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In this dissertation, we demonstrate the generation of optical Raman frequency 

combs by a single laser pump pulse traveling in hydrogen-filled hollow-core optical 

fibers. This comb generation process is a cascaded stimulated Raman scattering effect, 

where higher-order sidebands are produced by lower orders scattered from hydrogen 

molecules. We observe more than 4 vibrational and 20 rotational Raman sidebands in the 

comb. They span more than three octaves in optical wavelength, largely thanks to the 

broadband transmission property of the fiber.  

 

We found that there are phase correlations between the generated Raman comb 

sidebands (spectral lines), although their phases are fluctuating from one pump pulse to 
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another due to the inherit spontaneous initiation of Raman scattering. In the experiment, 

we generated two Raman combs independently from two fibers and simultaneously 

observed the single-shot interferences between Stokes and anti-Stokes components from 

the two fibers. The experimental results clearly showed the strong phase anti-correlation 

between first-order side bands. We also developed a quantum theory to describe this 

Raman comb generation process, and it predicts and explains the phase correlations we 

observe. 

 

The phase correlation that we found in optical Raman combs may allow us to 

synthesize single-cycle optical pulse trains, creating attosecond pulses. However, the 

vacuum fluctuation in stimulated Raman scattering will result in the fluctuation of carrier 

envelope phase of the pulse trains. We propose that we can stabilize the comb by 

simultaneously injecting an auxiliary optical beam, mutually coherent with the main 

Raman pump laser pulse, which is resonant with the third anti-Stokes field. 
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CHAPTER I 

AN INTRODUCTION TO OPTICAL FREQUENCY COMB 

 

Backgrounds 

 

Optical frequency comb refers to light whose spectrum, if analyzed in the frequency 

domain by spectrometers or other instruments, consists of many discrete, equally spaced, 

narrow-width spectral lines [1]. Mathematically, the frequency of the n-th order spectra 

line in the comb can be expressed as: 

 

0n repf n f f   , 

 

where repf  is the frequency difference between two adjacent comb lines, and 0f  is the 

offset frequency.  

Since time and frequency is one Fourier transform pair, the optical frequency comb is 

equivalent to a periodic optical pulse trains in the time domain. For example, ultrafast 

(usually shorter than one nano-second) mode-locked lasers that are commonly used in 

optical physics laboratory produce such pulse trains, as shown in Figure 1.1 [2].  
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In mode-lock lasers, a gain medium with extremely broad spectral range (typically 

larger than 100 nm in wavelength) is placed inside the laser cavity. Once the gain 

medium is pumped by a continuous wave (cw) source, there are hundreds of thousands of 

longitudinal modes spontaneously and simultaneously excited inside the cavity. The 

spectral separation between adjacent longitudinal modes is determined by the round trip 

time of the light travelling inside the cavity, and is typically on the order of 100 MHz to 1 

GHz.  In order to allow all these modes to be built up and eventually lasing in short-pulse 

form, a technique called mode-locking is used so that the phases of different longitudinal 

modes are coherent and locked [3, 4].  

In Figure 1.2, I plot the comb-like spectrum of the output of a 30 femtosecond (10-15 s) 

Ti:Sapphire mode-locked laser with repetition rate at 80 MHz. The central wavelength of 

the laser output is at 800 nm, and the spectral width is about 16 THz. It therefore contains 

more than 200,000 comb lines with spacings equal to 80 MHz.  

Figure 1.1. Periodic pulse trains produced from mode-lock laser. 
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The application of such optical frequency combs is in optical metrology [5,6]. A 

simplified understanding of this application can be made analogous to a regular distance-

measuring “ruler”. Each comb line is acting as a marker on the “ruler”, and the spacing 

between two adjacent comb lines gives its unit. In experiment, the comb line spacing 

80 MHzrepf   can be precisely determined by counting the frequency of the laser pulse 

trains detected on a fast photodiode. However, it’s not easy to determine and lock the 

value of frequency offset 0f . One way to do this is the “self-referencing” scheme [7].  

In “self-referencing” scheme, the output frequency comb of the Ti:Sapphire laser is 

first sent into a solid-core photonic crystal fiber [8]. Thanks to the large nonlinearity of 

Figure 1.2. Frequency comb produced by 30 femto-second 

mode-lock laser with repetition rate at 80 MHz. 

Center wavelength:  
800 nm or 375 THz 

Frequency 
80 MHz 

Span Ω: more than 200,000 comb lines or 16THz 
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this kind of fiber, the spectrum of the comb is significantly broadened by the effects such 

as “self-modulation” and sum and different frequency generations, so that the comb 

spectrum eventually spans more than one octave (factor of two) [9].  In this way the 

lower frequency part of the comb can then be frequency doubled in a nonlinear-optical 

crystal to spectrally overlap partially with the higher frequency part. The heterodyne 

beating frequency detected by a photodiode will then give the value of 0f , and is also 

serving as a feedback signal for active locking of the laser cavity. The output of the laser 

is then a stabilized frequency comb.   

In order to measure an unknown frequency when using the frequency comb, one can 

use the comb lines as markers, the same as how we use a ruler to measure distance. The 

measurement accuracy, which usually is quantified by the ratio of the measurement 

uncertainty f  and the absolute frequency f as a unitless number, is extremely small for 

the optical frequency comb. For example, a typical Ti:Sapphire femto-second mode-

locked laser will produce a phase-coherent comb whose optical frequency is about 400 

THz. The line spacing in the comb equals the repetition rate of the laser, which is 

typically set at 80 MHz. After employing sophisticated phase-locking technique, the 

measurement uncertainty f can go down to 1 kHz. The ratio between these two numbers 

is in the order of 10-13, which is extremely accurate compared with other technologies. 

This high accuracy in frequency measurement makes the optical frequency comb 

extremely useful in frequency metrology. For example, one can measure the absolute 

optical frequency of Cesium D1 line (335 THz or 895 nm) to the resolution of tens of 

kHz [10]. In another example, the optical frequency combs directly linked optical 
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frequencies to microwave frequencies beyond five orders of frequency difference, and 

thus enables the optical atomic clock at extreme high precision [11]. Physics society has 

recognized the importance of research work in optical frequency comb, and awarded the 

initial investigators with Nobel Prize [12] in year 2005.   

 

 

Motivation 

 

We are interested in another application of the optical frequency comb, which is to 

synthesize sub femto-second (or atto-second) pulses [13, 14]. Mathematically, the pulse 

train given by the optical frequency comb in Figure 1.1 is expressed as: 

 

                        2 ( )( ) ( ) n ni f t
n

n

E t E f e      , 0n repf n f f   ,                                   (1-1) 

 

where n  is the phase of individual comb. For simplicity, we assume the phase term is 

constant for all comb lines.  

It can be shown that the electric field in time domain ( )E t  in Equation (1-1) is a 

periodic function, and its period is  

 

0 1 / repf  , 
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and, when minimum-duration pulses are created, the width of each pulse (temporal 

duration) is directly related to the total frequency span of the comb Ω. A rule of thumb 

for the duration is  

 

~ 1/  . 

 

Therefore, a large frequency span of the optical comb could result in extremely short 

pulses if all the comb lines are phase coherent. Atto-second pulses are very useful in the 

applications of real-time observation and time-domain control of atomic-scale electron 

dynamics [15]. One example is by stabilizing the carrier envelope phase of the generated 

atto-second pulses, it is possible to create light-induced atomic currents in ionized matter, 

and thus control the motion of the electronic wave packets on timescales shorter than 250 

atto-seconds [16]. 

In order to generate atto-second pulses, one needs the spectral span of an optical 

frequency comb larger than a few hundred THz. This is out of reach by any active lasing 

medium used in mode-lock lasers. In our lab, we generate the optical frequency comb by 

using cascaded Raman scattering in hydrogen gas [17]. Many previous works in this 

research area employ two independent but phase-stabilized laser pulses to adiabatically 

drive the molecular coherence to produce a multiple-octave spanning optical comb [18, 

19]. However, we use only a single pump pulse in our experiment. This is an interesting 

situation where all the Raman comb lines (except the pump) are spontaneously generated 

from the initially zero-photon occupied (vacuum) state. In another words, the generated 

Raman comb lines appear to be classical fields, in the sense that they have well defined 
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amplitudes and phases, but they arise from quantum initiation and amplification, which 

distinguishes this from the two-pump situation. This argument is also true for the 

molecular coherence (vibrational or rotational) created in the hydrogen molecules. From 

this point of view, the Raman comb generation process by a single pump is also an 

excellent tool to study quantum optics, such as entanglement and quantum fluctuations.  

Previous work on Raman scattering theories and experiments has shown that the 

generated field from a single Raman pump, which is called the Stokes field, is temporally 

and spatially coherent [20, 21], if the scattering takes place in the transient regime and its 

Fresnel number is close to unity so the field is diffraction-limited. These two conditions 

can be easily satisfied in most Raman scattering experiments. It suggests that the Stokes 

field is a transform-limited pulse with a well-defined temporal phase. But in order to 

generate atto-second pulses from the optical Raman comb, one must have phase 

correlation between those Raman comb components, since in short-pulse synthesis the 

frequency components must satisfy certain deterministic phase relationships. Whether or 

not such correlation exists is a fundamental question that had not been previously 

answered. In this dissertation we will theoretically explore this critical phase correlation 

in the transient high-gain regime with no pump depletion. We will show that, for the first 

order of Stokes and anti-Stokes, they are very well phase anti-correlated throughout the 

duration of these two pulses, even at the situation where large dispersion is induced by a 

group velocity difference of Raman sidebands propagating through the media. For higher 

order Raman components, we predict their phases are also correlated within one pump 

pulse. The result reveals that a short pulse train could be synthesized. However, due to 



8 
 

 
 

inherent spontaneous initiation of Raman scattering, the generated Raman comb is found 

to fluctuate significantly from one pump pulse to another. This fluctuation not only 

occurs in the energy of those Stokes or anti-Stokes fields, but also in their temporal 

phases. I will show that this fluctuation may change the carrier envelope phase of 

synthesize atto-second pulse trains to be random from one shot to another. However, 

from our theoretical predictions and experimental evidences, we also find that there is a 

new way to lock the random phase to one deterministic value. This will be discussed later. 

 

 

Overview of stimulated Raman scattering  

 

In order to understand how the optical Raman comb is generated by a single pump 

pulse and to see its importance in quantum optics, it is necessary to review the history of 

Raman scattering and its applications. The first observations of Raman scattering in 

liquids were reported in 1928 [22]. This discovery of “a new radiation” not only 

demonstrates the inelastic scattering of light, but opens a new era to explore how light 

can interact with matter. This Raman scattering effect was extensively studied by using 

natural (sun) light before the invention of laser in 1960, mainly focusing on how it is 

different from other optical phenomenon, such as fluorescence and Rayleigh scattering, 

and how to determine the scattering cross-section from semi-classical theory [23]. Only 

with the strong coherent light that is produced from lasers, the stimulated effect on 

Raman scattering was first observed [24]. In this stimulated Raman scattering process, 
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the produced (or frequency-shifted) scattered light, which is usually called Stokes 

(frequency down-shifted) or anti-Stokes (frequency up-shifted), reaches a macroscopic 

level. Today in industry Raman scattering is well known for its application as “Raman 

Spectroscopy” [25], since different materials will scatter light with distinctive frequencies. 

This spectroscopic method has been widely used as a basic method for analyzing 

chemical compositions of gases, liquids and solids.  

The significance of Raman scattering in modern research is its relation to quantum 

optics, since by studying the Raman scattering process, it provides answers to some basic 

quantum problems, such as how the initial spontaneously scattered photons evolved from 

vacuum under the influence of the pump field [26], and what the quantum coherence 

property is for the resulting macroscopic field if the stimulated effect is taking place. An 

extensive work in this topic was conducted by Dr. Raymer during 1980s [27].  His group 

first observed the macroscopic energy fluctuations in the generated Stokes field under 

transient high-gain conditions with no depletion of the pump field [21]. He also co-

developed a quantum theory [20] for describing this phenomenon. It was shown that the 

energy fluctuation is related to the quantum initiation of the Stokes field, which was also 

experimentally shown to be temporally and spatially coherent in later experiments [28].  

In recent progress of quantum information experiments, Raman scattering has also 

been used as a method to create quantum memory in an ensemble of Raman-active atoms, 

such as rubidium or cesium [29, 30]. In those experiments a strong pump laser acted as a 

writing tool to interact with the atoms off-resonantly, and the produced Stokes field was 

detected to know what “quantum information” has been written into the atomic medium. 
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In the mean-time, the Raman scattering process will also result in the transition of the 

atoms between two atomic electronic spin states that are generally not dipole-transition 

allowed. In a good approximation, the quantum state of collective electronic spin (CES) 

states of all atoms in one medium is entangled with the generated Stokes field, and thus 

carries the same “quantum information” as the one that has been written in. This CES 

state was demonstrated to be stored up to 1 s in the ensemble and later read-out in a 

reverse process, where all the quantum information that was written into the CES state 

was transferred into generated anti-Stokes field.  

Further application in quantum information is to generate an entangled state between 

two distant atomic ensembles [31, 32]. In practice, one atomic ensemble can be treated as 

a node in a quantum network. By creating entanglement between them, quantum 

information could be relayed through the whole network. Mathematically, the entangled 

state of two atomic ensembles means that it cannot be written as the product of CES 

states in individual ensembles. To create such entanglement, a writing process using a 

Raman scattering scheme is induced in each atomic ensemble. The Stokes fields 

generated independently from two atomic ensembles can be entangled by interfering in a 

simple optical device, such as a 50:50 beam-splitter. The entangled field states after this 

device can be detected, and from quantum theory, after detection the collapsed state of 

the two atomic ensembles is then entangled. The generated entanglement then can be 

verified by a read-out process. However, until today most such experiments were realized 

under the spontaneous regime, which resulted in very few Stokes photons being 

generated and detected by single photon detectors, and required an electric-field induced 
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transparency (EIT) scheme [33] to avoid re-absorption of the Stokes photons by the 

media. One recent breakthrough [34] has demonstrated quantum memories in Cs 

ensemble by using broadband (larger than 1 GHz) optical pulses, instead of megahertz 

modulated cw lasers.  

 

 

Overview of Raman optical frequency comb generation 

 

As shown in Figure 1.1, the mode-locked lasers generate ultrashort optical pulses by 

establishing a fixed phase relationship across their spectrum of frequency. However, the 

frequency span of the comb generated by these lasers is typically no larger than 20 THz. 

Most experiments using optical combs to do absolute frequency measurements, such as 

atomic clocks and attosecond control of electronic processes, require the comb spectra to 

a have multiple-octave span. As described in the previous section, one way to generate 

such a broad spectrum is using photonic crystal fiber that has large nonlinear effects like 

four-wave mixing or self-phase modulation.  

Alternatively, discrete Raman combs from molecules are studied in many recent 

research efforts that aim to synthesize sub-femto or atto-second optical pulses. In this 

scheme, a cascaded Raman scattering process is induced under certain conditions.  The 

generated first-order Stokes and anti-Stokes fields, which are co-propagating with the 

intense pump light, will be scattered by the molecules again to produce higher order 

sidebands. Therefore, the frequency comb generated will have a similar spectrum as 
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shown in Figure 1.2. The Raman shift in the medium determines the frequency difference 

between two adjacent comb lines, which, in a mode-locked cw laser, is controlled by its 

resonator length. This Raman shift is quite large, for example, in hydrogen molecules, the 

rotational Raman shift is 18 THz, and the vibrational Raman shift is about 125 THz. 

The first experiment to explore the Raman comb generation is done in hydrogen gas 

when multiple rotational lines are observed and analyzed under high-power femto-second 

pulses [17]. Shortly after that experiment a two-pump scheme is proposed [35] where the 

Raman coherence is driven slightly off resonance and results in the Raman spectrum with 

Bessel-function amplitudes and phases. Experiments following this scheme successfully 

produced single-cycle optical pulses by adjusting the relative phase between each comb 

component [18]. Further efforts in controlling the carrier envelope phase of the generated 

single cycle pulse [19, 36], as well as to generate constant shape pulse trains [37], have 

been realized. Other experimental schemes, such as using ultra-short pulses to generate 

impulsive Raman coherence, also show promising phase locking effect between Stokes 

and anti-Stokes components.  

In another hand, micro-structured hollow-core fiber (HCF) has been developed [38], 

and it shows broad transmitting optical band which is even larger than one octave. For a 

typical step-index fiber, the optical modes are confined inside the core area with higher 

refractive index than that of the cladding materials. No optical modes can be guided when 

the core is hollow for this kind of fiber. However, in micro-structured HCF, its cladding 

is constructed in a way that resembles the periodic structure of a two-dimensional crystal 

lattice. Indeed, an easy picture to see how the light is confined inside the fiber where a 
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large air hole is surrounded by such cladding structure is by the Bragg reflections off the 

periodic crystal lattice. Using the similar theory that is used in solid-state physics to 

describe the crystal structure, one can calculate the photonic band-gap which determines 

the guided wavelength of such fiber.  

Since the core area of the HCF fiber is hollow, one can fill it with different gases 

under various pressures. If strong laser light is coupled into such fiber, cascaded Raman 

scattering may take place, creating a Raman optical frequency comb [39]. Using fiber in 

generating Raman combs has two major advantages compared with the conventional 

free-space Raman experiments: first, a Raman active medium like hydrogen gas can be 

pressure sealed inside the core area of the fiber and thus strongly interact with coupled 

pump light. Second, since the core diameter of most HCF fiber is about 10 microns, the 

pump light is tightly focused when transmitting inside the fiber. This ensures the pump 

intensity as well as the Raman interaction region are extremely larger compared with the 

conventional free-space Raman experiments using a long-focal-length lens to focus the 

pump.  

For an example, in our lab, we generate more than 20 Raman rotational lines in 

hydrogen gas when coupling a Raman pump into the gas-filled HCF fiber. The power of 

the Raman pump is about 10 micro-joules per pulse, which is very low compared to the 

power required in a free-space setup, usually at 10 millijoules.  
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Outlines 

 

In this dissertation, I will focus on the discussion of the phase relationship between 

comb lines in Raman optical frequency comb generation. I will first show how we predict 

this phase relationship by using both classical and quantum models. Then the 

experimental setup that allows us to generate Raman combs and verify this phase 

relationship will be covered. In the last part, I will discuss a proposal for how to lock 

more strongly the phases of comb lines based on our theory and observations.  

In Chapter II, I start with the description of how a single molecule or atom interacts 

off-resonantly with light to produce frequency-shifted Stokes and anti-Stokes photons. I 

then discuss the stimulated Raman scattering process in a molecular ensemble, and a 

possible cascade process that produces many orders of Stokes and anti-Stokes lines. In 

order to connect established Raman scattering theory with cascaded Raman scattering 

effect which produces optical Raman frequency comb, we take all orders of Stokes and 

anti-Stokes fields into consideration. By following the method adopted in [40], we first 

adiabatically eliminate the molecular intermediate states from the interaction Hamiltonian, 

and then use optical Maxwell-Bloch theory to derive the equations of motion for all 

Stokes and anti-Stokes fields, as well as the buildup of the molecular coherence. We also 

develop an alternative approach where the propagations of Stokes and anti-Stokes fields 

are derived directly in the quantum Heisenberg picture, and find the same equations of 

motion. In the last part of this Chapter, I will discuss that in stimulated Raman scattering 

process where only first order Stokes is present, the Stokes field and molecular coherence 
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are created in an entangled state. This special property of Raman scattering has been used 

to generate entanglement between two distant atomic ensembles.  

In Chapter III, the analytical solution of the equations of motion involving only first-

order Stokes and anti-Stokes in a quantum model is shown. The numerical evaluations of 

these solutions based on quantum initiation conditions are then used to calculate the 

newly defined phase anti-correlation coefficient. We show that this coefficient is directly 

related to the intensity and phase fluctuations of first-order Stokes and anti-Stokes fields.  

Our calculation result then predicts that the phases of first-order Stokes and anti-Stokes 

are nearly perfect anti-correlated, which means the sum of their phases remains constant 

from shot to shot. Following this prediction, a semi-classical non-perturbative theory 

assuming that excited molecules act as a phase modulator is used to show that there exists 

a deterministic relation between phases of all comb lines in a single shot.  

In Chapter IV, the experiments to generate a Raman optical frequency comb in 

hydrogen-filled hollow-core photonic crystal fiber (HCPCF) are presented. First, I briefly 

describe the manufacturing procedures and guiding mechanisms of HCPCFs that are 

made in University of Bath, UK. Then I show our own design of gas loading cell that is 

capable to fill the hollow-core fiber with controllable pressure gases. Most parts of this 

gas loading cell use commercially available parts, and require very little machining. It 

also shows the advantages of easy assembly and high pressure sealing. Next, I will 

describe our laser system, which consists of a mode-locked Ti:Sapphire laser producing 

nearly Fourier-transform-limited pulses with 200 pico-seconds temporal duration and a 

one-stage amplification system (regenerative amplifier). The amplified pulse is then used 
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as a Raman pump to couple into HCPCF filled with hydrogen gas. Depending on the 

polarization state of the Raman pump, I show the observed hydrogen rotational or 

vibrational optical combs.   

In Chapter V, I will show the setup of a two-fiber experiment that will directly 

measure the phase correlation between comb lines. The experimental results and the data 

analysis will be covered as well. We emphasize the observed strong spontaneous phase 

anti-correlations between first-order sidebands, which are consistent with our theoretical 

predictions. A weaker phase correlation between first-order Stokes and 2nd order anti-

Stokes is also shown. I will then describe a two-color experiment that verifies the phase 

correlations predicted by our semi-classical model. In this experiment the second 

harmonic (in blue color) of amplified pulse (in red color) generated in a BBO crystal and 

the amplified pulse itself are simultaneously coupled into HCPCF. This blue light is kept 

in low intensity so that it is only scattered off the molecular coherence created by the red 

light. The experimental results reveal that the molecular coherence is indeed acting as a 

phase modulator for light scattering from it. At the end of this chapter, I will discuss the 

possibility to extend the two-color experiment to lock the phase of Raman comb, which 

will be crucial to generate atto-second pulse trains with constant carrier envelope phases.  

I will summarize my research work in the last chapter of this dissertation.  
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CHAPTER II 

THEORY OF RAMAN OPTICAL FREUQUENCY  

COMB GENERATION 

 

Spontaneous Raman scattering background 

 

As shown in Figure 2.1, an optical pulse propagating at z direction encounters a single 

molecule in its ground state. If the frequency of the optical pulse is far detuned from any 

transition line of the molecule, an inelastic scattering may occur where the frequency of 

the optical pulse is shifted and the molecule is transferred to its excited state. This is the 

well-known spontaneous Raman scattering process. The energy diagram of the described 

Raman transition is shown in Figure 2.2. In our theoretical model, we assume the optical 

pulse to be quasi-monochromatic, and its temporal duration is shorter than the Raman de-

phasing time, but its spectral linewidth is much narrower than the Raman frequency shift. 

Under these conditions, the Raman scattering process is in transient regime.   
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         We denote the molecule’s ground state as 1  and the excited state as 3 . Those 

intermediate states in Figure 2.2 are true molecular states, but in Raman scattering, the 

molecule has never occupied those states because the pump is detuned far from resonant. 

However, these intermediate states are necessary for Raman scattering to occur, since no 

dipole-allowed transition exists between the ground state 1 and excited state 3 . In 

other words, the dipole moment defined as 13
ˆ 1 3d r


 is zero in the molecular system, 

in the case of homonuclear molecules.   

Although the ground state 1 and excited state 3 are not directly coupled, the 

molecule can still be transferred from one state to another in the Raman scattering 

process. It will be shown in the following that the effective 13
effd in Raman scattering will 

be non-zero with the help of those virtual states m .   

The generated new optical field in Raman scattering where the original optical pulse 

is scattered by the molecule is called the Stokes field. It’s easy to see from the energy 

conservation that the frequency of the Stokes field is 0 31s    .               

After the molecule scattered to the excited state, it might get scattered back again by 

an inverse process. This is shown in Figure 2.3. A frequency up-shifted optical field 

Figure 2.1. Single molecule scattering
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called the anti-Stokes field is produced during this process. The anti-Stokes field will 

have frequency 0 31as    .                

  

         

                      

 

The energy structures of real molecules are very complicated, since there are many 

possible degrees of freedoms in its Hamiltonian, such as electronic, nuclear vibration and 

rotation, inter-molecular and so on. However, in order to discuss Raman scattering, we 

could simplify the energy structure to a few levels whose transition will have the largest 

Raman scattering cross sections. For example, in hydrogen molecules, the most 

significant Raman scattering takes place involving the vibrational and rotational states 

between two hydrogen atoms (shown in Figure 2.4). All other states, such as electronic, 

will be treated as intermediate states. In this simplified model, the energy structure of 

Figure 2.3. Energy diagram of 

inverse Raman scattering 

Figure 2.2. Energy diagram of 

Raman scattering 
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molecules is essentially a  system. Both the ground state 1 and excited state 3 are 

assumed to be degenerate, which means a single wave-function is sufficient to describe 

each state.   

 

 

 

 

The energy separation between ground state 1  and excited state 3 is 13E    .                  

At room temperature, for BE k T  where Bk is the Boltzmann constant, the molecule 

will naturally be in its ground state. However, if that condition is not met, the molecule 

will have near-equal probability in its ground or excited state. In this situation, the optical 

Raman gain will be diminished. An optical pump scheme is required so that the molecule 

is prepared in its ground state. 

 

 

 

 

 

Figure 2.4. Vibrational and rotational state in bi-atomic hydrogen molecule   
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Stimulated Raman scattering and Raman comb generation 

 

Now we consider an ensemble of molecules that is confined within a pencil-shaped 

container. As shown in Figure 2.5, an optical pulse propagating along the length of the 

container interacts off-resonantly with these molecules. Each molecule can experience 

the spontaneous Raman scattering process to produce the Stokes field, as described in the 

previous section. In certain conditions, especially when the optical pulse, which is called 

the Raman pump, is intense enough, the spontaneous scattering can build up to generate a 

strong Stokes field that is co-propagating with the original optical pulse. This 

phenomenon is called stimulated Raman scattering.   

 

 

 

One simple way to understand the stimulated process is as follows: the Stokes fields 

spontaneously generated from the first few molecules in the ensemble interacting with a 

strong Raman pump are distributed uniformly for each propagation direction. However, 

the Stokes field that happened to be propagating co-linearly with the pump laser may 

stimulate the scattering process occurring in the next available molecules. Here, 

“stimulate” means the first Stokes field, as shown in the leftmost event in Figure 2.6, 

Figure 2.5. Raman scattering of an ensemble of molecules (Blue curve indicates 

Raman pump, and red curve indicates generated Stokes field) 
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forces the next Raman scattering effect to produce a Stokes field with an identical 

property, i.e., the propagation direction, the wavelength and temporal phase. In other 

words, the Raman pump laser set a preferable direction where the Stokes fields from 

sequential spontaneous Raman scattering will be produced coherently. This is very 

similar to how lasers work. This stimulated Raman scattering process will continue until 

the Raman pump is depleted and the Stokes field could build up to a macroscopic level 

(larger than one million photons). 

 

      

 

 

Molecules that are scattered to an excited state in the stimulated Raman scattering 

process can be scattered back by the same pump pulse to produce anti-Stokes photons 

(see Figure 2.3). Similar to the Stokes field buildup, the anti-Stokes field can also reach 

macroscopic level. The generation of both Stokes and anti-Stokes photons can be made 

analogous to a four-wave mixing process, where two pump photons are annihilated, and 

Stokes and anti-Stokes photons are generated. In this process, there exists a phase 

mismatch, i.e., 02s as       , where s  , as  , 0  are the wave-vectors of Stokes, 

anti-Stokes and Raman pump fields, respectively. It has been shown that in a perfect 

phase-matching condition, the Stokes and anti-Stokes processes will be suppressed, while 

Figure 2.6. Stimulated Raman scattering generation 
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for small but nonzero phase mismatch it will be enhanced. We will point this out in a 

later chapter. 

After this Stokes field gets stronger, it might be scattered by the molecules again to 

produce higher-order sidebands. The same will happen to the anti-Stokes fields. This 

cascaded process is what we call “Raman comb generation.” In Figure 2.7 we show this 

process. Because in our experiment we use very short (200 ps), high-intensity laser pulses 

to excite the Raman scattering, we will focus our theoretical discussion in a high-gain 

transient regime. In the following section, I will show how we obtain the equations of 

motion of the slowly varying parts of the radiation fields (including all Raman comb lines) 

and the collective molecular coherence.   

 

 

 

 

 

Figure 2.7. Cascaded Raman scattering process 
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Raman comb theory 

 

We start our mathematical derivation with the quantum theory of Raman scattering, 

which will generalize to include any number of Raman lines in comb generation process 

[40]. Consider a single molecule located at position z and its interaction with all electric 

fields containing the pump and generated Raman sidebands. We write the electric fields 

as: 

 

                                             ( )( ) ( , ) . .n ni z t
n

n

E E z t e h c                                             (2-1) 

 

where we label integer number n as the order of sidebands, n<0 for Stokes fields, n>0 for 

anti-Stokes fields, and n=0 for the pump. We will keep this convention of naming the 

order of Stokes and anti-Stokes fields throughout the rest of this dissertation.  ( ) ( , )nE z t  is 

the positive frequency part of the slowly varying envelope function. This envelope 

function is directly related to the photon creation and annihilation operators in quantum 

optics, and we will show its real form in the next section. The carrier frequency n  in the 

expression for the different order of the Stokes (anti-Stokes) line obeys the energy 

conservation, and it is related to the pump’s frequency by: 

 

                                            0 31n n     ,                                                     (2-2) 

 

In other words, the generated spectrum of cascaded Raman scattering process would be 

an equally spaced optical frequency comb. The parameter n is the wave-vector of the n-
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th order sideband, and its value is mainly determined by the dispersion property of the 

medium.   

The total Hamiltonian that will determine the molecule’s equation of motion can be 

written as (neglecting free radiation fields): 

 

                                                   0
mol

IH H H  ,                                                     (2-3) 

 

In the above equation, 0
mol

m
m

H m m   is the molecule’s static Hamiltonian, 

and 

 

                         
1 1 3 3{ ( ) ( , ) ( ) ( , ) . .}I m m m m

m

H d t E z t d t E z t h c                        (2-4) 

 

is the dipole interaction Hamiltonian between the molecule and the electric fields of light.  

The operator ,m n m n  is the molecular transition operator between state n  and 

m .  If the zero of energy is taken at the level of the ground state, the static Hamiltonian 

can be re-written as  
0 1 1 1( ) ( )mol

m m m
m

H t t    , where 1 1m m    . 

We then obtain the equations of motion for molecular operators that involve states 

1 , 3 and m  in the Heisenberg picture (neglect any transition between intermediate 

states): 

 

                     
31 31 31 1 3 3 1m m m m

m m

i i d E i d E
t
    

  
   ,                                 (2-5-1) 
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1 1 1 1 11 3 31( )m m m m mm mi id E id E

t
     

   


,                              (2-5-2) 

                     
3 3 3 3 33 1 31( )m m m m mm mi id E id E

t
     

   


.                            (2-5-3) 

 

In our transient Raman scattering theory, we assume the laser is detuned far away 

from the intermediate states, that is, 0m

E
d  


. In this situation, the molecule is 

assumed to never truly occupy those intermediate states m  during the interaction. 

Therefore, we would like to eliminate these intermediate states from our equation of 

motion. In order to do so, we need to apply some essential approximations, and next, I am 

going to show this derivation in some detail. The first term of Equation 2-5-1 reads: 

 

                                           
31 31 31( ) ~t i

t
  


.                                                        (2-6) 

 

This shows the operator 31( )t is oscillating at its natural frequency 31 . Any temporal 

oscillating term appearing in its equation of motion that has a frequency other than 13  

may be neglected (or have negligible contribution). 

We can formally integrate Equation 2-5-2 and 2-5-3 and get: 

 

1 1 31( ) ( )
1 1 1 11 3 310
( ) (0) { ( )[ ( ) ( )] ( ) ( ) }m m

ti t i t t i t t
m m m mm mt e i dt e d E t t t d E t t e                 , 

                                                                                                        (2-7-1) 

3 3 31( ) ( )
3 3 3 33 1 310

( ) (0) { ( )[ ( ) ( )] ( ) ( ) }m m
ti t i t t i t t

m m m mm mt e i dt e d E t t t d E t t e                 , 

                                                                                                      (2-7-2) 
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These expressions for 1( )m t  and 3 ( )m t  can then be put into Equation 2-5-1 and only 

the terms that have 31i te 
 need to be retained. For example, the third term in Equation 2-7-

1 can be written as: 

 

1

1

1 31

3 1 3 1

( )
3 1 110

2 ( ) ( )
3 310

( ) (0)

                         ( ) ( )[ ( ) ( )]

                         ( ) ( ) ( )

m

m

m

i t
m m m m

m m

t i t t
m m mm

m

t i t t i t t
m

m

i d E i d E t e

d d E t dt e E t t t

d E t dt e E t t e





 

 

 





  

  

    

  

 

 

 
 

 

In the above equation, the first term proportional to 1(0)m is oscillating at 1m , and 

can be neglected. The third term, which is proportional to 31( )t  itself, is a term directly 

resulting in AC Stark shift.  It only slightly shifts the frequency 31 and is also negligible. 

The only term that might have oscillation at 31 is the second term, and by using Equation 

2-1, we can get: 

 

1

1 0 1 2 0 2

1 2

1 2

( )
3 1 1 3 0

( ) ( )( ) ( )
11    { ( , ) . }{ ( , ) . }[ ( ) ( )]

m

n R n R

t i t t
m m m m

m m

i z i n t i z i n t
n n mm

n n

i d E d d dt e

E z t e h c E z t e h c t t



     



 



    

   

    

  


 

                                                                                       (2-8) 

 

Here we use the Rotating-wave approximation (RWA) to neglect terms involving

t t . This will allow us to simplify the double summation in (2-8) as: 
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1 0 1 31 2 0 2 31

1 2

1 2

0 1 2 31 2 1

1 2

1 2

( ) ( )( ) ( )
11

( ) ( ) ( )( ) ( )
11

( )
1

{ ( , ) . }{ ( , ) . }[ ( ) ( )]

( , ) ( , ) . }[ ( ) ( )]
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n n
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n n
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E z t e h c E z t e h c t t

E z t E z t e e e h c t t

E z t E
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   

 

 

    

    




   
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
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0 31 0 31 31( ( 1) )( ) ( )( )( ) ( ) ( )

1

11

( , ) ( , ) ( , ) }

[ ( ) ( )]

ni n t t i n t t i z i t
n n

n

mm

z t e E z t E z t e e e

t t

     

 

          
  

 


. 

                                                                                               (2-9) 

 

where 1n n n      .   

Again, since operator 31( )t  is oscillating at frequency 31 , in the second step of the 

above derivation we eliminate one summation to only retain the term 31i te  . By putting 

this result back into Equation 2-8, and making the adiabatic following approximation 

since the slowly varying envelopes ( , )nE z t , operators 33( )t  and ( )mm t are all slowly 

changing compared with the frequency 1m , we have: 

1

0 31 0 31 31

31

( )
3 1 1 3 0

( ( 1) )( ) ( )( )( ) ( ) ( ) ( )
1 1

11

( ) ( )
1

{ ( , ) ( , ) ( , ) ( , ) }

[ ( ) ( )]

( , ) ( , )

m

n

n

t i t t
m m m m

m m

i n t t i n t t i z i t
n n n n

n

mm

i z i
m n n

i d E d d dt e

E z t E z t e E z t E z t e e e

t t

i E z t E z t e e



     

 



 





           
 

   


   

  

 

 

  


11[ ( ) ( )]t
mm

n m

t t 

 

(2-10) 

 

where we define 3 1
1 0 31 1 0 31

1 1

( 1)m m m
m m

d d
n n


     

 
    

.        

In a similar way, we can get the second term in equation 2-5-1 as: 

 

         

31( ) ( )
1 3 1 33( , ) ( , ) [ ( ) ( )]ni z i t

m m m n n mm
m n m

i d E i E z t E z t e e t t       
    .       (2-11) 



29 
 

 
 

 

Finally, by using equations 2-10 and 2-11, we simplify equation 2-5-1 as: 

 

  

31( ) ( )
31 31 31 1 11 33( ) ( ) ( , ) ( , ) [ ( ) ( )]ni z i t

m n n
n m

t i t i E z t E z t e e t t
t

        



  

         (2-12) 

 

Since we assume the molecule initially in its ground state, and the probability of the 

molecule staying in state 3  is very small, that means 11 33 1    remains valid 

throughout the interaction. Therefore, Equation (2-12) is further simplified as: 

 

            31* ( ) ( )
31 31 31 1, 1( ) ( ) ( , ) ( , ) ni z i t

n n n
n

t i t i E z t E z t e e
t

       



 

                        (2-13) 

 

where the Raman transition coefficient is given by: 

 

            1, 3 1
1 0 31 1 0 31

1 1

( 1)n m m
m m m

d d
n n


     
 

       
 .                        (2-14) 

 

We define the slowly varying part of operator 31( )t  as another variable QK: 

 

                                          
31

31( ) ( ) i tQ t t e   .                                                       (2-15) 

 

Here we use symbol   to denote the different molecule located at position z. The 

physical meaning of QK(t) is the slowly varying molecular-raising operator, which 

eliminates one molecule initially in ground state 1  and at the same time, creates one 
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molecule in excited state  3 . Its equation of motion can easily be derived from Equation 

2-13: 

 

                              

* ( ) ( )
1, 1( ) ( , ) ( , ) ni z

n n n
n

Q t i E z t E z t e
t

    



 

                               (2-16) 

 

The above equation describes the response of a single molecule at location z to the 

electric fields. Next, we consider an ensemble of molecules that are assumed to be evenly 

distributed in a pencil-like region, as shown in Figure 2.5, with the length L in z direction, 

area A in the cross-section and the molecule’s number density N. In our theory, we 

assume the Fresnel number of the interaction, defined as 
A

L
, is smaller than unity for all 

optical fields. For this reason, a one-dimensional model is sufficient for modeling the 

cascaded Raman process.   

In order to treat the propagation of the radiation field, it is convenient to define the 

collective molecular raising operator at position z by: 

 

                                             { }

1
( , ) ( )

z

Q z t Q t
N





  ,                                                (2-17) 

 

where the summation runs for all molecules that are occupied at position z. People often 

refer to Q as the molecular collective coherence. 

The commutation relation for ( , )Q z t  and † ( , )Q z t  can be found as: 
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† 1
( , ), ( , ) ( )Q z t Q z t z z

NA
                                         (2-18) 

 

We can rewrite Equation 2-16 as: 

 

                                  

* ( ) ( )
1, 1( , ) ( , ) ( , ) ni z

n n n
n

Q z t i E z t E z t e
t

   



 

  .                     (2-19) 

 

Next, we will calculate the macroscopic polarization operator, which is defined as: 

 

                                          

{ }

{ }

( , ) ( ) ( )P z t P t z z 



  ,                                       (2-20) 

 

where { } ( )mP t  is the polarization arising from single molecule located at position mz : 

 

                                    

{ }
1 1 3 3( ) . .m m m m

m

P t d d h c     .                                  (2-21) 

 

We can evaluate the above polarization by using Equation 2-5, which also uses 

similar adiabatic approximations: 

 

                        

1 ( ){ } * ( )
1, 1 1

( )( ) ( )
1, 1

†( ) ( , ) ( )

( , ) ( ) . .

n n n

n n n

i z i z t
n n

n

i z i z t
n n

n

P t E z t Q t e e

E z t Q t e e h c

   

  





   
 

  




 





( )


,                     (2-22) 

 

Using equation 2-22, the macroscopic polarization ( , )P z t  can be written as: 
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1 ( )* ( )
1, 1 1

( )( )
1, 1

†( , ) ( , ) ( , )

( , ) ( , ) . .

n n n

n n n

i z i z t
n n

n

i z i z t
n n

n

P z t N E z t Q z t e e

N E z t Q z t e e h c

  

  





   
 

  


 

 








.                  (2-23) 

 

This macroscopic polarization can be used to calculate the equation of motion that 

accounts for the spatial propagation of the electric fields in the Raman comb generation 

process. The well-known one-dimensional Maxwell-Bloch equation is: 

 

                                   

2
( , )E P z t

z c t c t

        
,                                             (2-24) 

 

Then using equation 2-23 for ( , )P z t  and equation 2-1 for E , and sorting out the term 

with fast optical oscillation n , the equation of motion for the n-th order comb line can 

be found from equation 2-24 as: 

 

  

1( ) ( ) ( )
2, 1 1 2, 1

†1
( , ) ( , ) ( , ) ( , ) ( , )n ni z i z

n n n n nE z t i E z t Q z t e i E z t Q z t e
z c t

       
  

             
(2-25) 

                       

where the coefficient 2, 1,2 /n n nN c     .      

Equations 2-19 and 2-25 will be the coupled equations describing the Raman comb 

generation.   
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An alternative approach 

 

In the previous section, we started with the single molecule’s interaction with light 

and then derived the equation of motion for the slowly varying collective molecular-

raising operators and the electric fields. Although we write the electric fields in standard 

quantum optics operators, we derive their equations from the Maxwell-Bloch theorem, a 

corollary from quantum mechanics and Maxwell equations. In this section, we use a 

different approach where the basic quantum theory – the dynamics of a quantum operator 

in the Heisenberg picture – is used. This approach will be useful in the future 

development of the Raman theory because of its simplicity and clearness.   

We first quantize the radiation field in free space, which can be found in a standard 

textbook. It starts with the transverse part of the potential vector in Coulomb gauge in 

terms of normal modes. In our situation where only one propagation dimension (along the 

z axis) is considered, then the normal modes will have wave vectors being quantized as

2
,    0, 1, 2,...n n

L

     .  The quantized electric field can be written as: 

 

                                 

2
( , ) .m mi z i tm

x m
m

E z t i a e h c
AL

      
                               (2-26) 

 

where x labels the polarization of the electric field, A and L are the area (assume 

uniformity along z) and length of the molecular medium. The operator ma is the photon 
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annihilation operator that is similar to the one used in the quantum-mechanic harmonic 

oscillator and the commutation of ma and  
na  obeys: 

 

                                                       ,
†,m n m na a     .                                                (2-27) 

 

If L  , the discrete summation of all normal modes may be re-written in 

continuous integration, by changing 

 

                                      
2

( )  ;    
2m

m

L
a a dm d

L

  


     .                    (2-28) 

 

In this way, the commutation for ( )a   and † ( )a   is: 

 

                                                †( ), ( ) ( )a a                                             (2-29) 

 

Then using 2-28, the quantized electric field is: 

 

                            

( )( )
( , ) ( ) .i z i t

xE z t i d a e c c
A

       


.                            (2-30) 

 

We are more interested in the slowly varying envelope of a n-th order Raman 

sideband that has center frequency n  and wave-vector n . Therefore, we re-write the 

quantized electric field in following form: 

 

                                 

( )( )( , ) ( , ) .n ni t z
x n

n

E z t E z t e c c                                         (2-31) 
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and the slowly-varying envelope for n-th order sideband is given as: 

 

                         

( ) †( , ) (1 ) ( )
2

g
n

g
i z iv tn n

n n
n

v
E z t i d a e

A
   


  

  ,                     (2-32) 

 

where g
nv  is the group velocity of the n-th order sideband. In deriving equation 2-32, we 

have used the dispersion relation as ( ) g
n n nv       , and have changed the 

integration variable in equation 2-31 to small wave-vector spreading   around n .   

The total Hamiltonian of the radiation field in free space is given by: 

 

                                 

22

0 ( ( , ) ( , ) )
8

rad
x y

A
H dz E z t B z t


                                     (2-33) 

 

By putting into the full expression for the electric (equation 2-31) and magnetic fields, 

it can be shown that the above Hamiltonian can be simplified as: 

 

                      
0

† †{ ( ) ( ) ( ) ( )}
2

rad g
n n n n

n
nH d v a a a a      

     .                    (2-34) 

 

From equation 2-32, the slowly varying envelope can be written approximately as: 

 

                                              

( ) 0 †( , ) ( , )n nE z t i a z t
A

 
   ,                                       (2-35) 

 

if we define the new photon creation and annihilation operator as: 
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† †( , ) ( )

g
ni k z ivv k t

n na z t d k a k e                                         (2-36) 

 

The Fourier inverse transform of above equation would give: 

 

                                         

† †1
( ) ( , )

2

g
ni kz iv k t

n na k dzdt a z t e  


                                 (2-37) 

 

Then, the free-space Hamiltonian in Equation 2-34 can be expressed in a different 

way: 

 

 

   

 

1 2

1 2

1 2

2

0 1 1 2 2

1 1 2 22

1
1 2 22

1

†

†

†

1
( , ) ( , )

2 2

( , ) ( , )
8

( , )
( , )

8

n n
g gi z iv t i z iv trad n

g n n
n

i z i zn
g n n

n

i z i zn n
g n

n

H d v dz a z t e dz a z t e

d v dz a z t e dz a z t e

a z t
d v dz e dz a z t e

z

   

 

 

 


 





  





   
 










   

   

   

  

  

 

†( , )
( , )

4
n n
g n

n

a z t
dzv a z t

z


 
 

    (2-38) 

 

We can further write this Hamiltonian in terms of the slowly varying operator 

( , )nE z t , by using the inverse of equation 2-35: 

 

                     

( )
( )

0

( , )
( , ) . .

4
rad n

n
n n

ic E z t
H Adz E z t h c

z




 
 
                                 (2-39) 

 

if we assume the group velocities of all the electric fields in free space are at the speed of 

light in a vacuum, c. This form is consistent with, but generalizes, that in Haus [41]. 
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The commutation between the positive and negative frequency part of the slowly 

varying envelope can be easily found from equation 2-45, and take the form as: 

 

                     

( ) ( ) 02
( , ), ( , ) ( ( ))n m nmE z t E z t z z c t t

A

           
                     (2-40) 

 

The interaction Hamiltonian between the radiation field and the single molecule at 

position z is given by equation 2-4, and if we include all molecules, then the interaction 

Hamiltonian can be formally written as: 

 

             
1 1 3 3

{ }

{ ( ) ( , ) ( ) ( , ) . .}I m m m m
m

H A dz d t E z t d t E z t h c 



                      (2-41) 

 

Again, we use the adiabatic-following approximation to eliminate those intermediate 

states m  from the above interaction Hamiltonian. To do so, the expressions for 1( )m t  

and 3 ( )m t  that are shown in Equation 2-5 are put into the Hamiltonian, and a similar 

approach to that in the previous section is applied to only retain those slowly varying 

terms, then the interaction Hamiltonian can be shown as: 

 

                 

   

    1

1, 1

*
1, 1 1

†

( ) { ( , ) ( , ) ( , )

( , ) ( , ) ( , ) }

n

n

i z
I n n n

n

i z
n n n

H NA dz Q z t E z t E z t e

Q z t E z t E z t e







 

  


   
 

  




                        (2-42) 

 

Combining Equation 2-39 and 2-42, the total Hamiltonian of our system is

0
rad

IH H H  . The molecular static Hamiltonian molH  is not included in H because it is 

eliminated when we do the slowly varying transformation from 13( )t  to ( , )Q z t
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(Equation 2-15).  Indeed, the Hamiltonian H is in the interaction picture. The equation of 

motion for slowly-varying electric field operator of n-th order comb component can be 

easily obtained from standard quantum theory: 

 

                                 
( ) ( )

0( , ) , ( , )rad
t n I nE z t i H H E z t                                          (2-43) 

 

Using the commutation relations that are shown in Equation 2-25 and 2-50, the above 

equation can be simplified as: 

 

( ) ( ) ( )
2, 1 1 1 2, 1

†1
( ) ( , ) exp( ) exp( )z t n n n n n n nE z t i E i z Q i E i z Q

c
      

                      (2-44) 

 

The new coefficient 2 ,n is given by: 
2, 1,2 /n n nN c      .                               

The equation of motion for the collective molecular raising operator can be obtained 

in a similar way: 

 

           

1

†
0

( ) ( )
1, 1

* ( ) ( )
1, 1 1

( ) ( )
1, 1

†

† †

( , ) , ( , )

( ) { ( , ) ( , ) ( , )

( , ) ( , ) ( , ) }, ( , )

exp( )

n

n

rad
t I

i z
n n n

n

i z
n n n

n n n n
n

Q z t i H H Q z t

i NA dz Q z t E z t E z t e

Q z t E z t E z t e Q z t

i E E i z









 



 


  
 

 


    
      

   
 





                             (2-45) 

 

It is easy to see that the equations of motion that we derive in this section are the 

same as those we get in the previous section (Equation 2-19 and 2-25). By changing the 

variable from ( , )z t  to ( , )z  , where /t z c   , the equations of motion become: 



39 
 

 
 

 

 
( ) ( ) ( )

2, 1 1 1 2, 1
†( , ) exp( ) exp( )z n n n n n n nE z i E i z Q i E i z Q       

          ,              (2-46) 

                        

( ) ( )
1, 1

† ( , ) exp( )n n n n
n

Q z i E E i z    
   .                                       (2-47) 

 

These two equations will be our starting point to make the theoretical predictions on 

interesting features in the Raman optical frequency comb generation process, which will 

be discussed in the next chapter. 

 

 

Quantum entanglement in stimulated Raman scattering 

 

During the optical Raman frequency comb generation, the collective molecular 

coherence ( , )Q z t  and optical comb components nE  are initiated from a vacuum state, 

and then amplified to a macroscopic level.  Equations 2-46 and 2-47 describe this process. 

However, an interesting question is whether the collective molecular coherence has 

special correlations with those electric fields. In this section, I will review this special 

correlation, which in a later context will be shown as quantum entanglement, under the 

condition that only first-order Stokes is generated.   

The interaction Hamiltonian that involves only first-order Stokes and Raman pump 

can be written directly following Equation 2-42: 

 

                   

  0
1,0 0 1( ) { ( , ) ( , ) ( , ) . }i z

IH NA dz Q z t E z t E z t e h c  
    
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Since the Raman pump is assumed to be a strong laser field, we write its form 0E  

classically instead of in a quantum operator.  Using the above Hamiltonian or Equation 

(2-46) and (2-47), the equations of motion for first-order Stokes and molecular collective 

coherence are: 

 

                                    
0( )

1 2,0 0
†( , ) ( ) ( , ) i zE z i E Q z e

z
     




 


,                 

                                    
0( )

1,0 0 1
† ( , ) ( ) ( , ) i zQ z i E E z e    










.                              (2-48) 

 

After doing a complex conjugation of the first equation above, absorbing dispersion 

factor 0 z  into 0( )E  , and defining parameters: ( )
1 1

1

ˆ ( , ) ( , )
2

Ac
a z t E z t

 


 





as a Stokes 

photon annihilation operator, 1
0

2 N
g

c

 


 as a normalized gain coefficient, and 

†ˆ ( , ) ( , )b z t NAQ z t  as the molecular creation operator, the coupled equation is written 

in a more symmetric form: 

 

                                   
†

0 0
ˆˆ( , ) ( , ) ( , )a z g E z b z

z
  




,             

                                  
†

0 0
ˆ ˆ( , ) ( , ) ( , )b z g E z a z

t
  




.                                             (2-49) 

 

We call the operator ˆ( , )a z t  the photon annihilation operator and †ˆ ( , )b z t  the 

molecular creation operator because their same positions or time commutation relations 

are normalized delta functions: 
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†ˆ ˆ( , ), ( , ) ( )a z a z          ,   †ˆ ˆ( , ), ( , ) ( )b z b z z z       .               (2-50) 

 

The solution of the coupled equation can be found by using Green’s propagators. We 

will show the details of derivation in next chapter.  Here, I follow the method used in [42], 

where a modified Bloch-Messiah reduction theorem is applied. The solution of the 

coupled equation 2-49 is indeed a summation of many two-mode squeezing processes, 

and each process is a Bogoliubov transformation: 

 

                                 
( )†ˆˆ ˆ cosh sinhout in in

n n n n na a b    

                                 ( )†ˆ ˆ ˆcosh sinhout in in
n n n n nb b a                                                 (2-51) 

 

 In the above equation, we have decomposed the input operators (0, )a   and output 

operators ( , )a L  into different temporal modes ˆ in
na  and ˆ out

na , respectively. We also 

decomposed the operators ˆ( , )b z   and ˆ( , )b z   into different spatial modes ˆin
nb  and ˆout

nb . 

The detailed mathematical expression for these decompositions can be found in the 

reference [42]. For each mode, the squeezing parameter n  determines the photon 

occupation number by: 

 

                                              
2ˆ sinhn nn  .                                                         (2-52) 

 

From a numerical evaluation of equation 2-52, there exists a dominant pair of 

temporal modes of the Stokes field and a spatial mode of collective molecular coherence 

if dispersion is absent. In Figure 2.8 we show the calculated photon number distribution 
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of most occupied temporal modes [42] in the generated Stokes field under different 

dispersion conditions. The calculation assumes the Gaussian-shaped pump pulse and the 

collisional dephasing was neglected. It shows that if there is no group-velocity difference 

between Stokes and pump fields ( 0 0  ), the most occupied Stokes temporal mode has 

a thousand times more photons than the second most occupied mode.   

This existence of a dominant mode justifies that the generated Stokes field and the 

collective molecular coherence can be simply treated in a two-mode squeezing state. 

Generally, this state is also an entangled state, in analogy to an optical parametric down-

conversion process. The common explanation of this entanglement is, if one Stokes 

photon is detected in output, then there must be a molecule also being transferred to its 

excited state.   

If there are many sidebands other than a single Stokes line in the comb generation, 

then the above argument of entanglement is no longer rigorously valid. But since the 

sidebands and molecular collective coherence are generated cooperatively, we conjecture 

that they will be generated in a multi-partite entangled state.   
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Quantum entanglement between two atomic ensembles 

 

In this section, I would like to briefly review one project that I had worked on before I 

shifted my research focus to Raman frequency comb generation. This project utilized the 

entanglement idea in a stimulated Raman scattering process, and was aiming to create an 

entangled state between two distant objects, which are alkali atom ensembles. We used 

atoms instead of molecules because the electronic Raman scattering in atoms has a much 

Figure 2.8. Photon occupation number (equation 2.52) for different output modes 

under different dispersion conditions: 0 0  (black bar), -10 ps/mm (gray bar) 

and -30 ps/mm (hollow bar). Results are from reference [42]. 
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longer lifetime, typically in the order of micro-seconds. This long quantum lifetime of 

collective electronic spin (CES) coherence has played an important role in recent 

quantum network experiments.   

The entanglement scheme is plotted in Figure 2.9. The Stokes field generated by the 

stimulated Raman scattering process in each atomic ensemble (A or B) was mixed at a 

50/50 beamsplitter. The two outputs of the beamsplitter were then detected individually 

by certain methods. After the measurement, the state of two atomic ensembles may be 

collapsed into an entangled state, depending on the detection scheme.   

 

 

 

 

In a spontaneous regime, where only very few Stokes photons were generated from 

each ensemble, one can use avalanched photon detectors (APD) to simultaneously 

measure whether there were photons or not in the output channels of the beam-splitter. In 

any stance where only the upper channel detects one click, but the down channel detects 

no photons, the state of the two atomic ensembles can be shown to be: 

 

Figure 2.9. Scheme to generate entanglement between two atomic ensembles 
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                                         1 0 0 1
A B A B

                                                   (2-53) 

 

This state is one of the maximum entangled Bell states [43].   

 If the Raman scattering in each ensemble was in a mesoscopic regime, which means 

the Stokes photon number is in the range of 10 to 100, but still does not reach the 

stimulated regime, the photon number-resolving detector can be used to measure how 

many photons are in each output channel of the beamsplitter. If n and m photons were 

detected, the resultant state of the two atomic ensembles is: 

 

                    

,
1 2 ,

,1 2

1
(tanh ) (tanh )

cosh cosh
i j n m

i j A B
i j

B i j  
 


                (2-54) 

 

where ,
,
n m
i jB  is the beamsplitter transform matrix with a probability that a 50/50 beam-

splitter has i and j photons in its outputs if n and m photons are two inputs. 

This state is not as easily verified as an entangled state, especially in an experiment.  

One practical way to do it is to use a so-called “entanglement witness,” which is derived 

from the Shchukin-Vogel scheme [44]. It measures various moments of creation and 

annihilation operators of the beam-splitter’s two output channels jointly. In principle, this 

type of measurement can be done by using a balanced homodyne correlation.  A detailed 

description of the proposed experiment can be found in [45].   

If the Raman scattering in each atomic ensemble is in a stimulated regime, where the 

Stokes field is generated at a macroscopic level, we can use balanced homodyne 

detection to measure the quadrature operators in each output channel of the beamsplitter 

[46].  Quadratures of Bosonic-like operators are defined as: 
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†1
( )

2
q a a   

†1
( )

2
p a a

i
   

 

In order to generate entanglement, one measures the two output channels on an 

orthogonal quantum basis. For example, if one measured the q quadrature in one output 

of the beamsplitter, one would simultaneously measure the p quadrature in the other 

output channel. If the measurement results from the above two joint measurements are Q 

and P, respectively, then the state of the two atomic ensembles can be shown to be 

collapsed to: 

 

                     
2 21 2

exp( 2 ) ,
2 2

s vP
q q i q Qq q q

s s

           ,                  (2-55) 

 

where cosh  , sinh  , 2 2s     and we assume two Raman scattering 

processes have same gain coefficient 1 2    .  ( ) / 2A Bq q q    is the sum and 

difference between the two q quadratures of the two atomic ensembles.   

The state   in Equation 2-68 can also be shown to be an entangled state. A detailed 

analysis can be found in [47].   

Another advantage of using Raman scattering to generate entanglement between two 

distant atomic ensembles is that, by using a time-delayed control laser light, the quantum 

state can be readout in an inverse process. This process is depicted in Figure 2-4, where 

an anti-Stokes field is generated with all atoms in an excited state scattered back to 
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ground state. This allows the atomic ensemble to serve an important role as a memory 

and information exchange node in a quantum network.   

  



48 
 

 
 

 

 

 

CHAPTER III 

SPONTANEOUS PHASE CORRELATIONS IN RAMAN 

OPTICAL FREQUENCY COMB GENERATION 

 

Phase correlation between first order sidebands 

 

Equations (2-46) and (2-47) in Chapter II that include all Raman sidebands is 

extremely non-linear. There are no analytical solutions for those coupled non-linear 

operator equations. However, as a simplifying case, we first consider the situation where 

only first-order Stokes 1E  and anti-Stokes 1E  fields are created, and the pump intensity 

profile is unchanged throughout the interaction. This simplified linear model allows us to 

find a complete quantum description and gain insight into the comb generation process. 

The coupled equations are:  

 

                                   ( )
1 2, 0

†( , ) ( ) ( , )z sE z i E Q z   
    

                          ( )
1 2, 0

†( , ) ( ) ( , ) exp( )z aE z i E Q z i z     
     

          ( ) ( )
1, 1 0 1, 1 0

† ( , ) ( , ) ( ) ( , ) ( ) exp( )s aQ z i E z E i E z E i z          
           (3-1)  
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where 1 1 02        is the phase mismatch of wave-vectors. Here we treat the 

Raman pump as a classical field, and it stays unchanged through the entire interaction. 

These coupled equations in 3-1 were first solved in a full quantum context by Kilin [48], 

who verified that a slight phase mismatch is needed to maximize the generation of Stokes 

or anti-Stokes sideband, as seen in experiments [49]. More general solutions than those in 

[48] are found here using the methods in [40]. Assuming that the pulses are long enough 

that group-velocity effects are not important, the field operators at the end of the fiber (z 

= L) and at local time / v gt z    (where v g
 is the group velocity of the pump) are 

found to be:  

 

( )( )
2, 11 2, 12 1, 11

0 0 ( )( ) 0
2, 21 2, 22 1, 11

2, 13
0 0
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                     (3-2-1) 
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


†

 

                  (3-2-2)       

The Green propagators are given by: 

 

11 12 120
( ; , ) ( ; , ) ( ; , );

z
G z G z i dz G z               

22 12 12( ; , ) ( ; , ) exp( ) ( ; , );G z G z i i z G z               

12 21 0 0( ; , ) ( ; , ) (2 ( , ) ) [ (2 ( , ) ) exp( )];s aG z G z I z J z i z                  

13 0 1( ; , ) (2 ( , ) ) [ ( ) (2 ( , ) ) ( , ) / exp( )];s a aG z I z z J z z i z                    

23 1 0( ; , ) [ (2 ( , ) ) ( , ) / ( )] [ (2 ( , ) ) exp( )];s s aG z I z z z J z i z                    
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( ; , ) [ (2 ( , ) ) ( , ) / ( )]

                  [ ( ) (2 ( , ) ) ( , ) / exp( )]

s s

a a

G z I z z z

z J z z i z

        

       

   

   
 

 

where “*” denotes convolution on the variable z, and ,n nJ I  are n-th order Bessel and 

modified Bessel functions, respectively. The time-dependent gain coefficients are: 

 

                                     
2

, 1,( , ) 2,( , ) 0( , ) ( )s a s a s a dt E t



    


   .                               (3-3) 

 

With the sideband fields initially in the vacuum state and all molecules in their 

lowest-energy states 1 , the initial operators have the following correlation functions : 

 

† ( ,0) ( ,0) (1/ ) ( )Q z Q z AN z z    

†( ,0) ( ,0) 0Q z Q z   

( ) ( )(0, ) (0, ) (2 / ) ( )n n nE E Ac            

                                            ( ) ( )(0, ) (0, ) 0, 1n nE E n                                       (3-4) 

 

Equation (3-2-1) represents two types of processes: The terms coupling ( )
1E 

  ( ( )
1E 

 ) 

with Q  represent Stokes (anti-Stokes) scattering from ground-state (excited-state) 

molecules. The off-diagonal terms in the green matrix coupling ( )
1E 
  with ( )

1E 
  represent 

Stokes/anti-Stokes four-wave mixing, in which two pump photons are annihilated and a 

Stokes/anti-Stokes photon pair are created. Both of these processes drive the same 

collective molecular excitation Q. The phases of the initiating vacuum (zero-point) fields 

are temporally and spatially fluctuating, as shown in the delta correlation functions of 



51 
 

 
 

equation (3-4), which represents white noise in time and space. We could attribute this 

fluctuation to a thermal-like field distribution of the temporal-spatial modes (TSM) of the 

spontaneously emitted Stokes field, or equivalently to the thermal-like distribution of 

longitudinal spatial modes of the collective molecular excitation [47, 50]. The laser field 

further scatters from the collective molecular excitation creating additional anti-Stokes 

light. Subsequently, the initial white noise is heavily filtered under the high-gain transient 

conditions, since the gain process is a resonant one, and the Green propagators grow 

exponentially as the pulse propagates through the medium. The filtering or smoothing 

process eventually produces a Stokes and anti-Stokes field that are determined solely by a 

single TSM each; in other words, each has the form of a smooth, transform-limited wave 

packet with an overall phase and a peak amplitude that are random from one pump pulse 

to another. In this sense, these two fields resemble classical fields, that is, complex 

temporal envelopes with well defined carrier frequencies, although the intensities and 

phases of both fields dramatically fluctuate from one shot to another [21, 47, 51]. It is 

further known that if the scattering process goes into saturation, then the magnitude of the 

intensity fluctuations greatly decreases [52], although this is not accounted for in the 

linear theory considered here. 

Next we examine the mutual coherence between generated first-order Stokes and 

anti-Stokes fields, in the high-gain transient regime. We calculate the correlation 

coefficient defined as 

 

                                  

2
( ) ( )
1 1

( ) ( ) ( ) ( )
1 1 1 1

( , ) ( , )

( , ) ( , ) ( , ) ( , )

E L E L
C

E L E L E L E L

 

   

 
 

   
   

                           (3.5) 
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Because both fields in the numerator are negative-frequency ones, this gives the 

degree of phase anti-correlation between generated Stokes and anti-Stokes fields. Writing

( ) ( )
1 1 1I E E 
   , the phase correlation coefficient is proportional to the degree of mutual 

phase coherence, defined as 1 1( )iC e  


   , as is seen from: 

 

                                       

1 1

2
( ) ( )

21 1 ( )

1 1

i
E E

C e
I I

  

 
   

 

 ,                                        (3-6) 

 

if we assume that the fluctuations in intensities E1
( )

2
 of first-order Stokes and anti-

Stokes are independent of that of their phases. For example, if the temporal phase of the 

Stokes pulse is statistically independent of the anti-Stokes pulse, the C value (and C ) 

would be zero. Also, if the two fields' phases tend to be equal, then C would be zero. In 

contrast, if the sum of the phases of these two pulses stays constant from shot to shot 

(while they both fluctuate), which indicates phase anti-correlation, then C  would equal 

one, and C would be determined by intensity fluctuations alone. 

By putting expressions from (3-2) into equation (3-6) and using the initial conditions 

(3-4), we calculate the C values under various conditions. The full expression is given in 

the Appendix A, as well as in our publication [53]. In Figure 3.1 we plot C values and 

Stokes and anti-Stokes intensities as functions of local time τ under the phase mismatch 

condition 10L   , where the anti-Stokes intensity is maximized (see Figure 3.2). In 

all our calculations here we use 12 ns (FWHM) transform-limited Gaussian pump pulses, 
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and the Stokes and anti-Stokes integrated gain coefficients (
2

1, 2, 0 ( )s s dt E t L 


 ) are set 

at the values of 25 and 30, respectively. 

 

 

 

 

We see in Figure 3.1 that the value of C nearly equals 1 throughout the duration of the 

generated Stokes pulses. Also note that the peak of the Stokes field is delayed by 4 ns 

relative to the peak of pump field, which is consistent with previously known results [27]. 

In Figure 3.2 we show the calculated C value at the peak of the Stokes-pulse intensity 

under various dispersion conditions, and find that its value stays close to 1. There we also 

Figure 3.1. Pump and first-order Stokes and anti-Stokes mean 

intensities and their anti-correlation C as functions of local time. 
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show the peak Stokes and anti-Stokes-pulse intensities versus phase mismatch, showing 

the well-known minimum that occurs for perfect phase matching [48, 49,54]. 

 

 

 

 

The result 1C   implies that the first-order Stokes and anti-Stokes are correlated in 

the following way:  

 

                                                            
( ) ( )
1 1E E 

  ,                                                      (3-7)    

 

where   is a complex constant (with magnitude smaller than unity). This relation shows 

that, not only the intensities of the two sidebands fluctuate in the same manner from pulse 

Figure 3.2. First-order Stokes and anti-Stokes mean intensities, and 

their anti-correlation C as functions of phase mismatch. 
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to pulse, but their phases are near perfectly anti-correlated. This confirms one of our 

conjectures in [55]. It indicates a tendency in this system to automatically evolve toward 

perfect phase anti-correlation, although our experimental observations show that the anti-

correlation is not perfect. A more rigorous model including all comb lines and pump 

depletion is needed for explaining this discrepancy.  

The generated sideband fields are also correlated with the collective molecular 

excitation created in the medium, as seen in the solution (3-2-2). The quantity 

( )
1( , ) ( , )Q L E L 
 , which is a measure of this field-medium correlation, is plotted in 

Figure 3.3 as a function of the local time  . It shows a maximum in time, following the 

Stokes fields (see Figure 3.2). This correlation between field and molecular coherence 

has been studied in experiment for the case that Stokes only was generated [50]. In the 

absence of dephasing processes, this non-zero correlation can be considered as a 

manifestation of quantum state entanglement between the medium and the fields.   
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Mechanism for phase locking 

 

Here we provide a simple, intuitive model that helps explain the physical mechanism 

of the automatic phase anti-correlation between first-order Stokes and anti-Stokes fields 

predicted above. It also predicts the phase relations among all comb lines, a result that is 

further supported by the independent calculation in the following section. Equation 2-47 

can be simplified by assuming perfect phase matching, since the phase mismatch does not 

strongly affect the phase anti-correlation, as shown in Figure 3.2. We treat the fields as 

classical random processes, and define real amplitudes and phases by  

 

Figure 3.3. Amplitude and phase of quantity ( )
( , ) ( , )1Q L E L 

 . Phase 

value is with respect to the pump’s phase. 
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( ) ( ) ;     ni i
n nE E e Q Q e     .                                                 (3-8) 

 

This gives the evolution of the molecular polarization as:  

 

                       

 1( ) ( )
1, 1

n n

N
i

n n n
n N

i Q Q E E e    
       




      ,                            (3-9) 

 

where we expressed the complex coefficient 1,ni  in terms of an amplitude and phase: 

1, 1, ( )n ni exp i    . This gives two real equations: 

 

                              ( ) ( )
1, 1 1cos

N

n n n n n
n N

Q E E      
 



      

                              ( ) ( )
1, 1 1

1
sin

N

n n n n n
n N

E E
Q      

 


                             (3-10)  

 

The first equation in (3-10) implies that the molecular polarization grows at a 

maximal positive rate if 1 0n n        . In this situation, the second equation 

implies that the random phase    of the molecular polarization becomes time-

independent, as the sin function goes to zero. This result is consistent with the established 

phenomenon of high-gain temporal filtering [50]. The idea is that the spontaneously 

generated comb lines can arise with any phase values, and the values that actually occur 

will be those leading to the highest overall gain, as indicated by the highest growth rate of 

Q . This highest gain also leads to time-independent phases with particular relations 
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among them. This is similar to self-mode locking in a laser. For compactness, this 

relation can be written as: 

  

                                                   1n n    ,                                                      (3-11) 

 

where      absorbs the constant   into the random phase   . The random variable 

  has uniform probability between 0 and 2 [51]. For the case of a strong pump in the n 

= 0 mode with phase 0 , this relation implies for the anti-Stokes and Stokes phases, 

1 0     and 1 0     . These further imply perfect anti-correlation: 1 1 02    .   

Now we can self-consistently solve for the phases of all comb lines from equation (3-

11), referenced to the pump phase 0 , giving 

 

                                                   0n n    .                                                      (3-12) 

 

This simple relation, while meant only to indicate the ideal limit of perfect phase 

locking (when phase mismatches are zero), is a useful guide in understanding the global 

behavior of the system.   

 

 

Semi-classical Raman modulator model 

 

Because Equation 2-46 describing all the Raman sidebands is difficult to solve, and 

the calculation in Section VI is only qualitative, we develop another supporting 
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simplified approach, which we call the semi-classical Raman modulator model. This non-

perturbative model assumes that the vibrational coherence (polarization) in the molecules 

is spontaneously created by the first Stokes and anti-Stokes mode pair, and the higher-

order sidebands are generated by the action of this coherence back on the pump. Unlike 

the analysis in the previous section, here we use detailed mathematic derivations which 

allow us to gain further insight into the phase relations of all Raman sidebands. 

The Raman pump field can be written as the sum of two classical-field components: 

 

                                             
0 0( ) ( )i t i tE E e E e    ,                                            (3-13) 

 

where (dropping various constants) the equation of motion for the positive-frequency part 

is [56]: 

 

                                      ( ) ( ) ( )1/ v ( )z g t E iP i X E                                   (3-14) 

 

In the above equation we write the semi-classical electronic polarizability ( )X  as a 

function of inter-nuclear coordinate X. Next, Taylor expand ( )X around the equilibrium 

coordinate origin X0 and neglect the orders higher than the first term: 

 

                                         
 0 0( ) ( )X X X X

X

       
.                                (3-15) 
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We discard the α(X0) term, as it affects only the phase velocity of the electric field. 

We also ignore for now any phase velocity mismatching in this model. By changing to 

local time variable / v gz t z   , equation (17) can be written as: 

 

                                        
( ) ( )'z E i X E   ,                                                     (3-16) 

 

where '
X

     
.         

The electric field at the end of the Raman medium (z = L) can be obtained by 

integrating the above equation:  

 

                                

( ) ( )

0

( , ) (0, )exp ' ( , )
L

E L t E t i dz X z t   
   

 
                             (3-17) 

 

The X variable is related to the molecular polarization P created in the medium by [56] 

 

                                    
13

13

†( , ) ( , ) . .

2 ( , ) cos ( , )

i tX z t P z t e h c

p z t t z t



 
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 
,                                 (3-18) 

 

where 13  is the molecular resonance frequency, and ( , )z t  is the random phase variable 

arising from the Raman process. By putting equation (3-18) into equation (3-17), we get 
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(3-19) 

 

where ( ) ( , )

0
( ) 2 ' ( , )

Li t i z ta t e dz p z t e    . We use a mathematical expansion for the 

phase part of the above equation, i.e.,  exp( cos( )) ( ) expn
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If we write ( ) ( ) / 2t t    , then  
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We can identify the complex amplitudes of the Stokes and anti-Stokes lines as: 

 

                               
 ( ) ( )( , ) (0, ) ( ( ) )exp ( )n nE L t E t J a t in t 
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We see that the first-order Stokes (n = 1) and anti-Stokes (n = –1) fields are predicted 

to have opposite phases, which is the same conclusion we derived earlier from the more 

rigorous quantum theory for the case of only two side bands. Equation 3-21 is similar to 

the one derived in reference [35], except that here only a single pump is used and the 

effects of quantum fluctuations (ignored in [35]) are paramount. More interestingly, 

equation 3-21 predicts that the higher orders of Stokes and anti-Stokes fields will have 

their temporal phases related to the phase of the strong pump ( 0 ) by: 

 

                                                  0 ( )n n t    .                                                   (3-22) 

 

Under high-gain transient conditions, the phase ( )t  will be essentially constant 

during a single pulse, as discussed above. Therefore, this prediction is the same as 

obtained in equation (3-12) using a distinct and more qualitative argument. It can be 

understood, since higher-order sidebands arise from multiple scattering from the Raman 

medium. Each time the field gets scattered, the Raman medium will impose a   phase 

shift onto it.  

 

 

Prospects for ultrashort pulse generation 

 

Combining the ideal relation (3-22) with the frequency relations (2-2), we find that 

the generated comb spontaneously satisfies the required relations for Fourier synthesis to 

create a periodic waveform. In order to see that, express the synthesized waveform as:  
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( ) ( )
13 0 0 13

[( ) ] ( )( ) ( ) ( ) ( )p pi n t n i t i in t
n n

n n

E t E t e e E t e                ,                (3-23) 

 

where we assumed ( )t   is constant during a given pulse (although random shot to 

shot). The intensity will be determined by the summation term, which is invariant with 

period 132 /T    under the assumption tshat nE  is a slowly changing envelope 

compared to that period.    

However, the carrier-envelope phase (CEP) of the synthesized waveform is changing, 

as we can see from equation (3-23), in which the term pi te 
 is generally not invariant 

over period T. This situation is simulated in Figure 3-4 (a), using six Raman modes. If the 

pump is tuned and stabilized to a multiple of the molecular resonance frequency, i.e., 

13p m   (m is an integer), then one set (train) of periodic pulses with constant CEP 

will be created within one pump pulse. On the other hand, because the quantum phase   

changes from shot to shot, the pulse trains within successive laser shots will not have the 

same waveform and will not be comprised of isolated short pulses. This change of CEP 

phase is illustrated in Figure 3-4 (b) and (c). Further locking mechanisms, such as 

coherent injection of molecular coherence, have been used to overcome this limitation, 

and stable ultrashort pulse trains were created, with the cost of added experimental 

complexity [37].  
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We are presently exploring whether simultaneous pumping of the medium by a 

fundamental pump and its phase-locked second harmonic, as in [37], but without external 

injection of coherence, can also lead to stable ultrashort pulse trains by a generalization 

of the phase locking discussed in the present Chapter. If the frequency of the fundamental 

pump is tuned to be precisely an integer multiple of the molecular resonance frequency, 

the frequency-doubled pump will be resonant with one of the anti-Stokes fields of the 

Figure 3.4. Simulated short pulses under different conditions. a) 13p m  . b) 

13 , 0p m    . c) 13 , / 6p m     . From (b) and (c) it clearly shows the 

change of carrier-envelope phase in the synthesized pulses. 

(a) 

(b) (c) 
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original pump. For example, if we choose hydrogen molecules as our Raman medium, 

the vibrational resonance frequency is around 125 THz [39]. We can tune the pump to 

about 375 THz (or 802 nm), which is in the range of commonly used Ti-sapphire lasers. 

The frequency-doubled pump (401 nm) will be resonant with the third anti-Stokes field 

of the original pump, and will have a deterministic temporal phase   relative to the 

pump. Both the pump and its frequency-doubled beam will simultaneously interact with 

hydrogen molecules to generate the comb. The question is whether this will 

deterministically lock the temporal phase difference among adjacent comb lines, which is 

  in equation (3-22), to the value / 3 , the only value that allows a self-consistent 

phase anti-correlation between all comb lines. The produced periodic single-cycle pulse 

trains will then be identical upon subsequent pump pulses.   
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CHAPTER IV 

OPTICAL RAMAN COMB GENERATION  

 

Hollow-core Photonic Crystal Fiber 

 

The hollow-core photonic crystal fibers (HCPCF) that we used in our experiments 

were fabricated by and generously provided by Dr. Fetah Benabid and his research group 

at the University of Bath in the UK. HCPCF consists of a large air hole in the “core” area, 

and a periodic 2-D crystal structure-like lattice as the fiber’s cladding. By using HCPCF, 

we can fill it with Raman active gases, such as hydrogen or CH4, at various pressures. 

Also, HCPCF has shown broadband transmission from ultra-violet to infrared. This 

multiple octave span in wavelength will be greatly useful in generating the optical Raman 

frequency comb that is wide enough for the atto-second pulse to synthesize.   

Although I do not make the HCPCF myself, I would like to briefly describe the 

process involved in making it [57, 58], which has the following three-stage drawing: In 

the first step, a hexagonal unit cell on a macroscopic scale is formed by drilling a hole 

down the length of a silica rod. In a typical photonic crystal fabrication process, the 

diameters of the hole and the rod are 16 mm and 30 mm, respectively [57]. Six flats are 
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then milled on the outside of the rod, forming a regular hexagon. In the second step, the 

preform of a hexagonal unit cell is drawn on a fiber drawing tower at a certain 

temperature and pressure to produce hexagonal cane of a diameter at the order of 1mm, 

which is cut to short lengths and stacked to give the required crystal structure. This 

hexagonal cane of a small diameter is usually called a “thin capillary.” In the third step, 

the stack of capillaries forming a certain crystal structure is again drawn on the tower, 

fusing the stacked canes together and reducing the pitch (center-to-center spacing) to a 

certain small value. Finally, a piece of this fused stack is drawn down again to yield the 

final fiber.   

The crystal structure of the HCPCF that we got and used in our experiment from the 

University of Bath is called a Kagome structure, and it has a large hole (about 20 microns) 

in the center. The fabrication technique to introducing such a core defect is applied in the 

second step, where shorter capillaries are stacked on both sides of the capillary, leaving a 

gap in the middle. During the cane-pulling process (the third step), no cladding or core 

pressurization is applied. The drawing temperature is kept low in order to form the 

Kagome structure. During the fiber-drawing process (the final step), the integrity of the 

structure is preserved by independently pressurizing the core, the cladding, and the region 

separating the jacket tube from the cane. Moreover, to maintain the structure’s air-filling 

fraction, the Kagome fiber is drawn at a low temperature, high-preform feed rate, and 

high drawing tension. Figure 4.1 shows the scanning electron microscope of the 

transverse structure of the Kagome fiber, after the fiber has been cleanly stripped and 

cleaved.   
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The guiding property of HCPCF is usually explained by the theory of the two-

dimensional photonic band-gap (PBG) [58].  From geometry optics, the wave vector 

component along the fiber, known as the propagation constant  , determines whether 

light propagates or is evanescent in any part of the guide. Conventional total internal 

reflection (TIR), where the index 1n  of the core is greater than index 2n of the cladding, 

ensures the existence of a range of   where light is propagating in the core while being 

evanescent in the cladding. In contrast, light can be confined between two multilayer 

dielectric stacks in a core of arbitrary refractive index, if the stacks have a periodic Bragg 

grating (PBG) for a range of   at a given optical frequency.  There are two regimes of 

Figure 4.1. SEM picture of Kagome fiber after it has been cleaved 
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PBG guidance. In the first regime, light propagates in the layers with high index 1n  of the 

dielectric stack but is evanescent in the layers with low index 2n . The high-index layers 

act as individual TIR waveguides, supporting bound modes at specific values of m  . 

Resonant tunneling between adjacent high index layers permits the leakage of light 

through them, provided  lies within the pass bands that open up around each m . The 

widths of the pass bands depend on the strength of coupling between the layers. Between 

the pass bands lie band gaps; if a high-index core layer with a different (maybe smaller) 

width supports a mode with   inside a band gap, it is not resonant with the other layers 

and light leakage by tunneling is frustrated. The mode is thus strictly guided by the 

frustrated tunneling form of PBG. In the second regime of PBG guidance, light can 

propagate in all layers ( 2k n  ). Band gaps occur at the Bragg condition as a result of 

multiple scattering and interference, leading to the Bragg form of PBG guidance.  

The Kagome fiber, although it belongs to HCPCF, relies on a new photonic guidance 

whereby photons are confined not by PBG but rather via a mechanism akin to Von 

Neumann-Wigner bound states [59, 60] within continuum, where the fiber-guided modes 

cohabitate with those of the cladding without notably interacting. This “inhabited 

interaction” between the hollow core-guided modes and the cladding continuum is 

explained by the high degree of the transverse-field mismatch between the core and 

cladding modes [39].  

The guiding property of a Kagome fiber is mainly determined by its pitch (Λ), core 

size, strut width and air-filling fraction. The fiber that we used in the experiment and will 

discuss throughout this chapter has a single core air hole with a diameter of 20 microns 
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and has a large pitch at 12 microns. The transmission curve of the fiber measured with a 

white light laser source is shown in Figure 4.2. It clearly shows the typical broadband 

transmission from the visible to infrared region.   

 

 

 

 

 

Gas-loading cell 

 

We designed a gas-loading cell by using commercially available materials or parts 

with little requirement of machining. I would like to specially thank Cade Gladhill for 

purchasing all the required parts, assembling them and performing the leaking test of the 

cell.   

Figure 4.2. Broad transmission of Kagome fiber 
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Figure 4.3 shows the detailed drawing of the cell.  The main part of the cell is a 3/8” 

female pipe thread tee. The input end is connected with another pipe thread tee where a 

hydrogen gas tank and a pressure gauge are attached. One output of the female pipe 

thread tee is connected with a pipe-thread (3/8”) to a VCO (1/2”) adapter. A 3 mm thick 

optical window (BK7) is put inside a VCO-type nut, and this output end is sealed by 

capping the nut, which essentially pushes the window firmly against the o-ring that is 

built inside the VCO adapter. In the other output end, where fiber will be loaded, a 1/8” 

Swagelok straight fitting to a 3/8” pipe thread is directly attached. In order to seal this 

end, a graphite ferrule with a .5 mm OD capillary is used. When loading the fiber into the 

cell, one first inserts the un-cleaved fiber through the Swagelok nut, and then through the 

ferrule carefully. Next insert the fiber into the Swagelok fitting that is already attached to 

the pipe thread tee, and push the fiber through the pipe until it hits a plastic fiber guide 

placed inside the VCO adapter. This fiber guide is the only self-machining part in the 

design of this gas-loading cell. It has a center hole that is large enough to allow fibers to 

go through. The purpose of this fiber guide is to support the fiber against its gravity. 

Several small holes are drilled around the center hole in the fiber guide so that gas can 

still be filled with the whole pipe thread tee. Special care should be taken so that the fiber 

is inserted through the center hole of the fiber guide, instead of the small holes around it. 

After the fiber end appears on the other end (window is not put on at this time), carefully 

thread the Swagelok nut with the ferrule placed inside. This end should stay loose, so that 

the fiber still can be pulled from the other end and then cleaved. After cleaving, pull the 

fiber end back through the cell until its tip is inside the VCO fitting but outside the fiber 
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guide. Cap the VCO nut with the window placed inside, and finally, use a tool to tighten 

the Swagelok nut (a quarter turn after hand-tightening is enough). Figure 4.4 shows the 

cell before being assembled. 

 

 

 

 

Figure 4.3. Detailed drawing of the gas loading cell 
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Optical Raman frequency comb generation  

in HCPCF filled with hydrogen gas 

 

The experiment setup to generate and observe the optical Raman frequency comb 

from hydrogen gas is shown in Figure 4.5.   

 

Figure 4.4. Experimental picture of gas loading cell 



74 
 

 
 

 

 

 

The light source we use is from a mode-locked Ti:Sappire laser (Spectra-Physics, 

Tsunami) pumped by CW diode-pumped laser (Spectra-Physics, Millennium Pro) at 532 

nm. The laser produces near 200 pico-second (ps) pulses at 80 MHz repetition rate. The 

output pulse of the laser is monitored by two pieces of equipment: one is an ultra-high-

resolution wave-meter (Burleigh 1600) and another one is a high-speed photo-detector 

(25GHz, New Focus 1437). The wave-meter displays the center wavelength of the pulse 

to the accuracy of 10-4 nm (calibrated by Rubidium 87 D1 transition). The fast photo-

diode measures the temporal shape of the pulse, and ensures that the Ti:Sapphire laser is 

Figure 4.5. Experiment setup for observation of Raman optical frequency comb 
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properly mode locked. A typical trace of the pulse is shown in Figure 4.6. We confirm 

the pulse is near transform limited by measuring its spectra width using a Fabre-Perot 

interferometer (Burleigh F-140). The product of temporal width and spectra width is 0.45, 

close to the Gaussian limit of 0.44.   

 

 

 
 

 

The laser pulse from Tsunami is then sent into a regenerative (Regen) cavity, which 

will amplify the peak intensity of the pulses by a factor of a million. This Regen cavity 

itself is a Q-switched Ti:Sapphire laser system, pumped by a 5 kHz pulsed Nd:YLF laser 

(Positive Light, Merlin). The working principle of this Regen cavity is that, every time its 

pump laser at 5 kHz fires and excites its gain medium, only one pulse from Tsunami’s 80 

MHz pulse train is picked into the high-Q mode of the cavity. All other pulses from 

Tsunami will be dumped out of the Regen cavity immediately. The picked pulse will 

travel inside the Regen cavity many times, and each time it is amplified when passing 

through the medium. When the pulse cannot be further amplified – that is, gain saturation 

Figure 4.6. Temporal shape of ultra-short pulse.  FWHM of the pulse is about 200 ps 
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occurs – the cavity is switched to low-Q mode and thus the amplified pulse is ejected out 

of the Regen cavity. A combination of an electro-optic modulator (EOM) and a thin-film 

sheet polarizer inside the cavity is used as a Q-switcher to pick and eject the pulse. The 

timing of EOM is precisely controlled by a four-channel digital delay generator (Stanford 

Research DG535). The output of the Regen cavity is an intensified pulse with 160 micro-

joules per pulse at a 5 KHz repetition rate. Details of this Regen cavity configuration can 

be found in [61].   

The pulses from the Regen cavity first go through a half-waveplate and a polarizer so 

that they are linearly polarized in a horizontal direction, and then collimated by a pair of 

lenses (300 mm and 100 mm focal length, respectively). We use a 35-mm, anti-reflection 

doublet aspheric lens (Edmond Optics) coated for near IR (700 nm -1100 nm) to couple 

the light into the HCPCF. Usually the fiber length is about 1.5 meters. The output of the 

fiber is then collimated by another doublet lens at 60 mm. An equilateral dispersive prism 

is used to disperse the collimated output, whose spectrum is then projected onto a distant 

screen for easy viewing.   

In the experiment, we seal one fiber end with the home-designed hydrogen gas-

loading cell, and leave the other fiber end open. The hydrogen gas is then pressurized into 

the loading cell, typically between 5 and 15 bars, and then diffused into the HCPCF. 

Since the output end is open, we can imagine there are hydrogen molecules blowing out 

from that end. However, since the fiber transverse area (<100 microns) is very small 

compared to fiber length (typically at 1.5 meters), the flow rate of hydrogen gas is very 

low. In the experiment, we never notice the hydrogen gas leaking from the open end.   
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The Raman frequency shift 13  of hydrogen gas has slight dependence on gas 

pressure, and has been found in a previous experiment as [62]: 

 

2 (GHz) 9.6 10 pressure (bar)     . 

 

When hydrogen gas is set at 15 bars, 13  is estimated to shift by 1.4 GHz from the 

above equation. This shift is still smaller than our laser’s linewidth (2.2 GHz). We 

normally just neglect the impact of this small shift in our later experiment. 

The Raman optical frequency comb that we observed in our lab is shown in Figure 

4.7. To generate such a spectrum, we put an extra quarter-wave plate before the pulses 

are coupled into the HCPCF, so that the Raman pump pulses are circular polarized. The 

spectrum shown then is the hydrogen rotational line, which has line separation at 18 THz. 

In order to show the spectrum, we use a standard digital camera to record the picture of 

the spectrum scattered off the screen. The figure shows many high-order anti-Stokes lines 

in the deep blue region, but fewer Stokes lines. This is because the Stokes lines are in an 

infrared region, and the camera has poor or no response in this spectral region. We 

estimate the pulse intensity required to generate such a spectrum is about a 5-10 µJ / 

pulse, when the gas cell is kept at the pressure of 200 PSI. This required pump intensity is 

much lower than the 1 mJ / pulse that is usually required in free-space setups.   
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In our later experiment, we take out the extra quarter-wave plate and couple the 

linearly polarized pump pulses into HCPCF, which will excite the molecular vibrational 

state in hydrogen gas. The frequency shift in this case is very large, about 125 THz. In 

Figure 4.8, it shows the comb that we observe on the screen. In order to illustrate the 

first-order Stokes at a wavelength of 1200 nm, we have used our IR viewer device, which 

is responsive from 1100 nm to 1700 nm. The second-order Stokes, however, is at 2200 

nm, and we cannot show it in the figure. For anti-Stokes fields, we observe up to 3 orders.  

Their wavelengths are 602 nm, 488 nm and 401 nm, respectively. We label those Raman 

comb lines with integer numbers, as we discussed in Chapter II. Stokes orders are 

negative integers, and anti-Stokes orders are positive integers.   

Another feature we can see from this Raman comb generation in gas-filled HCPCF is 

that the output from the fiber after collimation shows a near Gaussian-like spatial mode 

for almost every comb line, except those high-order anti-Stokes lines near the blue region. 

This shows that the HCPCF helps to produce single spatial mode Stokes and anti-Stokes 

in the comb. Since the effective cross-section of the HCPCF is only 20 microns, our 

Figure 4.7. Hydrogen rotational comb 
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assumption in Chapter II that the Fresnel number of the Raman interaction is smaller than 

unity is valid.   

 

 

 

  

Figure 4.8. Hydrogen vibrational comb 
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CHAPTER V 

EXPERIMENTS AND RESULTS OF PHASE 

CORRELATION MEASUREMENT 

 

Energy statistics of generated first-order Stokes field 

 

The Raman optical frequency comb shown in the previous section is generated by 

200 ps optical pulses. The interaction between the optical pulse and the hydrogen 

molecules are in the so-called transient regime, where the molecular dephasing time 2T  is 

much longer than the pulse duration. Typically this 2T  for hydrogen molecules are in the 

order of 1 nanosecond. In reference [63], it is shown that transient regime can be satisfied 

even when the pulse duration is longer than dephasing time 2T  under ultra-high gain 

condition. If the steady-state Raman gain is denoted as ssG , then for a pulse duration 

shorter than 2ssG T , the interaction is said to be under transient regime.   

In the experiment we measure the energy statistics of first-order Stokes (vibrational 

line, wavelength at 1200 nm) to verify that our comb generation is under transient regime, 

and also no photon at Stokes wavelength is seeding the process. In other words, the first-
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order Stokes field is generated by quantum initiation and amplification through the co-

propagation with the pump. 

The experiment setup is similar to the previous chapter where hydrogen vibrational 

comb lines were observed, which is shown in Figure 5.1. We placed an IR 

Complementary metal–oxide–semiconductor (CMOS) linescan camera after the prism to 

detect the signal, including both the first-order Stokes field and the pump field.   

 

 

 

 

Figure 5.1. Experiment setup for measuring Stokes pulse energy statistics 
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This CMOS linescan camera was purchased from Photon Control, Inc. It consists of a 

Hamamatsu InGaAs CMOS array detector and an electronic driver board that will allow 

the detection under external triggering mode. The detector itself has 512 pixels, and each 

pixel is 25 µm × 125 µm.  Its spectral response is from 800 nm to 1650 nm. The detector 

also has a very fast integration time, which can go down as small as 1 µs. We set the 

detector at the external triggering mode, where the trigger signal is directly from the 

pump laser. In this setup, once the detector received a low-to-high TTL signal, it will start 

to integrate (count the photons hit on each pixel) for certain amount of time (integration 

time), and then automatically shut down for some time (several milliseconds) to read out 

the data on each pixel. This read-out process is usually called ‘binning.’ After it finishes 

transferring data to the built-in memory, the detector will send a “data ready” signal to 

the computer via the USB-connection cable. The computer will then read the data from 

the detector’s memory and display it on the monitor. After reading the data, the computer 

will signal the detector and the detector will clear its memory and zero any electrons that 

are accumulated on each pixel during the blackout period, and wait for the next available 

trigger signal to start its next operational cycle.   

In this way, we can detect the dispersed single-shot first-order Stokes and pump field 

if we set the detector’s integration time shorter than the time between consecutive pulses, 

which is at about 200 µs.  In the experiment, we set this integration time at 180 µs. The 

frame rate of the camera is about 100 Hz, mainly limited by its data-binning and transfer 

speed. The CMOS detector array is slightly different from the charge coupled device 

(CCD) version, in that each pixel on the CMOS detector has its own amplifier, while all 
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pixels on CCD detector share one amplifier. Therefore, CMOS has a limitation on its 

response linearity of all pixels.  In our CMOS detector array, the specification of linearity 

is better than 95%.   

 

 

           

 

In Figure 5.2 we show the typical single-shot Stokes and pump signal recorded on the 

CMOS linescan camera. We adjusted the beam height so that the array detector 

(horizontal line) is centered across the beam. We also use neutral density filters to 

attenuate the beam to prevent any saturation on the camera’s pixels. The beam sizes of 

the first-order Stokes and pump are a little different shown from the data image. This is 

because the numerical aperture of the HCPCF is not all the same for different colors of 

light.   

Figure 5.2. Single-shot first-order Stokes and pump signals 
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In the experiment, we keep the pump’s intensity low so that only the first-order 

Stokes is present. No other comb lines can be observed by the eyes. In this way, we can 

compare our measurement with previously known results for the stimulated Raman 

scattering [21]. The histogram showing the probability distribution of the Stokes pulse 

energies is plotted in Figure 5.3. In this figure, we analyze 300 total recorded camera 

shots, and the peak value of the Stokes pulse in each shot is extracted to represent the 

Stokes pulse energy. We can see that the histogram shows negative exponential 

distribution for the Stokes pulse energy, i.e., the most probable Stokes energy is near zero. 

This statistical feature of Stokes energy shows great fluctuations from one shot to another, 

and is directly related to the vacuum initiation of the Stokes field. In quantum optics, the 

exponential decay distribution is related to the Bose-Einstein distribution, where the 

probability can be written as [64]: 

 

1
( )

(1 )(1 1/ )E
P E

E E


 
. 

 

In the above equation, E  is the mean of Stokes pulse energy. The distribution peaks 

at zero. However, when there is saturation, the above formula will no longer be valid. 

That’s the main reason we kept our pump intensity low in our experiment.   

However, it has also been shown that, even when 0E  , the Stokes energy 

distribution might deviate from a negative exponential to Gaussian. This is when the 

generated Stokes pulse has several spatial and temporal modes (i.e. wave-packet modes). 

Although each mode obeys a negative exponential distribution, the overall behavior of 
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Stokes energy statistics will then converge to a Gaussian distribution. An easy way to see 

this effect is by using the analogy of the central limit theorem in classical probablity 

theory. A detailed review on this topic can be found in [27]. Since our experiment shows 

that the Stokes energy distribution is close to a negative exponential, the generated Stokes 

field is in a single temporal and spatial mode. In other words, the Stokes field is close to 

Fourier-transform limited pulse with a well-defined temporal phase. In the next section, 

we will see that this temporal phase is also random from shot to shot due to the quantum 

initiation process of the Stokes field.   

 

 

 

 

In Figure 5.4 we also show the energy statistics of the pump laser. This plot is to 

confirm that the large energy fluctuation of the Stokes field is not caused by the pump’s 

Figure 5.3. Intensity statistics of first-order vibrational Stokes 
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intensity instability. In fact, the pump is very stable during the experiment, and its 

estimated fluctuation is about 2%.   

 

 

 

 

 

Self-coherence of the comb lines 

 

Under low pump power level, we find the generated Stokes pulse is temporal 

coherent by measuring its pulse energy statistics. When the pump power is strong enough 

for Raman optical frequency comb generation, we have to test the temporal and spatial 

coherence of the Stokes field another way. Here we introduce a two-fiber experiment 

Figure 5.4. Intensity statistics of Raman pump 
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where we interfere the same comb components generated independently from two fibers. 

This technique was first used for Raman studies in "bulk" gas cells by Kuo et al [51]. The 

high-visibility and random interference fringe phase indicate that the generated comb 

lines are temporally coherent but have a random phase.   

The experiment setup is shown in Figure 5.5. The pump pulse is again the output 

from the Regen cavity with 200 ps temporal duration. It is split by a non-polarizing 

beam-splitter (BS-A) into two parts, and each part is then coupled into a hydrogen-gas 

filled, 1.5 meter-long HCPCF. The output of each HCPCF is then collimated by a pair of 

lenses, which will ensure both outputs have similar beam diameters. These two beams are 

combined by a small angle on a non-polarizing beam splitter (BS-B), and a narrow band 

filter is placed in each output of the beam splitter to filter out single Stokes or anti-Stokes 

line. A CCD or CMOS camera is placed afterwards to capture the interference fringes.   

It is obvious that from BS-A to BS-B the alignment is a well-known Mach-Zander 

interferometer. Each arm of this interferometer contains an HCPCF. In order to see 

interference fringe on the camera, the distance of these two arms should be balanced, so 

that the light pulses would overlap in the time domain.   

Before the hydrogen gas is pumped into the HCPCF fiber, we test the balance of the 

two arms by overlapping two pump beams transmitted from each fiber onto a non-linear 

semiconductor photodetector. The intensity-squared dependence of the voltage signal 

generated by the detector has a cross term depending on the two pump beams intensity 

and their temporal overlap. This cross term is non-zero only when the temporal difference 

between two pumps is smaller than the pump’s duration, and will be peaked when this 
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difference is perfectly zero. This cross-term signal is much more easily detected than 

interference fringes, since it does not depend on the phases of two pumps. We place a 

manually adjustable delay stage in one arm of the interferometer to fine-tune the distance 

difference.   

 

 

 

 

After we balanced the two arms of the interferometer by using an optical delay line, 

we observed the interference fringes on the linescan detector. Mathematically, the fringe 

can be expressed as: 

 

Figure 5.5. Experiment setup for observation of interference 

fringes from two Raman optical frequency combs. The dash-

dotted bracket indicates the two fiber interference setup. 
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 2 2(1) (2) (1) (2)( ) ( , ) ( , ) 2 ( , ) ( , ) cos[( ]I x dt E x t E x t E x t E x t kx     ,             (5-1) 

 

where the superscript denotes the fiber and k  is the wave vector difference of the two 

fields projected on the x direction in which the array detector extends. This difference 

determines the fringe spatial frequency and can be controlled by adjusting the angle 

between two beams when they are combined on the array detector. Usually we set this 

spatial frequency approximately equivalent to the size of 20 pixels of array detector. 

 

  

 

Figure 5.6. Two consecutive single-shot interference fringe (blue and red 

curve) of first order Stokes recorded on IR line scan camera 
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In the experiment, we took extra care to keep the intensity of the two pumps that are 

coupled into two HCPCF approximately equal, since the two fibers are not exactly same. 

For example, their lengths, degrees of bending (which affects the loss of the fibers), and 

their cleaving conditions are all slightly different. We balance these effects so that the 

two generated first-order Stokes fields should approximately have same properties.   

In figure 5.6 we show the two “consecutive” single-shot interference fringes of first-

order Stokes that we observed on the IR linescan camera. Here “consecutive” means two 

successive camera shots (at about 100 Hz), instead of the laser shots (at 5 kHz). Since the 

intensity of each Stokes field, like we show in previous section, is greatly fluctuating 

from one shot to another, the visibility of the fringes is also fluctuating. The figure shows 

a typical good fringe with an estimated visibility of 0.7. This high visibility reveals that 

the first-order Stokes field is highly self-coherent, or in other words, the Stokes field is 

temporal transform limited pulses, which is consistent with our conclusion in the 

previous section. Another feature that we observed is that the fringes are randomly 

moving from one shot to another. This movement is not due to the instability of the 

interferometer, but is a direct result of the quantum-generated random phase of the first-

order Stokes field. From Equation 4-1, if we re-write the electric field of generated 

Stokes as: 

 

                                   ( ) ( )( , ) .
j j

n n ni i t ik zj j
nE x t E e e c c    ,                                          (5-2) 
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where j (= A or B) indicates the fiber number, and n is -1 for the Stokes line, then the 

spatial oscillation of the interference fringe is directly related to the difference of 

temporal phases of two Stokes fields by: 

 

                                               1cos( )oscI kx    .                                              (5-3) 

 

The movement of the interference fringes from one shot to another can come from 

two factors, that is, the wave vector difference k  and the phase difference 1 . The 

parameter k  is directly related to the stability of the two-fiber interferometer, and we 

verify that this k  is not changing from one shot to another because the interference 

fringes from the two Raman pumps are very stable. In this sense, we determine that the 

movement of the interference fringes indicates the temporal phase of the generated 

Stokes field is random from shot to shot. If we set a reference (or zero) phase point in our 

obtained interference fringe, we can get the phase value 1  for each shot. The detail of 

how to retrieve this phase will be discussed in the next section. 

We also observed interference fringes with high visibility for anti-Stokes vibrational 

lines, including the first, second and third order. These anti-Stokes fields are in visible 

wavelength region, and we use a visible CCD camera (Thorlab LC-1USB) to observe the 

fringes.   
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Mutual coherence between first-order sidebands 

 

In our research long-range goals, we are aiming to synthesize atto-second pulse trains 

by using the generated Raman optical frequency comb. In Chapters II and III, we used 

theoretical calculations to predict that ideally the phases of all comb lines are 

spontaneously correlated in a deterministic way within one single pump shot. In order to 

emphasize this, we repeat the predicted result as expressed in the following equation: 

 

                                              0n randn    ,                                                          (5-4) 

 

where 0  is the pump’s phase, rand  is the random phase arising from the spontaneous 

initiation, and n is the order of Raman lines. For first-order sidebands, a more rigorous 

relation derived from quantum theory, which we call anti-correlation, is: 

                 

                                            1 1  constant    .                                                    (5-5) 

 

We would like to test the validity of this phase anti-correlation prediction in our 

experiment.  The experiment setup is same as in previous section. The one output from 

the second beam-splitter (BS-B in Figure 5.5) is filtered by an optical band-pass filter 

centered at 1200 nm, and then detected by an IR line-scan camera. The other output of 

that beam-splitter is filtered by the same kind of filter, centered at 600 nm, and detected 

by a visible line-scan camera. We simultaneously recorded these two fringes on the 

computer.   
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In Figure 5.7 we show the enlarged details of the typical two “consecutive” fringes 

detected by an IR camera and a visible camera. In this figure, the blue curves in both 

graphs are one shot, and the red curves are the next camera shot. It’s easy to see that the 

red curve for the Stokes field moved to the blue curve’s right. At the same time, the red 

curve for the anti-Stokes field moved to the blue curve’s left but by the nearly same 

amount.   

In order to show the relation in Equation 5-5, we recorded hundreds of simultaneous 

interference fringes on two cameras. For each fringe, we performed a sinusoidal fit to 

extract the amplitude and phase of the fringe in a carefully selected pixel window. An 

example is shown in Figure 5.8. This window usually contains two spatial oscillations 

around the peak area of the fringes, and the left-most pixel in the window defines the 

zero-point phase. The value of the extracted phase of each fringe from the fit is relative to 

this common zero-point. In the example, the phase of the Stokes fringe is -1.52, if the 

zero phase point is set at pixel #300.   
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Figure 5.7. Two consecutive Stokes (above) and anti-Stokes (below) 

interference fringes recorded on the IR and visible linescan camera, respectively.  

These two cameras are configured to simultaneously measure single laser shot 

interference fringes.  The Stokes fringes here are the enlarged part of Figure 5.6 
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It is then easy to quantify the fringe movement by the phase difference between two 

successive camera-recorded fringes. Remember the camera is operating at a much lower 

frame rate than the laser pulse repetition rate, and in this sense, the consecutive fringes 

are not the same as consecutive laser shots. Typically, the time delay between two 

consecutive fringes is about 30 ms. Mathematically, the phase extracted from one 

combined fringe containing both first-order Stokes and anti-Stokes that are 

simultaneously taken by two cameras can be written as: 

 

Figure 5.8. Example of extracting phase from Stokes interference 

fringe (blue dotted) by performing sinusoidal fit (red solid)  
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                                        (1) ( ) ( ) (1) (1)
1 1 1 0 1

A B            

                                        (1) ( ) ( ) (1) (1)
1 1 1 0 1

A B                                                    (5-6) 

 

where the superscript A and B on the right side of the equation counts the fiber number, 

and the number superscript of the left hand side is the fringe number. The symbol   

denotes the phase difference between the two fibers. For two consecutive camera-

recorded fringes, the phase differences, or the movement of the Stokes and anti-Stokes 

fringes, are: 

 

                                      
(2) (1)

1 1 1       , 
(2) (1)

1 1 1       .                                 (5-7) 

 

According to our theoretical predictions, the phases of first-order Stokes and anti-

Stokes are anti-correlated in one pump pulse, that is, ( ) ( )
1 1 constantn n    . In this 

sense, the summation of the two-phase differences between consecutive camera-recorded 

fringes from two fibers should be zero: 

 

     
(2) (1) (2) (1) (2) (2) (1) (1)

1 1 1 1 1 1 1 1 1 1( ) ( ) 0                                           (5-8) 

 

In the experiment, the probability distribution of 1 1      is obtained by analyzing 

over 300 experimentally recorded data (simultaneously recorded Stokes and anti-Stokes 

fringes), and is plotted in Figure 5.9. Its narrow peak around zero clearly shows the 

predicted phase anti-correlation between first-order Stokes and anti-Stokes. Using this 
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probability distribution, we calculate the quantity 1 1( )ie     , which quantifies the 

degree of phase anti-correlation: 

  

                                              
1 1( ) 0.8ie     

                                                       
(5-9) 

 

 

 

 

Our theoretical prediction for this quantity based on quantum Raman theory (see 

Chapter III, Section 1) is nearly one. This discrepancy between experiment results and 

theoretical prediction indicates the Raman comb process is more complicated than the 

first-order rigorous theory accounts for. In this sense, more sidebands need to be 

considered in the future development of the theory.   

Figure 5.9. Histogram plot showing the probability distribution of 

the anti-correlation phase ( 1 1     ).   
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As we mentioned previously, this phase anti-correlation between Stokes and anti-

Stokes fields is spontaneously generated. For the individual comb line, its phase is totally 

random. In Figure 5.10 I plot the histograms of the Stokes and anti-Stokes phases from 

the experimental data that is used to plot Figure 5.9. It’s clear that both phases are 

random from one shot to another. 

 

 

       

 

    

                Figure 5.10. Random phases of Stokes (a) and anti-Stokes fields (b) 

(b) 

(a) 
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Synchronize two cameras 

 

In the previous section, we showed how we verified the phase anti-correlation 

between first-order Stokes and anti-Stokes fields. The essential idea is to observe the 

interference fringes of these two fields that are generated from two independent 

hydrogen-filled HCPCFs simultaneously on two cameras. Here, this simultaneous 

measurement ensures that the two cameras capture the Raman fields generated by the 

same single-pump pulse. Otherwise, the measurement of the probability distribution of 

1 1      would not show any narrow peak, unless there is any phase correlation 

between Stokes or anti-Stokes fields that are generated by two pump pulses that are at 

least a few milliseconds apart. However, the molecular coherence usually fast dissipates 

in nanosecond scale, and therefore, the second pump pulse will not see any footprint that 

the first pump left in the molecules, and the fields it generated should have random 

phases compared to the phases of fields generated by the first pump.   

In this section, I will show that in the experiment we ensured the two cameras were 

operating simultaneously (or synchronized), and the experiment result of measuring the 

probability distribution of 1 1      if the two pumps are not synchronized.   

In principle, although the two cameras we use are manufactured by different 

companies, both cameras are operating similarly. Their operation principle can be 

summarized as following: First, they will receive an ‘open connection’ command from 
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the computer. Under this command, the camera will first clear the memory of old data in 

its physical memory part, and then wait for a ‘start measurement’ command. Once it 

receives one, the camera will then wait for a trigger signal, which usually is a TTL from 

low to high pulse. After it’s triggered, the camera will start ‘integration’ for a period of 

time set in its operating mode parameters, which means all the photons registered during 

this specified time period will be converted into electron currents.   

However, since the IR and visible cameras are made from different companies, they 

are slightly different in their response times. This response time is defined as the time 

delay between receiving the computer command for ‘start’ and actually starting to 

integrate. If the response times of both cameras are shorter than the pulse repetition rate, 

which is 200 ms, then both cameras will be active for the same pump pulse. 

Unfortunately, our cameras are not fast enough in this time scale. Also, the response time 

difference is longer than 200 ms, which means the two cameras will naturally operate 

asynchronously.   

To synchronize two cameras, the trick is to use an external trigger signal in a slow 

repetition rate. Normally, this external trigger is generated from the photo-detector that 

detects the light signal picked off from the pump pulse train, which is at 5 KHz. However, 

we can bring it down by the frequency divider, and this will slow the ‘effective’ pulse 

repetition rate that the two cameras are operating at. Once the response time difference 

between two cameras is shorter than this effective rate, the two cameras will be activated 

for same pump pulse; in other words, they’ll be synchronized. The negative side effect is 

the slow detection rate (or frame rate). Usually we operate the two cameras synchronized 
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at about 30 frames per second, lower than the typical 100 frames per second that we used 

in the previous experiment that uses only one individual camera to measure the Stokes 

energy statistics.   

We test the synchronization of two cameras in the following way: A chopper wheel is 

placed in the alignment before the pump light is split by first beam-splitter (BS-A in 

Figure 5.5). This chopper wheel is operating at 1.7 KHz to modulate the pump’s intensity. 

The two cameras are both configured in slow trigger mode and ‘simultaneously’ detect 

the pump signal transmitted from the HCPCF fiber. In Figure 5.11 we show the signal 

recorded from two cameras versus the frame (or detection) number. The vertical axis is 

the peak amplitude of the pump signal recorded on each camera in one ‘simultaneous’ 

detection numbered by the horizontal axis. We can see that these peak amplitudes from 

the two cameras are oscillating together due to the amplitude modulation from the 

chopper wheel, which directly shows the two cameras are correctly synchronized in our 

experiment. 
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I also performed the measurement of the probability distribution of 1 1     with 

the same procedures described in the previous section, but with ‘asynchronous’ cameras. 

The result is plotted in Figure 5.12. We see a random phase distribution, which exactly 

shows no phase correlation between the Stokes field generated by the first pump pulse 

and the anti-Stokes field generated by another pump pulse following the first one by a 

few milliseconds. Or, in other words, no molecular seeding is present in our experiment 

with a 5 kHz pump repetition rate.   

 

Figure 5.11. Simultaneous measurement of pump signals on two 

cameras.  The pump’s amplitude is modulated by a chopper wheel   
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Phase correlation between first-order Stokes 

 and second-order anti-Stokes fields 

 

In this section we would like to verify the phase correlation between first-order 

Stokes and second-order anti-Stokes, as predicted by our theory based on the modulator 

model (see Chapter III, section 2). We use a method similar to the one I described in 

measuring first-order pairs. Here the visible camera is measuring the interference fringes 

Figure 5.12. Histogram plot of the phase 1 1      (radiance) with 

asynchronous pumps. No phase anti-correlation is observed under this condition. 
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of the second-order anti-Stokes field (wavelength at 488 nm) from two fibers. The two 

cameras are operated synchronously.   

According to Equation 5-4, the phase correlation between first-order Stokes and 

second-order anti-Stokes predicts: 

 

                                                1 22 constant     .                                          (4-10)  

 

In order to verify the above correlation, we measure the probability distribution of the 

quantity 1 22     , where symbol   again means the phase difference between two 

consecutive camera shots. The experimental result is shown in Figure 5.13. 

The peak around zero shows that there exists the predicted phase correlation between 

first-order Stokes and second-order anti-Stokes. However, this correlation is not as strong 

as the one observed for first-order sideband pair, since the peak is wider, or, 

quantitatively,  

 

                                                    
1 2(2 ) 0.5ie      ,  

 

which is smaller than the average value of 0.8 that we obtain for first-order sideband pair.   
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The reasons why the correlation is degraded for higher-order modes is not well 

understood. We speculate that dispersion between second-order Stokes and first-order 

Stokes may be an important factor. 

   

 

Two-color experiment 

 

The key idea in our derivation of the phase correlation involving high-order 

sidebands in Chapter III is the so-called phase modulation. This idea assumes that the 

Figure 5.13. Histogram showing the probability 

distribution of quantity 1 22     . 
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molecular coherence created by a pump pulse interacting with hydrogen molecules when 

generating the first-order sidebands is acting like a phase modulator back on the fields. 

Every time the light is scattered off this molecular coherence, the generated new light 

will obtain one phase shift. In this sense, the phase of n-th order sideband is given by 

Equation 5-4, that is, 0n randn    .   

In this section, we would like to test this phase modulation idea by using two laser 

pulses with different colors. One is the pump pulse with 200 ps at 800 nm that we used in 

the previous section, and the other one is the frequency-doubled pump pulse, which is at 

400 nm. In short, I denote the pump pulse at 800 nm as the red pump, and the 400 nm 

pulse as the blue pump. In our experiment, we use the high-power red pump to generate 

its first-order vibrational Raman sidebands as well as the hydrogen molecular coherence. 

At the same time, the blue pump is overlapped with the Red pump spatially and 

temporally, but is kept at a low intensity. In this way, the blue pump is very close in 

frequency to the third-order anti-Stokes of the red pump. If the blue pump is scattered by 

the molecular coherence created by red pump, then its generated Stokes will have the 

same phase as the red pump’s Stokes, according to the Raman phase modulator model. 

The energy diagram of this two-color experiment is shown in Figure 5.14.   
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The blue pump is generated by a second harmonic generation of the red pump on a 

BBO crystal. We choose to use a BBO crystal because it is a uniaxial crystal with a high 

damage threshold. We carefully designed this BBO crystal optimized for 200 ps pulses. 

The cutting of the BBO crystal is set at an angle c  (the angle between the crystal’s 

optical axis and the normal to the crystal surface) so that we can use the type I second 

harmonic generation, where two red photons at 800 nm with polarization at the crystal’s 

ordinary refractive index axis are annihilated and one blue photon at 400 nm with 

polarization at the crystal’s extraordinary refractive index axis is produced. The critical 

angle for the phase mismatching condition at this situation is about 24 degrees. This 

angle can be achieved by putting the crystal on a rotational stage.   

Figure 5.14. Energy diagram of the two-color experiment 
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The experiment setup for generation of the blue pump and then coupling both red 

and blue pump into HCPCF is shown in Figure 5.15. The output from the Regen cavity is 

split into two parts by using a half-wave plate following a polarized beamsplitter. One 

output of the beamsplitter is used to generate the blue pump. The other output will be 

used as the red pump. In order to generate the blue pump, we use a 75 mm lens to tightly 

focus the red light onto the BBO crystal. The generated blue pump has a wide rectangular 

spatial shape in the far field, due to the walk-off effect (energy flow is different than the 

propagation direction) of the BBO crystal. We use a combination of 75 mm convex lens 

and a 150 mm cylindrical lens to collimate the blue pump. The distance between these 

two lenses is about 225 mm. The residue of the red light after the crystal is just diverging 

and dissipating away. We use a dichroic mirror (Thorlabs DHLP 570) to combine the 

blue and red pump. In order to adjust their temporal delays, we place a translational stage 

in the red pump’s alignment. The conversion efficiency of red to blue on the BBO crystal 

is estimated to be about 30%. The maximum average power of the blue pump is 

estimated to be 40 mW, limited by the maximum red power allowed to put on the BBO 

crystal without damaging it.    
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The combined blue and red pumps are then coupled into a two-fiber setup, similar to 

the one shown in Figure 5.11. Both red and blue pumps are coupled into each fiber. The 

difficulty, however, is how to diminish the chromatic aberration in the focusing lenses, 

since the two pumps are widely separate in wavelength. Thanks to the large numerical 

aperture of the HCPCF (NA>0.03), we don’t need to use a tightly focused coupling lens, 

such as a microscopic objective lens. In Gaussian optics theory, if the laser beams are 

focused by a lens with a long focal length, then they will have longer Raleigh ranges at 

their focal spots. If the chromatic aberration focal shift of the blue and red pumps induced 

Figure 5.15. Experimental setup for two-color experiment 
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by the coupling lens is smaller than their Raleigh range, then it’s possible to couple both 

beams into HCPCF with high efficiency. In the experiment, we use a 50 mm achromatic 

doublet lens with broadband visible to near-infrared coating. Note that this lens is 

different than the one (focal length is 35mm) optimized for a single-pump situation. In 

this way we slightly compromise the coupling efficiency of the red pump to significantly 

increase the blue coupling efficiency. We estimate that the coupling efficiency of the red 

and blue pump is about 15% and 20%, respectively.   

In Figure 5.16, we also show the Raman spectrum generated with both pumps 

coupled into one HCPCF. The blue pump is controlled at low intensity, so that it does not 

generate any sidebands by itself. However, with the red pump interacting strongly with 

hydrogen molecules, the blue pump is scattered by the molecules that are coherently 

excited by the red pump and its first-order Stokes is present in the spectrum. It should be 

noted that, in Figure 5.16, the red pump looks dimmer than the blue pump although the 

red pump is 20 times more intense than the blue pump. This is because the blue color is 

more sensitive to the digital camera. In Figure 5.17, we show the picture of “colorful” 

fibers when the two-color experiment is taking place.   

 

 

 Figure 5.16. Raman spectrum generated in two-color experiment 
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We also perform the simultaneous phase measurement of first-order Stokes of the 

blue pump (at 485 nm) and first-order anti-Stokes of the red pump (at 602 nm). From 

their single-shot interference fringes recorded on one visible linescan camera (Thorlabs), 

which automatically ensures the simultaneous measurement, we can obtain the 

probability distribution of the quantity blue red
stokes anti stokes     . The typical individual 

interference fringes (single shots) are shown in Figure 5.18.   

 

Figure 5.17. Picture of fiber when two-color experiment is taking place 



112 
 

 
 

 

 

 

 

If the modulator model is valid, then the phases of these two fields, first-order Stokes 

of the blue pump and first-order anti-Stokes of the red pump, will be also anti-correlated. 

In Figure 5.19, we plot the measured probability distribution over 300 shots. Its narrow 

peak around zero again verifies our speculation of the phase anti-correlation. This 

experiment result also shows that the molecular coherence generated by the red pump has 

a well-defined temporal mode with random shot-to-shot phases. This coherence is related 

to the quantum memory and entanglement that is described in Chapter II. It can be used 

to modulate coherently any light at the frequency equal to the molecular vibrational 

frequency, which in our case is 125 THz.   

 

Figure 5.18. Single shot Interference fringes of blue 

pump’s Stokes and red pump’s anti-Stokes  
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Phase locking the Raman comb 

 

Our experiment results using single pump to generate the optical Raman frequency 

comb clearly verify two predictions of our theoretical work: the random phases from shot 

to shot and the phase correlation among comb lines in one shot. In order to overcome this 

phase randomness, people add an auxiliary laser beam with the pump beam to coherently 

drive the molecular vibration, and thus the generated comb has a locked phase [65]. Often, 

this auxiliary laser beam is spectrally overlapped with the first-order Stokes line. One 

Figure 5.19. Experiment result of the probability 

distribution (histogram) of the quantity blue red
stokes anti stokes     . 
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way to understand the mechanism of this phase locking is to treat the auxiliary beam as a 

coherent seed beam. The photons in the seed beam stimulate the Raman scattering 

process, and any Stokes photons that are scattered from pump photons will be coherent 

with the seed beam. In the same time, the molecular coherence is also created in a well-

defined phase, and according to Equation (5-4), this phase equals: 0 1mol       , 

where   is the phase difference between the pump beam and the auxiliary beam. If this 

phase is fixed from pulse to pulse, then the phases of the Raman comb are locked (see 

Figure 5.20 (a)).   

The disadvantage of using an auxiliary beam is obvious, since one has to use another 

laser beam which is exactly 13  away from the pump laser in frequency and is phase 

locked to the other laser.  

We are currently trying to extend our two-color experiment, where the frequency-

doubled pump beam (the blue beam) is acting as an auxiliary beam to phase lock the 

comb. The frequency of the red pump is tunable for the Ti:Sapphire laser between 350 

THz and 400 THz. If the red pump is tuned to around 375 THz, then it will be resonant 

with the third harmonic of Raman vibrational transition (125 THz) in hydrogen molecules. 

In other words, the blue pump at 750 THz will be resonant with the third-order anti-

Stokes of the red pump. Ideally, the phases of all comb lines generated by red pump only 

are correlated by n red randn    . But the existence of blue pump will force the third-

order anti-Stokes to have the phase 3 blue   . Therefore, when these two pumps 

simultaneously interact with the hydrogen molecule, the phase of the Raman comb will 

be locked to / 3 ( ) / 3rand blue red       . This result is also self-consistent if one treats 
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the blue pump as the main pump to create molecular vibrations and Raman combs, while 

the red pump is resonant with the third order Stokes line. The process is illustrated in 

Figure 5.20 (b). 

 

         
(a) 

  
(b) 

 

 

 

We did the following experiment to determine the exact resonant frequency, since 

375 THz (800 nm in wavelength) is only a rough estimation according to the known 

Figure 5.20. Phase locking the Raman comb.  (a) auxiliary beam overlapped 

with first-order Stokes.  (b) our proposed scheme, where blue pump will 

spectrally overlap with third-order anti-Stokes of red pump.   
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hydrogen Raman transition frequency. We use a strong red beam (no blue beam) to 

generate the Raman comb in one fiber filled with 100 PSI hydrogen in its loading cell, 

and filter out the third-order anti-Stokes line at around 400 nm. In the other fiber, no 

hydrogen is filled and only a blue pump, which is directly generated from the BBO 

crystal, is transmitted through the fiber. We spatially overlap this blue pump and the 

third-order anti-Stokes generated by the red pump in the other fiber, and record the 

interference fringes on one visible line-scan camera while tuning the red pump laser 

around 800 nm.   

Since the amplitude and phase of the third-order anti-Stokes is fluctuating, the 

visibility of the recorded interference fringes at one certain laser wavelength is also 

changing. We analyze each fringe by using the sinusoidal fit that is described in the 

previous section (Figure 5.8), and extract the amplitude of the fit. For one wavelength 

point, we obtain the average of the interference amplitudes of 100 fringes, and plot this 

average amplitude as a function of the wavelength. The result is shown in Figure 5.21.   

We can see that the resonant wavelength is clearly shown at 802.2150 nm. This, in 

turn, can be used to deduce the Raman vibrational frequency shift of hydrogen molecule. 

We found it to be 4155.16 cm-1, very close to the one used as a standard value (4155.23 

cm-1) [37]. After we found this resonant wavelength, we coupled both the blue and red 

pumps into two fibers. Since the proposed phase locking uses a third-order effect, it 

requires the blue pump’s power as high as the red pump’s. The experiment setup (Figure 

5.15) in the “two-color experiment” section is no longer suitable, because the blue 

pump’s power is limited by how much Regen output is split onto BBO crystal. We are 
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currently modifying the setup, basically to allow us to use full Regen output onto the 

BBO crystal to generate the blue pump. In this way, we believe the blue pump will be 

strong enough so that we can observe the phase-locked comb. 

 

 

 

 

   

Figure 5.21. Average amplitude of interference fringes as 

a function of wavelength tuning   
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CHAPTER VI 

CONCLUSIONS 

 

With the help of hollow-core photonic crystal fiber, Raman optical frequency comb 

generation now looks achievable with relatively low-power table-top setups. In our 

experiment, we have demonstrated that, with one stage of amplification, a Ti:Sapphire 

laser is capable to generate more than 20 rotational or 4 vibrational comb lines at the 

energy level of 10 micro-joules per pulse. The total frequency span of the optical Raman 

comb is multiple octaves, where the highest frequency is a factor of 2 or larger than the 

lowest frequency.  

In comparison, conventional Raman comb experiments carried out using meter-long 

high-pressure hydrogen tubes requires Q-switched high-power lasers with fixed output 

wavelength. he frequency tuning capability of Ti:Sapphire laser will then have another 

comparative advantage, that is, it will allow the generated Raman comb to cover all 

frequencies from blue to infrared region. To reach the deep blue region (< 350 nm), one 

can first frequency double the Ti:Sapphire laser output, as described in our two-color 

experiment, and then generate the Raman frequency comb from the frequency-doubled 

light.   
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An individual Raman comb line can be used as a reliable laser source, if the Raman 

comb is phase stabilized by coherent seeding. The portability and easy construction of the 

gas-filled HCPCF will make the Raman comb a very useful light source for those 

applications requiring multiple lasers.  

Our goal of using the Raman optical frequency comb is to synthesize atto-second 

pulses, which are short enough for illuminating an electron’s motion.  Since we only use 

a single pump pulse, all Stokes and anti-Stokes lines are generated from quantum vacuum 

fluctuations. By simply making an analogy between first-order Raman generation and  

the four-wave mixing (FWM) process, we speculate that there are phase correlations in 

the generated first-order Stokes and anti-Stokes fields. However, in Raman scattering, the 

molecular vibration needs to take into consideration, which is neglected in standard 

FWM theory. Our speculation is confirmed by first using quantum theory to model the 

Raman process, and then calculating the value of an anti-correlation coefficient under the 

initial conditions directly reflecting the quantum initiation of the comb lines.  This anti-

correlation coefficient not only predicts that the energy of first-order Stokes and anti-

Stokes are fluctuating in the same manner, but their phases sum to a constant from shot to 

shot. This quantum initiated phase correlation has never been observed in experiment 

before, nor has anyone attempted to illustrate it. Our collaborators in University of Bath 

first observed this phase correlation [66], and later we confirmed it by using 200 pico-

second Raman pump pulses generating H2 vibrational comb lines [67].  

In our experiments, we set up an interferometer that contains two quantum initiated 

Raman optical frequency combs. These two Raman combs are regarded as identical, 
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since they are pumped by pump pulses with identical properties, the same HCPCF type 

and length are used, and the same hydrogen gas pressure is used. The outputs of the 

interferometer are interference fringes of pairs of comb lines having the same order, 

which were filtered from the two Raman combs. The high visibility of these interference 

fringes shows that the Raman combs are generated in near transform limited pulses. By 

recording the single-shot interference fringes of first-order Stokes and anti-Stokes 

simultaneously from the two outputs of the interferometer, and observing their 

movements from one pump shot to another, we illustrate the expected phase correlation 

between first-order sidebands. Using the same method, we can also show that phase 

correlation also exists for higher order sidebands. This phase correlation can be explained 

by a self-consistent Raman modulator model, where hydrogen molecules are excited by a 

pump pulse and act as a phase modulator to all comb lines. 

The Raman modulator model is a simple and useful guideline for predicting the 

mechanism of Raman comb generation. We tested the idea of Raman modulator model 

by setting up a two color experiment. This experiment illustrates that the molecular 

vibration created in the quantum initiated Raman scattering process has a well defined 

(that is, constant throughout the pulse) phase, but that the value of this phase is random. 

This random phase determines the phase of generated Stokes and anti-Stokes fields. If 

any other light field is scattered by the molecular coherence, its scattered field will obtain 

this random phase shift, the same as if the light is being phase modulated by the 

molecular coherence.  



121 
 

 
 

This discovery of phase correlation in Raman comb lines leads us to develop a new 

method for phase locking the comb. According to our understanding from the Raman 

modulator model, phase locking the comb is equivalent to stabilizing the phase of 

molecular coherence. If the Raman pump is tuned to an integer multiple of the natural 

frequency ( 13 ) of molecular vibration (or rotation), then its second harmonic and itself, 

whose frequency difference will also be multiple integer times 13 , will force the 

molecules to vibrate in a well defined phase related to their phase difference. People have 

demonstrated this phase locking effect in hydrogen gas when the pump frequency equals 

13 , the hydrogen vibrational frequency, and we are currently carrying out an experiment 

where the pump frequency will be three times 13 . This frequency happens to fall into 

the Ti:Sapphire region, around 800 nm in wavelength. If our experiment is successful, the 

phasing-locking scheme will be greatly simplified because when different Raman active 

medium is used, it will no longer be limited by the availability of lasers operating at 

Raman transition frequency.  
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APPENDIX A 

DETAILED EXPRESSION FOR CALCULATING ANTI-

CORRELATION COEFFICIENT 

 

Here we give the detailed expressions for the correlation coefficient C that is defined 

in equation (3-5), and for the intensity of the first-order Stokes and anti-Stokes fields, by 

using the solution of equation (3-2) and the initial conditions of equation (3-4). The 

Stokes intensity is: 
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The anti-Stokes intensity is: 
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The product of Equation (A1) and (A2) gives the denominator of correlation coefficient 

C, and its numerator is:  
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Since the operators ( )
1 ( , )E L 
  and ( )

1 ( , )E L 
  commute, the numerator can also be expressed 

by changing their order: 
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We can then ensure the precision of our calculations by comparing the values of equation 

(A3) and (A4). 
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APPENDIX B 

PULSE MEASURING DEVICE 

 

This is an independent project that I have worked in parallel with my main research 

topic in Raman optical frequency comb generation. Our goal of this project is to 

characterize the amplitude and envelope phase of mode-lock laser pulses whose duration 

is approximately 100 pico-seconds. These pulses cannot be measured by conventional 

pulse characterization devices, such as FROG [68], because their spectrum spreading is 

too small to be measured accurately.  

First of all, we need to define what we mean by the envelope phase of an optical pulse. 

This phase is the temporal phase of the slowly-changing envelope of the electric field. 

Mathematically, the optical pulse can be written as: 

0( )( ) ( ) i ti tE t E t e e  . 

where 0  is the optical frequency at about 400 THz, ( )t is the phase that we want to 

measure, and ( )E t  is the amplitude.  
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The scheme we use to characterize the electric field is shown in Figure B.1. The 

target optical pulse is indicated by black arrows. The setup is basically a Michelson 

interferometer, where the target pulse is split into two identical parts. One end mirror 

(corner cube) of the interferometer is put on a translational stage, so that an adjustable 

delay between two arms can be achieved. In the alignment of the other arm, an AOM is 

placed into the optical path of the target pulse. The pulse is first deflected by the AOM, 

and then retro-reflected back by a corner cube, hitting the AOM again. The 2nd deflection 

from AOM will be parallel to the incoming pulse. Therefore, by carefully aligning the 

positions of the two corner cubes, we can spatially overlap the two reflections from each 

Figure B.1. Device setup 
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corner cube on the beamsplitter. The output of the interferometer is then detected by an 

amplified detector (Thorlabs PDA100A).  

Double passing through the AOM is actually spectrally shearing [69] the optical pulse, 

which means the resultant pulse is identical to the original pulse except that it is 

frequency shifted by certain amount ( ). In another hand, the Michelson interferometer 

output, usually called auto-correlation signal, is well known as the Fourier transform of 

the power spectrum of the pulse. We then can show that the signal on amplified detector 

is: 

 

                           
0( )( ) ( ) ( ) . .ii if d E E e e e c c            ,                    (B-1) 

 

where /L c    is the delay between the two arms of the interferometer. It contains the 

information of interest, i.e., the slowly-varying phase term (in frequency domain):  

 

                                              ( ) ( ) ( )         .                                         (B-2) 

 

It is our purpose of this experiment to retrieve this phase difference ( )   from the 

detected signals (equation B-1) on the amplified detector, which can be measured as a 

function of the delay  . A well established concatenation method then can be used to 

retrieve the spectral phase ( )  [69].  

In theory, if we can obtain the quantity shown in the bracket of equation B-1, that is, 

 

                                  
( ) ( )( ) ( ) ( ) ( )i i iI d E E e e I e           ,             (B-3) 
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then we will be able to obtain ( )   after a simple Fourier transform of ( )I  . 

 In doing so we need to demodulate the signal ( )f   from its fast oscillation of 0ie   . 

This prompted us to use an auxiliary beam that is output from a stabilized He-Ne laser, 

shown as the red curve in Figure B-1. This auxiliary beam passes through the same 

interferometer and is detected by another amplified detector, but is not deflected from the 

AOM. Also, in order to spatially overlap the auxiliary beam at the output of the 

interferometer, we place a beam displacer (thick optical parallel window) to introduce a 

lateral walk-off in one arm. Remember, we cannot adjust corner tubes at this time 

because they have already been set to ensure the spatial overlap of the target pulse (black 

curve in Figure B.1).  

This auxiliary beam is acting as a reference, which is always needed to define a 

“phase”. In experiment, we scan the translational stage from negative to positive delay 

with a constant speed v . The signals detected by both amplified detectors are sent into a 

phase comparator, which gives the phase difference between them. In theory, this phase 

difference is: 

 

                                           
0

2 2
( ) ( )

ref

    
 

                                                (B-4) 

 

If we sample the delay with equal interval of time, dt , then we can replace the delay 

with 2v dt  , where v is the scanning speed. The first term in (B-4) will be then linear, 

and its coefficient is given by: 
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4 ( )

ref

v 
 

  . 

 

Therefore, after we obtain the experimental raw data from phase comparator, we first 

do a linear fit, and the slope of the fit can be used to deduce the central wavelength 0  of 

the target pulse. The residue value after subtracting the linear fit then gives the ( )  , the 

phase term of  ( )I  . Amplitude of ( )I   can be directly obtained from the amplitude of 

interference signal from the amplified detector.  

In Figure B.2, we plot the measurement result of Spectra-Physics Tsunami laser, 

whose output (about 200 ps) is shown in Figure 4.6. The AOM is driven by a phase lock 

loop circuit that is designed to lock the frequency at the Tsunami laser’s repetition rate, 

about 80 MHz. By double passing through the AOM, the frequency shift of the shearing 

laser is about 160 MHz. The estimated spectra width of the optical pulse is 2.2 GHz. The 

ration between frequency shift and spectra width is about 7%, within the recommended 

value of typical SPIDER technique [63].  

The Fourier transform of auto-correlation data in Figure B.2(a) gives the power 

spectrum of the optical pulse and the spectral phase. They are shown in Figure B.2(b) and 

Figure B.2(c).  
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We also tried to measure the same optical pulse after it transmitted through an etalon. 

The etalon is 6 mm thick, and coated to 90% reflectivity (both sides). The position of 

etalon was adjusted so that there was minimum optical power transmitted through, 

measured by a power meter. The experiment result is shown in Figure B.3.  

Figure B.2. Measuring Tsunami’s output pulse: (a) Auto-correlation amplitude (black 

curve) and phase (red curve); (b) Retrieved power spectrum; (c) Spectral phase. 

(c) (b) 

(a)
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The double-peak structure in retrieved power spectrum (Figure B.3(b)) highly agrees 

with the etalon’s spectral trimming behavior. It can be explained as the peak of the 

Figure B.3. Measuring Tsunami’s output pulse after passing through an etalon with 

minimum transmitting power: (a) Auto-correlation amplitude (black curve) and 

phase (red curve); (b) Retrieved power spectrum; (c) Spectral phase. 

(c) (b) 

(a)
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original optical pulse (Figure B.2(b)) is highly attenuated by the etalon, but its left tail is 

on resonant with etalon’s transmission peak. The retrieved spectral phase (Figure B.3(c)) 

shows similar flat structure as the one in Figure B.2(c). This is not surprising because 

etalon in this setting would not introduce any phase change.  

We adjusted the position of the etalon so that there was maximum optical power 

transmitted through it. The measurement result is shown in Figure B.4. Note that we 

cannot measure the auto-correlation signal with full span of delays, because it was limited 

by the scanning range of our translational stage.  

The power spectrum (Figure B.4-b) we obtained under high transmission condition 

again agrees with the theoretical predictions. Its width is narrower than the one shown in 

Figure B.2-b. This is because the slope of the original spectrum is trimmed by the etalon. 

However, we expect to see a small dip in retrieved spectral phase around zero frequency, 

but there is no such structure shown in Figure B.4-c. This discrepancy indicates that 

further improvements in the experimental devices are needed. For example, the scanning 

speed v  of translational stage needs to stay close to constant, and/or the wavelength eff  

of the He-Ne laser needs to be stabilized in a better way.     

I would like to thank Dr. Walmsley for useful discussions about SPIDER technique.  
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Figure B.4. Measuring Tsunami’s output pulse after passing through an etalon with 

maximum transmitting power: (a) Auto-correlation amplitude (black curve) and 

phase (red curve); (b) Retrieved power spectrum; (c) Spectral phase. 

(c) (b) 

(a) 
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