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There is convincing evidence that many students struggle to learn mathematics

proficiently. One plausible contributor to the low math achievement is the quantity and

quality of learning opportunities provided in classrooms. These opportunities may fall

short of addressing the learning needs of students, especially those at risk for failure in

mathematics.

Against this backdrop, the purpose of the dissertation was to validate a direct

observation instrument. The Coding of Academic Teacher-Student interactions (CATS)

observation instrument systematically measures the instructional interactions that occur

between teachers and students during kindergarten mathematics instruction. The

dissertation harvested data from the Early Learning in Mathematics: Efficacy Trials in



Kindergarten Classrooms (ELM-ETKC) project, a randomized control efficacy trial.

ELM-ETKC is investigating the efficacy of the Early Learning in Mathematics

curriculum within 65 kindergarten classrooms across three school districts in the state of

Oregon.

The dissertation utilized student and classroom-level information collected in 65

ELM-ETKC kindergarten classrooms across the 2008-2009 school year. At the student

level, data included scores from 929 kindergarten students on the Test of Early

Mathematics Ability-Third Edition (TEMA) and two curriculum-based measures: Oral

Counting and Number Identification. Information at the classroom level included

observational data from 191 classroom observations.

Utilizing the extant data, the dissertation addressed research questions related to

content validity, discriminant validity, and criterion-predictive validity. Additionally,

the study examined if observers could reliably use the CATS instrument in classrooms.

To address two of the research questions, the dissertation employed a hierarchical

design and fit multilevel models that nested (a) observations within classrooms and

(b) student posttest TEMA scores within classrooms. Predictors of the models included

student risk status and rates of observed instructional behaviors.

The study found promising evidence for using the CATS instrument to collect

information about the quantity and quality of kindergarten mathematics instruction.

Independent observers reached acceptable interobserver agreement across the

observations. The CATS instrument demonstrated high levels of content validity, as

v



well as sensitivity to treatment conditions. Results also found statistically significant

relationships between the mean rate of instructional behaviors and student posttest

TEMA scores. Implications for future research and practice are provided.
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CHAPTER I

STATEMENT OF THE PROBLEM

To keep pace with the productivity oftoday's global marketplace, graduating

high school students must exit with a deep understanding of fundamental mathematics

(Committee on Prospering in the Global Economy of the 21st Century, 2007; Freidman,

2009; Glen Commission, 2000; Goldin & Katz, 2008; Gonzales et aI., 2004; Levy &

Murnane, 2004; Ma, 1999; National Mathematics Advisory Panel [NMAP], 2008).

Students require not only a formal knowledge of whole numbers, but also proficiency in

key mathematical domains such as fractions, decimals, and algebra (Ketterlin-Geller,

Jungjohann, Chard, & Baker, 2007; Wu, 2008). Thus, as noted by the Mathematics

Learning Study Committee (National Research Council [NRC], 2001), "All young

Americans must learn to think mathematically, and they must think mathematically to

learn" (p. 16).

Because of these heightened expectations for academic success, all children

deserve the opportunity to become mathematically literate (Murnane & Levy, 1996;

NRC, 2001). Yet, concern over the lack of mathematics proficiency among American

students has grown exponentially over the last 15 years. A considerable amount of these

worries stem from the large number of students struggling to learn the fundamental

areas of beginning mathematics (e.g., base-ten system). Evidence suggests that 4-8% of
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the school-age population exhibits some type of mathematical disability (Fuchs, Fuchs,

& Prentice, 2004; Fuchs et aI., 2008; Geary, 2004; Swanson & Jerman, 2006). For many

of these students, difficulties involve mastery of arithmetic combinations (e.g.,

automatic retrieval of basic addition problems) and efficiency of counting strategies

(e.g., counting-on procedure; Geary, 1993; Gersten, Jordan, & Flojo, 2005).

Equally striking is the amount of students, both with and without mathematics

learning disabilities, who fail to perform at a level commensurate with their typical

achieving peers. The recent perfornlances of American students on the Trends in

International Mathematics and Science Study (TIMSS) provide a troubling example.

Results from the 2003 TIMSS ranked U.S. Grade 8 students 15th out of 44 nations

(Ferrini-Mundy & Schmidt, 2005; Gonzales et aI., 2004). Data from the 2007 National

Assessment of Educational Progress (NAEP) indicate that only 38% of Grade 4 and

35% of Grade 8 students performed at or above the Projicient level in mathematics

(National Center of Educational Statistics [NCES], 2007). On the same NAEP

assessment, only 19% and 8% of students with disabilities, respectively, scored at or

above proficiency in Grades 4 and 8 (NCES, 2007).

While the long-term implications of these performances are unclear, it is

transparent that too many students are struggling to become proficient in the

fundamentals of school mathematics. It is therefore critical that students set foot on an

early pathway for learning success. There is general consensus that this pathway must

begin in kindergarten (Bodovski & Farkas, 2007; Chard et aI., 2008; Denton & West,



3

2002; Guarino, Hamilton, Lockwood, & Rathbun, 2006; Rathbun & West, 2004; West,

Denton, & Germino-Hausken, 2001).

A Model of School Learning

For the past 50 years, researchers have directed much attention toward

improving the quality of classroom instruction. In 1963, for example, Carroll proposed a

model of school learning to address the issue of instructional quality. Though Carroll

offered the model over 45 years ago, many still consider it a plausible framework for

thinking about the improvement of instruction and the promotion of student

achievement (e.g., Kame'enui & Simmons, 1990; Simmons & Kame'enui, 1996;

Simmons et aI., 1998; Simmons et aI., 2007; Snow, Bums, & Griffin, 1998).

The Carroll (1963) model fosters a practical view of the variations of school

learning. Central to the model is the influence of time and the opportunities to learn that

students receive. Carroll conceptualized the act of learning as the amount of time

required to meet learning needs. This conceptualization is best illustrated in the equation

below, where the degree of learning is a function of the ratio of the amount of time the

learner is engaged in learning (TE) to the amount of time the learner requires to master a

given task (TR). The equation is as follows:

Degree of learning = f(~~J

Within Carroll's (1963) model of school learning are five variables, each

focusing specifically on the amount oftime actually spent on learning. Table 1
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illustrates these variables and their corresponding definitions. Carroll (1963, 1989)

considered the variables of aptitude, opportunity to learn, and perseverance as being

responsive directly to time, in that they focus on how much time a student requires in

learning a given task. The variable of aptitude, for instance, considers the amount of

time required to learn a task, given typical instruction. Carroll (1963) postulates that

high-achieving students, or ones with high aptitude, require less time to learn, whereas

students with low aptitude require more instructional time to learn a given task.

TABLE 1. Carroll's (1963) Model of School Learning

Variables of learning

4

Category Variable

Within-the-learner Aptitude

Ability to
understand
instruction

Outside-the-learner Opportunity to
learn

Quality of
instruction

Perseverance

Definition

Amount of time a student needs to
accomplish a learning task

Combination of a student's general
intelligence and verbal ability

Time allowed for learning

Organization and presentation of a
learning task

Time the learner is willing to spend
actively engaged in a learning task

The second variable, opportunity to learn, is the amount of time prioritized for

learning by schools and individual classrooms. Carroll (1989) laments that the amount

of time allocated for instruction often falls short of meeting the needs of students. The
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third variable, perseverance, is the amount of time the individual willingly devotes to

learning. In essence, perseverance falls in the hands of the learner. For example, if a

student is self-motivated, then he/she will spend the amount of time necessary to learn a

given task. In contrast, students who lack interest or motivation in learning often direct

too little attention to the task at hand (Kame'enui & Simmons, 1990).

The final two variables, ability to understand instruction and quality of

instruction, associate directly with student achievement. Carroll (1963) defines ability as

a student's capacity to gain understanding from instruction even when it is less than

optimal. For example, despite poor instruction, students with higher abilities or stronger

educational experiences are able to learn on their own. In contrast, students with lower

abilities or weaker learning experiences struggle to benefit from instruction that is

anything less than ideal. The last variable, quality of instruction, also has direct

relevance to achievement. According to Carroll, the quality of instruction is the linkage

between teacher behavior and student outcomes. To enhance the quality of instruction,

teachers must design and deliver instructional tasks in ways that are accessible for the

full range of learners. A focus of this dissertation was to measure the quality of

classroom instruction.

Within the context of preventing academic difficulties, Kame'enui and Simmons

(1990) divided Carroll's (1963) variables into two separate categories: within-the­

learner and outside-the-Iearner (see Table 1). This separation was timely because it

shifted the blame for academic failure from student characteristics (e.g., SES, disability)

to more amenable factors that educators can better control, such as the quality of
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instruction (Simmons & Kame'enui, 1996). In other words, rather than changing the

student to fit the system, efforts now emphasize altering the variables that teachers can

systematically and strategically manage (Gersten, Baker, Pugach, Scanlon, & Chard,

2001). One variable that lies in the hands of teachers is the quality of instruction.

Measurement of Teaching

Over the course of the past three decades, the measurement of teaching

processes has been a cornerstone of education research (Good & Grouws, 1979;

Shavelson, Webb, & Burstein, 1986). Results from the study of instruction have played

an influential role in generating a knowledge base of effective pedagogical practice

(Brophy & Good, 1986; Rosenshine, 1997). Recently, researchers have begun to

investigate the quality of instruction with a specific focus on the instructional

interactions that occur between teachers and their students (Pianta, 2007; Pianta &

Hamre, 2009; Smolkowski & Gunn, 2010). Some postulate that the frequency and

quality ofteacher-student interactions mediate student achievement (Chard et aI., 2008;

Hiebert & Grouws, 2007).

Researchers have used a variety of quantitative and qualitative methods to

investigate the quality of instruction, including large-scale survey instruments (Rowan,

Correnti, & Miller, 2002) and instructional logs (Ball & Rowan, 2004; Rowan &

Correnti, 2009). Although different measurement methods demonstrate varied strengths,

some are more applicable and more powerful in certain research contexts. Snyder et aI.

(2006) contend the selection of a particular measurement method should greatly depend
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on the construct of research interest and the method's sensitivity for detecting sources of

varIance.

One method for collecting information about classroom instruction and student

learning is direct observation (Snyder et ai., 2006; Vaughn & Briggs, 2003). According

to Snyder et ai., direct observation is a sensitive method for handling sources of variance

such as time, observer effects, and moment-to-moment changes of teacher and student

behavior. Researchers can use direct observations of instruction to explore relationships

between teaching practice and student outcomes.

Researchers have developed a variety of direct observation instruments to

evaluate classroom instruction. For instance, when examining mathematics instruction,

researchers have implemented frequency count approaches (Good & Grouws, 1979),

rating scale methods (Clements & Sarama, 2008; Mason & Good, 1996; Pianta &

Hamre, 2009), and duration recording systems (Gerleman, 1987). Interestingly, few

systems have measured how the frequency of teaching practice relates to kindergarten

mathematics achievement. The classroom observation instrument studied in this

dissertation centers on the quantity of teaching practice. The system's goal is to measure

the frequency of instructional interactions that occur between teachers and students

during kindergarten math instruction.

Though direct observation is not exempt from measurement error (Suen & Ary,

1989), many refer to it as the "gold standard" approach for capturing what transpires in

actual teaching practice (Ball & Rowan, 2004; Hoge, 1985; Medley & Mitzel, 1963;

Palardy & Rumberger, 2008; Rosenshine & Furst, 1973; Snyder et ai., 2006). Consider
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four examples of this last statement. First, most would agree that to truly explain

behavior one must pay attention to the important things that people do (Baumeister,

Vohs, & Funder, 2007). For this reason, direct observation is an effective method for

understanding and explaining the instructional behaviors of teachers and students.

Second, the method of direct observation can be sensitive enough to detect change and

differences in classroom behavior. For example, Smolkowski & Gunn (2010) found

classrooms significantly varied in the amount of practice opportunities students received

during kindergarten reading instruction. A well-designed direct observation system

should capture differences between treatment conditions (Snyder et aI., 2006).

A third example is that direct observation is less susceptible to systematic bias

than self-report methods. Self-report methods are more at risk to systematic bias

because they rely on individuals who are often aware of intervention status. Threats to

self-reports can affect participant motivation (or lack thereof) and participants'

perceptions of experimental situation (Shadish, Cook, & Campbell, 2002). Snyder et aI.

(2006) suggest direct observation is less at risk for systematic bias when researchers

(a) operationally define behaviors, (b) train observers to criterion reliability, and (c) use

ongoing calculation of rater agreement to minimize observer drift.

Lastly, direct observation collects more trustworthy data than other approaches,

such as self-report of past behaviors, teacher interviews, questionnaires, and survey

instruments (Hoge, 1985). Baumeister et aI. (2007) questioned the dependability of self­

report information by stating, "people have not always done what they say they have

done, will not always do what they say they will do, and often do not even know the real
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causes of the things they do" (p. 397). While sometimes more expensive, more

intrusive, and less feasible than these other approaches, direct observations can

potentially provide a more accurate representation of classroom behavior (Medley &

Mitzel, 1963; Snyder et ai., 2006). Taken together, direct observation of classroom

behavior may be the most appropriate method for gathering valid information about the

quality of mathematics instruction and the facilitation of student learning.

Purpose of the Study

In recent years, direct observation has drawn increased attention as a proposed

method for investigating the quality of classroom instruction (August, Branum-Martin,

Cardenas-Hagan, & Francis, 2009; Gersten, Baker, Haager, & Graves, 2005; Pianta &

Hamre, 2009; Stuhlman & Pianta, 2009). In early literacy, for example, researchers have

used a variety of classroom observation tools to measure how instructional practices

relate to reading outcomes (Baker, Gersten, Haager, & Dingle, 2006; Vaughn & Briggs,

2003). However, less documented in the literature is the application of direct

observation instruments during beginning mathematics instruction (Sutherland &

Wehby, 2001). A review of the literature reveals that few studies have used direct

observation to test the relationship between observed classroom-level behaviors and

student math achievement. This is surprising given that a successful start in kindergarten

can affect subsequent learning in mathematics (Morgan, Farkas, & Wu, 2009). For these

reasons, there is need to identify and measure the effective teaching practices that
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facilitate student learning during this critical period of children's early mathematical

development.

The purpose of this dissertation is to validate a direct observation system. By

design, the observation measure systematically captures the instructional interactions

that occur between a teacher and their students during kindergarten mathematics

instruction. To support the use of the instrument in measuring the quality of instruction,

I explore three types of validity evidence. In addition, concerned about the consistency

of the observation data collected across a number of independent observers, I examine

whether observers could reliably use the instrument in classrooms. Toward this end, I

address four research questions.

Research Questions

To address the first research question, this study will conduct a content review of

the direct observation instrument. This analysis will allow an examination of the content

aspect of construct validity. The second question will use an index of interobserver

agreement. This approach will allow for an examination of interobserver agreement and

consistency of the data documented by the observation instrument.

1. Does the Coding of Academic Teacher-Student Interactions (CATS)

observation instrument include evidence of content relevance and representation for its

use in capturing instructional interactions during kindergarten mathematics instruction?

Hypothesis 1: Given its empirical alignment with the scientific research on

effective math interventions for promoting student mathematics proficiency, features of
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the CATS observation instrument will demonstrate evidence of content validity. The

study will gather this type of evidence through a 12-item online survey completed by

external reviewers.

2. Can observers meet a minimally acceptable level of interobserver agreement

when using the CATS observation instrument in both experimental classrooms (i.e.,

where teachers have been trained to teach the Early Learning in Mathematics

curriculum; ELM) and comparison classrooms (i.e., where teachers have not been

trained)?

Hypothesis 2: Based on comprehensive observer training and the simple

structure of the observation instrument, observers will reach a minimally acceptable

level of agreement across both treatment and comparison classrooms, and across

observation rounds.

To address the final two research questions, this study will employ a hierarchical

design and develop multilevel statistical models (two-level) that nest (a) observations

within classrooms and (b) students within classrooms. The first model will allow an

investigation of the instructional differences of teachers between classroom conditions.

The second will allow an examination of the relationship between average rate of

observed behaviors and student math achievement.

3. Can the CATS observation instrument detect differences in mathematics

instruction provided by treatment and comparison classrooms?

Hypothesis 3: Because the treatment curriculum (ELM) emphasizes explicit

instruction and frequent student practice opportunities, I expect the observation
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instrument will detect differences in the mean rate of instructional behaviors between

treatment conditions.

4. Is there a relationship between the average rate of observed classroom-level

behaviors, as measured by the CATS observation instrument, and student mathematics

achievement? And to what extent do the observed behaviors moderate the relationship

between risk status and student mathematics achievement?

Hypothesis 4: Based on a growing body of empirical evidence on the effective

principles of instruction, the analysis will detect a statistically significant relationship

between the observed behaviors and student mathematics achievement. Moreover, I

hypothesize that the observed behaviors will moderate the relationship between risk

status (as classified by utilizing a 20th-percentile cutoff on two curriculum-based pretest

measures) and student math achievement.
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CHAPTER II

A REVIEW OF THE LITERATURE

The literature review for this study centers on two research-based principles of

instruction. These principles are practice opportunities and explicit instruction. An

emerging body of scientific research has shown that both instructional principles are an

effective approach for improving math outcomes for students with and without

mathematics learning disabilities. It is also important to note that each principle maps

directly onto the classroom observation instrument studied in this dissertation. I provide

a thorough description of the observation instrument in Chapter III. To shape this

literature review, I draw upon the findings of three relevant sources: (a) studies from the

process-product literature, (b) recent experimental and quasi-experimental studies that

test methods for explicitly teaching mathematics to students with or at risk for

difficulties, and (c) meta-analyses for teaching mathematics to students with learning

disabilities.

Practice Opportunities

Children enter kindergarten with varying levels of mathematical understanding

(Anuola, Leskinen, Lerkkanen, & Nurmi, 2004). Some children, for instance, can rote

count from 1 to 20, solve simple plus-one addition problems, and extend basic ABAB
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patterns. Other children have difficulty identifying basic numerals. Why do these

differences in math readiness exist? One plausible answer is that children receive

different levels of support in their home environments for building early mathematical

knowledge.

Prior research has found the difference in informalleaming experiences to be

socioeconomic status (SES)-related (Bodovski & Farkas, 2007; Denton & West, 2002;

Guarino et aI., 2006; Klein, Starkey, Clements, Sarama, & lyer, 2008; Rathbun & West,

2004; Sarama, Clements, Starkey, Klein, & Wakely, 2008; Starkey & Klein, 2000; West

et aI., 2001). Children from higher SES households receive higher levels of support for

early math development prior to entering kindergarten than their economically

disadvantaged peers. Thus, by the time economically disadvantaged children enter

school, they have received fewer opportunities to engage in number-related activities

(Klein et aI., 2008). Because of this variation, it is important to provide frequent and

rich practice opportunities in early mathematics to kindergarten children with lower

math knowledge.

Well-designed practice opportunities benefit both students and teachers. For

students, practice helps build conceptual and procedural knowledge (Miller & Hudson,

2007; NRC, 2001). Also, regular practice allows students to maintain newly acquired

skills (Toumaki, 2003) and shift to memory-based retrieval of number combinations

(Fuchs et aI., 2010). For teachers, practice opportunities can help them gain critical

information about their students. For example, teachers can better estimate individual

and group understanding when they provide students with frequent opportunities to



15

learn (Carnine, Silbert, Kame'enui, & Tarver, 2004; Harniss, Carnine, Silbert, & Dixon,

2007).

In mathematics instruction, practice opportunities take on many shapes.

Classrooms, for instance, use computerized practice activities, games, written exercises,

and discussion to build skill fluency. One of the most common forms of practice is

textbook and worksheet exercises. These learning opportunities typically entail students

working on newly acquired skills, absent of teacher guidance. When purposefully

distributed, worksheet exercises offer students with opportunities to practice new and

previously learned skills (Carnine, 1997). For example, well-designed instructional

programs provide concentrated practice following the introduction of a new skill and

systematic review for maintaining new material (Carnine et aI., 2004; Chard &

Jungjohann, 2006).

To extend student understanding, practice opportunities must also include

activities that extend beyond the typical drill and practice format of written exercises.

For example, activities must allow students to engage in systematic opportunities of

mathematics-related dialogue and application of key mathematics concepts and

principles. Teachers can promote these types of practice activities by engaging their

students in effective instructional interactions.

Instructional interactions between teachers and students are an integral part of

mathematical learning (Cohen, Raudenbush, & Ball, 2003; Hiebert & Grouws, 2007;

Shuell, 1996). These interactions can be bidirectional. For instance, an instructional

interaction might consist of a group of students verbalizing their solution for solving a
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word problem. Another instructional interaction might consist of a teacher model

demonstrating the physical attributes of a rhombus and then asking an individual student

to count the sides of the shape (see Figure 1). Using the same example, the teacher

might ask the whole-class to hold up as many fingers as sides of the shape.

Teacher provides
more practice or

transitions to next
instructional

examole

Teacher provides
appropriate academic

feedback

Individual students
answer

Teacher presents a
new concept or

skill

Teacher provides
practice opportunities
to individual students

Teacher provides
practice opportunities
to a group of students

Group of students
answer

Teacher provides
appropriate

academic feedback

FIGURE 1. An example of an instructional interaction between a teacher and
their students.
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Figure 1 presents an example of an instructional interaction in which a teacher

(a) models a new mathematics concept, (b) provides practice opportunities at the group

and individual levels, and (c) extends student learning with timely, academic feedback.

One aspect of an instructional interaction that maximizes practice opportunities

for a group of students is unison oral responding. This type of responding involves a

simultaneous response from two or more students (Carnine et aI., 2004). According to

Carnine et aI., unison oral responding is beneficial for several reasons. First, a unison

response can facilitate student learning for a group of students. Second, a unison

response can keep a group of students actively engaged. Finally, a unison response can

provide the teacher with frequent checks to gauge student understanding. In the context

of teaching beginning reading, Carnine et aI. recommend providing between 10 and 15

response opportunities per minute. In mathematics, teachers are likely to meet this

response rate during numeral identification activities and fluency practice with basic

addition and subtraction number combinations.

Over the last 30 years, the use of practice opportunities has become a focal point

of several research studies. One of the better known works is the Missouri Math study

conducted by Good and Grouws (1979). The study examined the teaching behaviors of

40 classroom teachers, randomly assigned to either treatment or control conditions.

Teachers delivered instruction for both treatment and control conditions in whole-class

format. While control conditions consisted of business-as-usual instruction, treatment

instruction incorporated frequent practice opportunities through daily review, seatwork,

homework, special reviews and monthly reviews. Good and Grouws based these
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practice opportunities on the active teaching model (Brophy & Good, 1986). In efforts

to maximize the effect of instruction, researchers trained the treatment teachers to keep

instruction at a brisk pace.

To test their hypotheses, Good and Grouws (1979) observed each teacher six

times. Observation findings indicated that treatment teachers exhibited more behaviors

related to the active teaching model than control teachers. For instance, observers noted

that treatment teachers spent more time practicing and reviewing previously learned

concepts and skills. While Good and Grouws expected these findings based on the

training that treatment teachers received, it is important to note that the experimental

model had a significant effect on the achievement of students in the treatment condition.

Interestingly, despite initial differences of achievement scores favoring the control

group, results indicated statistical differences in favor of the treatment group. Using a

mean comparison of raw scores, students in the treatment group gained over three points

more than their control group peers on a standardized math assessment.

Brophy (1999), in a review of the process-product literature, synthesized a series

of 12 instructional principles associated with promoting student achievement. Among

the principles was the use of practice and application activities. Under the notion that

practice leads to mastery learning, Brophy emphasized its role in teaching complex

concepts and skills. Brophy suggested that teachers help students learn through three

different means of instruction. First, teachers explain concepts, and demonstrate skills

and strategies. Second, teachers ask questions and initiate classroom discourse. Third,

teachers provide students practice opportunities to build fluency and maintain
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knowledge. To help students maintain the information they learn, Brophy suggests that

teachers need to provide well-structured practice opportunities. According to Brophy, it

is best to avoid trial and error practice. To successfully build students' skills, practice

must be systematic and efficient. Moreover, it must extend beyond the redundancy of

fill-in-the-blank worksheets and include more application activities.

In a recent random control trial, Fuchs et al. (2008) examined the influence of

two practice-oriented interventions on the outcomes of 133 third-grade students with

math disabilities. The first intervention, Math Flash, was a computerized practice

activity purported to build students' fluency in solving basic number combinations (e.g.,

6 + 3). Each Math Flash lesson lasted between 20 and 25 minutes. The second

intervention, Pirate Math, targeted students' problem-solving skills. Similar to Math

Flash, Pirate Math contained lessons lasting 25-30 minutes. Random assignment placed

students in one of three conditions: the Math Flash intervention, the Pirate Math

intervention, or a comparison group. Findings of the study were quite convincing,

favoring both of the treatment conditions. For example, when compared to the control

group, the Math Flash effect size was large, 0.85. Though smaller than the Math Flash

effect, the effect size for Pirate Math was moderate to large, 0.72. Fuchs et al. (2008)

postulated the effect size differences between the interventions were attributable to

fewer practice opportunities offered in the Pirate Math condition.
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Explicit Instruction

There is converging evidence that explicit instruction is the most effective

method for teaching students with or at risk for math disabilities (Baker, Gersten, &

Lee, 2002; Darch, Carnine, & Gersten, 1984; Gersten, 1985; Gersten et aI., 2009; Haas,

2005; Jayanthi, Gersten, & Baker, 2008; Kroesbergen & Van Luit, 2003; NMAP, 2008;

White, 1988). Often referred to as direct instruction, systematic and explicit instruction

draws its early roots from the work of Siegfried Engelmann and colleagues (Becker,

Engelmann, Carnine, & Rhine, 1981) and Barack Rosenshine (1979, 1983). Carnine et

al. (2004) state, "Direct instruction involves teaching ... essential skills in the most

effective and efficient manner possible" (p. 5). Within the explicit teaching model are

several critical features, including teacher demonstration, guided practice, and academic

feedback (Rosenshine & Stevens, 1984). A hallmark of direct or explicit instruction is

its insistence of learning for mastery (Gersten, 1985). According to the direct instruction

model, it is imperative that students master each and every step in the learning process

before proceeding in the instructional material.

For teachers, explicit instruction entails directly providing students with clear

explanations and timely academic feedback. For students, explicit instruction provides

ample opportunities to respond and practice. These opportunities include answering and

asking questions, verbalizing problem-solving solutions, and completing guided practice

tasks. In most cases, instruction concludes with students independently completing a
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cumulative review of new and previously learned material. During the review tasks,

teachers frequently monitor for student understanding.

One of the many notable strengths of the explicit instructional approach is that it

centers on high rates of student success (Gersten et aI., 2001). Teachers can ensure

higher levels of success by modeling and communicating clear strategies during initial

instruction (Carnine, 1997; Hamiss et aI., 2007; Hudson & Miller, 2006). For example,

in the context of teaching a multistep math procedure, teachers can facilitate student

learning by overtly presenting and describing the steps for solving the problem.

The research base in support of explicit instruction for teaching students with

learning difficulties is sound. Recent meta-analyses have provided much of this

empirical backing. For instance, in an early meta-analysis, White (1988) reviewed 25

studies employing a direct instruction approach. Findings of the analysis revealed that

students with learning disabilities demonstrated stronger outcomes in the direct

instruction interventions. Using a mean effect size calculation, White found large effects

(0.82) in favor of direct instruction. Swanson and Hoskyn (1998) also completed a

thorough review of the direct instruction literature, analyzing the effects of 180 research

studies. Similar to White's (1988) findings, Swanson and Hoskyn (1998) found direct

instruction one of the most effective teaching approaches. Calculated effect sizes

revealed a moderate to large impact (0.68) on student achievement.

In a more recent meta-analysis, Baker et al. (2002) reviewed the literature on

teaching mathematics to low-achieving students. Baker et al. used the term "low­

achieving" instead of "learning disabled" to include more students at risk for math
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failure. Using specific inclusion criteria, the meta-analysis yielded a total of 15

experimental and quasi-experimental intervention studies. Baker et al. codified the 15

studies according to five instructional categories. One category focused on the use of

explicit instruction and contextualized teacher-facilitated instruction. Seven studies met

the instructional category criteria. Calculating effect sizes through standardized mean

differences, findings revealed moderate to large effects for the explicit instruction

(Average = 0.65, Weighted = 0.58). In contrast, the teacher-facilitated approach yielded

negative to no effects on student achievement. These findings lend further support for

the use of explicit instruction when teaching mathematics to struggling learners.

Kroesbergen and Van Luit (2003) conducted a meta-analysis involving 58

studies of mathematics interventions for students with learning disabilities. In the study,

Kroesbergen and Van Luit categorized interventions into one of three intervention

domains: preparatory mathematics, basic skills, and problem-solving strategies. One

goal of the meta-analysis was to determine if treatment components, such as direct

instruction, self-instruction, computer-assisted instruction, and peer tutoring, were

effective for improving student math outcomes. At the basic skills domain, Kroesbergen

and Van Luit found direct instruction the most effective, revealing a large weighted

effect size of 1.13.

The National Mathematics Advisory Panel (NMAP, 2008) made a recent attempt

to conduct a meta-analysis of instructional approaches for teaching mathematics.

Because the literature base is "not uniformly deep" (p. 6-1), the Panel was unable to

take on a meta-analytic approach for comparing student-centered and teacher-directed
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instruction. The Panel, however, did make several recommendations for teaching low­

achieving students and students with learning disabilities, based on 26 high-quality

experimental studies. Findings from the review revealed explicit instruction as the most

appropriate approach for improving struggling learners' performances in computation

and word problems.

Bryant et al. (2008) used an explicit instructional approach in a recent

regression-discontinuity study. Using a 25th percentile cut-score on a standardized math

assessment (Texas Early Mathematics Inventories: Progress Monitoring, TEMI-PM),

Bryant et al. identified 161 Grade 1 students eligible for the Tier 2 intervention.

Students who scored at or above the cut-score received typical math instruction. Within

the Tier 2 treatment, students received explicit instruction in key concepts and skills.

Topics included in the study were counting, number sense, place value, and basic

operations. Treatment included 20-minute tutoring sessions offered four days per week,

using instructional features such as pacing, opportunities to respond, error correction,

and strategy instruction. Bryant et al. (2008) found a significant main effect for the

intervention at the conclusion of the treatment.

Most recently, Gersten et al. (2008), using meta-analysis, examined the effects of

interventions for teaching math to students with learning disabilities. Unlike Baker et al.

(2002), Gersten et al. (2008) chose to include only those studies that involved students

with learning disabilities. The search of the literature yielded 42 interventions. Gersten

and colleagues categorized the studies into four categories, one of which was

instructional approaches. This category included the approach of explicit instruction.
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Because researchers interpret the concept of explicit instruction in various ways,

Gersten et aI. applied three specific inclusion components. First, interventions had to

include a step-by-step plan for solving problems. Second, the step-by-step plans had to

map onto the problem type targeted during instruction. Third, students had to apply the

same step-by-step procedure that the teacher previously demonstrated. At this category

level, the meta-analysis examined 11 studies. The mean effect size of explicit

instruction was substantively large, 1.22. The findings of Gersten et aI. (2008)

corroborate the results of earlier meta-analyses (Baker et aI., 2002; Kroesbergen & Van

Luit, 2003; Swanson & Hoskyn, 1998; White, 1988). However, despite the robust

results favoring explicit instruction, Gersten et aI. (2008) were quick to remind the

reader that it is important to consider a mix of instructional methods when teaching

different concepts and skills.

Summary and Linkages to Present Study

Carroll's (1963, 1989) model postulates five variables associated with school

learning. Ofthe five variables, opportunity to learn and quality ofinstruction were most

relevant to this dissertation. Children require opportunities to acquire new knowledge.

Perhaps above all, children need learning opportunities that are of high quality and

effective in structure. Previous research indicates that struggling learners best acquire

mathematical concepts and skills when taught with research-based principles of

instruction, such as structured practice opportunities and explicit instruction. When

taught in combination, these principles can help promote effective instructional
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interactions between a teacher and their students. For these reasons, there is need to

document the quality and quantity of instructional interactions that take place in

kindergarten math classrooms. A direct observation system may be the most applicable

and most powerful method to address this need.

Thus, the objective of this dissertation was to validate a direct observation

instrument designed to capture the frequency of student practice opportunities, teacher

demonstrations, and teacher-provided academic feedback. Some hypothesize that when

instructional interactions contain these principles of instruction they facilitate learning

for all students in general and students with diverse learning needs in particular.
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CHAPTER III

METHODOLOGY

The purpose of this dissertation was to validate the Coding of Academic

Teacher-Student (CATS), a direct observation instrument that systematically measures

the instructional interactions that occur between teachers and students during

kindergarten mathematics instruction. In conducting this study, I addressed a set of

research questions related to three types of validity evidences. First, the study tested for

evidence of content relevance and representativeness (e.g., content validity; Messick,

1995). Second, it assessed whether the instrument was sensitive to detect differences in

instruction between two types of classroom conditions (e.g., discriminant validity).

Third, it tested the relationship between instructional interactions, captured by the

instrument, and end-of-year math outcomes for kindergarten students (e.g., criterion­

predictive validity). In addition, the study examined the consistency of the observation

data collected across a number of independent observers (e.g., interobserver agreement).

By addressing these particular questions, this study sought to establish a valid and

reliable observation instrument, and explore the instructional practices hypothesized to

directly influence student learning.
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Design

This study employed a hierarchical design and developed several multilevel

statistical models. To address the study's four research questions, data were harvested

from an ongoing randomized control efficacy trial called the Early Learning in

Mathematics: Efficacy Trials in Kindergarten Classrooms (ELM-ETKC; Baker, Chard,

Clarke, Smolkowski, & Fien, 2008). These data contained both student and classroom­

level information. Because the observation instrument focuses on the instructional

behaviors both directed and supported by teachers, the primary unit of analysis for this

dissertation was classrooms.

The ELM-ETKC Project

The Early Learning in Mathematics: Efficacy Trials in Kindergarten Classrooms

project (Baker et aI., 2008), hereafter referred to as ELM-ETKC, is a randomized

controlled trial that is investigating the efficacy of the Early Learning in Mathematics

(ELM) kindergarten curriculum. In addition to testing the immediate and long-term

impact of the ELM curriculum on student mathematics achievement, the ELM-ETKC

project is also systematically investigating the mediating and moderating variables

hypothesized to influence student learning across conditions. The project recently

completed its first year of investigation.

Year I ofELM-ETKC involved 65 classrooms from three school districts across

the state of Oregon. Two of the school districts are located in the suburban area of
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Portland and one in the southern part of the state. Across the three school districts,

student ethnicity ranged as follows: Caucasian (54% to 74%), African American (1 % to

2%), Latino (18% to 30%), AsianlPacific Islander (2% to 7%), Native

American/Alaskan Native (1 % to 2%), and other ethnicities (0% to 5%). The percentage

of students receiving special education services across the districts ranged from 10% to

14%. Student enrollment in free or reduced lunch programs ranged from 32% to 47%.

Of the 65 participating classrooms, the project randomly assigned 35 within

schools to the treatment condition (ELM) and 30 to the comparison condition.

Instruction in the treatment condition consisted of the ELM curriculum using a who1e­

class instructional format. The project considered the comparison condition as "business

as usual" practice. Comparison classrooms employed instructional materials approved

by their respective district.

Participants

A total of 66 teachers in 65 classrooms participated in Year 1 of the ELM-ETKC

project. All 66 teachers remained in the study throughout the intervention year (0%

attrition). Most teachers were females (97%). The two male teachers involved in the

study taught in treatment classrooms. Participating teachers had an average of 10.52

years of teaching experience, and a mean of 6.35 years teaching at the kindergarten

level. Across conditions, 56% of the teachers held a graduate degree, and 88% identified

as Caucasian, 8% Hispanic, and 5% other ethnicities. Approximately 13 (43%) of the
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comparison teachers and 17 (49%) of the treatment teachers completed college-level

coursework in Algebra.

Of the 65 participating classrooms, the majority of classrooms involved one

participating teacher. In one classroom, however, two teachers worked a full-time

equivalent of 0.5 or half-time. Forty-eight classrooms provided a full-day kindergarten

program and 17 offered a half-day program. Of the 17 half-day classrooms, 10 were in

the treatment condition. One classroom offered a full-day program four days per week,

while the remaining 64 classrooms offered instruction five days per week. Average class

size for the treatment and comparison conditions was 19.5 and 19.4, respectively. Each

classroom contained approximately 12 boys. Participating classrooms received

assistance from instructional aides an average of 0.60 hours per week.

Nested within the 65 kindergarten classrooms were approximately 1,495

students. Of the participating students, approximately 92 dropped out of the study (6.1 %

attrition) primarily because of family mobility. Approximately 77 students moved into

the participating classrooms during the 2008-2009 school year.

On an end-of-year administered survey, teachers reported an average of 11

students per classroom as at risk for failure in mathematics. Teachers based this

identification on student performance from the 2009-2009 school year. On the same

survey, teachers reported an average of9.04 English language learners in each

classroom. The percentage of students receiving special education services across the

classrooms ranged from 1.26% to 1.39%.
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Dissertation Sample

This dissertation utilized an existing data set provided by the ELM-ETKC

project (Baker et aI., 2008). The data set included student and classroom-level

information collected in the 65 kindergarten classrooms participating in ELM-ETKC.

Data accessed at the student level included pretest scores from two curriculum-based

measures (Oral Counting, Number Identification; Clarke & Shinn, 2004), and pretest

and posttest scores from a standardized mathematics outcome measure (Test of Early

Mathematics Ability-Third Edition [TEMA-3]; Ginsburg & Baroody, 2007). Collection

of student-level data took place in fall (October-November 2008) and spring (April-May

2009) of the kindergarten school year.

Across the 2008-2009 school year, the ELM-ETKC project involved 1,495

students. From this sample, ELM-ETKC assessed approximately 1,200 (80%) in the fall

(pretest) and 1,246 (83%) in the spring (posttest). The analytic sample in this study

included 929 kindergarten students. This sample included only those students who

participated in the fall and spring administrations of the outcome measure (TEMA;

Ginsburg & Baroody, 2007) and the pretest administrations for both curriculum-based

measures (Oral Counting and Number Identification; Clarke & Shinn, 2004).

At the classroom level, I accessed observation data, and demographic

information related to teachers and classrooms. The ELM-ETKC project collected

demographic information in the fall of the intervention year. The observation data
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included quantitative information relevant to explicit instructional practices such as the

frequencies of teacher models, academic feedback, and student practice opportunities.

The ELM-ETKC project planned three direct observations per classroom across

the fall, winter, and spring of the 2008-2009 school year. Approximately 6 weeks

separated each observation round. Each round planned for one observation per

classroom for a total of 65 observations per round. In all, ELM-ETKC conducted a total

of 191 observations. The first round (fall) involved 62 observations, while the second

(winter) and third (spring) rounds involved 64 and 65 observations, respectively. It is

important to note that classrooms were observed no more than one time per observation

round. Of the 65 classrooms, 61 were observed at each observation round (i.e., fall,

winter, and spring). Four classrooms were observed onjust two different occasions

across the observation rounds. Missing observations (i.e., <3% of scheduled

observations) were primarily due to scheduling conflicts or teacher absences.

Trained observers conducted all observations. Classroom observations took

place during the core mathematics instruction time period. Due to random assignment

within the ELM-ETKC project, core math instruction for treatment classrooms

consisted of whole-group instruction in the Early Learning in Mathematics curriculum.

Instructional formats (i.e., small-group and whole-class) and teaching materials varied

across comparison classrooms.

Of the 191 observations, the ELM-ETKC project conducted approximately 24%

(n = 46) as paired observations. A paired observation consisted of two observers

independently measuring kindergarten mathematics instruction. For research studies
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involving direct observation, these types of pairings are critical for monitoring whether

there is consistency of data collection across a number of independent observers

throughout a given time period (Kennedy, 2005; Shoukri, Asyali, & Walter, 2003; Suen

& Ary, 1989). Some postulate that demonstration of interobserver agreement reduces

possible sources of bias, measurement error, and variance attributable to characteristics

of independent observers (Baker et aI., 2006; Brennan & Johnson, 1995; Kennedy,

2005; Messick, 1995; Parkes, 2007; Raudenbush & Sadoff, 2008; Snyder et aI., 2006;

Suen & Ary, 1989). In the case of this dissertation, I anticipated that the interobserver

agreement data would provide initial support for using the instrument to measure

instructional interactions in kindergarten math classrooms.

Coding of Academic Teacher-Student Interactions (CATS)

Observation Instrument

This dissertation centered on the Coding of Academic Teacher-Student

interactions (CATS) observation instrument. The CATS tool systematically measures

the instructional interactions that occur between teachers and students during

kindergarten math instruction, such as student practice opportunities and teacher

demonstrations. It is important to note that members ofthe ELM-ETKC project, myself

included, developed the CATS tool specifically for use in the efficacy study. However,

given its conceptual aligmnent with the effective principles of instruction, the ELM­

ETKC team suspects the instrument's use will generalize to other educational contexts,

such as measuring the instructional interactions of kindergarten reading instruction.
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The CATS observation tool was designed to assess effective instruction for early

mathematics learning (see, e.g., Gersten et aI., 2009; Jayanthi et aI., 2009; NMAP,

2008). Certain features of the CATS were adapted from the Student-Teacher

Interactions Context Observation instrument (STICO; Smolkowksi & Gunn, 2010).

Smolkowski and Gunn recently used the STICO instrument to measure instructional

interactions during kindergarten reading instruction. Results of the STICO study

indicate that the rate of student practice opportunities was a significant predictor in early

reading outcomes.

General Features of the CATS

The CATS uses an event or frequency recording system to collect information

about classroom instruction. As such, the instrument requires observers to document

each time an instructional behavior occurs. Three sections comprise the CATS:

(a) cover page for general information about the observation occasion, (b) Context Code

section, and (c) Instructional Interaction Code section. Appendix A presents a complete

copy of CATS.

The cover page for CATS requires observers to record general information about

the observation, including identification numbers for the school and observed teacher.

Also included on the cover sheet are the observation start and stop times, total number

of students in the class, math program and lesson number taught during the observation,

group size, date of observation, and the observer's initials.
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The context code section entails four components: (a) instructional start and

finish times for the math activity, (b) type of math content targeted in the activity, and

(c) type of instructional format (small-group or whole-class). The mathematical content

areas include (a) number and operations, (b) geometry, and (c) measurement. The ELM­

ETKC project chose to capture these particular areas because of their prominent role in

the kindergarten curriculum (Clements, 2004; National Council of Teachers of

Mathematics [NCTM], 2006; NMAP, 2008). There is also strong consensus among

researchers, math educators, and expert panels that early achievement in mathematics

requires students to develop proficiencies in an array of concepts and skills associated

with these three content areas (Clements, 2004; NRC, 2001; Van de Walle, 2001; Wu,

2001).

During an observation, observers code one content area per instructional activity.

When a teacher introduces a different math activity, observers would then code a new

content area. For example, if the teacher begins the lesson with a numeral identification

activity and then transitions to recognizing shapes, the observer would code the first

activity as number and operations, and the second as geometry. The observer would also

note the stopping time of the previous activity and the starting time of the new activity.

Then the observer would begin with a new coding sequence for the current activity.

If the teacher transitions to a non-math-related activity, such as a brief reading

activity or an instance of classroom management, the observer would code the activity

as a nonmath content area, or "other," and complete the same context code components

as for a math activity. This includes noting the start and stop times of the adjacent
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activities, and the type of instructional format. Because the focus of the ELM-ETKC

project is mathematics instruction, observers do not record the instructional interactions

that occur during nonmath activities.

Instructional Features of the CATS

The instructional interaction section focuses on six behaviors: (a) teacher

models, (b) group responses, (c) individual responses, (d) covert responses, (e) student

mistakes, and (f) teacher-provided academic feedback. Observers code behavior

occurrences in a continual, serial fashion. Using a frequency count method allowed this

study to measure the relationship between the quantity of teaching, such as the rate of

individual practice opportunities, and student learning. It is important to note that

analyses for this dissertation concentrate on individual and group responses, and teacher

models.

Figure 2 presents an example of a coding sequence, with the first column

illustrating an initiating teacher model, followed by two group responses in columns 2

and 3. Columns 4 and 5 indicate an individual response that was incorrect. As displayed

in column 6, the teacher recognized the student's error and provided some degree of

academic feedback. Figure 2 also illustrates that the observer correctly recorded one

behavior code per column.

The CATS measures two teaching behaviors, with the first being teacher model.

A teacher model is an explicit and overt teaching behavior. Teacher models include
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explanations, verbalizations of thought processes, and physical demonstrations. To be

considered as a codable behavior, teacher models must focus on mathematical content.

For example, observers would code a model if a teacher states a math definition or

demonstrates a multistep mathematical procedure. In contrast, observers would not code

a model if a teacher demonstrates where students should write their names on a math

practice worksheet.

Columns I 2 3 4 5 6 7 ...

Model 100000.000 0000000000 0000000000
Gl'OupRespome 0 •• 0 0 0 0 I • 0 01.1000000 0000000000
IndividualResp 0 0 0 • 0 0 0 0 0 1 0000010000 0000000000
Covel1Respome 0 0 0 0 0 0 0 0 0 0 0000000000 0000000000
Mistake 0000'00000 0000100000 0000000000
Feedback 0000010000 .000000000 0000000000

a h c d e f a I] i ) k I !ll n 0 p q r s 1 u V W X Y z aa bb ec dd
"

FIGURE 2. A coding example of an instructional interaction.

The second teaching behavior is academic feedback. Academic feedback is an

overt teaching behavior that specifically relates to (and immediately follows) a group or

individual student response. Academic feedback can take the form of either an error

correction or a response affirmation. Both forms can include a teacher's verbal reply,

physical demonstration, or written response. Observers code academic feedback when a

teacher corrects a student mistake or when the teacher affirms a correct student

response.
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The CATS measures four student behaviors: (a) group responses, (b) individual

responses, (c) covert responses, and (d) mistakes. As with the teacher behaviors,

observers used similar processes to code the student behaviors. Observers code each

time a student behavior occurs. The first behavior is group response, which consists of a

verbal response from two or more students. A group response, for example, would

consist of 15 students concurrently stating the nan1e of a three-dimensional shape.

Accurately coding physical demonstrations and written responses from more than one

student can be difficult. Therefore, these types of behaviors are not included under the

coding scheme of group response. Instead, the CATS tool requires observers to code

these types of group behaviors as covert responses.

In contrast, an individual response, the second student behavior, includes verbal

responses or explanations, physical demonstrations, and written answers. Individual

responses can be elicited from students specifically identified by the teacher (e.g.,

"Johnny, what shape?") or questions posed to the group at large (e.g., "Who can count

to 5?"). For both group and individual responses, the tool requires a teacher-posed

question and/or request to precede a student answer. Thus, this avoids observers coding

student callouts or extraneous conversation.

The third student behavior is student mistake. Errors can involve verbal mistakes

(e.g., a counting mistake) and physical mistakes (e.g., pointing to an incorrect shape).

Moreover, errors can occur both at the group and individual level. For example, an

observer would code an error if one student made a mistake during a group counting
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activity. Observers code incorrect responses only when the error is clearly visible (or

audible) to the teacher and the observer.

The fourth and final student behavior is covert response. A covert response is a

physical demonstration of math learning. It's important to note that a covert response is

an observable behavior. However, unlike the group and individual responses, a covert

response is a behavior that is difficult to capture from the observer's vantage point.

Covert responses include group written responses, use of counting fingers or math

models by two or more students, and partner learning. An example of a covert response

during math instruction is peer partners counting by fives to 50. In this case, given the

difficulty of tracking both correct and incorrect responses from student pairings,

observers would code a covert response. Another example of a covert response is 18

students holding up three fingers to represent the numeral three.

Observer Training and Interobserver Agreement

Prior to each observation round, the ELM-ETKC observation team provided

comprehensive training in the CATS and the procedure of direct observation. Training

for the first round of observations consisted of 12 hours of preparation. To minimize

observer drift, the observation team also provided 4-hour refresher training sessions

prior to the second (winter) and third (spring) rounds of observations. Collectively, the

observers received over 20 hours of training in (a) direct observation procedures,

(b) kindergarten mathematics content, and (c) the CATS observation instrument.
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Video Checkouts

At the conclusion of each training session, observers were required to complete

two reliability checkouts. The first was a video checkout, which required observers to

(a) watch a 5-minute ELM activity, filmed in a pilot study classroom; and (b) code all

observable behaviors. The video contained a total of 70 code-able behaviors. Observers

were required to meet an interobserver agreement level of .80 for coding all behaviors

contained on the video (i.e., overall agreement of combined teacher and student

behaviors). Observers were also required to meet an agreement level of .80 for the

categorized behaviors, including combined teacher behaviors (i.e., teacher models,

academic feedback), and combined student behaviors (i.e., group and individual

responses, covert responses, and student mistakes). The observation team selected a

criterion of .80 because it met the minimal level of interobserver agreement recognized

by traditional and current standards (e.g., Horner et aI., 2005).

To calculate observer agreement for all video checkouts, the observation team

used a frequency-ratio approach (Kennedy, 2005). The frequency-ratio approach, also

known as a smaller/larger index (Suen & Ary, 1989), takes the sum of observed

behaviors from two observers and divides the smaller value by the larger value.

Resulting agreement values range from 0.00 to 1.00. For the agreement calculations, the

observation team considered the answer key from the video as the second observer.

Trainees completed the video checkout until they met the 80% agreement cutoff.
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Classroom Checkouts

In addition to the video checkout and prior to heading out into the field on their

own, observers were required to complete a real-time classroom reliability check.

Classroom checkouts consisted of two observers: one primary observer, or "the

standard," and one secondary observer, or trainee, completing concurrent data

collection. There were three primary observers for the ELM-ETKC project, including

one of the project's principal investigators, the observation coordinator, and the author

of this dissertation. Trainees, when compared to a primary observer, were required to

meet the same agreement levels as described in the video checkouts (i.e., 2: .80 for

overall agreement, 2: .80 for combined teacher behaviors, and 2: .80 for combined

student behaviors). To calculate interobserver agreement for the classroom checkouts,

the observation team also applied the frequency-ratio approach or smaller/larger index

(Suen & Ary, 1989). If trainees fell below the reliability cutoff, they were required to

complete a second observation pairing. Once trainees met the classroom checkout, they

were clear to conduct observations on their own.

A total often observers, nine trainees and one observation coordinator, received

the observation training during Year 1 of the study. All 10 observers passed both the

video and classroom reliability checkouts (interobserver agreement range = .80 to 1.00).

Of this group, five collected observation data at each observation time period. Both the

author of this dissertation and the principal investigator completed classroom

observations in the three observation rounds. Taken together, the observation team
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included a total of 12 independent observers across Year 1. The team included three

former elementary school teachers, a fourth-year doctoral student studying school

psychology, a research associate at the University of Oregon, and seven data collectors

from a nonprofit research institute.

Kindergarten Mathematics Instruction

ELM Classrooms

Instruction in the 35 treatment classrooms entailed the Early Learning in

Mathematics (ELM) curriculum. Treatment teachers delivered the ELM curriculum

using a whole-class instructional format. The teachers in the 35 ELM classrooms taught

mathematics in English. The ELM curriculum employs an explicit instructional

approach for teaching (a) mathematical representations, (b) math-related vocabulary and

discourse, and (c) procedural fluency and mastery of key concepts and skills. The

program is comprised of 120 forty-five-minute lessons, with an additional15-minute

calendar activity. Every fifth lesson of the program integrates a problem-solving

activity. Most lessons entail four to five activities across the mathematical strands of

number and operations, geometry, and measurement. Lessons contain explicit teaching

examples, and practice opportunities to review new and previously taught material. In

order to complete the entire curriculum in one school year, treatment teachers are

supposed to teach one lesson per day, five days per week.
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Comparison Classrooms

For the 30 comparison classrooms, teachers used a variety of commercially

available and teacher-developed mathematics materials. For example, some classrooms

employed the kindergarten edition of the Everyday Mathematics program, while others

used the Houghton Mifflin Math program. Of the 30 comparison classrooms, one used

Spanish for teaching mathematics, while the remaining classrooms used English.

Comparison teachers also taught mathematics using a host of instructional formats,

including whole-class instruction and center-based learning. Center-based learning is the

formation of small groups, usually of varying student ability, working on different

concepts or skills. Center group sizes typically range between three and six students.

During the instructional time period, groups can (a) transition between centers, working

on different activities at each site; (b) remain at one center for the entire block of math

instruction; or (c) begin with whole-class instruction and transition to center-based

learning.

Measures

In the following section, I provide a brief description of the predictor variables

and measures used in the dissertation. In all, the study employed a total of six measures.

With regard to the predictor variables, I examined characteristics of both students and

classrooms.
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Student-Level Predictors

To account for differences of student performance at time of pretest

administration, I used the TEMA pretest as a Level 1 covariate. Including the pretest as

covariate helped provide statistical precision and reduce error variance or unmodeled

variability within classrooms (Konstantopoulus, 2008). As recommended by

Raudenbush and Bryk (2002), the covariate was centered around the grand mean.

The second predictor variable at the student level was risk status in the

beginning of kindergarten. To establish risk status, the study utilized a 20th-percentile

cutoff as assessed by two curriculum-based measures (Oral Counting [OC] and Number

Identification [NI]; Clarke & Shinn, 2004). Initial skill performances at or below the

20th percentile on the OC and NI pretests were raw scores of 12 and 14, respectively.

Because oral counting and numerical identification are underlying components of the

number sense construct (Berch, 2005; Gersten & Chard, 1999), this study considered

students at or below the 20th percentiles on both the OC and NI measures as at risk for

mathematics difficulties. From the analytic sample (N = 929), approximately 119

students (12.8%) were determined as at risk. The Risk predictor was coded 0 for

students considered at low risk and 1 for students considered at risk for difficulties in

mathematics. This predictor remained uncentered in the models. The predictive validity

coefficients between initial skill performance on OC and NI and posttest TEMA were

.61 and .67, respectively. The validity coefficient between OC and NI was .62.
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Classroom-Level Predictors

The first classroom-level predictor used in the study was treatment condition.

The ELM-ETKC randomly assigned classrooms to either treatment or a comparison

condition. Instruction in the treatment condition consisted of the Early Learning in

Mathematics curriculum. Instructional materials and teaching approaches varied across

the comparison classrooms. The treatment condition predictor was coded 0 for

classrooms randomly assigned to the comparison condition and 1 for classrooms

randomly assigned to the treatment condition. This predictor remained uncentered in the

model.

The second classroom-level predictor was round of observations. As previously

noted, the ELM-ETKC project planned three different occasions of direct observation

per classroom for the 2008-2009 school year. This variable, which remained uncentered,

represents time or the three observation rounds. For this predictor, the first round of

observations (fall administration) took on the value of one, while the second and third

rounds took on the values of two and three, respectively.

The third classroom-level predictor was the mean rate of teacher models. The

predictor represents the mean rate of teacher models aggregated across the three

observation rounds. The fourth and fifth classroom-level predictors were the mean rates

of group responses and rate of individual responses. These predictors represent the mean

rate of behaviors aggregated across the three observation rounds. All three predictors
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were centered around their respective grand mean. Analyses used the rate-per-minute

metric to better control for differences in duration of classroom observations.

Teacher Demographic Survey

The survey is a researcher-developed instrument that obtains background

information of participating ELM-ETKC teachers. The 13-item survey obtains

demographic information about teacher ethnicity, age, gender, teaching experience,

education, and areas of specialization. The survey also elicits information about class

size, number of students at risk for failure in mathematics, and previously used

mathematics materials. All teachers were administered the survey at the start of the

ELM-ETKC study. It is important to note that this study used the survey information for

descriptive purposes only.

Classroom and Student Characteristics Questionnaire

The questionnaire is a researcher-developed instrument that obtains information

from participating ELM-ETKC teachers about the features of mathematics instruction

and characteristics of learners. At the math instruction level, the questiOlmaire elicits

information about the amount of mathematics instruction provided, number of children

receiving special education and English language services, primary language used

during math instruction, and amount of support received from an instructional assistant.

At the student characteristic level, the questionnaire elicits information about each

student participating in the ELM-ETKC study. The student section comprises items
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related to a student's first language, attention of the student during mathematics

instruction, degree of absenteeism from math instruction, and type of special education

services received. The ELM-ETKC administered the questionnaire at end of the 2008­

2009 school year. It is important to note that this study used the information from the

questionnaire for descriptive purposes only.

Content Validity Survey

The survey is a l2-item instrument designed specifically for the dissertation. The

purpose of the survey was to assess whether the CATS observation instrument

demonstrated evidence of content validity. The survey comprises questions about the

content relevance and representativeness of the CATS instrument. External reviewers,

unaffiliated with the ELM-ETKC project, completed the 12 items via an online survey

service. This dissertation used information obtained from the online survey to address

the first research question.

Test of Early Mathematics Ability-Third Edition

The Test of Early Mathematics Ability-Third Edition (TEMA-3; Ginsburg &

Baroody, 2007) is a norm-referenced, individually administered measure of beginning

mathematical ability. The TEMA-3 assesses mathematical understanding at the formal

and informal levels for children ranging in age from 3 to 8 years 11 months. The

TEMA-3 addresses children's conceptual and procedural understanding of mathematics,

including counting and basic calculations. The TEMA-3 reports alternate-form and test-
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retest reliabilities of .97 and .82 to .93, respectively. For concurrent validity with other

math outcome measures, the TEMA-3 reports coefficients ranging from .54 to .91. The

ELM-ETKC project administered the TEMA-3 at pre- (fall) and posttest (spring)

measurement periods in both treatment and comparison classrooms. For this study, the

TEMA pretest score served as a covariate. TEMA posttest scores served as student

outcomes. From the analytic sample, student TEMA posttest performances at the 25th

and 50th percentiles consisted of raw scores of27 and 34, respectively.

Oral Counting

Oral counting (OC) is a standardized, individually administered curriculum­

based measure (Clarke & Shinn, 2004). The measure assesses a student's counting

ability. For this one-minute measure, a student orally counts as high as possible without

making an error. The OC discontinue rule applies after the first counting error. Previous

research studies report concurrent and predictive validity correlations ranging from .46

to .72 (Clarke & Shinn, 2004; Lembke, Foegen, Whittaker, & Hampton, 2008). On the

basis of the analytic sample, the association between OC and TEMA pretest scores

(concurrent validity) was strong (.77). The predictive validity coefficient between OC

and TEMA posttest scores was moderate to strong (.61). This study used initial

performance on OC (pretest raw score) to establish a risk status cut-off.
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Number Identification

Number identification (NI) is a standardized, individually administered

curriculum-based measure (Clarke & Shinn, 2004). NI assesses a student's ability to

read numerals. For this one-minute measure, a student orally identifies numerals

between 0 and 10. The order of presentation for all numerals is random. Alternate form

reliability ranged between .89 and .93 (Clarke & Shinn, 2004). Concurrent and

predictive validity correlations ranged from .68 to .71 (Clarke & Shinn, 2004; Lembke

et aI., 2008). On the basis ofthe analytic sample, the association between NI and TEMA

pretest scores (concurrent validity) was strong (.74). The predictive validity coefficient

between NI and TEMA posttest scores was moderate (.67). Initial performance on NI

(pretest raw score) helped establish a risk status cut-off.

Data Analysis

Content Validity (Research Question 1)

To assess the relevance and representativeness of the CATS tool (Messick,

1995), I completed a content-related review. The purpose of the review was to justify

the use of the CATS in measuring instructional interactions during kindergarten math

instruction. I anticipated this external review would help corroborate the proposed

content and uses of the CATS observation instrument.

For the analysis, an online survey for external reviewers was created using

SurveyMonkey.com, a free service that offers survey software. The survey consisted of
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12 items and required approximately 10 to 15 minutes to complete. Each behavior

represented two items. The survey also included areas for the reviewers to note

suggestions for improving the observation instrument.

Six items pertained to the relevance of the behaviors captured by the observation

instrument. For instance, the first two items addressed the content relevance of each

teacher behavior: teacher model and academic feedback. The next four items addressed

the relevance of each student behavior: group response, individual response, covert

response, and student mistake. These items asked evaluators to rate the extent to which

each behavior was relevant to kindergarten mathematics instruction. For these items,

evaluators used a 4-point scale, ranging from irrelevant (1) to highly relevant (4). A

rating of 4 represented the highest score.

For the final six items, the survey asked evaluators to rate the extent to which

each behavior represented the important instructional interactions that occur between a

teacher and her students during kindergarten mathematics instruction. For these items,

evaluators used a 4-point scale, ranging from not at all (1) to highly representative (4).

A rating of 4 represented the highest score. I considered a mean score of 3 as an average

acceptable score for all items.

Management of the content analysis involved a four-step process. First, the

online survey was developed through a series of initial iterations. Two members of the

ELM-ETKC project provided feedback during the development process. Second, a list

of 12 prominent educational researchers was compiled. Reviewers were selected based

on their expertise in elementary math curricula and instruction, and their authorship of
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peer-reviewed publications in the field of educational research. All experts selected for

the content analysis were unaffiliated with the ELM-ETKC project, the University of

Oregon, and the development of the direct observation system. Third, potential

reviewers were sent a recruitment email that described the purpose of the online survey

and the nature of the direct observation system. The email directed the reviewers to

click on the URL link http://www.surveymonkey.comIMySurveys.aspx to complete the

online survey. After the initial email contact, experts did not receive a follow-up

request. Fourth, approximately 30 days after the contact email and survey posting, data

were collected and analyzed using the SurveyMonkey.com software.

Of the 12 experts contacted via email, 7 (or 58%) responded and agreed to

complete the content analysis. All respondents identified as university faculty. For the

five experts who declined to participate, none stated their reasons for not responding.

Interobserver Agreement (Research Question 2)

To address the second research question, I measured agreement among

independent observers across a series of paired observations. As noted earlier, a paired

observation consisted of two persons observing the same event. I anticipated observers

would document minimally acceptable values of interobserver agreement given the level

of observation training provided.

In all, the ELM-ETKC project checked interobserver agreement during 24% (n =

46) of all classroom observations. This research question utilized information collected

during the 46 observation pairings. Observers completed agreement checks in both
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treatment and comparison classrooms across the three observation rounds. Twelve

agreement checks took place in the first round along with 18 and 16 in the second and

third rounds, respectively. The purpose of the pairings was to demonstrate that data

obtained by the CATS instrument were consistent across the 12 members of the ELM­

ETKC observation team.

To calculate observer agreement, I applied the frequency-ratio index, which

estimates the overall occurrence of teacher and student behaviors (Hintze, 2005;

Kennedy, 2005; Suen & Ary, 1989). As previously noted, this index takes the sum of

behavior codes from two observers and divides the smaller value by the larger value.

Resulting agreement values range from 0.00 to 1.00, with 1.00 being perfect agreement.

A value of 0.00 indicates no agreement between two observers. By convention, a

minimally acceptable standard of interobserver agreement when using this index is .80

(Homer et aI., 2005; Suen & Ary, 1989). For each paired observation, the study

calculated five interobserver agreements using the frequency-ratio approach: (a)

agreement of all observed behaviors; (b) agreement of teacher behaviors, which

collapsed teacher models and academic feedback; (c) agreement of student practice

opportunities, which collapsed individual, covert and group responses; (d) agreement of

teacher models; and (e) agreement of academic feedback.

Previous research studies have used the frequency-ratio approach to calculate

interobserver agreement (Hart, 1983; Jason & Liotta, 1982; Murray, Hutchinson, &

Bailey, 1983). The current study used this index based on the design of CATS. Recall

that CATS is an event recording system and does not separate classroom observations
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into discrete time intervals (Kennedy, 2005). CATS requires observers to code each

time a student or teacher behavior of interest occurs. When observation systems, like

CATS, employ a noninterval approach, there is a chance of observers getting out of

coding sequence. For example, if observer A records a teacher behavior within the first

minute of the observation and observer B misses the same behavior, then subsequent

codes would be scored differently by the two observers. In this instance, a missed

behavior may lead to biased estimates of observer agreement, particularly with indices

that require time sampling methods, such as Cohen's Kappa (Cohen, 1960) and overall

agreement (Kazdin, 1982).

Although the frequency-ratio approach is not a chance-corrected form of

reliability (Feuerman & Miller 2005; Suen & Ary, 1989), educational researchers

recognize it as an acceptable index of interobserver agreement. For example, in a review

of five interobserver agreement indices, Hintze (2005) discussed the general appeal of

the smaller/larger index or frequency-ratio approach. Hintze also noted that the

smaller/index "should only be used in cases where other more meaningful measures of

agreement cannot be established" (p. 510). The current study is such a case.

Intercorrelations

Intercorrelations were calculated to test for multicollinearity among the observed

behaviors. The calculations include intercorrelations among the rate-per-minute score

for group responses, individual responses, and teacher models. Intercorrelations were

estimated for the 191 observations conducted by the ELM-ETKC project.
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Multilevel Models

Because of the hierarchical nature of the data, this dissertation used Hierarchical

Linear Modeling (HLM; Raudenbush & Bryk, 2002) to address the third and fourth

research questions. Each of these research questions fit multilevel models (two-level)

for the dependent variables, rates of observed behaviors and student posttest scores. As

suggested by Raudenbush and Bryk (2002), the study employed an incremental process

to develop each multilevel model. For example, to partition the variance in the

dependent variable that existed between and within the Level 2 units, the process began

with an unconditional model with no Levell or Level 2 predictors. Next, the process

incorporated predictors at Levell. Following examination of the Levell predictors,

predictors at Level 2 were added. For the fitted multilevel model, regression parameters

and variance components were examined. All multilevel models used SPSS 15.0 (SPSS,

2006) and HLM-6 (Raudenbush, Bryk, Cheong, & Congdon, 2004) software. Analyses

used an alpha level of .05 as a cutoff for statistical significance.

Discriminant Validity (Research Question 3)

To examine whether the observation instrument was sensitive to instructional

differences, I fit separate multilevel models (two-level) and predicted the rate-per­

minute scores of three observed behaviors. The outcome variables or rate-per-minute

scores for the models included the mean rate of teacher models, group responses, and

individual responses. Each multilevel model nested repeated observations (i.e., Levell)
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within classrooms (Level 2; Raudenbush & Bryk, 2002), using observation "ROUND"

as a Levell predictor and treatment condition as a Level 2 predictor. Variables at each

level of the model were uncentered. I present an example for all three models in the

equations below.

~ = 7rOt + 7ru(RJ + e i

7rOt =Poo + PO\(CJ + rat

eli ~ N(O, (}2)

rOi ~ N(O, .2)

(1.10)

(1.20)

In Equation 1.10 or Levell, Yi represents an average rate-per-minute score for

an observed behavior (e.g., mean rate ofteacher models) for classroom i; while 7rOi ' the

intercept parameter, is the mean rate of an observed behavior for a comparison

classroom; ITI;, the slope parameter, is the expected change of observed behaviors for

classroom i across the three observation time rounds (R i : 1 = fall, 2 = winter, 3 =

spring); and ei represents a Levell error term. An assumption is that the error term

independently and normally distributed with a mean of zero, and constant variance, (}2

(Raudenbush & Bryk, 2002).

The classroom level of the model (Equations 1.20 and 1.30) presents the two

Levell parameters, 7rOi and 7r11 , and a predictor: C (a dummy variable indicating

random assignment of classroom condition: 1 = treatment, 0 = comparison). At the

intercept parameter, 7ro) represents the classroom average for an observed behavior;

while Poo indicates the intercept; POI' C represents the effect of condition and rOt is a

classroom-level error term. Analysis at Level 2 allowed for examination of condition
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effect on the rate of providing teacher models, group responses, and individual

responses. A statistically significant variance component would indicate that rates of the

observed behaviors varied across classroom conditions. For this research question, the

analytic sample at Levell involved 191 observations and Level 2 involved 65

classrooms.

Criterion Validity (Research Question #4)

To examine the relationship between observed instructional behaviors and

student math achievement, I fit a two-level model, nesting students (Levell) within

classrooms (Level 2; Raudenbush & Bryk, 2002). The model predicted covariate­

adjusted, classroom-level student scores on the TEMA-3 posttest with the mean rate of

observed behaviors. At Levell, the model incorporated (a) a student-level covariate

(i.e., Test of Early Mathematics Ability [TEMA] pretest) that was grand-mean centered;

and (b) a predictor of risk status (0 = Low risk; 1 = At risk). The risk variable utilized

initial performances (raw scores) on pretest measures of Oral Counting (OC) and

Number Identification (NI). Students scoring at or below the 20th percentiles on both

OC and NI were considered at risk for mathematics difficulties. Approximately 119

students (12.8%) were determined at risk in the analytic sample. The risk variable

remained uncentered.

The classroom level for each model (Level 2) presents the three Levell

parameters, Boi' Bli , and B2i , and one Level 2 predictor. The Level 2 predictor,

ObsvBeh, is a continuous variable indicating the average rate of observed behaviors



1---
56

aggregated across the three observation rounds. Three rate-per-minute scores were

incorporated as the Level 2 predictors, including the rate of teacher models, the rate of

group responses, and the rate of individual responses. All three Level 2 predictors were

grand-mean centered. I present an example of an intercepts- and slopes-as-outcomes

model in the equations below.

"X/ = BOj + Blj Pr e _ TEMA'j + B2Risk + If/

Bo/ =Yoo + YO] (ObsvBeh) + UOj

Blj = YlO + Y1I (ObsvBeh) + u1j

B2j =Y20 + Y21 (ObsvBeh) + u2 /

If
j
~ N(0,0-2

)

UO/ ~ N(O, r 2
)

u,j ~ N(O, r 2
)

u2j ~ N(O, r 2
)

(2.10)

(2.20)

(2.30)

(2.40)

In Equation 2.10 or Level-I, Yij represents a TEMA-3 posttest score for student i

in classroom}; the intercept, Boj , represents an average posttest score for a low-risk

student in a classroom that provides an average rate of observed behaviors,'

B lj{Pre_TEMAij) is the covariate effect; B2j{RISKij) is the effect of risk status (i.e.,

pretest performances on both Oral Counting and Number Identification at or below the

20th percentile) on posttest scores for a student in classroom}; and rij represents a

Level 1 error term. The error term is assumed to be independently and normally

distributed with a mean of zero, and constant variance, 0-
2 (Raudenbush & Bryk, 2002).

Equation 2.20 consists of the intercept parameter, YO/; the slope of observation

behaviors, YopbsvBeh
j

; and uO/' a classroom-level error term. Equation 2.30 represents

the covariate value, )']0/' for the relationship between the TEMA pretest and posttest; a
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cross-level interaction between TEMA pretest and the rate of observed behaviors,

Y110bsvBehj; and ~j' a classroom-level error term.

Equation 2.40, represents the relationship between RISK and TEMA posttest,

Y20j; a cross-level interaction between RISK and the rate of observed behaviors,

Y210bsvBehJ; and u2j ' a classroom-level error term. For this research question, the

analytic sample at Levell involved 929 students and Level 2 involved 191

observations.

To estimate the proportion of variance explained between and within

classrooms, I calculated an R2 statistic for the Levelland Level 2 predictors. In

multilevel modeling, the R2 statistic is analogous to an eta-squared effect size from

ANOVA (Raudenbush & Bryk, 2002; Snijders & Bosker, 1999). For example, at Level

2, the R2 statistic estimates the proportion of parameter variation explained between

classrooms. The R2 statistic for the Level 1 predictors estimates the proportion of

variance accounted for within classrooms. R2 calculations were computed using the

differences between a fitted model and a baseline model.
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CHAPTER IV

RESULTS

The following chapter provides results of the study in five sections. The first

four sections address (a) the issue of missing data, (b) descriptive statistics for student­

level and classroom-level data, (c) diagnostic information related to the multilevel

models, and (d) intercorrelations among the observed behaviors. The final section

presents results for each research question.

Missing Student Data

This study used extant data provided by the Early Learning in Mathematics:

Efficacy Trials in Kindergarten Classrooms (ELM-ETKC; Baker et aI., 2008) project.

Across the 2008-2009 school year, the ELM-ETKC project involved 1,495 students. Of

the 1,495 students, 1,073 were assessed on the Test of Early Mathematics Ability-Third

Edition (TEMA-3; Ginsburg & Baroody, 2007) at the fall (pretest) administration.

ELM-ETKC assessed approximately 1,246 students in the spring (posttest). Preliminary

exploration of the TEMA scores revealed that approximately 28% of the pretest data

(i.e., 422 cases) and 17% ofthe posttest data (i.e., 249 cases) were missing.

With regard to the Oral Counting (OC; Clarke & Shinn, 2004) measure, the

ELM-ETKC project assessed 1,200 students at the pretest administration. Exploration of

the OC pretest data revealed 295 missing cases (20%). For the Number Identification
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(NI; Clarke & Shinn, 2004) measure, the project assessed 1,164 students at the pretest

administration, with 331 (22%) cases missing.

From the ELM-ETKC sample, an independent samples t test was conducted to

determine whether significant mean differences on posttest TEMA existed between two

groups of students. The first group (Posttest-only) consisted of students who

participated in the posttest TEMA administration but did not participate in pretest

administration of Oral Counting, Number Identification, and TEMA. The second group

(Pretest-posttest) consisted of students who participated in all three pretest measures and

the posttest TEMA administration. Results of the t test revealed a statistically reliable

difference between the mean posttest TEMA score of students in the Posttest-only group

(M= 25.51, SD = 9.66) and students in the Pretest-posttest group (A1.= 32.13, SD =

9.48), t(l244) = .71,p < .00l).

To handle the large number of missing cases in the ELM-ETKC sample, this

dissertation included only those students who participated in the fall and spring

administrations of the outcome measure (TEMA) and the pretest administrations for

both curriculum-based measures (Oral Counting and Number Identification). The

analytic sample at the student level involved 929 kindergarteners. At the classroom

level, the analytic sample involved 65 classrooms and 191 classroom observations.

Descriptive Statistics

Table 2 provides descriptive information, including means, standard deviations,

and sample sizes, for the average rate of behaviors captured by the direct observation
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TABLE 2. Descriptive Statistics Per Observation Round for Average Rate
of Observed Behaviors Across Treatment Conditions

Round 1 Round 2 Round 3

M SD M SD M SD

Rate of individual responses

Treatment 0.64 0.43 0.73 0.30 0.66 0.55

Comparison 0.44 0.44 0.38 0.56 0.45 0.30

Rate of group responses

Treatment 1.88 0.81 1.61 1.49 1.45 0.79

Comparison 0.89 0.62 1.16 0.80 0.94 0.73

Rate of teacher models

Treatment 0.70 0.45 0.66 0.40 0.61 0.39

Comparison 0.56 0.36 0.63 0.52 0.62 0.48

Note. Total observations by round: Round-1 treatment (34), comparison (28); Round-2
treatment (35), comparison (29); Round-3 treatment (35), comparison (30)

instrument during the 191 classroom observations. Information in Table 2, reported by

condition, shows distinct differences between treatment and comparison classrooms

across the three observation rounds. Table 3 provides descriptive statistics for the

average rate of observed behaviors aggregated across the three observation rounds. The

standard deviations indicate large amounts of variability for all three rates of behavior.

In fact, some classrooms were highly interactive with instruction (i.e., high rates of

behaviors), whereas others demonstrated low rates of instructional interactions. This

finding is noteworthy because it suggests that children may be experiencing different

levels of interaction during their first year of formal instruction. For example in Table 3,

a classroom of high interactions (i.e., one standard deviation above the mean)
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TABLE 3. Descriptive Statistics for Average Rate of Observed Behaviors
Aggregated Across Observation Rounds

Observed behavior M SD Minimum Maximum

Rate of individual responses 0.55 0.36 0.02 1.88

Rate of group responses 1.29 0.68 0.22 2.78

Rate of teacher models 0.61 0.28 0.03 1.52

Note. Total observations (N = 191).

demonstrates a rate of individual responses that is nearly five times greater than a

classroom of low interactions (i.e., one standard deviation below the mean).

Table 4 provides descriptive statistics related to student pretest and posttest

performances on the TEMA measure as well as pretest performances on the curriculum-

based measures of Oral Counting and Number Identification. Descriptive statistics

reported in Table 4 are presented for all participating students, regardless of treatment

condition. Minimum and maximum raw scores are also reported. The information in

Table 4 indicates high variability across all four measures.

Table 5 presents descriptive statistics related to the context codes captured by

the observation instrwnent. This information includes the duration of the direct

observations and the number of students observed across conditions for each

observation round. Minimal differences are noted between classroom condition and

across observation rounds for both context codes.
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TABLE 4. Descriptive Statistics of Student Pretest and Posttest Performances on Test
of Early Mathematics Ability-Third Edition (TEMA), and Pretest Performances on
Oral Counting (OC) and Number Identification (NI) Curriculum-Based Measures

Measure M SD Minimum Maximum

TEMA pretest 20.29 9.58 0 56

TEMA posttest 33.12 8.99 7 70

OC pretest 26.50 20.68 0 109

NI pretest 33.36 19.65 0 108

Note. N = 929; OC = Oral counting; NI = Number identification; Performances below
the 20th percentile on the OC and NI pretests were raw scores of 12 and 14,
respectively. Performances at the 25th and 50th percentiles on posttest TEMA consisted
of raw scores of27 and 34, respectively.

TABLE 5. Descriptive Statistics for Context Codes Across Conditions
Per Observation Round

ELM Comparison

Code M SD n M SD n

Observation duration

Round 1 37.74 9.11 34 37.00 11.55 28

Round 2 37.02 8.40 35 30.83 10.00 29

Round 3 38.20 9.12 35 34.33 10.80 30

Number of students

Round 1 19.86 3.98 34 19.40 4.06 28

Round 2 19.00 4.32 35 19.63 3.13 29

Round 3 19.12 3.88 35 19.17 4.02 30

Note. Total observations (N = 191).
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Diagnostics of the Multilevel Models

To determine the adequacy of the multilevel models (Luke, 2004), the study

conducted three diagnostic assumption checks. First, SPSS software was used to explore

(a) distributions of student performances for the TEMA pretest and posttest

administrations, and (b) the pretests on Oral Counting and Number Identification (NI).

Examination of the TEMA performance distributions revealed acceptable normality

across the 929 student participants. For the OC and NI pretests, there appeared to be a

positive skew among the distribution of scores. Because multilevel modeling is robust

to violations of normality (Fitzmaurice, Laird, & Ware, 2004; Hox, 2002; Maas & Hox,

2004), the slight skewness in the OC and NI distributions was not expected to bias

results of the study. Next explored was the distribution of observed behaviors across the

191 classroom observations (i.e., rate of teacher models, rate of group responses, and

rate of individual responses). Examination for each observed behavior revealed

acceptable normality. Finally, a test of homogeneity of Level 1 variance revealed no

problems with heteroscedasticity, x\46) = 80.70, P < .01.

Intercorrelations

Table 6 presents correlations among the rates of observed behaviors.

Correlations between the observed behavior rates ranged from .01 to .48. Findings

revealed a moderate relationship (r = .48) between the rate of teacher models and rate of

group responses.
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TABLE 6. Intercorrelations Among Rate of Observed Behaviors

Codes 1

Rate of teacher models 1 1.00

Rate of group responses 2 .48*

Rate of individual 3
.01

responses

*p < .05.

2

1.00

.22*

3

1.00

Content Validity

An external review of the CATS instrument was conducted to assess whether the

six observed behaviors provided evidence of content validity (Messick, 1995). The

purpose of the review was to have experts judge the instrument's content relevance and

representativeness. The target population for the survey was a group of experts with

extensive knowledge in the areas of elementary mathematics curricula and instruction.

Prior to contacting potential reviewers, selection criteria were established that would

qualify them as experts. Reviewers considered eligible were required to meet the

following criteria: (a) publication of several articles in peer-reviewed educational

journals and (b) lack of affiliation with the ELM-ETKC study, the University of Oregon,

and the development of the CATS instrument. This selection process gleaned twelve

experts from the field. Potential reviewers received a contact email and a URL link to an

online survey.
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The survey was comprised of 12 items. Six contained information about content

relevance and six contained information about content representativeness (Messick,

1995). Items on the survey used a 4-point scale, with 1 being the lowest and 4 the

highest. To meet the average acceptable score, items had to receive a mean score of 3 or

higher. When rating each item, reviewers clicked a box with the appropriate rating. The

survey took approximately 10 to 15 minutes to complete.

Of the 12 participants contacted, responses were received from 7 experts (58%).

Six respondents answered all items, while one respondent answered four of the 12

items. All respondents identified as university faculty.

Regarding the content relevance of the six behaviors, ratings were found

acceptable. Teacher model and academic feedback both received an average rating of 4

on the content relevance items. Of the four student behaviors, student mistake and

individual response received an average rating of 4. The covert response and group

response behaviors met the minimum rating, earning average ratings of3.33 (SD =.52)

and 3.83 (SD =.42), respectively.

In regard to content representativeness (Messick, 1995), all six items met the

minimum mean rating of 3. In fact, teacher model, academic feedback, individual

response, and student mistake received average ratings of 4. Group response received a

mean rating of 3.83 (SD =.14), while covert response earned an average of3.67 (SD

=.51). Collectively, reviewers rated all six behaviors above the minimum mean rating of

3.0.



66

Interobserver Agreement

Table 7 presents the percentage of agreements among the 46-paired

observations. The ELM-ETKC project conducted 12 pairings during the first round of

observations along with 18 and 16 in the second and third rounds, respectively. Twenty­

six paired observations (57%) took place in treatment classrooms. One pairing, number

42 (see Table 7), captured instruction delivered in Spanish.

For every paired observation, five interobserver agreements were calculated:

(a) agreement for the total number of coded behaviors; (b) agreement of teacher

behaviors (i.e., teacher models and academic feedback); (c) agreement of student

practice opportunities (i.e., individual, covert and group responses); (d) agreement of

teacher models; and (e) agreement of academic feedback.

Across the three rounds of observations, average agreements for teacher

models and academic feedback were.73 (SD = .19) and.77 (SD = .21), respectively.

Observers documented the highest mean percentages with combined teacher behaviors

(.84, SD = .13) and combined student practice opportunities (.90, SD = .09). Average

agreement for the total number of code-able behaviors (i.e., all behaviors) was .90 (SD =

.07).

When considering agreement across observation rounds, observers documented

the strongest percentages during the third or final round. For this round, four of the five

agreement calculations averaged above .80. However, average agreement ofteacher

models during the third round was .66. The fall and winter rounds each demonstrated
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TABLE 7. Interobserver Agreements for 46 Paired (Reliability) Observations

Teacher Academic Teacher Student All
Pairing Condition Round model feedback behaviors practice behaviors

0.75 0.59 0.86 0.96 0.96

2 0 0.92 0.70 1.00 0.66 0.79

3 0.87 0.93 0.90 0.99 0.98

4 0.84 0.57 0.80 0.83 0.86

5 0 0.90 1.00 0.94 0.79 0.85

6 0.97 0.36 0.84 0.93 0.99

7 1 0.71 0.48 0.65 0.89 0.86

8 0 0.48 0.93 0.76 0.96 0.86

9 0.71 0.79 0.98 0.97 0.96

10 1 1 0.50 0.92 0.68 0.86 0.81

11 0.84 0.80 0.83 0.82 0.81

12 0 0.96 0.94 0.96 0.94 0.99

13 0 2 0.75 0.96 0.89 0.95 0.94

14 0 2 0.86 0.75 0.94 0.90 0.92

15 0 2 0.97 1.00 0.98 0.97 0.98

16 0 2 0.92 1.00 0.94 0.88 0.90

17 2 0.63 0.96 0.74 0.90 0.81

18 2 0.65 0.54 0.98 0.80 0.85

19 0 2 0.55 0.68 0.83 0.58 0.75

20 2 0.33 0.53 0.46 0.97 0.79

21 2 1.00 0.33 0.60 1.00 0.92

22 0 2 1.00 0.64 0.80 0.86 0.83

23 0 2 1.00 0.68 0.87 0.96 0.92

24 2 0.52 0.80 0.68 0.87 0.78

25 2 0.58 0.91 0.82 0.95 0.91

26 0 2 0.91 0.83 0.87 0.89 0.88

27 2 0.57 0.74 0.63 0.97 0.83

28 2 0.86 0.91 0.98 0.90 0.95
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TABLE 7. (Continued)

Condition Teacher Academic Teacher Student All
Pairing Round model feedback behaviors practice behaviors

29 0 2 0.83 0.53 0.71 0.83 0.77

30 1 2 0.59 0.84 1.00 0.98 0.97

31 0 3 0.88 0.82 1.00 0.84 0.91

32 3 0.80 0.92 0.94 0.98 0.96

33 3 0.82 0.78 0.77 0.90 0.97

34 3 0.81 0.93 0.96 0.80 0.88

35 3 0.53 0.90 0.80 0.93 0.95

36 0 3 0.85 1.00 0.94 1.00 0.98

37 3 0.77 0.84 0.86 0.97 0.95

38 3 0.63 0.97 0.90 0.95 0.99

39 3 0.76 0.98 0.94 0.90 0.94

40 0 3 0.79 0.80 0.80 0.98 0.92

41 0 3 0.46 0.41 0.90 1.00 0.98

42 0 3 0.43 0.90 0.63 0.86 0.75

43 3 0.30 0.77 0.59 0.99 0.83

44 0 3 0.41 0.06 0.78 0.98 0.95

45 3 0.63 0.85 0.82 0.91 0.93

46 0 3 0.72 0.89 0.91 0.86 0.89

Note. N= 46 paired observations. Condition: treatment =1, comparison = O. Round: 1 = fall, 2 =
winter, 3 = spring.

three agreement calculations above .80. Both of these rounds had average agreements

for teacher models and academic feedback ranging from .73 to .77.

Looking across treatment conditions, observers documented stronger agreement

in comparison classrooms. While observers averaged an overall agreement of .90 for all

behaviors captured in treatment classrooms, agreement percentages for teacher models

and academic feedback were higher in comparison classrooms. For example, the
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average agreement for teacher models in comparison classrooms was .78 and .69 in

treatment classrooms. Observers also averaged higher agreement of combined teacher

behaviors in the comparison classrooms.

Sensitivity to Detect Differences Between Treatment Conditions

To assess whether the observation instrument was sensitive to treatment

conditions, separate two-level, multilevel models were fit, each nesting observation

occasions within classrooms. Models were tested separately for three outcome variables:

rate of teacher models (MOD_RATE), rate of individual responses (IND_RATE), and

rate of group responses (ORP_RATE). Each model introduced a Level I predictor

(ROUND or observation occasion) and a Level 2 predictor (CONDITION or treatment

condition). Predictor variables were introduced incrementally (i.e., ROUJ\JD then

CONDITION) following the development and evaluation of the unconditional model.

Variables at each level of the model remained uncentered for the analyses. All models

used the full maximum likelihood (FML) method for estimation (Box, 2002; Luke,

2004; Snijders & Bosker, 1999) and judged fixed effects against the robust standard

error. Results for the unconditional models are presented first, followed by the fixed and

random effects for the conditional models.

Unconditional Model

To provide a baseline model for comparison (Raudenbush & Bryk, 2002), the

analysis fit separate unconditional models for the three outcomes of observed behaviors.
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Unconditional models contained the Levell predictor, ROUND. The intercept was

allowed to vary at Level 2. Table 8 presents the fixed effect for each unconditional

model, while Table 9 presents the variance components. Tests for the fixed effects in the

unconditional model used 64 degrees of freedom.

TABLE 8. Fixed Effects From Unconditional Model for Rate of Observed Behaviors

Fixed effect

Individual rate

Intercept roo

Round r10

GrouPJate

Intercept roo

Round roo

Model rate

Intercept roo

Round r10

Note. SE = standard error.

*p < .05.

Unstandardized
coefficient

0.54

0.01

1.55

-0.10

0.65

-0.01

SE

0.07

0.03

0.16

0.06

0.07

0.03

t

7.45*

0.22

9.66*

-1.68

8.74*

-0.24

Examination of Table 8 indicates that the intercept (roo) for each model was

statistically significant. Average rates of observed behaviors across classrooms ranged

from .54 to 1.55 behaviors per minute. With regard to ROln~D, results indicate that the
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TABLE 9. Variance Components From Unconditional Models for Rates
of Observed Behaviors

Random effect Variance SD df X
2

p

Individual response rate

Classroom U Oj 0.08 0.28 64 76.41 .138

Round u"j 0.00 0.02 58.83 .500

Level-1 rij 0.12 0.34

Group response rate

Classroom U Oj 0.41 0.64 64 64.96 .443

Round u1j 0.01 0.08 45.53 .500

Level-1 rij 0.67 0.82

Model response rate

Classroom U Oj 0.03 0.17 64 59.09 .500

Round u1j 0.00 0.01 52.11 .500

Level-1 rij 0.16 0.40

Note. SD = standard deviation.

Levell slope (rIO) was not statistically significant and did not predict in the three

conditional models. As can be seen in Table 9, Level 2 variance components were not

statistically significant. In particular, classrooms did not significantly vary in the rate of

observed behaviors and across observation rounds. Calculated intraclass correlations

(ICC) showed the amount of variability in IND_RATE, GRP_RATE, and MOD_RATE

that is attributable to classrooms was 44%, 26%, and 15%, respectively.
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As discussed, regression coefficients and variance components for the Level 1

predictor ROUND were not statistically significant. Results of chi-square deviance tests

for each outcome variable also indicated no significant differences (p> .05) between

separate unconditional ANOVA models (Raudenbush & Bryk, 2002), without the Level

1 predictor, and conditional models that contained ROUND. For ease of interpretation,

therefore, the multilevel models dropped the Levell predictor ROUND. Consequently,

CONDITION remained as the only predictor. CONDITION, an uncentered Level 2

predictor, was coded 1 for treatment classrooms (i.e., Early Learning in Mathematics,

ELM) and 0 for classrooms assigned to the comparison condition.

Results for the chi-square deviance tests, including the Level 2 predictor

CONDITION, varied across the outcome variables. For IND_RATE and GRP_RATE,

chi-square statistics indicated better fit of the data and the models (p < .01). For

MOD_RATE, the deviance test was not significant (X 2(2) = .57903, p > .05). The

analysis, however, retained CONDITION in the MOD_RATE model because of the

predictor's fundamental importance.

Tables 10 and 11 present the fixed effects and variance components for each

model, respectively. Results show statistically significant fixed effects for the average

rate of behaviors in comparison classrooms for ll\JD_RATE ( Yoo = .56, SE = .04), t(63)

= 13.l6,p < .001; GRP_RATE (Yoo = 1.34, SE = .07), t(63) = 17.78,p < .001; and

MOD_RATE (Yoo = .63, SE = .04), t(63) = 17.76,p < .001. Not surprisingly, the

observation instrument did not identifY significant treatment effects for rate ofteacher
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TABLE 10. Fixed Effects from Conditional Models
for Rates of Observed Behaviors

Fixed effect

Individual response rate

Intercept 1300

Condition 1301

Group response rate

Intercept 1300

Condition 1301

Model response rate

Intercept 1300

Condition 1301

Note. SE = standard error.

*p < .05.

Unstandardized
coefficient

0.56

0.26

1.34

0.65

0.63

0.06

SE

0.04

0.08

0.07

0.15

0.04

0.07

t

13.16*

3.15*

17.78*

4.19*

17.76*

0.78

models (MOD_RATE). Recall that descriptive statistics in Table 2 also indicated

minimal differences when comparing the rates of teacher models across treatment

conditions.

Tests of the treatment effects, however, were significant for IND_RATE and

GRP_RATE. When comparing the two practice opportunities, the instrument detected

stronger treatment effects for the rate of group responses, as noted by the slope

coefficient (Y01 = .65, SE = .15). Thus, treatment classrooms provided 1.64 group

response opportunities per minute. Though the treatment effect for the rate of individual
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TABLE 11. Variance Components from Conditional Models
for Rates of Observed Behaviors

Random effect Variance SD df X
2 p

Individual response rate

Classroom U Oj 0.07 0.28 63 187.93 <.001*

Leve1-1 rij 0.12 0.35

Group response rate

Classroom U Oj 0.13 0.37 63 102.06 .002*

Level-1 rij 0.69 0.83

Model response rate

Classroom U Oj 0.03 0.17 63 99.34 .003*

Level-1 r;j 0.16 0.40

Note. SD = standard deviation.

*p < .05.

responses was smaller (r01 = .26, SE = .08), observers coded approximately 32% more

practice opportunities in ELM classrooms than in comparison classrooms.

With regard to the variance components, significant variability across

classrooms for all three models was found. For example, classrooms differed from one

another in the average rate of group responses, as noted by the variance component

(0.13, SD = .38), X 2(63) = 102.05,p < .01. The standard deviations at Level 2 for

IND RATE and MOD RATE were less than GRP RATE. Results also indicate that- - -

IND_RATE, GRP_RATE, and MOD_RATE reduced the estimated proportion of
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variance between classrooms at Level 2 by approximately .17 (R2 = 17%), .44 (R2
=

44%), and .02 (R2 = 2%), respectively.

In sum, the average rate of observed instructional behaviors did not change over

time. However, the rate of individual and group responses differed significantly between

the treatment and control conditions. Results also show that the average rate of all

behaviors significantly varied from one classroom to another.

Prediction of Student Outcomes

To test the relationship between student math achievement and the three

observed behaviors, I fit student-level data and classroom observation data into a two­

level model (Raudenbush & Bryk, 2002). The model nested students (Levell) within

classrooms (Level 2) and predicted student math outcomes with two Levell predictors

(RISK, Pre_TEMA) and three Level 2 predictors (GRPRATE, TCHMRATE,

INDRATE). The following section provides results for the unconditional model, the

conditional model with Level 1 predictors, and the fully specified model, which was an

intercepts- and slopes-as-outcomes model. All models used the full maximum

likelihood (FML) method for estimation and judged fixed effects against the robust

standard error (Hox, 2002; Luke, 2004; Raudenbush & Bryk, 2002; Snijders & Boskers,

1999). Also, models allowed intercepts and slopes to vary randomly. To index the

proportion of variance explained at Levelland Level 2, I compared residual estimates

between models, resulting in R-squared calculations.



Unconditional ANOVA Model With Random Effects

To provide a baseline model for comparison, the analysis fit an unconditional

model with no predictors at Levell or Level 2 for the TEMA posttest scores. The

unconditional model estimated the grand mean and served as a baseline model

(Raudenbush & Bryk, 2002). Results of the model show the average posttest TEMA

score for participating kindergarten students across the 65 classrooms was 32.79, with

t(63) = 60.57, SE = .54,p < .01. Table 12 displays the random effects for the

unconditional model. The estimate for the Level 2 variance was 13.98 and 67.58 for

Levell. The amount of variability that lies between and within classrooms was 17%

and 83%, respectively. Thus, classrooms account for approximately 17% of the

variation in posttest TEMA scores among kindergarten students.

TABLE 12. Variance Components From Unconditional Model for Test of
Early Mathematics Ability-Third Edition (TEMA) Posttest Scores

% variance
Random effect Variance SD df X

2
P explained

76

Classroom uo·
.I

Level-1 If
.I

13.98

67.58

3.69

8.22

63 247.36 < .001 * 17

83

Note. SD = standard deviation.

*p < .05.
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Conditional Model With Level 1 Predictors

Table 13 displays estimates for the addition of the two Levell predictors, RISK

and Pre TEMA, in the conditional model. For this model and subsequent ones, the

pretest TEMA predictor was centered around its grand mean (Raudenbush & Bryk,

2002). RISK, coded 1 for at-risk students and 0 for low-risk students, remained

uncentered. Results of the model indicate an average posttest performance for students

considered at low risk (roo) was 33.48, with t(63),p < .01, and a robust-based standard

error of .30. Results also show that the relationship between pretest TEMA and posttest

TEMA was strong and statistically significant, with a coefficient value of .67 and a

robust-based standard error of .03. This suggests that for every one-point increase on

pretest TEMA there is a .67 point increase on posttest TEMA. Additionally, risk status

was significantly related to posttest TEMA, indicating a negative regression coefficient

of -2.46. This means that students considered at-risk for math difficulties score on

average two and a half points lower than their typical performing peers.

Results of the chi-square deviance test indicated a significant difference (p < .01)

between the unconditional and conditional models, with a X2 statistic of 849.76 and 7

degrees of freedom. Thus, adding the Level 1 predictors Pre_TEMA and RISK provided

better fit of the data and the conditional model.

Table 14 presents the variance components for the conditional model. Results

indicate a reduction in the amount of variability in the outcome that is attributable to the

introduction of the two level-1 predictors. Specifically, the table shows that average
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TABLE 13. Fixed Effects From Conditional Model With Levell Predictors for Test
of Early Mathematics Ability-Third Edition (TEMA) Posttest Scores

Unstandardized
Fixed effect coefficient SE t

Intercept roo 33.48 0.30 110.36*

Pretest TEMA rIO 0.67 0.03 24.71 *

Risk r20 -2.46 0.81 -3.03*

Note. SE = Standard error.

*p < .05.

TABLE 14. Variance Components From Conditional Model With Level 1 Predictors
for Test of Early Mathematics Ability-Third Edition (TEMA) Posttest Scores

Random effect Variance SD df X
2

p

Classroom UOj 3.58 1.89 46 96.90 <.001*

PreTEMA slope~) 0.02 0.14 46 81.14 .001 *

Risk slope u2j 16.15 4.02 46 85.91 .001 *

Level-1 rij 26.63 5.16

Note. SD = standard deviation.

*p < .05.

posttest TEMA intercepts significantly varied across classrooms, with a variance

component of 3.58, p < .01. Also, pretest TEMA and RISK slopes significantly varied

across classrooms. These results indicate that average pretest TEMA performances and

the number of students considered at risk for math difficulties varied across classrooms.
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Comparison of variance components between the conditional model and the

unconditional model showed that adding Pre_TEMA and RISK as predictors of TEMA

posttest scores explained 61 % of the within-classroom variance at Level 1 (R2 = .61).

Intercepts- and Slopes-as-Outcomes Model

To examine whether the mean rate of observed behaviors predicted student math

outcomes, a two-level intercepts- and slopes-as-outcomes model (Raudenbush & Bryk,

2002) was fit to the data, incorporating the classroom-level predictors of GRPRATE

(rate of group responses), TCHMRATE (rate of teacher models), and INDRATE (rate of

individual responses). Classroom-level predictors were centered around their respective

grand mean. The model also incorporated the student-level predictors RISK and

Pre_TEMA. RISK remained uncentered in the model, while Pre_TEMA was centered

around its grand mean. Results of the chi-square deviance test for the three Level 2

predictors indicated significant fit (X2(16) = 871.63,p < .01).

Tables 15 and 16 present the results for the fully specified model's fixed effects

and random effects, respectively. Estimates for the fixed effects indicate the average

TEMA posttest score (roo) for students considered at low risk was 33.46, with ((60) =

120.90, P < .001, and a robust-based standard error of .28. Results indicate that the fixed

effects for GRPRATE and TCHMRATE were not statistically significant. The role of

INDRATE in predicting student posttest scores is shown by the statistically significant
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TABLE 15. Fixed Effects From the Intercepts- and Slopes-As-Outcomes Model
for Test of Early Mathematics Ability-Third Edition (TEMA) Posttest Scores

Fixed effect
Unstandardized

coefficient SE t

Model for classroom means

Intercept 700 33.46 0.28 120.90*

Individual response rate 701 2.11 0.86 2.46*

Group response rate 702 0.51 0.50 1.02

Teacher model rate 703 -0.51 1.08 -0.47

Model for Pre_TEMA-math posttest slopes

Intercept 710 0.67 0.02 28.60*

Individual response rate 711 -0.20 0.06 -3.36*

Group response rate 112 -0.60 0.04 -1.43

Teacher model rate 713 0.18 0.09 2.04*

Model for RISK-math posttest slopes

Intercept 720 -2.37 0.73 -3.27*

Individual response rate 721 -7.87 1.72 -4.57*

Group response rate 722 -0.26 1.07 -0.25

Teacher model rate 723 4.65 2.02 2.31 *

Note. SE = Standard error.

*p < .05.

regression coefficient (701 = 2.11, p < .05). Thus, classrooms that provide an additional

individual response per minute increase student posttest TEMA scores by 2.11 points.
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TABLE 16. Variance Components From the Intercepts- and
Slopes-As-Outcomes Models for Test of Early Mathematics

Ability-Third Edition (TEMA) Posttest Scores

Random effect Variance df SD p

Classroom U Oj 2.75 43 1.66

PreTEMA slope ~j 0.01 43 0.10

Risk slope uz/ 7.19 43 2.68

Level-1 ~J 26.74 5.17

Note. SD =Standard deviation.

*p < .05.

.01 *

.02*

.01 *

Table 15 also shows that pretest and posttest TEMA are positively related (rIO =

.67, t = 28.60), which suggests that for every I-point gain (raw score) on pretest there is

a .67 increase (raw score) on posttest. With regard to the test for cross-level interactions

between the Level 2 predictors and Pre_TEMA, two are statistically significant. The

negative coefficient for INDRATE (}] 1) indicates that it moderates or reduces the

relationship between pretest and posttest TEMA. The positive coefficient for the cross-

level interaction involving TCHMRATE (}]3)' in contrast, appears to strengthen the

relationship between pretest and posttest TEMA.

Results indicate that the relationship between RISK and posttest TEMA was

negative and statistically significant, r20 = -2.34, t(62) = -3.60,p < .01. This means that

students considered at risk for failure in mathematics (i.e., those whose initial scores on

Oral Counting and Number Identification were below the 20th percentiles) score on
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average two points lower than their typically achieving peers on posttest TEMA.

Interestingly, the relationship between RlSK and posttest TEMA increases as a function

of INDRATE (Y21 = -7.87). The negative coefficient for this cross-level interaction

indicates that at-risk students fall further behind their typical-performing counterparts in

classrooms that provide higher rates of individual response (IR) opportunities. For

example, in a classroom that provides one IR per minute above the average rate, the

posttest score of students at risk would decrease by roughly eight points (i.e., Yoo - Y21 =

33.46 - 7.87 = 25.59 points).

The statistically significant cross-level interaction for Y23 demonstrates the role

of TCHMRATE in moderating the relationship between RlSK and posttest TEMA

(Y23 = 4.65, t(43) = 2.30, p < .05. In contrast to the previous cross-level interaction

(INDRATE x RlSK), TCHMRATE may attenuate student RlSK status in a classroom

with an above average rate of teacher models. This means that for each additional

teacher model per minute, the posttest TEMA scores for at-risk students increase

approximately 5 points. Thus, kindergarten students struggling with mathematics may

benefit more in classrooms that employ higher rates of explicit instruction.

Figure 3 presents the predicted scores for two groups of students, at-risk for

math difficulties and low risk for math difficulties, in four types of classrooms. The

figure shows a distinct performance gap between the two groups in the first type of

classroom. Students considered at low risk outperform their at-risk peers by nearly 12

points in a classroom that provides an average rate of individual responses and teacher
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models. Similarly, in the second type of classroom, where there is an above average rate

of individual responses and an average rate of teacher models, the perfonnance gap

appears to widen between the two groups of students. This suggests that higher rates of

individual practice opportunities may be more beneficial for students at low risk for

I etassro0n14 J
High IRR High TMR

~ Classroom:3 I
Avg.IHR High TMR

1CIassroom 2 I
High IRR Avg. TMR

rCla~~rooml]
Avg. IRR Avg. TMR

Student Matb
Risk Status

-At Risk

o Lew Risk

o 10 20 30 40

Posttest TEMA

FIGURE 3. Predicted posttest TEMA scores for students with and without math
difficulties in four different types of classrooms. IRR = Individual
response rate; TMR = Teacher model rate; GRR = Group response
rate. Assumes average rate of group responses.

difficulties. In the third type of classroom or one that provides an above average rate of

teacher models but an average rate of individual responses, the predicted perfonnance of

students at-risk for math difficulties appears to increase by approximately 2 points

compared to the predicted scores in the second classroom type. This indicates that

higher rates of explicit instruction may be more important for students struggling to



84

learn mathematics. Finally, in the fourth type of classroom, the performance gap appears

to widen between the two groups, showing a difference of 15 points in posttest TEMA

scores. These predicted performances suggest that higher rates of individual practice

opportunities are more important for students on track for math success at the beginning

of kindergarten.

Table 16 summarizes the variance components for the fully specified model.

Results indicate that TEMA posttest scores varied significantly across classrooms

(variance estimate = 2.75, SD = 1.66), X2 (43) = 89.58,p < .01. The variances for

Pre_TEMA slope and RISK slope were also statistically significant. Thus, classrooms

varied from one another on slopes of pretest performances and risk status. The Level 1

residual standard deviation of 5.17 shows that students differ from one another within

classrooms on Post-TEMA after taking into account the pretest covariate, risk status,

and the three rates of observed classroom-level behaviors. Finally, with the addition

INDRATE, GRPRATE, TCHMRATE as Level2 predictors, the estimated proportion of

variance between classrooms at Level 2 in TEMA outcomes was reduced by 23% (R2 =

.23).
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CHAPTER V

DISCUSSION

The purpose of this dissertation was to gather preliminary evidence in support of

the Coding of Academic Teacher-Student interactions (CATS) observation instrument.

The study addressed research questions related to content validity, discriminant validity,

and criterion-predictive validity. Additionally, the study investigated agreement

percentages between pairs of independent observers. For two of the research questions,

the study employed hierarchical linear modeling (HLM) and fit separate two-level HLM

models (Raudenbush & Bryk, 2002) that nested (a) observations within classrooms, and

(b) student posttest math scores within classrooms.

To address the research questions, the study harvested existing data from the

Early Learning in Mathematics: Efficacy Trials in Kindergarten Classrooms (ELM­

ETKC) study. The data included student and classroom-level information collected in

65 kindergarten classrooms. At the student level, data included pretest and posttest

scores from 929 kindergarten students on the Test of Early Mathematics Ability-Third

Edition (TEMA) and two curriculum-based measures: Oral Counting and Number

Identification. Information at the classroom level included observational data from 191

classroom observations.
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This chapter begins with a summary table of the study's results. This is followed

by the interpretation of each research question. Limitations of the study are also

discussed. The chapter concludes with suggested implications for future research and

practice.

Summary of Results

Table 17 summarizes the results for each research question and its corresponding

hypothesis. Overall, the study found promising evidence for using CATS to measure the

quantity and quality of kindergarten mathematics instruction. For example, independent

observers met a minimum threshold ofinterobserver agreement. Also, CATS

demonstrated high levels of content validity, as well as the requisite sensitivity to detect

differences between treatment conditions. Finally, results from the prediction analyses

showed the role of observed behaviors in predicting student math outcomes.

Evidence of Content Validity

CATS measures six behaviors related to the instructional interactions that occur

between teachers and students during kindergarten mathematics instruction. An

emerging, yet strong, body of scientific evidence has linked four of the behaviors to

improved student outcomes. These behaviors are teacher models, academic feedback,

individual response opportunities, and group response opportunities. The National

Mathematics Advisory Panel (2008) strongly recommends that teachers use an explicit
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TABLE 17. Summary Table of Support for Coding of Academic Teacher-Student
Interactions (CATS) Observation Instrument

Research
question

Content
validity

Interobserver
agreement

Discriminant
validity

Predictive
validity

Support for
Hypothesis hypothesis

CATS will demonstrate content relevance, as Yes
measured through an external content review.

Observers will reach a minimally acceptable level of Yes
agreement across both treatment and comparison
classrooms, and across observation rounds.

CATS will detect differences in the mean rate of Yes
instructional behaviors between treatment
conditions.

Results will show a significant relationship between Yes
student math outcomes and rates of observed
behaviors, captured by CATS.

instructional approach when working with students with or at risk for math difficulties.

This level of instruction entails clear and consistent teacher modeling as well as timely

academic feedback. There is also consistent evidence that many students, especially

those with mathematics disabilities, benefit from repeated practice opportunities (Fuchs

et aI., 2008; Fuchs et aI., 2010; Gersten et aI., 2009). These learning opportunities are

most effective when distributed across groups of students and ability levels.

Because the information gathered by the CATS instrument aligns with the best

evidence on effective instructional practices in early mathematics, I expected it to

demonstrate acceptable evidence of content validity via an external content analysis.

Findings of the external review revealed that the behaviors the CATS instrument

purports to measure are relevant and representative ofkindergarten mathematics
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instruction. In fact, reviewers rated all six behaviors above 3.0, an arbitrary acceptable

score. These findings lend preliminary support for using the instrument to measure the

quantity and quality of classroom instruction.

Consistency of the Observation Data

Examination for the consistency of observation data collected across 46 paired

observations involved five calculations of interobserver agreement. These calculations

included agreement of (a) teacher behaviors, (b) student practice opportunities,

(c) teacher models, (d) academic feedback, and (e) all behaviors. Calculations used the

frequency-ratio approach (Suen & Ary, 1989), and the acceptable level of observer

agreement was set at 80%. In all, this research question calculated 230 estimates of

interobserver agreement from the 46 paired observations.

Overall, the consistency of the data collected across independent observers and

across three observation rounds was promising. Observers were able to collect reliable

data across treatment conditions, strands of mathematics, and multiple time points. For

example, agreement for all codable behaviors averaged 90%, with little variance

between pairings (SD = .07). Also, observers met and maintained the minimum

threshold for student practice opportunities and teacher behaviors, averaging 90% and

84% across the three observation rounds, respectively. Consistency of the data was most

evident in the third or final round. It's reasonable to assume that familiarity with

classroom instruction and fluency with CATS contributed to this finding. Surprisingly,

observers were more consistent in comparison classrooms. Given the systematic
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structure of the Early Learning in Mathematics curriculum, I expected observers would

reach higher agreement in treatment classrooms.

When examining the separate estimates for teacher models and academic

feedback, percentages were among the lowest documented. Observers averaged 73% for

teacher models and 77% for academic feedback. This finding was not surprising.

Despite extensive training with the observation instrument, observers expressed

difficulty in discriminating between these two behaviors during real-time observations.

One explanation is that teacher models and academic feedback require a higher level of

observer inference than the four student behaviors. To further complicate things, this

interpretation has to occur within a matter of seconds. For example, the CATS manual

defines academic feedback as taking the form of either error correction or response

affirmation. Therefore, when a teacher affirms a correct student response, his/her

behavior can often resemble a teacher model, as in the following example: "Yes, six plus

two equals eight." Observers could easily mistake this behavior in the short time they

have to decide whether to code academic feedback or teacher model. Ambiguous coding

situations, like the previous example, can quickly deflate an agreement estimate.

Coding these two behaviors more reliably may require an appropriate change to

CATS to eliminate the response affirmation aspect from the academic feedback code. In

other words, observers would only code academic feedback if it follows a student

mistake. Observers, therefore, would code all demonstrations and response affirmations

as teacher models. This change may help future studies in obtaining greater data

consistency.
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Finally, with regard to the agreement estimates that fell below the .8 cut-off, it is

important to consider two points. The first is that this study reported 13 averages of

interobserver agreement. In a review of seven available observation instruments, Volpe,

DiPerna, Hintze, and Shapiro (2005) found one system that reported no psychometric

information about interobserver agreement coefficients. A second point to consider is

that the agreement calculations that fell just below the cut-off may be acceptable for

classroom observation research that involves low to moderate inference instruments

(Baker, Chard, Ketterlin-Geller, Apichatabutra, & Doabler, 2009). Previous research

involving direct observation has reported agreement coefficients below traditional

standards (Baker et aI., 2006; Gersten, Baker, et aI., 2005; Jackson & Neel, 2006;

Nougaret, Scruggs, & Mastropieri, 2005; Pianta, Belsksy, Vandergrift, Houts, &

Morrison, 2008; Stanovich & Jordan, 1998; Stuhlman & Pianta, 2009; Sutherland,

Alder, & Gunter, 2003; Volpe, McConaughy, & Hintze, 2009; Wilson, Pianta, &

Stuhlman, 2007). It's possible these studies and the current one were "willing to

sacrifice some degree of reliability in exchange for an increase in some aspect of

validity" (Brennan, 1998, p. 6).

Discriminant Validity

The test for instrument sensitivity did not reveal statistically significant

differences between classroom conditions for the mean rate of teacher models. This

finding was surprising given that the Early Learning in Mathematics (ELM) curriculum

contains scripted dialogue to assist teachers in model demonstrations. While observers
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were unable to reference all materials used in comparison classrooms, a reasonable

assumption is that these instructional tools do not contain explicit opportunities for

modeling math concepts and skills. Recent curricular reviews indicate that many of the

mathematics programs used in today's classrooms contain weaknesses in their

instructional organization. For example, in a review of three U.S. market-leading

programs, Doabler, Fien, Nelson-Walker, and Baker (2010) found few opportunities for

explicit instruction and teacher demonstrations.

Another assumption as to why the observation instrument did not detect

differences between conditions for the rate of teacher models is that CATS does not

discriminate between high-quality teacher models and low-quality ones. Thus, observers

code both simple teacher models and in-depth ones in the same fashion. For example,

observers would code a teacher model if a teacher were to hold up a shape and simply

state its name during a geometric activity. In this same context, observers would also

code a teacher model if a teacher were to present the same shape, state its name, and

provide details about the shape's attributes. This latter example is more representative

of the ELM program's curricular design. I argue there are distinct differences between

these two examples and that students, especially those at risk for failure in math, reap

greater benefit from the more detailed demonstration. One caveat to this

recommendation is that too many teacher models or lengthy ones may preclude the

opportunity for student practice.

For the remaining two outcomes, the average rate of group responses and rate of

individual responses, the instrument detected differences in instruction. Observers
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coded nearly twice as many group and individual responses in treatment classrooms

compared to comparison classrooms. This finding is noteworthy because it corroborates

the ELM's curricular intent to provide frequent teacher-student interactions during math

instruction and the instrument's capacity to measure differences across treatment

conditions.

Prediction of Student Outcomes

Results from the multilevel model that predicted student math outcomes with

pretest TEMA scores, student risk status, and rates of observed behaviors were both

encouraging and surprising-encouraging because the effect of individual response was

positive and strong (rO] = 2.11, P < .05), surprising, however, because the fixed effects

for the rate of group responses and rate of teacher models were not statistically

significant. One plausible explanation for this latter finding is the lack of statistical

power. Because the number of units at each level of a hierarchical model affects

statistical power, with the number of Level 2 units in a two-level model having the

greater impact (Konstantopoulus, 2008; Schochet, 2008), the 65 classrooms in this

analytic sample may have been insufficient to detect significant effects for group

responses and teacher models.

Interestingly, results from the pretest-posttest slopes-as-outcomes model showed

contradictory findings for the cross-level interactions of teacher models and individual

responses. Whereas the rate of individual responses reduced the relationship between

pretest and posttest TEMA, rate of teacher models appeared to strengthen it. This
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suggests that on-track students at the start of kindergarten require lower rates of teacher

demonstrations. Perhaps students considered at low risk require less teacher

demonstration and more independent practice opportunities.

The results of the risk-posttest slopes-as-outcomes model also showed a positive

cross-level interaction involving the rate of teacher models. However, in contrast to the

previous slopes-as-outcomes model, teacher models reduced the relationship between a

Level 1 predictor-in this case, student risk status-and TEMA posttest scores. The

positive coefficient indicates how a highly interactive classroom or one that provides an

above average rate of teacher models moderates the relationship between risk and math

outcomes (Baron & Kenny, 1986). This suggests classrooms that employ explicit

instruction may help negate the effect of being at risk for math difficulties. Figure 3

graphically depicts this cross-level interaction. The figure shows that at-risk students

closed the performance gap between themselves and their on-track peers when placed in

classrooms that provided teacher models at a rate above the average (i.e., approximately

one model per minute).

In many ways, this finding corroborates the recommendations of expert panels

(e.g., Gersten et aI., 2009; NMAP, 2008) and the findings of previous research on

effective math interventions for promoting mathematics proficiency for at-risk learners

(e.g., Baker et aI., 2002; Gersten et aI., 2008; Jayanthi et aI., 2008). According to this

body of literature, explicit methods of instruction, such as clear explanations and

demonstrations of math concepts and skills, are effective for students with or at risk for

math difficulties. While this form of instructional approach should not dominate math
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instruction, it should, however, be a staple of classroom practice for promoting

fundamental understanding of basic skills and concepts.

Although not in the expected direction, results of the slopes-as-outcomes model

also showed a statistically significant negative coefficient for the cross-level interaction

between risk and the rate of individual responses. At-risk students scored nearly eight

points lower in classrooms with above average rates of individual practice opportunities.

This result, however, should not imply that all individual practice opportunities are

deleterious for at-risk students. Rather, it raises two interesting points. First, as

previously discussed, CATS documents classroom-level behaviors. Moreover, the tool

does not discriminate responses directed to specific subgroups of students (e.g., at risk

vs. low risk). This result, therefore, may suggest that classrooms with above average

rates of individual responses fail to evenly distribute these types of practice

opportunities among their students. In other words, teachers may overlook struggling

learners. The second point involves the level of difficulty for these individual responses.

It is reasonable to assume that some practice opportunities are too difficult for at-risk

students, especially when explicit teacher models and structured demonstrations do not

precede the opportunities.

Limitations

This study was limited by several factors. First, the study's fourth research

question examined the relationship between the rates of observed behaviors and student

math outcomes. Results show preliminary suppOli for one of the observed behaviors,
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rate of individual responses, to predict student math performance. However, the study

did not reveal evidence for the rate of group responses and teacher models. A larger

number of units at Level 1 (i.e., students) might have provided greater statistical power

and possibly resulted in different findings. Recall that the analysis excluded over 450

students from the analytic sample because of missing pretest data. Given the large

number of missing cases, future analyses involving this data set should use statistical

procedures, such as Empirical Bayes estimation, to better address the missing pretest

performances.

A second limitation was the statistical mean differences in posttest TEMA

scores found between the groups of students with pretest data and those without. In the

full Early Learning in Mathematics: Efficacy Trials in Kindergarten Classrooms (ELM­

ETKC) sample, students who did not participate in the pretest administrations of

TEMA, Oral Counting, and Number Identification scored, on average, roughly seven

points lower on posttest TEMA than their classmates who did participate. In fact,

students with pretest and posttest data scored just below the 50th percentile on posttest

TEMA, whereas the posttest-only group scored below the 25th percentile. This result

suggests that the analytic sample was missing a large number of at risk students.

Plausible assumptions are that family mobility, absenteeism, or selection bias attributed

to the missing values (Shadish et aI., 2002).

A third limitation is the index used to calculate interobserver agreement.

Although researchers commonly use the smallerllarger index (Hintze, 2005; Kennedy,

2005; Suen & Ary, 1989), this type of estimate is not a chance-corrected measure of
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observer agreement. As such, the smaller/larger index may fail to provide an accurate

picture of whether observers saw the same behavior occur or not occur. More

meaningful measures such as intraclass correlation coefficients (rCC; Hintze, 2005;

Rimm-Kaufman, Kirby, Grimm, Nathanson, & Brock, 2009; Smolkowski & Gunn,

2010) and generalizability theory (Hintze & Matthews, 2004; Volpe et aI., 2009) may

provide more reliable estimates of the observation data.

A fourth limitation is the potential for missing a qualitative aspect of classroom

instruction and student learning. Because CATS uses a frequency count approach, it's

possible that the tool misses a qualitative side of classroom instruction that rating

systems, open-ended notes, and student interviews often capture. A fifth limitation is the

variable of academic feedback. Because academic feedback serves two purposes,

capturing corrective and affirmative feedback, it is possible this dual definition

attributed to the low interobserver agreements among teacher models and academic

feedback. A reasonable fix would be to split the definition into two separate codes.

Thus, the tool would comprise seven instructional codes. Recognizing this limitation

and the others noted above, readers should interpret findings from this study with

caution.

Because this study took place in the context of a larger efficacy trial, researchers

are addressing the limitations noted above. For example, the efficacy trial is using

additional estimates to calculate interobserver reliability. Moreover, the efficacy trial is

combining student and classroom-level samples across years to ensure adequate sample

sizes. Future publications will reflect these changes.
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Implications for Practice

Although the purpose of this study was to validate a direct observation

instrument, it has implications for improving the instructional quality of kindergarten

mathematics instruction. These implications directly relate to teacher education

programs and in-service professional development. For example, it seems appropriate

that all teachers be trained how to implement an explicit instructional approach when

working with kindergarten students struggling to learn mathematics. The CATS

instrument captured teacher models that were simple in structure such as brief math

definitions and overt demonstrations for how to count sets of blocks. Therefore, aspiring

teachers and practicing ones could easily receive training for using these kinds of

explicit instructional techniques.

Additionally, teachers could receive instructional tips for differentiating practice

opportunities via ongoing classroom support (e.g., expert coaching). Within this analytic

sample, for instance, classrooms provided an average of .55 individual response

opportunities per minute. Thus, in a 40-minute instructional time period, classrooms

offered approximately 20 individual response opportunities. This results in about one

individual tum per student in a classroom of 20 kindergarteners. It is my opinion that

one individual tum per student is insufficient.
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Implications for Research

In a previous research study, Smolkowski and Gunn (2010) used a frequency

count observational system, like the CATS instrument, to document the instructional

interactions that occur during first-grade reading instruction. Results from the

Smolkowski and Gunn study showed student practice opportunities accounted for a

significant and meaningful amount of variation in student reading-performance gains.

Outside of this recent study, few studies have used a frequency count approach to

measure the quality of instruction in general education elementary-level classrooms

(Sutherland & Wehby, 2001). Because a successful start in the early grades is critical for

subsequent achievement growth (Bodovski & Farkas, 2007; Chard et aI., 2008; Morgan

et aI., 2009; West et aI., 2001), there is need to identify and measure the effective

teaching practices that facilitate learning during this critical period of children's early

education.

CATS provides a systematic approach for documenting the important variables

of kindergarten mathematics instruction. Moreover, findings from this study indicate

that the effect of these instructional variables differs for different groups of students.

Whereas increased practice opportunities appeared more important for students at low

risk, higher rates of teacher models or explicit instruction seemed more likely to benefit

students at risk for math difficulties. Future studies should further investigate these

interactions between instruction variables and child characteristics. Additionally, studies

should investigate conditional probabilities of behavior occurrences (e.g., student
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mistakes followed by academic feedback) and strings of instructional sequences (e.g.,

teacher models followed by group and individual practice opportunities). Theses

proposed analyses might help reveal additional ingredients of effective classroom

instruction.

Currently, observers are using CATS in instructional contexts outside of

beginning mathematics, including early literacy and small-group reading instruction for

Spanish-speaking English learners. Results from this dissertation as well as these

ongoing studies may help future intervention studies make better use of direct

observation of classroom instruction. If a goal of educational research is to identify the

potential mediating variables that influence student learning, future studies will need a

reliable and valid observation system.

Conclusion

The recent advent of Response to Intervention calls for the delivery of high­

quality instruction to occur in general education and special education classrooms. With

this need, it is necessary to establish reliable and valid tools for determining whether

students are receiving effective instruction in beginning mathematics. Results of this

dissertation indicate that the CATS tool could potentially yield this kind of information.

In particular, findings of the study provide strong, yet preliminary evidence for the

observation system's capacity to capture instructional behaviors predictive of student

math outcomes.
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APPENDIX

CODING OF ACADEMIC TEACHER-STUDENT INTERACTIONS

DIRECT OBSERVATION INSTRUMENT

Early Learning in ~'lathematk.s

... _._~ ~~~~!!1~m.a.tiQn f!del!~_~!Q!~n:!!!!Q!l..~~I!~!L . __~ .. __..... _
l)4te Round: Condition:

i () i • 2 0 ~l Ci I()A

Comments

---- ,".- -----

FIGURE 4. Cover sheet for the Coding of Academic Teacher-Student
Interactions instrument.
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FIGURE 5. Instructional interaction codes captured by the Coding of Academic
Teacher-Student Interactions instrument.
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