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State of the art semiconductor materials engineering provides the possibility to

fabricate devices on the lower end of the mesoscopic scale and confine only a handful of

electrons to a region of space. When the thermal energy is reduced below the energetic

quantum level spacing, the confined electrons assume energy levels akin to the core­

shell structure of natural atoms. Such "artificial atoms" , also known as quantum dots,

can be loaded with electrons, one-by-one, and subsequently unloaded using source and

drain electrical contacts. As such, quantum dots are uniquely tunable platforms for

performing quantum transport and quantum control experiments. Voltage-biased

electron transport through quantum dots has been studied extensively. Far less

attention has been given to thermoelectric effects in quantum dots, that is, electron

transport induced by a temperature gradient.
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This dissertation focuses on the efficiency of direct thermal-to-electric energy

conversion in InAs/InP quantum dots embedded in nanowires. The efficiency of

thermoelectric heat engines is bounded by the same maximum efficiency as cyclic

heat engines, namely, by Carnot efficiency. The efficiency of bulk thermoelectric

materials suffers from their inability to transport charge carriers selectively based on

energy. Owing to their three-dimensional momentum quantization, quantum dots

operate as electron energy filters-a property which can be harnessed to minimize

entropy production and therefore maximize efficiency. This research was motivated

by the possibility to realize experimentally a thermodynamic heat engine operating

with near-Carnot efficiency using the unique behavior of quantum dots.

To this end, a microscopic heating scheme for the application of a temperature

difference across a quantum dot was developed in conjunction with a novel quantum­

dot thermometry technique used for quantifying the magnitude of the applied

temperature difference. While pursuing high-efficiency thermoelectric performance,

many mesoscopic thermoelectric effects were observed and studied, including Coulomb­

blockade thermovoltage oscillations, thermoelectric power generation, and strong

nonlinear behavior. In the end, a quantum-dot-based thermoelectric heat engine was

achieved and demonstrated an electronic efficiency of up to 95% Carnot efficiency.
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CHAPTER I

INTRODUCTION

Thermoelectrics Background

A material is thermoelectric if charge carriers preferentially migrate through the

material in response to a temperature difference applied across the material. In the

linear regime, the total current through such a material, I, is the sum of the biased

current and the thermally induced current,

I = GV + Gth6.T, (1.1 )

where G is the isothermal conductance, V is the bias voltage, and 6.T is the magnitude

of the applied temperature difference. The thermodynamic coefficient, Gth, relates

6.T to electric current. Most thermoelectric measurements are actually voltage

measurements performed under open-circuit conditions when I = O. In this way,

the magnitude of 11th is equal to the bias voltage required to stop the total current

flow

11th == lim V = - Gth 6.T. (1.2)
[=0 G

So 11th IS simply the voltage created solely by 6.T (see Fig. 1.1a). Therefore,
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it is natural to define the corresponding Seebeck coefficient (also known as the

thermopower), B, which is the coefficient of proportionality between ~h and 6.T,

(1.3)

The Seebeck coefficient is a physical property of the thermoelectric material and is

the thermal analog of electrical conductance.

Thermocouples

Perhaps the most common application and best example of the thermoelectric

effect is the thermocouple, where a calibrated thermoelectric material is used to

determine an unknown temperature, T I , relative to a known temperature T2 . To

eliminate heat leaks and additional thermovoltages, thermocouples employ two

thermoelectric leads, a and b, with differing Seebeck coefficients, Ba and Bb ,

respectively. The most common thermocouple, owing to its low cost and wide

temperature range, is the type K thermocouple composed of Ni-Cr and Ni-Al alloy

leads (see Fig. 1.Ib). The voltage difference between the thermocouple leads, V, is

the difference between the two thermovoltages (Va and Vb) established in each arm

where Beff is the effective Seebeck coefficient of the thermocouple and 6.T = T2 - TI is

the temperature difference. For the thermocouple to function, it is necessary that the
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leads are dissimilar so that Sa =1= Sb. In most applications, the known temperature,

T2 , is room temperature, and the calibration of the thermocouple instrument is made

under this assumption. The sensitivity of the type K thermocouple shown in Fig. LIb

is only approximately 41 /-LVrC [1]. So in fact, thermovoltages are relatively small,

meaning the thermoelectric effect, is not particularly strong.

(a) -----------
Ther oelectric

------------

Hot Cold
Reservoir

~h
Reservoir

(b) Ni-Cr

T
2 V T

1

Ni-AI

Figure 1.1. (a) A schematic demonstrating the thermoelectric effect. Charge
carriers traverse a thermoelectric material (or device) in response to a thermal
gradient supplied by hot and cold reservoirs at temperatures TH and Te ,
respectively. Subsequent charge build-up creates an open-circuit voltage, defined
as the thermovoltage, 1I;;h = S6.T, where 6.T = TH - Te , and S is the Seebeck
coefficient of the material (see Eq. (1.3)). (b) The thermocouple is the most common
application of the thermoelectric effect. Here a type K thermocouple using Ni-Cr
and Ni-Al alloy thermoelectric leads measures the unknown temperature T1 relative
to known temperature T2 . The voltage V established between the two thermocouple
leads is proportional to T2 - T1 . See text for additional thermocouple discussion and
Fig. 1.3 for other applications of the thcnnoelectric effect.
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Onsager's Reciprocal Relations Applied to Thermoelectric Coefficients

In the language of thermodynamics, the charge current, I, and heat current,

Q, flowing through a thermoelectric material are both thermodynamic currents

created in response to two thermodynamic forces, which are derivatives of two

thermodynamic potentials. The Onsager formulation relates thermodynamic currents

to their thermodynamic potentials via thermodynamic coefficients, such as those

appearing in Eq. (1.1). Onsager's famous reciprocal relations express the symmetry

between the off-diagonal thermodynamic coefficients of a system in which multiple

thermodynamic potentials exist simultaneously [2]. The Onsager relations were first

applied to thermoelectrics in 1948 [3], but the treatment is now common in textbooks

[4].

In a thermoelectric system, the thermodynamic currents I and Q can be related

to the thermodynamic forces V and 6.T by,

(1.4)

where G and Gth are the coefficients appearing in Eq. (1.1), and M and K are the

analogous heat-current thermodynamic coefficients. Unfortunately, V and 6.T are not

the proper thermodynamic forces of this system, and the relationship between M and

Gth is not immediately provided by the Onsager relations. Nonetheless, the system's

proper thermodynamic forces can be found [3], and they provide the corresponding
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Onsager relation given by [4],

Using this result and Eq. (1.3) for the Seebeck coefficient, M can be written

M = -CthT = CST.

(1.5)

(1.6)

The heat flux portion of Eq. (1.4) can be understood better if this relation is expressed

with I as the dependent variable [4],

(1. 7)

where R = l/C is resistance, S is the Seebeck coefficient, II is the Peltier coefficient,

and K;el is the electrical contribution to the total thermal conductance. The real

advantage of Eq. (1. 7) is that the thermodynamic coefficients II and K;el are very

familiar. That is, K;el dictates the amount of heat, Q, which flows in response to a

thermal difference, 6T, in the absence of electrical current,

1
, Q

- K;el == Im-,
[=06T

(1.8)

Similarly, II, the Peltier coefficient, dictates the amount of heat, Q, carried by an
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electrical current, I, in the absence of a temperature gradient,

II - lim Q.
.6T=O I

(1.9)

The corresponding definition of S has already been presented in Eq. (1.3), and the

definition of R needs no explanation. On the other hand, any physical intuition of

coefficients M and K is remote. In some sense, Eq. (1.4) is the theorist's equation and

Eq. (1.7) is the experimentalist's equation. The primary utility of M and K is the

relationship between M and Gth-afforded by the Onsager relation (Eq. (1.5))-and

the ease with which G, Gth , and K can be expressed analytically (see Eq. 1.24).

Furthermore, it can be shown that knowledge of G, Gth , and K is equivalent to

knowledge of R, II, and K:el. Inserting the expression for V from Eq. (1.7) into the

expression for Q in Eq. (1.4) gives

Q = MV +KI:1T

= M (RI + SI:1T) + KI:1T

= M RI + (K + M S) I:1T

(1.10)

where the last equality follows from Eq. (1.7). Now the coefficients II and K:el are
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easily identified:

(1. 11a)

(1.11b)

where Eq. (1.6) has been used. Therefore, the thermodynamic quantities which

describe all thermoelectric processes can be efficiently managed using the Onsager

relations. While the above calculations are specific to thermoelectrics, Onsager's

theorem provides a very general and unified description of both thermal Brownian

and thermoelectric heat engines using the language of thermodynamic forces [5].

Phonons

From both theoretical and experimental perspectives, the effect of phonons on

the electronic properties of thermoelectrics is a very challenging problem. Phonons

constantly traverse the thermoelectric, in both directions, but on average, the

phonons carry heat from the hot reservoir to the cold reservoir. This heat leak

spoils the temperature gradient for the electrons and reduces the performance of the

thermoelectric. If both electrons and phonons are considered, then the total thermal

conductance, "", is

(1.12)

where ""ph is the phonon contribution to the thermal conductance and can be much

larger than ""el' The research presented here focuses on understanding only the
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electronic aspects of thermoelectrics in hopes to improve overall thermoelectric per­

formance. Future research must merge insights regarding electronic optimization with

phonon suppression techniques in order to achieve a high-performance thermoelectric.

Introduction to Particle Heat Engines

A particle heat engine converts heat energy into useful output work using a

sustained flow of particles. Specifically, a thermoelectric particle heat engine transfers

heat, Q, between hot and cold reservoirs via the flow of charge carriers through a

thermoelectric material, whereby useful work, W, is extracted as each charge carrier

does work against the electric field, E, which is created by the thermovoltage, ~h'

Thermoelectrics have no moving parts and require little or no maintenance throughout

their lifetime. Unfortunately, their poor efficiency limits their usefulness. A diagram

of a (thermoelectric) particle heat engine is shown in Fig. 1.2.

In analogy to traditional heat engines, the present state-of-the-art particle heat

engines have developed only as far as the steam engine. Throughout most of their

existence, improvements in particle heat engines have been the results of efforts

in material engineering. The thermoelectrics field is groping to understand the

physical limitations which have so-far prevented the development of scalable, efficient

thermoelectric materials. See, for example, Ref. [6] for a very honest evaluation

of the progress in the thermoelectrics field. Although thermoelectric phenomena

were discovered nearly 200 years ago, the fundamental understanding of particle heat
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(a)

(b)

Expansion

Compression

Thermoelectric

(c)

Q

w

Figure 1. 2. Schematics of cyclic and particle heat engines. (a) Cyclic heat engines
use thermodynamic processes to extract (mechanical) work, lV, from the heat,
Q, which is transfered (per cycle) via a working gas (WG) from the hot bath at
temperature, TH , to the cold bath at temperature, Te . To operate with Carnot
efficiency, the thermodynamic cycle of the cyclic heat engine must be reversible. (b)
A particle heat engine, in which a thermoelectric material is in constant contact with
both temperature baths. Charge carriers constantly and irreversibly transport heat
through the thermoelectric material as they migrate from the hot reservoir to the cold
reservoir. The electric field, E, and associated thermovoltage, ~h, are established by
the asymmetric charge build-up in the reservoirs. The charge carriers do work against
E on their way to the cold bath; this is useful (electrical) work, \IV, extracted from
the inter-reservoir heat How, Q. (c) All heat engines can be represented abstractly
as work extraction mechanisms. An amount of useful work, W, is extracted from an
amount of heat, Q, flowing from the hot to the cold reservoir. The cyclic heat engine
extracts mechanical work while the particle heat engine extracts electrical work. The
difference Q - W is energy sacrificed in order to maintain non-negative net entropy
production, as required by the second law of thermodynamics.
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engines lags behind that of cyclic heat engines. As a result, particle heat engines do

not contribute to society's general power generation and refrigeration needs and are

instead reserved for niche applications. The lessons taught to us by the cyclic heat

engine-the concept of entropy and the second law-can be used to understand and

improve the particle heat engine.

The Electronic Efficiency of Particle Heat Engines

In the early 19th century, hoping to improve the understanding of steam engines,

Sadi Carnot investigated the physical limitations of cyclic heat engines. In one full

cycle of such an engine, useful work, W, is extracted from input heat, Q, flowing from

a reservoir at temperature TH to a colder reservoir at temperature Te , where TH ;::::: Te

(see Fig. 1.2). What Carnot discovered [7] was that the efficiency of this extraction

is bounded,

(1.13)

The maximum efficiency-the so-called Carnot efficiency, 'ric-is achieved when the

cycle operates reversibly and the net entropy production is zero. Reversibility is the

hallmark of Carnot efficiency and has become a mantra in thermodynamics.

The initial outlook on the efficiency of particle heat engines from the viewpoint

of reversibility seems bleak. Particle heat engines are always in direct thermal

contact to both the heat bath and the cold bath; irreversible heat flow through

this permanent connection is unavoidable. And so it appears that thermoelectrics
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r
H at I
Flow

Heat UITlp ctrical

I I

enerator

1

Applied Voltage Useful Power

Figure 1.3. Schematics of a thermoelectric heat pump and thermoelectric power
generator. Any thermoelectric can in principle be used either as a heat pump or an
electric power generator. For simplicity of design, two thermoelectric materials-one
n-type and one p-type-are placed in parallel so as to conserve the net charge and
create a current loop. For the heat pump, an applied electric voltage, V, maintains
a flow of electric charge through the device. Both the electrons and holes create
thermal gradients across their respective n-type and p-type thermoelectric materials.
In the case of the electric power generator, the hot and cold baths induce electron
and hole transport in the n-type and p-type thermoelectric materials, respectively.
These transported charge carriers create a net electric current, which can be used to
power an electric load. In both applications, the heat flow is upward and the current
is counter-clockwise.
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cannot operate reversibly and therefore cannot achieve Carnot efficiency. What this

analysis is missing, however, is the effect of "loading". The presence of a single

dissipative heat flux does not preclude reversibility so long as there exists a second

heat flux which is equal in magnitude and opposite in sign so that net entropy

production is zero. Moreover, this opposing flux need not be in response to a thermal

gradient, but can result from a separate thermodynamic force. Loading is simply

the presence of such a force. In a thermoelectric system, the loading is provided by a

gradient in the electrochemical potential via a voltage bias, namely the thermovoltage.

Therefore, the obvious theoretical tool for analyzing the efficiency of thermoelectric

heat engines is the thermodynamics of Fermi gases (statistical mechanics). Through

this theoretical framework, the interplay between thermal gradients and gradients in

the electrochemical potential becomes natural. This theory is presented in the next

section and then applied specifically to thermoelectric efficiency.

Fermi-Dirac Statistics and Thermoelectrics

Most introductions to thermoelectrics exclude Fermi statistics and instead rely

on the Drude model (see, for example, Ref. [8]), which ignores electron spin (among

other things). Electron spin and the resulting Fermi-Dirac distribution is essential for

understanding the thermodynamics of thermoelectrics. Moreover, all the experiments

described in this dissertation where performed at low temperature « 10 K), where

Fermi statistics are indispensable for describing the transport of charge carriers.
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Therefore, it is worthwhile to review Fermi-Dirac statistics with special attention

applied to thermoelectrics.

In the context of thermoelectrics, it is natural to assume that the electron-

gas reservoirs are well behaved so that they have well-defined temperatures and

electrochemical potentials, regarded as the thermodynamic state variables appearing

in the Fermi-Dirac distributions

fH,~ (c) = 1 + exp [(H,cJ ,

where the arguments, (H,C, in the exponential function are

(1.14)

c-fJ,±eV/2
kTHC,

(1.15)

where c is the electron energy, TH,c are the respective hot and cold temperatures,

fJ, is controlled by the gate voltage, and V is the bias voltage, which is assumed

to be applied symmetrically across the device. Thus, a positive bias voltage raises

and lowers the electrochemical potentials of the cold and hot reservoirs by an equal

amount, respectively.

Because Fermi-Dirac distributions will appear often throughout this work, it is

convenient to introduce a simple graphical representation, as shown in Fig. 1.4.

Migrating away from device schematics such as those in Fig. 1.3 toward an abstract

theoretical picture is also very beneficial for understanding electron transport in
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thermoelectrics. Akin to band-energy diagrams, the energy of electrons within a

thermoelectric device paints a clear picture of the underlying physical mechanisms.

Fig. 1.5b shows how a thermoelectric pathway between two thermal baths can be

considered an energy-dependent conduit for charge carriers. An assumption is made

that the thermal baths are ideal. That is, their temperature is constant, and there is

no electrical contact resistance between the baths and the thermoelectric. A second

assumption is that charge transport occurs at a single energy. That is, the charge

carrier travels ballistically through the thermoelectric, which is a common assumption

in mesoscopic systems such as the one used in this research. These assumptions do not

restrict complexity or limit physical relevance [9]. In this theoretical framework, all

the interesting physics take place within the thermoelectric material itself; a specific

model can be made arbitrarily simple or complex, depending on the physical system

being considered.

Now that the Fermi-Dirac distributions have been established, the sign convention

of the Seebeck coefficient, S, can be discussed. Because G has the opposite sign of

Gth in Eq. (1.3), the thermally induced current, the thermocurrent, Ith = Gth6.T,

flows "backwards" relative to the thermovoltage, 1I;;h,

This can create some confusion regarding the sign of 1I;;h and therefore S. Indeed,
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(a)

E:(j)

(b)
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(c)

Figure 1.4. The Fermi-Dirac distributions of hot and cold electron reservoirs.
(a) The functions fH,e (c) (Eq. (1.14)) plotted as a function of electron energy, c,
at two different temperatures demonstrate two different thermal smearing at the
electrochemical potential, fl' = fl'H = /Le· (b) The inverse of (a), that is, c as a
function of f. (c) A graphical representation of (b), which uses color gradients to
represent the thermal smearing at fl'H,e. Hot and cold baths are always colored red
and blue, respectively.

the sign convention of S is not consistent in the literature. In the spirit of electron

transport from a solid state physics perspective, it is most natural to regard S as

negative when transport (current) is electron-like and positive when hole-like. This

implies that ~h must be measured in the opposite sense as I th . This is achieved

experimentally by measuring ~h as the potential difference from drain to source,

that is, from cold reservoir to hot reservoir. This sign convention is made clear in

Fig. 1.5.

Thermoelectric Heat Pumps at Carnot Efficiency

The objective of this section is to find the maXImum (electronic) efficiency of

an ideal thermoelectric heat engine in its most fundamental incarnation: the ballistic
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Figure 1.5. Charge transport in n- and p-type thermoelectrics. The signs of the
thermovoltage, ~h and Seebeck coefficient, 5, are determined by the direction of
electrical current relative to the temperature gradient. Top: (a) Electrons (e-) flow
from hot to cold in the n-type thermoelectric, so that ~h < 0 and 5 < O. (b) Holes
(h+) flow from hot to cold in the p-type thermoelectric, so that ~h > 0 and 5 > O.
Bottom: (a) A thermally excited electron traverses the thermoelectric device and
fills an unoccupied electron state in the cold Fermi-Dirac distribution. (b) A hole
created deep in the hot Fermi-Dirac distribution traverses the thermoelectric device
and fills an unoccupied hole state in the cold Fermi-Dirac distribution. Because
thermally induced charge current flows in "opposition" to the thermovoltage (see
Eq. (1.16)), the thermovoltage is related to the electrochemical potentials (fiI-I,c) by
e~h = fiB. - fic·
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transport (transport without energy loss) of a single electron at energy, c, from the hot

electron reservoir to the cold electron reservoir through the thermoelectric material

(see Fig. 1.6). This quick efficiency derivation closely follows the original theory [10].

In the hot reservoir, the energy, c - MH, is the average amount of thermal energy

required to excite an equilibrium electron at the hot electrochemical potential, MH,

to energy c. This amount of energy, c - MH, is subsequently removed from the hot

reservoir when the electron leaves. When the electron enters the destination cold

electron reservoir, its free energy dissipates into the surrounding electron sea through

a thermalization process (via electron-electron interactions). Therefore, the electron

deposits work into the destination electron reservoir, as well as an associated amount

of entropy. To quantify this, upon arrival in the cold reservoir, the electron will on

average cool to the cold electrochemical potential, Me, thereby depositing an amount

of work, c - Me, into the cold reservoir. The respective amounts of work, 5QH and

5Qe, removed from and added to the hot and cold reservoirs are therefore

5QH = - (c - MH)

5Qe = c - Me.

(LI7a)

(LI7b)

Note that the overall minus sign in 5QH reflects that the outgoing electron removed



18

energy from the hot reservoir. The associated changes in entropy are

The net change in entropy of the system, tJ.S, is the sum of these two entropies

c - Me c - MH
Te TH

(c - Me) TH (c - MH) Te
TeTH THTe

(c - Me) TH - (c - MH) Te
THTe

(TH - Te) c - MeTH + MHTe

THTe

= TH - Te (c _MeTH - MHTe ) .
THTe TH - Te

(1.18)

The last equality is only guaranteed if TH #- Te . If instead TH = Te , then tJ.S = 0

only when MH = Me, which is of course the trivial solution. Otherwise, tJ.S = 0 when

transport proceeds at the "adiabatic energy" , EA , this is, when

(1.19)

Eq. (1.18) states that the net entropy production is negative for electrons with energy



19

c < EA , indicating that on average electrons do not flow in this direction (hot to cold)

at these energies. When electrons flow in the opposite direction (cold to hot) the sign

of tJ.S changes. 80 electrons with energy c < EA must flow from the cold reservoir

to the hot reservoir. Therefore, Eq. (1.18) determines at which energy tJ.S is zero

and also the direction of electron flow as a function of energy. These conclusions are

corroborated by using probability arguments based on the Fermi-Dirac distributions

of the hot and cold reservoirs (see Fig. 1.6c).

Fig. 1.6 illustrates three possible situations for charge transport between two

electron reservoirs. The first case (Fig. 1.6a) is familiar biased transport under

isothermal conditions in which an applied bias voltage, V, creates a difference in

electrochemical potentials, fJ-e - fJ-H = eV. The electron moves from right to left,

thermalizing in the destination electron reservoir. Note that the direction of particle

flux in Fig. 1.6a is in opposition to the particle flux in Fig. 1.6b in which thermally

induced electron transport occurs between the two electron reservoirs that are at

equal electrochemical potential, fJ-H = fJ-e, but unequal temperature, TH i=- Te . In

this way, a difference in electrochemical potentials can create a thermodynamic force

which opposes the thermodynamic force due to a temperature gradient. The loading

condition required to achieve reversibility is satisfied when these forces are equal in

magnitude. Fig. 1.6c demonstrates this situation in which transport at energy EA is

reversible. Note as well that the hot and cold Fermi-Dirac distributions cross at EA ,
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Figure 1.6. Ballistic transport between two electron reservoirs. (a) Voltage-baised
transport (Ml-l =1= Me) under isothermal conditions (TH = Te ). The diffcrcllce in
electrochemical potentials, Me - MH = eV, allows a single electron to flow from the
cold reservoir to the hot reservoir. Upon arrival it thermalizes, doing work on the hot
reservoir. The Fermi-Dirac distributions of the reservoirs are shown on the right. (b)
Thermally induced transport (TH =1= Te and MH = Me = M) removes work from the hot
reservoir and deposits work into the cold reservoir (see Eq. (1.17)). The corresponding
Fermi-Dirac distributions cross at p. (c) Under the influence of both a thermal bias
(TH =1= Te ) and voltage bias (MH =1= Me), the system is allowed to operate reversibly
at the adiabatic energy, EA , with Carnot cflicicncy (see Eq. (1.19)). l\otc that E A is
the energy at which the two Fermi-Dirac functions cross. Therefore, electrons with
[ > EA flow from hot to cold and in the opposite direction when [ < EA. Electrons
at EA can flow in both directions, indicating reversible transport.
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meaning that an electron with energy EA is just as likely to be in the hot reservoir

as the drain reservoir, and both the heat current and the charge current at EA stalls.

It is now possible to calculate the efficiency achieved by the reversible particle

heat engine, which is the ratio of useful work, W, to the input heat, Q. For a

thermoelectric system, the useful work emerges as the difference in electrochemical

potentials, W = IMe - MHI, whereas input heat, Q, is simply the magnitude of energy

extracted from the hot reservoir during electron excitation (see Eq. (1.17a)) so that

Q = IrSQHI = E - MH· The efficiency is therefore

W Me - MHr; - --- Q - E - MH .

Calculate of the efficiency in the adiabatic limit where E = EA is straightforward.

Using Eq. (1.19) for EA provides

Me - MH
r;=---;-----=-----=---,---:-:-==--------==-----

(MeTH - MHTc) / (TH - Tc) - MH

(Me - MH) (TH - Te )
(MeTH - MHTc) - (TH - Te) MH

(Me - MH) (TH - Te )
(Me - MH) TH + (MH - MH) Te

Me - MH TH - Te

Me - MH TH

= 1- Te
TH

= r;e·
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This proves that in principle a particle heat engine can indeed operate reversibly, and

when doing so, operates at Carnot efficiency.

Thermoelectrics in Reduced Dimensions

The generally poor thermoelectric performance of bulk homogeneous materials

can be partly attributed to entropy production by electron transport and partly

due to phonon heat leaks. When entropy-producing electron transport is allowed,

thermoelectric efficiency suffers. The fundamental challenge is to discourage phonon

flow through the thermoelectric lattice while at the same time encouraging electron

flow near the adiabatic limit (see Eq. (1.19)). Thus electronic optimization for the

purpose of thermoelectric efficiency requires energy selectivity, that is, the ability to

filter electrons based on their energy. Bulk materials cannot meet this challenge.

However, through band engineering or density of states (DOS) engineering, electron

transport can be modified in an energy-selective manner to enhance efficiency. This

has been shown theoretically [10-14] and experimentally [15, 16]. It is widely

accepted in the field of thermoelectrics that nanoscale materials are uniquely suited

for electronic optimization while simultaneously reducing phononic heat losses [17].

As is true for many solid-state energy applications [18], nanotechnology is the future

of thermoelectrics.

Current thermoelectrics research is in general focused on either phonon reduction

or electrical optimization. Phonon reduction in atomically layered superlattice
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structures [19] is a good example of nanoscale thermoelectric engineering. However,

electrical optimization in such systems has proved more difficult. Of the vast

multitude of attempts to increase thermoelectric performance in layered materials

(primarily via phonon reduction), few have been successful (see Fig. 1.9). Research

on phonon reduction in thin-film systems will certainly influence the future of

thermoelectrics.

10
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Figure 1. 7. The charge-carrier density of states (DOS) in different dimensionalities.
As material is chiseled away, a bulk material transitions into a two-dimensional
electron gas (2DEG), than a quantum wire, and finally a quantum dot. The associated
DOS, D (c), as a function of energy, c, drastically changes as the dimensionality is
reduced. The sharp DOS modulations of ID and OD systems can be harnessed to
enhance the efficiency of nanostructure-based thermoelectric materials.

The research presented here focuses primarily on electronic optimization by means

of electron energy filtering. A very simple way to filter electrons by energy is to

reduce the dimensionality of the system thereby reducing the charge carrier DOS.
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The (electronic) dimensionality of a system is reduced when one or more of its spacial

dimensions is made smaller then the Fermi wavelength of the conduction electrons.

Fig. 1.7 illustrates how the DOS changes as the dimensionality of the system is reduced

from three-dimensional (3D) down to zero-dimensional (OD). Band-gap engineering

and reduced dimensionality offer the possibility to place strong energy restrictions on

the charge carriers.

In that direction, nanowires are being intensely explored as possible high­

performance thermoelectrics motivated by their reduced dimensionality and low

thermal conductivity owing (in part) to their large area-to-volume ratio [20-23]. On

the other hand, phonon drag has been credited with increasing the thermoelectric

performance of silicon nanowires [23]. Another approach toward energy filtering is

the use of a single nanoscale heterostructure barrier embedded in a bulk material,

which passively selects hot electrons for emission resulting in evaporative cooling

[24]. A myriad of other complex nanoscale materials are currently being explored

for thermoelectric applications; see Ref. [25] for a review of such systems. For the

remainder of this work, the focus is turned toward ID and OD systems which operate

as electron energy filters.

The Landauer Formalism

The Landauer formalism describes ballistic transport in one-dimensional (lD)

constrictions. The original paper [26] introduced a new interpretation of transport

physics in which carrier flow (subject to incoherent scattering) gives way to an
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asymmetric charge accumulation and therefore the electric field. This contrasts

the notion that the applied field is the source of carrier transport and resulting

charge current. Later Landauer [27] reported a more general relationship between

transmission and conductance, and the original Landauer formula appearing in this

text related the two-terminal, zero-temperature electrical conductance of a 1D channel

to its transmission probability. Later a multi-terminal formula was derived by

Biittiker [28] (the Landauer-Biittiker formula). The ubiquitous Landauer formalism of

today predicts the current produced when charge carriers flow through a 1D channel

in a quantum mechanically coherent and elastic fashion. In this thesis, the Landauer

formalism is the primary theoretical tool with which experiments will be analyzed.

The Landauer formula states that the two-terminal, finite-temperature current

(per conduction mode) through a 1D channel is [29, 30]

(1.20)

where T (c) is the energy-dependent quantum transmission function of the channel,

and fH,C are the Fermi-Dirac distributions in the source and drain reservoir,

respectively (see Eq. (1.14). Note that the sign convention chosen here for I provides

negative current when excess electrons in the hot source are transported into the cold

drain (as is measured experimentally).
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The electrical conductance, G, of the channel is easily calculated using Eq. (1.20)

where Eq. (1.15) has been used to calculate the derivatives d~H.C/dV. It is convenient

to define a kernel, 8, of the form

(1.21 )

where n = 0, 1,2. Then the conductance can be written

(1.22)
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The thermodynamic coefficients, Gth and K (see Eqs. (1.4)), can be written [31-33],

(1.23a)

(1.23b)

Near equilibrium, in the case of small bias and small temperature difference (6..TIT «

1 and eV « kT), the temperatures are approximately equal, TH ~ Te = T and V ~ o.

In this case, ~H = ~e = ~ and fH = fe = f. In this regime, en becomes

lim en = (~)n ~ df
b.T=O e kT d~v=o

_(k) n ~n dE df
- - ---

e kT d~ dE

= (~)n ~kTdf
e kT dE

= (~)n ~ndf.
e dE

Inserting this approximate kernel into Eqs. (1.22) and (1.23) and performing Sommer-

feld expansions (see Appendix C of Ref. [8]) of the integrals gives

(1. 24a)

(1.24b)

(1.24c)
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where Lo = 7r
2/3 (k/e)2 is the Lorenz number. Using the above and Eq. (1.3), the

Seebeck coefficient can be written

3 = _ Gth

G
d-r(e:) I

de:
e:=f.L

~ -eLaT T (J-L)

2e2 d-r(f;) I
h df;

e:=1J.= -eLoT~2~2~--~
{-T(p)

dG(e:) I
de:

= -eLoT G (;:;fk

= -eLoT dd lnG(E)1 '
E f;=1J.

(1.25)

which is in perfect agreement with the Mott formula [34]. Next, using Eqs. (1.11b)

and (I.24c), the thermal conductance can be written,

2 2 ( 2)K:el = -K - 3 GT ~ LoTG - 3 GT = Lo - 3 GT ~ LaGT, (1.26)

where the last approximation assumes 32 « Lo, which is provided by Eq. (1.25) when

T (E) is a smoothly varying function.

The relationship between /'i,el and G given in Eq. (1.26) is known as the Wiedemann-

Franz law [8, 35]. However, Lo, as it appears in the Wiedemann-Franz law, is not

universal but depends on the dimensionality of the system [36, 37]. Moreover, theory

predicts violations of the Wiedemann-Franz law in the Coulomb-blockade regime due
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to strong energy-dependent processes [38]. Deviations of this nature are not restricted

to the Wiedemann-Franz law. In fact, all the thermoelectric coefficients provided by

the Sommerfeld expansions in Eq. (1.24) might be violated if T (c) is highly modulated.

The ZT Figure of Merit

In the field of thermoelectrics, device performance is almost exclusively measured

in terms of the ZT figure of merit. Therefore, to relate the research presented here

with other results in the field, it is necessary to introduce this quantity and show

its relation to efficiency. The derivation is performed by treating the thermoelectric

system as a electronic circuit.

The thermoelectric device in Fig. lola with resistance R (conductance G = 1/R)

does useful work when it is connected in series with an electric load of resistance RL .

In this case, the current, I, flowing through the system is

1= 11th
R+RL

(1.27)

The efficiency of the system is the ratio [39]

W 12R L

TJ = Q~ = Q+ Q/ (1.28)

where Q is the thermodynamic heat flux in Eqs. (1.7) and (1.10). Using Eq. (1.11a)
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this heat flux can be written

where the total thermal conductance /'l, = /'l,el + /'l,ph has been used rather than /'l,el

alone in order to include phononic heat losses. Note that TH is used, that is, II = TH 1

because the heat flux is leaving the hot reservoir.

QJ in Eq. (1.28) is due to Joule heating and is the heat flux returned to the

hot reservoir by Joule heating in the thermoelectric material, making the sign of QJ

negative. Only half of the Joule heating is delivered to the hot reservoir, while the

other half is delivered to the cold reservoir. Thus the magnitude of QJ is only half

1
the total Joule heating making QJ = -212R.

Putting these heat fluxes into Eq. (1.28) gives

12RLT/ - -------------c;--

- 8THI + /'l, (TH - Tc) - ~I2R

RL/R

The ratio T/c = (TH - Tc) /TH is Carnot efficiency, and T/ can be expressed relative to
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carnot efficiency: 'rJI'rJc, Using Eq. (1.27) to eliminate I gives

R IR + 1 + ----'5:I.- (R IR + 1)2 - 1. TH-TC .
L 32TH L 2 TH

Defining the ratios m - RL/Rand Z = S21Kr = S2C1K, the (relative) efficiency

becomes

m
'rJI'rJc = )2' (1.29)

(m + 1) + (m+l _ 1 TH-TC
ZTH 2 TH

The maximum efficiency is reached when m is optimized. The best value of m is

found by solving the condition

d 1
0= -'rJI'rJc = 2

dm (m + 1) + (m+l) _ 1 TH-TC
ZTH 2 TH

(
m(1+2 m

+
1
))ZTH

After some algebra, the optimal value of m, denoted M, is given by

M = )1+ ZT,

where T = (TH + Tc ) 12. Feeding Minto Eq. (1.29) provides the maximum relative

efficiency,

M
'rJI'rJc = 2(M + 1) + (M+l) _ 1TH-TC

ZTH 2 TH

M-1
(1.30)

It's clear that thermoelectric efficiency limits to Carnot efficiency as ZT (and
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therefore M) limits to infinity. And TJ/TJc is monotonic in ZT, as shown in Fig. 1.8.

Therefore, maximizing ZT is equivalent to maximizing efficiency. Experimentally,

it is not convenient to measure the current produced by a thermoelectric under a

load resistance RL , which satisfies the condition R L / R = M = VI + ZT, because

ZT is not known. Since the better the ZT, the better the efficiency, the standard

experimental shortcut it to simply measure ZT, which is given by,

ZT = S2GT = S2GT

"" ""el + ""ph
(1.31 )

This parameter is know as the "ZT figure of merit" and is determined by measuring

the Seebeck coefficient and conductances separately. Sometimes a bipolar thermal

conductance term, ""bip, is also included in "" to account for the thermal diffusion of

electron-hole pairs not contributing to net charge transport [40].

The ZT figure of merit has been rooted so deeply into the thermoelectrics field that

it has become not just a metric for performance, but a starting point for innovation.

A common approach to thermoelectric research is to maximize 5 while minimizing "".

However, the underlying electronic system couples 5, G, and ""el making it difficult,

if not impossible, to increase ZT by addressing anyone parameter alone [41]. While

record ZT values are occasionally reported (see Fig. 1.9), the devices boasting the

highest laboratory ZT values are often not reproducible [18], let alone commercially

viable.
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Figure 1.8. A log-linear plot of efficiency relative to Carnot efficiency, 7J/,rJc, as a
function of the ZT figure of merit (see Eq. (1.30)). TJ/TJc is also influcnce by the
ratio Tc/TH . At every value of ZT, TJ/TJc is bounded above in the limit Tc/TH ----7 0
(Tc « nd and bounded below in the limit Tc/TH -) 1 (Tc ~ T]-]). All experiments
operate somewhere in the gray shaded region.

In order to compete with existing thermal-to-electrical energy conversion tech-

nologies, thermoclectric efficiency must increase a.bove 25%-30%, which is roughly

TJ/TJc = 1/2 at the intended temperature. Therefore, according to Fig. 1.8, the

ZT of thermoelectrics must be increased to above 3 (or even higher if various

loss mechanisms are taken into account) before they become viable alternatives to

conventional heat engines. Fig. 1.9 highlights the most prominent ZT values reported

in the past decade, which are all below 3. Clearly the field of thermoelectrics still has

room for improvement. All the recent high-ZT publications focus on either nanowires
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Figure 1.9. High-profile journal articles reporting high ZT values in the past
decade. Thermoelectrics need a ZT > 3 to compete with conventional energy
conversion technologies. The squares are various thin-film Te alloys; the triangles are
Si nanowires (NvV); and the circles are nanometer-structured (NS) bulk materials,
that is, materials engineered with underlaying nanoscale morphology. The scale on
the right, 'I]/,r}c, is the approximate best-case efficiency relative to Carnot efficiency
calculated using Eq. (1.30). The ZT values (in chronological order) are from
Refs. [16, 22, 23, 41-46].

or bulk materials with underlaying nanometer-scaled features, illustrating the trend

toward thermoelectrics based on nanotechnology.

Realizing Carnot Efficiency Experimentally

With the background, theory, and motivation firmly established, the intention

of this thesis can be clearly understood. The physical understanding of thermally

induced electron transport from the viewpoint of efficiency remains relatively
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unexplored. Quantum dots are highly tunable electron energy filters capable of

efficient thermal-to-electrical energy conversion. The goal of this research is to use a

nanowire-based quantum dot to explore thermoelectric efficiency optimization.

Nanowires

Modern fabrication and synthesis techniques have opened doors into the meso­

scopic world offering a myriad of semiconductor-based electronic quantum dot designs.

Historically, the most popular architecture is the two-dimensional electron gas

(2DEG) in which electrons are confined to a thin plane defined during epitaxial

growth. Quantum dots are defined in 2DEGs either electrostatically with external

metallic gates or by chemical etching. The next most common quantum dot system

is the nanowire, which is gaining popularity as nanowire fabrication techniques con­

stantly emerge and evolve. Quantum dots can be defined in nanowires electrostatically

using finger gates on top of an insulating dielectric similar to what is done in 2DEG

systems. Alternatively, a quantum dot can be defined in a nanowire by embedding

two tunnel barriers during fabrication. This fabrication entails sandwiching two thin

semiconductor slices « 10 nm) into a host semiconductor material that has a lower

band gap (see Fig. 1.1Oa). If small enough, the region between the two barriers

becomes a quantum dot, and the entire package is referred to as a double-barrier

quantum dot.

For thermoelectric applications, the heterostructure quantum dot is far superior

to a quantum dot defined in either a 2DEG or by finger gates in a nanowire. The
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mam reason being scalability; heterostructure nanowires can be grown in parallel

in arbitrary numbers. A "forest" of heterostructure nanowires protruding from a

growth substrate could be capped and operated as a thermoelectric. Geometry forbids

the parallelization of 2DEG quantum dots, and addressing arrays of homogeneous

nanowires with finger gates is impractical, if not impossible. Fig. 1.10 depicts a

possible design of a thermoelectric device based on heterostructure nanowires.

(a) (b)

(c)

Figure 1.10. (a) Two tunnel barriers embedded in a host semiconductor nanowire.
The result is a heterostructure nanowire defining a double-barrier quantum dot. (b)
An array or "forest" of heterostructure nanowires standing on their growth wafer. (c)
A schematic of a prototype thermoelectric device based on heterostructure nanowires
arrays. The left array is made using n-type nanowires and the right array with p-type.
In this way, the nanowire-based device operates in the same way as the conventional
bulk thermoelectric devices shown in Fig. 1.3.

Outlook

Before building a prototype dt-)vicc like the one shown in Fig. 1.10c, the efficiency
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of single heterostructure can be studied in detail. This research is crucial to the

understanding of nanoscale thermoelectrics and will guide future research and design.

This dissertation demonstrates that heterostructure InAs/lnP nanowires operate as

electron energy filters resulting in a nanoscale thermoelectric device with an electronic

efficiency up to 95% Carnot efficiency manifested experimentally in (electronic) ZT

values greater than 1000.
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CHAPTER II

FABRICATION AND EXPERIMENTAL METHODS

Nanowire Growth and Properties

The InAs/InP heterostructure nanowires used in this research were grown

epitaxially by collaborators at Lund University. The word epitaxy was coined to

describe growth in which species are deposited onto a surface and allowed to diffuse

to a preferred (energy reducing) crystallization site. In this way, epitaxial growth is a

bottom-up approach in which the growth species are like building blocks, as opposed

to top-down approaches, such as etching or milling, where large objects are made

smaller.

The nanowires from Lund are grown using chemical beam epitaxy (CBE) [47],

which is similiar to molecular beam epitaxy (MBE) [48]. In both techniques,

growth species are injected into a vacuum chamber where they impinge on the

growth substrate and crystallize. In CBE, the group-III and -V source materials

are metalorganics, which get injected into the growth chamber similar to an MBE

technique. The respective precursors Lund uses for the As, P, and In growth

species are the metalorganics tertiary-butyl-arsine (TBA), tertiary-butyl-phosphine

(TBP), and tri-methyl-indium (TMI). During injection, the group-V metalorganics
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are decomposed or thermally cracked with a heated filament. As a result, As2 ,

As4 , AsH3 , P 2 , H2 , and various hydrocarbons enter the growth chamber, while other

material remains at the filament. Uncracked TMI is injected into the growth chamber,

that is, as indium and three carbon groups, In(CH3h. The In(CH3)3 can diffuse

around on the growth substrate, and while doing so, it decomposes by losing one

carbon group at a time, transitioning through In(CH3)2 and In(CH3)1 until it is only

In.

InAs/lnP Heterostructure Nanowire Growth

Nanowire growth was first described in the 1960s [49], and today the resulting

vapor-liquid-solid (VLS) growth model remains the main model for understanding

nanowire growth, though other similar mechanisms have been suggested [50, 51].

Before growth, small « 100 nm) metallic particles are deposited onto a growth

substrate. The essence of this model as it stands today is that the metallic particles

seed nanowire growth by providing a preferred site for crystallization at the interface

between the particle and the growing nanowire. The various growth species are

collected from the surrounding resources. While the In(CH3)3 species is free to diffuse

and find its way to the growth site, the Asx and the P x have a negligible diffusion

lengths and must impinge directly onto the seed particle in order to contribute to

growth. The crystal forms atomic layer by atomic layer, and in doing so, lifts the

seed particle off the growth substrate. The resulting nanowire grows up from the

substrate underneath each seed particle until the input of source material ceases.
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Figure 2.1. Heterostructure InAs/InP nanowires are grown by (1) depositing
Au seed particles (approx 50 nm in diameter) onto an InAs growth wafer. The
InAs crystal grows in the (111) B direction normal to the surface. (2) Asx and
In(CH3h sources are introduced into the growth chamber. Decomposing In(CH3)x
diffuses around eventually delivering In to the Au seed particle. Only via direct
impingement can Asx find the seed particle. In and As crystallize below the Au
seed particle and form an InAs wurtzite crystal. (3) Alternating between Asx and
Px during the growth process creates a heterostructure InAs/InP nanowire. (a) A
TEM image of an InAs/InP heterostructure nanowire. (b) A high-resolution TEM
image demonstrating a very sharp InAs/InP interface. (Images courtesy of Dr. Jakob
Wagner, Lund University.)
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Homogenous nanowires result from using a constant supply of a particular growth

species. Heterostructure nanowires can be achieved by alternating growth species.

The nanowires exhibit n-type semiconductor behavior, and it is believed that the

hydrocarbons present during growth act as unintentional dopants. Fig. 2.1 depicts

CBE nanowire growth as explained by the metal-particle-seeded growth model. More

details regarding the CBE growth of nanowires at Lund can be found in Refs. [52, 53].

The InAs/lnP heterostructure used in this research were grown on a (l11)B InAs

substrate using gold seed particles deposited using an aerosol technique or electron

beam lithography (EBL). The resulting nanowires have a hexagonal cross-section

and a wurtzite crystal structure. The truly remarkable property of nanowires is their

extreme geometry which reduces the strain between dissimilar materials and prevents

lattice defects, dislocations, voids, etc. As a result, the interface between the InAs

and InP portions of an InAs/lnP heterostructure nanowire is nearly atomically sharp,

as shown in Fig. 2.1b.

Sample Design and Processing

Sample devices were processed by removing InAs/lnP nanowires (typically 50 nm

diameter and roughly 1 /-lm long) from their growth substrate and deposited onto an

n-doped Si wafer capped with a 100 nm electrically insulating SiOx layer (see Fig. 2.2).

The nanowires are then located using scattered light provided by a dark-field setup
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in an optical microscope. Once the relative positions of the nanowire are known, the

sample substrate and nanowires are covered with PMMA resist.

At this point the EBL pattern is designed manually to each wire, and then

the sample is exposed in the EBL writer. After EBL exposure, the PMMA is

developed and then the sample is given an ozone etch to remove resist residues before

metallization. InAs is particularly convenient for performing electrical measurements

because the Fermi energies of metals and InAs are similar enough to offer an Ohmic

electrical junction between the two materials. Nickel is used as the base layer of the

electric contacts because it adheres well to the sample substrate and provides a good

adhesion layer for gold. To decrease lead resistance, a final metallic layer of gold

is deposited on top of the nickel. However, a native oxide forms on the surface of

InAs nanowires apon exposure to atmospheric gases, which is unavoidable during the

fabrication process. In order to remove this native oxide, the sample is passivated in

a solution of NH4Sx and water. Immediately following the passivation process, NilAu

electrical leads are contacted to the InAs ends of the nanowire by first evaporating

25 nm of nickel followed by 90 nm of gold. Finally, the PMMA resist is removed, and

the sample is cleaned and dried. A contacted nanowire is shown in Fig. 2.13. For

further growth and fabrication details, see Ref. [52-55].

Considerations for Thermoelectric-specific Devices

Nanowire samples intended for thermoelectric measurements must have two

abilities: the ability 1) to apply a temperature gradient along the longitudinal axis
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Figure 2.2. Fabrication of a nanowire-based quantum-dot device. (a)
Heterostructure nanowires are removed from their growth substrate and placed on
(b) a sample wafer that includes an electrically insulating SiOx capping layer on top
of n-cloped silicon (not to scale). The AulNi source and drain contacts are defined by
EBL and subsequent metallization. The n-doped silicon wafer serves as a global back­
gate. Altogether the double-barrier quantum-dot device operates as a single-electron
transis tor.

of the nanowire and 2) to measure electrical voltages and currents in the nanowire.

More specifically, it is the electron gas in either the source or drain contact which

must be heated relative to the opposite contact. The approach presented here is

to heat the electron gas directly by applying a heating current through the metallic

source contact (see Fig. 2.13). This guarantees that heated electrons are injected into

the nanowire, regardless of electron-phonon coupling. From a fabrication point of

view, the extra EBL design and alignment required to achieve this heating geometry

is minimal. However, this approach requires a considerable amount of attention in

the electronic setup because the heating circuitry and measurement circuitry are one

and the same. Details of this method are explained later in Section II.4.4.

As thermoelectric experiments become more demanding, future devices might
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require more care regarding heat loss mechanisms. For example, improved devices

might suspend the nanowire to reduce heat flow into the substrate and use

superconducting leads to stop heat flow through the electrical contacts.
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Theoretical Considerations

This section details the background theory of quantum dots, specifically Coulomb

blockade as explained by the constant interaction model. Included is a discussion

regarding the quantum transmission function of a double-barrier quantum dot.

Details are provided about the theoretical modelling of differential conductance data

and an experimental approach for measuring the energetic width of transmission

peaks.

Quantum Dots, Coulomb Blockade, and the Constant Interaction Model

If electrons are confined to a sufficiently small region (see Fig. 2.3), then their

behavior is dominated by two effects. First, quantum confinement in all three

dimensions can be achieved by reducing the dimensions of the region until they are

comparable to the Fermi wavelength of the electrons. For this reason, quantum

confinement is most easily achieved in semiconductor systems where typically

small effective mass (relative to metallic systems) increases the Fermi wavelength

and therefore loosens the dimensionality requirements from nanometers to tens of

nanometers. Once the electrons are confined, they become localized to within a small

"dot" in real space, hence the name "quantum dot". Due to the resulting discrete

energy spectrum, quantum dots behave in many ways as artificial atoms. This analogy

is so pervasive that much of the atomic physics vernacular has become common in

the quantum dot field. For example, even though confinement in quantum dots is
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not produced by a central force and, therefore, the electrons do not have spherical-

harmonic wavefunctions, it is common to speak of quantum dot «orbitals".

InAsInAs

( ) (b)
dot dot

ource ( drain • •

~
Vs VD

(d) (c) x
1\

fls flo

Figure 2.3. (a) A schematic of a quantum dot connected to source and drain
contacts via tunnel junctions, which allow electrons to tunnel between the dot and
either the source or the drain. The gate is capacitively coupled to the dot and offers
continuous external control of the dot's energy. (b) A capacitive circuit equivalent
to the quantum dot system used to derive Eq. (II. 1). The capacitances between the
dot and leads are CS,D and between the dot and gate is Cc . (c) Two InP barriers
embedded in an InAs nanowire create a double-barrier quantum dot. A nanowire tens
of nanometers in diameter quantizes electron momentum in the x- and y- directions
while the barriers quantize electron momentum in the z-direction. (d) The resulting
energy landscape of the double-barrier quantum dot. The InP barriers have a larger
band gap than the host InAs. In addition to the number of electrons in the dot,
the electrochemical potential of the dot is sensitive to the charge in the source and
drain electron reservoirs. This charge is quantified by the electrochemical potentials,
/-LS,D = -eVS,D, appearing in Eq. (11.1).

Second, Coulomb repulsion, although safely ignored in most systems, is a

classical effect caused by the Coulomb forces among interacting electrons and can be
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comparable to or even larger than quantum effects and therefore cannot be neglected.

For each electron added to the dot, there is an associated energy cost, and the

tunneling of electrons from the source or drain reservoirs into the dot is prevented

if these energy requirements are not fulfilled; this phenomenon is called Coulomb

blockade. For quantum dots on the scale of one micron, the quantum energy spacing

is very small compared to the Coulombic energy, and the electron transport properties

of such systems are entirely dominated by Coulomb blockade.

The first comprehensive overview of Coulomb blockade [56] remains a very

worthwhile resource. For examples of the vast variety of quantum dot systems,

fabrication techniques, experimental measurements, and an updated theoretical

treatment of quantum dots, including electron-spin effects, see Ref. [57]. Here it

is enough to review briefly the physics relevant to nanowire quantum dots and

thermoelectrics. The most widely used theoretical treatment of quantum dots is the

constant interaction model, which explains the phenomenon of Coulomb blockade

using an energetic approach based on two assumptions.

First, the total of all the Coulomb interactions provides an effective total

capacitance, parametrized by C'L" which is constant as a function of electron number.

The Coulomb interactions to consider are those among the electrons in the dot in

addition to those between the electrons in the dot and the external environment.

The charge in the dot is -e (N - No), where N is the number of electrons, and

No accounts for the net static charge trapped in or on the semiconductor material
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surrounding the quantum dot. The external charges include those in the source,

drain, and gate. The respective charges in these reservoirs are quantified by CGVG ,

CsVs, and CDVD , where Ci are the capacitances between the dot and each of the three

reservoirs, and the Vi are the voltages applied to the leads and gate (see Fig. 2.3b).

The total charge is ~iQi = -e (N - No) + CG VG+ CsVs + CDVD, and therefore, the

total capacitive energy of the dot is (~iQi)2 /2CY:" where CY:, = CG + Cs + CD is the

total capacitance. Therefore, the energy in the dot changes when N changes, but CY:,

remains constant, which is why this model is called the constant interaction model.

The second assumption of this model is that the quantum energy spectrum is

unaffected by N. That is, the Nth electron placed in the dot assumes the Nth

quantum orbital, and all orbitals remain static as electrons are added. Under these

assumptions, the total energy U (N) of a dot with N electrons is simply the sum of

the capacitive energy and the quantum energies,

U (N) = (~iQi)2 + -£ En
2CY:, n=l

1 N

= 2CY:, [-e (N - No) + CGVG+ CsVs + CD VDl
2 + 'flEn,

where En is the energy of the nth quantum energy level.

By definition, the electrochemical potential of the dot, J1 (N), is the change in
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energy generated by adding one electron, that is,

f-L (N) == U (N) - U (N - 1)

2
e [2 2] e= - (N - No) - ((N -1) - No) - -C (CGVG+ CsVs + CDVD) + EN
2C~ ~

e2 e
=-C [2(N-No)-1]--C (CGVG+CSVS+CDVD)+EN

2 ~ ~

( 1) Ee
= Ee N - No - 2 - ---;- (CGVG+ CsVs + CDVD) + EN,

where Ee = e2
/C~ is the charging energy. The first two terms arise from classical

Coulomb interaction whereas the last term is a quantum effect. The first and

last terms are quantized by N. The second term is made continuous by the

ability to control the externally applied voltages continuously, and so f-L (N) can

be tuned continuously. Nonetheless, experimental measurements will reflect charge

quantization as single electrons hop on and off the dot thereby changing Nand f-L (N)

discontinuously.

The addition energy, Eadd, is the energy difference between two consecutive

electrochemical potentials,

E add (N) = f-L (N) - f-L (N - 1) = Ee + t::,.E (N) , (11.2)

where t::,.E (N) = EN - EN- 1 is the difference between the Nth and (N - l)th

quantum energies. t::,.E (N) = 0 when the Nth and (N - l)th levels are degenerate
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(either spin degenerate or geometrically degenerate). In this case, Eadd = Ec and the

definition of the charging energy becomes clear: it is the energy difference between

successive electrochemical potential levels due to charging effects alone. When a

quantum dot is cooled so that Eadd < kT, each f1 (N) energy resonance can be

resolved by differential conductance measurements (see, for example, Fig. 2.8).

A complete quantitative description of f1 (N) requires calculating the quantum

confinement along the axis of the double-barrier structure as well as the lateral

confinement provided by the nanowires itself. The InAs nanowires used in these

experiments have a hexagonal cross-section, which is a challenging boundary condition

for wavefunction calculations. However, it is reasonable to approximate the nanowires

as cylindrical and solve the corresponding 3D Schrodinger equation. Once the

quantum eigenenergies are found, the charging energy can be estimated based on

the nanowire geometry [58, 59], and the total energy spacing (quantum plus classical)

can be calculated [60]. Fig. 2.4 shows the results of such a calculation performed

numerically using MATLAB.

One last consideration is to determine the relationship between the gate voltage,

VG, and f1 (N). Conveniently, Eq. (ILl) reveals the (linear) response of f1 (N) to VG,

df1 (N) Ec CG
--- = --CG = --e = -ae

dVG e C'E, ,
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Figure 2.4. (a) The quantum energy levels of a double-barrier structure embedded
in a 55 nm diameter nanowire with 10 nm barriers and a 7 nm barrier-separation
distance. This is the result of a full 3D calculation. The black, single-lined energy
levels are two-fold spin degenerate, while the blue, dumbbell-shaped energy levels are
four-fold degenerate, owing to spin degeneracy and geometric degeneracy. (b) The
resulting net energy levels after the classic charging energy, Ec = 8.3 meV, has been
included.

where

a == GeIGr, (II.3)

is the dimensionless "level arm" of the capacitively coupled gate voltage. Therefore,

Ve can be converted to p (N) using a. This conversion is very convenient because

often experimental measurements made as a function of Ve but must be expressed

in energy in order to compare with theory or with other energy scales of the system.

The procedure for determining a experimentally is presented in Section II.4.3.
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Quantum Transport Through a Double-Barrier Structure

Electron transport through a double-barrier semiconductor structure is analogous

to the propagation of light through a Fabry-Perot interferometer. In each apparatus,

electrons or photons with particular energies have near perfect transmission due to

the wave nature of both systems. These particular energies are the resonant energies

of the systems. This leads to a series of peaks in transmission as a function of energy.

In a Fabry-Perot interferometer, the energetic spacing between resonant energies is

periodic and is influenced only by the separation between the interferometer mirrors.

Predicting the resonant energies of a semiconductor double-barrier structure is more

difficult for many reasons. Solving the governing equation, the Schr6dinger equation,

and the associated boundary conditions requires finding solutions to transcendental

equations. Moreover, the physical parameters, such as the barrier widths and

separation distance, usually cannot be measured with an accuracy of more than 1­

2 nm, which is less than required for quantitative predictions of resonance positions

(see Fig. 2.5). Fortunately, the position of energy resonances are easily measured by

gate-voltage spectroscopy, where the back-gate scans the resonances of the double­

barrier structure through the source and drain electrochemical potentials. Each

resonance is observed by applying a small ac bias and measuring the subsequent

peaks in differential conductance as a function of gate voltage (see Fig. 2.8). A more

difficult task is to determine the energetic width of each energy resonance, which
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is distinct from the width of resonances seen in current or differential conductance

measurements.

The Fabry-Perot interferometer also produces peaks of a particular width, which

is related to the so-called finesse of the interferometer. The quality of the mirrors

(described by their reflection coefficient) and the alignment of the setup (the degree

to which the mirrors are parallel and the angle of incidence of the photon) dictates

the sharpness of the transmission resonances. Similarly, double-barrier structures

produce resonances of finite width owing to their quality. The alignment of incoming

electrons and the physical alignment of energetic barriers is uncontrollable in a

double-barrier device. However, the reflection coefficient of a double-barrier structure

is very sensitive to the geometry, band gap difference, and effective masses of the

semiconductor materials. Therefore, the experimentalist has much control over the

resulting resonance width of a double-barrier structure during device fabrication.

Indeed, devices with electrostatically defined, tunable barriers can provide tunable

resonance widths, but with undesired effects on the positioning and spacing of the

resonances.

It would be inappropriate in this text to derive the quantum mechanical wave

treatment of a double-barrier structure, because it has already been done elsewhere

and more completely than necessary here. The process involves calculating the

coefficients of all the wavefunctions in their various regions of the double-barrier

structure by considering the boundary conditions. The most important outcome of
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such an exercise is the quantum transmission function. From Ref. [30], the quantum

transmission probability of a symmetric double-barrier structure is,

Tr (c:, b, d) = 2 T (c:, b)2
T (c:, b) + 4R (c:, b) cos2 (kd - e)

(II.4)

where c: is electron energy, b is the width of the barriers, and d is the distance

between the barriers. T (c:, b) and R (c:, b) are the transmission and reflection

coefficients defined by the ratio of the incoming to outgoing and incoming to returning

wavefunctions, respectively, and are a function of barrier thickness,

( (
k2 + "?) 2 ) -1

T (c:, b) = 1 + 2k, sinh
2

(rb)

R (c:, b) = 1 - T (c:, b) .

(11.5)

(II.6)

Here k and, are the wavenumbers of the electron outside and inside of the barriers,

respectively,

where Eo is the barrier height (Eo = 740 meV for 1nAs/1nP heterostructure

nanowires) and m* is the effective mass. This theory assumes the barriers and
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host material have equal effective masses, which only approximates InAs/InP

heterostructure nanowires because m* = 0.023m for InAs and m* = 0.08m for InP.

The most interesting term in Eq. 11.4, cos2 (kd - 0), dictates at which energies

the electron achieves constructive interference and therefore an energy resonance. Its

phase factor is

[
k

2
,2 ]o= - arctan 2k, tanh (,b) + kb.

Tr (e, b, d) = 1 at resonance when cos2 (kd - 0) = O. Near such a resonance, a Taylor

expansion of the cos2 (kd - 0) term in Eq. 11.4 provides a transmission function of the

form [30],

(II.7)

where r n is the full width at half maximum (FWHM) of this Lorentzian-shaped

transmission peak centered at resonant energy en- Note this equation is only strictly

valid for e near en' It is particularly convenient to include a unitless amplitude in

r (e) when doing numerical calculations to account for other loss mechanisms in the

system. It will be assumed that all r n are approximately equal so that r n = r.

A theoretical estimation of r that ignores the classical Coulomb interaction among

electrons is given by [30],

r= (II.8)

where T and R are defined by Eqs. (II.5) and (II.6), respectively. r becomes a function

of band d through T and R, as shown in Fig. 2.5. The charging energy is not reflected
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Figure 2.5. A linear-log plot of the Lorentzian l"vVI--IM, r, calculated numerically
using Eq. (11.8). r / k is plotted as a function of the barrier width, b, for three different
barrier separation values, d = 10, 20, and 40 nm (from top to bottom). r can be
tuned by orders of magnitude by changing b by only a few nanometers. Unfortunately,
if b is measured with a ",2 nm uncertainty, the uncertainty in r will be an order of
magnitude. If b is sufficiently large, r « kT at cryogenic temperatures (T < 10 K).
Inset: A labelled illustration of a double-barrier structure with an energetic barrier
height Eo and the associated Lorentzian-shaped quantum transmission function of
width r. Eo = 740 meV for an 1nAs/1nP heterostructure.

in Eq. (II.8), and therefore the r predicted by this equation is too large owing to the

Coulomb "squeezing" of resonances into a smaller region of energy space. Therefore,

Eq. (11.8) must be considered an upper limit on r, and in practice, a quantitative

value of r can only be found using experimental data. Nonetheless, Fig. 2.5 illustrates

that r is very sensitive to the barrier width and barrier separation making it possible

to engineer double-barrier quantum-dot devices with energy resonances which are

very sharp, that is, r « kT.
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Fitting Differential Conductance Data

The strategy is to derive an analytical expression for the differential conductance,

G = dI / dV, which can be used to fit experimental data. In such a fit, r is assumed

to be much smaller than kT so that the transmission function can be approximated

as a Dirac-delta function. Fortunately, in many applications the precise value of r

is unimportant, only its value in comparison to kT is important. If the differential

conductance data can be satisfactorily duplicated by the approximate equation, then

it is fair to conclude that the differential conductance peak results from a thermally-

broadened Dirac-delta resonance.

Because of the Lorentzian T (c) (Eq. (II.7)) appearing in the integrand of the

Landauer formula (Eq. (1.20)), the expression for G has no known analytical solution.

Therefore, as recourse, an approximation must be made. In the limit of r « kT,

the transmission function T (c) takes the form of a Dirac-delta function, T (c) =

/0° (c - co), where /0 is its energetic "strength". Under this assumption, G reduces

to

where afS,D/a~S,D are evaluated at c = co. Because /0 is unknown, the overall

prefactor ultimately becomes a fit parameter, A, the amplitude of the conductance



58

peak. Taylor expanding the above expression to second-order in V gives

G = A h2(ea(VG - va)) [1 + (~)2 (2 _ 3 e h2(ea(VG - va)))] (II 9)
sec 2kT 4kT s c 2kT ,.

where va = colae is the gate voltage at which the differential conductance peak

is centered. A complete derivation of this equation is provided in Appendix A.

When V = 0, the result limits to the zeroth-order Taylor expansion, which has been

derived elsewhere, see for example Ref. [61]. The importance of including the second-

order term is to determine the extent to which V broadens differential conductance

peaks. Usually this broadening is quite small. However, this extra effort improves the

restrictions which can be placed on r, which is after-all the main purpose of fitting

differential conductance peaks.

Measurement of the Quantum Transmission Width

Comparing the measured performance of quantum-dot thermoelectric devices

to theory requires knowing the actual value of r because thermoelectric transport

processes are very energy sensitive. It is possible to estimate r using experimental

differential conductance data in conjunction with numerical integration techniques.

However, such fits have only been able to place upper-limts on r.

The essence is to numerically fit measured data with the isothermal version of
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Eq. (1.22) given by,

dI J(dis diD)
G = dV = -A d~s + d~D T (e) de,

where the overall amplitude A is a fit parameter, the arguments in the Fermi-Dirac

distributions are ~S,D = (e - aeVG ± eV/2) /kT, and T (e) is given in Eq. (II.7). The

fitting algorithm searches the three-dimensional parameter space of A, r, and eo to

find the best fit of the data. This is done by minimizing the penalty function,

where Xi is the ith measured data point and Ii is the ith value predicted by the fit.

eo is a very stiff parameter-that is, X responds quickly to changes in eo-and its

optimal value is found very easily. A is also fairly stiff, but is forced to change as r

changes. Unfortunately, r is not very stiff, in part, because r « kT. This ultimately

limits the accuracy to which r can be determined.

The Lorentzian tails decrease very slowly (l/e), but thankfully, the Fermi-Dirac

distributions fall off exponentially (e-C:/kT). The energy range of the numerical

integration should be chosen based on the temperature, say 20kT to be sure to catch

the whole Fermi window. Sufficient partitioning of the energy range into segments 8c

in width must be done to insure a reasonable sampling of the Lorentzian resonance.

Partitioning on the scale of 8c = r /10 is sufficient. Suppose that r = kT/10, then
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the partitioning is be = r /10 = kT/100. The number of terms, N, in the numerical

integration sum is roughly,

N ~ energy range = 20kT = 20kT = 2 000.
division size be kT/100 '

Note that this is the requirement for a single data point for a given gate voltage.

Fitting a single differential conductance peak could requires calculating 100 such

data points. Now consider doing this calculation for several values of A, r, and

co while searching the 3D parameter space. This simple fitting algorithm quickly

becomes very time consuming.

Time issues can be overcome with a faster computer and greater patience.

Ultimately these this fits are limited by the fact that r « kT at the experimental

temperatures considered here. In this regime, thermal broadening dominates the

outcome of G, and the r dependence is too weak to quantify accurately the value

of r. The numerical fits place constraints on r which are no better than what the

analytical fit using Eq. (II.9) provides. On the other hand, the assumption that

r = kT/10 could be wrong; r could be smaller. Therefore, decreasing be by another

order of magnitude (or more) might help resolve features in T (c) which otherwise

go unnoticed. Unfortunately, this would require an order of magnitude increase in

computation time.
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Experimental Measurements at Low Temperature

All experiments were performed in 3He and 4He cryogenic refrigerators at

temperatures between 240 mK to 10 K, where the temperatures reported here are

electron temperatures, rather than the lattice or cryostat temperatures.

Measurement Schemes under Isothermal Conditions

Electronic characterization is be done by performing rudimentary current-voltage

(IV) measurements in the absence of an applied temperature gradient. Differential

conductance measurements are best performed using an ac bias voltage so that lock-in

amplification techniques can be employed to improve the signal-to-noise ratio. Lock­

in measurements of electrical current are differential in nature because the lock-in

senses the change in current created by a change in applied voltage. The applied

ac voltage, 8V, is made very small-ideally much smaller than the thermal energy

kT-resulting in a very small change in current, 81. In this way, the ratio 81/8V is

a very good approximation of the true derivative dI/dV because 8V is very small. A

single Standford Research Systems (SRS) Model SRS830 lock-in amplifier can measure

differential conductance at zero dc bias voltage. The measurement of Coulomb­

blockade diamonds requires dc voltage biasing so that 81/8V can be measured as

a function of bias voltage. For this purpose, a dc voltage source (a Yokogawa Model

7651) was used in conjunction with an SRS830 lock-in amplifier, and the ac and

dc sources were combined using a voltage adder. The most simple voltage adder
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is a parallel combination of two voltage dividers joined at their ground resistor, as

shown in Fig. 2.6. So long as the resistance to ground, RG , is much less than the load

resistance, RL , the division factor of the voltage divider is, Vout/Vin = RGI (R in + He),

where R in is the input resistance. The combined ac + dc output of the voltage divider

is applied across the nanowire during differential conductance measurements.

Figure 2.6. An ac + dc voltage adder for floating an ac lock-in voltage on top of
the dc bias voltage. Although the circuit is symmetric for the ac and dc portions
of the adder, the dc voltage source (Yokogawa lVlodel 7651) can provide the ac
current an alternate path to ground, which is appreciable if Rdc is comparable to
RG. The resulting division of this divider is RG/(RG+ Rin ) = 0.01 for both the ac
and dc components. The ac source frequency was primarily tuned to 42 Hz, but the
performance of the circuit is not acutely sensitive to frequency.

The ac + dc current flowing through the nanowire is measured by attaching an

SRS Model SR570 low-noise current preamplifier to the drain contact. This preamp

supplies an electrical ground (via a 10 kD input impedance) for the circuit and

produces a voltage proportional to the input current. The preamp ac and dc output

voltages are measured by digital multimeter and lock-in amplifier, respectively. A

preamp sensitivity of 10 nA/V was chosen to balance amplification (for improved

signal-to-noise), frequency attenuation (for ac measurements), and input impedance.

This experimental setup is shown in Fig. 2.7.
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Figure 2.7. An SEM image of an InAs/lnP heterostructure nanowire with source
and drain contacts. The indicated quantum dot (QD) embedded in the nanowire
is not resolved by the SEM. For isothermal IV measurements, the voltage adder in
Fig. 2.6 baises the nanowire with an ac + dc voltage. The current preamp provides
electrical grounding and an amplified ac + dc output voltage proportional to input
current. The other terminals are floating.

Thc first and most simplc measurement performed with this setup is currcnt as a

function of gate voltage with a fixed bias voltage, as shown in Fig. 2.8. The result is

a series of peaks occurring at gate voltages corresponding to the energy resonances of

the quantum dot; this is proof that the sample is functioning as desired. Additional

measurements are required to convert gate voltage to energy via ex, but once they are

complete, differential conductance data can be fit using Eq. (11.9), as shown in the

inset of Fig. 2.8.The agreement between data and theory demonstrates that r « kT

when T 2:: 550 mK.



64

800 . .
T= 0.55 K r,

T= 4.2 K/.
, I

600 , I

--- , I« ) '\t.-+-' 24 25 26C 400
Q) Energy (meV)
L..

()
200 ~

42 3
Gate Voltage (V)

1
o 1:--=---J=::::::.:...:::::A':::::=:::::lL:~~'---'~"::v:"",:::'-J~"""'~:""'.U::::"''''::'----J=~v~v:"",v~v~~~L......I==::~U:.......:v:....v:....:t

o

Figure 2.8. Current measured as a function of gate voltage shows peaks at each
energy resonance of the quantum dot. The background temperature is T = 4.2
K. Once ex is measured, gate voltage can be converted to an energy scale. Inset:
DifFerential conductance at T = 0.55 K has been fit using Eq. (II.9) demonstrating
that r « kT whenever T 2: 0.55 K.

Coulomb-Blockade Spectroscopy

At low temperatures « 10 K), where kT is less than the level spacing of the

quantum dot, the device will operate in the Coulomb-blockade regime. (Theory

regarding Coulomb blockade is in Section 11.3.1.) Sweeping the bias and gate voltages

while measuring differential conductance via a small ac bias provides the Coulomb-

blockade diamonds as shown in Fig. 2.9. This Coulomb-blockade spectroscopy is

essential for mapping the important working points of the system. For example,

the diamonds are used to find suitable locations for quantum-dot thermometry (see

Chapter III) and nonlinear experiments (see Chapter VI). In addition, the aspect
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Figure 2.9. Coulomb-blockade measurements at T = 550 mK. (a) Current and (b)
differential conductance were measured simultaneously as a function of bias voltage
and gate voltage. The advantages of differential conductance are: no offset current,
sharper features, better signal-to-noise with lock-in techniques, and excited states and
regions of negative differential conductance are easily identified.
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ratio of the diamonds reflects the value of ct, as shown in the next section. Next, the

energetic positioning of the quantum dot ground state resonances can be quantified,

and the existence of excited states outside the diamonds can also be studied [57].

And last, the diamonds show regions of negative differential conductance (owing to

phonons, blocking states, etc.) beyond the simple picture of quantum-dot transport.

These regions are avoided for thermometry measurements, but are of interest for

nonlinear measurements.

Measuring ct, E add , and Ec

The slopes of the Coulomb-blockade diamonds are determined by the various

capacitances (Cs , CD, and Ce ) of the system to the quantum dot. The "lever

arm"of the gate, ct = Ce/CB , quantifies the influence of the gate voltage on the

electrochemical potential of the dot. Quantitative analysis of the Coulomb-blockade

diamonds, made possible by the constant interaction model (see Section II.3.1),

reveals the value of ct. In particular, the sum of the slopes of the Coulomb-blockade

diamonds (see Fig. 2.10) is a direct measurement of ct. The derivation of this

observation follows next.

When measuring differential conductance, the drain is connected to the current

preamp so that fLD = -eVD = O. Meanwhile, a small, constant ac bias is applied across

the nanowire as the bias voltage and gate voltage map out the parameter space. On

the boundary of any Coulomb-blockade diamond, the electrochemical potential of the

dot, fL, is aligned with either the source or drain electrochemical potential, fLs or /kD,
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respectively. If the source is aligned to the dot, then f-1 = f-1s = -eV, where V is the

bias voltage. Inserting the conditions VD = 0, Vs = V, and f-1 = -eV into Eq. (ILl)

gives,

( 1) Ec
-eV = Ec N - No -"2 - ---;- (CcVc + CsV) + EN·

Isolating the gate voltage gives,

Vc = (CD + Cc ) V +~ (N _ No _~) + C~EN.
Cc Cc 2 eCc

Therefore, the slope of the "source" portions of a Coulomb-blockade diamond is

s = dVc = Cc + CD
S - dV Cc

(H.10)

In the opposite case, when the drain is aligned to the dot, the conditions are f-1 =

f-1D = 0 and Vs = V, and Eq. (ILl) gives,

( 1) Ec
O=Ec N-No-"2 ----;-(CcVc+CSV)+EN,

And here isolating the gate voltage gives,

Cs e ( 1) C~ENVc = --V + - N - No - - + .
Cc Cc 2 eCc
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So the slope along the "drain"portions of a Coulomb-blockade diamond is,

SD = dVG = _ Cs .
dV CG

(II.11)

Note that a perfectly symmetric Coulomb-blockade diamond requires IS11 = IS21 ,

which is not satisfied by Cs = CD alone, but rather by the condition Cs = CD + CG.

However, when CG « CD, which is typical for a rvl0 nm quantum dot in a rv50 nm

nanowire system [62], then Ss ~ CD/CG' If as well Cs ~ CD, then it is true that

Ss ~ SD ,and the diamond will be nearly symmetric.

If the magnitude of these two slopes (Eqs. (11.10) and (11.11)) are summed, then

IS I IS I
- CG+ CD Cs _ CG+ CD + Cs _ Cr, _ -1

S + D - + - --cx
CG CG CG CG

(11.12)

where the last equality follows from Eq. (II.3). Therefore, cx can be calculated using

measured values of Ss and SD, and Fig. 2.10 demonstrates such a calculation.

Once cx has been measured, a slice down the center of the Coulomb-blockade

diamond (V = 0) as a function of VG can be converted into energy revealing the

energetic level spacing. Fig. 2.11 is such a plot.

The addition energy, Eadd , as a function of filling number, N (see Eq. (11.2)) is

determined from Fig. 2.11 by measuring the peak-to-peak energies. The result is

plotted in Fig. 2.12. The even fillings are due solely to the charging energy as they

split spin-degenerate energy levels. By taking an average of Eadd (Neven ) , in Fig. 2.12,
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Figure 2.10. A section of a measured Coulomb-blockade diamond and a
corresponding diamond sketch. Because this diamond is asymmetric (as most are),
the relationship between the slopes of the diamond, 51 and 52, and the voltages, ~VG

and ~V, is not simple. Nonetheless, 51 and 52 can be measured, and they provide a
measurement of a according to Eq. (II.12). For this diamond a = 0.071 ± 0.008.
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Figure 2.11. A vertical slice of the Coulomb-blockade diamond of Fig. 2.9a near
zero bias. Here the dc current is plotted as a function of dot energy, which has been
converted from gate voltage via ex. (See Fig. 2.10 and associated text for details
on measuring ex.) The positions of these peaks are used to determine Eadd (N) (see
Fig. 2.12).

a charging energy of Ec = 12.9 meV is found. (The N = 2 filling number was

not included in the average because this filling number is an outlier in all samples,

probably due to non-constant capacitance.)

Applying Temperature Differences Across Ylesoscopic Devices

For thermoelectric experiments, a temperature difference must be established

across the quantum dot. One approach is to heat the phonons in the underlying

lattice with a nearby, separate metallic heating channel, with the result of heating

the electron gas in the device via electron-phonon coupling [20-23, 63, 64]. This has

the advantage of decoupling the heating electronics and the measurement electronics,
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Figure 2.12. The addition energy, E udd , of a quantum dot for the first 10 electron~.

These data have been collected via the conductance peaks in Fig. 2.11. The average
value of the even fillings provides the charging energy, Ee = 12.9 meV. Note that at
T = 10 K, kT = 860 ILeV « Ee demonstrating that nanowire-based quantum dot
have energy resonances which are very well separated in energy.

but relies on electron-phonon coupling that is weak at low temperatures « 4 K).

Relatively large heating currents and phonon temperatures might be required to raise

the temperature of the electron gas in such a device. Besides adding electrical noise

to the system and increasing the heating load on the cryostat, this technique creates

hot phonons that can pull electrons to one end of the sample and produce a phantom

thermovoltage, the so-called phonon-drag thermovoltage [23, 65].

Direct-electron heating is also commonplace in mesoscopic thermoelectric experi-

ments for heating an electron gas [65-68]. This technique uses an electric current to

heat an electron gas via Joule heating. This is the approach used in these experiments.
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To accomplish this in a nanowire sample, the source and drain electrical contacts

to the nanowire are made with three terminals arranged in a 'T'-shape (see Fig. 2.13a).

A heating current, I H , is supplied between the top two terminals, which heats the

top bar of the 'T'-shaped contact via Joule heating. The top portion of the 'T', the

heating channel, is intentionally made thin to increase resistance and the effect of

Joule heating. The bottom terminal is used for electrical balancing. The heating

channel is placed over the nanowire, and I H heats the electron gas in the heating

channel and ultimately in the nanowire, as shown in Fig. 2.13a.

The challenge of this setup is that the connection for heating and electrical biasing

is one and the same. Therefore, the heating and electrical biasing circuitry must be

combined. This is achieved by using a home-built op-amp heating circuit, which has

independent heating and biasing voltage inputs and produces two output voltages

for each end of the heating channel. The voltage probe assists in tuning the output

voltages relative to one another.

The heating box splits the input heating voltage into two op-amps, one of which

is inverting. This produces two output heating voltages, v±, which are equal in

magnitude and opposite in sign. These two voltages are applied across the heating

channel (see Fig. 2.13a). Manual trimming built into the heating circuit offers the

ability to tune v± relative to one another so that v = v+ + v_ = a at the nanowire.

Therefore, a finite heating current, I H , flows through the heating channel without

electrically biasing the nanowire. The other function of the heating circuit is to float
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Figure 2.13. (a) An SEM image of a nanowire with source (S) and drain (D) contacts
and an embedded quantum dot (QD), which is not resolved at this magnification. The
voltage, V, biases the nanowire electrically. Via Joule heating, the heating current,
I H , biases the nanowire thermally by raising the temperature of the electron gas in the
narrow heating channel of the source contact. Current measurements are performed
by connecting a current preamp to the drain, the same as under isothermal conditions
(see Fig. 2.7). Thermovoltage measurements are made using a differential voltage
preamplifier connected to both source and drain (see Fig. 2.14). (b) A side-view of
the source heating channel and the ac bias voltage, v, in the channel. The voltage
probe (p) assists in tuning the heating voltages, V±, relative to one another so that
v = v+ + v_ = 0 at the nanowire. In this way, I H does not bias the nanowire
electrically.
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v± above ground on top of the input bias voltage, V. A voltage adder (see Fig. 2.6)

can be attached to the bias voltage input of the heating circuit to give V ac and dc

components. The resulting voltage outputs from the heating circuit are V + V±, and

the manner in which they connect to the sample is shown in Fig. 2.13b. The op-amp

circuit is provided in Appendix B.

For all experiments, a low-frequency (17 Hz) ac heating current was used. The

benefits of using an ac heating current are two fold. First, lock-in amplification

techniques are used for data acquisition thereby increasing the signal-to-noise ratio.

Second, the resulting temperature gradient is frequency doubled, making thermally

induced electron transport very distinct in frequency space. This statement is

motivated by the following exercise.

The temperature change, .6.TH , of the electron gas in the heated source contact is

proportional to the heating power, P = 1HV = 1~R, where heating current, 1H, can

be described as 1H = 10 cos (wt). Thus the functional form of .6.TH is

.6.TH ex: P ex: 1~ ex: cos2 (wt) ex: cos (2wt) . (II.13)

Any currents or voltages at frequency 2w can only be attributed to thermal effects

because all other processes are linear and therefore have frequency w.

In thermoelectric experiments using an ac heating current at frequency w,
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according to Eqs. (1.1) and (1.16), the net (time-dependent) current is

1 (t) = GV + Gv cos (wt) + Gth/::"T, (II.14)

where V is the bias voltage and the term v cos (wt) accounts for any voltage noise at

frequency w. This can be written

1 (t) = GV + Gv cos (wt) + 10 cos (2wt) ,

where 10 is the amplitude of the ac thermocurrent, I th = 10 cos (2wt) = Gth/::"T. (A

phase factor of 7r /2 has been omitted for clarity.) Measuring the second harmonic

relative to a reference signal is easily accomplished using a commercially available

lock-in amplifier. The amplitude 10 is found by integrating 1 (t) with cos (2wt),

w 12~/w w 12~/w
- 1 (t) cos (2wt) dt = - [GV + Gv cos (wt) + 10 cos (2wt)] cos (2wt) dt
7r a 7r a

w 12~/w
= 0 + 0 + 10 - cos (2wt) cos (2wt) dt

7r a

= 10

Therefore, to measure 10, the lock-in amplifier simply produces a periodic signal

of frequency 2w and averages over one period. In particular, the measurement is

completely insensitive to v cos (wt) because that term integrates to zero. A second
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lock-in amplifier operating at frequency w can measure Gv and ignore 10 , See Ref. [69]

for a pedagogical introduction to the lock-in amplification technique.

The two largest sources of noise at frequency ware electrical biasing by IH that is

not completely nulled in the heating circuit and inductance between cryostat leads.

These noise sources do not interfere with the detection of signals at frequency 2w.

Thus ac heating offers many experimental advantages.

Thermovoltage Measurement Technique

By definition (see Eq. (1.2)), vth must be measured in the absence of electrical

current. That is, a thermovoltage measurement is an open-circuit measurement. To

achieve this, the voltage measurement instrument must have a large input impedance.

The instrument used here (a Fempto DLPVA-100-F-D Series) is a low-noise voltage

preamplifier with an FET input stage that provides an input impedance of 1 Tn.

The setup is shown in Fig. 2.14.

The system is made more complex by the back-gate used to tune the quantum dot's

energy resonances. When measuring current, nanowires's drain contact is grounded

(via the current preamp) and the source contact is pinned to the bias voltage (see

Fig. 2.13). In this configuration, the influence ofthe back-gate on the source and drain

ends of the nanowire is miniscule because InAs semiconductor material is pinned to

the metallic source and drain contacts.

In a true open-circuit thermovoltage measurement, the cold drain contact is

disconnected, and the hot source contact remains connected to the heating circuit
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Voltage
preamp

Figure 2.14. A schcmatic ot' the cxperimental setup for measuremcnts of Vth .

Heating is the same as in Fig. 2.13. Gating effects prevent true open-circuit
measurement of \l;;h' This is mitigated by using a load resistance, RL . As a result, the
voltage across inputs A and B of the differential voltage preamplifier is VI_, that is, the
voltage across RL . The true thermovoltage is \l;;h = VL (1 + R/Rr-) (see Eq. (II.15)).
The load capacitance, eL , is provided by the coaxial voltage cables.

at voltage, Vs . In this case, the drain is allowed to float, and the back-gate can

bend the semiconductor bands in the drain end of the nanowire. This influences the

electrochemical potential in the drain and therefore the drain voltage, Vn . Meanwhile,

the source electrochemical potential is held constant by Vs . A change in Vv created by

a change in gate voltage biases the nanowire. This bias will eventually create current

flow through the quantum dot as the system attempts to establish equilibrium. As a

result, the open-circuit voltage waxes and wanes as a function of gate voltage, and the

characteristics of this process depend Oll thc properties of the quantum dot. In fact,
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the slopes of the waxing and waning are the same as the slopes of Coulomb-blockade

diamonds (see Appendix C). The main result is shown theoretically in Fig. 2.15 and

experimentally in Fig. 2.16.

The behavior of the open-circuit voltage can be explained by considering the

capacitance among the gate, source, drain, and dot. During open-circuit voltage

measurements, the source electrochemical potential, !Js, is held constant at the voltage

of the source contact. The drain electrochemical potential, !JD, is determined by two

factors: 1) the amount of charge in the drain and 2) the voltage of the back-gate,

VG . The electrochemical potential of the dot, !J, is influenced by VG , !Js, and !JD (see

Eq. (11.1)).

At all gate voltages, either !JS or !JD is aligned with a quantum dot resonance. This

is guaranteed by carrier flow leaking through the quantum dot and by the capacitive

coupling between quantum dot and !JD. Because the drain portion of the nanowire is

much larger than the dot, VG couples more strongly to !JD than it to !J-meaning that

!JD moves faster than !J when VG changes. When sweeping through two resonances at

energies Cl and C2, the open circuit voltage, eVoc = !JS - !JD, follows the unique path

in the VOC-VG plain where either Cl = !JD or C2 = !Js. This is shown in Fig. 2.15. The

uphill slope of dVocldVG is proportional to CG because as VG pulls the dot down,

Voc increases. On the other hand, !JS is "holding" the dot up via the source-to­

dot capacitance, Cs, and, therefore, the slope is inversely proportional to Cs. To

lowest order, the uphill slope is CGICs, and the exact slope is CGI (CG+ Cs). Voc



79

Figure 2.15. A schematic demonstrating the behavior of open-circuit voltage,
eVae = J-Ls - J-Lo, as a function of gate voltage, VG . The panels depict the source
(S) and dra.in (D) electrochemical potentials, J-Ls and I-Lo, respectfully, as well as two
quantum-dot energy resonances, C} and C2. Panels 1-6 describe the behavior at key
points in the diagram while panels A and B highlight forbidden behavior. See the
main text for additional details. (1) ILs = Poo = C1 when Vae = O. (A) 'When
VG increases, I-Lo decreases faster than C}, but electron flow prevents this. (B) The
situation is forbidden because J-Lo decreases faster than C}, and thus Vae cannot follow
the green dashed line. (2) Vae follows the solid black line where C1 = J-LD. The slope
here is GG/ (GG + Cs), as shown. Vae continues to climb until (3) when C} aligns
wi th J-Ls. Electrons start to flow into the drain through C}. (4) Electrons fill the drain,
lifting J-LD and decreasing Vae. The rate at which Vae decreases depends on the ratio
CG/CD . (5) The system has returned to Vae = 0, C2 = J-Ls = J-Lo, and the process will
repeat sweeping through the resonances at C3, E4, etc. The derivations of the slopes
are provided in Appendix C.
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continues to increase until the transition into the next energy resonance. Here the

slope dVae / dVe changes direction as electrons flow from source to drain thereby lifting

/-Lo and decreasing Vae - The larger Ce l the harder Ve pulls down the quantum dot

and the faster Vae decreases. /-Lo opposes this change via the drain-to-dot capa.citance,

Co, and the larger the Co the slower /-L decreases. The rate at which Vae decreases

depends on the ratio Ce / Co. The complete derivations of the slopes are provided in

Appendix C and the process is illustrated in Fig. 2.15.
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Figure 2.16. Open-circuit voltage, Vae, plotted on top of Coulomb-blockade
diamonds. Both Vac and - Vae follow the Coulomb-blockade diamonds, just as the
constant interaction model predicts. See Fig. (2.15) and text for the theoretica.l
explanation of this effect. Note that bias voltage and Vae have opposite sign as they
are measured oppositely.
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This behavior makes true open-circuit thermovoltage measurements impossible.

To mitigate this problem, the load resistance, RL , must be placed between the drain

and ground, as shown in Fig. 2.14. This drastically reduces the open-circuit voltage

induced by the back-gate by providing an electrical path to ground. The small

residual open-circuit voltage owing to the back-gate is measured under isothermal

conditions and subtracted from thermovoltage data. For ac measurements, one must

also consider that the capacitance in the coaxial cables provides a load capacitance,

eL , connected in parallel with RL .

This is not an open-circuit measurement, so the measured voltage is not

thermovoltage. What is really measured is VL , the voltage across the load resistor,

RL (see Fig. 2.14). Therefore, this measurement is only a lower-bound of the true

thermovoltage. The system is analogous to a battery with an internal resistance, R,

running a load with resistance RL . Therefore, the true thermovoltage is,

(11.15)

where R = 1/G is the resistance of the nanowire. Thus the scaling factor, cP, between

the measured voltage, VL , and true thermovoltage, ~h, is

~h ( R)cP = V
L

= 1+ R
L

. (11.16)

The situation is made more complicated because G is not constant, but rather a
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function of gate voltage. However, if RL » R, then 11th ~ VL at all gate voltages,

and no additional measurements are necessary. Alternatively, the effective resistance

of the device can be found using power measurements. For details, see Chapter V.
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CHAPTER III

QUANTUM-DOT THERMOMETRY

Quantitative evaluation of a quantum-dot-based thermoelectric requires the

application of a known temperature difference across the device. The heating

technique used for this purpose is discussed in Section IIAA. This chapter focuses

solely on quantum-dot thermometry, which was developed specifically for measuring

the electron temperature differences across a quantum dot.

Introduction

Mesoscopic devices exhibit a range of unique thermal phenomena including the

quantization of thermal conductance [70] and nonlinear [71] and energy-modulated

[72] thermovoltage. Understanding mesoscopic thermal phenomena and applications

of such phenomena require knowledge of the absolute ambient temperature as well as

knowledge about the applied temperature difference that exists across length scales

that are smaller than typical thermometry techniques can resolve.

A challenge when performing a low-temperature, quantitative, mesoscopic thermal

experiment is the measurement of the temperature difference across the small device

under conditions where electronic and lattice temperatures can be very different. In

this context, such thermometry is often accomplished using the thermovoltage of
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a QPC to measure temperature differences within a two-dimensional electron gas

[65, 70, 72-74]. While thermal experiments using micrometer-length nanotubes and

nanowires often exploit the temperature dependence of local resistors to determine

the lattice temperature difference across the device [20, 21, 23, 63, 64, 75].

Quantum-dot thermometry [76-79] is a technique which exploits temperature­

dependent electron transport through a two-terminal quantum dot in order to measure

directly the temperature of the electrons entering the dot. At the very heart of

this technique lies the assumption that each energy resonance of the quantum dot

has the ability to sample separately the energy-dependent probability distribution

of the electron gas at either the source or drain side of the quantum dot. For this

assumption to hold, the thermometry technique requires that the energy difference

between neighboring energy resonances, ~E, is larger than the thermal energy, kT.

One way to fulfill this requirement is to use a quantum dot in the Coulomb­

blockade regime, that is, with a charging energy, Ec » kT. In very small quantum

dots, quantum-confinement effects yields additional level separation. This energy

requirement is easily achieved (even near, for example, T = 10 K) using a nanowire

in which a sufficiently small quantum dot has been defined (rv10 nm) [62]. The

dot could be defined via physical barriers created with heterostructure growth or via

electrostatically depleted barriers created by finger gates. The dimensions of quantum

dots in two-dimensional electron gas devices are typically on the order of hundreds

or thousands of nanometers and therefore quantum-dot thermometry with such a
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device would be limited to much lower temperatures. Other devices, for example,

metallic islands, which rely completely on Coulomb blockade, rather than quantum

confinement, to create single transmission resonances could also be used for quantum­

dot thermometry.

Many primary and secondary thermometers are available for low-temperature

physics applications [80], some with higher precision than is possible with quantum­

dot thermometry. However, quantum-dot thermometry provides a measurement of

electron temperature difference across the quantum dot using the dot itself as the

thermometer, making possible an all-in-one experimental device.

Because the quantum dot's energy resonance is effectively the tool which measures

the thermal envelope of the electron gas Fermi-Dirac distribution, the energetic

width of the resonance, r, (see Eqs. (II.7) and (II.8)) influences the outcome of

the measurement. The original proposal [77] considered a limit in which r » kT.

Later the technique was extended [79] into the limit where r «kT. Quantum-dot

thermometry is introduced best via a unified theoretical treatment [78] discussing

these two opposite regimes and the intermediate regime which separates the two.

To apply a temperature difference across the dot, an ac heating current, JR ,

modulates the temperature of an ohmic contact, taken here to be the source contact,

via Joule heating (see Section II.4.4). As a result, the temperature of the electron

gas in the source contact rises .6.Tsc with respect to the unperturbed background

temperature, T, thereby establishing an unknown temperature profile along the
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nanowlre. As a result, the electron gas near the source and drain sides of the quantum

dot are elevated to TH,c = 6TH ,c + T. The quantities of interest are the electronic

temperature rises, 6TH,c = TI-I,c - T, in the immediate vicinity of the quantum dot

(see Fig. 3.1).

QDNW-....
SiO

x
~1~;""";;"I-------'-'------_---I~::....Jl.I,

Figure 3.1. A schematic (not to scale) of a heated nanowire (NW) with embedded
quantum dot (QD), hot source contact (SC), and cold drain contact (DC). The
quantum dot is not necessarily centered between contacts. A heating current in
the source contact creates the illustrated electron temperature gradient along the
nanowire. In the metallic source and drain contacts, the electron gas temperature
rises by 6Tsc ,DC, respectively, above the cryostat temperature, T. In the nanowire,
the electron gas temperature rises by 6TH ,c near the source and drain sides of the
quantum dot, respectively (6Tsc ~ 6~_1 ~ 6Tc ~ 6TDC ).

During thermometry measurements, the nanowire is biased so that electrons flow

predominantly from either the source or drain contact, and the energy-dependent

transmission probability, T (c), samples the energy distribution of the incoming

electrons (see Fig. 3.2). As a result, any electric current-a physically measurable

quantity-carries with it information about the temperature of the electron gas

precisely at the quantum dot. In the following, it is shown that 6TH,c can be extracted
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via a comparison of two measured quantities: the differential thermocurrent, I th , and

the second differential conductance, G 2 == f}2 I / f}V 2.

V>O

~
I------,~ kTc kTH t--i

V<O

Figure 3.2. The band diagram of a quantum dot subjected to an applied voltage
bias and temperature difference and the resulting source and drain electron gas Fermi­
Dirac distributions. An energy of !"1c separates the dot's energy resonances, and
!"1E » kTH,c, Inset: Each transmission resonance can be described by a Lorentzian
function with an energetic width of r (see Eq. (II.8)). Quantum-dot thermometry
has two regimes of opera.tion in which either r « kT or r » kT and requires that
r « !"1E in both regimes. Left: While negatively biased, a transmission resonance
at energy EO samples only the source electron distribution. Right: The opposite case
under positive bias.

The TheorY.-.QLQuantum-dot Thermometry

When the device is connected to source and drain contacts, the applied tempera-

ture difference produces a thermocurrent, I th , that is, a thermally induced net electron

flow. Measurements of I th in conjunction with conductance spectroscopy are used to
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deduce the temperature rises ~TH,e separately. To measure ~TH,e separately, the

nanowire is biased to sample hot source and cold drain electrons individually.

By tuning the bias and gate voltages, respectively, one can adjust V and p, in order

to satisfy one of two conditions: co = P,H,e = P, =f eV/2, therefore centering either fH

or fe at co (see Eq. (1.14)). In terms of applied bias voltage, these two conditions

are,

VJ e ==f2 (co - p,) Ie., (IIL1 )

Tuning to bias voltages in a range near this condition allows the transmission

function to sample only the overlapping Fermi-Dirac distribution because the opposite

distribution is several kT away from any energy resonance provided that the energetic

spacing of the quantum dot is sufficiently larger than kT (see Fig. 3.2). In such a

resonant bias configuration, the total current flowing through the dot, I, can be

written using the Landauer formula (see Eq. (1.20)),

2eJIH,e = =f h fH,e (c) T (c) dc,

where the subscript denotes which Fermi-Dirac distribution is contributing to the

current. In linear response, thermocurrent can be written,



When I th is evaluated near a resonant bias condition,

where

HH,C = =f :JH,C = =f 8 fH,c 8~H,C = ± 8 fH,c ~H,C
H,C 8~ H,C 8TH,c 8~ H,C TH,c'

Similarly, the second differential conductance can be written,

where

K - ± - ~T; 82fH,c
H,C - 8k2 H,C 8V2

= ± _~T
H

C8~H,C _8_ 8~H,C 8 fH,c
8k2 ' 8V 8~H,C 8V 8~H,C

_ ± _ ~T; (8~H'C) 2 82fH,c
- 8k2 H,C 8V 8e

H,C

2 ( ) 2 !=:l2f_ ± _ ~T; e u H,C
- 8k2 H,C 2kTH ,c 8~~ C,

= ±_2_ 82fH,c
TH,c 8~~,c .
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(IIl.2)

(IlI.3)

(IlIA)

(IIl.5)
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Note that the derivative a !H,C/a~H,C can be written.

a!H,C

a~H,C (1 + e';H,c)2

1 - 1 - e';H,C

(1 + e';H,c)2

1

(1 + e';H,c)2

= !~,c - !H,C'

1 + e';H,C

(1 + e';H,c)2

1

(IIL6)

Therefore, the second derivative a2!H,C/a~A,c is

a2
!H,C a (2 )ae =~ !H,C - !H,C
H,C "'H,C

= 2!HC a!H,C _ a!H,C
, a~H,C a~H,C

a!H,C
=~ (2!H,C - 1) .

"'H,C
(III.7)

Inserting this second derivative into the expression for KH,c in Eq. (IIL5) provides,

2 a!H,C
K HC = ±---(2!HC -1)

, TH,c a~H,C '

= ±2a!H,C 2!H,C - 1.
a~H,C TH,c

(III.8)

The similarity between HH,C and KH,c as written in Eqs. (IIL3) and (IIL8) , and shown
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in Fig. 3.3, is the main motivation for choosing the second differential conductance,

G2 = fJ2I/fJV2
, rather than the orthodox differential conductance, G = fJI/fJV. This

fortunate compatibility between HH,e and J(H,e provides the mathematical foundation

on which this thermometry technique rests. In fact, the ratio

(III. 9)

is enough to determine DoTH and DoTe when the bias voltage and gate energy have

been tuned so that the dot's energy resonance overlaps with either the source or drain

Fermi-Dirac distribution, respectively.

Fig. 3.3 shows HH,e and J(H,e and three transmission functions with different

values of r plotted as a function of c for fixed f-1 and V. Measurements of I th and

G2 reflect the convolution of HH,e and J(H,e with 7 (c), respectively, and therefore

the position and width of the transmission function influences to what degree I th

and G2 differ. Unaware of an analytical solution to either Eq. (IIl.2) or Eq. (IlIA),

analytic progress continues by considering two separate regimes using two separate

approximations.

In the narrow-resonance regime, 7 (c) is very sharp, that is, r « kT, and the

contributing gray area in Fig. 3.3 is made very small; so small, in fact, that RH,e

depends primarily on the ratio of HH,e and J(H,e at co. A transmission function

in the form of a Dirac delta function provides precisely this value and leads to an
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Figure 3.3. The functions HH,e (E), KH,e (E), and T (E)-Eqs. (III.3), (III.8) , and
(II.7)-plotted as a function of E for fixed f1 and V. The three Lorentzian transmission
functions, T (E), are centered at EO and have widths r = 10 kT, 1 kT, and 0.1 kT.
The disparity between HIl,e and KIl,e, illustrated by the gray region, evolves into
disparity between I th (E) and G2 (E) during integration with T (E). 'When r « kT or
when r » kT, this disparity can be described analytically-allowing one to determine
~TH,e. The intermediate regime, where r ~ kT, escapes analytical description, and
~TH,e cannot be determined.

analytical limit of RH,e near ~?>e' 'With this analytical expression in hand, one can

extract ~TH,C using standard statistical data analysis, as will be described in the

next section The hallmark of this regime is the existence of very sharp transmission

resonances that produce pronounced R curves, which look like the one shown in

Fig. 3.4a.

In the broad-resonance regime, T (E) is very wide, that is, r » kT, and most of
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Figure 3.4. Numerical calculations of I th , G2 , and their ratio, R = I th 1G2 , as a
function of bias voltage. Fur these calculations, T = 1 K, tJ.TIT = 2/5, and two
values of r are chosen so that r IkT is 103

/
2 and 10-3

/
2

. The Ith and G2 curves
and their corresponding shaded regions show the bias voltage range from which
experimental data would be collected. (a) The solid line R~,c, Eq. (111.12), is the
analytical approximation of R and, in the r « kT regime, agrees with the numerically
calculated R. (b) R in the r » kT regime becomes very flat when I th and G2 peak.
'When r ~ kT, R forms neither a suitable trough nor a suitable plateau limiting the
accuracy to which tJ.TH,D can be determined.

the gray area in Fig, 3.3 contributes nearly equally to R when co is near the center

of HH,C and J{H,C' Once this contribution has been calibrated numerically, values of

Rj-I,C in a voltage range near V~,c predict the values of tJ.T directly. In this regime,

R forms plateaus that are not sharply delineated and suitable for data averaging over

a range of bias voltages; such a plateau is shown in Fig. 3.4b. The two regimes of

operation, their limits, and the intermediate regime which separates them will be

discussed in detail.
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In this derivation, an assumption was made that the voltage drops equally across

the two barriers that define the quantum dot and, therefore, implicitly assumed that

the two barriers are identical and couple to the electron gas equally. In practice, the

barriers are not exactly identical. In the case of asymmetric coupling, the resonances

at VJ and vg will have different heights and widths, even under isothermal conditions,

owing to the different tunneling rates. However, quantum-dot thermometry is not

adversely affected by asymmetric coupling because the ratio R is calculated locally at

each resonance and is therefore immune to differences between resonances. Evidence

of asymmetric coupling in the data is best demonstrated by asymmetry in resonance

position. If coupling is equal, then IVJI = Ivgl, but IVJI i= Ivgl when the coupling is

not equal. Therefore, the primary effect of coupling asymmetry is skewed Coulomb-

blockade diamonds.

The Narrow-resonance Regime (r « kT)

In the following, T (c) is assumed to have such a narrow energy width that it can

be approximated as a Dirac delta function centered at co, that is, T (c) = AD (c - co),

where A is an unknown energy amplitude. Inserting this expression for T (c) into

Eq. (IlL2) and integrating gives

This alone IS not sufficient to determine 6TH c because A is unknown.,

(IlLIG)

This is
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why a second measurement-the second differential conductance, G2-is necessary; it

provides an energy scale (eV) and depends on T (E) in the same way as I th . Under the

same bias conditions as before and after inserting T (E) = Ad (E - Eo) into Eq. (IlIA)

and integrating, G2 becomes

e
2

1 2e I
G2 IH,C = - 8k2 y;;-AhKH,c

H,C c=co

(III.1l)

In this narrow-resonance regime, where r « kT, R is approximated by R<, the ratio

ofEq. (III.I0) to Eq. (1II.1l)

< 8k
2

HH,C , 4k
2

~H,C I
RHC ~ RHC = -~THC-2THC -K = -~THC-2THC f ', , , e ' , e ' 2 1

H,C c'=co H,C - c=co

and A drops out. By expressing R~,c in bias voltage V~,c = =f2 (Eo - p,) Ie, rather

than energy Eo, R~,c becomes

< 2k ( 0) (e V - VJ,c )
RH,c = ~TH,C~ V - VH,c coth 4k ~TH,C + T . (III.12)

Note that R~,c is only valid when either the source or drain electrochemical potential

is near a resonance of the quantum dot, but not both, and when r « kT.

Fig. 3Aa shows a numerical simulation of the measured ratio R = Ithl G2 and its

analytical approximation, R~ c' as a function of bias voltage with r IkT = 10-3
/

2
. In,

this r « kT limit, the analytic R~,c agrees with R. In fact, the region over which
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they agree includes bias voltages where the values of I th and G2 are the largest (the

gray shaded areas in Fig. 3.4a) and, therefore, where R should have the best signal-

to-noise ratio in experiments. This demonstrates that experimental values of .0.TH,c

can be determined by comparing R~ C to raw R data. See Section lIlA for details on,

data analysis.

R~ C matches the top three R curves in Fig. 3.5 corresponding to r /kT values,

of 10-1
, 10-1

/
2

, and 1. It is surprising that when r /kT = 1, which is outside of

the intended range of this regime, R~ C reproduces R well. The r /kT > 1 curves,

in Fig. 3.5 are not well-predicted by Eq. (III.12), that is, R~ C and R disagree (not,

shown), indicating that this method is not useful for determining .0.TH ,c when r > kT.

The broad-resonance regime (r » kT)

The essence of this broad-resonance method is that HH,C and KH,c (see Eqs. (III.3)

and (III.8)) are very similar. It is mathematically true that

(III.13)

This approximation is valid for all ~H,C, because 2fH,C - 1 limits to -~H,c/2 when

~H,C is small, and 8 fH,C/ 8~H,C goes to zero in all other cases. Therefore it is possible
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Figure 3.5. A linear-log plot of R versus bias voltage numerically calculated for
r = 43 {leV ~ 500 mK and ~TH/T = 3/5. Each curve was calculated at a different
temperature to produce the five labelled values of r /kT. The dashed lines following
the top three R curves are analytical estimates of R predicted by Eq. (111.12). Even
when r / kT = 1) the two agree in a region which is large enough to extract ~TI-I,C'

But as r /kT increases, R begins to form plateaus, and the narrow-resonance regime
breaks down when r /kT ~ 101

/
2

.

to write

(I1I.14)

by substituting KH,c ;:::; HH,C in Eq. (I1I.2). In this broad-resonance regime, where

r » kT, Eq. (111.14) is divided by Eq. (I1I.4) and R is approximated as

R;:::; ~T TH,c 4k
2

H'C A 2 '
H,C e

(111.15)
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where AH e is introduced as a unitless scaling factor of order 1, which must be,

calculated numerically and corrects for the error associated with equating HH,e and

KH,e. (Calculated values of AH,e appear in Fig. 3.9.) Solving for ~TH,e in Eq. (III.15)

yields

e2 T
T2 +AHe-R--, k2 2' (III.16)

which shows that ~TH and ~Te can be obtained from measured values of Rand

knowledge of T and AH,e. Note that this equation is only valid at bias and gate

voltages that provide an overlap between T (c) and either fH or fe and when r » kT.

Fig. 3.4b shows a numerical simulation of R with r /kT = 103
/

2
. At bias voltages

near VJ,e, R forms a plateau as it limits to the value predicted by Eq. (III.16). This

plateau is suitable for extracting ~TH,e experimentally by feeding into Eq. (III.16)

data points from areas where R forms plateaus and averaging the resulting values.

Fig. 3.6 shows three ~TH curves calculated by feeding numerically simulated values

of R into Eq. (III.16). The two bottom curves, corresponding to r/kT = 101
/

2 and

10, form plateaus that limit to ~TH = 3/5T thereby predicting the correct values.

Although the tails of the r /kT = 10° curve do indeed lie near the correct value of

~TH, the center of this curve-where experimental data would be collected-does not

form a suitable plateau necessary for extracting ~TH.

Fig. 3.7 is a contour plot of temperature rise predicted by Eq. (III.16) as a function

of bias voltage and gate voltage. Although this simulation was performed in the

broad-resonance regime, the figure demonstrates how ~TH and ~Te can be measured
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Figure 3.6. A linear-log plot of ~TH versus bias voltage calculated using Eq. (III.16)
and the bottom three R curves shown in Fig. 3.5. Each curve was numerically
calculated with f = 43 j.leV ~ 500 mK, 6TI-dT = 3/G, and different T in order
to produce the labeled values of f / kT. Because ~TlI/T is constant, ~TH in these
calculations is 3 x 102 mK, 3 x 10:3/

2 mK, and 3 x 101 mK. See Fig. 3.9 for the
values of 1\H used in these calculations. In practice, the broad-resonance regime can
predict ~T only when R forms plateaus near V~,c, where data is collected, requiring
f/kT;::: 10.

separately by performing measurements in different regions of the bias-voltage-gate-

voltage plane, regardless of the regime of operation.

Fig. 3.8 is a plot of numerically simulated ~TI-I,C as a function of ~Tsc

demonstrating the effectiveness of the broad-resonance regime. The simulated data

points agree well with the true values of ~TH,C up to nearly ~TH/T = 10. This

is a surprisingly extreme limit considering the method assumes linear response. In

practice, experiments [79] will always be well below this limit (~TH/T :s 2) insuring

that the method produces accurate values of ~TH,C' In addition, Fig. 3.8 shows that
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Figure 3.7. A contour plot of temperature rise as a function of bias and gate voltage
for a single Coulomb-blockade diamond (white dashed line) as predicted by quantum­
dot thermometry (see Eq. (III. 16) ). In the regions indicated, either the source or drain
electrochemical potential, but not both, is within a few kT of a resonant energy of
the dot. The theoretical assumptions are fulfilled in these regions, and the simulation
produces temperature plateaus predicting the correct ~TH,C' In other regions, the
reported temperature is meaningless. The horizontal dashed line indicates a candidate
gate voltage for quantum-dot thermometry where both ~TH and ~Tc can be found
by sweeping bias voltage. In this model, r = 0.5 meV, the energy resonances are
spaced by 5 meV, Tsc = 300 mK, TH = 0.8Tsc = 240 mK, Tc = 0.2Tsc = 60 mK,
T = 230 mK, and i\. = 0.304.
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choosing a constant value of A over a large range of r results in an error of less than

1% demonstrating that A is insensitive to r.

3.53.0

r =0.5 meV
T= 230 mK
A =0.304

1.5 2.0 2.5

~Tsc (K)

1.00.5

3.0
..... 1 ~~TH

2.5 0.....
f1TCwO

2.0 ';:$?,
~.- a -1

~--- 0.2 0.6 1.0
0 1.5 r (meV)I

<J

Figure 3.8. Numerically simulated temperature rises, .6.TH,c, as a function of the
source contact temperature, .6.Tsc , determined using Eq. (III.16). The calculated
values agree well with the true values (solid lines) up to nearly .6.TH /T = 10, which
is well beyond the intended range of use. Here r = 0.5 meV, T = 230 mK, and
A = 0.304. Inset: The percent error of the technique as a function of r, which is
within 1% over an order of magnitude in r. Here .6.Tr-r = 240 mK, .6.Tc = 60 mK,
and A = 0.304. The inset and main panel demonstrate that a single value of A can
be used over a large range of .6.TH ,c and r.

The numerical search for AH,c is done by assessing the quality of this approxi-

mation at a range of bias voltages near Vl-~ c. This process is done numerically, and,

the result of these calculations are shown in Fig. 3.9. This calculation is the main

result of this proceeding and will prove useful for anyone who employs quantum-dot

thermometry in the regime where r » kT.
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Figure 3.9. A log-linear plot of AH (squares) and Ae (circles) as a function of
background temperature T. These AB,e values were calculated using r / kT = 103

/
2

,

t1TH/T = 3/5, and t1Te /T = 2/5 by searching for values of AB,e which predicted
t1TH,e most accurately. AH and Ae are identical and nearly constant over the first
order of magnitude in T, but take on separate values at higher temperatures. However,
the broad-resonance regime is most likely not applicable in the high temperature range
because the r » kT condition is almost certainly not met. For example, at T = 5 K,
in order to guarantee that r » kT, r must be on the order of 50 K ~ 4 meV, which is
an unreasonabk value for the quantum dot devices we are considering. In fact, r will
most likely be much smaller than kT at T = 5 K. Therefore, when the background
temperature is on the order of a few Kelvin, the narrow-resonance regime (r « kT)
will most likely be the preferred thermometry technique.

The intermediate regime (r ~ kT)

In the intermediate regime, where 1 < r / kT < 10, R varies dramatically with bias

voltage, but this behavior cannot be predicted analytically, making it less suitable

than the other regimes for predicting accurate values of t1T1-1,e. If raw R data produces

plateaus at a given temperature T, then all that remains is choosing the appropriate

AH,e from Fig. 3.9 and calculating t1TH,e via Eq. (III.16). On the other hand, if raw R
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data produces troughs and the relationship between rand kT is unknown, then one

cannot know if the troughs will predict the correct ~TH,C because, in the intermediate

regime, R~ c predicts curves which are inconsistent with R. In such a situation, this,

puzzle could be solved by placing an upper bound on r, for example, by fitting zero-

bias differential conductance peaks [61]. However, R~ c is always within an order,

of magnitude of R in the regions where Ith and G2 are measurable. Furthermore,

though plateaus in R do not predict the correct values ~TH,C in the intermediate

regime, calculations made via Eq. (III.16) straddle the correct ~TH,C and deviate

from this value by much less than an order of magnitude. (See, for example, the top

curve of Fig. 3.6.) Therefore, any experimental R data is capable of predicting ~TH,C

to well within an order of magnitude.

Conclusion

The two regimes of operation of quantum-dot thermometry, the narrow-resonance

and wide-resonance regimes, provide thermometry in the temperature range where

low-temperature quantum-dot experiments are typically performed. The narrow-

resonance regime was established theoretically by assuming that r « kT, but in

practice the regime is very robust and has the potential to provide temperature

measurements even when r approaches kT, depending on the accuracy tolerance

and background temperature of the experiment.

The broad-resonance regime is applicable at low temperatures « 200 mK) where

kT is much smaller than typical intrinsic transmission widths. Despite resulting
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from an integration involving T (E) and fH,C, AH,c has no r or .6.TH,cdependence and

depends only weakly on T (see Figs. 3.8 and 3.9), provided that r » kT. The wide-

resonance regime can predict values of .6.TH,c whenever r /kT > 10 and becomes more

accurate as r /kT increases as the plateaus in R become wider. In the intermediate

regime, when 1 < r /kT < 10, neither method is suitable for finding accurate values

of .6.TH c. However, a combination of the two methods could estimate .6.TH C to well, ,

within an order of magnitude.

In practice, the design and realization of a quantum dot that has a suitable value

of r /kT is straightforward. Regardless of the regime of operation, producing isolated,

single energy resonances is the greatest experimental challenge for quantum-dot

thermometry. This is a fundamental issue because, when many interacting electrons

are confined in a 3D potential, their excitation spectrum becomes very complex (see

for example Ref. [81]), and energy resonances are infrequently isolated. Therefore,

quantum-dot thermometry benefits from operating the dot in the few-electron regime.

Experimental Results

The most challenging aspect of quantum-dot thermometry is finding a single gate

voltage (or small gate voltage range) with ideal behavior. That is, a location where

the quantum dot is not influenced by second-order effects such as excited states,

phonons, and cotunneling that can lead to negative differential conductance and other

abnormal behavior. Coulomb-blockade diamonds (see for example Fig. 2.9b) assist in
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finding candidate locations for quantum-dot thermometry, and then high-resolution

bias voltage sweeps pinpoint gate voltages providing the best data. Ideal behavior as a

function of bias voltage is shown in Fig. 3.10a, which is a numerical simulation. Once

a proper gate voltage has been found, data collection can proceed. During quantum­

dot thermometry, currents are measured, and therefore a SRS Model SR570 low-noise

current preamplifier was attached to the drain contact. In order to measure I th and

G2 simualtaneously, an ac + dc bias voltage was applied to the nanowire in addition

to an ac heating current, lB' This input was acheived by using a voltage adder and

heating circuit described in Section IIAA. The ac bias voltage frequency was 42 Hz,

and I B was at a frequency of 17 Hz. An example experimental setup is shown in

Fig. 2.13, and example experimental data measured as a function of bias voltage is

shown in Fig. 3.10b. During experiments the differential conductance, G = dI/dV, is

measured using a lock-in amplifier, and G2 is found by taking a numerical derivative

of G, G2 = d2I/dV2 = dG/dV. The numerical derivative proceedure is outlined in

Appendix D.

Data Analysis and Temperature Determination

Once data collection is complete, the analysis proceedure begins by determining

the value of r relative to kT. All the quantum-dot nanowire devices used in these

thermoelectric experiments have relatively wide tunnel barriers and therefore narrow
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Figure 3.10. (a) Modeled thermocurrent, I th , (red), second differential conductance,
G2 , (blue), and their ratio Ith /G2 (green) as a function of bias voltage calculated
using r = 10 {LeV « kT = 190 {LeV = 2.2 K. Therefore, the system is in the narrow­
resonance regime. Near a quantum-dot resonance (see insets), both I th and G2 have a
zero-crossing, and here t.he analytical exprcssion R~,c (dashed lirws, SC(l Eq. (III.12))
agrees with the ratio Ith /G2 . Insets: ·When biased negatively, heated electrons flow
through the dot, while cold electrons flow when positively biased. (b) Experimental
data of Ith (red), G2 (blue), their ratio (green dots), and the fit, R~,c, (dashed) as a
function of bias voltage. For these data, hI = 150 {LA and T = 2.2 K, and the fitting
function R~,c provided the experimental values 6.Ts = 230 mK and 6.Td = 160 mK.
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transmission resonances providing r « kT. Data analysis is carried out under the

narrow-resonance regime (see Section III.2.1).

Near the zero-crossings of I th and G2 data, the ratio R = I th /G2 suffers from

numerical division-by-zero errors that create data outliers making statistical analyses

difficult. Rather than manually excluding these data points, the data can be binned

into a histogram. In this way, outliers automatically fall left and right of the histogram

center but do not significanlty affect the mean.

(a)

-8 -4

ias Voltage (mV)

(b) 6

Cf)
-1-1
C
:::::s 30
u

0
0 150

tlTH (mK)
300

Figure 3.11. (a) Raw R H data measured as a function of bias voltage at I H = 115
p,A and T = 2.94 K. The center of the data, Vf-? = -5.75, is where I th and G2 are
zero. The (violet) dashed line is Eq. (III.16) with the parameters V~ and the mean
~TH from (b) a histogram of ~TH data obtained by binning ~TH values found by
numerically solving Eq. (III.16) using the data shown in (a). The dot indicates the
mean ofthe data, ~TH = 140 mK, and the error bars encompass 67% of the histogram
data. In general, the error bars are not symmetric about the mean. Data outliers in
(a) appear in the tails of the histogram with little effect on the mean .0.TH .

In order to bin the data into a temperature histogram, each raw RH,c data point

from a given bias voltage sweep along with the zero-crossing bias voltage values, vS,c,
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are fed into Eq. (III.16). This transcendental function is then solved numerically to

find the cooresponding ~TH,C' For example, a series of ~TH values are plotted as a

function of bias voltage in Fig. 3.11a. The ~TH,C are then binned to form a histogram.

The histogram is then used to calculated the mean ~TH,C of the data set. Error bars

are placed on the mean by finding the temperture range neccessary to encompass 67%

of the data. The error bars are typically asymmetric about the mean. An example

histogram is shown in Fig. 3.11b. Once the mean ~TH,C has been found, its value can

be used to plot Eq. (III.16) on top of the original RH,c data. The resulting functional

fit should agree well with the RH,c data providing insurance that the chosen mean

~TH,C is resonable. Such a fit is included in Fig. 3.11a. Once a series of data has been

collected and analyzed, it can be plotted as a function of heating current as shown in

Fig. 3.12.

Quantum-dot thermometry is an excellent experimental tool for measuring 1D

thermoelectric effects as well as exploring thermal phenomena in mesoscopic systems.

For example, quantum-dot thermometry has been used to investigate electon­

phonon interaction in nanowires [79]. Possible future applications of quantum-dot

thermometry include studies on phonon drag, thermal managment, electron-phonon

interaction, and of course thermoelectrics.
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Figure 3.12. Experimental ~TH and ~Tc data (circles) plotted as a function
of hI a.nd measured using quantum-dot thermometry. The solid lines are second­
order polynomial fits of the data. The data was collected at the seven ba.se electron
temperaures, T, listed in the legend.
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CHAPTER IV

THERMOPOWER OF QUANTUM DOTS

The thermoelectric efficiency of a quantum dot device operating at a particular

energy level depends strongly on the energetic width of the transmission resonance,

r [10]. In particular, an infinitely small r provides the theoretical maximal efficiency,

Carnot efficiency, as demonstrated in Section 1.2.3. The efficiency of a real device,

with a finite r, can be measured using the ZT figure of merit (see Section 1.4).

Because the thermopower, S, plays a key role in ZT, this chapter focuses solely on

the measurement of the thermovoltage and thermopower of quantum dots and how

these measurements compare to theory.

Quantum-dot Thermopower Measurements

Quantum dots operate as very sensitive energy filters, and their thermopower is

quite sensitive to the energetic difference between a given energy resonance and the

source and drain electrochemical potentials. This energy difference can be tuned

experimentally using the gate to shift the quantum dot resonances up or down in

energy. Therefore, the three experimental variables in quantum-dot thermopower

measurements are 1) the background temperature, T; 2) the temperature difference,
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!J.T; and 3) the gate voltage, VG , which can be converted to an energy scale using the

gate lever arm, a (see Section 11.3.1).

A single-electron transistor (SET) quantum dot in the Coulomb-blockade regime

demonstrates thermopower oscillations as a function of gate voltage. This phe­

nomenon was first measured in the early '90s [71, 72, 82] in 2DEG systems. Since

then, it has lead to several other interesting 2DEG-based experiments (most notably

Refs. [67, 68, 83, 84]). These experiments focused primarily on the extraction of

information about the systems' mobile carriers not offered by conventional transport

measurements. For example, thermopower is more sensitive to the particular

transport mechanism than conductance [85] and can be used to identify the dominant

transport regime [84]. Along these lines, recent theoretical [86-88] and experimental

[73] work has been carried out to understand better the sequential tunneling and

cotunneling transport regimes in quantum dots as well as the interplay between the

two regimes.

In the meantime, carbon nanotubes have also demonstrated thermopower os­

cillations [63, 64]. These experiments investigated the possibility of using carbon

nanotubes as thermoelectric devices. Although the large thermal conductivity of

carbon nanotubes [89] produces a rather small ZT [20] making them unattractive

as thermoelectric devices. The research presented here is the first time Coulomb­

blockade thermopower oscillations have been observed in nanowire-based quantum

dots. Fig. 4.1 is an example of thermopower oscillations as a function of energy
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Figure 4.1. Thermopower, 5, and conductance, G, as a function of quantum-dot
cnergy. Peaks in G identify at which cnergy quantum-dot resonances approach the hot
and cold electrochemical potentials, f..LH,C. Here, 5 experiences oscillations when the
(N - l)th and Nth energy resonances lift the Coulomb blockade. Device operation at
the (A), (B), and (C) working points is explained below. Panels: (A) The resonance
at eN is tuned above f..LH allowing hot electrons to flow from source to drain thereby
increasing f..Lc. Here 5 < 0 and the system behaves as an n-type thermoelectric device.
(B) Thermally excited electrons (and holes) are Coulomb blockaded and 5 = O. This
is the unique energy where f..LH = eN = f..Lc = EA = f..L. (C) As EN is pulled below f..LH,
cxcited holes flow from hot to cold dccreasing lic and making 5 > O. This is p-type
thermoelectric behavior. At all working points, equilibrium is established when the
hot and cold Fermi-Dirac distributions, fI-I,C (E), cross at EA' This equilibrium is
facilitated by transport through the Nth quantum dot resonance so that EA = EN.
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(controlled experimentally usmg the gate). See the figure text for a qualitative

explanation of thermopower oscillations in quantum dots.
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Figure 4.2. Thermopower, 5, as a function of energy at the indicated temperature
differences, t::...T = 71-1 - Te , and average temperatures, T = (TH + Te ) /2. This
measurement was performed by repeatedly sweeping the gate voltage using six
different heating currents, which supply t::...T as well as raise T. The slopes of 5 at
each resonance reveal information about the underlying transport mechanisms (see
Fig. IV.I).

Thermopower was measurements at many different values of t::...T and T because

these data help to understand thermopower oscillations and quantum-dot thermo-

electrics in general. These measurements are easily performed by measuring 5 at

many different heating currents thereby raising both TlI and Te . Measurements of

this kind are presented in Fig. 4.2.
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Thermopower Slope dS/dE

S crosses zero at every quantum dot resonance, and near these zero-crossings, S

is linear in energy, E. All the theoretical literature on this subject agrees that the

qualitative behavior of this slope is dS/dE = bier. But the quantitative value of the

coefficient, b, is not universal. Multiple derivations [85, 86, 88, 90] predict b = 1/2 in

the sequential tunneling regime in the limit where the quantum spacing, tlE, is very

small, that is, tlE « kT « Ee (see Eq. (II.2)). This is often the case in 2DEG-based

quantum dots on the scale of 1 /-Lm. In the limit where tlE > Ee » kT, a value of

b = 1 has been predicted [91]. This is the regime of nanowire-based quantum dots.

Unfortunately, these theoretical derivations do not take into account subtle

experimental issues, and their relevance to experiments must be carefully scrutinized.

The slope dS/ dE near resonance is generally derived under the implicit assumption

that the electrochemical potentials of the leads, /-LH,e, do not change; only the quantum

dot electrochemical potential, /-L, is allowed to change. Experimentally, it is impossible

to measure a change in S if /-LH and /-Le do not change because S <X /-LH - /-Le·

Furthermore, any changes in /-LH and /-Le will perturb /-L capacitively via the source

and drain tunnel barriers. This creates feedback among /-L, /-LH, and /-Le. Vc shifts

/-L with the strength of the lever arm, LX, according to /-L = -LXeVG , but only if /-LH,e

are constant. But, in thermovoltage measurements, /-LH,e must be allowed to change

as Vc changes, and the resulting change in /-L becomes more complex. Therefore, to
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model experiments correctly, derivations of dB/dE must consider changes in fLH,C and

the interplay among fLH,C and fL.

Two derivations of dB/dE are included in Appendix E. One derivation uses the

constant interaction model (CIM) (see Section 11.3.1), while the other derivation uses

the Mott formula (see Eq. (1.25)) to produce two different expressions for dB/dE.

The results are summarized here,

CIM:

Mott:

(IV.1a)

(IV.1b)

The CIM-based derivation attempts to account for changes in fL owing to changes

in fLH,C and assumes ballistic transport occurring exclusively at the adiabatic limit,

that is, at energy EA (see Eq. (1.19)). This derivation is appealing due to the

success of the CIM as applied to Coulomb-blockade diamonds and open-circuit voltage

measurements (see Section II.3.1 and Appendix C, respectively). The derivation from

the Mott formula uses the Landauer equation to predict dB/dE from the analytical

approximation of a differential conductance peak in the limit of r « kT, l:i.T « kT,

and eV « kT (see Eq. (II. 9)). This derivation is trustworthy due to the ability of

Eq. (II.9) to predict differential conduction peaks correctly (see, for example, the

inset of Fig. 2.8). Also, this derivation is appealing because it generates a slope

proportional to the Lorenz number, which has been carefully studied in relation to
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thermal conductance [36] and the Wiedemann-Franz law [38]. In particular, it has

been shown theoretically that the Lorenz number can be enhanced by sequential

tunneling [90] and by cotunneling [38].

Inelastic cotunneling involves the transport of two electrons [92] and allows excited

states to contribute to charge current [93, 94] and thermovoltage [87]. Inelastic

cotunneling is a two-step transport process in which an electron leaves the dot at

the same time an electron of a different energy enters the dot. See Fig. 4.3 for a brief

illustration of inelastic cotunneling. Such transport involves the Nth-level ground

state at energy cN and its mth excited state at energy cN,m = CN +~. During

transport, energy ~ is given to the quantum dot. When cotunneling events occur

during voltage-biased current measurements, the bias voltage, V, is the energy source

that supplies~. Therefore, inelastic cotunneling is not observed until eV 2::: ~ [93, 94].

In thermoelectric measurements, the thermal energy supplies ~.

Ref. [38] predicts a 9/5 increase in the Lorenz number due to cotunneling.

Inserting the conventional value, Lo = 1T
2

/ 3 (k / e)2, and the cotunneling value,

LCT = 9/5Lo, into Eq. (IV.Ib) provides the sequential (S) and cotunneling (CT)

results for dB/dE,

(:~)s

(~~) CT

1T2 1

6 eT

91T
2 1

56 eT

(IV.2a)

(IV.2b)
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Figure 4.3. Different transport scenarios in a Coulomb-blockaded quantum dot. (1)
Normal coherent tunneling of an electron occurring via the ground state, IN,l) at
energy eN. The mth excited state of the Nth resonance, IN, m > 1), with energy eN,m

does not contribute to charge transport or thermovoltage, because, for example, (2)
the electron in the IN, 1) state has Coulomb blockaded the IN, 2) state. (3) Inelastic
cotunneling. In process a, an IN,l) electron leaves the dot lifting the Coulomb
blockade on the excited states. Process b immediately follows; a thermally excited
electron tunnels into IN,2). This combined a-b process leaves the charge in the dot
unchanged, but increases the energy in the dot by ~ = cN,2 - CN. The difference in
energy between the final a.nd initial states in the leads is -~, so the total energy is
conserved.

It must be said that all the theoretical predictions of dS/ dE are only upper-

limits because they assume the transmission resonances are infinitely narrow. Real

resonances are of finite width and will reduce the magnitude of S and therefore its

slope. In addition, other loss mechanisms in the experimental circuitry can decrease

the measured value of S.

The various theoretical predictions are compared to experimental results in

Fig. 4.4. The data agrees best with Eq. (IV.2b). This result highlights the importance

of cotunneling effects in thermoelectric processes and suggests that higher-order

processes, like cotunneling, can be explored using thermopower measurements.
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Figure 4.4. Thermopower slopes, dS/dE, versus average temperature, T. The
blue circles are values of dS/ dE measured using the two neighboring thermopower
oscillations shown in Fig. 4.2. The solid lines are theoretic predictions of the form
edS/dE = biT with b = Jr2/6, 2, and 9/5 x Jr2/6 based on Eqs. (IV.2a), (IV.1a), and
(Iy'2b), respectively. The dashed line is a biT fit of the data with b = 3.19.

Thermopower and the Mott Formula

Thermopower can be predicted from conductance VIa the Mott formula (see

Eq. (1.25)),

(IV.3)

This equation requires no fit parameters if !"1T and T are known. Therefore, the Mott

formula is a convenient tool for evaluating both the qualitative and quantitative

behavior of thermopower measurements. The data in Fig. 4.1 has been used to
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compare the measured S to that predicted by SiVlatt) and the result is shown in

Fig. 4.5. As was done in Section IV.2, the Lorenz number has been increased by

9/5 to improve the agreement between theory and experiment providing additional

evidence that cotunneling plays a role in transport.
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> 0 0::l.-...-

-200 N-1 N
C/)

-400 --600
235 240 245 250 255 260 265 270

Energy (meV)

Figure 4.5. G from Fig. 4.1 is used to calculate SMatt, the thermopower predicted
by the Mott formula, Eq. (IV.3). The measured thermopower, S, is plotted for
comparison. The Lorenz number was multiplied by 9/5 to improve the agreement
between SMalt and S. See text for details.

Srvlatt in Fig. 4.5 does a fair job reproducing the qualitative behavior S and gross

quantitative values, such as approximate slope and peak height. This agreement

between Sand SMatt suggests that the measured 10:h and 6.T values are reasonable.

Of course what the Mott formula cannot do is predict features in S that are not

correlated with features in G. For example, the (N - 1)th peak of Fig. 4.5 displays

a very symmetric conductance peak, and as a result, SMatt is very symmetric here.

Yet S is very asymmetric. The asymmetry in S at the Nth peak is less pronounced,

but present nonetheless, and unexplained by SMatt. This behavior highlights the fact
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that thermopower is much more sensitive to transport idiosyncrasies than electrical

current and provides a useful investigation tool.

The best example of what thermopower measurements can offer is shown in

Fig. 4.6, where S displays features completely uncorrelatecl to C. It has been

suggested [95] that under special circumstances the thermodynamic coefficients C th

and C do not tend toward zero at the same rate, and S = -Cth/C can have

singularities when C goes to zero faster than C th . These singularities create a signal

in measurements of S that are unseen in current (or conductance) measurements. In

these instances, it becomes impossible to predict S using C.

1.0 N-1 N N+1
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0 ---
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Figure 4.6. Differential conductance data, C, of the N -1, N, and N +1 conductance
peaks is used in conjunction with the Mott formula (see Eq. (IV.3)) to calculate the
thermopower, SMott, plotted alongside the measured value, S. The Mott formula does
a fair job reproducing the Nand N + 1 thermopower oscillations. However, much of
the behavior of S at the N - 1 peak is not captured by Sl\Mt. Moreover, the features
in the 57-60 meV energy range completely escape description because C is zero here.
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One physical mechanism that could cause such a singularity is (destructive)

quantum interference [95]. If an electron tunnels through the quantum dot via

two separate conduction peaks simultaneously, the electron can interfere with itself

destructively, masking its conduction. Because quantum interference requires two

closely spaced energy levels, it is similar to cotunneling, which has already been

shown to affect thermal transport in Section IV.2. Unfortunately, interference features

like those in Fig. 4.6, although repeatable, are exceedingly rare, and a systematic

investigation of their origin and behavior has not been possible.

Numeric Modelling of Thermovoltage

Sommerfeld expansions or some other approximation is required to derive the Mott

formula (see Section 1.3.1). Without approximations, expressions for thermopower

become complex rather quickly. The next most basic expression for S can be derived

using the Landauer equation in conjunction with Eqs. (1.22) and (1.23a). Near

equilibrium, when tlTIT « 1 and eVlkT « 1 the thermopower can be written,

(IVA)

Although this expression is only valid for small tlT and ~h, it makes no assumptions

about the transmission function, and therefore can be used to test the influence of r

on the thermopower.
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Figure 4.7. Data and a numerical model of thermovoltage as a function of energy.
The simulation used TI~ = 5.02 K, T~ = 2.82 K, and a Lorentzian transmission
function with a FWHM of r t = 10 /-leV.

Eq. (IV.4) was used to simulate experimental thermovoltage data by calculating

lIch = St::...T. The result is shown in Fig. 4.7. The model was produced using the

parameters, TJ = 5.02 K, T~ = 2.82 K, and r t = 10 /-leV (where t denotes model

parameters). The experimentally measured temperatures were TH = 2.43 K and

Tc = 2.08 K. Though the TItc and TH,c values agree almost within a factor of 2, the

values t::...Tt = 2.2 K and t::...T = 0.34 K differ by an order of magnitude. This means

that st and S would disagree by an order of magnitude. The value r t = 10 /-LeV

is larger than expected because differential cond uctance measurements at T = 550

mK show that r « kT = 47 /-leV (see Fig. 2.8). These discrepancies challenge the
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validity of the numerical simulation, which can be addressed in the following manner.

The average temperature of the model is Tt = 3.92 K, and therefore the two ratios

~TtITt = 0.56 and e~hlkTt = 2.96 (for ~h = 1 mV) violate the near-equilibrium

assumptions, namely that ~TIT « 1 and eVIkT « 1. Therefore, the model has

been pushed outside of its range of validity. Under these experimental conditions,

thermopower cannot be modelled with equations that are only approximate.

Regardless of any approximations, models based on the Landauer formula do

not include higher-order effects such as cotunneling and asymmetric tunnelling rates.

The data in Figs. 4.4 and 4.5 suggests that cotunneling plays an important role

in quantum-dot thermoelectrics, and nearly all measured thermopower oscillations

demonstrate some degree of asymmetry. Therefore, more-advanced models are

necessary to capture the observed behavior of thermopower oscillations, and further

experimental research will assist in the development of such models and advance

theoretical understanding.

Conclusion

Much effort was invested into building-up experimental and theoretical techniques

for measuring ~h and ~T in order to determine S. The main purpose of this chapter

has been to establish that the measured values of S are quantitatively accurate.

Measurements of dSIdE and comparison of measured S to Mott formula predictions

show that the measured values of ~h and ~T are reasonable if cotunneling effects are
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included. Therefore, the measured thermopower values are reliable and can be used

to determine the efficiency of a quantum dot.

Along the path toward efficiency measurements, thermopower has proven to be

very interesting in its own right as a tool for investigating transport mechanisms.

Much is still known and thermopower measurements can provide pathways for further

research. The quantum interference and cotunneling effects observed here are only two

phenomena which could be studied in a thermally biased quantum dot. Presently,

understanding such effects is very important, because they limit the performance

of single-electron devices and could play an important role in applications, such as

semiconductor-based quantum computing, spintronics, and of course, thermoelectrics.
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CHAPTER V

THERMOELECTRIC POWER MEASUREMENTS

Introduction

Power measurements complement efficiency measurements nicely because the

relationship between power and efficiency is constrained; optimizing one of these

parameters diminishes the other (see, for example, Fig. 7.2b). In the extreme case,

a reversible process operating at Carnot efficiency has no preferred direction and

operates infinitely slowly providing, therefore, zero output power. In any physical

application, a compromise must be made between power and efficiency. For example,

a power plant engineer needs only match the demand of the power grid and aims to

maximize efficiency while doing so. On the other hand, the mechanic in a Formula 1

pit crew is concerned primary with power and has almost no regard for efficiency. The

fundamental physics of this interplay is, in fact, quite rich. Motivated by the power­

efficiency tradeoff, device efficiency can be approached from a power optimization

perspective.

The topic of efficiency at maximum power is a relatively new interest in the field

of thermodynamics, considering the fact that thermodynamic is one of the oldest

branches of physics. In 1975, Curzon and Ahlborn found (in the endo-reversible
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approximation) that the upper-limit of the efficiency at maximum power, TIp, obeys

TIP :s::; TlCA = 1 - JTc/TH [96], where TlCA has become known as the Curzon­

Ahlborn (CA) efficiency. This paper has created new thinking about old problems

in thermodynamics. For example, the Feynman ratchet [97] has been studied from a

power perspective [98] as have similar systems. Recent technical advances allowing

the creation of synthetic Brownian motors, molecular motors, quantum ratchets, and

quantum dots have lead to a flurry of both theoretical and experimental research

on the efficiency and power of finite-size and finite-time processes in small-scale

systems. Applying theory derived under ideal conditions to these small-scale, near­

ideal experimental systems must be done with care. For example, because it is

model-specific, the validity and universality of the Curzon-Ahlborn efficiency has

been criticized. While the maximum efficiency of all heat engines is bounded by

Carnot efficiency, the maximum efficiency at maximum power depends on the details

of the heat engine. Theoretical research on the maximum TIP of a quantum dot [99]

motivated broader research. As a result, it has been demonstrated [100] that the

upper-limit of TIP is universal up to second-order in Carnot efficiency for all heat

engines which posses 1) left-right symmetry and 2) linearly related thermodynamic

fluxes. That is, all heat engines satisfying these two conditions operate with an TIp

bounded according to TIp :s::; Tlc/2 +Tl6/8 +0 (Tl6) 1 where TIc is Carnot efficiency. Note

that the Curzon-Ahlborn efficiency can be expanded as TlCA = Tlc/2 +Tl6/8 + 0 (Tl6)

and therefore agrees with this result up to second-order in TIc. Investigations of this
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flavor highlight the complex relationship between power and efficiency. Quantum

dots can be used to measure experimentally the value of 'TIP and to investigate other

aspects of the power-efficiency relationship.

This chapter presents power measurements made using a quantum-dot nanowire

device, and for the reasons discussed above, these results are interesting in their own

right. In relation to the larger goal of this Ph.D. research, these power measurements

serve primarily to support thermovoltage data using a comparison technique described

in the next section. The conclusion of this chapter is that power measurements

corroborate the measured thermovoltage data in Chapter IV.

Experimental Considerations

Thermoelectric power generation is measured by supplying a temperature gradi­

ent, t1T, across a the device while simultaneously supplying a dc bias voltage, V.

Any thermally produced current, that is, dc thermocurrent I H , which flows through

the device has done so by overcoming V. Therefore, the thermoelectric power is

Pth = IthV. Experimentally, however, Ith cannot be distinguished from the total

dc current, I, and measurement of the thermoelectric power generation must be

accomplished in another way. Using Eqs. (1.1) and (1.3), I can be written,

(V.1)
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Figure 5.1. Total current, I, from Eq. (V.1) and output power, P, from
Eq. (V.2) as a function of bias voltage, V, demonstrate the operation of a generic
thermoelectric generator in the linear response regime. By definition (see Eq. (1. 2)),
the thermovoltage, ~h, is the voltage at which 1= O. Note that when V = ~h, P = 0
meaning that the system has stalled. Therefore, the P = 0 condition at finite V can be
used to determine ~h (see Fig. 5.2). \;\Then V = 0, only the thermocurrent, I th , flows,
but P = 0 here because there is no voltage bias against which work can be done.
The blue shaded region of negative P is where power production is accomplished
thermally.

where Iv is the current produce by V. The total power, P, of the system is,

P = IV = IvV + I th V = GV2
- GVth V = G (V - Vth ) V. (Y.2)

Therefore, the P can be determined by measuring I as a function of V and multiplying

by V

~h causes current to flow backward against the applied voltage, if and only if

~h is greater in magnitude than V and of the same sign (as per the chosen sign

convention). This requirement is clearly reflected in Eq. (V.1). More to the point,

this condition is also reflected in P because it is negative only when I~hl > IVI and

when ~h and V have the same sign. Therefore, [').T creates useful electric work at a
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rate IFI when P < 0, and V creates work at a rate P when P > 0. When P = 0, the

system stalls (I = 0) and no work is performed (see Fig. 5.1).

Experimental Results

In a quantum dot device, power can be measured as a function of both V and

gate voltage, VG , to map out the power at all the working points in the V-VG plain.

The result is 2D plot of Coulomb-blockaded power, as shown in Fig. 5.2. Note that

when P = °and V =1= 0, it must be true that ~h = V, meaning that a power

measurement as a function of V is also a thermovoltage measurement. In addition to

power, Fig. 5.2 includes thermovoltage measured as a function of gate voltage using

the quasi-open-circuit technique (see Section II.4.5). This ~h data is plotted on top

of the power data and follows the P = °contour around each lobe of the Coulomb­

blockaded power. The qualitative agreement between ~h and P is quite striking. For

example, the left resonance displays gross asymmetry captured by both P and ~h'

Their quantitative agreement necessitates multiplying the ~h data by a factor of 2.4.

This requirement is interpreted as the scaling factor ¢ between the measured VL and

~h (see Section 11.4.5).

The effective resistance of the nanOWlre (which is analogous to the internal

resistance of a battery) can be found using Eq. (II.16) for the thermovoltage scaling

factor, ¢ = 1+ R/RL . From the power measurement, ¢ = 2.4, and for this setup, the

load resistance is RL = 47 MD. Therefore, the effective resistance of the nanowire is
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Figure 5.2. Power, P, as a function of bias voltage and gate voltage displays
Coulomb-blockade features. The experiment involves measuring, as a function of gate
voltage, the net current, I, produced by the nanowire, which has been simultaneously
electrically and thermally biased (6.T = 1.08 K). In order to determine P = IV (see
Eq. (V.2)), the measured current is simply multiplied by the applied bias voltage, V.
Only negative power is shown (P ;::: 0 is assigned the same color), because negative
P is the electrical power generated thermally (see Fig. 5.1). The solid white line is a
trace of ~h measured at 6.T = 1.08 mK with a load resistance RL = 47 NUl using
the quasi-open-circuit technique described in Section lI.4.5. RL is not used during
power measurements. (The effective load resistance used during power measurements
is the 10 ldl input impedence of the low-noise current preamplifier.) For each gate
voltage, the finite bias voltage at which P = 0 provides a measurment of ~h (see
Fig. 5.1). Therefore, this power measurement is also a thermovoltage measurement.
The quasi-open-circuit ~h must be multiplied by a factor of 2.4 to achieve agreement
with the power measurement. This ¢ = 2.4 scaling factor implies that the effective
internal resistance of the nanowire is roughly 66 MO (see text for details).



131

R = 66 MD. In comparison, differential conductance data shows that on resonance

these two peaks have a resistance R ~ 3 MD, while far off resonance (where electrons

tunnel through the entire double-barrier structure as if it were a single barrier)

R > 100 MD. Most of the thermovoltage data is collected on the shoulders of the

conductance peaks where the effective resistance is between 3 MD and 100 MD.

Therefore, the R = 66 MD result is reasonable, and the power data supports the

quasi-open-circuit thermovoltage measurements.

Conclusion and Outlook

Coulomb-blockaded power has been measured in a quantum dot as a function of

bias and gate voltage-perhaps the first measurement of its kind. The power measure­

ments presented here are intended to confirm the quasi-open-circuit thermovoltage

measurement technique. The two methods do indeed agree once the internal resistance

of the thermoelectric circuit is considered. These findings bolster the confidence with

which efficiency results are reported (see Chapter VII).

Power is an interesting phenomena from a thermodynamic perspective and is

extremely relevant to device applications. The power of thermoelectric devices

remains relatively unexplored, and the fundamental relationship between power and

efficiency is underrated. Quantum dots offer a unique experimental perspective on

these topics owing to energetic tunability. Coupled with quantum-dot thermometry,
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nanowire devices provide an excellent platform for future research on thermoelectric

power generation.
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CHAPTER VI

NONLINEAR THERMOELECTRICS

Introduction

Mesoscopic systems are easily driven into the nonlinear regime by applying a

sufficiently large voltage bias. Nonlinear behavior can be attributed in part to the

density of states (DOS) and the quantum transmission function, which are acutely

energy dependent. In particular a non-monotonic, modulated transmission function,

provides similarly modulated, nonlinear IV behavior, in direct violating of Ohm's

law. The analogous thermoelectric behavior is a nonlinear relationship between the

thermovoltage, \!th' and the applied temperature difference 6T. In the nonlinear

thermoelectric regime, Eq. (1.2) is no longer valid, and \!th must be described to

higher order in 6T. A power series expansion of \!th reads,

where the Si coefficients are the ith-order Seebeck coefficients. In the mesoscopic

realm, the evaluation of thermoelectric performance must performed with care by

considering nonlinear behavior and avoiding assumptions about Sand ZT that are
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meaningful only if ~h is linear in 6.T. This is an important proviso in quantum-dot

thermoelectrics, because the sought enhanced thermoelectric performance resulting

from abrupt energy features and electron energy filtering requires the transport

properties to change on a scale of 6.T, which is same the physical condition that

generates nonlinearity.

The mesoscopic thermoelectrics community has addressed nonlinear thermoelec­

tric behavior on few occasions. In fact, the first, and perhaps only, experimental

evidence of strong nonlinear behavior in a mesoscopic system was considered an odd

curiosity, neither explored nor understood [71]. This research deficit is due in part to

the challenge of thermometry and in part to the deficit of suitable mesoscopic devices.

Nonlinear experiments might require a relatively large 6.TIT before the onset of

strong nonlinear effects are observed. Often in experiments, attempts to raise 6.T

significantly have the side effect of increasing T as well, and 6.TIT remains relatively

small. However, the combination of heating and thermometry techniques developed

for thermoelectric efficiency experiments have made nonlinear investigations possible.

As for candidate devices, the system must have sharp, non-monotonic energy

features in order to observe strong nonlinearity. Not every mesoscopic system

offers this. For example, theory predicts that quantum point contacts (QPCs)

only demonstrate weak nonlinear thermoelectric effects due to their monotonic

transmission spectrum [101], a conclusion which has been corroborated experimentally

[74, 102]. On the other hand, a double-barrier quantum structure offers energy
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quantization adequate for producing strong nonlinear thermal effects [103]. A small

quantum dot operating in the few-electron regime is the best choice for observing

for nonlinearity, because it offers well-spaced energy resonances with relatively few

neighboring excited states. Therefore, a quantum-dot nanowire, equipped with

contacts for direct electron-gas heating, is very well suited for observing strong

nonlinear thermoelectric behavior. In the remainder of this chapter, nonlinear

thermovoltage measurements and a numerical model are presented. Quantum-dot

thermometry (see Chapter III) was used to determine the temperature difference

across the quantum dot. Fig. 3.8 shows that this thermometry technique is valid

even with the potentially large /).TIT in nonlinear experiments.

Experimental Results

Nonlinear vth as a function of /).T was measured at several different gate voltages.

The qualitative behavior of each vth versus /).T curve varies significantly depending

on the gate voltage. The nonlinearity is very strong, and even complete sign

reversals have been measured (see Fig. 6.1). During thermovoltage measurements, the

drain and quantum dot electrochemical potentials are allowed to shift, obfuscating

which energy scales and physical features are responsible for the nonlinearity.

Nonlinear experiments can be simplified if thermocurrent rather than thermovoltage

is measured, because thermocurrent measurements reduce the number of degrees of

freedom in the system.
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Figure 6.1. (a) ac thermovoltage, 11th, measured as a function of temperature
difference, 6.T, shows strong nonlinear behavior for 6.TIT as small as 0.2. The data
was measured at the three labelled quantum dot energies, which correspond to the
three dashed horizontal lines in (b). Inset: 6.T as a function of heating current, hI,
determined using quantum-dot thermometry (see Section III). (b) 11th as a function
of quantum dot energy with 6.T = 300 mK. The dashed horizontal lines indicate at
which energies data in (a) was measured. A quantum dot resonance aligns with the
source electrochemical potential near 2.1 meV. See Chapter IV for more information
about thermovoltage oscillations.

Measurements of thermocurrent, 1H, are performed with the cold drain contact

connected to a low-noise current preamplifier (see Fig. 2.13). A further simplification

is to apply a dc bias voltage, V, to the hot source contact and then use the gate

voltage to align the hot electrochemical potential, Ji'H, with a resonance of the

quantum dot. At the same time, the cold electrochemical potential, /-lc, can be

kept far from any quantum dot resonance (see Fig. 6.2b). In this dc voltage-biased

setup, thermocurrent is distinguished from biased current by using a low-frequency
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ac heating current. Therefore, the temperature gradient and resulting thermocurrent

are also ac (and frequency doubled). The thermocurrent is measured using a lock-in

amplifier referenced to the second-harmonic of the heating current. See Section II.4.4

for more experimental details. Measured thermocurrent and a numerical model are

shown in Fig. 6.2.

Numerical Modelling

The system is modelled using the full Landauer equation without any approxima-

tions, because, in the nonlinear regime, it cannot be assumed that 6.TIT and eVIkT

are small, as is usually done to calculate I via the Landauer equation, The total

current is given by,

2eJ1= -h [fH (c, TH,VH) - fe (c, Te,Ve)] T (c) dc, (VI.1)

where the arguments of the two Fermi-Dirac distributions, fH,e, are ~H,e =

(c - f-lH,e) IkTH,e and the Lorentzian transmission function has an energetic width of

r. Here f-lH,e are measured relative to the quantum dot electrochemical potential, f-l,

so that, f-lH,e = f-l-eVH,e. When 1= 0, the system has stalled, and the thermovoltage,

vth = Ve - VH, has been established. In principle, vth can be determined by finding

the values of VH,e which provide I = O. But there is one additional complication.

As the voltages VH,e change, they influence f-l capacitively via CS,D, which in turn
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influences {tH,e thereby creating a feedback mechanism. Modelling experimental data

with Eq. (VI. 1) becomes impractical once the feedback is folded in because the number

of fit parameters becomes large: VH,e, r, and CS,D,G make six. The parameters VH,e

and CS,D,G are interrelated and could be reduced in number. However, !:::.T is large in

the nonlinear regime, and the thermally smeared Fermi-Dirac distributions are free to

explore large regions of energy space, which likely includes excited states. Describing

extra details of the transmission function, such as excited states, blocking states, and

cotunneling requires more fit parameters. With so many fit parameters, a model

based on Eq. (VI.1) is most likely overdetermined.

During thermocurrent measurements, the bias voltage is fixed, and the only fit

parameters necessary for modelling I th are those which describe T (E). Furthermore,

because {te is not near a resonance of the quantum dot, fe (E) does not influence the

current, that is, Jfe (E) T (E) dE = O. Measurement of ac thermocurrent is differential

in nature because the lock-in measures the rms amplitude of the current as it oscillates

between its maximum (at full !:::.T) and minimum (at !:::.T = 0). Therefore, the

(differential) thermocurrent can be written,

2e J 2e JIth = -h lfH (E, TH,V) - fH (E, T, V)] T (E) dE = -h FT (E) dE, (VI.2)

where F = fH (E, TH,V) - fH (E, T, V), and TH= !:::.TH+T. In order to model excited

states not described by a Lorentzian transmission function, T (E) is found numerically
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Figure 6.2. (a) Experimental and modelled ac thermocurrent as a function of !:1T.
The data was collected at a bias voltage of -4 mV and -5.25 mY, as shown by
arrows in (b) Measured de cuncnt <-18 a function of bias voltage was used to find the
quantum transmission function, T (c), in (c). T (c) was tweaked iteratively until it
correctly reproduced the IV curve in (b). Inset: J-Lc is biased away from a resonance,
and /l'B is brought near a resonance. (c) T (c) calculated using the data in (b). The
red and blue dots indicates the working points for data collection in (a). (Note that
T (c) moves during biasing.) (d) The integrand of Eq. (VI.2) as a function of energy,
with F evaluated at !:1T = 12, 35, 58, and 81 mK When F is centered just off
resonance, nonlinear behavior in (a) is enhanced.
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based on dc IV data. A numeric T (c) function is first approximated then iteratively

adjusted until a suitable match between data and simulation is achieved (see band

c of Fig. 6.2). Once T (c) has been found, I th is calculated numerically at different

values of 6.T in an attempt to reproduce the experimental data.

This model has been used to simulate the data in Fig. 6.2a with mixed success.

Data that is weakly nonlinear can be reproduced by Eq. (VI.2), as demonstrated by

the -5.25 mV data in Fig. 6.2a. However, the strong nonlinear behavior already

observed when 6.TIT ;::: 0.06 cannot be duplicated numerically, as shown by the -4

mV data in Fig. 6.2a.

Thermally driving a system into a nonlinear regime requires a 6.T which is large

compared to the energy scale over which charge transport has appreciable energy

dependence. The strong nonlinear behavior observed as soon as 6.TIT ;::: 0.06

suggests that kT is not the relevant energy scale. T (c) is the next most likely

candidate for establishing an energy scale. However, the excited state in the calculated

T (c) in Fig. 6.2c has an approximate energetic width of bE = 0.25 meV, which is

equivalent to 5.3 kT at the background temperature of the experiment, T = 550

mK. It is no surprise that the model cannot produce nonlinear effects because, at its

largest, k6.TI bE = 0.03, implying that T (c) is too broad to effect nonlinear behavior

in I th . Nonetheless, T (c) does produce the correct dc current using the Landauer

equation. With T (c) eliminated as a possible candidate, the source of the observed

nonlinearity is unknown. However, T (c) has not been measured directly, only inferred
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from IV data. Other effects could influence the behavior of T (E) and mask its true

functional form. For example, T (E) could be a function of bias voltage, something

the model does not include. Or the excited state could in reality be a cluster of very

narrow excited states which cannot be resolved by IV measurements. Investigations

in those directions might prove fruitful.
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Figure 6.3. (a) Modelled ac thermocurrent as a function of 6..T. Inset: The system
is biased to align f-LH to the quantum-dot resonance. (b) A trial quantum transmission
function T (E). The green and red thermocurrent curves where calculated by feeding
T (E) into Eq. (VI.2) and integrating while F was centered at the respective working
points indicated by the green and red dots. The system demonstrates strong nonlinear
behavior only when 6..TIT > 2.5.

If the model is pushed hard enough, strong nonlinearity is observed (see Fig. 6.3),

but only at much larger 6..TIT than observed experimentally. Quantitatively the

model fails to duplicate experiment, but qualitatively the two are very similar. What

is clear from the modeling is that asymmetry plays a large role in nonlinearity. If

the integrand term F is centered just off resonance, the thermocurrent eventually
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makes a complete sign reversal at large enough t::.T. This can be explained by the

competition between electron- and hole-dominated transport. For example, at the

working point indicated by the green dot in Fig. 6.3b, the peak to the left transports

electrons, while the peak to the right transports holes. Starting at small t::.T, the

system is in the electron-dominated regime because it is closer to the left peak, and

so I th is negative. As t::.T increases, F expands increasing hole transport via the right

peak and increasing I H until eventually I H = o.

Conclusion and Outlook

Several aspects of the system contribute to the observed nonlinear behavior,

including sharp energy features, asymmetry, and a competition between electrons

and holes. The present thinking is that the transmission function of the quantum

dot-which has sharp, non-monotonic features-is the primary source of nonlinearity.

Asymmetry helps induce nonlinearity if the energy features are sufficiently sharp, and

any symmetry-breaking mechanisms, such as barrier asymmetry, might playa role

in the creation of nonlinear behavior. The competition between electrons and holes

cannot be achieved with a monotonically increasing transmission function and is

enhanced by excited states.

Predicting nonlinear behavior with numeric modelling has been somewhat success­

ful, especially for understanding the qualitative features. Although, improvements
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can certainly be made toward achieving better agreement between simulation and

experiment.

A competition between electrons and holes was used to explain the experimental

observation that thermocurrent as a function of f::.T can be non-monotonic and

eventually fall to zero. Therefore, as f::.T increases and carriers are given more energy

to explore larger regions of the system's energy space, the combined nonlinear effect of

multiple small energy features could limit or even quench device efficiency and power

generation. In this way, nonlinear effects are most likely detrimental to efficiency and

power generation.
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CHAPTER VII

THERMOELECTRIC EFFICIENCY MEASUREMENTS

Single-energy charge transport in particle heat engines provides the necessary

condition for achieving thermodynamic reversibility and the theoretical maximum ef­

ficiency, Carnot efficiency (see Section 1.2.3). The best candidate for an experimental

realization of this ideal theoretical construct is a quantum dot because it satisfies

two necessary conditions. First, quantum dots operated at cryogenic temperatures

« 10 K) have single-electron energy resonances which are separated in energy by

much more than the thermal energy (see, for example, Fig. 2.12). This allows each

resonance to be addressed individually. Second, quantum dots can, in theory, provide

arbitrarily narrow energy resonances and reach the ideal single-energy limit.

A real device will display some degree of intrinsic resonance broadening due to

the finite width of its tunnel barriers (see Fig. 2.5). However, the energetic resonance

width, r, can indeed be made to satisfy the condition that r « kT (see, for example,

the inset of Fig. 2.8). Thus, quantum dots provide all the prerequisites for the

realization of a highly efficient thermoelectric heat engine. This chapter outlines

the technique used to evaluate experimentally the electronic efficiency of a quantum

dot using the ZT figure of merit and provides quantitative evidence concluding that

a quantum dot can indeed operate very near Carnot efficiency.
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Electronic Efficiency (ZT)el

The efficiency of any thermoelectric device is most easily measured by determining

the ZT figure of merit (see Section 1.4 and Eq. (1.31)). The ZT figure of merit is

defined as

ZT = 5
2
GT

K;el + K;ph'

where 5 is thermopower, G is electrical conductance, K; = K;el + K;ph is total thermal

conductance, and t = (TH +Tc) /2. These device parameters have strict definitions

(see Section 1.1), and determining ZT accurately requires measurement techniques

that respect these definitions. The thermal terms 5, K;el, and K;ph must be measured

under open-circuit conditions in which I = 0, while G must be measured under

isothermal conditions in which /)"T = O. All the parameters must be measured at the

same temperature, namely T.

In order to evaluate only the electronic performance of a thermoelectric device,

phonons are completely neglected. In this case, the electronic ZT is defined as

G and K;el are related to one another according to the Wiedemann-Franz law (see

Eq. (1.26)) when /)"T « T and eV « kT in the low-temperature and small bias

regime. In this regime, the Wiedemann-Franz law states K;el = LoGT so that (ZT)el
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can be further simplified to

(VII. 1)

where the conventional Lorenz number, L o = 1[2/3 (k/e)2, has been discussed in

Section IV.2. In this way, maximizing the Seebeck coefficient optimizes (ZT)el'

Experimental Results

The prediction for the Lorenz number of 1D ballistic transport through a

nondegenerate energy level is LB = 3Lo/1[2 = (k/e)2 [36]. This regime offers the

best conditions for achieving highly efficient thermoelectric performance because it

provides strong energy filtering. On the other hand, cotunneling can affect thermo-

electric performance, for example, by increasing the thermopower (see Section IV.2).

While the additional conduction pathways provided by cotunneling increase Sand C

and the device power factor, S2C, these pathways should in fact decrease efficiency as

they destroy thermodynamic reversibility. Efficiency degradation via cotunneling is

reflected in (ZT)el because cotunneling increases the Lorenz number. The cotunneling

Lorenz number is LeT = 9/5Lo = 31[2/5 (k/e)2 [38]. In a device with energy levels

separated by much more than the thermal energy (Eadd » kT) and very narrow

transmission widths (r« kT), cotunneling is a very likely candidate for limiting

device performance.
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It is quite possible that cotunneling is weak and the effective Lorenz number, Leff ,

falls somewhere between L B and LCT (LB :::; Leff :::; L CT )' Even more likely is that Leff

is not constant, but instead changes as the electrochemical potential of the quantum

dot changes. Under both circumstances, neither L B nor L CT can predict the true

value of (ZT)el' Therefore, calculations of (ZT)el using LB can be regarded as an

upper-limit, while those using LCT can be regarded as a lower limit.

Fig. 7.1 shows measured values of G, 8, 8 2
, and (ZT) el as a function of energy

across two-quantum dot resonances. (ZT)el in the figure has been calculated using

both L B and L CT to show the disparity between the two predictions. Fig. 7.1d

demonstrates the relationship between the ZT figure of merit and the efficiency

relative to Carnot efficiency, T}IT}C, evaluated using experimental parameters according

to Eq. (1.30). Note that, in the derivation of this relationship, perfect impedance

matching was assumed (see Section 1.4 for details). This provides a conversion of

(ZT)el to electronic efficiency. The upper-limit of the measured electronic efficiency

of the device is nearly 95% Carnot efficiency. Fig. 7.2d shows the lower-limit of (ZT)el

calculated using L CT ' Despite being the lower-limit, its maximum near 88% Carnot

efficiency is very respectable. This bounds the efficiency between 88% and 95% of

Carnot efficiency demonstrating that the quantum dot operates as a very efficient

thermoelectric device.

Fig. 7.2a shows numeric modelling of (ZT)el as a function of quantum dot energy

that is quantitatively similar to the measured (ZT)el' The agreement between theory
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Figure 7.1. The evolution of raw data in (a) concludes with measured efficiency in
(c) via the theoretical relation in (d). (a) Measured values of 5 and G as a function of
energy. (b) The square of 5 from (a). (c) The electronic efficiency, (ZT)el' calculated
using 52 in (b). The two curves result from using two different Lorenz numbers, the
ballistic (BL) and the cotunneling (CT) (see text for details). The electronic efficiency
relative to Carnot efficiency, rllrlc, on the right-hand axis was converted from (ZT)el
values via (d); a log-linear plot of the theoretical expression relating, fJ/fJC, to the ZT
figure of merit calculated using Eq. (1.30) with the listed experimental TI-I,c values.

and modeling offers insurance that the measured values of (ZT)el are reasonable. The

next section provides details about the numeric simulations.

Modelling Results

Numeric modeling of quantum dot efficiency can be calculated in two different but
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equivalent ways. The first method essentially calculates (ZT)el directly using the full

Landauer formula. This is achieved by calculating the thermodynamic coefficients

G, S, and K;el using Eqs. (1.11), (1.22), and (1.23) and combining them to calculate

(ZT)el = GS21'/ K;el· An example of (ZT)el calculated in this way is presented in

Fig. 7.2a at l' = 1 K for r /kT = 0.1 and 0.01. The maximum (ZT)el for these two

choices of rare (ZT)el ~ 30 and (ZT)el ~ 265, respectively, which corresponds to a

relative efficiency of TJ/TJc = 0.71 and TJ/TJc = 0.89 (see Fig. 7.2c).

The second method for calculating efficiency does not rely on the ZT figure of

merit, which is an advantage over the aforementioned method. The method again

uses the Landauer formula, but calculates both efficiency and power directly based

on their definitions. The efficiency is the ratio of the output work, W, performed by

the total current, I, against the applied voltage, V, to the total heat flow, Q, leaving

the hot bath. That is,

W IV
TJ - --

- Q - III + K;el (TH - Tc)'
(VI1.2)

where Q has been provided by Eq. (1.7). Eq. (VII.2) is an expression for electronic

efficiency because K;ph is not included. No Joule heating term is included in the

total heat flux because the quantum dot operates ballistically, that is, without energy

dissipation. The Landauer equation (Eq. (1.20)) can be used to calculate I directly.

Calculations of the II and K;el thermodynamic coefficients, without approximation, are

less direct. First, the thermodynamic coefficients G, Gth, and K defined via Eq. (I.4)
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are calculated using Eqs. (1.22), (I.23a) and (I.23b), respectively. II and /'i;el can then

be calculated via G, Gth , and K according to Eq. (1.11).

Both efficiency in Eq. (VII.2) and power, P = IV, are calculated numerically as a

function of quantum dot energy, f-L, and bias voltage, V. At each working point in the

f-L-V plain, values of TJ and P are paired and cataloged. The complete catalog is then

plotted in the TJ-P plain. The resulting TJ-P phase space is only partially filled, and

the filled regions place bounds on what efficiency and power the system can achieve.

Efficiency and power calculated in this way are plotted in Fig. 7.2b at T = 1 K for

r /kT = 0.01, 0.1, 1, and 10. For each choice of r /kT, the quantum dot forms lobes

of operation in the TJ-P plain. Note the tradeoff between efficiency and power, and

that r dictates whether the device is disposed to efficiency or power, but not both.

The two dissimilar models were used to calculate TJ at T = 1 K for a choice of

r /kT = 0.1 and 0.01, as shown in (a) and (b) of Fig. 7.2. Both models predict that,

for these two choices of r, the system efficiencies are about 70% and 90% of Carnot

efficiency, respectively. More important than the actual value of TJ is the fact that

the two models agree. Calculating TJ directly from its definition is very trustworthy,

and the power versus efficiency plots are interesting and pedagogical in their own

right. However, this method requires much more computation time than calculating

ZT directly. Furthermore, the TJ-P plots do not predict TJ as a function of quantum

dot energy and thus cannot be easily compared to experiments. But because the

two models agree, direct calculations of ZT and subsequent conversions to TJ are also
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Figure 7.2. (a) (ZT)el calculated numerically as a function of quantum dot energy
centered at a conductance peale The simulation demonstrates very clearly that r
improves performance. (b) Numerical simulations demonstrating that devices with
different r cluster within different regions of power-efficiency phase space. The
maximum efficiency calculated in this way agrees with the ZT values in (a) if ZT
is converted to relative efficiency, 1J/1Jc, using (c) 1J/1Jc as a function of ZT. The
vertical and horizontal lines show the conversion of the maximum ZT values in (a).
(d) Measured (ZT)el as a function of energy over two resonances determined using
LCT represents the lower-bound on (ZT)el' This data is very similar to the r = O.OlkT
simulation in (a).
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trustworthy. In the same way, measured values of ZT can be considered an accurate

and trustworthy measure of fJ.

Conclusions

The measured (ZT)el and resulting efficiency support the original theoretical

proposition that quantum-dot-based devices provide ideal conditions for high-

efficiency thermoelectric performance. The measured thermopower and temperature

differences have been carefully collected and scrutinized insuring the reliability of

the measured efficiency, and numerical simulations have corroborated these results.

Therefore, the observed electronic efficiency between 88% and 95% Carnot efficiency

can be trusted as accurate.

This research would not be complete without discussing the full ZT figure of merit

of a quantum-dot device. The ZT figure of merit is related to (ZT)el by,

(VII.3)

Measurement of ZT requires knowledge of K;ph' Collaborators at the University of

Texas at Austin have measured K;ph using homogeneous InAs nanowires grown at Lund

University. Extrapolating their low-temperature results [104] down to the cryogenic

temperatures used in these experiments gives K;ph ~ 1 W jmK. This value is an upper-

limit on the K;ph of the double-barrier nanowires used in these experiments because,



153

as phonon modes freeze out, ""ph will decrease faster than the linear extrapolation.

The Wiedemann-Franz law provides ""el = LooT, where the electrical conductivity,

a, is used to provide unit agreement with the measured ""ph' Using the measured

conductance, nanowire dimensions, experimental temperature, and the cotunneling

Lorenz number gives ""el = 2.6 x 10 x -7 W ImK. Putting the measured values of ""el

and ""ph into Eq. (VII.3) provides a maximum ZT of 3 x 10-4
. While this ZT value is

low, it must be understood that these experiments aimed to optimize (ZT)e\l which

can actually decrease ZT.

The reduction in ZT stems from strong electron filtering without commensurate

phonon filtering. The nanowires used in these experiments were intentionally grown

with thick barriers to provide a very small r. As a direct result, both G and ""el

are small. However, this is of no consequence to (ZT)el because it depends only

on the ratio GI ""el. On the other hand, the ZT figure of merit is sensitive to the

ratio GI""el as well as the ratio ,,"el/,,"ph, as demonstrated in Eq. (VII.3). In the

limit where ""ell""ph « 1, as is the case in these experiments, ZT ~ (ZT)el (""el/,,"ph)

and is therefore small. Optimizing the electronic performance and ignoring the

phonons has decreased ""el/""ph and therefore decreased ZT. A larger r could increase

""el/""ph without causing a significant decrease in 52 thereby optimizing ZT rather

than (ZT)el' The marriage of phonon suppression and strong electron filtering will

produce a relatively large ""ell""ph value and result in a large ZT figure of merit. This

result highlights the fundamental importance of merging insights regarding electronic
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optimization with phonon suppression techniques in order to achieve a well-rounded,

high-efficiency thermoelectric device.
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CHAPTER VIII

CONCLUSIONS

Research Summary

Cyclic heat engines and thermoelectric heat engines are bounded by the same

maximum efficiency, namely, Carnot efficiency, which requires a thermodynamically

reversible process. The classic Carnot cycle achieves reversibility by assuming

a perfectly insulated working gas and infinitely slow compression and expansion.

Thermoelectric heat pumps suffer from a constant, entropy-producing, parasitic heat

flow from the hot bath to the cold bath. Achieving maximal efficiency in such systems

is accomplished in a fundamentally different fashion than in cyclic heat engines. The

entropy produced by the constant heat flux flowing through a thermoelectric can

be nulled by an equal and opposite entropy produced by charge flux. Such entropy

cancellation is possible at only one specific energy, the so-called adiabatic energy

[10]. Therefore, to realize (electronic) Carnot efficiency in a thermoelectric device,

energy-specific electron transport must be achieved.

Quantum dots have an energy-filtering capability uniquely suited for realizing

(near) Carnot efficiency. The goal of this Ph.D. research has been to measure

quantitatively the electronic efficiency of a quantum dot operating as an energy filter
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and demonstrate its ability to achieve near Carnot efficiency. Quantitative efficiency

analysis required the application and subsequent measurement of a temperature

difference across a distance of only 25 nm. This prerequisite was fulfilled by developing

novel heating and thermometry techniques. The quantum-dot thermometry technique

has proven particularly convenient because it measures electron temperature, and

uses the same quantum dot that is used as the thermoelectric generator, thereby

making additional thermometer components unnecessary. Together the heating and

thermometry techniques have supplied and determined temperature differences of up

to 2 K across a 25 nm distance, which is equivalent to an 8000 K temperature drop

across the width of a human hair.

Besides electronic efficiency, other relevant quantum-dot thermoelectric behavior

has been studied throughout the course of this research. Cotunneling has been and

continues to be a troublesome topic in quantum dot transport as it threatens to

decrease many performance aspects of these very sensitive devices, such as spin

coherence times, quantum lifetimes, and thermoelectric efficiency. Thermovoltage

oscillations offer insights into the quantitative behavior of cotunneling and how it

affects thermally induced charge transport. The measured power of the quantum-dot

nanowire used in this work (roughly 50 nm in diameter) was 5 fW at 3.76 K, which

gives a power density of about 2.4 W1m2
. Note that this nanowire was optimized

for efficiency, not power, and so this result must be interpreted as a lower-limit of

quantum-dot nanowire power generation. Power production should be higher in an
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appropriately designed device. Also, power is expected to increase quadratically with

temperature. Future power research should bare out both of these predictions. Below

1 K, thermovoltage demonstrated strong nonlinear behavior as a function of 6..T, even

when 6..TIT was as small as 5%. This result suggests that kT is not the relevant

energy scale in the system and that instead quantum effects must be considered. The

observed nonlinearity is not well understood and is still being investigated.

The electronic efficiency of direct thermal-to-electric energy conversion using a

quantum-dot nanowire has been measured and is between 88% and 95% Carnot

efficiency. This is the first quantitative efficiency measurement of quantum dots, and

it demonstrates that quantum dots can indeed operate very near the fundamental

upper-limit of all heat engines, that is, Carnot efficiency. Though a different

thermoelectric device design might prove more advantageous than quantum dots,

this result elucidates the fundamental solution to optimizing the electronic aspect of

all thermoelectric heat engines.

Research Outlook

The number of possible thermal physics topics that can be studied using

quantum-dot nanowires is large. The quantum-dot thermometry technique that

developed from this research could be used to study a variety of fundamental physics

topics concerning low-dimensional heat flow and electron-phonon interactions. The

unique thermoelectric effects in quantum dots offer a myriad of possible research
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avenues, and nanowire-based devices offer extra flexibility and broaden research

horizons. For example, future research regarding the relationship between cotunneling

and thermoelectric effects could provide a better understanding of cotunneling

in general. The power measurements presented here are only a precursor. A

complete study of power optimization and the relationship between power and

efficiency is interesting from both a low-temperature physics and a device application

perspective. The observed nonlinear thermoelectric behavior threatens to decrease

device performance and is not completely understood. These experimental results

offer a wonderful opportunity to bolster the theoretical understanding of subtle

mesoscopic thermoelectrics effects and perhaps improve device design.

The electronic aspect of quantum dots is becoming well understood-supported by

a strong foundation of research. These results will be well complemented by turning

attention toward phonons. Presently, not everything is understood about the behavior

of phonons in 1D, such as their density of states, interaction with confined electrons,

and surface boundary effects. Especially relevant to the field of thermoelectrics are

the topics of phonon drag, phononic heat conduction, electron-phonon interaction,

and surface scattering. Phonon experiments are challenging, and novel experimental

techniques must rise to the occasion. One possible platform for studying these topics is

a suspended quantum-dot nanowire, which remains untried and could reveal insights

regarding the influence of phonons.
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Applications

Thermoelectric devices based on quantum-dot nanowires offer several practical

advantages. First, the choice of semiconductor material used to make the quantum

dot is irrelevant to its basic thermoelectric operation and ultimate efficiency so long as

the quantum dot provides energy resonances separated by more than the background

thermal energy. Second, once the device is in operation, gating can be used to toggle

device operation between n-type and p-type, thereby offering two devices in one.

Nanowires can be grown in arrays offering scalability through parallelization. The

gating of many-nanowire arrays is important for several other nanowire applications

and is presently under development [105]. Coating nanowires with Hf02 , a dielectric

material that has gained a recent surge in popularity, creates an insulating shell on top

of which a metallic gate can be deposited [53]. These so-called wrap gates [106, 107]

offer the possibility to gate an entire array of nanowires.

The ultimate goal is to achieve high-efficiency operation at room temperature and

above. Nanowire superlattices create energy minibands which are separated in energy

by more than the room-temperature thermal energy. If the minibands are narrow

enough, they can operate as narrow-band energy filters improving thermoelectric

performance. Therefore, nanowire superlattice arrays have the potential to become

efficient room-temperature thermoelectric devices.

From a phonon standpoint, nanowires have lower phononic thermal conductivity
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than their bulk counterparts via the enhancement of phonon surface scattering owing

to the large surface-to-volume ratio of nanowires. Furthermore, it is fundamentally

possible to promote the InP semiconductor barriers, which define the quantum dot, to

vacuum barriers thereby significantly suppressing phonon flow. Therefore, nanowires

have phononic advantages in addition to their electronic advantages.

Going beyond nanowires in spatial reduction can be achieved using molecules, and

thermoelectric measurements on molecular junctions have already been accomplished

[108]. Although molecular materials cannot provide vastly better electron energy

quantization or filtering than semiconductor-based quantum dots, small molecular

dimensions offer a better packing fraction than nanowire arrays. Thus, a relatively

dense molecular array could have a better thermoelectric power density than even

the most-dense nanowire array. The Holy Grail in molecular thermoelectrics is a self­

assembled, dense, 2D molecular array of arbitrary size. Such massive parallelization

could create a very worthwhile device. Because it is universal to all single­

energy thermoelectric processes, the research presented here on quantum-dot-based

thermoelectrics can help optimize the electronic aspect of molecular systems as well.
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APPENDIX A

DIFFERENTIAL CONDUCTANCE DERIVATION

Starting from the Landauer equation (Eq. (1.20)) the differential conductance is

a1 2e100 aG = - = -- - [fH - iel T (e) deav h -00 av
= _ 2e100

(a~H aiH _ a~e aie) T (e) de
h -00 av a~H av a~e

= _ 2el°O ~ (~aiH + ~aie) T(e)de
h -00 kT 2 a~H 2 a~e

1 2e21°O (1 aiH 1 aie)
=-kTh -00 2a~H +2a~e T (e) de.

In the limit of r « kT, the transmission function T (e) (Eq. (II.7)) takes the form of

a Dirac-delta function, T (e) = Eob (e - eo), where Eo is its energetic "strength", and

G reduces to

1 2e21°O (1 aiH 1aie)G = ---- -- +-- Eob (e - eo) de
kT h -00 2 a~H 2 a~e

= -~ e
2

Eo (aiH I + aie I )
kT h a~H c=co a~e c=co .
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Because Eo is unknown, the overall prefactor can be condensed into a single coefficient

A, which will ultimately become a fit parameter:

G=_A(OlH! + ole I )
O~H 0:=0:0 o~e 0:=0:0 •

(A.l)

Assuming eV « kT, the above equation can be Taylor expanded. To improve

accuracy, the expansion will be carried out to second-order in V. Expanding the

derivatives gives

Now each term can be handled separately. The zeroth-order term is

olH,el
O~H,e v=o (1 + ei;H,C)2

v=o
(A.3)
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Introducing the new term (using Eq. (1.15)) ~ =~Hlv=o = ~clv=o = (c - p) /kT, the

above simplifies to

afH,CI
a~H,C v=o

(e-~/2)2 (1 + e~)2

1

(e~/2 + e-~/2)2

1 1
-"4 cosh2 (02) .

The first-order coefficient is

v=o

±e a2fH,C

2kT a~~,c

=fe a e~H,C
- ---- 2

v=o 2kT a~H,C (1 + e~H,C) v=o

=fe (e~H'C e2~H'C)
= 2kT (1 + e~H,c)2 - 2 (1 + e~H,c)3

=fe e~H,C (1 + e~H,C) - 2e2~H,C

2kT (1 + e~H,c)3

v=o

=fe e~H,C - e2~H,C

- 2kT (1 + e61,c)3

eV e~ - e2~

= =f 2kT (1 + e~)3

The second-order coefficient is

v=o
(A.4)

(A.5)

v=o
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where Eq. (AA) has been used to compute [j3fH,c/a~~,c' Therefore,

~ (a~H'C) 2 a3fH,c
2 av a~~c, v=o

= _~ (e~H'C - 2e2~H,C _ 3 e~H,C (e~H,C - e2~H,C) )

8k2T2 (1 + e~H,c)3 (1 + e~H,c)4 v=o

_~(e~H,C - 2e2~H,C) (1 + e~H,C) - 3e~H,C (e~H,C - e2~H,C)

8k2T2 (1 + e~H,c)4

e2 1 - e~ - 2e2~ - 3e~ + 3e2~
= ---e~------:;----

8k2T2 (1 + e~)4

e2 1 - 4e~ + e2~
= - --e~ -----,-----

8k2T2 (1 + e~)4

e2 1 - 4e~ + e2~= - --e-~ -------;-------:-
8k2T2 (e-U2)4 (1 + e~)4

e2 e~ + e-~ - 4

- 8k2T2 (eU2 + e-U2 )4

e2 2cosh~ - 4

- 8k2T2 24 cosh4 (~/2)

2e cosh~ + 1 - 3
64k2T2 cosh4 (02)

e2 2 cosh2
(~/2) - 3

64k2T2 cosh4 (~/2)

v=o

(A.6)

Putting the coefficients (Eqs. (A,3), (A.5), and (A.6) into theTaylor series (Eq. (A.2))

gives,
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The differential conductance is therefore

The first-order terms cancel, which suppresses the effect of the bias voltage on the

resulting differential conductance peak width, because the lowest-order, non-zero

eVIkT term is quadratic. The resulting differential conductance simplifies to

Expressing this in terms of gate voltage gives the final expression

G =A h2(ea(vG-VO))
sec 2kT [1+ (::rr(2 -3sech' (ea (~~; V

o
))) ] ,

(A.7)

where VO = calae is the gate voltage at which the differential conductance peak is

centered.
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APPENDIX B

OP-AMP HEATING CIRCUIT DIAGRAM
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Figure B.l.. The schematic of the op-amp heating circuit.
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APPENDIX C

THEORY OF COULOMB-BLOCKADED OPEN-CIRCUIT VOLTAGE

The intention of this Appendix is to derived the slope of the open-circuit voltage,

Vac, as it modulates linearly as a function of gate voltage, VG . In this discussion, the

source contact is connected to ground making its chemical potential, J-Ls, and voltage,

VS, constant, that is, J-Ls = -eVs. On the other hand, the drain contact is floating

and is influenced by the gate voltage, VG , and the addition or removal of charge from

ground via the quantum dot and source contact. This is not a thermal effect. In

both the theory and the experiments the source and drain contacts have the same

temperature. The physical reasoning in the following mathematics is gleaned from

Fig. 2.15. The conclusion of this Appendix is that the respective uphill and downhill

slopes of Vac as a function of VG (that is, dVac/dVG ) are the same as the source and

drain slopes, 5s and 5D , of the Coulomb-blockade diamonds given by Eqs. (n.lO) and

(n.ll), provided that Cs = CD, as is the case if the tunnel barriers are the same.

Zero Thermovoltage

When the open-circuit voltage is zero, Vac = VD - Vs = 0, and therefore VD = lis.

The resonance of the quantum dot is aligned to this energy, that is, J-L = -eVs = -eVD ,

because the dot always follows either the source or drain electrochemical potential as
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charge carriers flow left and right through the quantum dot maintaining equilibrium.

This is shown in panels 1 and 5 of Fig. 2.15. According to Eq. (11.1), under Coulomb

blockade it is true that,

( 1) e
2

ef-L(N)=-eVs = N-No - 2 Gr, - Gr, (GsVs+GDVs+GGVG)+EN.

Multiplying by Gr,/eGG gives,

Gr, ( 1) e 1 Gr,EN--VS= N-No-- ---(GSVS+GDVS+GGVG)+--
GG 2 GG GG eGG

Gs + GD- Gr,17 17 _ (N 7\T 1) e Gr,EN
vs + VG - - iVO - - - +--

GG 2 GG eGG

- Vs + VG = (N _ No _ ~) _e_ + Gr,EN
2 GG eGG

where VN is the gate voltage at which the Nth resonance occurs if Vs = VD = 0 and

is given by,

( 1) e Gr,ENVN = N - No - - - + .
2 GG eGG

Therefore, the effect of the voltage Vs at the source contact is to shift the position

of the resonance energies relative to VN . So, without loss of generality, the source

voltage can be set to zero. For the remainder of this Appendix it is implicitly assumed

that f-Ls = -eVs = o.
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Increasing Thermovoltage

When the open-circuit voltage is increasing, the resonance of the quantum dot, {k,

moves together with the drain electrochemical potential, {kD = eVD , so that -eVD = {k.

This is shown in panel 2 of Fig. 2.15. Putting this into Eq. (11.1) gives

Therefore, the uphill slope of the open-circuit voltage, 8V6c = dVoc/dVc, can be

written

(C.1)

Note that this is the same as the source slope of the Coulomb-blockade diamond

(Eq. (11.10)) if Cs = CD. That is, Cc / (Cc + Cs) = Cc / (Cc + CD) = S8 1
. (Note

that Ss = dVc/dV in Eq. (n.10) is defined in a reciprocal manner to the slope

here.) When Cc « CD, which is typical for a ",10 nm quantum dot in a rv50 nm
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nanowire system [62], the uphill slope can be approximated to first-order in Ce/Cs

as dVac/dVe ~ Ce/Cs. This provides a nice symmetry with Eq. (C.2).

Maximum Thermovoltage

Note that the maximum Vac occurs when the source and drain electrochemical

potentials are aligned with two adjacent energy resonances. This is simply because the

lowering of J-L (N) and J-LD stops when the (N + 1)th energy resonance aligns with J-Ls.

This is shown in panel 3 of Fig. 2.15. Therefore J-L (N) = -eVD and J-L (N + 1) = -eVs

making the open-circuit voltage

eVac = eVD - eVs

= - J-L (N) - (- ) J-L (N + 1)

= J-L (N + 1) - J-L (N)

= E add (N + 1)

= Ec + t:::..E (N + 1),

where the last equality follows from Eq. (II.2). Therefore, the peak value of Vac is

an alternative way to measure E add (N + 1) and thus Ec .

Decreasing Thermovoltage

When the open-circuit voltage is decreasing, the quantum dot follows the source
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electrochemical potential, as shown in panel 4 of Fig. 2.15. Mathematically, J1 =

-eVs = 0 and from Eq. (11.1),

Therefore, the downhill slope of the open-circuit voltage, c5Voc = dVoc/ dVG , can be

written

(C.2)

If the source and drain are symmetric, then CD = Cs, and this is the same as the

drain slope of the Coulomb-blockade diamond (Eq. (11.11)). That is dVoc/dVG =

- CG / Cs = 3D1
. (3D , like 3s , is defined in the reciprocal way.) Note that if the

Coulomb-blockade diamonds are symmetric, CD - Cs = CG and the uphill and

downhill slopes in Eqs. (C.1) and (C.2) are equal.

Measuring LX

Voc data carries information regarding LX, the system's lever arm, because c5VJc
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and 6Voc are equivalent to the slopes of the Coulomb-blockade diamonds. In

particular,

/
6V+ 1-1 + 16V- 1-1 = CE - CD + CD = CE = -1

oc oc C
G

C
G

C
G

a , (C.3)

where the last equality follows from Eq. (11.3). Therefore, the slopes of Voc data

provide an alternative to Coulomb-blockade diamonds for measuring a.
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APPENDIX D

NUMERICAL DERIVATIVE ROUTINE

Outlined here is a prescription for finding the derivative dl / dx = l' given a series

of equally spaced data points representing the function 1(x) .If the data is spaced in

the variable x by and amount h, the goal is to express l' (x) at the point x by

1 [M N]l' (x) = h ~ c-ml (x - mh) + Co +~ cnl (x + nh) (D.1)

In this mathematical form, the problem reduces to finding the "backward" and

"forward" coefficients, C-m and Cn, respectively. This method is known as the method

of undetermined coefficients [109]. Note that in general M =I=- N because the expansion

need not be symmetric. For example, it is not possible to look backward beyond

the first data point of the data series, and M must be zero to make the numerical

derivative at the first data point completely forward looking. Similarly, at the last

data point in the series, N must be zero and the formula is backward looking.

The most familiar (symmetric) derivative formula is the 2-point formula,

1
l' (x) = 2h [I (x + h) - 1 (x - h)], (D.2)

making C-l = -1/2, Cl 1/2 and all other Ci = O. The problem with the above
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formula is that it only uses two data points, making no attempt to sample more data

and possibly additional curvature (see Fig. D.1). Sampling more data can also help

mitigate experimental noise.

Finding the lv1 +N +1 unknown coefficients, Ci, requires M +N +1 linear equations.

This is accomplished by using M + N + 1 test functions of the form

fm+n (x) = xm
+n .

The true derivative of each fm+n (x) is equated to each f:n+n (x) predicted by Eq. (D.1)

providing M + N + 1 linear equations. For convenience, all these derivatives are

eventually evaluated at x = O. Note this same technique can be used to find second-

order (or higher) derivative formulas as well.

The formula derived here is the "symmetric-7" with three forward and three

backward coefficients. In this case, when M = N = 3, then the AI + N + 1 = 7

test functions are
fa (x) = 1

fdx) = x

12 (x) = x2
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The vector of true derivatives evaluated at x = 0 are

F = dfdx) I -
dx x=o

o
1

o
o
o
o
o

(D.3)

Writing all the derivatives l' (x) predicted by Eq. (D. 1) IS too tedious. As an

example,f~ (x)lx=o is

For brevity, all these functions can be written in matrix form f{ (x)lx=o = Ac, where

C-3

C-2

C-l

c= Co

Cl

C2

C3

and A is a 7 x 7 matrix of coefficients.

Now all 7 numerically predicted derivatives are equated to the true derivatives, J: (x) Ix=o =
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dfi (x) /dxlx=o .This result is most easily written in matrix notation, Ac= ft,

1 1 1 1 1 1 1 0 C-3 0

-3 -2 -1 0 1 2 3 1 C-2 1

9 4 1 0 1 4 9 0 C-1 0

-27 -8 -1 0 1 8 27 0 Co 0

81 16 1 0 1 16 81 0 C1 0

-243 -32 -1 0 1 32 243 0 C2 0

729 64 1 0 1 64 729 0 C3 0

Note that all the hi terms conveniently divide out.

The unknown coefficients c are found by multiplying Ac = ft from the left with

the inverse matrix A -1,

~ A-1A~ A-1F~c= c= =

-1/60

3/20

-3/4

o
3/4

-3/20

1/60

Therefore, the "symmetric-7" derivative formula is

l' (x) = ~ [_ f (x - 3h) f (x - 2h) _ f (x - h)
h 180 + 20 4

f(x+h) f(x+2h) f(X+3h)]
+ 4 - 20 + 180 . (D.4)
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This same technique can be used to find the "forward-7" formula

1 [ 6727 84 120l' (x) = - --f (x) + -f (x + h) + -f (x + 2h)
h 6060 101 101

520 465 204 6 ]
- 303f (x + 3h) + 404 f (x + 4h) - 505 f (x + 5h) + 101 f (x + 6h) ,

and the "backward-7" formula

, 1 [ 6727 84 120
f (x) = -- --f (x) +-f (x - h) + -f (x - 2h)

h 6060 101 101

520 465 204 6 ]
--f (x - 3h) +-f (x - 4h) - -f (x - 5h) +-f (x - 6h) .

303 404 505 101

Fig. D.1 compares the performance of the above 7-point formulas to that of the 2-

point formulas, that is, Eq. D.2 and its associated backward and forward derivatives.
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Figure D.l. The function cos x (blue line) was used to create 50 data points (not
shown). The magenta circles and green squares were calculated with the 7-point
derivative formulas (for example, Eq. (D.4)) and the 2-point derivative formulas (for
example, Eq. (D.2)), respectively. The numerical derivatives are compared to the
expected result, that is, - sinx (black line). The 2-point formula is accurate within
4% while the 7-point formula is accurate within 0.01%. In particular, the 7-point
formula outperforms the 2-point formula whenever cos x approaches zero, which is
where curvature is less pronounced and where quantum-dot thermometry is performed
(see Section III.3).
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APPENDIX E

SLOPE OF THE SEEBECK COEFFICIENT VERSUS ENERGY

The intent of this Appendix is to derive the slope of the Seebeck coefficient near a

transmission resonance as a function of quantum dot energy, dB/dE. Two derivations

are presented. The first derivation is based on the constant interaction model (CIM)

(see Section 11.3.1) and the second is based on the Mott formula as derived from

the Onsager relations and Landauer equation (see Section 1.3.1). Both derivations

assume that the width of the transmission resonance, f, is very thin, that is, f « kT.

Therefore, the derived slopes represent a theoretical upper-limit of dB/dE.

Seebeck Slope from the Constant Interaction Model

In isothermal open-circuit voltage measurements the system finds its equilibrium

by aligning a source or drain electrochemical potential to a quantum-dot energy

resonance (see Appendix C). Under the presence of a temperature gradient, the

system no longer finds its equilibrium in this way, but rather by tuning the hot

source electrochemical and cold drain electrochemical potential so that their Fermi­

Dirac distributions cross at a quantum-dot energy resonance (see Fig. 4.1). The

energy at which the two Fermi-Dirac distributions cross is the adiabatic energy, EA ,
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given by Eq. (1.19),

(E.1)

According to Eq. (11.1), if the Nth quantum-dot resonance aligns with EA, then it is

true that

(E.2)

Note this is only strictly true if the Lorentzian transmission function of the resonance

is infinitely thin, that is, if it is a Dirac-delta function. The equilibrium condition

with a broadened transmission function is satisfied when the integrated current sums

to zero requiring the Fermi-Dirac distributions to move off the center of the resonance

slightly, which is why this derivation is only an upper limit on dB/dE.

The two InP barriers are assumed to be symmetric so that the capacitances are

Cs = CD = CB, where CB is the capacitance of a single barrier. Substituting these

terms into and multiplying Eq. (E.2) by Cr,/eCG gives,

where VN is the gate voltage at which the Nth resonance occurs when Vs = VD = O.
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VN is defined as,

( 1) e G2',ENVN = N - No - - - + .
2 GG eGG

The hot and cold electrochemical potentials, PH,C, in Eq. (E.1) are related to the

source and drain voltages by, PH = -eVs and Pc = -eVD . Inserting these terms into

Eq. (E.1) and insert that result into Eq. (E.3) gives,

Collecting the Vs and VD terms gives,

Now the slope dB/dE can be calculated by,

(E.4)

dB
dE

dVG dB
--
dE dVG

dVG dB dvth
-----
dE dvth dVG

1 G2', 1 dvth
-----
eGG!:::.T dVG'

where the last equality follows from Eq. (II.3) and the definition of the Seebeck

coefficient. The thermovoltage is the difference vth = VD - Vs. Therefore, expanding



From Eq. (E.4) ,

And

dB 1 C~ 1 d (VD - Vs)
---

dE eCG/::::,.T dVG

_ ~ C~ _1_ [dVD _ dVs]
e CG /::::,.T dVG dVG

1 C~ 1 [(dVG) -1 (dVG) -1]
= -;; C

G
/::::,.T dVD - dVs .

(
dVG ) -1 = CG (TH _ CB)-l
dVD C~ /::::,.T C~

= CG (THC~ - /::::,.TCB)-l
C~ /::::"TC~

CG/::::,.T

(
dVG) -1 = _ CG (Tc + CB)-l
dVs C~ /::::,.T C~

= CG (THC~ - /::::,.TCB)-l
C~ /::::"TC~

CG/::::,.T
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Putting these into Eq. (E.5) gives,

By expanding out the total capacitance, CL; = Cs + CD + CG = 2CB + CG , the above

can be written

where the average temperature, T, is defined by

T = TH + Tc = Tc + t:,.T = T
H

_ t:,.T.
2 2 2

(E.6)
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Continuing the algebra,

Note that ex « 1 and 6.T/ 2T < 1 so that ex6.T/2 T « 1. Therefore, a first-order

Taylor expansion of the above provides

dB 2 1 4
dE ~ e T = ~ TH + Tc

This is the final result of this section.

Seebeck Slope from the Mott Formula

(E.7)

The Mott formula (see Eq. (1.25)) relates thermopower as a function of energy,
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S (E), to conductance, G (E), by

- 1 dG (E)
S (E) = -eLoTG (E) dE '

where the (conventional) Lorenz number is Lo = 7[2/3 (k/e)2 and the average

temperature T = (TH +Tc) /2 has been used to be consistent with the previous

section. In the narrow resonance limit (r « kT), Eq. (A.7) provides an analytical

approximation for G (E),

(
E - EN)

G (E)lv=o = Asech
2

2kT '

where EN is the energy at which the Nth differential conductance peak is centered.

Inserting this expression for G (E) into the Mott formula and performing the

derivative provides,

- (E - EN) d (E - EN)S (E) = -eLoTcosh
2

2kT dEsech2 2kT

eLo h2 (E - EN) h2 (E - EN) h (E - EN)
= T cos 2kT sec 2kT tan 2kT

eLo h (E - EN)
= T tan 2kT .



The slope dB/dE on resonance can be calculated as,

dBled (E - EN) I- = -Lo -tanh
dE E=EN k dE 2kT E=EN

e
2

1 2 (E - EN) I
= 2k2 LoeT sech 2kT E=EN

= ~ (fr LOe~'

This is the final result of the section.
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