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Abstract

We investigate both the rational explosive inflation paths studied
by (McCallum 2001), and the classification of fiscal and monetary
policies proposed by (Leeper 1991), for stability under learning of the
rational expectations equilibria (REE). Our first result is that the
fiscalist REE in the model of (McCallum 2001) is not locally stable
under learning. In contrast, in the setting of (Leeper 1991), different
possibilities can arise. We find, in particular, that there are parameter
domains for which the fiscal theory solution, in which fiscal variables
affect the price level, can be a stable outcome under learning. However,
for other parameter domains the monetarist solution is instead the
stable equilibrium.

JEL classification: E52, E31, D84.
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1 Introduction

Interactions between fiscal and monetary policy in the determination of the
price level have been the object of a great deal of new research in recent
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years. One relatively new strand of research, the fiscal theory of the price
level, asserts that fiscal policy can have an important influence on the price
level in models in which one might expect prices to depend only on monetary
variables. An extreme specific case of the fiscalist theory asserts that, in
certain specific circumstances, fiscal variables can fully determine the price
level independently of monetary variables.

Clearly, this extreme result is the polar opposite of the monetarist con-
tention that the price level and the inflation rate depend primarily on mone-
tary variables. It is thus not surprising that the fiscalist approach has aroused
a great deal debate and controversy. These debates consider various aspects
of the theory. One point of debate concerns the extreme specific case, in
which the price level follows an explosive path. (McCallum 2001) has argued
that this fiscalist equilibrium is an implausible “bubble equilibrium.”?

The influence of fiscal variables on the price level is, however, not limited
to extreme cases in which the system is non-stationary. In a local analysis
around a unique steady state (Leeper 1991) made an important distinction
between “active” and “passive” policies (the precise definitions will be given
below). In a standard model he showed that two combinations, either (i)
active monetary and passive fiscal policy or (ii) active fiscal and passive
monetary policy yield determinacy i.e. a unique stationary rational expecta-
tions equilibrium (REE). In case (i) the usual monetarist view that inflation
depends only on monetary policy is confirmed. However, case (ii) is fiscalist
in the sense that fiscal policy, in addition to monetary policy, has an effect on
the inflation rate. (Leeper 1991) also showed that the steady state is indeter-
minate, with multiple stationary solutions, when both policies are passive,
while the economy is explosive when both policies are active.

As already noted, the fiscal theory of the price level is subject to debate
and thus the existing literature is not very conclusive about its significance.
Indeed, equilibrium analysis can shed only limited light on the issues and
further criteria on the plausibility of different REE are likely to be useful in
assessing the possible outcomes suggested by the fiscal theory. The learn-
ing approach to macroeconomics, which has been developed in recent years?,

'For a long list of references on the fiscal theory of prices, see (Woodford 2001),
(Cochrane 1999) and (Cochrane 2000).

2 Another point of controversy evolves around the nature of intertemporal budget con-
straint of the government, compare e.g. on one hand (Buiter 1998), (Buiter 1999) and on
the other Section 2 of (Woodford 2001).

3See (Evans and Honkapohja 2001) for a recent treatise. Surveys of the literature are



provides a criterion to select “reasonable” outcomes when multiple REE ex-
ist and the approach is also useful in cases with unique REE as a way to
assess the plausibility of an equilibrium. In this paper we re-examine some
central results of the fiscal theory of the price level from a learning viewpoint.
Generally speaking, this view asserts that the REE of interest are those that
are stable outcomes of a learning process in which agents might temporarily
deviate from rational expectations, respond to these mistakes and eventually
come to have correct forecast functions.

We investigate both the rational explosive inflation paths studied by
(McCallum 2001), and the classification of fiscal and monetary policies pro-
posed by (Leeper 1991), for stability under learning of the REE. We find
that the fiscalist REE in the model of (McCallum 2001) is not locally sta-
ble under learning, while the monetarist equilibrium is stable under learning
when fiscal policy is altered to be “Ricardian.” In contrast, in the setting
of (Leeper 1991), various cases arise. For the most plausible region of policy
parameters the results are very natural for policy combinations that imply
the existence of a unique stationary REE. The monetarist REE is stable un-
der learning when monetary policy is active and fiscal policy is passive. If
instead fiscal policy is active and monetary policy is passive, then the fis-
cal theory solution, in which fiscal variables affect the price level, is stable
under learning. In both of these cases the stable REE is the unique station-
ary solution. For other combinations of monetary and fiscal policy within
the plausible parameter region the results are perhaps more surprising: for
some parameter values all REE are unstable while for other parameter val-
ues there is incipient convergence to an explosive path. Our results clearly
indicate that policy formulation should take into account the local stability
properties, under learning, of the different REE.

2 The Model

We consider a stochastic optimizing model that is close to (Leeper 1991)
and (McCallum 2001). For the basic model, notation and specification of
monetary and fiscal policy rules we follow Leeper, but we use McCallum’s
more general class of utility functions and also his timing in which utility

provided e.g. in (Evans and Honkapohja 1999), (Marimon 1997) and (Sargent 1993).



depends on beginning of period money balances.*
Households are assumed to maximize

max {iﬁ“ (1= 00)7 el + A1 = 03) (my 1)1~ } |

Here ¢, denotes consumption in period s and mgs = M;/P;, where M; is
the money supply and P; is the price level at s. Note that real money
balances enter utility as mg_ 17, ' = (Ms_1/Ps_1)(Ps_1/Ps) = M,_1/Ps. The
household’s budget constraint is

Cs +ms + bs +7s=y+ 7713717"—;1 + Rsflﬂ-;lbsfh (1)

where by = Bs/P;, ms = Ps/Ps_; is the gross inflation rate and 7 is real
lump-sum taxes. Note that B; is the end of period s nominal stock of bonds.
R,_ is the gross nominal interest rate on bonds, set at time s — 1 but paid
in the beginning of period s. The household has a constant endowment y of
consumer goods each period.

We assume that there is a constant flow of government purchases g >
0. As shown in Appendix A.1, household optimality and market clearing
conditions imply the Fisher equation

R = ﬁEth;ll (2)
and the equation for money market equilibrium, in period ¢,
ABmy B2yt = (y — )™ (1 = BEm)). (3)
In addition, the equilibrium must satisfy the transversality conditions
tll)rgo B'my = 0 and tli)rgj B'bi1 = 0. (4)

The above equations (2) and (3) are usually derived under rational ex-
pectations (RE), but in Appendix A.1 it is shown that they also hold in a
temporary equilibrium with given subjective expectations.

4The question of whether beginning- or end-of-period real balances leads to subtle dif-
ferences in the model and can in some cases have major implications, compare (Carlstrom
and Fuerst 2001).



The specification of the model is completed by giving the government
budget constraint and policy rules. The government budget constraint, writ-
ten in real terms, is

be+my+7i=g+myam, + Reoam, th 1. (5)
For fiscal policy we use Leeper’s tax rate rule
Tt = Yo + Vb1 + ;. (6)
Monetary policy is given either by Leeper’s interest rate rule
R, = ag + am, + 6y, (7)
or by a simple fixed money supply rule
My =M + 0, (8)

as in (Sims 1999) or (McCallum 2001). Here 1, and 6; are exogenous random
shocks, which for simplicity are to be #id with mean zero. (We will later
briefly take up the case where the shocks are VAR(1).)

In the terminology of (Leeper 1991), fiscal policy is “active” if ‘5_1 — 7‘ >
1 and “passive” if |ﬁ_1 — 7| < 1, while under (7) monetary policy is active if
|aB| > 1 and passive if |oF| < 1. As noted by (Sims 1999), it is also natural
to refer to monetary policy as active if the policy rule (8) is followed in place
of (7). We want to consider the RE solutions under different policy regimes
and then to analyze their stability under learning. Leeper emphasized the
cases of AM/PF (active monetary /passive fiscal policy) and AF/PM (active
fiscal /passive monetary policy) in which, as discussed below, there is a unique
stationary solution. We will be particularly interested in these cases, but will
also consider explosive regimes of the model and regimes with indeterminacy,
i.e. with multiple stationary solutions.

3 Bubbles and the Fiscal Theory of Prices

We begin our analysis with consideration of a prominent case of the fiscal
theory of prices in which the price level path is entirely determined by fiscal
policy and does not depend on monetary policy, e.g. see (Sims 1999) or
(McCallum 2001). In this section we use a nonstochastic version of the



model in which ¢, = 0 and 6; = 0. Monetary policy is given by (8) and fiscal
policy is given by (6) with v = 0. Thus policy reduces to

e =7and M; = M,

which is a special case in which both monetary and fiscal policy are active.
With a nonstochastic model it is natural to assume point expectations,
so that (3) becomes

mi = (AB)7H(y = )"0 = 8/ ) () T

With constant nominal money stock we can write
P, = M(AB) 72 (y — g) 7 /72 (my) o272 (1 = Bty y) 1]

or

A

P, = D(nf, )77 (L = B(ry,) 1Y, (9)

where D = M(AB) Y72 (y — g) /72,

Consider first the perfect foresight solutions. Under perfect foresight we
have R, ' = +11. With a constant money supply the bond equation (5)
reduces to

bi=g—Ti+ 0 b1

With 7; = 7 this equation is explosive and will violate the transversality
conditions unless by = B;/P, = (1 — ¢)/(3 ' —1). With B; given by an
initial condition this equation uniquely determines, under perfect foresight,
the initial price level P;. Under perfect foresight the price equation (9)
becomes

P, = D(Pyyr/P) ™72/ [1 = B(Pra /)], (10)

This equation has a steady state at P = ﬁ(l — B)Y/72 but is explosive
and will diverge unless B; happens to be such that P, = P. However, for
0 < 09 < 1 and initial P, > P we obtain an explosive price path P, — oo that
is consistent with the transversality conditions and the equilibrium equations.
In this “fiscalist” equilibrium, the initial price level P, = By (8~ ' —1)/(T —g)
is determined by fiscal variables and P; follows an explosive “bubble” price
path despite a constant money stock.



McCallum argues that this solution is less plausible than an alternative
“bubble-free” monetarist solution P, = P and by =0forallt=1,2,3,...,
in which (with our timing) the level of real taxes 7, adjusts to satisfy 71 =
g+03 by and 7, = g for t = 2,3,.... One way to interpret McCallum’s view,
as he acknowledges, is as an argument that fiscal policy must be Ricardian
for all feasible sequences (not just for equilibrium sequences).” However, the
status of the fiscalist solution in this model remains controversial.

3.1 Fiscalist Case Under Learning

We now take a different tack, which nonetheless comes to the same conclusion
as (McCallum 2001), i.e. that the fiscalist solution is not plausible in the
case under scrutiny. We suppose that the government can indeed commit to
s =71 forallt =1,2,3,..., so that the only equilibrium perfect foresight
price path is the explosive fiscalist solution given above. However, we drop
the perfect foresight assumption and ask if the price path is learnable under a
natural adaptive learning rule. Throughout Section 3 we assume 0 < oy < 1
so that there can exist an equilibrium perfect foresight explosive price path.

We first note that it follows from (10) that P, — oo implies that ;11 — 00
along the perfect foresight path.® It follows that the perfect foresight price
path in this case is approximately given by

P = Dptl/(l—(m)’ where D = D—2/(1-02)

From (9) we also have that the approximate temporary equilibrium for large
¢y, 1s given by

Py = D(ry,) 1772/ (11)

Thus, on or near the bubble paths, prices asymptotically just depend on
expected inflation, independently of the rest of the system, as specified by
(11). We now show:

Proposition 1 Under constant tazes and fixred money supply, the explosive
fiscalist price path is unstable under learning.

SFor a related argument see (Buiter 1999).

6Tf instead we had P, — oo and Piy1/P, — @ where 0 < T < 00, the right-hand
side of (10) would tend to a finite value. This is a contradiction. (If # = 0, there would
be deflation i.e. P41 < P, for sufficiently large ¢, which would violate the assumption
P, — 0.)



The argument is as follows. We use the finding in the literature on adap-
tive learning, see (Evans and Honkapohja 2001), that stability under adap-
tive learning is generally determined by “expectational stability” (E-stability)
conditions. Suppose households base their forecasts on a Perceived Law of
Motion (PLM) of the form

P, =DPY,. (12)

(We could restrict attention to ¢ = o9/(1 — 03) but it is also easy to treat
both D and ¢ as PLM parameters). Then

Pf=DP!, and Pf,, = D (P?)* = D'**PY,
so that
e e e —1
Ty = Pt+1/Pt = Dd)Pf—(f )- (13)

We are here treating the information set at the time expectations are formed
as including P, ; but not P,. (However, including current P; in the informa-
tion set would not make the price bubble paths stable).

Inserting into (11) gives the Actual Law of Motion (ALM) that is gener-
ated by the specified PLM:

P = D(D(ﬁptd’_(‘ffl))(lfw)/@ — ﬁD¢(1*U2)/U2Pt<f’_(<f*1)(1*02)/02'

This equation defines a mapping from the PLM parameters (D, ¢) to the
implied ALM parameters, given by

T(D,¢) = (DD** /2 ¢(¢ — 1)(1 — 02)/72).

E-stability is defined in terms of the stability of the (notional time) differen-
tial equation

(D) =T(D,9) ~ (D,9)

at the equilibrium of interest.

The bubble fixed point is given by ¢ = (1—03)~! and D. The roots of the
Jacobian matrix DT are (2¢—1)(1—03) /09 and ¢((1—0y) /ay) DDP1-72)/02=1
At the bubble solution these roots are 1 + 1/05 and 1/05. Since both roots
are larger than one it follows that the bubble solution is not E-stable. Note

8



that if we impose ¢ = (1 —03) ! and just examine E-stability of D we obtain
the root T"(D) = 1/ > 1 so that the bubble continues to be E-unstable.”

We remark that the basis for our stability analysis relies on using natural
but simple rules for decision-making and learning. These decision rules are
discussed in Appendix A.1. In particular, the household demand for real
balances depends only on the interest rate and the expected rate of inflation
over the coming period. More elaborate decision (and learning) rules can
be imagined in which households choose their money demands based on a
forecast of the whole future price path.® However, our decision rule is natural
because it ensures that the household attempts each period to meet the first-
order condition for maximizing utility given by the usual Euler equation.
Our instability results indicate a lack of robustness of the perfect foresight
price path, to small deviations, under simple learning rules of a type that are
known to yield stability in other contexts, and contrasts with cases below in
which these learning rules converge.

3.2 Monetarist Solution under Learning

We now consider learning stability of the monetarist solution suggested by
(McCallum 2001), which arises when money supply is constant and the gov-
ernment pays off the debt immediately, never resorting to bond finance there-
after. Clearly, this is an extreme form of Ricardian policies.” In consequence,
there are no bonds in the economy and the only equation of interest is (9).

We analyze learning following the procedure above. The solution of in-
terest is the steady state

P =D(1 - B)""? with m, = 1.
We now log-linearize (9), which yields the approximation

L2, By —ﬁ)‘1> In(x¢,,)

(o)) (o))

lnB:lnP—{—(

"There is also a fixed point of T at ¢ = 0 and Q = D, but at the monetarist steady
state the approximation based on large 77, is unsatisfactory. Section 3.2 develops the
appropriate approximation.

8For example, (Woodford 2001) considers an analysis along these lines, drawing on the
calculation equilibrium approach of (Evans and Ramey 1998).

9Under the perfect foresight monetarist solution there is no seignorage since 7, = 1 and
T = g for all t. Under learning lump sum taxes adjust each period to offset seignorage.

9



or
P, = P(mg,,)", (14)

where [ = 222 + == 51— p).
Again we "consider PLMs of the form (12), so that inflation expectations
are given by (13). Inserting these into (14) leads to the ALM

H — pDL¢HI;¢;(¢_1)
The mapping from the PLM to the ALM is thus

T(D,¢) = (PD", Lo(¢ — 1)).

The monetarist steady state is the fixed point D = P, ¢ = 0. Applying the
definition of E-stability as before, it is easy to verify:

Proposition 2 Under constant money supply and the Ricardian fiscal policy
T1=g4+ 0 by and 7, = g for t =2,3,..., the monetarist solution is stable
under learning.

3.3 Discussion

The results of this section cast doubt upon the plausibility of the fiscal theory
of the price level for the special case of constant money and taxes. If the
government follows Non-Ricardian policies and the money supply is held
fixed, the only REE is the explosive bubble path, but the equilibrium is not
stable under learning. The economy under the specified learning rule may
indeed follow some explosive path for a period of time, but this path will not
converge to the fiscalist solution.

However, there are other policy regimes in which the fiscal theory of
the price level has been proposed as the relevant solution. In particular,
(Leeper 1991) studied situations in which the inflation rate is affected by
government tax and bond variables but with finite steady state inflation. We
now turn to an analysis of learning under policy rules (6) and (7) based on
a linearization around the steady state. We will be particularly interested
in the policy regimes in which the interaction of monetary and fiscal policy
rules leads to a unique stationary solution under rational expectations, but
we will also consider other policy regimes.

10



4 Linearized Model with Stochastic Shocks

We thus return to monetary policy following an interest rate rule, with the
system specified by (3) and (5) and the policy rules given by (6) and (7).
This system is nonlinear, but in a neighborhood of the steady state, we can
analyze its linearization. In Appendix A.2 it is shown that the linearized
system takes the form

T = (aﬁ)_lEt*mH — a7, (15)
0 = b+om+@oma— (B —=)b1+ 1, + 030 + 001, (16)

where E;m;.1 denotes inflation expectations formed at t. The notation
Ejm41 is used to emphasize that the reduced form (15)-(16) applies whether

or not expectations are rational. The coefficients ¢y, ... , ¢, are given in Ap-
pendix A.2.'Y From now on we make the assumptions o # 0, a8 # 1, v # 1
and 7' — v # 1.

In Appendix A.3 it is shown that the regular case, in which there is a
unique stationary RE solution, arises when either |a/3| > 1 and ‘ gt — 7‘ <1,
i.e. active monetary policy and passive fiscal policy (AM/PF), or |af] < 1
and | i fy| > 1, i.e. active fiscal policy and passive monetary policy
(AF/PM). Either condition |a3| > 1 or |ﬁ_1 —7| > 1 leads to a linear
restriction of the form

Ty = K1bt + KQQt (17)

when non-explosiveness of the solution is imposed. This equation together
with (16) defines the unique stationary solution in the regular case.
In the AM/PF regime we obtain K; = 0 and K, = —a !, so that

Ty = —0371975.

We will refer to this solution as the “monetarist solution”, since m; is inde-
pendent of both b; ; and the tax shock 1,. In the AF/PM regime we obtain
the expression

aBp; + oy
a1

g —y—aB
0T hese reduced form equations are identical to the reduced form given by Leeper, but

with coefficients that differ slightly due to differences in timing and the more general utility
function used here. See (Leeper 1991), p. 136.

by + K»0;. (18)

Tt

11
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Figure 1: Determinate, indeterminate and explosive regions

From (18) and (16) it is apparent that inflation now depends on b, ; and v,
as well as on monetary policy. We therefore refer to this REE as the “fiscalist
solution.”

Besides the regular cases, there are two other regimes possible, depending
on policy parameters. If || < 1 and ‘ gt — 7‘ < 1, so that both policies are
passive, the model is “irregular” or “indeterminate,” with multiple stationary
solutions. If |a8| > 1 and ‘ﬁ_l — 7‘ > 1, so that both policies are active, the
model is said to be “explosive,” and there are no stationary solutions. As
will be seen, in the linearized model both monetarist and fiscalist solutions
always exist, but need not be stationary. The different regimes are shown
in Figure 1, where IN and EX refer to indeterminate and explosive regions,
respectively.

Clearly the solutions can also be written in a vector autoregressive form,
and this is more convenient for the analysis of learning which we now un-
dertake. Again we will focus on E-stability conditions. Since we are now
examining stationary solutions to a linearized multivariate model, the results
of Chapter 10 of (Evans and Honkapohja 2001) show that E-stability condi-
tions govern the convergence of least squares and related real-time learning

12



schemes.

4.1 REE as Fixed Points

Introducing the notation y; = (7, b;)’, the linearized model (15)-(16) can be
written in the vector form

Y = MEfyi1 + Ny, + Pvg + Ry, (19)

M:(—;?(ﬁa)/;;l 8)’N:<—?02 /3‘10—7>’

P= _ , R= , Uy = .
( P ' - w3 —1 —ps 0 ! W,
We consider PLMs of the form
Yt = A + Byt—l + O’Ut + D?thl. (20)

where

These PLMs exclude exogenous sunspot variables by assumption (we will
briefly consider such solutions below). Computing the expectation®!

Ejyy1 = A+ B(A+ By + Cvy+ Du_y) + Dy,
= (I + B)A+ B*; 1+ (BC + D)v, + BDv;, 4

and inserting into (19) we obtain the implied ALM

v = M +BA+(MB*+ N)y,_,

Thus the mapping from the PLM to the ALM is

A — M+ B)A
B — MB*+N
C — MBC+MD+P
D — MBD+R

"We make the frequently employed assumption that when agents compute forecasts,
using the PLM, they observe current values of the exogenous variables, but only lagged
values of the endogenous variables. The key results do not change under the alternative
information assumption that agents also observe current endogenous variables, see below.

13



and the fixed points of this mapping correspond to REE of the form (20).

The second component of the mapping can have more than one solution.
Given any solution for B the first component gives the unique solution A = 0,
provided I — M (I + B) is nonsingular. Similarly, for given B the third and
fourth components of the mapping are linear equations for C' and D. Because
of the form of M and N we have the result:

Proposition 3 There are three types of REFE taking the form (20), as listed
below.

L

II.

I1I.

B =N,C =P and D = R with A = 0. This is the monetarist
solution.

B=y! ( —(By+aB =g, 7 (By—1)(By+as - 1) )
Bpo(aBpy + ¢s) (By — 1) (aBepy + ¢3) ’

where x = (67 — 1)¢; — By, A =0 and C and D are also uniquely
determined by the fixed point.!? It can be verified that this is a way
of representing the fiscalist solution. Although this may appear to be
a complicated representation, it can be verified that the eigenvalues
of B are 0 and «af3. The zero eigenvalue corresponds to the static
linear relationship (18) between m; and b;, which can be used to obtain
alternative representations of the REE.

af 0 '
( —(paf+@,) B —~n )7 0. For C' and D the solution

is not unique. For D there is a two-dimensional continuum and, given
a value for D, the equation for C' also yields a two-dimensional con-
tinuum. We call this class of solutions the non-fundamental solutions,
because of the indeterminacy in the C' and D coefficients. We remark
that this solution set can be expanded to allow for dependence on an
exogenous sunspot variable.

In the case of AM/PF policy, the monetarist solution is stationary, while
the fiscalist solution and non-fundamental solutions are explosive. In con-
trast, in the case of AF/PM policy, the fiscalist solution is stationary while
the monetarist solution and non-fundamental solutions are explosive. In the
case of PM/PF policy all the REE are stationary. We now turn to an exam-
ination of whether these solutions are stable under learning.

12Explicit formulas for C' and D are available on request. This assumes y # 0.
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4.2 Stability under Learning

Let £ = (A, B,C, D) denote the parameters of the PLM and let 7'(§) denote
the corresponding values of the ALM given by the above mapping. The
three types of RE solutions above correspond to fixed points of this map.
Local stability under Least Squares learning is determined by E-stability
conditions, defined as the conditions for local asymptotic stability, under the
notional time differential equation

dg/dr =T(§) =&, (21)

of the RE solution (or solution set) of interest.
We now present the results giving stability under learning of the different
solutions:

Proposition 4 (1) The monetarist solution is stable under learning if

-1
(aB) ' <1 and ﬁa—ﬁ_v <1,

(II) The fiscalist solution is stable under learning if

B —ny y+1-p5"
o > 1 and o <0,
and

(III) The non-fundamental solutions are not stable under learning.

We establish this proposition by deriving the E-stability conditions. First
we note that the B component in this differential equation is nonlinear, with
local stability determined by its linearization at the fixed point of interest.
The B, C' and D components are matrix-valued and need to be vectorized.
Moreover, it is seen that the B component of (21) is an independent sub-
system, the A and D subsystems, respectively, depend on B, and the C
subsystem depends on both B and D. The stability conditions for (21) can
be given in terms of the following matrices'®

DTy = M(I+ B),
DIg = BM+I® MB,
DT, = I® MB,
DTp, = I® MB,

13For details on the technique, see Chapter 10 of (Evans and Honkapohja 2001).
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where B denotes the value of B at the REE of interest and ® denotes the
Kronecker product.

The E-stability condition for REE of type I and II is that the real parts
of all eigenvalues of all four matrices DT;, i = A, B, C, D, are less than one.
For the class of non-fundamental solutions III the matrices DT and DTp
will have some eigenvalues equal to one, due to the continuum of solutions.
A necessary condition for E-stability is that the non-zero eigenvalues of the
four matrices have real parts less than one.

The explicit E-stability conditions for the three types of REE are then
obtained as follows.

I. The monetarist solution: The eigenvalues of DT are 0 and (af8)!.

The non-zero eigenvalue of DT}g is 8 _alﬂ_ 2. All eigenvalues of DT and

DTp are zero. This yields the E-stability conditions given.

IT. The fiscalist solution: The non-zero eigenvalues of DT}, 1 = A, B, C, D,
are 1+ 28— 14+ 20 and 2+ 2L This yields the E-stability
conditions given. Although the matrix B depends on ¢, and ¢, the
eigenvalues of DT}, i = A, B,C, D, are in fact independent of ¢, and
¢y, as can be verified using e.g. Mathematica (routines available on

request).

III. The non-fundamental solutions are not E-stable, since DT has an
eigenvalue equal to 2.

4.3 Economic Implications

Looking at the economic model, it is evident that the most natural policy
rules entail the parameter restrictions « > 0 and v > 0. a > 0 means that
the nominal interest rate responds positively to current inflation and v > 0
means that the lump-sum tax responds positively to beginning-of-period debt
b;_1. In the case v = 0 taxes are set independently of the debt level. Realistic
values of 7 would also appear to be below 81, since v > 3! implies that, at
the non-stochastic steady state, any shock to debt levels would lead to a tax
increase that would more than pay off the debt, including interest, within
one period. We therefore focus on the region a > 0 and v > 0 of the policy
parameter space, followed by a brief discussion of the other cases.

16



Figure 2: Regions of E-stable REE

Figure 2 shows the results on learning stability for the monetarist and
fiscalist solutions in this part of the parameter space. In the figure M indi-
cates that the monetarist solution is stable under learning. F indicates that
the fiscalist solution is stable and U indicates that neither solution is stable
under learning. In none of the areas are both solutions simultaneously stable
under learning. In the shaded region o > 87" and 0 < v < 7' — 1 the
solutions are not stationary.

Within the parameter region described by Figure 2, the AM/PF regime
arises with o« > 3 ' and 8 ' —1 < v < 3 '. In this regime the monetarist
equilibrium is the unique stationary solution and it is also stable under learn-
ing. In the AF/PM regime, given by 0 < o < 37" and 0 <y < 7' — 1, the
fiscalist REE is the unique stationary solution and is stable under learning.

The indeterminacy region with policy combination PM/PF is given by
0<a<fB'and 7' -1 < v < B, Here, while both solutions are
stationary, they fail to be stable under learning.'*

14Cases in which policy leads to unstable REE under learning have appeared in the
literature, see in particular the treatment of interest rate pegging by (Howitt 1992) and
the more recent discussion of (Evans and Honkapohja 2002).
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The shaded explosive region with policy combination AM/AF is also di-
vided into two cases with either the fiscalist or the monetarist solution being
stable under learning. We emphasize that our results are local, i.e. they are
valid only in a neighborhood of the steady state. Our results for the shaded
thus give only a limited amount of information because the solutions diverge
from the steady state. A full analysis of learning would require examination
of the nonlinear model. However, the results for this region do suggest an
incipient tendency for the economy under learning to follow the indicated
explosive equilibrium.

Note that active monetary policy requires a > 3 . This is a somewhat
stronger condition than given by a usual formulation of the “Taylor princi-
ple”. If instead 1 < o < 37" the monetarist solution becomes unstable (with
either the economy becoming unstable or tending to the fiscalist solution).

4.3.1 Further Comments

We make a few observations about learning stability in the other regions of
the policy parameters not covered by Figure 2. Throughout the AM/PF
region the monetarist equilibrium is stable under learning. This solution is
also stable in part of the left IN region of Figure 1. The fiscalist solution is
stable in the top-left and bottom-right AF/PM regions and it is also stable
in a part of the left IN region of Figure 1. There is no stable equilibrium in
the top-right AF/PM region even though this is a regular case in which the
fiscalist REE is the unique stationary solution. Finally and most surprisingly,
in the bottom-left AF/PM region the explosive monetarist equilibrium is
stable while the stationary fiscalist solution is unstable under learning.

For convenience we have assumed that the exogenous shocks are white
noise. Assume instead that they follow a jointly stationary first order vector
autoregression. As we note in Appendix A.4, this imposes additional require-
ments for learning stability of equilibria. In some cases the stability regions
for model parameters are unchanged. However, one can also find cases in
which the additional requirements tighten the domain of stability for the
parameters.

4.3.2 Alternative Information Assumption

The preceding analysis of stability under learning was based on the assump-
tion that, when forming expectations, agents observe the current values of
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exogenous but only the lagged values of the endogenous variables. In the
literature it is sometimes alternatively assumed that agents can condition
their forecasts also on current endogenous variables, and we now explore the
implications of agents having access to current endogenous variables in their
expectations.

The reduced form and the PLM are still (19) and (20), respectively. How-
ever, the forecasts of the agents are now

Efyiv1 = A+ By + Duy,

since the shocks are taken to be iid. Substituting F;y; ;1 into (19) implies
the ALM

yr = (I — MB)"'[MA+ Ny;_1 + (P 4+ mD)v; + Ru_1],

provided I — M B is invertible, so that the mapping from the PLM to the
ALM is

A — (I-MB)"'MA

B — (I-MB)'N

C — (I-MB) P+ MD)
D — (I-MB)'R

The E-stability now stipulates that all of the eigenvalues of the matrices

DT, = (I-MB)™'M,
DTp = [I—-MB)'N/'®|[(I-MB) M|

have real parts less than one at an REE (A, B,C, D).*> For the different
types of REE we obtain the following explicit E-stability conditions:'%

I. The monetarist solution:

(aB)! < 1and ———

5There are only these two matrix conditions, since the C' and D components of the
ODE defined by the mapping are necessarily locally stable, provided that the system for
B is convergent.

16The non-fundamental REE are at the singularities of I — M B and we do not examine
them further.
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II. The fiscalist solution:

B
<1 and
1—pBy 1— By

In the economically relevant parameter region o > 0, 0 < v < 57" these
conditions yield the same cases of E-stability and -instability as the main
information assumption used in Section 4.2 and which are illustrated in Fig-
ure 2. Thus, throughout this parameter domain our stability and instability
results are robust to the choice of the information assumption.

5 Conclusions

We have considered local stability under learning of the rational expectations
solutions in a simple stochastic optimizing monetary model in which the in-
teraction between monetary and fiscal policy is central. Our first finding was
that in the case of constant money supply and constant taxes, the equilib-
rium explosive price paths dictated by the fiscal theory of the price level are
not locally stable under learning. In contrast, if fiscal policy is Ricardian,
then the monetarist equilibrium is stable under learning. These particular
results appear to cast doubt on the plausibility of the fiscal theory.

We then examined an alternative setting in which interest rates are set as
a linear function of inflation and taxes are set as a linear function of real debt.
The usual monetarist solution is locally stable under learning in the active
monetary /passive fiscal policy regime in which it is the unique stationary
solution. On the other hand, the fiscalist solution, in which inflation depends
on the debt level and on tax shocks, is stable under learning for a plausible
subregion of the active fiscal /passive monetary regime, in which the fiscalist
solution is the unique stationary solution.

There are also regions of plausible policy parameter values in which the
economy is indeterminate, with multiple stationary solutions. However, in
this parameter domain none of the REE are stable under learning.

Overall, our results provide significant, though limited, support for the
fiscalist solution. Whether the fiscalist solution emerges under learning de-
pends on the precise specification of the fiscal and monetary policies. Careful
consideration of the interaction of these policies is therefore required to un-
derstand the qualitative characteristics of inflation and debt dynamics.
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A Appendix

A.1 Household Optimality Conditions and Temporary
Equilibrium

Define the variables W; 1 = my; + b; and x;,1 = m;. Following (Chow 1996),
Section 2.3, introduce the Lagrange multipliers \; for the budget constraint
and p, for the equation x;,1 = m; and write the Lagrangian

L = E, Z{ﬁt [(1—01) i + AL — 02) Haem, )'™7] +
=0
ﬁt+1)\t+1[Wt+1 — Y +cCt+T¢ — CC{TF;I — Rtflﬂ';l(m — .'Et)]
+8H oy (o1 — )}

Here W;, x; are the state and ¢;, m; the control variables.
The first order conditions are

¢, 7t — BEM N1 =0, (22)

Eujtyy =0, (23)

M = B(Ri_imy N Eis, (24)

pp = Amy Ny, )70 4 B(m = Reoamy B (25)

In addition, the household’s optimal choices must satisfy the transversality
conditions (4).

These equations hold under RE, but they also hold under any subjective
expectations that satisfy the law of iterated expectations. We now derive the
consumption and money demand equations which determine the temporary
equilibrium under subjective expectations. In (25) one eliminates E;\;;1 by
substituting (24) into (25). Next, advance the resulting equation one period
and use (23), which leads to

Am P Eirlzy 4 (R = 1)87 e 7 = 0. (26)

Here we use E}(.) to emphasize that the equation holds for subjective as well
as rational expectations.
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To derive the Euler equation for consumption, combine (22) and (24) to
obtain A, = R, 17} '¢; 7" and

¢ 7t = BRE (7Tt+1ct+1)

Assuming that all agents have identical expectations, market clearing im-
plies that ¢; = y — g for all agents. It is, therefore, natural to assume that
agents forecast their future consumption as ¢;;1 = y — g. We arrive at the
consumption schedule

¢ =(y—9) "BRE T,

This specifies consumption demand as a function of the interest rate and
expected inflation. Substitution of this equation into (26) gives the money
demand schedule as a function of the interest rate and expected inflation:

Am Bl + (R = Dy —9) " RE{m ) =0, (27)

Given expected inflation, the temporary equilibrium is obtained by im-
posing market clearing, so that ¢; = y—g, which immediately gives the Fisher
equation

R' = BEn. . (28)

Under RE this gives equation (2). Finally, substitution into (27) yields
ABmy P Efn = (y —9) (1= BE; T, (29)
which, together with money supply, determines the current price level. Under

RE we get (3).

A.2 Linearization

We first give the linearization of the model. Rearranging (29) we can write
money market clearing as

my = (AB)72(y — 9)™ /7 ((1 = BEm L ) (Byegzy )77 (30)
(30) is of the general form

my = F[Ef(f(ﬂtﬂ), E:g(ﬂtﬂ)]»
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where

F(z,y) = C’(l — ﬁx)_l/‘”yl/”, with

r = f(z)=ztandy=g(z) =221

Here C' = (AB)"/7(y — )7/,
Carrying out the differentiation we have

Fie,y) = Gy (=1/oa)(1— 5z 77 (=5),
Fr,y) = C(1 =) 71 oa)y )
') = =2 g() = (oo = 1)

Thus, using the chain rule
dm = (F\ f'+ F»g')dz

at the nonstochastic steady state w, we have the linearization

<_Cﬁ> (m — B)~(Fo2)/e> (02 — 1) C(m — B)~V/o2p2?

~ * ~
my = Et 41

02 02

or
Tht = CE;(ﬁ't_;'_l. (31)

Here m; and E;7;y; denote the deviations from the nonstochastic steady
state.

We also need to linearize the Fisher relation (28) at the nonstochastic
steady state m, R. We have

0= —BRr *E#fi1 + Br 'Ry,

where R, is the deviation from the nonstochastic steady state. Since the
Fisher equation also holds at the nonstochastic steady state, i.e. SRr—! = 1,
we get

E:ﬁ-t+1 = ﬁRh
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which can be substituted into (31) to yield
iy = CBR,.

This last expression can be used in the linearized government budget con-
straint.

Finally, we linearize the budget constraint, taking note that m; is a func-
tion of R;. We get

= Om =~ - _,0m =~ m _
0 = bt + Q_RRt + ’}/btil -+ "(/Jt — T lﬁRtfl + Fﬂ-t —
Rr b,y — m'bR,_1 + Rbr %7y,
where 7, b, R are the non-stochastic steady state values and

om

or -~ P

is the derivative of the money demand function at the non-stochastic steady
state. Note that Rm—* = 37" by (2). The next step is the observation that

Rt = Oz’/NTt + 9t

as a result of centering. This yields the final linearization (32) below.
Collecting everything together we have the two Leeper-type equations

Bl = o, + (6,
and
7 ~ m -2 ~ -1 -1
0 = b+ (Cﬁa + =5+ Rbm ) + i (—77'CBa— 7 'ba) (32)

+l~)t_1(”}/ — ﬁil) + CﬁQt -+ "(/Jt + 91,_1 (—7T_1Cﬁ — %) .

Equation (32) implicitly specifies the coefficients ¢y, s, 5, p, of equation
(16). Here «, 3,7 are just the original model parameters,

C = <_Cﬁ> (mr— B) " Uro/ 4 (Uz — 1) C(r—B) Von72,

09 (o))
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in which again o is a parameter in the original model, and C' = (AB)Yo2 (y—
g)7/?2 where 7, m, b, R are the non-stochastic steady state values. The latter
are given by equations

OBR=m
b+m+v+yb=g+mr ' +Rr'b

R=qay+ar
and

m = A2 (y — g)7/72BR(R — 1)~ Y2,

A.3 Regularity Conditions

For either specification the system under RE can be rewritten as
(o 0 ) (3)
—¥2 5_1 - by
(@3)~' 0 Tit1 (aB)~"
( o1 1 b1 * 0 My
0 —a™! 0
(903)9t+1+( 0 >9t+(1)¢t+1:

e\ _ J ( T+ ) + Fing g+ Fobpq + F30, + Fy)y
by biy1

or

where

J = ( O‘ﬁ)_l 0 )
T\ BT =)o+ ea(aB)T) (B =)
and where 1, | = T — By,

The eigenvalues of J are (af) ' and (87" — ~) . If either root is less
than one, imposing non-explosiveness gives a linear restriction between , b,
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and 6;. This is obtained as follows.!” Diagonalize J as J = QAQ !, where
A = diag((3™" = 7)1, (a®) ). Let (w,20)' = Q Yms,by). If [(aB) ] < 1
then non-explosiveness of the solution requires that z; + C10; = 0 where C
depends on Q! and F3. It can be shown that z; = 7, yielding the static
linear relationship satisfied by the monetarist solution. If ‘(ﬁ_l — 7)_1‘ <1,
then non-explosiveness requires that z; + C26; = 0. Rewriting z; as a linear
function of m; and b; gives the static linear relationship satisfied by the fiscalist
solution.

Finally, we remark that in Section 4.1 the fiscalist solution II can be
shown to satisfy the fiscalist static relationship whether or not the model is
regular. Since the matrix B is singular, one row is proportional to the other
row and it can be verified that the proportionality factor is %, which
is the same as the coefficient in (18).

A.4 Serially Correlated Shocks
Suppose that the shocks v; = (0;,,)" follow a VAR(1) process, i.e.

v = Fu_y + ey,

where ¢; is white noise and the eigenvalues of F' are inside the unit circle. In
this case the mapping from the PLM to the ALM is unchanged for the A, B
and D components. For C' the mapping becomes

C — MBC+ MCF+ MD+ P
and the E-stability condition for C' is
Dic=1I1®MB+F @C.

As an illustration restrict attention to the monetarist solution in the case
a >0 and F' = (fi;) is diagonal. It can be verified that for fi1, foa > 0 the
E-stability conditions remain unchanged. On the other hand, when f;; and
fa2 have different signs, the conditions can be tighter. For example, setting
6 =095 a=12, fiiy = 0.99 and fos = —0.8 yields an unstable root for
DTe.

"For the technique see the Appendix of Chapter 10 of (Evans and Honkapohja 2001).
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