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When two or more fluorescent chromophores are closely spaced in a

macromolecular complex, dipolar coupling leads to delocalization of the excited states,

forming excitons. The relative transition frequencies and magnitudes are sensitive to

conformation, which can then be studied with optical spectroscopy. Non-invasive

fluorescence spectroscopy techniques are useful tools for the study of dilute

concentrations of such naturally fluorescent or fluorescently labeled biological systems.

This dissertation presents two phase-selective fluorescence spectroscopy techniques for

the study of dynamical processes in bio-molecular systems across a wide range of

timescales.

Polarization-modulated Fourier imaging correlation spectroscopy (PM-FICS) is a

novel phase-selective fluorescence spectroscopy for simultaneous study of translational and
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confonnational dynamics. We utilize modulated polarization and intensity gratings with

phase-sensitive signal collection to monitor the collective fluctuations ofan ensemble of

fluorescent molecules. The translational and confonnational dynamics can be separated and

analyzed separately to generate 2D spectral densities and joint probability distributions. We

present results ofPM-FICS experiments on DsRed, a fluorescent protein complex. Detailed

infonnation on thennally driven dipole-coupled optical switching pathways is found, for

which we propose a confonnation transition mechanism.

2D phase-modulation electronic coherence spectroscopy is a third-order nonlinear

spectroscopy that uses collinear pulse geometry and acousto-optic phase modulation to

isolate rephasing and nonrephasing contributions to the collected fluorescence signal. We

generate 2D spectra, from which we are able to detennine relative dipole orientations, and

therefore structural confonnation, in addition to detailed coupling infonnation. We present

results of experiments on magnesium tetraphenylporphyrin dimers in lipid vesicle bilayers.

The 2D spectra show clearly resolved diagonal and off-diagonal features, evidence of

exciton behavior. The amplitudes ofthe distinct spectral features change on a femtosecond

timescale, revealing infonnation on time-dependent energy transfer dynamics.

This dissertation includes co-authored and previously published material.
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CHAPTER I

INTRODUCTION

Performing spectroscopic experiments on biological systems is a difficult

proposition. The use of fluorescent proteins as labels for tracking biological processes has

provided many new avenues for studies on biologically relevant systems, but the

experimental methods used are often limited in dynamic range, sensitivity, and

efficiency. The cellular environment is microscopic, easily photodegradable, and

optically dispersive due to the congested heterogeneous mixture ofproteins, organelles,

lipid based membranes, cytoplasm, and other bio-molecular complexes. Due to these

obstacles, it is often useful to apply fluorescence detection based spectroscopic

techniques in an attempt to circumvent many of the difficulties that current methods face

in dealing with biological macromolecules. When using robust fluorophores, such

methods offer a means to generate contrast and enhance signal levels. Furthermore, by

combining phase-sensitive fluorescence detection with phase modulation of the exciting

laser fields, it is possible to obtain additional information while further increasing signal­

to-noise.1
-
3 In this thesis, I describe the development of two fluorescence spectroscopy

methods to study structure and dynamics in biological systems. Two-dimensional phase­

modulation electronic coherence spectroscopy (2D PM-ECS) is an optical analog of 2D
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magnetic resonance spectroscopy, and provides information about coupling between

optical modes in biomolecular aggregates on femtosecond to picoseconds timescales.

Polarization-modulation Fourier imaging correlation spectroscopy (PM-FICS)is a phase­

selective approach to fluorescence fluctuation spectroscopy, and can be used to study the

dynamics of biomolecular systems on time scales much longer than the fluorophore

excited state lifetime.

The commercial availability of broadband laser systems has made the study of

femtosecond dynamics over broad spectral ranges a vital technique for the determination

of local structure and dynamics via coupling interactions in complex molecular systems.

The most widely used ultrafast spectroscopic techniques for measuring nonlinear

susceptibilities require the generation of a macroscopic polarization in the sample for

signal detection, which therefore requires optically dense samples. We have developed

the technique of2D PM-ECS, a high signal-to-noise phase-selective fluorescence

technique, to study the nonlinear susceptibilities in dilute systems from a sequence of

four phase-related ultrafast laser pulses.

Techniques for measuring dynamics on timescales longer than the excited state

lifetime (10.9 s) of molecular complexes also have inherent limitations. Techniques, such

as fluorescence recovery after photo-bleaching (FRAP) and fluorescence correlation

spectroscopy (FCS) are often limited by auto-fluorescence, narrow dynamic range, photo­

bleaching due to high excitation intensities, and model-dependent interpretation of data.4

To address these shortcomings, the phase-selective fluorescence detection technique of
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PM-FICS has been developed to separate the spatial dynamics from internal dynamics,

such as rotation and energy transfer, for a number of complex systems.

This thesis will focus heavily on the PM-ECS technique and its applications

towards studying spectral fluctuations, with additional information about PM-FICS and

its use as a tool for monitoring the conformational fluctuations of biological

macromolecules. Throughout this dissertation we will use the convention that Ii = 1

unless specifically noted.

Molecular Aggregates

Molecular aggregate complexes are ubiquitous in biological systems.

Photosynthetic complexes of bacteriochlorophylls, for example, contain many

chromophores which transfer excitation energy from an antenna site to a reaction center

for photosynthesis with near 100% efficiency. Membrane-bound protein complexes are

difficult to study using conventional NMR spectroscopy or x-ray crystallography, but

have strongly coupled vibrational modes that are well suited for study by two­

dimensional vibrational coherence spectroscopy.s There is a vast array of information that

can be gleaned about the function of these systems using two-dimensional spectroscopic

techniques, which will be described briefly in the following sections. Here, we will

develop a qualitative understanding of how the electronic properties of individual labeled

macromolecules are influenced by the formation of molecular aggregates in a membrane.

For the simplest case let us consider a system of two randomly oriented identical

uncoupled monomers with a dipole-dipole dihedral angle of ~2 and a single optical
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transition offrequency (()o as in Fig. 1.1A. In this case, the linear spectrum will show a

single transition. The solid black line in Fig. 1.1 C shows the linear spectrum for a single

inhomogenously broadened transition in solution, centered at (()o. Ifpairs of molecules

are separated by a very small distance, the resulting interaction leads to mixing of the

monomer electronics states into delocalized excitons. In the point dipole approximation,

the degenerate monomer excited electronic levels are split due to the interaction J,

described by the equation

where the individual transition dipole vectors have magnitudes Jli and the vector

(1.1)

connecting the dipoles has a magnitude ofR]2. This coupling interaction determines the

magnitude of the splitting of the two resulting one-exciton energy levels, each of which is

shifted relative to the monomer frequency by the frequency VI2! Ii , as shown in Fig.

1.1B. These so-called one-exciton states I±) == ~ (I el ) ±Ie2 ) ), are superpositions of the

uncoupled monomer states, with one of the monomers electronically excited and the

other unexcited. The two-exciton state If) corresponds to both monomers

simultaneously electronically excited. The transition dipoles that access the two one-

exciton states 181) and 182) are determined by the linear combinations of the monomer

dipole moments, ~ (I;!I ±1;!2)' The linear spectrum for the inhomogeneously broadened
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dimer sample, displayed as the dashed line in Fig. 1.1 C, will be the sum oftwo

inhomogeneously broadened Gaussian peaks, centered at frequencies shifted according to

Eq. (1.1) from the monomer center frequency and with relative peak amplitudes that

depend on the dihedral angle.

A

c

site representation
._--_. ...,."""",»»'• ...",....,.,.,..,.,.,.,.,

!

uncoupled molecules

B exciton
representation

If>

Ig>
exciton-coupled

dlmer

Figure 1.1: (A) Schematic of the electronic states of two identical two-level molecules,
each with transition frequency wo. The inset shows the configuration and relative
orientation of the two transition dipole moments. (B) The dipole-dipole interaction
interaction V12, from Eq. (1.1), results in a coupled dimer complex, with two non­
degenerate one-exciton states and a single two-exciton state,! (C) For uncoupled
monomers, the ID absorption spectrum shows a single inhomogeneously broadened
feature (solid line). The dimer spectrum (dashed curve) shows additional structure due to
the presence of two one-exciton transitions. Note that there is no contribution from the
two-exciton state because it cannot be accessed with a single absorption/excitation
interaction. (D) A simplified 2D frequency spectrum of a coupled dimer. Direct coupling
information is accessible from the cross-peaks.
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Two-Dimensional Spectroscopy

Two-dimensional spectroscopic techniques are useful for discerning infonnation

about local structure and dynamics that is not readily available from linear spectroscopy.

Linear spectra are often congested and provide limited infonnation on structure and

dynamics, especially for molecular complexes in native environments. Linear

spectroscopy can only access states by a single excitation event, detennining limited

structural infonnation and no substantial infonnation on coupling processes. Time-

resolved 2D spectroscopy can yield detailed infonnation about the coupling between

monomer electronic states, and hence structural infonnation about the configuration of

interacting monomer dipole moments.

Just as it is advantageous to use fluorescence to separate signals from background,

it is useful to analyze coupling processes via the off-diagonal cross peaks that exist in

two-dimensional spectra, and which can be separated from linear background signals by

virtue of their unique phase signatures. A typical2D electronic spectrum, S(mt ,T,mt ),
21 43

is a function of excitation and emission frequencies mt and mt , respectively, and the
21 43

so-called population time T.6 The 2D spectrum yields infonnation about how the

detection frequency is affected by prior interactions at the excitation frequency. A

simplified illustration ofa 2D spectrum is shown in Fig. l.ID. Designation of the feature

labels SH, S-_, etc, will be explained in chapter VI. Generally, there are diagonal and off-

diagonal cross peaks in a two-dimensional spectrum. The off-diagonal features are of

particular interest, as the presence of cross-peaks in a two-dimensional spectrum is direct

evidence of coupling between distinct optical modes.1
-
3

,7-9 The features in the spectrum
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may depend on the population time T, providing infonnation about the timescales of

coherent or incoherent coupling processes, optical dephasing, and individual transition

frequency correlations.6 Additionally, the sequence of pulses necessary to generate a 2D

spectrum can traverse excited state absorption pathways which access the two-exciton

states.

By extension of the ideas of2D optical spectroscopy, we will use PM-FICS to

examine slow dynamical processes associated with protein confonnation by analysis of

the 2D spectral density of polarized fluorescence fluctuations, and joint probability

distributions. Similar to 2D-ECS, the 2D spectral density yields infonnation pertaining to

the correlation between two successive transition rates, separated by an adjustable time

interval. Unlike PM-ECS, PM-FICS spectra reveal infonnation about dynamics on much

longer timescales (l0-3- 102 s). The 2D distribution functions provide infonnation about

the joint probability of observing displacements (in our case either center-of-mass

translational or depolarization angle) during consecutive time intervals, which can

contain detailed infonnation about correlated confonnational transitions of coupled

dipole complexes.

Two-Dimensional Phase Modulation Electronic Coherence Spectroscopy

2D-ECS techniques are powerful methods for making phase-selective third-order

spectroscopic measurements on coupled systems. These techniques are optical analogs of

multi-dimensional NMR spectroscopy.I-3 Specifically, these techniques are very useful

for studying femto- and picosecond timescale transfer and coupling dynamics. The most
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widely used ultrafast third-order spectroscopic method is four-wave mixing,5,7,9 with a

simplified pulse diagram shown in Fig. 1.2A, in which a sequence of three pulses in a

noncollinear geometry with wavevectors k[, k2 , and k3 interacts with a sample, creating

a distribution of coherences that result in fluorescence. The signals in the momentum

conserving rephasing, -JG. +k2 +k3 , and non-rephasing, k1 - k2 +k3 , wavevector

matching directions are detected on top of an attenuated fourth field (a well characterized

local oscillator field), preserving full phase and amplitude. These experiments have found

widespread use, but are not optimum for examining biological systems in realistic

conditions due to the necessity of generating a macroscopic polarization whose radiative

signal is collected in the wavevector matching directions. Additionally, there are more

stringent phase stability requirements as wavelengths get shorter, so many four-wave

mixing techniques that are well suited to vibrational spectra are not easily adaptable to

the visible wavelength range.

As an alternative method to four-wave mixing, we have developed the PM-ECS

technique to remove the requirement of a macroscopic polarization generated in the

sample. By utilizing a sequence of four collinear pulses, as seen in Fig. 1.2B, in

combination with an acousto-optic phase modulation technique, we are able to collect the

fluorescence resulting from this four pulse sequence, simultaneously isolating the

equivalent rephasing and non-rephasing contributions as difference and sum combination

frequencies of the relative phase sweeps applied to pulses 1 and 2, ¢21' and pulses 3 and

4, ¢43'
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A

k _..dA..m·..··.b·'.,,- .
.~ ~I'yr--

k.----------~MWI~----_1H_'-

A, --------------fliMAWH!-f

B

A.,,~-k +/,,+1.,

(f'y "'-(ii, +fIl, + tP,

-1:~~i(Ki~t-1

Figure 1.2: (A) Noncollinear pulse sequence for use in a four-wave mixing experiment.
The signal due to the generated macroscopic polarization is shown to be collected in the
rephasing direction. The non-rephasing signal contribution, not shown, may be collected
in the appropriate direction after changing the pulse ordering. (B) A collinear pulse
sequence for use in a 2D PM-ECS experiment is incident on a sample, and a portion of
the resulting fluorescence is collected. Note that for both experimental geometries that
there are three potentially variable time delays, between each set of successive pulses,
and controllable relative phases between pulses 1 and 2, and pulses 3 and 4.

Fourier Imaging Correlation Spectroscopy

Experiments that probe fluorescence fluctuations of individual molecules, or the

collective fluctuations of a finite population, are well suited to observe the slow (10.6 -

several seconds) structural changes of biological macromolecules. Direct measurements

of these fluctuations can reveal details of bio-molecular processes that are otherwise

impossible to observe with ensemble-a,,:eraged measurements. Unfortunately, many

single molecule measurements must deal with the difficulties of observing a low signal in
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the presence of heterogeneity; for processes occurring on overlapping timescales,

ambiguities can arise in attempting to separate internal from diffusive dynamics.

We will present the PM-FICS technique as a new tool for separating

conformational dynamics from simultaneous diffusive motion. PM-FICS is a

fluorescence imaging technique that probes the length-scale dependence of spatial

fluctuations of an ensemble of fluorescently labeled macromolecules by exciting the

ensemble with a phase and polarization modulated excitation fringe pattern. A large

number (N ~ 105
) of freely diffusing molecules in solution are excited by the fringe

pattern. Fluctuations of the polarized steady-state emission are continuously monitored,

and we are able to separately isolate the translational and optical anisotropy

contributions. The PM-FICS technique utilizes the phase-selectivity of the approach to

isolate a single Fourier component of the fluorescence signal to increase the signal-to­

noise and accessible dynamic range of the technique at the expense of relatively

unimportant spatial information of individual chromophores or chromophore complexes.

Outline

Chapter II discusses the theory for two-dimensional PM-ECS experiments, and

contains co-authored material with P.F. Tekavec and A.H. Marcus. We start by defining

the system Hamiltonian for a system with n indirectly coupled energy levels and define

the time-resolved signals through perturbation theory and nonlinear response theory.

Additionally, we display the method for transforming the collected data into two­

dimensional spectra in the frequency domain.
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Chapter III also contains co-authored material with P.F. Tekavec and A.H.

Marcus. P.F. Tekavec designed the experimental apparatus and collected all data for this

experiment. In this chapter we utilize the theory developed in chapter II to analyze the

results from proof-of-principle experiments performed on atomic rubidium vapor, a

model three-level system. Experimental and theoretically expected results will be

compared in both the time and frequency domains.

Chapter IV introduces the PM-FICS technique, including material co-authored

with E.N. Senning, M.C. Fink, and A.H. Marcus. Data was collected by M.C. Fink.

Theory and results will be presented, showing that we are able to successfully separate

translational dynamics from internal depolarization dynamics in DsRed, a fluorescent

protein complex.

Chapter V expands upon the PM-FICS technique to four-point correlation

functions, which can be displayed as two-dimensional spectra, analogous to 2D NMR.

We utilize the spectra resulting from these experiments to measure rates of thermally

driven conformation changes in the DsRed complex due to optical anisotropy

fluctuations. Chapter V includes material co-authored by E.N. Senning, M.C. Fink, and

A.H. Marcus. Data was collected by M.C. Fink.

Chapter VI adapts the 2D PM-ECS formalism developed in chapter II to coupled

molecular systems in solution at room temperature. Specifically, we describe the

expected theoretical results for dimeric systems and present experimental results on self­

forming magnesium tetraphenylporphyrin (MgTPP) complexes in lipid bilayer vesicles.

This chapter contains material co-authored 1. Utterback and A.H. Marcus.
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CHAPTER II

THEORY OF TWO-DIMENSIONAL PHASE-MODULATION ELECTRONIC

COHERENCE SPECTROSCOPY FOR MONOMERIC SYSTEMS

This chapter examines the theoretical treatment of two-dimensional phase

modulation electronic coherence spectroscopy (2D PM-ECS) for experiments performed

on monomeric systems. This is an extension of the wave packet interferometry formalism

developed by J.A. Cinal and T.S. Humble2 to include phase modulation. This formalism

is essential to the understanding of the experiments described in chapter III, and will

provide the base for the theory expanded upon and utilized in chapter VI. This chapter

contains co-authored material with P.F. Tekavec and A.H. Marcus.

In a 2D PM-ECS experiment, a sequence of four laser pulses is collinearly

incident on a system. This sequence of pulses leads to a multitude of overlaps on the

excited state manifold. We isolate the overlaps that occur between superposition states

generated by one-pulse and three-pulse coherent contributions. These contributions

contain free evolution on the ground and excited states in the intervening periods between

field-matter interactions, and impulsive transitions between ground and excited states at

pulse incidence. These overlaps create excited state populations that generate a



13

fluorescence signal3
-
1o with a time-varying phase dependent on characteristic features of

both the laser fields and electronic structure of the sample itself.

This sequence of interactions and resultant fluorescence is a function of two

interpulse delays, (43 and (ll (interchangeably referred to as (and r, the detection time and

coherence time, respectively), the time delays between pulses 3 & 4 and pulses 1 & 2,

respectively. The third relevant time delay, (32 (interchangeably referred to as T, the

population time) is held fixed for a single experiment. By varying (32 over a series of

experiments, information about the evolution of features in the 2D spectra as a function

of (32 is collectedY

Finally, we determine the third-order susceptibilities resulting from the

interactions of the laser pulses with the electric dipole moments ofthe system and its

excited state manifold. We establish the dependency of the results based on the pulse and

sample parameters, finding a time-dependence due to the population time, pulse phases

(fA '¢2' ¢3' and ¢4)' and the transition frequencies between the ground and nth electronic

excited state (OJng).

Electric Field of a Four Pulse Sequence

The total electric field, E (() , of a sequence of four parallel polarized laser pulses

utilized in a 2D PM-ECS experiment can be written as the sum of the four individual

pulse electric fields E (() =E1 (() + E2 (() + E3 (() + E4 (() , where the field of the lh pulse

(j E { 1, 2,3,4} ) is defined as



14

(2.1)

In Eq. (2.1), Aj (t) is the temporal envelope, tj is the pulse arrival time, and r j (t) is the

temporal phase function

(2.2)

In Eq. (2.2), O)L (= 27Z"YJ is the laser center frequency and ¢j is a constant phase. A

diagram of this four pulse sequence is shown in Fig. 2.1. We obtain the frequency-

dependent expression for the pulse electric field from the Fourier transform ofEq. (2.1),

00 00

E
j
(0)) = t f A

j
(t - tJe-irAt-tj)ellilt dt +t f A

j
(t - t

j
)eirAt-tj) ellilt dt

-00

=E)+) ( 0)) + E)-) (0)) .

-00 (2.3)

In Eq. (2.3), we define the forward-rotating and counter-rotating spectral Fourier

components ofthe/h pulse, E;+)(O)) and E;-)(O)) respectively. These functions have

explicit forms

(2.4)

and
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(2.5)

where aj (m) is the spectral amplitude and ¢j is the spectral phase of the lh pulse. For

the Fourier transform limited pulses considered here, the spectral phase is a constant,

equal to the temporal phase.

/10441---- T
r- - __ ~I-

-t
.. ••• )Ia,..... ,

/- - - - --...
;' E~7}(l) "-

;' ,
/ ,

;' ,
;' ...

;' ,
;' ,

;' ,
;' ,

;' ,
; ,

.+ ••

~JII)(t)

Figure 2.1; Illustration of a train of four sequential phase-modulated pulses. Each pulse
sequence is labeled by the superscript m; the individual pulses are labeled by the
subscripts 1 - 4. A pulse sequence is characterized by the interpulse delays (21 =(2 - (1'

(32 =(3 - (2' and (43 =(4 - (3 , and the relative temporal phases ¢21 =¢2 - ¢, and

¢43 =¢4 -¢3·
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Hamiltonian of an 'n' Excited State Monomeric System

To fully describe the interaction of the previously defined pulse sequence with a

monomeric system, we use knowledge of the system Hamiltonian and third-order

perturbation theory to determine the excited state population after the four field-matter

interactions.

The time-dependent Hamiltonian operator is defined as

If(t) = Ifa + r(t), (2.6)

where Ifa is the Hamiltonian in the absence of an interaction and ret) is the time-

dependent potential due to the perturbative action of the laser fields. In the unperturbed

eigenbasis, the Hamiltonian is defined as

(2.7)

n

with Gg being the energy of the ground state and Gn the energy of the nth excited electronic

energy level as shown in Fig. 2.2. The perturbation contribution to the Hamiltonian is

given by the electric dipole approximation

(2.8)
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where I:! is the transition dipole moment operator that couples the ground and nth excited

electronic energy levels,

(2.9)

n

where Jlng =Jlgn*. In Eq. (2.9) we have made the assumption that the energy level

spacing between excited electronic energy levels is small compared to that between the

ground and excited electronic energy levels, and is therefore non-resonant, making the

transition dipole moments Jlnn' =0 (n:f:. n' ) with respect to the excitation fields.

•••

~llg f..l2g ~lng

Figure 2.2: Energy level diagram for a system with one common ground state and n
electronic excited states. Transition dipole matrix elements between the ground state and
excited states are labeled next to the relevant arrow.
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Third Order Time-Dependent Perturbation Theory

We describe the interaction of the four pulses with the system by working in the

interaction picture and utilizing perturbation theory.12-13 To work in the interaction

picture instead of the Schrodinger picture, as we have until now, we use the

transformations

and

11f/1 (t)) =e
i1fot jlf/S

(t)) (2.10)

(2.11)

where the interaction picture and Schrodinger picture operators are denoted by the

superscripts I and S, respectively. The temporal evolution of the system in the interaction

picture is given by the equation ofmotion

(2.12)

which one will notice is similar to the Schrodinger picture equation of motion with If

replaced by "[1 (t). This means that the state ket is fixed in time in the absence of the

potential "[1 (t) . For a small (perturbative) potential, this equation has the solution



IlfII (t)) == IlfI(o) (t)) + IlfI~) (t)) + /lfI(2) (t)) + IlfI(3) (t)),
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(2.13)

where the numerical subscripts denote the order of the interaction with vI(t). This

solution is a Dyson series with the individual terms, up to third order, having the forms

IlfI
I (t))=-ifl dtlfl' dtllfl' dt "'VI (t ')VI(t ")VI(t III) Ig),
(3) -1

0
-1

0
-1

0
_ _ _

for a state initially in its ground state, Ig) =I\{II (to))'

(2.14)

(2.15)

(2.16)

(2.17)

The zero and second order terms do not contribute to fluorescence, as they are

ground state terms. The first order and third order terms create populations on the excited

states, contributing to the fluorescence signal. By assuming that the system is in the

ground state before the first laser pulse is incident and the state of the system is measured

long after the fourth pulse, we can set the lower and upper limits of integration to
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negative and positive infinity, respectively. Invoking the rotating wave approximation for

rapidly oscillating terms,12 the third order superposition state is

(2.18)

The subscripts designate this as a superposition state formed on the electronic excited

state manifold due to the interactions with pulses k, I, and m where k,l,m E {1,2,3,4}.

More explicitly, this is a superposition state caused by excitation from the ground state to

the electronic excited manifold by pulse k, followed by de-excitation back to the ground

state by pulse I, and excitation to the excited state manifold once again by pulse m.

Generally, for a sequence of pulses the indices k, I, and m may repeat, meaning

that a single pulse interacts with the sample multiple times, as long as the indices

maintain proper time ordering. This reduces the indices to four separate cases for

consideration: case i, where a single pulse interacts with the sample three times, k=l=m;

case ii, where a single pulse interacts with the sample twice prior to a second pulse

interacting with the sample, case iii, k=li-m; where a pulse interacts with a sample once

and a subsequent pulse interacts with the sample twice, k:;tl=m; and case iv, where three

separate pulses interact a single time with the sample, h#i-m. We require the pulses to act

in a time-ordered manner such that tj'::h9394, and therefore k~9n, where ti is the arrival

time of the ith pulse. Additionally, we make the approximation that the pulses act in the

impulsive limit, ignoring the effects of pulse overlap and allowing us to approximate
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IlfImlk(t)) as a product of three independent Fourier transforms. We thus extend the

remaining upper limits of intergration in Eq. (2.18) to infinity.

Since we are interested only in the terms linear in each of the excitation fields, we

will only be interested in the terms generated in case iv. These terms are given as

IlfI321(t)),llfI421(t)),llfI431(t)), and IlfI432(t)) (for k#-Im), which will create an overlap that

is linear in each of the four fields when combined with the appropriate one-pulse

contribution from the lh pulse. In conjunction with this information, we use Eq. (2.18)

along with Eqs. (2.3) - (2.5), (2.8), (2.9) to find

Ilflmlk (t)) = iL:dt'L: dt ilL: dt"'L flagflgbflbgeiOJagl'e -iOJgbl"eiOJbi"Em (t ')E1(t ")Ek(t ")Ia)
a,b

== iL flagfl~gE~-) ((J)ag )E1(+) ( -(J)bg )Et) ((J)bg) Ia)
a,b (2.19)

where a,b E {1,2, ...,n} . It can similarly be shown that a one-pulse contribution takes the

form

(2.20)
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Transitions from the ground state to an excited electronic state involve positive

frequencies and transitions from an excited electronic state to the ground state involve

negative frequencies. The rotating wave approximation leaves only the E(-) ((j))

component for positive frequency transitions and the E( +) ((j)) component of the

excitation field for negative frequency transitions. The pulse-imparted phase of this state

follows the same rules - a positive phase contribution for upwards transitions and a

negative phase contribution for downward transitions. In the following sections we

demonstrate how this phase information is employed to isolate fluorescence contributions

that are linear in each of the four laser fields.

Quadrilinear Overlaps and Populations

The total amplitude on the electronic excited state manifold after the sequence of

four laser pulses is a sum ofthe one-pulse and three-pulse contributions,

4 4

!V/(t»t4 )) =IIV//t))+ I IV/mlk(t)) .
./~I m>l>kE{I,2}

(2.21)

The population on the excited state manifold is given by the inner product of Eq. (2.21)

with itself,

4 4

(V/(t»t4 )1V/(t»t4 )) =I (V/./IV/j')+ I ((V/./IV/mlk)+(V/mlklV/./))·
./ ,j'~1 m>I>k=l

./=1

(2.22)
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We have dropped the explicit time dependence on the right hand side of the equation for

brevity. The first term on the right hand side ofEq. (2.22) is the linear contribution to the

signal and the second term is the third order contribution. Additionally, there is a fifth-

order contribution to the overall signal (sixth-order in the fields), but it is comparatively

negligible. As stated above, we are only interested in the terms linear in each of the four

signal fields. These quadrilinear terms are those in which there is an interference between

one of the three-pulse superposition states with a one-pulse contribution. These overlaps

are represented as \'l/J I'l/mlk) and their respective conjugates in Eq. (2.22). They can be

determined from Eq. (2.19) and Eq. (2.20) to be

(2.23)

(2.24)

(2.25)

(2.26)
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for a, b E {I, 2, ...,n} . Here we have defined ¢Zl =¢z - ¢l and ¢43 =¢4 - ¢3' It is useful to

recall that the phase contribution from a transition from the ground state to an excited

state on the bra side is negative while on the ket side it is positive. Eqs. (2.23) - (2.26)

reveal that the first and fourth overlaps have the same phase factor imparted to them by

the four pulse sequence, as do the second and third overlaps. This allows us to separate

the third-order population into two phase-distinct contributions

with a phase of and

2 Re{(1fI431 IlfIz)+(IfI421 11fI3)} , with a phase of i(¢43 -¢Zl)' We refer to these phases as

occurring at the sum and difference frequency, respectively.

Pulse Interaction Diagrams

We represent the four general wave packet pathways that lead to nonlinear signals

in a simple three level model system using the pulse ladder diagrams in Fig. 2.3. These

diagrams, which are similar in spirit to Feynman diagrams, are useful bookkeeping tools

to visually represent the eigenstate pathways and their associated phases as defined in

equations (2.23) - (2.26). In these diagrams, vertical arrows represent transitions between

energy levels due to pulse interactions at the times t1 , tz , t3 , and t4 • Horizontal arrows

represent free evolution on the associated state between pulse interactions. Gray and

white arrows designate actions by third-order and first-order wave packets, respectively.

In the context of the atomic rubidium experiments of chapter III, the term 'wave packet'

refers to a superposition of excited states, while in chapter VI 'wave packet' refers to a
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molecular wave packet evolving on a potential energy surface. Above each vertical arrow

we indicate the phase imparted to the wave packet by interaction with the respective

pulses. For these phases we adopt the conventions for the ket (bra) side that upward

(downward) transitions acquire a negative (positive) phase and downward (upward)

transitions acquire a positive (negative) phase. Additionally, the phase accumulated

during free evolution is positive for kets and negative for bras, as defined in Eq. (2.12).

We define the difference between pulse pair phase factors as fA =fA -¢r For example,

Fig. 2.3A shows the pulse phase accumulated from the overlap (1f/432llf/l)' The upward

transitions on the bra side of the overlap, pulses 2 and 4, impart positive phases i¢2 and

i¢4' respectively, while the upward transition on the ket side (pulse 1) and the downward

transition on the bra side (pulse 3) impart negative phases i¢l and i¢3' respectively. These

phases combine as i¢4 - i¢3 + i¢2 - i¢l = i¢43 + i¢21' a sum reference phase signature. From

these diagrams it is evident that the four non-linear populations depend on the laser pulse

phase according to (1f/432llf/l) - ei(¢43+~I), (1f/411f/321) - /(¢43+~I), (1f/43111f/2) - ei(¢43-~d, and

(1f/42111f/3) - ei(¢43-~1), as further demonstration of the sum, ¢43 +¢21' and difference,

¢43 - ¢21' relative phase factor associations.

One may note that these 'sum' and 'difference' terms satisfy identical momentum

conservation conditions as the non-rephasing and rephasing signals collected in four­

wave mixing experiments using non-collinear excitation geometries11
,14.24 and phase­

cycling techniques that utilize collinear geometry.3-? These rephasing and non-rephasing

designations can be understood when considering the sum and difference terms
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separately in Fig. 2.3. The difference terms evolve on Hermitian conjugate pathways

during the time delays t21 and t43, satisfying the rephasing, "echo" condition.12

Conversely, the sum terms evolve on non-conjugate pathways during the same time

intervals, consistent with the non-rephasing condition.

Each of the general diagrams in Fig. 2.3 has four separate, distinct eigemstate

pathways that contribute to it. In Fig. 204 we display the four pathways that contribute to

an example system with two excited electronic levels (n = 2) for the general overlap in

Fig. 2.3B, corresponding to (lff431llff2)' For a system with n excited states, there will be n2

distinct eigenstate pathways. We display the phases accumulated during each of the

periods of free evolution and the amplitude associated with the transitions between

ground and excited state due to the transition dipole strengths, maintaining prior phase

and evolution conventions. In the first two panels, Fig 2.4A and 2AB, there are

interactions between the ground and a single excited state (I g)~12) and Ig)~ 11) ,

respectively). These are single mode contributions, which lead to diagonal features in the

third-order susceptibility. The latter two panels, Fig. 2AC and 2AD, involve transitions

between the ground state and each of the excited states. These pathways involve a

ground-state mediated transition between the two distinct excited states, which leads to

contributions to off-diagonal features in the resulting non-linear spectra. The explicit

pathway contributions for the remaining three quadrilinear overlaps are shown in Figs.

2.5 -2.7.
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Figure 2.3: Wave packet pathway diagrams for the four non-linear population terms

isolated by PM-ECS (described in text). Separate panels illustrate the pathways for (a)

Zl oc \1f/432 llf/l)' (b) Z2 oc \1f/43111f/2)' (c) Z3 oc \1f/42 I 11f/3) , and (d) Z4 oc \1f/411f/321)' The

overlaps described in panels (a) and (d) contribute to our 'sum-signal,' and the overlaps

described in panels (b) and (c) contribute to our 'difference-signal.' This is a general

diagram for any number of excited states, regardless of the fact that there are two labeled.
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Figure 2.4: Diagrams illustrating the four distinct wave packet pathways that contribute
to the \'1/4311'1/2) overlap in a three-level system (described in text). The pathways

depicted in panels (A) and (B) are 'single mode' pathways, while those depicted in panels
(C) and (D) are 'coupling' pathways.



29

i('O) t ..e . ~,:

t4

i(O) t,~e .. ~..: -ieo1I,·e 4""

~

e-ifJ.~/2J
I:

i COuli1 e-iW11.:;3

...
I ,.,.

-iWn },}
e '""". -iro,.,./"e ,,, .•

I
I

Figure 2.5: Diagrams illustrating the four distinct wave packet pathways that contribute

to the (1f/43211f/1) overlap in a three-level system. The pathways depicted in panels (A) and

(B) are 'single mode' pathways, while those depicted in panels (C) and (D) are 'coupling'
pathways.
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Figure 2.6: Diagrams illustrating the four distinct wave packet pathways that contribute

to the (1f/42111f/3) overlap in a three-level system. The pathways depicted in panels (A) and

(B) are 'single mode' pathways, while those depicted in panels (C) and (D) are 'coupling'
pathways.
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Figure 2.7: Diagrams illustrating the four distinct wave packet pathways that contribute

to the ('1/41'1/321) overlap in a three-level system. The pathways depicted in panels (A) and

(B) are 'single mode' pathways, while those depicted in panels (C) and (D) are 'coupling'
pathways.
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Acousto-Optic Phase Modulation in Two Dimensions

In these 2D PM-ECS experiments, we split a mode-locked pulse train into four

collinear pulse trains in order to excite non-linear populations in a system. We use

acousto-optic phase modulation to apply a linear sweep to the temporal phases between

pulses 1 and 2 (¢21 = ¢2 - ¢1)' and between pulses 3 and 4 (¢43 = ¢4 - ¢3)' These phases are

modulated at the difference frequencies of two paired sets of acousto-optics, driven at

difference frequencies of 021/2J[ == 5 kHz and 043/2J[ == 8 kHz. Here, ¢21 =°2/ + ¢;1

and ¢43 =°4/ +¢;3' where t' a quasi-continuous time variable, and ¢;1 and ¢;3 are

constant phases. The resulting phase-modulated pulse train creates excited state

populations, within which are the non-linear signal components described by Eqs. (2.23)

- (2.26) modulated at the sum (°43 +( 21 ) or the difference (°43 - ( 21 ) frequencies.

These signals, as described in further detail below and in chapter III, are demodulated in

lock-in amplifiers at the sum and difference frequencies to isolate the quadriliear overlap

terms defined previously.

From Fig 2.1, we see that the individual pulses in a set are labeled with the indices

j E {I, 2, 3,4}, while successive sets of four pulses are indexed with m E {I, 2, ...} and

separated by the repetition rate period T (not the population time 1). It can be shown that

the resulting sequences of pulses in the frequency domain,

Em,} (t) = Aj (t -tj - mT)cos[rm,j (t -tj - mT)J, (2.27)
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can be substituted into Eqs. (2.19) and (2.20), and using the fact that we detect the steady­

state fluorescence accumulated over many repetitions, we obtain the interference signals

as described by Eqs. (2.23) - (2.26),

(2.28)

and

(2.29)

with ¢43 + ¢21 = (043 +°21 ) t' and ¢43 - ¢21 = (043 - °21 ) t'. Here, t' = mT is a discrete,

quasi-continuous, time variable with m = 0, 1, 2, .... Thus, for fixed values of the

interpulse delays, the phase of the sum and difference signals are swept in time at the

frequencies 043 + 021 and 043 - °21 , respectively. This leads to, for the values of

0 21 /27' and 0 43 /27' defined above, the combination frequencies of (043 -021)/27' ~ 3

kHz and (043 +°21 )/27' ~ 13 kHz. The frequencies of 5 kHz and 8kHz are chosen so

that modulations between pulse pairs other than 1 and 2, or 3 and 4, occur at frequencies

outside of the acceptance bandwidth of the lock-in amplifiers. This insures that no signal

contributions are detected from overlaps other than those defined in Eqs. (2.23) - (2.26).
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Phase-Sensitive Signal Detection with Acousto-Optic Phase Modulation

With these linearly modulated phase relationships we utilize monochromators and

lock-in amplifiers to isolate fluorescence signal contributions generated solely from

combinations of quadrilinear overlap terms, and

(1f/43 I 11f/2) + (1f/421 11f/3) . We use lock-in amplifiers to demodulate the ac sum and difference

complex signals Zsum(d!f) (t43,t32,t21) defined by the phase-sensitive detection method.25

Reference waveforms, to be used for demodulation of the fluorescence signal in

the lock-in amplifiers, are generated from monochromators - one for pulses 1 and 2, and

one for pulses 3 and 4. The monochromators act as narrow spectral filters of the power

spectrum of the pulse pairs. For pulses 1 and 2 the power spectrum is given by

lEI(+) (m;t') +Et) (m;t')1
2
, and for pulses 3 and 4 it is given by IE~+) (m;t') + £1+) (m;t')1

2
.

The intensities transmitted by the monochromator slit are these power spectral densities

evaluated at the monochromator's set frequency, (021 for pulses 1 and 2, and (043 for

pulses 3 and 4. The reference signals are defined by the interference contributions to the

pulse-pair power spectra at the monochromator settings,

(2.30)

and

(2.31)



35

According to Eqs. (2.30) and (2.31), the phase of each reference varies with interpulse

delay at the corresponding monochromator frequency?6-27 For fixed delay, the reference

phase varies in real time at the corresponding AO difference frequency. The sum and

difference reference waveforms generated by mixing these harmonic waveforms are

given by

R ( . ') - [- + - 1 (r. + r. )' Bsum(dlf) Bsum(dlf) ]
sum(dlf) 143 ,121'1 - cos O14l 43 - 0121 21 - ~"43 - ~"21 1 - R + U '

(2.32)

where the ± SIgn assumes the positive or the negative value for Rsum or Rdlf ,

respectively. In Eq. (2.32), B:m(d
lf

) are constant reference phases, while Bl~m(dlf) are

additional arbitrary phases applied by the lock-in amplifiers.

Experimentally, the fluorescence signal is simultaneously sent to two lock-in

amplifiers so that both sum and difference signals are collected concurrently. The

function of each lock-in amplifier is to multiply its ac signal input (from by Eqs. (2.28)

and (2.29» by the appropriate reference waveform (Eq. (2.32», followed by application

of a low-pass filter to remove remaining ac components. The demodulated in-phase

(B;ml(d!f) = 0°) and in-quadrature (e:m(d
lf

) = 90°) signal components are given by the

integrals:
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(2.33)

and

(2.34)

where 'fLI (= 200 ms) is the integration time constant associated with the low-pass filter

of the lock-in. In Eqs. (2.33) and (2.34), we have assumed the value for the lock-in phase

e;:;m(dif ) =00

• If e;:;m(dif ) was to deviate from zero, it would have the effect of shifting the

Xsum(d!f) and y"um(dif) interferograms by this value. Using the demodulated signals

described by Eqs. (2.33) and (2.34), we construct the complex-valued functions

(2.35)

and

(2.36)
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where we have defined the tenns ZAI43,132,(21) with j E {1,2,3,4}. In Eqs. (2.35) and

(2.36), the overlap tenns (1fI43211f11)' (1fI43111f12)' (1fI42111f13)' and (1fI411f1321) are defined by

Eqs. (2.23) - (2.26), with the phases imparted by the laser pulses changed to ¢43 = w4i43

and ¢21 =0521121 • The effect of the phase modulation/detection procedure is to replace the

relative phases between laser pulse pairs with those of the reference phases detennined

by the monochromator settings. The detected overlaps are multiplied by the functions

ei(m43143±i1J,hl), which are detennined by the monochromator sum and difference phase

factors. The demodulated signals are thus sums of sine and cosine functions, which vary

with respect to the time intervals 121 , 132 , and 143 at frequencies down-shifted by the

monochromator reference frequencies (for example, see Eqs. (3.1) - (3.4) in the

following chapter). This relatively slowly varying signal is similar to the systematically

under-sampled signals obtained using phase-locked pulses. 19,28-31 The process of

downshifting the overlap frequencies by the monochromator reference frequencies

introduces a number of highly beneficial advantages: systematic undersampling of the

data allows for a fully characterized data set to be collected with fewer data points, the

signal-to-noise ratio is significantly enhanced by passive stabilization and reduction of

mechanical instability effects, simultaneous collection of both rephasing and

nonrephasing data sets, and filtering of IIJ noise by the lock-in amplifiers.
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Determination of the Third-Order Susceptibilities

The primary observables of time-domain nonlinear optical spectroscopy are the

nonlinear response functions of the system. Here, we will demonstrate the process for

transforming the collected time-domain data of the nonlinear response functions 12 into

the corresponding frequency-dependent third-order susceptibilities. The complex

population terms, Zdij and Zsum (Eqs. 2.35 and 2.36), are related to the nonlinear

susceptibilities via linear response theory, which describes the polarization induced in the

sample by resonant interactions with the four excitation fields.

The polarization can be generally expressed as the mean expectation of the

transition dipole moment operator

(2.37)

The polarization is the radiation emitted by the system due to its resonance with the

electric fields. It can be expressed as the convolution of the optical response function

with the applied field. Upon substitution ofEq. (2.13) into Eq. (2.41), we obtain

00 00 00

p(3) (t) = f dr f dr'f dr"x(3) (r", r', r)E(t- r)E (t - r - r')E(t -r - r' -r").
o 0 0

(2.38)

Equation (2.38) describes the polarization to third-order as the triple convolution of the

response function X(3) (r", r', r) in terms of three field-matter interactions, separated by
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three distinct time intervals. The real-valued response function can be written as the sum

oftwo complex-valued functions:

4

%(3) (r",r',r) =L(-i){91Ar",r',r)-91~(r",r',r)},
j~l

(2.39)

where the 91 j 's are expectations of the time-ordered transition dipole correlation

functions:

and

914 (r", r', r) = (gl~[ (t)~[ (t - r)~[ (t -r - r')~[ (t -r - r' - r")lg). (2.47)

In Eqs. (2.40) - (2.43), transition dipole interactions occur at the times t - r - r' - r" ,

t - r - r', t - r , and t. In the context of this theory the emitted polarization defined in

Eq. (2.42) is detected at time t with the fourth pulse acting as a heterodyne field. We

neglect the effects of pulse overlap and assign the time intervals r, r', and r",
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respectively, to our experimental inter-pulse delays t43 , t32 , and t21 • We calculate explicit

forms for the third-order response functions (Eqs. (2.44) - (2.47)) using the system

Hamiltonian (Eq. (2.6)) and the dipole operator (Eq. (2.9))

m(t t t ) ='"' J12 1/2 e-iaJag (143 +t2de-i(Oiag -Oibg )132

1 21' 32' 43 ~ agrbg ,
a,b

and

(2.44)

(2.45)

(2.46)

(2.47)

In Eqs. (2.44) - (2.47), we have used the indices a,b E {l,2, ... ,n}, and omitted the

possibility of non-resonant transitions between excited states. We see from comparison

between Eqs. (2.44) - (2.47) and our expressions for the non-linear populations in Eqs.

(2.23) - (2.26) that each of the four response functions can be assigned to an individual

It follows that our detected signals, Zdif and Zsum (Eqs. (2.35) and (2.36)) correspond to

the rephasing and non-rephasing contributions to the resonant response functions (i.e,
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2Im(912 +913 ) and 2Im(911 +914 ), respectively), weighted by the pulse spectral

densities at the transition frequencies, and modulated by the phase factors ei(<li43143-<li2l12l) and

We define the complex third-order susceptibility i(3) ( lU21 , t 32 , lU43 ) as the partial

Fourier transform of the response function with respect to the variable time-delays t21

and t43 •

co co

~ (3) ( t ) - Jdt Jdt (3) (t t t) iWztl21 iW43143
% lU21 , 32' lU43 - 43 21% 21' 32' 43 e e .

o 0

(2.48)

Since the response function, Eq. (2.39), is real-valued, symmetry considerations imply12

that the susceptibility is a sum of positive and negative frequency components, i.e.,

0/(3) (,,"" t r.l) = 0/(3) (r.l t r.l)
A- W'21' 32'W'43 A-+ W'21' 32'W'43

4 co co

~(3) ( t ) - "( .) Jdt Jdt m (t t t ) iWd21 iW43143
%+ lU21' 32,lU43 - £.oJ -1 43 21 n j 21' 32' 43 e e

j=1 -co -co

4 ~

= L:(-i)91j(lU21't32,lU43)'
j=l

(2.49)
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We can further separate i~3) (lU2Pt32,lU43) into rephasing and non-rephasing

contributions:

(2.50)

and

(2.51)

To connect the rephasing and non-rephasing susceptibilities in Eqs. (2.50) and (2.51) to

our PM-ECS measurements, we Fourier transform the complex signals Zdif and Zsum

given by Eqs. (2.35) and (2.36). The resulting expressions are related to the functions

91 j ( lU21 , t 32 , lU43 ), after compensating for the frequency down-shifting imposed by the

monochromator settings:

(2.52)

and

(2.53)
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Equations (2.53) and (2.54) describe the resonant rephasing and non-rephasing third-

order susceptibilities, in terms of our sum and difference population contributions. In

contrast to linear susceptibility,32 absorptive and dispersive contributions to the third-

order susceptibility are not clearly partitioned by the real and imaginary signal

components, but it has been demonstrated that a simple transformation of the rephasing

allows for approximate separation into absorptive and dispersive contributions.l3
,24 The

real (imaginary) part of ig) corresponds to the change in absorption (dispersion) at the

detection frequency lD43 , which is induced by excitation at the frequency lD21 •

Summary

In this chapter we have presented the theory behind two-dimensional phase-

modulation electronic coherence spectroscopy. Through third-order perturbation theory

and acousto-optic phase modulation, we have demonstrated the ability to isolate the time-

domain quadrilinear overlap contributions to the total fluorescence signal (by

demodulation in lock-in amplifiers) resulting from a collinear four-pulse sequence and

Fourier transform them into the corresponding complex third-order susceptibility. The

experimental viability of the 2D PM-ECS technique will be demonstrated in the

following chapter on a simple three level atomic system.
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CHAPTER III

TWO-DIMENSIONAL ELECTRONIC COHERENCE SPECTROSCOPY

EXPERIMENTS PERFORMED ON ATOMIC RUBIDIUM

Having developed the theoretical formalism for 2D PM-ECS experiments in

Chapter II, we now demonstrate its efficacy by performing a series of experiments on

atomic rubidium vapor. This chapter contains material co-authored with P.F. Tekavec and

A.H. Marcus.

Atomic Rubidium as a Model System

We demonstrate 2D PM-ECS by performing proof-of-principle experiments on a

well-defined, simple model system - atomic rubidium. Rubidium (Rb) has an absorption

spectrum with two narrow optical transitions (D} with ~ = 794.7 nm and D2 with ~ =

780.0 nm, see Fig. 3.1) spanned by the Ti:Sa laser bandwidth. In Table 3.1 we list the

spectroscopic parameters of the Rb D line transitions.! Each of the three electronic states

(52 S1/2 , 52~/2' and 52P3/2) are associated with degenerate magnetic sub-levels and

hyperfine sub-levels introduced by nuclear spin - electron spin orbit coupling.

Nevertheless, in our experiments these degeneracies and splittings are not resolved. We

therefore regard the atom as an effective three-level system. We label 52
SI/2 as the
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Table 3.1: Physical constants associated with 87Rb optical D line transitions. n is the
transition index, OJ ng is the transition frequency, Ang is the transition wavelength, fl

ng
is

the transition dipole moment (in units of Debye), r is the lifetime, and r is the natural
line width (Johansson 1961).

1

2

2.370

2.414

0,

794.7

780.0

2.992

4.227

n =2)
n= 1)

27.70

26.24

5.747

6.066

Figure 3.1: Energy level diagram for the rubidium D line transitions accessible by
Ti:Sapphire laser spectrum. The system can be treated as a three level system for these
experiments, with a single ground state and two excited states that are non-resonantly
coupled.



46

ground state Ig), 52
~/2 as the first excited state In =1), and 52

~12 as the second excited

state In = 2). Because of the relative simplicity of the system Hamiltonian, our data can

be easily compared to theoretical predictions.

Experimental Apparatus and Procedure

In Fig. 3.2, we show a schematic diagram of the experimental apparatus used for

the Rb experiments. A full account of the experimental apparatus can be found in Ref.

[2], and the similar, current apparatus will be described in full in chapter VI. Briefly, we

use the 800kHz output of a cavity dumped Ti:Sapphire oscillator to generate a sequence

of four laser pulses in the separate arms of two identical Mach-Zender interferometers.

Each of these beams is focused through a Te02 acousto-optic, imparting the specific

phase relationships described in chapter II. Three computer controlled delay stages

control the relative arrival times at the sample for each of the four pulses in the sequence.

The beams, once recombined collinearly, are focused into a Rb vapor cell, and a portion

of the resulting fluorescence is collected by an amplified photo-diode. Additionally, a

part of the pulse pair from each interferometer is sent into a used to generate a reference

signal in a monochromator, as described in chapter II.

The fluorescence and reference signals are multiplied together in two lock-in

amplifiers, isolating the fluorescence contributions oscillating at the sum and difference

reference frequencies. The demodulated sum and difference signals are collected via

computer.
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Two-dimensional arrays of time-domain data are collected by varying the time

delays between pulses 1 & 2, the coherence time t21, and the time delay between pulses 3

& 4, the detection time t43. The time delay between the two pulse pairs, the population

time t32, is held fixed for any particular experiment. In-phase and in-quadrature data is

I
I
.. non-linear
T signal
I
I

------------~--------~--~t 5 kl-tz. 8 kHz signal I

I
t32 I

I
I
I
I
I
I
I
I
I Cavity-Dumped Ti:S
I Oscillator - 800 kHz

~ two-waysWit~ tr---..
</ APD 2 .....- .....T·-...~...-Y

8 kHz
I reference

I ---9 ....._ ...
I I ~3 I
I waveform I I

mixer I , I computer
I 5kl-tzl
I I I referenceT ~~---------o
~~); ...~ APD3 lock-in 2 t:------.-----A'I demodulated 13 kHz (sum-frequency) I- - - .... - - - j ---I signal (in-phase, in-quadrature) I

1 13kHz (sum-frequency) reference [od<-1n 3 - - - - .. - - - - - -00----- ...----- .. demodulated 3kHz (differeflce-frequency) I
3 kHz (difference-frequency) reference signal (in-phase, in-quadrature)

~-------------~-------------~demodulated pulse-pulse cross-correlation signal (5 kHz, 8 kHz, amplltude only)

Figure 3.2: Schematic diagram of the experimental setup for phase modulation (PM-)
ECS (described in text). Abbreviations have the following meanings. APD: amplified
photodiode; PD: pin photodiode; AO: acousto-optic Bragg cell; BS: beam splitter.
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collected for both sum and difference signals, allowing for construction of the complex

valued functions Zsum(dif) =Xsum(dif) + i~um(dif) .

To collect these signals in a properly phased manner,3 the arbitrary relative phases

of the lock-in amplifiers, Btt(d!f) , are set such that the in-quadrature

signals Ysum(dif) (0, t32 ,0) =0 at the time origin t43 =t21 =0 and the in-phase signals are

positively maximized, resulting in the fluorescence signals Xsum(dif) (t43 ,t32 ,t21 ) and

Ysum(dif) (t43,t32,t21) given in Eqs. (2.33) and (2.34), respectively.

Time-Domain Interferograms

By demodulating the fluorescence signal and collecting the terms that are

modulated at the sum and difference frequencies, we isolate all signal contributions from

interferences between a one-pulse and three-pulse wave packet that are linear in each of

the four excitation fields, given by the downshifted complex valued response functions

respectively (Eqs. (2.35) and (2.36)). The rapidly oscillating wave packet overlaps of the

system, as a function ofinterpulse delay, are downshifted by the respective reference

frequencies in the demodulation process, creating relatively slowly oscillating data

waveforms. Rewriting Eqs. (2.23) - (2.26) for a three level system with indirectly
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coupled excited states and multiplying by the reference signals, the downshifted complex

valued response functions are expected to have the forms

(3.1)

and

(3.2)

for the difference signal, and

(3.3)

and
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for the sum signal. The system and pulse parameters involved in Eqs. (3.1) - (3.4) are

either well known (Rb parameters in Table 3.1) or easily measured (center wavelength of

787 nm, FWHM bandwidth of 33 nm, Gaussian pulse width of 31.5 fs, and time-

bandwidth product of 0.51).

Having defined the four downshifted quadrilinear overlaps in Eqs. (3.1) - (3.4), it

is beneficial to examine each of the four specific pulse-energy level pathways that

contribute to each Z; term. It is clear that each contribution to each Z; term accumulates

phase uniquely as a function of the three interpulse delays. If we consider each panel in

Figs. 2.4 - 2.7, we see that the first term in each ofEqs. (3.1) - (3.4) corresponds to panel

B in the corresponding figure, while the second term corresponds to the A panels. The

third and fourth terms in each Z; sum correspond to the C and D panels respectively. The

first two terms in each ofEqs. (3.1) - (3.4), evolving on the ground state and only a

single (n = 1 or n = 2) of the two excited states during the three interpulse delays, while

the latter two terms in each of Eqs. (3.1) - (3.4) will involve evolution on each of the two

excited states, yielding information about ground state mediated coupling processes.

Population transfer does not contribute on the timescales of these experiments.

where a,b E {1,2}. For a positive phase accumulation during (2], there is a corresponding
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negative phase accumulation during t43 (and vice versa). This is a result ofthe Hermitian

conjugate pathways traversed during these time periods by the wave packets. This is also

clear from examination of the difference signal contribution pathways shown in Fig. 2.3

These conjugate pathways cause the wave packet phases to "rephase," analogous to the

rephasing contributions to a 2D NMR or photon echo experiment;4,5 therefore, these

difference signal contributions are interchangeably referred to as rephasing (RP) or echo

signal contributions. Similarly, we consider the phase factor of the sum signals,

accumulation of the wave packets is additive in the situations described above. The sum

signal contributions are also referred to as the non-rephasing (NRP) signal contributions.

For a three level system such as Rb, only the ground state mediated coupling

pathways from the Zj and Z2 overlaps have non-zero t32 dependence. These are the only

pathways in which the bra and ket wave packets evolve on separate energy levels during

t32. These signal contributions are referred to as "stimulated emission" contributions

because the fourth pulse acts as a probe of the evolution of the system during t32 and the

action of the third pulse, which stimulates emission by driving amplitude from the three

pulse wave packet from an excited state to the ground state. The coupling contributions to

Z3 and Z4 are both in the ground state during t32. These are referred to as "ground state

bleach" pathways because the fourth pulse probes the system after the third pulse drives

amplitude in the three pulse wave packet from the ground state to one of the excited

states. As we will see excitonic systems or systems in which transitions can he driven
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between excited electronic energy levels, there is a third kind of contribution that does

not contribute to the Rb signal, referred to as "excited state absorption."

We expect the rephasing and non-rephasing signals to oscillate with a period of

the inverse of the frequency difference between the two excited energy levels of

rubidium, 2:r/ (OJ2g - OJlg ) = 140 fs, so for the remainder of this discussion we will

display and discuss the results for t32= 140 fs and the half-period difference at t32= 210

fs. Figure 3.3 shows the calculated (panels A-D) and experimentally collected (panels E­

H) 2D interferograms for the difference signal, 2dif = 22 + 23 , The left-hand column

shows the in-phase ("real") component and the right-hand column shows the in­

quadrature ("imaginary") component of the difference signal contribution to the

fluorescence. The top row in both theory and data plots is for t32= 140 fs, and the bottom

row for t32= 210 fs. Figure 3.4 shows the equivalent theory and data interferograms for

the sum signal component, 2 sum =21 +2 4 , We immediately note that in both cases, the

experimental data is in exceptional agreement with the calculated interferograms. The

change in structure between t32= 140 fs and t32= 210 fs interferograms can be understood

as a 90° phase shift of the t32 dependent phase factor in relation to those independent of

t32.
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Figure 3.3: Comparison between theoretical calculations (panels (A) - (D)) and
experimental data (panels (E) - (H)) for the difference-signal interferograms obtained by
PM-ECS (described in text).
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Figure 3.4: Comparison between theoretical calculations (panels (A) - (D)) and
experimental data (panels (E) - (H)) for the sum-signal interferograms obtained by PM­
ECS (described in text).
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Third-Order Susceptibilities

Ultimately, we wish to relate the results of the collected nonlinear response

functions to the nonlinear susceptibility, as discussed in chapter II, where we described

how to construct the complex signals Zsum(dif) (f43 , f32 ,f2l ) =

Xsum(dif) (f43 , f32 ,f2l ) +iY.um(dif) (f43 , f32 , (21 ) from the collected in-phase and in-quadrature

interferograms, Fourier transforming the results in accordance with Eqs. (2.49) - (2.51) to

generate the complex rephasing and non-rephasing third-order susceptibilities,

i~%' ((lJ2I'f32 , (lJ43) and inRP ((i)2I'f32 , (i)43)' described explicitly in Eqs. (2.52) and (2.53)

for properly phased data. The experimental data are multiplied by a slow decaying

windowing function6 (standard deviation ~3.5 ps) to force the time-domain

interferograms to decay towards zero in the longest timescales accessed by our

experiments (~10 ps). This will artificially broaden the transition lineshapes, so it is

important to choose windowing function timescales appropriately.

The complex-valued rephasing and non-rephasing third-order susceptibilities, as

defined in Eqs. (2.52) and (2.53), are shown in Figs. 3.5 and 3.6, respectively. Again, we

compare theoretical calculations (panels A-D) to the experimental results (panels E-H).

The real and imaginary parts of the third-order susceptibilities are shown in the left and

right columns of the figures, respectively, for population times of f32 = 140 fs and f32 =

210 fs as labeled. As in the case of the time-domain results, the expected spectra agree

very well with experimental results. We note that real and imaginary data contributions

agree well with theoretical calculations, confirming proper phasing of the data during
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collection. 2D spectra can be understood as the change in absorption (or dispersion) of a

system from resonant interactions at the frequency W43, due to preceding excitations at

frequency W21, and separated by 132.
7 Diagonal features, occurring at the same value on

both the W21 and W43 axes, correspond to contributions from those pathways that only

interact with a single ofthe two excited states (e.g. the first two terms in each Zi sum, and

panels A and B in Figs. 2.4 - 2.7), and occur at sites in agreement with the well known

fundamental frequencies.

Off-diagonal features in the 2D spectra occur at coordinates that couple the

fundamental transition frequencies, (W1g, W2g) and (W2g, W1g), and are defined by the latter

two terms in each Zi sum, and panels C and D of Figs. 2.4 - 2.7. In the rephasing signal

i~t, corresponding to the Fourier transforms of Z2 and Z3, the off-diagonal terms will

oscillate as a function of 132 for the reasons described in the previous section. These

coherent oscillations arise because each of the static off-diagonal ground state bleach

contributions (Z3) has a corresponding off-diagonal stimulated emission term (Z2) that is

oscillatory as a function of 132. These ground state bleach and stimulated emission terms

have equivalent amplitudes, and therefore are expected to oscillate between zero and the

diagonal peak amplitudes with a period of 2:;r/ ( (()2g - Wig) = 140 fs, in agreement with

the observed results of maximized off-diagonal features at 132= 140 fs, and minimized

off-diagonal features at 132= 210 fs ini~t.

Similar observations may be made about the non-rephasing signal, i~~RP' shown

in Fig. 3.6 and comprised of Fourier transforms of Zl (stimulated emission contributions)
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and Z4 (ground state bleach contributions). We note from equation 3.3 that all terms in Zj

have identical frequencies during the coherence and detection periods, meaning that Zj

contributes solely to the diagonal features in the spectra with both static and oscillatory

terms. Z4, being a ground state bleach term, contains only static terms that contribute to

both the diagonal and off-diagonal features. The oscillatory diagonal terms cause the

diagonal features to oscillate as a function of time, but with less contrast than the

oscillatory features in the rephasing spectra. The diagonal features are maximized for (32

= 140 fs and minimized for (32= 210 fs in the ii~RP diagrams.

As discussed at the end of chapter II, the rephasing and non-rephasing spectra

each contain mixed absorptive and dispersive contributions amongst the real and

imaginary parts. If one wishes to separate absorptive and dispersive contributions from

one another, it can be done by the linear transformation

The resulting two dimensional correlation spectra ig) has real and imaginary parts

(3.5)

corresponding to absorptive and dispersive contributions to the third-order susceptibility,

respectively.8,9 In Fig. 3.7 we compare theoretical calculations (panels A-D) to our

experimental results (panels E-H), and once again find excellent agreement. The left and

right columns show the absorptive (real) and dispersive (imaginary) components of ig) .

By combining the rephasing and non-rephasing spectra, we create spectra in which all
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four features oscillate as a function of the population time (though the off-diagonal

features still oscillate to a larger degree of their maximum value), with maximized

features in the data set for 132= 140 fs and minimized in the 132 = 210 fs data set. The

correlation spectra are related to the conditional probability that the system undergoes

successive transitions at the frequencies (J)2l and (J)43, separated by the population time 132.

Summary

We have presented proof-of-principle results for 2D phase-modulation electronic

coherence spectroscopy (PM-ECS), a novel fluorescence detected phase-selective

technique for measuring 2D spectra with femtosecond resolution. We utilize acousto­
)

optic phase modulation to generate a sequence of four collinear phase-related optical

pulses which generate a multitude of coherences in the sample. We are able to isolate

specific linear combinations of the fluorescence contributions that are linear with respect

to each of the four excitation fields, often referred to as the rephasing and non-rephasing

contributions. The time-domain data is Fourier transformed to generate 2D spectra that

have excellent agreement with theoretical calculations. We will use this technique to

obtain 2D spectral information in biologically relevant systems, such as molecular

excitons created by porphyrin dimers, whose theoretical background and experimental

results are presented in chapter VI.
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CHAPTER IV

CONFORMATIONAL DYNAMICS OF BIOLOGICAL MACROMOLECULES BY

POLARIZATION-MODULATED FOURIER IMAGING CORRELATION

SPECTROSCOPY

Motivation

In the following experiments, we examine the slow polarized fluorescence

fluctuations that result from conformational transitions of DsRed, a multicolored

fluorescent protein derived from the coral Discosoma sp. Fluorescent proteins (FPs) are

widely used in biotechnological applications as reporters of gene expression and other

singular events of cell activity 1. It has been hypothesized that FPs from reef-building

corals function as part of an adaptive mechanism to optically interact and to regulate the

symbiotic relationship between corals and photosynthetic algae 2. It is therefore

interesting to examine the conformational transitions that affect the protein's ability to

transfer optical excitation energy. DsRed is an efficient fluorophore, with an

exceptionally high extinction coefficient (E = 3 x 105 cm-I M-I
, Aex ~ 532 nm), orange­

red emission that is easily separated from excitation light, and a relatively high

fluorescence quantum yield ('It= 0.79) 3. Much is known about DsRed's structure 4-6, its

photo-physical properties 7-13, and its behavior as a molecular energy transfer complex 7,8,
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10,11, making it a suitable system to demonstrate the utility of the polarization-modulation

Fourier imaging correlation spectroscopy (PM-PICS) approach.

In the remainder of this paper we outline the basic experimental implementation

ofPM-FICS, including a brief theoretical description of the observables. Using DsRed as

a model test system, we demonstrate how PM-PICS can separately and simultaneously

measure partially averaged molecular center-of-mass and conformational coordinate

fluctuations over a wide range of time scales (1 ms - 500 s) much longer than the excited

state lifetime.

This chapter contains material co-authored with E.N. Senning, M.C. Fink, and

A.H. Marcus.

Experimental Methods

In Fig. 4.1A is shown a schematic diagram of the PM-FICS apparatus. Additional

details about instrumentation, sample preparation, and data collection are described by

Fink et ai. 14. We cross left and right elliptically polarized laser beams to simultaneously

generate an intensity interference fringe pattern and a linear polarization grating at the

focal plane of a fluorescence microscope. The wave vector of the optical pattern kG is

oriented along the a direction, as shown. The laser resonantly excites freely diffusing

DsRed molecules in 95% glycerol/water solution (Aex = 532 urn, sample thickness ~ 10

pm, excitation intensity at sample = 1.27 x 10-4 J..lW J..lm-2
). The concentration of DsRed

is dilute enough (~ 100M) so that the mean separation between molecules nearly

matches the experimentally adjustable fringe spacing (dG ~ 1 pm). The phase <I> of the
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spatially modulated intensity pattern is swept at the frequency ~ 1 MHz, much faster than

a molecule can undergo a measurable change in its conformation, or in its center-of-mass

position, but much slower than the rate of fluorescence (rf - 3.2 ns) 10. The back-emitted

fluorescence, which is detected through the focusing objective, is similarly modulated at

the sweep frequency. A polarizing beam splitter separates the emission into orthogonal

plane polarized channels, which are simultaneously and phase-synchronously detected.

A optical pattern

dichroic BS

focusing objectIves

avalanche
photo-diodes

B

Figure 4.1: (A) Schematic of the experimental apparatus. Two orthogonal, elliptically
polarized laser beams are crossed at the sample plane of a fluorescence microscope. The
spatially and temporally integrated fluorescence is split using a polarizing beam-splitter
(BS), and detected in parallel using avalanche photo-diodes. (B) At the sample, the
superposition of the two laser beams creates (simultaneously) a spatially modulated
intensity interference pattern and a plane polarization grating. A 1800 rotation of the
polarization vector coincides to a full cycle modulation of the intensity pattern. Molecular
chromophores are depicted as white circles bisected by line segments, indicating the
orientations of transition dipoles. (C) Each optical chromophore is characterized by its
absorption and emission dipole moments (jJ: and jJ: ' respectively), and its

depolarization angle e:e .The polarized emission is projected onto orthogonal laboratory

frame axes. The rotating polarization of the exciting field imparts a modulation to the
detected depolarization angle.
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PM-FICS Observables and Theory for DsRed

Consider the fluorescence intensity from the nth DsRed molecule illuminated by

the exciting laser beams (see Figs. 4.1B and 4.1C). If the molecule is initially excited at

time t = 0, its fluorescence intensity at time t is proportional to 15

(4.1)

Here, iJ: and iJ: are the absorption and emission transition dipole moments of optically

coupled sites in the DsRed conformation, respectively. The angle brackets (...) indicate

an orientational average over the isotropic distribution of absorption and emission

dipoles, assuming a fixed angle e:e between the two. We assume that the fluorescence

lifetime ( 'f - 3.2 ns) is much shorter than the rotational diffusion time of DsRed in 95%

glycerol/water ('R - 100 ns), the orientation of the emission dipole moment at the

detection time is approximately the same as its orientation at the time of its excitation.

Hence, it is assumed that iJ: (t) ~ iJ: (0). As shown in Fig. 4.lC, the unit vectors a, /J,

and i define the laboratory frame coordinate system. The rotating excitation electric

field direction cex (¢) lies in the a-i plane, and is oriented relative to the i-direction

by the polar angle ¢. The detection electric field directions, C~t and cfe" lie fixed and

parallel to the a-and i -directions, respectively.
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A standard approach is applied to calculate Eq. (4.1) for the experimental

geometry 16. First, it is necessary to calculate the probability W (B,rp,¢)dBdrp that the

excited molecule has absorption dipole oriented with polar angle B and azimuthal angle

rp:

I
A (A.). Aa(B )12 =W(B A.)dBd = cos

2
(B+¢)sinBdBdrp

[;ex 'f/ Jln ,rp ,rp''f/ rp r27r riT
Jo Jo cos2 (B+¢)sinBdBdrp

(4.2)

The denominator of the above expreSSIOn, fo2iT f: cos2 (B +¢)sinBdBdrp

= (-27l'/3) [-3+ cos(2¢)] , counts over all possible orientations of it:. Note that this

normalization recovers the standard value of 47l'/3 for ¢ = O. In the remaining

calculations, it is useful to approximate the factor [-3 + cos (2¢)JI using the truncated

expansion - t - t cos (2¢) .

To obtain the probability of detecting the nth excited molecule's emISSIOn,

polarized along the a- and i -directions, one multiples Eq. (4.2) by the factor

Ii;;/, .it: 1

2
, and then integrates over all possible orientations. For the a-direction, this

factor is equal to [sin (B+ B:e
) cos rpT;for the i -direction, it is equal to cos2

( B+ B:e
) •

The integrated intensities are



67

(4.3)

and

(4.4)

Equations (4.3) and (4.4) are tested for the case of vertical polarization (¢ = 0).

Substitution of Eq. (4.2) into Eqs. (4.3) and (4.4), and using the normalization

approximation stated above, leads to

A: (e:e ,¢ = 0) :::: ~ - :5 cos (2e:e)

and

4 4 (A; (e:e ,¢ =0) :::: "9 + 45 cos 2e:e).

(4.5)

(4.6)

Equations (4.5) and (4.6) are first-order approximations to the exact solutions that would

have been obtained [Le., A: (e:e ,¢ =0) = l __1 cos (2e:e) and A; (e:e ,¢ =0)
4 20
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=l + _1cos (20;e )] had the approximation to the normalization factor not been used.
2 10

Equations (4.3) and (4.4) are next evaluated for the general case ¢ "" o.

A: (o;e,<D) =: l,u:rj,u:r[~~ + 3
2:0 cos (20;e)- ~ cos (20;e - <D) + 4

1
5 cos (20;e + <D )

(4.7)

1 1 1 ]--cos{2<D)--cos(20:e-2<D)+-cos(20:e+2<D) ,
72 48 720

and

A; (o;e ,<D) = l,u:r l,u:r [~~ - 1~30 cos(20;e) + ~ cos(20;e - <D) - :5 cos(20;e + <D)

(4.8)

1 1 1 )]--cos{2<D)+-cos(20;e -2<D)--cos(20;e +2<D .
36 24 360

In Eqs. (4.7) and (4.8), the excitation polarization angle ¢ is expressed in terms of the

phase of the intensity grating, <D =2¢. In the current experiments, a linear sweep is

applied to the phase <D at the frequency n/2;r ~ 1 MHz. Equations (4.7) and (4.8) show

that the polarized intensities contain oscillating terms at the modulation frequency and at

twice the modulation frequency.

In a FICS experiment the optical fringe spacing, dg , is typically between 0.5 and 5

]lm. The beam waist w at the sample plane, on the order of 50-100 !lm, typically spans at
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least ten fringe spacings. Since w » dg , we can approximate the excitation intensity

pattern as an infinite plane wave, 1L(r, ¢G) =10 [I + cos (kG' r + ¢G)] . Here, we define 10

as the amplitude of the intensity grating, ¢G is the intensity grating phase, and

kG =(2Jr/dG ) is the wavevector of the intensity grating. The total fluorescence collected

from the N molecules is given by 14

(4.9)

where

(4.10)

is the polarization-dependent optical density of the sample. We can see that the total

fluorescence collected is proportional to the spatial overlap of the excitation fringe

pattern and the fluorescent particle sites. Carrying out the spatial integration leads to

(4.11)

The phase <1> (t') =nt' + <1>0 is swept at the carrier frequency n/2Jr = I MHz. The period

of the modulation is much longer than the fluorescence lifetime and the rotational
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reorientation time, but short in comparison to the center-of-mass and confonnational

fluctuations of interest.

Substitution of Eqs. (4.7) and (4.8) into Eq. (4.9), and retaining only the terms that

are third-order in <1> leads to

(4.12)

and

(4.13)

Using phase sensitive detection techniques described in reference 14, the above signals are

demodulated at three times the carrier frequency. One thus detennines the in-phase

the polarized fluorescence. These components are combined according to

z:'% = X:'x + iyka,x to obtain the complex-valued signals
G G G

(4.14)

and
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(4.15)

Because the final three terms of Eqs. (4.14) and (4.15) are small in comparison to the

leading terms, the complex signals are well approximated by

(4.16)

and

(4.17)

In Eqs. (4.16) and (4.17), it: and it: are the absorption and emission transition

dipole moments of optically coupled sites in the DsRed conformation, and e:e is the

angle (assumed fixed on the time scale of fluorescence) between the two dipole moments.

The two transition dipoles are assumed to couple via a resonant incoherent Forster

mechanism. Because the fluorescence lifetime (TJ ~ 3.2 ns) is much shorter than the

rotational diffusion time of DsRed in 95% glycerol! water (viscosity ~ 780 cP, T R - 100

ns), the polarized fluorescence signals do not depend on the rotational diffusion of

DsRed, but are sensitive to the conformation angle e:e .
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Linear combinations of Eqs. (4.16) and (4.17) are used to isolate either the first or

second of the two terms. The local number density observable

Z~D =,Z:G +2Z:Goc(expi(kGx)), and the local anisotropy density observable

Z~D =,Z:G -2Z:Goc(exPi(kGx-20ae )) are thus defined, where the angle brackets

indicate the sum over N molecules. As discussed further below, the complex signals

contain information about partially averaged molecular center-of-mass and anisotropy

coordinates.

Cumulant Approximation

We assign a microscopic interpretations to the number density and the anisotropy

density using standard methods of statistical mechanics and probability theory 17,18. It is

convenient to begin with a discussion of the number density. In the FICS experiment, the

parameter Z~D (t) is sequentially sampled over time. Because the grating wave vector

kG points in the a-direction, only the x-components of the N molecular center-of-mass

positions contribute to the signal. The positions {x1(t),xZ (t), ...,xN (t)} behave as

continuous random variables, and fluctuate about their mean according to

xn {t)=8xn {t)+(x)eq. We define the equilibrium probability P"q(x) of observing a

randomly selected molecule with coordinate x, with mean (x) eq =L: xP"q (x)dx =0 and

variance (J"~q =S:x2 P"q{x)dx. At a given instant, the FICS observable samples a Fourier
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component of a subset PN [ x; t] = 12::=1 A" (t) t5 [ x - xn (t)] of the equilibrium

distribution. According to the central limit theorem, the sampled distribution has mean

value and variance

=2::=1 x~ (1) A" (1) OC CY;q / N , which is narrowed relative to the equilibrium distribution by

the factor N-1
17. The number density fluctuation Z~D (t) is the Fourier transform (also

known as the characteristic function) of the sampled distribution PN [x; t]. We

approximate Z~D (t) using a cumulant expansion of the sampled distribution, truncated

to second order 17:

(4.18)

For the current situation in which center-of-mass motion is expected to occur through a

free diffusion mechanism, the above approximation is expected to be accurate, since the

equilibrium distribution is well characterized as Gaussian 18. In such cases, higher-order

moments of ~q ( x) are negligible. Equation (4.18) expresses the phase and amplitude of

Z:: (t) in terms of the mean value and the variance of the sampled distribution PN [x;t],

respectively. Thus, in the cumulant approximation the number density samples the

distribution size N, and the deviation of the sampled mean position about the equilibrium

distribution, t5xN (1) =XN (1) - (x)eq.
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In analogy to the above treatment for the number density, an approximation for

the anisotropy density is

(4.19)

Similar interpretations apply to the phase and amplitude of Z~D (t) as to those for the

number density, but with the additional contributions from the mean depolarization angle

of the sampled distribution e;e (I) = 2::=1 e:e (I)PN [e:e (I)] and the variance [g8;e (t)J.
The argument of Eq. (4.19) generally contains coupling terms proportional to

k~ [gxN (t)J [g8;e (t)J . Such terms vanish if it is assumed that the molecular center-of­

mass positions are statistically uncorrelated with the depolarization angles. In this case,

an additional approximation for the

Z~D (t) =Z~D (t)ZA (t), where the

ZA (t) == Z~D (t)/Z~D (t) oc (exPi[20:e (t)J).

anisotropy density IS gIven by

anisotropy IS defined by

This factorization is invoked for the

remainder of the paper. While both the number density and the anisotropy density are

kG -dependent, the anisotropy depends only on internal molecular degrees of freedom,

and is independent of the specifically probed length scale.

The accuracy of the approximations given by Eqs. (4.18) and (4.19) depends on

the relative importance of higher moments of the equilibrium distributions, p'q (x) and
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~q ( eae
). Were the equilibrium distributions nearly Gaussian, their higher moments

would be small, and in such cases the second-order cumulant is an adequate model. For

distributions with greater complexity, the second order cumulant approximation does not

necessarily account for signal contributions from non-zero higher moments.

Nevertheless, such higher moments may be less important when considering the time-

dependent fluctuations of the optical signals. This point can be investigated through

computer simulation and experiment. In the current study, we regard equations (4.18) and

(4.19) as convenient starting points for the development of future models to interpret PM-

FICS data.

Two-Point Time Correlation and Distribution Functions

Two-point time-correlation functions (TCFs) provide a useful characterization of

the average time intervals over which statistically correlated events occur in equilibrium

systems 18. The TCF of the complex-valued operator Z(/) is defined as

/Z·(0)Z(/21))=lim~rZ·(/')Z(/21+1')dl', where the angle brackets indicate the
\ r~'" Jo

integration over time, and 121 = 12 - II ~ 0 is the time interval separating two successive

measurements. Using the cumulant approximations of Eqs. (4.18) and (4.19), the number

density and the anisotropy density TCFs are written

(4.20)



76

and

(4.21)

The second term on the right hand side ofEq. (4.21) is the anisotropy TCF, given by

(4.22)

Equation (4.20) defines the mean center-of-mass displacement

6XN(t21)=XN(t21)-XN(0) of the sampled distribution during the time interval t21' and

the variance 86X~ (t21 ) =[6XN(t21 )J. Similar definitions hold for the mean

depolarization displacement 111J;e (t21 ) and its variance 8111J;e2 (t21 ) given by Eq. (4.22).

Equations (4.20) - (4.22) assume statistical independence between the means and

variances of the sampled distributions. The TCFs are generally complex-valued, with

phase factors that depend on the mean coordinate displacements, and amplitudes that

depend on the variances. These functions decay, on average, on a time scale for which the

magnitude of the phase displacement exceeds ~ Tl/4. The number density TCF described

by Eq. (4.20) is known as the self-part of the intermediate scattering function of liquid

state theory. In the absence of long range molecular interactions, this expression can be

further simplified using the Gaussian model for single particle motion 18. In this

approximation, Eq. (4.20) becomes C~J (t21 ) oc exp[-k;Dsf21]' where Ds is the self-
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diffusion coefficient. Equation (4.21) suggests that the anisotropy TCF can be determined

While TCFs convey the average time scales of molecular coordinate

displacements, more detailed information about the weights and magnitudes of the

sampled displacements are contained in two-point distribution functions (DFs). We

define pJ2) [ &N(t21 )Jd&N as the probability of sampling N molecules whose mean

center-of-mass coordinate has undergone a displacement in the range &N and

&N +d&N' during the time interval t21 • We construct this distribution by sampling

paIr-WISe products of the form ZND' (O)ZND (t )
kG kG 21

histograms of the displacements &N (t21 ) , weighted by the sampled inverse variance

( oc N ). Referring to the central limit theorem, if &N (t) behaves as a Gaussian random

variable, pJ2) [ & N (t21 ) ] is expected to be Gaussian with center (&N ) =O. Furthermore,

the variance of this distribution should scale linearly with time according to

8&~ (t21 ) =2Dst21 , in analogy to the self-part ofthe van Hove function 18.

molecules with mean depolarization angle /ie;e (t21 ) and mean displacement &N (t21 )

during the time interval t21 • pJ2) [ &N (t21 ) ;/iif;e (t21 ) ] is constructed from the anisotropy



78

assume no correlation between molecular positions and depolarization angles. An

absence of coupling between the parameters &N (t21 ) and ~jj;e (t21 ) implies that

p~2)[&N(t21);~jj;e(t21)J =p~2)[~(t21)J p~2)[~jj;e(t21)J. The DF for the anisotropy

fluctuations IS thus detennined by the ratio

DsRed Results and Discussion

In Fig. 4.2 are shown experimental trajectories of the continuously sampled

observables Z~D (t) and Z~D (t) taken at acquisition frequency I kHz, and with fringe

spacing dG = 1.06 J1 m. Data runs were recorded over a period of 512 s. As in our

previous work, 14 signal count rates were typically in the range 250,000 - 400,000 cps

using laser excitation intensity (measured at the sample) of 1.27 x 10-4 JlW Jlm-2
• In the

left column are shown the number density, and in the right column, the anisotropy

density. In panels 4.2A and 4.2B, the observables are presented in tenns of their

corresponding phases, while in panels 4.2C - 4.2F, they are represented as real and

imaginary parts. As shown in Fig. 4.2A, fluctuations of the mean center-of-mass

coordinate on the order of ~ 10 urn are discernible. Similarly, Fig. 4.2B shows that

fluctuations of the phase of the anisotropy density on the order of ~ 2° can be resolved.

While both Z~D (t) and Z~D (t) exhibit rapid sub-second fluctuations, the anisotropy

density contains at least one additional, slowly varying contribution on the time scale of
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Figure 4.2: Experimental trajectories of the number density fluctuation Z~D (t) and the

anisotropy density fluctuation Z~D (t), constructed from the demodulated polarized

fluorescence signals, with dG = 2.12 pm. These measurements are recorded from a 10
nM solution of DsRed in 95% glycerol/water, at a frequency of 1 kHz, and over an
acquisition period of 512 s. In panels (E) and (F), the final 100 seconds of the data run are
shown. In panels (A) - (D), the time axis is expanded to show the variation over a 1
second time window. In panels (A) and (B), the signals are represented in terms of the
amplitudes and phases. In panels (C) - (F), the two signal quadratures are shown.
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several seconds. From Figs. 4.2E and 4.2F, it appears that photo-bleaching of the signal is

not significant over the 512 s data acquisition period.

Following the numerical procedure described by Fink et al. 14, we calculate the

number density and anisotropy density TCFs, defined by Eqs. (4.20) and (4.22). These

calculations were repeated using independently acquired data sets, to insure their

reproducibility. The TCFs are presented in Figs. 4.3A and 4.3B, displaced vertically for

the five different fringe spacings dG = 1.6, 1.75,2.12,2.56, and 2.92 ,u m. In Fig. 4.3A,

the decays for c~2 (t21 ) (black curves) are compared to model curves for single particle

diffusion (white). The model curves are given by the function exp(-k~Dst21) where the

value used for the self-diffusion coefficient (Ds =3.7 x10-10 cm2
S-I) is consistent with

previous measurements of DsRed self-diffusion in 95% glycerol/water solution 14. For

each of the five fringe spacings, the time constants of the decays increase with increasing

length scale. The excellent agreement between data and the Gaussian model strongly

suggests that molecular interactions are negligible, and that center-of-mass motions are

uncorrelated. The assumption that the two coordinate displacements tuN (t21 ) and

/iB;:e (t21 ) are statistically uncorrelated is tested by comparing results for c~2 (t21 ) to

model decays, which account for the factorization between the anisotropy and the number

density [see Eq. (4.21)]. For this purpose, a single exponential decay, exp(-t21 /rA ), is

used to represent the anisotropy TCF C~2) (t21 ). In Fig. 4.3B, results for C~~ (t21 ) are

compared to the model decays, exp [-(k~Ds +XJt21 ], with r A := 8 s. Note that the TCFs
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Figure 4.3: Fringe spacing dependent two-point time-correlation functions (2P-TCFs) of

the number density and the anisotropy density fluctuations, c~2 (t21 ) and c~2 (t21 ),
respectively. Decays corresponding to different values of the fringe spacing dG are

vertically displaced. Diagonal and vertical dashed lines are guides to the eye to roughly

indicate the decay time scale. In panel (A), we compare c~2 (t21 ) to the Gaussian model

for Fickian diffusion exp(-k~Dst21)' where Ds =3.7 xlO-10 cm2
S-I. In panel (B), we

compare c~2 (t21 ) to the function exp[-(k~Ds +XJt21 ]' where rA = 8 s is the average

time scale of the anisotropy decay, due to protein conformation fluctuations that affect
energy transfer efficiency. In panel (C), we compare the ratio of the data shown in panels

(A) and (B), C~2)(t21) = c~2 (t21)/c~2 (t21 ), to the model decay exp(-t2JrA ).
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c~2 (t21 ) decay more rapidly than CrJ (t21 ), and that the agreement between data and

model curves is very good for all values of dG • In Fig. 4.3C, the ratio of the decays

C~2(t21)/CrJ(t21) =C~2)(t21)' are compared to the model function exp(-t2JrA ). The

very favorable agreement between these results for C~) (t21 ) and the single-exponential

decay demonstrates a clear separation between the anisotropy and center-of-mass

fluctuations. The value obtained for the relaxation time TA = 8 s suggests this is the

average time scale for internal conformational fluctuations of DsRed.

In Fig. 4.4 are presented DFs of the mean center-of-mass displacement

pp)[AXN (t21 )], and the depolarization angle p~2)[ t10;e(t21 )]. These DFs are

constructed from the observables Z~D (t) and Z~D (t) , measured with fringe spacing dG

= 2.12 J.i m. In both panels are shown the distributions vertically displaced for three

different values of the time interval t21 . The sampled distributions are symmetric and

centered about the origin, and their widths increase as a function of t21 . In Fig. 4.4A, the

sampled distributions p~2) [ AXN (t2l )] are compared to the self-part of the van Hove

correlation function Gs (AXN ,t21 ) = (471Dt21r3
/
2
exp(- AX; /4Dsf21) (dashed gray curves),

where the value of Ds is the same as that used above for the model calculations of the

number density TCF. The very good agreement between the van Hove function and the

DF suggests that the Gaussian model provides an accurate picture of molecular self­

diffusion in the DsRed system. It is important to emphasize that the comparison between

theory and measurement at the level of the DFs is a more stringent test of the Gaussian



83

4 ms

20 ms

20 ms

70 ms

100 ms
........
::i 1.5

~

B 2.0

~N 1.0
~~
l<;g
.::-' 0.5
£:!.2:
c..

o......._--~_ ..............:~----'......,
-200 -100

o"-==~_-.......~~=:::=::~
-90 -60 -30 0 .1eN(t

21
)[O] 90

Figure 4.4: Two-point distribution functions of (A) the mean sampled center-of-mass
displacement and (B) the mean sampled displacement of the depolarization angle. In each
panel are shown distributions vertically displaced for three different time intervals. In
panel (A) are comparisons between the measured distribution (black) and the self-part of

the van Hove correlation function GS (&N,t21 ) ocexp(-&~/4Dst21) with Ds =3.7

xl0-10 cm2
S-I, (gray dashed curves). In panel (B), the distributions are compared to

Gaussians with standard deviations 15.7°,23°, and 23°.

model than the previous comparison at the level of the TCFs. The TCFs represent a

statistical average over the distribution of sampled displacements, according to C~J (t21 )

The DFs

provide dynamical information that is often obscured in the TCFs by the statistical

average. In Fig. 4.4B is shown the DF of the mean depolarization angle pJ2} [ 110;e (t21 )J.
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Although this distribution is approximately Gaussian for the time intervals shown, the

width of the distributions ceases to broaden on time scales greater than ~ 70 ms.

Summary

In this work, a novel phase-selective fluorescence fluctuation method,

polarization-modulated Fourier imaging correlation spectroscopy (PM-FICS), was

applied to simultaneously monitor molecular center-of-mass and anisotropy fluctuations.

This approach allows for the study of internal conformational fluctuations of the

fluorescent protein complex DsRed in the presence of diffusion. The phase-selectivity of

PM-FICS enables the determination of two-point distribution functions (DFs) and time­

correlation functions (TCFs).

Direct observations of the number density and the anisotropy density fluctuations,

Z~D (t) and Z~D (t), show that thermally driven relaxation processes in DsRed occur

over a broad range of time scales. A fringe spacing dependent analysis of the TCFs,

c~2 (t21 ) , c~2 (t21 ) and C~2) (t21 ), demonstrates that it is possible to simultaneously

determine the effects of center-of-mass and anisotropy fluctuations. The Gaussian form

of the mean center-of-mass displacement DF suggests that DsRed translational motion

occurs by Fickian diffusion. For such systems, the translational components of the DFs

and TCFs can be clearly identified and removed to isolate the components that depend on

internal conformation. While the DF of the anisotropy fluctuations do not broaden on

time scales greater than ~ 70 ms, the anisotropy TCF C~2) (t21 ) decays on the average
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time scale of r A = 8 s. The large disparity in relaxation time scales is consistent with a

dynamically complex system composed of competing conformation processes that occur

over a wide range of rates. A molecular level interpretation of these processes, and the

role of heterogeneity in the DsRed system, is examined in more detail in our adjoining

paper.

The information provided by the PM-FICS method should be useful to test

fundamental models of protein dynamics. In the current work, the well-defined structure

of the DsRed molecule and its favorable optical properties made this an appealing

candidate to demonstrate the PM-FICS approach. Future extensions of the method should

enable information-rich studies of the conformation dynamics of biological

macromolecules of broad interest. The ability to perform such studies in solution and in

cell compartments could facilitate future studies of in vivo enzymatic function.
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CHAPTER V

KINETIC PATHWAYS OF SWITCHING OPTICAL CONFORMATIONS IN DSRED

BY 2D FOURIER IMAGING CORRELATION SPECTROSCOPY

In chapter IV, PM-FICS was demonstrated to be a useful tool for separating

internal conformation dynamics from translational dynamics in the naturally occurring

tetrameric energy transfer complex DsRed. In this chapter the PM-FICS technique will be

shown to be useful as a 2D electronic spectroscopy technique, with further experiments

on DsRed for the determination of distinct conformation transition pathways via

fluctuations in the degree of depolarization between separate spectral conformation

states. This chapter contains material co-authored with E.N. Senning, M.C. Fink, and

A.H. Marcus.

Background

A remarkable feature of proteins and nucleic acids is their unique ability to undergo

cooperative rearrangements in structure as part of mechanisms to regulate biological

activity. Rather than exist as a single, stable conformation, biological macromolecules

often exhibit a broad, heterogeneous distribution of sub-states in thermal equilibrium 1,2.

Activation and inter-conversion between sub-states can span many decades over time 3.
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Such systems exhibit complex spectra of relaxations, with principle time scales

determined by transformations between sub-states, and exchange kinetics between

different transition pathways 4.

The kinetics of conformational transitions and chemical exchange can be studied

by two-dimensional (2D) NMR spectroscopy 4. Transitions between conformations of

biological macromolecules are reflected by the magnitudes of diagonal and off-diagonal

peaks in 2D NMR spectra. In recent years, chemical exchange spectroscopy has been

applied at infrared and visible frequencies 5. 2D optical methods can investigate the inter­

conversion between populations of chemical species that are spectroscopically non­

equivalent. Such 2D optical experiments measure equilibrium chemical kinetics on the

time scales of the excited state lifetimes ofvibrational or electronic transitions.

In the current work, we show how polarization modulated Fourier Imagmg

correlation spectroscopy (PM-FICS) can probe the pathways of optical switching

conformations of the fluorescent protein complex, DsRed, over a broad range of time

scales much longer than the excited state lifetime (10.3 - 102 s). The PM-FICS method,

and its application to DsRed, is described in chapter IV. Similar to 2D optical and NMR

methods, PM-FICS provides a phase-dependent optical signal that determines four-point

time-correlation functions and the associated 2D spectra. Moreover, the information

obtained from DsRed is sufficient to construct joint probability distributions of time­

dependent conformational coordinates.

From a kinetic perspective, the DsRed protein is a dynamically complex

heterogeneous system. Unlike monomeric variants of the green fluorescent protein
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(GFP) 6, DsRed is an obligate tetramer of FP subunits 7. FPs are single chains of ~ 230

amino acid residues, which form an II-stranded P-barrel with dimensions ~ 3 run x 4

run. An a -helix inside the barrel contains the sequence of three residues that form the p­

hydroxy-benzylidene-imidazolidinone chromophore. In DsRed, the ;r -;r" electron

system of the chromophore is chemically and irreversibly extended to include an

acylimine substituent, adjacent to the imidazolidinone 8, 9. This so-called maturation

process occurs over the course of several days and can be followed by a gradual gain in

red photo-luminescence accompanied by a loss of green emission 8, 10. Nevertheless, the

maturation reaction does not run to completion, even after prolonged aging, so that a

given DsRed molecule likely contains at least one 'immature' green chromophore 8, 11-13.

The red chromophore itself undergoes switching transitions, or 'flickering', between

optical conformations of different emission wavelengths and intensities, and on time

scales ranging between milliseconds and tens-of-seconds 14-17.

Although many studies have focused on the reversible, light induced pathways

between 'bright' and 'dark' conformations 11, 14-17, thermally driven transitions between

ground states are also possible 13, 16. Detailed spectroscopic studies reveal that the red

chromophore can reversibly interconvert, either through excited-state or ground-state

pathways, between two brightly fluorescent red conformations (called 'red' and 'far­

red'), and a relatively dim 'green' conformation 12, 13. The energetic barriers mediating

these transitions are on the order of ~ 1000 cm-1 (or 12 kJ mor1
:::: 5 x kBT at ambient

temperatures). Although the physical nature of the inter-conversion processes remains
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unclear, possible mechanisms include isomerization of the protein-chromophore

hydrogen-bonded network, cis-trans photo-isomerization, and ground state bond

rotation 16,18.

For our current purposes, we invoke a simplified model to interpret the

conformational dynamics that influence excited state energy transfer between adjacent

chromophores in the DsRed complex. Figure 5.1 depicts the DsRed molecule as four

cylinders (arbitrarily labeled 1 - 4) with principle axes oriented approximately as in the

crystal structure 7. Crystallographic data suggest that there are three possible relationships

between any pair of adjacent chromophores, given by the relative transition dipole

orientations (e24 = 41 0, e23 = 47°, and e34 = 21 0) and the inter-dipole distances (r 24 =

43A, r 23 = 38A, and r 34 = 22A). By symmetry, the relationships between paired

transition dipoles 2-4, 2-3, and 3-4 are the same as those between 1-3, 1-4, and 1-2,

. I 7respectIve y .

As previously mentioned, most DsRed tetramers contain at least one immature

green chromophore, which does not mature to red over the course of a PM-FICS

measurement (~ 10 minutes). Of the sites that have matured to red (with absorption

maximum Amax ~ 563 nm), these undergo reversible inter-conversion to the far-red

conformation (Amax ~ 577 nm), or to the weakly fluorescent green conformation (Amax ~

484 nm), on time scales of tens-of-milliseconds and longer. Figure 5.1 depicts a DsRed

molecule with a single static (immature) green site at position 1 (shaded green), and three

dynamically inter-converting red sites at positions 2 - 4. In the experiments presented



90

below, the red optical transitions (Aex ~ 532 run) are selectively excited, and the

integrated emission from both red and far-red states is detected. Both red and far-red

+6°11_60 ,\+26 0

-26° ,

834 =21 °

Figure 5.1: Optical conformational transItIOns of the 'mature' red chromophores in
DsRed. DsRed is a tetrameric complex of cylindrically shaped fluorescent protein
subunits, with relative orientations approximated in the figure. Each subunit has at its
center an optical chromophore that can occupy one of two chemical states, corresponding
to green or red emission. The green chromophores (shaded green) do not undergo
chemical conversion to the red state on the time scales of our measurements. Red
chromophores can inter-convert on millisecond time scales between two highly
luminescent "bright" states (shaded red), and one "dark" state (shaded gray). From the
crystallographic structure of DsRed, the relative angles (r between adjacent absorption
and emission transition dipole moments are known, and identified according to the
numbering system shown on the top species. Polarization- and spectrally-selective
excitation of the red chromophore subunits, mediated by electronic excitation transfer
between coupled chromophores occupying adjacent sites, results in discrete transitions in
the fluorescence depolarization angle j].()ae.
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conformations are considered bright states (shaded red in Fig. 5.1), while green states of

the mature chromophore are dark (shaded gray). Thus, the immature green site at position

1 is pinned, while the red sites at positions 2 - 4 undergo reversible switching between

bright and dark states. Because the distances and orientations between resonant optical

transition dipoles are relatively small, an excited red chromophore can transfer its energy

to one of its unexcited red or far-red neighbors by an energy transfer mechanism. When

two sites in the DsRed complex are thus optically coupled, the emission polarization

rotates by the angle eae
, which subtends the absorption dipole moment of the initially

excited chromophore and the emission dipole moment of the emitting chromophore 14,17.

Figure 5.1 illustrates the three possible pair-wise couplings between bright chromophore

sites (for a molecule with one site pinned), and the associated depolarization angles. Also

indicated are the six possible angular displacements !1eae associated with conformational

transitions between the three optically coupled states. Similar pair-wise couplings and

transitions are possible for a molecule with all of its sites red (zero sites pinned).

However, for a molecule with two or more of its sites pinned, transitions between distinct

pair-wise coupled conformations are not possible, and such species are not expected to

contribute to the fluctuating emission signals.

The model depicted in Fig. 5.1 is consistent with available experimental data for

DsRed. However, little is known about the details of such thermally activated switching

transitions, such as whether they occur at random or in a cooperative manner due to

interactions between adjacent FP subunits. For example, a cooperative mechanism could

involve a series of optical conformations, dynamically connected along multiple kinetic
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pathways. The following work demonstrates how 2D PM-FICS can determine such

information about the optical transitions of multi-colored FPs by monitoring the

coordinate fluctuations of a finite population of molecules.

Experimental Methods

PM-FICS Observables: The equilibrium coordinate fluctuations of a finite population of

DsRed molecules in 95% glycerol I water solution were monitored by the PM-FICS

method, as described in chapter IV. The measurement observables are the number density

Z:: (t) oc (exp i [ kGx (t)J) ,and the anisotropy density Z:: (t )

oc (exp i [ kGx (t) - 2eae (t)J), where the angle brackets indicate a sum over the ~ 106

molecules in the illuminated sample volume. In these expressions, x (t) and eae (t) are

time-dependent position and conformation coordinates, respectively. We interpret these

signals using the first order cumulant approximation (discussed in chapter IV).

Four-Point Time Correlation Functions: Four-point time correlation functions (TCF)

for the number density and anisotropy density fluctuations were constructed from

products of four sequential data points:

and
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(5.2)

Equations (5.1) and (5.2) define the time intervals t43 ( = t4 - t3 ), t32 , and t21 with

t4 ~ t3 ~ t2 ~ t1 ~ O. In the first-order cumulant approximation, Eqs. (5.1) and (5.2) can be

written

(5.3)

and

(5.4)

where

(5.5)

Equation (5.3) defines the time-ordered displacements of the mean center-of-mass,

!!&N (t21 ) [ = xN (t2 ) - xN (t1 ) ] and !!&N (t43 ), which occur during successive time intervals

t 21 and t43 , respectively. Similarly, Eq. (5.4) defines the time-ordered displacements of

the mean depolarization angle, !J.e;e (t21 ) and !J.e;e (t43 ). Equation (5.4) suggests that the

anisotropy TCF can be determined from the ratio
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mathematical fonns to those employed in two-dimensional optical and magnetic

resonance spectroscopy 19. Four-point TCFs contain infonnation about correlations of

events that occur during the intervals 143 and 121 , and decay on time scales for which the

magnitudes of the collective phase displacements deviate by an amount ~ 1C/4. Such

correlations diminish with increasing waiting period 132 , so that they appear

indistinguishable from the products of functionally independent two-point TCFs. It is

therefore useful to focus on the 132 -dependence of the difference correlation functions,

Two-Dimensional Spectral Densities: It is convenient to represent the four-point TCFs

in the frequency domain, through their partial Fourier transfonn, with respect to t43 and

OCJ OCJ

S(4) ( t ) Jdt Jdl [C(4)(t t t) C(2)(t )C(2)(t )J iV2hl+iv4,143V43' 32,V21 = 43 21 '43' 32' 21 - 43 21 e -.
o 0

(5.6)

The 2D spectral density is given by the absolute value IS(4) (V43 ,t32 , v21 )1, plotted in the

V 21 - V43 plane. The 2D spectral density is related to the joint probability that the system

undergoes two successive coordinate displacements at the transition rates V 21 and V43 '
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separated in time by the interval t32 • Such 2D spectra are similar to those obtained by

magnetic resonance and optical techniques, and can provide information about the rates

of chemical processes.

Two-Dimensional Distribution Functions: Information about weights and magnitudes

of correlated displacements can be obtained from four-point distribution functions (DFs).

sampling N molecules whose mean center-of-mass undergo two successive

displacements, &N (t21 ) and &N (t43 ) , during the intervals t21 and t43 , respectively. We

construct the joint distributions by sampling four-point products of the form

xexp ikG [ &N (t43 ) - &N (t21 ) J. Such products are used to calculate 2D histograms of

the joint probability to observe mean center-of-mass displacements during consecutive

time intervals. As discussed in chapter IV, if the center-of-mass displacements are

uncorrelated, then the joint distribution can be factored into a product of two-point DFs,

i.e., p(2) [ l!.XN (t43 ) ] p(2) [ l!.XN (t21 ) J. For such Brownian systems of diffusing molecules,

the joint distribution is expected to be a two-dimensional Gaussian centered about the
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2D distributions are similarly defined for displacements of the mean

depolarization angle. p(4) [ l1e;e (t43 ); l1e;e (t21 )] is the joint distribution associated with

consecutive displacements of conformation, which is constructed from four-point

products of the anisotropy density Z~D*(0)Z~D(t21) Z~D(t32 +t21)Z~D*(t43 +t32 +t2l )

ZA*(0)ZA(t21)ZA(t32+t21)ZA*(t43+t32+t21)' It IS possible to divide the above

expression by the contributions from the number density to isolate the anisotropy effects

alone, I.e.,

ZA* (0)ZA (t21 ) ZA (t32 + t21 )ZA* (t43 + t32 + t2l ) = exp[-2ol1e;e2 (t21 )] exp[-2ol1e;e2 (t43 )]

xexpi2[l1e;e (t43 )-l1e;e (t21 )]. As we discuss below, such four-point DFs contain

detailed information about correlated changes in the conformation of coupled dipoles of

the DsRed complex.

Results and Discussion

In Fig. 5.2, we present results for the 2D spectral density and the joint DF of the

mean center-of-mass displacements. In Fig. 5.2A is shown the logarithm of

IS1~ (v2l' t32 ,v43 )1 in the V21 - V43 plane, for t32 = 10 ms. Because the TCFs for DsRed

translational motion decay exponentially, the Fourier transform-related spectral density

(see Eq. (5.6)) is Lorentzian. For t32 ::;; 20 ms, a minor feature is observed along the

diagonal line V21 = V43 ' indicating correlated motion on these relatively short time scales.
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For t32 > 20 ms, the feature along the diagonal disappears (data not shown). In Fig. 5.2B

is shown the joint distribution evaluated at

t21 = t32 = t43 = 10 ms . For all values of t32 investigated, the joint DF appears as a two­

dimensional Gaussian consistent with Brownian motion. These results support the view

that cooperative center-of-mass displacements do not play a significant role in DsRed

dynamics on the time scales of the current measurements.

Having established an accurate picture of the center-of-mass dynamics for DsRed,

it is possible to apply the factorization procedure outlined in the experimental methods

section to determine the 2D spectrum of anisotropy fluctuations. In Fig. 5.3 is shown the

logarithm of the two-dimensional spectral density IS~4) (V21 , t32 , v43 )1 as a contour diagram

in the V 21 - V 43 plane, with t32 = 20 ms. Features that appear on the line diagonal to the

spectrum (V21 = V43 ) indicate sampled populations that maintain their rate of

conformational transitions over the duration of the waiting period. Features that lie off the

diagonal line, i.e. V21 *- V43 , represent populations that undergo transitions between

distinct regions of the spectrum during the waiting period. In Fig. 5.3, the magnitude of

the spectrum evaluated at the diagonal line is projected onto the horizontal and vertical

axes. The sampled populations are broadly distributed among transition rates ranging

from 0 - 25 Hz, and are roughly partitioned into two peaks centered at ~ 10 and 14 Hz. In

Fig. 5.3, these peaks are labeled "slow" and "fast", and are indicated by vertical and

horizontal dashed lines. At the intersections of the dashed lines are diagonal features

associated with "slow" and "fast" populations. Off-diagonal features are labeled "slow-
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Figure 5.2: Contour diagrams of the two-dimensional spectral density, and the joint
distribution function of center-of-mass displacements. In panel (A) is shown the

logarithm of Ist2(V2!'t32 , V43 ) versus V21 and V43 for a single value of the waiting period

t 32 = 10 ms. The lineshape is nearly Lorentzian, centered at the peak value V21 = V43 =o.
In panel (B) is shown the joint distribution p~4)[LlXN (t21),t32 ,LlXN (t43)J for the values

t 21 = t 32 = t 43 = 10 ms. The 2D distribution is approximately Gaussian, and centered about

the origin with LlXN (t21) = LlXN (t43) = o.
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Figure 5.3: Logarithm ofthe two-dimensional spectral density of the mean depolarization

angles IS~4)(V21,t32' V43 ), for waiting period t32 = 20 ms. Features along the diagonal line

(labeled "fast" and "slow") indicate the distribution of conformational transition rates,
while off-diagonal features indicate molecular populations that "exchange" between
conformational transition rates. Along the horizontal and vertical axes is projected the
magnitude of the spectrum, evaluated at the diagonal V21 = V43 . Contours are shown at 0.5
and 0.25 times the peak height.

to-fast" and "fast-to-slow," to indicate molecular sub-populations that make transitions

between the two spectral regions. Because the 2D spectrum is narrow in the direction of

the anti-diagonal (V21 == -V43 ), the sampled populations do not readily exchange between

fast and slow spectral regions on the time scale of ~ 20 ms.

We next determine joint DFs that contribute to the spectral line shape. In Figs.

5.4A - 5.4D are shown contour diagrams of p(4) [ /].e;e (t43 ); /].e;e (t21 )] corresponding to

each of the four labeled points in the 2D spectrum shown in Fig. 5.3. Features in the joint

DF can establish the existence of "pathways" between adjacent conformational
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transitions. For each of the DFs shown in Fig. 5.4, the values of the intervals are t32 = 20

ms, and t21 , t43 E {70 ms, 100 ms}, which were chosen to correspond to the labeled

points in the spectral density. Along the horizontal and vertical axes are shown the

projected magnitudes, which span the range ± 30°. These DFs were constructed from

histograms of ~ 35,000 four-point products. The procedure was repeated to insure

reproducibility of independent data sets, and the results were averaged together to

produce the DFs shown in Fig. 5.4.

For the two DFs representing diagonal features of the spectral density (labeled

"fast" and "slow"), both exhibit mirror plane symmetry with respect to the diagonal line

[de;e (t21 ):::: de;e (t43 )]. For the two DFs representing off-diagonal features (labeled

"slow-to-fast" and "fast-to-slow"), each exhibits the projections of the "fast" and "slow"

DFs onto one another. The joint DFs exhibit numerous peaks and shoulders, which

undoubtedly reflect the conformational transitions of a complex heterogeneous system. In

our current analysis, we focus on a subset of these peaks (indicated by vertical and

horizontal dashed lines in Fig. 5.4). For the DF representing "slow" displacements (Fig.

5.4C), there are peaks centered at the coordinates [de;e (t21 ), de;e (t43 ) ] = (-6°, - 6°),

(+2°, - 6°) and (-6°, + 2° ) . For the distribution representing "fast" displacements (Fig.

5.4B), there are peaks at the coordinates (+2°, +2°), (+16°, +16°), (+2°, +16°),

(+2°, - 22°), (+16°, + 2°) and (-22°, + 2°) . These peaks indicate correlated events, in

which a change in molecular conformation of a given magnitude is temporally correlated
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to that of another. The diagonal symmetry of the "fast" and "slow" DFs suggests that for

the relatively short waiting period of t32 = 20 ms, there is no temporal bias to indicate

which of the two correlated events precedes the other.

Figure 5.4: (A - D) Joint distributions of the sampled mean displacements of
depolarization angles p(4) [ile;e(t43);ile;e(t21)]' where the waiting period t32 = 20 ms,

and t
21

, t
43

E {70 ms, 100 ms}, as shown. Selected features in the joint distributions

(indicated by horizontal and vertical dashed gray lines) reflect temporally correlated
transitions that participate in "fast" (~ 70 ms) and "slow" (~ 100 ms) conformational
transition pathways. The magnitudes of the distributions are projected onto horizontal and
vertical axes. Contours are shown at 0.9,0.5, and 0.25 times the peak height.
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The above results suggest that there are two significant optical conformation

pathways in DsRed; (i) a "slow" pathway connecting at least two sequential steps, which

involve the angular displacements l1e;;e = +2° and -6°; and (ii) a "fast" pathway

connecting at least three sequential steps, which involve the displacements l1e;;e = +2°,

+16°, and -22°. As discussed above, the coordinate pairings given by the joint DFs

indicate the adjacencies between sequential steps in a given pathway. For example, the

"fast" pathway appears to contain adjacent conformational transitions with l1e;;e = -22°

and +2°, since the points (+2°, - 22°) and (-22°, + 2°) are present in the joint DF

shown in Fig. 5.4B. On the other hand, the "fast" pathway does not contain adjacent

transitions with l1e;;e = -22° and +16°, because the joint distribution has no significant

magnitude at the points (+16°, - 22°) and (-22°, + 16° ). The distributions representing

off-diagonal features in the spectral density (Figs. 5.4A and 5.4D) contain information

about exchange processes between the fast and slow pathways. For the distribution

representing "slow-to-fast" exchange (Fig. 5.4A), features are present at the coordinates

For the distribution representing "fast-to-slow" exchange (Fig. 4D), features are present

at the coordinates (+2°, +2°), (+2°, _6°), (+16°, +2°), (+16°, _6°), (_22°, +2°)

and (-22°, - 6°). Features present in the exchange distributions indicate bridging steps

between "fast" and "slow" kinetic pathways.
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Information about the time scale for exchange between "fast" and "slow" kinetic

pathways is obtained from the t32 -dependence of the 2D spectrum. In Fig. 5.5A is shown

the logarithm of IS~4)(V21,t32,V43)1 for sequentially increasing values of the waiting

period: t32 = 200 ms, 2 s, 5 s and lOs. As the value of t32 is increased, the spectral

density broadens in the transverse (off-diagonal) direction on the time scale of a few

seconds. This transverse broadening indicates that sub-populations of molecules in the

"fast" pathway undergo exchange with molecular populations in the "slow" pathway. The

average time scale for the exchange is roughly the same as the 't A = 8 s relaxation time

for the anisotropy two-point TCF, reported in chapter IV. Nevertheless, the behavior of

the joint DFs indicates that the elementary steps of the exchange processes occur on sub­

second time scales. In Fig. 5.5B, are shown two sets of the joint distributions,

corresponding to t32 = 2 s and 5 s. These DFs exhibit features at the same coordinates as

those observed for the t32 = 20 ms DFs (indicated by dashed lines). As the waiting period

is increased, there is a gradual loss ofdiagonal symmetry for "fast" and "slow" DFs (sub­

panels Band C, respectively), such that they broaden in the direction of the vertical axis.

As discussed further below, this loss of diagonal symmetry corresponds to the

introduction of a temporal bias that indicates which of the two correlated transitions

precedes the other. Furthermore, the loss of diagonal symmetry suggests a tendency for

molecular population to flow from "fast" to the "slow" pathways during the waiting

period.
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Figure 5.5: (A) Logarithm of the two-dimensional spectral density of the sampled mean

depolarization angles IS~4)(V21,t32' V43 )' for '32 = 200 ms, 2 s, 5 s, and lOs. The transverse

broadening indicates that the average exchange time scale of the anisotropy fluctuations
is approximately the same as the mean relaxation time r A = 8 s. (B) Joint distributions

p(4)[ L\i9~e~43);L\i9~e~21)J,with t32 =2 sand 5 s.

Conclusions

Millisecond conformational dynamics of freely diffusing DsRed was studied

using a four-point analysis of PM-FICS trajectories. The 2D spectrum of conformational

transitions, IS~4) (v21' t32 , v43 )1, is roughly partitioned into "fast" and "slow" kinetic
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pathways. The slow anisotropy relaxation time r A = 8 s is characteristic of exchange

between "fast" and "slow" molecular sub-populations. Detailed information about the

pathways connecting adjacent conformational transitions is contained by the joint

distributions, P(4)[~B:e(t43);~B:e(t21)J. For waiting periods much shorter than the

exchange time (t32 « r A)' there is a clear separation between molecular sub-populations

participating in each of the two pathways. For the "fast" sub-population, the angular

displacements tijjae = +2°, +16°, and _22° are observed, with adjacent pairings

+2° ~ +16° and +2° ~ -22°. For the "slow" sub-population, the paired

displacements tijjae = +2° and _6° are observed.

Our results can be combined with the model discussed in the background section

for the possible depolarization angles of DsRed optical conformations. We propose the

mechanism illustrated in Fig. 5.6 to partially account for our observations of the

conformational transition pathways. The system is assumed to be at equilibrium, with

average steady-state concentrations of species maintained by balanced differential rates

of inter-conversion. Based on the crystal structure of DsRed 7, three conformations are

possible for which the coupled dipoles have relative orientations e:e = 47°, 41°, and 21°

(see Fig. 5.1). Spectral shifts at individual chromophore sites result in conformational

transitions. The "fast" pathway, indicated by the blue arrow, consists of three temporally

correlated steps: _22° ~ + 2° ~ + 16°. The "slow" pathway, indicated by the gold

arrow, consists of two temporally correlated steps: +2" ~ - 6°. For each step is

indicated the observed (in parentheses) and the expected angular displacements
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accompanying the conversion between species. In both transition pathways, observations

of the angular displacement fi1Jae = +2° are assigned to conformational transitions in

which a red site is converted into a far-red site (purple). The similarities between optical

properties of the red and far-red states likely correspond to a very small change in the

transition dipole moment orientation. It is also hypothesized that intermediates lacking

dipolar coupling, such as the one generically depicted at the center of the diagram,

connects adjacent species. While there is a directional bias implied by the proposed

mechanism, the time ordering of events is interchangeable. A conformational transition

6e~· = -26' (-22')

6e~· ~ 0' (+2')

6e~· = 0' (+2')

~

- 47'

"slow" 100 ms

\ '\ pathway II

6e~· = +20' (+16')

Figure 5.6: Possible model for the conformational transitlon pathways observed in
DsRed. The structural and color conventions are the same as adopted in Fig. 1, except
that the "far-red" chromophore state is indicated by purple shading. The measured
displacements in the depolarization angle are shown in parentheses next to the expected
values from the crystallographic data. The molecule undergoes temporally cOlTelated
(cooperative) transitions between different optically coupled conformations. There are
distinct "fast" and "slow" transition pathways, operating on the 70 and 100 ms time
scales, respectively (indicated by the blue and gold arrows). Intermediates lacking dipolar
coupling, such as the one generically depicted at the center of the diagram, connects
adjacent species. Exchange processes involve correlations between transitions that occur
on separate pathways, and occur on the mean time scale of 8 s.
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upstream in the pathway is correlated to an adjacent downstream transition. Nevertheless,

for t32 « 'fA' the time ordering of events is not established. That is, an upstream transition

is as likely to occur before a downstream transition, as it is likely to occur after one.

Features in the exchange distributions indicate correlations between transitions on

separate pathways. Therefore, molecules participating in one reactive pathway can

participate in the other pathway at a later time. For t32 « 'fA' the exchange processes are

symmetric; for each exchange process involving transfer of molecular population from

the "fast" to the "slow" pathway, there is an equally weighted exchange process in the

opposite direction.

As the waiting period is increased to values exceeding the mean relaxation time,

the loss of diagonal symmetry of the "fast" and "slow" joint distributions

p(4) [~B;e(t43);~B;e(t21)J (see Fig. 5.5B) indicates the introduction of temporal bias.

For t32 ~ 'fA' downstream transitions tend to occur with greater probability after the

waiting period. Corresponding inverse processes, in which downstream events occur

prior to upstream events, receive less weight. Furthermore, the broadening of the

exchange distributions occurs in an asymmetric manner. While the "fast-to-slow"

distribution appears to elongate in the direction of the flB;e (t43 ) axis, the "slow-to-fast"

distribution does so to a lesser extent. This indicates that exchange processes between

"fast" and "slow" pathways are more heavily biased in the "fast-to-slow" direction.
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In this work, we have demonstrated a new 2D optical approach to study the

kinetics of equilibrium conformational transitions of biological macromolecules, over a

wide range of time scales (10-3
- 102 s). Polarization-modulated Fourier imaging

correlation spectroscopy (PM-FICS) was applied to simultaneously monitor molecular

center-of-mass and anisotropy fluctuations. When applied to the system of DsRed

molecules undergoing free diffusion, the approach allowed us to isolate the effects of

optical switching conformational transitions. The phase-selectivity of PM-FICS

measurements enables the calculation of 2D distributions and spectral densities. Similar

to established 2D spectroscopic methods, the 2D spectral density determined by PM­

PICS is useful to decompose the kinetics of a dynamically heterogeneous system, such as

DsRed, into its separate components. A unique feature of PM-FICS is its ability to

determine joint probability distributions of coordinate displacements, which contain

detailed information about the pathways connecting sequential conformational

transitions.

The PM-FICS method shares common attributes with 2D optical spectroscopy,

single-molecule spectroscopy, and fluorescence fluctuation spectroscopy. The detailed

information provided by PM-PICS measurements should be useful to address broad

ranging problems in the fields of protein and nucleic acid dynamics, as well as other areas

in complex systems. In the current work, the well-defined structure of the DsRed

molecule made this an appealing candidate to demonstrate the potential of the approach.

The ability to perform such measurements on proteins and nucleic acids of general
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interest, in solution and in cell compartments, could enable future studies of in vivo

enzymatic function.
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CHAPTER VI

TWO-DIMENSIONAL ELECTRONIC COHERENCE SPECTROSCOPY OF SELF­

FORMING PORPHYRIN DIMERS IN LIPID BILAYER VESICLES

Two-dimensional spectroscopy is a useful tool for the study of coupling in

aggregated chromophore complexes. The information that these experiments yield can be

used to elucidate information about local structure of the fluorescent complexes,

timescales of coupling processes, coherence or incoherence of the coupling interactions,

and complex energy landscapes of multi-chromophore aggregates such as those occurring

in photosynthetic complexes,I.8 conjugated polymers,9 or semiconductors,1O for example.

The simplest example of a coupled chromophore system is a homodimer, in which the

individual identical molecules can be modeled as simple two-level systems. When

coupled to each other, these two two-level molecules will form an exciton complex. 1
1,12

This interaction splits the degenerate excited state levels into two excited state one­

exciton levels, in addition to creating a two-exciton state that is accessible using

nonlinear spectroscopy. In this chapter we will detail the extension of the formalism

introduced in chapter II to describe exciton coupled dimeric molecular systems, and

present data on self-forming porphyrin dimers in liposomal bilayer vesicles in solution at

room temperature.
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It is helpful to mention that we are working in Liouville space and utilizing

density operator formalism and superoperators in the theory presented here. The

ensembles of molecules in these experiments are best represented as mixed states, and

working in Liouville space with the density matrix also maintains the proper time~

ordering of field-matter interactions, making it well-suited to describe nonlinear

spectroscopy of condensed matter systems. The density matrix formalism in Liouville

space, with superoperators and Liouville-space functions, has direct analogs to Hilbert

space operators and functions, making its use a logical selection for these experiments. 13

This chapter contains material co-authored with 1. Utterback and A.H. Marcus.

Model Hamiltonian and Energy Levels of a Coupled

Two-Level System Homodimer

Let us consider a dimer of two-level systems. Ifwe ignore the effects of the bath,

the system Hamiltonian is

(6.1)

where If1and lJ2 are the monomer Hamiltonians for non-interacting chromophores and

t';2 is the electronic coupling between the dimer chromphores. We assume a simple

dipole-dipole interaction between the two chromophores, with the electronic coupling

given by
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where R12 is the distance between the transition dipoles and Rl2 is the direction of the

vector between the transition dipoles. For non-zero values of ~2 ' the coupled exciton

states are delocalized over both of the individual chromophore sites with excited states

(6.2)

specified by lei) and Ie2 ) • These states are product states, which refer to one of the two

chromophores excited while the other is in the ground state. The monomer transition

dipole moment operators I:!l and 1:!2 are given by

I:!i = IIa),uiab (b I·
a,b

(6.3)

For a homodimer we assume that the dipole magnitudes are equal and that their relative

orientation is given by the dipole angle ¢, as shown in Fig. 1.lA. We can define the total

dipole operator as

(6.4)

Linear combinations of these states that satisfy the orthogonality, normalization, and

stationarity conditions are



113

Eq. (6.5) defines the two one-exciton wavefunctions. Furthennore, we define the two-

exciton state If) for which both chromophores are simultaneously excited, and the

ground state ofthe dimer Ig) in which both chromophores are simultaneously in the

ground state. The Hamiltonian in the site basis is

(6.5)

0 0 0 0 (6.6)

0 aJo f';z 0
1j=

0 f';z aJo 0

0 0 0 2aJo

where the effects of binding energy are ignored for the sake of simplicity.

Transition Dipoles and Frequencies to One- and Two-Exciton States

Using Eqs. (6.4) and (6.5), we find the transition dipole moments that couple the

ground and one-exciton states are given by

(±IAfIg) =~ ((e\ I+ (ezD(/!I + !!z )Ig)
(6.7)
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Transitions from the I±) states to the two-exciton state If) are determined by the

transition dipole moments

(f/Afl±) =~(fj(~ +~z )(le))±jez))

Pz ±p)
= .fi

If we define J1+ =~lJfZ ,then the transition dipole moment operators for all four
-- 2

relevant transitions are given by

(6.8)

(6.9)

Having determined the relevant transition dipoles for a dimer, we next consider

the effect of the relative dipole angle ~. By simple trigonometry, if we take the transition

dipole III to be along the molecular-frame x-axis, the expressions for the two one-exciton

states can be defined in the molecular frame by



I:!+ = j1X + (j1COS ¢X+ j1 sin ¢y)

=j1(1 +cos¢)x+ j1sin¢y

and

I:!_ = j1X-(j1cos¢x+ j1sin¢y)

=j1(l-cos¢)x- j1 sin¢y .

Determining which of the higher and lower energy states are the "+" and "-" states
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(6.10)

(6.11)

requires prior knowledge of the local structure, or experimental results that can be used to

determine the aggregation type. Until we can label the states based on experimental data,

we will refer to the lower energy one-exciton state as 1&]) and the higher energy state as

J- and H-Aggregates

The relative amplitudes of features in a linear spectrum depend on the dipole

strength, which is defined for 1+) and 1-) as



1 2

D± = l(gIAfI±t = .fi (g/8 + /:!21±)

= ~ l(g/8/1)±(g/!!2/2)r

= ~[I(gI811)r +1(gl!!212)r ±2((g/8/1)·(g/!!2/2))]

= ~[(JDr +(JDr ±(JD)\OS¢]
= D(l±cos¢).
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(6.12)

Equation (6.12) yields a simple result for the relative amplitudes of the two one-exciton

features in a linear spectrum based on the relative geometry of the transition dipoles and

the uncoupled dipole strength, D. This, in conjunction with Eq. (6.2) can be used to

determine structural information for dimers with very narrow transitions, but difficulties

arise in attempting to make definitive structural assignments from broadened spectra of

molecules in complex environments.

To understand how 1+) and 1-) are assigned to specific spectral features, we need

to understand the most fundamental aggregate configurations, pure J- and H-aggregates.

We will examine these aggregates for a dimer. J-aggregates are often referred to as being

in an end-to-end configuration, while H-aggregates are in a face-to-face configuration.14

In Fig. 6.1, panels A and B, we depict a J-aggregate dimer with relative dipole angle of 0 0

and 180°, respectively. From Eq. (6.12), we see that for a dipole angle of 0°, the "+" state

will have maximal dipole strength with a value of2D and the "-" state will have a value

of O. The situation is reversed for a relative dipole angle of 1800

- all of the dipole

strength is then in the "-" state and the "+" state is dark. By determining the values of V12

(Eq. (6.2)) for these geometries, we can determine the magnitude of the spectral shift for
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c
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o

F

Figure 6.1: (A) and (B) depict J-aggregate dimers with unidirectional transition dipole
moments and relative dipole angles of 0° and 180°, respectively. The interchromophore
distance is shown as a dashed line, and continues to the middle ofeach of the transition
dipole moments. (C) and (D) depict H-aggregate dimers with relative dipole angles of 0°
and 180°, respectively. (E) depicts a coplanar end-to-end dimer with a 90° relative dipole
angle. (F) depicts a face-to-face dimer with a relative dipole angle of 90°. The resulting
potential VI2 from each of these configurations is described in the text.

the dipole allowed transition and whether it appears as a red- or blue-shifted feature. The

transition frequencies of the transitions between ground and one-exciton states are

W± =Wo±V;2Ifi. Additionally, the two exciton state has frequency, relative to the ground

state, of Wfg = 2wo = WIg + W2g, such that wjl =:: W2g and wj2 =:: WIg. For the relative dipole
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1V;2 = 2// / R(2 = 2D / R(2· These results mean that the non-zero feature will be red-shifted

[\.;th respect to the monomer center frequency - a pure J-aggregate will have a single red­

shifted feature, where the magnitude of the shift depends on the distance between the

Itransition dipole moments and the monomer dipole strength D.

Similarly, we consider a pure H-aggregate dimer in Fig. 6.1, panels C and D, with

relative dipole angles 0° and 180°, respectively. Using similar arguments to those for the

pure J-aggregates, we see that for relative dipole angles 0° and 180°, only the "+" and "-"

states have finite intensity, respectively. The single feature for a pure H-aggregate is

blue-shifted relative to the monomer center frequency, in contrast to the J-aggregate

result. The values for the coupling strengths for the H-aggregate are

Finally, let us examine an end-to-end dimer and an face-to-face dimer with

relative dipole angles of 90°, as shown in Fig. 6.1, panels E and F. The face-to-face

dimer, with all angles defined in Eq, (6.2) equal to 90°, will show no shift or splitting of

energy levels and therefore the spectrum will be identical to that of the monomer. The J-

aggregate will also have the two one-exciton states with equal amp litude, but they will

be shifted by V;2 = -3D / 2R(2 (a red-shift for the "+" state and a blue-shift for the "-"

state).

From these examples, it is evident that an aggregate that is more 'J-like' than 'H-

like' will have a larger red-shifted feature, while one that is more 'H-like' will have a

larger blue-shifted feature. Using this information and knowledge of the relative distances

of chromophores from one another, local structural information can be obtained from
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experimental data. The congested linear spectra that these situations create will be limited

in the useful information that they provide. 2D spectra will contain additional information

that can be used to draw more definitive conclusions about coupling processes from

molecular aggregates of unknown structure. The following sections will focus on how to

utilize fluorescence detected 2D PM-ECS as an instrument for structural analysis of

coupled molecular dimers.

Liouville Transition Pathways for Exciton Coupled Dimers

We have shown the homodimer to be a four level system with one ground state,

two one-exciton states, and a single two-exciton state. We next determine the expressions

for each of the quadrilinear overlaps, along with their respective pulse ladder diagrams.

There are two types of contributions to the population signal for the four-level dimer.

There are two distinct one-exciton terms which involve transitions between the ground

and one-exciton states. There are also two-exciton contributions, which involve

transitions between the one-exciton and the two exciton states, in addition to transitions

between the ground and one-exciton states. There are no direct transitions between the

ground and the two-exciton state, as it requires two separate excitation events to create

excited electronic amplitude on both one-exciton states simultaneously. I 1,12 In this section

we will not account for the process of population transfer between the one-exciton states,

but it will be addressed in a later section of this chapter. In addition to populations

created by overlaps between a three-pulse wave packet and a one-pUlse wave packet,

there can be populations created by interferences between two two-pulse wavepackets,
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overlaps generate population on the ground state, not contributing to the collected

fluorescence signal. The total overlaps can then be expressed as, for example,

terms and labeled them with the "lex" and "2ex" subtitles, respectively. Using the same

phase and free-evolution sign conventions defined in chapter II, we generate the overlap

terms,

\lJfmllJfl) =\lJfm!IJf'\ex +\lJfmllJf'\ex
=l:(!!ag 'ql (mag) )(!!bg ·q2(mbg »)

a,b

x( /I ·a (m »)( /I ·a (m »)e-i(liJagI43+liJUgI21+(liJag-liJbg)132)ei(¢43+¢2dt;:bg _3 bg t;:ag _4 ag

(1Jf43111Jfz) = (1Jf431 IIJfJlex + (1Jf43 I [1Jf2)2ex

=I (!!ag ·ql(mag ))(!!bg .%(mbg »)
a,b

( ( »)(. ( ») -i(liJbg!43-liJagI21+(liJ'g-liJag)ln) i(¢"-¢21)
X !!ag 'q3 mag !!bg 'q4 mbg e e

(6.13)

(6.14)
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and

\If/421 11f/3) == \If/421 11f/3 )leX + \If/421 11f/3)2ex

== L(~ag .% (mag) )(~ag 'f32(mag »)
a,b

X(I/ .a (m »)(1/ ,a (m »)e-i«(j)b/43-(j)ngt21)ei(¢43-~I)
r;:bg _3 bg r;:bg _4 bg

\1f/411f/321) == \1f/4/1f/321)lex +\1f/4/1f/321)2ex

== L(~ag ,%(mag ))(~ag 'f32(mag »)
a,b

X(I/ 'a (m »)(1/ ·a (m »)e-i«(j)bgt43+(j)Q!hdei(¢43+~I)
r;:bg _3 bg r;:bg _4 bg

(6.15)

(6.16)

for the overlaps between three-pulse wave packets and one-pulse wave packets. We have

taken into account the fact that the transition dipoles in these exciton systems will not, in

general, all be parallel to each other and G, bE {I, 2} for the two one-exciton states 1&1)

and 1&2)' In each ofEqs. (6.13) - (6.16) it is clear that the one-exciton terms have the

same general forms as for a three-level system such as Rb, and will therefore have the

same forms as in Eqs. (3.1) - (3.4), after downshifting by the reference signal frequency.

The two-exciton terms behave quite differently than the one-exciton terms. The two-
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exciton terms from the overlaps (1//42111//3) and (1//411//321) do not have a sum or difference

phase relationship, and will therefore not be part of the collected sum or difference

signals. It is worth noting that even if they had a sum or difference phase signature, they

would be oscillating at a frequency OJfg , which has a period of <1 fs. These terms would

therefore be averaged over experimentally unless pulses significantly shorter than 1 fs

were used. The two exciton contributions to the overlaps (1//43211//1) and (1//43111//2) have

difference and sum phases, respectively, imparted by the pulses. These are the opposite

phase relationships as the one-exciton contributions to the same overlaps, and the phases

are opposite in sign to the one-exciton sum and difference terms. Similarly, we generate

expressions for the two-pulse wave packet overlaps,

(1//4311//21) =(1//43!1//21)2ex

=L(~ag 'f!1 (OJag ) )(~af 'f!2(OJaf ))
a,b

( ( ))( ( ))
-i(-OJ/b143 +OJagIZI +OJ/gln ) -i(fP4+¢JJ-¢2-IAJ

X ~bg 'f!3 OJbg ~bf 'f!4 OJbf e e,

(1//4211//31) = (1//4211//31 )2 ex

=L(~ag 'f!I (OJag ) )(~bg • f!2(OJbg ))
a,b

( ( ))( ( ))
+i(OJ/b/43+OJagI21-(OJag-OJbg)ln) -i(¢43+¢ZI)

X ~af'f!J OJaf ~bf 'f!4 OJbf e . e,

and

(6.17)

(6.18)



\lfI41Ilf13Z) = \lfI41Ilf132)Zex

=L(~ag 'Q1 (Wag) )(~bg 'Q2(Wbg ))
a,b

( ( ))( ( ))
-i(llJh/143+llJa/21+(llJhg-llJag)ln) -i(¢43-¢2d

X ~bf'% OJbf ~af 'Q4 Waf e e,
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(6.19)

where we see, as for Eqs. (6.13) - (6.17), that the overlap \lfI43\lfIz1) will not contribute to

the sum or difference signal, while \lfI4ZllfI31) and \lfI41Ilf132) will contribute to the sum

and difference signals, respectively.

When multiplying the fluorescence signal by the reference signal in the lock-in

amplifiers, the complex conjugates ofthe two-exciton overlap terms in Eqs. (6.13)-

(6.16) will be those that enter into the collected complex signal. More explicitly, the

resulting sum and difference interference signals for a dimer system are

Ssum(t43,t3z ,tz1 ;t') =2Re{\lf/432llf11)lex +\lfI4Ilf1321)lex +\lfI431llf1z):ex -\lfI42!lfI31)zex}

oc COS(¢43 +¢ZI)

and

Sdif (t43 ,t32 ,tZ1 ;t') =2 Re {\lfI431 IlfIz )lex + \lfI4z1 IlfIz \ex + \lfI4321lf11 ):ex - \If/41llfl32 )zex}

oc COS(¢43 -¢21)

(6.20)

(6.21)

respectively. The negative sign in Eqs. (6.20) and (6.21) is due to the number ofpulse

interactions on the bra and ket sides of the overlaps, where the respective signs change as
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(-1 )n+1, with n terms on the bra side of the overlap.13,15 The first three terms in Eqs. (6.20)

- (6.21) have identical numbers of interactions on each side of the overlap and therefore

have identical signs, while the populations generated by the two-pulse overlaps will have

the opposite sign. The latter two terms in Eqs. (6.20) - (6.21) are excited states

absorption (ESA) contributions to the signal.

The pulse ladder diagrams that represent the one-exciton terms are exactly the

same as those in Figs. 2.4 - 2.7, with the one-exciton energy levels £1 and £2 replacing the

states labeled I and II. The two-exciton pathways for Eqs. (6.13) and (6.14) are shown in

Figs. 6.2 and 6.3, respectively. The two-exciton pathways from the two-pulse overlaps

defined in Eqs. (6.18) and (6.19) are shown in Figs. 6.4 and 6.5, respectively.

The pulse ladder diagrams that represent the one-exciton terms are exactly the same as

those in Figs. 2.4 - 2.7, with the one-exciton energy levels £1 and £2 replacing the states

labeled I and II. The two-exciton pathways for Eqs. (6.13) and (6.14) are shown in Figs.

6.2 and 6.3, respectively.
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Figure 6.2: Pulse ladder diagrams illustrating the four distinct two-exciton states for the

overlap (IfImllfll) in the four-level dimer system. These are excited state absorption

contributions, contributing with a sign identical to the one-exciton population signals.
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Figure 6.3: Pulse ladder diagrams illustrating the four distinct two-exciton states for the

overlap (1f/43111f/2) in the four-level dimer system. These are excited state absorption

contributions, contributing with a sign identical to the one-exciton population signals.
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Figure 6.4: Pulse ladder diagrams illustrating the four distinct two-exciton states for the
overlap (1/14211/131) in the four-level dimer system. These are excited state absorption

contributions, contributing with a sign opposite to the one~exciton population signals.
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Figure 6.5: Pulse ladder diagrams illustrating the four distinct two-exciton states for the

overlap (1f/4111f/32) in the four-level dimer system. These are excited state absorption

contributions, contributing with a sign opposite to the one-exciton population signals.
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The Intennediate Time Regime

In the Rb experiments in chapter III, we saw oscillatory behavior of the four

features in the 2D spectra due to the frequency difference between the two excited

electronic energy levels. This coherent behavior was easily observable due to the long

lived coherences of atomic Rb vapor. However, quantum beats like these relax very

quickly in solution at room temperature due to thennal energy redistribution with the

bath.16
-
18 The dephasing of electronic coherences often occur within 100 fs at room

temperature (ref: Cho, Fleming), resulting in the elimination of signal contributions from

tenns with explicit population time dependence. This is a good approximation for the

system we have studied, and as we shall see, we do not observe oscillatory behavior in

the 2D spectra as a function of T for the data presented in the latter part of this chapter.

Additionally, it is important to note that there are many non-radiative internal

conversion processes from two-exciton states that result in the fluorescence quantum

yield from the two-exciton state being very small relative to that of the one-exciton states.

This allows us to make the approximation that the final tenn in Eqs. (6.20) and (6.21)

does not contribute to the collected fluorescence signal. These approximations eliminate

tenns from both the sum and difference signals. Removing tenns with explicit t32

dependence, and excluding tenns resulting in population on the two-exciton state, the

overlaps from Eqs. (6.13) - (6.19) become, in the intennediate time regime,



and

(1f/43211f/1) = L (,:tag' qJ (Wag) ) (,:tag' q2 (Wbg )) (,:tag' % (Wag) )
a

(1f/431 11f/2) =L(,:tag' ql (Wag) )(,:tag .q2 (Wag) )(,:tag .% (Wag) )
a

(1f/42111f/3) = L (,:tag' % (Wag) )(,:tag .% (Wag) )(6g .% (Wbg ))
a,b

X ( /I • a (w )) e-i(mbgl43 -magt21 )ei(¢43 -¢;H)t;:bg _4 bg
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(6.22)

(6.23)

(6.24)

(6.25)
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By removing the t32 dependent terms, all sum and difference terms vary with respect to

the coherence and detection times only. Since the transition frequencies from the one-

exciton to the two-exciton states can be expressed in terms of transition frequencies from

the ground to the one exciton states (wj2 = WIg and wjl = W2g), we can use Eq. (6.9) to

express the transition dipole moments between the one-and two-exciton states similarly.

These substitutions modify Eqs. (6.22) - (6.25) to

('114321'111) =L(f!ag .ql (mag) )(f!ag .q2 (Wag) )(f!ag .q3 (mag) )
a

+L(f!bg 'l!1 (mbg ))(f!bg' % (wbg ) )(f!bg . l!3(mbg ))
b*a

(1fI43111f12)= L (f!ag .ql (mag) )(f!ag .q2 (wag) )(f!ag .% (Wag) )
a

(1fI42111f13) =L (f!ag 'l!J (mag) ) (f!ag .% (mag) ) (f!bg .% (mag) )
a,b

X ( /I • a (m )) e -i«(j)bgI43 -(j)agl21)ei(fAJ -¢,.!)
':bg _4 ag

(6.26)

(6.27)

(6.28)
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and

(6.29)

We can now separate the terms into groups, independent ofpopulation time, that

contribute to the four features in the 2D spectra - the two diagonal peaks from the single-

mode contributions of the one-exciton states and the two off-diagonal peaks that yield

information about the coupling between the one-exciton states. The diagonal features are

centered at the points (Wig, Wig) and (W2g, W2g), where the frequencies Wig and W2g are the

frequencies to access the one-exciton states 181) and 182)' respectively. The two off-

diagonal features are centered at (Wig, W2g) and (W2g, Wig). The off-diagonal features are

often referred to as "uphill" and "downhill" coupling features, respectively. We label the

terms in the time domain that contribute to specific spectral features, in the same order as

described above, Zii, Z22, Z12, and Z2i for both the sum and difference signals. Taking

into account the reference signals, ei(m43t43±m21t21) , we construct the complex valued

functions for the sum signal

(6.30)



z:;m (t43,t32,t21) = (8g"% (mig) )(8g "q2(mlg ))(~g "C!3(m2g ))

( ( ))
-i((OJ2g-m43)143+(~g-m43)121)

x ~g "q4 m2g e

+(8g" ql (mig) )(8g "q2(mlg ))(8g "C!3(mlg ))

( ( ))
-i((~g-m43 )143 +(OJlg-m43 )121 )

x 8g" q4 mig e ,

and

and equivalently for the difference signal,
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(6.31)

(6.32)

(6.33)

(6.34)

(6.35)
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and

z~r (f43 ,f32 ,f21 )=(l;!2g .gi (OJ2g ))(1:!2g . '-32 (OJ2g ))(l;!Ig . '-33 (OJIg ) )

( ())
-iCe llJIg -iii43 )143 -( llJ2g -iii43 )121 )

X I;!Ig' '-34 OJlg e

+(l;!2g . '-31 (OJ2g ))(1:!2g .'-32 (OJ2g )) (l;!2g .%(OJ2g ))

( ( ))
-i((lDJ.g -iii43 )143 -(llJ2g -iii43 )121 )

X I;!2g' '-34 OJ2g e .

(6.36)

(6.37)

These complex valued functions are analogous to those for rubidium in Eqs. (3.1) - (3.4),

but here we have separated them into signals that contribute to specific features in the

non-rephasing (sum) and rephasing (difference) spectra. The total time-dependent signal

functions are Zsumldif = zsumldif + Zsumldif + Zsumldif + Zsumldif
11 22 12 21'

Rotational Averaging of Fourth-Rank Tensors

Molecular aggregate systems will usually have locally fixed relative transition

dipole orientations. It is important to consider the fact that while the transition dipoles are

fixed relative to each other, each aggregate from an ensemble in a disordered, isotropic

environment will be randomly oriented with respect to the four specifically polarized
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laser pulses. We can account for this through rotational averaging of the relevant fourth-

rank tensors. 17 We were not forced to account for this in the rubidium experiments

because both of the experimentally accessed transition dipole moments in rubidium were

parallel to one another.

Generally, if the nth rank tensor ten) in the molecular-fixed frame is known, the

averaged nth rank tensor Ten) in the laboratory frame is

(6.38)

where we have defined the Cartesian axes in the molecular and laboratory frames as mk

and h, respectively, and the well known nth rank rotationally invariant tensor is JCn). The

fourth rank rotationally invariant tensor is19

(6.39)

where ~ij are Kroneker delta functions. Expanded, Eq. (6.39) becomes



f4) = _1{6 6 [46 6 -6 6 -6 6 ]
30 1112 131. "'1"'2 "'3"" "'1"'2 "'3"" """'2 "'3""

+6 6 [-6 6 +46 6 -6 6 ]
1[13 121. "'1"'2 "'3"" """'2 "'3"" "'1"'2 "'3"'.

+6 6 [-6 6 - 6 6 + 46 6 ]}III. 1213 """'2 "'3"" """'2 "'3"" """'2 "'3"'.

For a sequence of four parallel polarized laser pulses, the products ofKronecker delta

functions 611 A I will all be equal to one, reducing Eq. (6.40) to
I) P q
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(6.40)

(6.41)

Inserting Eq. (6.41) into Eq. (6.38) for four parallel polarized pulses (in the X direction

for Cartesian axes X, Y, and Z in the laboratory frame) yields the expression

where we have dropped the m indices on the second line for simplicity. This can be

reduced to, for molecular-frame axes ofx, y, and z,

(6.42)



~(4) _ 1 [ ((4) (4) (4) ) "( (4) (4) (4))]TXXXX -- 3 txxxx+tw.v.v+tzzzz + LJ f;ijj +tiJij +tWi15 .. { }I#JE x,y,z •

Eq. (6.43) contains all possible non-zero elements from Eq. (6.42).
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(6.43)

We assume that as well as being parallel, all electric fields have equal amplitude

and are spectrally broad. This effectively removes the electric field dependence from the

results, and means that we are rotationally averaging over the tensor elements JilJi2Ji3Ji4

from the molecular frame, where the indices 1, 2, 3, and 4 denote the four separate

transition events and possibly distinct dipole moments. From Eq. (6.43) we see that the

time ordering of the dipoles does not matter - a term like ti~) , for example, is a product

of the scalar components of the transition dipole vectors, such that the ordering of the

individual components does not affect the product. More explicitly, if we have a

sequence of four transitions with the same transition dipole moment, the ordering of the i

and} indices will not affect the final rotationally averaged result as long as the number of

individual i and} indices are preserved.

From Eqs. (6.30) - (6.37), we can determine the various population terms that

must be orientationally averaged. Let us first look at the one-exciton GSB and SE

contributions, which can be expressed as (J1;J1;)xxxx' (J1~f1~)xxxx' (J1;J1~)xxxx ' and

(J1~f1;)xxxx . From Eqs. (6.30) - (6.37) we see that the four relative peak heights, for both

rephasing and non-rephasing signals, are proportional to
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(6.44)

(6.45)

(6.46)

(6.47)

Again, we have not yet assigned the "+" and "-" states since these designations depend on

a priori structural information or inferences based on experimental results, but it is clear

that these are the only four possible combinations of transitions. The brackets around

these transition dipole products reflect the orientational averaging process that we have

defined in Eq. (6.43). We immediately see that the latter two terms are equal to each

other, as changing the ordering of the indices in Eq. (6.43) does not change the final

orientationally averaged result, as we argued above. Using Eq. (6.43), we solve for

4

\J.l;J.l:)xxxx = ~5 [3 (J.l+xJ.l+xJ.l+xJ.l+x) +3 (J.l+yJ.l+yJ.l+yJ.l+y)

+6 (J.l+ J.l+ J.l+ J.l+ )J.x x y y

(6.48)
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Substituting the components of 11+ from Eq. (6.10), we find

\Jl:Jl:)xxxx = 3~14 [(I+cos¢)4 +(sin¢)4

+ 2 (1 + cos ¢ )
2

(sin ¢ )
2

]

I 1

4
12 Jl 2

= (1 +cos¢) .
15

(6.49)

This is exactly the answer we should intuitively expect - it has an angle dependence that

is the square of the "+" feature angle dependence in the linear spectrum. Similarly, we

use Eq. (6.11) to find

(6.50)

Since \Jl:Jl=)xxxx =\Jl=Jl:)xxxx' we find the final relevant rotationally averaged tensor

element to be



( 2 2) = 1t:L[3( )+3( )P+P- xxxx 15 P+xP+xP-xP-x P+yP+yP-yP-y

+ 4 (P+xP+YP-XP-y) + (P+xP+xP-yP-y) + (P+yP+yP-yP-y)]

= IpI
4

[3(I+cos¢)2 (l-cos¢)2 +3(sin¢)2 (sin¢)2
15

+4(1 + cos¢)(sin¢)(I- cos¢)(sin¢)

+(1 + COS¢)2 (sin¢)2 + (l-cos¢)2 (sin¢)2 ]

= 41pI
4

(l+cos¢)(I-cos¢).
15

140

(6.51)

This result, too, is consistent with our expectations - with two of the /1+ dipole moments

and two of the /1_, we find the rotationally averaged element to be the product of the linear

feature angle dependencies.

These rotationally averaged products can be combined as in Eqs. (6.44) - (6.47)

to determine the relative behavior of the four features in the 2D spectra. We note that the

four features in both rephasing and non-rephasing spectra depend on the same

rotationally averaged tensor products, which determine the relative peak amplitudes. Both

rephasing and non-rephasing spectra have similar amplitudes, but are potentially quite

different in their overall structures due to the different symmetries of the four spectral

features. The four relative peak amplitudes scale as

(6.52)
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(6.53)

(6.54)

and

(6.55)

Incoherent Population Transfer Effects in a Four-Level System Dimer

In this section, we consider the process of incoherent population transfer. The

terms defined above for the intermediate time regime have no (32 dependence, which

means the features are static as a function of population time. Incoherent population

transfer is a statistical energy transfer process caused by interactions between the system

and surrounding bath, affecting the population as a function of the population time (32.

From a simple Redfield kinetic modeeO,21 for population transfer between a lower energy

state A and higher energy state B, we have the rate equations

(6.56)
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where the subscripts u and d denote uphill and downhill energy transfer rates,

respectively. This leads to the well-known detailed balance relation,

k him I_u = exp( 12_),
kd kBT

in which the ratio of the rate constants depends on the relative magnitude of the one-

(6.57)

exciton splitting to the thermal energy. The survival and conditional probability functions

are defined by the master equation

(6.58)

The functions GAA(t32) and GBB(t32) are the survival probabilities ofthe A and B species.

The function GAA(t32) [GBB(t32)] is the conditional probability of finding B [A] species at

(32, when initially preparing A [B] species at a population time ofO. These equations have

the solutions

(6.59)
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(6.60)

(6.61)

and

(6.62)

Of the eight remaining terms for each the rephasing and non-rephasing signals described

by Eqs. (6.30) - (6.37), four are GSB, two are SE, and two are ESA. The GSB terms

cannot experience population transfer during the population time since their free

evolution is on the ground state. The SE and ESA terms will each be split into two terms

- a term that does not undergo population transfer, and a term that does undergo

population transfer. The SE and ESA terms that contribute to diagonal (off-diagonal)

features will contribute to an off-diagonal (diagonal) feature ifpopulation transfer occurs.

The rephasing and non-rephasing terms resulting from these population transfer

probabilities are shown in Figs. 6.6 and 6.7, respectively. The figures are separated by the

spectral features that they contribute to. Eqs. (6.44) - (6.47) are thus modified, resulting

in the population transfer inclusive relative peak height amplitudes behaving as



and
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(6.63)

(6.64)

(6.65)

(6.66)
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Figure 6.6: Rephasing signal pathways for 2D-ECS experiments on dimers in the
intermediate time regime, considering incoherent energy transfer with Redfield theory.
The ladder diagrams yield identical information as more familiar Feynman diagrams.
Matching Feynman diagrams are shown next to the equivalent ladder diagram. Pathways
are split according to the spectral feature they contribute to, organized in the same
relative placements as the four features in a 2D dimer spectrum.



off-diagonal peak (+-) diagonal peak (- -)

146

diagonal peak (+ +)

Ig>

}-;~

+>

m+ ft

Ig>

U'>

1->

I
1+>

fI

19;~

t

~1~
Ig><gl
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Experimental Apparatus and Procedure

2D PM-ECS Apparatus: 6 W ofa 532 nm CW laser (Coherent, Verdi V-18) pump a

Ti:Sapphire seed laser (Coherent, MIRA), generating 650 mW of35 fs pulses at 76 MHz

repetition rate. Two-thirds of the output power of the seed is temporally stretched before

entering a regenerative amplifier (Coherent, RegA 9050), pumped by 12 W of the V-18.

The RegA injects one out of every ~300 stretched seed pulses, amplifying it substantially

to create a pulse train with 2.35 W power and 250 kHz repetition rate. This pulse train is

compressed, and split between two optical parametric amplifiers (Coherent, OPA 9400),

each receiving ~900 mW. The OPAs act as tunable femtosecond light sources across the

wavelength range 480 run - 700 run. For the experiments described within, the OPAs

have center wavelengths of 603 nm, and a bandwidth at the sample of 12 nm,

corresponding to a Gaussian time-bandwidth limited pulse length of ~45 fs. A simplified

schematic of the remainder of the experimental apparatus is shown in Fig. 6.8. The

apparatus external to the light sources is very similar to that employed in the 2D Rb

experiments. The pulse trains, after exiting the OPAs, double-pass through a pair of SFI 0

prisms (Newport, Brewster's Angle) for dispersion pre-compensation. Interferometric

autocorrelations are performed using a 0.5 mm BBO crystal. Typical pulse widths

recovered from autocorrelations are ~75 fs, significantly longer than the time-bandwidth

limited expectation, due to high dispersive properties of SF10 prisms that are necessitated

by table configuration constraints and high dispersive properties ofthe TeOz acousto­

optics (AO).
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After dispersion pre-compensation, the beams are incident on separate but

identical Mach-Zender interferometers (MZI). The beams are split with 50/50

beamsplitters (CVI, custom). Each arm of each MZI has a Te02 AO, used to generate

linear phase sweeps as detailed in chapters II and III, with the same difference

frequencies of 5 kHz between pulses 1 & 2, and 8 kHz between pulses 3 & 4. These

frequencies are chosen such that modulations between pulse pairs other than other than 1

& 2 or 3 & 4, and the difference and sum frequencies of 3 kHz and 13 kHz, fall outside

the bandwidth of the lock-in amplifiers. The first order Bragg peak from each of the AOs

is isolated and collimated. One arm of each interferometer has a fixed path length, while

the other has a computer controlled delay stage with 20 nm precision, used to control the

relative arrival time between the two separate pulses trains in a particular interferometer.

The beams are recombined collinearly at second beamsplitter. These collinear pulse pairs

from each interferometer are combined collinearly by a final beamsplitter, with a third

delay stage controlling the relative arrival time between the separate interferometers. The

final, four-pulse sequence is focused into the sample by a 75 mm lens to a spot size of

-15 )..tm. The sample is in a flow cell with 3 mm path length (Stama), with a flow rate of

-1 mLimin, pumped by a peristaltic pump from a reservoir with a total fluid volume of

-6 mL. Emitted fluorescence is filtered by a 620 nm long pass filter and collected by a

pair of 75 mm achromatic doublet lenses, and focused onto an avalanche photodiode

(APD). Collected fluorescence signals are sent to two lock-in amplifiers (Stanford

Research Systems, SR830).
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Reference signals are generated as described in chapters II and III.

Monochromators are used to spectrally filter the pulse pairs and generate reference

signals oscillating at the AO difference frequencies of 5 kHz and 8 kHz. The spectral

filtering temporally broadens the pulses, generating stable reference signals out to delay

times of~5 ps, much longer than the pulse durations themselves. The reference signals

are combined by a frequency mixer to create the 3 kHz difference and 13 kHz sum

frequency reference signals. The sum and difference signals are sent to the same lock-in

amplifiers as the fluorescence, demodulating the fluorescence signals to isolate

components oscillating at sum and difference frequencies.

The demodulated signals are collected via computer controlled analog-to-digital

data acquisition, recording Xsum(dif) (t43' t32 ,t21) and J:um(dif) (t43' t32 ,t21)' Time-domain data

sets are collected starting at the time origin, and extending to time delays of 240 fs along

the t43 and t21 axes. Step size is 10 fs, creating 25 x 25 arrays of data. The lock-in

amplifier time constant is 1 s for MgTPP in liposome samples and 300 ms for MgTPP in

toluene. In-phase and in-quadrature data is combined as per the procedures outlined prior.

Sample Preparation: Liposomal samples were prepared in accordance to the procedures

in Ref. [22]. MgTPP in toluene with a known optical density was roto-evaporated in a

spherical flask until dry. 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) was

dissolved in dichloromethane, and an amount was added to the flask to create a 70:1

DSPC:MgTPP ratio, and roto-evaporated until dry. Nanopure water was added to the

flask, and the flask was alternated between being heated in a bath to a temperature of no
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more than 70° C and sonicated for a period of 15 - 30 minutes. Once the lipid and

porphyrin mixture was dissolved in water, it was filtered twice through glass wool packed

pipettes. Uniform liposomal membrane sizes are creatable via pressure extrusion through

100 - 1000 nm pore nylon membranes. The sample with 7: 1 DSPC:MgTPP ratio was

created with the same procedure. MgTPP was also dissolved in toluene for an additional

sample. All samples were diluted to have an optical density of~0.15 for a 3 mm path

length.
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Figure 6.8: Shematic diagram of the experimental setup for 2D PM-ECS experiments in
the visible wavelength range. Abbreviations are as follows: Amplified photodiode (APD),
p-i-n photodiode (PD), acousto-optic Bragg cell (AO), beam splitter (BS), optical
parametric amplifier (OPA).
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Magnesium Tetraphenylporphyrin

The upper left-hand comer of Fig. 6.9A shows the molecular structure diagram

for magnesium tetraphenylporphyrin (MgTPP). MgTPP has fourfold symmetry about the

Mg atom. MgTPP has two degenerate transition dipole moments, whose directions are

across the Mg, through opposite nitrogen atoms. Absorption spectra were collected for

three distinct samples, shown in Fig. 6.9A and displaced vertically: MgTPP in toluene

(bottom), 70:1 DSPC:MgTPP in nanopure water (middle) and 7:1 DSPC:MgTPP in

nanopure water (top). The first two samples show spectral characteristics of broadened,

well separated electronic features in condensed phase, as expected. Between 550 and 650

nm there are two inhomogeneously broadened features. The Q(O,O) transition centered

around 605 nm and the Q(l ,0) transition centered around 565 nm are transitions with zero

and one vibrational quanta for the same electronic energy level, respectively. Porphyrin

spectra are quite sensitive to solvent, so the small differences between MgTPP in toluene

and 70:1 DSPC:MgTPP in water are not unexpected. Tetraphenylporphyrins are known

to form dimers in lipid membranes with a concentration of around 7 lipids to 1

porphyrin.22 The linear absorption spectrum shows clear evidence of excitonic structure.

The Q(O,O) transition has two distinct features, each shifted by an equal energy relative to

the monomer Q(O,O) center transition energy, as expected for a dimer of two-level

systems. The lower energy feature has significantly larger amplitude than the higher

energy feature, meaning that the aggregates are more J-like than H-like.
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Figure 6.9: (A) Molecular structure of MgTPP, and linear absorption spectra for three
samples - MgTPP in toluene, a 70:1 ratio ofDSPC:MgTPP in nanopure water, and a 7:1
ratio ofDSPC:MgTPP in nanopure water. The first two samples show spectral features
characteristic of monomers, while the 7: 1 sample shows clear exciton structure features.
(B) Overlap of the Q(O,O) band for the 7: 1 MgTPP sample and the laser excitation
spectrum.
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2D PM-ECS Experiments on MgTPP in Lipid Bilayer Vesicles

Fig. 6.9B shows the overlap of our laser spectrum with the MgTPP dimer

absorption spectrum on a frequency scale. The excitation spectrum in centered at the

monomer center transition frequency, directly between the two main dimer features in the

linear spectrum. Experiments are performed on the three MgTPP samples described

above. In Figs. 6.10 and 6.11 rephasing and non-rephasing results are presented,

respectively, for all three samples for a population time of 0 fs. Both experimental data,

in panel A, and theoretical calculations, in panel B, are presented. The top row of plots is

for MgTPP in toluene, the middle row is for the low concentration ofMgTPP to lipids,

and the bottom row is the data for the higher concentration of MgTPP in lipids. Each data

set shows the absolute value, real, and imaginary components of the third-order

susceptibility, from left to right. The two monomer samples, MgTPP in toluene and the

low concentration ofMgTPP to lipids in water, behave as simple, broadened two-level

systems for both the rephasing and non-rephasing susceptibilities, as expected. The 2D

features in the absolute value, real, and imaginary components of the third-order

susceptibility are familiar results for 2D spectra oftwo-Ievel systems,17,23,24 and are

centered at the expected frequencies. The experimental results are in agreement with

calculated 2D spectra for two-level systems. In the theory presented above, we did not

account for spectral broadening. In these calculations we do so by multiplying the time­

resolved data by a windowing function, similar to the windowing function used to

truncate the Rb data in chapter III. The broadening functions for the toluene and 70: 1

calculations have standard deviations of 51 fs and 56 fs, respectively. The larger temporal
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Figure 6.10: (A) Experimental and (B) calculated 2D rephasing spectra for MgTPP
samples. We find very good agreement, between relative feature signs and coordinates
for a model angle of 65°. Monomer spectra show expected structure. Dimer spectra show
four features that can be used to characterize local structure.
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standard deviation for the 70: 1 sample corresponds to slightly narrower 2D spectral

features in comparison to MgTPP in toluene, correlating to the more structured

environment inside the lipid vesicle bilayers. The experimental results are in agreement

with this. Results are similar for both rephasing and non-rephasing data - non-rephasing

spectra are simply rotated with respect to rephasing spectra, reflecting the expected

symmetry difference.17,23,24

The results for the 7:1 DSPC:MgTPP sample show notably greater complexity in

both rephasing and non-rephasing third-order susceptibilities. It is immediately evident

that there are two distinct features along the diagonal and additional structure in the off­

diagonal regions that signifies coupling between the diagonal features. While MgTPP

monomers have two degenerate transition dipole moments, as described above, we only

see two clear diagonal features, characteristic of a dimer of two-level systems. For now,

we will treat this as a dimer of two-level systems, similar to many theoretical treatments

ofporphyrin dimers, to gauge how well our results agree with a simple model. Using Eqs.

(6.45) - (6.48) we find that for a relative dipole interaction angle of 65° we achieve very

good agreement with the collected 2D susceptibilities for the rephasing spectra. The

broadening function has a standard deviation of 60 fs, reflecting motional narrowing of

the linewidths of the exciton features in comparison to the monomer features. For the

rephasing spectra in Fig. 6.8 we see that while the amplitudes of all features are not

identical when comparing theory to data, the shapes and locations of the individual

features are in excellent agreement. Similarly, the non-rephasing spectra in Fig. 6.9 show

features centered at the same frequencies as the rephasing spectra, but with the expected
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symmetry of a non-rephasing third-order susceptibility. Comparing experimental results

to the calculated spectra once again finds very good agreement. Similar features are

visible in almost all areas of the spectra, but with some discrepancy between calculations

and experimental data.

The J- and H-aggregate examples in Fig. 6.1 defined the behavior of the spectra

for systems with unidirectional transition dipole moments. For a dimer ofmolecules with

twofold symmetry, like MgTPP if we consider a single transition dipole moment, dimer

geometries will always have a relative dipole angle less than 90
0

• These MgTPP dimers,

with the lower energy spectral feature being larger in amplitude, therefore have the "+"

and "-" state designations assigned to the lower and higher energy features, respectively.

High resolution of dipole angle assignments is important for proper structural

determination. In Fig. 6.12 we display the calculated absolute value rephasing spectra for

three separate angles - 65", which best fits our data for t32 = 0 fs, and ±20° (45 0 and 85 0

)

to demonstrate the sensitivity ofthe relative spectral peak amplitudes to the dipole angle.

For these angle changes, we see clear differences in the relationship between all four

spectral features, and therefore have sensitivity to angle changes significantly smaller

than these differences. 2D PM-ECS experiments can therefore be used as a technique for

determination of aggregate structure with relatively high precision.

The features of the 2D spectra change very noticeably as a function of population

time, as seen in Fig. 6.13 for both non-rephasing (left) and rephasing (right) spectra. We

show data from population times of 0 fs, 15 fs, 45 fs, and 1200 fs. The progression of

data sets as a function of population time show rapid uphill energy transfer, with a
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Figure 6.12: Absolute value of the 2D rephasing spectra for three relative dipole
interaction angles. There are distinct differences in the relative peak amplitudes for the
angles of 73°, 78°, and 83°, demonstrating the relative sensitivity of the 2D PM-ECS
technique as a structural analysis tool.

characteristic time of 30 ± 5 fs. Uphill energy transfer is expected due to the thermal

energy (ksT= 4.07x10-21 J) being close in value to the energy difference of the one-

exciton states (PlIVI2=6.33x10-21 J), which makes the ratio kulkd = 0.21 by Eq. (6.54).

Using these results and Eqs. (6.60) - (6.63) we find that the asymptotic values that the

features rapidly approach do not agree well with the experimental values (calculations not

shown). More specifically, the uphill energy transfer feature that we find in both

rephasing and non-rephasing spectra is much larger than the simple kinetic model

predicts. The downhill energy transfer feature is comparatively small, even at a
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population time of 0 fs. This makes sense when one considers the donor states for uphill

and downhill energy transfer. The lower energy state is the donor for uphill energy

transfer, and is significantly larger than the higher energy feature, which is the donor for

downhill energy transfer. The energy transfer feature itself cannot become larger than the

initial value of its donor feature, so we are not surprised that the uphill energy transfer

feature is larger than the downhill feature in these results. We are currently evaluating

models that account for the discrepancy between the simple Redfield kinetic model and

the experimental results.

Using Eq. (6.2) and results presented thus far, we can calculate the approximate

transition dipole separation and compare the distance to possible dimer configurations.

This analysis is currently ongoing, and we are proposing configurations such as Fig. 6.14

which take into account all four transition dipole moments, in attempts to match

experimental results to a suitable model.

Summary

We have presented an extension of the 2D PM-ECS formalism for studies of

exciton coupling in molecular complexes for use as a structural analysis tool. A

theoretical treatment of dipole coupled two-level systems has been presented as a simple

theory for the study of coupled dimers, taking into account the necessary rotational

averaging of randomly oriented ensembles. For systems at room temperature, coherent

oscillatory couping behavior is unlikely to be observed with PM-ECS experiments, so we

work in the intermediate time regime.
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Figure 6.13: Experimental (A) rephasing and (B) non-rephasing spectra as a function of
population time. Absolute value, real, and imaginary components of the spectra show
rapid evolution of spectral features, with the uphill energy transfer feature becoming
especially prominent. Current attempts to model the population transfer processes have
been unsuccessful by use of a simple Redfield theory kinetic model. Each of the features
is located at the same coordinate in both rephasing and non-rephasing data sets, with
expected symmetry differences.

Results have been presented for 2D PM-ECS experiments on MgTPP complexes.

Monomer systems in toluene and lipid bilayer vesicles behave as expected, showing

simple two-level system dynamics. Aggregates of MgTPP in lipid bilayer vesicles show

signature features of molecular dimers. Third-order susceptibilities for both rephasing

and non-rephasing signals show similar behavior that is in good agreement with the

dimer model theory. As a function of population time t32, the off-diagonal features grow
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in amplitude, and all four features approach asymptotic values. The uphill energy transfer

feature is not accounted for by simple kinetic theory.

2D PM-ECS experiments are able to determine relative dipole angles in molecular

dimers with high precision. This will allow experiments to be performed on a wide array

of strategically labeled systems to better understand the local structure, orientation, and

directional flow of excitation energy.

Figure 6.14: Possible configuration for MgTPP dimers in liposomal membranes based on
experimental results and analysis thus far. We are investigating the possibility of
configurations such as this as suitable models for our measured 2D spectra.



163

CHAPTER VII

CONCLUSION

As the scientific community delves deeper into the inner workings of the cell and

its components, fluorescence labeling techniques will continue to be versatile methods for

the study of dynamics and structure in biologically relevant systems across a vast range

of timescales. This dissertation has presented two novel, high signal-to-noise phase

modulation fluorescence spectroscopy techniques, PM-ECS and PM-FICS, as useful

tools for the study of fluorescently labeled ensembles. In conclusion, a brief summary

will be presented for each of these methods and the experimental results, and future

directions will be proposed.

Summary of PM-FICS Experiments

The PM-FICS technique utilizes modulated intensity and polarization gratings to

separate conformational dynamics of coupled chromophore systems from their diffusive

motion. We successfully separate the translational and optical anisotropy signal

components for DsRed, a naturally occurring obligate tetramer of fluorescent

chromophores. The results for the translational dynamics mimic the expected behavior of

a particle undergoing Brownian motion for both two-point (chapter IV) and joint (chapter
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V) distribution functions and two-dimensional spectral densties. Plots of the distribution

functions and spectral densities for the depolarization angle show markedly different

behavior, compared to the translational dynamics. The two-point distribution functions

clearly depart from a linear broadening with respect to the time interval (21. The two­

dimensional spectral densities of the mean depolarization angles are much more

complicated than the simple, expected Lorentzian lineshapes for translational dynamics.

We find broad distributions of transition rates in the 2D spectral densities, with two main

features at 10 and 14 Hz. On long timescales (~8 second time constant) we see clear

evidence of transitions between these "fast" and "slow" frequencies. We calculate the

joint distributions, finding that there are many distinct conformational transitions that

agree well with prior crystallographic analysis, allowing us to propose the thermally

driven conformation transition pathway mechanism shown in Fig. 5.6.

Summary ofPM-ECS Experiments

PM-ECS is an ultrafast four-pulse technique, utilizing collinear pulse geometry.

The resultant fluorescence signal is collected, and we isolate the terms linear in each of

the four time-ordered fields in order to generate third-order susceptibilities that can

characterize coupling processes between distinct electronic modes and generate time­

dependant structural information. Proof-of principle experiments for the PM-ECS

technique were performed on atomic rubidium, with excellent agreement between theory

and experimental data. The success of these initial measurements inspired us to study

exciton dynamics in solution at room temperature. The results of experiments on self-
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forming porphyrin dimers in lipid bilayer vesicles, along with two monomer control

studies, were presented in chapter VI. We find clear energy transfer features in both

uphill and downhill directions, and diagonal features in agreement with evidence of

exciton behavior in the linear spectra. The features in the 2D spectra are well modeled by

a simple dimer model in the intermediate time regime for a population time of 0 fs. As

the population time increases there are significant chances to both the rephasing and

nonrephasing spectra. The uphill energy transfer feature rapidly increases in amplitude,

which is not well matched by simple kinetic models. We are currently examining

explanations for the evolution of the features that we see.

Future Directions

Currently, PM-FICS experiments are being performed to study nanoparticle

fluctuations in glass-forming polymer liquids, specifically fluorescent CdSe quantum dots

in polybutadiene blends. Preliminary studies show promise for characterizing the

dynamical heterogeneity present in glass-forming liquids by performing a sequence of

temperature dependent experiments. The polymer entanglement length scale will be

altered by varying the molecular weight of the polymer blends. We are also interested in

studying the effects of the presence ofnanoparticles on the glass forming liquids. Two­

dimensional joint distribution functions will be useful for characterizing the length scales

of the heterogeneous domains and the time scales of interconversion between fast and

slow domains near the glass transition.
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Using the 2D PM-ECS technique, we will continue studies of porphyrin

aggregates in lipid bilayer vesicles. We will use the membranes as structured

environments for the study of coherence and energy redistribution in the membrane­

assisted organization of porphrin aggregates. By performing studies on porphyrin dimers

separated by flexible or rigid ester chains in solution and in membranes, we will learn

about the structural organization properties of the membrane with respect to molecular

aggregates and arrays, and about the suitability of using membranes as environments for

highly efficient self-assembling energy transfer complexes. We have received porphyrin

dimer samples from collaborators in the Molinski lab at the University of California, San

Diego. One of the dimer samples has the two porphyrins separated by a flexible ester

chain, while a second sample separates the two porphyrins with a rigid ester chain, with

the porphyrins in known relative positions and orientations.

Another set of experiments will be performed with the both the PM-ECS and PM­

FICS techniques as tools for structural analysis of protein-nucleic acid complexes.

Results will reveal information concerning relative separation, local orientation, and

dynamic behavior of specifically selected pairs of nucleotide bases in DNA and RNA

molecules. The specific nucleotide bases that we choose to examine will be labeled with

6-MI, a fluorescent chromophore that can be used as a non-invasive replacement for

guanine, with spectrally separate absorption and emission features from unlabeled DNA

or RNA. These experiments will be used to study the mechanisms of DNA polymerase

and helicase, protein-DNA complexes that are integral to the biological processes that

enact and regulate gene expression.
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