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DISSERTATION ABSTRACT

Scott Ernst

Doctor of Philosophy

Department of Physics 

March 2011

Title: A Nonlinear Investigation of Corrugation Instabilities in Magnetic 
Accretion Shocks

Approved: 
	 Dr. Jim Imamura

	 Accretion shock waves are present in many important astrophysical systems 

and have been a focus of research for decades. These investigations provide a 

large body of understanding as to the nature, characteristics, and evolutionary 

behaviors of accretion shock waves over a wide range of conditions. However, 

largely absent are investigations into the properties of accretion shock waves 

in the presence of strong magnetic fields. In such cases these strong magnetic 

fields can significantly alter the stability behaviors and evolution of the accretion 

shock wave through the production and propagation of magnetic waves as well 

as magnetically constrained advection. With strong magnetic fields likely found 

in a number of accretion shock systems, such as compact binary and protostellar 

systems, a better understanding of the behaviors of magnetic accretion shock 

waves is needed.

	 A new magnetohydrodynamics simulation tool, IMOGEN, was developed 

to carry out an investigation of instabilities in strong, slow magnetic accretion 

shocks by modelling their long-term, nonlinear evolution. IMOGEN implements a 
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relaxed, second-order, total variation diminishing, monotonic upwind scheme for 

conservation laws and incorporates a staggered-grid constrained transport scheme 

for magnetic advection. 

	 Through the simulated evolution of magnetic accretion shocks over a wide 

range of initial conditions, it has been shown, for sufficiently high magnetic field 

strengths, that magnetic accretion shocks are generally susceptible to corrugation 

instabilities, which arise in the presence of perturbations of the initial shock 

front. As these corrugation instabilities grow, they manifest as magnetic wave 

propagation in the upstream region of the accretion column, which propagate 

away from the accretion shock front, and as density columns, or fingers, that 

grow into the higher density downstream f low, defined and constrained by 

current loops created during the early evolution of the instability.
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CHAPTER I

INTRODUCTION

	 Accretion shock waves, which occur when matter is pulled by 

gravitational forces onto the surface of a large gravitational body, such 

as a star, from some other stellar partner or gas cloud, contribute to the 

observable and long-term evolutionary properties of many important 

astrophysical systems. The investigation of accretion shock waves has, 

therefore, been an active area of research for over f ifty years in theoretical 

and computational astrophysics. That body of research has rendered a 

fairly robust understanding of the mechanisms that govern accretion shocks 

found in magnetic plasmas, and explain the observed properties of a wide 

range of accretion shock wave systems (Blondin, et al., 2003; Hartmann, 

2007).

	 However, insights into variations among observed compact binary and 

protostellar systems, examples of which include X-Ray binaries, polars, 

intermediate polars, and AM Her and T Tauri type stars, could be due in 

part to the presence of magnetic accretion shocks (Burwitz,, et al., 2003; 

Donatil, et al., 2005; Girart, et al., 2006; King, 1988; Lamb, et al., 1973; 

Lamb, et al., 1975; Shu, et al., 1997). In many of these cases it is likely that 

the observed protostar or the primary star in a compact binary system have 

magnetic f ields of suff icient magnitude that they inf luence, and in some 

cases dominate, the accretion column in which the shock wave resides by 

both channeling the f low of the accretion column and introducing new 

mechanisms for both transient and secular behaviors to occur (Lesson & 
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Desphande, 1967; Stone & Edelman, 1993).

	 Of the large amount of research conducted on accretion shock waves, 

comparatively little work has been done to investigate them in the 

presence of strong magnetic f ields even though magnetic f ields can 

signif icantly alter the properties of the shock front and in turn inf luence 

the evolutionary behaviors of accretion systems. In the work that has been 

carried out, researchers have found that the magnetic f ield does in fact 

play an important role in the dynamics and stability of accretion shock 

systems, including systems with properties that potentially coincide with 

the previously mentioned accretion systems. In these systems the presence 

of the magnetic f ield leads to additional corrugation instabilities that ripple 

the shock front and can radically alter its long-term behavior (Lesson & 

Desphande, 1967; Stone & Edelman, 1993). 

	 The presence of a magnetic f ield increases the number of degrees 

of freedom available to accretion shock waves and, in turn, provides a 

wider potential array of properties and behaviors. For example, consider 

a nonmagnetic shock wave, which has only thermal mechanisms for 

propagating energy away from the shock front into the upstream region, as 

the acoustic pressure waves travel with velocities less than the upstream 

f low speed (Boyd & Sanderson, 2003). Therefore, acoustic waves cannot 

propagate into the accretion column and neither transport energy away 

from the front nor inf luence the upstream accretion f low. Hence radiative 

transport has been a primary focus of accretion shock wave research for 

the purely hydrodynamic cases studied.
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	 The addition of a magnetic f ield allows for three additional wave types 

for propagating energy away from the shock front. Two of these are the 

fast and slow magnetoacoustic waves, which are longitudinal waves like 

the purely acoustic wave but with propagation velocities that exceed that of 

the purely acoustic case. The other is Af lvén waves, transverse magnetic 

waves that can also propagate faster than a purely acoustic wave under the 

applicable conditions (Boyd & Sanderson, 2003). For cases where the shock 

speed is sub-Alfvénic, meaning at least one of these magnetic wave modes 

will propagate ahead of the shock front as is typically the case in strongly 

magnetic accretion systems. Figure 1.1 illustrates these wave modes as a 

comparison between hydrodynamic and magnetohydrodynamic cases. 

Magnetohydrodynamic Versus Hydrodynamic Wave Propagation
Hydrodynamic disturbance:

Sonic waves

Magnetohydrodynamic disturbance:

Slow Magnetosonic waves
(longitudinal)

Fast Magnetosonic waves
(longitudinal)

Alfvén waves
(transverse)

sv c>

sv c>
Av v<

Figure 1.1: Hydrodynamic and magnetohydrodynamic wave comparison 
for point disturbances. The left disturbances are stationary, showing 
isotropic propagation of the waves away from the disturbance. 
Disturbances on the right are moving rightward at supersonic speed, and 
only magnetic wave modes are able to propagate ahead of the disturbance.
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In contrast to the single acoustic wave mode and propagation speed of 

any hydrodynamic disturbance, magnetohydrodynamic disturbances have 

additional wave modes with speeds in excess of the acoustic speed. Hence, 

in an accretion shock wave, the magnetic wave modes are still capable 

of impacting the upstream f low of the accretion column, and altering the 

evolution of the shock front in ways that could help explain observable 

properties of compact binary and protostellar systems (Stone & Edelman, 

1993).

	 A thorough, nonlinear investigation into the stability properties and 

long-term behaviors of magnetic accretion shocks is needed and is the 

result of the research presented here. Previous work was conducted by 

Lessen and Desphande and Edeleman into the linear properties of magnetic 

accretion shocks under strong assumptions or limited dimensionality, and 

Stone and Edeleman have presented some nonlinear work that focuses 

mostly on two-dimensional systems (Lesson & Desphande, 1967; Stone & 

Edelman, 1993). The present research, by looking into the variabilities, 

or similarities, between shock behaviors over a wide range of parameters 

such as incident angle of the accretion column onto the shock front, the 

magnetic f ield strength, and propagation and acoustic velocities in the 

upstream f low, attempts to better understand how magnetic accretion 

shocks behave compared to their hydrodynamic counterparts and shed 

some light on the mechanisms responsible for the properties of observed 

accretion systems. It extends the previous work by conducting an 

investigation using a fully nonlinear, three-dimensional treatment of 
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magnetic accretion shocks over a broad range of parameter space, and 

provides a deeper analysis into behavioral variations among corrugation 

instabilities in different areas of parameter space. In doing so, the results 

uncover reasons behind key changes in the instability growth for different 

initial conditions that were hitherto unaddressed. Additionally, this 

investigation utilizes recent developments in computational astrophysics, 

employs numerical techniques and algorithms, and takes advantage of 

the signif icantly greater availability of computational resources than the 

previous investigations that were conducted close to two decades ago.

	 In order to complete this investigation, a new simulation software, 

IMOGEN, was developed and tested, employing the latest computational 

astrophysical methods required for the investigation as described in 

chapters 3-5. Once complete, IMOGEN was put to use as the simulation 

tool for the magnetic accretion shock problem, the results of which are 

presented in chapter 6 and summarized in chapter 7. The goal of this 

research is the expanded understanding of the behaviors of shocks in the 

strong, slow magnetic shock regime to better define what drives these 

instabilities, resolve unanswered questions from previous work regarding 

their evolutionary variations and stability, and provide the foundational 

basis of understanding necessary to extend the investigation to include 

additional physics, specif ically radiative cooling in the shock system.
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CHAPTER II 

BACKGROUND AND THEORY

	 Like many complex problems in physics, the most robust approach to 

solving astrophysical problems would be to consider the dynamics of their 

constituent elements, protons and electrons in hot regimes and atoms and 

molecules in cool regimes, within the system of interest and evolve each 

element in time from initial to f inal states. However, even with abundant 

computational resources, this type of  approach is intractable. This forces 

astrophysicists to rely on continuum f luid mechanics, a reasonable, 

but nonetheless approximate, solution method based on fundamental 

conservation laws that are macroscopic and tractable.

2.1. Conservation Law Approach

	 For any quantity, Q, that is conserved within the temporal and spatial 

bounds of a system of interest, there exists a conservation equation that 

applies everywhere locally to the volume density, q, for that quantity and 

takes the general form,

∂ +∇ ⋅ ( ) =tq qv 0 ,	 (2.1)	

where q is the density of the conserved quantity at some point within the 

system and v is the three-dimensional velocity associated with that density. 

For a conserved vector quantity, Q, with its associated density, q, a similar 

equation exists in the form,

∂ +∇ ⋅ ( ) =tq qv 0 .	 (2.2)
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Outer-product notation is used here in the term, qv, which evaluates as a 

3x3 square matrix, which when operated on by the divergence operator 

reduces to a vector with a component for each component of the density. 

Equation (2.2) can therefore be expanded component-wise as three 

equations of the form (2.1), one for each component.

	 Dimensional analysis of (2.1) and (2.2) reveals that the term inside the 

divergence operator represents an amount per area per time, also known 

as a f lux. This gives rise to equations of the form (2.1) and (2.2) being 

classif ied as advection, or f low, equations where the time dependence in 

quantity, Q or Q, is due to spatial transport as a result of variations in a 

corresponding f lux. Furthermore, (2.1) and (2.2) are conservative advection 

equations because variations with respect to time are due only to the 

variations in the f lux. Put another way the quantity at a point can change 

over time only because some or all of the quantity was transported to some 

other point in the system, no amount of the quantity can be created or 

destroyed during this process. This conservative nature holds regardless of 

the complexity of the f lux term, as long as it reduces to the basic form of 

(2.1) or (2.2).

	 If, however, terms are included that cannot be written in terms of the 

divergence of a f lux, the advection equation is no longer conservative, 

allowing for the change in the total quantity within the system over 

time. Such terms are called source terms to distinguish them from the 

conservative f lux terms.

	 A f inal distinction of note regarding advection equations is the 
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difference between a conservative advection equation and one written 

in conservative form. An advection equation in conservative form is any 

advection equation, either conservative or non-conservative, written with 

all of the conservative f lux terms contained within a single divergence 

operator and all non-conservative source terms expressed on the right-hand 

side of the equation. A general advection equation in conservative form 

looks like

∂ ( ) +∇ ⋅ ( )( ) = ( )tq t t S tr F r r, , , ,	 (2.3)

where F is the total f lux vector, which could be made up of many 

conservative f lux terms, and S is the collection of source terms. All 

advection equations contained within this work will be in conservative 

form, although not all are conservative advection equations.

2.2. Ideal Magnetohydrodynamics

	 Astrophysical systems are described using a grouping of interdependent 

advection equations, collectively called the magnetohydrodynamic 

equations. These equations, along with a number of auxiliary equations 

fully describe the evolution of an astrophysical system. The most 

commonly used form of the magnetohydrodynamic equations are,

∂ +∇ ⋅ ( ) =tρ ρv 0 ,	 (2.4)

∂ ( ) +∇ ⋅ − +( ) =t Pρ ρv vv BB I * 0 ,	 (2.5)

∂ +∇ ⋅ +( ) − ⋅( )( ) =tE E P* v B B v 0 ,	 (2.6)
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∂ +∇ ⋅ −( ) =tB vB Bv 0 .	 (2.7)

Here ρ is the mass density, v is the velocity vector, B is the magnetic 

f ield vector, P* is the total pressure, and E the total energy. A number of 

assumptions were made to arrive at these equations, f irst of which is that 

the electrical conductivity of the system is infinite, as a proper description 

of resistance would require the addition of non-conservative diffusion and 

dispersal terms. The choice to assign an infinite value to the conductivity 

is a reasonable one in the investigation of hot plasmas, and the 

magnetohydrodynamic equations under this condition are called the ideal 

magnetohydrodynamics equations. In cooler plasmas, where resistivity is 

of greater signif icance, the more general resistive magnetohydrodynamic 

equations are required. However, due to the added complexity of the 

additional resistive source terms the resistive magnetohydrodynamic 

equations are used only when absolutely necessary (Boyd & Sanderson, 

2003).

	 A natural unit system is used for these equations where the magnetic 

permeability, µ =1, and the magnetic f ield is re-normalized to include the 

factor of 4π that would normally appear in the denominator of the magnetic 

terms. The re-normalization is such that the original magnetic f ield B  is 

redefined as

B B
=

4π .	 (2.8)

This leads to a system of equations without any extraneous irrational 



10

coefficients on the magnetic terms (Gardiner & Stone; 2005).

	 Equation (2.4) describes the conservative evolution of mass density 

through the system and is called the continuity equation. Equation (2.5) 

is the conservative evolution of the momentum, which is just an advection 

equation formulation of Newton’s second law. In (2.5) the total pressure, 

P*, is introduced in the f lux term as a scale coeff icient to the identity 

matrix, which implies an isotropic pressure at each point.  The total 

pressure for the system is defined as the sum of the hydrodynamic gas 

pressure, P, plus the magnetic pressure as,

P P*≡ + ⋅1
2 B B .	 (2.9)

While the gas pressure is a primitive variable within a hydrodynamic 

system, no conservation law exists for it. Instead pressure is introduced 

through auxiliary equations of state, which are responsible for relating 

the pressure to the remaining primitive quantities. Formulating the 

magnetohydrodynamic equations in this way allows for the substitution of 

different equations of state as they pertain to specif ic problems. The most 

common of which is the ideal gas equation of state, which relates the gas 

pressure to the internal energy as,

P = −( )γ ε1 ,	 (2.10)

where ε is the internal energy density and γ is the ratio of specif ic heats.

	 Equation (2.6) is the conservative form of the energy conservation 

equation, which is written in terms of total energy,
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E ≡ + ⋅ + ⋅ε ρ1
2

1
2v v B B .	 (2.11)

While it is true that conservation of the internal energy would be the more 

fundamental choice, total energy turns out to be the more robust form 

to use for numerical purposes due to the additional interdependencies 

of the magnetic f ield and total pressure. This tends to produce more 

stable solutions and so has been widely adopted among the computational 

astrophysics community.

	 Finally (2.7) describes the conservative advection of the magnetic f ield, 

and is indeed Maxwell’s induction equation reworked into conservative 

form by application of vector identities. Left out of the induction 

equation and the remainder of the magnetohydrodynamic equations is the 

divergence-free constraint on the magnetic f ield, 

∇ ⋅ =B 0 ,	 (2.11)

which is implicitly conserved in analytic solutions to this system 

of equations but is not in a discrete, numerical one because the 

discretization of the magnetic f ield leads to quantization errors that tend 

to compound. Given the lack of this explicit constraint, computational 

magnetohydrodynamics has to treat the induction equation carefully and 

differently from the other conservation equations as will be discussed in 

more detail in following chapters (Balsara, 2004; Dai & Woodward, 1998).

	 From here on a Cartesian coordinate system will be used and all 

references to dimensionality will assume such a coordinate system. No care 

or attention will be given to presenting material in a general, coordinate-
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independent fashion. With a single coordinate system in mind it is useful 

to present the magnetohydrodynamic equations in a Cartesian component-

wise fashion for later reference as shown in Figure 2.1.

( ) ( )

*

*

*

*

where:

it

i

x i x i xix

y i y i yiy

z i z i ziz

i x x y y z z it i
i

x i x i x

y i y i y

z i z i z

i

v
v v B B P Iv
v v B B P Iv
v v B B P Iv
E P v v B v B v B BE

B v B B v
B v B B v
B v B B v

B

ρρ
ρρ
ρρ
ρρ

 
  − + 
 − +
  − + 
  + − + +∂ + ∂  
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Cartesian Component Form of the 
Ideal Magnetohydrodynamic Equations

Figure 2.1: Cartesian component representation of the 
magnetohydrodynamics equations (2.4) - (2.7) along with the divergence-
free constraint that must be imposed on magnetic advection equation.

2.3. Shocks

	 A shock, in the astrophysical sense, is defined as a discontinuous 

disturbance between two distinct regions of differing primitive states, ρ, ρv, 

E, and B. On each side of the shock front, the surface of discontinuity that 

separates and defines the boundary between the two distinct regions, there 

exists a solution to the  magnetohydrodynamic equations, (2.4) - (2.7), 

that is different from the corresponding solution in its adjoining region. 

For a shock to exist there must be an abrupt velocity transition between 

the regions across the shock front so that in one region the velocity is 
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locally supersonic, with a velocity in excess of the local sound speed in 

that region, and in the other it is subsonic, with a velocity smaller than the 

local sound speed for that region. Hence as the shock wave propagates with 

respect to a laboratory reference frame, it moves into the supersonic, or 

upstream, region expanding the subsonic, or downstream, region.

	 The interdependencies of the primitive variables between the upstream 

and downstream regions of a shock are determined by setting the 

magnetohydrodynamic equations, (2.4) - (2.7) that define each of the 

regions equal to their corresponding equation in the adjoining region and 

then solving that two-region boundary system. The resulting group of 

relationships between the upstream and downstream variables is called 

the Rankine–Hugoniot jump conditions, or more succinctly the jump 

equations, that define how the variables abruptly change across the shock 

front (Boyd & Sanderson, 2003).

	 A common method for f inding the jump equations is to consider the 

problem as a one-dimensional steady-state shock and solve the equations in 

the frame of the shock, in which case the front is stationary. It’s important 

to realize that describing the system as one-dimensional only means that 

the spatial dependence along the directions perpendicular to the front are 

isotropic; it does not confine the velocity and other vector quantities to a 

single, shock-aligned direction. 

	 For the scope of this work, the jump conditions will be considered 

in terms of a single angle  that describes the relative angle between the 

upstream velocities and magnetic f ields and the local, planar surface shock 
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front that separates the two regions. The assumption is made in all cases 

that the incident, upstream magnetic f ield and velocity are parallel because 

the geometry of the magnetic shock wave accretion problem for strong 

magnetic f ields produces magnetically constrained f lows, which tend to 

align the velocity and magnetic f ield. Without signif icant resistivity or 

other, related diffusion terms there is no mechanism to counteract this 

tendency toward a parallelization of the magnetic f ield and velocity. For 

these cases the resulting jump conditions that describe the systems are,

ρv


  =
1

2
0

,	 (2.12)

ρv P B


2
2

1

2

2
0+ +









 =⊥

, 	 (2.13)

ρv v B B
 ⊥ ⊥−  =

1

2
0

, 	 (2.14)
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


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 − +( )







 =⊥ ⊥ ⊥    

, 	 (2.15)

v B B v
 ⊥ ⊥−  =

1

2
0

,	 (2.16)

These jump conditions have been cast in a form that is predisposed to work 

well with numerical solvers instead of the most compact representation. 

The preference of form results from the need in the main body of work to 

generate a large set of initial conditions using the jump equations for a 

wide variety of cases (Boyd & Sanderson, 2003).



15

2.3.1. Magnetic Shock Regimes

	 Magnetic shocks can be broken into four regimes, combinations of slow 

or fast and weak or strong. The terms weak and strong are representative 

of the change in velocity between the upstream and downstream regions, 

where a weak shock is one where the change in velocity is relatively 

small between the upstream and downstream regions as opposed to a 

strong shock where the change in velocity between regions is large. 

Understanding that the barrier between weak and strong shocks is soft, and 

is often case specif ic, a fair assumption of the regimes can be defined in 

terms of the sonic Mach number,

M
cs
s

≡
v

, 	 (2.17)

which is the ratio between the advection speed, |v|, and the adiabatic speed 

of sound, cs, in the surrounding upstream medium. Generally, shocks with 

upstream Mach numbers less than 3 are considered weak and values above 

3 considered strong.

	 Similarly the terms slow and fast refer to the magnetic propagation 

speed,

vA =
B
ρ , 	 (2.18)

called the Alfvén speed, in the upstream medium. A slow magnetic shock, 

is one where the Alfvén Mach,
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M
vA
A

≡
v

, 	 (2.19)

is less than one, which signif ies that magnetic waves are able to propagate 

faster than the advection speed. Fast magnetic shocks, where the advection 

speed exceeds the speed at which magnetic waves propagate within the 

medium, are therefore any shocks with an Alfvén Mach, MA, greater than or 

equal to one.

	 Figure 2.2 illustrates the four possible shock regimes, and highlights the 

region of interest, the slow, strong regime, which is the regime investigated 

in this work.

Magnetic Shock Regimes

Slow

Weak

Strong

Fast

sM

AM

(sonic Mach)

(Alfven Mach)

Region of Interest

Figure 2.2: Magnetic shock regime diagram illustrating the four possible 
regime classifications for magnetic shocks. The strong slow regime has 
been highlighted as the region of interest for investigation.	

2.3.2. Magnetic Shock Instabilities

	 A large amount of work has gone into the study of shock behaviors and 

instabilities for shocks classif ied by (2.12) - (2.16) in purely hydrodynamic 



17

cases, i.e. where the magnetic f ield is negligible everywhere, for both the 

weak and strong shock regimes. These investigations include, among other 

things, the effects of radiation and other thermal properties. Similarly, 

work has been done to understand the behaviors of fast magnetic shocks, 

both strong and weak, where the small magnetic f ield has at most an 

ancillary effect on the overall shock system. Much less work has gone 

into studying the slow magnetic shock regime, particularly in cases of 

strong shocks, due in part to the fact that the other regimes are much more 

common and because of the diff iculties involved in investigating shocks 

with strong magnetic f ields.

	 What makes the magnetic accretion shock system potentially interesting 

is that the presence of magnetic f ields introduce three additional wave 

modes to the system. The modes are the fast and slow magnetoacoustic 

waves, compression waves of pressure coupled to the magnetic f ield, 

and the Alfvén wave mode, a transverse magnetic f ield wave. Unlike the 

acoustic compression waves found in a purely hydrodynamic system, a 

number of the magnetic waves can propagate faster than a shock wave 

under the right conditions, namely a sub-Alfvénic system where the Alfvén 

Mach, (2.19) is small. As previously mentioned, the result is that in a slow 

shock, these new magnetic wave modes are capable of propagating ahead 

of the shock front and, consequently, inf luencing the evolution of the front 

as it evolves in space and time. For more discussion and derivation of these 

wave modes see associated references (Boyd & Sanderson, 2003; Edelman, 

1990; Edelman, 1993; Stone & Edelman 1995).
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	 An investigation of strong, slow magnetic shocks can be carried out in 

either of two ways. The f irst, a linear investigation, involves linearizing 

the magnetohydrodynamic equations, (2.4) - (2.7), and f inding solutions 

either analytically or through numerical means depending on the 

complexity of and simplif ications applied to a particular shock system. The 

f inal results of this type of linear analysis are relationships that specify 

the stability of the system to perturbation as well as the relationships 

that give insight into how any instabilities form and behave during their 

early evolution. As the solution is linear the results hold only for the early 

development of the instability. That is until the nonlinear terms of the 

highly nonlinear magnetohydrodynamic equations become consequential 

in the evolution of the shock system. While these results are limited to the 

early development of instabilities, understanding if and how the instability 

forms, as well as its early evolution, is crucial to understanding the 

behaviors of the shocks more generally.

	 The second approach is to conduct a nonlinear investigation, which 

can only be carried out using numerical methods and with signif icant 

computational resources as the evolution of the magnetohydrodynamic 

equations are, for all but a few cases, extremely diff icult to solve in a 

fully nonlinear context. The results of these nonlinear investigations are 

complete solutions for the evolution of the shock system, which can be 

analyzed to determine the stability and growth behaviors of the shock 

in both early and late developmental stages. These results can also be 

modelled to determine general behaviors as well as provide a way of 
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comparison to the linear results to better understand how the formation of 

an instability inf luences its long-term development and eventual end.

	 Previous investigations of slow, strong magnetic shocks have focused 

primarily on linear approaches and have been carried out with signif icant 

simplif ications to make f inding solutions tractable. In these analyses, 

carried out in various forms by Lessen, Desphande, and Edeleman, the 

strong, slow shock regime was found to be unstable. Among these results 

differing regions were identif ied, typically for shocks with small incident 

angles between the shock front normal and the incident angle of the 

upstream f low, where stable was possible. However, in Edeleman’s most 

recent work, an investigation of the fully three-dimensional shock system, 

he found these stability regions to be an artifact of the previous two-

dimensional analysis and now supports the conclusion that oblique shocks 

are unconditionally unstable (Edelman, 1990; Edelman, 1993; Lesson & 

Desphande, 1967; Stone & Edelman 1995).

	 Some initial nonlinear numerical work was carried out by Stone to 

verify Edelman’s linear results and these results, mostly conducted on 

two-dimensional cases but with some work in three-dimensions as well, 

support Edelman’s conclusion that the regime is unconditionally unstable. 

In these unstable slow, strong magnetic shocks the growth of a corrugation 

instability occurs, which is a term used to describe a general class of shock 

instabilities that result in the deformation of shape of an initially well-

defined shock front (Stone & Edelman 1995). 

	 This research extends those earlier investigations with a fully three-
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dimensional, nonlinear examination that more thoroughly investigates the 

variations in these corrugation instabilities, or potentially lack thereof, 

under a much wider variety of initial conditions, relaxes the physical 

assumptions used to achieve the earlier results, and employs more modern 

numerical and computational methods and techniques. The goal of this 

research is the expanded understanding of the behaviors of shocks in the 

strong, slow magnetic shock regime to better define what drives these 

instabilities, resolve unanswered questions from previous work regarding 

their evolutionary variations and stability, and provide the foundational 

basis of understanding necessary to extend the investigation to include 

additional physics, specif ically radiative cooling in the shock system.

	 To this end a new numerical and computational framework was 

developed to carry out the nonlinear investigation. The following chapters 

describe this framework, f irst the numerical methods and then their 

implementation into a new simulation system, IMOGEN, that was designed 

and developed to carry out the fully nonlinear, time-dependent, three-

dimensional corrugation instability investigation for the strong, slow shock 

magnetic regime.
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CHAPTER III 

NUMERICAL MAGNETOHYDRODYNAMICS

	 While a number of different methods exist to solve the 

magnetohydryodynamics equations, (2.4) - (2.7), the most popular by far is 

to use Finite-Difference Time-Domain (FDTD), which in three dimensions 

is commonly referred to as Finite-Volume Time-Domain (FVTD). In 

FVTD a compact, bounded spatial domain is defined and that domain is 

discretized into an array of structured, regular f inite volume elements. 

Each of these f inite volume elements, or cells, represents a complete 

physical state of the simulated system within the volume represented 

by the cell with a set value, or values, for each primitive variable. The 

primitive variables are then collectively represented as a spatial f ield, i.e. 

a multi-dimensional array, with distinct values within each cell. With a 

single value per primitive variable per cell, the discretization is a piece-

wise constant approximation of the physical f ield where the value at a cell 

represents an average, uniform value for the entire cell. Obviously, by 

making this approximation, the larger the volume of the cell the greater the 

approximation and the less accurate the result (Liu & Liu, 2003; Tajima, 

2004; Van Albada, et al., 1982).

	 As the advection equation is a differential equation in both temporal 

and spatial domains, time must be discretized as well. In FVTD temporal 

discretization is explicit, using a dynamic, iterative method of successive 

time-steps from initial time to f inal time. The details of which are 

described in the following sections.
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3.1. Discrete Magnetohydrodynamics

	 Consider the advection equation, (2.1), in the one-dimensional case,

∂ + ∂ =t x xq qv 0 , 	 (3.1)

where q is a function in both space and time. The approach used to 

discretize this equation for use in a FDTD/FVTD method is to replace the 

derivatives with their most basic discrete representation, 

∂ ≈
+ ∆( ) − ( )
∆xu

u x x u x
x ,	 (3.2)

which of course is a low-order approximation for a f inite spacing, Δx. 

Using this formulation of the derivative (3.1) takes on the form,

q q t
x
qv qvi

t t
i
t

x i

t
x i

t+∆ = −
∆
∆

( ) − ( )( )
+ − .	 (3.3)

Here Δt  is the discretized time-step, Δx is the length of the cell, and the 

superscripts and subscripts represent the value at which the functional 

quantity is evaluated in time and space respectively. For some time-step, 

Δt, the updated quantity, q, can be calculated for the cell, i, by evaluating 

the f lux terms at the upper and lower boundaries of the cell, i+ and i-.

	 The main diff iculty that arises from (3.3) is that the spatial 

discretization defines all of the quantities at the center of each discrete 

cell as the average value over that entire cell. Therefore, to carry out (3.3) 

the values of the advection terms need to be determined at the boundaries 

of the cell for each time-step in the solution. The simple approach would 

be to use a center-difference averaging of the values at the cell, i, and its 
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neighboring cells, i-1 and i+1, which would look like,

qv
qv qv

x i
x i x i( ) =

( ) + ( )
+

+1

2 , and	 (3.4)

qv
qv qv

x i
x i x i( ) =

( ) + ( )
−

−1

2 .	 (3.5)

Substituted back into (3.3), the equation takes on the form

q q t
x
qv qvi

t t
i
t

x i

t
x i

t+∆
+ −

= −
∆
∆

( ) − ( )( )2 1 1
.	 (3.6)

While successfully redefining the discretized advection equation in terms 

of values that exist in a FDTD/FVTD representation, this technique turns 

out to be unstable numerically. Numerical errors compounds rapidly in 

this formulation for the higher frequencies due to their truncation in the 

approximations. This can be shown by considering the plane wave solution 

to the advection equation, and using that to determine the dispersion 

relationship of the discrete advection equation (3.6). Inspection of the 

results shows a clear growth in the higher frequency Fourier modes, which 

rapidly dominate any numerical solution. For more detail on the analysis of 

the numerical instability in (3.6) associated references (Tajima, 2004; Trac 

& Pen; 2003). 

	 It turns out that all discrete differencing schemes like (3.6), which 

are classif ied as spatially f irst-order because the discretized advection 

equation (3.3) includes only f irst order terms in space and time, are 

numerically unstable for the same reason. To do any sort of discrete 
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computation, a higher-order differencing scheme is required (Van Leer, 

1974; Trac & Pen, 2003).

3.1.1. Lax-Wendroff Scheme

	 The Lax-Wendroff scheme is the fundamental second-order differencing 

scheme. Instead of directly substituting the f irst order derivative 

approximation, (3.2), into the advection equation, a second-order Taylor 

series expansion in time is used to define the value of the quantity, q, at 

time t+Δt, and the advection equation is used to substitute the temporal 

derivatives with spatial ones. The resulting equation has the form,

q q qv t qv qv q tt t t
x x

t
x q x

t
q x

t
x
t+∆ = + ∂ ( ) ⋅ ∆ + ∂ ∂ ( ) ⋅ ∂ ( ) ∂( ) ⋅ ∆

2

2 .	 (3.7)

Using the same discretization methods as the f irst order technique 

described above, the discrete formulation of the Lax-Wendroff scheme has 

the form,

q q t
x
qv qv

v t
x

qv

i
t t

i
t

x i

t
x i

t

x
x i

+∆
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= +
∆
∆

( ) − ( )( )
+

∆
∆






 ( )

2

2

1 1

2

++ −
+ ( ) − ( )( )1 1

2t
x i

t
x i

tqv qv
.	 (3.8)

	 A comparison between (3.8) and the f irst-order scheme (3.6) reveals 

that the Lax-Wendroff scheme differs only by the addition of a second-

order f lux correction term. Unlike the f irst-order scheme of (3.6), which is 

unconditionally unstable, the Lax-Wendroff scheme turns out to be stable 

in well-defined, but potentially restrictive cases. The scheme is also only 
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suitable for advecting f ields consisting of low-frequency spatial modes. 

When higher frequency spatial modes, where high frequency is defined 

in terms of steep gradients between cells, the scheme exhibits numerical 

dispersion and diffusion that can be quite problematic (Lax & Wendroff, 

1967). 

	 A number of other second-order schemes exist, e.g. the Beam-

Warming and Fromm schemes, that all use variations of the second order 

discretization of (3.1) to improve upon the reliability of higher frequency 

advection with varying degrees of success. However, no single second-

order scheme can advect higher frequency spatial modes in a generally 

reliable way (Sweby, 1984).

3.1.2. Courant-Freidrichs-Lewy Condition

Despite the variations in second-order schemes, they all share the same 

numerical stability criteria,

∆ ≤
∆t x
vx .	 (3.9)

This condition, (3.9), which is called the Courant-Freidrichs-Lewy (CFL) 

condition, sets the maximum allowed time-step for each iteration in a 

second-order advection scheme. The condition can be understood more 

intuitively in the form,

∆
∆

≤
x
t
vx

.	 (3.10)

In this form it’s easier to see that the condition is setting a limit on the 
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time-step based on the advection velocity of the cell, which prevents the 

quantity, q, at some cell i-1, from advecting completely through the cell i 

and into cell i+1 in a single step. The reason this is necessary is that the 

central differencing formulation relies only on the nearest neighbor cells. 

If the time-step were to allow the quantity, q, to advect from cell i-1 to 

cell i+1 without f irst advecting into cell i, the scheme would be unable to 

incorporate such transport and the advected quantity would no longer be 

conserved, resulting in an erroneous solution.

	 The impact of the CFL condition is best understood by considering 

an entire spatial domain. The solution at each cell is dependent upon the 

values of its neighboring cells, which requires the time-step to take on a 

global value for the entire spatial domain. The value that the CFL condition 

must take on is the most restrictive one, i.e. the value of the cell with the 

highest advection velocity and the smallest allowed time-step. Therefore, 

the highest advection velocity within the spatial domain controls the time-

step and for problems with high dynamic advection velocity ranges is 

resource intensive and potentially prohibitively.

3.1.3. Higher-Order Schemes

	 A natural consequence to the limitations of a second-order scheme, 

the undesired numerical dispersion and diffusion in higher spatial mode 

advection and the limits imposed by the CFL condition, might lead one 

to the conclusion that if second-order schemes are better than f irst-order 

schemes, why not use an even higher order scheme instead. 
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	 The answer is that the higher order the scheme, the more problematic 

numerical dispersion and diffusion become. As the order of terms included 

in the advected cell increases, so does the spatial extent to which that 

cells depends. Referred to as the stencil, the relationship between the 

new quantity for a cell on its neighbors, grows with higher order. In 

the second order case, the stencil has a ±1 cell extent around the cell of 

interest. Increasing the order increases that extent, resulting in greater 

general diffusion for the scheme, something that is highly undesirable. 

The discretization of the spatial domain already imposes a minimum 

length scale, and in doing so an artif icial viscosity. To introduce higher 

orders only exacerbates the problem. So while higher order schemes exist 

and are used when appropriate, their inherent properties are not generally 

used when exploring shock wave systems, where low diffusion and high-

frequency advection are needed most (Liu & Liu, 2003; Sweby 1984; 

Tajima, 2004).

3.2. Shock Capturing

	 As already mentioned, the Lax-Wendroff and other second-order 

schemes are suitable for advecting f ields consisting of low frequency 

spatial modes, but have diff iculty advecting higher frequency spatial 

modes. The problem is that most numerical astrophysics simulations 

of interest involve shock waves, which, by their discontinuous nature, 

are high spatial frequency phenomena. With no alternative than to use 

a second-order scheme, the solution is to f ind a way to modify second-

order schemes to handle shock discontinuities, an approach called shock 
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capturing. There are a number of approaches to handling shock capturing. 

Early methods relied on front tracking, where shock discontinuities are 

explicitly identif ied and treated as boundaries between separate advection 

regions. This approach is successful at maintaining shock fronts but is very 

diff icult to manage and use in general cases. More sophisticated forms of 

this technique remain in use today in cases where the physics happening on 

the two sides of the shock is different enough to warrant treating the two 

regions as separate f luids. 	

	 However, in astrophysics a shock-separated-f luid approach is rare, as the 

desire for greater f lexibility in capturing general shocks is needed given 

the frequency in which they appear in problems of interest.

3.2.1. Upwind Schemes

	 A more general way to capture shocks is to make the differencing 

scheme adaptive by introducing directional, or upwind, biasing. The 

idea is to determine the direction of the advection within a cell and then 

preferentially pick the best differencing stencil for that direction. The 

result is a scheme that is much more stable than the static second-order 

schemes previously described and able to capture shocks. The scheme 

works by replacing the advection quantities defined at the boundaries in 

(3.3) with the following biasing,

qv
qv v

qv v
x i

t x i

t

x i

t( ) =
( ) >

( ) <






+

+

0

0
1 , and 	 (3.11)
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x i
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−

−1
0

0
.	 (3.12)

The resulting upwind scheme is, like (3.6), a f irst-order scheme. As such 

its f irst-order accuracy results in issues with high amounts of diffusion 

around shock waves, but, unlike the static second-order schemes, shock 

fronts do not introduce numerical dispersion problems (Trac & Pen, 2003; 

Van Leer, 1979).

	 To understand how different advection schemes compare in their 

handling shock capturing, and high frequency spatial mode advection in 

general, it is useful to test them with a square wave pulse with uniform 

advection velocity. By inspecting how the shape of the pulse deforms 

during the advection process the abilities and limitations of one scheme 

compared to another can be easily demonstrated. Figure 3.1 shows 

an example of both the Lax-Wendroff scheme and the upwind scheme 

advecting a square pulse.

The Lax-Wendroff scheme exhibits some diffusion around the edges of the 

pulse. It also suffers intense numerical dispersion, spurious oscillations, 

that ultimately overtakes and destroys any discontinuities. In comparison, 

the upwind scheme has no apparent numerical dispersion but suffers from 

intense diffusion around the pulse edges. Despite this intense diffusion, 

the upwind scheme is still considered better able to advect shock waves 

because the diffusion settles down once the shock front has been smoothed 

and it preserves monotonicity, and the preservation of monotonicity is
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Figure 3.1: Example advection of a square wave with uniform advection 
velocity using the Lax-Wendroff second-order scheme (on left) and the 
first-order upwind scheme (on right).

extremely important in the stable numerical evolution of astrophysical 

problems.	

	 Like the second-order static differencing schemes there are many 

variations of this upwind scheme, which are generally classif ied as 

Monotonic-Upwind Schemes for Conservation Laws, commonly referred to 

as MUSCL schemes. 

	 There are also higher-order MUSCL schemes that reduce the intensity 

of diffusion around shock discontinuities. However, they rely on using 

higher-order differencing stencils that have extents greater than just 

nearest neighbor cells, which limit the diffusion correction, and are no 

longer really monotonic. Sergei Godunov was able to prove, in what is now 
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called Godunov’s Order Barrier Theorem, that monotonicity can only be 

preserved in a f irst-order differencing scheme (Wessling, 2001).

	 A second-order accurate scheme is certainly needed to reduce the 

diffusion of the MUSCL, but the correction cannot be to the differencing 

stencil itself because monotonicity must be preserved. The only way to 

do it is to add a correction term onto the scheme itself that also maintains 

monotonicty (Tajima, 2004; Toro, 1999).

3.2.2. Second-Order Total Variation Diminishing Schemes

 	 A Total Variation Diminishing (TVD) scheme is any scheme in which 

monotonicity is preserved by obeying the properties that an updated 

quantity, qi
t t+∆

, cannot have more local extrema than its previous value, 

qi
t
, and that existing local extrema cannot grow, increase in amplitude, 

with each time-step. More specif ically an advection calculation cannot 

introduce spurious oscillations from numerical dispersion and cannot 

exacerbate any existing spurious oscillations. All stable f irst-order 

schemes are TVD, including MUSCL, but as is noted the diffusion 

associated with the scheme is unsatisfactory and a second-order TVD 

scheme is needed.

	 The way such a scheme works is to modify the f irst-order MUSCL 

scheme with a second-order advection correction term that has been forced 

to obey the TVD properties by imposing a monotonic correction operator, 

called a f lux limiter, to the calculated correction before applying it to 

the f irst-order advection term. This operation prevents new extrema from 
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forming by removing the inherent dispersiveness of the correction term by 

limiting the advection at each cell boundary. A comparison of the square 

wave advection test between the f irst-order MUSCL and second-order TVD 

MUSCL schemes is shown in Figure 3.2.
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Figure 3.2: Comparison of the first-order MUSCL and second-order TVD 
MUSCL schemes for the square wave pulse advection test.

The second-order TVD MUSCL scheme, unlike other second-order 

schemes, has no apparent numerical dispersion. It also suffers much less 

diffusion around the pulse edges than the f irst-order MUSCL scheme, and 

the amount of diffusion is limited to a region of a few cells around the 

discontinuity; the diffusion does not compound continuously over time 

as it does in the f irst-order MUSCL scheme. In addition, the amount of 

diffusion can, to a great extent, be controlled by the choice of f lux limiter 

used in the scheme (Trac & Pen, 2003).



33

3.2.3. Flux Limiters 

	 Flux limiters are the application of a slope limiting operator to 

the conservative terms of the advection equations. To understand its 

application, one must f irst understand its purpose. For any discrete 

function, f(x), a local parameter is defined, rs, that represents the ratio of 

slopes between the function value at a cell, i, and its nearest neighbors, i-1 

and i+1,

r S
Ss ≡
−

+ , 	 (3.13)

where S- is the slope between f(xi-1) and f(xi) and S+ is the slope between f(xi) 

and f(xi+1). The slope ratio parameter, rs, has four possible cases as shown in 

Figure 3.3.

	 The slope ratio cases 1, 2, and 4 are responsible for spurious 

oscillations, whereas case 3 is well behaved. Therefore, a slope limiter 

corrects differently for different slope ratios. For slope ratios less 

than or equal to zero, cases 1-2, no amount of correction will preserve 

monotonicity and the slope limiter correction must be zero. As the slope 

ratio tends toward unity, signifying smooth transitions between cells, the 

correction can be larger, with a maximum at a slope ratio of 1. As the slope 

ratio increases above 1, case 4, the correction is once again reduced to 

preserve monotonicity. 
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Figure 3.3: Possible behaviors for the slope ratio parameter, rs, used in 
determining how a f lux limiter should behave.
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	 A more rigorous investigation of the intermediate slope ratios for the 

four slope ratio cases reveals a region, called the TVD limiting region, 

in which a slope limiting function must reside in order to preserve 

monotonicity. Therefore, any function that resides within this region for all 

possible slope ratio values is a valid slope limiter. For a detailed definition, 

discussion, and derivation of this region associated references (Sweby, 

1984).

	 Applying the slope limiter to conservative advection, a f lux limiter 

operates on the f irst order f luxes of a cell and its nearest neighbors, 

augmenting the f irst order f lux with a second-order correction term to 

varying degree depending on the slope ratios around the cell of interest. 

A f lux limiter works by taking two potentially competing f lux correction 

terms as input and returns a correction term that maintains monotonicity in 

combination with the f irst-order MUSCL f lux term for a given time-step. 

A limited f lux has the general form,

F F F F= + ( )− +φ δ δ, ,	 (3.14)

where F  is the corrected second-order TVD f lux, F is the f irst-order 

MUSCL f lux, ϕ is the f lux limiter operator, and δF- and δF+ are the two 

correction terms. The two f lux correction terms are given as,

δF
F F v
F F v
i i

i i

+ +

+ +

=
−( ) ≥
−( ) <







1
2 1

1
2 2 1

0
0

 and 	 (3.15)

δF
F F v
F F v
i i

i i

− −

+

=
−( ) ≥
−( ) <







1
2 1
1
2 1

0
0

. 	 (3.16)
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Each of these corrections represents a second-order f lux term that is 

upwind specif ic in accordance with the MUSCL scheme. The terms are 

also a measure of the gradient between f irst order f lux values between 

adjacent upwind cells. Therefore, they serve the same function as 

the slopes did in the generic slope limiter; their ratio determines the 

appropriate correction.

	 Of the more than a dozen common slope limiting operators, three are 

popularly used as f lux limiters in TVD MUSCL schemes. These three are 

MinMod,

φ δ δ δ δ= ( ) + ( )( ) ⋅ ( )− + − +
1
2

sign signF F F Fmin ,
, 	 (3.17)

where the sign operator returns ±1 depending on the sign of its input, 

Superbee,

φ
δ δ δ δ

δ δ
=

⋅( ) <
⋅( )





− + − +

− +

minmod if 
minmod otherwise

2
2

F F F F
F F

,
,

,	 (3.18)

where the minmod operator is the MinMod slope limiter of (3.17), and Van 

Leer,

φ δ δ
δ δ

=
⋅ ⋅

+
− +

− +

2 F F
F F . 	 (3.19)

The Superbee f lux limiter is the most aggressive, always choosing the 

steepest possible f lux gradient that can be used to preserve monotonicity 

on a cell boundary. The MinMod f lux limiter, on the other hand, is the 

least aggressive and chooses the smallest possible slope satisfying the 
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monotonicity condition. The Van Leer f lux limiter, is a moderation of these 

two extremes and one of only a few analytic f lux limiters, which gives it a 

greater level of stability in high dynamic range problems. The second-order 

TVD MUSCL advection test in Figure 3.2 used a Van Leer f lux limiter. 

Had a Superbee limiter been used the diffusion would have reduced to an 

even greater extent than the Van Leer case (Sweby, 1984; Van Leer, 1974).

3.3. The Relaxed Second-Order TVD MUSCL Scheme

	 This section outlines the complete numerical scheme used for the 

remainder of this work. The scheme is based on the second-order TVD 

MUSCL scheme, as described previously, and its particular formulation 

utilizes the relaxation technique, presented by Jin & Xin and popularized 

by Trac & Pen (Jin & Xin, 1995; Trac & Pen, 2003). 

3.3.1. The Relaxation Technique

	 A signif icant omission in discussion of the MUSCL scheme above was 

how one applies it to the mangetohydrodynamic equations. While the mass 

density and magnetic f ield equations, (2.4) and (2.7), obey the simple 

formulation of the advection equation, the momentum and energy density 

equations, (2.5) and (2.6), do not. The more complicated f lux terms in the 

energy and momentum equations lead to an upwind advection direction 

that depends not only on velocity but also on the other terms such as the 

pressure. As such, the asymmetry in the upwind scheme leads to a more 

involved method of determining the upwind direction for the equations 

at each time-step. Applying the relaxation technique to the advection 
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equations results in a symmetric formulation of the second-order TVD 

MUSCL scheme where advection is inherently upwind and requires no 

additional calculation to determine the upwind direction as part of the 

advection process.

	 The relaxation technique is a reformulation of the advection equation 

that begins by separating it into a system of two advection equations 

with a shared advection velocity and a symmetry between the variables. 

Therefore, the general one-dimensional conservative advection equation, 

∂ + ∂ =t xq F 0 , 	 (3.20)

formulated in the relaxation technique becomes,

∂ + ∂ ( ) =t xq cα 0  and	 (3.21)

∂ + ∂ ( ) =t x cqα 0 . 	 (3.22)

Here c is the shared advection velocity, which should not be confused with 

the advection velocity expressed in the original advection equation, (3.20), 

and α is the modified f lux needed to make the equations symmetric, which 

is given as,

α = F c . 	 (3.23)

These two equations can then be decoupled by a change of variables,

Q q+ =
+α
2  and 	 (3.24)
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Q q− =
−α
2 ,  	 (3.25)

which satisfy the relationship, 

q Q Q= ++ −

. 	 (3.26)

While the change of variables may seem to be chosen arbitrarily at f irst 

glance they are the two characteristic variables of the relaxed system, 

(3.21) and (3.22). Their signif icance becomes clear by applying the change 

of variables that reduces (3.21) and (3.22) to

∂ + ∂ ( ) =+ +
t xq cQ 0

 and 	 (3.27)

∂ − ∂ ( ) =− −
t xq cQ 0

, 	 (3.28)

which represents two advected quantities, one moving in the forward 

(up) direction and the other moving in the backward (down). Forward and 

backward are used in this context to represent the two possible directions 

of advection in a one-dimensional system where forward advection moves 

in the direction, i i⇒ +1, and backward advection movies in the direction, 

i i⇒ −1. Given this form, the change of variables each represent a 

conserved quantity advected purely in either the forward direction, q+, or 

in the backward direction, q-.

	 Adding these two equations together, and simplifying the temporal 

derivative using (3.26), produces a single advection equation similar to the 

original, (3.20), but now with independent forward-moving and backward-

moving f lux advection terms, 
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∂ + ∂ −( ) =+ −
t xq c Q Q 0

.	 (3.29)

With the forward and backward moving f lux terms now separate and 

explicit, the combination represents the correct total f lux for the system. 

For a simple advection equation of the form (3.1), with only a single 

directed f lux, one of these f lux terms will be zero at each time-step as the 

advection will either be forward moving or backward moving. However, for 

more complicated f lux terms, like the momentum and energy equations, 

(2.5) and (2.6), which allow for both forward and backward advection 

simultaneously, the two f lux terms can both be non-zero and contribute to 

provide the correct total f lux in the system.

	 The artifact of this transformation process into the relaxed advection 

equation, (3.29), is the advection velocity of the separate quantities, c, that 

was introduced in (3.21) and (3.22). The quantity is called the freezing 

speed as it is the frozen speed at which the separate conserved quantities 

propagate. The parameter is free under the constraint,

c v cs≥ + , 	 (3.30)

which is the largest eigenvalue of the hydrodynamic equations. Here, cs, 

is the sound speed. The reason for ignoring any magnetic contributions 

in the freezing speed will become clear shortly. In practice Jin & Xin set 

the freezing speed to a global constant for each time-step. However, the 

freezing speed is a function by its definition and Trac & Pen have found 

greater shock definition by allowing it to vary in space for each time-step 

(Chalabi & Qiu, 2000; Jin & Xin, 1995; Pen, et al., 2003; Schroll, 2002; 
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Schroll, 2004; Trac & Pen, 2003).

3.3.2. The Complete Scheme

	 The relaxed advection equation, (3.29), can then be discretized using 

the second-order TVD MUSCL scheme in the same fashion as before, with 

a few modifications. The most important modification is that instead of 

having to explicitly determine the upwind direction and apply the correct 

differencing stencil accordingly, the two possible differencing stencils are 

applied consistently to their correct forward or backward f lux terms in 

(3.29). The discretized form of (3.29) is then,

q q c t
x
Q Qi

t t
i
t

i
t

i
t+∆ + −= −

∆
∆

+( )
− +

, ,

, 	 (3.31)

where Qi
t

−

+,
 is the forward moving f lux at the lower cell boundary at time t, 

and Qi
t

+

−,
 is the backward moving f lux at the upper cell boundary at time t. 

Applying the appropriate upwind differencing stencil to each f lux term and 

applying f lux-limiting to the f luxes yields the f inal form of the discrete 

scheme,

q q c t
x
Q Q Q Qi

t t
i
t

i
t

i
t

i
t

i
t+∆ +

−
+ −

+
−= −

∆
∆

− + −( )   

, , , ,
1 1

,	 (3.32)

where the f luxes are limited according to,

Q Q Q Q= + ( )− +φ δ δ, .	 (3.33)

	 The upwind determination is now handled implicitly within (3.32) by the 

summation of the oppositely oriented f lux advection terms. The term with 
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the greatest magnitude dominates, which correctly specif ies the upwind 

direction for that particular cell for a given advection operation.

3.3.3. Extending to Multiple Dimensions

	 Until now the numerical schemes have been presented for a single 

dimension. The reason it has been possible to avoid discussing them 

in terms of multi-dimensions is that an advection operation can be 

broken down into multiple one-dimensional steps that combine into a 

single multi-dimensional advection operation. This approach is called 

dimensional splitting and relies on treating each dimension as a separate 

advection operation, A. Therefore, the operator A x would advect the 

system forward one time-step in the x direction, corresponding to a one-

dimensional advection operation describe above for each equation in the 

magnetodydrodynamic equations. The total multi-dimensional advection 

operation can be represented in terms of these dimensionally split 

operators, Ai, as,

q A A A A A A qt t
x y z z y x

t+ ⋅ =2 ∆

, 	 (3.34)

where Ax, Ay, and Az are the split, single-dimension advection operations 

on the conserved quantity, qt, that update it to qt+Δt. To preserve second-

order accuracy and prevent directional biasing in advection, a complete 

advection operation requires two full time-steps with the same Δt (Ryu, et 

al., 1998; Trac & Pen, 2003). 



43

3.3.4. Temporal Integration

	 With a complete advection scheme, the f inal piece is to incorporate it 

into the temporal integration scheme. The most basic temporal integration 

scheme would be to update the conserved quantity, q, using (3.32) 

iteratively, in an Euler-like method, until reaching the desired f inal time. 

However, this scheme is only f irst-order accurate and would undo any 

second-order accuracy in the spatial scheme. To get around this, temporal 

integration is handled using a second-order Runge-Kutta scheme which 

breaks each time-step into two integration stages. 

	 The f irst stage is used to calculate an intermediate value for the 

conserved quantity at time t+Δt/2. For the second-order relaxed TVD 

MUSCL advection equation, (3.32), this is,

q q c t
x
Q Q Q Qi

t t
i
t

i
t

i
t

i
t

i
t+∆ +

−
+ −

+
−= −

∆
∆

− + −( )/ , , , ,2
1 12

   

.	 (3.35)

This is a prediction step with f luxes calculated using the previous value of 

the conserved quantity, qi
t
. This intermediate is then used to recalculate 

the f lux terms for the second stage that steps forward the complete time-

step to t+Δt. This correction step is,

q q c t
x
Q Q Q Qi

t t
i
t

i
t t

i
t t

i
t t

i
+∆ + +∆

−
+ +∆ − +∆= −

∆
∆

− + −
2

2
1

2 2
   

, / , / , /
++
− +∆( )1

2, /t t

. 	 (3.36)

An optimization to the predictor step of this method is possible because 

the intermediate prediction value is used only to update the f lux terms 

for the f inal correction step; the intermediate never appears explicitly in 
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the correction step. Since the correction step f luxes are second-order f lux 

limited, there is no need to limit the f luxes on the predictor step. The f lux 

limiters, therefore, need only be applied to the correction f luxes, allowing 

(3.35) to be,

q q c t
x
Q Q Q Qi

t t
i
t

i
t

i
t

i
t

i
t+∆ +

−
+ −

+
−= −

∆
∆

− + −( )/ , , , ,2
1 12 ,	 (3.37)

which is just a relaxed form of the f irst-order MUSCL scheme. This 

optimization results in a signif icant reduction in computational needs to 

calculate a single advection time-step with no degradation in the accuracy 

or stability of the updated result (Trac & Pen, 2003).

3.4. Magnetic Field Advection

	 The second-order relaxed TVD MUSCL scheme described 

in the previous section is complete and suff icient for advection 

of the hydrodynamic evolution equations, (2.4) - (2.6), of the 

magnetohydrodynamic equations. However, without further modification 

the scheme will not correctly evolve the magnetic f ield advection equation, 

(2.7), because the magnetic f ield is under the additional divergence-free 

constraint,

∇ =B 0 , 	 (3.38)

which is not explicitly contained within magnetohydrodynamic equations. 

It is implicit in the magnetic f ield equation, meaning the constraint will 

hold for any analytical solutions whose initial conditions satisfy the 

constraint, but that does not hold true for the discretized form of the 
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equation (Toth, 2000). 

	 The reason it does not hold in the discretized case is that the constraint 

cannot be maintained everywhere at once because the magnetic f ield is 

represented by piece-wise constants at each cell. As such, the constraint 

cannot be simultaneously satisf ied for both the center of the cells, where 

the primitive variables reside, and the cell boundaries through which 

advection occurs. 

	 No way exists to formulate a discretization of the magnetic f ield 

equation that will be able to generally satisfy the divergence-free 

constraint at all critical locations within the cell at the same time for any 

possible magnetic f ield. Instead the techniques for advecting the magnetic 

f ield in a divergence-free manner focus on maintaining the constraint only 

when it really matters, during advection.

	 The constrained transport (CT) advection method focuses on 

maintaining the divergence-free constraint on the boundaries of the cells 

and ignores any divergences at the cell centers. This bias is chosen because 

the evolution of the magnetic f ield occurs on the cell boundaries and, as 

long as the evolution is divergence free, the advection process will tend 

toward preserving the constraint as it would in an analytical solution. For 

this approach to work, the magnetic f ield has to be redefined to exist on 

the component-specif ic edges of the cells instead of at their centers like 

the other primitive variables as shown in Figure 3.4.
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Figure 3.4: Staggered grid arrangement of the magnetic field for 
constrained transport. Cell indices in gray represent the grid values for 
the cell-centered quantities for mass, momentum, and energy densities, 
while cell indices in boxes represent the staggered indices for the 
magnetic field by component.

As Figure 3.4 illustrates the magnetic f ield for a given cell is broken 

up into its vector components,  each of which reside on the component-

specif ic lower boundary of the cell in which its corresponding f luid 

variables reside. With this staggered cell arrangement between the 

hydrodynamic primitive variables and the magnetic f ield it is then possible 

to maintain the divergence-free constraint on the edges of the cells and 

keep the constraint near zero during advection because the magnetic f ield 

now cohabits with its advection f luxes (Balsara & Kim, 2004; Toth, 2000). 

	 This is, however, not a perfect solution. The magnetic f ield appears in 
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the f lux terms of more than just the magnetic f ield evolution equation. 

Given that these other equations are advected according to cell-centered 

quantities, the magnetic f ield in these equations must also be cell-centered. 

To produce a cell-centered magnetic f ield for use in advection of these 

equations, a second-order accurate interpolation is carried out on the 

magnetic f ield values that reside on the cell boundaries. Similarly, as the 

momentum is defined at the center of the cells, an advection velocity must 

be produced at the cell edges for the magnetic advection step, which is 

done using the same second-order accurate interpolation methods as for the 

cell-centered magnetic f ield case.

	 Both of these interpolations introduce some amount of error into 

magnetic advection, which in turn can produce some divergence of the 

magnetic f ield. The interpolation errors are small, unbiased, and do 

not compound, resulting in divergence constraint errors at least a few, 

but often many, orders of magnitude below the accuracy threshold of 

the general advection scheme. Consequently, the constrained transport 

technique is generally viable for all but a few cases, none of which pertain 

to this work.

	 With the component-wise staggered grid, the discretized advection 

equation for magnetic f ield evolution becomes,

B Bi
t t

i
t

n
n
t

n
t

n m

t
x
F F+∆

−
≠

= −
∆
∆

−( )∑  

1

. 	 (3.39)

Here n represents the summed dimensions over which to f lux the mth 

component of the magnetic f ield. There is, for example, no f lux operation 
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for Bx along the x-direction because the f lux terms of the magnetic f ield 

evolution equation, (2.7), are anti-symmetric when the magnetic f ield and 

velocity vector components are the same dimension and hence the f lux 

term is always zero. Equation (3.39) makes this anti-symmetric relationship 

explicit in the discretized advection scheme to avoid the computational 

resources associated with the zero-invariant advection component (Balsara 

& Kim, 2004; Dai & Woodward, 1998; Evans & Hawley, 1988; Gardiner & 

Stone, 2008; Londrillo, et al., 2004; Ryu, et al., 1995; Toth, 2000; Touma & 

Arminjon, 2006; Ziegler, 2004). 

	 Notice also that (3.39) is not a form of the relaxed advection equation, 

for example, there is no freezing speed in the f lux terms, but instead just 

the second-order TVD MUSCL scheme. The reason for this is the f lux term 

in the magnetic advection equation is simple enough in form that velocity 

can be used to determine the upwind direction. For this advection equation 

no additional computation from either a direct upwind determination or the 

symmetric f luxing of the relaxed technique is required.

	 Combined with the Constrained Transport advection method for the 

magnetic f ield evolution equation, the second-order relaxed TVD MUSCL 

scheme is complete, fully capable of advecting the magnetohydrodynamic 

equations (2.4) - (2.7) for general astrophysical computation in the presence 

of shock waves when implemented as a magnetohydrodynamics simulation 

code. 
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CHAPTER IV 

IMOGEN: ELEMENTS OF IMPLEMENTATION

	 IMOGEN is a new nonlinear magnetohydrodynamics simulation 

software created to implement the second-order, relaxed TVD MUSCL 

scheme presented in chapter 3 for the investigation of the corrugation 

shock instability discussed in chapters 1 and 2. While IMOGEN was 

developed as a general-purpose magnetohydrodynamics research tool, 

and has been used for investigations beyond the scope of this work, it 

implements a number of approaches and techniques specif ically for the 

corrugation instability investigation. The following sections describe 

the key aspects of IMOGEN critical to the corrugation instability 

investigation. The complete IMOGEN software design and implementation 

description can be found in Appendix I.

4.1. Cross-Component Magnetic Advection

	 A complication in the implementation of the Constrained Transport 

advection method described in section 3.4 that isn’t immediately apparent 

in the discrete magnetic f ield advection equation (3.39) is the shared, 

antisymmetric nature of the various advection terms in the magnetic 

f ield equation due to the cross product from which the advection term 

is formulated. To see how this behaves, recall the component-wise 

magnetic advection equations presented in Figure 2.1, expanded out for 

directionally-split component advection as,

∂ = ∂ −( ) + ∂ −( )t x y y x y x z z x z xB v B B v v B B v
,	 (4.1)
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∂ = ∂ −( ) + ∂ −( )t y x x y x y z z y z yB v B B v v B B v
, and	 (4.2)

∂ = ∂ −( ) + ∂ −( )t z x x z x z y y z y zB v B B v v B B v
.	 (4.3)

In this form is readily apparent that the f lux terms between components 

are shared, just with opposite signs. For example, the f lux term for Bx in 

the y direction is just the negative of the f lux term for By in the x direction. 

Similarly, the f lux terms for Bx in the z direction is just the negative of 

the f lux term of Bz in the x direction, and By in the z direction is just the 

negative of Bz in the y direction.

	 For magnetic advection that maintains the divergence-free constraint, 

these shared terms have to be calculated using the same magnetic f ield 

component values as their antisymmetric counterpart. This means using 

the same values for both f lux terms even though the advection directions, 

as specif ied by the component of the derivative in which they reside, 

differ between the two antisymmetric instances. If the same values are 

not used in both instances, then all of the work done by implementing 

the Constrained Transport advection technique is lost as the variations 

between terms fail to adhere to the divergence-free constraint equation, 

(3.38). This would not be an issue, except that a complete conservative 

f lux operation is carried out using multiple dimensionally split advection 

steps, see section 3.3.3 for details, and the values for the magnetic f ield 

components are updated intermediately with each of these steps.

	 The direct approach to solving this problem would be to calculate 

all of the f lux terms at the beginning of the magnetic advection step 
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and use those as a reference instead of the intermediate ones for each 

dimensionally split operation. While solving the problem this introduces 

another, which is a signif icant increase in memory usage to support a 

complete magnetic f lux operation.

	 A more sophisticated approach that resolves the memory usage is to 

carry out the advection in a cross-component fashion (Pen, et al., 2003). 

In cross-component advection, each dimensionally-split advection step is 

responsible for calculating only the f irst, positive, portion of the f lux term 

and using that for advection. This value is then immediately applied as 

the negative part of the f lux term to its antisymmetric partner component. 

In doing this, remember that the components of the magnetic f ield exist 

at different edges of the cell, as shown in Figure 3.4, and that f luxing 

occurs on those edges, which requires that the application of the f lux 

term to its partner component be interpolated from one edge to another. 

In this approach the advection process shares the necessary values with 

its counterpart, and the divergence-free constraint is maintained, while at 

the same time no reference data was needed and accordingly no additional 

memory used during the f luxing process.

4.2. Non-Conservative Terms

	 The magnetohydrodynamics equations, (2.4) - (2.7), presented in 

chapter 2 are absent any non-conservative terms. However, as part of 

the corrugation instability problem, as well as the general purpose use 

of IMOGEN, non-conservative terms must be handled as well as the 

conservative ones for the many processes involved in astrophysical 



52

simulation that cannot be resolved into a conservative formulation. The 

two non-conservative terms used in the corrugation investigation were 

radiation and artif icial viscosity, the former being a physical property of 

the simulation and the latter being a computational technique to better 

resolve shocks under certain conditions.

	 Radiation was handled within a general sourcing routine that is paired 

with a complete f lux action and handled within the second-order accurate 

temporal integration scheme described in detail in section 3.3.4. While 

the f lux and sourcing happen separately from each other as distinct steps, 

they coexist within a single time-step and can be thought of as a multi-step 

process in which IMOGEN f luxes the magnetohydrodynamic equations 

from t to t+Δt and then sources the magnetohydrodynamic equations at t+Δt 

using the updated values from the f lux step. 

	 As sourcing operations are not a form of transport like the conservative 

f luxing operation, sourcing terms typically respond to the primary variable 

state and not process. This means that they will act non-conservatively 

to some extent with each time-step in response to the new state of the 

primary variables as determined by the f lux operation. Instead of having 

to handle source terms over the range t to t+Δt, as f luxing is handled, they 

can simply be handled as a post-f luxing operation at t+Δt. It also means 

that source terms don’t usually have the well defined temporal integration 

restrictions that f lux operations have in the form of the Courant-

Freidrichs-Lewy (CFL) condition discussed in section 3.1.2. 

	 Consequently, the global temporal integration for non-conservative 
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forms of the magnetohydrodynamic equations remains governed entirely 

by the CFL condition. This can cause unphysical and undesirable behaviors 

in the evolution of a simulation if a source term renders one or more of 

the magnetohydrodynamic equations stiff, where the time-step for stable 

sourcing needs to be smaller than the CFL condition prescribes. 

	 There are stiff integration techniques that can be implemented to 

try and circumvent this problem, but in many cases they are of limited 

use. Most such techniques rely on calculating the primary variables at 

a range of intermediate values over the offending time-step and using 

them progressively to stabilize and resolve the offending term. In a 

one-dimensional integration problem this may be viable, but for multi-

dimensional magnetohydrodynamic simulation the memory requirements 

would be outrageous and intractable for all but the smallest spatial domain 

resolutions. Without a priori knowledge of the unphysical step, these 

unphysical source operations can plague simulations. As such, sourcing 

is often equal parts trial and error and a dark art, and rely heavily on 

successful techniques found previously by others. Often the best way of 

introducing a source term into a magnetohydrodynamics simulation is 

to include with it a coeff icient that acts as a limiter to the magnitude of 

sourcing and carefully adjust that parameter to reach its stability limit. If 

the limit is unsatisfactory, then two options are available, either recast the 

source term into a form more conducive for stable integration or override 

the CFL condition to force smaller time-steps.
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4.2.1. Radiation

	 The radiation source term is applied to the energy equation, (2.6), in one 

of many possible forms depending on the type and sophistication desired. 

For the preliminary and limited investigation of radiating corrugation 

instabilities contained within this work only optically-thin radiative 

cooling was explored, one of the more basic forms. The parameterized 

form of the optically-thin radiative cooling term is,

ΠR T=αρχ µ
,	 (4.4)

where α is a controlling coeff icient, T is the temperature, and χ and μ are 

adjustable parameters that specify key properties of the radiation model. 

Under the ideal gas assumption the equation can be easily rewritten in 

terms of more primitive simulation variables as,

ΠR gP= −α ρµ χ µ

, 	 (4.5)

where Pg is the gas pressure. The χ parameter specif ies the type of 

radiation, with a value of 2 specifying purely particle-particle collisions, 

and values below that some combination of particle-particle collisions 

and particle-f ield collisions. In the presence of high magnetic f ields, 

its reasonable to assume particle-f ield interactions play a role in the 

cooling process, and so the χ parameter would be less than 2 for the 

corrugation instability trials. The μ parameter, as shown more clearly in 

(4.4), represents strength of the dependence of the cooling function on 

temperature. A value of μ =½ is the well-known Bremsstrahlung particle-

particle radiation.
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	 The α parameter is included in the formulation of the optically-thin 

radiation term as a limiter to prevent the numerical instabilities of the 

type described above from occurring as a result of rapid cooling. The α 

parameter is also typically a function of density. Such density dependence 

is constructed to quench cooling eff iciency as the density increases to keep 

internal energy from dropping too much anywhere in the simulated spatial 

domain.

	 All of these parameters are numerically sensitive, making radiatively 

cooled shock simulations a formidable challenge, and a primary reason 

why this area remains largely unexplored.

4.2.2. Artif icial Viscosity

	 Artif icial viscosity, as the name implies, is not a physically derived 

term in the magnetohydrodynamic equations. Instead, it is a computational 

technique designed to remove stiffness from a hydrodynamics simulation 

caused by undesirably high velocities within a simulation domain. This 

type of undesirable velocity typically occurs when a shock front converges 

enough that it falls below the resolution of the spatial domain, which can 

result in dramatic increases in velocity as the shock wave essentially feeds 

on itself. 

	 In addition to the problem of under-resolution of the shock front causing 

localized unphysical velocity spikes, these velocity spikes in turn dictates 

the CFL condition and reduces the time-step of the temporal integration 

for the entire simulation. Very quickly, velocities can become high enough 
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that the time-step drops by one or more orders of magnitude, bringing 

the simulation to a halt. For simulations that involve strong shocks, such 

as the corrugation instability, which already have fairly small time-steps 

as a result of the shock, this velocity growth makes completion of the 

simulation impractical. Even more frustrating is that these velocities spikes 

occur in only a few cells within the domain, and those few cells dictate the 

time-step for the entire simulation for the rest of the simulation.

	 To get around this problem the velocity needs to be kept from growing 

too large in such a way that it doesn’t destroy the simulation or negatively 

impact its physical evolution. In order to do that the velocity cannot 

simply be clamped or bled from the offending cells, as the conservation of 

momentum, (2.5), reacts negatively to that type of action and does destroy 

the physicality of the solution.

	 The solution is to employ an artif icial viscosity, which acts to convert 

the velocity, or more precisely the kinetic energy, into internal energy 

of the f luid. This is carried out in a systematic fashion that acts only 

on the velocity spikes by targeting gradients, i.e. shock fronts, that 

are converging. In such cases, the artif icial viscosity term inf lates the 

pressure of the converging front. The increase in pressure acts against 

the convergence and results in a smoothed shock front that is resolved 

over a few spatial domain cells, preventing the under-resolved degree of 

convergence that would produce the unphysical velocity spikes. 

	 Used carefully, artif icial viscosity can limit or prevent the velocity 

spikes without negatively impacting the evolution of the simulation. 



57

IMOGEN has been designed to use many different formulations of 

artif icial viscosity, each of which has benefits and drawbacks. For the 

corrugation instability, only the most commonly used type, Neumann-

Richtmyer artif icial viscosity was used, as it is designed for this type of 

simulation. In the Neumann-Richtmyer formulation, the artif icial viscosity 

is represented by linear and quadratic term such that,

� � � �

�
P P

x c xs= +
∆ ∇( ) + ∆ ∇( )  ∇ <

∇ ≥



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ρ α βv v v

v

0

0 0 ,	 (4.X)

where P is the unmodified pressure, P  is the pressure with artif icial 

viscosity, cs is the sound speed, α is the linear strength coeff icient, and β 

is the quadratic strength coeff icient. The artif icial viscosity term is only 

non-zero if the divergence of the velocity is negative, or the pressure is 

unmodified. The artif icial viscosity term is also directly related to the 

magnitude of convergence, which acts to smoothly increase its effect as 

convergence grows. 

	 The α and β parameters are controlling parameters that limit the 

strength of the artif icial viscosity. They are set as part of the initialization 

for a simulation on the range [0, 1]. When applying artif icial viscosity to a 

new simulation it is typical to start with control parameter values near zero 

and turn them up only as much as necessary to affect the simulation as 

little as possible (Liu & Liu, 2003).
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4.3. External Boundary Conditions

	 One of the most challenging aspects in developing a 

magnetohydrodynamics code is creating a reliable method to handle the 

external boundary conditions created at the edges of the f inite spatial 

domain. What makes it such a challenge is the need for astrophysical 

simulations to use the smallest possible spatial domain to reduce the 

computational load required for a given simulation. Instead of being able 

to set the boundaries far from the interesting simulation region, at an 

effective infinity, these edge boundaries must instead be setup as close 

to, or in many cases within, the domain of interest. With these boundary 

conditions in media res they couple strongly to the evolution of the system 

and must be extremely well behaved or they will negatively impact results 

by either incorrectly inf luencing the simulation evolution or, just as often, 

impede or destroy a simulation entirely.

	 The most commonly used approach to handling boundary conditions is 

to pad the edges of the domain with ghost cells. These ghost cells are set 

independently of the conservative f luxing and non-conservative sourcing 

routines according to prescribed behaviors set prior to simulation. The 

ghost cells exist on all spatial arrays, which allows for the control of both 

Dirichlet and Neumann boundary types. However, in most implementations 

only Dirichlet conditions are used. This type of ghost cell padding is 

easy to implement and fairly easy to stabilize but has two signif icant 

drawbacks.

	 The most obvious drawback is increased memory usage. For a second 
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order accurate f lux algorithm, which requires a second order stencil, 

two ghost cells must be applied to all array edges for all spatial arrays. 

The result is a dramatic increase in the number of cells in each spatial 

array with a similarly dramatic increase in the required memory. This is 

a huge drawback considering that available memory is often the primary 

limitation of the spatial simulation domain size despite recent advances in 

memory availability and allocation.

	 The other drawback of the ghost cell approach is that the ghost cells 

must be recalculated, affectionately called cleaned up, prior to each 

f lux operation or the values will be incorrect enough to destabilize the 

boundary and potentially cause non-physical feedback for all but the most 

well behaved boundaries. Often this cleanup action occurs multiple times 

for many different arrays during a complete time-step, resulting in a lot 

of additional but undesirable maintenance in the f luxing and sourcing 

algorithms.

	 Another approach to handling external boundary conditions, used in 

many toy magnetohydrodynamic codes, is to implement the most basic 

boundary condition possible, a tiled or circular boundary in a dynamic 

fashion. In a circular boundary each domain edge uses its own values at 

the opposite edge in calculating its derivatives. Handled dynamically, 

instead of padding the arrays with ghost cells, these values are determined 

directly by shifting the cells off of one edge of the array and adding them 

back on to the other. In this method there are no ghost cells to increase 

memory usage and no maintenance required to correct the edge conditions 
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as they remain correct by design. The obvious drawback of this approach 

is that it only allows for one specif ic type of boundary, which is of limited 

use in most astrophysical simulations.

	 IMOGEN uses a new model, called dynamic edge shifting, that extends 

the idea of the dynamic circular boundary approach to handle general 

boundary conditions to achieve the f lexibility of the ghost cell approach 

with the memory footprint of the circular boundary approach. Dynamic 

edge shifting, as the name implies has no pad cells, instead new cells 

are generated as they are needed based on functional relationships to the 

current state of the array, and, like the circular boundary method, there 

is no overhead or maintenance associated with regular cleanup of the 

boundary conditions. As the new cell values are generated on demand, the 

process is quite eff icient.

	 Yet another benefit of this new approach is that the cells created 

dynamically during the shifting process can be made dependent on the 

exact physical and computational state of the simulation, instead of during 

a more global cleanup phase. Hence, this on demand approach allows for 

the robust implementation and testing of non-trivial boundary conditions 

without having to specially integrate them into the f lux routines on a per-

case basis.

	 Dynamic edge shifting begins with the initialization of the simulation; 

see Appendix I for details on that process and how expressing the 

boundary conditions f its into that process. During initialization the user 

specif ies what type, of many possible types, of dynamic edge shifting they 
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would like to apply to a specif ic boundary and a specif ic array. Boundary 

types can be mixed and matched on a per-array basis to provide a f lexible 

and extensible way of controlling the external boundaries for any type 

of simulation. Figure 4.1 shows the assignment hierarchy available in 

IMOGEN during simulation initialization.
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Figure 4.1: Assignment hierarchy for external boundary conditions 
during simulation initialization in terms of its inheritance tree.

The hierarchy uses priority-based inheritance to greatly reduce the 

complexity associated with the assignment requirements of the boundary 
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conditions. If a specif ic value is not specif ied on a leaf entry, IMOGEN 

will navigate up the tree until it f inds a non-null boundary value type 

specif ication and assign that value to the specif ic array. If, while 

traversing the tree, an assigned value is found on a different part of the 

tree with a higher priority the traversal process is aborted and that value 

is used. Note that the hierarchy includes both the primary arrays and 

their associated f luxes, which allows for the independent setting of both 

Dirichlet and Neumann boundary conditions.

	 When an IMOGEN simulation begins, and the spatial arrays are 

instantiated, this tree is parsed for each of the arrays and the enumerated 

values for each external boundary are assigned to the array object as 

a pointer to the correct shifting function. If initial parameters must be 

stored for a particular type, this is also done during construction of the 

array object. All of this occurs within the boundary conditions object 

instantiated and owned by its associated array.

	 Once complete, the array is ready to be dynamically shifted, a process 

that may occur many times during each f lux and sourcing operation. 

During one of these calls the array object executes its assigned shifting 

function appropriate to the boundary being shifted and that function 

returns the array of dynamically create cells that are then appended onto 

the array boundary while the same number of cells on the opposite edge, 

which are no longer needed, are discarded as shown in Figure 4.2.
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1i i→ +

Spatial Domain Boundaries

Shifting Process
Dynamic Edge Shifting Process

Example Where:

Original array on which the shift process is to be carried out.

A new cell is created based on the boundary type and array values.

The new cell is added to the array to complete the shifting process.

Existing cells are shifted by the speci�ed amount. The cell no longer 
needed is ejected from the array.

1.

2.

3.

4.

Figure 4.2: Illustration of the shifting process where a new cell is created 
dynamically and added onto one end of the array while the cell on the 
other end, which is no longer needed, is simultaneously discarded.

	 With the freedom to assign any value to the dynamically created 

cells during shifting, the functions and procedures of cell creation are 

responsible for defining the boundary type. These cell creation methods, 

henceforth called Shift Generators (SG), may be fully customized to f it a 

particular simulation, without modification to the f lux routines. IMOGEN 

provides its shift generators with even more f lexibility by providing them 

with the unique identif ier for the array they will be shifting, the vector 

or scalar nature of that array, and the classif ication for that array, e.g. 

primary, f lux, or secondary variable array types. This information makes 
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it possible to adapt the cell generation process contextually, enabling even 

more refined and sophisticated boundary condition types.

4.3.1. Common Boundary Types

	 There are a number of boundary types used in commonly in astrophysics 

simulations, such as the circular, or tiled, boundary type previously 

describe where one spatial domain edge acts as the cell generator for its 

antipodean edge. IMOGEN includes shift generators for many of these 

common types, including the circular boundary case, which were used 

either directly in the corrugation instability investigation or as part of 

the testing process to verify that IMOGEN was functioning correctly (see 

Chapter 5 for the details of testing IMOGEN). These cases are enumerated 

in Figure 4.3 along with an example of shifting behavior.

4.3.2. The Fade Shift Generator

	 The investigation of the corrugation instability required a new type 

of shift generator to correctly handle the internal and external shock 

boundaries of the spatial domain. On both boundaries the accretion 

process is persistent for the life of the simulation, which requires stable, 

steady inf low and outf low conditions on the boundaries. At the same 

time magnetic waves, generated by the instability in the shock front, 

propagate out of both boundaries, and the deformation of the shock front 

creates density columns that grow into and beyond the internal boundary. 

Consequently, these boundary conditions had to simultaneously satisfy a 

constant inf low condition and a transparent outf low condition. This is a 



65

LR
Circular Shifting

The cell removed from an edge is added to its antipodean edge.

L0
Zero Shifting

The cell new cell is zero.

L R
Unshifted Array

The unshifted array has two edge cells, one at the right (R) and another at the left (L) 
ends of the array.

LL
Constant Shifting

A new cell identical to the previous edge cell is added.

L
Linear Shifting

A new cell is added that is a linear extrapolation based on the previous edge cell and its 
neighbor.

L
Hermite Shifting

A new cell is added that is a Hermite spline extrapolation based on the previous edge 
cell and its neighbors.

L-L

LL

Mirrored Shifting

Otherwise the new cell is the same magnitude and sign of the previous edge cell.

If the array is a vector component and the component direction matches the direction 
of shifting, a new edge cell is added that is equal in magnitude but opposite sign to the 
previous edge.

OR

1i i→ +
Common Shift Generator Behaviors

Example Where:

Figure 4.3: Examples of shift generators for common boundary types.
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diff icult proposition given that outf low behaviors are unknown a priori 

and change over time. 	

	 For boundaries such as this Non-Ref lective Artif icial Boundary 

Conditions (NRABCs) are typically employed. In an NRABC the solution 

is extrapolated over the spatial domain boundary to attempt a rough 

approximation of the correct solution had the spatial domain continued 

beyond the boundary. These techniques are anisotropic, and as their 

namesake suggests, prevent non-physical ref lections from occurring on 

the boundary. However, the non-ref lective conditions are indiscriminate. 

Not only will they prevent non-physical ref lections, they will prevent 

all ref lections. This can cause problems if physical ref lective behaviors 

happen on or near the boundary and must be carefully avoided as much as 

possible.

	 The two general approaches to implementing NRABCs are functional 

and physical. In the functional form, the extrapolation of the new boundary 

is generated by multi-dimensional interpolation of the existing bounding 

cells to produce a smooth approximation. The physical approach, which 

is more computational expensive, is to solve a simplif ied version of the 

advection equations, usually linearized, that are solved under conditions 

that prevent ref lections. In either approach the results are approximate, 

which can lead to problems.

	 For the corrugation instability problem a number of NRABC methods 

were implemented and tested. In many cases these NRABC methods were 

able to prevent ref lections from occurring in the internal, downstream 
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boundary where the comparatively high densities and pressures supported 

a stable boundary. However, none of the techniques were successfully able 

to prevent ref lections from occurring on the upstream, external boundary. 

The problem with the external boundary was that the combination of 

strong magnetic f ield strength of the inf low and the high frequency 

propagating magnetic wave outf low were never well resolved by the tested 

NRABC algorithms. In tests the NRABC solver would generate small, 

but signif icant, errors in the extrapolated solution of the magnetic f ield, 

resulting in errors in the divergence-free constraint along the boundary. 

In the subsequent magnetic advection step, the constrained transport 

scheme, which assumes a divergence-free magnetic f ield, would produce 

erroneous magnetic f ield strengths at the boundaries in response to these 

errors. This would in turn force the NRABC toward a larger correction 

during for the following step and in turn produce even greater deviations 

in the divergence-free constraint. The resulting feedback loop between the 

NRABC and the constrained transport advection scheme would quickly 

produce a large amplitude, high frequency inf low magnetic wave that 

would propagate into the spatial domain, destroying the simulation.

	 A number of attempts were made to try to stabilize the existing 

algorithms by either post-cleanup steps to the extrapolated conditions or to 

simultaneously satisfy the NRABC and divergence-free constraint. There 

were many improvements in these attempts, but nothing successful enough 

to be used in the actual simulations. The attempts f inally culminated in 

an overly demanding NRABC solver that used too many computational 
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resources to be worth pursuing further.

	 Instead a different approach was employed and a new NRABC algorithm 

developed that was much more aggressive in its NRABC condition. To 

create boundaries that would behave under these extreme conditions 

extrapolation was abandoned and the boundary converted from an edge 

condition into a multi-cell region a few cells thick along the border. By 

handling the boundary within the domain, the dynamic edge shifting is 

able to remove any outf lows that would cause ref lections while the still 

under the full advection scheme.

	 The technique, called Fade shifting, maintains a non-uniform, spatial 

varying superposition of the inf low condition with the simulated solution 

within the fade bounding region. The cells on the downstream edge of 

the boundary region are unaffected by the fade shifter. On the upstream 

boundary, however, the fade shifter imposes full the inf low condition 

and ignores any advection value assignments. Between these endpoints 

cubic Hermite interpolation is used to specify the mix between the full 

advection solution and the inf low condition. Figure 4.4 illustrates how the 

interpolation behaves in a fade boundary region.

	 As the namesake suggests, the effect of progressively mixing between 

the advection solution and the inf low condition is the fading away of 

any outf low behaviors before they hit the boundary to cause unwanted 

ref lections. The fade NRABC takes maximum advantage of dynamic edge 

shifting, mixing the inf low conditions with the advection solutions for all 

spatial arrays, both primary and f luxes. The dynamic nature of
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Figure 4.4: Inf luence profile for the fade shift NRABC boundary region. 
The inf low condition increases in inf luence for the superposition of the 
two value assignments closer to the edge of the spatial domain. With a 
maximum inf luence at the spatial domain boundary no outf low exists on 
the edge to be ref lected.

the dynamic edge shifting technique is crucial to this approach because 

successive derivatives are calculated using the faded values of their 

constituent spatial arrays, e.g. the mass density f lux is calculated from 

a faded mass density array. This effectively compounds the strength 

of fading for higher order derivatives, which is where the numerical 

instabilities in the NRABCs form.

	 The result is an extremely aggressive, and very stable NRABC for use 

in the corrugation instability simulation. It should be noted, however, that 

since the fade shifter was created it has been used as part of IMOGEN 

in support of many other simulation types. The inf low condition is 
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not specif ied as part of the fade shifter, it is inferred from the initial 

conditions of the simulation, which makes it useful even in cases where 

the edge condition may not be an inf low at all. Hence, the fade shifter 

is a good general purpose NRABC boundary type for any case where 

outf low activity could be a problem for the evolution of the simulation. 

Demonstration and verif ication of the fade shifter can be found in the 

following chapter.

4.4. Active Grid Alignment

 	 As will be discussed in chapter 6, all corrugation shock simulations 

place the shock front at the center of the spatial domain with initial 

conditions on the primitive variables such that the front remains stationary 

in the prescribed state. As the corrugation instability grows and the 

nonlinear behaviors take over, these conditions are broken and the shock 

front can propagate away from the center of the domain. Given the need to 

follow the evolution of corrugated shock fronts well into their nonlinear 

regimes, a mechanism was needed to keep the fronts from propagating out 

of the domain.

	 To do this, IMOGEN was extended to include an Active Grid Alignment 

(AGA) system. This AGA system works by locating a key position within 

the simulation domain and remapping the grid to keep that position at a 

specif ied place within the domain. For the corrugation instability, the key 

position was the plane of the shock front, which the AGA was set to f ind 

by recognizing the largest planar-averaged, shock-normal compression 

given as,



71

ϒi
y z

x x i j k
kjN N

v=
⋅

∂∑∑1
,( , , )

,	 (4.X)

where Ny and Nz are the number of cells in the Y and Z dimensions of 

the grid and j and k are the indices over the cells in those dimensions 

respectively. When a corrugated shock front moved away from its initial 

position at the center of the grid the AGA would see the index of the 

maximum value of the ϒi array shift by the same number of cells, which 

triggers the remapping process.

	 To remap the grid the AGA relies on shift generators. After a f lux and 

source operation the AGA checks the ϒi array and determines how many 

cells it needs to adjust the grid to re-center the corrugated shock front in 

the spatial domain. The AGA then shifts all of the primitive variable arrays 

by the specif ied number of cells. Since the shift generators act identically 

in this case to their use inside the f lux routines, this operation is as stable 

as a f lux action. 

	 The only issue with the approach is for cases where the number of cells 

needed to remap is large compared to the total size of the grid. When 

this happens it means a large amount of information contained within 

the simulated domain was lost to the propagation. However, dramatic 

remapping such as this rarely occurred in the corrugation instability 

investigation, and for the few instances where it did happen the accretion 

shock fronts were already nearing the end of their evolution and aborting 

the simulation prematurely was not an issue.
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CHAPTER V

TESTING AND VERIFICATION

With the development of any simulation software extensive testing is 

required before it can be put to research use. The software must be verif ied 

under a number of different test conditions to determine that is functioning 

properly as well as understand its capabilities and limitations. 

	 Testing IMOGEN consisted of running through a suite of test problems, 

each one probing different aspects of its operation, and then comparing 

the results of each test with analytical solutions, in the few cases that such 

solutions exist, or, more commonly, numerical solutions from previous 

magnetohydrodynamics codes that have already been rigorously tested. 

The test process was broken down into two phases and corresponding 

tightly with the development process, f irst hydrodynamics and then 

magnetohydrodynamics. Before adding magnetic advection to the 

magnetohydrodynamic simulation software it is beneficial to have a fully 

functioning and tested hydrodynamic advection algorithm as a foundation. 

And since the algorithms used to advect hydrodynamic variables differ 

signif icantly from the magnetic f ield advection algorithm, magnetic f lux 

is handled separately from hydrodynamic f lux, hydrodynamic testing prior 

to any magnetohydrodynamics testing is a reasonable f irst step in the 

verif ication process.

	 The following are three of the many tests conducted on IMOGEN that 

highlight its capability as an effective simulation tool in the investigation 

of the corrugation shock wave problem. The f irst, the Sod shock tube, 
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is a canonical test of hydrodynamic shocks and demonstrates the shock 

capturing capabilities of the second-order relaxed TVD MUSCL scheme. 

The second test, the Brio-Wu shock tube, is the magnetic extension of 

the Sod shock tube, demonstrating the addition of constrained transport 

magnetic advection in a shock wave system. The f inal test, the Orszag-

Tang vortex, is the canonical multi-dimensional magnetohydrodynamics 

test problem as it taxes the fully magnetic advection scheme and is 

highly unstable to numerical errors. For each of the two shock tube tests 

a modified form of the test was conducted using fade edge shifting to 

demonstrates the effectiveness of the fade shifting described in section 

4.3.2 in support of the corrugation instability investigation.

5.1. Sod Shock Tube

	 The Sod shock tube is an extension to a hydrodynamic system of 

equations of the more general Riemann problem, which describes the 

solution to the generic advection equation (2.1) given an initial condition 

of two regions of differing value separated by a step discontinuity. The 

Sod shock tube is traditionally a one-dimensional problem, hence the tube 

descriptor, with contact discontinuities in the mass and pressure densities 

between two otherwise homogenous regions. At time zero the imaginary 

barrier responsible for setting up the discontinuity between the two 

regions is removed, causing system evolution due to interaction across the 

discontinuity (Sod, 1978).

	 Given the right choices for the initial conditions, the discontinuity is 

responsible for creating a supersonic shock wave that propagates through 
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the tube. The general arrangement of the initial conditions is shown in 

Figure 5.1(a), which according to the conditions set forth by Sod when he 

developed the problem are 
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Here the 1 and 2 subscripts denote the two separate initial regions on either 

side of the imaginary barrier. Under these conditions the propagation of the 

shock wave sets up f ive distinct regions within the tube, two representing 

the pre and post rarefaction wave propagation, one created by the initial 

contact discontinuity, two pre and post the shock front discontinuity as 

shown in the diagram of Figure 5.1(b).
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Figure 5.1: Diagram of the Sod shock tube test, (a) with initial conditions 
for two distinct regions, and (b) an finite time after the barrier has been 
removed and the system allowed to evolve into five distinct regions.
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	 The Sod shock problem is widely used to verify shock and discontinuity 

handling in hydrodynamic advection algorithms. A large part of its 

value comes from the fact that it is also one of the only test problems 

in hydrodynamics shock simulations that is both rigorous and has an 

analytical solution for direct comparison (Fryxell, et al., 2000; Ryu & 

Jones, 1995; Sod, 1978).

	 The Sod shock tube test was carried on IMOGEN using a simulation 

specif ic Initializer class created to generate the appropriate initial 

conditions for a shock tube of f ixed unit length but of arbitrary grid cell 

resolution, as well as a number of extensions to the problem discussed 

later. Initial testing was run on tubes with resolutions of 256, 512, 1024, 

and 2048 grid cells and a detailed comparison made of the different trials 

in an attempt to f ind any resolution dependent artifacts that would indicate 

scaling related problems with advection algorithm.

	 The only appreciable differences found during these comparisons were 

the absolute width of the shock discontinuities captured as shown in Figure 

5.2. Higher resolution trials better defined the discontinuity in the mass 

density profile, a behavior that was expected as discontinuity capture in 

advection algorithms is limited by both a minimum number of grid cells 

and an absolute spatial domain width. As the resolution increased a similar 

number of grid cells were able to reproduce a better defined discontinuity, 

but with diminishing returns as the spatial width eventually begins to 

dominate. Comparing the decrease in discontinuity width between the 256 

and 512 resolution runs and the 1024 and 2048 runs, it is apparent that the 
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number of cells is the limiting factor for lower resolutions and decreases 

in importance as the resolution increases. The spatial width limitation 

is produced by the f lux limiting done as part of the total variation 

diminishing advection scheme and can be somewhat controlled by the 

choice of the f lux limiter, which in this case was Van Leer. Using a Min-

Mod limiter, for example, would produce a much smaller spatial width at 

higher resolutions.
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Figure 5.2: Simulated discontinuity results of a Sod shock tube test 
at various resolutions between 256 and 2048 grid cells. The higher the 
resolution the sharper the discontinuity in absolute units but the same 
number of grid cells are required to actually resolve the discontinuity.

	 Satisf ied that IMOGEN was capable of resolving discontinuities on 

a range of commonly used resolutions, the 512 grid cell resolution was 

selected for the remainder of Sod shock tube testing because it represented 

an intermediate resolution likely to be used in research applications such 

as the corrugation instability problem.
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	 The next step in the Sod shock tube test process was to examine 

simulated results against their corresponding analytical solutions. Figure 

5.3 shows a typical comparison between the simulated and analytical 

mass density profiles for a 512 resolution run at a simulation time of 

0.15. The mass density profile shows f ive distinct regions, as outlined in 

Figure 5.1, beginning with the unperturbed high density region on the 

left. To the right of that is the expanding rarefaction wave region, which 

propagates into the high density region. This is followed by the f lat contact 

discontinuity region the expands both leftward and rightward over time, 

with the actual shock front region propagating a faster rightward velocity 

into the unperturbed low density region.

	 A visual inspection of the two profiles in Figure 5.3 reveals that the 

advection algorithm is functioning reliably for a hydrodynamic shock with 

little disagreement between the two solutions except for the grid cells 

located on and around the discontinuities. This is expected as advection 

algorithms require multiple cells to resolve transitions as previously 

investigated, and from the behavior in the discontinuity areas it is clear 

that the reasons for each of the discrepancies were f inite transitions 

between the pre and post discontinuity values.
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Figure 5.3: Profile of the mass density in a Sod shock tube simulation 
after appreciable simulation time as well as the analytical solution for 
comparison.

	 Plotting the fractional error between the simulated and analytical 

mass density profiles revealed the disagreement in more detail as shown 

in Figure 5.4. The fractional error peaks due to the shock front and the 

contact discontinuity are signif icant, but explained by the transition of the 

value across the respective discontinuities with the maximum fractional 

error for these peaks determined by half the height of the discontinuity. 

The width of these peaks is the more interesting and encouraging result 

revealed by this plot. The fractional error drops rapidly on either side of 

the peak, and in only a few cells on either side of these peaks the fractional 

error has dropped down to or below a few percent difference, which is 

well within the acceptable error tolerances for a second-order accurate 

advection algorithm around an area of rapidly changing value.
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Figure 5.4: Fractional error between the simulated and analytical mass 
density profiles at a simulation time of 0.15.

	 Unlike the shock and contact discontinuities, the fractional error in the 

rarefaction region never peaks very high but has a much broader extent. 

This is a potential concern given the rarefaction wave discontinuity is 

small and the region smoothly transitions behind the rarefaction wave 

front, which should not produce large errors. However, given that the 

error never exceeds a few percent the discrepancy is also explained by the 

advection algorithm being only second-order accurate in areas of quick 

change. The larger question that Figure 5.4 suggests is does the IMOGEN 

advection algorithm recover from these errors over time? If the IMOGEN 

were functioning properly the errors would be transient and the, as the 

discontinuities propagate, areas through which discontinuities have passed 

should converge once again on the correct solution with in the insignif icant 
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error bounds limited by the advection algorithms order of accuracy. The 

wake behind the rarefaction wave in Figure 5.4 suggests that this is the 

case as the further from the wave front the smaller the error. However, to 

be absolutely sure a waterfall time plot is made of the fractional error in 

the simulated and analytical mass density profiles showing the evolution of 

the fractional error over time as shown in Figure 5.5.
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Figure 5.5: Waterfall evolution plot of the fractional error between the 
simulated and analytical solutions to the mass density profile in the Sod 
shock tube test.

	 Figure 5.5 displays the fractional error plot shown in Figure 5.4 as a 

horizontal line and colored darker where the fractional error is higher. 

Each horizontal slice represents a snapshot in simulation time of the mass 

density profiles. The slices are equally spaced in time beginning from the 

start of the simulation, time of 0, at the top until the end of the simulation, 

time of 0.15, at the bottom. Inspecting this plot it becomes obvious that the 

IMOGEN hydrodynamic advection algorithm recovers from errors created 
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by discontinuities, as these errors clearly track the shock front and don’t 

increase appreciably over time. 

	 The same analysis shown here for the mass density plots was also 

made of the other conserved hydrodynamic variables in the system, all 

of which exhibited similar encouraging results. The details of each of 

these examinations is omitted, but examples of the velocity and total 

specif ic energy, total energy per unit mass density, profiles are included 

below in Figures 5.6 and 5.7 as a reference snapshot for illustration and 

documentation purposes.
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Figure 5.6: Simulated and analytical velocity profiles of the Sod shock 
tube problem at simulation time of 0.15.
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Figure 5.7: Simulated and analytical total specific energy density profiles 
for the Sod shock tube test at a time of 0.15. Specific energy is plotted 
instead of energy directly because this accentuates the energy variations 
in the contact and shock regions, providing a clearer understanding of the 
discontinuity capturing in the energy as a result.

In addition to the traditional Sod shock tube test, the IMOGEN Sod shock 

Initializer class was extended to allow for testing to take place on a multi-

dimensional grid, along any choice of grid direction, and at arbitrary 

angles relative to any specif ied grid axis. The f irst set of these extended 

tests were reproductions of the one-dimensional tests discussed above 

on three-dimensional simulation domains to investigate the abilities of 

the advection algorithm to correctly maintain one-dimensional behavior 

in a three-dimensional environment. Aberrant behavior on the part of 

the advection algorithm during these tests would have resulted in a 

deviation from the analytical solution as a result of some incorrect spatial 

dependency created by the advection algorithm in dimensions parallel to 
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the plane of the initial discontinuity. However, no such deviations were 

found and comparisons between the previous one-dimensional results and 

the multi-dimensional tests were identical. This supports the conclusion 

that the multi-dimensional advection algorithm capably and correctly 

handled the introduction of additional spatial degrees of freedom into the 

one-dimensional problem.

	 In the next phase of Sod shock tube tests, the one-dimensional and 

three-dimensional problems described above were repeated for tubes with 

propagation alignments along the remaining two available dimensions. In 

each case the results were compared to the respective analytical solution as 

well as the results of the original tests in search of any variation that would 

indicate errantly biased advection behavior along a specif ic axis. None of 

these tests revealed any deviation from the original results in either one 

or three dimensions, which leads one to the conclusion that the advection 

algorithm was, as desired, isotropic.

	 The f inal extension of the Sod shock tube is a two-dimensional test with 

the initial discontinuity existing at an angle to one of the axes for testing 

the ability of the advection algorithm to handle general non-axis aligned 

advection as well as discontinuities. Tests were conducted on a number of 

different alignment angles, but the one of most interest was 45° because 

it represents the most diff icult advection direction given that two f luxing 

steps contribute equally for every complete advection step. Figure 5.8 

shows the results of a 45° aligned two-dimensional test.
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Figure 5.8: Results of a two-dimensional non-axis aligned Sod shock 
tube test with an angle of 45° from the primary axis. The panel (a) shows 
the mass density, (b) the total specific energy density, and (c) the velocity. 
The arrow in each panel indicates the direction along with the shock wave 
propagates during the simulation. The dotted line represents the center 
line of propagation with unit length.

	 The triangular areas blocked out in each panel of Figure 5.8 are areas 

where the shock wave had already struck the edge of the domain and 

ref lected back and so were ignored because the result is no longer valid 

compared to previous tests and the analytical solution. The arrow in each 

panel indicates the direction of propagation for the shock wave, with the 

initial region i located in the upper left corner and the initial region ii in 

the lower right corner. The spatial domain was setup so that the largest 
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length of a one-dimensional propagation profile, represented in Figure 5.8 

by the dotted line, was unit length. This allowed for direct comparison 

with the previous axis aligned tests and the corresponding analytical 

solution. From the panels in Figure 5.8 it is obvious that the behavior 

is uniform perpendicular to the direction of propagation, meaning that 

even in the non-axis aligned cases the advection algorithm is capable of 

maintaining direction of propagation without erroneous behaviors caused 

by non-physical crosstalk between f lux directions. To further investigate 

any potential errors caused by the off axis alignment the unit length 

profile, the dotted lines, of the mass density, velocity, and total specif ic 

energy were plotted against corresponding analytical solutions in the same 

fashion as the original one-dimensional test. The resulting plots are shown 

in Figure 5.9.

	 Inspection of Figure 5.9 shows no obvious errors introduced by the 

non-axis alignment. To be absolutely confident the fractional error plots 

were reproduced and compared to the one-dimensional trials. An example 

of the mass density fractional error profile is shown in Figure 5.10, which 

exhibits the same general form as the previous axis aligned trial shown in 

Figure 5.4 with only insignif icant errors between the two plots.

In all cases the IMOGEN advection algorithm is able to reproduce the Sod 

shock tube result within reasonable error tolerances given the order of 

accuracy of the algorithm and under a wide range of important conditions.
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Figure 5.9: Profiles of mass density (a), velocity (b), and total specific 
energy (c), for the unit length profile of the non-axis aligned profiles 
illustrated by the dotted lines in Figure 5.9 and analytical solutions.
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Figure 5.10: Fractional error plot between the simulated and analytical 
mass density profiles at simulation time of 0.15 for a non-axis aligned Sod 
shock tube test with a propagation angle of 45°.

	 As a f inal extension to the Sod shock tube test, the boundary conditions 

along the shock normal directions were changed from their default constant 

behaviors, as specif ied by the original problem, and replaced with fade 

shifting, see section 4.3.2 for details, to verify the effectiveness of the 

fade shifter to prevent ref lections with a substantial shock wave acting as 

the outf low condition. In this case the Shock tube problem was run past 

the simulation time used above to give the shock front time to propagate 

off the edge of the grid, completely through the fade shift region. The 

results of this test are presented in f igure 5.11. As the f igure demonstrates, 

the fade shifter is able to successfully fade away the shock front without 

ref lection. 
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Figure 5.11: Sod shock tube problem with fade shift edges for the shock 
normal boundary conditions. The shock tube was evolved for a time long 
enough for the shock front to propagate off the edge of the domain.

None of the mass density profiles exhibit any ref lective wave disrupting 

the solution outside of the fading region. By the t = 0.37 time units profile 

the shock front has entered the fade region and no ref lection is observed 

by the discontinuity fading away on the boundary. The subsequent time 

profiles confirm that the process is without ref lection. Obviously, the fade 

shifting has an effect on the boundary region but even at the t = 0.64 time 

units profile nothing has disturbed the smooth post-contact discontinuity 

profile at the center of the spatial domain. The fade shifter is, therefore, 

successfully able to transport the shock front out of the simulation domain 

without ref lecting back into the domain for hydrodynamic shock waves. 

More verif ication of the fade shifting solver is reserved for section 6.1.1.
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5.2. Brio-Wu Shock Tube

	 The Brio-Wu shock tube is a natural extension of the hydrodynamic 

Sod shock tube problem to magnetohydrodynamics. Similar in many ways 

to the Sod shock tube, the Brio-Wu shock tube begins with two distinct 

regions separated by an invisible barrier that is removed at the beginning 

of the simulation that allows the shock discontinuity to evolve over time. 

The magnetic extension for the Brio-Wu shock tube is the introduction of 

uniform magnetic f ields parallel, perpendicular, or at an arbitrary angles 

to the front of the shock. The magnetic f ield changes the way in which the 

shock wave evolves as the magnetic f ield allows for additional propagation 

modes are greater in number and propagation speed diversity than the 

corresponding hydrodynamic system (Brio & Wu, 1985).

	 Unlike the Sod shock tube, the Brio-Wu shock tube has no analytical 

solution for a direct comparison. The solution is, however, simple enough 

that it can be compared with other published solutions of the problem as 

a consistency check. As each simulation software has slight variations in 

its solution profiles, there is little added value to a comparison as rigorous 

as the comparisons made previously for the Sod shock tube problem, 

especially with regard to the evolution of errors. Instead verif ication 

is achieved by comparing the locations and values of notable features 

between different results. The results of a Brio-Wu shock tube test using 

IMOGEN with the initial conditions,
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where subscripts 1 and 2 represent the two distinct initial regions, are 

shown in Figures 5.12-5.14. This trial was run on a three-dimensional grid 

with the shock normal along the x direction. The resolution of the spatial 

domain was 1024 cells along the x direction and 32 cells along each of the 

y and z directions. Like the Sod shock tube problem, the Brio-Wu magnetic 

shock tube is a one-dimensional advection problem, but running it on a 

three-dimensional grid allows for an inspection of the magnetic advection 

algorithm to correctly maintain the uniform, one-dimensional nature of the 

problem. 

	 A qualitative, feature-by-feature comparison between IMOGEN and the 

results of three other simulation tools exhibit no signif icant disagreement 

from the results presented by others under the same initial conditions 

(Gardiner, et al., 2008; Pen, et al., 2003; Ryu et al. 2008; Toth 2000).
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Figure 5.12: Mass density and total specific energy results of the Brio-
Wu magnetic shock tube.
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Figure 5.13: Shock plane parallel and perpendicular velocity results of 
the Brio-Wu magnetic shock tube.
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Figure 5.14: Shock plane parallel and perpendicular magnetic field 
results of the Brio-Wu magnetic shock tube.

	 A calculation of the divergence of the magnetic f ield for the magnetic 

f ield results shown in Figure 5.14 was negligible, with values no higher 
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than the unavoidable machine precision noise that arises from f loating 

point arithmetic. The qualitative comparison included a number of features 

shown in Figures 5.12-5.14. The most important are summarized as follows:

•	 Fast shock fronts: x ≈ 0.1 and x ≈ 0.85.

•	 Slow shock fronts: x ≈ 0.5 and x ≈ 0.6.

•	 Contact discontinuity: x ≈ 0.55.

•	 Approximate values within distinct profile regions (in order from 

left to right):

•	 Mass density: 1.000, 2.680, 2.671, 3.850, 3.748, and 1.00.

•	 Total specif ic energy density: 81.99, 87.92, 88.09, 61.22, 61.97, 

and 53.49.

•	 Velocity (shock normal parallel): 10.00, 0.7212, 0.7238, 0.7051,  

and -10.00.

•	 Velocity (shock normal perpendicular): 0.000, 0.2314, 0.3572, 

-0.3879, and 0.000.

•	 Magnetic f ield (shock normal perpendicular): 1.410, 3.839, 

4.039, 5.427, and 1.410.

	 An inspection of the shock-plane variance also revealed that the 

simulation correctly maintained its one-dimensional, axis-aligned f low. 

The success of the qualitative comparison between IMOGEN and three 

other published solutions, along with verif ication of the constrained 

transport magnetic advection scheme maintaining the divergence-free 
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constraint, clearly demonstrate the capability of IMOGEN to handle 

magnetohydrodynamic advection in the presence of shock waves. 

5.3. Orszag-Tang Vortex

	 The Orszag-Tang vortex is considered one of the more critical tests for a 

magnetohydrodynamics simulation software. From somewhat simple initial 

conditions, the Orszag-Tang vortex evolves into a very complex end state 

due to complex interactions between the many supersonic magnetic waves 

that propagate within the simulation domain (Orszag & Tang 1979). The 

initial conditions for the simulation are,

ρ π π

π π

π

= ( ) = ( )
= − ( ) ( )( )
= − ( )

25 36 5 12

2 2

20

P

y x

B y

v

B

sin , ,

sin ,

 sin  0

 BB x

B
0

0

4 0

1 4

sin ,π

π

( )( )
=

 

.	 (5.3)

For this arrangement a value of γ=5/3 is used as the ratio of specif ic heats 

in the equation of state. The domain is two-dimensional and uses circular 

(periodic) boundary conditions for all edges. The domain is normalized to 

unit length for both x and y dimensions so that the problem can be run and 

compared at different spatial resolutions. The initial configuration for the 

test problem is shown in Figure 5.15 for a 256×256 cell spatial domain.
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Figure 5.15: Initial conditions for the Orszag-Tang vortex test as 
specified by (5.3). The periodic behaviors of the velocity and magnetic 
field components are responsible for driving the evolution of the 
simulation.
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	 For these initial conditions the simulation begins in a mixed state of 

subsonic, transonic, and supersonic Mach velocities as shown in Figure 

5.16. During the simulation the velocities will increase as the magnetic 

effects drive the evolution. Comparing Figure 5.16 with the velocity 

conditions shown in Figure 5.15 it is apparent the y velocity is largely 

responsible for the initially supersonic regions.
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0.5

0.7

0.9

Sonic Mach Number At t=0 For the Orszag-Tang Vortex

Figure 5.16: Sonic Mach values for the Orszag-Tang vortex simulation at 
t=0.

	 Throughout the simulation the two-fold symmetry about the plane-

normal axis is maintained. However, the evolution quickly loses its 

axially aligned symmetries as the non-zero velocities and magnetic f ields 

contribute to an overriding radially Lorentz force that drives vortex 

behavior. The simulation is run until a critical time, t=0.48, which is the 

key comparison time. Figure 5.17 shows the evolution of the mass density 

over time until it reaches the critical time and shortly thereafter when 

turbulence begins to appear.
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Figure 5.17: Evolution of the mass density for an Orszag-Tang vortex test 
up to the critical evolution time of t=0.4800 time units and just beyond. 
In the final time the turbulence starts to become apparent.
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After the critical time the vortex fan structure that exists from the early 

evolution breaks down and magnetic turbulence dominates the evolution 

as shown in Figure 5.18 with snapshots of the mass density long after the 

critical time. A correct handling of the magnetic turbulence should appear 

quite chaotic while maintaining the two-fold symmetry the problem began 

with as it does in the various snapshots shown in Figure 5.18.

Mass Density Pro�les Over Time A�er the Critical Time
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Figure 5.18: Evolution of the mass density in an Orszag-Tang vortex well 
after the critical time of t=0.48 time units, where magnetic turbulence has 
largely overtaken the evolutionary behaviors of the vortex.

As previously mentioned, the important point of comparison for the 

Orszag-Tang vortex is at the critical time, t=0.48 time units. Figure 5.19 
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shows the evolution of the vortex at this critical time in the same format as 

the initial conditions were presented in Figure 5.15.
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Figure 5.19: Orszag-Tang vortex simulation at the critical time, t=0.48.
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As is demonstrated by inspecting the evolution of the mass density in 

Figures 5.17 and 5.18, the state of the vortex evolution in 5.19 has reached 

a point where the waves generated by the initial conditions have had 

a signif icant period of time in which to interact but not yet reached a 

point where they have become turbulently incoherent from the driving 

symmetries of the initial velocity and magnetic f ield conditions. It is also 

important to notice that the distribution of speeds within the system have 

changed signif icantly, including a growth in the supersonic nature of the 

waves as shown in the Mach results of Figure 5.20. 

Sonic Mach Number At Critical Time t=0.48 For the Orszag-Tang Vortex

0.4

0.8

1.2

1.6

Figure 5.20: Sonic Mach values for the Orszag-Tang vortex simulation at 
the critical time, t=0.48 time units.

Figure 5.20 illustrates a key aspect of the Orszag-Tang vortex as a test 

problem for a new magnetohydrodynamic simulation software. The 

transition, growth, and evolution of complex, non-axis aligned supersonic 

magnetic shock waves within the domain are extremely sensitive to 

numerical and computational errors. Had the IMOGEN advection 

algorithms been found lacking in this regard the simulation would have 
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quickly fallen apart and would look nothing like the results shown in the 

previous f igures. To compare these results with others, the results shown in 

Figure 5.19 are augmented to inspect a few other properties of the system, 

specif ically the pressures, compression, and vorticity of the vortex at the 

critical time. Figure 5.21 shows the results for these values, which are used 

for direct, qualitative comparison between the results of others. 

Vorticity ( )v∇×


Compression ( )v∇






Gas Pressure Magnetic Pressure
Orszag-Tang Vortex Critical Time Augmented Results For Comparison

Figure 5.21: Additional results of the Orszag-Tang vortex simulation for 
comparison with other published simulation results.

The results in Figures 5.19 and 5.21 coincide favorably with the published 

results of many other Orszag-Tang vortex tests through a graphical, 
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qualitative comparison (Arminjon & Touma, 2005; Dai & Woodward, 1998; 

Gardiner, et al., 2008; Londrillo & Del Zanna, 2004; Ryu, et al., 1998; 

Toth, 2000). In Ryu, et al. (1998), one-dimensional profiles of the gas and 

magnetic pressures were included at a position of y=0.428 at the critical 

simulation time. An extraction of those profiles, with overlays showing 

comparable values for the IMOGEN Orszag-Tang vortex simulation are 

shown in Figure 5.22.
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Figure 5.22: Comparison between Orszag-Tang vortex simulations 
conducted using IMOGEN and results published in Ryu, et al. 1998. 
Different handling of the boundary conditions and initial conditions 
introduces a slight offset in the absolute positions of the cells between 
the two results. Therefore, the results compared are at slightly different 
positions in the grids, y=0.428 for Ryu, et al. and y=0.426 for IMOGEN.

A slightly different handling of the spatial domain between the two 

simulations introduced a slight offset in the absolute positions of the 
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two profiles compared in Figure 5.22. The results of Ryu, et al. (1998) 

are shown for a value of y=0.428, whereas the IMOGEN results are for a 

value of y=0.426. Even with the small discrepancy the correlation between 

the two results is quite high, all within reasonable tolerances given the 

difference in advection algorithms used, further demonstrating IMOGEN 

as a capable magnetohydrodynamic simulation tool.

	 A useful extension to the Orszag-Tang vortex test is to demonstrate 

the ability to reproduce the same result at different resolutions. Until 

after the critical time the vortex evolution should be stable enough for, 

within reason, a resolution independent result. After the critical time, 

once the magnetic turbulence takes over after the critical time the spatial 

frequencies allowed by the spatial domain resolution largely dictate the 

f inal structure. The results presented above were all for the standard 

256×256 cell spatial resolution. Figure 5.23 shows the results of the 256 

resolution along with resolutions of 128, 384, and 512. In each case the 

problem is normalized so that the absolute dimensions of the problem 

remain the same. The cell spacing in each case is, therefore, the reciprocal 

of the resolution so that the total length of an edge is one in all cases. As 

the boundary conditions are periodic, the results tile nicely against each 

other, a helpful aid in the resolution comparison.

	 From inspection of the various mass density profiles displayed in 

Figure 5.23, it is clear that IMOGEN is capable of correctly evolving the 

Orszag-Tang vortex for a number of different resolutions over a range of 

resolutions likely to be found in research applications. This and the success 
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of the previous comparisons, demonstrates IMOGEN’s readiness to handle 

simulations with complex magnetohydrodynamic advection.
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Figure 5.23: Mass density profiles of the Orszag-Tang vortex run at four 
different resolutions, 128×128, 256×256, 384×384, and 512×512 cells. 
In each case the large-scale structure of the vortex matches the other 
resolutions.

5.4. Other Tests

	 The three tests, the Sod shock tube, the Brio-Wu magnetic shock tube, 

and the Orszag-Tang vortex are suff icient to demonstrate IMOGEN’s 

readiness for the magnetic accretion shock investigation. However, these 
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represent only a fraction of the tests run during development and testing of 

IMOGEN as others were used to help ref ine the advection schemes, test the 

auxiliary algorithms, e.g. artif icial viscosity, and demonstrate IMOGEN 

as a good general purpose magnetohydrodynamics simulation software for 

computational astrophysical research. It is worth brief ly mentioning the 

results of two other tests for the sake of fortifying the previous test results.

5.4.1. Sedov-Taylor Blast Wave

	 The Sedov-Taylor blast wave problem is a good hydrodynamic test for 

verifying, among other things, the isotropy of the advection scheme. It 

begins with a uniform spatial domain of some low background density 

and pressure and at the center of the grid a the pressure is dramatically 

increased. In most cases this high pressure region is a sphere, in a three-

dimensional domain, or a circle, in a two-dimensional domain, with a 

diameter of around 6-12 cells (Fryxell, et al. 2000). 

	 When the simulation begins the high pressure region expands uniformly 

outward as a shock wave at supersonic speeds set by the ratio of the 

background to center pressures. After some evolution time the blast wave 

has expanded within the domain to a much larger sphere, or circle, with 

most of the density and pressure existing within the expanding shock; the 

region contained within the shock wave is evacuated as the shock wave 

expands outward.

	 It is then useful to look at how the simulation software handles 

uniform advection in all directions to understand the degree of anisotropy 
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introduced by a spherical, or cylindrical, shock wave existing on a 

Cartesian grid. 

	 For the cases of this test, the high density region was chosen to be 

only a single cell. This choice puts the IMOGEN hydroydnamic advection 

scheme at the greatest disadvantage because there is non way to recover 

the spherical nature of the blast wave from what was originally a single, 

rectangular, source cell. As such, this exposes the worst anisotropy 

possible for a spherical structure on a Cartesian grid. It should not be 

construed as how IMOGEN handles all spherical structures. Even with just 

a few cells of definition in the high pressure region the anisotropy caused 

by the rectangular structure of the grid is satisfactorily recovered.

	 Figure 5.24 shows the mass density profiles for a worst case scenario 

test. The anisotropy is readily apparent in the two-dimensional profile 

where the advection scheme conserves the advected quantities but does not 

handle the spherical propagation uniformly.
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Figure 5.24: Worst case scenario for a Sedov-Taylor blast wave where the 
initial high pressure region was created using only a single cell to expose 
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the maximum anisotropy caused by the rectangular grid.

	 The simulation in Figure 5.24 was a three-dimensional run conducted on 

a grid 141×141×141 cells. To better analyze the advection anisotropy a plot, 

show in Figure 5.25, was generated showing the mass density at each cell 

within the grid versus its distance from the initial high density region at 

the center of the grid.

Mass Density Versus Disance From �e Center of the Spatial Domain
For A Sedov-Taylor Blast Wave With a Single Cell High-Pressure Injection
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Figure 5.25: Mass density versus distance from the center of the spatial 
domain for all cells within the grid for the Sedov-Taylor blast wave results 
shown in Figure 5.25.

Figure 5.25 clearly shows the maximum possible advection anisotropy for a 

non-rectangular structure on the rectangular grid to better understand the 

limitations of the IMOGEN software given its Cartesian coordinate system 

and choice of advection schemes. Even in the worst case scenario there are 
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a number of encouraging aspects to this result. 

	 First the deviation in distance of the shock peak values is quite small, 

meaning that the advection schemes are doing very well at maintaining the 

structure despite the ill-conditioned initial conditions. Also, the shape of 

the shock front is reasonably well preserved, all things considered, as there 

are no spurious shapes or strange deformations caused by the mismatched 

structure and grid. Finally, the evacuation region behind the shock wave 

converges nicely to a nearly isotropic distribution. This demonstrates that 

the issue is largely contained to the shock wave, which is only f irst-order 

accurate anyway given the nature of the advection scheme.

	 Hence, given a worst case scenario with ill-conditioned initial 

conditions IMOGEN is able to handle the advection of non-rectangular 

structures to a reasonable effect and result.

5.4.2. Kelvin-Helmholtz Instability

	 The other test worth a brief mention is the Kelvin-Helmholtz instability. 

The Kelvin-Helmholtz instability is a hydrodynamic instability caused 

when two regions of different mass densities and pressures shear against 

one another. This instability is extremely common in all kinds of 

hydrodynamic systems and has a distinctive behavior, the growth of a 

swirling pattern at the site of instability formation.

	 It is included here only as a qualitative example showing that IMOGEN 

correctly represents the behavior of the instability as the Kelvin-Helmholtz 

instability is likely present in some of the magnetic accretion shock wave 
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simulations and so is worth presenting for reference.

	 Figure 5.26 shows the results of a Kelvin-Helmholtz simulation with the 

initial conditions of two regions of differing mass density and pressures 

stacked vertically. A uniform relative velocity was introduced between 

the two regions, in this case with a supersonic Mach number of one. To 

seed the instability the mass density of a single cell was perturbed along 

the border between the two regions. This test was conducted on a two-

dimensional, 256×256 spatial domain resolution.
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Figure 5.26: Kelvin-Helmholtz instability test results for a case with a 
supersonic Mach number of 1.0.

The results shown in Figure 5.26 exhibit the distinctive swirling pattern 

of a Kelvin-Helmholtz instability, demonstrating that IMOGEN correctly 

produces this common instability under the correct conditions. It is also 

interesting to note that in the absence of the perturbation IMOGEN is 

able to run the test indefinitely without generating the instability. In the 

absence of any explicit perturbation the numerical error isn’t suff icient to 

seed the instability itself in any simulation times tested.
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CHAPTER VI 

MAGNETIC ACCRETION SHOCK WAVE RESULTS

With IMOGEN fully developed and tested, it was f inally time to employ 

it in the investigation of magnetic accretion shock waves. The simulation 

was constructed as a three-dimensional shock tube, similar to the Sod and 

Brio-Wu shock tube tests. The shock front was centered about the primary, 

x, axis with two distinct regions, the pre-shock accretion region and the 

post-shock region, as shown in Figure 6.1. 

Pre-Shock (accretion in�ow)

Accretion shock front
Initial perturbation sub-region

Post-Shock

High density region
Low density region

Magnetic Accretion Simulation Spatial Domain Schematic

x
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z

Figure 6.1: Schematic illustration of the setup for the magnetic accretion 
shock simulation.

	 For the sake of easy comparison with the previous work presented in 

Stone & Edelman (1995), the spatial domain was scaled such that -0.5L 

≤ y ≤ 0.5L and -0.5L ≤ z ≤ 0.5L where L=0.01. Unlike Stone & Edelman 

(!995), the x dimension was not held to a f ixed, resolution-independent 

length but instead allowed to grow or shrink in absolute size depending 

on the resolution of the other dimensions. Additionally, the x dimension 

was handled in a non-uniform fashion with cell spacings that gradually 
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grew larger toward the edge of the boundaries as shown in Figure 6.2. At 

the center 1/3 of the tube length the x-spacing of the cells were set to the 

smaller of the uniform y or z cell spacing. The gradual increase in the 

x-cell spacing occurred entirely within the f irst and last 1/3 of the tube up 

to a spacing f ive times larger at the x spatial domain boundaries than at the 

center of the tube.
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Figure 6.2: Non-uniform cell spacing of the primary shock tube axis 
to provide both a large shock tube and high resolution around the shock 
front. Shown in terms of a grid spacing multiplier coefficient applied to 
the default spacing determined by the smaller spacing of the shock-plane 
axes.

This non-uniform spacing allowed for both a large shock tube in which 

the with system could evolve as well as high resolution around the center 

region where the shock front resided. 

	 A fade shifter, described in 4.3.2, was used for the edge boundary 

conditions on both ends of the primary axis, and a periodic, circular shifter 
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used for all other edge boundaries along the other two, y and z, directions. 

The non-uniform spacing also helped stabilize the fade shifter as the 

gradual lengthening of the tube preferentially quenched the higher spatial 

frequency wave modes near the boundaries, which are the most diff icult to 

handle for a non-ref lective artif icial boundary condition solver.

	 The initial conditions for the two regions were determined by solving 

the jump conditions, (2.12) - (2.16), using the normalizations,

ρ1 1

1 2 1 2

1 1
0 0

= =
= =
P

v Bz z, & , & .	 (6.1)

Here the subscript 1 denotes the pre-shock accretion region and subscript 

2 denotes the post-shock region. The jump conditions, (2.12) - (2.16), used 

to generate the initial conditions for the simulations were parameterized 

into four variables Ms, MA, θ, and α. The sonic Mach number, Ms, specif ied 

how strong the shock front was in the pre-shock accretion region. The 

Magnetic or Alfvén Mach number, MA, specif ied how slow or fast the shock 

was compared to the magnetic wave propagation speeds. The incident angle 

between the accretion shock column and the plane of the shock front, θ, 

which was constrained to lie within the x-y plane. The ratio of the specif ic 

heats coeff icient, α, represented the deviation from the default γ0=5/3 such 

that γ= αγ0, which roughly parameterized the thermodynamic state of the 

constituent plasma. The resulting parameterized jump conditions, including 

the normalizations of (6.1) were then,
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v B B v v B B vx y x y x y x y, , , , , ,1 1 1 2 2 2− = − .	 (6.6)

Note that there are no subscripts on the Bx values denoting the region as 

the shock normal magnetic jump condition specif ies that Bx,1=Bx,2=Bx. Here 

vx,1, v y,1, Bx, and By,1 are defined in terms of the specif ied parameterization 

as,

v M
x

s
,1

3 5
=

( )α ,	 (6.7)

B v Mx x A= ,	 (6.8)

v vy x, , tan1 1= θ , and	 (6.9)

B By x, tan1 = θ .	 (6.10)

	 The initial conditions for each simulation were determined by 

numerically solving the equations (6.2) - (6.10) for a given set parameters 

Ms, MA, θ, and α, which were then used to populate the spatial domain. 
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	 After generating the primary spatial arrays from the calculated 

equilibrium initial conditions, a perturbation was applied to the mass 

density array in a section of the pre-shock accretion region just before the 

shock front to seed the growth of any instabilities. The perturbation was 

applied equally to the entire three-dimensional section that was 36 cells 

thick in the x-direction along the entire width, y, and height, z, of the tube 

as illustrated in Figure 6.1.

	 Simulations were generally run at a three different spatial resolutions 

[xcells, ycells, zcells]:

•	 Low resolution: [300, 48, 48]

•	 Standard resolution: [300, 96, 96]

•	 High resolution: [300, 144, 144]

When necessary, tests were also run using the above y and z resolutions 

with different shock tube lengths of 600, 900, or 1200 cells, instead of the 

standard 300 cells.

	 Simulations were run over a volume of parameter space within the 

bounds,

•	 2 ≤ Ms ≤ 10

•	 1/8 ≤ MA ≤ 1/2

•	 0° ≤ θ ≤ 75°

•	 18/25 ≤ α ≤ 1

	 The sonic Mach values were chosen to include both weak shocks, Mach 
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2, and strong shocks, Mach 10. While trials were run at intermediate 

values during early testing it quickly became clear that there was 

little nuance in the behaviors for intermediate ranges; the shocks were 

either weak or strong. This makes sense given the dependence in the 

magnetohydrodynamic equations to the square of the Mach number, which 

means that the strong shock regime quickly dominates even in the lower 

part of the strong regime.

	 The Alfvén Mach values were chosen because they provide a range of 

magnetic f ield strengths reasonable, by ratio to the normalization, to those 

assumed present in the astrophysical systems of interest described in the 

early chapters. Some additional testing was done with very large Alfvén 

Mach values, e.g. 10, 100, and 1000, which have very weak f ields that will 

also be discussed. However, those correspond to the fast shock regime and 

are of interest mostly for comparison.

	 The range of incident angles was chosen to be as large as possible. 

Parallel shocks provide an interesting trial because the analytical 

solutions are much less diff icult, which means more work has been done 

to understand those cases. However, in most systems oblique accretion 

angles are highly likely and so they were fully explored. Depending on the 

strength of the magnetic f ield there is a maximum angle beyond which no 

equilibrium solution exists. For the range of Alfvén Mach values specif ied, 

these limits lie between 55°-80°. For values near the equilibrium solution 

limit all simulations were violently unstable. The magnetic turbulence was 

so strong that it became diff icult for IMOGEN to evolve the system for any 
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signif icant length of time before numerical errors would destroy the shock. 

There are certainly additional steps, such as increasing artif icial viscosity, 

to prevent these from happening, but that would require a substantial 

amount of f ine tuning and wasn’t necessary for this f irst investigation. 

Therefore, for most simulations the incident angle was limited to values of 

45° or less, as that angle was successfully evolved for almost all cases.

	 The range of specif ic heat ratio coeff icients was chosen so that the ratio 

of specif ic heats, γ, would lie between 6/5 and 5/3. The nominal value 

used for most simulations was 5/3, which represents a mono-atomic gas 

as would be expected in a hot plasma. The other values tested were 7/5, 

representative of a generic diatomic gas, and 6/5 representative of an even 

more complex gas at lower temperatures.

	 The results of each simulation are displayed in a separate f igure with 

a key at the top to easily read the values for each of these parameters to 

aide in comparison. Each simulation will also be referred to by these four 

parameters. For example, a simulation with Ms=10, MA=1/8, θ=10°, and α=1 

would be identif ied as: {θ-10° | A-1/8 | S-10 | α-1}.

6.1. Preliminary Results

	 The {θ-10° | A-1/2 | S-10 | α-1} simulation was chosen as the f irst test 

trial as it corresponds to a slightly oblique shock with a magnetic f ield 

strength on the lower end of the parameter space and the most commonly 

used specif ic heat ratio coeff icient, that of a mono-atomic f luid. It was 

also a set of parameters investigated by Stone & Edelman (1995), serving 

as a source of comparison to confirm IMOGEN’s correct handling of the 
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magnetic accretion shock simulations. The results of the {θ-10° | A-1/2 | 

S-10 | α-1} trial are shown in Figure 6.3. 

	 Each simulation trial f igure, like Figure 6.3, follows the same format 

beginning with a parameter identif ication key at the upper right corner. To 

the left of that is a three-dimensional contour image of the mass density 

at the simulation termination time, a time that differs depending on 

the simulation, and is colored by the strength of the z component of the 

magnetic f ield. Given that the initial conditions specify no z component for 

the magnetic f ield, this coloring illustrates the magnetic waves generated 

by the growth and evolution of the corrugation instability of the shock 

front. Below the parameter identif ication key is a smaller contour image 

that includes a wireframe that displays how the full contour image is 

arranged within the spatial domain for the simulation.

	 Beneath the contour image is the instability growth plot that shows more 

quantitatively the evolution of the corrugation instability for the magnetic 

accretion shock wave simulation. This instability growth parameter, 

originally developed by Stone & Edeleman (1995) is defined as,

ξ ≡












∇log
Bz
2

2
v

B
.	 (6.11)

Hence the growth of the corrugation instability is measured as the log 

of the compression-weighted average of the z component of the magnetic 

f ield squared over the square of the magnitude of the total magnetic f ield 

and tracks the growth in the z component of the magnetic f ield, which is 
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initially zero. The compression-weighted average is used to preferentially 

select growth that occurs locally around the shock front as a direct result 

of the corrugation of the front. 

	 For instability growth parameter plots that exhibit an early, distinct 

linear growth phase, which corresponds to exponential growth as the ξ 

parameter is logarithmic, the growth plot also includes a normalized early 

growth rate value. As will be shown in section 6.3.5, the absolute growth 

rates are resolution dependent, and therefore, all growth rates have been 

normalized by the growth rate of the initial trial at the standard resolution 

for direct comparison. This also provides an easier means of comparison 

between the growth rate results of ongoing linear research.

	 Below the corrugation growth plot are two x-y plane profiles of the 

magnetic f ield in the area around the shock front, arranged with the pre-

shock to the left and the post-shock to the right. The left of these profiles 

displays the ratio of the z-component of the magnetic f ield over the total 

magnetic f ield strength,

Ψ =
Bz
B .	 (6.12)

The right of the two profiles is a nonlinear, dynamically-scaled remapping 

of the plot on the left to preferentially amplify the magnetic wave 

phenomena even though it is often many orders of magnitude smaller than 

the z magnetic f ield strength at the surfaces of the shock front. For details 

on the processing algorithm used to generate this profile see appendix 

2. This profile is useful for visualizing the characteristic magnetic wave 
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phenomena generated by the growth and evolution of the instability that 

is often hidden by the strong growth in the f ield around the surface of the 

front. In both profiles the initial position of the shock front is shown for 

reference as a dotted line. Also, both profiles have been truncated to show 

only the center 1/3 of the simulation domain where the grid cell spacing is 

uniform along the primary, shock normal direction.

	 All of the plots and profiles, except for the growth plot, are snapshots 

taken at the conclusion of the simulation and correspond to the terminal 

point on the growth plot.

	 In Figure 6.3 the corrugation of the shock front is clearly visible in 

the mass density contour plots. What was an initially smooth front f irst 

rippled and then grew over the course of the simulation. This growth 

was cumulative, not periodic despite a contour profile that might suggest 

periodic behavior. In the post-shock region the corrugation instability was 

also responsible for the formation of high and low density columns, or 

f ingers, which penetrated and grew downstream into the stellar medium. 

These f ingers, which are surprisingly stable throughout the simulation, 

were able to remain cohesive in large part due to a three-dimensional 

structure of current loops, generated as part of the initial growth of the 

instability, that define, constrain, and prevent them from being destroyed 

by other types of instabilities, such as the Kelvin-Helmholtz instability.
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	 The corrugation instability growth plot for the {θ-10° | A-1/2 | S-10 | 

α-1} trial correlates well with the results published by Stone & Edelman 

(1995), exhibiting a distinct exponential growth that eventually saturates 

out well into the nonlinear regime.

6.2. Fade Shift Generator Verification

	 After the successful f irst trial, the effectiveness of the fade shifting 

boundary condition solver, see 4.3.2 for details, had to be addressed before 

expanded exploration. That the results of the {θ-10° | A-1/2 | S-10 | α-1} 

trial compared well with other published results was encouraging, but more 

direct testing was necessary to be certain. 

	 Without a known solution the only option was to make a self-consistent 

comparison of the evolution of the trial simulation conditions using 

different shock tube lengths. Had the boundary conditions somehow 

negatively impacted the evolution of the simulation then comparison 

of trials run at different tube lengths would have exposed the problem. 

This would have been observable as signif icant deviations between the 

evolutionary behavior of the different trials given that the separation 

between the boundary region and the shock front would change the length 

and time scales of any interference from the boundary solver.

	 Three trials were run using the same initial conditions as {θ-10° | A-1/2 

| S-10 | α-1}, but this time at low resolution so that they could be run for 

much longer simulation times for more thorough comparison. In each of the 

three trials the tube length was set to a different length by changing the 

resolution of the primary axis of the spatial domain. The resolutions
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chosen were the default 300 cells, a double-length tube of 600 cells, and a 

quadruple-length tube of 1200 cells. The results of each of these trials is 

shown in Figures 6.4-6.6.

	 A direct comparison of the growth parameter curves for these three 

trials is shown in Figure 6.7. The plot demonstrates no signif icant 

deviation between the three trials and indicates strongly that the fade 

shifter correctly handles the boundaries during magnetic accretion shock 

simulations.
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Figure 6.7: Direct comparison of the growth rate plots for three different 
shock tube lengths, 300, 600, and 1200 cell resolutions of the {θ-10° | 
A-1/2 | S-10 | α-1} trial. The high correlation between the three growth 
plots suggests that the fade shift boundary condition functions as 
expected.

	 Some additional observational testing was conducted on the boundary 

solver by monitoring handling of the initial waves generated by the shock 

front in response to the seed noise. During this early simulation time the 

ref lections of the noise off of the shock front are many orders of magnitude 
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larger than the waves generated afterward from the early growth of the 

instability. Consequently, the noise ref lection acts as a solitary outf low 

wave, and were any non-physical ref lections produced by its propagation 

into the boundary regions, there would have been clearly observable 

counter-ref lections against but none were ever detected.

6.3. Simulation Comparisons

	 Satisf ied with the initial trials and performance of the fade shifter, 

the investigation was expanded to cover the range of parameter space 

previously discussed. The following sections present some key results of 

this investigation.

 6.3.1. Sonic Mach Variations

	 Figure 6.8 show a trial for {θ-10° | A-1/2 | S-5 | α-1}, similar to the 

previous {θ-10° | A-1/2 | S-10 | α-1}, except for a sonic Mach number of 5 

instead of 10. A sonic Mach number of 5 is still in considered to be in the 

strong regime and the evolution of the instability behaves similarly to the 

sonic Mach 10 trial, Figure 6.3, with regard to the instability growth and 

the z magnetic f ield behaviors. Interestingly, the f ingers that extend into 

the post-shock region are less pronounced in the sonic Mach 5 trial even 

though the instability growth is nearly identical. The contour image can 

be a bit deceptive here as the f ingers aren’t actually smaller in the sonic 

Mach 5 trial, they are just softer, with smaller density deviations from the 

background that alter their contour display.

	 Figure 6.9 shows a trial, {θ-10° | A-1/2 | S-2 | α-1}, for an even smaller
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sonic Mach number of 2, which is in the weak shock regime. In this case 

the instability growth is signif icantly slower than the strong shock regime 

trials.

	 A direct comparison of the growth parameters for the three trials, 

Figures 6.3, 6.8, and 6.9 is shown in Figure 6.10. There is a distinct 

difference between the growth rates of the corrugation instability in strong 

versus weak shock regimes, but very little difference between growths 

of different sonic Mach numbers within the strong shock regime. Both 

regimes, however, appear to tend toward the same f inal unstable state. This 

disagrees with earlier work that suggested that weaker shocks were more 

unstable than strong ones. There is a sizable difference in the growth rates 

of the instability between the weak and strong shock regimes, and weak 

shocks always tend to grow more slowly than their strong brethren. 

	 While Figure 6.10 only illustrates the weak versus strong shock regime 

for one set of initial conditions, the weak versus strong test was carried out 

for a number of differing initial conditions within the specif ied parameter 

space and Figure 6.10 is representative of their commonly shared behavior.



131

 
0 2 4 6 8 10 12 14 16 18

−24

−22

−20

−18

−16

−14

−12

−10

−8

−6
Corrugation Instability Growth Plot For �ree Trials At Various Sonic Mach Numbers

In
st

ab
ili

ty
 G

ro
w

th
 P

ar
am

et
er

  (
ξ)

Alfvén Crossing Times (#)

Sonic Mach 10
Sonic Mach 5
Sonic Mach 2

Figure 6.10: Comparison of corrugation instability growth parameters 
of the {θ-10° | A-1/2 | S-10 | α-1} , {θ-10° | A-1/2 | S-5 | α-1} , and {θ-10° | 
A-1/2 | S-2 | α-1} trials. A clear distinction exists between growth of the 
instability in strong and weak shock waves.

6.3.2. Incident Angle Variations

	 Next, trials were conducted to explore instability variations based on the 

initial incident angle of the accretion column with respect to the normal 

direction of the shock front. Results for these trials are shown in Figures 

6.11-6.13. 

	 In each of these trials the initial conditions were identical to the original 

test trial, {θ-10° | A-1/2 | S-10 | α-1}, except for variation in the incident 

angle parameter. Additional trials at other angles were also conducted, but 

these three, along with the initial trial, are representative of the larger set 

of runs. For small incident angles, including the parallel shock case, the 

corrugation instability follows a well-behaved growth and saturation as 
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seen in Figure 6.3 and Figure 6.11.

	 For the parallel, 0° degree incident angle, shock case, as shown in 

Figure 6.11, the nonlinear results correspond well to previous linear 

predictions. Those linear results found that parallel shocks, and likely 

small incident angle shocks as well, exhibit aperiodic instability growth 

along with fast dissipation of the instability in the pre-shock region and 

slow dissipation of the instability in the post-shock region due to the large 

and small amplitudes of the dissipation portion of the linear wave solution 

in the respective regimes. The nonlinear simulations support this with 

much larger f inger growth into the post-shock region than into the 

pre-shock region.

	 As the incident angle increases, the growth properties change to be 

slower and noisier as it appears that the shearing instabilities become 

more important. For the higher angles, above some critical angle that 

is dependent on multiple parameters, particularly the strength of the 

magnetic f ield, the shearing instabilities and corrugation instabilities form 

a feedback loop that prevents either from dominating early. The {θ-45° | 

A-1/2 | S-10 | α-1} trial, shown in Figure 6.13 is such an example.

	 From additional testing of the {θ-45° | A-1/2 | S-10 | α-1} trial, run for 

long periods at low resolution, the corrugation instability eventually forms, 

but behaves differently because of the shearing behavior at the surface of 

the front as shown in Figure 6.14. The behavior is less random in terms of 

spatial frequencies then the lower resolutions. There seems to be a natural 

frequency that develops between the shear instability and corrugation
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Figure 6.13: Results of the {θ-45° | A-1/2 | S-10 | α-1} trial for incident 
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instability that dominates in the nonlinear regime. Until that spatial mode 

grows, the instability grows more slowly than the lower angles. However, 

once that frequency reaches its nonlinear phase the growth is surprisingly 

rapid.

6.3.3. Alfvén Mach Variations

	 To explore variations in the Alfvén Mach parameter, trials were 

conducted that mirrored all of the previous incident angle trials replacing 

the Alfvén Mach number of 1/2 with 1/8, a much stronger magnetic f ield 

as shown in Figures 6.5-6.7. Similar testing was done with an Alfvén Mach 

numbers 1/4 but these have been omitted because they do not exhibit any 

unique behaviors not found in either the 1/2 or 1/8 trials. 

	 In these trials the growth of the instability was slower than in the 1/2 

trials and tended to accelerate once in the nonlinear regime. The parallel 

shock {θ-0° | A-1/8 | S-10 | α-1} trial, Figure 6.15, appears to be stable 

unlike all of the other trials. Additional parallel trials run at low resolution 

for up to 100 Alfvén crossing confirm this stability. However, during these 

longer tests the instability, which trends negatively for up to 30 Alfvén 

crossing times after the initial seeding of the noise eventually begins to 

trend upward. In the 100 Alfvén crossing time tests the upward trend was 

very small but could suggest instability on very long time scales.

	 All of the 1/8 Alfvén Mach trials share the behavior of the growth 

parameter originally trending downward, followed by a resurgence and 

subsequent growth that is slower, but not unlike their Alfvén Mach of 1/2 
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counterparts. Another difference between the Alfvén Mach 1/2 and 1/8 

trials is that the shearing instability seems to become important at smaller 

angles. In the Alfvén Mach 1/2 trials the shearing instability did not 

signif icantly alter the corrugation instability behavior until incident angles 

higher than 22.5°, whereas in the 1/8 case the {θ-22.5° | A-1/8 | S-10 | α-1} 

trial clearly shows a mature combined corrugation and shear behavior. 

That stronger magnetic f ields enhance this behavior suggests that there is 

something about the transverse magnetic f ield component that incites the 

shearing; it is obviously not just a hydrodynamic, Kelvin-Helmholtz type 

shear instability.

	 Higher angles in the Alfvén Mach 1/8 trials were also much less stable. 

They all began with the initial stability exhibited by the low angle trials, 

but the shearing was so strong once the nonlinear regime was reached 

that the shock fronts were quickly destroyed by the instability resulting 

in large amounts of matter being ejected into the pre-shock region, which 

destabilized and so ended the simulation.

	 While investigating changes in the Alfvén Mach parameter a trial was 

also conducted with a very large Alfvén Mach number, corresponding to a 

small magnetic f ield. An Alfvén Mach number of 10 was used to place the 

trial well into the fast shock regime. Figure 6.18 shows the results of that 

{θ-10° | A-10 | S-10 | α-1} trial. 

	 As expected, in the fast shock regime the accretion shocks are stable 

as no magnetic waves are able to propagate into the pre-shock region and 

alter the f low and the magnetic f ield strength is so small that the initial 
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perturbations to the front are not enough to cause signif icant rippling in 

the front and grow an instability. Compared to all of the other trials the 

amplif ied z magnetic f ield plot in Figure 6.18 shows that no magnetic 

waves were propagating into the pre-shock region and very little magnetic 

activity occurred at all.
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Figure 6.15: Results of the {θ-0° | A-1/8 | S-10 | α-1} trial for Alfvén 
Mach comparison.
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Figure 6.16: Results of the {θ-10° | A-1/8 | S-10 | α-1} trial for Alfvén 
Mach comparison.
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Figure 6.17: Results of the {θ-22.5° | A-1/8 | S-10 | α-1} trial for Alfvén 
Mach comparison.
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Figure 6.18: Results of the {θ-10° | A-10 | S-10 | α-1} trial for Alfvén 
Mach comparison.



144

6.3.4. Specif ic Heat Ratio Coeff icient Variations

	 The f inal parameter, the ratio of specif ic heats coeff icient, was tested 

by conducting trials at values of 1, 21/25, and 18/25, which correspond to 

specif ic heat ratios of 5/3, 7/5, and 6/5 respectively. The results of the {θ-

10° | A-10 | S-10 | α-18/25} trial are shown in Figure 6.20. Comparatively, 

higher ratio of specif ic heats have much faster instability growth, but the 

lower values do not appear to otherwise alter the terminal behavior of the 

instability. Figure 16.19 shows the instability growth parameters of the 

α=1, from Figure 6.3, and α=18/25 trials for comparison.
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6.3.5. Resolution and Diffusion Variations

	 Previous and ongoing linear work suggests that higher spatial 

frequencies dominate the early growth of corrugation instabilities. So as 

a f inal investigation identical trials were run at different resolutions, low, 

medium, and high to see how the growth rates for the instability changed 

depending on resolution. The standard resolution trial is shown in Figure 

6.3, the low resolution trial in Figure 6.4, and the high resolution trial in 

Figure 6.22. The combined growth parameter plot for these three trials is 

shown in Figure 6.21 and clearly the higher the resolution, which permits 

higher spatial frequencies, the faster the growth of the instability.
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	 Also, all of the previous trials were conducted using the Van Leer 

f lux limiter, which while it is the most useful in general circumstances 

has a signif icant amount of diffusion compared to the Superbee limiter. 

Therefore, a trial was also run to repeat the original {θ-10° | A-1/2 | S-10 

| α-1} trial using the Superbee limiter. The results of that trial were as 

expected, the same instability behaviors as the original trial but with much 

faster instability growth than with the Van Leer limiter. The Superbee 

limiter was not used for all trials because, while it is much less diffusive, 

it tends to generate the kinds of high density regions that often halt or 

destroy a simulation of this kind where compression around the shock front 

is common and unavoidable. Even in the single trial the system could not 

be evolved for very long before the simulation was brought to a halt by the 

compression artifacts. There is a possibility that with carefully applied 

artif icial viscosity these issues could be avoided while running with less 

general diffusion than the Van Leer limiter, but there was never a clear 

need to go to the extra work to achieve this; the Van Leer limiter was 

suff icient for the general investigation and the Superbee limiter served 

its purpose to verify the accelerated growth with higher spatial frequency 

contributions.
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CHAPTER VII 

SUMMARY AND FUTURE DIRECTIONS

	 The IMOGEN magnetohydrodynamics simulation software was 

successfully implemented as a new computational tool in support of the 

investigation of instabilities in magnetic accretion shock waves. It passed 

numerous tests to verify its capabilities and performance, passing them 

all and demonstrating its viability for use in computational astrophysics 

research. It should also be noted that IMOGEN has since been turned 

into a general purpose magnetohydrodynamics simulation software and is 

currently being used in support of investigations of bow shocks, accretion 

disks, planetary migration, and other domains.

	 The magnetic accretion shock wave investigation revealed that strong, 

slow magnetic accretion shock waves are generally unstable in the 

nonlinear regime except for the possible case of very high magnetic f ield 

strength, i.e. low Alfvén Mach number, and very small incident angle. The 

evolutionary behavior of the instabilities in the front was also found to be 

dependent upon all of the parameters investigated. 

	 Variations in the incident angle parameter revealed two distinct 

behavioral regimes, corrugation and corrugation plus shear instabilities, 

which lead to different nonlinear terminal states for the shock front. 

Sonic Mach number variations confirmed that strong shocks have faster 

instability growth than shocks in the slow regime, but that differences 

within the strong shock regime have negligible impact on the instability 

growth. The Alfvén Mach parameter investigation found the strength of 
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the magnetic f ield plays a crucial role in defining the growth behavior as 

well as contributing to the incident angle at which the shearing corrugation 

behavior takes effect. Finally, the ratio of specif ic heats was found to 

impact the growth rates, with the monotonic, γ=5/3, case growing faster 

than cooler f luids with greater internal degrees of freedom.

	 Based on these results it’s possible to speculate on the behavioral 

variability in corrugation instabilities effecting the evolution of the many 

astrophysical systems in which magnetic accretion shocks are likely found. 

The fast aperiodic growth of corrugation instabilities at small incident 

angles is notably different than the more turbulent but slower growth above 

the critical angle. Hence, there are likely signif icant differences between 

otherwise similar systems in the presence of the necessary physical 

drivers, such as rapid rotation or larger scale magnetic f ields that force 

specif ic alignment and containment geometries, that would tend to increase 

or decrease the incident angle of the accretion column.

	 The next logical extension to this work is to add radiative cooling, 

a non-conservative term that could potentially mediate the growth of 

corrugation instabilities in magnetic accretion shock waves and might 

stabilize parts of the explored parameter space. Initial work has already 

begun in this respect. Parameterized, optically thin cooling has been 

added to IMOGEN and a few trials already completed with weak radiation 

coeff icients. However, the results are too preliminary to be included here.
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APPENDIX A

IMOGEN SIMULATION SOFTWARE DESCRIPTION

	 In the last few years, interpreted computer languages, i.e. ones that are 

not compiled for a specif ic computer architecture prior to execution, have 

become fairly popular among computational scientists, including numerous 

uses in high-performance computing applications. The maturity of these 

interpreted languages, along with general improvements in their run-time 

performance and just-in-time compiling, have signif icantly narrowed the 

performance gap between interpreted and compiled applications (Cai, et 

al., 2005; Choy & Edelman, 2005; Luszczek, 2009; Mignone, et al., 2007; 

Ousterhout, 1998; Perez & Granger, 2007; Sharma & Martin, 2009). 

	 Despite these improvements, interpreted languages still lag behind 

compiled ones in raw performance for general cases, but the lag is reduced, 

becoming reasonable, for the kinds of data-centric, memory intensive 

operations that apply to a large class of high-performance computing 

applications. In large, data intensive operations where computation 

density is high, i.e. the ratio of computational activity to lines of code 

is large, performance losses due to the interpretation of code are greatly 

diminished. In combination with scalable parallel deployment, and the 

signif icantly larger and more complex memory usages that accompany it, 

the more advanced communication and memory management functionality 

of interpreted languages leads to performances that are competitive with 

their compiled brethren. With an increasing availability of multi-core, 

parallel hardware, along with serious development trends in interpreted 
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language based, massively parallel server-side software for both scientif ic 

and general computing, it is reasonable to conclude that interpreted 

applications now have a place in high-performance scientif ic computing. 

A.1. Interpreted Scientific Computing

	 The argument for using interpreted languages in scientif ic applications 

is strengthened when considering more than just performance in the 

evaluation of interpreted versus compiled languages. Interpreted languages 

offer a number of benefits over their compiled brethren that are directly 

applicable to computation in the sciences (Boehm, 2006; Heroux & 

Willenbring, 2009; Ousterhout, 1998).

A.1.1. Productivity 

	 Applications developed with interpreted languages typically require 

10-25x fewer lines of code than an equivalent compiled application due to 

a high-level structure and language constructs that offer greater degrees 

of implicit computational activity. For eff icient and scalable parallel 

development this value jumps by an order of magnitude given the added 

complexities involved in handling distributed computation, communication, 

and memory. 

	 Have a more concise code base provides important development benefits 

such as rapid prototyping, f lexible extension and modification, and a 

reduction in the maintenance tasks required to keep a code up to date as 

the software evolves and new algorithms and hardware become available.
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A.1.2. Accessibility

	 An important disadvantage of using compiled computer languages is 

that their low-level framework is an impediment to accessible reading 

and writing. Compiled languages build on primitive data types, language 

constructs, and semantics that, while are largely responsible for greater 

performance over interpreted languages, result in opaque syntaxes 

that require greater expertise to author and greater effort to read and 

comprehend. Clarity becomes an even greater issue during optimization, 

where utilizing less intuitive semantics is often an effective means of 

improving performance. 

	 Interpreted languages, on the other hand, utilize a higher-level 

framework with more intuitive, less primitive data types and different, 

less opaque optimization techniques. The result is a cleaner code base that 

requires less effort and expertise in development and use. All of which 

lead to software with greater accessibility, which is useful in scientif ic 

computing where the lifetime of an application is often many developer-

generations long, turnover and training of new students is an involved and 

lengthy process, and eff icient communication fosters effective, successful 

collaborations. 

A.1.3. Portability

	 The key difference between interpreted and compiled languages, and 

the reason for their respective names, is how they are deployed. Compiled 

languages must be, as their name implies, compiled to a specif ic platform 
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prior to use. This means that complex coding often requires platform 

specif ic design and optimization, making ports between platforms arduous 

and time consuming. Given the recent growth and changes in advanced 

parallel platforms, e.g. stream processing accelerated architectures and 

shifts toward resource fat computational nodes, as well as the increasing 

diversity the available supercomputing platforms, ease in deployment 

portability is of growing concern for the scientif ic computing community. 

	 Interpreted language based applications are, in contrast, largely 

platform agnostic because the language interpreter, also referred to as the 

virtual machine, contains the platform specif ic components. Therefore, 

interpreted software will deploy to any platform that its interpreter 

supports. For widely adopted interpreted languages these interpreters are 

rigorously maintained for the majority of new and important platforms. 

In scientif ic computing, where access to large hardware resources varies, 

collaborators deploy to different environments, and the need to keep up 

with new and changing platforms is necessary to advancing research goals, 

interpreted languages offer clear advantages over compiled ones.

A.1.4. Optimization

	 Compared to industrial computing, which has a much larger pool of 

development resources and expertise, scientif ic computing applications are 

often poorly optimized. The small usage base for scientif ic applications, 

their research specif ic employment, and the diff iculty of maintaining 

adequate funding for their ongoing development make any language-
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inherent optimizations important. Here the value of interpreted languages 

is that a signif icant amount of optimization comes from the interpreter and 

shared libraries. 

	 As such, the performance of an interpreted application can grow over 

time without any optimization work from the application developer. These 

shared libraries and interpreters are typically maintained and optimized 

by collaborations between robust open-source communities and large 

industrial entities with the resources and expertise that most scientif ic 

developers lack. In contrast, compiled-language software in the sciences 

tends to stagnate as much more of the implementation and optimization are 

left to the application developer.

A.2. Computational Approach

	 Mindful of the rapid improvements in, and benefits of, interpreted 

languages, the astrophysical simulation software tool, IMOGEN, was 

developed in an interpreted language framework, and built using software 

engineering techniques more commonly employed in successful, scalable 

industrial applications with the intention of producing a more useful and 

valuable tool for the astrophysics research community. In the fall of 2010, 

IMOGEN reached its f irst fully stable and tested build point, at which time 

it was opened to wide development and usage as a publicly available and 

managed open-source project. The details and further information on the 

IMOGEN open-source project is available at http://www.imogenproject.org.

	 While the short goal for developing IMOGEN has been to support the 

research contained within this work, the larger goal has been to create a 
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generally useful tool for the computational astrophysics community while 

broadening the historical focus in computational magnetohydrodynamics 

on performance to include greater attention to rapid extensibility and 

modular design. IMOGEN, by design, eases the modification and 

development of new physics and numerical approaches, maintains a concise 

code base with clear documentation and accessibility tools, facilitates 

improved collaboration in both development and usage, and integrates 

interactive analysis and visualization packages to make data analysis more 

eff icient and effective and reduce the need for endless amounts of data 

storage.

	 To facilitate the achievement of the broader goals, IMOGEN has been 

created with a layered complexity design with four distinct layers, as 

shown in Figure A.1, that abstracts the opaque aspects of the software 

away from regular research usage and development in order to streamline 

common research applications. A research developer describes a researcher 

with only a limited background in computer science that develops 

primarily for the purpose of extending the physics or basic functionality of 

IMOGEN in direct support of specif ic research goals. This is in contrast to 

the more computationally adept application developers that are responsible 

for the advancement, expansion, and improvement in functionality of 

IMOGEN to support more broadly applicable research goals and trends.
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Interface
• Setup, run, and manage simulations

• Analyze and visualize results

• Simulation design and development
• Additions or extensions to underlying physics

• Data structure and class design
• Memory management and program flow control

• Compiled functional wrapper extensions for
high-performance computational throughput

Performance

Application & Control

Research & Simulation

Figure A.1: Design diagram for the complexity based layering of 
IMOGEN.

Each layer, from bottom up, is structured to encapsulate certain 

functionality and reduce the exposed complexity in the layers above it to 

provide a development and usage environment conducive to research within 

groups of diverse skill levels.

A.2.1. The Interface Layer

	 The interface layer exposes all of the operational functionality for 

IMOGEN, including simulation design and execution, data input, output 

and format translation, and supporting analysis and visualization features. 

It is implemented as a dynamic, object-based library that presents to users 

as a simple scripting interface. The simple scripting approach allows 

researchers, recognizing the large number of astrophysicists that need 

access to simulation software, to use IMOGEN without much familiarity 

with its language or the computational background and time needed to 
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learn its data structures and program design. The scripting approach 

also makes it possible for IMOGEN to function either interactively or by 

invoking predefined execution scripts. In the interactive mode, users may 

visualize any simulation data, including intermediate data that would 

be too expensive to store. This is a useful feature when f irst exploring 

new models as well as when trying to ascertain the cause of unexpected 

physical or numerical behaviors of a simulation.

	 To keep the interface scripting as simple as possible, a translation 

routine was developed that effectively decouples the interface from the 

core classes and data structures used during execution. By translating 

interface objects instead of passing them directly, interface scripting 

can be dynamic, include simulation specif ic defaults, use advanced error 

checking and handling, and make use of heterogeneous initialization 

software and techniques all completely abstracted from the IMOGEN core.

	 The visualization aspects are handled by format translation routines 

that take IMOGEN simulation data, regularly stored in compact, HDF5 

(Hierarchical Data Format version 5) format, to common visualization 

formats, notably VTK (Visualization Tool Kit) and MA/MB (Autodesk 

Maya ASCII & Binary), for use with well-established visualization tools.

A.2.2. The Research & Simulation Layer

	 The research and simulation layer contains all of the astrophysical 

functionality within IMOGEN and was designed with f lexibility for 

modification and extension of the underlying simulation physics in mind. 
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Unlike the interface layer, the application layer elements interact directly 

with the IMOGEN core, a necessity for performance considerations, but 

the layer implementation is such that exposure to complex data structures 

are limited as much as possible both by the interpreted framework and by 

explicit suppression of unneeded elements within the data structures.

	 Within the application layer also resides the actual simulation 

initialization framework, which is responsible for converting the scripts of 

the interface layer into the initial conditions and corresponding settings 

used to drive a simulation. As such, researchers can easily design, create, 

and extend simulations without the need for developing separate algorithms 

and data format translations in order to prepare a simulation.

A.2.3. The Application & Control Layer

	 The application and control layer is the structural core of IMOGEN, 

where program f low, numerical algorithms, data structures, and classes 

reside. Like its preceding layers, this layer is implemented entirely in an 

interpreted framework, utilizing the benefits of interpreted languages 

to achieve eff icient, scalable performance in a wide range of parallel 

deployment environments with minimum effort. 

	 It is within this layer that the numerical techniques described in 

chapter 3 are implemented, and as they are fully encapsulated within this 

layer, a research can modify or extend the physical model and design new 

simulations without the knowledge of how these numerical methods carry 

out the simulation.
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A.2.4. The Performance Layer

	 Yet another benefit of most interpreted languages is the ability to use 

compiled-language elements to extend them, wrapping compiled functions, 

algorithms, and data structures into the interpreted framework. Hence, 

the performance layer is a collection of low-level compiled extensions to 

IMOGEN that boost performance in the cases where the performance of 

an interpreted language would be poor. Performance layer elements are 

chosen carefully using regular performance benchmarks because they 

introduce undesirable complexity into the code base. However, a benefit 

of developing these elements beneath the application and control layer is 

that they do not require the more complex data structures and memory 

management elements that would be necessary in a purely compiled 

implementation.

A.3. Design & Implementation

	 At the highest level IMOGEN is broken down into two largely 

independent systems. The f irst is the simulation definition, modification, 

and specif ication (SDMS) system and the second is the simulation 

execution and operation (SEO) system. IMOGEN is invoked using 

simulation run scripts that are created using the SDMS system as the 

preparatory step for a particular simulation run. The last line of any 

simulation run script is the call to the main IMOGEN method that invokes 

the SEO system, translating and passing the simulation definition to the 

SEO for execution.
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A.3.1. Initializers

 	 Every IMOGEN simulation is built around a simulation-specif ic 

Initializer object, which is responsible for taking the basic input from 

a user and converting that into the much more complex data necessary 

needed to drive the simulation. Simulation Initializers all subclass an 

abstract Initializer base class that encapsulates universal simulation 

settings and exposes the general functionality for converting those settings 

into the IMOGEN core data structures. Once an Initializer has been 

created, a user may adjust any number of its settings to suit the needs of a 

particular simulation. When the user is satisf ied with the various settings, 

the Initializer is passed into the main entry method for IMOGEN, which 

requests the core data structures from the Initializer and then discards it 

before beginning the simulation.

 	 One of the benefits of the Initializer is that they are designed to auto-

f ill settings on a per simulation basis. Many magnetohydrodynamic 

simulation tools require one or more configuration f iles for the array 

of settings used to drive a simulation. The problem with this approach 

is that as the complexity of the software increases, so do the number of 

settings available to be modified. The result are large configuration f iles 

with endless settings, only a few of which are regularly modified when 

updating a run. This makes it diff icult to manage and compare collections 

of runs and exposes users of the software immediately to the complexity 

of the system and a need to understand all of its initialization settings. 

Initializers, bury these settings by intelligently auto-generating all values 
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that are not specif ied explicitly by the user in the simulation run script.

	 This approach signif icantly reduces the size and complexity of 

simulation run scripts and allows the developer of a simulation to prescribe 

ideal defaults not only as static values, but dynamically based on related 

settings that may be interdependent. As there are many groupings of 

interdependent settings, this is highly beneficial allowing users to control 

simulations from only a few settings instead of many.

	 There are, however, groups of settings that are so tightly integrated 

and numerous that they warrant special consideration. Examples include 

gravity, radiation, and artif icial viscosity. For these more sophisticated 

groupings, the Initializer concept was extended with a new class of 

SubInitializers. SubInitializers are Initializers within Initializers and are 

specif ic to one of the aforementioned interdependent grouping of settings. 

When an Initializer is instantiated, the necessary SubInitializers are also 

instantiated and exposed for setting modification through the Initializer 

directly. SubInitializers behave in a similar fashion to Initializers, except 

that they are only invoked by the Initializer that owns them instead of the 

user or the IMOGEN core.

	 Developing a new type of simulation requires the creation of a new 

Inititalizer class. This is achieved simply by extending the Initializer class 

or one of its existing subclasses and modifying it in the following ways. 

The new Initializer class must define all settings that will be unique to 

that simulation type. The constructor for the new Initializer class must 

auto-populate reasonable defaults to these new properties, or the properties 
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must be defined dynamically through getters and setters. Finally, the 

private method that generates the initial conditions based on the simulation 

settings must be overridden and modified to suit the particular Initializer. 

All other core data structures are generated by the Initializer class and do 

not need to be modified for a new simulation type.

	 Once the new Initializer class has been setup in this way, it is 

immediately ready for use in simulation run scripts. No other development 

is required unless previously unsupported physics is being introduced for 

the new simulation type.

A.3.2. Simulation Run Scripting

	 As previously mentioned Initializers are used in simulation run scripts, 

which are modified by the user on a per simulation trial basis and represent 

an identif iable f ingerprint for any simulation. For this reason IMOGEN 

saves a copy of any simulation run script in its associated results folder for 

users for their future reference. The scripting system is simple and exposes 

all of the desired physical attributes associated with a particular simulation 

type through the Initializer object created within the script. An example 

script is shown in Figure A.2, for the specif ication of a corrugation 

instability simulation the results which will be discussed later.
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01  % Create the Initializer object:
02  run             = CorrugationShockInitializer([1200 48 48]);
03
04  % Set max number of iterations:
05  run.iterMax     = 25000;
06
07  % Set max run time in hours:
08  run.wallMax     = 320;
09
10  % Set Percentages between snapshot saves for 2D and 3D data:
11  run.ppSave.dim2 = 0.5;
12  run.ppSave.dim3 = 4;
13
14  % Corrugation instability problem settings:
15  run.theta       = 10;
16  run.sonicMach   = 10;
17  run.alfvenMach  = 0.5;
18
19  % Information about the run:
20  run.alias       = 'Athena';
21  run.info        = sprintf(['Corrugation instability test [Th=10, Ms=10, Ma=0.5]'
22                             'with grid [1200, 48, 48]');
23  run.notes       = '4x length rerun of Prometheus.';
24
25  % Create initial conditions and pass them into the main IMOGEN method:
26  [mass, mom, ener, magnet, statics, ini] = run.getInitialConditions();
27  imogen(mass, mom, ener, magnet, ini, statics);

Figure A.2: Example IMOGEN run simulation script that defines a 
corrugation instability simulation run.

The example simulation run script begins on line 2 with the creation of 

a corrugation instability Initializer object with a three-dimensional grid 

specif ied by 1200 cells in the X dimension and 48 cells in each of the Y 

and Z dimensions. The actual length of this grid is determined within the 

Initializer transparently to the user to maintain the desired normalization 

for the simulation type as needed for running simulations at many different 

resolutions. 

	 The next section of the simulation script is where all of the parameters 

are set. Notice that for this simulation very few parameters were needed 

because the Initializer object takes care of setting sensible defaults for 

a corrugation instability simulation. In this particular case, the only 

physical properties set for this run were the theta value, incident angle of 
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the accreting matter and the sonic (hyrdodynamic) and Alfven (magnetic) 

Mach numbers that are used to determine the initial velocity and strength 

of the magnetic f ield in the pre-shock regions of the instability run.

	 Once all of the properties are set the Initializer converts the input into 

initial conditions for the primary arrays and those are passed into the main 

IMOGEN method to begin the execution of the simulation.

A.3.3. Simulation Management

	 During simulation the associated states and properties are managed 

and maintained by a collection of manager classes. Each manager class is 

responsible for a specif ic aspect of the simulation operation and interacts 

with the other manager classes as necessary to provide the complete 

operational environment for a simulation. Manager classes are built using 

a dynamic decorator pattern such that functionality is completely and 

transparently extensible during simulation.

	 The idea is that a specif ic manager is constructed as a base class with 

the common properties associated with any simulation and with a set 

of method hooks that can be reassociated during initialization with any 

method that f its the appropriate signature. Combined with the f lexibility of 

interpreted languages, where methods are also handled objects, this allows 

for the easy dynamic construction of a manager to f it any simulation 

need. Of course, this approach would be unnecessary in an environment 

where all developers had a clear understanding of the architecture behind 

IMOGEN, but that would be unrealistic given the goals of its development.
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	 Instead, this approach has been utilized to allow simulation developers 

to modify a piece of IMOGEN easily without having any understanding 

of its larger structure. This allows for rapid development and testing of 

new and different physics without having to change any aspect of the 

IMOGEN core. The IMOGEN package structure is setup in such a way 

that each manager has their own package. Within that package are separate 

functions, not connected directly to a class, that when compiled through 

the interpreted compiler become method objects that can be assigned to the 

method hooks of their manager.

	 Therefore, a simulation developer that, for example, wants to try a 

different radiation model, or a special kind of artif icial viscosity for a 

particular simulation need only create an independent function in that 

package and then associate that function with an enumeration in the 

Initializer, so that during the initialization process that function gets 

compiled into the manger class and becomes part of the SEO core.
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APPENDIX B

DYNAMICALLY-SCALED VISUALIZATION ALGORITHM

	 During the investigation of the magnetic wave properties of the 

corrugation instability it was diff icult to visualize the waves directly 

because of the multi-scale nature of the problem. In a typical unstable 

simulation waves would be generated with z magnetic f ield component 

values that varied by up to seven orders of magnitude. In this case it was 

important to look at all scales because the wave length and nature were of 

interest, not just the amplitude. 

	 To visualize the waves using a generally applicable visualization 

technique, a new remapping algorithm was developed to treat the data in a 

logarithmic fashion without the sign and discontinuity problems associated 

with using logarithmic function directly. The algorithm developed works as 

follows.

	 The spatial array, in this case the z magnetic f ield component (z velocity 

was also used but never included in the f inal results), was f irst normalized. 

Frequency data was then generated by binning the spatial array according 

to the order of magnitude for each value, followed by normalizing this 

frequency data so that it summed to 1. The frequency bins were set 

to a logarithmic scale in the range [10-10,1], which is why the initial 

normalization of the spatial array was necessary.

	 Hermite cubic interpolation was then applied to remap the data to a 

single order of magnitude color space in the range [-1, 1]. The remapping 

was done such that the higher the frequency of a bin the more space 
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it received in the output color space. This would accentuate orders of 

magnitude where there was lots of activity and negate orders of magnitude 

where little or nothing was going on. An example of the process is shown 

as Matlab-styled pseudo-code in Figure B.1.

01  % For a source array, a.
02  % Normalize the input array
03  a      = a./max(abs(a));
04 
05  % Generate bins for the frequency function.
06  levels = logspace(-10,0,11);
07   
08  % Generates frequency data for the spatial array for the given 
09  % levels bin parameter.
10  freq    = frequencyCount(a, levels);
11 
12  % Apply the levels and frequencies symmetrically over the range [-1,1].
13  freq    = [flipdim(freq,2), 0, freq];
14  levels  = [-flipdim(levels,2), 0, levels];
15 
16  % Normalize the frequencies for application to the color space.
17  freq    = freq/sum(freq);
18     
19  % Generate the color values based on the frequency data.
20  colorValues(1) = -1;
21  delta     = freq(1);
22  for i=2:length(freq)
23      colorValues(i) = colorValues(i-1) + delta + freq(i);
24      delta = freq(i);
25  end
26     
27  % Remap the original array, a, to the new color space.
28  a = interpolate(levels, colorValues, a);

Figure B.1: Pseudo-code example of how the nonlinear, dynamic-scale 
color profile algorithm works to visualize multi-scale, high-dynamic 
range data for inspecting magnetic wave properties in the corrugation 
shock wave investigation.
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