also be noted that the growth rates for 

these m = 2 modes are very low. There are also unstable m = 1, q = 1.75 models reported 

for M*/Md > 10.0 but it should be noted that the growth rates are small, typically 0.01 - 

0.04 MIRP’s. Stability sets in for M*/Md as low as 5.0 for the lowest r-/r+ value tested.  

The q = 1.5 table indicates a large region of m = 2 dominance for M*/Md > 5.0 

that is not seen in the q = 1.75 or 2.0 models. There is further discussion of this in the 

characteristic region is for M* >> Md, illustrated in Fig. 4.2.4. Perhaps one of the major 

points brought out in the modal dominance tables is that q = 2.0 models do not become 

stable at high M*/Md, but remain highly unstable to m = 1 modes. Growth rate plots are 

not pictured here for q = 2.0, M*/Md > 10.0 but are qualitatively similar to the plot shown 

for M*/Md = 10.0. In fact, with a few deviations, the modal dominance plots show strong 

similarity for q = 1.5, 1.75 and 2.0 for M*/Md ≤ 1.0 and strongly diverge for higher 

M*/Md. Recalling the equilibrium results, it can be seen that for small  M*/Md,  q = 1.5, 

1.75 and 2.0 have very similar total angular momentum as seen in Fig. 4.1.2, and T/|W|, 

as seen in Fig. 4.1.4, so it may not be so surprising that their evolution would be similar. 

T/|W| diverges at about M*/Md ≥ 1.0, for small r-/r+, for q = 1.5 as opposed to q = 1.75 

and 2.0, which are similar to each other. This is similar to the trend we note in the modal 

dominance tables. This would seem to indicate that higher T/|W| in M*/Md ≥ 1.0 tends to 

support m = 2 modes. However, there is nothing in the T/|W| plots to suggest why  

q = 1.75 diverges from q = 2.0 for higher M*/Md. It should also be noted here that there is 

no Q-barrier as such in a q = 2.0 disk, since Q = 0 everywhere so Q < 1 everywhere. This 

is a trait that sets it apart from q = 1.5 and 1.75 and possibly contributes to the lack of a 

stable region for a q = 2.0.  

Figs. 4.2.3 - 4.2.5 present M*/Md = 0.0, 1.0 and 10.0 plots for q = 1.5 as 

characteristic plots illustrating three main behavioral trends for y2 vs. r-/r+ for M* << Md, 

M* ≈ Md and M* >> Md. We first examine the plot of M*/Md = 0.0 shown in Fig. 4.2.3.  

We see that all m modes go toward stable at r-/r+ = 0.05 for q = 1.5 with M*/Md = 0.0. 

The phase plots in Fig. A.1.2.2 show that the m = 2 modes that dominate for  

0.10 < r-/r+ < 0.30 have Rco moving closer to r+ as we expect from I modes. Models with 

m = 1 also exhibit Rco near r+ for small r-/r+  but they change character to Rco < r- for  

r-/r+ ≥ 0.30. We refer to these I modes as I
+
 and I

-
 for convenience. The m = 1 growth  
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q = 1.75 

r-/r+ 
M*/Md   

0.0 0.01 0.1 1.0 5.0 10.0 25.0 50.0 100.0 

0.65 4 3 2 1 4 3 2 1 4 3 1 2 2 4 3 1 4 3 2  4 3 2 stable stable stable 

0.60 4 3 2 1 4 3 2 1 4 3 1 2 4 3 2 1 3 4 2  3 2 4 1 3 1 2 1 stable 

0.55 4 3 2 1 4 3 2 1 4 3 1 2 3 4 2 1 3 2 4 1 3 2 1 1 3 1 1 

0.50 4 3 2 1 4 3 2 1 4 3 1 2 3 2 4 1 2 3 1 4 1 2 3 4 1 1 1 

0.45 3 4 1 2 3 4 1 2 2 1 3 4 2 3 1 4 1 2 1 1 1 1 

0.40 3 1 4 2 3 1 4 2 2 1 3 4 1 2 3 1 2 1 1 1 1 

0.35 1 2 1 2 3 2 1 3 1 2 1 2 3 1 1 1 stable 

0.30 2 1 2 1 2 1 3 1 2 3 1 1 3 1 1 stable 

0.25 2 1 2 1 1 1 1 1 1 stable stable 

0.20 2 1 2 1 2 1 1 1 stable stable stable 

0.15 stable 1 1 2 1 1 stable stable stable stable 

0.10 stable 1 1 1 1 stable stable stable stable 

0.05 stable 1 1 1 stable stable stable stable stable 

q = 2.0 

0.65 4 3 2 1 4 3 2 1 4 3 2 1 4 2 3 1 4 3 2 1 3 4 1 2 1 1 3 2 2 3 1 4 

0.60 4 3 2 1 4 3 2 1 4 3 1 2 3 4 2 1 3 2 4 1 1 1 1 2 4 2 1 4 

0.55 4 3 2 1 4 3 2 1 4 3 1 2 3 4 2 1 1 2 3 4 1 4  1 2 3 4 1 2 3 2 1 3 

0.50 3 4 2 1 3 4 1 2 4 1 2 3 3 2 1 4 1 3 2 1 4 3 1 3 2 4 1 2 3 1 2 3 4 

0.45 3 4 1 2 3 4 1 2 2 1 2 3 4 1 3 1 3 4 1 4 3 2 1 4 2 3 1 2 3 4 

0.40 3 1 1 2 3 2 1 3 1 2 3  1 4 2 1 3 2 4 1 2 4 3 1 2 4 3 1 2 3 4 

0.35 2 1 2 1 2 1 3 1 2 4 1 2 4 1 2 4 1 2 3 4 1 2 3 4 1 2 3 4 

0.30 2 4 2 1 1 2 1 2 3 4 1 3 2 1 2  1 2 3 4 1 2 3 4 1 2 3 4 

0.25 2 1 2 1 2 1 2 1 3 4 2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

0.20 stable 1 1 2 1 3 1 2 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

0.15 stable 1 2 1 1 2 3 1 2 3 1 2 3 4 1 2 1 2 3 1 2 3 

0.10 stable 1 2 1 2 1 2 3 1 2 3 1 2 3 4 1 2 3 1 2 3 1 2 3 

0.05 stable 1 1 1 1 2 1 2 1 1 1 2 3 

 

 

Table 4.2.2. Approximate modal dominance regimes for q = 1.75 and 2.0 for m = 1, 2, 3, 

and 4. 

 

rates are increasing where the m = 2 drop toward stable where they change from I to J 

modes, so the m = 1 modes dominate for a small region of parameter space. The  

m = 3 and 4 growth rates increase to overtake them for r-/r+ > 0.35 and exhibit J mode 

behavior for this region. The y2 plot for M*/Md = 0.01 shows similar behavior except for  

the m = 1 modes at small r-/r+ which show increased growth rates due to the perturbation 

of the central star. These m = 1 modes have Rco near R0. 
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Fig. 4.2.3. First characteristic plot, for M* < Md, showing y2 for q = 1.5, M*/Md = 0.0, 

with m = 1, 2, 3 and 4 plotted in dark blue, turquoise, yellow and red, respectively. 

 

 

The second characteristic type of growth rate plot is for M* ≈ Md, and we illustrate 

it using q = 1.5, M*/Md = 1.0 as shown in Fig. 4.2.4. The m = 1 modes now dominate for 

a much wider range of r-/r+. As Fig. A.1.1 shows, the m = 1 modes exhibit Rco near R0 for 

0.05 ≤ r-/r+ ≤ 0.50. For models with m = 2, I modes dominate a small region where the  

m = 1 modes decrease around r-/r+ ≈ 0.40. For higher r-/r+, the higher m modes dominate.  

The third characteristic region is for M* >> Md illustrated in Fig. 4.2.4, with  

q = 1.5, M*/Md = 10.0. Models with m = 1 are stable over most of this region and the 

other modes all grow approximately monotonically with r-/r+. I modes dominate almost 

the entire region with m = 2 growth rates the highest for all disks with r-/r+ ≤ 0.60. 

Models with q = 1.75 and 2.0 exhibit trends in their growth rate plots for M*/Md = 10.0 

that resemble those of lower M*/Md = 1.0 for q = 1.5. Growth rate plots for M*/Md = 25.0 

and 50.0 qualitatively resemble this characteristic plot. For q = 1.5, disks become stable 

as M*/Md increases, with all disks stable at M*/Md = 100.0. Stability sets in for lower 

M*/Md for lower values of r-/r+ as is evidenced in Fig. 4.2.1. Most m = 1 models are 

stable for M*/Md ≥ 10.0. 
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Fig. 4.2.4. Second characteristic plot, for M* ≈ Md with y2 for q = 1.5, M*/Md = 1.0, with  

m = 1, 2, 3 and 4 plotted in dark blue, turquoise, yellow and red, respectively. 

 

 

 
 

Fig. 4.2.5. Third characteristic plot, for M* > Md, with y2 for q = 1.5, M*/Md = 10.0, with  

m = 1, 2, 3 and 4 plotted in dark blue, turquoise, yellow and red, respectively. 
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Fig. 4.2.6 presents y2 eigenvalue plots for comparison of q = 1.5, 1.75 and 2.0 for 

selected values of M*/Md for m = 1, 2, 3 and 4. This plot sequence illustrates the 

transitions between the regimes M*/Md << 1.0, M*/Md ≈ 1.0, and M*/Md >> 1.0 A more 

detailed description of these plots for the q = 1.5 case will be given in the q = 1.5 

subsection, and references of the growth rates of individual models depicted in these plots 

can be found throughout this dissertation. Values of y2 for selected models are found in 

Tables 4.2.2.1, 4.2.3.1 and 4.2.4.1 for q = 1.5, 1.75 and 2.0, respectively. 

Fig. 4.2.7 shows the y1 eigenvalue plots for the same sequence of models. The y1 

values give insight about how the perturbation frequencies affect the mode dominance in 

the disks. For example, in the q = 1.5, M*/Md = 0.0 plot, there is a jump in the y1 values 

around r-/r+ ≈ 0.35in the m = 2 eigenvalues which corresponds to a shift from the low 

frequency I modes to the higher frequency J modes. The jump from I to J mode  

frequencies is also seen in the q = 1.75 and 2.0, M*/Md = 0.0, m = 2  plots at about the 

same r-/r+. A similar jump in y1 for the m = 1 modes is obvious, occurring r-/r+ ≈ 0.24 in 

the q = 1.5 plot. It is not seen in the q = 1.75 and 2.0 plots because m = 1 modes are stable  

for r-/r+ < 0.25. The m = 3 and 4 models are similar to each other in y1 values, increasing 

monotonically with r-/r+. The M*/Md  =  0.01 plots looks similar to the M*/Md  =  0.0 

plots, with raised frequencies for low r-/r+ in the m = 1 mode as expected. The  

M*/Md = 0.1 plots indicate that the frequency shifts move toward higher r-/r+ for m = 1. 

Similarly to the trends noted for the growth rate plots, the y1 plots seem to naturally 

group into behaviors associated with M* << Md, M* ≈ Md and M* >> Md.  

It can be seen from the absence of data points that there are regions of stability 

associated with the patterns of y1 behavior. To visualize this further, Figs 4.2.8 - 4.2.11 

show qualitative maps of parameter space defined by r-/r+ vs. M*/Md for m = 1, 2, 3 and 

4. These maps indicate approximate regions of stability as well as approximate regions 

defined by the corotation radius for unstable regions. Boundaries for q = 1.5 are given by 

blue, round-dotted lines, while boundaries for q = 1.75 and 2.0 are given by orange, 

dashed lines and black, square-dotted lines respectively. The m = 2 map indicates a 

region of J modes, where Rco ≈ R0, for roughly 0.0 ≤ M*/Md < 0.10 and r-/r+ < 0.40, 

where q = 1.5, 1.75 and 2.0 overlap that extends to M*/Md < 1.0 for m = 3 and 4.  
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y2 growth rate eigenvalues 
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Fig. 4.2.6. y2 eigenvalues for q = 1.5, 1.75 and 2.0. Values for m = 1, 2, 3 and 4 are 

shown in dark blue, turquoise, yellow and red, respectively. 
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y1 frequency eigenvalues 
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Fig. 4.2.7. y1 eigenvalues for q = 1.5, 1.75 and 2.0. Values for m = 1, 2, 3 and 4 are 

shown in dark blue, turquoise, yellow and red, respectively. 
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For m = 1, there is a smaller region where R0 < Rco < r+ and r-/r+ > 0.60, for  

q = 2.0, but no corresponding regions for q = 1.5 and 1.75. The m = 1 map indicates that 

all values of q have an overlapping region where Rco < r- and r-/r+ > 0.40, with  

M*/Md < 1.0. The m = 2 map indicates a smaller region of overlapping q where Rco ≈ r- 

for r-/r+ > 0.50 and 0.05 < M*/Md < 5.0. The m = 3 and 4 modes do not support Rco ≈ r- 

anywhere. All m maps indicate a region where Rco ≈ r+ for higher M*/Md than the  

Rco ≈ R0 and Rco ≈ r- regions. The trend here is that for large r-/r+, Rco ≈ r+, and Rco 

approaches R0 as r-/r+ decreases. The m = 1 map indicates that q = 1.75 models are stable 

for M*/Md < 0.01 and r-/r+ < 0.30, while q = 1.75 models have a similar stable region 

reaching higher, to r-/r+< 0.40. Both also have small stable regions for M*/Md ≈ 10.0 and 

r-/r+ > 0.60. There is a stable region for q = 1.5 where M*/Md ≈ 7.0 that is overlapped by 

q = 1.75 for r-/r+< 0.30. Overlapping stable regions are found generally for all q, for low 

r-/r+, for m = 2, 3 and 4, extending to higher r-/r+ for q = 1.5 and 1.75 for large M*/Md. 

More detailed parameter space maps are presented in the q = 1.5, 1.75 and 2.0 Results 

sections. Figs. 4.2.12 - 4.2.14 indicate which models have been run for time-evolved 

systems for q = 1.5, 1.75 and 2.0. Fig. 4.2.12 shows completed models with M*/Md = 0.0. 

Fig. 4.2.13 shows semilog plots for models with M*/Md > 0.0 for models with m = 1, 2, 3 

and 4 for q = 1.5, while Fig. 4.2.14 shows similar plots, but for q = 1.75 and 2.0. 

For comparison, we calculated a sequence of models in which the self-gravity of 

the disk was not included in the calculation of the gravitational potential. We have 

included this sequence because it gives us insight into the behavior of P modes, allowing 

us to identify P mode traits in-self-gravitating disks. Unfortunately, we are not able to 

calculate non-self-gravitating models for q = 1.5 because of a singularity inherent in our 

method of calculating the gravitational potential. Plots for non-self-gravitating models for 

q = 1.75 and 2.0 can be found in Appendix B and Appendix C, displayed in the column 

that follows the column for M*/Md = 50.0. Discussion of non-self-gravitating models can 

be found in Section 5.1.2, comparing our results with those of Kojima (1986, 1989). 
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Fig. 4.2.8. Parameter space map for m = 1; q = 1.5 divisions in blue round-dotted lines,  

q = 1.75 in orange dashed lines and q = 2.0 in black square-dotted lines. 
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Fig. 4.2.9. Parameter space map for m = 2; q = 1.5 divisions in blue round-dotted lines,  

q = 1.75 in orange dashed lines and q = 2.0 in black square-dotted lines. 
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Fig. 4.2.10. Parameter space map for m = 3; q = 1.5 divisions in blue round-dotted lines,  

q = 1.75 in orange dashed lines and q = 2.0 in black square-dotted lines. 
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Fig. 4.2.11. Parameter space map for m = 4; q = 1.5 divisions in blue round-dotted lines,  

q = 1.75 in orange dashed lines and q = 2.0 in black square-dotted lines. 
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Fig. 4.2.12. M*/Md = 0.0 models run for q = 1.5, 1.75 and 2.0. 
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Fig. 4.2.13. M*/Md > 0.0 models run for q = 1.5, m = 1, 2, 3 and 4. 
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Fig. 4.2.14. Models with M*/Md > 0.0 for q = 1.75 and 2.0, m = 1, 2, 3 and 4. 
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4.2.1. Convergence Test 

In this section, we address the effect of resolution on the results. For this study we 

have focused on models with 512 x 512 x 16 resolution for our temporally evolving 

models, since it gives us the highest resolution we can use for the number of models we 

wished to run. We made spot tests to aid in understanding how this choice of resolution 

would change the results when compared to 256 x 256 x 8 and 1024 x 1024 x 16.  The 

resolution values are given by radial cells x height cells x azimuthal cells. We were able 

to use lower resolution in the azimuthal cells, since the perturbation goes as e
imυ

, 

allowing an analytical solution in this dimension. In the following discussion, we will 

drop the azimuthal cell numbers in the interest of space. 

Fig. 4.2.1.1 illustrates the effects of varying resolution for disks with q = 1.5,  

m = 2, M*/Md = 0.0. The growth rates of the 256 x 256 models agree well with those of 

the 512 x 512 models for low T/|W| and for high T/|W|, with less agreement near the I-J 

mode threshold. In general, models near thresholds are typically harder to resolve. What 

we see is that the 512 x 512 models vary more smoothly near threshold than do the 256 x 

256 models, and that the threshold itself has moved to lower T/|W| for the 512 x 512 

models, from T/|W| = 0.269 for the 256 x 256 sequence to 0.260  for the 512 x 512 

sequence. The growth rates of the data points at T/|W| = 0.293 for the 256 x 256 and the 

512 x 512 models are 0.5441 and 0.6544 respectively, giving 17% difference. However, 

it may be more appropriate to compare the growth rate of the 256 x 256 data point with 

that of the 512 x 512 data point at T/|W| = 0.282, more closely matching the difference in 

T/|W| above the transition from I modes to J modes. The 512 x 512 data point at  

T/|W| = 0.282 has a growth rate of 0.538, a difference of 0.5%. The 1024 x 1024 models 

seem to exhibit the same trend of shifting the I-J threshold even lower, but keeping a 

small percent difference when compared against models that are equidistant from the 

transition. The y2 values for the1024x1024 models agree well for T/|W| < 0.21, with less 

agreement with the lower resolution runs above the I-J mode threshold. 
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Fig. 4.2.1.1. Convergence test results for q = 1.5, m = 2, M*/Md = 0.0, with y2 values for  

256 x 256 x 8 resolution plotted with blue dots, 512 x 512 x 16 resolution plotted in red 

dots and 1024 x 1024 x 16 resolution plotted with black X’s. 
 

 

 

4.2.2. Results for q = 1.5 Models 

The angular velocity distribution q = 1.5 is a Keplerian profile, and is an exact 

Keplerian model if Ω0
2
 = GM*/R

3
. In the Keplerian limit, the central star contains the 

mass of the system, so self-gravity is negligible. Since there is no pressure support for a 

purely Keplerian disk, it would flatten into a two-dimensional object. It is possible to 

construct a disk with q < 1.5, for example, a Mestel disk is defined as a disk with q = 1.0 

(Hunter, Ball & Gottesman 1984). These disks become unphysical for M*/Md a little 

greater than 0.0, since they are forced to be Keplerian at R0, but at smaller radii the 

frequency increases more slowly than that of a Keplerian disk, so there is no centrifugal 

support. This pushes R0 to the inner edge, which creates an unphysical situation. Also, it 

has been analytically shown that for incompressible, non-self-gravitating disks, q = 3  is 

the lower stability threshold (Kojima 1989). In practice, q = 1.5 is typically used as the 

canonical lower limit for stability calculations, with q = 2.0 as the upper limit.  

Convergence test using y2 for q = 1.5, m = 2, M*/Md = 0.0  
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We begin detailed analysis of our results with q = 1.5, starting with analysis of 

eigenvalues for individual values of M*/Md, presented in Section 4.2 in Figs. 4.2.6 - 4.2.7, 

showing plots of y1 and y2 for M*/Md ratios of 0.0, 0.01, 0.1, 1.0, 5.0, 7.0, 10.0 and 25.0.  

We will closely examine the results for M*/Md = 0.0 and apply the trends we find to other 

M*/Md models. We find that M*/Md = 0.0 models are similar to M*/Md = 0.01 models, 

except for the m  = 1models, where motions of the central stars impact the behaviors of 

the M*/Md = 0.01 disks. There is no such impact for the M*/Md = 0.0 disks, since they do 

not possess central objects.  For M*/Md = 0.0, the graph of y2, in Fig. 4.2.6, indicates that 

for models with r-/r+ < 0.301, the m = 2 mode dominates the disk; m = 1 modes dominate 

the disks for 0.301 < r-/r+ < 0.352; m = 3  modes dominate for 0.352 < r-/r+ < 0.500 and  

m = 4 modes dominate for r-/r+ > 0.500. The T/|W| values for r-/r+ = 0.301, 0.352 and 

0.500 are 0.243, 0.258 and 0.293, respectively. 

 Examining the behavior of the m = 2 modes, we see that growth rates are close to 

stable, with y2 < 0.1 for r-/r+ ≈ 0.10. As r-/r+ increases, the growth rates for the m = 2 

modes increase to a peak at r-/r+ = 0.224 and then decrease toward stability around  

0.338 < r-/r+ < 0.358. Fig. 4.2.2.1 shows representative plots of this region. Recall that 

for each model, the |δρ|/ρ0 eigenfunction phase and amplitude are plotted in blue points, 

while the W eigenfunctions phase and amplitude are plotted in red points. The inner edge 

and outer edge are plotted in blue lines, while R0 and Rco  are plotted in pink and 

turquoise lines, respectively. The r-/r+ = 0.115 model shows qualitatively different 

behavior from the models with higher r-/r+. The |δρ|/ρ0 phase plot shows an inner bar 

with a roughly π/4 phase shift in the leading direction well inside R0, with a bar structure 

between the phase shift and the outer edge. The higher r-/r+ models have similar behavior 

except that the phase shift is trailing and covers ≈ π/2. The r-/r+ = 0.115 model exhibits a 

trailing 3π/4 phase shift in the W eigenfunction inside Rco with an outer bar, while the 

higher r-/r+ models exhibit leading arms for W, which cross Rco. All of the |δρ|/ρ0 

eigenfunction plots have sharp dips that increase in radius toward R0 as r-/r+ increases. 

The W eigenfunction for the r-/r+ = 0.115 model has a sharp dip where the W phase plot 

has its phase shift but the W plots for the higher r-/r+ models curve smoothly through 

their minima, and correspondingly, there is no abrupt phase shift in the W phase plots. 
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The stress plots show qualitatively different behavior as well. Recall that σR is the 

Reynold’s stress, plotted in black, while σh is the acoustic flux, plotted in blue, and σG is 

the stress due to gravitational work, plotted in red. The inner region of the r-/r+ = 0.115 

model has negative σR and σh, while σG is positive. The extrema of σR, σh, and σG lie at 

approximately the same radius, and the zeroes of these functions are close to R0. The 

higher r-/r+ Models have positive peaks for σR and σh near the inner disk edge with a peak 

for σG that lies close to R0. There is an increase of σG with r-/r+ which overtakes σR and 

σh as the growth rate passes its maximum value, indicating that self-gravity is becoming a 

stronger influence, as we would expect, as the disk narrows. Fig. A.1.6 shows more stress 

plots near this sequence in parameter space. Note the poor resolution of the stress plot for 

M*/Md = 0.01, r-/r+ = 0.10. The stress calculation involves spatial derivatives on second 

order quantities and consequently suffers resolution problems, as we will also see in 

models with other q and m.  

We notice that the work integral plots indicate that acoustic flux, Eh, plotted in 

brown, is becoming more important in the outer region of the disk as r-/r+ increases. It 

dominates the work due to kinetic energy, Ek, plotted in blue, near the inner edge, both 

showing peaks near the same radius. Eh goes to zero at a radius that approaches R0 as r-/r+ 

increases. 

Comparing the self-gravity torque, τ, with the perturbed angular momentum, δj, 

we see that the r-/r+ = 0.115 model shows a small region near the inner disk edge where 

the τ is positive but δj has a steep negative spike. As the radius increases, τ becomes 

negative, and then positive. The τ plots of the higher r-/r+ models are positive in the inner 

disk region and negative in the outer region, without the small, positive τ near the inner 

edge. They do have a steep negative spike in δj, which become broader as r-/r+ increases. 

Inspection of the m = 2 phase plots in Fig. A.2.1 shows that across the region of 

stability 0.338 < r-/r+ < 0.358, Rco switches from near the outer edge of the disk 

(indicative of an I mode) to close to R0, which is a characteristic of a J mode. The phase 

plots remain similar in appearance otherwise, with the |δρ|/ρ0 phase exhibiting a trailing 

arm with a phase shift of π/2, and the W phase exhibiting a leading arm roughly centered 

on Rco.  We see evidence of the m = 2 threshold between I and J modes in the M*/Md = 

0.0 plot for y1 vs. r-/r+, which exhibits an abrupt shift from the lower frequencies of the I  
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Fig. 4.2.2.1. Analysis plots for M*/Md = 0.0, q = 1.5 and m = 2. The top row is |δρ|/ρ0 

phases, the second row is |δρ|/ρ0 amplitudes, the third row is stresses, the fourth row is 

work integrals, the fifth row is τ, and the sixth row is δj. 
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modes to the higher J mode frequencies. The stress plots show qualitative differences 

across the I-J threshold, as can be seen in Fig. A.2.6. The amplitude σG is much higher for 

J modes than it is for I modes. Also, there is a small region in the J mode plots where σR 

dominates in the J mode plots, and no such region in the I mode plots. 

We now examine the general behavior of m = 1 modes for M*/Md = 0.0. 

Representative plots showing eigenfunction phases, eigenfunction amplitudes, self-

gravity torques, perturbed angular momenta, work integrals and stresses can be found in 

Figs. A.1.1. - A.1.6. The growth rates, as shown in Fig. 4.2.6, increase up to r-/r+ ≈ 0.55 

and then decline. Rco lies outside the disk (at a larger radius) for 0.05 < r-/r+ < 0.20 and 

changes to lying inside the disk near its inner edge for 0.20 < r-/r+ < 0.40. For the models 

where r-/r+ > 0.40, Rco falls between the star and disk, moving inward as r-/r+ decreases. 

The |δρ|/ρ0 eigenfunction plots show sharper dips than their m = 2 counterparts. The 

|δρ|/ρ0 phase plots for 0.05 < r-/r+ < 0.20 show a pronounced barlike structure in the inner 

disk region, with a rapid π phase shift at R0, returning to a bar that continues to the outer 

edge of the disk. W phase plots show an intact bar through the disk except for near the 

outer edge. As r-/r+ increases, the bar becomes less pronounced and W phase plots show 

a leading arm that changes inflection at Rco. Torque plots are negative in the inner disk 

region and positive in the outer region for 0.05 < r-/r+ < 0.20 models, but develop second 

zeroes for higher r-/r+ models. Work integral plots are also similar for low r-/r+, but for  

 r-/r+ > 0.30, the peak in Ek coincides with the zero in Eh, whereas this does not happen 

for m = 2 models until r-/r+ =0.60. Stress plots for 0.05 < r-/r+ < 0.20 models are poorly 

resolved due to a high frequency oscillation in the perturbation. The stress plots for  

r-/r+ > 0.20 indicate that σR is dominated by σG and σh everywhere. σG plots have a peak 

near the center of the disk while σh plots have a negative peak near the disk center, with 

positive peaks near the inner and outer edges.  

Models with m = 3 and m = 4 are stable below r-/r+ = 0.30 and 0.40 respectively. 

The unstable models have Rco approaching R0 as r-/r+ increases, consistent with J mode 

character. The stress plots for m = 3 and m = 4 are similar in character to those of m = 1 

models. Representative plots of m = 3 and m = 4 functions can be found in Figs. A.3.1 

through A.4.6. 
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As we move to the systems with M*/Md = 0.01 we see a qualitative difference in 

the growth rates of the m = 1 models, though the pattern of the m = 2, 3 and 4 growth 

rates is similar to that of the M*/Md = 0.0 systems, as indicated in Fig. 4.2.6. For m = 1,   

M*/Md = 0.01 models exhibit higher growth rates than M*/Md = 0.0 models, for models 

with r-/r+ < 0.20. The m = 1 modes dominate the disks, with higher growth rates than the 

m = 2, 3 and 4 models, in the M*/Md = 0.01 disks. This is probably due to the motion of 

the star for the m = 1 models. In an m = 1 model, the central object may move to conserve 

the center of mass of the system, while higher m models do not exhibit star motion.  

The |δρ|/ρ0 phase plots of the m = 1 models, shown in Fig. A.1.1, show behavior 

unlike that seen for the M*/Md = 0.0 disks. They exhibit an inner bar that crosses Rco and 

R0 at roughly a perpendicular angle, changing to a trailing arm that smoothly approaches 

the outer edge of the disk. The W phase plots exhibit a leading arm that curls around the 

disk for π radians, and connects to the outer edge nearly perpendicularly. The models 

with increasing r-/r+ have a leading arm with a rapid π shift in |δρ|/ρ0, and barlike 

structures inside and outside the phase shift. The W phase plots are barlike throughout the 

disks. These phase plots resemble those of the M*/Md = 0.0 systems, but with a trailing 

|δρ|/ρ0 arm. The eigenfunction plot of the r-/r+ = 0.05, M*/Md = 0.01 disk is qualitatively 

different, with a blunt dip far to the outer part of the disk, as shown in Fig. A.1.2.  

Perturbed angular momentum plots for m = 1, M*/Md = 0.01, r-/r+ = 0.10 disks, 

shown in A.1.4, are different in character than the M*/Md = 0.0 models. They show 

positive δj for the inner disk area, whereas M*/Md = 0.0 models have negative δj in that 

region. The r-/r+ = 0.05 models have negative values of δj for the inner disk areas for 

M*/Md = 0.1 and 0.01 models, but the M*/Md = 0.01 disk does not have an extensive 

region of positive δj in the outer disk area. Comparison of the torque plots also shows 

qualitatively different behavior. The M*/Md = 0.01, r-/r+ = 0.10 disk shows opposite sign, 

compared to the M*/Md = 0.0, r-/r+ = 0.10 model. The τ plot for the M*/Md = 0.01, 

 r-/r+ = 0.05 model, shown in Fig. A.1.3, strongly resembles the corresponding δj plot, 

but the M*/Md = 0.0, r-/r+ = 0.05 τ function crosses zero much further out in the disk than 

its δj function does. The stress plots, shown in Fig. A.1.6 for the M*/Md = 0.0 disks, are 

so poorly resolved that a comparison cannot be made and the work integral plots show 

little qualitative difference, as seen in Fig. A.1.5. 
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The character of the phase plot of the M*/Md = 0.01, r-/r+ = 0.20 model, shown in  

Fig. A.1.1, resembles that of the corresponding M*/Md = 0.0 model except that the phase 

shift is leading for the former and trailing for the latter. The r-/r+ = 0.40, M*/Md = 0.0 

phase resembles that of the r-/r+ = 0.30, M*/Md = 0.0 disk. The higher r-/r+ models 

become more similar to each other as the influence of the central star becomes less 

effective, as the inner edge of the disk moves away from the star. The growth rates for the 

M*/Md = 0.01 models, shown in Fig. 4.2.6, exhibit character similar to the M*/Md = 0.0 

disks, for the higher r-/r+ models. The I-J threshold for m = 2, M*/Md = 0.01 models is 

narrower and lies at higher r-/r+ than that for M*/Md = 0.0 models.  

As we increase M*/Md to 0.1, we begin to see a change in the m = 3 and 4 modes 

as r-/r+ increases. As Fig. 4.2.6 indicates, they are stable below r-/r+ = 0.20 and 0.30, 

respectively, but as r-/r+ increases, they exhibit unstable models with Rco well beyond R0.  

Rco falls very near R0 for the r-/r+ = 0.50 model. The growth rates for m = 3 models dip 

across the I-J threshold. We do not see such a dip in the m = 4 growth rates. The I-J 

threshold for m = 2 models continues to move toward increasing r-/r+ and we see a dip in 

growth rates around  r-/r+ = 0.48. The m = 1 models continue to dominate for r-/r+ < 0.20, 

and show a decrease in growth rates for the lowest r-/r+ values. The phase plot for the 

 m = 1, r-/r+ = 0.28 model, shown in Fig. A.1.1, has characteristics unlike other models 

discussed, in that Rco lies near R0, and there is a leading π phase shift in |δρ|/ρ0 that occurs 

well outside R0, followed by an abrupt change to a trailing arm.  

The growth rates, in general, for the M*/Md = 1.0 models show some qualitative 

differences, as seen in Fig. 4.2.6. Models with m = 1 continue to dominate for  

r-/r+ < 0.30, but now the growth rate drops to a threshold between I and J modes between 

r-/r+ = 0.50 and 0.60. There is a small region around r-/r+ = 0.40 where m = 2 modes 

dominate, followed by domination by m = 3 and then m = 4 modes, and all of the modes 

exhibit a drop in growth rates as r-/r+ increases beyond 0.60. For M*/Md = 5.0, the m = 1 

modes show similar behavior, in that they reach a peak around r-/r+ = 0.30, but the peak 

growth rate has diminished, allowing the m = 2 modes to dominate over a wider region, 

for r-/r+ > 0.20. The m = 2 growth rates are slightly higher than those for m = 3 for the 

region r-/r+ < 0.60, and m = 4 does not dominate the disk for any r-/r+. This trend 
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continues as the star to disk mass ratio increases, with m = 1 approaching stable 

everywhere and m = 2 dominating the disks for r-/r+ < 0.60 for M*/Md = 7.0 and 10.0.  

Fig. 4.2.2.2, shows trends over parameter space for m = 1. The red dashed lines 

show approximate boundaries determined by the location of Rco, and blue dashed lines 

show approximate boundaries for regions of stability. The region in the upper left area of 

the parameter space map harbors I
-
 modes, those with Rco near r-. Disks with r-/r+ > 0.45 

in this region have Rco < r-  while those with r-/r+ ≤ 0.45 have Rco > r-. Torque plots also 

change behavior here, with τ in the region r-/r+ > 0.45 exhibiting a second negative area 

near the outer edge of the disk, while for models with r-/r+ ≤ 0.50, τ has appositive 

minimum near the outer disk edge, and no negative τ. δj is negative for the inner disk 

region and positive for the outer part of the disk everywhere in the I
-
 region. 

The left boundary of this region marks an abrupt transition between I
-
 modes and 

I
+
 modes, where Rco switches from near the inner disk edge to outside the outer disk edge. 

There is also a change in behavior of τ across this boundary. I
-
 modes have τ

 
 negative for 

the inner disk region and positive for the  outer region, while I
+
 modes positive in the 

inner disk and negative outside R0. This is possibly due to the effect of the motion of the 

central star, since τ in the M*/Md = 0.0 disks retains the character of the I
-
 modes. The 

character of δj is different from τ, opposite in sign in many plots. The transition between 

I
-
 and J modes is abrupt. As M*/Md increases to 5.0, for r-/r+ < 0.10, Rco moves away 

from R0 such that Rco > R0. Phase plots change character over this region. For models 

near the I mode boundary, the |δρ|/ρ0 phase has I mode character, while the character of 

the W phase is different, with a leading arm. As M*/Md increases, the W phase becomes 

almost barlike for small r-/r+ models. For models where r-/r+ ≥ 0.40, |δρ|/ρ0 and W phases 

both exhibit leading arms. A modes, characterized by a smooth spiral arm and no phase 

shift, occupy the region with r-/r+ < 0.10 and M*/Md ≤ 1.0. 

There are a few models with  Rco < r-  for M*/Md ≥ 7.0 for r-/r+ ≈ 0.40, but these 

models take 30 - 50 MIRPs to settle into mode in the outer disk regions and may be 

numerically unstable. In general, the disks appear to be stable for M*/Md ≥ 7.0 except for 

these and other possibly numerically unstable models. 
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Fig. 4.2.2.2. Parameter space map for q = 1.5, m = 1, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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We will next evaluate trends across parameter space for q = 1.5, m = 2 modes, 

shown in Fig. 4.2.2.3. For the region 0.40 < r-/r+ < 0.60 and 0.0 < M*/Md < 0.01, |δρ|/ρ0 

and W eigenfunctions have minima at roughly the same radii. This region is presumed to 

harbor J modes, since the disks are narrow, with Rco near R0. The phases of |δρ|/ρ0 and W 

lie in different senses and are not in phase anywhere for r-/r+ > 0.50, but they come into 

phase right at the inner disk edge for r-/r+ = 0.40 models. Self-gravity is obviously 

important in these models, since M*/Md is zero or small.  

Self-gravity torque is negative for the inner disk region and positive for the outer 

disk region with the sign change near R0. The δj plots are similar in character to the τ 

plots in that they are negative and positive over the same regions, with the zeroes roughly 

at the same radii. The Eh plots include two strong peaks with the maximum of the inner 

peak roughly twice the magnitude of the maximum of the outer peak. The Eh minimum 

does not reach zero for r-/r+ > 0.50 models. Ek plots have a maximum near the center of 

the disk for r-/r+ = 0.60 models, where Eh plots have a minimum. Ek plots become 

skewed toward the inner edge as r-/r+ decreases. For small r-/r+ models, the Ek maximum 

lie at the same radius as the maximum of Eh.  

The stresses show similar behavior between M*/Md = 0.0 and 0.01 models in this 

region. σG dominates over most of the disk while σh dominates near the inner and outer 

edge. The location of the maxima of σG and σR roughly coincide with the minimum of σh 

for r-/r+ = 0.60, as the disk cross-section approaches circular. Amplitudes of the σG and 

σR are equal at roughly 0.83 R0. As r-/r+ decreases, the σR maximum moves closer to r-, 

but σh grows in amplitude and continues to dominate the region. The stresses are not well 

resolved for the r-/r+ = 0.05 and 0.10 models.  

Models in the region where 0.20 < r-/r+ < 0.30 and 0.0 < M*/Md < 0.01 have Rco 

near the outer disk edge, characteristic of I modes. We find I mode character for  

M*/Md = 0.1 where 0.20 < r-/r+ < 0.40, for M*/Md = 1.0 where 0.30 < r-/r+ < 0.50, and for 

the range 5.0 < M*/Md < 15.0 where 0.40 < r-/r+ < 0.60. In general, as the star to disk 

mass ratio increases, I modes appear for narrower disks. The I mode phase plots show 

character somewhat similar to the J mode phase plots, with a barlike region in the inner 

part of the disk before diverging in character in the outer disk regions. As M*/Md  
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Fig. 4.2.2.3. Parameter space map for q = 1.5, m = 2, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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increases, the bar changes to a smoothly trailing, spiral arm, with |δρ|/ρ0 and W in phase. 

The dip in the |δρ|/ρ0 eigenfunction plot continues to reside near R0 but the W 

eigenfunction typically shows a very shallow dip in this region.  

The τ plots and δj plots show considerably different character from each other. 

Torque plots for M*/Md = 0.0 and 0.01 resemble those for higher r-/r+ models but the δj 

plots are much narrower in the inner disk regions, opposite in sign to τ. Moving to higher 

M*/Md models, some τ plots develop a small region near the inner disk edge where they 

are positive. For higher M*/Md, the δj plots have a sharp positive spike near the inner 

edge, and negligible amplitude otherwise.  

The stress plots show no qualitative change across the I-J boundary in that the σG 

maximum remains centered in the disk with an amplitude that decreases with M*/Md, as 

the maxima of σR and σh grow, dominating the inner disk regions. The σh minimum 

remains near the σG maximum. The work integrals are similar to those of the higher r-/r+ 

region for M*/Md = 0.0 and 0.01 with the outer peak in Eh decreasing with r-/r+. As 

M*/Md increases, the outer peak increases in strength, and then decreases.  

The region with r-/r+ ≥ 0.50 and M*/Md > 0.1 has Rco near the inner edge of the 

disk. At small radii, the |δρ|/ρ0 and W are no longer in phase, with a π/2 difference that 

decreases with M*/Md. The dip in the |δρ|/ρ0 eigenfunction plots moves toward the outer 

edge as M*/Md increases and the W eigenfunctions develop double dips. The τ plots are 

mirror images of those directly below, with the same M*/Md but smaller r-/r+, and show a 

second negative region in the outer part of the disk. The δj plots resemble the τ plots in 

nature, but the minimum in the outer disk area extends to a much lower magnitude. The 

stress plots resemble those of the J mode region for the lower M*/Md models. The peak in 

Ek grows substantially as M*/Md increases toward stable models.  

Comparing the q = 1.5, m = 2 modes with the q = 2.0, m = 2 modes, a major 

difference is that q = 1.5 models become stable for large M*/Md, while q = 2.0 models do 

not. For r-/r+ = 0.60, q = 1.5 disks become stable for M*/Md ≥ 100.0.  As M*/Md 

decreases, the disks become stable for lower and lower r-/r+, as shown in Fig. 4.2.2.3. We 

see no disks with extensively wrapped spiral arms, but see stable disks instead. Models 

for 0.0 ≤ M*/Md ≤ 0.01, for large r-/r+, are J modes, similar to the q = 2.0 models. The 

main trends of the I mode regions are also similar to q = 2.0 models, with Rco ≈ r- existing 
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for higher M*/Md models and Rco ≈ r+ for lower M*/Md models, but in the q = 1.5 case, 

this region extends to higher M*/Md models until the disks reach stability. Phase plots 

around M*/Md = 0.1 and r-/r+ = 0.40 are very similar in character for q = 1.5 and 2.0 

models. As M*/Md increases, the outer bar in the |δρ|/ρ0 phase plots stretches more into a 

trailing arm. This appears to be an edge mode characteristic but we are unable to do a 

direct comparison with non-self-gravitating models because of our inability to calculate 

them for q = 1.5, as mentioned in Section 3.2.  

We see multiple minima in the eigenfunctions amplitude plots for small r-/r+ with 

Rco ≈ R0, similar to the q = 2.0 models, but for q = 1.5 the minima occur with more 

frequency toward the inner edge of the disk. Traits of δj and τ are similar to the q = 2.0 

models for M*/Md ≤ 0.10 but diverge for higher M*/Md, especially for low r-/r+ disks 

where they fluctuate rapidly, possibly due to numerical instability. Work integrals are 

similar for the regions as divided by the position of Rco. For q = 1.5 disks, the I
-
 region 

extends to higher M*/Md, and traits arise there that are not evident in the q = 2.0 disks. In 

that region, the q = 1.5 disks show an increase in the peak in Ek. Stresses for the q = 1.5 

disks with M*/Md = 0.0 do not peak in σh in the inner and outer disk, but are similar to 

those in the q = 2.0 models for M*/Md = 0.01, for r-/r+ > 0.40. The trends of the stresses 

are different for r-/r+ < 0.40 in that the q = 1.5 disks are dominant in σR near the inner 

edge of the disks, where the q = 2.0 disks are dominant in σh near the inner edge. 

The maps for the m = 3 and 4 regions of parameter space are relatively simpler 

than those for m = 1 and 2. The region where Rco ≈ R0 extends to larger M*/Md than that 

for m = 2. The |δρ|/ρ0 and W phase plots show character similar to those for m = 2, but 

with higher m-fold symmetry. The |δρ|/ρ0 eigenfunction has a very shallow minimum. 

Work integrals have two peaks, but the minimum separating them is considerably higher 

than zero in magnitude. τ and δj resemble each other in nature, with a negative inner 

region and a positive outer region. The boundary between the Rco ≈ R0 region and the  

Rco ≈ r+ region is abrupt. The |δρ|/ρ0 and W phase plots in the Rco ≈ r+ have inner bars in 

phase with each other for r < R0. The |δρ|/ρ0 have a trailing mπ phase shift on R0. Outside 

R0, the W phase has a short leading arm, while the |δρ|/ρ0 phase has a trailing arm that 

extends farther as M*/Md increases. The stable regions extend to M*/Md = 0.0 and all 
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disks are stable for r-/r+ < 0.30 for m = 3 models and r-/r+ < 0.40 for m = 4 models, again, 

discounting a few models that settle into mode after tens of MIRPs. 

 In Fig. 4.2.2.6, we merge the general trends of the parameter maps for m = 1, 2, 3 

and 4, in black, blue, orange and red, respectively.  We show the parameter space trends 

plotted against self-gravity parameters p and η in Figs. 4.2.2.7 and 4.2.2.8, respectively, 

with some of the parameter map colors lightened to aid in discerning them against the 

plots of the parameters p and η. Since p and η only depend on equilibrium quantities, 

there is no inclusion of the effect of the motion of the star in the m = 1 case. 

The parameter p provides a measure of the relative importance of self-gravity to 

pressure, as defined in Equation 4.1.1. We can see that the highest values for p are in the 

upper right, as we would expect, since self-gravity is dominant where M*/Md is small and 

r-/r+ is large, where the disk is narrow. The contours of constant p tend to track along the 

boundaries of the I and J modes in this region. The stability thresholds, shown in solid 

lines, do not seem to follow the contours of p. 

The parameter η provides a measure of the relative importance of self-gravity to 

the gravitational potential of the central star, respectively, as defined in Equation 4.1.2. 

There is not an obvious relationship between the contours of constant η and the 

boundaries of the I and J modes, but the stability thresholds of the m = 1 and 2 modes 

follow a horizontal path in this parameter space, similar to the contours of constant η. 

The parameter space maps are meant to be only general qualitative 

representations. Table 4.2.2.1 provides q = 1.5 values for T/|W|, r-/r+, r-/ R0, r+/R0, y2(m) 

and  y1(m) for m = 1, 2, 3 and 4,  for M*/Md = 0.0, 0.01, 0.1, 1.0, 5.0, and 10.0. Note that 

where y2(m) = 0.0, no value of y1(m) exists. M*/Md = 10.0 data was truncated in the 

interest of space. 

Plots of corotation radii and y1 eigenfunction values are provided in  

Fig. 4.2.2.9 for m = 1, 2, 3 and 4; and y2 eigenfunction values are provided in  

Fig. 4.2.2.10. The Rco magnitudes have been truncated to 5.0 for graphing purposes.  
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Fig. 4.2.2.4. Parameter space map for q = 1.5, m = 3, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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Fig. 4.2.2.5. Parameter space map for q = 1.5, m = 4, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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Fig. 4.2.2.6. Parameter space map for q = 1.5, m = 1, 2, 3 and 4, shown in black, blue, 

orange and red dashed lines, respectively. Solid lines are boundaries of stable models. 
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Fig. 4.2.2.7. Parameter space map overlaid on self-gravity parameter p for q = 1.5, m = 1, 

2, 3 and 4, shown in black, blue, orange and red dashed lines, respectively. Solid lines are 

boundaries of stable models. Some colors were lightened. 
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Fig. 4.2.2.8. Parameter space map overlaid on self-gravity parameter η for q = 1.5, m = 1, 

2, 3 and 4, shown in black, blue, orange and red dashed lines, respectively. Solid lines are 

boundaries of stable models. Some colors were lightened. 
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Eigenvalues for q = 1.5 models 

T/|W| r-/r+ r+/Ro r-/Ro y2(1) y2(2) y2(3) y2(4) y1(1) y1(2) y1(3) y1(4) 

M*/Md = 0.0 

0.092 0.052 3.583 0.186 0.005 0.000 0.000 0.000 -0.874    

0.143 0.101 2.680 0.270 0.011 0.000 0.000 0.000 -0.859    

0.205 0.201 2.006 0.403 0.038 0.369 0.000 0.000 -0.772 -1.045   

0.243 0.301 1.699 0.511 0.298 0.305 0.000 0.000 0.918 -0.955   

0.271 0.401 1.508 0.604 0.519 0.356 0.741 0.576 0.974 -0.273 -0.335 -0.394 

0.293 0.500 1.374 0.688 0.647 0.646 1.211 1.287 1.010 -0.113 -0.158 -0.235 

0.313 0.600 1.268 0.761 0.680 0.910 1.608 1.890 1.068 0.026 -0.028 -0.084 

M*/Md = 0.01 

0.103 0.052 3.558 0.185 0.451 0.000 0.000 0.000 -0.504    

0.151 0.101 2.680 0.270 0.325 0.000 0.000 0.000 -0.926    

0.211 0.201 2.006 0.403 0.356 0.396 0.000 0.000 -0.966 -1.037   

0.248 0.301 1.699 0.511 0.349 0.369 0.158 0.000 -0.970 -0.975 -1.037  

0.274 0.401 1.508 0.604 0.490 0.110 0.678 0.532 0.947 -0.344 -0.346 -0.395 

0.296 0.500 1.374 0.688 0.628 0.565 1.166 1.249 0.995 -0.139 -0.162 -0.238 

0.316 0.600 1.268 0.761 0.669 0.840 1.567 1.852 1.043 0.030 -0.027 -0.084 

M*/Md = 0.1 

0.174 0.052 3.348 0.174 0.717 0.000 0.000 0.000 -0.123    

0.207 0.101 2.598 0.262 0.745 0.000 0.000 0.000 -0.157    

0.252 0.201 1.990 0.400 0.600 0.457 0.000 0.000 -0.092 -0.947   

0.282 0.301 1.693 0.509 0.457 0.558 0.441 0.000 -0.891 -0.999 -0.968  

0.304 0.401 1.504 0.602 0.473 0.515 0.448 0.087 -0.907 -0.981 -0.935 -1.005 

0.321 0.500 1.371 0.686 0.465 0.437 0.765 0.940 -0.905 0.955 -0.205 -0.254 

0.338 0.600 1.268 0.761 0.553 0.504 1.239 1.553 0.953 0.905 -0.037 -0.094 

M*/Md = 1.0 

0.373 0.052 2.797 0.145 0.315 0.000 0.000 0.000 -0.245    

0.381 0.101 2.347 0.237 0.406 0.000 0.000 0.000 -0.141    

0.394 0.201 1.908 0.383 0.499 0.187 0.050 0.000 -0.065 -0.863 -1.142  

0.404 0.301 1.660 0.499 0.499 0.383 0.191 0.081 -0.041 -0.800 -0.911 -1.163 

0.412 0.401 1.495 0.599 0.438 0.544 0.475 0.252 -0.013 -0.879 -0.809 -1.006 

0.418 0.500 1.367 0.684 0.289 0.591 0.673 0.634 0.013 -0.929 -0.923 -0.876 

0.424 0.600 1.265 0.760 0.292 0.691 0.700 0.723 -0.781 0.965 -0.977 -0.955 

M*/Md = 5.0 

0.463 0.052 2.402 0.125 0.035 0.008 0.000 0.000 -0.391 -1.159   

0.465 0.101 2.123 0.214 0.046 0.029 0.000 0.000 -0.302 -1.066   

0.468 0.201 1.814 0.364 0.068 0.075 0.000 0.000 -0.186 -0.929   

0.470 0.301 1.618 0.487 0.081 0.149 0.076 0.019 -0.114 -0.836 -1.119 -0.670 

0.472 0.401 1.473 0.590 0.065 0.199 0.170 0.072 -0.073 -0.758 -0.895 -1.172 

0.474 0.500 1.360 0.680 0.013 0.339 0.259 0.202 -0.763 -0.768 -0.811 -0.871 

0.476 0.600 1.262 0.758 0.010 0.432 0.490 0.476 -0.747 0.784 -0.812 -0.790 

M*/Md = 10.0 

0.480 0.052 2.284 0.119 0.000 0.011 0.000 0.000  -1.233   

0.481 0.101 2.030 0.205 0.000 0.016 0.000 0.000  -1.102   

0.482 0.201 1.763 0.354 0.000 0.028 0.000 0.000  -0.981   

0.483 0.301 1.593 0.479 0.000 0.053 0.031 0.025  -0.780 -1.162 -0.317 

0.484 0.401 1.461 0.585 0.000 0.130 0.084 0.028  -0.734 -0.955 -1.249 

 

Table 4.2.2.1. Characteristic radii, y1(m) and y2(m) values for selected q = 1.5 models.  
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Rco for q = 1.5, m = 1 
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Fig. 4.2.2.9. y1 frequency eigenvalues and corotation radii for q = 1.5, m = 1, 2, 3 and 4. 
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y2 for q = 1.5, m = 1 

     
 

 

y2 for q = 1.5, m = 2 

 

 

y2 for q = 1.5, m = 3 
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y2 for q = 1.5, m = 4 
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Fig. 4.2.2.10. y2 growth rate eigenvalues for q = 1.5, m = 1, 2, 3 and 4. 

 

 

 

4.2.3. Results for q = 1.75 Models 

 

The q = 1.75 models represent the parameter space between the Keplerian angular 

velocity profile of q = 1.5 and the limiting case of q = 2.0, and share traits of both. In the 

equilibrium results, we see that in plots where the results diverge for the differing q,  

 q = 1.75 results resemble q = 2.0 more closely than q = 1.5 results, as evidenced in the 

plots of total angular momentum, location of the maximum mass density, T/|W|, etc.  

Fig. 4.2.3, depicting modal dominance, also indicates agreement between q = 1.75 and  

q = 2.0 with a notable exception in the region of stability. Models with q = 1.75 are more 

stable, especially for high M*/Md, where q = 2.0 models are seldom stable. Where the 

traits of the q = 1.75 models resemble those of the q = 1.5 and 2.0 models, the reader is 

r-/r+ 

r-/r+ 
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referred to those sections for detailed descriptions of the models. In this section, we will 

discuss where behaviors of the models diverge from those of the q = 1.5 and 2.0 disks. 

General traits of the q = 1.75 models are shown for m = 1, 2, 3, and 4 in Figs. 4.2.3.1 - 

4.2.3.4. Plots of y1, Rco and y2 are shown in Figs. 4.2.3.8 and 4.2.3.9.  

  Fig. 4.2.3.1 indicates that the m = 1 models, in the region where Rco < r- and  

Rco > r+, behave qualitatively like q = 1.5 and models in that the parameter space is 

roughly divided up similarly, though the extent of the regions is somewhat different, as 

indicated in the parameter space maps. They differ from the q = 2.0 behavior in the 

region where Rco ≈ R0 in that there is a strong resemblance to P modes only for  

r-/r+ ≥ 0.60 for M*/Md ≥ 25.0. Non-self-gravitating models are stable 0.30 < r-/r+ < 0.60 

and bear no resemblance to self-gravitating models for r-/r+ < 0.30. The self-gravitating  

q = 1.75 models do not exhibit extensive wrapping and are stable in the region of 

parameter space where q = 2.0 models exhibit extensively wrapping spiral arms, 

characteristic of edge modes. Disks with small M*/Md, close to the I mode region, exhibit 

traits similar to those for the q = 2.0 models. A modes, with spiral waves, occupy a larger 

region than is found for either q = 1.5 or 2.0, as indicated in Fig. 4.2.3.1.  The q = 1.75 A 

mode region is bounded by stable regions at the low M*/Md end as well as at the high 

M*/Md end, and more models are found for higher r-/r+ than are found for q = 1.5 or 2.0. 

Discussions of the A mode models can be found in Section 5.1.3, involving the m = 1 

case, and Section 5.1.4, concerning a comparison with our results and those of 

Woodward, Tohline & Hachisu (1994). 

Models for m = 2 exhibit traits similar to those for q = 2.0 in the J mode region 

where M*/Md < 0.1 and r-/r+ < 0.40, as well as in the region where Rco ≈ r-. The extents of 

these regions are roughly similar, with the main difference being that the Rco ≈ r- region 

extends to higher M*/Md = 25.0 for q = 1.75 models, whereas the q = 2.0 models are  

stable for 10.0 ≤ M*/Md < 50.0. The main difference seen in q = 1.75 models, as 

compared to q = 2.0 models, is that there is no P mode region where Rco ≈ R0, as q = 1.75 

models are stable for the region of parameter space where q = 2.0 models exhibit this 

behavior.  
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The m = 3 and 4 models have increasingly smaller unstable regions of parameter 

space for q = 1.75 models, even more than is seen with the q = 1.5 models. The main 

trends inherent to the J mode regions of the q = 1.75 models are similar to those of the  

q = 2.0 models. The I
+
 regions are similar in that they have Rco near the outer edge or 

outside the disk for r-/r+ = 0.40, smoothly moving inward toward R0 as r-/r+ decreases. 

There are no regions where Rco < R0, as is seen in the q = 2.0 models, and no models 

resembling P modes.  

 In Fig. 4.2.3.5, we merge the general trends of the parameter maps for m = 1, 2, 3 

and 4, in black, blue, orange and red dashed lines, respectively. Solid lines indicate 

stability thresholds, using the same color coding for m = 1, 2, 3 and 4.  We show the 

parameter space trends plotted against self-gravity parameters p and  η in Figs. 4.2.3.6 

and 4.2.3.7, respectively, with some of the parameter map colors lightened to aid in 

discerning them against the parameters p and  η plots. Similarly to the q = 1.5 models, we 

see that the boundaries for the I and J modes tend to follow the contours of constant p, 

but for q = 1.75, the stability thresholds for m = 2, 3 and 4 also track along contours of p. 

This is because we do not see P and edge modes for these models, so the I boundaries are 

also stability thresholds. The m = 1 stability threshold has been lightened to grey, to make 

it more visible against the dark blue of the low p values. It bears little resemblance to the 

qualitative shape of the p contours. We see there is little resemblance between these 

modal boundaries and the contours of constant η.  

The parameter space maps are meant to be only general qualitative 

representations. Table 4.2.3.1 provides q = 1.75 values for T/|W|, r-/r+, r-/ R0, r+/R0, y2(m) 

and  y1(m) for m = 1, 2, 3 and 4,  for M*/Md = 0.0, 0.01, 0.1, 1.0, 5.0, and 10.0. Note that 

where y2(m) = 0.0, no value of y1(m) exists. Plots of corotation radii and y1 eigenfunction 

values are provided in Fig. 4.2.3.8 for m = 1, 2, 3 and 4; and y2 eigenfunction values are 

provided in Fig. 4.2.3.9. The Rco magnitudes have been truncated to 5.0 for graphing 

purposes.  
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Fig. 4.2.3.1. Parameter space map for q = 1.75, m = 1, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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Fig. 4.2.3.2. Parameter space map for q = 1.75, m = 2, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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Fig. 4.2.3.3. Parameter space map for q = 1.75, m = 3, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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Fig. 4.2.3.4. Parameter space map for q = 1.75, m = 4, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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Fig. 4.2.3.5. Parameter space map for q = 1.75, m = 1, 2, 3 and 4, shown in black, blue, 

orange and red dashed lines, respectively. Solid lines are boundaries of stable models. 
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Fig. 4.2.3.6. Parameter space map overlaid on self-gravity parameter p for q = 1.75,  

m = 1, 2, 3 and 4, shown in black, blue, orange and red, respectively dashed lines. Solid 

lines are boundaries of stable models. Some colors were lightened. 
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Fig. 4.2.3.7. Parameter space map overlaid on self-gravity parameter η for q = 1.75, 

 m = 1, 2, 3 and 4, shown in black, blue, orange and red dashed lines, respectively. Solid 

lines are boundaries of stable models. Some colors were lightened. 
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Eigenvalues for q = 1.75 

T/|W| r-/r+ r+/Ro r-/Ro y2(1) y2(2) y2(3) y2(4) y1(1) y1(2) y1(3) y1(4) 

M*/Md = 0.0 

0.183 0.201 2.097 0.421 0.000 0.247 0.000 0.000  -1.064   

0.230 0.301 1.733 0.521 0.116 0.360 0.000 0.000 0.981 -1.005   

0.262 0.401 1.522 0.610 0.449 0.064 0.559 0.332 0.983 -0.306 -0.387 -0.381 

0.288 0.500 1.378 0.690 0.602 0.654 1.137 1.163 1.038 -0.093 -0.169 -0.248 

0.311 0.600 1.272 0.763 0.667 0.958 1.577 1.830 1.123 -0.008 -0.040 -0.095 

M*/Md = 0.01 

0.067 0.052 4.237 0.220 0.534 0.000 0.000 0.000 -0.599    

0.118 0.101 2.977 0.300 0.327 0.000 0.000 0.000 -0.476    

0.189 0.201 2.097 0.421 0.345 0.261 0.000 0.000 -0.963 -1.052   

0.234 0.301 1.733 0.521 0.348 0.402 0.000 0.000 -0.974 -1.015   

0.266 0.401 1.522 0.610 0.406 0.026 0.492 0.279 0.966 1.411 -0.400 -0.379 

0.291 0.500 1.378 0.690 0.575 0.604 1.096 1.126 1.035 -0.115 -0.175 -0.252 

0.313 0.600 1.272 0.763 0.652 0.896 1.535 1.790 1.099 -0.005 -0.039 -0.096 

M*/Md = 0.1 

0.114 0.052 4.981 0.259 0.587 0.000 0.000 0.000 -0.362    

0.162 0.101 3.103 0.313 0.738 0.000 0.000 0.000 -0.315    

0.226 0.201 2.114 0.424 0.647 0.289 0.000 0.000 -0.189 -0.956   

0.267 0.301 1.739 0.523 0.492 0.521 0.240 0.000 -0.057 -1.011 -0.975  

0.295 0.401 1.526 0.611 0.464 0.520 0.475 0.024 -0.902 -0.997 -0.997 -1.158 

0.316 0.500 1.378 0.690 0.459 0.389 0.614 0.765 -0.914 -0.920 -0.247 -0.294 

0.335 0.600 1.272 0.763 0.537 0.464 1.197 1.480 1.003 0.990 -0.052 -0.109 

M*/Md = 1.0 

0.251 0.052 8.168 0.424 0.023 0.000 0.000 0.000 -0.752    

0.300 0.101 4.100 0.414 0.225 0.000 0.000 0.000 -0.463    

0.352 0.201 2.315 0.465 0.507 0.000 0.000 0.000 -0.240    

0.381 0.301 1.801 0.541 0.553 0.275 0.029 0.000 -0.146 -0.823 -1.117  

0.399 0.401 1.545 0.619 0.500 0.478 0.348 0.000 -0.081 -0.878 -0.818  

0.411 0.500 1.385 0.693 0.370 0.567 0.617 0.527 -0.028 -0.931 -0.923 -0.880 

0.421 0.600 1.272 0.763 0.259 0.639 0.679 0.693 -0.762 0.960 -0.977 -0.968 

M*/Md = 5.0 

0.414 0.201 2.652 0.532 0.125 0.000 0.000 0.000 -0.415    

0.440 0.301 1.945 0.585 0.228 0.000 0.000 0.000 -0.239    

0.455 0.401 1.608 0.644 0.247 0.129 0.000 0.000 -0.140 -0.761   

0.465 0.500 1.412 0.707 0.197 0.259 0.211 0.035 -0.083 -0.769 -0.739 -1.056 

0.471 0.600 1.281 0.769 0.000 0.364 0.426 0.392  0.810 -0.807 -0.780 

M*/Md = 10.0 

0.426 0.201 2.752 0.553 0.039 0.000 0.000 0.000 -0.496    

0.451 0.301 2.006 0.603 0.123 0.000 0.000 0.000 -0.284    

0.466 0.401 1.644 0.659 0.152 0.000 0.000 0.000 -0.165    

0.475 0.500 1.428 0.715 0.131 0.064 0.044 0.007 -0.088 -0.730 -0.680 -0.953 

0.481 0.600 1.291 0.775 0.009 0.197 0.258 0.178 -0.055 0.606 -0.737 -0.699 

 

Table 4.2.3.1. Characteristic radii, y1(m) and y2(m) values for selected q = 1.75 models. 
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Fig. 4.2.3.8. y1 frequency eigenvalues and corotation radii for q = 1.75, m = 1, 2, 3 and 4. 
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y2 for q = 1.75, m = 1 
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Fig. 4.2.3.9. y2 growth rate eigenvalues for q = 1.75, m = 1, 2, 3 and 4. 

 

 

4.2.4. Results for q = 2.0 Models 

Thin disks have been shown to be unstable to axisymmetric instabilities when 

specific angular momentum decreases radially outward (Rayleigh 1916). For a power law 

angular velocity profile, q = 2.0 is the bounding case, with constant specific angular 

momentum. We have mapped trends for m = 1, 2, 3 and 4 and will present analysis of 

these maps, supported by tables of representative plots in Figs. A.3.0 - A.3.6.  

The character of the |δρ|/ρ0 and W phase plots varies across the regions shown in 

the parameter space map for q = 2.0, m = 1 shown in Fig. 4.2.4.3. In the region of very 

high r-/r+ and small M*/Md, the |δρ|/ρ0 phase plots exhibit a trailing arm of roughly π 

extent while the W phase plots exhibit a shorter leading arm and are out of phase 

everywhere with |δρ|/ρ0. Corotation is about halfway between R0 and r+ here. Phase plots 

of |δρ|/ρ0 in the I mode regions show an inner bar with a leading π shift and a small outer 

r-/r+ 

r-/r+ 



97 

 

bar, with the phase shift switching to trailing for r-/r+ < 0.50 for I
-
 modes. W phases show 

a short leading shift, switching to a short trailing arm in the region where Rco < r-, but are 

more barlike where Rco > r+. As M*/Md increases into the region where Rco is near R0, a 

few models near that threshold exhibit trailing |δρ|/ρ0 with a π phase shift and leading W 

phases. With a further increase of  M*/Md, the |δρ|/ρ0 phase begins leading as well, and 

smoothly transitions across the region, to closely resemble the P modes of the  

non-self-gravitating models. Large M*/Md and r-/r+ |δρ|/ρ0 phase plots exhibit a leading 

arm of approximately π/2, smoothly changing to a shorter leading arm, switching to a 

trailing arm that lengthens and wraps more as r-/r+ decreases. These models also begin to 

exhibit a second, then multiple minima in the eigenfunction amplitude plots. This was 

mentioned by Christodoulou (1993) as a hallmark of edge modes, as well as the 

pronounced spiral nature with extensive wrapping. 

Perturbed angular momentum plots display character similar to that of the  

self-gravity torque plots in the region where M*/Md is small and r-/r+ is large; δj and τ are 

negative in the inner part of the disk and positive in the outer part, changing sign near R0 

with approximately the same magnitudes at the maxima and minima. In the I mode 

regions, the character is similar except that the has opposite sign. For the models with 

larger M*/Md than the I mode regions, δj and τ are similar in sign but here the amplitudes 

of the maxima and minima are different, with the negative values of the minima much 

larger than the positive values of the maxima. As r-/r+ decreases, the negative regions 

become increasingly narrow spikes.  

In the work integral plots, Eh exhibits two peaks with a minimum separating them 

that goes to zero near R0 in the area M*/Md is small and r-/r+ is large. As M*/Md increases 

and r-/r+ decreases, the second peak shrinks in magnitude and becomes negligible. In the 

region where M*/Md increases and r-/r+ > 0.40, the second peak remains and the 

minimum ceases to go to zero. The stresses for small M*/Md = 0.0, large r-/r+ have two 

maxima for σh, which dominate the inner and outer regions of the disk. The minimum 

between the peaks is negative and lies at approximately the same radius as the maximum 

of σG. The maximum of σR is much smaller than that of σG. A few other threshold models 

display this behavior, but for most of parameter space, the inner and outer peaks of σh are 

not present. The green lines in the map indicate the boundaries of the stress behavior. The 
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region with smaller M*/Md is dominated by σG, while σh dominates the region with higher 

M*/Md, as we would expect. Stresses in the region M*/Md > 25.0 take on behavior similar 

to that of the non-self-gravitating models. Acoustic flux dominates for r ≈ r- and becomes 

negative for most of the rest of the disk. There are two regions of stable models, one for 

disks with M*/Md = 0.0 and r-/r+ ≤ 0.30 and a second region for r-/r+ = 0.70 with  

5.0 ≤ M*/Md ≤ 10.0. A modes, with spiral arms, are found in the regions indicated for 

small r-/r+. For more detail about A modes, see Section 5.1.3. 

We next discuss the trends shown in Fig. 4.2.4.4 for models with q = 2.0 and   

m = 2. Some of the trends we noticed for q = 2.0 and  m = 1 are present for m = 2 models. 

In particular, we see a stable region for M*/Md = 10.0 and large r-/r+. There is also an I 

mode region where Rco ≈ r+, but it extends to M*/Md = 0.0 for 0.30 ≤ r-/r+ ≤ 0.40 and 

continues diagonally to r-/r+ = 0.60 for a small region around M*/Md = 5.0. There is a 

region where Rco ≈ r- with a much smaller extent, only existing for models with  

M*/Md ≥ 0.60.  

There are two regions where Rco ≈ R0, but other than the location of corotation, 

the behavior depicted in the plots is very different. Plots for disks with small M*/Md = 0.0 

and large r-/r+ exhibit characteristics similar to those in the same region for q = 2.0 and  

m  = 1, but with Rco closer to R0. Disks to the right of the I mode region in our map 

strongly approximate characteristics found in the non-self-gravitating models. Extensive 

wrapping occurs in r-/r+ = 0.10 models for M*/Md ≥ 1.0, indicative of edge modes. Work 

integrals, stresses, and perturbed angular momenta all exhibit tendencies similar to those 

of the non-self-gravitating models. We see multiple minima in the eigenfunction 

amplitudes in the region with Rco ≈ R0 where r-/r+ is small. The minima occur with more 

frequency toward the outer edge of the disk. Models with M*/Md ≥ 25.0 and r-/r+ ≥ 0.50 

exhibit short trailing arms and one minimum in the eigenfunction amplitude plot, traits 

indicative of P modes. 

δj behavior resembles that of q = 2.0 and  m = 1 but τ has different character. It 

does not resemble δj, except for small M*/Md = 0.0 with large r-/r+. For other regions, δj 

has a steep negative narrow spike near the inner edge of the disk, similar to m  = 1 models 

but τ, generally crosses zero more often as M*/Md increases. The character of the work 

integral plots is extremely similar to that of the m  = 1 models.  
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 We note some models in the region of parameter space between P modes and 

edge modes that seem to exhibit characteristics of both. For example, the phase plot for 

the model with q = 2.0, m = 2, M*/Md = 50.0 and r-/r+ = 0.40 exhibits an inner bar with a 

short leading arm, rapidly switching to a short trailing arm near R0, which is a hallmark of 

a P mode, but then the phase switches again to leading, and back to trailing, as shown in 

Fig. 4.2.4.1. The W phase tracks the |δρ|/ρ0 phase closely. The multiple minima in the 

eigenfunction amplitude plot are indicative of an edge mode, but typically edge modes 

exhibit a long, trailing spiral arm.  

 

 

m = 2, M*/Md = 50.0, r-/r+ = 0.40 

 

 
/R0 

 

 

m = 2, M*/Md = 50.0, r-/r+ = 0.40 

 

 
/R0 

 

 

Fig. 4.2.4.1. Eigenfunction phase and amplitude plots for the model with parameters of  

q = 2.0, m = 2, M*/Md = 50.0 and r-/r+ = 0.40. 

 

 Another model that exhibits character not seen elsewhere is the model with 

parameters q = 2.0, m = 2, M*/Md = 5.0 and r-/r+ = 0.40. We show the eigenfunction 

phase and amplitude plots for this model in Fig. 4.2.4.2. It is interesting to note that the 

plots of this model bear a strong resemblance to those of the non-self-gravitating models 

for m = 2, q = 1.75.This model exhibits an inner bar with a short leading arm that 

switches to trailing less sharply than that of the M*/Md = 50.0 model, and no second 

leading shift is present. The W phase does not track the |δρ|/ρ0 phase closely, as would be 



100 

 

expected for a model with a lower M*/Md ratio. However, the character of the W phase 

has a characteristic trait present in the W phase of the M*/Md = 50.0 model, a second 

forward shift. Note the double minima of the W amplitude. The M*/Md = 5.0 model has a 

sharper first minimum, whereas the second minimum is sharper in the M*/Md = 50.0 

model. Perhaps the most important distinction between these two models is that  

Rco = 1.01 for the M*/Md = 50.0 model but Rco = 0.98 for the M*/Md = 5.0 model. It 

seems likely that Rco passing through 1.00 marks the threshold between P modes and 

edge modes. It is also interesting to note that Woodward, Tohline & Hachisu mention that 

a characteristic of L modes is that corotation lies near R0. This will be discussed further in 

Section 5.1.4. Character traits of both of these models remained intact when run at a 

higher resolution of 1024 x 1024 x 16. 

 

 

m = 2, M*/Md = 5.0, r-/r+ = 0.40 

 

 
/R0 

 

 

m = 2, M*/Md = 5.0, r-/r+ = 0.40 

 

 
/R0 

 

 

Fig. 4.2.4.2. Eigenfunction phase and amplitude plots for the model with parameters of  

q = 2.0, m = 2, M*/Md = 5.0 and r-/r+ = 0.40. 

 

Fig. 4.2.4.5 indicates trends of q = 2.0, m = 3 models. One noticeable difference 

with q = 1.5, m = 2 models and q = 2.0, m = 1 and m = 2 models is that there is no region 

where Rco ≈ r- anywhere in this part of parameter space. There is a region where Rco ≈ R0 

for small M*/Md and high r-/r+ as in the previously examined parts of parameter space. 

The region with larger M*/Md exhibits Rco ≈ r+ for high r-/r+ with Rco moving inward, 
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changing to  Rco < R0 as shown. Phases of disks with M*/Md ≥ 1.0 and r-/r+ ≤ 0.10 show 

extensive wrapping, as seen with the q = 2.0, m = 2 disks. Some disks in this region 

exhibit complicated behavior, switching back and forth from leading to trailing arms. 

These models take 10 - 20 MIRPs to settle into mode and may be numerically unstable. 

The transition between J modes and I modes for r-/r+ = 0.60 is abrupt. For r-/r+ = 0.40, 

the transition is smoother. There seem to be two kinds of behavior present in the  

non-self-gravitating models, with a transition between them happening near r-/r+ < 0.40. 

The behavior of the lower r-/r+ P modes extends into the self-gravitating models while 

that of the higher r-/r+ is not evident in the self-gravitating models. This was not observed 

in the m = 1 and 2 models. Trends for q = 2.0, m = 4 models, shown in Fig. 4.2.3.6, are 

very similar to the trends we see in the q = 2.0, m = 3 models, with slightly shifted 

boundaries to the regions of parameter space.  

 In Fig. 4.2.4.7, we merge the general trends of the parameter maps for m = 1, 2, 3 

and 4, in black, blue, orange and red, respectively.  We show the parameter space trends 

plotted against self-gravity parameters p and  η in Figs. 4.2.4.8 and 4.2.4.9, respectively, 

with some of the parameter map colors lightened to aid in discerning them against the 

parameters p and  η plots. The modal boundaries I and J for q = 2.0 do not follow the 

contours of constant p as clearly as what was seen in the q = 1.5 and 1.75 cases. We do 

see that for q = 2.0, the shape of the p contours in the upper right corner is more 

horizontally flattened against the top of the plot. The I and J boundaries tend to be flatter 

in this sense as well. There are obviously features of the parameter space boundaries that 

do not correspond to the contours of p though it could be argued that the regions of 

stability in m = 2, shown in solid light blue lines, somewhat follow the contour of 

constant p. It is difficult to see any relationship between the modal boundaries and 

stability thresholds with the contours of constant η. 

Table 4.2.4.1 provides q = 2.0 values for T/|W|, r-/r+, r-/ R0, r+/R0, y2(m) and  

y1(m) for m = 1, 2, 3 and 4,  for M*/Md = 0.0, 0.01, 0.1, 1.0, 5.0, and 10.0. Note that 

where y2(m) = 0.0, no value of y1(m) exists. Figs. 4.2.4.7 - 4.2.4.8 plot the eigenvalues 

and corotation radii for m = 1, 2, 3 and 4. 
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Fig. 4.2.4.3. Parameter space map for q = 2.0, m = 1, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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Fig. 4.2.4.4. Parameter space map for q = 2.0, m = 2, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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Fig. 4.2.4.5. Parameter space map for q = 2.0, m = 3, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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Fig. 4.2.4.6. Parameter space map for q = 2.0, m = 4, with modal divisions shown with 

red dashed lines and stability thresholds shown in blue dashed lines. 
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Fig. 4.2.4.7. Parameter space map for q = 2.0, m = 1, 2, 3 and 4, shown in black, blue, 

orange and red dashed lines, respectively. Solid lines are boundaries of stable models. 
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Fig. 4.2.4.8. Parameter space map overlaid on the self-gravity parameter p for q = 2.0, 

 m = 1, 2, 3 and 4, shown in black, blue, orange and red dashed lines, respectively. Solid 

lines are boundaries of stable models. Some colors were lightened. 
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Fig. 4.2.4.9. Parameter space map overlaid on the self-gravity parameter η for q = 2.0, 

 m = 1, 2, 3 and 4, shown in black, blue, orange and red dashed lines, respectively. Solid 

lines are boundaries of stable models. Some colors were lightened. 
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Eigenvalues for q = 2.0 models 

T/|W| r-/r+ r+/Ro r-/Ro y2(1) y2(2) y2(3) y2(4) y1(1) y1(2) y1(3) y1(4) 

M*/Md = 0.0 

0.217 0.301 1.770 0.532 0.000 0.366 0.000 0.000  -1.042   

0.254 0.401 1.535 0.615 0.265 0.000 0.321 0.000 1.001  -0.441  

0.283 0.500 1.385 0.693 0.555 0.570 1.036 1.013 1.104 -0.088 -0.201 -0.285 

0.308 0.600 1.272 0.763 0.690 0.956 1.537 1.763 1.164 0.039 -0.029 -0.086 

M*/Md = 0.01 

0.093 0.101 3.262 0.329 0.398 0.000 0.000 0.000 -0.569    

0.169 0.201 2.196 0.441 0.335 0.000 0.000 0.000 -0.958    

0.221 0.301 1.770 0.532 0.344 0.392 0.000 0.000 -0.973 -1.043   

0.258 0.401 1.540 0.617 0.327 0.201 0.162 0.000 -0.977 -0.916 -0.480  

0.286 0.500 1.385 0.693 0.531 0.469 0.986 0.969 1.091 -0.096 -0.207 -0.289 

0.310 0.600 1.272 0.763 0.674 0.890 1.493 1.722 1.141 0.045 -0.029 -0.088 

M*/Md = 0.1 

0.077 0.052 6.673 0.346 0.493 0.000 0.000 0.000 -0.505    

0.128 0.101 3.583 0.361 0.733 0.000 0.000 0.000 -0.429    

0.202 0.201 2.244 0.451 0.685 0.000 0.000 0.000 -0.282    

0.251 0.301 1.788 0.538 0.543 0.459 0.000 0.000 -0.110 -1.022   

0.286 0.401 1.545 0.619 0.453 0.514 0.440 0.000 -0.898 -1.012 -1.035  

0.311 0.500 1.385 0.693 0.462 0.436 0.389 0.548 -0.918 -0.948 -0.328 -0.346 

0.332 0.600 1.272 0.763 0.565 0.374 1.149 1.401 1.069 1.160 -0.046 -0.105 

M*/Md = 1.0 

0.177 0.052 9.542 0.495 0.084 0.000 0.000 0.000 -0.419    

0.239 0.101 4.885 0.493 0.265 0.000 0.044 0.000 -0.478  2.592  

0.314 0.201 2.585 0.519 0.522 0.000 0.072 0.000 -0.352  1.856  

0.358 0.301 1.908 0.574 0.591 0.076 0.072 0.000 -0.235 -0.868 0.986  

0.386 0.401 1.588 0.636 0.557 0.383 0.172 0.000 -0.141 -0.873 -0.841  

0.404 0.500 1.404 0.703 0.446 0.525 0.532 0.371 -0.074 -0.929 -0.928 -0.892 

0.417 0.600 1.278 0.767 0.278 0.573 0.658 0.657 -0.063 0.772 -0.981 -0.978 

M*/Md = 5.0 

0.224 0.052 10.11 0.525 0.070 0.049 0.000 0.000 -0.356 0.712   

0.291 0.101 5.346 0.539 0.104 0.066 0.044 0.000 -0.399 0.517 -2.080  

0.368 0.201 2.876 0.577 0.230 0.067 0.028 0.038 -0.405 0.261 -0.201 2.598 

0.411 0.301 2.063 0.620 0.334 0.051 0.091 0.045 -0.305 0.168 0.889 1.862 

0.438 0.401 1.671 0.669 0.348 0.042 0.028 0.069 -0.208 0.064 0.499 1.130 

0.455 0.500 1.444 0.723 0.305 0.010 0.017 0.039 -0.131 -0.742 0.265 0.480 

0.466 0.600 1.294 0.777 0.189 0.280 0.326 0.254 -0.078 -0.784 -0.789 -0.760 

M*/Md = 10.0 

0.232 0.052 10.31 0.535 0.067 0.043 0.000 0.000 -0.367 0.621   

0.301 0.101 5.402 0.545 0.092 0.067 0.041 0.031 -0.376 0.502 -2.144 -0.609 

0.378 0.201 2.942 0.591 0.152 0.087 0.058 0.035 -0.389 0.239 1.186 2.373 

0.421 0.301 2.114 0.636 0.262 0.103 0.000 0.000 -0.320 0.082   

0.448 0.401 1.705 0.683 0.285 0.075 0.086 0.032 -0.220 -0.024 0.433 -0.215 

0.465 0.500 1.465 0.733 0.258 0.000 0.019 0.051 -0.138  0.263 0.614 

0.476 0.600 1.307 0.785 0.181 0.000 0.000 0.000 -0.078    

 

Table 4.2.4.1. Characteristic radii, y1(m) and y2(m) values for selected q = 2.0 models. 
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Fig. 4.2.4.10. y1 frequency eigenvalues and corotation radii for q = 2.0, m = 1, 2, 3 and 4. 
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y2 for q = 2.0, m = 1 
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Fig. 4.2.4.11. y2 growth rate eigenvalues for q = 2.0, m = 1, 2, 3 and 4. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

5.1. Comparison with Earlier Work  

In this section, we compare our results with earlier studies. In Section 5.1.1, we 

compare results with those found by Andalib, Tohline and Christodoulou (1997). They 

studied simplified tori, with constant density and circular cross-sections. Section 5.1.2 

addresses the non-self-gravitating models of Kojima (1986, 1989).  We calculated models 

where the self-gravity of the disk has not been added to the gravitational potential 

calculation. We directly compare our results with Kojima’s where possible, and extend 

our calculations to include models with lower r-/R0, for comparison with our general 

models. In Section 5.1.3, we qualitatively compare results with several groups who 

address the eccentric instabilities found in the m = 1 case, where the motion of the central 

star is instrumental in determining the behavior of the model. In Section 5.1.4, we make a 

direct comparison with the nonlinear models calculated by Woodward, Tohline, & 

Hachisu (1994).  

 

5.1.1. Comparison with Andalib, Tohline and Christodoulou 

 
In this section we compare our results with work done by Andalib, Tohline and 

Christodoulou (1997), hereafter ATC. This group performed linear stability analysis on 

slender incompressible tori with constant specific angular momentum (ICT). The 

constraints produce tori of constant density and circular cross-sections. Equilibrium 

models were constructed on 256 x 256 grids. They solved a system of equations in the 

narrow torus approximation by directly expanding the gravitational potential and a 

velocity potential in a series of modified Bessel functions. They found that P modes for 

these models were found only in nearly Keplerian disks, with 0.999976 ≤ η ≤ 1.00003, 

where 
2 2

0/K    . We could not make a direct comparison with their results, since the 

character exhibited in non-self-gravitating models, which do support P modes, smoothly 
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changes as we decrease M*/Md. However, the appearance of our phase plots for q = 2.0 

suggests that our models exhibit P mode characteristics for 0.980 ≤ η ≤ 1.002, a wider 

range than that reported by ATC. In general, trend seemed to agree in that η ≈ 1 was 

necessary for P modes. ATC found their ICT models supported P modes for  

M*/Md < 8.70 x 10
3
 and a/R0 < 0.02733 where a is the radius of the circular cross-section. 

We find P mode characteristics in disks with much smaller M*/Md ratios, around  

M*/Md = 5.0 and r-/R0 ≈ 0.60. 

Figs. 5.1.1.1 - 5.1.1.2 compare the instability thresholds of our I and J modes with 

those reported by ATC. The dot-dashed line in Fig 5.1.1.1 indicates the threshold for I 

modes found by ATC. The data points represent our lowest T/|W|, I mode models.  We 

have adopted their horizontal axis here; note that the horizontal axis is scaled by Md/M* 

for values less than 1.0 while the right side is scaled by 2 - M*/Md.  

The general nature of their I mode threshold agrees well with our data points, 

given the constraints inherent in the ATC models. Our data is color-coded as indicated. 

The details presented by ATC indicate that the m = 1 models lie just above the curve with 

higher modes entering for higher T/|W| for Md/M* ≥ 0.5 and the models are tightly 

clustered for small Md/M*. Our models are also tightly clustered for small Md/M*, but we 

show no I modes for m = 1 models where M*/Md > 7.0. Our analysis also indicates that 

the m = 2 threshold is lower than that for m = 1 models. It should be noted that while 

ATC did include self-gravity in their simulations, no mention was made of a gravitational 

perturbation due to the motion of the central star. Also, their equations were simplified by 

the narrow-torus approximation. Many of our threshold models, especially for the I 

modes, fall well outside the regime where this approximation is appropriate. For 

example, our m = 1 threshold for M*/Md = 0.01 occurs in a relatively wide disk at 

 r-/r+ = 0.152. Our M*/Md = 0.01 disks visibly deviate from around r-/r+ = 0.40. The solid 

green line indicates where the highest growth rate of the I mode is matched by that of a J 

mode model for the same M*/Md, indicating the threshold above which J modes dominate 

I modes. 

Fig. 5.1.1.2 shows our q = 2, J mode threshold data points plotted against the 

curve given by ATC. Our threshold lies at higher T/|W| than is indicated by their survey, 
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Fig. 5.1.1.1. I mode threshold comparison with ATC is illustrated with the dot-dashed 

line showing the ATC curve. Our data points are colored with m = 1, 2, 3 and 4 in dark 

blue, blue, yellow and red, respectively. The green line shows where the J modes begin to 

dominate the I modes. 

 

but it appears to follow the same kind of curve, although not very far. Their analysis 

included very much higher m modes than we calculated, and most of the unstable models 

for Md/M* < 1.0, were for higher m. They show only one unstable m = 2 model on their 

plot, and no m = 1 models. We show no m = 1 models unstable to J modes as well.   

It should be noted that ATC results showed J modes for higher Md/M* than our 

results indicate. This could be due to the fact that we only see the dominant modes of 

each model run. They have also indicated that their fastest growing J modes have higher 

m values than what we have included in our study. For example, their models with  

0.0 < Md/M* < 0.188 report that J modes with m = 5 have growth rates equal to I modes 

with m = 2. At Md/M* = 1.177, ATC reports that the growth rates of m = 3, I modes equal 

ATC 

2.0 1.5 1.0 0.5 0.0 

.10 

I mode thresholds 

Md/M* 2 - M*/ Md 

.50 

.40 

.30 

.20 

ATC Comparison of I Mode Thresholds 

T/|W

| 



115 

 

the growth rates of J modes with m = 8; and they report equal growth rates for m = 7, I 

modes and m = 23, J modes at Md/M* = 12.516. ATC results show that J modes dominate 

the region of high T/|W| for every value of Md/M* across parameter space. We do not see 

that result in our models.  

 
Fig. 5.1.1.2. J mode threshold comparison with ATC is illustrated with the dot-dashed 

line showing the ATC curve. Our data points are colored m = 2, 3 and 4 in blue, yellow 

and red, respectively.  

 

 

5.1.2. Comparison with Kojima 

Calculating models with no self-gravity aids in identifying the mechanisms 

responsible for the structure of the various modes encountered. We have included 

discussion of non-self-gravitating models in the results of the q = 1.75 and 2.0 models in 

sections 4.2.2 - 4.2.4. We have included plots of the non-self-gravitating models in the 

Appendix B and Appendix C. 

We compare our results for q = 2.0 non-self-gravitating simulations with work 

done by Kojima (1986, 1989). Kojima’s models were calculated using a finite-element 
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method with 289 nodes. The dot-dashed, dashed and long-dashed lines in Fig.5.1.2.1 

represent results presented by Kojima for q = 2.0, m = 1, 2 and 4 modes, respectively. 

The data points indicate our corresponding results with m = 1, 2 and 4, depicted in dark 

blue, blue and red dots, respectively. Since self-gravity of the disk was not included in 

these calculations, we also did not include gravitational perturbations due to star motion 

in the m = 1 case.  

 

Fig. 5.1.2.1. Comparison of y2 eigenfunction values with Kojima. The dot-dashed, 

dashed, and long-dashed lines indicate Kojima’s data for m = 1, 2, and 4. Our data points 

are colored with m = 1, 2, and 4 in dark blue, blue, and red, respectively.  

 

There is generally good agreement in the trends of the growth rates shown, in the 

regions of parameter space that overlap between the two studies. Our peak growth rates 

tend to be ~0.10 % higher than those reported by Kojima, but the sequences of models for 

each value of m tend to follow similar curves for varying r-/r+.  However, many of our 

models fall outside this region into lower r-/r+ and the trends in the growth rates 

qualitatively change there. Typically, the lower r-/r+ models exhibit edge modes, which 
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can have spiral arms that can wrap several times, making resolution a problem, as can be 

seen in Fig. 5.1.2.2. We typically also see P modes and edge modes in the self-gravitating 

models for the corresponding regions of parameter space, where high M*/Md makes the 

effects of the disk self-gravity negligible when compared to the gravitational potential of 

the central star.  

 

 

Edge mode r-/R0 = 0.55 

 

 
/R0 

 

 

P mode r-/R0 = 0.65 

 

 
/R0 

 

 

Fig. 5.1.2.2. Models illustrating an edge mode vs. a P mode for non-self-gravitating disks.  

 

 

 

5.1.3. Star Motion for m = 1 Modes 

In the m = 1 case, the star may move to conserve the center of mass of the system, 

in response to forcing from the perturbed mass of the disk, exciting what is known as an 

“eccentric instability.” In a system where the star mass is much less than the mass of the 

disk, the star is rapidly driven toward the disk. When the star mass is comparable to the 

disk mass, the offset mass of the disk tends to pull the star back toward its equilibrium 

position. The angular motion of the star is slower than that of the matter in the disk, so 

the star induces negative angular momentum in the disk, while gaining positive angular 

momentum itself. At Rco, the pattern speed of the density perturbation equals the fluid 

speed. Inside corotation, the perturbation pattern frequency is less than the fluid 
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frequency, with the opposite true at radii larger than Rco. The perturbed energy of the 

mode per unit area and angular momentum per unit area are negative inside Rco and 

positive outside Rco.  

Spiral instabilities develop when disturbances are amplified by feedback 

mechanisms as density waves propagate or tunnel across the corotation resonance (Tsang 

& Lai 2008). A density wave incident on the corotation resonance will be partially 

transmitted and partially reflected. We illustrate this situation in Fig. 5.1.3.1, using the 

approximate locations of the pertinent radii for the A mode model introduced in  

Fig. 3.2.3, with the angular momentum inside and outside Rco identified as J
- and J

+
, 

respectively, in the interest of space. The incident, reflected and transmitted waves are 

identified by subscripts of i, r and t, respectively. The inner and outer radii of the disk are 

denoted by solid black lines. R0 and Rco are denoted by solid purple and blue lines, 

respectively. The inner and outer Lindblad resonances are marked in red dotted lines, and 

labeled as RLin and RLout, respectively. The inner and outer Q-barrier boundaries are 

marked by green dashed lines. Unless otherwise noted, all radii are labeled with the 

notation used elsewhere in this document.  

The transmitted wave carries the opposite sign of energy and angular momentum 

into the region. Because of a change of sign of a conserved action, the reflected wave 

increases in amplitude (Narayan, Goldreich & Goodman 1987). The perturbed energy 

and angular momentum grows larger (more positive) in the region outside Rco and smaller 

(more negative) in the region inside Rco. This is commonly known as the “corotation 

amplifier.” For spiral modes to grow in amplitude, there must be a feedback mechanism. 

One such mechanism may be that reflected waves are incident upon another reflecting 

surface, which causes them to again encounter the corotation resonance and increase 

upon re-reflection. The Lindblad resonance would provide a reflecting surface to redirect 

waves back toward Rco (Adams, Ruden & Shu 1989). Reflection at the outer edge of the 

disk would also serve to redirect the waves (Heemskerk, Papaloizou & Savonije 1992).  

Adams, Ruden & Shu (1989), hereafter ARS, were the first group to include the 

effects of the motion of the star in their star/disk calculations. They modeled thin (2-D) 

disks with M*/Md ≈ 1, with a “nearly Keplerian” rotation curve, meaning that the 

gravitational potential of the star dominated the self-gravity of the disk everywhere  
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Fig. 5.1.3.1. Schematic illustration of transmission and reflection of waves across the 

corotation resonance, with pertinent radii identified as noted above. 

 

 

except near the outer edge.They imposed a constant “confining pressure” outside the disk 

and used power law distributions for mass density and temperature. Their results indicate 

that growth rates of spiral m = 1 modes decrease with increasing M*/Md over a range of 

0.91 < M*/Md ≤ 3.0. We confirmed that we only saw spiral wave modes when the central 

star was allowed to move. Our results show growth rates decreasing with increasing 

M*/Md for A mode models with q = 1.5, r-/r+ = 0.05 over the range  

0.2 < M*/Md ≤ 1.0.  

 Fig. 5.1.3.2 shows our phase plots for the sequence of models for m = 1, q = 1.5, 

r-/r+ = 0.05, for 0.0 ≤ M*/Md ≤ 5.0; the models with M*/Md > 5.0 were stable. The first 

model, with M*/Md = 0.0 shows a split bar structure. With no central star present, the disk 

must conserve angular momentum itself, and can do so with this configuration.  The 

addition of a small amount of mass changes the nature of the instability, as seen in the 

M*/Md = 0.01 model. The star’s small relative mass allows it to rapidly fall toward the 
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maximum of the gravitational potential in the disk (Heemskirk, Papaloizou & Savonije 

1992), resulting in the short spiral arm seen in the M*/Md = 0.01 phase plot. As the 

relative star to disk mass increases, the spiraling motion of the star becomes slower, as 

witnessed in the phase plots for 0.2 ≤ M*/Md ≤ 1.0. There are models in the sequence that 

show a different character, perhaps a blending of the two strategies. The models with  

M*/Md = 0.05 and 0.1, as well as the model at M*/Md = 2.0 exhibit a configuration that is 

like a split bar structure, except that the “bars” are like segments of spiral arcs offset by 

the motion of the star, connected by a phase shift. The M*/Md = 5.0 model exhibits 

characteristics of a P mode, which may be expected for the relatively high M*/Md.  

We also report A mode behavior for q = 1.75 disks, which will also be discussed 

in Section 5.1.4. The A mode regime is shifted to higher M*/Md for a given r-/r+. We find 

A modes in the region 0.1 ≤ M*/Md ≤ 1.0 for r-/r+ = 0.05; for r-/r+ = 0.10, A modes are 

found in the region 0.5 ≤ M*/Md ≤ 2.0, and for r-/r+ = 0.15, the region 1.0 ≤ M*/Md ≤ 5.0 

contains A modes. Our q = 2.0 models have A modes for the ranges r-/r+ = 0.05 in the 

region 0.0 ≤ M*/Md ≤ 0.2, and for r-/r+ = 0.10 for 0.5 ≤ M*/Md ≤ 1.0. We find that growth 

rates decrease with increasing mass for the q = 1.75 and 2.0 model sequences. We also 

note that growth rates increase for increasing r-/r+ for constant M*/Md, in agreement with 

ARS.  

 Another result of ARS concerned sensitivity of m = 1 mode to the Q-barrier. 

Propagation of waves is inhibited inside the Q-barrier, reducing amplification of reflected 

waves. ARS found that the absence of a Q-barrier induced amplification of the 

perturbation at “catastrophic rates.” Our simulations do no support this finding. 

Increasing M*/Md, keeping r-/r+ constant at a small value, as shown in Fig. 4.1.6, we see 

that the Q-barrier disappears for M*/Md > 1.0, for q = 1.5 and 1.75. For q = 1.5, when the 

Q-barrier disappears, the dominant modes in the disks are P modes, with stable models 

for M*/Md > 7.0; while q = 1.75 models become stable for M*/Md > 1.0. Our q = 2.0 

models have Q = 0 everywhere in the disk, so Q < 1 across the disk. Our calculations 

show growth rates increasing, in general, as q increases.  
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M*/Md = 0.0 

 
 

 

M*/Md = 0.01 

 

 

M*/Md = 0.05 

 

 

M*/Md = 0.1 

 
 

 

M*/Md = 0.2 

 

 

M*/Md = 0.5 

 

 

M*/Md = 1.0 

 
/R0 

 

M*/Md = 2.0 

 
/R0 

 

M*/Md = 5.0 

 
/R0 

 

Fig. 5.1.3.2. Phase plots for the m = 1 sequence of models with q = 1.5, r-/r+ = 0.05, for 

varying M*/Md as shown. 

 

 Heemskirk, Papaloizou & Savonije (1992), hereafter HPS, performed linear and 

nonlinear analysis on thin (2-D), self-gravitating, m = 1 disks. They used a polytropic 

equation of state with ɤ = 2. They imposed an equilibrium velocity determined by: 
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
 ( 5.1.3.1 ) 

 

where c is the sound speed and Σ is the surface density. Their analysis agreed with ARS, 

in that they also found that stars moved in outward spirals in response to forcing by the 

disk, but they found that stars with systems with M*/Md > 1.0 became stable, and argued 

that the reason was that Rco moved outside the disk. We see stable disks for q = 1.75 

when M*/Md > 1.0, but for q = 1.5 we see P modes dominate before stability sets in, as 

noted above. For q = 2.0, we see edge modes for M*/Md ≥ 1.0. P modes and edge modes 

do not have corotation outside the disk; Rco lies near R0. HPS did not find outer Lindblad 

resonances within their disks that exhibited spiral mode behavior, and attributed the 

reflecting edge to the outer edge of the disk, in disagreement with ARS. We find outer 

Lindblad resonances within our disks that exhibit spiral modes. HPS found that growth 

rates decreased with increasing M*/Md, in agreement with ARS as well as our study. 

 Noh, Vishniac, & Cochran (1991) performed linear analysis on m = 1 modes in a 

thin (2-D), isentropic disks for a two fluid system, including dust and gas. They imposed 

power law rotation with q = 1.5 and set the width of the disks at r-/r+ = 10
-5

. They showed 

that an m = 1 instability persists in disks with no Lindblad resonance as long as a 

reflecting boundary is present at the outer edge of the disk. Our results agree with this. 

They also modeled disks with higher m, and showed that low mass disks, specifically 

M*/Md = 0.05, are stable for all m except for m = 1, a result that disagreed with ARS. Our 

results qualitatively agree with Noh, Vishniac, & Cochran. In a second paper, Noh, 

Vishniac, & Cochran (1992), they confirmed their previous results, using the same 

rotation profile as ARS.  

 Taga & Iye (1998) performed linear analysis on 2-D, polytropic, m = 1, fluid 

disks which had no inner or outer edge. They did include a “softening parameter” near 

the central massive object. They report finding eccentric instabilities, even though there 

was no outer reflecting edge to supply a feedback mechanism for corotation 

amplification. They also found that instability set in at M*/Md = 0.01, lower than that 

reported by ARS. They found the growth rate decreased with M*/Md, in agreement with 

ARS. We also show an unstable model at M*/Md = 0.01 for r-/r+ = 0.05, exhibiting a 
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trailing spiral that persists over approximately π radians. Our models for M*/Md = 0.05 

and 0.1, however, appear to be P modes, not A modes. Phase plots for our m = 1, q = 1.5 

models can be seen in Fig. A.1.1.2. Fig. 5.1.3.3 shows our y2 values for m = 1, q = 1.5 

models with r-/r+ = 0.05 for varying M*/Md. 

 

 

 Fig. 5.1.3.3. Growth rates vs. M*/Md for m = 1, q = 1.5, r-/r+ = 0.05. 

 

5.1.4. Comparison with Woodward, Tohline and Hachisu 

The third body of work and the most direct comparison for our work is that by 

Woodward, Tohline, & Hachisu (1994), hereafter WTH. This paper presents nonlinear 

simulations of q = 2.0 disks, containing fifteen m = 1 and nineteen m = 2 models with 

M*/Md = 0.2, 1.0 and 5.0; as well as 7 simulations of M*/Md = 0.0 with q = 1.5, 1.75 and 

2.0. The radial x vertical x azimuthal resolution of their models was typically 64 x 32 x 

64 zones while narrower disks were calculated at 128 x 32 x 64. Our models were 

calculated at a resolution of 512 x 512 x 16, and we calculated the models specifically for 

this comparison at 256 x 256 x 8 as well. We chose inner radii to match the T/|W| values 

quoted in their paper as closely as possible, but we were not able to agree exactly to the 

M*/Md 

y2 

Growth rates for m = 1, q = 1.5, r-/r+ = 0.05 
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three significant figures quoted. Figs. 5.1.4.1 and 5.1.4.3 present y1 and y2 values for 

comparison.  

We begin by examining the m = 1, M*/Md = 0.2 comparison. WTH indicated high 

uncertainty in the growth rate of their T/|W| = 0.10, r-/r+ = 0.051 model. Our lower and 

higher resolution values agreed within 3% difference with each other, but showed 

relatively poor agreement with WTH. Plots of the eigenfunction amplitudes, phases and 

temporal evolution of the WTH models were available in Woodward’s dissertation 

(1986). The phase plot of this model showed similar character to that of our model, with 

trends associated with A modes seen in the study by ARS, a trailing spiral arm extending 

from the inner edge to the outer edge, spanning approximately 2π degrees. Agreement 

was closer for the T/|W| = 0.12 models with divergence between our models and those of 

WTH as T/|W| increased. The character of the phase plots also diverged, with WTH 

models continuing to exhibit A mode character through the T/|W| = 0.166 model while 

our phases took on P mode character, with an inner bar crossing R0 and Rco, then 

exhibiting a leading π phase shift, switching to a trailing arm extending for π/2 radians. 

As T/|W| increased, the WTH models also changed to character better associated with P 

modes as well.  

Comparing the m = 1, M*/Md = 1.0 models, we see that the WTH models indicate the two 

lower T/|W| models to be A modes, changing to P modes for the higher T/|W| models. 

Our lowest T/|W| model has the nature of an edge mode, similar in the inner disk to a P 

mode but with a more extended trailing arm in the outer disk, trailing for 3π radians. Our 

model at T/|W| = 0.25 has the character of an A mode, with the higher T/|W| models 

exhibiting P mode traits, similar to those of WT. The m = 1, M*/Md = 5.0 WT models 

indicate A modes extending to higher T/|W|, changing to a P mode for the T/|W| = 0.39 

model. The phase plots for our corresponding models show edge modes switching to a P 

mode for the highest T/|W| model. In general, the nonlinear WTH models show A modes 

for a larger span of both T/|W| and M*/Md than do our linear calculations for the m = 1 

models, considering the models that we calculated to agree with the WTH models.  

We did find models with phase plots resembling those of the A modes for  

r-/r+ = 0.05 in the region 0.0 ≤ M*/Md ≤ 0.2 and for r-/r+ = 0.10 in the region  

0.5 ≤ M*/Md ≤ 1.0. We also report A mode behavior for q = 1.75 disks that were not 
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y1 M*/Md = 0.2, m = 1 

 

y2 M*/Md = 0.2, m = 1 

 

y1 M*/Md = 1.0, m = 1 

 

y2 M*/Md = 1.0, m = 1 

 

y1 M*/Md = 5.0, m = 1 

 

T/|W| 

y2 M*/Md = 5.0, m = 1 

 

T/|W| 

 

Fig. 5.1.4.1 Comparison of y1 and y2 values with WTH y1 and y2 values for m = 1 models. 

The red circles represent WTH data, the green diamonds represent our 512 x 512 data and 

the blue stars represent our 256 x 256 data points. 

 

covered in the WTH study, over the ranges noted in Section 5.1.3. We noticed a 

qualitative trend in the |δρ|/ρ0 eigenfunctions amplitude plots in that a second minimum 

was beginning to emerge in these models very near the outer edge of the disk. Fig. 5.1.4.2 

compares A modes and edge modes using two q = 2.0, m = 1, r-/r+ = 0.05 models, with 

eigernfunction amplitude plots in the top row and phase plots in the bottom row. 
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A mode, M*/Md = 0.1 

 

 

Edge mode, M*/Md = 10.0 

 

 

 

A mode, M*/Md = 0.1 

 

 

/R0 

Edge mode, M*/Md = 10.0 

 

 

/R0 

 

Fig. 5.1.4.2  Comparison of A mode plots and edge mode plots. 

 

Neither the nonlinear or linear calculations show any A modes for m = 2 disks for 

q = 2.0.  There is good general agreement between our calculations and those of WTH for 

the m = 2, M*/Md = 0.0 disks, as seen in Fig. 5.1.4.3. These disks are of varying q, with  

q = 2.0 for the lowest T/|W| model, q = 1.75 for the T/|W| = 0.19 model and q = 1.5 for 

the rest. Our calculations yielded lower y1 values and higher y2 values than those of WT 

for the q = 2.0 model. Both studies indicated this model to be an I mode but ours had a 

leading π/2 phase shift while that of the WTH model was trailing. Our models switched 

to trailing as T/|W| increased and more closely matched the eigenvalues and nature of the 

WTH results. The models exhibited I modes except for the highest T/|W| model, which 

was a J mode. The growth rates diverged for the T/|W| = 0.25 model, probably because of 

its proximity to the threshold between I and J modes.  
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The m = 2, M*/Md = 0.2 disks also agree well between our calculations and those 

of WTH and the behaviors seen in the phase plots is similar. Both studies indicate a 

stable model at T/|W| = 0.22 with leading phase shift I modes at T/|W| = 0.26 changing to 

trailing I modes at T/|W| = 0.29. Our eigenvalues diverge at the T/|W| = 0.36 model, with 

WT indicating high uncertainty, while our calculation indicates a J mode for that model.  

The plot of the comparison of y1 values for the m = 2, M*/Md = 1.0 disks spans a 

much smaller range than that of most of the other y1 plots. The trend is similar with our 

values approximately 10% higher in magnitude. The y2 trend is also similar for these 

models. The WTH phase plot for the T/|W| = 0.422 is not well resolved and is difficult to 

use for comparison. Our model took 10 MIRPs to settle into mode and the nonlinear 

calculation had saturated before then. The rest of the models in this sequence were 

similar in eigenvalues and behavior, I modes with leading phase shifts and corotation 

increasingly near the outer disk edge as T/|W| increased, with the T/|W| model indicating 

a trailing arm with corotation near the inner edge of the disk. 

There were discrepancies between the studies for the last sequence of models, 

with m = 2 and M*/Md = 5.0. Eigenvalues for the T/|W| = 0.42 and 0.43 models have been 

indicated to be very uncertain by WTH, with the modes possibly identified as L modes. 

The phase plots of these models are hard to discern for comparison with ours, but we do 

agree that corotation lies very nearly exactly at R0. Our eigenfunctions plots indicate a 

second dip just beginning to emerge. The next two models as T/|W| increases are labeled 

as L modes by WTH, with no uncertainty indicated in their growth rates. Our calculations 

for these two models disagree, depicting models that are solidly stable, showing ho hint 

of growth by 40 MIRPs. The last three models qualitatively agree between the studies as 

far as the I mode nature of the plots and the values of the growth rates. There is 

agreement in the y1 values for the T/|W| = 0.46 model while the other y1 values were not 

reported by WTH. We also calculated m = 1, 3 and 4 models for this sequence, and found  

that the lowest four T/|W| models were dominated by m = 1 modes and the highest T/|W| 

model was dominated by the m = 3 mode. These results were not included in the study by 

WTH, since the odd modes were not calculated for these models. Table 5.1.4.1 includes 

the eigenvalues plotted in Figs. 5.4.1.1 and 5.4.1.3. 
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y1 M*/Md = 0.0, m = 2 

 

y2 M*/Md = 0.0, m = 2 

 

y1 M*/Md = 0.2, m = 2 

 

y2 M*/Md = 0.2, m = 2 

 

y1 M*/Md = 1.0, m = 2 

 

y2 M*/Md = 1.0, m = 2 

 

y1 M*/Md = 5.0, m = 2 

 

T/|W| 

y2 M*/Md = 5.0, m = 2 

 

T/|W| 
 

Fig. 5.1.4.3 Comparison of our y1 and y2 values with WTH y1 and y2 values for m = 2 

models. The red circles represent WTH data, the green diamonds represent our 512 x 512 

data and the blue stars represent our 256 x 256 data points. 
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Eigenvalues for WTH comparison models 

T/|W| r-/r+ 
y1(m) 

WTH 
y1(m) 512 

y1(m) 

256 

y2(m) 

WTH 

y2(m) 

512 

y2(m) 

256 

   M*/Md  =  0.2                                                 m = 1 

0.101 0.051 -0.700 -0.533 -0.521 0.077 0.311 0.293 
0.121 0.067 -0.530 -0.488 -0.476 0.382 0.455 0.426 
0.165 0.110 -0.490 -0.405 -0.400 0.710 0.669 0.651 
0.220 0.185 -0.550 -0.281 -0.302 0.887 0.776 0.735 
0.279 0.307 -0.730 -0.150 -0.133 0.888 0.721 0.642 

   M*/Md  =  1.0 

0.211 0.075 -0.460 -0.469 -0.422 0.027 0.159 0.141 
0.253 0.114 -0.500 -0.467 -0.444 0.179 0.316 0.308 
0.316 0.205 -0.370 -0.345 -0.331 0.462 0.526 0.527 
0.334 0.240 -0.340 -0.308 -0.295 0.492 0.567 0.562 
0.349 0.276 -0.340 -0.262 -0.253 0.482 0.585 0.582 
0.363 0.315 -0.300 -0.225 -0.214 0.518 0.585 0.587 

   M*/Md  =  5.0 

0.260 0.074 -0.650 -0.379 -0.329 0.009 0.085 0.078 

0.285 0.092 -0.490 -0.401 -0.382 0.026 0.097 0.088 
0.335 0.148 -0.450 -0.413 -0.399 0.100 0.161 0.158 
0.388 0.241 -0.410 -0.373 -0.373 0.250 0.287 0.280 

   M*/Md  =  0.2                                                 m = 2 
0.238 0.216 -0.930 -0.939 -0.913 0.027 0.066 0.086 
0.256 0.252 -0.890 -0.951 -0.943 0.211 0.257 0.256 
0.292 0.344 -0.960 -0.996 -0.993 0.486 0.516 0.519 
0.317 0.432 -0.970 -1.040 -1.014 0.554 0.553 0.586 
0.363 0.672 0.380 -0.051 1.016 1.721 0.603 0.653 

   M*/Md  =  1.0 

0.342 0.260 -0.850 0.210 0.204 0.004 0.029 0.006 
0.356 0.295 -0.770 -0.868 -0.865 0.060 0.049 0.067 
0.368 0.331 -0.810 -0.855 -0.839 0.129 0.192 0.195 
0.373 0.350 -0.820 -0.854 -0.851 0.195 0.256 0.226 
0.400 0.476 -0.900 -0.915 -0.912 0.430 0.508 0.510 
0.417 0.602 … 0.940 0.944 0.597 0.587 0.603 

   M*/Md  =  5.0 

0.422 0.335 0.030 0.019 0.032 -0.004 0.086 0.079 
0.432 0.374 -0.230 0.006 0.100 0.041 0.031 0.018 

0.447 0.445 0.100   0.278 0.000 0.000 

0.453 0.484 0.290   0.209 0.000 0.000 
0.460 0.539 -0.740 -0.758 -0.753 0.134 0.182 0.194 

0.468 0.622  -0.795 -0.789 0.295 0.312 0.307 

0.475 0.715  0.836 0.810 0.402 0.418 0.438 

 

Table 5.1.4.1 WTH comparison models, y1(m) and y2(m) eigenvalues. 
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5.2. Applications of Quasi-linear Torque Calculations 

Our main interest in calculating disk models is to understand the process of 

angular momentum transport. An important reason for performing a thorough mapping of 

parameter space of the linear regime is to gain an understanding of which models to 

calculate using the more computationally expensive nonlinear code to sparsely sample 

the parameter space in a meaningful way. Self-gravity torque is one mechanism that can 

be responsible for transport of angular momentum, and we present here applications of 

torque calculations that can provide qualitative insight into the predicted behavior of 

nonlinear disks.  

Torque density is simply the cross product of the radial component with the force 

density. 

   r f  ( 5.2.1 ) 

   

To find an expression for the force density, we recast the momentum conservation 

equation. From Section 3.1, we have: 

 

  t gP         v v  ( 5.2.2 ) 

   

Using the continuity equation, 3.1.1, we can write: 

 

    t t t t              v v v vv v  ( 5.2.3 ) 

 

Using substitution, after cancellations, we rewrite Equation 5.2.2 using dyadic notation: 

 

    t gP        v vv Ī  ( 5.2.4 ) 

   

where Ī  is the identity dyadic matrix. Crossing   into Equation 5.2.4, we get: 
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      ˆ ˆ
t gv P             

    vv Ī z- z  ( 5.2.5 ) 

   

When linearized, only the z-component survives, since   crossed into the radial 

component is zero, and the cosine terms integrate to zero around the disk.  

The left-hand term is the total torque. The first term on the right-hand side is the 

torque caused by the energy carried in the waves, while the second term will give the 

torque due to self-gravity. The linearized self-gravity torque becomes: 

 

   0 0

1 im ime e 

    


       
   ( 5.2.6 ) 

 

The zeroth order terms are identically zero from the equilibrium condition, and the first 

order terms integrate to zero around the disk. We are left with second order terms: 

 

  sinm dz          ( 5.2.7 ) 

 

We integrate the torque over the height of the disk. Note we have only kept cross terms 

here, and have dropped 2 and 
2
 terms, as we are interested in the interaction of self-

gravity with the perturbed mass density of the disk. We can use the torque calculation to 

get an idea of how the disk would evolve in a nonlinear simulation. In the sequence of 

plots in Figs. 5.2.1 and 5.2.2, we recall the mass density contours and torque plots of the 

representative models introduced in Fig. 3.2.3, and now include plots showing the 

angular momentum and transport time. Torque is normalized by δρ
2
, which implies that 

nonlinear saturation by the mode should happen when the density perturbation amplitude 

equals unity. This is a standardized normalization and may not be appropriate for all 

models. The transport time is calculated as J/τ normalized by MIRP. Note that the 

transport time is shown in semilog plots. 

In the linear approximation, we assume that there is no mass flux across the 

annuli affecting a change in angular momentum, the self-gravity torque acting on a mass 

ring is the only effect we are investigating here. The first column of Fig. 5.2.1 introduces 
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the transport time calculated for the representative I
+
 mode model. The sharp peak of the 

transport time indicates approximately where τ goes to zero. Since this is a discrete 

calculation, typically the exact zero has been stepped over. Near the inner edge of the 

disk, the transport time is very low, around 0.01 MIRP. This means that the angular 

momentum of that mass ring will completely dissipate within a very short time. Since the 

torque is negative there, the mass of the ring would tend to move inward toward the star 

in a nonlinear simulation. At the mass density maximum, R0, the transport time is about 

5.0 MIRPs, also moving inward. Somewhat outside density maximum, at about 1.13 R0,  

the torque changes sign. The matter of the disk outside this radius will gain angular 

momentum due to the self-gravity torque and tend to move outward in a nonlinear 

simulation. This also happens on a MIRPish time scale, becoming more rapid toward the 

outer edge of the disk where the mass density is low. The linear prediction of the 

evolution of this disk is that it will significantly evolve in a few MIRPs, spreading out. 

The inner region will move toward the star, the region near the zero of the torque will 

remain fixed, and the outer part of the disk will move farther out.  

The I
-
 mode plots tell a somewhat different story. The general shapes of the plots 

are similar, and the disk will also spread on a similar timescale, but here the zero of the 

torque lies at 1.015 R0, so the densest part of the disk will remain more stationary, with 

the timescale at R0 calculated to be 147 MIRPs. The outer edges will still spread on a 

MIRPish timescale but not as much of the mass of the disk is involved in the spread. Note 

that the shoulders of the transport time plot are not as broad as those of the I
+
 mode, 

indicating that more of the dense part of the disk will evolve slowly. The J mode model 

exhibits a narrower peak in the transport time, indicating that only the matter in the disk 

that is rather close to the zero in τ will remain relatively stationary as compared to the I
-
 

mode. At R0, the transport time is 3.56 MIRPs, so the J mode disk will spread apart faster, 

like the I
+
 mode.  

The evolution of the P mode is expected to be qualitatively different. The torque 

in the inner region of the disk is positive, increasing angular momentum and driving the 

inner disk outward. This region includes the densest part of the disk as well; the zero of 
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Fig. 5.2.1. Mass density contours, angular momentum, self-gravity torque and angular 

momentum transport time for the representative I and J modes, shown in Fig.3.2.3.  
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the torque lies at about 1.04 R0. Most of the outer region of the disk will be driven 

inward, with only the outermost region, where the mass density is small, spreading 

outward. The transport time plot thus predicts that the disk will slowly contract into a 

narrower configuration, fissioning off the outer edge of the disk. It should also be noted 

that the timescale for this is very large, much higher than those of the I and J modes. The 

transport time at R0 is 423 MIRPs and remains at tens of MIRPs throughout most of the 

inner disk region. This indicates that the self-gravity torque is not efficient enough to 

limit the growth to saturate into a mode. The torque from the wave propagation must be 

more important than the self-gravity mechanism for determining the evolution of the 

disk. This makes sense, since the P modes lie in the high M*/Md part of parameter space 

where self-gravity is not important.  The Edge mode disk also shows evolution on a long 

timescale, somewhat similar to that of the P mode; with this particular model fissioning 

into three separate rings. Again, this would take so long to occur that the wave 

propagation would dominate the evolution of the disk. 

The transport time of the A mode model is extremely short; at R0, the timescale is 

0.043 MIRPs. This suggests that our normalization using |δρ|
2
 = 1 is not appropriate for 

this model.  What it means in this case is that the evolution prompted by the self-gravity 

torque would significantly change the structure of the disk before the mode could set in. 

The torque is negative in the inner disk region, with torque changing sign well outside the 

density maximum at 1.52 R0. The inner edge of this disk is close to the star, compared to 

the other representative modes discussed. The timescale and torque plots suggest that the 

matter of the disk will most likely flow onto the star in a very short time. The outer 

matter of the disk mostly flows inward as well, with a narrow region moving outward. 

The density of the outer part of the disk is very low. Most of the matter of the disk is 

contained in the region where the matter will flow inward, onto the star.  

Fig. 5.2.3 displays plots of the projected evolution of the angular momentum due 

to the self-gravity torque of the representative I
+
 and I

-
  mode models, while Fig. 5.2.4 

shows angular momentum evolution for the representative J and A mode models. For the 

I and J modes, we show successive timesteps of 0.1 MIRP and for the A mode we have 

taken timesteps of 0.01MIRP. The I and J modes show angular momentum increasing in 

the outer part of the disk and decreasing in the inner disk region. The A mode shows a  
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Fig. 5.2.2. Mass density contours, angular momentum, self-gravity torque and angular 

momentum transport time for the representative P, edge, and A modes, shown in  

Fig. 3.2.3.  
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Fig. 5.2.3. Evolution of angular momentum for the representative I
+
, I

-
, J and A mode 

models introduced in Fig.3.2.3. The original angular momentum is plotted in red, while 

green and blue are angular momenta at time intervals of 0.5 and 1.0 MIRPs , respectively, 

for the I and J modes and 0.05 and 0.1 MIRPs, respectively, for the A mode. 

 

very different evolution, with the angular momentum rapidly becoming negative near the 

inner edge of the disk. 

Figs. 5.2.5 and 5.2.6 show the angular velocity profiles predicted by the evolution 

driven by self-gravity torque, with the original velocity shown in red, while green and 

blue plots show advanced velocity profiles as noted. These plots indicate that the disks 

will evolve rapidly near the inner and outer edges. Near the inner edges, the velocity 

decreases as the fluid of the disk falls toward the central star. The velocity raises toward 
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the outer edge as the disk spreads. Note that the timesteps are smaller for the A mode 

model, with a dramatic decrease in velocity near the inner edge but little change near the 

outer edge of the disk. 
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Fig. 5.2.4. Evolution of angular velocity for the representative I
+
, I

-
, J and A mode 

models introduced in Fig.3.2.3. The original angular momentum is plotted in red, while 

green and blue are angular momenta at time intervals of 0.5 and 1.0 MIRPs , respectively, 

for the I and J modes and 0.05 and 0.1 MIRPs, respectively, for the A mode. 
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5.3. Conclusions 

We have presented an extensive study of thick, polytropic, self-gravitating linear 

star/disk systems. We have compared our results with earlier studies done on slender, 

incompressible tori by ATC, non-self-gravitating models calculated by Kojima, several 2-

D studies focused on the m = 1 eccentric instability, and the 3-D nonlinear study done by 

WTH. Our results generally agree well with previous studies with a few exceptions. Our 

results agree with the ICT study of ATC as far as the general shape of the I mode 

threshold, except for the fact that we show the m = 2 threshold to be lower than that of the 

m = 1 case. One major difference is that our calculations account for the motion of the 

star in the m = 1 case, where they did not. Also, we show J modes in a much smaller 

region of parameter space than was evident in the ATC results. We agreed qualitatively 

with the studies involving star motion in the m = 1 case; our models exhibited eccentric 

spiral instabilities similar to those seen by the earlier 2-D studies, in models with and 

without outer Lindblad resonances. Our results for non-self-gravitating models agreed 

well with those of Kojima, in the region of parameter space where our models overlapped 

with his, where the disks support P modes. We also calculated models for lower T/|W| 

than did Kojima, into the realm where disks suffer edge mode instabilities with long 

trailing arms which require greater resolution. Our models mostly agreed with the 

nonlinear calculations by WTH, with the main differences being that our growth rates 

diverged  for models where we saw edge modes but WTH reported P modes; and the fact 

that we saw stable models where WTH reported L modes.  

Our general results consisted of analysis of ~7700 equilibrium models and ~2200 

temporally evolving models. Our analysis of equilibrium models included mapping 

trends of quantities that would prove to be helpful in understanding the evolving models, 

such as T/|W| and the Q-barrier. 

The rich spectrum of temporally evolving models has provided general 

information about where I+, I-, J, A, P and edge modes lie in parameter space, as 

evidenced by the parameter space plots in the general results section, which show trends 

for individual values of m, combining information about q =  1.5, 1.75 and 2.0. We also 

provide modal dominance tables, which indicate the order of the growth rates for m = 1, 
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2, 3 and 4 as a function of M*/Md and r-/r+. We also plot y1 and y2 vs. r-/r+ for a 

representative sampling of values of M*/Md, and discuss characteristic plots illustrating 

three main behavioral trends for y2 vs. r-/r+ for M* << Md, M* ≈ Md and M* >> Md. We 

present individual subsections for q = 1.5, 1.75 and 2.0, with detailed analysis of the 

behaviors inherent to sections of parameter space for each value of m. We see A modes 

present for m = 1 models for M*/Md < 1.0 for small r-/r+, changing to stable for q = 1.5 

and 1.75 as M*/Md increases, changing to edge modes for q = 2.0 as M*/Md increases. We 

see J modes present in m > 1 models, for large r-/r+ and small M*/Md. P modes and edge 

modes reside in the regions where M*/Md is large, with P modes at higher r-/r+ than edge 

modes. Between the P/edge mode and A mode regions and the region of J modes, we find 

I modes. We note that models become stable for high M*/Md, especially for low r-/r+ for 

models with q = 1.5 and 1.75 but not for q = 2.0. We offer detailed analysis of the various 

unstable regions with respect to information gleaned from the eigenfunction amplitude 

and phase plots, work integrals, stresses, perturbed angular momentum and self-gravity 

torque plots.  

We analyze characteristic I
+
, I

-
, J, P, edge and A mode models using quasi-linear 

analysis involving the self-gravity torque, inferring behavior that might be expected in 

nonlinear models. We see that for I and J modes, the angular momentum transport in the 

disks will tend to spread the disks out; the inner edge will move inward toward the star 

and the outer edge will move outward. The P and edge modes will not be greatly affected 

by the self-gravity torque, and the A mode will rapidly spread most of the disk mass 

inward toward the central star. While we cannot specifically address the question 

regarding the relative amount of the mass of the Solar System contained in the Sun, we 

can say that our quasi-linear analysis indicates that there are types of disks in which the 

angular momentum transport will cause matter to flow inward onto the star.  

Perhaps one of the most important conclusions of this work is the finding that 

essentially all disk systems for q = 1.5 and 1.75 are unstable for M*/Md > 25 or 50. This 

reduces the parameter space where young stellar object disks can exist for a reasonable 

length of time. Since we do observe disks, it must mean that there is a mechanism 

causing stability in these disks that is outside our study. Perhaps our assumption of 
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constant entropy is too restrictive. Maybe the addition of heating and cooling 

mechanisms in the equation of state will provide different trends in the stability regimes. 

In future research, we will use the wealth of data produced by this study to 

determine which computationally expensive, nonlinear models to run to gain a fruitful 

picture of the complicated parameter space that our linear study suggests. We will rely on 

the knowledge gained by this linear study to aid in guiding studies of planet migration. 

We will also use it as a basis for comparison with models without the adiabatic 

restriction, utilizing a full conservation of energy equation with heating and cooling 

terms. In the future, we hope to include magnetic fields in our disk calculations as well. 

This broad study of the linear realm of polytropic disks will serve as a basis of many 

future studies.  
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APPENDIX A 

PLOTS FOR SELECTED q = 1.5 MODELS 

 Appendix A contains a sequence of model plots for q = 1.5 models, including 

M*/Md = 0.0, 0.01, 0.1, 1.0, 5.0, 10.0, 25.0, 50.0 and 100.0. In general, figures labeled 

”a” contain plots for M*/Md = 0.0, 0.01 and 0.1; figures labeled ”b” contain plots for 

M*/Md = 1.0, 5.0 and 10.0; and figures labeled ”c” contain plots for M*/Md = 25.0, 50.0 

and 100.0. For each of these values of M*/Md, we include plots for models for  

r-/r+ = 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50. All radii depicted in the plots are normalized 

by R0. Stable and unresolved models are labeled as such. All of the functions plotted in 

the appendices are defined identically to similar plots found in the body of the 

dissertation. 

 Figs. A.1.0 a, b and c contain equilibrium mass density contour plots. The 

contours are defined with ten equally spaced levels between 10
-30

 maximum mass density 

for the individual model. The horizontal and vertical axes measure the grid spacing of 

512 x 512, with tick marks in increments of 50. 

The first number after the “A” in the plot number indicates the value of m. Plots 

for m = 1 models are given in Figs. A.1.1 - A.1.6, plots for m = 2 models are given in 

Figs. A.2.1 - A.2.6, plots for m = 3 models are given in Figs. A.3.1 - A.3.6, and plots for 

m = 4 models are given in Figs. A.4.1 - A.4.6. In the descriptions below, we will refer to 

the sequences as A.m.1, A.m.2, etc, for the plot sequences in m. The second number after 

the “A” in the plot number indicates the type of function plotted. With the exception of 

the eigenfunction phase plots, all of the function plots for m = 1, 2, 3 and 4 plots have  

r/ R0 on the horizontal axes while the vertical axes depict the function values. 

The A.m.1 c contain eigenfunction phase plots, shown in cylindrical coordinates 

where the horizontal and vertical axes depict the radial coordinate, normalized by R0. The 

W phase is plotted with red points while the |δρ|/ρ0 phase is plotted with blue points. The 

inner and outer edges of the disks are shown in blue lines, while R0 and Rco are shown in 

pink and turquoise, respectively.   

The A.m.2 figures contain eigenfunction amplitude plots. W phase is plotted with 

red points while the |δρ|/ρ0 phase is plotted with blue points. The amplitudes are 
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normalized to the maximum value found in the disk, so they scale to 1.0 at the top of the 

vertical axis. The A.m.3 plots show the torque due to self-gravity, plotted in blue, while 

the A.m.4 plots show the perturbed angular momentum, plotted in red. The A.m.5 plots 

show the work integrals. The work done by perturbed enthalpy is plotted in brown and 

the work done by kinetic energy is plotted in blue. The A.m.6 plots show the stresses.  

Reynold’s stress is plotted in black, while the stress due to the work done by gravity is 

plotted in red and the stress due to acoustic flux is plotted in blue. 

In cases where there are no plots shown, no model was calculated for that M*/Md 

and r-/r+. Typically this occurs when the model is in a section of parameter space that is 

obviously stable, as indicated by surrounding models. 
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Fig. A.1.0.a. Equilibrium mass density contour plots of meridional slices for q = 1.5. 
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Fig. A.1.0.b. Equilibrium mass density contours of meridional slices for q = 1.5. 
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Fig. A.1.0.c. Equilibrium mass density contours of meridional slices for q = 1.5. 
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Fig. A.1.1.a. Eigenfunction phases for q = 1.5, m = 1. 
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Fig. A.1.1.b. Eigenfunction phases for q = 1.5, m = 1. 
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Fig. A.1.1.c. Eigenfunction phases for q = 1.5, m = 1. 
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Fig. A.1.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 1. 
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Fig. A.1.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 1. 
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Fig. A.1.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 1. 
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Fig. A.1.3.a. Self-gravitational torque for q = 1.5, m = 1. 
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Fig. A.1.3.b. Self-gravitational torque for q = 1.5, m = 1. 
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Fig. A.1.3.c. Self-gravitational torque for q = 1.5, m = 1. 
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Fig. A.1.4.a. Perturbed angular momentum for q = 1.5, m = 1. 
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Fig. A.1.4.b. Perturbed angular momentum for q = 1.5, m = 1. 
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Fig. A.1.4.c. Perturbed angular momentum for q = 1.5, m = 1. 
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Fig. A.1.5.a. Work integrals for q = 1.5, m = 1. 
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Fig. A.1.5.b. Work integrals for q = 1.5, m = 1. 
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Fig. A.1.5.c. Work integrals for q = 1.5, m = 1. 
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Fig. A.1.6.a. Stresses for q = 1.5, m = 1. 
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Fig. A.1.6.b. Stresses for q = 1.5, m = 1. 
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Fig. A.1.6.c. Stresses for q = 1.5, m = 1. 
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Fig. A.2.1.a. Eigenfunction phases for q = 1.5, m = 2. 
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Fig. A.2.1.b. Eigenfunction phases for q = 1.5, m = 2. 
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Fig. A.2.1.c. Eigenfunction phases for q = 1.5, m = 2. 
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Fig. A.2.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 2. 
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Fig. A.2.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 2. 
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Fig. A.2.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 2. 
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Fig. A.2.3.a. Self-gravitational torque for q = 1.5, m = 2. 
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Fig. A.2.3.b. Self-gravitational torque for q = 1.5, m = 2. 
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Fig. A.2.3.c. Self-gravitational torque for q = 1.5, m = 2. 
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Fig. A.2.4.a. Perturbed angular momentum for q = 1.5, m = 2. 
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Fig. A.2.4.b. Perturbed angular momentum for q = 1.5, m = 2 
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Fig. A.2.4.c. Perturbed angular momentum for q = 1.5, m = 2. 
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Fig. A.2.5.a. Work integrals for q = 1.5, m = 2. 
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Fig. A.2.5.b. Work integrals for q = 1.5, m = 2. 
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Fig. A.2.5.c. Work integrals for q = 1.5, m = 2. 
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Fig. A.2.6.a. Stresses for q = 1.5, m = 2. 
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Fig. A.2.6.b. Stresses for q = 1.5, m = 2. 
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Fig. A.2.6.c. Stresses for q = 1.5, m = 2. 
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Fig. A.3.1.a. Eigenfunction phases for q = 1.5, m = 3. 
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Fig. A.3.1.b. Eigenfunction phases for q = 1.5, m = 3. 
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Fig. A.3.1.c.    Eigenfunction phases for q = 1.5, m = 3. 
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Fig. A.3.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 3. 
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Fig. A.3.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 3. 
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Fig. A.3.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 3. 
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Fig. A.3.3.a. Self-gravitational torque for q = 1.5, m = 3. 



189 

 

q = 1.5 

 m = 3 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 

  

Stable 

r-/r+ = 0.10 

 

Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. A.3.3.b. Self-gravitational torque for q = 1.5, m = 3. 
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Fig. A.3.3.c. Self-gravitational torque for q = 1.5, m = 3. 
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Fig. A.3.4.a. Perturbed angular momentum for q = 1.5, m = 3. 
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Fig. A.3.4.b. Perturbed angular momentum for q = 1.5, m = 3. 



193 

 

q = 1.5 

 m = 3 
M*/Md = 25.0 M*/Md = 50.0 M*/Md = 100.0 

r-/r+ = 0.50 

  

Stable 

r-/r+ = 0.40 

 

Stable Stable 

r-/r+ = 0.30 Stable Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. A.3.4.c. Perturbed angular momentum for q = 1.5, m = 3. 
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Fig. A.3.5.a. Work integrals for q = 1.5, m = 3. 
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Fig. A.3.5.b. Work integrals for q = 1.5, m = 3. 
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Fig. A.3.5.c. Work integrals for q = 1.5, m = 3. 
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Fig. A.3.6.a. Stresses for q = 1.5, m = 3. 
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Fig. A.3.6.b. Stresses for q = 1.5, m = 3. 
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Fig. A.3.6.c. Stresses for q = 1.5, m = 3. 
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Fig. A.4.1.a. Eigenfunction phases for q = 1.5, m = 4. 
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Fig. A.4.1.b. Eigenfunction phases for q = 1.5, m = 4. 
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Fig. A.4.1.c. Eigenfunction phases for q = 1.5, m = 4. 
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Fig. A.4.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 4. 



204 

 

q = 1.5 

 m = 4 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

  

Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05    

 

Fig. A.4.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 4. 



205 

 

q = 1.5 

 m = 4 
M*/Md = 25.0 M*/Md = 50.0 M*/Md = 100.0 

r-/r+ = 0.50 

  

Stable 

r-/r+ = 0.40 

 

Stable Stable 

r-/r+ = 0.30 Stable Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05    

 

Fig. A.4.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.5, m = 4. 
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Fig. A.4.3.a. Self-gravitational torque for q = 1.5, m = 4. 
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Fig. A.4.3.b. Self-gravitational torque for q = 1.5, m = 4. 
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Fig. A.4.3.c. Self-gravitational torque for q = 1.5, m = 4. 
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Fig. A.4.4.a. Perturbed angular momentum for q = 1.5, m = 4. 
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Fig. A.4.4.b. Perturbed angular momentum for q = 1.5, m = 4. 
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Fig. A.4.4.c. Perturbed angular momentum for q = 1.5, m = 4. 
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Fig. A.4.5.a. Work integrals for q = 1.5, m = 4. 
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Fig. A.4.5.b. Work integrals for q = 1.5, m = 4. 
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Fig. A.4.5.c. Work integrals for q = 1.5, m = 4. 
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Fig. A.4.6.a. Stresses for q = 1.5, m = 4. 
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Fig. A.4.6.b. Stresses for q = 1.5, m = 4. 
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Fig. A.4.6.c. Stresses for q = 1.5, m = 4. 
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APPENDIX B 

PLOTS FOR SELECTED q = 1.75 MODELS 

 Appendix B contains a sequence of model plots for q = 1.75 models, including 

M*/Md = 0.0, 0.01, 0.1, 1.0, 5.0, 10.0, 25.0 and 50.0. The column to the right of the 

M*/Md = 50.0 column contains non-self-gravitating models.  In general, figures labeled 

”a” contain plots for M*/Md = 0.0, 0.01 and 0.1; figures labeled ”b” contain plots for 

M*/Md = 1.0, 5.0 and 10.0; and figures labeled ”c” contain plots for M*/Md = 25.0, 50.0 

and non-self-gravitating models. For each of these values of M*/Md, we include plots for 

models for r-/r+ = 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50. All radii depicted in the plots are 

normalized by R0. Stable and unresolved models are labeled as such. All of the functions 

plotted in the appendices are defined identically to similar plots found in the body of the 

dissertation.  

 Please refer to the beginning of Appendix A for a description of the figure 

numbering system as well as descriptions of the individual functions plotted. Note there 

are no plots shown for self-gravity torque in the non-self-gravity column, since it is zero 

by definition for those models. Also, there are typically no non-self-gravitating models 

calculated for r-/r+ = 0.05 due to resolution issues. 
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Fig. B.1.0.a. Equilibrium mass density contour plots of meridional slices for q = 1.75. 
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Fig. B.1.0.b. Equilibrium mass density contours of meridional slices for q = 1.75. 
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Fig. B.1.0.c. Equilibrium mass density contours of meridional slices for q = 1.75. 
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Fig. B.1.1 a Eigenfunction phases for q = 1.75, m = 1 
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Fig. B.1.1.b. Eigenfunction phases for q = 1.75, m = 1 
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Fig. B.1.1.c. Eigenfunction phases for q = 1.75, m = 1 
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Fig. B.1.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 1 
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Fig. B.1.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 1 
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Fig. B.1.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 1 
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Fig. B.1.3.a. Self-gravitational torque for q = 1.75, m = 1 
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Fig. B.1.3.b. Self-gravitational torque for q = 1.75, m = 1 
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Fig. B.1.3.c. Self-gravitational torque for q = 1.75, m = 1 
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Fig. B.1.4.a. Perturbed angular momentum for q = 1.75, m = 1 
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Fig. B.1.4.b. Perturbed angular momentum for q = 1.75, m = 1 
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Fig. B.1.4.c. Perturbed angular momentum for q = 1.75, m = 1 
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Fig. B.1.5.a. Work integrals for q = 1.75, m = 1 
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Fig. B.1.5.b. Work integrals for q = 1.75, m = 1 
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Fig. B.1.5.c. Work integrals for q = 1.75, m = 1 
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Fig. B.1.6.a. Stresses for q = 1.75, m = 1 
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Fig. B.1.6.b. Stresses for q = 1.75, m = 1 
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Fig. B.1.6.c. Stresses for q = 1.75, m = 1 
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Fig. B.2.1 a Eigenfunction phases for q = 1.75, m = 2 
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Fig. B.2.1.b.  Eigenfunction phases for q = 1.75, m = 2 
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Fig. B.2.1.c. Eigenfunction phases for q = 1.75, m = 2 
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Fig. B.2.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 2 
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Fig. B.2.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 2 
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Fig. B.2.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 2 
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Fig. B.2.3.a. Self-gravitational torque for q = 1.75, m = 2 
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Fig. B.2.3.b. Self-gravitational torque for q = 1.75, m = 2 
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Fig. B.2.3.c. Self-gravitational torque for q = 1.75, m = 2 
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Fig. B.2.4.a. Perturbed angular momentum for q = 1.75, m = 2 
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Fig. B.2.4.b. Perturbed angular momentum for q = 1.75, m = 2 
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Fig. B.2.4.c. Perturbed angular momentum for q = 1.75, m = 2 
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Fig. B.2.5.a. Work integrals for q = 1.75, m = 2 
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Fig. B.2.5.b. Work integrals for q = 1.75, m = 2 
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Fig. B.2.5.c. Work integrals for q = 1.75, m = 2 
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Fig. B.2.6.a. Stresses for q = 1.75, m = 2 
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r-/r+ = 0.40 

  

Stable 

r-/r+ = 0.30 

 

Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.2.6.b. Stresses for q = 1.75, m = 2 
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q = 1.75 

 m = 2 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable 

 

r-/r+ = 0.40 Stable Stable 

 

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable 

 

r-/r+ = 0.10 Stable Stable 

 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.2.6.c. Stresses for q = 1.75, m = 2 



258 

 

q = 1.75 

 m = 3 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

 

Stable 

 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.1 a Eigenfunction phases for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

 

Stable Stable 

r-/r+ = 0.30 Stable Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.1.b. Eigenfunction phases for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable 

 

r-/r+ = 0.40 Stable Stable 

 

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable 

 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.3.1.c. Eigenfunction phases for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 Stable 

 

Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

 

Stable Stable 

r-/r+ = 0.30 

 

Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable 

 

r-/r+ = 0.40 Stable Stable 

 

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable 

 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.3.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 Stable 

 

Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.3.a. Self-gravitational torque for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

 

Stable Stable 

r-/r+ = 0.30 

 

Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.3.b. Self-gravitational torque for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable  

r-/r+ = 0.40 Stable Stable  

r-/r+ = 0.30 Stable Stable  

r-/r+ = 0.20 Stable Stable  

r-/r+ = 0.10 Stable Stable  

r-/r+ = 0.05 Stable Stable  

 

Fig. B.3.3.c. Self-gravitational torque for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 Stable 

 

Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.4 a Perturbed angular momentum for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

 

Stable Stable 

r-/r+ = 0.30 

 

Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.4.b. Perturbed angular momentum for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable 

 

r-/r+ = 0.40 Stable Stable 

 

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable 

 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.3.4.c. Perturbed angular momentum for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 Stable 

 

Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.5.a. Work integrals for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

 

Stable Stable 

r-/r+ = 0.30 

 

Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.5.b. Work integrals for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable 

 

r-/r+ = 0.40 Stable Stable 

 

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.3.5.c. Work integrals for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 Stable 

 

Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.6.a. Stresses for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

 

Stable Stable 

r-/r+ = 0.30 

 

Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.3.6.b. Stresses for q = 1.75, m = 3. 
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q = 1.75 

 m = 3 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable 

 

r-/r+ = 0.40 Stable Stable 

 

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable 

 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.3.6.c. Stresses for q = 1.75, m = 3. 
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q = 1.75 

 m = 4 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable 

 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.1 a Eigenfunction phases for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 Stable Stable Stable 

r-/r+ = 0.30 Stable Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.1.b. Eigenfunction phases for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable Unresolved 

r-/r+ = 0.40 Stable 

  

r-/r+ = 0.30 Stable 

  

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.4.1.c. Eigenfunction phases for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable 

 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 Stable Stable Stable 

r-/r+ = 0.30 Stable Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable Unresolved 

r-/r+ = 0.40 Stable 

  

r-/r+ = 0.30 Stable 

  

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.4.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable 

 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.3.a. Self-gravitational torque for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 Stable Stable Stable 

r-/r+ = 0.30 Stable Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.4.3.b. Self-gravitational torque for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 

 

Stable  

r-/r+ = 0.40 

  

 

r-/r+ = 0.30 Stable 

 

 

r-/r+ = 0.20 Stable Stable  

r-/r+ = 0.10 Stable Stable  

r-/r+ = 0.05 Stable Stable  

 

Fig. B.4.3.c. Self-gravitational torque for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable 

 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.4 a Perturbed angular momentum for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 Stable Stable Stable 

r-/r+ = 0.30 Stable Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.4.b. Perturbed angular momentum for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable Unresolved 

r-/r+ = 0.40 Stable 

  

r-/r+ = 0.30 Stable 

  

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.4.4.c. Perturbed angular momentum for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable 

 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.5.a. Work integrals for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 Stable Stable Stable 

r-/r+ = 0.30 Stable Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.5.b. Work integrals for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable Unresolved 

r-/r+ = 0.40 Stable 

  

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.4.5 c Work integrals for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 Stable Stable 

 

r-/r+ = 0.20 Stable Stable 

 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.6.a. Stresses for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 Stable Stable Stable 

r-/r+ = 0.30 Stable Stable Stable 

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. B.4.6.b. Stresses for q = 1.75, m = 4. 
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q = 1.75 

 m = 4 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 Stable Stable Unresolved 

r-/r+ = 0.40 Stable 

  

r-/r+ = 0.30 Stable 

  

r-/r+ = 0.20 Stable Stable Stable 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable  

 

Fig. B.4.6.c. Stresses for q = 1.75, m = 4. 
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APPENDIX C 

PLOTS FOR SELECTED q = 2.0 MODELS 

 Appendix B contains a sequence of model plots for q = 2.0 models, including 

M*/Md = 0.0, 0.01, 0.1, 1.0, 5.0, 10.0, 25.0 and 50.0. The column to the right of the 

M*/Md = 50.0 column contains non-self-gravitating models.  In general, figures labeled 

”a” contain plots for M*/Md = 0.0, 0.01 and 0.1; figures labeled ”b” contain plots for 

M*/Md = 1.0, 5.0 and 10.0; and figures labeled ”c” contain plots for M*/Md = 25.0, 50.0 

and non-self-gravitating models. For each of these values of M*/Md, we include plots for 

models for r-/r+ = 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50. All radii depicted in the plots are 

normalized by R0. Stable and unresolved models are labeled as such. All of the functions 

plotted in the appendices are defined identically to similar plots found in the body of the 

dissertation.  

 Please refer to the beginning of Appendix A for a description of the figure 

numbering system as well as descriptions of the individual functions plotted. Note there 

are no plots shown for self-gravity torque in the non-self-gravity column, since it is zero 

by definition for those models. Also, there are typically no non-self-gravitating models 

calculated for r-/r+ = 0.05 due to resolution issues. 
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q = 2.0 M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 

   

r-/r+ = 0.10 

   

r-/r+ = 0.05 

   

 

Fig. C.1.0.a. Equilibrium mass density contour plots of meridional slices for q = 2.0. 
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q = 2.0 M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 

   

r-/r+ = 0.10 

   

r-/r+ = 0.05 

   

 

Fig. C.1.0.b. Equilibrium mass density contours of meridional slices for q = 2.0. 
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q = 2.0 M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 

   

r-/r+ = 0.10 

   

r-/r+ = 0.05 

  

 

 

Fig. C.1.0.c. Equilibrium mass density contours of meridional slices for q = 2.0. 



298 

 

q = 2.0 

 m = 1 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 Stable 

  

r-/r+ = 0.20 Stable 

  

r-/r+ = 0.10 Stable 

  

r-/r+ = 0.05 Stable 

  

 

Fig. C.1.1 a Eigenfunction phases for q = 2.0, m = 1 
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q = 2.0 

 m = 1 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 

   

r-/r+ = 0.10 

   

r-/r+ = 0.05 

   
 

Fig. C.1.1.b. Eigenfunction phases for q = 2.0, m = 1 
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q = 2.0 

 m = 1 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 

   

r-/r+ = 0.10 

   

r-/r+ = 0.05 

  

 

 

Fig. C.1.1.c. Eigenfunction phases for q = 2.0, m = 1 
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q = 2.0 

 m = 1 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 Stable 

  

r-/r+ = 0.20 Stable 

  

r-/r+ = 0.10 Stable 

  

r-/r+ = 0.05 Stable 

  

 

Fig. C.1.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 1 
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q = 2.0 

 m = 1 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 

   

r-/r+ = 0.10 

   

r-/r+ = 0.05 

   

 

Fig. C.1.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 1 
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q = 2.0 

 m = 1 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 
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Fig. C.1.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 1 
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Fig. C.1.3.a. Self-gravitational torque for q = 2.0, m = 1 
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Fig. C.1.3.b. Self-gravitational torque for q = 2.0, m = 1 
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Fig. C.1.3.c. Self-gravitational torque for q = 2.0, m = 1 
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Fig. C.1.4 a Perturbed angular momentum for q = 2.0, m = 1 



308 

 

q = 2.0 

 m = 1 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 

   

r-/r+ = 0.10 

   

r-/r+ = 0.05 

   

 

Fig. C.1.4.b. Perturbed angular momentum for q = 2.0, m = 1 
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Fig. C.1.4.c. Perturbed angular momentum for q = 2.0, m = 1 
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Fig. C.1.5.a. Work integrals for q = 2.0, m = 1 
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Fig. C.1.5.b. Work integrals for q = 2.0, m = 1 
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Fig. C.1.5.c. Work integrals for q = 2.0, m = 1 
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Fig. C.1.6.a. Stresses for q = 2.0, m = 1 
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Fig. C.1.6.b. Stresses for q = 2.0, m = 1 
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Fig. C.1.6.c. Stresses for q = 2.0, m = 1 
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Fig. C.2.1 a Eigenfunction phases for q = 2.0, m = 2 
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Fig. C.2.1.b.  Eigenfunction phases for q = 2.0, m = 2 



318 

 

q = 2.0 

 m = 2 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 

   

r-/r+ = 0.10 

   

r-/r+ = 0.05    

 

Fig. C.2.1.c. Eigenfunction phases for q = 2.0, m = 2 
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Fig. C.2.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 2 
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Fig. C.2.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 2 
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Fig. C.2.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 2 
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Fig. C.2.3.a. Self-gravitational torque for q = 2.0, m = 2 
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Fig. C.2.3.b. Self-gravitational torque for q = 2.0, m = 2 
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Fig. C.2.3.c. Self-gravitational torque for q = 2.0, m = 2 
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Fig. C.2.4 a  Perturbed angular momentum for q = 2.0, m = 2 
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Fig. C.2.4.b. Perturbed angular momentum for q = 2.0, m = 2 
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Fig. C.2.4.c. Perturbed angular momentum for q = 2.0, m = 2 
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Fig. C.2.5.a. Work integrals for q = 2.0, m = 2 
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Fig. C.2.5.b. Work integrals for q = 2.0, m = 2 
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Fig. C.2.5.c. Work integrals for q = 2.0, m = 2 
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Fig. C.2.6.a. Stresses for q = 2.0, m = 2 
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Fig. C.2.6.b. Stresses for q = 2.0, m = 2 



333 

 

q = 2.0 

 m = 2 
M*/Md = 25.0 M*/Md = 50.0 Non-self-gravitating 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

   

r-/r+ = 0.20 

   

r-/r+ = 0.10 

   

r-/r+ = 0.05    

 

Fig. C.2.6.c. Stresses for q = 2.0, m = 2 
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Fig. C.3.1 a Eigenfunction phases for q = 2.0, m = 3. 
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Fig. C.3.1.b. Eigenfunction phases for q = 2.0, m = 3. 
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Fig. C.3.1.c. Eigenfunction phases for q = 2.0, m = 3. 
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Fig. C.3.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 3. 
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Fig. C.3.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 3. 
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Fig. C.3.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 3. 
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Fig. C.3.3.a. Self-gravitational torque for q = 2.0, m = 3. 



341 

 

q = 2.0 

 m = 3 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 

  

Unresolved 

r-/r+ = 0.20 

   

r-/r+ = 0.10 

   

r-/r+ = 0.05    

 

Fig. C.3.3.b. Self-gravitational torque for q = 2.0, m = 3. 
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Fig. C.3.3.c. Self-gravitational torque for q = 2.0, m = 3. 



343 

 

q = 2.0 

 m = 3. 
M*/Md = 0.0 M*/Md = 0.01 M*/Md = 0.1 

r-/r+ = 0.50 

   

r-/r+ = 0.40 

   

r-/r+ = 0.30 Stable Stable Stable 

r-/r+ = 0.20 Stable Stable 

 

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05    

 

Fig. C.3.4 a Perturbed angular momentum for q = 2.0, m = 3 
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Fig. C.3.4.b. Perturbed angular momentum for q = 2.0, m = 3 
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Fig. C.3.4.c. Perturbed angular momentum for q = 2.0, m = 3 
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Fig. C.3.5.a. Work integrals for q = 2.0, m = 3 
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Fig. C.3.5.b. Work integrals for q = 2.0, m = 3 
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Fig. C.3.5.c. Work integrals for q = 2.0, m = 3 
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Fig. C.3.6.a. Stresses for q = 2.0, m = 3. 
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Fig. C.3.6.b. Stresses for q = 2.0, m = 3. 
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Fig. C.3.6.c. Stresses for q = 2.0, m = 3. 
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Fig. C.4.1 a Eigenfunction phases for q = 2.0, m = 4. 
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Fig. C.4.1.b. Eigenfunction phases for q = 2.0, m = 4. 
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Fig. C.4.1.c. Eigenfunction phases for q = 2.0, m = 4. 
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Fig. C.4.2.a. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 4. 
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Fig. C.4.2.b. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 4. 
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Fig. C.4.2.c. Eigenfunction amplitudes |δρ|/ρ and W for q = 2.0, m = 4. 
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Fig. C.4.3.a. Self-gravitational torque for q = 2.0, m = 4. 
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Fig. C.4.3.b. Self-gravitational torque for q = 2.0, m = 4. 
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Fig. C.4.3.c. Self-gravitational torque for q = 2.0, m = 4. 
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Fig. C.4.4 a Perturbed angular momentum for q = 2.0, m = 4. 
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Fig. C.4.4.b. Perturbed angular momentum for q = 2.0, m = 4. 
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Fig. C.4.4.c. Perturbed angular momentum for q = 2.0, m = 4. 
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Fig. C.4.5.a. Work integrals for q = 2.0, m = 4. 



365 

 

q = 2.0 

 m = 4 
M*/Md = 1.0 M*/Md = 5.0 M*/Md = 10.0 

r-/r+ = 0.50 

   

r-/r+ = 0.40 Stable 

  

r-/r+ = 0.30 

   

r-/r+ = 0.20 

   

r-/r+ = 0.10 Stable Stable Stable 

r-/r+ = 0.05 Stable Stable Stable 

 

Fig. C.4.5.b. Work integrals for q = 2.0, m = 4. 
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Fig. C.4.5.c. Work integrals for q = 2.0, m = 4. 
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Fig. C.4.6.a. Stresses for q = 2.0, m = 4. 
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Fig. C.4.6.b. Stresses for q = 2.0, m = 4. 
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Fig. C.4.6.c. Stresses for q = 2.0, m = 4. 



370 

 

REFERENCES CITED 

 

Adams, F.C., Ruden, S.P. & Shu, F.H. 1989, ApJ, 347, 959 

 

Andalib, S.W., Tohline, J.E., & Christodoulou, D.M. 1997, ApJS, 108, 471 

 

Binney, J. & Tremaine, S., 1994, Galactic Dynamics (Princeton Univ. Press) 

 

Balbus, S.A. & Hawley, J.F., 1998, RvMP, 70, 1 

 

Bodenheimer, P., 1995, ARA&A, 33, 199 

 

Christodoulou, D.M., & Narayan, R., 1992, ApJ, 388, 451 

 

Christodoulou, D.M., 1993, ApJ, 412, 719 

 

Drazin, P.G. & Reid, W.H., 2004, Hydrodynamic Stability (Cambridge: Cambridge Univ. 

Press) 

 

Dyson, F. W., 1893, RSPTA, 184, 43 

 

Eriguchi, Y. & Hachisu, I., 1983, PThPh, 69, 1131 

 

Goldreich, P., Goodman, J. & Narayan, R., 1986, MNRAS, 221, 339 

 

Goodman, J., & Narayan, R., 1987, MNRAS, 225, 695 

 

Goodman, J., & Narayan, R., 1988, MNRAS, 231, 97 

 

Hunter, J. H., Ball, R., & Gottesman, S. T., 1984, MNRAS, 208, 1 

 

Hachisu, I., 1986, ApJS, 61, 479  

 

Hachisu, I., & Eriguchi, Y., 1985, Ap& SS, 99, 71 

 

Hadley, K., & Imamura, J.N., 2010, Ap&SS, submitted 

 

Heemskirk, M.H.M, Papaloizou J.C. & Savonije, G.J., 1992, A&A, 260, 161 

 

Imamura, J.N., Toman, J., Durisen, R.H., Pickett, B.K., & Yang, S., 1995, ApJ, 444, 363 

 

Kojima, Y., 1986, PThPh, 75, 251 

 

Kojima, Y., 1989, MNRAS, 236, 589 



371 

 

 

Larsen, R.B., 1971, MNRAS, 156, 437 

 

Lin, D.N.C. & Papaloizou, J.C.B, 1995, ARA&A, 33, 505 

 

Narayan, R., Goldreich, P., Goodman, J., 1987, MNRAS, 228, 1 

 

Noh, H., Vishniac, E.T., & Cochran, W.D., 1991, ApJ, 383, 372 

 

Noh, H., Vishniac, E.T., & Cochran, W.D., 1992, ApJ, 397, 347 

 

Papaloizou, J.C. & Savonije, G.J., 1991, A&A, 248, 353 

 

Papaloizou, J.C., & Pringle, J.E., 1984, MNRAS, 208, 702 

 

Papaloizou, J.C., & Pringle, J.E., 1987, MNRAS, 225, 267 

 

Rayleigh, Lord, 1916, PMag, 32, 529 

 

Shapiro, S. L., & Teukolsky, S.A., 1983, Black Holes, White Dwarfs, and Neutron Stars 

(JohnWiley & Sons)  

 

Shariff, K., 2008, AnRFM, 41, 283 

 

Shu, F.H., Adams, F.C., & Lizano, S., 1987, ARA&A, 25, 23 

 

Stone, J.M., Gammie, C.F., Balbus, S.A., Hawley, J.F., 2000, Protostars and Planets IV  

(Tucson: U. of Ariz. Press; eds. Mannings, V., Boss, A.P., Russell, S. S.) 

 

Taga, M. & Iye, M., 1998, MNRAS, 299, 1132 

 

Tassoul, J.-L., 1978, Theory of Rotating Stars (Princeton Univ. Press) 

 

Tohline, J.E., 1980, ApJ, 236, 160 

 

Tohline, J.E., 2002, ARA&A, 40, 349 

 

Tohline, J.E., & Hachisu, I., 1990, ApJ, 361, 394 

 

Toomre, A., 1964, ApJ, 139, 1217 

 

Tsang, D. & Lai, D., 2008, MNRAS, 387, 446   

 

Woodward, J.W., Tohline, J.E., & Hachisu, I., 1994, ApJ, 420, 247    

 

Woodward, J.W., 1986, Ph.D. Thesis, Louisiana State University, Baton Rouge 


