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The field of quantum chaos investigates the quantum mechanical behavior of

classically chaotic systems. This dissertation begins by describing an experiment

conducted on an apparatus constructed to represent a three dimensional analog of a

classically chaotic system. Patterns of reflected light are shown to produce fractals,

and the behavior of the fractal dimension DF is shown to depend on the light's ability

to escape the apparatus.

The classically chaotic system is then used to investigate the conductance properties

of semiconductor heterostructures engineered to produce a conducting plane relatively

free of impurities and defects. Introducing walls that inhibit conduction to partition

off sections considerably smaller than the mean distance between impurities defines

devices called 'billiards'. Cooling to low temperatures enables the electrons traveling
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through the billiard to maintain quantum mechanical phase. Exposure to a changing

electric or magnetic field alters the electron's phase, leading to fluctuations in the

conductance through the billiard. Magnetoconductance fluctuations in billiards have

previously been shown to be fractal. This behavior has been charted using an

empirical parameter, Q, that is a measure ofthe resolution of the energy levels within

the billiard. The relationship with Q is shown to extend beyond the ballistic regime

into the 'quasi-ballistic' and 'diffusive' regimes, characterized by having defects within

the conduction plane.

A model analogous to the classically chaotic system is proposed as the origin of

the fractal conductance fluctuations. This model is shown to be consistent with

experiment and to account for changes of fine scale features in MCF known to

occur when a billiard is brought to room temperature between low temperature

measurements.

An experiment is conducted in which fractal conductance fluctuations (FCF) are

produced by exposing a billiard to a changing electric field. Comparison of D F values

of FCF produced by electric fields is made to FCF produced by magnetic fields. FCF

with high D F values are shown to de-correlate at smaller increments of field than the

FCF with lower D F values. This indicates that FCF may be used as a novel sensor

of external fields, so the response of FCF to high bias voltages is investigated.
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CHAPTER I

INTRODUCTION

Introduction

In 1970 Ya.G. Sinai introduced an amazing dynamical system that has come to

be known as the Sinai billiard. [1] The term billiard is used to describe the motion of

a 'particle' traveling in a bounded region. The particle travels in straight line paths

until reflecting off a boundary. Energy is conserved, and reflections are specular, in

that the angle of reflection is equal to the angle of reflection. The Sinai billiard is

composed of a square with central circle removed, thus the boundaries are the walls

making up the square, and the circular scatterer. Sinai was able to show that this

billiard was chaotic, meaning that a particles trajectory was critically sensitive to

initial conditions.

The Sinai Cube experiment discussed later in this chapter was funded by the

M.J. Murdock Foundation, Partners in Science Program, which provides high school

science teachers the opportunity to work in a research laboratory and bring some

of the knowledge gained back to the classroom. It was a great pleasure to work on

this project with Ben Van Dusen who performed all of the ray tracing procedures

discussed in that section.
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Quantum chaos is the field that investigates the quantum mechanical dynamics of

classically chaotic systems, such as the Sinai billiard. In that spirit this dissertation

will begin with the description of an experiment in which a three dimensional analog

of the Sinai billiard was constructed. In that experiment the particles are replaced

with light. Light exhibits the properties of the theoretical particle of Sinai's billiard

in that it travels in a straight path an undergoes specular reflection off of smooth,

shiny surfaces. The resulting patterns are then analyzed and shown to reproduce

themselves on increasingly small length scales, i.e. the patterns are fractal. Fractal

patterns often emerge from systems that exhibit chaos, in fact, in 1988 Bleher et

al. showed that providing two holes in which the particle could exit, or 'opening'

the Sinai billiard resulted in phase space diagrams (velocity angle vs. position) that

were fractal[2]. Prior to describing the experiment on the "Sinai Cube" this chapter

provides some background information on fractal geometry, leading to another, more

general link between chaos and perhaps the most famous fractal, the Mandelbrot set.

Chapter II describes the fabrication of mesoscopic billiards defined on semiconducting

heterostructures, as well as the experrimental apparatus used to make measurments.

The term mesoscopic refers to size scales that are large compared to atomic size

scales, such as the Bohr radius, yet quite small compared to macroscopic length

scales, such as a baseball. The de Broglie wavelength of the elctrons traversing these

billiards is much smaller that the billiard dimensions, so the electron transport will

be treated semi classically. That chapter concludes with some of the background
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physics necessary for analysis, as well as the technique used to determine the fractal

dimension, DF , that is used to characterize the fractal conductance fluctuations, FCF,

that result when the billiard is exposed to a varying external magnetic field.

In Chapter III the quantum chaos of the Sinai billiard is investigated, followed

by the introduction of an empirical parameter Q, which is a measure of the energy

level resolution within a billiard. The relationship of the fractal scaling to Q is then

shown to extend beyond the ballistic regime (i.e. billiards) into the quasi-ballistic

and diffusive regimes, in which at least one of the device dimensions is smaller than

the typical distance between material impurities. Extension to the quasi-ballistic

regime utilized data provided by Dr. J.P. Bird. Data for the diffusive regimes was

measured and provided by Dr. K. Ishibashi, Dr. C.V Brown, and Dr. R.P. Taylor.

That chapter also introduces a model in which material impurities, including remote

ionized donors act analogously to the Sinai billiard and are the origins of the observed

FCF.

Chapter IV describes an experiment designed to test the model described in

Ch. III. In that experiment the billiard is brought to an intermediate temperature Ti

between electronic measurements of magnetoconductance fluctuations (MCF).l

Chapter V describes an experiment in which FCF are produced by exposure to

a varying an external electric field. The sensitivity of the FCF to both electric and

magnetic fields is compared, and it is shown that the FCF with high values of DF

IThe term MCF is used to indicate that the FCF have been produced by an external magnetic
field. In that sense the MCF are a subset of FCF.
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de-correlate at smaller increments of applied field, and thus are more sensitive to

external fields than the FCF with lower values of D. That chapter then charts the

effects of applying relatively large bias voltages to a billiard.

Chapter VI provides some concluding remarks, including discussion about a new

heterostructure our collaborators in Sydney, Australia have recently developed. Magnetic

Field sweeps taken by Dr. Adam Micolich's group were provide to us for fractal

analysis. This chapter discusses the predictions of the model described in Ch.III on

these data sets and presents the results of that analysis.

Fractal Dimension

Nature abounds with fractal scaling patterns. Few would contest Mandelbrots

classic argument "Clouds are not spheres) mountains are not cones) coastlines are not

circles) and bark is not smooth) nor does lightning travel in a straight line" [3]. Today,

researchers find fractal geometry a useful description of a wide variety of phenomena,

as anyone can verify on the internet within a few minutes using their favorite search

engine. One is likely to find a variety of subjects using fractal geometry to describe

anything from pulmonary vessels to river systems to a wide range of artwork.

Often when one thinks of fractals, however, the images that come to mind are those

of exact fractals, in which the pattern is exactly repeated at increasingly fine length

scales. Such patterns generated by repetitive application of mathematical formulae.

With the use of computer simulations, truly beautiful images can be generated. Two
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canonical examples of these iteratively generated exact fractals are the Koch snowflake

and the Sierpinski gasket. In the case of the Koch snowflake, a line segment is divided

into thirds. The middle third of the line is replaced by two equal length segments

angled to form the top of an equilateral triangle. In the next iteration of this process

each of the 4 new segments is replaced by a 1/3 replica of the parent segment according

to the same procedure [4]. At each iteration step the overall length of the curve is

increased by a factor of 4/3. This curve can be characterized by the fractal dimension,

DF , as follows.

If one takes a line segment and chops it into N identical length segments L, the

line is reduced by the scaling factor L = l/N. If one similarly segments a square,

the scaling factor can be described by L = 1/yIN, for a cube the analogous process

yields L = 1/([N. This this expression can be generalized to a D dimensional object

by the expression L = 1/ fIN. Thus, each of the N copies of the have a length Land

there are N = 1/L D = L -D segments of the original object. This gives the fractal

dimension of self similar objects as DF = log(N)/ log(l/L). For the Koch snowflake,

there are 4 copies scaled down by a factor of 1/3 giving D F = log(4)/ log(3) ~ 1.26.

A similar process can be used to generate the Siepinski gasket. Starting with an

equilateral triangle, cut out an inverted triangle that has been scaled down by a

factor of L = 1/2 leaving N = 3 smaller copies of the original triangle. Thus for the

Sierpinski gasket DF = log (3)/ log (2) ~ 1.58. Objects well described by Euclidian

geometry will have integer values of D. For instance a straight line will have D =1,
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while a filled square will hold D=2. An object is said to be fractal if the quantity DF

holds a non integer value. Fractals generated by such recursive processes are members

of a class of fractals known as Iterated Function Systems (IFS).

Figure 1.1. Three iterations of the Koch Snowflake and Sierpinski gasket. The
starting point and first two iterations of the generation processes of the (top) Koch
snowflake and (bottom) Sierpinski gasket.

Figure 1.1 shows the original 'seed' image (a line segment, and an equilateral

triangle) followed by the first two iterations of each of the Koch snowflake and the

Sierpinski gasket respectively. An intuitive feel for what D F actually characterizes can

be rather difficult to grasp. One possible interpretation that works well for coastlines

or curves such as the Koch snowflake is that D F can be viewed as a measure of the

crinkliness of the curve, or its lack of smoothness. This interpretation serves well for

as a description of DF provided that it is the edges of a pattern that result in the

fractal scaling. But such a description is lacking an intuitive feel for filled patterns

such as the Sierpinski gasket.

While analytic determination of D F is fitting, or at least possible, for fractals

generated via IFS, difficulty arises when one encounters a fractal produced by natural
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processes. To estimate DF for these processes, typically one employs the box counting

procedure which is shown schematically in Fig. 1.2. In this procedure one superimposes

a grid of squares (boxes) of length L on a two dimensional image of the object in

question and counts the number of boxes that contain a piece of the object, N,

represented as colored boxes in Fig. 1.2. The box size is then decreased and the

counting of filled boxes is repeated until a suitably large range of L has been spanned.

One can then produce a scaling plot in which log N is plotted as a function of log (11L)

and D is determined by the slope of the curve. In this scenario an object is said to

be fractal if 1 < D F < 2 , provided that the expression N ex: L-DF holds for at least

1 order of magnitude. [5]

Fig. 1.3 shows an example of the scaling plots of the Sierpinski gasket and the

Koch curve. When plotted in this manner, it is convenient to interpret the log(11L)

axis as describing the box size as ranging from coarse scaling, in which just a few

boxes cover the image to fine scaling where the number of boxes necessary to cover

the image becomes quite large.

In this way, one can picture the value of DF as a measure ofthe relative amount of

fine scale structure of the pattern. For instance, in Fig. 1.3 the Koch curve (bottom

inset) does not seem to have as much complexity at fine scales as the Sierpinski gasket

(top inset). The fact that the Sierpinski gasket fills more fine scale boxes is readily

evident in that N is larger for the Sierpinski gasket than the Koch curve at the fine

scale end of the plot while both curves are anchored at nearly the same coarse scale
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Figure 1.2. A schematic representation of the box-counting procedure used to
determine DF.

value. In some sense this implies that one can view DF to be a measure of the ability

of the object to occupy space at fine scales.
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Figure 1.3. Scaling plots of the Koch snowflake and Sierpinski gasket. Scaling plots
have been generated by the analytic value of the fractal dimension of the Sierpinsk
gasket (top scaling plot with DF = 1.58 and inset) and the Koch snowflake (bottom
scaling plot with DF = 1.26 and inset).

The Mandelbrot Set

The Iterated Function Systems in the previous section offer an appealing and

straightforward description of the fractal dimension DF . These also exhibit exact or

strict self similarity, in that identical images are reproduced at various length scales.

Such fractals are often referred to as classical or linear fractals. However, such a

process is certainly not the only means of producing fractals. Probably the most

famous fractal is that which was first observed by Benoit Mandelbrot in 1980 and has

since become known as the Mandelbrot set. Illustrated in Fig. 1.4, this striking image

is the result of a rather simple algorithm. This image was created using a modified

version of Dr. Robert Zimmerman's code provided in Ref. [6].

Consider the expression Zi+l = z; + c with Zo = O. The complex number c
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is defined to be a member of the Mandelbrot set if and only if the sequence of values

Zo, Zl, Z2,' .. remains bounded. The sequence of values Zo, Zl, Z2, ..• is called the orbit

of Z00 Here is an example of a non-linear mapping that upon iteration produces

a fractal. The Mandelbrot set exhibits both exact and statistical self similarity.

Statistical self similarity occurs when the pattern follows the same statistical relationship

at different length scales.

Near the so called Misiurewicz points, the pattern holds exact self similarity

[4, 7]. This is illustrated in Fig. 1.5 where the image has been magnified around

the two left hand buds. Misiurewicz points are defined as those values of c in which

the initial point Zo = 0 is preperiodic. In other words, the values Zo, Zl, Z2, ...

become bounded because they become traped in a periodic orbit that does not

include the point Zo = O. A periodic orbit occurs when output of the iteration

process repeats itself. For instance, suppose an iteration process produced the values

Zo, Zl, Z2, Zo, Zl, Z2, Zo, Zl, Z2, •.. this process would be said to have a periodic orbit of

period 3. As a simple example consider the value c = -2 and the first few iterations

of the algorithm Zi+l = z; + c:

Zo - 0

Zl z5 + c = 02 + (-2) = -2

Z2 (Zl? + c = (_2)2 - 2 = 2

Z3 (Z2? + c = (2)2 - 2 = 2
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This value of c is quickly placed on a rather trivial orbit of the value 2.

0.5

-1.0 C1::====::::L::====:::::::;::::::::::::::::::::::::::::::::::::::::::::::::::====i::::=====:i:l
-15 -Iii< -0.5 05

Figure 1.4. The Mandelbrot Set is the collection of points c lying in the complex
plane which remain finite in the mapping of Zn+l = z~ + c with the starting point
Zo = 0

Figure 1.5. Magnification of the Mandelbrot set. Zooming in on the front two buds
of the Mandelbrot set

Statistical self similarity of the Mandelbrot set can be seen if one zooms in near the

region of c = -0.75, as illustrated in Fig. 1.6. There are many smaller copies of the

buds. However, each copy is slightly different. Compare, for instance, the dendrites
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extending off of the small buds on the left hand side of the valley to those on the

right. Although these buds are similar, they are not exact copies, as the branching

takes on different forms on each side of the central valley. The location of this valley

is the transition point from the period 1 bud (main cardioid shaped bud at the very

right) to the period 2 bud (boxed in the leftmost panel of Fig. 1.5). The associated

period number is a measure of the number of points in a particular c's orbit around

O. For instance, consider the orbit of the choice c = -1.

Zo 0

Zl 02 - 1 = -1

Z2 (-1)2-1=0

Z3 -1

The orbit oscillates between the points 0 and 1, it is said to be a period two orbit.

Since this orbits around Zo it is not preperiodic and thus is not a Misiurewicz point.

This particular choice of c lies in the large bud just to the left of the large heart

shaped area. In fact, all of the parameters c that lie in that region have orbits of

period 2, similarly those choices of c that make up the heart shaped region are have

orbits of period 1. Note that this region is essentially the same region that has been

magnified in the central panel of Fig 1.5. This illustrates that, strictly speaking, the

areas near the Misiurewicz are said to be asymptotically self similar. This simply

means that the strict self similarity does not become readily apparent upon the first
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magnification or rotation, but after a few iterations of the magnification and rotation

in the neighborhood of these points, the set converges to one that is strictly self

similar.

Figure 1.6. Magnification of the Mandelbrot set near c = 0.75 showing statistical
self similarity

Chaos

Introducing the constraint that the coordinate z and parameter c be real valued

provides a considerable amount of insight into the link between chaos and fractal

geometry. A deterministic system is said to exhibit chaos if the long term behavior

is both non periodic and critically dependent upon initial conditions [8]. Perhaps
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x ~ X
2 + c for real values of x and c is the simplest example of non linear iteration.

Figure 1. 7 shows the first 50 iterations of this expression for values of c chosen as c

=-1.1, -1.2, -1.3, and -1.7. For the value of c = -1.1, the orbit has period 2 from the

onset. The choice of c = -1.2 also settles on an orbit of period 2 after a few transients,

however, for c = -1.3, the orbit is of period 4. Finally, the choice of c =-1. 7 reveals

no pattern to the orbit, it is chaotic.

(=-1.1 (= - 1.2

... "....... .. .., .... ,. ..
.)

, .
( = -1.7

. ..,.Ill

, .
(= -1.3

..
•Iii •• F • •• ••• • ". .. . • • "II •

-1

Figure 1.7. The first 50 iterations of the quadratic iterator Xn+l = X n + c plotted
against iteration number for chosen values of c.

This raises an interesting question. What happens in the final state after all the

transients, or temporary deviations, have died down? To visualize this, the first 100

values of the iteration are computed, and the transients are ignored by plotting only

the last 25 points. Such a plot is called a final state diagram, and Fig. 1.8 is the final

state diagram of the quadratic iterator (x ~ x 2 + c) for values of c ranging from -2

to 0.25. This plot is also often referred to as a bifurcation diagram, as it continually
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divided into two branches. Notice the structure at c ~ -0.75. The plot splits into

two branches, indicating the orbit has transitioned from period 1 to period 2. Each

of these two branches split into two branches near c ~ -1.25, which themselves split

into two more branches near c ~ -1.35. By the time c reaches the value of c = -1.5

the orbit has become chaotic and there does not appear to be any fixed number of

clear branches.

-1.75 -1.5 -L -0.5

Figure 1.8.. Final state diagram of the quadratic iterator.

However, closer inspection the region c ~ -1.8 reveals that in the midst of this

chaos, there is underlying order. In this plot, the first 1000 iterations were performed,

and the last 250 have been plotted over the very small range of c. In fact, this real

space analog of the Mandelbrot set provides a roadmap of the path from order to

chaos. This fact would be interesting enough if it were limited to the relation of
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the Mandelbrot set to the quadratic iterator. However, this path from order to chaos

through sharp bifurcations can be found in many natural systems, with applications to

systems ranging from biological to ecologic, to social sciences, to economic origins. [9-

11]

"
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-0..5 ()

Figure 1.9. Magnification of the quadratic 'iterator final state diagram. The box
indicates the region magnified in the upper right hand corner, revealing that, in the
midst of chaos, there is underlying order.

This, of course, is not the whole story. Figure 1.10 shows the same bifurcation

diagram directly above the Madelbrot set, aligned to match real values of the parameter
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c. The location where the bifurcation diagram first splits into two branches is precisely

where the large period 2 bud Mandelbrot set splits off from the main cardioid. In

fact, all ofthe distinct features along the main axis (real c) of the Mandelbrot set can

be associated with a bifurcation in the final state diagram. Thus the universal route

from order to chaos is embedded in the Mandelbrot set.

1.0

0.5

0.0 . '-~~.---lII

0.0-0.5

-1.0 l..I.... -'- .....L...................--'-.....L...........__......... --u

-2.0 -15 -(0

Figure 1.10.. Comparison of the quadratic iterator and the Mandelbrot set.
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The Sinai Billiard

In the previous section the mixture of simple and chaotic orbits was shown to

produce a fractal. A natural question that arises is how can this be accomplished

physically? Figure 1.11 illustrates the transition from regular to mixed (chaotic and

regular) dynamics that emerge as a result of altering device geometry. In Fig. 1.11

(a) two trajectories that have similar initial conditions traverse the empty billiard

and remain close to one another. In Fig. 1.11 (b) the same two initial conditions are

seen to rapidly diverge as they encounter the circular scatterer. It is the presence of

the circular scatterer that introduces chaotic trajectories into the Sinai billiard and

for that reason the terms Sinai scatterer or Sinai diffuser will be used interchangeably

throughout this dissertation to refer to the circular scatterer. The circular scatterer

introduces non-linearity, and the walls produce iteration, thus representing a physical

analogue of the Mandelbrot set.

Aside from a few trivial cases, the closed billiard illustrated in Fig. 1.11 (b) will

develop purely chaotic trajectories. However, introducing openings in the billiard

walls allows for the possibility of a set of trajectories that are free to escape the

billiard without ever striking the Sinai scatterer. This results in a mixture of stable

and chaotic dynamics in the phase space of the billiard [2]. It is the mixed phase

space that is predicted to produce fractal trajectories [12], specifically those fractal

trajectories will lie at the boundary between the stable and chaotic orbits in the phase

space of the billiard. [13]
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a

Figure 1.11. Schematic of the Sinai billiard. a) A square billiard exhibits regular
dynamic trajectories in which similar initial conditions do not diverge. B) Introducing
a circular scatterer (Sinai diffuser) creates trajectories that are exponentially sensitive
to their initial conditions, thus introducing chaos to the system.

Figure 1.12 schematically show an 'open' Sinai billiard (a) along with its analog,

an 'infinite horizon' Sinai billiard. Infinite horizon billiards are billiards in which there

are channels that permit a traversing particle to travel through and never reflect off

of the billiard walls. The infinite horizon billiard shown in panel (b) is sometimes

referred to as a Lorentz gas. In 1905, Lorentz used a similar model, to describe the

diffusive motion of electrons traveling through metals. In his model the scattering

spheres were randomly distributed under the constraint that they could not touch one

another [14]. Figure 1.12 schematically illustrates that two trajectories with similar

initial conditions can rapidly diverge after reflecting off of the Sinai scatterer(s). The

presence of the circular scatterers introduces non-linearity in the trajectories and

reflection off of the walls (in a) or other scatterers (in b) iterates this process. In this
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manner, both billiards (a) and (b) can be viewed as physical manifestations akin to

the Mandelbrot set.

a

Figure 1.12. Schematic of the Open and infinite horizon Sinai billiard. a) Opening
the billiard to allow escape leads to a mixed phase space. b)The equivalent infinite
horizon Sinai billiard. In both cases trajectories that started with similar initial
conditions rapidly diverge.

While the open Sinai billiard meets the requirements of having a mixed phase

space, the details of some basic properties of this billiard, such as how does scatterer

size, or the opening size, effect the dynamics are not well charted. 'VVith this in

mind, and our labs dedication to physics education, we set out to develop a simple

demonstration suitable for use in the classroom. There are many examples of demonstration

apparatuses showing chaotic scattering that produces fractal patterns[15-17]. Replicating

the apparatus of Ref. [15], a light scattering system consisting of four reflective spheres

stacked in a pyramid formation was built.

In this experiment, the top three openings created by the stacked configuration

are illuminated with colored light. The fourth (bottom) opening is used to capture
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an image of the pattern created by the iterated reflections. A photograph of this

apparatus is shown in on the left hand side of Fig. 1.13. In this apparatus light is

used to play the role of a particle that travels in straight lines and reflects specularly.

A 'Sinai cube' was built to investigate the influence of walls on this sort of system.

Using front surface mirrors to avoid secondary reflection, the cube is constructed

with openings at the upper corners, this apparatus is shown in the right hand side

photograph of Fig. 1.13 without the top mirror in place. A reflective sphere is

suspended from the top mirror creating the Sinai cube. Three of the top corners

are illuminated with colored light, in the fourth corner, a camera is used to capture

the image created by the light's repeated reflection off of the central Sinai diffuser.

Three different Sinai diffuser sizes were used, the diameter of the largest sphere is

approximately the same as the side length of the cube. This is the sphere that can

be seen in the photograph on the right hand side of Fig. 1.13. The smallest sphere's

diameter is roughly 1/3 of the side length and can be seen in Fig. 1.14 (d).

Figure 1.13. Photograph of the stacked sphere configuration (left) and the Sinai
cube apparatus (right).
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This image of the Sinai cube is presented again in Fig. 1.14 (a) to emphasize the

effect of placing the top mirrored surface onto the cube. In Fig. 1.14 (b) the top of

the cube has been set in place and a photograph was taken in an otherwise darkened

room. This shows the unaltered image from the fourth (unlit) opening.

Figure 1.14 (c) illustrates the diverging trajectories that result from reflection off

of the Sinai scatterer. These images are a top down view of the cube (the top has been

removed). The Sinai scatterer has been supported from below. Laser light has been

sent in parallel to the bottom plane of the cube through a small hole. The incoming

beam is seen to reflect off the sphere in (c) resulting in rapidly diverging trajectories

of the two initially close paths. In (d), the sphere has been removed and trajectories

that initially began close together remain close to one another until they finally are

able to escape the cube. It should be noted that in the photographs, shown in (c)

and (d), the color of the laser beam has been altered to illustrate the distinction of

the separate paths.

Ray tracing techniques were performed by Ben Van Dusen, using a 3D modeling

program called Cinema4D to model both the stacked sphere and Sinai cube images.

Figure 1.15 (a) shows the image of the reflections on the Sinai diffuser obtained from

the unlit opening of the Sinai cube in which the diffuser diameter is roughly 1/3 the

wall width. Consider one of the blue colored regions of either Fig. 1.15(a) or (d). If

the viewer were to shine a laser pointer at one of these blue regions from the viewing

opening, the light would enter the opening and reflect off the central scatterer in (a),
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Figure 1.14. The Sinai cube (a) before the top mirror is set in place. (b) The image
obtained from the unlit opening of the Sinai cube. Reflections of laser light sent into
the Sinai billiard with (c) and without (d) the Sinai scatterer in place.

or one or more of the stacked spheres in (d). After a potentially large number of

reflections, the light would finally exit the apparatus through the opening associated

with the blue light. Thus each of the colored regions is an indication of the initial

opening through which the light entered. Of course, the black regions represent the

unlit opening, and are black simply because the photograph was taken in a darkened

room. This is the essence of the ray tracing procedure, each ray of light that enters the

camera aperture is traced back to the opening that ray emerged from. The ray tracing

model of the Sinai cube is shown in Fig. 1.15(b). Experimental (d) and modeled (c)

images of the stacked sphere configuration are shown in the bottom panels.

The boundary of each colored colored region of the image obtained by the stacked
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Figure 1.15. Photograph of the reflections off of the (a)Sinai scatterer and (d)
Stacked Spheres. Ray tracing Model of the (b)Sinai scatterer and (e) Stacked Spheres.
Edge detection analysis of the (d)Sinai scatterer and (f) Stacked Spheres

spheres is proposed to be a 'vVada' boundary. A Wada boundary is a particular kind

of fractal that can arise when there are three or more means of escape. The means

of escape are termed 'basins'. Any point on the boundary of a Wada basin is also

on the boundary of all the other basins [13, 15]. Thus, it is the boundary of these

colored regions that were shown to be fractal [15]. For that reason, an edge detection

procedure is used to trace out these boundaries. Results of the procedure for the ray

tracing diagrams are shown in panels (c) and (f) of Fig. 1.15. Edge detection was

performed on both the experimental and the modeled images of each apparatus in

order to verify the application of the ray tracing procedures.
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A box counting analysis was performed on both sets of edge detected images. The

box count of the stacked spheres was in agreement with the reported value of D F= 1.6.

Consistent results were also obtained between the experimental and modeled images

of the Sinai cube. Scaling plots have been combined in Fig 1.16. The 33% filled Sinai

cube simulation and experiment (upper solid and dashed lines respectively), while

the lower solid line depictis the value (DF=1.6) of the stacked sphere configuration

(lowest solid line).
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Figure 1.16. Scaling plots of the Sinai cube and stacked sphere images. The lower
solid line depicts represents the scaling plot of the stacked sphere configuration.

Having confirmed that the ray tracing procedure delivers results consistent with

experiment, the next step was to examine the effect of the size of the scatterer on

the resulting trajectories inside the Sinai Cube. The ray tracing procedure allows for

better resolution than the experiment and more freedom in altering the scatterer size.

In the physical experiment we are limited to 3 commercially available scatterer sizes,
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whereas the ray tracing procedure allows a simple means of altering both the scatterer

size and location. In Fig. 1.17, DF is plotted against scatterer position (blue squares,

top axis) as the location of the scatterer is shifted from the center of the cube until it

is touching one of the cube walls. This plot indicates that the D F value is independent

of the location of the sphere. This allows a bit of freedom when suspending different

sized scatterers from the center of the top wall of the cube. Each of the three mirrored

spheres was then suspended from the center of the cube and photographs were taken

and analyzed as previously discussed. The results are plotted in Fig. 1.17 (bottom

axis) with red squares. The ray tracing model was applied again in order to fill in

the gaps in the data set that arose due to the small range of commercially available

sphere sizes. These data are plotted in the green triangles. The result was that the

value of D F seems also to be independent of the size of the scatterer, within the

error associated with the procedure. Having determined that the value of DF was

not influenced by either the location nor the size of the scatterer, the next step was

to investigate the role of the opening size.

This was accomplished by using the ray tracing model with slightly different

geometry. Rather than having triangular openings in the top corners of our device,

square openings in the middle of the faces of the four vertical walls of the cube

are used. This allows us the further advantage being able to adjust opening sizes

independently of one another. Figure 1.18 plots the results of DF as the viewing

opening (labeled front open) as well as the entrance size (labeled side open) is varied.
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Figure 1.17. Altering Sphere location and diameter in the Sinai cube seems to have
no effect on the value of D F . Position (blue squares) was changed in the simulation
by gradually moving the scatterer from the center to touching one of the cube walls.
Scatterer size was altered both experimentally (red squares) and in simulation (green
triangles)

Percent open is a measure of the percentage of trajectories that escape the cube

without ever reflecting off a wall. One interpretation is that as the opening becomes

a larger percentage of the wall size, the area in which the light can reflect off of the

surface of the wall diminishes. It is interesting to note that the surface obtains the

maximal value of D F = 1.71 when both of the openings have an area of about 20%

of the wall size.

A modified version of the Sinai cube has been built and was on display at the

Portland Museum of Art, and was the subject of a presentation at Bridges Banff

2009. Figure 1.19 shows the new and improved Sinai Cube in which the bottom four
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Figure 1.18. D F plotted against relative opening size in the front and side walls of
the Sinai eube

corners of the cube are fitted with LEDs with individual on-off control. Viewing is

achieved through two portals placed at the top corners of the front of the cube, and

an image of this view is also presented due to its aesthetic appeal.
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Figure 1.19. Left: The Sinai Cube (version2) on display at the Portland Museum
of Art. Right: The inside of the cube as seen from one of the two viewing portals.

Conclusions

This chapter has shown that the open Sinai billiard supports chaotic, fractal

dynamics. Experiments on two physical realizations of the Sinai cube were presented.

In these analogous experiments, light was used to play the role of the Sinai's theoretical

particle which conserves energy and exhibits spectral reflection. It was shown that

the fractal dimension, D F can be tuned by adjusting the availability of escape. This

was done by adjusting the size of the openings to the billiard.
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CHAPTER II

BILLIARD FABRICATION AND MEASUREMENTS

Introduction

The previous chapter was devoted to a classical description of fractal dynamics

that arise due a system that contains both stable and chaotic dynamics. In later

chapters that discussion will be extended to investigate the influence of chaos on

the conductance properties of mesoscopic devices. To investigate this role it makes

sense to start with the cleanest systems possible. This will help avoid inadvertently

ascribing properties that may be sample specific, such as impurities or material

defects, to the dynamical system as a whole. To accomplish this the electron billiard

will be used. Following a brief overview of some of the background physics, this

chapter focuses on the fabrication and measurement techniques utilized in the experiments

to follow.

Background Physics

Effective Mass

Epitaxial growth allows for the deposition of a regular lattice that approaches

a perfect crystal. It is possible to treat the conduction of electrons through a
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semiconductors crystalline structure as free electrons negotiating through a dielectric.

In this semiclassical, picture the periodicity of the lattice is accounted for by the use

of Bloch states in which the wavefunction is written as the product of a plane wave

and function that holds the same periodicity as the lattice itself. This then, results an

" effective mass" of the the electron, m*. Semiclassically then, conduction is limited

only by lattice imperfections and vibrations, which both tend to promote electron

scattering [18, 19]

Two Dimensional Electron Gas

A two dimensional electron gas (2DEG) can be realized by sandwiching a layer of

low bandgap semiconductor material between two layers of wider bandgap materials.

The sandwiching of the materials confines electrons in a quantum well, typically to

the lowest bound state, and electrons are free to move only in the x-y plane defined

by the interface.

Confining the motion to two dimensions produces a constant density of states.

Consider a large two dimensional k-space area 02d containing a large number of k­

space points. This will support wave vectors given by kx = 21fnx / Land ky = 27fny/ L,

where the ni(i = x, y) are integers. These wavevectors satisfy the plane wave of the

form 'ljJ ('V eik-r subject to the boundary conditions that 'ljJ(x, y) = 'ljJ(x + L, y) =

'ljJ(x, y + L). Then the number of allowed values for k can be estimated as simply the

volume of k-space (02d) divided by the volume per k-space point. [20]
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(11.1)

Where A is the real space area under consideration. In two dimensions the ground

state will consist of N electrons occupying a region of k-space bounded by a circle

of radius kF . That is to say all wave vectors whose magnitude is less than kF are

occupied. The area of this "Fermi circle" is D2d = 1rk~, giving the number of allowed

values for k as:

(11.2)

Each allowed k value has 2 electron levels (one for spin up, one for spin down) so

the number of electrons N contained in the real space area A is

n _ N = 2 k} k}
s A ~ 41r 21r

for spin

(11.3)

The associated Fermi momentum is PF = nkF leading to the Fermi Energy (EF )

being directly proportional to the electron density (ns ) and given by:

(11.4)

This relationship is particularly useful in that measurement of n s is fairly simple

at low temperatures(described below), thus allowing for a nearly direct measurement

of the Fermi energy during each experimental magnetic field sweep. The Fermi



33

momentum also leads to an associated wavelength given by the de Broglie relation

A = h/p and is:

A _ h _ h _ 21f _ f2i
F - PF - nv21fns - V21fns - V-;; (11.5)

Similarly the Fermi velocity is VF = PF/m*. Knowing the Fermi velocity is useful

in determining another important length scale, the average distance an electron can

travel before scattering off of an impurity, lattice defect or vibration, and thus losing

its initial momentum. This characteristic length is known as the mean free path Rw

This distance is given by RJ.L = VFT. Here T is the momentum relaxation time and is

related to the mobility (/1,). The mobility is defined to be the ratio of the electron's

drift velocity to the associated electric field by the expression f.J, = ~ [18, 20].
m*

The phase coherence length (Rep) is the distance an electron can travel and maintain

it's quantum state and thus phase information and is determined by the relation

Rep = VFT¢, where T¢ is a measure of the average length of time an electron can be

expected to maintain its phase. Discussion of the measurement and determination of

T¢ will be provided later in this chapter.

Once a plane for electrons to traverse (the 2DEG) has been created, billiards are

then defined in the plane by establishing device boundaries. The billiards primarily

used in this dissertation are defined by wet etching a Gao.2sIno.7sAs/lnP heterostructure

shown schematically in the left panel of Fig. 2.1. This process removes the region of

the 2DEG that defines the wall boundaries, leaving behind a billiard connected to
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the bulk of the 2DEG, (often referred to as the Hall bar) by a narrow constriction

(rv100 nm) called the quantum point contact (QPC).

Figure 2.1. Left: Schematic of the GalnAs/lnP heterostucture. Right: Scanning
electron micrograph of the Sinai Billiard. The scale bar indicates 100 nm. The QPC's
provide a source and drain for current through the device and are each rv100 nm. The
central Sinai scatterer has a diameter of 100 nm.

On the right hand panel of Figure 2.1 is a scanning electron micrograph of the

electronic Sinai billiard. The scale bar in the micrograph indicates 100 nm, and the

walls defining the billiard are rv 1j1-m in length. Dr. Theodore Martin performed

an extensive analysis on the depletion of the 2DEG near the etch interface due to

screening and trap states [21, 22]. The basis of this work was to model the confinement

potential in the 2DEG as having a flat bottom with nearly parabolic sides. The form

of this "bathtub" potential can be written as :

0,
d

Ixl :S 2'

(II.6)

~m'w5 (Ixl - V2, Ixl > ~
Here both Wo and d will depend on E F , and both are used as fitting parameters

to numerically solve Schrodinger equation using the finite difference method. The
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value of d, which will vary with EF , is the active width of the billiard. The details

of Dr. Martin's analysis can be found in his dissertation and subsequent publication

[21, 22]. Using those depletion measurements reduces the active are in this billiards

to rv 0.4j.tm2

Mobility measurements, as described above, reveal a mean free path of £f.L rv

3.5j.tm. This places the system in the so called ballistic regime, defined by the

condition that £f.L > W, L where Wand L are the width and length of the device

respectively. Traditionally there are two other regimes of transport considered in

mesoscopic systems. The diffusive regime (£f.L < (W, L)) and the quasi-ballistic regime

(W < £f.L < L) have also been used to investigate electron transport, and a schematic

of all three regimes is shown in Fig 2.2

At this point it is worthwhile to define some nomenclature that will be used

throughout this dissertation. The term 'device' refers to the object upon which

electrical measurements are to be made. This term (device) will be used somewhat

synonymously with the term 'billiard'. Typically, in the GalnAs/lnP heterostuctures

schematically shown in Fig. 2.1 there are three devices (or billiards) etched into the

Hall bar. The term 'Hall bar refers to the'bulk' of the 2DEG. This is the portion of the

2DEG that current is passed through, and is considerably larger than the device (i.e.

billiard) dimensions. The term sample refers to the entire mesa of the heterostructure,

as well as the electronic 'chip' it is attached to that enables connections to macroscopic

leads.



36

W,L > RJ-L

Ballistic: fJ-L > W, L

Figure 2.2. Schematic representation of (top) the diffusive (middle)quasi-ballistic
and (bottom) ballistic regimes of transport.

The electron's Fermi wavelength is AF rv 30nm which is smaller than VV and L

for the Sinai billiard. Under this condition, it takes over 20 AFS to span the width of

the billiard. Thus electron transport can be treated as wave packets traveling along

classical trajectories as illustrated in Fig2.3. For this reason this is referred to as the

semi-classical transport regime.

The fact that eJ.L > (W, L) further dictates that it is unlikely that there will be

an impurity within the plane of our billiard. This should ensure a very clean system

(as compared to the diffusive regime) with which to investigate the influence of chaos
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Figure 2.3. a) one possible classical trajectory through a billiard. b) illustration
of the semi-classical picture, in which the Fermi wavelength Ap is much smaller that
device dimensions, allowing one to view the traversal of an electron wave packet
following the classical trajectory.

in electronic transport. To probe the quantum interference effects, the conductance

through the billiard is monitored while a magnetic field perpendicular to the 2DEG

is swept. Sweeping the magnetic field will alter the phase of the electrons. This wil

alter the conductance through the billiard via quantum interference of the electron

wavefunctions traveling through the device. An example of these magnetoconductance

fuctuations (MCF) is shown in Fig. 2.4. In this plot the conductance (G) through

the Sinai billiard (Fig.2.1 b) is plotted against the the magnetic field (B) swept at a

rate of 0.5mT every 3 seconds.

The first thing that one often notices is that the MCF are symmetric with respect

to the sign of the the external field. This is clear evidence that the fluctuations

are not noise. The MCF are both repeatable and robust as illustrated in Fig. 2.5.

The MCF shown in that figure were taken, again with 0.5 mT resolution, nearly a

month apart. The blue trace (BOl) was the first magnetic field sweep taken during an
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Figure 2.4. Conductance fluctuations in the Sinai billiard as the Magnetic Field is
swept.

experiment. Following that sweep, many more field sweeps were conducted including

a run taken at 12 K. The red sweep (B39) was taken at the end of the nearly month

long experiment.
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Figure 2.5. Magnetoconductance Fluctuations of a square billiard (on device HI)
taken roughly 30 days apart. The blue trace labeled B01 was taken nearly a month
before the red trace, labeled B39. During this experiment, the device was kept at
temperatures at or below 12K.

The Aharonov-Bohm Effect

Transport in the ballistic regime is often characterized by quantum interference

effects, provided the electron is able to maintain phase coherence while traveling

through the billiard. The quantum interference effects can be modeled using the

Aharonov-Bohm effect. Fig. 2.6 (a) shows two possible equal length trajectories

through a billiard that an electron wave can split into. In the absence of an external

magnetic field, these waves will maintain the same phase and will always constructively

interfere.
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Figure 2.6. Aharonov-Bohm effect illustrated with a single pair of trajectories. (a)
an illustration a single pair of trajectories through a billiard. (b) schematic of periodic
conductance fluctuations resulting from varying an eternal magnetic field.

If, however, a magnetic field is applied perpendicular to the plane of travel, the

associated magnetic vector potential A introduces a difference in phase depending

on the path taken. The presence of A transforms the total momentum according

e -to p -----+ P- - A and it is the total momentum that appears in the electrons phase
c

term ¢ = wt - k . x. A magnetic field oriented out of the page results in a counter

clockwise orientation of A. This means that after entering the billiard, a wave packet

traveling in the upper arm of Fig. 2.6(a) will gain phase while a wave packet on the

lower arm will lose phase. This in turn will result in either constructive or destructive

interference at the exit depending on the relative strength of the phase difference,

which will be proportional to the magnetic flux enclosed by the two paths.

e e
!::l.¢ = -<PM = -BS

It It
(II. 7)

where S is the area enclosed by the loop. As the magnetic field B is swept this
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n
conductance through the billiard will oscillate with a period given by t1B = eS as

shown in Fig. 2.6(b).

In 1959 Aharonov and Bohm introduced this observable effect of the Vector

Potential A\ influence on the trajectory dynamics [23]. Extending this picture to

include the more realistic situation of many possible loop trajectories through the

billiard, results in the situation schematically shown in Fig 2. 7(a).

many trajectories

Sourc"W'C. _""'1

Magnetic Field

Figure 2.7. Aharonov-Bohm effect illustration with many pairs of trajectories. (a)
an illustration many pairs of trajectories through a billiard. (b) aperiodic conductance
fluctuations resulting from varying an eternal magnetic field.

There are many loop trajectories enclosing many different areas of flux. The

interference that results is a superposition of the many different associated periods.

Thus there are aperiodic fluctuations in the conductance as shown in the example

of Fig. 2. 7(b). The MCF arise from the distribution of many possible electronic

trajectories through the billiard and, as such, are sensitive to the specific configuration

of any scattering sites that mat be present in the billiard. The extreme sensitivity to

the precise scattering site positioning allows the MCF to be used as a probe of the

scattering dynamics of the billiard. It is worth noting here that an externally applied
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magnetic field is not the sole means that such conductance fluctuations can result.

The conductance through the billiard is dictated by the scattering potential defining

the possible electron paths. Another means of accomplishing the potential is altering

the Fermi energy at the 2DEG [24, 25]

Spectral Analysis

Viewing the conductance fluctuations as resulting from a superposition of many

waves, whose periods enclose many different areas of magnetic flux, raises the natural

question: What is the frequency spectrum associated with these fluctuations? More

specifically, How can the frequency spectrum be related to the fractal dimension?

Spectral analysis of the trace provides the answer to both of these questions. Spectral

analysis delivers the power spectrum of the trace, which is a measure of the contribution

of frequencies (in inverse Tesla) responsible for producing the MCF [26]. This is

accomplished by Fourier transform, which decomposes the trace into a sum harmonic

frequencies. Our Spectral analysis procedure follows an algorithm developed by Dr.

Matthew Fairbanks for use on the MCF in our lab. In essence, it is a discrete Fourier

transform since our trace is limited to a finite number of data points. Typically the

range of interest is from B f'J-0.5 T to B f'J 0.5, and has a 0.5mT resolution. Noise

is reduced by assigning a window size w, running a Fast Fourier Transform (FFT)

over the data in the window, then moving the window across the data in steps of

size s = w/2. At each step the FFT is repeated, and finally the average FFT of all

windows stepped through the trace is taken. The output of this analysis, called the
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power spectrum S(f), is the (averaged) squared amplitude of each Fourier component

[8]. The trade off for the reduction in noise is the potential sacrifice of low frequency

components, for example setting w too small results in a smaller number of data

points contributing to the FFT, thus contributions that have large periods in t:J.B

may not be counted. In practice, choosing a w that corresponds to rv 1/3 of the data

set provides a reasonable compromise. Figure 2.8 is an example of an MCF trace and

a plot of its power spectrum.

20050 100 150
frequency (1/T)

o

100 •

0.50.1 0.2 0.3 0.4

Magnetic field (T)

o

(a) r--------------,

2.5

Figure 2.8. a) Magnetoconductance Fluctuations and b) the results of their spectral
analysis.

The power spectrum shown in Fig. 2.8 shows a power law behavior S(f) ex: 1/r:<
depicted by the solid line which has been added as a guide to the eye. A power

spectrum that has 1/r" is defined to be fractal for values of a that range between

1 :::; a :::; 3 [26]. For historical reasons, one typically employs the use of the Hurst 1

IHurst was a hydrologist and contemporary of Mandelbrot, together they did some pioneering
work on water reservoir design based on the feeding rivers scaling properties, It was Mandelbrot
who labeled this exponent H [3, 4, 8]
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exponent to relate the spectral exponent a to the Fractal Dimension D F . The Hurst

exponent is used to quantify the 'smoothness' of a curve. The spectral exponent is

related to H by a = 2H+1. the fractal dimension is similarly related by DF = 2 - H.

Thus the power law behavior can be used to answer the question of how the frequency

spectrum can be related to D F by the expression

a-I 5-a
H = -- = 2- DF =? D F =--

2 2
(II.8)

Spectral analysis is appealing in that it offers a straightforward interpretation of

the MCF. For instance, since the power of a contributing frequency is proportional to

a-1
, a large a implies a small contribution from high frequency fluctuations. However,

there tends to be more scatter in the power spectrum plots than the associated scaling

plots that arise from the box-counting technique. In practice, to generate a value of

a for a particular trace, a box count is performed and the value of a is assigned

according to Eq. II.8. The guide to the eye in Fig. 2.8 is an example of this process,

also serving as an illustration of the relationship between DF and a.

Variational Method

The fractal dimension, D F , offers a parameter to quantify the statistics of the

fractal nature of the MCF and leads to a straightforward translation to the spectral

exponent a. However, a traditional box count, as described in Chapter I, is not

possible for the MCF because the box sizes required would have different units in the

x and y directions. To conduct a box count that does not take this into account would
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result in a D F that is dependent upon the relative aspects of G and B. To combat

this unwanted ambiguity, we employ the Variational Method [27] in which essentially

the G and B are normalized such that Gmin = Bmin = 0 and Gmax = Bmax = 1. This

ensures that a "square" box is obtained despite the mismatched units. This process

is illustrated in Fig. 2.9.

Traditional Box Count N=35

r\ 1/\
I \

I
'\ I 1\ 1\ I

v I '--J
1\ I

;\ I \ I I

\ \ ) 1
I

Variational Box Count N=29

Figure 2.9. (a) Schematic representation of a single iteration of the box counting
procedure illustrating that a box-count will often overestimate the box coverage of
the profile. In this case it takes N = 35 boxes to cover the trace. (b)Variational
method at the same iteration level. The same profile measured with the variation
method, showing a more accurate covering requiring only N = 29 boxes to cover the
same trace.

The added advantage of this method is that it can minimize errors associated

with "overcounting" that can result due to an arbitrary choice of the location of the

grid of boxes to be counted [27]. This error is overcome in the variational method. At

each iteration of the box counting procedure, the length of the MCF trace is divided

into equal length segments of t::.B. The number of filled boxes N(B) is then the

minimum number of these boxes necessary to cover the entire trace. As with the
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traditional box counting procedure described in Chapter I, the fractal dimension D F

is obtained from the slope of the scaling plot (log [N(LlB)]vs log[LlB]).

Low Temperature Measurement

Cryostat System

As mentioned previously, in the semiclassical regime, resistance to electron transport

is limited by both lattice defects and lattice vibrations. Measurements are made at

low temperatures to reduce the possibility of phonon scattering (lattice vibrations),

additionally, measurements require the application of external electromagnetic fields.

To achieve this we use an Oxford Instruments Low Loss Dewar (LLD). The LLD

is a liquid helium cryostat equipped with a superconducting solenoid, and is shown

schematically in Fig. 2.10 This system can achieve sub-Kelvin temperatures with the

use of a 3He Heliox-YL Insert. The insert allows base temperatures routinely as low

as 240 mK and is operational to temperatures as high as 100 K. The superconducting

solenoid sits at the bottom of a bath of liquid Helium (LHe) during operation and

is capable of producing magnetic fields as high as 8 Tesla (10 T with the A plate

system). The magnet's power supply (IPS 120-10) allows for selection of the current

polarity, and the range of accessible fields at 4.2 K (LHe temperature) are ± 8 T,

with 0.1 mT resolution. The LLD is schematically represented in Fig. 2.10.

As indicated by the name Dewar, the LLD is essentially a very large, and very

high quality thermos. An outer vacuum chamber (aYC) surrounds an inner chamber
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Figure 2.10. Cross section of the Oxford Instruments Low Loss Dewar. The L4He
main bath (blue) is surrounded by an outer vacuum chamber (labeled OVC, shown
in yellow) and a liquid nitrogen jacket (pink) to reduce heat conduction.

that is to be kept out of thermal equilibrium with the surroundings. The OVC

(shaded yellow) is evacuated to pressure of rv 10-6 mbar to minimize conduction

between the outer chamber wall and the inner bath. OVC evacuation typically

requires several days of pumping prior to cooling down. Radiative heat transport

is an important consideration here, since radiative heat power scales with T 4
, and the

absolute temperature difference between the outside of the OVC and the main bath

is rv300 K. For this reason further shielding is provided by the liquid Nitrogen (LN2 )
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jacket which has been shaded pink in the schematic. The solenoid is shown at the

bottom of the 4He bath and is superconducting at L4He temperatures.

The Heliox-VL insert is shown schematically in Fig 2.11. In operational mode,

the sample is mounted onto the sample stage at the bottom of the inner vacuum

chamber (IVe). The IVe is then pumped down to rv 10-3 mbar. The IVe serves to

protect the sample as the insert is immersed into the LHe, but more importantly, it

isolates the sample from the (relatively) warm bath allowing base temperatures to be

reached and maintained. A small amount2 of exchange gas (4He) is introduced into

the IVe after pumping it down to allow conduction between the interior of the IVe

and the main bath for the initial cool down. However, this gas is eventually absorbed

by a small charcoal sorption pump inside the IVe that begins to absorb gas below

rv 30K. The insert is lowered into the LLD through a central port in the lid of the

LLD. The combination of a set of baffle plates and a sliding seal minimize the boil

off of excessive LHe during this process. By slowly lowering the IVe through use of

the block and tackle mounted above the LLD, the insert can be cooled to nearly LHe

temperature rather slowly without excessive LHe boil off. This is done by forcing the

4He gas that has boiled off of the main bath through the insert. Once the IVe has

been lowered into the magnet, the sample is located in the center of the solenoid, in

operating position.

2Colloquially a sparrows fart
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Cooling to Base Temperature

The insert is equipped with a sealed chamber of 3He that spans from the top of

the insert (labeled 3He dump in Fig 2.11) through to the lVC. It terminates at the

3He pot which resides just above the sample stage, which is in thermal contact via a

cold finger. At room temperature, the 3He is gaseous and most of it is contained in

the 3He dump. To ensure this is the case, a second sorption pump eHe sorb), is in

contact with the 3He is equipped with a heater.

Reaching base temperature requires condensing the 3He. This is accomplished by

cooling the "lK Plate" that is mounted roughly 10 cm above the 3He pot. The lK

plate is wrapped with a coil of metal tubing known as the pickup tube. One of the

open ends of the pickup tube runs down the outside of the lVC canister where it is

immersed in the LHe of the main bath. This tubing runs into the lVC, where it passes

through a needle valve. After being wrapped several times around the lK plate and

lower portion of the 3He chamber, it then travels up the remainder of the insert to a

vacuum port. A rotary vacuum pomp is connected to the pump line, and is attached

to the outside of the insert. Opening the needle valve reduces the vapor pressure

of the L4He in the pickup tube. This in turn reduces the boiling point of the L4He,

allowing the temperature at the 1 K plate to be reduced to rv 1.5 K. The boiling point

of 3He is rv3.2 K, and since the pickup tube and the copper lK plate is thermally

anchored to the 3He chamber, the 3He begins to condense and collect in the 3He pot.

Use of the heater attached to the 3He sorb ensures that the sorb outgases, and all
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the 3He is available for condensation. The condensation process typically takes about

30 minutes. The usual practice is to ensure that the temperature at the 3He pot has

remained constant for several minutes, Ideally, this is close to 1.2 K but in practice it

is difficult to achieve temperatures much lower than rv 1.5 K at the 3He pot. In this

range, the temperature is monitored by a Cernox sensor.

Figure 2.11. Schematic of the 3He Heliox insert (left) as well as a magnified cross
sectional view revealing the components of the inner vacuum chamber.

Once all the 3He has been condensed, the heater is shut off and allowed to cool

below 30 K. At this point, the 3He sorb begins to pump, reducing the 3He vapor

pressure, which lowers the boiling point of the L3He to our base temperature of rv

240 mK. Experience has shown that for an efficient cool down, the ONLY thing
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that should changed during this process is to switch temperature monitoring from

the Cernox sensor to the RU02 resistance sensor which is capable of measuring the

sample temperature with a resolution of 1 mK from base to nearly 1.5K. This is

accomplished by simply flipping a switch, any other valves or knobs should be left

alone for the half-hour or so necessary to reduce the L3He temperature to base. Much

time has been wasted trying to adjust the pumping rate of the 4He via the needle

valve during and after condensation, with poor results. The sample is able to come

to equilibrium with the 3He pot because the wires that are used to make electrical

measurements are wrapped around the cold finger that separates the sample stage

from the 3He pot.

Temperature Control

Base temperature of 240 mK can routinely be achieved, and will remain stable for

several days at a time. At this point, a considerable amount of the 3He has vaporized

and it is necessary to recondense, which will raise the sample temperature to rv 2K.

FUll magnetic field sweeps typically take rv 8 hours, so the length of time at base

is adequate for quite a few magnetic field sweeps. As will be shown in Chapter IV,

warming the sample even a few Kelvin has no effect on the electronic transport

through the billiards measured for this dissertation.

The insert is equipped with 2 heaters that can be controlled with the ITC503

Accessory Heater Controller. When the desired temperature is below 1.4 K, the

previously mentioned 3He sorb heater is put to use. This controls the temperature
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at the sorb, and thus its pumping rate, which in turn adjusts the temperature at the

3He pot. Temperatures above 1K up to 100 K are controlled by a heater affixed to

the 3He pot which directly warms the pot. In either case, the controller's function

is to come as close as possible to the desired temperature. This establishes a steady

state in which the heat provided is exactly matched by the heat lost to the system

surroundings. This is accomplished through standard PID control. In brief, this

allows for the heater voltage to be continuously varied depending on: the proportional

value of the current to desired temperatures (Proportional control); the calculated

sum of recent residual errors (Integral action); and the rate of change in the recent

errors (Derivative action). The PID values are fed into the control as a feedback loop.

During the experiment described in Chapter IV, a wide range of temperatures were

used. Trial and error found that PID values of 7.0, 1.0, 0.2 respectively work within

a few % for temperature ranges of 500 mK to 12 K.

Electrical Measurements

All electronic measurements were performed in the constant current configuration

depicted schematically in Fig 2.12 unless otherwise noted. Each Stanford Research

830 lock-in amplifier (SR830) has been color coded in Fig. 2.12 for ease of description

of their associated measurements. The gold rectangles around the perimeter of each

sample are called 'Ohmic contacts', or 'contact pads'. They provide good electrical

contact to the 2DEG (specifically the Hall bar). Electric contact between the Ohmic
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pads and the 'chip'(not shown) is made by wire bonding3 the Ohmic contacts to the

'chip' (not shown) contact pads. When a sample is to be measured, it is attached

to the sample stage at the bottom of the insert. In the orientation of Fig. 2.11 the

sample would attach upside down to the sample stage. The chip is a 14 pin (male)

electrical connector that plugs into the sample stage, where it remains held in place

by friction.

In Fig. 2.12, the Ohmic contact pads have been numbered according to a typical

sample stage mounting. The sample stages used in the experiments described here

utilize 14 of the 18 available connections on the stage mount, two of these are not

in use, leaving 12 connections to the mesa with two "spare" ohmic contacts on the

sample stage. This labeling scheme closely matches a typical measurement in the

Taylor lab and is briefly described below. Faint shadowing in the center of the left

hand optical microscope image reveals the location of the devices. The billiards are

of suffciently small size that they canot be optically resolved. The length of that

segment of the Hall bar is roughly 300pm limiting better optical resolution. Labels

with arrows pointing to the location of the device have been color coded to match

their associated lock-in amplifier. Note that in this configuration, the left most device

(Device 1) is not being measured.

A 37 Hz AC signal (Amplitude O.lV) is sent out via the sine out port of the

blue lock-in and sent through the 100 MD resistor, then the 10 kD resistor before

3Essentially extremely small scale welding



54

sourcing the Hall bar at pin 17. Pin 6 is connected to ground, providing the drain.

These connections are made via short BNC coaxial cables whose shield is at common

ground. The 100 MO resistor is much larger than the device resistances (rv few

kO) and serves to limit the current applied to the devices. Ohm's law gives the

1xlO-1V
current as I = 80 =1 nA. Despite this small magnitude of current, which

1 x 10

minimizes electron heating in the devices, signal to noise ratio is on the order of

100:1. (eVdrop :::; kBT). The constant current configuration then allows for voltage

drops across the device to be translated to changes in conductance.

The remaining three SR830s are phase locked to the AC source (blue SR830). The

four terminal differential voltage is measured between the central pins of the BNC

cables connected to the SR830. This configuration of the SR830 ignores shield signal,

so stray signals (i.e. noise) are not picked up. The leads connecting the SR830s to

the sample are all twisted pairs of BNC cables eliminating stray loop area, similarly

the wiring internal to the insert consists of twisted pairs. The yellow SR830 is used

to measure the voltage drop across the 1 kO resistor. The SR830 is phase sensitive

and thus can measure both real and complex components of the signal. The phase

angle is generally less than 1 0 indicating that the impedance is resistive. Current

applied to the Hall bar is then given by dividing the the quadrature sum of the X and

Y values of the voltage drop on the yellow SR830 by the known 10 kO resistance.

In addition to providing the signal, the blue SR830 in Fig.2.12 is set up to monitor

the voltage drop from pin 2 to pin 3. This value, when divided by the measured current
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Device 1

IOTECH DAC
DC Source

SR830
Lock-in Amp

Figure 2.12. Schematic of the electronic setup in the constant current configuration.
Lock in amplifiers have been color coded for ease of description in the text. The two
optical microscope images show the mesa before (left) and after an insulating layer
and TilAu top gate were deposited (right). Device labels are color coded to match
the monitoring lock-in, in this configuration no measurement is made on Device 1.

gives the classical Hall resistance (RH ) [18, 19]. This constitutes the simple method

of obtaining the carrier density n s previously mentioned, since at low magnetic fields

the classical Hall resistance is given by:

(11.9)

On the right hand side of Fig. 2.12 is an image of the sample after the insulating

PMMA layer and the TilAu top gate has been deposited. The 10TECH DAC is used

to source a stable DC voltage to the topgate. The use of the top gate allows tuning of
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ns and thus EF in the 2DEG. The drain for the current is provided through common

ground with the signal.

The green (red) SR830 measures the voltage drop across device 2 (3) through pin 4

an 5 (14 an 13). In order to measure across all three devices on this Hall bar, sacrifice

of the RH measurement must be made. This is rarely a problem, however, since at

a particular gate voltage, the value of ns will be the same. Data collection from the

SR830s and control of the magnet power supply are automated by use of LabVIEW.

Incidentally, Fig. 2.12 may be used as reference for electronic measurements since the

color coding was chosen to mach the labels on the physical SR830s as well as the

most recently modified LabVIEW programs.

Experimental measurement of the mobility (f.L) can be performed by measuring

the longitudinal resistance (RL ) from pin 2 to pin 3. This measurement, coupled with

n s can be used to find f.L according to f.L = 1 W, where W is the width of the Hall
ensRL L

bar and L is the distance over which the voltage drop determining RL is measured.

Determination of T¢J

The purpose of delaying this discussion until this point was to illustrate the regime

of the MCF over which the "Correlation Field Analysis" is performed. For this it is

necessary to display MCF over a longer range of B. The onset of this regime occurs

when the magnetic field is high enough to produce a marked increase in average

period of fluctuation. This can be seen quite clearly in Fig. 2.13. The MCF in that

figure can be seen to take on a different character at B '" O.6T and appear to be
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"stretched out" from that point on to higher fields. This is a consequence of the

trajectories entering the so called "skipping orbit" regime, defined to occur once the

applied magnetic field has the effect of producing trajectories that skip around the

edge of the device. This behavior is in not a consequence of being in the ballistic

regime, it can also be seen in the high field MCF of a quasiballistic wire (Fig. 3.11),

and diffusive Wire B (Fig. 3.10) in the next chapter, illustrating that this behavior

extends across all three regimes considered.

In Fig. 2.13 the skipping orbit regimes begins at roughly 2Beye which has been

designated by the dashed line. The term B eye is called the cyclotron field and is

defined to be the B field at which a cyclotron orbit just fits inside the billiard. The

cyclotron orbit is defined as a circular trajectory of an electron exposed to a magnetic

field. The radius of this orbit will depend on the applied field, and their relationship

can be found by application of Newton's second Law. Making use of the fact that the

applied magnetic field is normal to the plane of the 2DEG, and equating the Lorentz

force of the to the centripetal force gives:

e VF B eye

B eye

m*v2
m*a

e
= __F_

r eye

m*vF = hkF = _h-V27fns
e reye e reye e reye

(11.10)

(11.11)

Of course this relationship between Beye and reye holds for any Band r, particularly

in the skipping orbit regime, this allows dropping the subscript eye when convenient.
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Figure 2.13. Full field traces of a billiard taken at various temperatures, the
temperature ranges from (top to bottom) 12K to 237mK. The magnetic field ranges
from B = -O.5T to B = 3.5T. traces have been offset for clarity

According to the The Aharonov-Bohm effect the coherent area that is pierced with

magnetic flux is that which is enclosed by the trajectories. Figure 2.14 schematically

shows that area to be composed of N semicircles in the skipping orbit regime. In

that figure r cyc is set to be the radius of a circle circumscribed in the billiard. This

means that Fig. 2.14 depicts a situation in which B > Bcyc . The area enclosed by the
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1
N semicircles is Aencl = "2 N 1r r~e' Again this will hold for any r or B provided that

r ~ r eye ) allowing the freedom to drop the subscript eye when convenient.

Figure 2.14. Schemeatic of the skipping orbit regime which occurs when r > r eye .

Where r eye is defined as the radius of an inscribed circle that will just it inside a
billiard

If the phase is to remain coherent in the skipping orbit regime then

(II.12)

Combining Eq. II.12 with the above expression for Aencl gives:

1 2 1 (I!¢) 1
Aencl = "2 N1r r eye ="2 N N reye = "21!¢ r eye (11.13)

With the aid of I!phi = v FT¢ = hk: and rearrangement of Eq.I1.11 to obtain r eye
m

this can also be expressed as

(II.14)

Relating this enclosed area to the characteristic magnetic field scale Be and noting

that it is now convenient to drop the eye subscripts gives:

2m*
---B
hnsT¢

(II.15)
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A quantitative description of the change in the MCF character when in the

skipping orbit regime is obtained by using the trace's conductance as a function

of applied field G(B) to define the field's correlation function as:

F(!:lB) = ([G(B) - (G(B))] [G(B + !:lB) - (G(B))]) (II.16)

The half width of this correlation function evaluated at !:lB = 0 defines the characteristic

field scale Be. That is:

F(Bc) - F(O) = ([G(B) - (G(B))]2)
2 2

(II.17)

combining the definition of Be (Eq. II.17) with the above expression that relates

Be to the enclosed areas of the trajectories gives:

(11.18)

The expression BelB is then obtained by the linear portion of a Be vs. B plot.
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CHAPTER III

CONDUCTANCE FLUCTUATIONS IN SEMICONDUCTOR BILLIARDS

Introduction

The MCF data traces of the Wires A - E presented in this chapter were collected by

collaborating groups and provided to the Taylor lab for fractal analysis in preparation

of Ref. [28]. The analysis of the wire data presented here represents this authors

contribution to that work. Data for both Wire A and Wire E were measured by Dr.

Koji Ishibashi's group at Osaka University. Dr. Ishibashi is now the chief scientist

at the Advanced Degree Laboratory of the RIKEN research institute in Japan. The

data pertaining to Wire B was provided by Dr. Carl Brown's group at Nottingham

Trent University in Nottingham U.K. The data sets from Wire C were provided by

Dr. Jon Birds group from the University at Buffalo in New York. This data was

taken while Dr. Bird was a member at RIKEN working under DR. Ishibashi. The

data from Wire D was taken by Dr. Richard Taylor during his work at the University

of Nottingham, in Nottingham U.K.

The previous chapter focused on the fabrication of semiconductor devices and the

measurement techniques used during experiments. This chapter will couple these

the ideas with more material presented in Chapter I to investigate the conductance
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fluctuations that arise as a result of exposing the semiconductor devices to an applied

external magnetic field. This chapter begins by investigating the classically chaotic

system of the Sinai billiard in a regime governed by quantum mechanics, this is the

essence of Quantum Chaos.

Charting 0:'

Having found a reliable way to quantify the spectral exponent 0:' that characterizes

the quantum interference effects in the billiard, the next question to address is how

to best chart 0:'. Of particular interest will be a means to chart 0:' as parameters

that could influence the quantum interference are altered. Since the MCF have

semiclassical origins, one would expect that making the system more classical would

have a profound effect on 0:'. An easy way to make the device more classical is to raise

the temperature. In order to observe wave interference, the waves must maintain a

constant phase relationship with respect to one another. Raising the temperature

increases the likelihood of electron-phonon interactions. The electron-phonon and

electron-electron interactions result in scattering that destroy the electrons ability to

maintain phase information and are referred to as "phase-breaking" events. Figure 3.1

displays this effect. MCF were taken in the same billiard at different temperatures.

The bottom (blue) trace, taken at base temperature (239 mK) has a spectral exponent

0:' = 1.98. As the temperature is increased visual inspection indicates that the high

frequency contribution falls off. This is supported with a measurement of 0:', as values
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of a increase to a =2.00 in the second coolest temperature (green trace T= 500mK)

to a = 2.00. The purple trace (T = 2 K) has an a value of 2.22, followed by the

orange trace (T = 8K) with a = 2.42, and finally when the system is warmed to 12K

(red trace) the a value rises to 2.62. This indicates making the system more classical

results in an increase in the spectral exponent.

2.5

-~-N II)
N 2--C>

1.5

-0.50 -0.25 0.00 0.25
Magnetic field (T)

0.50

Figure 3.1. MCF at various temperatures. The evolution of the MCF structure in
the same billiard as temperature is raised from (bottom to top) 239mK (blue) 500
mK (green), 2K (purple), 8K (orange) and 12K (red). a values are 1.98 (blue), 2.00
(green), 2.22 (purple), 2.42 (orange) and 2.62 (red).

In a similar manner, Fig. 3.2 shows what happens to the MCF as the device is made

more quantum. In this plot, the only difference between the two billiards producing

the MCF is their size. MCF were taken at base temperature, both billiards have the

same geometry, and the devices are on the same Hall bar allowing for simultaneous
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measurement. The area of the billiard corresponding to the red trace is f"V 6 times

smaller than that of the blue trace, thus is the more quantum U'F closer to device

dimensions). Corresponding ex values are (top) blue trace ex = 2.42, and (bottom)

red trace ex = 2.84.

5.---------------------,

4

2

-0.50 -0.25 0.00 0.25
Magnetic field (T)

0.50

Figure 3.2. MCF of billiards with different areas. Two billiards on the same Hall
bar, with the same geometry, at the same temperature. The blue (top) trace has a
larger area than the bottom (red) trace. The associated alpha values are ex = 2.42
for the larger device(blue) and ex = 2.84 for the smaller device (red).

Comparison of Fig. 3.1 and Fig. 3.2 reveals an interesting effect. In each case,

moving from the bottom trace to the top trace is an observation of making the device

more and more classical. Yet this has the opposite effect on the spectral exponent in

each case. This is an apparent dilema. Reducing the billiard area (making it more

quantum) results in an increase in ex as does increasing the temperature (making
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it more classical). Of course these results are perfectly reasonable when looked at

independently, and there is the possibility that varying these parameters (A and T)

just have different effects on a. This seems to indicate that a should be charted

with a parameter that encompasses both of these effects. To accomplish this, the

empirical parameter Q is introduced. Q is defined as the ratio of the average energy

level spacing to the average energy level broadening in the billiard.

Q = 6.Es = 27rn
2 /m* A

6.EB J(n/T¢)2 + (kBT)2
(III.1)

Here the average energy spacing is given by the term 6.Es = 27rn2
/ m *A which will

chart alterations of two variables, the effective mass (m*) and the conducting area of

the billiard (A) [28, 29]. The form of this term can be understood in the context of

dividing the energy of the highest occupied level (the Fermi Level) and dividing that

by the number of occupied levels [29]. 1Assuming that all levels up to (and including)

the Fermi level are degenerately filled gives:

EF6.Es = ----:----­
# of e per state

(III.2)

A is determined by the active billiard area (accounting for depletion), and m* is

a known parameter that will depend on the heterostructure material.

The average energy broadening, 6.EB , is given by the quadrature sum of the

thermal broadening and the intrinsic smearing of energy levels that occur as a result

1 !:J.Es is a common parameter in MCF studies and is often referred to as simply !:J., see for
instance [30]
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of scattering events that destroy phase and thereby limit the lifetime of the quantum

state. [28, 29] Thus f:1EB = JCh/T¢)2 + (kB T)2 can chart alterations in the phase

breaking time T¢ or the temperature T. T is known and controlled during a given

measurement (as described in Ch. II). The remaining parameter, T¢, is a measure

of the average length of time an electron maintains its quantum mechanical state

(i.e. its phase information). For this reason it is often also referred to as the

"phasebreaking" or "de-phasing" time. Further discussion about the origin of these

events and measurement of T¢ is provided at the close of Chapter II.

Figure 3.3 displays the charting of the spectral exponent DO against the empirical

parameter Q. The data points represent 16 different billiards, labeled a - p. In

total there were 161 MCF traces analyzed to construct this 'Qcurve'. The minimum

value of the Q curve occurs at Q = 1. This is precisely where f:1Es = f:1EB and can

be described as the situation where energy levels can just begin to be resolved. Q

reconciles the apparent dilemma that arose in attempting to push the extremes of the

semi classical description of the MCF. Increasing temperature T reduces Q through

the f:1EB term, and DO starts to rise up the steep left hand side of Q. Decreasing

the area, increases Q via the f:1Es term and DO tends to rise up the less steep, right

hand slope. Q is not a measure of the semiclassical nature, but more a measure of

the discreteness of the quantum states. For instance, Q = 0 would imply that either

f:1Es = 0 or f:1EB ---+ 00. Either increasing f:1Es , or reducing f:1EB results in better

resolution of the energy levels.
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Values of Q < 1 can be interpreted as more classical. For instance, raising the

temperature will have the effect of allowing the 6.EB term to dominate. Similarly

values of Q > 1 correspond to the system being more quantum in nature. Engineering

a very small device (decreasing A) or a system with a long phase coherent time

(extending T¢) will each allow the 6.Es to dominate.
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Figure 3.3. ex values plotted against Q for 16 billiards representing 161 MCF. The
dashed line is provided as a guide to the eye.

This would be strong evidence that the central Sinai scatterer is indeed responsible

for producing the chaos that resulted in the fractal conductance fluctuations, if all

16 of these billiards were Sinai billiards. However, the devices used to construct the

Q curve in Fig. 3.3 were of various geometries. Figure 3.4 illustrates the range of

geometries used. All billiards are defined using the etched method, billiards a - k are
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etched into the GaInAS/InP heterostructure while billiards labeled l - p have been

etched into GaInAs/InAIAs, in those billiards the InAlAs takes on the same role as

the InP in the GaInAs/InP heterostructure. MCF for billiards l - p were measured

and provided to us by our collaborator B. Hackens at the Universite Catholique de

Louvain, Belgium [31].

Figure 3.4. Scanning Electron Micrographs of the billiards used to construct the Q
curve. Devices labeled a - k are billiards the GaInAs/InP billiards and devices l - p
are GaInAs/InAIAs billiards

Inspection of Fig. 3.4 indicates that only 1 of the 16 billiards used to construct

the Q curve in Fig. 3.3 is a Sinai scatterer. Additionally only two (including the Sinai

billiard) had a circular scatterer etched out of the billiard. Yet all the 16 devices

shown in Fig. 3.4 are seen to follow the same trend when the spectral exponent of the

161 MCF traces are charted against Q. This stands in contrast to predictions of other

researchers, that the geometry of the wall configuration should playa major role in

quantum interference effects such as fractal conductance fluctuations (FCF) [12, 32].

In Ref. [12], Ketzmeric was able to show that the MCF would be fractal if the
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phase space was mixed, purely stable billiards would not produce fractal MCF. Stable

dynamics can lead to power law behavior, but typically have a > 3 and thus are not

fracta1. 2 [12,33]. And yet only two of the devices in Fig. 3.4 (labeled f and g) had a

Sinai diffuser etched away. In particular most of the geometries in that figure should

promote stable dynamics. Ketzmeric also predicted that the spectral content of the

MCF would depend critically on the exact form of the profile. [12]. Perhaps then

it is not the geometry of the billiard walls that produces the chaos, but rather the

steepness of the wall profiles. In fact, Ketzmeric agued that it was the 'softness' of

the potential energy profile of the billiard that led to a mixed phase space [33]. This

suggests comparing two sets of billiards with the same wall geometry, but different

potential profiles. The MCF taken by prior members of the Taylor lab was used for

this comparison [29]. Before discussing the results of that analysis, it is useful to

discuss the differences between the two systems being compared. Figure 3.5 shows a

schematic representation of the two billiard definition scenarios.

In the AlGaAs/GaAS system the billiard is electrostatically defined by a patterned

surface gates. This is illustrated in Fig. 3.5 (a). In the surface gated method

(AlGaAs/GaAs), the billiard walls are defined by applying a negative voltage to the

surface gates, depleting the region of the 2DEG immediately below them. In contrast

to this, in the etched method (GaInAs/InP), the 2DEG is physically removed leaving

behind a trench which is later filled in with insulating PMMA. This is schematically

2a = 3 corresponds to D = 1, a smooth line
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shown in Fig. 3.5 (b). In each panel of Fig. 3.5, the corresponding location of the

cross sections is denoted with the blue line in the top down view of these schematic

"billiards" .

a)

b)

Top gale

/

Figure 3.5. Schematic representation of billiards defined with a) surface gates and
b) etching away the 2DEG. In the surface gate method the 2DEG is depleted by
application of a negative voltage whereas in the etched method, portions of the 2DEG
are physically removed to define the billiard wall. On the right hand side of is a top­
down of the schematic billiard with a blue line illustrating the location of the cross
sectional view.

The main advantage of the AIGaAs/GaAs system is that with clever engineering,

the surface gates can be created in such a way as to have control over which portions

of the billiard are depleted. In this way one can then ground some portions of the

billiard to turn off desired features. For instance it is possible to create a Sinai billiard

in the surface gated method that allows one to turn on or off the central scatterer

to directly measure the effect of its presence on the MCF in the billiard. [34] This

comes at the cost of device fidelity. The difference in billiard definition has a direct
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influence on the potential energy profile at the billiard boundaries. Electrostatically

depleting the 2DEG results in a billiard with softer walls. The role of the device

walls is of particular interest. In 1996 Ketzmeric published a paper illustrating that

systems with soft walls create phase space (velocity vs. position) with a mixture of

regular (stable) and chaotic orbits that generically generate fractal trajectories.[12]

In the surface gated system the soft walls could therefore contribute to the chaotic

nature of the fractal trajectories.

The advantage of the etched system is that it produces harder walls. Producing

harder walls offers reliable control of the device geometry. This system can then be

used to investigate the role of the walls themselves, as well as the shape of the billiard

the hard walls produce. Figure 3.6 Illustrates the difference in the potential profile

of the billiard wall depending on the method used to define the walls. In Fig. 3.6 (a)

the cross sections of the potential energy, E, are shown for both billiard definition

methods. This cross section is taken across the center of the billiard and maps the

E as a function of the distance of the center of the billiard denoted by X = O. Both

methods illustrate a "bathtub" profile, yet the surface gated method (AIGaAs/GaAS,

dashed line) is much shallower than the etched method (GaInAS/InP, solid line).

Comparison of the gradient of the potentials reveals that the GaInAs/InP system's

profile is nearly an order of magnitude steeper at an energy of EF = 10meV [22, 28].

This difference is even greater at lower values of E F'. The reason for the dramatically

steeper profile is understood to be a consequence of the fact that the surface gates are
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Figure 3.6. Simulation of the potential profile in the InGaAs/InP and AlGaAs/GaAs
square billiards. a) cross section of the potential energy E as a function of the distance
from the center of the billiard (denoted by X = 0). This cross section is taken across
the central region of the square, the profile of the GaInAs/InP billiard is depicted
with a solid line while the AIGaAs/GaAs profile corresponds to the dashed line. b)
3D model of the potential energy profiles of each system.

more remote than the surface charge of the etched boundary [28]. Figure 3.6 (b) shows

a 3D simulation of the potential profiles that define a billiard by the surface gated

(left) and etched (right) methods. In these simulations ionized donor and surface

charge effects are included as Poisson's equation is solved throughout the billiard

utilizing an iterative relaxation method to solve Poisson's equation on a discrete grid.

These simulations were produced by T.M. Fromhold, further details on this method

can be found in Ref. [35].

There were 5 square billiards defined in the etched (GaInAs/InP) heterostructure.

This led to 67 MCF traces whose Ct: values were determined. These were compared

to 49 MCF traces taken on 9 AlGaAS/GaAs billiards. As indicated in Fig. 3.7

this Q curve was constructed using billiards defined on both heterostructures. The
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blue squares represent a values obtained from the etched system. The red cirles

depict a values corresponding to MCF taken in billiards defined on a GaAsjAlGaAs

heterostructure. The dashed line is the same guide to the eye that was provided

in Fig. 3.3. All of the 116 a values of the 14 devices analyzed on the two different

heterostructures lie on the same Q curve. Clearly the structure of the MCF does

NOT depend on the potential profile as predicted [12].
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Figure 3.7. The Q curve: the specral exponent a plotted against the empirical
parameter Q defined as the ratio of the average energy spacing to the average energy
broadening. The dashed line is provided as a guide to the eye.

This prompts a natural question, what then is producing the chaos required for

a mixed phase space? If the chaos is not induced by the wall geometry or potential

profile, that only leaves something within the billiard itself to produce the chaos.

One explanation is that perhaps these clean billiard systems are not quite as clean as
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initially advertised. It is plausible that material induced disorder is playing a much

more prominent role than was considered. Both of these systems utilize modulation

doping to separate the donated electrons from their donors. This was intended to

provide a clean 2DEG without significant scattering from ionized donors [19]. Perhaps

modulation doping was not as successful as intended. Perhaps the ionized donors

still induce some scattering in the 2DEG. Scattering significant enough to promote

chaotic trajectories. Is it possible that modulation doping was successful in increasing

mobility, but unsuccessful in the sense that ionized impurities, though remote, remain

a dominant source of scattering? This question is addressed by deliberately looking

for devices in which the material induced disorder is present within the plane of

electron travel.

Charting a in Diffusive and Quasiballistic Wires

The idea that remote ionized donors create small disturbances in the otherwise

smooth plane of the billiard has been well documented[36-39] . While this scattering is

reduced significantly with modulation doping, it is not eliminated. The result is that

these ionized impurities create small perturbations in the otherwise smooth plane

of the billiard. This roughens the potential, creating a rolling landscape through

which the electron waves travel. The "hills" in this landscape are small, and lead

to small angle scattering. It is estimated that roughness of the landscape is an

order of magnitude smaller than EF [36]. In Ref.[28] we proposed that the role of the
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billiard walls is to repeatedly reflect the electron waves through this roughened terrain.

This process iterates the small angle scattering, thereby amplifying the effect. This

model should also hold for quasiballistic and diffusive wires. This section presents

an experimental investigation of conductance fluctuations measured on four diffusive

wires and a quasi-ballistic wire

Table 3.1 lists the electron transport parameters of the wires considered in this

investigation. The measurements used to obtain the listed parameters are described

in detail elsewhere [40-45]. Traditionally, wires are categorized into three transport

regimes: the diffusive regime (defined by the condition fJ1 < (W, L) where Wand

L are the width and length of the devices conducting channel), the quasi-ballistic

regime (W < fJ1 < L) and the ballistic regime (fJ1 > (W, L)) [46].

Device Regime L(f-Lm) W(f-Lm) eM (f-Lm) T (K) T p (ps)

A Diffusive 2 0.30 0.050 1.5 - 4.2 2 - 6
B Diffusive 1.3 0.60 0.041 4.2 - 50 0.1 - 0.5
C Quasi-Ballistic 30 0.55 0.97 0.04 - 4 125
D Diffusive 10 0.26 0.030 4.2 - 37.5 0.2 - 0.3
E Diffusive 3.5 0.96 0.36 1.4 7

Table 3.1. Details of the wires: regime, wire length (L), lithographic width (W),
mean free path (fJ1)' temperature range (T) over which device measurements were
made and phase coherence time(T¢)

Wire A is an n+-GaAs (Ref .[42]) diffusive wire ( W, L, > f J1 ), so it does not have

"remote" ionized donors. Rather the dopants are situated within the conduction

channel. The wire is made of a layer of 5e doped GaA5 sandwiched between layers of
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undoped GaAS, and was grown using metal organic chemical vapor deposition. The

wire was defined by electron beam lithography (EBL) and dry etching techniques.

A consequence of the 'in plane' dopants is that scattering off of the impurities will

lead to large angle specular scattering as opposed to the gentle soft angle scattering

described in the 2DEG billiards. This is a marked difference in the level of scattering

induced by the impurities. The MCF are shown in Fig. 3.8. This data was taken

and provided to us by K. Ishibashi, a collaborator at Osaka University, in Osaka,

Japan [42]. The reason for the mean conductance G(B) - G(B = 0) being plotted

in arbitrary units is that our collaborators no longer had access to the raw data files,

and were only able to supply us with an rather high resolution copy of their original

plot. This required development of a program that would digitize the data. The full

range of magnetic field was known, thus the B(T) axis is accurate. The MCF of

Fig. 3.8 are taken at temperatures (top to bottom) of 1.52 K (blue), 2.92 K (red), 4.2

K (green) and 62K (tan) as indicated in the label. The structure of the 62K (bottom,

tan trace) is attributed to the geometry of the wire and is illustrative of the classical

background trend.

A box count, using the variational method, was conducted on each trace and the

resulting scaling plot for the 4.2 K trace is shown in Fig 3.9. The fractal dimension

D F is obtained from the slope of this line, over the relevant region. The range of

the fractal region indicated by the labels Bu and BL which represent the upper and

lower cut-offs respectively. B u ensures that the box counting statistics are accurate
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Figure 3.8. MCF of diffusive wire A taken at various temperatures. Temperatures
are indicated by the label.

by establishing the largest box size used to determine D F . Considering box sizes that

are too large will result in an over estimation of D F , as it is likely that any trace

will occupy most or all large boxes. Traditionally Bu is picked such that the largest

box size requires no less than 49 squares to cover the trace. BL is determined by the

period of the smallest features in the MCF. Estimation of this period is a matter of

locating fine scale features in the MCF, and calculating the peak to peak difference

in B. If small scale fluctuation have peaks at B I an B2 then those fluctuations have

period bB = IBI - B2 1 The log of this value sets BL , BL = log[bB]

Wire B is a MBE grown n+GaAs diffusive wire defined by EBL followed by

reactive-ion etching [41]. MCF of this device were taken by C. V. Brown, a collaborator

at Nottingham Trent University, U. K. and provided to us for analysis. Figure 3.10
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Figure 3.9. Scaling Plot of diffusive wire A. Bu and BL indicate the upper and lower
cut-offs respectively.

shows the MCF (left) and fractal analysis (right) of this wire. Traces were taken at

(top to bottom) 4.2 K , 12 K and 20 K. The traces have been vertically offset for

clarity. In each trace, the actual zero field conductance was G(O) = 8.5(2e2 jh). Again

the complexity of the fluctuations reduces as the temperature is increased.

In the main portion of the right hand side of Fig. 3.10 is the (color matched)

scaling plot for each of the 3 temperature's shown on the left. These plots have also

been vertically offset for clarity. Only the fractal region is shown here (Le. between

BL and Bu ), though this spans for nearly 1.5 orders of magnitude, a rather long

scaling range for physical fractals [5]. The D F values, obtained by the slope of these

plots are 1.53 (red, 4.2 K), 1.39 (blue, 12K), and 1.26 (red, 20 K). Since a = 5 - 2DF ,
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the trend of decreasing DF with increasing temperatures translates to an increase in

ex with an increase in temperature, consistent with the trend observed in the billiards.

The inset in the scaling plots (Fig. 3.10 right) shows the results of spectral analysis

on the 4.2 K (red) trace. The scatter is typical for spectral analysis, and as such, in

practice the ex value is usually obtained through DF . The solid line is a fit to power

law 1/ fa with ex value of 1.94 obtained by the expression ex = 5 - 2DF .
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Figure 3.10. Left: MCF and analysis of diffusive Wire B. Temperature ranges
from (top to bottom) 4.2K (red), 12K (blue) and 20K (green) traces have been
vertically offset for clarity. Right: color matched scaling plots for Wire B at various
temperatures (offset for clarity). Inset: spectral analysis of the 4.2K conductance
trace showing a fit for the spectral exponent ex given by ex --= 5 - 2DF with DF

determined using the box-counting technique.

'Wire C is a quasi-ballistic wire (W < R.J.L < L) that is defined by wet etching

a two-dimensional electron gas (2DEG) formed at the interface of a GaAs/AlGaAs

heterostructure grown using molecular beam epitaxy (MBE) [40]. Fig. 3.11 (left)

shows MCF taken at four different temperatures for this wire. These MCF were
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taken by J. P. Bird, a collaborator now at the University at Buffalo, New York, and

provided to us for fractal analysis. The temperatures are (top to bottom) 42mK

(blue), 246 mK (orange), 622 mK (green) and 910 mK(yellow).3 Once again the

MCF have been offset for clarity. The zero field conductance for each trace (top to

bottom) is 42 mK, G(B = 0) = 2.70 (2e2/h), 2.50 (2e2/h) for the 246mK (orange)

trace, 2.44 (2e2/h) for the 622 mK (green) trace, and 2.41 (2e2/h) for the bottom

(91OmK) trace. Again, as in the other two regimes, complexity of the MCF seems to

fall off as temperature is increased.

On the right hand side if Fig. 3.11 shows the scaling plots for the color matched

traces on the left of that figure. These have also been offset for clarity. The D F value

is obtained as the slope of each line. D F values are 1.60 for the 42 mK (blue), 1.49 for

246 mK (orange), 1.41 for 622 mK (green), and 1.33 for the 910 mK (yellow) scaling

plot. The inset shows the results of spectral analysis of the 246 mK (orange) trace.

The solid line shows a fit to a = 2.02, obtained by combining the scaling plot D F

value and a = 5 - 2DF

Wire D is also an n+ GaAs diffusive wire. Eleven traces of the MCF of this

wire were measured by R. P. Taylor while still at the University of Nottingham,

in Nottingham, U.K. [44]. Temperatures ranged from 4.2 to 37.5 K. Wire E (also

diffusive) was fabricated using MBE techniques in which the undoped GaAs layer is

sandwiched between to Si doped AIGaAs layers and defined by EBL. Three traces

3These MCF were obtained using a dilution refrigerator, capable of reaching much lower
temperatures than our 3He system



3.5 ,------------------, 2.---------------,

81

.c
N-

Q)
~2.5

o 0.2 0.4

B (T)
0.6

1.5

.-0.5
Z
0;
o °.....J
I

-0.5

-1

I

frequency (Testa·,)

-1.5

Log (Lill)
-1

Figure 3.11. Left: MCF at various temperatures for the quasi-ballistic wire. (Wire
C)Traces have been vertically offset for clarity. Temperature ranges from (top to
bottom): 42mK, 246mK, 622mK, 910mK. Right: Scaling plot for device C at various
temperatures. The slope of each line gives the fractal dimension (DF ) of the associated
conductance trace. Temperatures are(top to bottom) 42mK, 246mK, 622mK and
910mK. Traces have been vertically offset for clarity. Inset: Spectral analysis of the
T = 246mK conductance trace showing a fit for ex, given by ex = 5 - 2DF with DF

determined using the box-counting technique.

of this wire were taken at 1.4 K. In this wire the experimenters [43] (K. Ishibashi,

our collaborator from Japan) modified the MCF by illuminating the sample with an

LED. It is well documented that illumination has the effect of increasing the electron

concentration. [19, 47--49].

Figure 3.12 plots the spectral exponent ex for all wires listed in Table 3.1. Wires

A to D all show an increase in ex as the temperature is increased, similar to the

billiards measured above. This plot only shows the data for temperatures below 30

K. The reason for this is that in all cases temperatures above 30 K led to smoothly

varying MCF which no fine scale features, leading to ex = 3 (corresponding to DF
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=1). Although all wires show the increasing trend with increasing temperature, they

certainly do not have the same slope, which would indicate that a is rising with T

in the same manner. Similar to the results discussed with the billiards, this seems to

indicate that a parameter other than T is better suited to chart the evolution of a.

This is further supported by the plot of Wire E (purple squares). These MCF

were all taken at the same temperature (T = 1.4 K) and yet a changes. The change

in a for Wire E can be understood by considering the area that is contributing to the

MCF. Illuminating the wire increases EF from 57.2 meV (dark) to 59.7 meV (long

illumination). Increasing the carrier density means that more of the dopants donate

their electrons, adding more impurities to induce scattering. This in turn will change

the fine scale features of the MCF.

3
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Figure 3.12.. a vs. T for the quasiballistic wire and the 4 diffusive wires.

This raises an interesting question: What is the relevant area associated with
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these wires? In the billiards it was logical to use the active area of the billiard which

was found by accounting for depletion. However in the wires this logic fails. This

is due to the fact that in these regimes ell is always smaller than at least one of

the wire dimensions (L, W). In fact Wire C is 30 p,m long and the electrons cannot

possibly maintain phase over that entire distance. To find the relevant area we turn

to Q. However before that can be done it is necessary to determine the length over

which an electron can be expected to maintain it's phase. This length is called the

phase-breaking length and is determined from the expression: Rcf; = VFTcf;. The Fermi

velocity (VF ) is readily obtained from the Fermi energy (EF ), and Tcf; is obtained by

the correlations field analysis discussed in Chapter II

Using Q to Determine the Wire Area Contributing to the MCF

If the Q curve holds over these regimes, then once a value for 0:' is determined, the

value of Q can ascertained by finding the area A that contributes to the MCF. All

other material properties that appear in Q are known. In this process, it is assumed

that the Q curve does hold. In principle 2 values of Q correspond to nearly all values

of 0:'. Given the relevant parameters of these regimes, it is safe to assume that these

will lie on the steep side of Q (Q < 1).

Wire E was the starting point. Once the 0:' value was known, different areas that

are physically reasonable are inserted into Eq. III.l to see if they would put the Q

value onto the Q curve. When a suitable area is found, that value is labeled AE .
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If the process that was used to obtain AE also places the remaining wires on the Q

curve, than the original assumption that the wires would lie on Q is supported and

justified.

The MCF from Wire E are shown in Fig. 3.13. This data set was also supplied

to us as a rather high resolution image of the published plot and thus needed to

be digitized. Both data sets are shown as an illustration of the effectiveness of the

digitizing algorithm. The top (red) trace was taken while the wire was kept dark. The

middle (green) trace was taken after a short illumination which increased the carrier

density. EF was estimated to increase from 57.2 meV to 57.7 meV. The bottom

(blue) trace was taken after a longer illumination which gave the highest EF of 59.7

meV. Application of the variational method box counting procedure yields D F values

of (top to bottom) 1.31 (red), 1.33 (green) and 1.22 for the bottom (blue) trace.

Conversion to a provides a more intuitive feel for what is happening according to the

high frequency content of the MCF. These values, (again top to bottom) are 2.37 for

the top (red) trace, 2.33 for the middle (green) trace to 2.56 for the bottom (blue)

trace.

With a values at hand, the next step in the process was to try various methods

until obtaining an area A E that would put this wire on Q for all three traces in

Fig. 3.13. Figure Fig 3.14 displays the results of 5 different methods that were tried

to obtain the area contributing to the MCF in wire E. The Q curve shown here is the

same guide to the eye shown in Fig. 3.7. It is interesting to note that the wire area (red
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Figure 3.13. MCF of Wire E. The original rather high resolution image supplied to
us alongside the results of our digitizing program. traces have been offset for clarity

squares) does actually place the points reasonably close to the Q curve (dashed line).

However this process was ruled out as it seems to be physically unreasonable since

RJ.L is roughly 10 times smaller than the length of the wire. This however introduced

the idea that perhaps "phase coherent polygons" should be considered. The phase

coherent triangle method (purple triangles) produced the smallest areas. This was

an equilateral triangle whose perimeter was equal to the phase coherence length R¢.

The next smallest area was produced by a "polygon" method. The area of a
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regular k sided polygon is given by [50]:

(III.3)

Where P is the perimeter of the k sided regular polygon. Using Eq. III.3 with the

perimeter set by R¢ allows the area of a phase coherent k sided polygon A¢,k to be

calculated.

The next method was to determine the area for regular polygons whose side length

was fixed by the mean free path RiL' This was done replacing the perimeter in Eq. III.3

with the relation Pk = kak' Where Pk is the perimeter of a regular polygon with k

sides of length ak. Setting the side lengths to be no longer than ak = R/" allows for

calculation of the polygons area A/",k based on the idea that the side lengths should

be rv RiL' Areas were calculated using both of these methods. The upper bound on

contributing polygons was chosen by the condition A¢,k ~ A/",k for the same number

of sides k. The lower bound was set by the smallest possible regular polygon with

perimeter R¢, a triangle. The area then used to determine Q was the average area of

all polygons with k sides or less that met the criteria A¢,k ~ A/",k.

The results ofthe polygon method are indicated in Fig. 3.14 by the brown diamonds.

Other more self explanitory methods were tried, those being R~ prompted by the fact

that the Polygon method actually scales the term R~, which can be seen by equating

the perimeter P to R¢ in Eq. III.3. The Q values obtained with this choice of area

are displayed as green circles in Fig. 3.14. Finally, the value obtained by the product
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Figure 3.14. Illustration of 5 methods tried to obtain the relevant area contributing
to the MCF of Wire E.

of f¢ and the wire width W was tried, these values of Q are indicated by the blue

circles.

Because both f~ and f¢ x W gave adequate results and should translate to the

remaining wires in a physically realistic manner (i.e. unlike the total wire area) the

method that was settled on was a hybrid "phase coherent polygon" method and

f¢ x W. In this hybrid method the area relevant in Q is chosen as a "phase coherent

subregion" which is defined to be the minimum between f¢ x W, and f~. The results

of this choice of area in determining Q are shown in Fig. 3.15 (left). The dashed line is

the same guide to the eye provided in Fig.3.7. This choice of method for determining

the area places the wires on the same Q curve as the billiards. To emphasize this, on
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the left side of Fig. 3.15 is a plot of the a values for all billiard geometries shown in

Fig. 3.4 as well as the a values for the wires.

The a values of all the geometries of Fig. 3.4 as well as those of all the wires listed

in Table 3.1 are plotted against Q in Figure 3.15
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Figure 3.15. Left: a values for Wires A - E plotted against Q value obtained using
the phase coherent subregion method. The dashed line is the same guide to the eye
used in Fig. 3.7. Right: Q curve will all device geometries shown in Fig. 3.4 as well
as wires A-E
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Conclusions

This Chapter began by introducing the Sinai billiard as a device that would exhibit

both stable and chaotic trajectories. It was expected, by analogy to the classically

chaotic system, that this billiard would lead to fractal conductance fluctuations due

to a mixed phase space. Indeed it did, however it was shown that 10 other billiards

defined in the same heterostructure produced FCF as well. Furthermore 5 additional

billiards defined in a similar heterostructure were also shown to produce FCF. On top

of that, when the ex values associated with the FCF were plotted against the empirical

parameter Q, All 161 FCFs were shown to lie on the same curve. The striking result

that all the ex values lie on the same Q curve was contrary to predictions[32, 51], and

rules out billiard wall geometry as the origin of the chaos necessary to produce the

FCF.

Other researches have predicted that the MCF would be sensitive to the potential

energy profile of the billiard walls [12]. However, etched walls were shown to generate

hard potentials [22], thus eliminating soft wall induced chaos. Especially in light of

the fact that the 9 soft walled and 5 hard walled square billiards together produce an

additional 116 MCF traces in which the associated ex values lie on the same Q curve

This led to the proposal that perhaps the 'clean' billiard systems were more

prone to material induced scattering than suspected. Remote, or modulation doping

provides a buffer layer between the donor atoms and the 2DEG in an effort separate

the electrons from their donors, thereby reducing scattering by the ionized impurities
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left behind (the donors). It was proposed that these ionized impurities altered the

potential landscape producing small angle scattering that is iterated by reflections

off the billiard walls. Devices in which material induced scatterers lie in the plane

of conduction were shown to produce MCF whose a values lie on the same Q curve.

This supports the proposal that the origin of the chaos in the devices IS material

induced scattering. The role of the walls is to iterate this process. The iterated non

linear behavior then exhibits fractal scaling patterns, akin to the examples presented

in Chapter 1.
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CHAPTER IV

THERMAL CYCLING

Introduction

The previous Chapter focused on charting the spectral exponent 0:, which characterizes

the statistical nature of the magnetoconductance fluctuations. Specifically, the empirical

parameter Q = ~:: was used as a measure of the discreteness of the energy levels in

a device. When plotted against Q, 0: was shown to follow an identical trend regardless

of the device geometry or the steepness of the potential profile. Furthermore, the same

trend in 0: was shown to occur not only in the ballistic regime, but also to carryover

the quasiballistic and diffusive regimes as well. This implies that material-induced

scattering events playa pivotal role in the electron dynamics whether the scatterers

are in plane, producing large angle scattering or they are remote, leading to small

angle scattering. The experiment described in this chapter will further investigate

the origin of the 'universal' conductance fluctuations. Noting that Ketzmeric was

able to show that a mixed phase space was a requirement for fractal conductance

fluctuations [12], this experiment will address the question "what is providing the

chaos ?" To begin, this Chapter returns to the infinite horizon billiards mentioned in

Chapter I
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Revisiting the Infinite Horizon Billiards

The Sinai billiard can be described equivalently by either schematic of Fig. 4.1.

In (a) the billiard is represented in analogy to a semiconductor billiard, whereas the

schematic in (b) represents repeated reflections off of the billiard wall as an array

of scatterers separated on all sides from each other by an equal distance. Let L

represent the distance between each of the scatterers shown in Fig. 4.1 (b). If each

scatterer has radius r, and the distance between the edges of two adjacent scatterers

is W, then there is a channel of width W = L - 2r in which a particle may move

freely. If the square billiard in Fig. 4.1 (a) has side length L and that scatterer has

raduis r, then both (a) and (b) would describe the same billiard, and thus exhibit

the same dynamics. The schematic of Fig. 4.1 (b) represents an 'infinite horizon'

billiards in that there are possible trajectories which would not reflect off a billiard

wall [52]. Reflections off of billiard walls of Fig. 4.1 (a) serve to repeat collisions with

the scatterer. This replicates the multiple scatterers of the array in (b). Researchers

in Ref. [52] found that the Sinai billiard was superdiffusive, in that the mean square

of the displacement grows faster than linearly [53].

There are, of course, some trajectories for which this superdiffusive transport

seems logical, if not expected. Consider for example a trivial trajectory in which a

particle's initial velocity is oriented exactly parallel to and in the middle of one of

the channels in Fig. 4.1 (b). Such a trajectory would certainly be expected to travel

faster than a random walk « x 2
( t) > grows linearly). In fact the other significant
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Figure 4.1. Two representations of the Sinai billiard a) 'Itaditional schematic ofthe
Sinai billiard and b) analogous schematic, illustrating the Sinai billiard as an infinite
horizon billiard.

contribution of Ref. [52] was that the authors were able to show that this superdiffusive

transport held even when such trivial trajectories were forbidden. Furthermore, they

were able to show that this behavior held for a modified Sinai billiard such as that

illustrated in Fig. 4.3.

Consider the two models of billiards depicted in Fig. 4.2. Panel (a) shows the same

infinite horizon Sinai billiard shown in Fig. 4.1, in which superdiffusive (i.e. enhanced

diffusion) transport is expected. If the location of the scatterers is randomly oriented

the result is regular diffusive transport.
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() () ()

b

Figure 4.2 .. Regular (a) and randomly oriented (b) Sinai scatterers



94

Panel (a) of Fig. 4.3 shows the infinite horizon version of the Sinai billiard in

which each of the scatterers has a radius r, and is situated on a square lattice with

a center to center distance of L. The modified version (panel b) has each of the

scatterers randomly displaced. The magnitude of the displacement is no greater than

~ < (L/2 - r) which ensures that there will be channels allowing free motion. The

modified Sinai billiard, with the above constraints, was shown to exhibit superdiffusive

transport [52].

a

Figure 4.3. (a) Regular and less randomly (b) oriented Sinai scatterers. The red
crcles in (b) are constrained such that the magnitude of displacement is limited by
is < L/2 - r, but are randomly oriented in direction.

To illustrate the difference in transport between the random distribution of scatterers

in Fig. 4.2 and the constrained random distribution array in Fig. 4.3, consider the

feasibility of long range trajectories between scattering events. The completely disordered

array will result in a Gaussian distribution of trajectory lengths with dynamics well

described by Browinan motion. Long range trajectories will be much more likely

in the constrained array. Enhanced diffusion implies that a trajectory will tend

towards continuing its current direction. If this enhanced diffusion is sufficiently
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strong, it leads to a power law distribution of path lengths, called Levy Flights [8, 54].

Figure 4.4 distinguishes an example of results for these types of motion. The Gaussian

distribution, leading to Brownian motion, is shown alongside a Levy flight with the

same number of steps. Both paths were started at the same origin in the upper left

corner of their respective panels, and run through the same number of steps. The

color changes to indicate increasing number of steps, beginning with red and ending

at violet.

L(~vy Distribution

It

Gaussian Distribution

\,

Figure 4.4. Simulation of a (left)Levy flight and (right) Brownian motion. In each
case, the path starts in the upper left hand corner (indicated by red) and continues
for the same number of steps before terminating (violet). The step length follows a
power law for the Levy flight and a Gaussian distribution for the Brownian motion.

Thermal Cycling Experiment

The constrained disorder of Fig. 4.3 offers an appealing analogy to our billiard

systems. The modulated doping techniques used to enhance carrier density and

reduce large angle scattering were expected to provide a very clean conducting plane

in the 2DEG. However this chapter proposes that remote ionized donors playa
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more vital role in the electron dynamics than previously considered. Modulation

doping techniques do reduce scattering from the ionized donors. However they do not

eliminate scattering. Since the donors are remote, rv 20nm above the 2DEG in our

etched billiards, the Coulomb interaction due to the ionized donor does not act as a

hard scatterer. Rather, it alters the potential landscape in the 2DEG such that rather

than a flat plane, electrons traversing the 2DEG are subject to an effective potential

that has a rolling terrain. In this view, the hills and valleys are much smaller than

EF , promoting small angle scattering throughout the 2DEG. This effective potential

was introduced and imaged in 2001 by researchers at Harvard University and well

publicised [37-39]. Furthermore, our collaborators at the University of Cambridge,

UK, obtained scanning probe images of the wavefunctions in an AIGaAs/GaAs billiard,

and show that they were fractal [55]. The experiment described in this chapter seeks

to answer the question "Why are the spatial patterns formed by the wavefunctions

fractal?". The proposition is that the role of the billiard walls is to iterate the

small angle scattering resulting from the roughened potential terrain. By feeding the

traversing electrons back through the hilly terrain, this iterated small angle scattering

is what leads to the fractal nature of the MCF.

Background

To remove any doubt that the softness of the potential is not contributing to the

fractal character of the MCF, this experiment is conducted on the etched billiards. A

schematic of the heterostructure is presented alongside an atomic force micrograph of
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a square billiard representing the geometry of the billiard on which this experiment

will be focused.

Insulation ­
"t"''''

Figure 4.5. Left:GaInAs/InP heterostueture of the etched billiard system and Right:
Atomic force micrograph of the billiard geometry investigated in the thermal cycling
experiment.

Figure 4.6 shows the electron phase coherence length, Rep, as a function of temperature

for the square billiard. The phase coherence length was obtained using the Correlation

Field method discussed in Ch. II to determine T¢ and then using the relation £¢ =

VF T¢. This plot illustrates that £¢ remains at least as large as the billiard width up

to 7K.

Geometry Induced Background of the MCF

In the right hand section of Fig. 4.7, are several MCF for the square billiard shown

schematically at the top of that panel. Traces were taken at temperatures of (top to

bottom) 12K, 5K, 2K, 1K, 500mK and 12 K as indicated below each trace in that

panel. Electronic transport measurements were taken in a four terminal, constant

current configuration using standard AC lockin techniques at a frequency of 37 Hz.
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Figure 4.6. Phase breaking length(f¢) plotted against temperature (T) in the etched
square billiard shown in the scanning electron micrograph inset.

The top trace, taken at 12K, is relatively smooth because the fine scale quantum

interference effects of conductance G with respect to applied magnetic field B have

been scattered away by thermal excitation. What remains is a background variation

in G which is proposed to be induced by the device geometry. In support of this

proposal, a similar cascade of MCF taken at the same temperatures (indicated in the

leftmost panel) for billiards with different shapese are shown in the remaining panels

of that figure.

The geometry of each device is indicated schematically at the top of the panel.

In the center panel is a triangle exhibiting horizontal symmetry about its midline.

An electron entering the billiard from the left hand side of this billiard is exposed

to the same local geometry whether it travels up or down, and thus this billiard will
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be referred to as the UD triangle (Up Down symmetric) or simply UD. Similarly,

the billiard schematically shown in the rightmost panel will be referred to as the LR

triangle or LR since it is symmetric with respect to a vertical axis running from the

center of its base through its apex.
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Figure 4.7. Magnetoconductance fluctuation traces taken at various lattice
temperaures of a square billiard and two triangular billiards illustrating the geometry
induced classical background features of the MCF. 'Traces have been offeset for clarity
In each case lattice temperatures are (top to bottom)12K, 5K, 2K, 1K, 500mK and
237mK.

While the background trend (i.e. long magnetic period oscillations) is the same for

traces within each panel of Fig. 4.7 , it is quite different when comparing individual

panels representing different billiards. The fact that this background trend remains

well after the fine scale features have been suppressed by warming the billiard to 12K

indicates that it has a classical origin. This conjecture is further supported by Fig. 4.8

which shows MCF traces taken on different billiards which are on different Hall bars
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and at different temperatures. Both MCF displayed in Fig. 4.8 were taken on square

billiards that were fabricated to lithographically have the same dimensions. The top

(red) trace is the same data set shown in the 12 K square billiard trace of Fig. 4.7 (top

left trace). The blue trace in Fig. 4.8 was taken on the Hall bar named H3 which was

used in the thermal cycling experiment to be described below. Despite the fact that

these two billiard lie on different mesas, the background trend is remarkably similar,

in contrast to the marked difference in the long magnetic period smoothly varying

trends of the square billiards and the UD or LR triangles.
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Figure 4.8. MCF of two square billiards on different Hall bars taken at different
temperatures but with roughly the same mean conductance. A possible source of the
small variations in the backgrounds could be the differing mean conductance values.

The small deviations in the background trends of Fig. 4.8 could be a result of

differences in depletion due to the edge states near the etched barrier. In that case,
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the small differences are simply a consequence that the billiards, while lithographically

designed to be the same, had very minor variations in later steps of the fabrication

such process (i.e. etching, insulation or top gate deposition). Alternatively, it may

be a consequence of the fact that the two traces were taken at slightly different

gate voltages. In the case of the red trace (HI), the mean conductance was <

G >f"'V 2.8(2e2/h), whereas < G >f"'V 3.5(2e2/h) in the blue (H3) data set. The

small difference in < G > may be responsible for the slight discrepancies in the

two background trends. To illustrate this, consider two traces taken at different

conductance plateaus. Conductance through a QPC is known to be quantized in units

of 2e2/h [18, 19], and was first shown to exhibit this behavior in an AIGaAs/GaAs

systems simultaneously by two groups [56, 57]. In both experiments the application

of gate voltage was used to reduce the width constriction of the QPC, allowing

conductance through more modes to transport through the device. A similar plot

of the conductance through the square billiard HI as a function of gate voltage is

provided in Fig. 4.9. Note that the quantized steps do not occur at integer multiples of

2e2
/ h. This is presumably due to the fact that the construction of a billiard requires

an additional QPC, and conductance through the billiard is further suppressed by

interference within the confines of the billiard. Nonetheless, the steps themselves

are nearly separated by 2e2
/ h, and further discrepancies can be accounted for if

one subtracts off the resistance of the bulk material between the QPCs and Ohmic

contacts which are assumed not to contribute to the resistance [46].
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Figure 4.9. Conductance vs. gate voltage for a square billiard. The blue trace is
taken at base temperature, while the red trace is taken at T= 5K. The (color matched)
arrows indicates plateaus in conductance that magnetic field sweeps of Fig. 4.10 were
taken.

The arrows in Fig. 4.9 indicate two plateaus in conductance. The arrows indicate

the gate voltages that the MCF of the square billiard on mesa H1 shown in Fig. 4.10

were measured. The bottom (blue) trace was taken on the lowest plateau of Fig. 4.9

indicated by the blue arrow. Similarly the red arrow on Fig. 4.9 indicates the plateau

on which the top (red) trace was taken. The typical experimental procedure is to

perform a gatesweep, as shown in Fig. 4.9, to find a gate voltage at which stable (i.e.

fairly long) plateaus occur, ensuring the magnetic field sweep (i.e. MCF trace) does

not coincide with a transition in the number of modes in the QPC. The effect of the

number of modes through the billiard can be seen in Fig. 4.10. The background trend
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is considerably more pronounced in the high mode (red) trace as compared to the

low mode (blue) trace. In particular, the dip in zero field conductance (known as a

weak localization peak and due to coherent backscattering of electrons [18, 19, 58]) is

much more pronounced in the high mode trace. This can be interpreted as a higher

number of modes leading to more pronounced backscattering. In each case (i.e. high

or low mode) the backscattering is suppressed by a non-zero magnetic field. The

data sets in this figure have not been offset to emphasize the difference in the mean

conductance « G » of each trace. This is an extreme example of the difference

that can occur in the MCF as a result of altering the number of accessible modes in

the billiard. In the case of Fig. 4.10 the high mode trace was taken three plateaus

higher (i.e. 6 more modes in each QPC) than the low mode trace which corresponds

to < G >rv 2(2e2 j h). It is extremely unlikely that the small difference in < G > in

the two traces of Fig. 4.8 would lead to any more than a 1 plateau difference, thus

leading to background trends more similar than those shown in Fig. 4.10. Again,

aside from the difference in the magnitudes of the weak localization peaks, the overall

background trends of the two traces in Fig. 4.10 are quite similar. Considerably more

similar than a comparison of the square and the UD or LR triangle (or comparison

of the two triangles).

Further support for the background trends being geometry induced is offered

in Fig. 4.11. In this figure the 12K and base temperature (236 mK) traces of

the square billiard and the UD triangular billiard are reproduced along with insets
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Figure 4.10. MCF in a square billiard taken at different conductance plateaus.
Traces taken at base temperature (rv 240 mK), The color of the trace matches the
arrows in Fig. 4.9. The traces Have NOT been vertically offset.

schematically depicting the electron trajectories leading to a few selected features of

each background trend. In each case, the electron trajectory has been approximated

based on the ratio of the magnetic field B at the indicated arrow to the cyclotron

field Beye. The radius of the circular trajectories that undergo specular reflection is

determined by the corresponding ratio to r eye, defined as the radius of the circle that

fi
circumscribes the billiard. The relation between B elJe and r ClJe is Beye = v'21f n s--.

e reye

Consider for instance the middle schematic of each billiard. Both show a possible set

of trajectories of an electron in a magnetic field applied normal to the plane of the

billiard with magnitude B = Bcye. In the case of the square billiard, one possible

trajectory is that of a single reflection off the top wall resulting in rapid exit from
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the billiard, giving rise to an enhanced conductance at that B field. In contrast,

the trajectory associated with B = Bcyc for the triangular device results in reduced

conductance.
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Figure 4.11. MCF traces of the square and triangular billiards taken at 240mK and
at 12K are offset for clarity. Insets: schematic representations of possible trajectories
geometrically influenced by the billiard walls, corresponding to local maxima and
minima in the conductance. Trajectories are based on the ratio the magnetic field
to the field that allows a single circular trajectory to circumscribe the billiard (Bcyc).
For the square billiard the fields shown are (left to right):1/2 Bcyc, Bcyc , 3/5 Bcyc .
For the triangular billiard 1/4Bcycl Bcyc, and 2BC1JC '

The differences between the trends of each billiard illustrates that the shape of
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the billiard influences the background trend of the device. The fact that the same

background trend persists in the MCF taken at 12 K indicates that this background

is classical, and not a quantum interference effect, because the phase-breaking length

is smaller than the billiard width at that temperature. The similarities between the

background trend of the two different square billiards corroborates this, especially

in light of the fact that the differences in those traces are far more subtle than the

differences in traces from the same billiard taken at different gate voltages. Apart from

the notable difference in the weak localization peak, which is a quantum interference

effect, the overall background of the two traces taken at different gate voltages is quite

similar. This serves as further indication of the classical nature of the background

trend. Finally, trajectories that either lead to a reduced or enhanced conductance are

illustrated to correspond to major peaks and dips in the MCF, consistent with the

proposition that the 12 K (top) traces in Fig. 4.7 represent a classical background

trend that is induced by the billiard geometry. Together this represents strong

evidence to establish that the role of the geometry of the billiard wall configuration

is to define the background trend of the MCF.

Effects of Bringing a Billiard to Room Temperature

Having addressed the long range smoothly varying background trend of the MCF,

this section will focus on the fine scale fluctuations (i.e. features of period rv 0.1

T) superimposed onto the geometry-induced background. In addition to dictating

the background trend, the billiard walls (regardless of their geometry) repeatedly
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reflect electron trajectories back across the electrostatic potential landscape that

forms the conducting plane of the billiard. Modulation doping ensures that the

potential landscape is rather smoothly varying, producing slight (i.e. small angle)

alterations in the trajectories. Thus the walls of the billiard play the additional

role of providing iteration, in the sense that they promote the replication of chaotic

scattering processes.

It is well documented that the conductance fluctuations are repeatable [32, 51, 59].

MCF traces taken on the same device separated by several months are known to have

the same fractal dimension. This has been illustrated previously by two MCF traces

taken a month apart on the same billiard. These two traces are presented again in

the left hand panel of Fig. 4.12. During the month between these two MCF traces,

the billiard was kept at low temperatures. The right hand side of Fig. 4.12 shows

the results of bringing a billiard to room temperature between magnetic field sweeps

(MCF measurements). Although the overall statics of the MCF, as measured by DF ,

remain unchanged, when a device has been brought to room temperature between

MCF sweeps, the fine scale features of the MCF are often quite different. This is

illustrated by the right hand panel of Fig. 4.12 which shows three MCF data sets

taken on a square billiard (H3). These MCF were taken after successive trips to room

temperature and back to base temperature. The difference in the fine features of

the MCF are quite noticeable when comparing the traces separated by trips to room

temperature.
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Figure 4.12. The effect of room temperature thermal cycling on MCF. Left: MCF
of a square billiard (HI) taken rv 1 month apart while the sample temperature was
kept at T :::; 12K. Right: Three MCF of a different square billiard (H3) taken within
2 weeks of one another. The sample was warmed to room temperature and returned
to base between measurement.

The traces on the right hand side of Fig. 4.12 were taken during a two week period

of this experiment. After the data set represented by the blue trace was measured,the

billiard was allowed to warm to room temperature. Upon being brought back to base

temperature, the data represented by the red trace was measured. This process was

repeated prior to measuring the data represented by the green trace. In contrast the

traces on the left had panel of the same figure were taken nearly a month apart during

which time the billiard temperature was only raised as high as 12 K. Specifically, on

separate magnetic field sweeps during that experiment the device temperature was

controlled at 1K, 5K, 8K,(twice) as well as 12K.

Despite the differences in the fine scale features of the data sets in the right panel of

Fig. 4.12, all three of those traces have the same fractal dimension. This is evidenced
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in Fig. 4.13 which shows the scaling plot resulting from a variational box count on

the traces in the right hand panel of Fig. 4.12.
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Figure 4.13. Scaling plots of the three (color matched) MCF traces of the right
hand panel of Fig. 4.12. The fractal dimension D p is obtained from the slope of this
plot.

The data points in the above scaling plot are color matched to their corresponding

data trace in Fig. 4.12. The scaling plot data has not been offset, but has been

truncated to display only the fractal region (i.e between BLand Bu ). The scaling

plots are identical, within the noise level, and their slope defines the fractal dimension

(D p ) of the MCF. Clearly Dp is the same for all 3 magnetic field sweeps and shows

that the deviations in the fine scale features that result from bringing the billiard

to room temperature between conducting magnetic field sweeps (at 240 mK) do not
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alter the statistics ofthe MCF. These fine scale changes are not noise, as is evidenced

by the two month long separated traces shown in the right hand panel of Fig. 4.12.

It is clear that raising the billiard to an intermediate temperature Ii as high as

300 K has a very different effect on the fine scale features of the MCF than raising

to say 12K. The fine scale features are critically sensitive to the precise configuration

of the scattering sites, created by the impurity induced potential landscape [58]. One

way to envision this is to imagine an electron traversing the billiard in the presence of

soft angle scatterers. The trajectories through the billiard will depend on the exact

geography of the scatterers. Since the MCF arise due to interference of wavefunctions,

slight alterations in path length will yield alterations in the fine scale features of the

MCF. For this reason, the MCF are often referred to as a "fingerprint" of the precise

configuration of the scattering sites [51, 58, 59].

The process of warming the billiard has been previous described as an annealing

process that redistributes the scattering configuration of impurities [58]. It is possible

that the small changes in the fine scale features that occur as a result of warming to

room temperature involve a re-distribution of the hills and valleys in the potential

landscape. The structure of the potential landscape is a result of the charge state of

the individual donors in the doping layer. These small hills and valleys are acting

as nanoscopic Sinai diffusers, and altering their location slightly is consistent with

the "mildly disordered" modified infinite horizon billiard represented in Fig. 4.3. For

instance, if two neighboring donors "swapped" an electron (i.e. each changed their
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charge state) then where there was a hill, there would now be a dip in the potential

landscape, and vice versa.

The MCF are a result of wavefunction interference due to the phase differences that

accrue as as an electron traverses the billiard. Small alterations in the configuration

of the terrain will lead to small changes in the path lengths of an electron's journey

through the billiard. Consequently, this will result in a slight difference in the

accumulation of phase, which is precisely what leads to the interference that produces

fluctuations in the conductance (i.e. MCF).

The experiment this chapter describes is designed to address the proposal that

bringing a billiard to room temperature introduces enough thermal energy to re­

distribute the precise scattering configuration of the impurities (Sinai diffusers). The

fact that D p remains static despite this reconfiguration seems to imply that statistically

the system does not change. In other words, bringing a billiard to room temperature

does not change the number of dopants that are contributing to the roughening of

the potential terrain. However the precise configuration of this terrain does change.

More precisely the dopants themselves do not need to relocate, rather some of them

will change their charge state.

There are two mechanisms that can accomplish this. Either a neutral donor

becomes ionized, and vice versa, thus maintaining the statistics of the potential

landscape. Alternatively the presence of an additional trapped state could accommodate

the needed alterations in a similar manner.
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Si is known to exhibit such a trapped state, which is a deep donor level known as

a DX center [60, 61]. The origin of the name DX is that the trap is formed deep

within a substitutional donors atom (D) and an unknown lattice defect (X). DX

centers are associated with the donors in III-V semiconductors. Evidence of a DX

center in InP doped with S has been reported [62]. Similar traps in InAIAs/lnP were

reported, but these researchers concluded that the trap was not a DX center[61].

Regardless of the exact form of the trap, a trapped state remains a candidate for the

reconfiguration of the scattering terrain.

This is an intriguing model. However with the data set provided thus far we cannot

answer the question: How much energy is needed to produce the redistribution, and

is there a threshold energy, or is the redistribution more of a smooth transition?

Furthermore the scaling plots of Fig. 4.13 clearly indicate that D F ( thus a ) cannot

indicate the presence of such a re-distribution, though the MCFs themselves can, as

evidenced by the traces on the right hand side of Fig. 4.12.

The Experiment

To address the question of the energy requirement necessary to bring about the

redistribution, the following experiment is performed. The billiard is brought to base

temperature, and a base temperature magnetic field sweep is conducted to measure

the MCF. The sample is then brought to some intermediate temperature Ii, and held

there for a period of time tHo The billiard is then brought back to base temperature



113

where another MCF data set is measured. This process is repeated for a variety of

TiS, thereby building a catalog of pairs of base temperature traces that have been

warmed to some Ti and then cooled back down between data collections.

Prior to each magnetic field sweep a gate voltage sweep was performed to ensure

that for each pair of Ii separated data sets has the same number of modes in the

QPC. Magnetic field sweeps were conducted at 2 plateaus of the G vs. Vg plots. High

mode (n=6) and a low mode (n = 2) for each Ti . The value of tH was· fixed at 30

minutes throughout this experiment. A sample of each of the two modes MCF are

shown in Fig. 4.14. The High mode trace is indicated in red and the low mode is in

blue. The blue (low mode) trace has been vertically offset for clarity.
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Figure 4.14. An example of the high mode (red) and low mode (blue) MCF taken
during this experiment.
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Results

Figure 4.15 shows a sample of the data collected. Three pairs of traces are shown,

separated by (bottom to top) Ti = 240 mK, 115 K and 300 K. The bottom pair of

traces in the main figure were held at base temperature between measurements and

traces are virtually identical.
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Figure 4.15. Comparison of MCF in the square billiard after being warmed to
3 intermediate temperatures (Ti ). Between each trace the billiard was held at the
temperature T;. for 30 minutes before being brought back down to base temperature
and a magnetic field sweep was obtained. Traces have been off set for clarity. Traces
in the bottom pair were taken while the billiard remained at base temperature. Top:
Magnified comparison of traces taken with Ti=115 K (green and black) and T;. =300K
(black an red)
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The pair oftraces separated by Ti = 115 K are quite similar in fine scale structure

as can be seen by comparison of the middle pair of traces in Fig. 4.15. However,

when 1i is above 120K as in the top pair of traces, the fine scale fluctuations are

quite different. This distinction is made more clear by examining the small range of

magnetic field as shown in the top plot of Fig. 4.15. Once again, a variational box

count analysis cannot probe the thermal re-distribution of the Sinai diffusers. This is

most likely because the bulk qualities (i.e. M, £f.t, n s ) are consistent in each magnetic

field sweep. Also there is no reason to expect that T¢ nor £¢ will change. The sample

is returned to base temperature after being held a 1i and gate sweeps ensure that

~ is set so that the number of modes and EF are consistent within pairs of traces.

Indeed, if there were a change in T¢ this would result in a change in Q and D F would

be sensitive to it.

To quantify the difference in the fine scale features of two traces R1 and R2 , the

point by point root mean square of their differences is calculated. It is important to

ensure that each trace has the same mean value of resistance < R >. Subtracting

< R i > off of each trace will give both traces a mean value of O. In essence this is the

measure of the deviation of R2 with respect to R 1, hence the name CJ:

(IV.l)
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Figure 4.16 illustrates the results of the correlation analysis by plotting the value

of (5 (labeled Corr) against ~ for both the high(red) and low (blue) mode traces. Note

that the correlation analysis is done on the resistance traces (in Os), directly obtained

from our measurements rather than the conductance G. 1 Thus, the resulting lower

magnitude (5, or apparently better correlation of the high field MCF is expected since

a higher < G > means a lower < R >. For both modes however, there is a marked

transition at rv 120 K .
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Figure 4.16. (5 plotted against Ti for both the high (red) and low (blue) mode traces.

To further quantify this transition we employ a correlation function defined as:

(IV.2)

Ie is the parameter most often reported in literature
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Where it is as defined above. The term f:i.R(B) is a normalization factor inserted

so that the value of F ranges between 0 and 1. The value of f:i.R(B) was determined

as follows. Traces that have been separated by Ii =300 K (i.e. room temperature)

are defined to be completely uncorrelated since this represents the full transition that

is to be quantified. Similarly, traces separated without a trip to an intermediate

temperature, such as back to back sweeps at base temperature are identical, and thus

have complete correlation, so F = 1 for Ii f"'V 240 mK.

f:i.R(B) is calculated by taking the average value of (J" for all traces separated by

T i = 300K. During the course of this experiment there were 6 different trips to room

temperature. This gave 6 pairs of traces which were separated only by Ii = 300K.

Because by definition a trip to 300 K produces a complete de-correlation, one trip to

room temperature is as good as any other, so there were (~) =15 values of (J" that

contributed to the calculation of f:i.R(B) for each mode number. Calculating f:i.R(B)

for each set of traces (high and low mode) allows for normalization of the correlation.

Figure 4.17 shows the results of this correlation analysis. Plotted are the normalized

correlation values of both low mode (n = 2 blue circles) and high mode (n = 6 red

squares) traces taken on the square billiard H3 for each Ti . The probability for a

charge in the dopant layer to relocate should depend on the available thermal energy

by P f"'V e-/3/kBT
i, where j3 represents an energy barrier for charge relocation. However,

this does not tell the whole story. This distribution should also be determined by the

length of time the device was at Ti . This behavior is modeled by the expression
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F = exp[-7]exp(-,6/kB Ti )] where the fitting parameter 7] is interpreted to represent

the number of attempts of the charge to relocate. An alternative interpretation of this

expression modeling F is to consider the thermal cycling to be an annealing process,

in which case the parameter ,6 could be interpreted as the activation energy, and 7]

would represent the number of attempts (i.e. attempt frequency x time elapsed).

1

0.8

•
0.6

F
•0.4

\
0.2 \• \

'-
0

0 50 100 150 200 250 300
T.

I

Figure 4.17.. Correlation Function F as a function of T i

Two fits of this form are also shown in Fig. 4.17. The process to obtain the fits

came in two steps. First a value for ,6 was obtained by using a two parameter fit

to the high mode data in Fig. 4.17. This two parameter fit generates the solid line

in that figure, and fixes the value of,6. The high mode traces were chosen for this

because they tend to have a tighter spread (see Fig. 4.16). With the value of ,6 fixed
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at 42meV, the next step was to obtain a single parameter fit to the low mode data.

This produced the dashed line fit, generating an TJ value of 25 attempts.

Figure 4.18 gives a feel for what happens as either TJ (a) or (J (b) are allowed to

vary while keeping the other parameter fixed. For convenience the value of the fixed

parameter is set at (J = 42 meV in (a) and TJ = 25 attempts in (b) the values obtained

in the modeled fits to the data. In both panels the black curve represents (J = 42

meV and TJ = 25. This is a reproduction of the dashed curve in Fig 4.17. In panel

(a) of Fig. 4.18 TJ is increased from 10 attempts (red curve) to 100 attempts (blue

curve), while (J is held at 42 meV. The result is a sharper transition from F = 1 to F

= O. However, it is a decrease in the activation energy that produces a steeper falloff.

In panel (b)(J decreases from 56 meV (red curve) to 17 meV (blue curve) while the

number of attempts is fixed at 25.
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Figure 4.18. A plot of the model fit function F = exp[-TJexp(-(J/kBTi )] as fit
parameters TJ (a) and (J(b) are varied. In (a) (J is fixed at 42 meV, the values of TJ are:
red 10, black 25, green 50 and blue 100. In (b) TJ is fixed at 25 attempts, the values
of (J are: red 56 meV, black 42meV, green 30 meV and blue 17 meV.
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Discussion

This experiment shows that the de-correlation similar to that observed by bringing

a billiard to room temperature can be achieved by bringing a billiard to Ii ~120

K. Normalization of correlation analysis indicates that there is a threshold energy

necessary to bring on this de-correlation at about {3 =42 meV. The ionization energy

of Si occurs at 5.6 meV considerably lower than the 42 meV found for {3. 5 meV

translates to rv 60 K and yet traces separated by as much as Ii = 115 K remain fairly

correlated.

This indicates that simple ionization and recapture of that electron by another

donor is not a strong candidate for the redistribution mechanism. However, a trapped

state such as a deep DX center in the donor remains a likely candidate. Support

for this claim is shown in Fig. 4.19. During a different experiment, conducted on

a set of billiards etched into the same heterostructure but on a different Hall bar

(sample B3b), illuminating the sample led to an enhanced electron concentration,

similar to the procedure used on Wire E of Ch. III. DX centers are known to exist

in AlGaAs/GaAs systems doped with Si, and persistent photoconductivity (PPC)

is attributed to the DX center [60]. When the sample is exposed to light, the DX

centers become ionized, and the carrier concentration increases. It is persistent in

that the electrons remain in the conduction band even after the light is turned off,

until eventually they are recaptured by the DX center which can take as long as days

depending on material properties [60]. The increased electron concentration shown
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in Fig. 4.19 had a much shorter lifespan, but did last for about 12 hours. Our etched

structure has not been studied to exhibit DX centers. A literature on the subject

revealed no results. However there were no results discounting the possibility either.
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Figure 4.19. Electron density (ns ) vs gate voltage (Vg ) before (grey) and after
(green) illumination of sample B3b. The dashed line is a guide to the eye. The solid
line is a power law fit to the pre-illumination data in the saturated regime of ns .

Green data points indicate the rise in n s after illumination.

The plot of electron density vs. gate voltage in Fig 4.19 shows a marked increase

in electron density before (grey) and after illumination (green). The dashed line is a
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guide to the eye, illustrating the linear nature of ns for negative gate voltages. The

solid line is a powerlaw fit to the saturated portion of ns which is not uncommon for

positive gate voltages [63]. This saturation is most likely due to an inter-surface state

[19, 2l].

Figure 4.20 is a plot of the gate sweeps (Gvs. V;) conducted before and after

the illumination of sample B3b. There are a total of four data sets in this figure,

G is plotted against V; for two billiards before (grey) and after (green) illumination.

The upper trace, with data beginning to be displayed at V; = OV, is measured for

billiard 2L, while the other data set (beginning at V; =5 V) was measured on billiard

3L. Both devices show a rise in < G > after illumination, which is as expected since

the measurement for ns is conducted on the Hall bar itself, not a specific billiard.

However, at V; = 20V, the upper trace (larger < G> for all Vg) shows that both the

green and grey traces lie on the same plateau of < G >rv 2.5 (2e 2 /h). Thus another

way to interpret the effect of the increase in ns is that the QPCs in the billiard are

able to accommodate additional modes (i.e. reach a new plateau) at a smaller V;.

MCF traces taken before and after illumination still may show differences in their

fine scale features, because the increase in ns is directly proportional to an increase

in EF . Such a small shift in EF is not expected to alter the location of the diffusers.

However it may alter the electrons path with respect to the diffusers [58]. Consider,

for example, an electron traveling straight towards a diffuser, perhaps a 'hill' in the

potential. Suppose that while the billiard is at some Fermi energy E: the path
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Figure 4.20. G vs. Vg for before(grey) and after (green) illumination for two billiards
on the Hall bar called B3b. billiards 2L (upper trace) and 3L (lower trace)

tends to veer through a small angle that takes the electron to the left of the 'hill'.

Altering the Fermi energy to say E: could result in the trend of the path to produce

a small angle veer to the right [58]. Such a difference in paths will slightly alter

the accumulation of phase in the same manner as the redistribution of the diffusers,

particularly after repeated reflection off of billiard walls. Field sweeps (MCF traces)

were taken after each of the gate sweeps in Fig. 4.20 and are plotted together in

Fig. 4.21. The blue trace is the field sweep taken prior to illumination. The green

trace, which has been vertically offset for clarity, was taken after illumination.

Indeed, there are differences in the fine scale features of the MCF of Fig 4.21. In

fact, by visual comparison, those differences seem to be on par with the differences in
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Figure 4.21. Magnetic field sweeps of billiard B3b2L taken before and after
illumination

the traces that have been temperature cycled to Ti = 300K. Correlation analysis was

performed resulting in 0- = 150 D. Normalization of this was not possible since we

have only one data point, in which the billiard sat at the same conductance plateau

at the same gate voltage before and after illumination. However, comparison with the

values of 0- for the ~ = 300K traces, places this value just above the least correlated

high mode (0- = 144 D) and well below the most correlated low mode trace (0- = 357

D). Since this is a high mode trace, this seems to imply that the effect of illumination

produced trajectory changes that were on par with those arising from warming the

sample to room temperature and re-distributing the scattering configuration in the

billiard. Unfortunately, this is the only data point for this measurement, so making
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any stronger claims is unjustified. However, coupling this strong de-correlation with

the existence of PPC does seem to indicate that a trapped state is a likely candidate

for the mechanism leading to relocation of the ionized donors. A schematic rendition

of a band diagram including this trapped state is shown in Fig. 4.22. Energy is plotted

against the heterostructure depth, and the trapped state is shown schematically as

a square well in the Si doping layer as this trapped state seems to have some of the

characteristics of a DX center, which are known to reside in the Si atoms in Si doped

III-V semiconductors [60]. A more realistic, yet still primitive model of the potential

near a donor containing trap is also illustrated to the right of the true quantum well

that forms the 2DEG (indicated by the green arrow), which is modeled after a DX

center [19, 60, 62].

Si doping -

>.

j 1------:-:(3::"'1

InP InP GalnAs InP
Heterostructure Deplh

Figure 4.22. Schematic band diagram for the possible trapped state. The circled
region represents the location of the trapped state while the arrow points to a crude
representation of the potential surrounding the donor with the trapped state.

This trap requires more than one energy to be characterized, consistent with

persistent photoconductivity (PPC). The blue barriers that rise above the conduction
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band indicate that there is some energy requirement to occupy the trap. There is

also some energy requirement to escape, indicated by the separation of the peak

of the purple curve and the conduction band Ec . Illumination can accomplish the

release of an electron into the conduction band. Finally, there is some energy Etrap ,

that in the case of the DX center, determines the occupation when the DX centers

are in thermal equilibrium with the rest of the lattice. The presence of PPC at

low temperature indicates that the DX center is not in thermal equilibrium at low

temperatures, thus the occupation levels are 'frozen' in [19, 60].

Conclusion

This chapter began by revisiting the infinite horizon billiards introduced in Ch. 1.

The discussion of the infinite horizon billiards reported on findings that a small shift

in the location of the Sinai diffusers led to the same enhanced diffusion present in the

well ordered array. The role of the walls in semiconductor billiards is to perpetuate

the array of the material impurities (i.e. the ionized donors). These play the role of

the Sinai diffusers by producing a roughened potential terrain. Reflection off of the

billiard walls serves to amplify this classically chaotic effect through the process of

iteration. The role of the billiard walls was further extended by demonstration that

the walls dictate the form of the overall background trend of the magneto conductance

fluctuations.
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The experiment described in this chapter demonstrates such a mildly disordered

Sinai billiard can be produced by alteration of the charged state of the dopant layer

in the heterostructure. To achieve this alteration, the dopants themselves need not

change their location, just their charge. The activation energy necessary to produce

this alteration was found to be on the order of 40 meV by thermally cycling the billiard

to various intermediate temperatures and quantifying the amount of de-correlation

in the magnetic field sweeps conducted after each Ti . This activation energy of

the annealing process is much lower than the energy necessary for the dopants to

diffuse throughout their layer. Diffusion of Si dopants has ben reported to occur at

temperatures of rv 500
0

C in GaAs is doped with Si [64], and much higher temperatures

in modulation doped AlGaAs/GaAs [65]. This indicates that the relocation of the

dopants themselves should be ruled out entirely.

However, strong candidates for the re-distribution process remain, 42 meV is more

than sufficient energy to ionize the Si. So ionization and recapture is a possibility.

Recapture seems an important feature of this particular mechanism because the

statistical properties of the MCF, as measured by DF , were shown to remain unchanged

after several cycles to room temperature.

The other candidate for this mechanism of the Sinai diffuser re-distribution is

a trapped state, with a binding energy on the order of rv 40 to 50 mK. Support

of this trapped state was provided in the form of persistent photoconductance, a

hallmark of the DX center known to be a resonant state of Si donors [60]. After photo
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illumination, the one pair of MCF traces was shown to be as fully de-correlated as the

high mode pairs (~= 300K). Ultimately this chapter has provided strong evidence

that the previously considered "clean" billiard defined by etching a modulation doped

heterostructure is not so clean, as material induced impurities still playa vital role

in the electron dynamics.
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CHAPTER V

THE SENSITIVITY OF D F TO EXTERNAL FIELDS

Introduction

The previous chapters have shown that the underlying cause of fractal conductance

fluctuations (FCF) was material impurities playing the role of Sinai diffusers. This

was shown to be 'universal' in the sense that the same process dictated the dynamics

across the diffusive, quasi ballistic and ballistic regimes. Whether the Sinai diffusers

were in the plane of conduction as in the diffusive wires, or were remote and acted as

small angle scatterers, the process was the same. Furthermore, the fractal dimension

!J.Escould be charted in the same manner across all three regimes. The form of Q = -­
!J.EB

leads to the prediction that if the billiard size were reduced to rv 50 nm than values of

Q = 1 could be observed at room temperature. l Together with the FCF's remarkable

insensitivity to device boundaries, shape, or level of material induced disorder seems

to indicate that they will be prevalent whenever resolution of the energy states is

possible. It is not the presence of FCF that is sensitive to these parameters, but

rather their fractal dimension. This leads to two obvious roles for the FCF. Either

the FCF will be unwanted, and be viewed as noise, or on the other hand, they could

IThis calculation is based on parameters of bismuth nanoclusters that are the subject of current
research with collaborators in Australia and New Zealand
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be harnessed as some sort of novel sensor. Either way, the characterization of the

sensitivity to external electric and magnetic fields will be important.

With the aim of characterization of this sensitivity, this chapter will also explore

using a different means to alter the accumulation of phase leading to FCF. Application

of an electrostatic field will change the energy at which the electrons traverse the

billiard and this will give rise to alterations in phase [66]. This chapter begins with

the investigation of this process.

Producing FCF with an Electric Field

Figure 5.1 shows the conductance G as a function of voltage applied to the TilAg

top gate, which has been electronically isolated from the device via a 1f.Lm layer of

hard baked Shipley 1813 insulating polymer. The measurement was taken on the

square billiard of the sample called HI. Traces were taken at base temperature of

our 3He cryostat (rv 240 mK, blue line). An additional trace is shown taken at 5K

(red line) to establish the plateau background, indicating the number of modes in

the QPC. Arrows indicate the plateaus at which the gate was held during magnetic

field sweeps for B l , Vg = -9.2V, ~ = -5 V for B 2 and -1.2 V for B 3 . This experiment

involved taking a high resolution gate sweep at base temperature and using this data

to investigate the production of fractal conduction fluctuations induced by an electric

field.

Typical gatesweeps are conducted at a resolution of rv 10mV. To enable fractal
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analysis, the resolution of the base temperature gate sweep was increased ten fold to

1 mY. The black trace (offset) at the top off the figure is the result of subtracting

the 5K (red) trace from the base (blue) trace, removing the plateau background. The

arrows indicate the plateaus at which magnetic field sweeps were conducted.
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Figure 5.1. Conductance vs. applied gate voltage for the device called HI taken at
base temperature (blue), 5K (red). The difference between the two traces is vertically
offset and shown in black. Arrows indicate gate volyages at which magnetic field
sweeps were conducted. Dashed lines represent subregions of the plateaus.

vVhen offset as in Fig. 5.1, the fluctuations in the background-subtracted gate

sweep (black trace) appear small enough that one may interpret them as noise.

However, this is not the case, as is evidenced in Fig. 5.2 where the background-

subtracted gate sweep is plotted in blue along with a noise reference plot in red.
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The noise plot was obtained by running a magnetic field sweep with the magnet

turned off, (hence the label of the top axis). Data was recorded without sweeping

the magnet but with current running through a billiard. The mean value of the

conductance in the noise sweep was then subtracted off to allow a measurement of

the noise scattered about G = a (2e 2 jh). The background-subtracted gate sweep

has fluctuations considerably larger than those of the background-subtracted noise

sweep, indicating that the gate sweep fluctuations are not noise.
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Figure 5.2. Background-subtracted conductance fluctuations (blue) are much larger
than the noise level of the measurement (red)

Figure 5.3 left shows the magnetoconductance fluctuations (MCF) resulting from

sweeping the magnetic field while the gate voltage was held at (bottom to top) B 1

= -9.2V (green), B 2 = -5V (red) and B3 = -1.2V (blue). In the right panel is the
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scaling plots for the associated traces. The slope of these lines designates the fractal

dimension (DF) of each trace. As more modes are introduced by increasing the gate

voltage, the D F value gradually decreases from a value of DF =1.45 for the low mode

B 1 to 1.42 for B2 and finally 1.38 for B3 .
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Figure 5.3. MCF and (color matched) scaling plots of the magnetic field sweeps
indicated by the (color matched) arrows in Fig. 5.1

The reason for the vertical dashed lines delineating each plateau in Fig. 5.1 is

illustrated by Fig. 5.4. Presumably, one could imagine that the fractal dimension of

the background-subtracted gate sweep shown in blue in Fig. 5.2 should be bounded by

the values obtained from the MCF taken at plateaus at both ends of the gate sweep.

While this is the case, it turns out not to tell the whole story. This is evidenced by

the red line in Fig. 5.4. The data points in that figure are the results of the variational

method box count, the red line illustrates a line with a slope 1.4, which is bounded

by the MCF D F values. However, the main reason for this line is not to illustrate the

bounding but to emphasize the curvature of the scaling plot data. While a very short
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region of that data could be fit to a straight line, the true nature of the fit would be

convex. This illustrates the need to individually consider the subregions defined by

the plateaus.
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Figure 5.4. Scaling plot of the background subtracted gate sweep. The red line is a
straight line with a slope of 1.4 for comparison.

This raises the interesting question of why should it be necessary to divide the

background-subtracted gate sweep into sub-regions? Whenever an MCF sweep is

conducted, general practice is to run a few gate sweeps to ensure that the magnetic

field sweep will be conducted on a plateau. This ensures a consistent Fermi energy

during the sweep, i.e. not on a transition to a new plateau. Equation 11.11 gives:

m*VF VF
Tcyc = -- =--

e B cyc wcyc
(V.l)

e Bcyc
Where wcyc = -- defines the cyclotron frequency at which the electrons travel

m*
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in a circular orbit under the influence of a perpendicular magnetic field Beye. Quantization

of energy of the electrons in the 2DEG yields the Landau levels [18, 46] with energy

given by:

(V.2)

For small magnetic fields, in which the cyclotron radius is much larger than the

billiard dimensions (i.e. 2reye » W for a square billiard of side lengths W) the

effects of confinement by B are negligible [46]. It is the electrostatic confinement that

contributes to quantization of the energy levels. B rv B eye sets the threshold of the

magnetic field's onset to contribution to the confinement. [46] However, MCF are only

analyzed for their fractal content up to Beye. Thus the magnetic field's contribution to

the MCF is providing a curvature of the trajectories, not a confinement. Staying at a

fixed gate voltage, on conductance plateau ensures that the MCF are a measurement

of the magnetic fields influence of the electron trajectories at a particular EF .

This is not the case when the gate voltage is used to induce the conductance

fluctuations. Application of voltage to the top gate allows tuning of the Fermi energy

(EF ) and therby the :Fermi wavelength(AF) in the billiard as well as the number of

conducting mOdes(n) in the quantum point contacts, as illustrated by the conductance

plateaus in Fig. 5.1. It is the changing of AF that offers the most intuitive explanation

to the observed conductance fluctuations. Changing AF necessarily changes the ratio
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of wavelengths to path length, which can also be considered as phase difference. These

phase differences will of course lead to a change in interference.

This is a plausible explanation for the presence of the conductance fluctuations

with applied gate voltage. It also indicates the need to isolate the individual conductance

plateaus and treat them independently. Over a particular plateau, a slight change

in EF will still occur, but this will not be accompanied by an increase in conducting

modes. The sub-regioning of the high resolution gate sweep was carried out, and the

resulting DF values are listed in Table 5.1 along side the DF values obtained from

the MCF.

Vg (V) DF MCF D F subregion

-9.2 1.45 1.23
-7 1.33
-5 1.42 1.34

-1.2 1.38 1.40

Table 5.1. DF for the magnetic field sweeps indicated by the arrows in Fig. 5.1
and the background-subtracted subregions indicated by the dashed lines of the same
figure.

The high resolution gate sweep represents the conductance fluctuations in a particular

billiard as a function of voltage applied to the top gate of that billiard. To obtain a

larger range of FCF produced in this manner, conductance fluctuations were simulated

by a process known as fractional Brownian Motion (fBM) which is known to produce

fractals [4, 26], and has previously been used to model conductance fluctuations [12].

With DF is an input parameter in the simulation, using the fBm simulations adds the
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advantage of being able to investigate the properties of a trace with a specific DF .

Because simulated fEm traces are going to be used in comparison, it would be useful

to have the fluctuations in G as a function of the electrostatic potential changes in

the device. Having G as a function of the potential will offer a wider scope of the

analysis. To obtain the potential changes, it is assumed that alterations in EF from

the Vg = 0 value are due to changes in the potential according to ~EF = e~V. This

then requires obtaining EF , or more precisely aa~' which can be obtained from the

electron density ns .

The electron density in the billiard is plotted against gate voltage in Fig. 5.5.

Because this measurement was obtained for values of Vg < 0, ns is far from the

saturated regime, and scales linearly with ~. Thus ~~ is approximated by the

slope of the linear fit to the ns VB. Vg data shown as the dashed line in Fig. 5.5.
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Figure 5.5. Electron density (n s ) plotted against applied gate voltage (~) in the
square billiard of HI.



138

When electrons are confined to two dimensions, EF scales linearly with ns . Because

E F scales linearly with ns and ns scales linearly with Vg, E F must also scale linearly

with Vg. Fig. 5.6 illustrates that this is the case and EF is plotted in blue (according

to the left hand axis) against Vg' In this figure, AF is also plotted against Vg to

emphasize that AF remains considerably smaller than the billiard dimensions.
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Figure 5.6. Fermi Energy (blue, left axis) and Fermi wavelength (red, right axis)
plotted against applied gate voltage

It is a safe assumption that the change in Vg results in a change in the potential

that also scales linearly. However, to verify this, values of the potential responsible

for changing EF from the Vg = 0 according to 6.EF = eV value have been plotted in

Fig. 5.7.
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Figure 5.7. Estimation of the electrostatic potential energy as a function of applied
gate voltage.

Figure 5.8 shows the gate sweep scaled in this manner emphasizing that the change

of scale does not alter the structure of the data set. The blue trace corresponds to

the bottom axis and is the original background subtracted gate sweep. The red trace

is the same data set scaled to be plotted as a function of electrostatic potential rather

than gate voltage. This allows the freedom to compare the gate sweep with spectrally

simulated fErn traces on equal footing, that is to say the comparison is not limited

to units that are device dependent.

Noting that the full gate sweep was a trace in which the DF value changed

throughout the sweep, this was imitated with the fErn generated traces. Figure 5.9

shows the results of this simulation. The top (blue) trace is the high resolution

gate sweep. The traces below that each consist of three fErn traces that have
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Figure 5.8. Conductance in the square billiard as a function of gate voltage(blue,
bottom axis) and electrostatic potential (red, top axis).

been appended to one another in an attempt to mimic the increasing density of

the fluctuations as the applied voltage increases from negative voltages toward Vg =

O. The middle (green) trace represents fBm simulations with input DF values of (left

to right) 1.3, 1.4, and 1.5. The vertical dashed lines in that figure mark the transitions

between the three fBm simulations that constitute the full trace. The bottom (red)

trace is an extreme example of this combination procedure. In that trace, DF values

increase quickly from 1.1 in on the left to 1.5 to 1.9 for the last third of the trace.

A fractal analysis was conducted using the variational method box counting technique.

In Fig. 5.10 color matched scaling plots have been shifted for clarity and ordered to

match the inset. Note that each of these scaling plots has a slight upward bend. Thus
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Figure 5.9. Background subtracted gatesweep and simulated fBm. Top (blue) trace
is the high resolution gate sweep with the plateau background and < G > subtracted.
Also shown are simulated FBM traces. These traces are combinations of D F = 1.3,1.4,
and 1.5 (green) and D F = 1.1, 1.5, 1.9 (red).

an effective fractal dimension (De) is estimated based on the best fit to a reasonably

long (i.e. >1 order of magnitude) portion of the associated scaling plot. Effective

dimensions were estimated to be De = 1.41 for the (blue) high resolution gate sweep,

1.39 for the simulated fErn trace composed of slowly increasing values of DF (green

trace) and 1.49 for the red trace in which the DF value rise sharply.
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Figure 5.10. Scaling plots of the gatesweep to simulated fErn. Scaling plots are
shown for the traces shown in Fig. 5.9(same colors). Note that the slope of the data
trace closely matches that of the FBM trace consisting of slowly varying DF values.

Autocorrelation Analysis

The curvature of the scaling plot suggests that using a probe other than DF is in

order. Noting that the correlation function used in the thermal cycling experiment

(Eq. IV.l) was more sensitive to fine scale differences traces than DF , a similar process

was used to obtain a measure of how well an individual trace remains correlated with

itself. As such, an autocorrelation function analysis was used to monitor the effects

of an applied field to the conductance fluctuations.

F = (G(<I»G(<I> + ~<I»)

((G(<I»)2)
(V.3)
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Here <I? represents either the applied magnetic or electric field. This is not a drastic

departure from the fractal analysis that has been used thus far in this dissertation. In

fact, Eq. V.3 is the Fourier transform of the power spectrum [26]. However, because

Matlab is well equipped to handle matrix manipulation, it proved more practical to

develop a program that would carry out the process of Eq. V.3. Figure 5.11 shows the

results of this analysis on the three magnetic field runs depicted in Fig. 5.3 (left panel),

as well as the three dashed regions of the gate sweep (right panel) of Fig. 5.9. The

choice of using the three dashed regions represents a compromise between allowing

the applied potential to vary slowly and at the same time allowing for sufficient data

resolution for statistical analysis. Prior to autocorrelation analysis the gate sweep

was scaled by 8V/ 8Vg. This allows the autocorrelation analysis to be interpreted as

the de-correlation of the trace as a function of applied field. The magnitude of the

applied potential at each subregion is ranked low to high on the plots for distinction.

To characterize the how quickly a trace de-correlates, the range of <I? is chosen to

illustrate when F(<I?) falls to half of its value of 1 at F(O).

The plots in Fig. 5.11 indicate the fractal conductance fluctuations sensitivity to

the applied fields. When the applied field is strictly an electric field, F falls of more

quickly as the magnitude of the field is increased. When exposed to both a magnetic

and electric field, the rate at which F falls off is governed by the DF value. The

same cannot be said for the electric field induced conductance fluctuations because

as yet the D F values obtained are in question. To solve this problem, the individual
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Figure 5.11. Autorrelation Function F falloff as a function of 6.B for the three
MCF traces in Fig. 5.3 and 16.VI for the three dashed regions of Fig. 5.9.

fEm traces will be used. But before that can be done, a relationship between the

autocorrelation falloff and DF should be understood.

The relation between the autocorrelation falloff and D F , first consider a continuous

bounded temporal function f(t) which has a box counting dimension s. Reference

[26] relates the autocorrelation function (C(h)) to the box counting dimension s as:

C(O) - C(h) ~ ch4
-

2s (VA)

Where c is a constant, and h is used to represent separations in time. Translating

Eq. V.4 to the autocorrelation function F as a function of applied field (as opposed to

time) and replacing s with DF for consistency with the previous nomenclature gives:

(V.5)
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Where the constant c has now been replaced by k for clarity. Defining the value of

<Pc to be the ~<P value at which the autocorrelation function falls to half of its value

of ~<P = 0 gives:

Where, for convenience, D has been defined as

D - 4-2DF

This gives:

(V.6)

(V.7)

(V.8)

Taking the logarithm of both sides of the above equation, and noting that if k is

a constant then In(2k) must be as well allows:

-In (2k)

-k

(V.9)

(V.10)

(V. 11)

Where in the last step the constant k was substituted for the constant In(2k). <Pc is

the width of the increment in applied field corresponding to the half-max falloff of the

autocorrelation function F. Exponentiating both sides of Eq. V.9 allows the relation
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of <Pc to DF of the associated conductance trace according to:

-- [-k]<Pc ,-..; e-k / D = exp
4- 2DF

(V.12)

Where in the last step the half width falloff of F has been renamed to the more

intuitive F 1/ 2 . This gives the expected form of the falloff to half max value of the

autocorrelation function F1/ 2 as a function of DF . The simulation of the fErn traces

allows for assigning DF as an input. However, this value is not always the true

fractal dimension of the associated simulation. For this reason a variational box

count was conducted on each of the simulated fErn traces used for this analysis. An

autocorrelation analysis was performed on each of the fErn traces and their F 1/ 2

values are plotted against DF in Fig. 5.12. The intended DF values (i.e. those fed

into the fErn simulations) are represented by hollow circles and the dashed line is a

fit to that data using Eq. V.12. The D F values obtained by box count of the fErn

traces are indicated by solid circles.

The intended D F values fit the form of Eq. V.12 well, while the verified (by box

count) values show significant deviation from the fit. However, the overall trend is

in agreement, which is promising. To obtain a better fit to the verified D F values,

the fact that Eq. V.12 is not a strict equality is exploited. The relaxation of equality

implies that the use of a pre-exponetial constant other than unity and an additive

constant are acceptable. The addition these fitting parameters results in the dashed

fit line to the verified DF values plotted in Fig. 5.13. Also shown in that plot are the

F 1/ 2 values obtained for the magnetic field sweeps (in blue) which correspond to the
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and verified (solid circles) DF for the simulated fEm traces.

left hand axis. For comparison, the De (red) values obtained are used to plot F 1/ 2

for as a function of dimension. Both the De values and the verified DF values for the

simulated fEm traces are associated with the right hand axis.

Figure 5.13 indicates that the fractal conductance fluctuations are quite sensitive

to external fields, both magnetic and electric. Sensitivity increases with the fractal

dimension of the FCF in the sense that the field will induce a more dramatic de-

correlation.
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Application of a Bias Voltage

Any reasonable application of a device will most likely include exposure to higher

fields than have been investigated thus far. Whether the application is to be used

for a process in which the FCF are viewed as unwanted, contributing to the noise,

or the FCF are to be employed as a novel sensor, the device will most likely have

a bias voltage defining the current direction applied to it. The effect of an applied

bias will surely alter the potential in the billiard. However this is not expected to

alter the existence of FCF. Indeed it has been shown previously in this dissertation

that the presence of FCF is not suppressed by alterations in the potential. However,

the application of a bias voltage could also induce an increase in phase breaking
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interactions. Such interactions will reduce the phase breaking time, T</>. Reduction

of T</> will alter the statistical properties of the FCF (i.e. a). In addition, an applied

bias voltage could also lead to heating, which can also reduce T</> • Indeed both T</> and

T appear in Q and thus may alter the performance of such a sensor, or influence the

FCF's contribution to any noise. This section will investigate the results of exposing

the billiard to higher voltages. Since Q will be used throughout this discussion, the

FCF will again be characterized by a rather than DF . However the two are related

through Eq. II.8, a = 5 - 2DF .

All previous electronic measurements have been made in the constant current

configuration as illustrated schematically in Fig. 2.12. The measurements discussed

below are conducted with a voltage adder/divider configuration in which the voltage

drop across the sample consists of an AC voltage with a DC bias. This measurement

set-up is illustrated in Fig. 5.14. The main deviation from Fig. 2.12, is the adder/divider

box used to couple the DC bias voltage to the AC signal. One port of the IOTECH

DAC was used to piggy-back a small DC bias voltage (VDc) to the 37 Hz AC signal

(VAG) used for Lock In measurements. The mixture of bias and signal was obtained

using a voltage adder/divider circuit built in our lab for similar measurements. The

adder/ dividers was designed so that the output was given as 'iout = 3~~~3 + ~~~.

Using a O.lV AC signal from the 'sine out' port of a lock-in amplifier then results in

a reduced AC signal of 30 J.tV. Similarly, the applied DC voltage from 0 to 10 V was

also reduced to range from 0 to 10mV. Four terminal measurements were conducted
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across each of the billiards, and current was monitored by measuring the voltage drop

across a known (IKD) resistor.

AdderlDivider

SR830

SR830
Lock-in Amp

Figure 5.14.. Measurement schematic for the applied bias measurements

Prior investigations of an applied bias to a billiard have established that if the

condition eVbias « kBT holds then the properties of the conductance remain in the

linear response or low bias regime [18]. In this regime, Ohms law holds and current is

linear with conductance I = GV. However relaxing this constraint can result in the

introduction of nonlinear terms in conductance also known as non equilibrium effects

[67, 68]. While in the linear response, the effect of small bias voltages is mainly that
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of electron heating which can be modeled by balancing the Joule heating due to the

current with the cooling power of the low temperature ohmic contacts [67]. This

effective temperature can then be written as [67, 68]:

(V.13)

Here TL is the lattice temperature of the sample. The exponential term represents

the portion of electrons that have time to thermalize with their surroundings before

leaving the billiard. In this exponential term, Trj> is the phase breaking time that is

obtainable through the correlations field analysis discussed in Chapter II. The escape

rate is given by 'Y such that electrons that are able escape quickly (large 'Y) do not

contribute to heating. If 'Y is sufficiently large, then the expression reduces to TL and

the applied bias (VB) has no heating effect on the billiard.

The effects of an applied bias to the MCF in the square billiard on sample HI

can be seen in Fig. 5.15. The bottom (blue) trace is a base temperature trace with

Vbias = amV. The trace above that was taken with the lattice temperature raised to

2K and no bias applied. The middle (dark purple) trace was taken with the sample

at base temperature and Vbias set to 3mV. This results in an effective temperature

of Te = 3K and the traces exhibit similar smearing of the small feature conductance

fluctuations. The next red trace (second from the top) was taken with TL = 8K and

no applied bias. In contrast, the top trace was taken at base temperature and the

bias voltage was set to -7mV. This corresponds to Te = 8.2K and yet the traces are
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markedly different. There appears to be much more high frequency fluctuations in the

top (orange) trace. This seems to indicate that a departure from the linear response.

2.2
,
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2 fV
j
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-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Magnetic Field (T)

Figure 5.15. Increased bias voltage has a similar effect on the MCF as increased
temperature.

To investigate this further, the left panel of Fig. 5.16 plots both the effective

temperature as well as the phase breaking time against the magnitude of the applied

bias voltage. The left axis corresponds to the blue Te data points, as expected by the

form of Eq. V.13 , T e follows a linear trend with V Bias ' The right axis corresponds to

the red data point that represent the values of TI{> obtained through the correlations

field analysis. The error bars in TI{> are a result of the inherent scatter of the Bcvs.B

plot on which that analysis depends. Despite the scatter, TI{> seems to have a decreasing

trend with increasing V bias which is also expected if the electrons are able to thermalize

within the billiard. It appears that neither of these parameters are independently

sensitive to non-equilibrium effects apparent in the MCF when plotted against Vbias'
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Figure 5.16. Left:Effective temperature (blue squares, left axis) and phase breaking
time(red squares, right axis) plotted against the magnitude of the applied bias
voltage. Right: Phase breaking time plotted against Lattice (red) and effective (blue)
temperatures.

The right hand panel of Fig. 5.16 plots 71> against both effective and lattice

temperatures. This plot does not seem to indicate a transition to non linear behavior.

However, it does indicate that an increase in both TL plotted in red and Te plotted

in blue lead to a decrease in 71> which matches intuition. It could be argued that the

overall decreasing trend in the Te phasebreaking times is slightly steeper than those

corresponding to TLl thus indicating that Vbias is doing more than just increasing

electron temperature. However, this argument does not carry substantial weight due

to the large error associated with the measurement of 71>'

If the only function that an applied bias voltage plays is to increase the temperature,

then it should not influence the MCF as seen in Fig. 5.15. This indicates that the

'universal' parameter Q should be enlisted to chart the a values of the Vbias MCF

traces. Equation III.1 introduced Q as:



Q = !:lEs = 21rn2
/m* A

!:lEB J(n/T¢)2 + (kBT)2
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(V.14)

To evaluate Q for the VBias measurements Te must be used in place of T. The

data previously taken to construct the Q curve (i.e. in the linear response) is plotted

in the right hand panel of Fig. 5.17, This is the same data set plotted in Fig. 3.7.

The region indicated by the ellipse indicates the region that has been magnified in

the left panel.
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Figure 5.17. a shows a departure from Q in the high bias regime, indicating a high
bias effects alpha in a non trivial way.

The left panel of Fig. 5.17 indicates that a, when plotted against Q, is sensitive to

the transition to non-linear response. 'While only the MCF from the square billiard

were shown in Fig. 5.15, the a values plotted on the left panel represent all three

of the billiards that were on the Hall bar labeled HI. Not only the square billiard,

but both the LR and UD triangles a values depart from Q when those billiards
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are exposed to a high bias voltage. These are the same billiards that were used to

construct the Q curve in Fig. 3.3 that was shown in Chapter III. This departure from

Q indicates that application of a high bias effects the MCF in a non-trivial manner.

It is recommended that a future student carries on with this investigation, including if

possible a replication of this experiment to ensure that these results are reproducible.

Conclusions

This chapter investigated a billiards sensitivity to external fields, as charted by

D p . FCF were produced by both electric as well as magnetic fields. Using an

autocorrelation analysis, it was shown that FCF associated with high D p values tend

to be more sensitive to external fields. That is to say that the FCF associated with

high D p values de-correlated at smaller increments of the applied field than the FCF

associated with low D p values. The results of Ch. IV indicate that the FCF will arise

in any device with impurities. Coupling that with the results of this chapter seem to

imply the possibility of using these devices or at least the FCF as a novel sensor of

external fields. The sensitivity could be tuned via D p by perhaps engineering devices

that yield the desired range of D p . For instance, if the FCF are to be used as a

sensor, a high D p would be desired. On the other hand, if the goal is the suppression

of the FCF due to external fields, low D p devices would be indicated.

The application of a high bias voltage led to a departure from the Q curve that

is not understood. It is recommended that a future student carries on with this
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investigation, including if possible a replication of this experiment to ensure that these

results are reproducible. It would be worthwhile to further probe the consequences

of this non-trivial effects on the FCF in the presence of an applied bias.
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CHAPTER VI

CONCLUDING REMARKS

The central question of this dissertation is: what is the underlying cause of Fractal

Conductance Fluctuations (FCF) observed in semiconductor devices? As an answer,

it was proposed that scattering from impurities in the material produced a mix of

stable and chaotic electron trajectories within the confines of the device. Multiple

reflections off the device walls are induced, leading to repeated traversals through

the confined region of the device. Repetition of the trajectories continues until the

electron can finally escape the device through the exit QPC. The production of a

mixture of stable and chaotic trajectories is crucial to the development of fractal

conductance fluctuations, and is based on the theoretical predictions of Ketzmerick[12].

Chapter I provided background information on fractal geometry, including a demonstration

of the link between chaos and perhaps the most famous of mathematically generated

fractals, the Mandelbrot set. This link was then shown to be physically realisable

with an experiment involving a three dimensional Sinai billiard. In this 'Sinai cube',

rays of light were spectrally reflected off of mirrored surfaces. It was shown that the

fractal dimension, DF , of the resulting pattern of light rays was dependent only on

the light's ability to escape the billiard, which was charted as the 'openness' of the

billiard.
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Following a brief overview of the relevant physics pertaining to the fabrication and

measurement of the analogous electronic billiards in Chapter II, magnetoconductance

fluctuations (MCF) were shown to arise from a quantum interference effect that

results from exposing the billiard to a varying external magnetic field. The Fourier

deconstruction of the frequencies contributing to the MCF were shown to be well

characterized by the spectral exponent a. The overview included relating a to D F

through the expression a = 5 - 2DF . Chapter III investigated the quantum chaos of

the Sinai billiard, and showed that the chaos necessary to produce the FCF was

not limited to device geometries that were classically chaotic. Charting a with

I:1E
the empirical parameter Q = I:1E: illuminated flaws in predictions that the FCF

would rely on billiard geometry, potential profile, and the severity of material induced

scattering.

This led to our proposal that remote, or modulation, doping produces the necessary

chaos via ionized impurities. The ionized impurities alter the potential landscape,

and produce small angle scattering that is iterated by reflections off the billiard walls.

Chapter IV focused on an experiment designed to test this proposal. It was shown

that warming the billiard to ",,120 K provided sufficient thermal energy to redistribute

the charge configuration within the doping layer of the heterostructure. The re-

distribution of the precise charge configuration led to alterations in fine scale features

of the MCF while leaving the overall statistics, as measured by D F , unchanged.

This provided strong support for the altered potential landscape model, in which
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the remote ionized donors act as nanoscopic Sinai diffusers, promoting small angle

scattering that is then amplified through iteration by reflections off of the billiard

walls. Finally, Chapter V investigated the sensitivity of FCF to external fields as

monitored by D F .

The underlying theme of this dissertation is the following model. Remote ionized

donors alter the potential landscape encountered by the electrons as they traverse the

billiard. The ionized donors act as Sinai diffusers, producing small angle scattering

of the electron trajectories. This scattering generates iterated chaos due to repeated

reflections off of the billiard walls. Each reflection off a billiard wall redirects the

electron through the roughened terrain, where small angle scattering is repeated. In

this picture, if the scatterers are 'hard' (i.e. in plane) stable trajectories do not interact

with the scatterers and are thus able to escape the billiard after a small number of

reflections. However, if the scatterers are 'soft' (i.e. remote) then both stable and

chaotic trajectories are generated [12, 33]. It is the trajectories that encounter a large

number of small angle scattering events that are chaotic and tend to undergo more

reflections and thus the chaos is iterated. Quantum interference between electron

wavefunctions flowing along the mixture of the stable and chaotic trajectories then

results in fluctuation in the conductance that are fractal. The results presented in

chapters III, IV and V is strongly supportive of this model.

This model predicts that if one were able to fabricate a billiard that is truly

'clean', in the sense that the 2DEG potential landscape was smooth, any conductance
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fluctuations that arose would NOT be fractal. This implies that a real test of this

model lies in the fabrication and measurement of an 'ultra clean' billiard. Our

collaborators at the University of New South Wales in Sydney, Australia have done

just that [69, 70]. MCF were measured and a preliminary data set was supplied to us

for fractal analysis which was completed literally days ago at the time of this writing.

Figure 6.1 schematically shows the heterostructure used by our collaborators. Above

the undoped GaAs substrate (yellow) sits a 160 nm undoped layer of AIGaAs(green).

A 2DEG forms at the interface. Above the AIGaAs layer is a highly doped GaAs

cap layer (35 nm) used as a gate. This layer is degenerately doped, producing a

high enough electron density to screen the 2DEG from ionized cap layer impurities,

providing metallic conductivity at low temperatures[69], leaving the 2DEG with a

smooth potential landscape. The dashed line in the GaAs cap layer indicates a 25

nm spacer of undoped GaAs which provides further screening.

Metallic Gate (highly doped G.aAsJ

Source
Ohmic
contact

++++++++

t
20 conducting channel

Substrate (undoped GaAs)

Drain
Ohmic
contact

Figure 6.1. Schematic of the heterstructure used for a billiard fabricated without
modulation doping by collaborators in Sydney, Australia.
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Billiard definition was obtained using electron beam lithography and wet etching

which formed rv 45 nm deep trenches in the GaAs cap layer. This separated the

cap into seven regions, each of which was used as a separate gate [69] . An atomic

force micrograph of the billiard is provided in Fig. 6.2. The billiard dimensions are

0.74 x 0.66 fJ,m 2
. The source and drain QPC's are roughly 0.5 fJ,m wide, providing an

entrance and exit for current to flow through the billiard. In this billiard, electrons

are electrostatically induced into the channel by the application of a positive voltage

to the 'metalic' gate. The induction process is similar to the action of a parallel plate

capacitor. Electrons form a 2D sheet whose density can be tuned by the applied

gate voltage. Note that this is a rectangular, hard walled billiard, free from material

induced impurities, and thus should support only stable electron dynamics.

Figure 6.2. AFM image of the high mobility billiard fabricated without modulation
doping by collaborators in Sydney Australia.
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Figure 6.3 shows an example of the preliminary data trace provided to us by

our collaborators. This data set was obtained by measuring the current through the

billiard using lock-in techniques with a 20/-lV AC signal. The magnetic field was swept

at a rate of 0.01T /minute and the temperature, using a dilution refrigerator, was 40

mK.

0.75

0.5 L---__--'--__----L .L...-__......

-2 -1 0 1 2

Magnetic Field (T)

Figure 6.3 .. Magneto conductance fluctuations in the undoped billiard

The observed fluctuations in conductance are not fractal, as illustrated by Fig. 6.4.

The left hand side of Fig. 6.4 shows the results of the variational method box count

analysis performed on the data set in Fig. 6.3. The vertical dashed lines indicate

the cutoffs for this scaling plot. The orange line indicates the cutoff associated with

the smallest observeable feature of the MCF, and corresponds to the lower cutoff
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(previously refered to as BL ). The purple dashed line corresponds to the upper cutoff

(Bu) and is determined by the statistical constraint of having no less than 49 boxes

covering the trace during a box-count. l The brown dashed line represents the limit

of five times the data resolution, based on the assumption that at least 5 data points

are needed to distinguish a complete period of an oscillation. The data resolution

cutoff is displayed for two reasons. First, B L occurs well before the data resolution

limit. Additionally any data that is analyzed with box sizes smaller than the data

resolution will result in scaling that produces a D value of 1. The blue line in the left

hand panel of Fig. 6.4 is a fit to D =1 and the green line is a fit to D =2. The region

of this plot between BL and B u spans nearly two orders of magnitude. However, the

data within this region does not follow a linear trend for even one order of magnitude,

which is the minimal range of scaling required for an object to be considered fractal

[5] .

For contrast, the right hand panel of Fig. 6.4 shows a scaling plot of the square

billiard of sample H3's MCF. In this scaling plot, the data follows a linear trend for rv

1.5 orders of magnitude, nearly the entire range between BL and Bu. The blue line

in that plot is a fit to D F =1.4. To emphasize this difference, Fig. 6.5 shows the same

scaling plot of the undoped square billiard's MCF, truncated to the region between

BL and Bu. The blue and green lines are the same as those used in Fig. 6.4. The black

line is a ploynomial fit to the data, emphasizing the curvature of the data set within

1A square 7x7 grid will contain 49 boxes, thus the label 7 box cutoff
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Figure 6.4. Left: Scaling plot of the udoped square billiard's MCF. Dashed lines
indicate the associated cutt-offs. The blue line is a linear fit in which D = 1, the
green line is a fit to D =2. Right: Scaling plot of the square billiard H3's MCF. This
billiard was defined by etching the GalnAsjlnP heterostructure, the blue line is a fit
to Dp =1.4.

the cutoffs. Figure 6.5 illustrates that the scaling plot is gradually transitioning from

the D = 1 value arising from box sizes that are smaller than the data resolution, to

D =2 arising from box sizes that are too large, and thus are all filled. This data does

not follow a linear trend anywhere within the measurement range and thus, the MCF

corresponding to this scaling plot are not fractal.

It should be re-emphasized that the above was based on a preliminary data

set. Our collaborators provided us with two data sets, both of which reveal the

same non-fractal scaling plots. However, this is only two data sets taken on one

billiard. Thus any conclusions must be drawn cautiously. Nonetheless, it certainly

appears that these 'ultra-clean' billiards do not have the roughened potential terrain
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Figure 6.5. Close-up of the undoped billiard scaling plot. Scaling plot of the undoped
square billiard's MCF over the region within Bu and BL . The blue (green) line is the
same fit to D =1(2) used in Fig. 6.4. The black line is a polynomial fit to the data
emphasizing the curvature in the transition between D =1 to D =2.

that accompanies modulation doping. If there are any impurities present, they

do not produce the same effect as the ionized impurities that are an artifact of

modulation doping. Without the small angle scattering produced by the remote

ionized impurities, the conductance fluctuations that arise are not fractal. This

lends considerable support to the proposal that these ionized impurities act as Sinai

scatterers, leading to chaotic trajectories. Further experimentation on these systems is

warranted, and the undoped billiards should be subjected to the temperature cycling

experiment described in Ch. IV. The temperature cycling experiment will further
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aid in determining if impurities are present. Such an experiment is planned within

the next couple of months, when our collaborators supply us with the billiards. As

discussed in Ch.V, further investigation into high bias voltages leading to a values that

depart from Q is also warranted and slated for experimentation during the same cool

down. That being said, when coupled with the preliminary data recently provided

by our collaborators, the results presented in this dissertation offers a comprehensive

description of how chaotic electron transport in diffusive, quasiballistic and ballistic

semiconductors lead to conductance fluctuation that are fractal.
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